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ABSTRACT' 

This study investigates the applicability of a number of traditional and newer methods of 
morphological description to the problem of defining hominoid cranial form. The aim has been 
to produce an objective assessment of the relative merits of the methods from both a practical and 
theoretical perspective. 

The thesis is presented in three parts. In the first, several approaches which offer potential in the 
description of cranial morphology are reviewed and the phenetic relationships of the crania of 
extant hominoids are examined using data obtained by a variety of new (shape factors, least squares, 
and Fourier analysis) and more traditional (dimensions, angles and indices) approaches to 
morphological description. The analysis concentrates on a comparison of the resulting patterns of 
group dispositions and on an examination of the ability of the various approaches to allow an 
accurate determination of the affinities of crania of unknown provenance. The results indicate that 
there is little difference in the patterns of phcnetic relationships obtained although it appears that 
the analyses based upon linear and angular measurements and Fourier coefficients provide the 
widest separation between the groups. 

The second study employs linear and angular measurements and Fourier coefficients in an 
examination of within-group cranial variability. In general the results lead to similar conclusions 
about the patterns of sexual dimorphism in extant hominoid crania and the influence of size on 
cranial morphology. The analyses of Fourier data differ from those of linear and angular 
measurements, however, in that purely size related variation is given a smaller weighting relative to 
morphological variation attributable to other sources. 

In the third part the fossil record relating to the evolution of Homo is reviewed. The third study 
employs these same two approaches to morphological description in a study of the patterns of 
cranial variation between certain fossil hominids. By contrast with the first study the pattern of 
phenetic relationships between OTUs appears to be considerably influenced by the choice of 
measurement method although there is a common underlying pattern of group dispositions. The 

reasons for these differences are considered in the light of the results of multivariate morphometric 
studies of cranial form undertaken by other workers. 

From these studies it is concluded that: 

a) the results obtained by studies employing landmark dependent and data with reduced landmark 
dependence may differ to some degree and that this difference is principally related to differences 
in the ways in which the various anatomical regions influence the measurements, 

b) the choice of method for craniometric problems should be determined with due regard for the 
task at hand, 

c) the investigator should be aware of the potential pitfalls and advantages of each method in 
furnishing answers to specific questions, 

d) the investigator should be aware of the fact that the use of different morphological descriptions 
may give rise to different results. 
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CHAPTER 1 

Cranial form in the Iiominoidea 

-a general introduction 
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General Introduction 

The work described in this thesis was begun and inspired by the late 

Professor E. H. Ashton of Birmingham University and follows the same 

biometric tradition which was enthusiastically developed over a number of 

years by Professor Ashton, his students and co-workers. 

Objectives 

This study investigates the applicability of a number of methods of 

morphological description to the problem of defining hominoid cranial form. 

The aim has been to produce an objective assessment of the relative merits 

of the " methods from both a practical and theoretical perspective. 

Context 

By far the commonest approach to the quantitative description of 

biological forms relies upon the identification of landmarks. Traditional 

craniometry is no exception to the general rule in that it involves the use of 

a great number of easily recognisable and precisely defined landmarks (see for 

example Martin, 1929, Howells, 1936, Trevor, 1950). It suffers, however, from 

a number of significant problems. 

First, the description of cranial morphology by the use of linear and 

angular dimensions is bound to be, influenced by the distribution and density 

of the standard craniometric landmarks. Regions such as the face and cranial 
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base offer a large number of readily definable and identifiable prominences 

and sutural junctions. By contrast, the vault and other regions in which bones 

are smoothly curved and the number of sutural meeting places is limited 

(which may make up a considerable proportion of the skull) offer relatively 

few landmarks. In consequence, traditional craniometric descriptions may fail 

to adequately describe "whole" morphology since the regions between 

landmarks are unsampled. 

Second, the standard approach to craniometry results in a set of 

measurements which are relatively disconnected and do not describe 

morphology in a systematic way. As a result some measurements may, to a 

degree, simply repeat information contained in others and it is not possible 

to know what proportion of the available information is described by any 

given set of measurements. 

Other problems, not necessarily peculiar to standard craniometry, include 

the difficulty of ensuring repeatability of observations between observers, the 

time and effort required to collect and encode the data and the difficulties 

associated with ensuring equivalence of landmarks between crania from 

different species. 

Recent developments (e. g. the work of Lu, 1965, Sneath, 1967, Rohlf 

and Archie, 1984 and others) have suggested that the traditional biometry 

based upon dimensions taken between landmarks may be superseded by a 

new biometry. These new developments include refinements of landmark based 

techniques so that the resultant data include information relating to the 

curvature of regions between landmarks (see Bookstein, 1977a, 1978) and 
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methods which may allow the description of cranial form with a reduced 

dependence on the need to define landmarks (see Lestrel, 1974,1978). Some 

of the methods with a reduced dependence on landmarks offer potential for 

determining the proportion of total morphology which is described and for 

the automation of data collection and encoding. 

As yet, however, there has been little effort devoted to comparing the 

newer methods with each other and with more traditional approaches. 

Consequently the relative merits of the methods and the effects of using 

different approaches to shape description on observed phenetic relationships 

between crania are largely unknown. 
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Structure of this thesis 

The work described in this thesis tests the hypothesis that the pattern 

of phenetic relationships observed between crania is independent of the 

method used to describe morphology. 

In addition attention is paid to differences in: 

a) the extent to which different methods allow the accurate identification of 

crania of unknown provenance, 

b) the interpretability of the generated data and of the observed phenetic 

relationships of crania, 

c) the practical aspects of the use of the methods. 

The thesis is presented in three parts: 

In the first a number of approaches which offer potential in the 

description of cranial morphology are considered. This is followed by a 

phenetic study in which some of these methods are applied to the description 

of cranial form in extant hominoids with the aim of allowing a preliminary 

appraisal of their relative merits. 

The second part builds upon the findings of the first by comparing the 

patterns of within -group variation of cranial form in extant hominoids which 

emerge from analyses using the apparently two most effective craniometric 

approaches. 

The third part of the thesis once again compares these two methods 

- this time in a situation where the between-group differences in cranial 
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morphology are less extreme than those in the first part of the study. The 

material used consists of the crania of a number of extant and fossil 

hominoids. 



Chapter 2 

A consideration of the available methods 

for the description of cranial form 
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INTRODUCTION 

Recent developments in computing and in the technology of image 

processing have made available a number of methods for the description of the 

form of irregular objects. Some of the newer approaches describe form without 

the need to define landmarks, consequently comparisons between objects can be 

made without the need to identify homologies. Potentially, these methods can be 

applied to the description of cranial morphology. They may offer some advantages 

in that an exhaustive mathematical description of even the most irregular or 

smooth, landmark free, objects is now possible. 

Despite recent efforts to apply some of these methods in a number of 

contexts (e. g. Lestrel, 1974,1982, Rohlf and Archie, 1984, Yasui, 1986, Johnson 

et aL, 1985) little information regarding their relative practical and theoretical 

merits is available. As a consequence it is unclear whether one method is of more 

use than another in a given circumstance. 

It is the purpose of this, the first study to be described in this thesis to 

consider the applicability, practicality and efficacy of a number of methods in the 

description of cranial form in the Hominoidea. To this end the chapter begins 

with a consideration of methods which are available for the description of the 

morphology of biological structures. Methods which are dependent and those which 

are independent or have a reduced dependency on the definition of homologous 

landmarks are described and their theoretical advantages and disadvantages 

considered. 
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This preliminary review is followed by a study which is directed to a 

consideration of the practical benefits and disadvantages of each approach to 

morphological description. The study aims to compare the phenetic relationships 

of the crania of living hominoids as implied by studies using traditional 

craniometric approaches (dimensions angles and indices) with the phenetic 

relationships implied by newer approaches (Sneath's (1967) distance -De, Shape 

factors and Fourier analysis). This study investigates the following questions: 

a) To what degree do the phenetic relationships between living hominoid crania 

differ when midline data are studied instead of data from midline and off - midline 

structures? It is important to know this because the newer methods of shape 

description are, at present, limited for practical purposes to midline tracings. 

Improvements in technology will probably remove this limitation in due course. 

b) To what degree do the phenetic relationships between living hominoid crania 

differ when the crania have been described by methods which have a reduced or 

no dependency on the definition of homologous landmarks? To this end the 

phenetic relationships of crania which are implied by the studies of a) (above) are 

compared with those implied by newer methods. 

c) More generally, considering the findings of a) and b) which methods appear 

to offer most potential in adequately describing and in allowing suitable statistical 

comparisons of hominoid cranial morphology? 
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In the studies to be described in this chapter the hypothesis which is 

consistently explored is that there are no differences in the results of phenetic 

studies which use data collected by the means described above. 
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A REVIEW OF METHODS WHICH OFFER POTENTIAL IN THE 

DESCRIPTION OF CRANIAL SHAPE 

L "Homology" dependent methods of shape description 

By far, the commonest approach to the quantitative definition of biological 

form has been the use of measurements taken between defined morphological 

landmarks. 

A landmark is an identifiable point on the form which is to be described. 

In order to compare forms, it is essential that the landmarks used in the 

comparison are in some sense equivalent. In studies of biological forms, the 

equivalence which is usually implied is biological (i. e., ontogenetic or phylogenetic). 

In practice, landmarks may be of three kinds viz. tips of prominences, 

extremal points (e. g. the most dorsal), or features located within the outline (e. g. 

sutural junctions). It is possible, however, that features located within outlines may 

vary between forms with similar shapes (figure 2.1) and they should be used with 

caution. 

The use of data taken between landmarks for comparing forms has a long 

history in biology. Measurements are taken from populations and compared either 

singly or simultaneously by means of multivariate statistical analysis. 

The comparison of measurements taken between homologous landmarks on 

two forms is primarily, directed towards the study of shifts in homologies as a 

result of evolution, growth, or some other factor. Mathematical shape difference 

is related to homology shift. 
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FIGURE 2.1 - Features located within outlines may vary between forms with similar shapes. 
Compare the position of bregma in a, with that in b. 

a 

b 
Fig 2.1 
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In practice, biological materials differ in overall shape by relative shifts and 

changes in the size and shape of homologous regions and do so in highly complex 

ways. It seems unlikely that the study of comparative data taken between a set of 

homologous landmarks on organisms or parts of organisms is the optimal way to 

answer questions about "pure" shape differences: rather it is an appropriate way 

to answer questions about differences in the positions of postulated homologies. 

A criticism which can be levelled against the way in which landmark data 

are commonly collected, at least in anthropology, is that they are taken almost 

randomly. No attempt is made to describe systematically the relative location of 

landmarks, one to another. Measurements are taken in the hope that their 

multivariate compound will sort out the organisms in some form related way. The 

difficulties encountered in defining form by landmarks are illustrated in figure 2.2. 

More recently increasing use has been made of Cartesian co - ordinate data 

for describing cranial morphology (eg. Creel & Preuschoft, 1976). These co - 

ordinates, which are frequently three - dimensional, allow a relatively complete 

description of cranial morphology in which landmarks can be easily related one to 

another. Corruccini (1988) has investigated the differences obtained in the results 

from studies using cartesian co - ordinate data and those using linear dimensions 

taken from the same landmarks. His study indicates that "much similarity is found 

between analyses using input data in the form of chords and co-ordinates. The 

subtle differences attain statistical significance, however, with the greater 

interspecific separation and delineation of trends consistently favouring chords" in 

a study of primate odontometrics and co - ordinates in a study of pelvic 

morphology. 
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FIGURE 2.2 - Measurements taken between the landmarks in a) will only incompletely describe 
the Morphology of the cranium (b). Some areas, especially the vault are very 
poorly described. 

a 

u 

Fig 2.2 
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The distances between landmarks are influenced by the size as well as the 

shape of organisms. A common manoeuvre intended to eliminate the effects of 

size on a set of data is to re - express each variable as a ratio (variable/size 

variable). This manipulation does not render data independent of size. A full 

discussion of the problems associated with the use of ratios is given by Atchley 

et aL, (1976) and further considerations are furnished by Albrecht (1978a). The 

essence of the argument is that the ratio, Y, made up of a "nonsize" variable xl 

and a "size" variable x2; 

Y= xl/x2 

will be related to the size variable, Z, (Z=x2). In a typical data set, Y will be 

correlated with Z. This correlation will vary as a function of the correlation 

between xl and x2 and of the ratio of the coefficients of variation for the two 

original variables. The underlying distribution and structure of the data are altered. 

The comparison of measurements taken between landmarks on two forms 

is primarily directed towards study of shifts in their disposition. Sneath (1967), has 

described an interesting variant on the traditional approach. Instead of measuring 

the distances between landmarks and using these to examine "shifts" in the 

"homology map" he compares the disposition of landmarks (as described by their 

Cartesian co-ordinates) between specimens. The comparison is effected in two 

stages, first the "spread" of landmarks is equalised between specimens, this makes 

their "sizes" the same. Second the diagrams are located "on top" of each other 

and are rotated with respect to each other. The sum of squared distances between 
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equivalent points on each is calculated at every step of the rotation and the 

minimum is taken to reflect the "difference" between diagrams. The context in 

which this measure of "fit" is described is not entirely taxonomic. Sneath continues 

in the same paper to develop a technique for describing shape change after the 

manner of D'Arcy Thompson (1961) (see a review of this field by Bookstein, 

1986) by representing the "transformation" as the distortion of a rectangular grid. 

This part of the work is not directly relevant to the task of identifying phenetic 

groups though the "fit coefficient" is. 

A fuller description of this approach will be given later, it is more akin to 

the statistical comparison of descriptions of organisms than to the description of 

individuals per se. Sneath's description of individual OTU's is simply, the x and 

y co-ordinates of landmarks. 

It is clear that measurements taken between landmarks may provide useful 

classifications but to assume that these classifications are based on "shape" may 

be erroneous. In fact, the equivalence classes are created of individuals with similar 

dispositions of landmarks, the definition of which may or may not be "shape" 

dependent. Furthermore sampling of form between landmarks may leave 

considerable areas unmeasured (see fig. 2.2). The comparison of "homologous" 

dimensions (between "homologous points") is a good way of describing changes in 

the "homology map" rather than "shape" in a mathematical sense (see later). 

The use of landmarks offers the biologist one significant advantage over 

methods which have a reduced dependence on homology definition, in that they 

allow questions about regional differences to be posed. It would be impossible to 

consider differences in the facial skeleton between two apes unless the location 

of the face relative to rest of the skull were defined on each. 
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There are, however, several disadvantages or problems associated with the 

use of landmarks. Some of these are practical and in evolutionary studies at least 

there is a major philosophical problem. Practical problems in the use' of landmarks 

include the difficulty of defining those based on maximal curvature (observers may 

disagree on the location of the maximum and the degree of disagreement will in 

general be related to the rate of change of curvature in a region; the development 

of digital image technology offers, at least in two dimensional forms, the possibility 

of automated curvature analysis with consequent improved identification); the lack 

in some regions of clearly definable points (e. g., the cranial vault) so that 

landmark based data may give only an incomplete description of such regions; 

and the fact that, in general, the collection of landmark based data is time 

consuming. 

In evolutionary studies there is a philosophical problem associated with the 

use of "homologous" landmarks. The problem is that in order to "get started" the 

identification of homologies requires a pre-existing (evolution orientated) 

classification. Homologies can only be called homologies in this context if they are 

known to have the same phylogenetic origin. This "homology problem" is discussed 

by Sneath and Sokal (1973). The practical approach relies upon the identification 

of operational homologies (=postulated homology, = isology). The work of 

Jardine (1969) and Jardine and Jardine (1976) on probablistic concepts of 

homology is of particular interest in this context. 

One way round these problems is to attempt a purely mathematical 

comparison between forms with no isologous points being defined. Sneath and 
Sokal (1973) suggest some variant of a least squares fit of data in which outlines 

are represented by closely spaced points. Scaling and overlapping of forms on 
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their centroids, followed by rotation to obtain a minimum residual between outlines 

would, on the whole, group similar organisms together. Convergence, however, 

seems to be a problem, since convergent forms are, by definition, similar in 

shape. This consideration aside, there may well be a place in the early stages of 

construction of phenetic classifications for purely mathematical approaches to 

shape measurement which are independent of the need to define homologies. 



19 
IL The description of biological form without landmarks 

This discussion will be directed primarily to the relatively simple task of 

two dimensional shape analysis. The methods of quantification are extensible, at 

least in theory, to studies of solid, three dimensional objects but the current state 

of the art makes this impractical, the task of obtaining comprehensive three 

dimensional co-ordinates, and of handling the required computations being the 

limiting factors. 

The first problem in attempting a study of two dimensional outline data 

concerns the means of projecting three dimensional objects into two dimensions. 

Frequently some means of standardisation on recognised planes (e. g. median) is 

required: there have been two approaches to this. The first is illustrated by the 

work of Yasui (1986) who manually projected points from human crania onto a 

plane parallel to the median plane of each. An alternative is to photograph each 

object under study in a standard orientation and then to treat the photographs as 

projections of the forms (e. g. O'Higgins and Williams, 1987). 

The outlines of such projections can be manually measured, though 

quantities such as area or perimeter present problems. The planimeter has 

nowadays been replaced by a digitising tablet attached to a computer. Points are 

sequentially read from the outline at frequent intervals and stored as a series of 

x, y co-ordinates. The task is time consuming and prone to operator error. 

Computer vision systems which collect whole images and allow their manipulation, 

pixel by pixel have recently become available. It is relatively simple to extract 

from such systems outline co - ordinates read directly from an object. Details of 

such an apparatus are given in Johnson et al. (1985). 
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Outlines which are recorded in the form of Cartesian co - ordinate data 

cannot be directly compared: the co - ordinates differ in value because of 

differences in position and orientation of objects as well as differences in size and 

shape. If measurements are to be taken from outlines in a way that will allow 

comparison they have to be invariant to rotation and translation or they need to 

be referred to the outline itself. For the comparison of two dimensional objects 

two reference points defined on each are needed. One point serves to fix relative 

position and the second relative orientation. An example of such a system is 

furnished by the manoeuvre of converting Cartesian to polar co - ordinates (e. g. 

Yasui, 1986). 

Some means of two dimensional shape analysis are invariant to rotation 

and translation and to differences in area enclosed by an outline, whilst others 

may exhibit a more limited invariance. 
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"Shape factors" 

Under this heading I shall describe a series of shape descriptors which are 

invariant to differences in position and orientation of the object under 

measurement. They are very simple to derive computationally and require only 

basic data about each shape. "Shape factors" are invariably ratios and as such 

should be used subject to the cautions of Atchley et aL (1976). Examples of their 

use in biology are furnished by studies of cell shape (e. g. Young, Walker, and 

Bowie, 
. 
1974) and of cranial form in the primates (e. g. Ashton, 1981) 

The simplest "shape factor" of all is the ratio; 

max. length / max. breadth at 900 to max. length 

this measure will reflect "elongation" of the shape in a relatively poor way. Only 

four outline points are sampled and many different "shapes" will share the same 

numerical value. For shapes with many undulations, maximum projections at 900 

can be used. 

More computationally complex measures compare such things as the 

perimeter of an outline and the area enclosed by it. Exner (1978) has described 

several such measures, e. g.; 

fl = 4. n. A/ P2 

f2 = P- P2-4. a. A / P+ P2 --4. n. A 



22 

where; 

A= enclosed area, and P= perimeter 

For a circle: 

P2 = 4. n. A 

so fl and f2 will be equal to unity. As the ratio A/P varies so will each "shape 

factor". Shapes with undulating outlines will have small values of each factor 

relative to more "circular" shapes. Outlines which look quite different can have 

similar values of one of these simple measures (rig. 23). Several different shape 
factors may be simultaneously considered in order to more clearly define form. 
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FIGURE 23 - Two outlines which are quite different may have very similar values of Fl 

f, =o-2a, 

f -- P" 

f, =o-2» 

Fig 2.3 
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Bending energy 

An interesting and potentially useful shape measure has been described by 

Young, Walker and Bowie (1974). They point out several problems associated with 

the measures described above which include lack of robusticity and the possibility 

that some of their properties may be altered in the transition from analysis of 

shapes on a continuous surface to the analysis on a discrete grid, as is the case 

in computer image processing. The latter objection seems unlikely to be a cause 

of significant error and there are computational ways of minimising this, but the 

former is more serious. 

The measure described by these workers is based upon the notion of "bending 

energy". They point out that a two dimensional outline made out of an 

homogeneous material, if allowed to adopt its "free" form would assume the shape 

of a circle. This is because a circle is the shape which minimises the stored 

energy. To make more convoluted outlines requires the expenditure of work in the 

form of bending energy. The measure they describe creates equivalence classes 

of figures with equal "stored energy". 

The calculation is simple. The shape is divided into small regions; 

for a region, n 

The curvature K= change in direction in that region 

length of the region 

The total "bending energy" is given by the sum of K. 2 's over the whole outline. 
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This measure is invariant to position and rotation but is affected by size as 

well as shape differences. This fits in with the intuitive feeling that it takes more 

energy to bend a short length of material into a circle than a long one. 
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Moments 

The methods so far discussed have concentrated on the analysis of outlines. 

Sometimes a form may be specified as a collection of interior points. In the case 

of digitised images these interior points are the positions of pixels. The calculation 

of moments treats the distribution of pixels on the x and y axes in a statistical 

way. This distribution is characterised by having a mean, variance, covariance etc. 

(see Fisher, 1958, and Moode and Graybill, 1963). 

In the field of digital image processing the calculation of moments has proved 

of value in describing plane images. For a single variable, e. g. the x locations of 

pixels, mP, the pth moment of x is given by; 

fp = I(xp) xpf(x)dx (Moode and Graybill, 1963) 

Thus the zero order moment is the number of points enclosed by the outline. 

For a two dimensional distribution, along arbitrary axes x and y the moment 

of the order (p+q) is defined by, 

my ffXPYf(x, y)dx dy (Moode and Graybill, 1963) 
mm 

More simply; 

rnoo = n, m10 =1x, m01= Iy, M20=7_X2 m%i = 
7-X'y, mot =1y2 , etc. 
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As described the moments are dependent on position and orientation and are 

thus of little use in taking measures of shape which will allow comparisons 

between forms differing in registration. Hu (1962) has described two dimensional 

moment invariants, which are in general more useful in the context of shape 

comparison. A full description of the use of moments in digital image processing 

is given by Gonzalez and Wintz (1977). 

Dunn and Brown (1986) have applied the method of moments to the study 

of chick heart fibroblasts grown on grooved substrata. They studied both 

differences in cell shape and in cell alignment in response to variations in the 

substrata. Regression analyses were performed to determine the influence of 

particular substratal parameters such as groove width, and spacing on the moments. 

Though well known in digital image processing, moments have been little 

applied to the study of biological forms. Despite this their use appears promising 

in situations where landmarks are undefinable or undesirable. 
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Medial axis transforms 

A very different approach to describing shapes has been developed by Blum 

(1973). Rather than by a description of the outline, the shape is defined by a 

medial axis or skeleton and a function. Together these may be called the skeletal 

pair. Oxnard (1984) has discussed the method and illustrated the medial axis of 

the projected silhouette of a pelvis (fig. 2.4). Bookstein (1977) describes the 

principle of operation of this method. He gives several definitions of the "skeleton" 

of a form. The most concise is "The skeleton is the locus of all points which do 

not have a unique nearest boundary point upon the shape; the function is the 

distance to any of the set of equally distant nearest boundary points". The 

"grassfire model" makes comprehension easier. The shape is characterised as an 

area of dry grass. If it is fired simultaneously all around the edge it will bum 

towards the interior. If we assume even rate of burning, the points at which the 

fire meets itself comprise the points defining the skeleton, the time taken to reach 

these points is the function. 

The skeletal pair will allow a complete reconstruction of the shape, which 

means that it exhaustively describes it. The skeletal pair is defined by the shape 
itself; no requirement is placed upon landmark definition. It has been proposed 
(Bookstein, 1977) that this skeletal pair might form a basis for shape comparison. 

The method is commonly applied to problems of character recognition in 

image processing. In biology it has been applied by Webber and Blum (1979) to 

the analysis of the form of human mandibles. 



29 

FIGURE 24 - The stages in the production of a medial axis transform of a chic 
silhouette (after Oxnard 1984) 

I 

Fig 24 
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Curvature of outlines 

A most promising approach to the study of biological forms would seem to 

be one based upon a comparison of curvatures around an outline. We have already 

noted that in many situations biological homologies are defined as "equivalent" (in 

a relational sense) areas of high curvature in an outline. An example is the inion, 

the most prominent point on the external occipital protruberence in the mid line 

of a cranium. A curvature description of an outline might therefore allow 

automatic recognition of prominences, and reduce subjectivity in the imposition 

of a point upon them. 

Bookstein (1978) has criticised conventional cephalometrics because it 

obscures the continuous variation of form between landmarks (fig. 2.5(a)). His 

proposal is to describe the continuous curvature at sample points on the outline 

(fig. 2.5(b)). The outline can be considered to be a continuous curve. Implicit in 

the function describing this curve are the actual Euclidian locations of any sample 

points that are required (each sample point can be described by its tangent angle 

and arc-length from an arbitrary start point). 

The local curvature at any point on the outline of a shape can be calculated 

from the chain code (directions from pixel to pixel) of an outline by the means 

described by Young, Walker and Bowie (1974). By repeated averaging of adjacent 

curvatures a smooth graph can be drawn. 

Another way of describing the curving of outlines is to examine the change 

in tangent angle with distance around an outline. Rohlf and Archie (1984) describe 

the application of such an approach to outlines of mosquito wings. Their tangent 
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FIGURE 2.5 - Conventional cephalometrics (a) obscures the continuous variation of faim 
between landmarks. Bookstein (1978) has proposed the scheme in (b) in w1 
the curvature at sample points is recorded. 
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angle function is taken from Zahn and Roskies (1972). For equally spaced points 
around an outline scaled to length 2n they calculate the tangent angle function 

(t) from; 

0 (t) = e(t) -e(O)-t 

where 0 (t) is the angle of a tangent vector at a distance t from the start point 
(tangent here = 0(0), see fig. 2.6). 

FIGS 26 - The tangent angle function after Rohlf and Archie (1984). go a angle of 
the tangent vector at the start point. 0- angle of the tangent vector at 
distance t from the start point. 

ýt 

Fig 26 
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Curvature descriptions of outlines "capture" and "preserve" the details that 

elude simple measures of shape. They have potential in the study of symmetry 

of outline features. A simple way to examine axial symmetry would be to examine 

local curvatures regularly spaced around an outline. Starting at a point where the 

axis of symmetry "touches" the outline, the sum of squared differences in 

curvatures traced half way round the outline clockwise and anti - clockwise will give 

a measure of symmetry. Large values will be associated with asymmetry, small 

with symmetry in the curvature description. A modification of this method in 

which every outline point over half the outline is used as a start point and the 

minimum overall difference calculated would reduce subjectivity in the definition 

of an axis of symmetry. 

Bookstein (1977) has suggested that it is possible to compare forms by 

sampling the tangent angle function (arc length and tangent angle) at landmarks 

and submitting these values to multivariate statistical analysis. Where the use of 

landmarks is not desirable or possible some criterion such as least squares might 

be applied to the determination of "equivalent" start points and tangent angles at 

regularly spaced intervals compared. 
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Polar co - ordinates 

Earlier it was noted that Cartesian co - ordinate pairs are inappropriate for 

direct shape comparison. The shapes to be compared must either be registered 
in a way that imparts some comparability in co - ordinates, or registration invariant 

measures of shape need to be calculated. 

One method of circumventing these problems is to re-express the Cartesian 

pairs as polar pairs centred on the objects themselves. This is achieved by 

determining on each shape an origin for the polar series and a point on the 

outline from which the series will be deemed to begin. The line connecting origin 

to start point is the line to which all other polar co-ordinates are referred. If 

the origin and start point are "homologous landmarks" (e. g. Lestrel, 1982) then all 

comparisons between polar co - ordinate pairs from outlines are in effect referred 

to these homologies. The biological validity of such a procedure is debatable 

because polar co-ordinates with the same angular displacement (other than the 

reference co-ordinates) taken from different individuals may pass through what 

may be considered non-homologous points on the outlines. Conversely, 

homologous points, other than those used for reference, may lie at different 

angular displacements from the zero axis. The biological sense in comparing 

successive polar co-ordinates from different shapes seems limited. Any errors in 

the identification of the reference points will affect all the polar series, errors in 

the location of the origin are "expressed in the alteration of every value of the 

radial function.... in a complex and non-linear way" (Bookstein, 1977). 

Polar co-ordinates may also be used in the comparison of shapes without 

any attempt to define homologies. In this case the origin for the series can be a 
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mathematically determined point such as the centre of area, and the start point 

can be likewise specified without any biological reference, e. g. randomly after 

least squares fitting". Size is equalised by scaling to equal areas. This is an 

attempt to describe shape per se: the positions of homologies are not under study. 
The function will, almost certainly, embody some biological non -equivalences 
between shapes (e. g. homologies mismatched in terms of angle or radius). This 

does not matter for we are interested in "mathematical" shape differences, which, 

like differences in the disposition of homologies, may concern biologists. 

Polar co-ordinates in themselves have been infrequently applied to the study 

of biological forms. The reasons for this are primarily that any regional differences 

demonstrated between the forms suffer the handicaps of being registration 

dependent and that only shapes without re-entrants are amenable to analysis by 

this technique. 

Yasui (1986) has used polar co - ordinates to study shape variation in Japanese 

crania. He orientates outlines with respect to each other not by a fixed outline 

point, but by rotating them and determining a criterion of best fit. This is similar 

to the approach of O'Higgins, Johnson and McAndrew (1986). Yasui corrected 

for size differences between crania by determining the allometric relationship 

between each polar radius and the area enclosed by the outline. 

Great care is needed in the interpretation of apparent regional differences in 

outlines as demonstrated by the polar method. They are entirely registration 

dependent. The only thing that can be determined with any certainty is that 

outlines are different, and then only after they have been equalised for size, 

rotation and translation. The way in which translation and rotation are standardised 

will critically modify the degree of observed difference. There is a good argument 
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in favour of a registration which minimises the misfit of outlines (as measured 

by residual area between them). The minimum residual area, after size differences 

are eliminated, can be taken to reflect shape difference (identical "shapes" would 

have zero mismatch). 
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Fourier analysis 

The single Fourier series has been applied to shape measurement in many 

disciplines: it is a standard technique and descriptions of it can be found in 

standard texts. It is particularly suitable for the measurement of smoothly varying 

forms because it attempts to decompose these into a series of sinusoidal waves of 

differing frequencies, phases and amplitudes which when summated give a good 

approximation to the original. It has been applied to the measurement of biological 

shapes by a number of workers (e. g. Lu, 1965, Kaesler and Waters, 1972, Lestrel, 

1982, Ferson, Rohlf and Archie, 1984, Rohlf, and Koehn, 1985). 

Briefly, a circular function, f(9), e. g. polar co-ordinates, tangent angle, or 

curvature can be approximated by; 

NN 

f(A) = ao +11, a+cosi© + X, b, sini© 

the ac's are the cosine components, and the b, 's are the sine components, they 

describe the amplitude of cosine and sine waves at a particular frequency, given 

by i. N is the maximum harmonic order of the calculated series. The effect of 

summation of sine and cosine waves of differing frequency and amplitude is 

illustrated in fig. 2.7. The single Fourier series will provide a fit to any smooth 

single-valued function. It is possible to calculate Fourier series directly from x 

and y co-ordinates (Zahn and Roskies, 1972). Rohlf and Archie (1984) have 

used such techniques to directly determine an elliptic Fourier series. Converting 

data from one form to another (e. g. curvatures to Fourier coefficients) might seem 
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FIGURE 27 - The effect of serial addition of waves of differing frequency and amplitude. The 
square wave in the top frame is approximated successively in the lower frames 
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illogical but the Fourier series has several properties which are potentially useful. 

In the sine-cosine form shown above, the value of each component is 

dependent on the "start point" for the series, the sine and cosine components are 

orthogonal to each other. If applied to bilaterally symmetrical objects (e. g. 

vertebrae, O'Higgins, Johnson, and McAndrew, 1986) when the start point coincides 

with an outline point on the axis of symmetry, the sine terms will be equal to 

zero (in practice they will tend to zero because of measurement error). Rotate 

the start point through 900 and the cosine terms will be zero. The Fourier series 

can thus be useful in the study of symmetry. The Fourier series, being made up 

of sine and cosine terms represents the transformation of data from a spatial to 

a frequency domain. As many biological objects have relatively slowly undulating 

outlines, the shape may be adequately described by relatively few Fourier 

components. Furthermore the frequency characteristics of outlines can be compared 

by examination of their "power spectra" which represent the relative total 

amplitudes of the various harmonics. 

The Fourier series converges onto the measured form as more components are 

calculated. It therefore allows reconstruction of the measured form. Figure 2.8 

illustrates a chimpanzee cranium which is reconstructed from increasing numbers 

of Fourier components via polar co-ordinates. 

There is an alternative representation of the Fourier series, the 

amplitude -phase - lag representation; 

N 

f(O) = Ro+ I Ricos(i(0+c ) 
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FIGURE 28 - The reproduction of an outline taken from a chimpanzee cranium by adding 

successive Fourier coefficients. Figures in the top right of each frame indicate 
the number of Fourier coefficients used. 

Fig 2.8 
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The R's are known as the amplitude components and the c 's as the phase lag 

components. The phase lag components contain all the information about "start 

point", i. e. they "register" the waves of different frequency "Qn top" of each other 

in a way that allows reconstruction of the original outline. This can be turned to 

advantage. In situations where dependency on start point definition is considered 

a disadvantage the amplitude components alone can be compared between shapes. 

O'Higgins and Williams (1987) have shown, in a study of cranial form in primates, 

that analysis of the amplitude spectrum gives a similar pattern of between species 

discrimination to that resulting from analysis of the combined amplitude/phase -lag 

spectrum. The degree of between OTU discrimination in the former analysis was, 

however, reduced relative to that in the latter. 

Fourier analysis as a means of describing biological forms and form differences 

has been criticised by Bookstein (1978) and Bookstein et al., (1982) on several 

grounds. He states that Fourier decomposition of a curvature function around an 

outline allows for one landmark only, the startpoint. If the aim of study is to 

examine differences in homology relationships then homologies will be 

undiscernible from the Fourier coefficients. Bookstein (1978) has also criticised 

the Fourier decomposition of chain coded data because the curvature function 

from such outline representations is not smooth, but rather it represents sudden 

jumps of integral. The series converges with increasing coefficients not to a smooth 

curve but to a jerky outline. Both of these criticisms are true. The description of 

the pattern of disposition of homologies is confused, not aided by Fourier analysis. 

We have seen however that the biologist may on occasion wish to measure form, 

not as a map of biological homologies but as shape in a purely mathematical 

sense, in this case there can be no assumption of homologies between forms 
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(other than the forms themselves - e. g. whole crania). In this limited application 

Fourier analysis is as valid as any other approach to "pure" shape analysis. The 

fact that chain coded data give rise to jerky outline representations is of interest, 

but not a death blow. There are techniques for data smoothing which have been 

applied in image processing and which can be applied to biological studies (see 

Gonzalez and Wintz, 1977). 

Bookstein (1978) continues his criticism of Fourier analysis by considering the 

Fourier decomposition of polar data. Just as polar co - ordinates are prone to 

widespread change with differences in the location of the origin so are Fourier 

coefficients, but in a highly complex way. If the origin is taken as an homology, 

this is serious, if the origin is determined by some aspect of shape and the 

objective is to study "mathematical" shape, then the same comments as above 

apply. 

Erlich, Baxter-Pharr, and Healy- Williams (1983) have replied to these 

criticisms. They point out that "examination of homologous skeletal features is only 

one of many approaches" to biomorphological studies. They examine the 

relationship between specific homologies and individual components of the 

Fourier series. They demonstrate from data collected on the foraminiferan 

Globorotalia trucatulinoides that there is a "consistent angular relationship between 

the orientation of the second harmonic and the spiral side keel". With this noted 

they indicate that it might be suggested that "the very fact that the radial Fourier 

series is locking on to homologous points is a good reason not to use the Fourier 

series; that is, given the relationship why go through the complex calculations? ". 
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The justification they give is that "the possibility always exists, however, that the 

additional data needed to fully reconstruct the profile between homologous points 

may contain biologically interesting information". This is true but, given the 

complex relation between form and Fourier components, it is not necessarily the 

optimal way of describing shape between landmarks, Bookstein (1977) has 

previously suggested conic splining for this purpose. Further justification for the 

use of Fourier analysis is given by the fact that since it is a convergent series, it 

may allow the reduction in data quantity per form (see above). 

A more extensive reply to the comments of Bookstein et aL (1982) has been 

furnished by Read and Lestrel (1986). These workers provide an example in which 

measurements taken between homologous points fail to describe significant 

differences in morphology between structures because the measurements omit the 

boundary connecting the landmarks. 

Read and Lestrel (1986) express agreement with the observation made by 

IIookstein et al. (1985: 3) that "although no morphometric method can be wrong 

in all contexts, neither is any method universally applicable". As a step towards a 

more generally applicable morphometric methodology Read and Lestrel propose 

a system of shape representation in which both boundary and homologous point 

information is encoded by a combination of Fourier analysis and a local Co - 

ordinate system. 

Read and Lestrel (1986) conclude that "the Fourier system of representation 

has been very effective for ... descriptive work" especially where "the emphasis has 

been more on descriptive techniques that are sensitive to biologically significant 

differences in the form of shapes than on the representation of the growth 
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process". 
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Shape description - concluding remarks 

The study of shape as an object in its own right follows well worked out 

methods developed in a variety of other fields. It allows no biological statements 

about changes in regions from one shape to another, which would involve a 

determination of homologies. It does allow the construction of several "shape 

equivalence" classes, for instance shapes with the same perimeters and areas, the 

same "bending energy", etc. These in themselves are not, in general, biologically 

meaningful entities, but they do conform to ideas about perceived shape 

similarities. They may be useful in sorting out what is meant by "evolutionary 

convergence" when the term is applied to form. 

These shape measures are also of use when homologies are undefinable, for 

instance the "homology problem" described above (Sneath and Sokal, 1973) or in 

studies of certain creatures for instance amoebae (pseudopodia cannot really be 

considered homologous in the same way as limbs can between mammals). 

Traditional biometrics has until recently been concerned only with "homology 

map" differences in the study of biological "forms". Recent studies have been 

directed to the study of "mathematical" or "boundary shape" differences. The 

comparison of results obtained by both approaches might prove a fruitful area of 

Investigation. 

'T'here is a need for the development of a probablistic model of homology of 

form. 
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A STUDY TO EMPIRICALLY EXAMINE THE RELATIVE PERFORMANCE 

OF A NUMBER OF NEW BIOMETRIC TECHNIQUES IN THE STUDY OF 

CRANIAL FORM 

INTRODUCTION 

In the earlier parts of this chapter I have discussed a number of problems 

associated with traditional approaches to craniometry and have reviewed some 

promising new approaches to biometry. I now describe a study which compares 

the results obtained using the new methods with those obtained using the old. 

There are good theoretical reasons why each of the methods used in this study 

should be able to provide a measure of form. The relative merits of the methods 

are, however, unknown. Earlier in this chapter I have examined the important 

philosophical differences between descriptions of biological structures based upon 

landmarks and those which are landmark independent and have pointed out that 

comparisons using the first type of description examine shifts in homologies relative 

to each other and the second, shape differences. This must be borne in mind 

when questions about relative efficacy are being asked - effective for what? Only 

when shape differences are highly correlated with homology map differences (as 

they are likely to be when the majority of postulated homologies are features of 

shape) are the two groups of methods likely to be interchangeable. In every 

other situation disparities observed using each of the methods relate to shape 

change independent of homology shift or visa versa. I have already noted that this 

may turn out to be a useful approach to the study of shape convergence, possibly 
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providing a partial answer to the question of skulls of similar shape being brought 

into being by dissimilar morphogenetic processes. 

In this chapter, I describe the pattern of homologies of the crania of 

chimpanzees, gorillas, orang utangs, and man by means of a number of linear and 

angular dimensions taken between a series of landmarks. The patterns of variation 

within and between these groups are examined by a series of statistical analyses 

and graphical procedures. The effect of converting these data to indices is 

determined empirically. The patterns of variation which are revealed by least 

square fitting of the co-ordinates of landmarks in the median plane (after Sneath, 

1967) are also compared. 

Two methods that offer a degree of independence of the homology map are 

then applied to the midline tracings of the same collection of specimens. These 

are the methods of Fourier analysis, and "shape factors". The resultant patterns 

of variation are then compared with each other and with those produced from 

the previous three investigations. Some general conclusions can be drawn relating 

to the problems encountered in the study of biological form. 
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MATERIALS AND MET HODS 

A. Materials 

Mensural data were collected from 175 skulls of extant apes (54 Pongo, 60 

Pan, 61 Gorilla) and from 124 skulls from each of the principal racial groups of 

the extant Hominidae. Their provenance is detailed in Table 2.1. 

Attention was restricted to adult specimens in which, in apes, the full 

permanent dentition (including the canines and third molars) had erupted and 

was aligned and, in the case of man, in which the full permanent dentition (less 

possibly one or more of the third molar teeth) was aligned and the sphenoccipital 

synchondrosis was fully fused. 

In both human and ape material only those skulls were included which were 

sufficiently complete to permit full sets of measurements to be taken. 

Sexing 

The sexes of the skulls of Pan and Gorilla were known from field records 

and were checked against the skins which are also available in the collections. 

Those of Pongo, which were not known from documentation, were sexed visually 

on the basis of the established dimorphism in size, and in the degree of 

development of muscular markings, crests and canine teeth. 

The sexes of the caucasoid group of human skulls were obtained from parish 

records. The sexes of the three remaining groups of human skulls (negroid, 

mongoloid, australoid) were not documented and, in view of the established 
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uncertainty in sexing human skulls, no attempt was made to divide into male and 

female subgroups on the basis of anatomical criteria. 
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TABLE 11 

The Number and Provenance of Skulls of Extant Hominoidea 

Group No of skulls Provenance 

Pon go 'P. 54 British Museum (Natural History), Department of 
Zoology. 
Royal College of Surgeons, London, Odontological 
Museum. 
University College London, Department of Anatomy. 
University of Leeds, Department of Anatomy. 
University of Birmingham, Department of Anatomy. 
Duckworth laboratory of Physical Anthropology, University 
of Cambridge. 
Royal Scottish Museum, Edinburgh 

Pan sp. 60 Powell Cotton Museum, Birchington 

Gorilla sp. 61 Powell Cotton Museum, Birchington. 

llano sapiens 30 St. Bride's Church, London 
(caucasoid) 

I/0"10 sapiens 30 British Museum (Natural History) Department of (negroid) Paleontology. 

! lano sapiens 30 British Museum (Natural History), Department of (mongoloid) Paleontology. 

I/0"10 sapiens 30 British Museum (Natural History), Department of (australoid) Paleontology. The Royal College of Surgeons, London, 
Odontological Museum. 
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B. Methods 

I. Definition of size 

Size and shape are intimately linked in a mathematical way, such that in the 

absence of equality in shape no unambiguous definition of size can be made. 

Some of the methods of form description used in this study result in 

dimensionless variables whilst others do not. The patterns of phenetic relationships 

demonstrated between groups using dimensionless descriptions will not, by 

definition, reflect simple (non - allometric) size differences. Those patterns derived 

from linear and angular measurements will be influenced by size as well as shape 

differences. The problem of reducing the influence of size on these patterns arises 

if they are to be compared with those derived from dimensionless variables. 

In the case of two objects, A and B, with identical ratios of dimensions 

(equal shape) the difference in scale or size between them is given by the ratio 

of any variable an with its counterpart bp 

Comparisons are often made between objects which differ in shape. The 

biologist has an intuitive notion of relative size between these objects. The strict 

description of this size difference is, however, elusive. The fact that the objects 

are of different shape means that comparisons between any pair of dimensions, one 

from each object, will no longer reflect size differences alone, their total difference 

will be the result of size and shape difference. The problem is one of determining 

a measure which constitutes a good reflection of the biologist's intuitively 

determined size difference. This problem is considered by Sneath and Sokal (1973, 
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p169-170). They state that size may be thought of as a general factor that affects 

many characters; it is a function of the magnitude of the states of many characters. 

Shape, they consider, must necessarily refer to ratios between different characters. 

Most studies which examine the phenetic relationships between organisms 

make some reference to size differences. From the above considerations, however, 

it is clear that size is a vague concept when applied to organisms of different 

shape. As objects become more different in shape, then the definition of size 

differences becomes more ambiguous. Sneath and Sokal see the dilemma as 

exemplified by the question "which is bigger, a snake or a turtle? ". The problem 

applies to a lesser extent to this study. The crania of the men and those of the 

apes are different in shape. It is therefore impossible to produce a single, 

unequivocal, mathematical definition of cranial size. 

A number of workers have employed several different measures to express 

overall size difference in studies of cranial form. Wood (1976) used femur length 

as an estimate of body size and determined the allometric relationship between 

this and a number of cranial and other dimensions. He also attempted to partition 

the differences between taxa into size and shape components using Penrose's 

(1954) size and shape differences. The Penrose size difference is essentially the 

square of the difference between character sizes in two organisms. 

Creel and Preuschoft (1984) used the Sneath size variable (see later) as a 

measure of cranial volume. This was used to adjust cranial measurements 

allometrically. This differs from both of Wood's measures of size. Albrecht (1978b) 

used three different measures of size in a study of the craniofacial morphology 

of the Sulawesi macaques: the greatest length of each skull, the geometric mean 

of the log transformed variables and an estimate of cranial volume. He showed 
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that these variables have a correlation greater than 0.96 with each other in these 

taxa. This reflects the generally similar morphology of the crania. 
The choice of a size variable is largely a matter of intuition. In this study 

the use of two different size variables was considered, the mean value of all linear 

dimensions and the square root of the area of the midline tracing of each 

cranium. No data on body weight, or from the post cranium were available. Figure 

2.9 shows a plot of the scores of each cranium on each size variable. This graph 

emphasises the fact that different size measures may well reflect different things 

about crania of different shapes. Within the apes and within the men the two 

variables show a near straight line relationship. The mean within group correlation 

between the two variables was 0.86. The two size measures differ: in terms of the 

square root of the midline area the men are relatively large: In terms of the 

mean variable size they are relatively small. This reflects the relatively large size 

of the neurocranium in men and the fact that more linear and angular dimensions 

could be taken from the face and cranial base. 
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FIGURE 29 - Bivariate plot of the scores of crania on each of two size variables. Vertical 

axis - square root of midline area, horizontal axis - mean of all linear 
dimensions. 
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An attempt to eliminate size effects in the observed pattern of between group 

relationships using one of these variables will likely give different results from 

those using the other. The choice is arbitrary, yet the effect is intuitively real, 

size differences will impinge on our perception of overall differences. Certainly 

the differences between the groups of apes and those of men will be accentuated 

by size differences and both size measures will serve well to reduce this effect if 

used to scale the data. The size measures will, however, have different effects on 

the perceived ape - human distances. Fortunately, it seems, this problem is more 

theoretical than practical. Comparison of distance matrices computed using linear 

dimensions adjusted against square root of midline area and against mean 

dimension showed a correlation of >0.9 (P<0.01). The influence upon observed 

ape-human distances was minimal. 

It seems that in this study the major difference between groups Is one of 

shape and not size. It was decided to use the square root of the sagittal area as 

the size measure in all subsequent analyses on the grounds that it takes even 

account of all anatomical regions of the cranium, is more independent of individual 

linear dimensions, is suitable for size adjustment of Fourier coefficients (having 

a clear mathematical relationship to them - see later) and that it is closely 

related to the Sneath size measure which is used in this study to construct a 

distance matrix based upon the methodology described in Sneath's (1967) paper. 
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II. Definition of shape 

Several methods were applied to the description of cranial shape. These were 

not derived to emphasise particular differences in cranial morphology, say between 

men and apes, but rather to sample cranial morphology as evenly as possible. Any 

overconcentration of measurements in particular anatomical regions is a 

consequence of the methods themselves. For instance the cranial vault, especially 

in humans, accounts for a major part of the whole cranium, but presents few 

identifiable landmarks per unit area relative to the face or base. The linear and 

angular mesurements therefore tend to be concentrated in these regions. 

The collection of the linear and angular dimensions and the production of tracings 

of the mid -sagittal plane of the whole of this material was undertaken by the 

late Professor E. H. Ashton and by Professor W. J. Moore. 
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2) Cranial angles and linear dimensions 

A common approach to the description of cranial morphology entails the use 

of linear and angular measurements taken between defined (homologous) 

osteometric landmarks (e. g. Boule, 1911a, 1911b, Morant, 1926,1927,1928,1930, 

1936, Howells, 1973). Angular measurements are dimensionless and are, effectively, 

indices. More recent studies tend to use linear measurements and exclude angles 

(e. g. Bilsborough, 1972,1973, Stringer, 1974a, Brauer, 1984, Bilsborough and Wood, 

1988) because of the difficulties in obtaining such measures and because of those 

associated with the statistical properties of ratios (see earlier and Atchley et aL, 

1976). In this study it was decided to mix both angles and indices, following older 

established practice (in any case the results of preliminary analyses including and 

excluding angular quantities from the data showed little if any difference in the 

consequent phenetic relations of extant groups). 

Twenty five landmarks, (Table 2.2), defined by Trevor, (1950) covering the 

cranial vault, facial skeleton and mandible were located on each cranium and a 

series of linear and angular measurements taken between them. It seems likely 

that there is a general correspondence in most of the landmarks between the 

several hominoid groups in the study, apart from the nasion. In Homo sapiens, 

where the nasofrontal suture normally lies horizontally, the nasion is situated at 

the root of the nose. In apes, where the suture forms an inverted "V", it may be 

located some distance into the frontal region. As a result the line joining the 

anterior border of the pituitary fossa to the nasion lies along the floor of the 

anterior cranial fossa in man but not in apes. If the nasion in apes is redefined 

as the point at which the line joining the most superior points on the frontal 

processes of the maxillae cuts the Internasal suture a better anatomical equivalence 



58 

TABLE 2.2 

LANDMARKS 

Name Abbr. Definition USC in apcs 

Cranium 

aim apx 

basion ba 

bregma b 

eadomolare enm 

glabclla g 

infradcatale id 

infraorbitale ib 

lambda 

maxillo - mf 
frontale 

turialc na 

naaion n 

highest point on vault in transverse 
plane 

lowest point on anterior external 
surface of foramen magnum in 
median plane 

point at which sutures meet 
between frontal and two parictals 

mid point, inner margin of socket 
of upper second molar 

most prominent point between 
supraciliary arches in median plane 

mid point of fine tangential to outer 
margins of sockets of upper incisors 

highest point on rim of infraorbital 
foramen 

point at which sutures between 
occipital and two parietal bones 
meet 

point at which anterior lacrimal 
crest, continued, meets suture 
between maxillary and frontal bones 

point where fine joining lowest 
points on inferior margin of nasal 
aperture on each side crosses the 
median plane 

mid point of suture between frontal 
and two nasal bones 

opiuhion 0 point at which external and internal 
surfaces of occipital bone meet on 
posterior margin of foramen 
magnum in median plane 

Adjust for sagittal crest if necessary 
as for bregma 

Adjust for sagittal crest if necessary 
by following contour of vault below 
sagittal crest 

major foramcn when multiple 

Adjust for sagittal and nuchal crests 
if necessary - as for bregma 

margin of nasal aperture continued 
to anterior nasal spine 

point where line joining uppermost 
points on ma ilae crosses median 
plane 
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Name Abbr. Definition Use in apes 

opisthocranion op most posterior point on cranial Adjust for sagittal and nuchal crests 
vault in median plane if necessary - as for bregma 

orbitale or lowest point on inferior margin of - 
orbit 

porion PO highest point on margin of external - 
acoustic meatus 

prosthion pr most prominent point on alveolar - 
process between sockets of upper 
incisors 

staphylion sta point at which line tangential to the - 
two curves on posterior border of 
palate crosses interpalatine suture 

subsymphyseale ssy lowest point on mandibular - 
symphysis 

2 Mandible 

condylon co highest point on mandibular condyle - 

coronion cr highest point on coronoid process - 

edomolare ccm mid point outer alveolar margin of - 
lower second molar 

ectoprcmolare ecp mid point outer alveolar margin of - 
lower first premolar 

Bonion go point on angle nearest zero axis - 

mandibular mbf lower point on margin of foramen - 
foramen 

mental foramen mtf lowest point on margin of foramen major foramen where multiple 
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is attained (subject to the considerations discussed earlier in this chapter, some of 

which were conceived after the data had been collected). 

In adult apes especially the male specimens of Pongo and Gorilla, the 

opisthocranion which is intended to represent the most dorsal point on the 

braincase is further displaced by the development of prominent muscular cresting. 

If again the apex is intended to be the highest point on the vault in the 

mid-sagittal plane the prominence of sagittal cresting in these groups leads to 

a disparity in the definition. For these reasons the craniometric landmarks were 

estimated as if nuchal and sagittal cresting were not developed. 

Method of measurement 

A series of 47 linear dimensions and 12 angles was taken between the defined 

craniometric points (table 2.3). Many of these have been described in standard 

texts (Buxton and Morant, 1933; Howells, 1936; Morant, 1936; Trevor, 1950), 

though in certain cases their definitions have been modified for the reasons 

outlined above. Linear measurements in horizontal and coronal planes were taken 

with sliding or spreading callipers. The mandibular angle was taken with a 

mandibular board. 

Linear and angular measurements in the midline were taken with a steel 

ruler or protractor on sagittal tracings taken with the craniostat described by 

Ashton and Pardoe (1950). The modified projector specially developed for use in 

studies of the innominate bone (Zuckerman, Ashton, Flinn. Oxnard and Spence, 

1973) was used for this purpose. The sagittal outline was projected at intervals 

of lmm., excluding the nuchal and sagittal crests (if present), the positions of 
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TABLE 2.3 

MEASUREMENTS 

Name Definition 

Neurocranium 

Maximum length g- op 

Maximum breadth Between parietal bones, perpendicular to median plane (in apes taken 
immediately above mastoid crests) 

Basibregmatic height ba -b 

Auricular height po - apx 

Postorbital breadth Maximum transverse breadth immediately posterior to orbital processes 
of zygomatic bones 

Frontal height Perpendicular distance from frontal chord to most remote point on 
frontal arc 

Frontal chord n-b 
Parietal height Perpendicular distance from parietal chord to most remote point on 

parietal arc 

Parietal chord b-1 

Occipital height Perpendicular distance from occipital chord to most remote point on 
occipital arc 

Oaipital chord 1-o 

Foramen magnum length o- ba 

Foramen magnum breadth Maximum internal breadth perpendicular to length 

Angles b-1-o 
1-o-ba 

Vu. cmcranium 

Taal facial height n- ssy 

Upper facial height n- pr 

Palatal length sta - pr 

Palatal breadth cnm - enm 
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N Definition 

Nasal breadth Maximum breadth of nasal aperture between anterior surfaces of 
lateral margins Nasal height n-n, 1 

Subnasal height na - pr 
Orbital height Maximum internal height of orbit perpendicular to breadth 

Orbital breadth Maximum breadth from mf to anterior rim of lateral orbital margin 

lnfraorbital breadth ib - ib 

BLInomatic breadth Maximum breadth between zygomatic arches 

Maxipo - mandibular height ib - mtf 

Mandible 

Projective length Zero axis of standard horizontal (shp) and transverse (stp) planes to 
mandible most projecting point on chin (in apes to most anterior point on body 

of mandible) 
Projective length corpus Zero axis of standard horizontal and standard rameal planes to most 

projecting point on chin 

Projective height ramus From standard horizontal plane to ccm perpendicular to shp 

Projective height Zero axis standard horizontal plane and standard rameal plane 
to co 

Minimum rameal breadth Minimum distance between anterior and posterior borders 

Projective height coronoid Zero axis (shp/stp) - cr 

Coronial breadth cr - cr 

Coady-tar length Maximum distance from medial to lateral condylar pole 

Bicondylar breadth Maximum breadth between lateral poles of condylcs 

B+mcntal breadth mtf - mtf 

Bigoaial breadth go - go 

Symphyseal height id - ssy 

Mandibular angle Between standard horizontal and rameal planes 

Molar-premolar chord ccm - ecp 
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Name Definition 

Angle go - ssy - id 

C. %scemcranial - Ncurocranial Relationships 

Upper visccrocranium 

Basi - infraorbital length ba - ib 

Basi - nasal length ba -n 

Basi - prosthion length ba - pr 

Basistaphylion length ba - sta 

Lower VLsecrocranium 

Basigonion length ba - go 

Bali - iafradentale length ba - id 

IIasimandibular length ba - mbf 

Basimcntal length ba - mtf 

Basisymphyseal length ba - ssy 

Angles ba -n-b 
ba -n- pr 
n-b-t 
b -ba -pr 
o-ba -n 

ba - go -ssy 
ba -a -ssy 
n- ba -ssy 
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the midline craniometric points were carefully marked on the tracing. 

Precision of measurement 
Angular measurements were recorded to the nearest degree and linear 

dimensions to the nearest lmsn. 

Five sets of repeat measurements were taken from five female chimpanzee 

crania which were selected to be as similar as possible. Similar repeat sets of 

measurements were taken from a series of five human skulls (caucasoids) which 

were selected at random. An analysis of variance showed that artificially introduced 

inconsistencies of measurement were insignificant (P>0.01) in all of the 59 

measurements taken from the human sample, but in the case of the chimpanzees 

two measurements seemed to be unreliable. Further examination of the data 

showed that the chimpanzee skulls did not vary in these dimensions. It is unlikely 

that errors in measurement could have had a significant effect on the overall 

results. 

Effecu of size 
The linear dimensions vary between crania because of both size and shape 

differences. In the first set of studies to be described in this chapter raw 

(non-size adjusted) data were used. However, some of the methods of cranial 

measurement result in size independent data and in order to allow comparison 

between each method of cranial description (the second part of this study) the 

linear dimensions were scaled by ratio with respect to the square root of the area 

of the mid-sagittal projection (variable x constant /size variable, where the 

constant was chosen such that the transformed variables have a magnitude similar 
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to the original variable). The result of such a manipulation is that each 

transformed variable is effectively a ratio quantity and as such might be expected 

to suffer from the problems associated with indices (see earlier and Atchley et aL, 

1976). The degree of alteration of the phonetic relationships of OTUs that can be 

attributed to the use of (scaling) indices can be assessed by comparison of the 

results of analyses using raw and adjusted data (see later). 
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Cranial indices 

A frequently used method of expressing shape is to construct indices which 

serve to describe either a structural or functional unit in a way which is concise 

and which allows simple statistical comparison. Indices are summary measures 

Insofar as they represent the compound of two dimensions, and, subject to the 

observations of Atchley et al. (1976) and Albrecht (1978a), they are size 

independent (allometric considerations aside). 

Indices are infrequently used in multivariate craniometry in the West, though 
Howells (1973: 184) has indicated that they are in more common usage in the 

Russian literature. Furthermore, indices were certainly in common usage in early 

biometric studies (e. g. the studies of lroca, 1911a, Morant, 1927,1928,1930, 

1936). The data which were available for this study allowed a set of indices and 

angles (which are themselves indices of sorts) to be submitted to multivariate 

study. The resulting phenetic relationships implied by this data, in turn, allow an 

empirical study of the consequences of using indices. 

For the purposes of this study a series of 53 Indices were constructed to 

describe aspects of neurocranial, viscerocranial and mandibular shape and to 

express aspects of their relative proportions and interrelationships (table 2.4). These 

indices whilst being dimensionless quantities were not constructed with the express 

purpose of scaling the data (c. f. previous section). 

Method of calculation 

The indices were calculated from the series of measurements described above, 

and were combined with the twelve angular measurements. The data comprised 

a total of 65 variates from each skull. 
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TABLE 2.4 

INDICES 

L NEUROCRANIUM 

Maximum breadth/maximum length 

Postorbital breadth/maximum length 

Basibregmatic height/maximum length 

Auricular height/maximum length 

Basibregmatic height/maximum breadth 

Auricular height/maximum breadth 

Frontal chord/frontal height 

Parietal chord/parietal height 

Occipital chord/occipital height 

Foraminal breadth/foraminal length 

2. VISCEROCRANIUM 

Nasal hcight/subnasal height 

Nasal breadth/nasal height 

Upper facial height/infraorbital breadth 

Upper facial height/palatal length 

Orbital height/orbital breadth 

Palatal breadth/palatal length 

13irygomnatic breadth/palatal length 

Infraorbital breadth/palatal length 

3. MANDIBLE 

Projected height racnus/bicondylar breadth 

Projected height corpus/bicondylar breadth 

Projected height ramus/projected length mandible 
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Projected height corpus/projected length mandible 

Bicondylar breadth/projected length mandible 

Coronial breadth/projected length mandible 

Bigonial breadth/projected length mandible 

Bimental breadth/projected length mandible 

Projected height ramus/projected height coronoid 

Projected height corpus/projected height ramus 

Minimum rameal breadth/projected length corpus 

Projected height ramus/minimum rameal breadth 

Projected height corpus/projected length corpus 

Coronial brcadth/bicondylar breadth 

Bigonial breadth/bicondylar breadth 

Molar-premolar chord/projected length corpus 

Condylar lcngth/bigonial length 

Bimental breadth/bigonial breadth 

4. NEUROCRANTAL - VISCEROCRANIAL RELATIONSHIPS 

Basi - infraorbital length/basinasal length 

Basimental length/basinasal length 

Basi - infradentalc length/basinasal length 

Basi - infraorbital length/basimental length 

Basi - prosthion length/basi - infradentale length 

Basi - prosthion length/basi - nasal length 

Basisymphyseal length/basinasal length 

Basisymphyseal length/basigonial length 

Basigonial Iength/basinasal length 

Basimandibular lcngth/basinasal length 

Maximum length braincase/palatal length 
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Maximum length braincase/projected length mandible 

Maximum length braincase/infraorbital breadth 

Maximum breadth braincase/bicondylar breadth 

Basibregmatic height/total facial height 

S. NEUROCRANIAL - MANDIBULAR RELATIONSHIPS 

Upper facial height/symphyseal height 

Maxillo - mandibular height/total facial height 
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Precision of measurement 

An analysis of variance was performed in a similar manner as for the linear 

dimensions and angles. In the human sample inconsistencies introduced by errors 

of measurement were insignificant in all cases (P<0.01). Three indices were 

virtually invariant between the chimpanzee crania and in these cases the errors 

of measurement were statistically significant, this result did not invalidate their use 

in subsequent analyses. 

Effects of size 
Each index and angular quantity is a dimensionless measure of an aspect of 

shape. 
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cL Method of least squares 

Sneath (1967), described a method for comparing two forms on the basis of 

a series of "corresponding" landmarks. He calculated a measure of fit, Dh, the root 

mean square distance between pairs of landmarks (one taken from each structure) 

and showed how this could be applied to the study of cranial form. 

In the comparison of two - dimensional forms such as sagittal cranial tracings, 

the X, Y co - ordinates of the landmarks are recorded, and used to calculate a 

centroid, Xmean, and Ymean for each shape. In order to standardise the "overall 

size" of each object the original X, Y co-ordinates of the landmarks are expressed 

in terms of the standard deviation of their distances from the centroid. The 

transformed co - ordinates, x', y' are given by: 

x' _ (X - Xmean)/S" 

y' _ (Y - Ymean)/Sxy 

Where, 

S is the standard deviation of the distances of the landmarks 
X-Y 

from the centroid 

x' and y' are the transformed co - ordinates 

and X and Y are the original co - ordinates. 
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The measure of fit, Dh, between the pairs of landmarks is calculated as follows: 

Dh2 Q Dmin2/h 

where, 

h= the number of landmarks 

and 

Dmin2 = the minimum value obtained from, 

h 

i 
«X'a - X'Di)2 + ýýAl yýIIiý2ý 

when the shapes are rotated or reflected relative to each other about the centroid, 

and Ai and Bi are a pair of corresponding landmarks. 

The fit coefficient, D. allows the comparison of two shapes with respect to 

each other, the more similar the shapes, the smaller the coefficient. 

Method of measurement 

11 craniometric points were defined on the mid-sagittal tracings of the cranial 

series. The placement of these points is shown in fig. 2.10 and their 
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FIGURE 210 - The placement of the landmarks used for the calculation of Sneath's De. 
Abbreviations are listed in Table 2.2 

b 

op 
l 

2 

r 

Fig 210 

definition is given in table 2.2. Using a magnetic digitising tablet, the X, Y co - 

ordinates of each of the craniometric landmarks was recorded to an accuracy 

of 1mm. 

The method used to calculate the Sneath Dhs is described in the appendix 

to his 1967 paper (section A3.4). It should be noted that the final equations in 

this appendix contain an algebraic error insofar as the square root signs are 

inappropriately placed. Calculation of Dh in this study followed a corrected 

method. 
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A matrix of mean inter-group Dh's was calculated and each element was 
divided by the pooled within group standard deviation of Dh's. This had the effect 

of standardising the intergroup Dh matrix such that the distances were now 

expressed in S. D. U. 

Precision of measurement 
Errors of measurement of the xy co - ordinate pairs have the effect of 

increasing Dti This effect is most significant when comparing two nearly identical 

shapes. Sneath (1967), discussed the effects of measurement error, he estimated 

that a 1% error in the location of the landmarks on each diagram would result 
in a Dh of 0.0566 instead of zero for identical shapes. 

Five sagittal tracings were taken from each of five chimpanzee and five human 

crania. For each skull the mean value of Dh taken between the ten combinations 

of the rive tracings was calculated. In each case it was less than 0.0566 and on 

average was 0.0267, well below the value estimated for a measurement error of 

1%. 

Effects of size 
The method of Sneath compensates for differences in absolute size by 

re - expressing the original X, Y co - ordinates as x', y' which are standardised in 

relation to the dispersion of landmarks about the centroid, Xmcan, Ymean. This 

results in a Dh of zero for forms which are identical In shape Independent of 

size. No account is taken of the effects of allometry. 

This method of "size correction" is similar, but not identical to an adjustment 

made on the basis of area. This leads to a theoretical problem in comparing the 



75 

pattern of group dispersions with that obtained from the other methods in this 

study (see "Definition of size"-above). In practical terms such comparisons are 

unlikely to be greatly misleading. Shape differences far outweigh size differences 

In the groups examined (again see above). 
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dý Normative shape factors 

Four shape factors were calculated from each outline. They are described by 

Exner (1978), each one expresses some aspects of shape, e. g. undulation of outline, 

elongation, aspect ratio, etc. In the case of a circle each would equal 1 and tend 

to zero as the measured property deviates from the state encountered in a circle. 

The four shape factors were calculated from the following equations: 

1. F1 = 4. n. A 

P2 

2. F2P- P2- 

P+ P2-4. n. A 

3. F3 == ' 4. A 

a. D2max 

4. F4 = Dort 

Dmax 

where: 

A Area enclosed by the boundary 

P The boundary perimeter 
Dmax = The maximum diameter 

Dort The maximum diameter at right angles to Dmax 
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F1 and F2 are measures of undulation of the outline, as the enclosed area 
decreases relative to the perimeter they become smaller. It is to be expected that 

these two measures are highly correlated, however F2 is more "sensitive" than Fl, 

and the process of calculating Mahalanobis' distances takes due account of the 

effects of correlation. F3 is a measure of shape elongation as is F4. F3, unlike 

F4 which is simply the aspect ratio of the shape, considers the relationship 

between the area and the maximum diameter, producing data which express a 

slightly different aspect of form. 

Method of measurement 

The shape factors, unlike the three preceding approaches to measurement, 

were calculated independently of the need to identify homologous landmarks except 

those which, in this study, were used to delineate the boundary between neuro - 

and viscero - cranium, the nasion and the basion. 

Each tracing was modified such that the foramen magnum and the nasal 

aperture were "closed" by a straight line connecting the bony extremes, the 

posterior border of the nasal septum was projected into the midline when 

asymmetrical. In order to allow consideration of neurocranial and viscerocranial 

proportions as well as whole skull shape, factors were calculated from three 

outlines for each skull - viz. the whole tracing, a tracing of the viscerocranium, 

and a tracing of the neurocranium. The neuro-viscerocranial boundary was taken 

as the line connecting the nasion and the basion. 

The projections were digitised such that the x, y co-ordinates of a series of 

points lmm. apart on the outline were recorded. From each digitised outline the 

area A, the perimeter P, the maximum diameter, Dmax, and the maximum 
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diameter orthogonal to Dmax, Dort were calculated. These were used to calculate 

the series of 4 shape measures from each of the three outlines, 12 factors per 

skull. 

Precision of measurement 
An analysis of variance of the indices was carried out using data calculated 

from the five chimpanzee and five human crania. In each case the errors of 

measurement were insignificant relative to the variation encountered between the 

crania (p<0.01). 

The effect of size 

Each of the shape factors is a dimensionless quantity and as such size has 

no influence on them (subject to the considerations furnished by Atchley, Gaskins 

and Anderson, 1976, and Albrecht, 1978a, and reviewed earlier in this chapter). 
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e) Fourier analysis 

This method (based upon polar co-ordinates) is of use where the outline 
is closed and contains no re - entrants so that only one point on the outline is 

intersected by any one radius. 

The length of each radius at angle 0 from the start point, can be calculated 

as a function of 0; 

f(O) = aO + 127 
an. cosnO + bn. sinnO 

n-i 

where; 

a0... an = the cosine components 

and 

bO... bn = the sine components (b0 =0 and is 

therefore omitted). 

Each sine and cosine component is an expression of an aspect of shape, and 
has the same units as the units of the polar series (length). The first cosine 

component, a0, is a measure of overall size, related to the square root of the area 

enclosed by the outline. The absolute value of each component is governed by 

the locations of the centroid and the startpoint, a series of amplitude coefficients 

can be calculated from the sine and cosine components: 

A a2 + b2 nnn 

where: 
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A= the amplitude components 

an & bp = the cosine and sine components respectively 

The amplitude components are unaffected by location of the start point, and 

as such were calculated as a means of assessing its influence on the results 

obtained using the sine/cosine representation. The amplitude coefficients alone do 

not allow reconstruction of the form; this can be achieved in conjunction with 

their complements, the phase lag angles calculated byr. 

ýp = Tan-1(-bo/ap) 

where: 

= the phase lag angles 

an & bQ a the cosine and sine components respectively 

This study has followed common practice (e. g. Lu, 1965, Lestrel, 1974 and 

Johnson et at, 1985) in concentrating on astatistical analysis of the sine/cosine 

series. The amplitude coefficients were studied independently as a means of 

assessing the influence of using the prosthion as a start point for the Fourier 

series. 
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Method of measurement 

The mid sagittal tracing of each skull was digitised using a magnetic tablet, 

this produced a series of x, y co-ordinate pairs, lmm apart, over the whole 

outline. Between 350 and 550 pairs of co-ordinates were recorded from each, 

and these were used to calculate 256 polar co-ordinates at equiangular intervals, 

centred around the calculated centre of area of the tracing. The polar series was 

derived such that angular displacements were recorded anticlockwise with reference 

to the line joining the prosthion and centroid. Following equalisation of areas the 

256 polar co-ordinates were submitted to a Fourier analysis. 128 Fourier 

coefficients were calculated, each Fourier coefficient comprising a sine and cosine 

component. 

Precision of measurement and selection of components 

The errors produced by the measurement process might be expected to be 

concentrated in those coefficients which describe fine undulations, i. e. the higher 

order coefficients. For this reason the derivation of some coefficients might be 

expected to be unreliable. These can be considered to contain a large element 

of measurement error or "noise". The calculation of the generalised distance matrix 

as applied by many workers to anthropological data requires that the number of 

specimens be large relative to the number of variates employed. This study 

comprised some 300 specimens and in all 255 sine and cosine components were 

derived. 

It is apparent, that for the reasons of eliminating "noisy" data and to allow 

suitable statistical analysis some compromise between informational content and 

practicality must be achieved. 
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An analysis of variance carried out on the components derived from five 

human crania on five different occasions indicated that all of the first 30 

sine/cosine component pairs were accurately measurable (P<0.001 In all but 2 

cases where P<0.01) and that the majority of the other components were also 

reliable (P<0.01), but that the errors of measurement were increasingly significant 

in the higher coefficients where occasional values of P> 0.05 were obtained. The 

human crania were not selected for similarity though they were all of the same 

racial group. When the same test was applied to data derived from the 

chimpanzees, which were chosen to be alike as possible, P was <0.001 for all 

but two of the first twenty sine components (sine 12, P< 0.05, sine 13, P<0.01) 

and all but one of the first twenty cosine components (cosine 8, P<0.01). The 

higher order components derived from the chimpanzee tracings were less reliably 

measured than those from the men. 

The Fourier coefficients allow the reconstruction of the mid-sagittal 

projection, the more components used, the better the approximation. Figure 2.8 

shows such a series of reconstructions derived with increasing numbers of 

component pairs. The visual impression Improves as more pairs are added to the 

reconstruction until, after about the first 20 pairs the outline is quite similar to 

the initial tracing. Adding more data improves the outline in only the finer detail. 

An analysis of variance was carried out for each of the 255 components, the 

between group variance being compared with the pooled within group variance to 

enquire whether or not each variate showed any significant difference between 

groups (in all cases P<0.001). The variance ratio showed a marked tail off in the 

higher components, levelling at a value of 5 (d. f. 10 and 288) by the twenty fifth 
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coefficient pair. 

From these simple univariate and visual approaches it seems that between 

20 and 25 Fourier coefficients can be measured accurately, allow reasonable 

reconstruction, and show a significant difference between group means. This was 

tested by a multivariate assessment of their ability to classify unknown individuals. 

A series of ten discriminant function analyses were performed using data 

from the groups of extant hominoids (table 2.1). In each case 90% of the group 

members were used to construct a discriminant function, and the remaining 10% 

were classified using it. For each pair of data files the discriminant function was 

calculated using increasing numbers of coefficients. This was repeated ten times 

using a different 10% of the individuals as test data. The results indicated that 

a minimum of 25.1% of individuals were misclassified (never between species or 

genera, only between the sexes) when 20 sine (b1.. b2o) and 20 cosine (ai.. a. 0) 
components were compounded. The use of this method is fully described by 

O'Higgins and Williams (1987), and Johnson et al. (1985). 

On the basis of these tests a data file comprising sine components 1 to 20 

and cosine components 1 to 20 was compiled for statistical analysis. Analysis of 

the amplitude/phase-lag data was also confined to the first 20 pairs, these being 

derived from the sine and cosine components, and being subject to the same 

considerations. 
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Effects of size 
In order to be consistent with those methods of shape measurement which 

produce data independent of size all cranial tracings were standardised to the same 

area. This is reflected in the fact that the calculated value for the first cosine 

component, as varied less than 1% between individuals. The same considerations 

apply here as to many of the preceding methods of shape measurement, though 

areas are equal the method of scaling does not allow for allometric effects. 
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III. Statistical methods 

The data produced by each of four methods of form description (linear and 

angular dimensions, angles and indices, shape factors, and Fourier analysis) were 

submitted to univariate and multivariate statistical analyses. The fifth method, the 

method of least squares, produced no data suitable for univariate study. By nature, 

it considers the cranium as a whole and results in a distance measure between 

crania. In this sense it is analogous to the multivariate statistical methods. 

The Development and application of a suite of programs for the statistical analysis 

of the data 

These studies are highly dependent upon a number of statistical techniques. 

The quantity of data and the degree of sophistication of some of these techniques 

required the development of a suite of specially designed software for the tasks 

of data collection, checking, transformation and analysis. The software comprises 

a series of modules with facilities for data transfer between programs. These 

programs link with a number of commercially available statistical packages where 

suitable. The software collection as a whole was named the "Leeds morphometric 

suite" by the late Professor E. 11. Ashton. The suite is shown diagrammatically in 

fig. 2.11. 

Data such as linear and angular dimensions can be entered via a BBC 

microcomputer. This program offers interactive graphics, and a synthesised speech 

areadback" of data for checking of entries. An interactive facility allows data 
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FIGURE 211 - Diagrammatic representation of the Leeds Morphomctric suite 
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transfer to the mainframe for statistical analysis. Outline data In the form of x, y 

co-ordinate pairs can be collected on a microcomputer via a digitising tablet and 

transferred to the mainframe for subsequent manipulation. The manipulations 

applied in this study were Fourier analysis, performed by fast Fourier transform 

(the program being supplied by Dr. R. M. Flinn) and the calculation of shape 

factors from simple quantities such as the area and perimeter of outlines. Indices 

were calculated on the mainframe from the linear and angular dimensions by a 

one - off program. 

The commercial statistical analysis package, SAS, (SAS, 1982) was employed 

In order to perform the repeated discriminant analyses required in order to 

determine the optimal number of Fourier coefficients to discriminate between 

groups. A program SELECT, from the Leeds Morphometric suite reduced the 

number of Fourier coefficients in the data deck to the required number. The 

linear and angular dimensions were submitted to regression analysis for certain 

studies. This was undertaken in the early stages using a program FTRADJ which 

Is a development of one supplied by Dr. R. M. Flinn and in the later stages using 

S. A. S. 

Univariate and some multivariate analyses were carried out using program 

MVANAL which is a development of a program for canonical analysis written by 

Dr. R. M. Flinn. This program offers the interactive selection of groups and the 

interactive selection of univariate studies. Groupwise and variatewise analyses can 

be undertaken. The equality of within group variances can be examined. The 

program allows the logging of data when it may be helpful In rectifying 

discrepancies In variances. A data set with resorted groups can be output In a 

suitable format for regression adjustment by program FIRADJ. The data required 
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in order to plot univariate bar charts is output once group variances have been 

equalised. Program VARTAB can be called later in order to construct these and 

to relay them to a graph plotter for drawing. A matrix of correlations between 

variables can be produced by the final part of the univariate analysis sections of 

MVANAL 

Program MVANAL proceeds to the calculation of Mahalanobis' distances 

between groups allowing the interactive selection of variables for study. The D2 

matrix and its square root, the D matrix, are output, together with a list of nearest 

linkages between groups to allow the later construction of a minimum spanning 

tree. The computation of the D matrix has been checked by comparison with that 

derived from the same data by the discriminant analysis program available within 

SAS. The matrices agreed to all significant figures. The D matrix is output in a 

suitable format, together with all the control language necessary to run the 

commercially available CLUSTAN (Wishart, 1982) cluster analysis package. The 

job control language initialises such a run after execution of MVANAL 

The Mahalanobis' D matrix is submitted to a principal co-ordinate analysis 

after the method of Gower (1966) to produce an ordination equivalent to that 

of canonical axes. The suite offers the user the option of excluding small groups 

from the calculation of Mahalanobis' distances since these may distort the overall 

pattern of group separations. If this option has been selected the scores of the 

small group centroids on the canonical axes are now calculated by use of the 

variate loading factors for each axis. The group scores on each canonical analysis 

are output to a file for later plotting by program CANAX or for the computation 

of Andrews' curves, Andrews (1972), by program ANDREW. 
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The program terminates after calculating the contribution of each axis and of 

each original variable to the overall discrimination between groups. 

A number of multivariate statistical procedures such as principal component 

analysis and the later canonical analyses were carried out by submitting the data 

to analysis using the SAS package. 

The documentation, including a fuller description of this suite of programs, 

and the programs themselves are available for inspection in the Department of 
Anatomy, University of Leeds. 
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Univariate statistical analysis 

For each variable from each of the first four methods of form description a 

mean and standard deviation was calculated. 

This first study aimed to compare the overall pattern of contrasts revealed 

between the extant hominoids by each of the methods of cranial form description. 

In this context the univariate study was of little value. For each method the ability 

of each variable to discriminate within and between the groups of men and apes 

was noted. 

Examination of the correlations between variable pairs in all of the original 

sets of data demonstrated that a significant amount of correlation existed In each. 

This lack of independence of variables can lead to substantial distortion of the 

distances calculated between taxa. For this reason multivariate analysis employed 
Mahalanobis' distances whenever possible. 

Multivariate statistical analyses 

Should the data be logged? 

In the cases of the linear and angular dimensions, the angles and indices and 

the shape factors it was noted that the within group variances were frequently 

unequal. This Inequality was such that groups with larger mean values of a 

particular variable tended to have larger variances. Following the recommendation 

of Sokal and Rohlf (1969: p382) logging of the data produced generally more 

equal group variances. 
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A basic assumption in the calculation of the Mahalanobis' distance is that 

within group variances are equal. It might be expected that deviations from this 

assumption should result in a distortion of the apparent group relationships. Past 

experience from the studies of the Birmingham School has indicated that the 

methods are robust, and that minor deviations from this rule have little effect on 

the observed pattern of group distribution. This was further tested as a preliminary 

to this study. The structures of the minimum spanning trees calculated from raw, 

partially logged (logging only those variates in which variances are unequal), and 

fully logged linear and angular dimensions were compared. The partially logged 

and fully logged data produced identical trees, the raw data differed only in the 

order of clustering of the male and female chimpanzees with the orangs (the 

difference in distances required to cause such a change being only 0.25 of an 

S. D. U. which was equivalent to less than a 2.5% change in distance). The same 

test was undertaken using raw, partially logged and fully logged angles and indices 

and shape factors. The logging of data had no effect on the observed pattern of 

linkage within either of these data sets. The Fourier coefficients showed fewer 

inequalities of within group variances. The same test when applied to the Fourier 

coefficients did however result in minor differences in the pattern of linkage of 

the races of modern man and in the order of linkage of the sexes of chimpanzee. 

It was decided, primarily on theoretical grounds, that analyses of linear and 

angular dimensions, angles and indices, and shape factors would use fully logged 

data. 
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Now different are the results obtained using midline data from those obtained using 

three dimensional data ? 

The linear and angular dimensions were taken between landmarks scattered 

over the whole of each cranium. The indices, in being derived from the linear 

and angular dimensions, are also related to the three dimensional morphology of 

each cranium. This contrasts with the data derived from Fourier analysis and with 

the shape factors which measured only the form of the mid-line projection of 

each cranium. The method of least squares produced a matrix of inter-cranial 

form differences based upon the positions of mid-line landmarks. 

The multivariate analysis of the data from extant groups was directed first 

towards determining the degree to which studies of the midline of crania tend to 

disagree with those of the full three dimensional structure. 

The data files of linear and angular dimensions and of angles and indices 

were each subdivided into three subsets. The first contained all the data from the 

mandibles and crania, the second the data from the cranium alone, and the third 

the data from the mid-line projection alone. The six resultant data files were 

each submitted to multivariate analysis. A matrix of Mahalanobis' distances between 

group centroids was calculated from each data file. Additionally Mahalanobis' 

distances were calculated from the midline variables taken from the file of scaled 

linear and angular dimensions. 

Differences in the patterns of phenetic group relations demonstrated by 3 

and 2 dimensional data were quantified by calculating correlations between the 

distance matrices. 
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How different are the results obtained by different methods of cranial form 

description? 

The next part of this study concentrated on assessment of differences in the 

patterns of between group phenetic relationships and the discriminating power 

demonstrated by the data derived from the different methods of measurement. 

These two aspects are related but not identical. 

I shall briefly detail the selection and statistical analysis of the data produced 

by each method of measurement. 

Scaled data is used throughout unless otherwise stated. This allows a more 

sensible comparison of techniques. 

Linear and angular dimensions 

After scaling the dimensions from each cranium (by ratio with respect to the 

square root of the midline area) a subset of 25 dimensions and angles from the 

midline projection was taken. Two of the points which were projected on the 

mid-sagittal craniograms were used to take two projected dimensions. These were 

the porion (used to measure projected auricular height) and the infra-orbital 

foramen position (used to measure projected bass infra-orbital length). Though 

these are not strictly midline measures they were included amongst the midline 

data because they were taken from the cranial tracing and used one point which 

lay on the midline. Comparison of results obtained from data including these 

dimensions with results from data omitting them showed no appreciable difference. 
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The 25 variables were used to calculate a matrix of between group 

Mahalanobis' distances. A histogram of distances was drawn, the average distance 

between groups was calculated and a minimum spanning tree was constructed. 
The usefulness of these linear and angular dimensions in Identification 

problems was assessed by repeated discriminant analysis. The data file was divided 

into two, the first subset consisted of the data from a randomly selected 10% of 

individuals, the second contained the data from the remaining 90%. The larger 

file was used to construct discriminant functions between groups. The data in the 

second file were classified in accordance with these derived functions. The analysis 

proceeded by selecting repeated tenths and by going through the whole process 

until all the individuals had been included in the smaller file. The total number 

of misclassifi cations was recorded. 

Angles and indices 

The 17 angles and indices from the midline were selected for each cranium. 

These were used to calculate Mahalanobis' distances between groups. The distance 

matrix was then used to draw a histogram of between group distances and to 

construct a minimum spanning tree. The average between group distance was 

calculated. The data were then submitted to a repeated discriminant analysis in 

the same way as were the linear and angular dimensions in order to determine 

their utility in identification. 
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Method of least squares 

It has been noted earlier that Sneath's method of least squares allows the 

calculation of a matrix of average between group distances. Each element was 

divided by the pooled within group standard deviation of Dh's in order to 

reexpress the distances in S. D. U. Average between group distances were calculated, 

a histogram of between group distances and a minimum spanning tree were drawn. 

Repeated discriminant analysis was not possible. 

Shape factors 

In all, 12 shape factors were calculated from the midline projection of each 

cranium. Four of these were calculated from the whole outline, four from the 

neurocranium and four from the viscerocranium. Two files were created, one 

containing all 12 variables, the other containing only the four from the whole 

cranial outline. 

Between group Mahalanobis' distance matrices were calculated from each file. 

From both matrices the average between group distance was calculated and a 

histogram of between group distances was drawn. From the distance matrix 

calculated using all 12 variables a minimum spanning tree was constructed. All 

twelve variables were used in a repeated discriminant analysis similar to that used 

for the linear and angular dimensions and the angles and indices. 

Fourier analysis 

Fourier data in the form of the amplitude/phase-lag coefficients and 

sine/cosine coefficients were studied. The sine/cosine series was used to construct 

a graphical representation of the mean cranial outline for each group. 
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The selection of the first 20 pairs of sine/cosine coefficients by a criterion 

of discrimination has already been detailed in the section dealing with 

measurement methods. The percentage of crania misclassified by each repeated 

discriminant analysis was plotted against the number of variates used in each 

analysis. The curve described by these points shows a minimum between 18 and 

20 variate pairs. It was concluded that each cranium was adequately described by 

40 variables in all, the sine and cosine components of Fourier coefficients 2 to 

21 inclusive. A data file containing these 40 variables from each cranial outline 

was created. 

The file of 40 sine and cosine components was used to calculate a matrix 

of between group Mahalanobis' distances from which the mean between group 

distance was calculated, and a histogram of distances and a minimum spanning tree 

were drawn. A second data file containing the amplitude and phase-lag 

components of the Fourier series was created. This was used to draw group 

average power spectra. A subset of these data comprising the first 20 pairs of 

amplitude/phase lag components was taken and used to calculate between group 

Mahalanobis' distances. Again, the average distance was calculated and a histogram 

of between group distances was drawn. 

The discriminating ability of each sine and cosine component on its own was 

assessed by calculating the F-ratio (between group variance relative to pooled 

within group variance). High values of this ratio reflect good discriminating ability 

between groups. A bar chart of F-ratio against variate number was drawn. This 

was used to select increasing numbers of variables for repeated discriminant 

analysis. This is analogous to the technique used to determine the best 20 

sine-cosine coefficient pairs. A graph was drawn of the percentage of individuals 
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misclassified against the number of "best discriminating variables" used. This whole 

procedure was undertaken in order to optimise the discriminating ability of the 

data in multivariate combination. 

The Fourier data so far examined are start point dependent. Errors in the 

location of the start point will affect the whole series. For this reason a data file 

containing only the first 20 amplitude coefficients was used to calculate a matrix 

of between group Mahalanobis' distances. In common with the other sets of 

analyses the mean distance was calculated, a histogram of distances and the 

minimum spanning tree were drawn. 

Comparison of the results obtained from each set of data 

Each method of analysis resulted in a distance matrix from most of which 

(detailed earlier) a histogram of distances was drawn, the average distance was 

calculated, and the minimum spanning tree was constructed. These results can be 

directly compared. 

A further comparison was undertaken by treating each distance matrix as if 

It were simply a list of observations taken on each method. This allowed the 

calculation of correlations between distance matrices. A principal component 

analysis of the correlation matrix between distance matrices was performed. 

The relative utility of each method in problems of identification can be 

assessed by observing the number of misidentified individuals from the repeated 

discriminant analysis of the data produced by each measurement method. 
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RESULTS 

A. Univariate analyses 

In the context of this first study the results of univariate analysis are of little 

interest. No measurement obtained by one method of description is directly 

comparable with those obtained by the others. Common to the data from all of 

the methods some variables showed little between group variation, others clearly 

differentiated the apes from the men, and others showed contrasts within apes 

and humans. 

The Fourier data allowed a number of novel comparisons. From the 

sine-cosine series average group outlines were reconstructed using the mean 

value of each variable. These are presented in fig. 2.12. 

The amplitude-phase lag series is a mathematical transformation of the 

sine - cosine series. Amplitude component n indicates the amplitude of the wave 

of order n. Examination of the relative magnitudes of the amplitude components 

allows the frequency characteristics of an outline to be investigated. Plots of 

successive amplitude components (power spectra) for the apes and men are 

presented in figures 2.13 - 2.15. All of the power spectra show a peak for the 

second order component (indicating bilobedness) which is greater for apes than 

men and larger for males than females. The orangs are uniquely distinguished 

from the chimpanzees, gorillas and men in showing a smoother tail off. The other 

groups show a levelling or slight rise in the magnitude of amplitude components 

S and 6. 
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FIGURE 112 - Group mean outlines reconstructed from the sine-cosine Fourier series 
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FIGURE 213 - Power spectrum for Pongo and Pan 
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FIGURE 2.14 - Power spectrum for Gorilla and the average ape power spectrum +/_ 90% 

confidence limits 
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FIGURE 215 - Power spectrum and average power spectrum */_ 90% confidence limits for 

the groups of Homo 
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B. Multivariate studies 

I. Differences between the results obtained using midline data and those from 

three dimensional data 

Only the files of linear and angular dimensions and angles and indices 

contained data taken from the whole of each skull. 

linear and angular dimensions 

The mean (between group) Mahalanobis' distance differed between analyses. 

The study of all 59 linear and angular dimensions from the upper face, braincase 

and mandible gave a mean distance of 18.84 S. D. U., 34 linear and angular 

dimensions from the upper face and braincase, 16.1 S. D. U.. 25 midline variables, 

14.17 S. D. U. and when scaled by ratio for the square root of the midline 

projection of each cranium, 13.10 S. D. U. The scale of between group separations 

is affected by the number of variables and by size differences. 

Consistent with this are the results of repeated discriminant analyses (table 

2.5). Data from the whole skull allows a larger proportion of individuals to be 

correctly identified than does the data from the midline. Scaling of the midline 

data further reduces the number of correct identifications. 

Table 2.6 lists the correlations between the distance matrices calculated using 

each of four data sets: (59 linear and angular dimensions from the whole skull, 

34 linear and angular dimensions from the upper face and braincase and 25 raw 

and scaled variables from the midline projection). In no case is this correlation 
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TABLE 2.5 

Numbers of specimens correctly classified by discriminant 
analysis of data from 299 individuals 

Measurcmcnts No correctly No incorrectly 
classified classified 

59 raw linear and 261 38 
angular dimensions 

25 raw linear and 237 62 
angular dimensions 

25 scaled linear and 227 72 
angular dimensions 

TABLE 2.6 

Correlations between studies 

STUDY ABCD 

A1 

B . 998 1 

C . 994 . 996 1 

D . 992 . 989 . 983 1 

A- 59 lin. and ang. dims - whole skull 
B- 34 lin. and ang. dims - whole skull less mandible 
C- 25 raw lin. and ang. dims - midline 
D- 25 scaled lin. and ang. dims - midline 
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less than 0.98. 

These results indicate that the scope of the data (3 -d or 2- d) and size 
differences affect the scale but not the pattern of between group separations. 

Angles and indices 

The results obtained by studying angles and indices from the whole skull, the 

upper face and braincase, and the midline were compared in a similar manner 

to those derived from linear and angular dimensions. The mean Mahalanobis' 

distance between groups calculated from 65 angles and indices derived from the 

upper face, braincase and mandible was 18.06 S. D. U., from 29 angles and indices 

from the upper face and braincase, 14.21 S. D. U. and 17 angles and indices from 

the midline, 11.95 S. D. U. The pattern of reduction in mean intergroup distance 

is similar to that observed from studies of linear and angular dimensions. 

On the whole, the mean intergroup distance is less when calculated from 

angles and indices than from linear and angular dimensions taken from the same 

anatomical region. This, to some extent, reflects differences in the number of 

variables used in each analysis. However. in the studies based upon data from the 

whole cranium more indices were used than linear dimensions yet the mean 

intergroup distance is less. The indices did not show more intercorrelations than 

the linear dimensions. The smaller intergroup distances may well reflect the less 

size dependent nature of indices. 

Differences in the pattern of group relationships demonstrated between the 

full and more restricted data were investigated by calculating the correlations 
between the distance matrices derived from each. The results are presented in 
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table 2.7. Reducing the anatomical scope of the data does not significantly alter 

the observed pattern of group relationships. This result is in keeping with that 

obtained from the studies of linear and angular dimensions. 

TABLE 27 

Correlations between studies 

STUDY ABC 

A1 

B . 996 1 

c . 995 . 992 1 

A- 65 angles and indices - whole skull 
B- 29 angles and indices - whole skull less mandible 
C- 17 angles and indices - midline 
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2. Differences in the results obtained by different methods of cranial form 

description 

The extent of group separation and the ability to identify individuals of unknown 

provenance 

The Mahalanobis' distance matrices calculated from the scaled midline data 

derived by each method of description and the shape distance matrix calculated 

by Sneath's method of least squares are presented in tables 2.8 and 2.9. The 

mean intergroup distances calculated from these matrices are presented in table 

2.10. The largest mean intergroup distances are produced by the analyses based 

upon linear and angular dimensions and the sine-cosine Fourier series taken 

from the midline. The smallest are produced by the amplitude Fourier coefficients 

and the four shape factors taken from the whole outline. These last two methods 

of shape description are the ones which are least dependent upon the 

identification of homologies. 

Direct comparisons of the mean intergroup distances are likely to give rise 

to some confusion if they are used to estimate the relative discriminating power 

of each method of measurement in identification problems. The number of 

variables submitted to multivariate analysis also influences the intergroup 

separation. A better assessment of the relative discriminating abilities of the 

methods is given by reference to table 2.11 which details of the number of 

individuals misclassified by repeated discriminant analyses. 

Figure 2.16 illustrates the way in which the percentage of misclassified 

individuals changes with the inclusion of more sine-cosine Fourier components. 
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TABLE 2. A 

Mahalanobis' distances calculated using waled data where appropriate 

46 t 
ii 

ºwxlo r. 
ein M. 12.27 {. a11 
Pon r, 11.17e 1. {oe 1. {11 Gor/llo M. 12,121 12,121 11,111 11.000 !2 

Gorlllo r. 12.. 40 10.220 1.011 1.111 1.116 u 
+I¢ 

1 
C. uco. old ,. 2.110 11,27: I1.1{e 11. Uo 22.010 II. r11 
t&LAC le r. : 1. ýIO 11.170 $1.711 11.211 21. /10 1{.. 10 1.111 

Negroid 72,100 11.210 11.; 21 11.410 20.110 11.121 9.111 4.111 
Mongoloid 23.410 11.170 11.101 11.470 21.421 1{. {71 4.941 4.121 2.211 

Austr. Iold 22. {10 11.770 1{. {71 11.111 21.241 11.101 1.111 5.111 2.440 8.110 

Mahalanobia' distances! 20 sin/coo Fourier coefficients 

ii 

ºoran i. 0,100 a, 
_" 1,100 1.070 4 ºr 

Gorilla . 0,110 1.170 1.111 i 
111 11.700 0.4411 1. { ä 

tot1110 r. 1 .2 
Caucasoid ld 

r. 

". {10 0,010 011 {. 17 
10 

1 1.021 'I 
Caucasoid 

20.400 11.110 14.271 14.211 11.141 11.411 
1e. 820,11.111 10.141 111.2101 11.121 11.111 1.904 

Negroid 19.020 14.140 14.410 11.211 $1.111 10.110 1.400 4.040 
Ilonpolold 11.170 11.110 17.121 15,110 11. {21 11.271 4.640 4.111 1.110 

Au. tr. lold $3.100 16.120 14.130 14,120 11.131 11.211 1.111# 5.111 2.111 2.120 

Mahalanobis' distances! 20 imp/phi Fourier coefficients 

.9ý.. 46 Forgo f. 0.120 
ºo^ ,"6,400 1.180 !! Ln r, 1,710 7.100 1.711. 

Je 
Cot1U0,. 1,710 1,110 1.100 1.110 Cori ll. r. {, 110 {. 010 11,2{0 1. {21 4.011 $ 

Caucasoid M. 11.410 9,100 1.111 {"110 11.121 9.171 
Caucasoid r. 11.110 1.110 1, {{1 9.110 11.401 9.111 1.111 

Negroid $1.340 1,110 $1.215 11.110 12.171 11,010 9.211 8,110 
Hongolold 12,020 11.420 10,040 10.40.12431 11.101 2.111 2.110 1.911 

Australoid 12.420 10.200 1.121 9.101 $2.111 11.111 2.110 2.111 2.111 1.111 

Mahalanobis' distancest 20 amplitude Fourier coefficients 

i 

46 : 
.. i. 46 6 %: 41 

46 9 .. g 
Pungo r. 4.440 "z" 

ºon .. 1,120 2,170 hn r. {, Ito 0,110 0,120 ." Corllle ,, 4,211 0.100 1, ars 1.171 
Curllls r. 1.410 1,410 4.411 4.110 0.110 1 !F J" 

Caucasoid ,. 11.100 11,1{0 17.111 11.110 13.141 12.101 j 
Caucasoid r, 11.220 12,140 12.400 12.211 11.111 12.111 1.111 

Negroid 11, {{0 12.400 11.110 11.140 14.111 12.110 4.711 4.111 
Mongoloid 11,260 12,900 11.100 11.271 10.111 12.011 1,711 2.111 1.111 

Australoid 11.110 12.020 11.200 11,900 14,111 12.690 2.120 2.461 1.101 1.211 

Snoeth's shape distance 



109 

TABLE 2.9 

Mahalanobis' distances calculated using scaled data where appropriate 
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TABLE 2.10 

Mean distances between modern groups calculated from scaled midline data 

linear and 13.10 
angular dims. 

angles and 11.95 
indices 

12 shape 10.25 
factors 

4 shape 7.28 
factors 

20 sin/cos. 13.92 
Fourier 
coeffs. 

20 amp/phl. 12.43 
Fourier 
coeffs. 

20 ampl. 7.83 
Fourier 
coeffs. 

Sneath's 9.54 
Method 

All distances except Sneath's Db are Mahalanobis' D 
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TABLE 2.11 

Numbers of specimens correctly classified by 
discriminant analysis of midline data 

from 299 individuals 

Measurements No corrcctly No incorrectly 
classified classified 

17 logged angle & indices 218 81 

12 logged normative 205 94 
shape factors 

20 pairs of sin/cos 224 75 
Fourier coefficients 

30 tin/cos Fourier coeffs with 230 69 
the largest F-ratio 

25 scaled linear and 227 72 
angular dimensions 

Initially, the addition of more data improves the identification procedure, but later, 

more data "confuses" the process. This is because the higher Fourier coefficients 

show more random variation. 

Figure 2.17 illustrates that some Fourier coefficients are better at 

discriminating between groups than are others, the F-ratio varies markedly. Figure 

2.18 is like figure 2.16, it illustrates the way in which the number of 

misclassifications changes with the addition of more Fourier data. The differences 

between these two graphs are due to the manner In which Fourier components 

were selected for addition to the discriminant analyses. In figure 2.16 they were 

added in order of their frequency. In figure 2.18 they were added according to 

their discriminating ability as indicated by the results of figure 2.17. The 

manoeuvre of selecting components by discriminating ability resulted in more 
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correct classifications from Fourier data. This better classification was obtained 

using less variables than those selected by serial addition: the curve rated to the 

points of figure 2.18 levels out at about 30 variables whilst the first 40 variables 

were selected by serial addition. The advantage of using the first 40 variables is 

simply that these allow reconstruction of the outlines. 

Reference to Table 2.11 shows that the 30 Fourier components with the 

highest F-ratios perform best in the task of identifying individuals of unknown 

provenance. The scaled linear and angular dimensions perform nearly as well. The 

first 20 pairs of sine -cosine coefficients perform less well than these two methods, 

the angles and indices perform less well than the Fourier coefficients and the 

shape factors are least able to allow accurate identification. 



113 

FIGURE 2.16 - Percentage of crania misclassitied using increasing numbers of sine/cosine Fourier 
coefficients 
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FIGURE 217 - The discriminating ability of the sine/cosine series of Fourier coeffs. as assessed 
by the ratio of the between group variance relative to the pooled within group 
variance (F ratio) 
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FIGURE 2.18 - Percentage of crania misclassified using increasing numbers of variables. Variables 
are added in order of their F ratios 
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Pattern of group dispositions 

Histograms of the distribution of distances calculated from the data from 

each method of shape description were drawn, they are presented in figure 2.19. 

They all show two major peaks, the first peak is a "low distance peak" and 

illustrates that all analyses agree that there are some groups which are 

morphologically similar. The second peak is a "large distance peak" and it results 

from the common finding that some groups are more different. These common 

features indicate some agreement in the pattern of group relationships 

demonstrated by each method. 

An attempt was made to study the "structure" of each distance matrix by 

constructing minimum spanning trees. These are presented in figures 2.20-2.22. 

All of the methods produce minimum spanning trees in which the apes are clearly 

distinguished from the men. In all of the minimum spanning trees the sexes of 

the groups (where sexes are known) are linked together. The scale of each tree 

reflects the mean distance between groups. 

The trees from linear and angular dimensions, angles and indices, Fourier 

analysis, and the shape factors link the apes in the same way. The chimpanzees 

are the centre of a "U" shaped cloud, female gorillas link more closely with the 

male chimpanzees than do female orangs with the female chimpanzees. 

The tree drawn from the distance matrix produced by the method of least 

squares shows a similar pattern of relationships within the apes, however the male 

chimpanzees are excluded from the "U". The trees from linear and angular 

dimensions, angles and indices, and Fourier analysis show a more or less spherical 

cluster of the groups of modern man. The order of clustering is the same: 
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FIGURE 219 - Histograms of the distribution of distances calculated from the data which result 
from each method of shape description (data are scaled where necessary) 
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FIGURE 2.20 - Minimum spanning trees 
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FIGURE 2.21 - Minimum spanning trces 
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FIGURE 222 - Minimum spanning trees 
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caucasoids cluster with mongoloids, which link with negroids, which in turn link 

with australoids. The trees produced from shape factors and by least squares differ 

in the exact order of clustering, they do however produce the same spheroidal 

grouping. 

The link between apes and humans is more variable. The angles and indices 

and the sine-cosine Fourier series produce trees with a long link between 

negroids and female chimpanzees. The other methods show variation In this 

linkage. The changes in relative distances required to modify the position of this 

link are small. This can be confirmed by reference to the distance matrices 

presented in tables 2.8 and 2.9. 

The impression gained from an examination of the minimum spanning trees 

Is that the pattern of group dispositions revealed by linear and angular dimensions, 

angles and indices, and the sine-cosine Fourier series is similar. The 

amplitude-phase lag analysis and the amplitude analysis produce patterns which 

differ slightly from these first three. The shape factors and the method of least 

squares produce the most dissimilar results. 

It should be noted that these differences in result are small compared to the 

overwhelming agreement between the methods. This can be demonstrated by 

reference to table 2.12 which lists correlations between the distance matrices 

produced by each method. All of these correlations are large and they vary little. 

The methods by and large give similar results with regard to the pattern of group 

dispositions. 

The pattern and scale of group separations produced by each method were 

further studied by principal component analysis of the correlation matrix between 

distance matrices. A plot of the first two principal components is presented in 

figure 2.23. 
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TABLE 212 

Corrcladons between the distance matrices derived by the studies of scaled data 
I. 

. " 

u 

O 

v 
wVr q 

x 

angles and indices 0.928 
w "ü 

h 12 ' f t ' 98 0 0 911 

f; 
fýt w2 s ips ac ors . 6 . 

Fourier analysis 
20 sins/cosine coeffe 

0.988 0.924 0.967 
V4 . t 

Fo i l i 
6. .gü 

ur er ana ys s 
20 amplitude/phase 0.994 0.929 0.984 0.993 
lag coeffs 
courier analysis 0.907 0.834 0.892 0.913 0.904 " 20 amplitude coeffs 

Snesth's Method 0.981 0.914 0.973 0.966 0.977 0.863 

4 'shape factors' 0.934 0.895 0.969 0.930 0.933 0.830 0.977 

The extremal positions on axis one are taken up by the distance matrix from 4 

shape factors and that from sine-cosine Fourier coefficients. The correlation 
between the score of a method on this first component and the mean between 

group distance is 0.996. This first component reflects the scale of the separations 
demonstrated by each method. The meaning of the higher components is less 

clear. It is worth noting, however, that positive scores on component two are 

characteristic of those methods that rely upon a centroid for registration. These 

are the methods of Fourier analysis and least squares. The lowest score on this 

axis is that of the 4 shape factors which are the least registration dependent. 

This interpretation, if correct, demonstrates the relative unimportance of problems 

of registration in this study. 
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In figure 2.24 is illustrated a three dimensional plot of the first three principal 

components from the preceding analysis. This shows more fully the differences 

between the patterns of group relationships revealed by each method. By far the 

greatest difference is one of scale as revealed by component one. The 

differences shown by the other components are smaller and of less certain 

significance. 

FIGURE 223 - Plot of the first two principal components derived from the correlation matrix 
between distance matrices. All data is scaled where applicable. 
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FIGURE 2.24 - Plot of the first three principal components derived from the correlation matrix 
between distance matrices. All data Is "led where applicable. 
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DISCUSSION 

In the introduction to this chapter it was stated that the main thrust of the 

work presented here has been a comparative enquiry into a number of approaches 

to cranial morphometry. Several of these approaches were only applicable to 

midline projections of crania. It has therefore been necessary to consider the effect 

of this reduced anatomical scope on the phenetic relations which are observed 

between crania before considering the comparative merits of each method. 

1. Differences between the results obtained using midline data and those from 

three dimensional data 

The results of this study suggest that the pattern of phcnctic differences 

demonstrated between crania by study of midlinc data does not differ markedly 

from that based upon three dimensional data. The major difference is in the 

degree of group separation relative to within group variability. 
It seems that the vast majority of factors which Influence the shape of the 

cranium as a whole have a degree of influence on the form of the midline 

projection. Little "new" information is added by study of parasagittal structures. 

Studies of off - midline structures do, however serve to improve the 

identification of crania of unknown provenance. The Inclusion of these data 

effectively increases the between group variance relative to the pooled within group 

variance. It is as if the extra data serve to clarify certain features which have only 

been "hinted at" by the midline studies. This added resolution has little if any 
influence on the overall pattern of group dispositions. 



126 
This result serves as a caution in studies which attempt to treat cranial 

structures or even dimensions as if they are independent. The development of one 

structure, it seems, is likely to influence the form of other structures, a finding 

which is in keeping with modern ideas of pleiotropy. 

2. Differences in the results obtained by different methods of shape description 

This study examined the differences in the pattern and extent of group 

separations demonstrated by a variety of means of describing midline cranial 

morphology. 

The clearest difference between the results is one of scale of separation. 
Some methods appear to have provided a "better" (-more complete) description 

of the form of the midsagittal projection than others. This is reflected in the 

different numbers of unknown individuals that were correctly identified using each 

method of shape description. Selected sine-cosine Fourier coefficients and linear 

and angular dimensions performed best. Angles and indices did slightly worse, 

shape factors were least reliable. The method of least squares, whilst allowing a 

classification by minimum distance, was not directly studied in this way. 

The methods do produce different patterns of group separation. These 

differences, at least in the current study, are relatively small in relation to those 

in the extent of separation. This has been demonstrated by principal component 

analysis. The differences, as judged by correlations between distance matrices, are 

slightly greater than those which existed between the two and three dimensional 

studies of cranial form. 



127 

The overwhelming similarities in the patterns of group dispositions which 

have resulted from the analyses of different types of data are noteworthy because 

several sets of data included indices (i. e. angles, indices, shape factors and scaled 

linear dimensions). This similarity in group dispositions occurs despite the cautions 

furnished by Atchley et a!. (1976) and Albrecht (1978a). A further finding has 

been that the effect of registration on the revealed pattern of group separations 

appears to be minimal. 

It seems that, in terms of optimal ability to identify individuals of unknown 

provenance and in terms of the stability of the pattern of group dispositions, 

multivariate study of linear and angular dimensions and of the sine-cosine series 

of Fourier coefficients produce the most effective results. Fourier analysis offers 

the additional advantage that data collection can be automated (see O'Higgins and 

Williams, 1987). 

It would seem logical to extrapolate from the foregoing study and suggest 

that: irrespective of the method used to describe cranial morphology in hominoids 

the resultant pattern of phenetic relationships between OTUs will be stable though 

there may be some difference in the degree to which OTUs are separated. 

The hypothesis that there are no differences in the results of phenctic studies 

which use any of the data described in this chapter can only be considered to 

have been partially falsified. 

It is prudent, however, to be cautious. The study which has been presented 

here has used as its material crania of modern men and crania of living 

hominoids. All of the analyses have agreed that the differences in cranial 

morphology within the apes and within the men are small relative to the 

differences between apes and men. In effect, the crania are either of one general 
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type or another and the pattern of between OTU variation is effectively 

discontinuous. It is therefore quite possible that the high degree of concordance 

between analyses is partially a consequence of the limited types of variability In 

cranial morphology which have been studied. Each method of shape measurement 

has had to describe a limited range of differences and, in general, each element 

of the distance matrices calculated from the different data has contained either a 
large or a small value (consequently matrix correlations are high). 

It is quite possible that in situations where differences between all OTUs are 
larger in relation to the total variability of the sample of OTUs (so there are 

relatively more "types" of differences to be summarised) the methods will show 

more disagreement in the pattern of OTU dispositions. A more stringent 

comparison of the effects of using different methods of cranial form description 

would include OTUs which differ from each other in a variety of ways and in 

which the variation between OTUs is more continuous. Such a situation is found 

within the hominoids when patterns of within group variability or of variability 

between fossil and extant hominoid OTUs are studied. 

Despite this caution the studies of this first chapter have served to permit a 

practical comparison of the different methods of shape description and a practical 

test of the usefulness and efficacy of the data generated by each. 

3. Comparison of the methods and efficacy of the data 

The principal division between the methods employed in this study is that 

some rely upon the identification of a large number of landmarks whilst others 
have little or no requirement for landmarks. 
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In practical terms this means that linear and angular measurements, indices, 

and the map of landmarks required for the Sneath comparisons are time 

consuming to collect. There is room for error in the estimation of the position of 

every landmark and a great deal of time has to be devoted to encoding and 

checking the data (though the time involved in encoding can be considerably 

reduced for the Sneath landmark data by the use of a digitising tablet). 

By contrast, the shape factors and the Fourier data are derived from tracings 

of outlines with one or two landmarks marked on each. The collection of the 

tracings is itself tedious but encoding of data is relatively easy since each outline 

is simply traced onto a digitising tablet. Recently O'Higgins and Williams (1987) 

have demonstrated that reasonable results can be obtained by using a video 

digitiser to extract outline information from standardised cranial photographs. The 

collection of data using such automated methods can be considerably accelerated 

and the likelihood of errors in encoding mesurements is greatly reduced. 

The data which result from landmark dependent methods of shape description 

differ fundamentally from these obtained by methods which describe the outline 

of cranial tracings. Methods which describe the outline give equal weighting to 

each point whereas landmark dependent methods describe morphology less evenly, 

giving emphasis to those regions where landmarks are more plentiful. The 

consequence is that landmark data can be readily related to localised anatomical 

regions whereas methods which describe the whole outline cannot. Conversely 

individual linear measurements contain information relating to just the landmarks 

upon which they are dependent whereas Individual shape factors or Fourier 

components each contain information relating to the whole morphology. The choice 

of method in any particular study should be influenced by the questions at hand 
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and the requirements of the investigator. 

This study has been directed to an investigation and review of a number of 

new biometric methods. Their application to the crania of extant hominoids has 

allowed an appraisal of their relative merits. It seems that studies based upon 

Fourier analysis and linear and angular dimensions will allow the best description 

of patterns of cranial variation in terms of providing a maximal separation between 

OTUs and in producing (at least between the groups studied) a stable phenetic 

structure. In the following two studies these techniques are used to examine 

patterns of cranial variation in living and fossil hominoids. The studies allow a 

more rigorous comparison of these two approaches to cranial morphometry. 
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CHAPTER 3 

Patterns of variation of cranial form 

within certain groups of extant hominoids 
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GENERAL INTRODUCTION 

The previous chapter compared the relative performance and utility of 

several approaches to the description of cranial morphology in the primates. 

From these studies it seems that, at least in studies of extant hominoids, both 

linear and angular measurements and Fourier data, in multivariate combination, 

allow a considerable degree of between group discrimination and result in similar 

overall patterns of between group phenctic relationships. 

The studies presented in this chapter have two principal objectives: 

first, to allow a further comparison of the relative utility of Fourier data and 
linear and angular measurements, this time in the context of studies of within - 

group variability, 

second, to examine and compare patterns of within-group cranial variability in 

certain hominoids (the races of modern man, and chimpanzee, gorilla and the 

orang - utang). 

A further reason for undertaking the studies presented in this chapter is 

to provide comparative data for the studies of the next chapter, chapter 4, in 

which patterns of cranial variability within and between certain groups of hominid 

fossils are considered. 
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Patterns of within-group morphological variability 

A knowledge of within-group variability Is Important In any work which 

attempts to group individual fossils together. Many studies have referred to 

patterns of within-group variability in extant taxa as a guide to the acceptable 

limits of variability within proposed fossil taxa (e. g. van Vark, 1984, Chamberlain, 

1987, Lieberman et aL, 1988). 

A significant proportion of the morphological variability within modern 
hominoids can be attributed to the influence of size on form and to sexual 
dimorphism (see for example, Wood, 1976, Schmid and Stratil, 1984, Glutton - 
Brock, 1985, Leutenegger and Cheverud, 1985, Oxnard, 1987). There remains an 

equally significant component, however, which eludes simple causal explanation. 
This "random" variation is the result of differences in genotype, environment, 
diet, and other influences. 

An early attempt to use multivariate metrical methods in the determination 

of the sex (and therefore in the study of sexual dimorphism) of crania is that 

of Giles and Elliot (1963). These workers used discriminant functions to discern 

the sex of American white and negro crania. They showed that "discriminant 

functions based on the two races combined do, for practical purposes, equally 

well for both races as do those based on and applied to a single race". They 

concluded from this finding that "the sex discriminant function is employing basic 

differences and relationships in cranial morphology which are largely independent 

of racial variation". They further tested their discriminant function on a sample 

of chimpanzees of known sex and demonstrated that it performed at least as well 
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as a function derived from the apes themselves. From these studies it seems that 

there are considerable similarities In the patterns of cranial sexual dimorphism 

in a wide range of hominoids. 

More recently several studies have attempted to describe patterns of sexual 

dimorphism in the primate cranium and dentition (e. g. Wood. 1975,1976, 

Holland, 1986, Uytterschaut, 1986, Oxnard, 1987). A common conclusion is that, 

amongst the Hominoidea, size differences arc in some way related to the shape 

differences between sexual morphs. The generality of this finding is, however, 

debatable. In some primate taxa, for instance the bush baby, there appears to 

be considerable sexual shape dimorphism in the absence of a large sexual size 

difference (see Oxnard, 1987). 

Oxnard (1987) has identified patterns of dimorphism in the variance of 

certain dental variables. lie demonstrates that the chimpanzee, which shows little 

sexual difference in dental size and shape has a large degree of sexual 

dimorphism in the variances of certain dental dimensions. 

There is some disagreement concerning the variability of patterns of shape 

dimorphism in hominoids. Wood (1976) in summarising his study stated: "Apart 

from a few exceptions variables arc consistently sexually dimorphic in all groups, 

differences between primate groups being one of degree of dimorphism rather 

than due to a different pattern of dimorphism". This finding whilst being 

consistent with the work of Giles and Elliot (1963) contrasts with that of Oxnard 

(1987) who found more extensive differences between hominoids in the pattern 

of dental sexual dimorphism. 

Uytterschaut (1986) has reviewed the work of several authors, and has 

emphasised the importance of size variables in sex diagnosis of human crania. 
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Her study was directed to a comparison of sexual dimorphism in the crania of 

different human populations and employed discriminant functions. Her results 

indicated differences in the vectors of shape difference between the sexes of 

Homo and she concluded that "the construction of a race -independent sex 

function turned out to be rather difficult, probably because of the differences in 

the directions of sexual dimorphism factors". 

Calcagno (1981) evaluated the general applicability of multivariate discriminant 

analysis to the sexing of human mandibles. lie studied the mandibles of 

American whites, blacks and Indians and concluded that discriminant functions 

based upon mandibular dimensions are highly population specific. His study 

demonstrated a marked reduction in the accuracy of sex diagnosis when antra - 

group size differences were discounted and he suggested that one reason for the 

failure of discriminant functions when applied to new populations is the 

difference in gross size between them. The consequence Is that discriminant 

functions derived from one population will fail on another If the average sizes 

of males and females within them are different. Ile suggested that differences in 

patterns of "human sexual dimorphisms are of little significance In comparison to 

size variation within the same sex of two populations" In determining the 

applicability of discriminant functions to different groups. 

From this consideration of previous studies of sexual dimorphism it is clear 

that there is some debate concerning the influence of size on patterns of sexual 

dimorphism and the degree to which patterns of sexual dimorphism differ 

between different hominoids and racial groups of Man. 



136 

Aims of the current study 

This study aims to further compare measurement techniques, this time in a 

study of the patterns of cranial variation encountered within extant hominoid 

taxa. The analyses use both linear and angular measurements and sine-cosine 

Fourier coefficients. The study provides a comparison of the results obtained 

using both types of data and of the relative efficacy of each measurement 

technique in the study of patterns of within-group variability. The relationship 

between size and sexual dimorphism and differences in patterns of cranial 

dimorphism between hominoid groups are investigated. 

This study further tests the hypotheses that: 

1. sine-cosine Fourier data and linear and angular measurements provide similar 

results in studies of within-group cranial morphological variability; 

2. cranial sexual dimorphism is related to sexual size differences in the hominoid 

groups included in this study; 

3. the pattern of cranial sexual dimorphism is identical between the hominoid 

taxa. 
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MATERIALS AND ME`nIODS 

A. Materials 

This study employed the 299 skulls of extant hominoids described in Chapter 

2 (table 2.1) comprising representatives of the genera Pan, Pongo, Gorilla and 

Homo. The sexes of the ape taxa were known from records, those of the races 

of mankind with the exception of the caucasoid sample were unknown. 

During the course of this study a sample of crania from Hong Kong 

(Southern) Chinese individuals of known sex (from burial records) became 

available. It was possible for Professor Moore to visit the Department of 

Anatomy at the University of Hong Kong to measure the material. lie was able 

to collect a more limited range of measurements from 45 adult crania comprising 

16 females and 29 males. These data were used in analyses directed to a 

comparison of sexual dimorphism in caucasoids and mongoloids. 

B. Methods 

In this section I shall describe those metrical and statistical techniques which 

were applied to the crania of table 2.1. The sample of mongoloid crania which 
is discussed is that examined in the British Museum. Mic studies which employed 
data from the Hong Kong Chinese crania are specifically indicated. 
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I. Definition of shape 
The shape of each cranium was defined by a series of linear and angular 

dimensions taken between homologous landmarks (see tables 2.2 and 2.3, data 

collected by Ashton and Moore) and by Fourier analysis of midline projections. 

Two further data files were produced, scaled (against the square root of the 

midline area using ratios and multiplying by a constant) linear dimensions and 

raw angles, and scaled (equal midline areas) Fourier components. Details of 

measurement technique and of the selection of the first twenty sine-cosine 

Fourier coefficient pairs arc given in chapter 2. 

Thirty one linear and angular measurements from the Hong Kong crania 

were directly comparable with their counterparts from the larger cranial sample. 

These common variables are listed in table 3.1. 



139 

TABUS 3.1 

Variables common to the data from t long Kong Chinese crania 
and the crania studied in the other parts of this work 

1 Post -orbital breadth 
2 Maximum cranial breadth 
3 Foraminal breadth 
4 Maximum cranial length 
S Frontal chord 
6 Parietal chord 
7 Occipital chord 
8 Foraminal length 
9 Auricular height 
10 Basi - brcgmatic height 
11 Angle Basion - nasion - brcgma 
12 Angle Nasion - brcgma - lambda 
13 Angle Brcgma - lambda - opisthion 
14 Angle lambda - opisthion - basion 
15 Angle Opisthion - basion - nasion 
16 Bizygomatic breadth 
17 Orbital breadth 
18 Nasal breadth 
19 lnfraorbital breadth 
20 Orbital height 
21 Palatal breadth 
22 Palatal length 
23 Nasal height 
24 Upper facial height 
25 Subnasal height 
26 Angle Brcgma - basion - prosthion 
27 Angle Basion - nasion - prosthion 
28 Basi - nasal length 
29 Basi - infraorbital length 
30 Basi-staphylion length 
31 Basi - prosthion length 
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II. Statistical methods 

Univariate studies 

The first part of the univariate study was undertaken in order to detect 

any sexual dimorphisms in the linear and angular measurements and the sine- 

cosine Fourier coefficients. 

Each of the raw linear and angular dimensions and raw Fourier components 
in each group was examined for evidence of bimodality of distribution. In the 

groups where sexes were known the mean, standard error of the mean and 

variance of each variable were calculated for each sex. The significance of the 

differences between means and variances was noted. 

The second part of the univariate study was directed to an examination of 

the relationship between "size" (see chapter 2) and Individual variables as 

expressed by the correlation coefficient. 

Such a relationship is commonly modelled using the allometry equation 

y'bxs (where xQ size variable, ys dependent variable and b and a describe 

the allometric relationship), the data being logged In order to allow the 

estimation of a and b by linear regression. Recently Albrecht and Gelvin (1987) 

have questioned the validity of this simple model in certain circumstances. In 

practice, however, it is both widely used and considered generally adequate for 

studies of comparative scaling (Gould, 1966, Jungers, pers. comm. ). For this 

reason logged data were used In the calculation of correlation coefficients 
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between each variable and the size variables. 

Inspection of bivariate plots of logged data vs. logged size variables failed 

to suggest any case in which males and females differed in their size relationship. 

The following correlations were calculated within each sex of Pan, Gorilla, 

Pongo, and the caucasoid subgroup of Norco (the only racial group listed In 

table 2.1 in which sexual attribution is known): 

a) between each of the first 40 logged Fourier components and the logged 

square root of the area of the midline projection (size variable); and 

b) between each logged linear dimension and the logged square root of the area 

of the midline projection. 

In those variables which have a significant correlation (P<0.05) with the size 

variable in both sexes linear models were used to compare the patterns of 

allometry between sexes (Freund and Littcll, 1981). In no case was there 

significant (P<0.05, SAS, 1982, GLM) evidence of a sexual dimorphism in 

allometric patterns. This being the case sexes were pooled and further correlation 

coefficients between each logged variable and the logged size variable were 

calculated in each of Pan, Pongo, Gorilla, and the racial groups of mankind (see 

table 2.1 for a description of the samples). 
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The mean, range and variability of the square root of the midline area in 

the modern human groups were calculated in order to determine if the races 

of man differed in their patterns of size variation. 
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Multivariate studies 

Principal components analyses 

One approach to the study of within-group variation is to undertake a 

PCA of the covariance matrix of logged variables after Jolicocur (1963a, b). Such 

analyses are explicit attempts to model the multivariate pattern of allometry 

within a group; if the first PC accounts for the majority of the total within- 

group variance and if the loadings (direction cosines) for each variable are of the 

same sign on this axis then PCI can be interpreted as a vector of relative scaling 

(Shea, 1985). The geometric mean of all variables is Implicitly chosen as the size 

variable in the analysis. If all the loadings are of the same value and correspond 

to p-1/2 (where p- the number of variables) the state of multivariate Isometry 

exists. Loadings greater than this value indicate positive allometry and those 

which are smaller indicate negative allometry. 

A preliminary attempt was made to utilise this approach In the study of the 

patterns of variability in the groups employed in this study. It revealed that, 

within several of the groups, especially the racial groups of mankind, the 

direction cosines for variables along the first I'C were of different sign. This 

indicated that the first PC was not a pure vector of relative scaling. 

For this reason an alternative approach was adopted. The principal 

components analyses described below use correlation matrices of variables because 

this gives equal weighting to the variability in each variable irrespective of its 

absolute magnitude (although in preliminary trials there was little difference in 

the outcomes of analyses using the covariance matrix and those using the 
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correlation matrix). The influence of size on the scores of crania on each PC was 

assessed by calculating the correlation coefficient between individual scores and 

the square root of the midline area of each cranium. 

Description of PCAs 

Raw data 

The multivariate pattern of variation within each group of apes and each 

race of man was examined by principal components analysis of the correlation 

matrix of all 59 raw linear and angular dimensions and by PCA of the 

correlation matrix of the first 20 pairs of raw sine - cosine Fourier coefficients. 
From each set of analyses ordinations of PC I vs. PC II were prepared 

for all groups and of PC I vs. PC II vs. PC III for those groups in which the 

sexes were known. The proportion of the total variance expressed by each 

principal component was noted and the correlation of the scores of individuals 

on each component with their size (area of mid-sagittal projection) was 

determined. 

Scaled data 

The scores of individuals on some components showed large correlations with 

their size. In order to discover whether these correlations related to a pure size 
Increase or to a size increase plus shape change principal components analysis 

of (geometrically) scaled Fourier components and linear dimensions (angles were 

unaltered) was carried out. In order to allow a greater degree of comparability 
between analyses (linear and angular dimensions and Fourier data) only those 25 
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linear and angular measurements which were taken using midline landmarks were 

employed. 

Similar sets of ordinations to those calculated from raw data were drawn 

and the proportion of variance accounted for by each component was recorded. 
The correlation between the scores of individuals on principal components and 

their sizes was calculated. 

Canonical analyses 

The final part of the multivariate study was directed to an examination of 

patterns of differences between sexes and groups. 

Canonical analyses were undertaken using the 47 raw linear dimensions and 

the first 20 raw sine - cosine Fourier coefficient pairs from each of the male and 
female ape groups and the male and female caucasians (i. e. sexed groups). 

An additional canonical analysis employed the variables listed in table 3.1. 

It was restricted to the two human groups of known sex (caucasoids and Hong 

Kong Chinese). An ordination of canonical axes I plus II plus III was prepared. 

The SAS stepwise discriminant analysis program. STEPDISC was used in 

order to determine those variables which best discriminated between sexes In 

the Hong Kong and caucasoid samples separately. 

All statistical analyses were carried out using the "seeds morphometric suite" 

and SAS (1982). 
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RESULTS 

Univariate study 

Table 3.2 lists those linear dimensions in which there is a significant 

difference between males and females. From this it can be seen that more 

cranial dimensions are sexually dimorphic in Gorilla and Pongo than in Pan and 

the caucasoids. In all cases where dimorphism is significant males are larger than 

females (except in Pongo where frontal height is smaller in males). 

Table 3.3 lists differences in means between males and females in the raw 

Fourier data. Again, most dimorphisms are observed within Gorilla and Pongo 

with the values for Fourier components in males consistently larger than those 

in females. 

These results conform with the naked eye observation that males are generally 

larger than females and that this size difference Is relatively more pronounced 

within Gorilla and Pongo (sec table 3.17). They indicate that there are some 
differences in the patterns of dimorphism between hominoids as Is evidenced by 

the fact that there are some between-group differences in the variables which 

show significant dimorphism. Not all variables are proportionately different 

between sexes, suggesting that sexual dimorphism Includes both size and shape 
differences. 

It Is of interest to enquire if the shape differences between the sexes are 

related to size differences. Table 3.4 lists for all groups (sexes pooled, see 

earlier) the significant (p<0.05) correlations between logged raw linear 

dimensions and the size variable (square root of midline area). Table 3.5 is 
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TABU? 32 

Means which are significantly different between sexes 

0-Pc OAS X- P< 0.01 

Variable Gor Pon Pan Gu 

1 Post orb. b. X X X 
2 bizygom. b. X X X X 
3 orbital breadth x X 
4 nasal breadth x X X 
S Infraorbit. b. X X 0 
6 orbital ht. X X 
7 max. cyan. b. X X X 0 
8 palatal b. X X 0 
9 foraminal b. X 
10 prof. lea. wand. X X X X 
11 proj. ht. corond. X X 
12 proj. ht. ramus x X 
13 proj. ht. corpus X X 0 
14 proj. 1. corpus x X X 0 
15 bicondylar b. X X X X 
16 coronial b. X X 0 0 
17 bigonial b. X X X 0 
18 condylar lcn. X X X 
19 min. raureal b. X X X 
20 molar-prem. chd. X X 0 X 
21 bimental b. X X 0 0 
22 max. len. X X X X 
23 frontal chd. X X 
24 frontal ht. X. 
25 parietal cbd. X 
26 parietal ht. X 
27 occipital chd. X X 
28 occipital ht. 0 
29 foraminal len. 
30 auricular ht. X X X 
31 basibrcg. ht. X X X 
32 basinasal Icn. X X X X 
33 basi - Infraorb. I. X X 0 0 
34 basi-staph. len. X X 0 
35 basi - prosth. lcn. X X X X 
36 basi - infrdcnt. 1. X X X X 
37 basi - mental Icn. X X X X 
38 basi - mand. len. X X 0 
39 basi - lymph. Icn. X X X X 
40 bass - gon. Ica. X X 0 0 
41 palatal len. X X X 0 
42 nasal ht. X X X X 
43 upp. face ht. X X X X 

44 tot. face ht. X X X X 
45 max - mandib. ht. X X X X 
46 subnasal ht. X 
47 symphyseal ht. X X X X 

In all cases variable means are larger in males than in females except' 
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TABU-3 

Means which are significantly diffcrcnt bctwccn : cxcs 

0-P<0.05 X-P<0A1 

Variable Gor. Pon. Pan. Cau. 

Cosine 1 X 0 
Sine 1 X X 0 
Cosine 2 x x x 
Sine 2 X x 0 0 
Cosine 3 x x 0 
Sine 3 x x 
Cosine 4 X X 
Sine 4 0 
Cosine S x 0 X 
Sine S x 
Cosine 6 x x 
Sine 6 
Cosine 7 X 
Sine 7 O 
Cosine 8 X X 
Sine 8 x 0 
Cosine 9 x x 0 
Sine 9 X X 
Cosine 10 X X 
Sine 10 X 
Cosine 11 O x 
Sine 11 x 
Cosine 12 X X 
Sine 12 
Cosine 13 0 X 
Sine 13 X 
Cosine 14 X 
Sine 14 0 
Cosine 15 x x 
Sine 15 0 0 
Cosine 16 0 X 
Sine 16 0 X 
Cosine 17 0 
Sine 17 X 
Cosine 18 X 0 
Sine 18 x 
Cosine 19 0 
Sine 19 X X 
Cosine 20 X X 
Sine 20 0 X 
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TA1I. i? 3.4 

Correlations between each logged variable and the logged square root or the 

midlinc area within groups. Sexes are pooled. 

All significant correlations (P<O05) arc listed (' indicates P<0.01) 

Variable QQr" EQn" Pan _ Aus. Cau. Mon. Neg. 

No 61 54 60 34 30 30 30 

postorb. b. . 61 * . 55 " . 41 " . 56 " . 39 . 41 . 50 " 
bltygom. b. . 90 " . 02 " . 68 " . 60 " . 50 " . 51 " . 61 * 
orbital. b. . 70 " . 74 " . 53 " . 50 " . 56 " 

nasal. b. . 67 * . 71 " . 57 " . 33 
infraorb. b. . 76 * . 60 " . 63 " . 48 " . 43 . 57 " 
orbital. ht. . 42 " . 40 " . 36 " . 42 . 37 
Tax. Bran. b. . 67 " . 65 " . 69 " . 47 

44 
" 
" 

. 53 
43 

" 
. 56 " palatal b. . 47 " . 52 " . 29 . . 

foraminal b. . 33 " . 47 " . 53 " 

prof. 1. mend. . 00 S . 69 " . 63 " . 73 " . 39 . 34 . 49 

prof. ht. corn. . 64 " . 60 " . 48 " . 55 " . 40 . 64 " 

prof. ht. ram. . 67 " . 82 " . 36 " . 36 . 61 
66 

" 
" prof. ht. corp. . 66 " . 83 * . 45 " . 

68 " prof. 1. corp. . 84 " . 66 " 
" 

. 65 
55 

" 
" 

. 66 
50 

" 
" . 44 . 45 

. 

. 50 " bicondyl. b. . 83 " . 86 
" 

. 54 " 
. 57 " . 41 . 52 " coronal b. 

bigonlal b. . 76 
. 79 

" 
" 

. 60 

. 64 " 
. 
. 44 " 

. 

. 63 " . 44 . 42 . 37 

condyl" 1. . 75 " . 88 " . 40 " . 45 " . 37 

min. ram. b. . 89 a . 89 " . 60 " . 56 " . 37 . 60 " 

Toi. -Pram. chd. . 45 " . 41 " . 32 . 36 . 30 
blmantal b. . 70 " . 62 * . 47 " . 46 " . 36 
max. lam. . 92 S . 91 " . 84 " . 92 " . 84 " . 94 " . 80 " 

frontal chd. . 78 * . 64 " . 55 " . 82 " . 62 " . 60 " . 77 " 
frontal ht. . 46 * . 47 " 

parietal ch d. . 41 " . 42 " . 67 " . 50 " . 73 " . 59 " 

parietal ht. -. 26 . 26 
52 " . 54 " . 75 " . 50 " occ. chd. . 60 " . 57 " . 15 " . 55 " . 72 " . 44 oec. ht. 

foraminal 1. . 31 
. 
. 56 " . 40 

auricular ht. . 56 " . 79 " . 37 " . 64 " . 04 " . 84 " . 77 " 
baslbra0. ht. . 77 * . 86 " . 56 " . 77 " . 64 " . 62 " . 10 " 
bastnasal 1. . 94 " . 00 " . 70 " . 74 " . 51 " . 68 " . 71 * 
bast-infraorb. 1. . 9S " . 91 " . 60 " . 41 . 45 . 44 . 79 * 
bast-staph. 1. . 89 " . 80 " . 34 " . 71 " 
bast-pros. 1. . 95 * . 02 * . 59 " . 40 " . 36 . 75 " 
basi-infrdnt. 1. . 93 S . 91 " . 61 " . 63 " . 51 " . 70 " 
bast-mental 1. . 00 " . 90 " . 47 " . 54 " . 52 " . 62 " 
bast-Tand. 1. . 79 " . 64 * . 31 

4 * 56 " 45 . 72 " bast-symph. 1. . 91 " . 00 " 9 . . . 
ball-Gan. 1. 
palate 1. . 68 

. 91 
" 
" 

. 62 

. 06 
" 
" . 60 " . 47 " . 42 . 39 . 66 " 

nasal ht . 86 " . 65 " . 48 * . 67 " . 40 . 52 " . 40 " 
. 

upp. face. ht. . 83 " . 86 " . 40 " 
" 

. 77 
78 

" 
" 50 " 

. 61 " 
65 " 

. 74 

. 69 
" 
" tot. face. ht. . 86 " . 68 " 

* 
. 60 
46 * 

. 76 
. 
. 52 " 

. 

. 46 " . 46 
Tax-mandlb. ht. . 80 " . 84 . . 46 " subnasal ht. . 56 

55 " 
. 60 

53 
" 
" 34 . 30 

. 
symphysaal ht. . 80 " . 63 " . . . 
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TAfLI 3ä 

Correlations between each loggcd variable and the loggut square root of the 

midlInc area within groups. Sexes are pooled. 

AU significant corrttat'wns (P<OZ5) are tWed (" tnsºGatu P<o. o1) 

Variable 291. Z=. Eicl Aus. Cau. Mon. N"9. 

Na 61 64 so 34 30 30 30 

Cosine 1 -. 74 . -. 48 " -. 58 
61 

" 
. sin. 1 . 56 . . 30 . 

Cosine 2 . 67 . . 05 " . 40 " 
35 . 49 " . 58 " sine 2 -. 35 " -. 38 " . 34 . 12 " Cosine 3 -. 46 " . 46 " . 

Sins 3 -. 75 " . 60 " 
Cosine 4 . 63 " . 57 " 
sine 4 -. 26 . 42 

. 44 
Cosine 5 . 46 " . 38 " 

62 " . 46 . 42 
sin. 
Cosine 

6 
6 . 72 " . 60 * 

. 

. 64 " . 64 . 64 " 

sine 6 . 53 " . 36 . 37 

Cosine 7 . 50 " . 35 . 66 " 

sine 7 . 39 " 
Cosine 6 . 33 " . 46 " 
stne a . 46 " 
Cosine 9 . 66 " . 18 " 
Sine 9 -. 46 " . 46 " 41 
Cosine 10 . 64 " . 58 " . 26 

"39 
. 

Sine 10 -. 30 
Cosine 11 . 34 " . 62 " 
Sine 11 . 43 " 
Cosine 12 . 33 " . 73 " -. 38 
Eine 12 

. 44 
Cosine 13 -. 32 . 54 " 
sin. 13 -. 6o " 
Cosine 14 . 40 
01n. 14 . 32 
Cosine 16 . 47 " . 37 " 
sin. 16 -. 26 . 37 40 Cosine 16 . 34 " . 36 " . 
sine 16 . 34 3e Cosine 17 . 30 . 30 . 
Sine 17 . 41 " 
Cosine 15 . 47 " . 31 
sine 1" . 41 " 
Cosine 19 . 31 
sine 19 -. 40 " . 46 " 
Cosine 20 . 51 " . 31 " 
sine 20 . 42 " . 39 
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similar but relates to correlations between the logged Fourier components and 

the size variable. 

Comparison of table 3.4 with table 3.2 and of table 3.5 with table 3.3 

Indicates that, for both the Fourier components and linear dimensions, those 

groups which show a large number of significant dimorphisms In variable 

magnitude also have a large number of significant correlations between the size 

and other variables. Furthermore, in general, those variables which show a 

significant sexual difference are also significantly correlated with the size variable. 

There remains, however, a component of sexual dimorphism which does not 

appear to be entirely explained by a relationship to the size variable employed 

in these studies. For example the projected height of the mandibular corpus 

shows a significant dimorphism in caucasoids whilst It has no significant 

correlation with the chosen size variable in this group. This may well be the 

result of an inadequate choice of size variable or of Inadequate sample size to 

show significance. Alternatively it may be a finding which would be borne out 

by more extensive data and a different choice of size variable. 

A further finding from the results of tables 3.4 and 3$ Is that there are 

marked differences between the racial groups of Homo in the number of 

significant correlations with the size variable, In the patterns of variables which 

show a significant correlation with the size variable and in the magnitudes of 

the correlations of certain variables with the size variable (e. g. bigonial breadth, 

bass - infraorbital length, cosine 7 though none of these differences reaches 

statistical significance of I'<0.05). These differences may simply be the result of 

racial differences in cranial size and cranial size variability although the results 

of table 3.6 Indicate that such differences do not exist in these groups. 
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Table 3.6 lists the mean value of the square root of the midline area in 

the races of man together with information relating to the range and variability 

of this measure of size. The mean and the range of the size variable are 

nearly the same in all races. It should also be noted that none of the 

coefficients of variation show a significant difference (at the 2% level) between 

races. 

TABI. P. 3.! 

Cranial site difcrcncca bctwccn the raucs of aun 

Size variable - sgrt. midl nc arcs (cm) 

RACE MEAN MIN. MAX. CV. x 100 

Australoid 14.2 13.1 153 4.14 

Caucasoid 14.5 13.6 15.4 3.24 

Mongoloid 14.2 13.1 153 4D9 

Ncgroid 14.4 13.3 15.5 3.71) 

ev. -coefficient of variation 

Table 3.7 lists those raw linear dimensions in each group in which there is 

a significant difference in variance between males and females. Table 3.8 lists 

significant sexual differences in variances in the raw Fourier components. 

These tables agree in indicating that different patterns of dimorphism of 

variances characterise different groups. Further concordance lies in the common 
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TABL1. 

Variances which are significantly different between v-= 

0 . P<0.05 X"P<0.01 

Variable Gor Pon ran klau 

1 post orb. b. X 
2 bizygom. b. 0 0 
3 orbital breadth 
4 nasal breadth 
S Intraorbit. b. X 
6 orbital in. 
7 max. crap. b. X 0 
8 palatal b. 
9 foraminal b. 
10 prof. len. wand. 0 
11 proj. in. corond. X 
12 proj. ht. ramus. 0 
13 proj. in. corpus. O 
14 proj. 1. corpus. 0 
15 bicondylar b. 0 o 
16 coronial b. 0 
17 bigonial b. 
18 condylar len. 
19 min. raureal b. 
20 molar-prem. chd. X 
21 bimental b. X O 
22 max. lcn. 
23 frontal chd. X 
24 frontal ht. 
25 parietal chd. 0 
26 parietal ht. 
27 occipital chd. 
28 occipital in. 
29 foraminal len. 
30 auricular in. 
31 basibreg. ht. 

X 32 basinasallcn. X 
O 33 basi - lnfraorb. L X 

34 bass - staph. len. 0 
35 basi-prosth. len. X 
36 basi-infrdcnt. I. 
37 basi -mental len. 0 
38 basi - mand. len. X 0 
39 basi -symph. len. 0 0 
40 bass-gon. len. 0 C) 
41 palatallen. 0 
42 nasal ht. X X 0 0 
43 upp. face ht. X X 
44 tot. fact ht. X X 
45 max -mandib. ht. X 0 
46 subnasal ht. 0 
47 symphyscal ht. 0 
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TAB1J? 13 

Variances which are significantly different between sexes 

0- P<OAS X- P<0.01 

Variable Cvr. Pa, n. Pan. Cau 

Cosine 1 0 

Sine 1 xx O 
Cosine 2 0 

Sine 2 X0 0 
Cosine 3 0 
Sine 3 
Cosine 4 x 
Sine 4 
Cosine 5 0 0 
Sine 5 O 0 
Cosine 6 
Sine 6 X 
Cosine 7 x 
Sine 7 
Cosine 8 
Sine 8 00 
Cosine 9 X 
Sine 9 
Cosine 10 
Sine 10 
Cosine 11 X 
Sine 11 
Cosine 12 X 
Sine 12 0 
Cosine 13 
Sine 13 X 
Cosine 14 
Sine 14 
Cosine 15 
Sine 15 
Cosine 16 () 
Sine 16 
Cosine 17 
Sine 17 
Cosine 18 
Sine 18 
Cosine 19 0 0 
Sine 19 
Cosine 20 0 
Sine 20 0 
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finding of a consistently greater variance in males than in females where a 

significant dimorphism exists and in the finding that dimorphism in variances of 
linear dimensions is most pronounced in Gorilla and least in caucasoids. 

In this study the Fourier components show a pattern of dimorphism of 

variance consistent with that found by Oxnard (1987) In a study of dental 

dimensions. He noted that in the chimpanzee and gorilla there was a higher 

number of dimorphisms in variance than in other hominoids. The findings from 

linear dimensions (table 3.7), however, contrast in showing a similar number of 

dimorphisms of variance in Pongo and Pan. 

There is a relationship between a dimorphism in variances and a marked 

correlation with the size variable (see tables 3.4,3.5,3.7 and 3.8). It appears, 

however, to be far less pronounced than that between a dimorphism in variable 

magnitude and a marked correlation with the size variable. Thus, in the case of 

the linear dimensions there are many variables which show a marked correlation 

with the size variable but few of these have a significant sexual dimorphism of 

variances. In the case of the Fourier data a substantial proportion of components 

show a significant sexual difference in variances in the absence of a significant 

correlation with the size variable. 

Summary of the Univariatc findings 

Within each group variables differ in their degree of dimorphism. This 

implies that sexual dimorphism involves a shape dimorphism. There is some 

variation in the pattern of sexual shape dimorphism between the genera and the 
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races of mankind reflected in the differences in the variables which show sexual 

differences in means in different groups. 
In addition to a sexual shape dimorphism there appears to be a sexual 

dimorphism of variances in some variables. The variables which show this 

dimorphism of variances are not constant between groups. This implies a degree 

of between-group variability also exists in this phenomenon. 
The univariate studies demonstrate that those variables which differ In 

magnitude between sexes are, in general, those which have a marked correlation 

with size. It seems that, to a large extent, size and sexual shape differences are 

related in these groups. 

By contrast there is a less clear association between sexual differences in 

variances and a marked correlation with the size variable. 
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Multivariate study 

The Multivariate study examined both within and between-group variability. 

Patterns of within-group variability 

Patterns of within-group variability were examined by principal component 

analysis. 

I. Raw data 

PCAs of 59 linear and angular measurements 

Plots of the scores of the Gorilla and Pongo samples on principal components 

(PCs) I and II are given in figure 3.1 and on PCs I and II and III in figure 

3.2. Reference to table 3.9 shows that about 65% of the total within -group 

variance is represented by the first three components. Figure 3.1 clearly 
demonstrates a separation between males and females in both groups. Neither 

PC II nor PC III contribute to this separation (figs 3.1 and 3.2). In both groups 
PC I accounts for 50Jo of the total within-group variance which appears to be 

variance associated with sexual dimorphism. 

The influence of size upon sexual dimorphism in these groups is illustrated 

by the fact that (from table 3.10) the score of individuals on principal component 

I correlates 0.99 with the square root of the mid-line area of each. The 

univariate finding of greater variability within males is not evident from the 
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FIGURE 3.1 - Principal components Analysis of 59 raw linear and angular dimensions 
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FIGURE 3.2 - Principal Components Analysis of 59 raw linear angular dimensions 
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TABLE 3.9 

Principal Components Analysis of 59 raw linear and angular dimensions 

Proportion (%) of total variance accounted for by the first n principal components (cumulative) 

n- 12345 

group 

Gorilla 50 58 63 68 72 

°ongo 51 59 66 71 75 

Pan 29 41 SO 57 62 

Homo: 

Cauc. 24 38 48 56 63 

Mon. 27 42 51 59 67 

Neg. 30 42 51 59 64 

Aust. 35 47 54 61 66 



161 

TABLR 3.10 

Principal Components Analysis of 59 raw linear and angular dimensions 

The correlation of the size variable (square root of area of midline tracing) 
with the scores of individuals on PC no: 

1 2 3 4 s 

Gorilla 0.99" 0.03 0.02 0.02 0.02 

Pongo 0.99" 0.02 -0.02 0.00 0.03 

Pan 0.99" 0.0.1 0.05 0.10 0.03 

Nano: 

Cauc. 0.98" 0.02 0.10 0.03 0.02 

Mon. 0.99" 0.06 0.05 0.00 0.10 

Ncg. 0.99" -0.01 0.00 0.08 0.01 

Aust. 0.99" 0.00 0.02 0.04 0.00 

p<0.01- 
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PCAs of Pongo and only marginally so in the case of Gorilla. 

It is interesting to compare the pattern of variability revealed by PCA of the 

Pan sample with those described above. Figures 3.3 and 3.4a are plots of PC's 

I and II and PC's I and II and III respectively. The sexes are not clearly 

separated and the first three components account for only 50% (table 3.9) of 

the total within-group variability. Despite the high correlation of size with first 

PC (table 3.10: 0.99) this accounts for only 29% of the total within-group 

variability. Size makes a far smaller (about half of that in Gorilla and Pongo) 

contribution to within-group variability and this is reflected in a less clear 

pattern of sexual dimorphism. Related to this is the fact that more (5) PCs are 

required to account for a similar proportion of within-group variability as the 

first 3 PCs in the analyses of Gorilla and Pongo (see table 3.9). Other sources 

of variability (i. e. not size related) are proportionately more important. The 

chimpanzees form more of a hypersphere than a hyperellipsc. 

Plots of PCs I and II and of PCs I and 11 and III for the caucasoids are 
drawn in figures 3. Sa and 3.4b respectively. In this human sample sexes were 

known from records. PC I shows a much clearer sexual separation than was 

apparent within the chimpanzees. This is despite the fact that it accounts for a 

smaller proportion of the total within-group variability (24% as opposed to 

29% In Pay: - table 3.9). Scores of individuals on PC I correlate 0.98 with 

their square root of the mid-line projection (table 3.10). 

From table 3.17 it can be seen that the absolute "size" difference between 

the sexes of Pan is 0.32cm and between the sexes of caucasoids (the only human 

group of known sex) it is 0.6cm. The relative size difference (male size/female 

size) is 1.03 in Pan and 1.04 In caucasoids. From both measures of sexual 
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FIGURE 3.3 - Principal Components Analysis of 59 raw linear and angular dimcnsions 
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FIGURE 3.4 - Principal Components Analysis of 59 raw linear and angular dimenions 
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FIGURE 3.5 - Principal Components Analysis of 59 raw linear and angular dimension 
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size dimorphism it appears that the caucasoids have a marginally greater sexual 

size difference than the chimpanzees. It may well be that this alone accounts 

for the clearer pattern of dimorphism shown on the first PG From examination 

of tables 3.9 and 3.10, however, it is clear that size differences in Pan make a 

roughly similar (if not greater) relative contribution to overall within-group 

variability to that in the caucasoids. 

The remaining human populations were of unknown sex distribution. PCA 

of their within population variability allowed no statements about sexual 

dimorphism to be made. Plots of PC I and II for each of the australoid, 

mongoloid, and negroid groups are presented in figures 3.5b, 3.6a, and 3.6b. 

From table 3.10 it can be seen that in all racial groups the scores of individuals 

on PC I correlated about 0.99 with their size. There does, however, seem to be 

a difference in the proportionate contribution of size to antra - racial variation. 

From table 3.9 it can be seen that size contributes 240 of intra - racial 

variability in caucasoids, 27% in mongoloids, 30% in negroids and 35% in 

australoids. The split in the distribution of individual australoids along PCI in 

figure 3.5b may well reflect a sexual difference consequent upon the greater 

proportion of size related within-group variability. It Is particularly worth noting 

that the races of man differ in the proportion of their total variability which is 

size related despite the fact (table 3.6) that each of the racial samples In this 

study showed a similar size mean, range and variation. 
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FIGURE 3.6 - Principal Components Analysis of 59 raw linear and angular dimensions 
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PCA of the first 20 pairs of raw sine -cosine Fourier coefficients 

In figures 3.7 and 3.8 are illustrated plots of the first 2 and the first 3 

principal components of the analyses using Fourier components from Gorilla and 

Pongo. These plots differ from the ones based upon raw linear and angular 

dimensions (discussed earlier) in that the separation of males and females is less 

marked and is not confined to PC I, PC II shows a proportion. This is better 

seen from the plots of PCs I+1I+I11 (figure 3.8). It is reflected in the fact that 

the correlation of the scores of individuals with their size is more marked for 

PC II and higher PCs (table 3.12) than was the case in the analysis of linear 

dimensions. 

The principal component plots from Pan and the caucasoids (figures 3.9, 

3.10 and 3.11a) fail to show any clear separation between males and females. 

Higher order principal components show moderate correlations with size (table 

3.12) which in the case of the caucasoids are not significant (at P<0.05). This 

confirms the pattern of sexual dimorphism alluded to by the univariate analyses 

in which the number of significant correlations of size with the Fourier 

components was markedly reduced relative to the number of significant 

correlations observed within Gorilla and Pongo. 

The principal component plots from analyses of the Fourier data within the 

racial groups of Homo (figures 3.11 and 3.12) show clouds of different shapes. 

In the negroids PC I ranges 14 SDU and PC II 14 SDU: the cloud is generally 

circular (n. b. axes drawn to different scales), in caucasolds PC I ranges 16 SDU 

and PC II 10 SDU, the cloud is more elliptical. This is coupled with a varying 

pattern of correlations of individual scores on PCs I-V with size (table 3.12). 
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FIGURE 3.7 - Principal Components Analysis of 20 raw sine/cosine Fourier coefficients 
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FIGURE 3.8 - Principal Components Analysis of 20 raw sine/cosine Fourier coefficients 
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FIGURE 3.9 - Prinicipal Components Analysis of 20 raw sine/cosine Fourier coefficients 
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FIGURE 3.10 - Principal Components Analysis of 20 raw sine/cosine Fourier coefficients 
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FIGURE 3.11 - Principal Components Analysis of 20 raw sine/cosine Fourier Coefficients 
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FIGURE 3.12 - Principal Components Analysis of 20 raw tine%sine Fourier Coefficients 
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TABLE 3.11 

Principal Components Analysis of the first 20 raw &! nc-cosine Fourier coefficient pairs 

Proportion (%) of total variance accounted for 

by the first n principal components (cumulatht) 

n1234S 

group 

Gorilla 26 50 61 70 75 

Pongo 41 59 71 80 84 

Pan 37 49 60 68 76 

Homo: 

Caue. 31 48 60 69 75 

Mon. 29 46 57 66 72 

Ncg. 24 43 56 64 72 

Aust. 28 44 57 63 73 
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TABLE 3.12 

Principal Components Analysis of the first 20 raw tine-cosiac Fourier auffixicat pairs 

The correlation of the size variable (square root of area of midline tracing) 

with the scores of individuals on PC no.: 

1 2 3 4 S 

Gorilla -0.59" 0.47" 0.0 0.43" 002 

Pongo 0.54" 0.58'* -0.09 -0.15 -0.05 
Pan 0.00 0.22 - 0.27' 0.09 - 0.27' 

Homo: 

Cauc. 0.07 0.14 0.09 0.26 0.09 

Mon. 035' 0.12 0.08 0.45 -0.25 

Ne8 035' 0.02 0.55' 0.16 037' 

Aust. 0.25 032" 0.22 0.12 -0.24 

P<0.01 -" 

P <0.05 -' 
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The overall impression is one of differing patterns of variability and of differing 

size influences on shape. These size Influences are often reflected in higher PCs 

and are therefore not clear from the plots of PCs (figs. 3.11 and 3.12). 

The PCAs of Fourier data have agreed with those of linear and angular 

dimensions in indicating that a major component of the within-group variation 

in Gorilla and Pongo is size related and in showing that size has a 

proportionately smaller influence on within-group variation in Pan and Homo. 

A further point of agreement is that both sets of PCAs have indicated that 

there are differences between the racial groups of Homo in the proportion and 

pattern of total within-group variance which is influenced by size. 

The two sets of analyses disagree, however, in the ways in which they have 

been influenced by size. The influence of size on the scores of individuals on PC 

I is markedly reduced in the analyses of Fourier data. 

The difference in result implies that in the analysis of Fourier data shape 

differences which are not size related are relatively more important. This 

difference may be a consequence of the fact that the Fourier coefficients are 
derived from just the midline projection, whereas the linear and angular 

measurements cover a much wider anatomical scope. Considering that the midline 

projections show a considerable size variation, however. it is unclear how this 

difference in scope could have resulted in the observed degree of disagreement. 

A further reason for the difference may be that the Fourier data are 

fundamentally different to the linear and angular dimensions. Each Fourier 

component, unlike each linear dimension, does not represent the absolute size 



178 

of a particular dimension. In Fourier data the magnitude of the first cosine 

component (cosine 0) is directly proportional the square root of the midline area 

of each cranium. 

In these analyses cosine 0 has been omitted because it is a "pure size" rather 

than a shape variable and to have included it would have been equivalent to 

including the size variable in the analyses of linear and angular measurements. 
Every remaining Fourier component reflects shape more than size though size 

still influences each. This is because in the raw data the midline areas of the 

crania are unequal and each component represents the magnitude of a wave of 

a particular frequency which must be added to the circle defined by cosine 0 

(see chapter 2). 

In the univariate studies the fact that the Fourier components of order 

greater than 0 are less size dependent than linear dimensions is reflected in the 

generally lower correlations observed between Fourier components and the size 

variable than was observed between linear dimensions and the size variable. The 

result is that shape variations which are not size related have a more pronounced 

influence in the PCAs. 

If. Scaled data 

The previous analyses have indicated that size differences contribute a 

significant proportion of within-group variability in all of the hominoids in this 

study. These differences may be of two types: simple geometric scale differences 

or more complex differences in scale and in form such that larger individuals 

tend to have a different shape. 
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In order to investigate the relative contributions of scale and scale plus 

shape changes to the patterns of within-group variability a series of analyses 

of geometrically scaled data were undertaken. 
To allow a greater degree of comparability between the analyses using 

linear and angular measurements and those using Fourier coefficients only those 

25 measurements taken from or projected onto the midline were used. The linear 

dimensions were scaled according to the square root of the midline area of each 

cranium, angles were unaltered, whilst the Fourier data were scaled by making 

all midline tracings have equal area. 

PCAs of 25 scaled linear and angular dimensions 

Plots of the scores of Gorilla and Pongo on PC I and II are given in figure 

3.13. Despite the fact that simple size differences between individuals have been 

removed there is a clear difference between the scores of males and females 

on PC I whilst PC II shows no sexual difference. From table 3.14 it can be 

seen that in these two groups there is a correlation of just over 0.73 (P<0.01) 

between the size of individuals and their scores on PC I although the data have 

been adjusted for simple scale differences. The dimorphism shown along this first 

PC is principally a size related shape dimorphism. This shape dimorphism 

accounts for about a third of the total within-group shape variability (see table 

3.13). 

Comparison of these plots with those of the PCAs of the other groups in 

which sex was known, Pan and the caucasoids (figures 3.14 and 3.15a), 

demonstrates that within the latter two groups shape contrasts between the sexes 
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TABLE 3.13 

Principal Components Analysis of 25 scale! 
linear and angular dimensions from the midline 

Proportion (%) of total variance accounted for by 
the first n principal components (cumulative) 

UM1234S 

group 

Gorilla 36 49 60 68 73 

Pongo 31 48 59 69 77 

Pan 25 43 57 67 74 

Homo: 

Cauc. 24 41 54 66 75 

Mon. 22 43 60 68 75 

Neg. 22 42 56 6S 73 

Aust. 21 37 51 63 71 
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TABLE 3.14 

Principal Components Analysis of 25 scaled linear and angular dimensions 

The correlation of the size variable (square root of area of midline tracing) 
with the score of individuals on PC no: 

1 2 3 4 S 

Gorilla - 0.74" -0.09 -0.10 -0.18 0.25' 

Ponlo 0.73" -0.19 0.10 -0.11 0.05 

Pan 0.17 -0.21 -0.11 0.00 0.01 

Homo: 

Cauc. -0.12 0.10 -0.34(') 0.02 0.22 

Mon - 0.36' 036 0.18 -0.06 0.02 

Neg. 0.22 0.21 -0.14 0.26 032 

Aust. -0.13 -0.31 -0.27 0.30 -0.19 

P<0.01-" 

P<0.05 i" 
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FIGURE 3.13 - Principal Components Analysis of 25 scaled linear and angular dimensions from 
the midline uq! N2 
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FIGURE 3.14 - Principal Components Analysis of 25 scaled linear and angular dimensions from 

the midline 
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FIGURE 3.15 - Principal Components Analysis of 2S scaled linear and angular dimensions from 
the midline 
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FIGURE 3.16 - Principal Components Analysis of 25 scaled linear and angular dimensions from 
the midline PRINZ 
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are less. The correlation of the size of individuals with their scores on PC I is 

small and insignificant (table 3.14). There is, however, a greater correlation of 

size with scores on higher PCs in both groups (though only that on PC III in 

the caucasoids is significant, r- -0.34, P<0.05). It seems that sexual shape 

contrasts are reduced relative to other sources of within-group variability. This 

difference in sexual shape contrast is consistent with the absolutely and relatively 

smaller size contrast between the sexes in these groups (table 3.17). 

The plots of the scores of individuals on PCs I and II in the human racial 

groups (figures 3.15 and 3.16) indicate a relative contraction of within-group 

variability as judged by the lengths of the first PCs (compare with figs. 3.5 and 
3.6). 

The pattern of correlations of PC scores with size (though these are 

relatively small and mostly insignificant) varies between the human groups. This 

contrasts with the proportions of total within-group variation expressed by each 

PC which are roughly constant (table 3.13). These findings suggest that there are 

differences in the patterns of size/shape relationships between the human racial 

groups. 

PCA of the first 20 pairs of scaled sine -cosine Fourier coefficients 

The first two principal components from the analysis of scaled Fourier data 

in Gorilla and Pongo are plotted In figure 3.17. These plots differ markedly from 

the ones based upon scaled linear and angular dimensions (figure 3.13) and less 

so from the ones based upon raw Fourier components (figure 3.7) In that the 

separation of males and females Is less marked. 
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The plots of PC I and II from the analyses of intra-group variation in Pan 

and the caucasoids (figures 3.18 and 3.19a) fail to show any clear separation 

between males and females. Higher order principal components show moderate 

correlations with size (though they are insignificant, P<0.05, in the caucasoids, 

table 3.16). This confirms the pattern of sexual dimorphism alluded to by the 

earlier analyses. 

In common with the studies of raw Fourier components the principal 

component plots from analyses of the scaled Fourier data within the racial groups 

of Homo (figures 3.19 and 3.20) show clouds of different shapes. This is again 

coupled with a varying pattern of correlations of individual scores on PCs I-V 

with size (table 3.16) and the overall impression is one of differing patterns of 

variability and of differing size influences on shape. 

The reduction in the degree of sexual separation between the analyses using 

raw and those using scaled Fourier data is consistent with the general, though 

moderate, reduction in the correlations of the scores of Individuals on PCs with 

the size variable (compare tables 3.12 and 3.16). This relates to a reduction in 

the Influence of scale on the Fourier data. A further possible effect of the 

reduction In the influence of scale is the marginal reduction In the proportions 

of total within-group variance which are accounted for by successive PCs 

relative to the study of raw Fourier coefficients (compare tables 3.15 and 3.11). 

Non-size related aspects of variation (i. e. shape variation) are proportionately 

more Important and these arc more dependent on higher PCs to account for 

them. 

The differences between the analyses of scaled linear and angular 

measurements and those of scaled Fourier data in the extent of sexual separation 
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TABLE 3.15 

Principal Components Analysis of the first 20 scaled sine-cosine Fourier coefficient pairs 

Proportion (%) of total variance accounted for 
by the first n principal components (cumulative) 

n= 12345 

group 

Gorilla 25 47 59 66 72 

Pongo 39 55 66 76 SO 

Pan 37 49 59 68 74 

Homo: 

Cauc. 31 47 59 67 73 

Mon. 28 46 56 64 70 

Neg. 23 42 54 63 70 

Aust. 27 43 55 64 71 
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TABLE. 3.16 

Principal Components Analysis of the first 20 scaled sine-cosine Fourier coca icient pairs 

The correlation of the size variable (square root of area of midline tracing) 
with the scores of individuals on PC no: 

1 2 3 4 5 

Gorilla -0.260 0.54" -0.10 0.45" -0.13 

Pongo 036" 0.41" 0.10 0.28' -0.14 

Pan -0.07 -0-05 0.10 0.29' 033" 

Nana 

Cauca 0.03 0.12 0.11 -0.08 -0.25 

Mon. 0.28 -0.03 -0.17 -0.30 -0.30 

Neg. 0.25 0.00 039' 0.01 0.33 

Ausr. -0.17 037' 0.20 0.07 - 039' 

p<0001 "" 

p<0.05-' 
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FIGURE 3.17 - Principal Components Analysis of 20 scaled sine/cosine Fourier coefficient 
pairs 
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FIGURE 3.18 - Principal Components Analysis of 20 scaled tine/cosine Fourier coefficient 
pairs 
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FIGURE 3.19 - Principal Components Analysis of 20 scaled sine/cosine Fourier coefficient 
pairs 
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FIGURE 3? 0 - Principal Components Analysis of 20 scaled sine/cosine Fourier coefficient 
pairs 
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on the early PCs (I and II) is more complex. The results of table 3.16 indicate 

that there are a number of significant correlations between the scores of 

individuals on higher PCs and the size variable. This contrasts with the results 

of the analysis of scaled linear and angular measurements (table 3.14). 

This difference in result implies that in the analyses of scaled Fourier data 

non-size related sources of variation are proportionately more Important than 

in studies of scaled linear and angular dimensions. The fact that there is a 

greater number of significant correlations of the size variable with the scores of 
Individuals on higher PCs Implies, however. that the Fourier data are still 

describing those aspects of size related shape difference which are Influencing the 

linear and angular measurements. 

These differences between the analyses may relate to the fact that Fourier 

data provide a description of cranial morphology which gives equal weight to all 

outline points whereas linear dimensions provide a description which emphasises 

those regions where landmarks are plentiful. The completeness of the Fourier 

description means that each Fourier component reflects total morphology, 

Including size related effects. These effects have a more diffuse Influence In the 

PCAs and, because each region is sampled according to its contribution to the 

cranial outline, aspects of shape which are relatively poorly described by linear 

dimensions and angles have a proportionately greater weighting. 
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Patterns of between group variability 

The univariate and multivariate studies have Indicated that size dimorphism 

is a significant component of sexual dimorphism In the sexed groups included 

within this study. The studies also agree that in those groups where sexual size 

dimorphism is large there is a considerable component of shape dimorphism. 

Where size dimorphism Is small other sources of variability make the detection 

of concomitant shape dimorphism difficult. 

The results presented in table 3.17 go some way to emphasising this finding. 

The mean size (square root of midline area) of each sexed group together with 

absolute and relative sexual size differences arc listed. The column headed "raw 

distance" gives values of between-group distances calculated from unadjusted 

linear and angular dimensions (the set of 25 midline and projected midline linear 

and angular dimensions). It is clear that these are correlated with sexual size 

differences. When the data are scaled the between-sex differences arc smaller 

in proportion to the original sexual size difference. 

It can be concluded that, in this study, shape differences between the sexes 

are related to size differences. The univariate and multivariate studies have 

indicated, however, that the relationship between size and shape difference may 

vary between genera, species and races. The degree of such variability was 

further investigated by a series of canonical and discriminant analyses. 
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TAflLF 3.17 

The rclationabip of shape dimorphism to tiro dimorphism 

Size variable - square root of mid -tagittal area 

GROUP m/f 
Mean Sizc size Raw Scaled 
Size diff. ratio dirt. diet. 

Gorilla f. 11.87 76 1 1A8 6.67 5S1 Gorilla m. 13.63 . 

Pan f. 10.22 032 1.03 1.96 L73 Pan m. 10.54 

Pongo f. 10.16 139 1.14 6.07 4.8 Pont, ta. 11.55 

Caucasoid f. 14.17 0.6 1.04 2.65 232 Caucasoid m. 14.77 

Units: 

Size - cm. 
distances -SDU (Mahalanobis') 
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Between-group variability - Apes and men 

Two canonical analyses were carried out in order to compare the directions 

of sexual dimorphisms within the sexed groups. The first is an analysis of the 

first 20 pairs of raw sine-cosine Fourier coefficients (sec figure 3.21) and the 

second is an analysis of the 47 linear dimensions (table 2.3, see figure 3.22). 

The general pattern of group dispositions in both analyses is very similar to 

that in the minimum spanning trees presented In chapter 2 (compare figs. 2.20- 

2.22, with figs. 3.21 and 3.22). The apes form aU shaped grouping with Pan at 

the base of the U, the sexes of Pongo make one limb and those of Gorilla the 

other. The caucasoids are distant from the apes. 

The plot of the first 3 canonical axes calculated from the Fourier coefficients 

Is given in figure 3.21. The angles between the axes connecting the centroids of 

the sexes within each genus differ. Shape dimorphism In Pongo Is mainly revealed 
by axes 1 and 3, that In Gorilla by axes 1,2 and 3 and that In Pan and the 

caucasoids by axis 3. 

In the analysis of raw linear dimensions (fig 3.22) the variability in axes 
between the sexes Is once again marked. No two taxa have parallel axes. This 

is entirely consistent with the observation made in the earlier parts of this study 

that variability characterises vectors of sexual dimorphism within the hominoids. 

The principal component analyses of Peu: and caucasoids have demonstrated 

that the sexes In these groups cannot be easily distinguished therefore the axes 

which these analyses reveal are subject to a considerable error. The most clear 

difference Is that between the Gorilla dimorphism and the Pongo dimorphism. 
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FIGURE 3.21 - Canonical Analysis of 20 raw sine/cosine Fourier coefficients 
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Canonical Analysis of 47 raw cranial dimensions 
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Between-group variability - Men 

The studies described in the earlier part of this chapter have indicated that 

variability in dimorphism is not just confined to the between-species level but 

that there are also variations between the races of man. 

Variability between the human races in the pattern of sexual dimorphism 

was further Investigated in a limited study using those cranial dimensions and 

angles (table 3.1) which were available In the caucasoid sample and in a sample 

of Hong Kong Chinese crania (both of known sex). 

The canonical axis plots from this analysis are presented in figure 3.23. In 

the plot of group means (figure 3.23b) canonical axis I differentiates caucasoids 

from mongoloids. The second axis differentiates males from females. On the 

third axis male caucasoids and female mongoloids are at the positive extreme 

whilst female caucasoids and male mongoloids have negative scores. Consequently 

the axes of dimorphism in these two racial groups have a component which is 

mutually orthogonal. It should be noted, however, that the scales of each axis 

differ and that the range of the third axis, which demonstrates this difference, 

is 2 SDU as compared to nearly 10 SDU for the first and 4 SDU for the 

second. 

The canonical analysis suggests that there are differences in the patterns of 

sexual dimorphism which characterise these two racial groups. This finding is 

reinforced by the results of a stepwise discriminant analysis undertaken using the 

variables which were common to the caucasoid and the Hong Kong Chinese 

cranial samples. Table 3.18 lists, jr order, those variables which were found to 
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FIGURE 3.23 - Canonical Analysis of 31 cranial dimensions from English and Hong 
Kong Chinese populations 
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TABLE 3.18 

The variables which give the best differentiation between sexes. 

Caucasoids Ilong Kong Chincsc 

Bizygomatic breadth Angle Opis -basion-nasion 

Maximum length Maximum length 

Nasal breadth Foraniinal length 

Subnasal height Foraminal breadth 

Palatal length Subnasal height 

Angle Opis - basion - nasion Occipital chord 

be most useful in determining the sex of crania belonging to each group. The 

lists have some variables in common but the relative effectiveness. of these 

variables differs (different order). Some of the variables arc well correlated with 

size (compare with table 3.4) whilst others, e. g. subnasal height, nasal breadth are 

not. The differences between the lists suggest a difference in shape and size 
dimorphism between the groups. 
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DISCUSSION 

The principal aim of this second study has been to further compare Fourier 

data and linear and angular measurements with respect to their utility in 

describing patterns of primate cranial variability. The study has concentrated on 

a comparison of the patterns of cranial variability revealed in modem hominoid 

groups using both types of data. The discussion is best considered in two parts: 

I. Patterns of within-group cranial variation 

In the introduction to this chapter it was noted that a major component of 
intraspecific variation in hominoids is attributable to the phenomenon of sexual 
dimorphism. The studies of previous workers have indicated that, within these 

groups, differences in size and in shape consequent upon size differences form 

a considerable source of intraspecific variation (e. g. Wood, 1976, Schmid and 

Statil, 1984, Clutton - Brock, 1985, Lcutenegger and Cheverud, 1985, and Oxnard, 

1987). 

One hypothesis that this study has set out to test is that cranial sexual 
dimorphism is related to sexual size differences in the hominoids. 

The univariate studies of both the Fourier data and the linear measurements 

have shown that dimorphisms in means arc generally significant in those variables 

which are significantly correlated with the size variable. In contrast, dimorphisms 

in variances are present in a considerable proportion of variables which are not 

significantly correlated with the size variable. 
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The results of the principal component analyses indicate that, within the 

studied groups, size and sexual shape differences are inextricably connected. 

Those principal components which order crania by sex are also those which have 

a significant correlation with the size variable. They account together for a 

considerable proportion (though never more than half) of the total within-group 

variability. When the data are scaled crania are still ordered by sex along certain 

principal components in certain groups and the scores of crania on these 

components also correlate significantly with size. These studies suggest that sexual 

dimorphism includes an element of shape dimorphism and that all of the 

observed shape dimorphisms are size related. Dimorphisms of variance are, 

however, more independent of size dimorphism. 

These findings broadly agree with those of Oxnard (1987) who investigated 

the relationship of size differences and sexual dimorphism within a wider range 

of primate groups. lie found, however, that in some taxa, e. g. Galago, the degree 

of sexual shape dimorphism is large despite a small size difference - "this 

finding suggests that there may be major sexual dimorphisms in overall body 

proportions that are scarcely related to size at all. It would obviously be false 

to claim that size is not implicated in at least a part of the sexual dimorphisms 

..... but the data clearly demonstrate that there must be many other parts of the 

sexual dimorphisms that are associated with other factors" (Oxnard, 1987: p32). 

A further hypothesis which has been tested in this study is that the 

hominoid taxa share a common pattern of cranial sexual dimorphism. 
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The evidence of the univariate study is that the patterns of dimorphism 

within hominoids do vary. Variations have been noted in the number and types 

of variables which have significantly different means and variances between sexes. 

The multivariate studies have indicated that further variations exist between taxa 

in the proportion of total within-group variation which is related to size and 

sexual shape differences. There are even considerable differences between the 

racial groups of Mankind. The consequence is that, in different races, different 

variables have different relative weightings in discriminant functions which are 

designed to classify crania by sex. 

The finding of variability in patterns of sexual dimorphism within closely 

related groups is a common one. The work of Albrecht (1978b) on the 

craniofacial morphology of the Sulawesi macaques shows some species differences 

in the directions of the male-female axes in canonical space (p59. fig. 16). The 

study of Creel and Preuschoft (1984) also demonstrates considerable differences 

in the vectors of sexual dimorphism in the crania of different gibbon species 

(p594, fig. 44.8) (though none of these workers place much emphasis on these 

differences). 

Despite this it appears that the variability of shape dimorphisms seen 

between the races of man is relatively small and that sexual size differences 

(including common allometric shape differences) will provide a broadly adequate 

basis for the sex diagnosis of crania. This concurs with the findings of Calcagno 

(1981) and Uytterschaut (1986) which were reviewed earlier. 

In summary, the findings of this study indicate that a major source of 

variation within the hominoids Is size and its consequences. Tese size related 
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phenomena include, at least within the groups under study, a considerable 

component related to sexual shape dimorphism. The relationship between sexual 

shape dimorphism and size dimorphism is not simple, the same size difference 

between sexes may be associated with shape differences which vary even between 

closely related groups. 

2. Comparison of Fourier data and linear and angular measurements 

From the studies presented in the first chapter it appears that in studies 

of the crania of extant hominoids these two types of data result in broadly 

similar patterns of between group relationships and allow approximately the same 
degree of accuracy in identifying crania by specific and racial group. 

The principal aim of this study has been to test the hypothesis that sine - 
cosine Fourier data and linear and angular measurements provide similar results 
in studies of within-group variability. 

In the univariate studies presented in this chapter both the Fourier data 

and the linear dimensions indicate that the crania of caucasoids and Pan show 
fewer sexual differences in means than Pongo and Gorilla. In both sets of data 

those variables which show a sexual size difference in a particular group are, in 

general, significantly correlated with the size variable. A further point of 

agreement is that both sets indicate marked differences between the racial groups 

of Homo in the numbers, magnitudes and patterns of significant correlations with 

the size variable. 

The Fourier data and the linear dimensions both indicate that different 

patterns of dimorphism of variances characterise different groups. The types of 
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data disagree, however, in that the linear dimensions indicate that Pongo and Pan 

have a similar number of dimorphisms of variances whilst the Fourier data 

indicate that Pan and Gorilla have a similar number. 

The contrasts are more marked in the principal component analyses. In the 

PCAs of raw linear and angular measurements sexual differences are only 

demonstrated along the first principal component and the scores of crania on this 

component correlate markedly with the size variable. In contrast, the PCAs of 

raw Fourier components do not exclusively show sexual differences on the first 

component. These differences are more widely spread over several components 

and the size variable correlates significantly, but to a lesser extent, with the 

scores of crania on several higher order components. 

The differences between the results derived from scaled Fourier components 

and those from scaled linear and angular measurements are similar to those 

observed in the studies of raw data. There is a lesser degree of sexual separation 

observed on the first two PCs and the size variable correlates significantly with 

the scores of crania on more of the higher order PCs in the analyses of Fourier 

data. 

In the principal components analyses of Fourier data sources of variation 

which are not size related are proportionately more important than In PCAs of 

linear and angular measurements. 

This difference is attributable to fundamental differences between the data. 

Fourier data are less size dependent when the first cosine term is ignored 

(cosine 0 is effectively a size variable) and they provide a more complete 

description of cranial morphology. The Fourier data give equal weight to all 

outline points and as such describe those regions where there are few landmarks 
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with as much fidelity as those where landmarks are more plentiful. The 

consequence is that more aspects of cranial variation are described and that size 

related effects are proportionately less prominent. 

It is concluded, therefore, that the analyses of sine-cosine Fourier 

coefficients have lead to broadly similar findings to those obtained from linear 

and angular dimensions in this study of patterns of within-group variability. The 

principal differences in result are a consequence of fundamental differences in 

the data such that variations which are purely size related assume a lesser 

importance relative to other sources of antra-group variation. 

0 
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I. A STUDY TO ASSESS TIIH APPLICAI3ILiTY OF FOURIER ANALYSIS 

TO THE STUDY OF T1TE CRANIAL MORPHOLOGY OF VARIOUS 

FOSSIL IIOMINIDS 

INTRODUCTION 

In this chapter I present a study of patterns of cranial variation within 

and between certain groups of fossil hominids. It builds on the studies of 

methods of describing cranial form presented in chapter 2, and the examination 

of the applicability of these methods in studies of cranial variation in extant 

hominoids in chapter 3. 

Summary of previous chapters 

In the earlier chapters I have explored a variety of methods for the 

description of biological form and have presented a study which compares their 

abilities to allow an assessment of the phenetic relations of modern crania and 

to allow the identification of material of unknown provenance. Fourier analysis 

and linear dimensions and angles performed well on both counts. 

A second study examined the relative performance of these two methods 

in a study of patterns of within group variability. Fourier analysis gave similar 

results to those obtained from linear dimensions and angles but in PCAs the 

influence of size related variation was reduced relative to other sources of 

variation. 
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Aims of the studies presented in the current chapter 

This chapter sets out to further examine the value and utility of Fourier 

analysis, this time in the study of between group phenetic relations using fossil 

and extant representatives of the I iominoidea. 

The studies presented earlier in this thesis have shown a fair 

correspondence between the patterns of phenetic relationships which are implied 

between extant hominoid crania when different methods of description of cranial 

morphology are employed. This result does not necessarily imply, however, that 

the same is true when fossil material is studied. 

The study of fossil hominid material presents several problems. The first 

is that there is considerable debate about the exact limits of biological species, 

the definition of acceptable taxa being based upon expert appraisal and phenetic 

criteria. Second, a considerable proportion of the available material is badly 

fragmented, incomplete, and reconstructed. A third problem arises from the wide 

geographical distribution of the original material. As a result the cost and time 

required to examine it all is prohibitive for an exploratory study of the present 

type. 

The first problem, that of the delineation of acceptable species limits, is 

not intractable. Taxa can be defined by the discovery of morphological 

discontinuities in the fossil record (see Simpson, 1961, Sneath and Sokal, 1973) 

provided that adequate estimates can be made of missing or damaged regions 
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of the crania. The second problem is more difficult. The reconstruction of 

missing parts and the estimation of dimensions from missing regions is by nature 

a subjective exercise. For the most part the data used in this study have been 

taken from casts ̀of reconstructions made by a number of authoritative workers 

in the field and where estimates have been made they are based upon the 

experience of two senior anatomists and have been checked by myself (see 

Appendix A). The third problem, that of using casts, is addressed later in this 

in this study. 

It is a primary purpose of this study to further examine the degree of 

correspondence in the patterns of phenetic relationships between hominid crania 

which are demonstrated when angles and dimensions and Fourier data are 

compounded in phenetic analyses. If analyses of Fourier data show a high degree 

of correspondence with analyses of the more traditional data then the study of 

cranial morphology (in a strictly phenctic sense) may be greatly simplified 

because Fourier data can be collected automatically (see O'Higgins and Williams, 

1987). To date, however, no single study exists in which Fourier analysis and a 

number of other, "new", methods for the description of the complex morphology 

of biological structures have been compared with the more traditional techniques. 

The current study aims, therefore. to provide comparative data on two 

different approaches to the description of morphology. It tests the hypothesis, 

implied by the results of the study of chapter 2, that the pattern of between 
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group phenetic relationships derived from Fourier data is consistently very similar 

to that derived from a series of cranial dimensions taken from the same 

anatomical parts. 
It has already been pointed out in the earlier chapters of this thesis that 

linear and angular measurements have to be taken between fixed landmarks and 

that there is a scarcity of suitable landmarks in certain parts of crania (e. g. the 

vault), relative to others (e. g. the base). With this in mind some difference in 

phenetic relationships is to be expected when the different data are compounded. 

This study further aims, therefore, to examine any such differences and to 

consider the utility of Fourier analysis in the context of any such discrepancies. 

Considering the fact that the studies presented here utilise casts of the 

crania of a number of fossil hominids it has become a secondary aim to provide 

confirmation or otherwise of the patterns of phonetic relationships implied by the 

studies of previous workers. To this end, a review of such previous studies is 

presented and the discussion compares and contrasts the results of the current 

studies with those from previous ones. 

Summary of the current chapter 

This chapter begins with a brief review of the hominid fossil record which 

is presented to set the scene for this final study so that the newcomer to studies 

of fossil hominids can be made aware of the context of this work. The study 

proper is preceded by a review of published multivariate studies of fossil and 

extant hominoid crania. There follows a description of the materials and methods 
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which were employed and this is in turn followed by a description of the results. 

The discussion concentrates on the three aspects discussed above: the degree of 

agreement between the studies of Fourier data and more conventional data, the 

sources of any observed differences and a comparison of the results of the 

current studies with those of previous workers. In addition to this a consideration 

of the phenetic validity of the OTUs selected for this study is presented in 

Appendix B. 
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H. MAN AND HIS FOSSIL RELATIONS 

When Charles Darwin published On the Origin of Species" in 1859 only 

a few fossils bearing upon the evolution of man were known (though their 

significance had not yet been appreciated). One was found at Forbes' quarry, 

Gibraltar in 1848 (Busk, 1865) and the other in the Neander valley, Germany 

in 1856 (Fuhlrott and Schaaffhausen, 1857). They later came to be known as 

examples of Neanderthal man. Since this time a variety of other fossil hominids 

have been unearthed. Excluding representatives of Homo sapiens they have been 

found in various regions from the southern tip of Africa to Indonesia. The fossils 

occupy a time span ranging from 5 million years ago to almost the present day. 

By far the most fruitful sites are those associated with the great rift valley 

of East Africa where fossiliferous beds in Ethiopia, Kenya and Tanzania have 

yielded specimens attributed to Australopithecus and Homo. From South Africa 

specimens have been discovered which are attributed to Australopithecus africanus, 

Australopithecus robustus and Homo. 

From the Far East, Middle East, China and Java, specimens attributed to 

Homo are known. From Europe and parts of Africa a variety of relatively recent 

specimens of Homo have been found. These comprise archaic representatives 

of Homo sapiens, the Neanderthals, and Homo sapiens of modern aspect from 

the Upper Paleolithic. 

In total a large number of cranial and post cranial remains have been 

discovered. They seem to span the evolutionary spectrum of mankind from a 
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time close to the divergence of hominids from the African apes. 

In this chapter I shall review the evidence for the evolution of Homo 

paying particular attention to what is known of the cranial morphology of extinct 

types. The morphology of the dentition, mandible and any known post cranial 

material is not discussed in any detail, however, since none of this material is 

included in the studies described later in this chapter. It seems reasonable to 

take the specimens in chronological order, starting with the Australopithecinae. 
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THE AUSTRALOPTTHECINAE 

A. Morphology and Provenance 

South African Australopithecincs 

The first fossil australopithecine to come to light was the immature cranium 
discovered in 1924, at Taung in South Africa (Dart, 1925). Since this first find 

the sample of known australopithecines has been considerably enlarged (sec 

Oakley et al., 1977, Howell, 1978, Johanson, White & Coppers, 1978). 

Exploration in South Africa has yielded material from several sites, Sterkfontein, 

Kromdraai, Swartkrans and Makapansgat and at least two South African 

australopithecine species have been discerned viz. efusintlophhecus africanus and 

Australopithecus robustus (though some authorities consider that there is evidence 

for three or more species, see Grine, 1981, Howell, 1978 and below) 

Gracile material 

Inter australopithecine finds include an adult cranium from Sterkfontein 

(Broom, 1947). Initial descriptions attributed this skull, Sts 5, to Plesianthropus 

though nowadays it has been sunk, together with all similar, gracile, material 
into Australopithecus africanur (sec Howell, 1978, Johanson and White, 1979, 

Grine 1981). Robinson (1967,1972) has argued forcefully for the inclusion of 

this group in Homo and has suggested that the correct nomen should be Homo 

africanus. 
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Since this first discovery the Sterkfontein site has yielded a number of 

cranial and postcranial remains (see Oakley et aL, 1977). Most of this material 
has been attributed to Australopithecus africanus though there has been a 

suggestion that a skull, StW53, which seems to come from more recent deposits 

may be a representative of Homo habilis (Hughes and Tobias, 1977 and see 
below). 

More specimens which are now attributed to Australopithecus africanus 

have been unearthed at Makapansgat (see Oakley et aL, 1977). Initial descriptions 

(Dart, 1948, Broom, 1949) distinguished the first Makapansgat specimens from 

previously known South African gracile material chiefly on the basis of a 

presumed larger cranial capacity. A new species A. prometheus was named. 

Robinson (1954) in reviewing the then known South African material considered 

that the occipital and innominate morphology did not differ significantly from 

that encountered in the Sterkfontein material. Accordingly, he suggested It be 

included with the other gracile australopithecine material In a single species and 

subspecies, A. africanus trans vaalcnsis. 

A. africanus cranial morpholoSy 

Specimens attributed to this species exhibit a cranial capacity in the range 
425-485 cc. (Holloway, 1973). They have a lightly constructed ovoid cranium with 

a reduced postcranial constriction and a marked parietal curvature relative to 

the apes. They show minimal or no sagittal cresting and a variably salient 

transverse occipital torus. 
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They have a continuous supraorbital torus and the calvarium rises above 

the upper orbital margin. The position of the nasion is relatively low with 

respect to living apes. The face is moderately prognathous with a projecting 

subnasal part of the maxillae. The nasal margin is elevated and bordered 

Inferolaterally by a continuation of the canine pillars. (Rak, 1985) 

The cranial base is expanded with a relatively low angle of the petrous axis 

to the median sagittal plane. The foramen magnum faces inferoposteriorly and 

the occipital condyles are relatively small and posteriorly placed (Howells, 1973). 

Robust material 

The first discovery attributed to the robust australopithecines was made 

at Kromdraai in 1938 (Broom, 1938). The find (TM 1517) consisted of a partially 

complete, heavily built cranium, with considerable postorbital constriction, a large 

face and a small neurocranium. It was designated the holotype of "Panmthropus 

robustus" (Broom, 1938). 

Several more robust cranial and post cranial finds have been unearthed at 

Swartkrans (Oakley et aL 1977). The first find comprised a left mandibular 

fragment and three upper teeth (SK 2,3,4 and 6). The mandible was designated 

the holotype of "Paranthropus crassidens" (Broom, 1949). 

The making of a generic distinction between this "robust" material and the 

South African "gracile" material and of a specific distinction between the material 

from Swartkrans and Kromdraai has been a matter of debate (Gregory and 

Hellman, 1939, Simpson, 1945, Mayr, 1950, Broom, 1950, Robinson, 1954, Brace, 
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1969, Wolpoff, 1974, Howell, 1978, Grine, 1981, Wood and Chamberlain, 1987) 

but is now widely accepted (Grine, 1981, Olson, 1985, Dean, 1986). 

South African "Paranthropus" cranial morphology 

The cranial morphology of "P. crassidens" is better known than that of "P. 

robustus", the Kromdraai material being less plentiful and less complete than that 

from Swartkrans (Oakley et aL, 1977, Howell, 1978). Rak (1983) makes no 
distinction in cranial morphology between the two samples. However, Howell 

(1978) differentiates them on the basis of "certain discernible and often 

mensurable characters of the craniofacial skeleton and the deciduous and 

permanent dentition". Grine (1985) has further examined the dental evidence for 

a specific distinction and considers that Howell's (1978) conclusion is "most 

strongly supported by the multitudinous features in which the Kromdraal and 

Swartkrans australopithecine dentitions differ" (see discussion, later). 

Overall the cranium of both samples is more robustly constructed than that 

of A. africanus. The sagittal and nuchal crests are well developed, the vault is 

thin walled and spheroidal and there is considerable postorbital constriction. 

Cranial capacity is in the region of 530 cc. (Holloway, 1983). The vault rises only 

marginally above the upper orbital margin (Rowell, 1978). 

There is a strongly developed supraorbital torus and a prominent glabella. 

The face is broad, and generally flat. There is considerable forward projection 

of the zygomatic elements and the pyriform aperture Is set in the resultant 

midfacial hollow. The maxillae are broad and the infraorbital foramen is set 
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relatively low (Howell, 1978, Rak, 1983). The subnasal maxilla is prognathous. 
The lateral part of the inferior margin of the orbit is wide, blunt and extended 

anteriorly (Rak, 1983). The zygomatic is large and vertically deep with a small 

anterior and larger lateral facing surface. 

The cranial base is relatively shortened, the foramen magnum is relatively 

long and the petrous temporal is aligned more coronally than that of A. africanus 

(Howell, 1978, Dean and Wood, 1982) 

Dating of South African Australopithecine sites 

The dating of the Stcrkfontein remains is somewhat problematical since the 
deposits are not amenable to radiometric or chemical dating methods 
(MacDougall and Price, 1974). The gracile australopithecine material from 

Sterkfontein has all come from deposits (Member 4) tentatively dated at between 

2.5 and 3.0 million years b. p on faunal grounds (Cooke, 1970). The putative 
Homo habilis cranium, StW 53, was discovered in deposits (Member 5) dated 

at 1.85 to 2.0 million years b. p (Delson, 1984 also sec Grinc 1981, Howell, 

1978). 

The Taung remains are much less clearly dated, and estimates vary from 

less than 1.0 to 2.0 million years b. p. (see Grine 1981, Dclson, 1985, Tobias, 

1978a). i 

As with other South African sites the Makapansgat site has proved difficult 

to date and reliance has to be placed on faunal correlations. The 

australopithecine material has been dated at between 2.5 and 3.0 million years 
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B. P. by such correlations (Cooke, 1970). Recent paleomagnctic evidence supports 

a date of greater than 2.9 million years B. P. (McFadden et al, 1979). 

The dating of the Kromdraai and Swartkrans sites suffers from similar 

difficulties. Current best estimates place the Kromdraai hominid bearing layer in 

the span 1.0 to 2.0 million years b. p. (Vrba. 1981, Partridge. 1982). Vrba (1975) 

has placed the hominid (Australopithecine) bearing member I of the Swartkrans 

site at 1.5 -2.0 m. y. B. P. on the basis of faunal correlations. 

East African Australopithccincs 

Robust material 

The first discovery of Fast African robust australopithecine material was 

an almost complete cranium, Oil 5, which was initially referred to a new genus 

Zinjanthropus and given the species name boisci (Lcakey, 1959). Subsequently 

it has been incorporated in Australopithecus though the species name has been 

retained (Tobias, 1967). Since this first discovery of robust australopithecine 

material in East Africa there has been a steady Increase In the number of 

similarly attributed remains from Olduval (Oakley ct aL, 1977), KoobI Fora (the 

most notable of which in the context of this thesis is the complete cranium 

KNM-ER 406, Leakey, 1970, Lcakcy, Mungai. and Walker, 1971, Oakley et d, 

1977), Omo, Peninj and Chcsowanja. 

The fossils from Koobi Fora provide the most comprehensive evidence for 

A. boisei. Although most of the material recovered since KNAM - ER 406 (Lcakcy, 

1970) has been referred to Australopithecus sp. bidet. most Workers accept that 
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a major part represents A. bolsei (Wood and Chamberlain. 1987). 

A variety of fragmentary remains which have been attributed to 

Australopithecus boisei have been recovered from the Shungura formation in the 

Omo river region, Ethiopia (Howell, 1969, Coppens, 1980, Grine 1981, Wood 

and Chamberlain, 1987). From Chesowanja two partial crania (Carney et aL, 

1971, Gowlett et ab, 1981) and dental fragments (Bishop et d, 1975) which have 

been allocated to A. boisei have been found (Szalay, 1971, Howell, 1978, Wood 

and Chamberlain, 1987). From Peninj an adult robust australopithecine mandible 

has been recovered (Leakey and Lcakcy, 1964). 

A relevant recent discovery is that of a cranium and mandible (WYT-17000, 

WT16005) from the western shore of Lake Turkana (Walker et al., 1986). Recent 

appraisals of this material have suggested that despite displaying a morphology 

quite like that of A. boisci it differs from the known East African robust 

australopithecines in displaying a number of more primitive features (Walker, 

1987, Leakey and Walker, 1988). 

Cranial morpholopº of A. boisei 

The cranium of A. boisci bears a number of similarities to the South 

African robust australopithccines in being heavily constructed - especially in the 

facial region - having a small spheroidal braincase, a cranial capacity in the 

region of 510-530 cc (Holloway, 1983), marked postorbital constriction, and 

prominent muscular ridges. 
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It differs (Rak, 1983) from the South African sample of robust 

australopithecines, however, in having a less complex topography of the facial 

mask which is reflected in a smoother and visor-like infraorbital region. Rak 

(1983) also contrasts the facial morphology of A. boisci with that of the South 

African robust australopithecines in having more lateral flaring of the zygomatic 

arches, no maxillary fossula, a relatively sharp infraorbital rim, a more massive 

interorbital region, and a marked prenasal fossa (Tobias, 1967). The presumed 

male specimens have very large facial heights with respect to their bi-orbital 

breadths. 

Further clear differences from the South African "robusts" are manifest In 

the dental proportions, with massive postcanine teeth (Tobias, 1967. Howell, 

1978). Grine (1985) has also indicated that the deciduous dentition morphology 

serves to differentiate East from South African robust material. 

Dating of East African robust australopithccb: e sites 

The Olduvai robust australopithecine material was found in upper Bed I 

and lower Bed II which suggests a date of about 1.7-1.8 million years b. p 

(Nay, 1976). At Koobi Fora the cranium KIN-ER 406 was found below 

deposits dated at approximately 1.65 million years b. p. and above deposits dated 

1.9 million years b. p. (McDougall, 1985, McDougall ct aL, 1985). The older 

members of the Omo site are dated at about 3.3 million years b. p., and the 

younger at 1.4 million years b. p (Brown, McDougall, ct aL, 1985b) though the 

robust fossils at Omo are not known from the early levels. The Chesowanja 
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australopithecine site has been given a minimum age of 1.34 m. y. B. P. (Bishop 

et aL, 1975). The cranium and mandible found separately to the west of Lake 

Turkana (WT17000, WT16005) have been dated at approximately 2.5 m. y. B. P. 

(Walker et aL, 1986). 

East African gracile material 

A considerable number of remains of gracile australopithecines have come 

from Laetoli, Tanzania, (Leakcy, M. D., et aL, 1976, White, 1977, White, 1980). 

They consist, for the most part, of isolated teeth and mandibular fragments. 

Initial assessments placed the material within the genus Homo, no specific name 

being given. 

A more extensive series of hominid fossils comes from Hadar in Ethiopia. 

The finds include a partial skeleton (AL 288 - 1) of a small individual, presumed 

female because of its size and pelvic morphology, some femoral and cranial 

fragments and a remarkable collection of remains from at least 13 individuals 

who are believed to have died together in some natural catastrophe (the sample 

is described by Johanson and co -workers in a series of papers in the American 

Journal of Physical Anthropology, 57: 4 1982). 

Initial accounts of these rinds affined the then known material to 

Australopithecus and Homo (Johanson and Tafeb, 1976). Following the discovery 

of more material, and further study, a new taxon. Austm! opithecus afcucnsfs, was 

created. All of the Hadar hominids were placed within this species together 

with the similar material from Iactoli (Johanson. White, and Coppens, 1978, 



226 

White, Johanson, and Kimbel, 1981). The apparently wide range of mandibular 

morphologies exhibited within the known material (e. g. A. L 288 -1I and Li L. 4) 

has been attributed by these workers to allometry and sexual dimorphism. 

The naming of a new species within Australopithecus was justified on the 

basis of a variety of dental, cranial, and general skeletal features (sec White, 

Johanson, and Kimbel, 1981). In many of these features it is claimed that the 

Australopithecus afarensis sample differs from other known australopithccines and 

Homo in having a more primitive morphology, White, Johanson, and Kimbel 

(1981), concluded "Australopithecus afareuis appears to be the most suitable 

known ancestor for both later florno and Australopithecus". 

Cranial morphology of A. afarmsis 

The cranial morphology of the Radar sample is described in detail by 

Kimbel, Johanson and Coppens (1982) and the fragmentary Lactoli remains are 

described by White (1977,1980). The facial morphology is further described by 

Rak (1983). 

The calvaria reflects a small brain size (circa 500cc), large masticatory 

musculature and extensive pneumatisation. The occipital divides Into aý short 

broad occipital plane and a long, steeply inclined nuchal plane. The mastoids are 

extensively pneumatised and strongly flared, the mandibular fossae are broad and 

shallow and the articular eminence Is small (White, Johanson and Kimbel, 1981). 

The facial skeleton shows pronounced facial and subnasal prognathism, an 

expanded premaxillary portion curved in the sagittal and transverse planes, 
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nasoalveolar clivuses extending well into the nasal cavity, prominent canine/P3 

juga forming pillars placed lateral to the nasal aperture, the anterior roots of the 

zygomatic processes arise above Mt or P4/Ai1 and the canine fossae are deep 

(White, Johanson and Kimbel, 1981). 

Rak (1983) contrasts the morphology of the facc of A. afarcnsis with that 

of A. africanus in that the former lacks true facial pillars, and the pyriform 

aperture has sharp lateral and inferior margins. lie also notes a transverse 

buttress dividing the infraorbital region, a true, hollowed canine fossa, a shallow 

palate and a parabolic upper jaw. 

Dating of East African gracile australopithecine material 

The L ietoli australopithecine fossils were mainly surface finds. Their dating 

has been considered by Lcakey cl aL (1976) and Is said to be in the range 

3.59-3.77 m. y. B. P. whilst the Hadar hominid site Is believed to be 2.9-3.3 

m. y. old (Sarna - Wojcicki ct aL, 1985). 
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R. Taxonomy and Phylogcny 

Early controversies about the gracile and robust australopithccines 

The discovery of the australopithecines provoked a controversy between 

those scientists who pointed to certain supposedly human like features as being 

evidence of a close relationship to man, and those who emphasised their 

overwhelmingly ape like morphology. The history of the australopithecine debate 

is described by Johanson and Edey (1981) and from a different standpoint by 

Ashton (1981) and Oxnard (1984). The debate has in general centred around 

the taxonomic implications of the gracile, rather than the robust forms. 

The essential points of disagreement concerned the status and significance 

of the supposedly human - like features of the australopithecine cranium. These 

included the position and angulation of the occipital condyles (see Ashton and 

Zuckerman, 1952), the dental morphology and proportions (see, for example, Le 

Gros Clark, 1950, and Ashton, Healy and Upton. 1957), the proportions of the 

articular surface of the temporal bone (see Ashton and Zuckerman, 1954, 

Ashton, Flinn and Moore, 1976) and the form and nature of the infraorbital 

foramen (see Ashton and Zuckerman, 1958). The work of Zuckerman and his 

colleagues served to emphasise a constellation of features which arc In some 

respects ape-like, and in others human. In combination, they arc uniquely 

different from both extant groups, as distinct from lying in an intermediate 

position" (Ashton, 1981). 
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As positions polarised, the generally accepted view became that the 

Australopithecinae, as represented by the "gracile" South African specimens, were 

an ancestral form for Homo. The Zuckerman group, more or less alone, 

remained agnostic. To their minds it seemed that the morphology of these 

specimens represents a unique combination of features, neither ape nor man 

and certainly not an intermediate form (Ashton, 1981). 

Current views of the relationship of the Australopithccinac to human ancestry 

The general view held by most anthropologists since the 1950's has been 

that one of the species of Australopithecus is ancestral to Homo. The 

phylogenetic scheme proposed by Johanson and White (1979) Is simply that 

Australopithecus afarensis is ancestral to two later groups, Motto and all later 

australopithecines. This scheme effectively eliminates all previously known 

australopithecines from the direct human ancestral line and not surprisingly has 

received considerable criticism. 
Day, Leakey, and Olson (1980) have criticised the name Australopithecus 

afarensis on formal procedural grounds. Tobias (1980b) has questioned the 

pooling of the Radar and Lactoli fossils. fie points out that the two sites are 

distant (1,600 km apart), that the fossils were found in strata of differing ages 

between the two sites (approx 3.6 m. y. H. P. at Iactoli and 2.6-3.1 m. y. B. P. 

at Hadar - date later revised to 2.9-33 m. y. D. P. -see above), that the size 

of teeth P3-M3 in the Laetoli sample is greater than that In the sample from 
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Hadar and that the Lactoli teeth are generally very similar to those of the 

South African gracile australopithecines. Tobias (1980b) concludes on the basis 

of a thorough comparison of dental, cranial and postcranial material that the 

specimens allocated to Australopithecus afarensis by Johanson and his co -workers 

are well accommodated in a taxonomic scheme which includes all of this material 

as geographical sub-types of Australopithecus africanus. lie proposes that the 

material included within the revised range of Australopithecus africanus gave rise 

to two lineages, the robust australopithecines and Homo. 

Zihlman (1985) has argued that the specimens included within 

Australopithecus afamnsis by Johanson and his co-workers comprise not one 

highly sexually dimorphic species but two separate taxa. She points out that the 

pelvis of A. L. 288-1 shows a marked similarity to the Stcrkfontcin 14 pelvis 

"and is nearly identical in all measurements". A greater size range In limb bones 

exists within the afarc: tsis material than within the known robust or gracile 

material. Zihlman demonstrates that the degree of size dimorphism Is also 

considerably greater than that found within modern hominoids, even Pongo. She 

indicates that the hypothesis that sexual dimorphism was greater In our 

pre - hominid ancestor than that found within extant hominids, and that this gross 

dimorphic pattern was continued In Australopithecus afararuir, must be rejected 

because the dimorphism in J'an (which she takes to be our nearest living 

relative) is not so marked. 

Olson (1985) has considered the morphology of occipitomastoid and nasal 

regions in extant and some fossil hominoids. lie believes that these two regions 
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show independently derived specialisation In Ilo, no and "Paranthropus" and has 

identified a "variety of taxonomically relevant features that unite the gracile 

pliocene hominids .... with Homo". These Include the size and position of the 

mastoid process and associated structures, and the arrangement of sutures about 

the nasion. He Identifies certain of the Radar hominids as members of the 

"Paranthropus" Glade (A. L 333 -45, and -105), and "Lucy", (A. L 288 -1) Is 

designated as the lectotype of Australopithecus africanus acthiopicus, after Tobias 

(1980b). Olson's observations and Interpretations of hominoid mastoid anatomy 

have been criticised by Kimbel, White, and Johanson (1985). They feel that 

Inadequate attention has been paid to observable ranges of variation of the 

features which Olson has cited, since he accepts a wide range within 

Australopithecus africanus as acceptable whilst using a similar range in the Hadar 

hominids to imply a generic distinction. More recently Eckhardt (1987) has 

commented upon the large range of variation In the arrangement of the nasal 

bones which is present within hominoids suggesting that characters In this region 

are unsuitable for cladistic studies. 

Falk and Conroy (1983) and Falk (1986) have examined the pattern and 

evolution of venous sinus markings In the occipital and foraminal regions of the 

hominoid cranium, the occipital - marginal sinus system. Falk and Conroy (1983) 

associate the evolution of the pattern of sinuses with the adoption of upright 

posture. Australopithecus afarrnsis is characterised by having enlarged 

occipito - marginal sinuses. In gracile australopithecines the frequency of enlarged 

occipito - marginal sinuses decreases and other venous routes to the vertebral 
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plexus are established. The robust australopithecines retain an enlarged 

occipito -marginal sinus. Falk takes this to imply that the robust 

australopithecines are descended from Australopithecus afarensis rather than from 

the gracile australopithecines. }Gimbel (1984) has replied to the earlier paper 

from Falk and Conroy (1983) claiming lower Incidences of enlarged 

occipito -marginal sinuses in the robust and Afar australopithecines. lie has 

questioned the usefulness of this character In determining phylogeny "owing to 

marked temporal and spatial fluctuations in the frequencies of venous drainage 

patterns in the Nomo lineage". 

Rak (1983) in a thorough and extensive review of the form and function 

of the various facial morphologies presented by the australopithecines (and in 

later work e. g., Rak, 1985) has tended to support the views of Johanson and 
his co-workers. He has particularly emphasised the presence of anterior pillars, 
located adjacent to the pyriform aperture, in Australopithecus africamis and 

Australopithecus robustus. Ile contrasts this with Homo and with Australopithecus 

afurensis which are characterised by a lack of this structure. The Implication Is 

that the robust and gracile australopithecines share a derived state which tends 

to link them phylogenetically to the exclusion of Homo. The work of Grine 

(1985) on the morphology of the deciduous dentition has lent further support 

to the phylogenetic scheme In which robust australopithecines arc derived from 

gracile ones which arc in turn distinct and derived from Australopithecus 

afarensis. Grine further claims that the differences In deciduous dentition are 

such that the robust australopithecines are divisible Into three taxa; 
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Australopithecus robustus from Kromdraai, Australopithecus erassidens from 

Swartkrans and Australopithecus boisei from East Africa. 

McHenry (1985) has discussed the Implications of post-canine megadontia 

for the origins of Homo. lie lists a number of features which are shared In an 

apparently derived state by robust and gracile australopithecines and Homo. The 

fact that the australopithecines show a tendency to post-canine megadontia 

which is not manifest in early Non: o, has been used to Imply that homo arose 

directly from Australopithecus afarrn sis. lie considers that the degree of 

molarisation of the premolars in homo lends support to the notion that 

increased size of the molars associated with dietary modifications that would 

have led to premolar molarisation might have been a characteristic of the direct 

ancestor of Jfomno. Australopithecus africawuu, according to this view makes a 

better ancestor for Homo than does Australopithecus afarrnsis. This view Is 

supported by the outcome of a cladistic study, by Skelton, McHenry, and 

Drawhorn (1986). Their most parsimonious cladogram is compatible with a 

phylogenetic scheme in which robust australopithecines and homo arise from 

Australopithecus afiicanus which in turn arises from 1us: ralopithecus afarensis. 

However the second most parsimonious cladogram from this study is only 

marginally less so than the first (44 of 69 traits, as opposed to 45 of 69 traits). 

It lends support to the phylogenctic scheme of Johanson and his co-workers 

which has Homo arising direct from Australopithecus afar itsis. A recent 

reconsideration and reanalysis of the same data by Wood and Chamberlain 

(1987) has Indicated that when homoplasy Is taken Into account Skelton et ab's 
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second most parsimonious cladogram Is in fact more parsimonious than their 

first. 

A thorough cladistic analysis of a variety of fossil hominids by Wood and 

Chamberlain (1986) failed to resolve the issue of the relationship of 
Australopithecus africaaius to Homo. These workers concluded that the 

australopithecines may form a Glade, alternatively Australopithecus africwnus may 
be the sister group of Homo, leaving A. afarr sis as the sister group of the 

"robust" australopithccines. Their study demonstrated that homoplasics are 

common and that these confound cladistic techniques which treat all characters 

equally, 

A more recent study by these workers (Chamberlain and Wood, 1987) 

shows a more consistent joining of Ausrra! opincecus africa uu with robust 

australopithecines to form a Glade. 

The most recent of the series of cladistic studies by Wood and 

Chamberlain (1987) has concentrated on the relationships of the robust 

australopithecines to A. afarc tsis, A. africanus, and Itomo. The outcome of 

cladistic analysis using an improved program supports the "grade" cladogram first 

proposed In their 1986 paper. They suggest that ii. afarcnsü may be too derived 

to represent the common ancestor of all known hominids". 

As noted above, Grine (1985) claims that the differences in deciduous 

dentition morphology in the robust australopithecines are such that they are 

divisible into three taxa; .1 ustra! opitd: ccus ("Parwith opus" robtutus from 
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Kromdraai. Australopithecus crassidens from Swartkrans and Australopithecus boisci 

from East Africa. This position has been strengthened by the observation of 
different allomctric patterns in the adult cusp morphologies in these same groups 
(Jungers and Grine, 1986). Grine's (1985) work on the deciduous dental 

morphology of "robust" australopithecines led him to conclude that the "evidence 

suggests A. robustus to have been ancestral to A. trau dens" and that A. boiscf 

evolved from an A. crassidens - like ancestor. 

Some recent studies seem to link together morphological patterns within 
Homo and the robust australopithecincs. Dean and Wood (1981,1982) have 

undertaken a detailed study of the anatomy of the basicranium In extant and 
fossil hominoids. An observation of this work has been that there Is an apparent 

parallelism in the basicranial morphologies of Homo sapiens and robust 

australopithecines. Both share a relatively forward placed foramen magnum and 

a more coronally orientated petrous bone. This contrasts with the 

Australopithecus africanus morphology which Is ape-like. 

Dean (1985,1986) has added to the list of similarities the eruption pattern 

of the permanent teeth. lie has claimed that In Tarwahropus" and homo the 

incisors and first molar seem to erupt nearly simultaneously whilst In apes, A. 

afarrnsis and A. afriuu: us the first molar appears before the Incisors. lie 

considers (1986) the phylogenetic Implications of this possible synapomorphy and 
Indicates that it would suggest that "11orno and 'Paranthropus' share a common 

ancestor to the exclusion of rfustralophlircuf. Ile states that this suggests that 

the australopithecines might be two separate genera. Grins (1987) has, however. 
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disputed the observational basis of Dean's claim for equivalent eruption times 

for the incisors and first molar in "Paranthropus . He states that the observations 

made on one of Dean's four specimens were clearly erroneous and that the 

situation is ambiguous in the others. Dean's (1985,1986) case is further 

weakened by the work of Holly Smith (1986) who made an extensive comparison 

of patterns of dental development in hominoids and concluded that "4. robustes 

and A. boisci share a unique pattern (of dental development) that is neither 
human nor pongid". 

A more recent development concerning the relationships of the 

australopithecines has been the discovery of a putative 2.5 million year old 
Australopithecus boisei cranium from the west of Lake Turkana in Kenya (Walker, 

Leakey, Harris, and Brown, 1986). The dating of this specimen, which has not 

yet been seriously challenged, makes this the oldest example of a robust 

australopithecine. It is argued that its age makes it unlikely that A. boisei is 

derived from A. robustus and that robust australopithecincs are derived from A. 

africanus, (contra Rak, 1983, and Johanson and co - workers, sec above). Delson 

(1986) has commented on this discovery. lie feels that the allocation of this 

cranium to A. boisci is not fully supported and that further assessment is 

warranted. The influence of this discovery on phylogenetic schemes of the 

hominids is yet to be seen (sec Walker, 1987, Lcakey and Walker, 1988). 
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EARLY HOMO AND HOMO ILABIDS 

A. Morphology and Provenance 

The discovery of Australopithecus boiscl in Olduval Gorge In the late 1950's 

prompted intense paleontological activity in the region. Finds were also made of 

remains of a creature which appears to be distinct from the robust 

australopithecines (Leakey, 1960,1961a. 1961b) and which later formed the basis 

for the naming of a new species within lforno, florno habilis (Leakey et aL, 

1964). The holotype of the new species comprised the Oil 7 mandible, parietals 

and hand bones and the description was based upon these plus the paratype 

specimens, OH 4 (mandibular fragment), Oil 8 (foot and hand bones), Oil 6 

(cranial fragments) and Oil 13 (fragmentary skull). 

Since this first description of the new species a variety of fossils from 

East and South Africa have been attributed to early Homo and either assigned 

to or associated with Homo habilis (see Chamberlain, 1987). These include 

specimens from Olduval (see Oakley ct cri, 1977), Koobi Fora (see Oakley, et 

a!, 1977, Walker and Leakey, 1978), Swartkrans (Clarke et aL, 1970, Clarke, 

1977), Sterkfontein (Hughes and Tobias, 1977) and Omo (Boaz and Rowell, 

1977). Most notable amongst these are the specimens KNM - ER 1470, Oil 24, 

Oil 62, STW 53, and a composite cranium SK. 80/846/847. There is little value 
in considering each of these fossils separately in the context of this thesis. I 

shall instead concentrate on a brief description of the material which is studied 

in this current work. 
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Olduvai Gorge has, since the first announcement of Homo habilfs, yielded 

a variety of remains which have been attributed to this taxon (see Oakley et 

aL, 1977, and Day, 1986, for a recent list). The remains include a cranium, 0.11. 

24 (Leakey, Clarke and Leakey, 1971) found in the lower part of Bed I. The 

skull was severely crushed and distorted and somewhat incomplete. It has been 

reconstructed by Clarke (see previous reference) and although this has been 

largely successful some distortion of the vault and face remains (Tobias, 1980a). 

Further discoveries which have been associated with early Homo have been 

made at East Turkana, Kenya (Day and Leakcy, 1973, Lcakcy and Wood, 1973, 

Day and Leakey, 1974, Lcakey and Wood, 1974, Day ct a!, 1975, Day ct a!, 

1976, Walker and Leakey, 1978). Significant amongst these are two fragmented 

but reconstructed crania, KNM - ER 1470 and KNM - ER 1813. KNM - ER 1470 

has a cranial capacity of about 750 cc. and KNM - ER 1813 of about 510 cc. 

(Holloway, 1983). The precise taxonomic attribution of these crania is a matter 

of current debate and is considered further below. 

It was noted earlier that some fossil remains from South Africa have been 

associated with early Mono (cranial remains from Sterkfontein and Swartkrans). 

The Swartkrans site has yielded material that was initially attributed to 

Australopithecus robustus and Telanthropus capensis (Broom and Robinson, 1949). 

More recently It has been noticed that some of this material (SK 80, SK 846, 

and SK 847) fits together to make a composite cranium (Clarke, Howell and 

Brain, 1970). This composite cranium (collectively known as SK 847) has been 
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compared to and considered to be possibly conspecific with Off 13 (a putative 
Homo habilis) by Clarke and Howell (1972). 

Sterkfontein has yielded a partial cranium, StW 53 which is said to bear 

strong affinities to Homo habilis (Hughes and Tobias, 1977). Its cranial capacity 

appears to be larger than that of Australopithecus africanus and smaller than 

ffomo erectus (Tobias, 1978b). 

The most recent fossil find to have been likened to Homo habilis comprises 

parts of a skull, right arm, and both legs recovered from lower Bed 1, Olduvai 

Gorge, Tanzania (Johanson et aL, 1987). The postcranial skeleton has been 

compared with that of Australopithecus afarrnuis and the face palate and dentition 

have been reported as showing "strong morphological similarities ... to 1101?: 0 

habilis (especially StW 53)" (Johanson et aL, 1987). Wood (1987) has commented 

that "the logical "trail" becomes tenuous because StW 53 has merely been likened 

to Homo habilis, and not formally attributed to it". 

Cranial morphology of Homo habilis 

Recent studies (reviewed below) have led to the suggestion that two or 

more taxa are represented by the material which has been allocated to early 

Nano and Homo habilis. It is therefore Impossible to give a description of the 

typical cranial morphology of this group of fossils. 

The only cranial remains included in the original description of Homo 

habills were the Oll 7 cranial fragments (parietals) and mandible (type), the Off 

13 adolescent partial cranium, the Oil 4 mandibular fragment and the Oil 6 
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cranial fragments (paratypes) (Leakey et aL, 1964). In the same publication the 

Oil 14 fragments of a juvenile cranium and the fragmentary skull 011 16 were 

referred to the new species. Oil 16 has been subsequently formally withdrawn 

from Homo habllis (Tobias, 1965) and the status of Oll 14 is in doubt. 

The cranial morphology of the original hypodigm of 11o»w habilis was said 

to differ from Australopithecus in having smaller mandibles and maxillae, a larger 

cranial capacity (about 600 cc), no marked post-orbital constriction, a less 

marked external sagittal curvature of the occipital, and in a number of dental 

features (smaller molars, bucco - lingually narrowed premolars, canine large 

relative to premolars) (Leakey ct aL, 1964). 

Later material which has been considered to represent early 11o»: o and 

which is included in the study of cranial morphology described later in this 

chapter includes Oll 24 and KNAM - ER 1470. 

Oil 24 has been distinguished from the australopithecines on the basis of 

less postorbital constriction, a higher frontal, wider parietal bones and more 

Homo-like mandibular fossae and nasal bone structure (Lcakcy, Clarke, and 

Leakey, 1971). Its estimated cranial capacity is in the region of 590 cc 

(Holloway, 1983). This specimen is heavily reconstructed and has suffered some 

distortion (Tobias, 1980a). 

K. NM - ER 1470 has been reconstructed from a considerable number of 

isolated fragments. It appears to have had a cranial capacity in the region of 750 

cc. (Holloway, 1983) which is considerably larger than most specimens allocated 
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to Homo habits. The vault of KNM - ER 1470 Is reasonably complete, it is 

domed with steeply sloping sides and parietal eminences, the glenoid fossac and 

external auditory meatus are positioned well forward relative to Austmlopithecus 

and there is no indication of strong nuchal or sagittal crests. 'There is only 

moderate postorbital waisting and no evidence of marked temporal lines. The 

apex rises considerably above the weakly developed supra orbital tori. 

The face is less complete and its orientation is uncertain. The alveoli are 

large and suggest large teeth. The palate is shallow, broad and short. The 

basicranium is incomplete and damaged (Leakey, 1973). 

Dating 

The dating of the South African hominid bearing localities has been 

considered earlier. In the context of this thesis the most important localities are 

Olduvai and Koobi Fora. 

The majority of material which is attributable to Homo habilir (including 

OH 7 and 011 24) has been recovered from Olduval Gorge Bed 1. Other 

material (including Oll 13) comes from bed II. The Bed I material was located 

between tuffs dated in the range 1.8 - 1.9 m. y. B. P. and the Bed 11 material 

between tuffs dated 1.55 - 1.7 m. y. B. P. (Lcakey and I lay, 1982) 

KNM - ER 1470 and ER 1813 were found below the KBS tuff which 

originally was believed to date from 2.6 million years B. P. (Fitch and Miller, 

1970). More recent attempts at dating have suggested a younger date of about 

1.8-1.9 million years B. P. (McDougall, 1985, McDougal et aL, 1985). 



242 

B. Taxonomy and Phylogeny of Homo habilis 

The name Norno habilis was first proposed by Lcakey, Tobias and Napier 

(1964) and was applied to a variety of fossil remains recovered from Bed I and 

lower Bed II Olduvai Gorge. These workers, in constructing this new taxon 

revised the current definition of the genus Homo to include a reduced cranial 

capacity (600 cm3) and a variety of postcranial and cranial features. This they 

justified in order to include the new material in llamo rather than name a 

distinct genus for it. The designated type specimen was a mandible, vault and 

hand bones, 011 7. It was claimed to differ from Australopithecus in having 

larger incisors, narrower premolars, smaller molars and a "marked tendency 

towards bucco-lingual narrowing and mesiodistal elongation of all the teeth". 

Homo habilis, it was further claimed, had a mean cranial capacity greater than 

that of Australopithecus but smaller than that of later Homo, a variable degree 

of cranial muscular markings, a less curved occipital bone than the 

australopithecines and 11onro crcctus, and a parietal bone with a sagittal curvature 

intermediate between hominines and australopithecines. 

Robinson (1965) was amongst the first to question the validity of this new 

species. Ile examined the adequacy of the original "differential diagnosis" and 

criticised the revised definition of homo since it "depends in part on the validity 

of the new species proposed for it". lie further took issue with evidence for the 

making of a dental distinction between the new taxon and the australopithecines 

and Homo erectus, presenting data that fail to demonstrate a great difference 

between the 0.11.7 dental shape and that of the australopithecines. Robinson 
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felt that there was an "insufficient morphological distance" between Homo erectus 

and Australopithecus to justify the insertion of a new species. There ensued a 

debate in which the taxon was vigorously attacked and defended, (L. eakcy, 1964, 

Le Gros Clark, 1964, Oakley, 1964, Oakley and Campbell, 1964, Tobias, 1964, 

Pilbeam and Simons, 1965, Robinson, 1965,1966, Howell, 1967). 

There have been several attempts in recent years to assess the homogeneity 

of those fossils assigned to or compared with Homo habilis. An Interesting study 

of the basicranial anatomy of Plio - Pleistocene African hominids has been 

undertaken by Dean and Wood (1981 and 1982). The study Included a metrical 

analysis of the basicranium in a variety of hominids. The cranial base of, 

amongst others, 011 24 was found to show a "combination of features some of 

which are characteristic of the "robust" australopithecines, and others of which 

are seen in 11onto erectus and in the modern homo sapiens sample". The porous 

angle and sphenoid length/width ratio was more Indicative of the pattern seen 

in Homo erectus. The cranial base pattern of KNM - ER 1470 (which Is largely 

missing) and of KNM - ER 1813 resemble lfomo circus, but KNM - ER 1813 

Is smaller and has a relatively shorter sphenoid than KNM - ER 1470. 

More recently Stringer (1985) has reviewed the evidence for Ilomo habilis 

and has made some further studies of his own lie has examined the range of 

variation of endocranial volumes for a variety of specimens attributed to early 

ffomo and has demonstrated that the coefficient of variation would equal 12.4 

if KNM - ER 1813, Oil 24,0 1113,011 7, KNM - ER 1470 and others were 

to be included within a single taxon. This compares with a CV. of between 8.9 
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and 10.9 for modern hominoids. lie compiled the dental dimensions of a variety 

of hominids and summarised an earlier study by Wood and Abbott (1983) and 

Wood, Abbott and Graham (1983) in which the morphology of a variety of 

hominid molars was examined. Ile concluded that the early Homo sample was 

generally distinguished by relatively narrow teeth but that the upper dentition 

seem most derived in this feature. He felt that his compilation of dental data 

provided little basis for dividing up the early 11onro sample. 

Stringer went on to examine a variety of midsagittal and transverse facial 

angles in modern Norco and Pan and In several early Homo crania (including 

01 124, KNM - ER 1470, and KNM - ER 1813). fie concluded that KNM - ER 

1470 and KNM - ER 1813 both show angles which appear derived in the 

direction of Homo though some angles in KNM - ER 1470 seem more derived 

in the direction of the australopithecine Glade. The differences in the angles 

between these two crania are not of the same type as those found in sexually 

dimorphic modern hominoids. The cranial angles of Oll 24 are in general more 

like those of Sts S. The overall results of this study suggested to Stringer "at 

least three Plio - Pleistocene species of early Ilomo". 

Wood (1985) has reviewed the systematic relationships of early Ilomo in 

Kenya. lie has examined a variety of features of the cranial vault, base, and 

face in KNM - ER 1470, KNM - ER 1813, and Australopithecus afrkwiUs. lie 

details a number of features in which both of the Kenyan fossils differ from 

the gracile australopithecines and compares the two putative early llomo crania 

with each other. lie found that they differ in facial morphology more than 
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KNM - ER 1813 differs from Australopithccus africanus as assessed by 

Mahalanobis' D2. He suggests that the observed difference in cranial capacity 

would place these two crania at the limit of acceptable variation as judged by 

that found in modern and some fossil hominoids and suggests that "differences 

in size and shape between the two crania may merit their assignment to two 

taxa". 

Recent work by Chamberlain (1987) and Chamberlain and Wood (1987) has 

further served to emphasise the dishomogcneity of the material currently 

considered to represent early Homo. A number of cranial and dental dimensions 

were used to determine phenetic groupings of material attributed to either Homo 

habilis or Homo sp. m det.. The outcome of this study suggested that Oll 7, Off 

13, and OH 24 could reasonably be accommodated in Homo habilrs whilst 

KNM - ER 1470 and KNM - ER 1813 appeared distinct. Cladistic analysis of a 

number of hominid groups including the redefined groupings of early Homo 

resulted in a cladogram In which "Noyno sp. (includes KNM - ER 1470 and 1813) 

is most parsimoniously interpreted as the sister taxon of the "robust" 

australopithecines, with A. africanus as the sister taxon of this Glade. 11. habilis, 

on the other hand, appears to be a relatively primitive hominid that nonetheless 

shares some derived characters with other post-A. afa cn sis hominid taxa". 

Further evidence In support of variability within early Homo comes from 

a phenetic study of the facial region of fossil hominids by I3ilsborough and 

Wood (1988). They conclude that I. NM - ER 1813 shows similarities with OH 

24 in facial dimensions, though not necessarily In other cranial regions whilst 
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KNM - ER 1470 "displays a remarkable facial morphology some aspects of which 

are reminiscent of 'robust'australopithecines". 

From these studies it seems possible that Ifo no habilis has had assigned 

to it a range of material which is too variable to be comfortably accommodated 

within a single species. It may well be that a number of species are represented. 

The resolution of questions relating to the number of taxa and their phylogenctic 

relationships awaits further material and further study. 
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JIOMO ERECTUS 

A. Morphology and Provenance 

A wide range of fossil material from Asia, Africa and Europe has been 

attributed to Homo erectus. The fossil remains have, in common. a variety of 

features, some of which may well be purely plesiomorphous (see later). 

Jiomo erectus in Asia 

Java 

The first discovery of material now attributed to this taxon was made in 

1891 at Trinil, by the Solo river, Java (Dubois. 1891). The material from Trinil 

includes a thick boned calotte and some femoral remains with disputed 

associations (Day and Molleson. 1973, Jourdan, 1984). Dubois (1894) named a 

new species and genus, Pithecanthropus crrctus, on the basis of this material. 

Weidenreich (1940) has since accommodated it within Homo crrctus but has 

given it subspecific status Ilomo erectus jaºvcnsis whilst Dobzhansky (1944) 

Included it within homo erectus erectus. 

Further Javanese material which may be conspecife includes a juvenile 

cranium from Modjokerto (von Kocnigswald, 1936, Tobias and von Kocnigswald, 

1964 but see Jacob, 1982-Pithccan hropus modjokcncnsis) and certain of the 

rinds from Sangiran, (e. g. Sangiran 2, Oakley ct a!, 1975). Day (1986) lists some 

thirty specimens which have been recovered from Sangiran including, partial 

crania, mandibles, and teeth. The Pithecantluopus IV (Sangiran 4) calvarium, 

maxilla and teeth have been attributed to a different group (PAccanthropus 
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robustus) from the Trinil remains by von Kocnigswald (1950). Campbell (1964) 

has, however, lumped Sangiran 4 and the Trinil remains together. 

Two Javan sites, Ngandong and Sambungmachan. have yielded fossil 

evidence of a hominid whose morphology is in some respects like that of Homo 

erectus and in others (e. g. cranial capacity) more like 110ºno sapiens. This 

material has at various times and by various workers been attributed to 

Pithecanthropus soloensis (Jacob, 1982), Homo sapiens soloensis (Orchiston and 

Sesser, 1982) and 11on: o errctus (Santa Luca, 1980, Pope and Cronin, 1984) 

Dating of Javanese sites 

The determination of dates for these Javanese fossils has proved a 

considerable problem. 

The Trinil and Sangiran remains have been recovered from two beds, the 

older is termed the Pucangan, the younger the Kabuh. The Trinil material and 

the Sangiran material of more recent aspect have been recovered from the 

Kabuh beds which have been dated at about 0.5-0.83 m. y. B. P. (von 

Koenigswald, 1964). The older Sangiran (e. g. Sangiran 4) material was recovered 

from the Pucangan bed which has been dated at 0-8- 13 million years (Pope 

and Cronin, 1984). The dating of the Ngandong and Sambungmachan material 

is highly problematical (Semah, 1982) though üartstra (1983) has suggested that 

it may be relatively young (from the Upper Pleistocene). 
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China 

Further material attributed to Homo erectus has been discovered in China. 

The major finds were made at Zhoukoudian (Choukoutien) (Wcidenrcich, 1936, 

1937a, b, 1941b, 1943, Black, 1931) and included calvaria, teeth, mandibles and 

postcrania from about 50 Individuals. Most of this pre-war material was later 

lost during the upheavals of the 1940's. Renewed excavations have, however, 

resulted in the discovery of several teeth, cranial, mandibular, and postcranial 

fragments (Woo and Chao, 1954, Woo and Chao, 1959, Chiu ct aL, 1973). 

Further finds from China include a calvarium, cranial and mandibular 

fragments and several teeth from ITexian (Iiuang et aL, 1981. Wu, 1983), teeth 

from Yuanmou, Yunxian County, Yunxi County and Nanzhao County (Wu, 1981), 

a mandible, a tooth, and a partial cranium from Iantian (Woo, 1964,1965) 

A cranium has been recovered from Dali, Shaanxi province (Wang ct al., 

1979). It was initially allocated to Homo crrctus though more recent studies 

have suggested it has a number of more sapient features and that it could be 

related to other non-erectus Chinese material (Wu, 1981). 

Dating of Chinese sites 

The dating of the Zhoukoudian cave deposits is problematical. Faunal 

correlation indicates an age of about 400,000 years H. P. (Kurten. 1959) whilst 
Wu (1981), in summarising data from fission track, uranium thorium series, 

palcomagnetism, and thermoluminescence, dates the upper layer at 230,000 years 

D. P. and the lowest at 0.5 m. y. D. P. Faunal correlations between the i texian 
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site and Zhoukoudian layers indicate a date of about 0.25 m. y. B. P. (Xu and 
You, 1984) 

The Lantian material has been attributed to an earlier period than that 

from Zhoukoudian (in the region of 0.5-0.8 million years B. P., Liu and Ding, 

1984) and the Dali cranium has been given a later date (0.128-0.25 m. y. B. P., 

Liu and Ding, 1984) 

Homo crectus from Europe 

A number of fossils from Europe have been compared with the Homo 

erectus material from China. 

The putative crcctus material includes, amongst other, more scattered and 

fragmentary remains (sec Howells, 1980), a mandible from Heidelberg (West 

Germany), cranial fragments from I3ilzingslcbcn (G. D. R), a cranium from 

Petralona (Greece) some deciduous teeth and an occipital fragment from 

Vertesszollos, (I tungary) and some cranial, mandibular, and pelvic fragments from 

Arago, (France). 

In general, however, the material is not identical to the Asian specimens 

and some may show a number of derived "Neanderthal" or Homo sapiens 

characters (Stringer, 1984). Howell (1976), Andrews (1984) and Stringer (1984) 

have concluded that Homo erectus cannot be recognised In Europe at all. The 

affinities of this material will be considered in more detail below. 
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Homo crrctus from Africa 

Various workers have described Homo errctus-like remains from South, 

East and North Africa. 

Southern Africa 

The southern African evidence for this taxon rests with two groupings of 

material. 

1. Those remains which have been recovered from Swartkrans and which were 

originally assigned to " dan: lcropus" (e. g. SK 15). More recently it has been 

suggested that at least some of this material is more closely related to Homo 

habilis (sec previous section). 

2. The Kabwe cranium and associated rinds, the Cave of Hearths mandible and 

the 11opefield calvaria (Oakley et aL, 1977) from southern Africa, together with 

the Bodo skull from Ethiopia. 'These may represent a single population (Howells, 

1980) which has been (contentiously) ranked as homo erectus (Coon, 1962 but 

see IIrose and Wolpoff, 1971). 

East Africa 

Several fossilised remains which have been likened to Homo crrctus have 

been recovered from OlduvaI Gorge. The most complete cranial fragment Is a 

calvarium, 0.11.9. recovered from Upper lied 11 (Leakcy, 1961a). Other material 

from Olduvai which has been attributed to Homo crraus includes cranial and 

mandibular fragments, dental remains, a femoral shaft and a partial hip bone 
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(see Day, 1986 for a full list) from various sites and from Beds II and IV. 

East of Lake Turkana, Kenya, from the Koobi Fora region a number of 

significant rinds of cranial and postcranial material attributed to Homo erectus 

have been made. These include a well preserved cranium, KNM - ER 3733 

(Leakey, 1976), a calvarium, KNM - ER 3883 (Walker and Leakey, 1978) and a 

number of teeth, mandibles, and postcranial bones (Howell, 1978). 

More recent work on the west side of Lake Turkana has uncovered a 

remarkably complete skeleton of a youth, KNhi - WF 15000, which has been 

attributed to the same taxon as the East Turkana material described above 

(Brown, Harris, Lcakcy, and Walker, 1985). 

Other East African material which has been attributed to or associated with 

Homo erectus includes the Ndutu cranium from Tanzania (Clark, 1976, but see 

Brauer, 1984), the Kapthurin mandible from ßaringo (Leakcy ct aL, 1969 but sec 

Howells 1980) and cranial fragments from Member K of the Shungura formation, 

lower Omo Basin and Gombore 11 on the Awash river both in Ethiopia (Nowell, 

1978). 

Nonl: wcsr Africa 

Material from North Africa which has been attributed to homo erectus 

includes mostly mandibles, but also teeth and cranial bones from Ternifine, 

Algeria, Thomas Quarries, Sidi Abderrahman, and Rabat, Aiorrocco and a 

calvaria from Sale, Morocco, (Howells, 1980). The attribution of this material 

to Homo erccrus is a matter of debate (see Howell. 1978, Howells, 1980). 
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Dating of Africa: sites 

Considerable doubt exists regarding the presence of 116": o erectus in Africa 

(see below). The best preserved remains have come from Olduval and Koobi 

Fora. 

The Off 9 calvaria was located above tuffs dated 1.25 m. y. B. P. and below 

the lower part of Bed III (1.2 m. y. B. P.. Leakey and Iiay, 1982). The Bed IV 

material was found between strata dated 0.75 m. y. B. P. and 0.6 m. y. B. P. (Leakcy 

and flay, 1982). 

The Koobi Fora material was found between tuffs dated between 1.3 and 

1.85 m. y. B. P. (Brown et aL 1985) and the KNhi - WI' 15000 skeleton is dated 

at about 1.6 million years B. P. (Brown. Harris, Leakey, and Walker, 1985). 

The cranial morphology of specimens attributed to Ifomo erectus 

It is clear from the foregoing discussion that the name Homo erectus has 

been applied to a very wide range of material from different localities and with 

different morphologies. It is therefore impossible to give an all -encompassing 

description of the cranial morphology of this taxon. I shall, instead, concentrate 

on a general description of those cranial features which seem to unite the 

material described above (this will inevitably include s)mnplesiomorphous as well 

as synapomorphous characters) and follow this with a discussion of the 

differences encountered between those fossils included in the study presented 

later in this chapter. 
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General Morphology (Howell, 1978 unless otherwise indicated) 

The bones of the vault arc thick especially in the bregmatic region. This 

is associated with marked parasagittal depressions. The maximum vault breadth 

is at or toward the cranial base. The frontal is low and receding and the parietal 
Is flatter longitudinally and more angular transversely than In !!. sapiens and may 

show a true angular torus (Stringer, 1984), the occipital Is sharply angulated with 

the upper scale generally shorter than the lower and with a marked torus. The 

general cranial shape is long and low (Stringer, 1984). 

The foramen magnum is angulated between its nuchal and basisphenoidal 

planes, the foramen lacerum and the petro- occipital fissure may be absent, the 

carotid canal Is small. The mandibular fossa Is deep, short and set relatively 

laterally, the auditory meatus is on or just above the nasion-opisthion line, the 

mastoid is variable In size and may be large with a projecting anterior portion 

and the posterior portion may form a lateral bulge of the cranial wall. 

The facial skeleton has a heavy, projecting supraorbital torus continuous 

with the glabellar torus. There Is a distinct supraorbital tubercle and these may 
be a supratoral sulcus. The infraorbital margin is rounded and at the same level 

as the orbital floor. The face is relatively small though broad and is moderately 

to slightly prognathous with reference to australopithecines. The nasal bones are 

wide and the maxilla has a strong anterior facics and alveolar processes. 
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Javanese material - SANGIRAN 4 

The Sangiran 4 cranium is represented by a vault comprising the posterior 

3/4 of the parietals, an entire occipital including the foramen magnum, and the 

maxillae. It differs from the condition described above in displaying, in the 

reconstruction, a very low vault, a marked frontal keel, a large occipital torus 

continuous with the supramastoid ridges and in having extremely well developed 

muscular ridges. There is considerable alveolar prognathism and the zygomatic 

bones arise near the alveolar borders. Its cranial capacity is estimated at 908 cc. 

(Holloway, 1981). 

Chinese material - "Sinan: hropus pckinrnuis" (Black, 1927) 

The Chinese material differs from the Javanese in several ways. The 

average cranial capacity is greater (915cc. to 1225cc., Weidenreich, 1943), the 

skulls have a more rounded supraorbital torus and a higher forehead, the teeth 

are smaller, the palate is more rounded, and the occiput is less angular. 

African material - KNAt- ER 3733 

Stringer (1984), Wood (1984) and Rightmire (1984a) have noted that 

KNM - ER 3733 differs from the Asian representatives of this grade in having 

different proportions of the occipital bone, no fissure separating the mastoid from 

the petrosal crest of the tympanic, less well defined metopic, coronal, sagittal and 

bregmatic prominences, no true angular torus on the parictal, a less robust 

tympanic plate, thinner vault bones, a smaller interorbital breadth and a longer 
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narrower face. Holloway (1983) has estimated this cranium to have a capacity of 

848 cc. 

B. Taxonomy and Phylogcny 

The term Horno erectus was first applied to certain of the remains from 

Java and China (Weidenreich, 1940). Since this time, however, it has been 

applied to a number of remains from a wider geographical range (see above and 

Howells, 1980). 

The extension of usage of the nomen to include material from Europe 

and Africa has been a source of debate. Stringer (1984) has considered the 

cladistic relationships between the putative "erectus" material of Europe, Homo 

erectus from Asia, supposed African members of Homo errs us, and Neanderthals 

and modern humans. fie concludes that only a grade definition of Homo erectus 

built around a variety of general features, many of which are plesiomorphous, 

can practicably include the African and Asian material. Only the Chinese and 

Javanese fossils (excluding Ngandong) are satisfactorily defined by a suite of 

derived characters. The early African fossils "would have to be regarded as 

primitive members of this grade lacking many of the specialised characters linked 

with increased robusticity in the later Asian forms". Of the European material 

which he examined, Including the Petralona. Arago, Bilzingsleben and 

Vertesszollos specimens, he claims that "departures from the Homo erectus s. s. 

condition predominate over resemblances In diagnostic characters". lie states 

that, overall the evidence favours the classification of hominids such as Petralona 
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and Arago as Homo sapiens s. L. 

Wood (1984) has further examined the cladistic relationships of material 

from Africa and Asia which has been included in Homo errctus. He defined 

the taxon on the basis of the Asian remains and identified a number of 

autapomorphies including features of the occipital torus, the frontal bone, and 

the ratio between occipital and parietal arcs. He states "preliminary assessment 

suggests that the morphology of the occipital and frontal regions of KNM - ER 

3733 and 3883 is not sufficiently characteristic (with the exception of the 

occipital-parietal arc ratio) of H. erectus (sensu stricto) to merit their automatic 

inclusion in If. erectus". 

The results of Stringer's and Wood's studies are strongly suggestive of the 

need to make a distinction between the cladistic view of Homo crcctus which 
is able to define only certain of the Asian material by autapomorphics and the 

gradistic view which defines a more widespread distribution by a number of 

plesiomorphous characters. 

The contrasting view is given by Rightmire (1984a) who compared the 

East African "erectus" material with that from Trinil and Sangiran. lie indicates 

that the anatomy of the tympanic plate and glenoid cavity Is broadly similar In 

all these specimens and that this differs from that found In Homo sapiens. lie 

finds similarities in the flexion of the occipital and In the presence of a 

transverse torus and states "while there is variation In all these features, 

consistent regional distinctions are not easily defined". lie Indicates that the 

Asian sample exhibits more sagittal keeling, some differences In the shape of the 
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supramastoid crest and a more robust tympanic plate than the East African but 

concludes that the "evidence suggesting overall similarity in form is much more 

striking". 

A synthetic view is given by Bilsborough and Wood (1986). They performed 

a phenetic and a cladistic analysis of "early" Homo erectus from East Africa, 

"late" Ifomo erectus from Zhoukoudien and Indonesia, a number of 

australopithecines and habilines, certain European Neanderthals, and a collection 

of modern human crania. The phenetic studies "suggest a distinct break between 

"early" East African II. erectus and the earlier non-erectus remains". These 

studies also demonstrated morphological differences between the "early" African 

and "late" Asian Homo crcctus groups. These were, however, less than those 

between the "early" African Non: o erectus specimens and KNM - ER 1470 or 

homo habilis s. s.. Cladistic analysis suggests that Homo erectus ss. has to be 

defined by fewer characters than is normally the case and if the definition is 

restricted to autapomorphies one of the authors (Wood) feels that only OIl 9 

is a suitable East African candidate for inclusion in this taxon. I3ilsborough and 

Wood differ in their evaluation of the relative utility of cladistic and phonetic 

methods but agree that there is good evidence of temporal variation within 

Homo erectus. Bilsborough sees continuity between Homo erectus and Nomo 

sapiens, Wood interprets the evidence as suggesting that Homo habilis "has equal, 

if not greater, claims to be regarded as the sister group of homo sapiens". 
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HOMO SAPIENS 

A. Morphology and Provenance 

Worldwide there has been a considerable amount of material recovered which 

spans the period between the existence of Homo erectus and the current 

geographic subgroups of Homo sapiens sapiens. Evidence from mitochondrial 

DNA suggests that the races of mankind share a common African female 

ancestor some 200,000 years ago (Cann et aL, 1987, also see Stringer, 1984, p. 

123 and Stringer and Andrews, 1988). Unfortunately genetic evidence says 

nothing direct about the morphology of our common ancestor, for this we have 

to examine the fossil record. 

In the preceding section it was noted that fossils attributed to Ilomo erectus 

span the time range 1.7 - 0.2 m. y. B. P. This time range overlaps that from which 

there is evidence of "early archaic" Homo sapiens (see Day and Stringer, 1982, 

Stringer, 1987b, Brauer, 1984). Examples of crania which arc attributed to this 

group by some (e. g. the Petralona cranium, Stringer, 1987b) have already been 

discussed in the preceding section. In this section I shall attempt a summary of 

those groups of fossils which existed either contemporaneously with 

representatives of (at least Asian) homo erectus or in the Intervening span 

between Homo erectus and the current geographical subgroups of 116": o sapiens 

sapiens. I shall first list the material by geographical region, grouping fossils by 

what has been said of their morphology and dating. Later I shall attempt to 

bring this material together in a synthetic review of what has been said of its 

phylogeny. This consideration is by necessity brief. Its purpose being to set the 
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scene for the later parts of this chapter. More space is devoted to the material 

which is studied later than to the groups which are not sampled. 

The geographical distribution of fossil homo sapkns 

Africa 

Early archaic Honzo sapiens 

Earlier in this chapter I have mentioned the material from Ternifine, 

(Algeria) and from Thomas Quarries, Sidi Abderrahman, Rabat and Sale 

(Morocco) which has been considered to represent Homo erectus (but see 

Howells, 1980 and Howell, 1978). Brauer (1984) places most of these fossils in 

the span 0.45-0.2 m. y. B. P. whilst ilublin (1985) places the Ternifine material 

at about 0.6 m. y. B. P. Further African material which spans roughly the same 

time includes that from Bodo, Ndutu, 11opefeld (Elandsfontcin) and Kabwc 1 

(Broken Bill 1) (0.4-0.125 m. y. B. P.. Brauer, 1984). This latter grouping of 

material (? + Rabat, sec Brauer, 1984, Rightmire, 1980) has been considered 

to represent "early archaic Homo sapiens" together with specimens such as 

Petralona and Arago from Europe (Brauer, 1984, Rightmire, 1984b, Stringer, 

1987b) though other workers may disagree (e. g. Ndutu, Clarke, 1976). The 

Kabwe 1 (Broken Hill 1) cranium from Zambia is included in this study. 
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Cranial Morphology of Kabwe 1 (based upon Howell, 1978) 

The cranium has a low vault and is long and ovoid. The vault bones are 

thinner than those of Homo erectus (see earlier). The frontal is low and 

relatively flattened (Brauer, 1984) and there is a metopic ridge. The superior 

temporal lines are strongly marked. The occipital is sharply angled with the lower 

scale flat and the upper transversely curved. The occipital torus is strong, 

narrowing laterally. There is no evidence of an occipital bun (Rightmire, 1980). 

The foramen magnum is long relative to its breadth and the occipital condyles 

are long and narrow. There is a small foramen lacerum and narrow foramen 

ovale. The mandibular fossa is wide and deeply concave and the articular 

eminence is broad and low. 

The face, placed below a massive, laterally projecting supraorbital torus with 

a swollen, downwardly displaced glabellar portion, is long, particularly in the 

maxillary alveolar portion. The orbits are large, deep and approximately 

quadrangular, the interorbital region is wide and the naso - frontal process of the 

maxilla is strongly developed. The nasal aperture is broad and rounded. The 

palate is U-shaped, deep and displays high, robust alveolar processes. The 

maxilla shows only a faint suborbital (canine) depression (Brauer, 1984). The 

malar region is massive and low set, with a broad root of the zygomatic arch. 

Cranial capacity is estimated at over 1250 cc. (Howell, 1978). 

Klein (1973) has, on the basis of an evaluation of associated artifacts and 

fauna suggested a minimum age of 125,000 years for the Kabwe cranium. 
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Late archaic Homo sapiens 

From various sites in Africa there have been recovered a number of cranial 

remains which have been attributed to a group of "late archaic Homo sapiens". 

These include the cranial and dental remains from Djebel Irhoud (Jebel Ighoud), 

Morocco, the Iaetoli Hominid 18 cranium from Tanzania, certain of the cranial 

remains from the Omo river region, Ethiopia (Omo I, ? Omo II, Rightmire, 

1984b, Brauer and Leakey, 1986, though Day and Stringer. 1982, regard Omo I 

as being anatomically modern), the ES - 11693 cranium from Kenya (Brauer and 

Leakey, 1986) and the Florisbad cranium. from South Africa (for a more 

complete catalogue see Brauer, 1984, Stringer, 1987b and in press, Rightmire, 

1984b). 

These crania display a more "modern" morphology than representatives of 
"early archaic Homo sapiens". In general they have a larger cranial capacity, a 

more rounded and expanded vault, less cranial robustness including smaller 

supraorbital and occipital tori and less occipital angulation. a more curved frontal 

and a lighter facial morphology including less heavily built maxillae. They arc 

dated in the range 150-40 t. y. B. P. (see Brauer, 1984, Rightmire, 1984 for dates 

and morphology). No representatives of this sample are included in this study. 
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Anatomically modern Homo sapiens 

As from most regions of the world a number of anatomically modern 

remains have been discovered in recent deposits in Africa. Included in this study 

are the crania from Fish Hock (Keith, 1931) and Gamble's Cave 4 from Kenya 

(Leakey, 1935). Their morphology is essentially modern in all respects and they 

have been compared to the Bushman (Fish flock, Keith, 1931) and Nilotic 

Negroes (Gamble's cave, Rightmire, 1975). 

The Gamble's cave 4 cranium has been dated at about 8000 years B. P. and 

the Fish flock cranium at 36000 +/- 2400 years B. P. on the basis of Carbon 

14 (Oakley et al., 1977). 

Europe 

Two groups of late Pleistocene hominids are well documented in Europe. 

The majority of specimens are representatives of Homo sapiens which show 

relatively modern morphology. The second group consists of material, particularly 

from western Europe, collectively known as "classic" Neanderthals. 

Prior to the Neanderthals there is a relatively scant record of archaic 
Homo. Whether these remains represent archaic Homo sapiens or demonstrate 

a morphology derived in the direction of Neanderthals (and whether or not 

Neanderthals are ancestral to Homo sapiens) is a matter of debate (see later). 

For descriptive purposes I shall lump all of the European material into three 

groupings. The first I shall refer to as ante - Neanderthals (see Brauer, 1984 and 

Stringer and Andrews, 1988), the second as the ("classic") Neanderthals and the 
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third as anatomically modern Homo sapiens. 

(a) Ante - Neanderthals 

A number of fossils predate the "classic" Neanderthals. These include the 
Petralona cranium, from Greece (see previous section), cranial fragments from 

Arago, France, skull fragments from Swanscombe, England, and a damaged 

cranium from Steinheim, Germany (see Oakley et d, 1971, Stringer et aL, 1984). 

Only the Steinheim cranium is included in this study. 

Crania! Morphology 

Their cranial morphology ranges from a pattern close to that of the 

representatives of archaic Homo sapiens from Africa (sec earlier, e. g. Petralona - 
Brauer, 1984) to a mixture of plesiomorphous cranial characters and derived 

Neanderthal characters. 

The Steinheim cranium has been dated as "Riss" or "Mindel - Riss" (Stringer 

et aL, 1984, > 125,000 years B. P., Dennell, 1983). The face shows two non - 

Neanderthal characters -a canine fossa (Vandermecrsch, 1978) and a flattened 

mid region (Stringer, 1978). The occipital is thin and rounded with a gracile 

torus. These apparently non -Neanderthal features can be set against the 

apparently derived Neanderthal-like nasal morphology and the presence of a 

suprainfac fossa (Ilublin, 1978, Stringer et aL, 1984). 
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(b) Neanderthals 

A number of definitions of the Neanderthals have been put forward. 

Hrdlicka (1930; 328) used a cultural definition: "the man and period of the 

Mousterian culture". Brace (1964) extended this to include an anatomical 

criterion: "the men of the Mousterian prior to the reduction in size and form 

of the Middle Pleistocene face". There are many problems in using a culturally 

derived definition not least of which is the difficulty in adequately defining the 

scope and boundaries of such traditions (see Mann and Trinkaus, 1973). 

Brose and Wolpoff (1971) have defined the "Neanderthals" morphologically 

and temporally: "all hominid specimens dated within the time span from the 

end of Riss to the appearance of anatomically modern 11. sapiens ... Ncandertals 

evince crania expanded to modern size and posterior teeth reduced to modern 

size, along with anterior teeth and supporting facial architecture maintained in 

the very robust H. erectus condition". This is so broad as to encompass a very 

large range of material which is unlikely to be conspecific. 

The term "Neanderthal" arose as a means of grouping together those 

specimens which shared a number of features with the Neander Valley Feldhofer 

cave fossil. As more and more discoveries have been made the term has been 

extended to a greater range of morphologies. This has led to the widespread 

usage of the term "classic" Neanderthals to refer to a more limited group of 

fossils which together exhibit a more restricted variability. They are concentrated 

towards the beginning of the last glacial period (80,000-40,000 years B. P., Mann 

and Trinkaus, 1973, but see Dennell, 1983 -? double these dates). 
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From Europe a number of remains have been attributed to the "classic" 

Neanderthal group including, inter alia, those from the Neander valley, 

(Germany), La Chapelle - aux - Saints, La Ferrassie and I. e Moustier (France), 

Monte Circeo, (Italy), and Gibraltar. Together these make up a large sample 

of European "classic" Neanderthals (see Mann and Trinkaus, 1973, Stringer et aL, 

1984, Smith, 1984). 

Cranial morphology (Stringer, et aL, 1984) 

The morphology bears a superficial resemblance to that of the 

representatives of "early archaic Homo sapiens" which was described above. The 

reason for this is generally plesiomorphy. The Neanderthals are said to show 

derived (synapomorphous and autapomorphous) morphology in a number of 

features (Stringer et al., 1984) 

The Neanderthal cranial vault is long and low. the lambdoid region is 

flattened and there is occipital protrusion (Chignon or occipital bun). The cranial 

shape is spherical or oval in nomta occipitahr ("en bombe"). ? here is a large 

occipito - mastoid crest relative to the size of the mastoid process, a supra - 
iniac fossa is present, and there is often an anterior mastoid tubercle. The 

external auditory meatus is positioned high relative to the root of the zygomatic 

process. There is a relatively large sphenoidal angle and the cranial base is 

flattened. 

The midfacial region is prognathic and the nasal aperture is large with a 

lowered and sloping nasal floor. The maxilla and the double arched supraorbital 
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torus are extensively pneumatised. The dentition is positioned anteriorly such that 

there is a marked retromolar space and the mental foramen is usually under M,. 

(c) Post - Neanderthal Homo sapiens 

Stringer et ah (1984) list a number of western European and Smith, (1984) 

lists central European fossil representatives of Homo sapiens which post date 

the Neanderthals and which show a relatively modern morphology. 

L Nestern Europe 

From France a number of Upper Palaeolithic specimens are known. The 

fossils from Cro-Magnon (at least five Individuals) show considerable variation 

in their supraciliary and occipital morphology. The face of Cro-Magnon 1 ("the 

old man") contrasts with the Neanderthal face In being relatively flattened but 

not in being positioned well forward of the middle portions of the vault 

(Stringer, et al., 1984, Wolpoff, 1980b). The frontal is rounded. Frayer (1984) 

includes the Cro-Magnon remains In a Middle Upper Paleolithic group which 

he dates between 26 and 19 k. y. B. P. but the specimens may be older than this 

(Stringer et al. 1984) 

The Chancelade skull, also from France, is dolichocephalic with a raised, 

keeled vault. The frontal region contrasts with that of the Cro-Magnon people 

in rising vertically and in having a less pronounced supraorbital relief. The face 

is long, broad and orthognathic with a narrow nasal aperture. This skull has been 

compared to that of modern Eskimos (Morant, 1926, Sollas, 1927) though the 
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resemblance is now considered to be superficial and of no evolutionary 

significance (Stringer, et aL, 1984). 

From Britain a number of Upper Paleolithic and Mesolithic skeletal fossils 

have been recovered (sec Oakley et aL, 1971, Stringer et aL, 1984). Included In 

this study is the cranium recovered from Gough's cave, Cheddar In 1877. and 

described by Seligman and Parsons (1914 - 15). These workers considered that 

the face is no more prognathic, and the vault no thicker than that of modern 

British crania. They do note, however that it is longer and deeper In the 

occipital region, that the orbits are wider and that there are minor differences 

in the frontal region. They conclude that overall "the cranium alone could not... 

be distinguished from that of a mediaeval Englishman". This view is consistent 

with the relatively recent dates attached to the cranium (approx. 9 k. y. b. p., 

Oakley et aL, 1971). 

u. Central Europe 

The central European finds of early modern Homo sapiens have been 

discussed by Smith (1984). Examples which are included in this study are crania 
from the samples from Brno, Mladec and i'redmosti in Czechoslovakia. 

The Brno (Brunn) 3 cranium dates from 26-19 k. y. B. P. (Frayer, 1984). 

lt has a distinctly modern appearance. The supra-orbital region Is not developed 

Into a pronounced ridge, the forehead Is low and receding. the orbits are long 

low and slanting and the canine fossa is shallow. Matiegka (1929) concluded that 

the skull may be that of a female and that It resembles closely the hiladec 1 
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cranium. 

The Mladec 1 cranium has a moderate upper facial height compared to 

other Upper Paleolithic specimens and a small facial breadth. The canine fossae 

are shallow and mid - facial prognathism is minimal (Wolpoff, 1980b). The 

supraorbital morphology is like that of modern Europeans. The cranium. which 

may be that of a female (Smith, 1984), dates from 33-26 ky. B. P. (Frayer, 

1984). 

The Predmost 3 cranium is considered to be that of a male and is robust 

though its overall morphological pattern is clearly modern. Its brow ridges are 

well developed, its cranial vault is low and the face displays moderate 

prognathism (Smith, 1984). Frayer (1984) places it between 26 and 19 ky. B. P. 

Asia & Australasia 

I. Westen: Asia 

In a review of the fossil evidence for the recent evolution of Homo sapiens 
in western Asia, Trinkaus (1984) considered the Upper Pleistocene human 

remains to fall largely into four groups. 

The oldest sample consists of the partial mandible from Azykh cave in the 

Lesser Caucasus, the "Galilee skull" from Mugharct cl-Zuttiych and skeletal 

fragments from Tabun layer L, Israel, and remains from Atugharct cl - Kcbara 
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and Gesher Benot Ya'acov, Jordan. The youngest sample comprises anatomically 

modern humans from the Aurignacian of Mugharet el - Kebara and 'En - Gev 

1. 

The middle two groups "abut the transition from archaic to anatomically 

modern humans" (Trinkaus, 1984). The older of these two groups resembles the 

Neanderthals of western Europe and includes the remains from Amud and 

Tabun layers C and D, Israel and Shanidar, Iraq (McCown and Keith, 1939, 

Suzuki and Takai, 1970, Trinkaus, 1983). The more modern sample includes the 

material from Djebel Kafzch and Mugharet es - Skhul, Israel. The Skhul remains 

are estimated to date at about 40 k. y. B. P. whilst the dating of the Kafzeh 

sample has been more problematical with some authorities suggesting an age of 

about 90 k. y. B. P. and others favouring a date more in line with that of the 

Skhul material (see Trinkaus, 1984, Stringer, 1988). 

The cranium of Skhul V from Mugharet cs-Skhul is Included in this study. 
Its morphology appears archaic in comparison to modern humans though its vault 

Is high and rounded and the occipital region is full and rounded. Its calotte 

height index, zygomaxillary angle and relative mandibular size are similar to those 

of the peoples of the European Early Upper Paleolithic. It has a large robust 

face with a well developed supraorbital torus which is continuous over the 

glabella. Midfacial prognathism is less than that of European Neanderthals and 

Trinkaus (1984) concludes that the face is robust but otherwise anatomically 

modern. 
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ii. The Far East 

The remains from Sambungmachan and Ngandong, Java and from Dali, China 

have been described earlier. It has also been noted that they differ from tlorno 

erectus and may be representatives of archaic 1fo1no sapiens (but sec Wolpoff 

et aL, 1984). 

More modern material from Java includes the remains from Wadjak (Oakley 

et aL, 1975). These specimens remain alone in the span between the Ngandong 

remains and the present in Java. They may be of a recent, perhaps Holocene 

date (Wolpoff et aL, 1984). 

The cranium Wadjak 1 has been considered female (Oakley et aL, 1975). The 

cranial vault has been claimed to be thick and the lambdoidal region has been 

claimed to be flattened (Wolpoff et aL, 1984). There is an occipital hems-bun 

and the frontal slope is comparable to that of modern Chinese crania. The 

supraciliary arches are only moderately developed and the nasal bones are flat. 

The midface is broad and the palate and mandible are robust. There is a degree 

of alveolar prognathism and an Indistinct nasal margin. The zygomatic process 

of the maxilla forms a flat surface and there Is a minimal canine fossa. Wolpoff 

et aL (1984) consider that the cranium reflects affinities to both Australoid and 

Chinese material. 
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im Australia 

A number of anatomically modern remains have been discovered in Australia. 

They are variable in morphology and their dating is unclear (? >30 k. y. B. P. - 

present, see Stringer, in press). 

Included in this study is the Keilor cranium (%Vunderly, 1943) which Wolpoff 

et aL, (1984) consider to be similar to the Wadjak cranium described above. 

They note that this similarity is especially strong in the size, proportions and 

flatness of the face but that the Keilor fossil contrasts with the Wadjak cranium 

in possessing a weak angular torus, a greater glabellar prominence, smaller and 

more everted malars and in lacking an occipital hemi -bun. They suggest an age 

of about 13 ky. B. P. 

B. Taxonomy and Phylogeny of Hama sapiens 

The major current debate regarding the recent evolution of Ilomo concerns 

the relationship of the groups considered above and termed "archaic Homo 

sapiens", "pre -Neanderthals" and Neanderthals to the modern groups of Homo 

sapiens sapiens. At the extremes two models of recent human evolution can be 

distinguished, the "Neanderthal phase" and the "Noah's Ark" models (llowells, 

1976). 

The first, the "Neanderthal phase" model postulates a long period of 

Independent evolution for the current geographic subgroups of mankind 

(Weidenreich, 1947, Coon, 1962, Brace, 1964, Radovcic, 1985). This model 

suggests that the current variation observable between modern racial groups has 
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its origin in the Middle Pleistocene. It requires that the evolution of each racial 

group occurred independently and in parallel from each of the more ancient 

stocks of Homo considered above. 

The second, the "Noah's Ark" model postulates a single, relatively recent 
(Upper Pleistocene) origin for Homo sapiens with subsequent worldwide dispersal 

(Stringer, 1985, Stringer, et aL, 1984, Stringer and Andrews, 1988). This model 

attributes the current variability of Nomo sapiens to the effects of recent 

geographic and cultural isolation. The more archaic (not anatomically modern) 

representatives of Homo are considered (save one - the founder population) 

to. have been largely replaced by anatomically modern migrants. 

A third view attempts to combine these two extremes by modifying the 

models to allow gene flow. In the "Noah's Ark" model interbreeding between 

modern migrants and pre-existing archaic groups can be invoked to explain 

apparent local continuities in the fossil record (Stringer ct al, 1984, Brauer, 

1984). Whilst in the "Neanderthal phase" model interbreeding can be invoked to 

explain apparent discontinuities in the fossil record and the morphological 

similarity of modern populations. 

It is clear from the work of several authors that the fossil record is 

equivocal. The European record in its western cxtreme shows evidence of 

morphological discontinuity between the Neanderthals and anatomically modern 
Homo sapiens (Stringer ct at, 1984) whilst the central and eastern European 

record seems to indicate a degree of morphological continuity (Smith, 1984). 

Smith (1984) and Stringer (in press) have noted that the central European 
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Neanderthals from Vindija and Sala show evidence of continuity with the robust 

but more anatomically modern specimens from Mladec and Predmost. Smith 

(1984) has concluded that "Neanderthals are reasonable candidates for the 

ancestral stock of modern Europeans". 

A cladistic approach to the resolution of the questions surrounding the 

Middle and Upper Pleistocene evolution of Homo has recently been taken by 

several workers. The aim has been to determine which. if any, characters are 

present in an autapomorphous state within the "classic" group of Neanderthals 

and to see if the earlier "pre-Neanderthal" populations display any of these 

states or whether they make plausible common ancestors for modern and 

Neanderthal Homo. 

Stringer(1985) in a study of the European Middle Pleistocene hominid 

fossil record discerns two groups, an older one comprising Mauer, Vertessollos, 

IIilzingsleben, Arago and Petralona fossils and a slightly younger one comprising, 

amongst others, the material from Swvanscombe and Steinheim. In the older 

group he finds little evidence of exclusive synapomorphies with either 

Neanderthals or modern humans and in the younger group he finds evidence 

to align them with the Neanderthals. lie aligns the archaic group with other 

material from Kabwe and Dali and suggests that "this group is morphologically 

close to an hypothesised morphotype for the common ancestor of Neanderthals 

and modern humans". Vandermeersch (1935) broadly agrees though he considers 

that the Arago and Pctralona remains show a maxillary morphology which is 

more representative of the Neanderthals. 
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It is not only in Europe that apparent evidence of local continuity is found. 

Trinkaus (1984) in reviewing the fossil evidence relating to the archaic/modern 

human transition from western Asia demonstrates two phases of apparent 

morphological stasis. The first is the stasis of archaic morphology (Tabun El, 

C2, Shanidar, Zuttiyeh, etc. ) and the second Is a period of stasis with gradual 

gracilization of the skeleton amongst more modern forms (Skhul, Quafzch, 'En - 

Gev, etc). By contrast the transition (which Trinkaus places at about 40 k. y. D. P. 

and lasting about 5-10 k. y. ) is associated with a complex process of anatomical 

alteration which occurred in a mosaic pattern differentially affecting the various 

skeletal regions. He takes this to suggest a significant elevation of Interregional 

genetic exchange. 

Wolpoff et aL, (1984) have reviewed the fossil evidence for the evolution 

of Nomo sapiens in Asia. They indicate a number of similarities In cranial 

morphology, including facial flatness, frontal keeling, exostoses on the jaw bones, 

and incisor shovelling, between the fossils of flomno cactus from China and later 

Homo sapiens material. They conclude that the evidence "supports only one 

interpretation 
.... regional continuity". 

The picture of regional continuity is also supported by the fossil evidence 

from Africa (Brauer, 1984). The difference lies, however, in the timing of the 

archaic/modern transition. Brauer indicates that there Is a considerable body of 

evidence from eastern and southern Africa that anatomically modern humans 

originated in those regions in the Middle and/or early Upper Pleistocene and 

that this transition was complete some 100 - 70 L y. H. P. This is considerably 
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earlier than the similar transition in other regions of the world. This leads 

Brauer to propose a phylogeny which Is comparable to that hypothesised by 

Stringer (1985, see above). An isolated population of early archaic Nomo sapiens 

(e. g. Arago, Petralona) in Europe developed Into later Neanderthals whilst 

archaic Homo sapiens (Kabwe, Ndutu) in Africa developed into anatomically 

modern Homo sapiens. Later migration of the modern humans Into the middle 

cast and Europe resulted In replacement of the pre-existing populations. Brauer 

does not exclude the possibility of hybridisation. 

Recently Stringer and Andrews (1988) have reviewed the modern genetic 
data and paleontological data concerning the origin of anatomical modernity in 

Norco sapiens. The genetic data (extant races) Indicate low Interpopulation 

diversity relative to intrapopulation divergences. Teere Is a greater genetic 

diversity amongst sub - Saharan African populations relative to other human 

populations and this is taken to Indicate a longer separation of populations 

within Africa than elsewhere. They consider that the paleontological evidence for 

an early appearance of modern humans in Africa and the Levant relative to 

other more peripheral areas and the late persistence of the Neanderthals In 

Europe Is consistent with "a dispersal event from Africa by way of southwest 

Asia". It is concluded that although an "African origin for Homo sapiens Is highly 

probable the exact time, place and mode of origin of the species cannot yet be 

determined". 
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Ill. PREVIOUS MULTIVARIATE STUDIES OF CRANIAL FORM IN 77IF3 

IIOMINIDAE 

Having reviewed the fossil evidence for the evolution of homo and before 

proceeding to describe the multivariate study of the efficacy of different methods 

of cranial form description in certain fossil hominids it is appropriate to review 

previous multivariate morphometric studies. Some have concentrated on material 

from a limited time span (e. g. Howells, 1970, Bilsborough, 1972, Stringer, 1974a, 

1974b, Clark, 1981, Brauer, 1984, van Vark, 1984, Brauer and Lcakey, 1986, 

IIilsborough and Wood, 1988) whilst others have considered material from a 

broader time span (e. g., Boyce, 1969, I3ilsborough, 1973,1984, O'Higgins and 

Williams, 1987). 

I shall review these studies according to this arbitrary subdivision beginning 

with studies of early hominid cranial morphology. 

I3ilsborough and Wood (1988) have undertaken an extensive study of 
hominid cranial diversity in which they have studied a wide range of material. 

They concentrated on Pliocene and early Pleistocene material and have, to date, 

reported the results relating to facial diversity. The facial region was described 

by 24 variables of which 20 were submitted to multivariate analysis. The 

multivariate analysis is based on generalised distances and Q-mode canonical 

variate analysis based on a correlation matrix. They concluded from the 

univariatc analysis of their data that there is marked variation in gross facial 

dimensions within early hominids due, at least in part, to variation in cranial 

size. A. boisci specimens have faces that are substantially longer and broader 
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than those of A. africanus and their malar regions are absolutely and relatively 

deeper. Only KNM - ER 1470 "comes near to matching the 'robust' 

australopithecines in malar development" and facial breadth. The multivariate 

analysis demonstrates that "both Australopithecus and Homo encompass 

comparable ranges of diversity in facial proportions" and that the maximum 

difference is between recent humans and the "robust" australopithecines. A. 

africanus is equidistant from If. habilis and other smaller Lower Pleistocene 

remains on the one hand and A. robustus on the other. KNM - ER 1470 is 

relatively isolated but its nearest neighbours include the "robust" 

australopithecines. Its "facial pattern is basically hominine, but ... In some 

respects mimics that of robust australopithecines". They state that, overall, the 

results indicate two broad patterns of facial proportions within hominids. One is 

characteristic of early hominids with opposite extremes within this group 

represented by A. boisci and If. habilis. hie other typifies hominids from the 

later Lower Pleistocene onwards, ranging from early "erectus" (KNM - ER 3733), 

with its relatively tall and narrow face, to later Homo. 

Clark (1981) has carried out a multivariate analysis of 8 craniofacial 

dimensions and indices in order to assess the phcnetic affinities of the SK 847 

composite cranium and the SK 15 and SK 45 mandibles (see earlier -- 7flomo 

habilfs). Ile statistically compared this cranium to representatives of "robust" 

(South and Cast African) and "gracile" (South African) australopithccines and 

"homo crcctus" (Asian and African). Ile performed a step -wise discriminant 

analysis in order to define a set of variables giving maximum between-group 
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discrimination and calculated Mahalanobis' distances. The results of his analysis 

suggested that the composite cranium is most similar to the South African 

"gracile" australopithecines whilst the SK 15 and SK 45 mandibles are most 

similar to his group of "Nano crruus". He concludes that this study raises the 

possibility that the cranium and mandibles (esp. SK 15) are not conspecific, 

alternatively if SK 847 and SK 45 are conspecific there is evidence of mosaic 

evolution. 

Brauer's (1984) approach to multivariate analysis differs from the previous 

two studies. He undertook principal component analyses (instead of 

canonical/discriminant analyses) of dimensions taken from restricted anatomical 

regions (frontal, parietal, upper facial) of representatives of archaic ! Io t: o sapiens. 

lie concluded from these analyses and from a number of comparative anatomical 

approaches that he could classify the African finds which he studied Into a 

number of grades: Homo sapiens "grade 1" (early archaic) which Includes amongst 

others Kabwc 1, Ndutu and Bodo, ! loin sapiens "grade 2" (late archaic) 

Including Florisbad, Omo 2, Lactoll 18, llomo sapiens "grade 2a" 

(Neanderthaloids - resembling Neanderthals) Including Jebel Irhoud and 

Mugharct el'Aliya, and Homo sapiens "grade 3" (anatomically modern). The 

representatives of "grade 1" could be subdivided Into northwestern. eastern and 

southern groups. Ile considers "grade 2" to represent a spectrum of morphology 

ranging from those which evolved from parts of the early archaic spectrum to 

those which resulted from hybridisation with anatomically modern humans ("grade 

3"). Ile states that "it appears likely that the North African Neanderthaloids 
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(Homo sapiens "grade 2a") developed out of the spectrum of the pre - 
Neanderthals and near eastern Neanderthals". 71is leads him to propose the 

phylogeny discussed earlier in which an isolated population of early archaic 

Homo sapiens (e. g. Arago, Petralona) in Europe developed into later 

Neanderthals whilst archaic Homo sapiens (Kabwe, Ndutu) in Africa developed 

into anatomically modern Ifomno sapiens. 

Brauer has further investigated the African fossil record of archaic Homo 

sapiens together with R. E. Leakey in a multivariate study of the Eliye Springs 

cranium, ES-11693 (Brauer and Leakcy, 1986). lie again performed principal 

component analyses based upon regional sets of variables. The authors conclude 

that the cranium has closest affinities to the late archaic Homo sapiens" ("grade 

2") material defined in Brauers earlier study. 

Van Vark (1984) has undertaken a multivariate analysis of form in a 

number of Middle to Late Pleistocene crania. fie calculated the Mahalanobis' 

distances between the fossil material on the basis of a pooled variance covariance 

matrix from a large sample of modern human crania. lie estimated missing 

values for damaged crania by multiple regression. His results indicate that the 

Broken 11111 (Kabwe), Petralona and Steinheim crania "while mutually being 

relatively close, are very distinct from all other skulls" (anatomically modern 
humans, Neanderthals, Solo and Asiatic Ilonro crrc: us). Furthermore, Asiatic 

1101no erectus is, in this study, closer to recent man than are Petralona. 

Steinheim or the Broken hill skull. This result led van Vark to conclude that 

since the circa 1 million year old "Pithecanthropus 2" "seems less different from 
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recent skulls than the skulls of Broken 11111, Petralona and Steinheim, it seems 

likely ... that the two separate lineages were already in existence at that time". 

Stringer (1974a), calculated Mahalanobis' D2, canonical variates and 

dendrograms from variable sets taken from localised and more general anatomical 

regions of a number of crania of later Pleistocene hominids. lie found several 

consistent trends in the analyses: a relatively large distance between "classic" 

European Neanderthals and anatomically modern populations; middle eastern 

Neanderthal - like crania (e. g. Tabun) whilst being similar to the "classic" group 

were closer to modern forms; and Skhul V and Omo I were always closer to 

modern crania than to the "classic" Neanderthals. The finding of a difference 

between the Tabun remains and Skhul V In their affinities for modern 

populations and Neanderthals is consistent with the outcome of a multivariate 

study undertaken by Howells (1970). 

Stringer (1974a) considered that the results cast doubt on the possibility of 

a close relationship between the "classic" Neanderthals and his Upper Paleolithic 

sample. He discerned differences in regional morphology between the "classic" 

Neanderthals and more anatomically modern forms. These included a larger 

nasio - occipital length, a narrower upper face and a high degree of mid - facial 

projection. The study indicated that the Broken Hill cranium approximated the 

Neanderthals in general vault form though the cranium is narrower, has a larger 

lambda-opisthion subtense, possesses a lower, longer and narrower frontal with 

larger supraorbital projection and is more like modern forms in parietal 

dimensions. Facially the Broken 11111 skull exhibited a generally similar facial 
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morphology to that of the cranium from Petralona. Comparison of the 

generalised distances between the Broken Hill cranium and recent populations 

from a wide geographic distribution "provided no support whatever for a 

polyphyletic scheme of human evolution". 

Lestrel (1974), has employed Fourier analysis (sec chapter 2) of the midline 

projection of the cranial vault of a limited sample of fossil hominoid crania in 

order to examine the applicability of this technique. lie has demonstrated that 

canonical analysis of the Fourier coefficients is plausible and that size influences, 

which swamp morphological influences, in the accompanying analysis can be 

usefully reduced by scaling the data for the magnitude of the first cosine 

component (a0 - sec chapter 2). 

I3ilsborough has undertaken extensive studies of the cranial morphology of 

a wide range of fossil hominids (ßilsborough, 1972.1973,1984, and see above) 

concentrating on their phcnctic affinities whilst Boyce (1969) has studied a wide 

range of fossil hominid crania in order to compare the multivariate approaches 

available at that time. 

Bilsborough (1973) calculated rates of morphological change between 

groups based upon Mahalanobis' distances calculated from cranial vault 

dimensions and elapsed time between the appearance of various taxa. Ile showed 

that during the Lower Pleistocene there were considerable changes in cranial 

vault morphology though these differences were occurring more slowly than those 

encountered in the Middle Pleistocene. The Upper Pleistocene has seen a 

reproportioning of the vault with the development of considerable morphological 
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diversity and little change in gross capacity. 

In a later study (Bllsborough, 1984) he employed a number of newer 

multivariate techniques in addition to the calculation of Mahalanobis' distances 

in a study of morphological change in cranial proportions during hominid 

evolution. These include a technique (which he calls phyletic scaling) for 

comparing morphological change within one grouping of taxa with that 

encountered in another and Generalised Procrustes Analysis which he uses in 

order to integrate the results of his different regional analyses. 

His matrix of Mahalanobis' distances indicates that there are similarities 

between A. africanus, Olduval It habilis and KNM - ER 1813 though the 

australopithecines differ in having less orthognathic faces and less retracted 

zygomatic processes. The "robust" australopithecines are widely divergent from 

these "gracile" forms and from later homo, especially In those regions Involved 

in masticatory activity. Early Homo differs from llama crrclus particularly In the 

upper face In having a less pronounced supraorbital torus and smaller breadths. 

Ile notes that "early homo ercctus" Is widely separated from later "crcctus" but 

feels that this can be accounted for by an ancestor-descendant sequence rather 

than two lineages. ßilsborough used the distance between Neanderthals and 

modern men to assess the significance of the differences encountered between 

other groupings of crania. lie considers that KNAM - ER 1813 Is very similar to 

llama habilis (Olduvai) and may be conspecific. This group is, in turn, very 

different from "early llama cactus". KNAM - ER 1470 Is distinctive, It resembles 

Homo erectus In neurocranial features but diverges widely in facial proportions. 
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Bilsborough employed generalised procrustes analysis to rotate, translate 

and scale the results from the analysis of each region so that the distance of 

each region from the group centroid was minimal relative to the distances 

between group centroids. Effectively this results in an appreciation of the 

morphological interaction of the various regions. In his study most cranial regions 

regularly clustered about each centroid indicating a high degree of morphological 

and functional integration. The exception was the complex of measurements 

relating to head balancing, probably because of a primary association with 

locomotor habitus. The relative positions of the centroids indicate "average" 

differences between groups and in this study they conformed to the broad 

consensus of their morphological relationships. The distinctiveness of A. boisci 

was emphasised and A. a/rrca: us was shown to differ from It habilis which was 

similar to early if. erectus. Early It. erectus was markedly separated from later 

H. erectus and there was a tight clustering of Middle and Upper Pleistocene 

remains. 

Summary 

From this brief review of multivariate studies of cranial form in fossil 

hominids it is clear that a number of approaches have been adopted. The 

commonest is to calculate Mahalanobis' distances from a selected set of angles 

and linear dimensions and to derive canonical variates from the resultant D 

matrix by Gower's (1966) Q -technique. Brauer has, however, preferred to use 

principal components analysis, presumably because of the difficulty of estimating 
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a pooled within group variance -covariance matrix which is applicable to fossil 

(of which there may only be one known representative) as well as living species. 

Generally the outcome of phenetic studies of the cranial morphology of 

fossil hominids is In agreement with the broad view of morphological 

relationships, though there are a number disagreements between the studies of 

different workers (e. g. Stringer, 1974a and van Vark, 1984, and see later). The 

studies have mainly served to confirm earlier subjective assessments but they 

have occasionally undermined previous viewpoints (e. g. the degree of similarity 

between early Neanderthal - like populations and later modern populations In 

different geographic regions, see Brauer, 1984, Howells. 1970, Stringer, 1974a). 

IIilsborough (1984) has indicated that multivariate studies can lead to new types 

of information, namely assessments of morphological/functional Integration. The 

main contribution of multivariate studies has, however, been the clarification and 

quantification of patterns of morphological similarity either between whole crania 

or between more limited morphological regions. 

Lcstrcl (1974) has shown the feasibility of using Fourier analysis to obtain 

a detailed description of regional cranial morphology and has further shown that 

the coefficients of the Fourier series can be usefully submitted to canonical 

analysis. A more recent Fourier analytic study of the cranial morphology of a 

number of living and fossil Primate species has been undertaken by O'lliggins 

and Williams (1987) who demonstrated that this technique allows the possibility 

of relatively automated data collection and have indicated that the outcome of 
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studies based on Fourier coefficients calculated from the cranium Is concordant 

with a broad consensus view of hominid cranial morphological relationships. 

There has been no formal comparison of Fourier and other descriptive 

techniques in hominid phenetics. 
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IV. A STUDY TO COMPARE DI IRI? NCI? S IN 711P. PA77T. RNS OF 

CRANIAL VARIATION OBSERVED ßi-111AMEN CERTAIN GROUPS OF 

FOSSIL HOMINOIDS USING FOURIER ANALYSIS AND IINfAR AND 

ANGULAR MEASUREMENTS. 

INTRODUCTION 

This third study has been designed to investigate the differences in patterns 

of variation of cranial form which are observed between certain groups of fossil 

hominids when different methods are used to describe cranial morphology. 

The background to the study of much of this material has been outlined 

earlier in this chapter. The studies of chapter 2 have indicated a high degree 

of concordance between the patterns of phonetic relationships demonstrated by 

a number of means. However, the comparisons of methods were based upon 

studies of apes and humans and may have been misleading because common 

to each distance matrix were large and small distances but few of intermediate 

size (this follows from the fact that there are large morphological differences, 

and therefore taxonomic distances, between ape and human OTUs but within 

apes and men the distances are small) - see fig. 2.19. The high correlations 

which were noted between the distance matrices calculated from different data 

may well have been heavily influenced by this pattern of differences such that 

they suggested a higher degree of correspondence than would have been the case 
had there been available a sample of crania of "intermediate" morphology. 
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The studies of chapter 3 contrast with those of chapter 2 in suggesting that 

analyses of Fourier data may not agree very well with the outcome of studies 

of linear and angular measurements. This difference in result reflects the fact 

that Fourier data, in contrast to homology dependent mesurements, give equal 

weight to all outline points. 

The presence of a hominid fossil record provides a potentially useful 

subject for the further investigation of the conflict In outcomes. In chapter 2 the 

groups which were compared show either a relatively large or a relatively small 

difference in cranial morphology. In chapter 3, however, the differences In 

within-group cranial morphology are far less. In this chapter a "spectrum" of 

hominoid cranial morphologies will be examined Including an ape species, a race 

of modern humans and a number of fossil hominids. 

The study comprises a number of canonical analyses which are based upon 

linear and angular measurements and Fourier coefficients. Principal components 

analysis allows, to some extent, the assessment of between group relationships. 

There are, however, two major disadvantages. First. the PCs are calculated so 

as to best summarise the phenetic differences between all individuals. As the 

number of individuals increases so the number of PCs needed to obtain a good 

summary of the data increases and interpretation becomes difficult. Second, I'CA 

re-expresses the positions of individuals on a series of axes which are 

uncorrelatcd between individuals. 

Canonical analysis expresses the positions of group centrolds on a series of 

axes which are uncorrelated between groups and which are directed to the 
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summary of between group relations. It is a discriminant technique and as such 

leads to a more concise description of between group differences than does PCA 

(see appendix B). 

The results of studies based on one set of data are compared with those 

from the other. The comparison takes account of the findings of previous 

workers who have examined the cranial morphologies of fossil hominids. 

The study of fossil material presents some new problems. Many crania are 

fragmentary and have been reconstructed, in addition this study relics upon 

measurements taken from casts which adds another source of error. A further 

problem arises because of the nature of the fossil record; no species can be 

unequivocally defined and the extent of overlap of variation between taxa and 

of variability within taxa is unclear (see the earlier review). It has therefore been 

important to investigate the degree of error introduced by the use of casts and 

the need to estimate data and to study patterns of variation within the hominid 

fossil record. The study described below investigates these issues in addition to 

comparing the utility of different methods of shape description in studies of 

hominid cranial morphology. 
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MATERIALS AND MCTIIODS 

MATERIALS 

Modern 

The skulls of chimpanzees and negroids described In chapter 2 (table 2.1) 

were used to provide reference populations for the study of fossil cranial casts. 
Fossil 

The fossil casts used in this study are listed In table 4.1. They Include ten 
fossils from the relatively recent history of homo which are generally complete 

and which are all assigned to I1o1, to sapiens by most authorities. Six of these 

fossils are from Europe, two from Africa (Gamble's cave and Fish Hock), one 

from Java (Wadjak 1) and one is from Australia (Kcilor). 

The study includes eight fossil crania which occupy the record of human 

origins between the time of Ilo»: o crcctus grade hominids and the emergence 

of modern Homo sapiens in Europe. Five of these are commonly included in 

the "classic" western European Neanderthal group: Gibraltar I, La 

Chapelle - aux - Saints I, La Ferrassle I, Monte Circco I and Le Moustler I. 

The specimen from Le Moustier is believed to be that of an adolescent. Two 

of the remaining crania have been compared with the Neanderthals, - viz. 

Skhul V from Israel and the Kabwc I cranium from Zambia; the third is the 

Steinheim cranium from Germany. 

Three fossils usually assigned to Ilomo er r us are included. The wide 

geographical distribution of this grade (see earlier) Is reflected by these 

specimens. The cranium from East Turkana, Kenya, KNNI- ER 3733 Is the 
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oldest representative. 7%o heavily reconstructed specimens represent the far 

eastern varieties, a composite reconstruction of "Sinanthropus" made by 

Weidenreich and Swan (Weidenreich, 1937) and Wcidenreich's (1941a) 

reconstruction of a Javanese cranium (Tithecantlunpus) based upon a recovered 

calvaria, maxilla and some teeth (Sangiran 4). 

The remaining material consists of African fossils which have been assigned 

to either "Parantl: ropus , Australopithecus or early Homo. All of this material is 

discussed and described earlier. It includes, from East Africa, 0115, KNM - ER 

406,011 24, KNM - ER 1470 and, from South Africa, Sts S. 
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TABU? 4.1 

Provcaancc of fossil Strull casts 

Group Collection Museum Name and Number Abbrcv. 

Fossil BMMNII (P) Cro-Magnon 1 E. M-1795 Cro-M. 
Homo sapient 

BNINII (P) Gough's Cave 1 M 16961 Gough. 
(Cheddar) 

BMNII (P) Chancelade I M 16689 Chanc. 

BMNli (P) Prcdmost 3 M 16630 Prcdm. 

BMNII (P) Brno (Brune) 3 CM-2266/7 Brno. 

BMNI I (P) Miadec 1 EM -1213 Allade. 

BUA Gamble's Cave 4 - Gambl. 

BUA rah flock 1 - ruh. 

BUA Wadjak 1 - Wadja. 

BUA Kcilor I CM -235 Kcilo. 

Neanderthals BUA Gibraltar 1 - Gibra. 
and other 
late fossils BMNI I (P) La Chapelle - aux CM -17)2/3 Chap. 

-Saints 1 

BAMNII (P) La Fcrrasic 1 M 16847 Ferra. 

BMNII (P) Monte Circco I CM-273 Circe. 

BUA Le Afousticr I - Moust. 

BAMN1I (P) Es-Skhul V - Es Sk. 

LUA Kabwc (Broken 
Ifill) 1 - Kabvºc. 

BMN1I (P) Steinheim 1 CAI -1777 Stein. 
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Croup Collection Museum Name and Number Abbnv. 

flomo erectus BMNii (P) Sangiran 4 EN1-1811 Sangi. 
grade fossils (rccons) 

(Weidenreich 1941a) 

BMNII (P) 'Sinanthropus* M 1S72S Sinan. 
(rccons) 
Wcidcnrcicb (1937) 

BMMNI I (P) KNM - ER 3733 DI-W% 3733 

Australopith - BMNI I (P) 0115 ER1-1317/8 0115 
ecincs and 
early Homo BAMNI i (P) KNM - ER 406 Ebt -1613 ER406 

BIN1NII (P) 01124 EAf -1388 01124 

1 MINI I (P) KNAt - ER 1470 - 1470 

BN1NII (P) Sts 5 M1(S61 Stü 

IIMNII (P) " British Museum (Natural History), Dept of Paleontology 
DUA - Birmingham Unimsity, Dept of Anatomy 
LUA - Leeds University, Dept of Anatomy 
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MLMIODS 

I. Measurement methods 

The measurements from the extant and fossil material included a subset 

(34) of the cranial linear and angular dimensions used In the studies of chapters 
2 and 3 (tables 2.2,2.3 and 4.2). A further subset of the 25 dimensions and 

angles taken from the midlinc craniogram (see chapter 2) was also prepared In 

order to allow a comparison with the (midline) Fourier data. 

The square root of the area of the mid-sagittal projection of each cranium 

was recorded for use as a size measure (see chapter 2). 

The sine-cosine Fourier coefficients calculated from each modern cranium 

were made available for this study. The method of measurement and calculation 

of these variables is discussed In chapter 2. 

The midsagittal tracing of each fossil cast was reconstructed where necessary 

(appendix A) and used to calculate Fourier coefficients by the same method as 

was applied to the crania of living species. In the case of the analyses based 

upon Fourier data KNAM-ER 3733 was omitted from the group of Homo 

erectus. 

It is appropriate to consider here the particular problems associated with 

the measurement and description of the fossil material: 
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TABLE 4.2 

Linear and angular dimensions taken from all Casts of Fossil crania 

Neurocranium 

1 Maximum length 
2 Maximum breadth 
3 Basi-bregmatic height 
4 Auricular height 
S Postorbital breadth 
6 Frontal height 
7 Frontal chord 
8 Parietal height 
9 Parietal chord 
10 Occipital height 
11 Occipital chord 
12 Foramen magnum length 
13 Foramen magnum breadth 
14 Angle b-l-o 
15 Angle I-o- ba 

Vuctrocranium 

16 Upper facial height 
17 Palatal length 
18 Palatal breadth 
19 Nasal breadth 
20 Nasal height 
21 Subnasal height 
22 Orbital height 
23 Orbital breadth 
24 Infraorbital breadth 
25 I3irygomatic breadth 

Vi. sccrocranial-Ncurocranial reiationships 

26 Basi -lnfraorbital length 
27 Basi-nasal length 
28 Basi - prosthion length 
29 Basi-itaphylion length 
30 Angle ba-a-b 
31 Angle ba-n-pr 
32 Angle n-b-I 
33 Angle n-ba-pr 
34 Angle o-ba-n 
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a) Problems of preservation and reconstruction 

A substantial number of the casts of fossil material included in this study 

were fragmentary or reconstructed. It was necessary, therefore, to estimate certain 

of the dimensions required for the analyses. The options available for these 

estimations included visual approaches based upon anatomical experience and the 

general contours of the surviving portions and statistical estimations designed to 

derive values which did not alter the mean and variance of the populations to 

which the damaged remains belong. The problem with the statistical approach 

is that it depends on prior knowledge of population membership, a situation 

which does not exist for much of the material, or on the assumption, which is 

unproven, that crania from different populations behave the same way in terms 

of functional - morphological integration. 

It was decided to adopt the admittedly subjective approach of estimation 

by visual means based upon anatomical experience and knowledge. The data 

were Initially collected by the late Professor Ell. Ashton and by Professor W. J. 

Moore. I later re-examined each of the fossil casts used in this study and 

checked each of the estimated and uncstimated dimensions and angles for 

accuracy and reliability. The data, together with an account of the problems of 

estimation of each value arc presented In Appendix A. 

b) Problems associated with using casts 

A large proportion of the original fossils are fragmented and have been 

reconstructed to some degree. These reconstructions while not the ideal material 
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for biometric or visual study are, all that is available. The processes of 

fossilisation, cleaning and reconstruction all introduce error. 

It is frequently argued that the use of casts of these restored specimens or 

of unmodified original specimens introduces a large and unwarranted source of 

error (e. g. Stringer, 1986). The examination of originals was not practicable for 

most of the material and, in any case, the principal aim of this study was to 

compare the utility of different shape measurement methods. If the results are 

to be taken to indicate anything of relevance to the taxonomy of the fossil 

material, however, it becomes imperative to consider the degree of error that 

is introduced by the use of casts. If it is large the cast should be discarded. 

It is of no use to examine the distortion in a single cast and to extrapolate 

from this to all casts: each cast was made in different conditions at different 

times and by different people. The only appropriate test is to compare the 

dimensions taken from each cast with those that have been published in the 

literature and which were taken according to the same criteria as the dimensions 

in this study. This raises a problem; not all dimensions which have been taken 

from the original and have been published are compatible with those taken in 

this study. 

A comparison was undertaken of those measurements from the original 

material (or original reconstruction) which could be traced In the literature with 

their counterparts, taken for this study, from casts. no number of measurements 

which were comparable and could be traced for each specimen was small, only 

3 or 4 on average (10%). They do, however, allow an assessment of the degree 
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of shrinkage over large regions (e. g. cranial length) and the combination of two 

or more variables allows distortion to be examined. For each variable its 

counterpart from the fossil was used to calculate a percentage difference between 

the fossil and cast as follows: 

% difference = (Fossil dim. - cast dim. )' 100/Fossil dim. 

The absolute value of this quantity was averaged over all available comparisons 

on each fossil. A note was made of whether the fossil was larger than the cast 

in each variable. Table 4.3 presents the results of this enquiry. The number of 

dimensions which were available from the original is listed, together with the 

source reference, the average % difference between the fossil and the cast and 

a note of the relative size of fossil and cast in the available dimensions. 

The results presented in table 4.3 allow considerable confidence to be placed 

on the accuracy of the casts. In general the difference between fossil and cast 

Is of the order of 1%-2%. The results further Indicate that the fossil 

dimensions arc smaller than those from the cast as often as they are larger: 

there is no evidence of generalised shrinkage. The degree of error which Is 

encountered is about that which would result from measurement error. This Is 

reflected in the extent to which authorities disagree over certain dimensions 

taken from originals (Day, 1986, also lists large disagreements in dimensions 

taken from originals - up to 917c for Steinheim). 
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TAE3LR 43 

The Accuracy of Po%Aii Casts used in this stud 

FOSSIL Number of Average % 17-01,11 Source 
original dims difference bigger + refs. 
located (f-c)/f % smaller - 
In refs. or tame 0 

Cro - Magnon 1 4 2.31 - /0 3,6 
Gough's Cave 1 4 5.3 -/+ 20 
Cbanccladc 1 3 1.56 - 15 
Predmost 3 7 1.19 -/0/+ 18 
Bran 3 6 1.96 +/- 13 
Mladec 1 7 2.35 -/0/+ 18 
Gamble's Cave 4 5 0.49 +/- 9 
ruh flock 1 6 1.13 -/0 8 
Wadjak 1 2 2.22 - S 
Keilor 1 3 2.91 -/+ 23 

Gibraltar 1 4 4.41 +/0/- 114114 
La Cbapcile 1 5 2.03 +/- 12,14 
La Fcrrassic 1 2 1.40 - 6 
Monte Circco 1 1 0.00 0 21 
Lc Mousticr 1 3 0.69 + 14,16,17 
cs-Skhul V 5 1.92 -/+ 14 
Kabawe 1 5 1.28 -/0 6,14,17,19 
Steinheim 1 2 0.7') 6 

Sangiran 420.56 +/- 6 
'Sinandirosu' 2 mid range of wars in: -S 
KNM - ER 37333 5.914 . 32' + /- 12 

011 5 7 3.39 +/- 22 
KNIE! - ER 406 4 0.35 - 11 
011 24 4 0.43 -/0 10 
KNM -IR 1470" 4 2. G4 -/+ 7 
Sts 5 2 1.26 6 

" depending on def. of prosthion " Intermediate rc on. 

R177Z Z=. 

Doule, 19114 
Ikwle, 1911b 
Itrora, ISM 
Iluºk, 1849 
U. y, 1977 
Day, 1986 
Ihy, 1<1I, ey, Walker and Wood 
1974 
Keith, 1931 

9 Uskey, 1913 
10 l akey, CUM And Laaley. 1971 
11 tiikey, Afunai and Wailer. 1971 
12 1t. key and Wrlk*r. 1976 
13 %lnu6ºi, 1929 
N McCo. i and Keith. 1939 
13 Monn4 1926 
16 Morrn4 1927 
17 %for+M. 192* 
1$ Torani. 1930 
19 1 vTst4 19211 

20 5etgm. A end Parxons. 1914/15 
21 Seri. 19t* 
22 Td%sk 1%? 
22 Wv , fy. 19,5 
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There are a few casts with which there appear to be problems of dimensional 

stability. The Gough's cave 1 cast differs on average 53 o from the fossil. 

However because of damage to the face seventy five percent of the available 

measurements were estimates. It Is not surprising therefore that the estimates 

differ to this degree. In the non-estimated cranial length, the cast and original 

differed by only 0.510. 

The Gibraltar 1 cast shows an average error of 4.4 Jo. No clear cause for 

this can be found. It must be assumed that it Is the result of inter-observer 

error and cast distortion. 

The cast of KNM - ER 3733 differed on average 5.810 from the original. 

This figure may well be inflated because of differences in the way in which the 

position of prosthion was estimated. The tracing shows that the maxilla extends 

a little way in front of the point indicated by the junction of the incisors. The 

dimensions from the cast used in the present study were based upon the latter 

point. It is unclear (Lcakey and Walker, 1976) whether the most anterior point 

of the maxilla was used In the quoted original dimension. Adjustment of the 

cast dimension for comparison reduces the average error to 4.32 %. The other 

dimension which differs is cranial breadth. There is room for inter-observer 

error in the determination of this variable, added to which the braincase is 

fragmented. These considerations aside it seems that interpretation of the results 

derived from this cranium should allow for about a 5% error in the 

measurements. 
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A smaller error, of about 3.49o' Is present in those variables compared 

between the Off 5 cast and fossil. This value may be Inflated by the fact that 

crests were ignored in this study in the estimation of cranial length while it is 

unclear If this was the case in Tobias's study (1967). If the crest Is Included in 

the cast dimension the error becomes less than 3%. 

From this enquiry It seems that errors introduced by the examination of 

casts of fossil material In this study are minimal, they are generally about 2% 

and never appreciably above 5%. 

ii. Statistical methods 

The primary aim of this study is to examine the differences In result that are 

obtained by study of linear and angular dimensions and Fourier coefficients. The 

casts of fossils Include a number of reconstructed regions and several dimensions 

have been estimated, consequently the robusticity of Fourier analysis to such 

reconstruction can be assessed. A subsidiary, but still important aim is to consider 

the significance of the phonetic relationships of the fossil crania in the light of 

previous studies. 

The OTUs used In these phenctic studies were determined from a study 

of the literature and by a number of multivariate analyses directed towards 

ensuring homogeneity and equality of variance of fossil groups. 7 be studies which 

led to the use of these OTUs are presented in appendix B. and the OT(Js that 

were identified are: 
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1. Representatives of anatomically modern (a. m. ) Homo sapicns 
2. Skhul V 

3. "classic" European Neanderthals 

4. Kabwe 1 

5. Steinheim 

6. Representatives of the grade Ilomo errctus 
7. A. boisci 

8. KNM-ER 1470 

9. Sts5 

10-01124 

Between - OTU phenctlc relationships were assessed by canonical analysis 

of., the first 20 pairs of sine-cosine Fourier coefficients, the 30 sine-cosine 

Fourier components which performed best In discriminating between the modern 

groups (see chapter 2), 25 scaled and 34 scaled (against square root of area of 

midline area, angles were not altered) variables (chapter 2 and table 4.2). In 

preliminary tests the results of studies using angles and scaled dimensions were 

found to differ very little from those which used raw variables. Scaled variables 

were, however, used for the studies of this chapter In order to be consistent with 

the analyses of (scaled) Fourier coefficients and to reduce any size influence on 

observed phenctic relations. The dimensions and angles were logged In order to 

equalise within group variances and the Fourier coefficients were not (see chapter 

2). All analyses were undertaken using SAS (1982) and NTSYS-! 'C (Rohlf, 

0 
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1987). 

Plots of the scores of groups on the first few canonical axes were prepared 

for each analysis. The number of axes to be used in these plots was selected 

such that approximately 95% of the total between group variance was described. 

The correlations of the size of individuals with their scores on each canonical 

axis were determined and matrices of between group Mahalanobis' distances were 

calculated. 

The matrices were compared by : 

1. calculating correlations between them 

2. calculating a matrix of percentage differences in relative Mahalanobis' 

distances derived from Fourier data and 25 scaled dimensions; this matrix 

was produced by scaling each matrix to have the same Pan - negro distance 

and then calculating the percentage difference between each distance ((25 

midline - Fourier)' 100/25 midline) 

3. computing UPGMA phenograms and cophenetic correlations from each 

Mahalanobis' distance matrix. 
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RESULTS 

1. Comparison of the patterns of similarity and diffcrcncc between fossil and 

modern groups demonstrated by study of midline linear and angular 

measurements versus 3-dimensional measurements. 

The study of chapter 2 suggested that the pattern of phenctic relationships 

demonstrated by the midline data differed little from that resulting from the 

study of midlinc plus off-midline data. 

The Mahalanobis' distance matrix calculated from 34 angles and dimensions 

(table 4.2) in this study is presented in table 4.4 and that from 25 midline and 

projected midline variables in table 4.5. The correlation between these two 

matrices is 0.94 (P<0.001), indicating a high degree of concordance. 

TABI. t? 4.4 

Mahalanobis' distancc matrix calculated from 34 scaled dimensions and angles 

Q2iS "^ ! Lý. 2 a . m. K&bw Mean Megr Ott24 $khv atei ttsi 1Dos" 
ý" 13.70 " "c u" 19.64 21.39 
.. m. .. "nt 24.4e 26.40 71.74 
Xaa+e 21.62 23.74 11.03 9.91 
Neanderthal. 22.49 23.97 7.76 9.25 10.09 
Negroes 22.04 23.12 12.39 5.23 10.60 10.34 
OH 24 21.63 20.01 17.20 17.59 14.06 19.11 15.06 
ökhul v 22.97 24.66 12.08 7.70 10.86 11.05 7.61 15.49 bt. lnh. im 22.87 21.65 11.13 12.65 14.71 11.39 11.86 15.45 11.42 
Stu 5 11.72 11.10 19.86 23.62 21.29 22.45 20.45 17.10 21.37 20.35 K414-[R 1470 13.07 15.51 15.61 19.21 16.24 17.32 17.26 19.71 16.96 16.05 14.94 
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TABU! 45 

Mahalanob s' distance matrix calculated from 2S midline dimensions and angles 

ois ar wr°c a. a. Itabv . an K"qr Cu24 $khV 
" 

$t"i StaS 

A bois" k 
en 9.30 

" "etu 12.19 16.49 
a. m. .e i"ns 16.05 20.81 9.29 

abw" 15.11 20.16 7.61 7.23 
Neanderthals 13.62 16.96 6.10 6.39 3.10 
Negroes 14.95 19.08 9.95 3.90 9.08 7.93 
CH 24 15.45 13.70 15.32 13.87 17.47 16.94 13.96 
Skhu1 V 14.96 19.23 9.14 5.86 8.31 7.62 6.08 13.99 
Steinheim 15.79 17.27 9.16 10.40 10.86 10.04 10.36 13.38 1.39 
Sts 5 9.19 8.49 13.43 16.83 18.29 17.03 16.97 14.09 17.21 13.19 
72CH"E8 1470 10.51 14.20 10.30 13.36 13.17 10.68 13.30 17.24 13.40 13.12 14.20 

This similarity in the patterning indicated by the distance matrices is 

reflected in the similarity between the UPGhiA phenograms (Sheath and Sokal, 

1973) calculated from each (figs 4.1,4.2). Both phenograms have a cophenetic 

correlation with the original distance matrices of greater than 0.91 (P<0.001). 

They are similar to each other in that Pan and Sts S cluster together and then 

with A. boiset; flomo erectus clusters with the Neanderthals; the n. m. fossils 

cluster with negroes and then with Skhul V; and Steinheim clusters with the 

Neanderthals, Homo erectus, a. m. fossils, negroes and Skhul V. They differ in the 

clustering of 011 24 (with Homo - 34 vars, with apes and australopithecines - 

25 vars. ), KNM - ER 1470 (with apes and australopithecines -. 34 vars, with 

Homo - 25 vars. ) and Kabwe (with fossil a. m. Homo, negroes and Skhul V- 

34 vars, with Neanderthals and Homo erectus -25 vars. ). 



306 

FIGURE 4.1 - UPGMA phonogram from 34 angles and dimensions, cophcnctic correlation 
0.93 
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FIGURE 42 - UPGSIA phenogram from 25 scaled projected midline variables, cophenctic 
correlation - 0.91 
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A further indication of the degree of congruence between the distance 

matrices (tables 4.4 and 4.5) is given by comparing the plots of the scores of 

groups on the first three canonical axes from each analysis (Ggs. 43 and 4.4). 

In both analyses the first three axes account for >9517o of the total between 

group variance and the correlation of the scores of OTUs on CAI with their 

square root of midline area is >0.95 (P<0.001). The ordering of groups on 

canonical axis I In both analyses Is Pan, Sts 5, A. boisei, KNM - ER 1470, Off 

24,1!. erectus, Steinheim, the Neanderthals, Kabwe 1, negroes, Skhul V and fossil 

a. m. II. sapiens, the latter groups being virtually superimposed. This similarity In 

the ordering of OTUs on the first axis reflects the high correlation of OTU 

scores on this axis with the size variable. This high correlation is observed despite 

the data being scaled relative to the size variable. It probably reflects the fact 

that the principal vector of difference between the OTUs relates to neurocranial 

expansion and decreasing facial prognathism which in turn heavily Influence the 

magnitude of the size variable (the square root of the midline area). 

Along canonical axis II the groups are again ordered in a similar sequence 

though their scores are mirror - imaged. To one extreme are placed KNM - ER 

1470,1!. erectus, the Neanderthals and Kabwe 1, In an intermediate position are 

placed A. boisci, Steinheim, fossil a. m. 11. sapiens and Skhul V and towards the 

other extreme arc placed Pan, Sts 5, negroes and 011 24. The similarity between 

the canonical analyses becomes less marked on axis III. In the analysis of 34 

variables A. boisci occupies one extreme whilst this position is taken by KNM - 

ER 1470 in the analysis of 25 variables. In the analysis of 34 variables Sts 5 Is 
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FIGURE 43 - Canonical analysis of 34 logged, scaled linear angular dimensions CAI vs CAT! 
in a) and CAI vs CAIII In b) CAs I+ II + Ili account for > 95% of the 
between group variance 
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FIGURE 4.4 - Canonical analysis of 25 logged, scaled midline variables. CAI vs CAN In a) 
and CAI vs CA III In b). CAs I+ II + III Account for > 95% of the 
between group variance 
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more clearly differentiated from Pay: and Kabwe 1 from the Neanderthals on axis 

III than is the case in the analysis of 25 variables. Other differences include the 

more central position of Oil 24, and the lesser within group variability in H. 

erectus in the study of 34 variables. 

These studies concur with those of chapter 2 in that they Indicate a high 

degree of concordance between the patterns of phenetic relationships indicated 

by midline and midline plus off - midline data. The differences in result are most 

clearly appreciated from a comparison of the phenograms and are less obvious 

from the matrix correlation. The significance of these differences is discussed 

later. 
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U. Comparison of the results obtained from Fourier data with those from 25 

midline and projected midline variables. 

a) the first 20 sine - cosine Fourier coefficients 

The matrix of Mahalanobis' distances calculated from the first 20 sine -cosine 
Fourier coefficients (40 variables in all) Is presented in table 4.6. The correlation 

between this matrix and that from 25 variables (table 4.5) is 0.63 (P<0.001). 

This is considerably less than that between the matrices from 25 and 34 variables 

(r-0.94). The implication is that the pattern of phenetic relationships derived 

front the Fourier data is different in some respects from that derived from the 

25 linear and angular measurements. The difference in result appears to be 

greater than that encountered in the studies of modern groups (chapter 2). 

TA13Lf? 4. 

Mahalanobis' distance matrix calculated from the first 20 sealed sine/cosine Fourier cocfficicats 

bola Ee' ! I! 2 a. m. xabw $I$n Mepr 01124 äkbV tt. t tti! 

A 12.93 
us " e;; 14.13 14.31 

". m. t"n2 a 18.16 18.80 
x"b++. 19.50 21.90 
N""na. rth"1. 17.99 17.66 
N. groe" 10.93 19.25 
OH 24 19.23 21.08 
akhul V 22.59 21.61 
at. Lnh*Lm 19.90 23.82 
at" 5 18.85 17.73 
KM-Ex 1470 15.33 13.53 

14.60 
16.61 13.35 
12.52 9.19 15.1% 
16.42 4.39 15.42 
20.94 16.76 23.02 
19.01 11.03 14.17 
20.11 19.15 17.61 
17.40 20.40 26.94 
13.72 11.27 17.73 

10.73 
10.00 16.11 
14.05 11.10 22.11 
15.44 19.94 22.12 20.21 
21.39 21.19 21.1S 24.76 27.12 
14.21 11.1$ 11.44 16.22 22.01 19.18 

In keeping with the findings of chapter 2 the distances calculated from 

Fourier data are generally larger than those derived from 25 midline variables 
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though some, between Pan and other OTUs and between KNM - ER 1470 and 

other OTUs, are reduced. 

In the studies of chapter 2 this general inflation of distances was largely the 

result of the greater number of variables used to calculate them (40 as opposed 

to 25) and it produced only a marginal Improvement In overall discrimination (as 

judged by discriminant analysis). It Is not possible to examine the degree of 

difference in discrimination using discriminant functions when dealing with these 

fossil groupings because many OTUs are represented by a single cranium and 

any stepwise method will inevitably omit one or other OTU entirely. It is, 

however, possible to gain an impression of the relative differences in separation 

by other methods. 

The difference in the pattern of phenetic relationships is emphasised by the 

table of 
,% 

differences in relative distances (table 4.7). This was calculated after 

scaling both distance matrices (tables 4.5 and 4.6) to have the same Pan - 

Negro distance (it was nearly Identical between analyses, 19.08 SDU from midline 

measurements, 19.25 SDU from Fourier data). The difference between each 

element of the two distance matrices Is expressed as a percentage of the distance 

derived from 25 linear and angular measurements. Negative values Indicate a 

proportionately smaller distance In the matrix from 25 angles and dimensions and 

positive ones indicate a relatively larger one. 

From table 4.7 It can be seen that there are differences in the proportionate 

distances between groups. The Fourier data have Indicated a relatively larger 

between - OTU difference in the case of all hominid-hominid comparisons with 
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TAßLf 4.7 

Matrix of differences in Mahalanobis' distances between the study of 2S scaled 
midline measurements and 20 scaled sinc/cosinc Fourier coefficients. 

Differences are expressed as a percentage of the distances from 
the study of is midline measurements after the two distance matrices 

have been scaled to have the same Pan - Negro distance 

&211 'e ZU2 ". a. RAW W. an pelt 0n24 $kbV Stil It's 

. -37.0 
ul -14.9 13.4 

.... .n -12.1 10.5 -SS. " 
It. bv. -17.9 -7.7 -143.0 -109.9 
W.. nd. rth. l" ' -10.9 7.6 -103.4 -42.3 -162.3 
M. gro. " -23.3 0.0 -61.6 -11.6 -60.3 -33.0 
ON 34 -23.4 . 33.1 -13.3 -4.7 -10.6 -S. 3 -19.2 
Okhul V -49.5 -11.4 -106.2 -100.4 -49.0 -71.1 -92.4 -76.9 
It. tnh. la -24.9 -16.7 -117.1 -12.5 -62.5 -51.4 -90.0 -09.0 -134.0 
$t  S -103.3 -107.0 -11.6 -7.0 -44.0 -21.1 -37.9 -13.7 -11.6 -72.4 
x24-1R 1470 -44.6 3.6 -32.0 17.6 -33.4 -31.0 11.7 -6.0 -10.0 -46.1 -33.0 

the exception of the distances between KNMT - ER 1470 and negrocs and fossil 

a. m. Hor7ro sapiens. The distances between Pan and other OTUs show a more 

variable pattern of differences (if the matrices had not been scaled the difference 

In the Pan - negro distance would have been 0.95', c). 

Fourier data have emphasised the distinctiveness of certain fossils. There is 

a very unequal pattern of differences in distances, in some cases the increase 

in relative distance has been very large - for instance the distances between 

Kabwe, fossil a. m. Homo sapiens, the Neanderthals and homo crrctus, between 

Homo erectus, the Neanderthals, Skhul V and Steinheim, between fossil a. m. 

Nano sapiens and Skhul V, and between Sts S, A. boisci and Pan have more 

than doubled in relative terms. 
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The differences between the distance matrices arc emphasised when the 

UPGMA phenogram from Fourier data (fig 4S, cophenetic correlation = 0.82, 

P<0.001) is compared with that from the 25 midline measurements (fig 4.2). 

Apart from the clustering of Pan with A. boisci and fossil a. m. If. sapiens with 

negroes the Fourier phenogram contrasts with that from midline measurements 

in the pattern of associations of virtually every OTU and in that Steinhelm, Sts 

5 and Oil 24 appear as outliers. 

A clearer picture of the differences in results can be gained from an 

examination of the plots of canonical axes. The first five canonical axes from the 

analysis of Fourier data are plotted in figures 4.6 and 4.7. These five axes 

account for >95% of the total between -group variance. The percentage of total 

between-group variance accounted for by the axes contrasts with the situation 

found in the studies of linear and angular measurements in that relatively more 

axes are needed to adequately describe between -group relationships. 

The scores of OTUs on the first axis have (like those from the study of 

midline variables) a high correlation (ra0.95, P<0.001) with the size variable. 

In keeping with this, the pattern of group dispositions on the first canonical axis 

derived from Fourier data is similar to that on the first axis calculated from the 

midline measurements (fig. 4.6 vs 4.4). One extreme is occupied by Pan and the 

other by Skhul V, fossil a. m. humans and negroes. Near to Pan are placed Sts 

5 and A. boisci, next are KNAM - ER 1470, II crcems and Off 24, next are 

Steinheim, Kabwe and the Neanderthals. 
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FIGURE 4.5 - UPGAMA phenogram from 20 scaled sine/cosine Fourier coefficients, cophenetic 
correlation - 0.82 
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FIGURE 4.6 - Canonical analysis of the first 20 scaled zinc/cosine Fourier coefficient pairs. 
CAI vs CA 11 In a) and CAIvnCAIIItob) 
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FIGURE 4.7 - Canonical analysis of the first 20 scaled sine/cosine Fourier coefficient pairs. 
CA I vs CA IV in a) and CA I vs CA V In b). CAs I-V together account 
for > 95% of the between group variance 
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The second canonical axis shows more differences between analyses. In the 

study of Fourier data and that from 25 midline measurements the fossil a. m. 

humans, negroes, Skhul V, Sts 5 and Pan are placed toward the positive and If. 

erectus and the Neanderthals toward the negative extreme of canonical axis II. 

In the analysis of Fourier data CAII serves to differentiate Steinheim at its 

negative extreme whilst it is placed centrally in the analysis of midline variables. 

Conversely, the analysis of midline data differentiates Oll 24 at the positive and 

KNM - ER 1470 at the negative extreme of CAII whilst they are central in the 

analysis of Fourier data. 

The third canonical axis continues this trend of increasing difference in result 

between the analyses of Fourier data and of linear and angular measurements. 

In common to both studies Pan, fossil a. m. Homo, ncgroes and Neanderthals 

occupy similar positions on CA III whilst the other fossils are more widely 

scattered and occupy locations which differ between analyses. 

This pattern of differences between the canonical analyses of Fourier data and 

midline measurements concurs with that implied by the study of differences in 

the distance matrices. The differences between fossils on higher axes are generally 

accentuated by Fourier analysis whilst differences along the Pan - negro axis 

(CAI) are relatively unaltered. The first canonical axis accounts for 80% or more 

of the total between-group variability in each analysis (34 measurements, 25 

measurements and Fourier data) and the distribution of OTUs on this axis is 

very similar irrespective of which measurement method is used. It has already 

been noted that the scores of crania on CAI have a high correlation with the 
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size variable in each study. This probably reflects the significant cranial shape 

differences which are associated with neurocranial expansion. Fourier data does, 

however, lead to the impression of greater differences between the fossil OTUs 

on higher canonical axes. 

To summarise, the results of the canonical analysis using the first 20 sine - 

cosine Fourier coefficients appear to differ from those using linear and angular 

dimensions. This difference is reflected in the low (though highly significant) 

correlations between the distance matrices, in the greater relative distances 

between a number of fossil OTUs and In the differences in phonogram 

topologies. The study of canonical axes reveals, however. that the underlying 

pattern of phenetic discrimination as described by CAI is very similar regardless 

of measurement technique. As higher order axes are compared the degree of 

similarity between analyses diminishes. 

In order to further examine the differences between the results of the studies 

of Fourier data and of dimensions and angles an analysis was undertaken using 

the 30 sine - cosine Fourier components which best discriminated between modern 

groups in the studies of chapter 2. 

b) the 30 sine-cosine Fourier components which best discriminated between 

modern OTUs 

The matrix of between fossil Mahalanobis' distances calculated from the 30 

Fourier components which best discriminated between the modern groups (chapter 
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2) is presented in table 4.8. It has a correlation of 0.69 (P<0.001) with the 

matrix calculated from 25 midline measurements. This is marginally higher than 

that between the matrix from 25 midline measurements and 20 sine -cosine 

Fourier coefficients (r-0.63) and implies a slightly greater degree of congruence 

in the pattern of phenctic relationships. 

TABU! 4. R 

Mahalanobis' distance Matrix cakulatcd from 30 "ed Fourier components 

Q211 
$ 

11.76 
I" uu 11.21 

". w, "n nl t 15.76 
K. Dw. 16.11 
Neanderthals 15.04 
Negroes 16.11 
OH 24 12.90 
$khul V 16.71 
lt. tnheLm 12.75 
at. s 14.90 
"M-ZR 1470 13.21 

M tr; o ". m. Robw Oun i. qr 0124 $khV stil "ts$ 

13.01 17.07 s:. 1$ 
19.23 15.74 12.11 
15.22 10.01 7.02 13.11 
17.21 11.73 4.09 12.14 9.27 
13.40 11.21 14.11 11.18 13.43 14.31 
14.46 16.15 10.16 13.39 12.19 11.14 19.31 
16.26 13.90 11.00 13.49 11.07 12.02 12.4% 14.07 
12.44 13.06 17.61 21.66 16.31 10.33 16.47 30.36 17.05 
12.2s 10.67 9.29 13.40 10.13 0.74 14.31 12.04 11.17 11.37 

The distance matrix from 30 Fourier components was further compared 

with that from 25 midline measurements by calculating a table (table 4.9) of % 

differences in distances relative to the Pan - negroid distance. There arc 

widespread differences in inter - OTU distances but these are, on average, 

reduced relative to those demonstrated in table 4.7. 

Table 4.9 shows a grcater than two fold increase in the rclativc distanccs 

between Kabwe and Homo ercctus and the Neanderthals and between Skhul 

V and the negroes. This is similar to the relative Increase in the between OTU 
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distances when 20 sine-cosine Fourier coefficients were studied (table 4.7). 

TABLE 4.9 

Matrix of differences in Mahalanobis' distances between the study of 25 scaled midline 
measurements and 30 scaled sine/cosine Fourier components. Differences are 

expressed as a percentage of the distances from the study of 25 midline 
measurements after the two distance matrices have been scaled to have the 

same Pan - ncgro distance 

bal. jIM ills G. S. Labv $. an $. 9r 0x24 1khv "t. l it.! 

-41.9 "e -20.2 12.5 
.... l. n. -6.9 9.1 -47.4 R"ý" -10.2 -5.6 -129.3 -13.5 M.. nd. rth. l. -22.4 11.0 -61.2 -21.6 -139.0 Kigra. u -19.3 0.0 -53.0 -16.3 -56.8 -29.2 OH 24 7.4 -4.7 -10.6 1.4 -17.4 12.2 -13.3 Skhul V -38.3 -12.1 -93.9 -92.2 -41.2 -72.6 -116.6 -13.2 1t. inh. lm 10.5 -4.4 -67.1 -23.8 -41.0 -22.2 -17.2 -6.3 -91.9 at. s -76.3 -62.4 6.3 -4.2 -31.3 -7.6 -19.1 -33.1 -11.2 -26.9 A+4-91 1470 -32.3 4.4 -14.6 24.0 -12.6 -7.2 16.6 7.7 -4.2 2.2 -20.0 

The correlation of the distance matrix from 30 Fourier components with that 

from 20 Fourier coefficients is 0.86 (P<0.001). This is comparable with that 

between the matrices from 25 midline and 34 midline plus off - midline 

measurements (r"0.94). Comparison of the distance matrix (table 4.6) from 20 

Fourier coefficients (40 variables) with that from 30 Fourier components (table 

4.8) suggests a reduction in the average distance between OTVs in the latter. 

This is in keeping with the reduced number of variables. 

The distance matrix from 30 Fourier components is further compared with 

that from 20 coefficient pairs In table 4.10 by calculating % differences between 

the latter and the former after scaling the matrices to have the same Pay: - ncgro 

distance. In table 4.10 positive values Indicate a smaller relative inter - ON 
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difference in the matrix from 30 components. This reduction is not evenly spread, 

and is greater for some fossils, e. g. Steinheim OH 24 and Sts 5 than for others, 

e. g. Kabwe, Skhul V. 

TABLE 4.10 

Matrix of differences in Mahalanobis' distances between the study of 
20 scaled sine/cosine Fourier coefficients and 30 scaled sine/cosine Fourier 

components. Differences are expressed as a percentage of the 
distances from the study of 20 sine/cosine Fourier coefficients 
after the two distance matrices have been scaled to have the 

same Pan - negro distance 

boil Pan erec a. m. xabw Nean Negr CH24 SkhV Stil StS5 
A. boisei 
Pan 
: -2.9 N erectus -4.7 -0.3 
a. m. H. sapiens 2.9 -1.6 6.7 
Kabwe 7.6 1.8 5.5 11.6 1.3 
Neanderthals 6.5 3.7 9.9 14.6 1.3 
Negroes 4.8 0.0 6.5 -4.2 6.9 3.4 
OH 24 25.0 18.3 18.4 5.8 11.7 16.6 4.8 
Skhul v 7.4 -0.7 5.0 4.1 2.2 3.0 -12.7 2.2 Steinheim 28.3 23.6 22.7 31.1 12.8 19.8 28.1 37.0 18.0 Sts 5 12.2 21.5 16.0 3.4 10.1 13.6 6.8 13.1 8.0 26.4 7W1-ER 1470 3.6 -1.3 13.0 7.8 15.5 18.2 7.9 13.0 11.5 41.2 10.4 

These results indicate that the 30 sine - cosine Fourier components suggest 

a greater degree of distinctiveness in the morphology of certain fossils than do 

the 25 midline measurements. Furthermore, in the case of the Kabwe cranium 

and the Skhul V cranium the degree of distinctiveness is similar to that implied 

by the 20 sine-cosine Fourier coefficients. In some cases, e. g. Sts 5, OH 24 and 

Steinheim it is less. 

The UPGMA phenogram derived from the distance matrix calculated from 

30 sine-cosine Fourier components is presented in fig. 4.8. The distances implied 

by this phenogram correlate 0.78 (P<0.001) with those in the distance 
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FIGURE 4.8 - UPGMA phenogram from 30 sine/cosine Fourier components, cophenetic 
correlation = 0.78 
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Fig 4.8 

matrix. This compares with a cophenetic correlation of 0.82 for the phenogram 

from the distance matrix derived from 20 sine-cosine Fourier coefficients. The 

topology of the phenogram from 30 Fourier components is more like that from 

25 midline variables, than is the phenogram calculated from 20 sine-cosine 

Fourier coefficients, and shows a similar pattern of clustering of A. boisei, Pan, 

Sts 5 and OH 24. It does, however, differ from Figure 4.2 in the order of 

clustering of the other OTUs in that Skhul V and Kabwe are more distinctive, 

the Neanderthals appear more like fossil a. m. Homo and KNM - ER 1470 

appears more like modern hominids. 

The plots of OTU scores on canonical axes I-V are presented in figures 
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FIGURE 4.9 - Canonical analysis of scaled 30 sine/cosine Fourier components CAI vs CA II 
in a) and CA I vs CA III in b) 
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b) 
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FIGURE 4.10 - Canonical analysis of scaled 30 sine/cosine Fourier components CA I vs CA 
IV in a) and CA I vs CA V in b). CAs I-V together account for > 95% 
of the between group variance 
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4.9 and 4.10. The first five axes are needed to account for >95% of the between 

OTU variance. On canonical axis I the OTLJs are arranged in nearly the same 

order as on CAI from the analysis of 25 midline variables (fig. 4.4). 

On CAII Pan, the negroes, fossil a. m. Homo, Kabwe, the Neanderthals, 

Homo erectus, A. boisei and Sts 5 are arranged in a comparable order to that 

shown in figure 4.4. The reconstructions of KNM - ER 1470 and OH 24 are 

placed more centrally and the Steinheim cranium is placed more towards the 

negative pole. 

On CAIII the modern groups, fossil a. m. H. sapiens, Steinheim, Kabwe, OH 

24 and Sts 5 are located in similar positions to those they occupy in the analysis 

of 25 midline variables. Of the other crania the Neanderthals occupy a more 

positive position, Homo erectus and KNM - ER 1470 are placed more centrally 

and A. boisei is shifted to the extreme negative pole. 

The higher canonical axes serve to distinguish certain fossil groups. On CAIV 

(fig. 4.10) Sts 5 and OH 24 occupy the positive pole whilst Kabwe and Skhul 

V occupy the negative. On CAV the positive pole is occupied by Sts V, nearer 

the centre are placed H. erectus and KNM - ER 1470. 

In general the scores of OTUs on canonical axes in this analysis show a 

better correspondence with the analysis of 25 measurements than did the 

canonical analysis of 20 Fourier coefficients. This is confirmed by the correlations 

of OTU scores on CAs I- IV, listed in table 4.11. Invariably the scores on 

canonical axes from the study of 30 components show a higher correlation with 

those from the study of 25 measurements than do those from the study of 20 
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coefficient pairs. Only the correlations on CAI are significant (P < 0.05) but the 

differences in absolute terms allow an assessment of similarity (see Sneath and 

Sokal, 1973). 

TABLE 4.11 

The correlation of scores of OTUs on canonical axes in the studies of Fourier data 
with the scores of OTUs on canonical axes in the analysis of 25 midline measurements 

20 Coeffs 30 comps. 

CA I 0.93 0.97 

CA II 032 0.41 

CA III 0.07 0.18 

CA IV 0.21 -0.21 

n. b. only correlations on CA I are significant at P<0.05 

In summary the study of 30 sine - cosine Fourier components, like that of 

20 Fourier coefficients, has indicated a degree of distinctiveness in certain fossils 

which does not agree with the phenetic relationships suggested by linear and 

angular measurements. The level of agreement between the distance matrix from 

30 Fourier components and that from, linear and angular measurements, is, 

however, marginally greater than was the case when 20 Fourier coefficients were 

compounded. The differences in the distance matrices are reduced and the 

canonical analysis has shown that these differences are concentrated in higher 

components. 
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DISCUSSION OF RESULTS 

I. A Comparison of the results from the analyses of different types of data 

The studies described above have indicated: 

1. A high degree of concordance between the studies of midline linear and 

angular measurements and those from midline plus off-midline 

measurements. 

2. A lesser degree of agreement between the study of 30 sine-cosine Fourier 

components and that of 25 midline measurements. 

3. An even smaller degree of concordance between the study of 20 sine- 

cosine Fourier coefficients and that of 25 midline measurements. 

The simplest explanation for this pattern of differences is that each study 

uses a different set of variables and, as such, describes different aspects of cranial 

morphology. The degrees of congruence between studies may simply reflect the 

extent to which they are based on variables which describe similar aspects of 

morphology. 

It was noted in chapter 2 and earlier in this chapter that Fourier data 

include variables which are "noisy". These variables may not serve to differentiate 

between groups (except in the sense of adding to the dimensionality of the 

multivariate analyses, n. b. more traditional measurements may also suffer from 

this problem) and may describe aspects of shape which are either common to 
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all OTUs or which are entirely spurious and reflect only measurement error. In 

chapter 2 it was pointed out that the errors of measurement which result from 

tracing an outline on a digitising tablet are generally of the form of high 

frequency undulations (because of tremor and pixel size) and therefore tend to 

be concentrated in higher order Fourier components. 

The studies of chapter 2 provided a detailed examination of ways of 

eliminating "noise" from Fourier data. Increasing numbers of Fourier components 

were added successively to discriminant analyses in an attempt to optimise 

discrimination and minimise variable number. The studies in which successively 

higher order coefficient pairs were added to discriminant analyses identified the 

first 20 as being optimal in the description of differences between modern apes 

and men. These first 20 pairs of - sine - cosine Fourier coefficients allow the 

reconstruction of outlines with a high degree of accuracy. If the ability to 

reconstruct is unimportant it is possible to further reduce "noise". In this case 

variables are selected for their usefulness in separating groups (as assessed by 

variance ratio) and are added successively to discriminant analyses. The outcome 

of these analyses (chapter 2) indicated that 30 sine - cosine components (see 

figure 2.17) were optimal in the problem of identifying the provenance of modern 

hominoid crania. 

It is impossible to use such methods to determine the best components 

for differentiating the fossil OTUs in this study (because some OTUs have only 

one member) but it would seem reasonable to assume that the 30 components 

which discriminated well between men and apes may also be effective between 
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apes, fossil hominids and men. In any case, the data will certainly be less "noisy" 

than the first 20 sine - cosine Fourier coefficients as far as the modern and fossil 

a. m. OTUs are concerned. 

A further explanation for the degree of incongruence between the analyses 

of this chapter may therefore be that the Fourier data are giving rise to entirely 

spurious separations between OTUs because of "noise". 

In order to assess whether the contrasts in shape differences indicated by 

Fourier data and linear and angular measurements are a result of measurement 

error or of fundamental differences in the way in which the data describe 

morphology it is necessary to consider the extent of agreement between the 

phenetic relationships indicated by the studies of this chapter and those implied 

by the studies of other workers. 
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H. A comparison of the results of this study with those from the studies of other 

workers. 

The phenetic relationships of each fossil are considered in turn: 

a. A. boisei 

The species Australopithecus boisei is represented in this study by one 

specimen from Olduvai, OH 5, and one from Koobi Fora, KNM - ER 406. 

Of the studies described in this chapter: 

a) The distance matrix from 34 measurements indicates that A. boisei is closest 

to Sts 5 (11.72 SDU) next are KNM-ER 1470 (13.07 SDU) and -Pan (13.70 

SDU) (table 4.4). The other hominid OTUs are more distant and, of these 

Homo erectus is the closest. 

b) The same pattern of relationships holds in the study of 25 midline 

measurements (table 4.5). 

c) The analysis of 20 Fourier coefficients (table 4.6) indicates a different pattern 

of phenetic relationships, A. boisei is closest to Pan (12.93 SDU), Homo erectus 

is next (14.13 SDU) followed by KNM-ER 1470 (15.33 SDU). Sts 5 is no 

closer to A. boisei " than any other hominid OTU. 

d) When the matrix of Mahalanobis' distances from the, study of 30 Fourier 

components is examined, A. boisei is again closest to Pan (11.90 SDU) but 

Steinheim, OH 24, KNM - ER 1470 and Homo erectus are nearly equidistant from 

A. boisei (about 13 SDU). Again, Sts 5 is no closer to A. boisei (14.8 SDU) than 

are a number of other hominid OTUs. 
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These studies all agree in indicating that the cranial morphology of A. boisei 

is generally ape - like (see Ashton, 1981). The linear and angular measurements 

indicate a degree of similarity to Sts 5 and this is in keeping with the common 

generic attribution of these specimens by some workers (e. g. Tobias, 1967, but 

see Grine, 1981, and earlier). 

In a multivariate study of facial morphology Bilsborough and Wood (1988) 

have noted that A. boisei have faces which are longer and broader with absolutely 

and relatively deeper malar regions than those of A. africanus. Their studies 

indicate that the facial morphology of KNM - ER 1470 is basically hominine but 

in some respects mimics that of robust australopithecines. Consistent with the 

findings of Bilsborough and Wood each of the current studies suggests a degree 

of similarity between A. boisei and KNM - ER 1470 and this is most pronounced 

when facial breadths are included in the data (34 measurements). 

Bilsborough (1973) undertook a multivariate study of the proportions of the 

cranial vault which indicated considerable differences between'A. boisei and A. 

africanus, particularly in vault height and frontal morphology. His canonical 

analysis affords a` large degree of distinction to A. boisei on the combination of 

canonical axes I and II though the Mahalanobis' distance matrix from his study 

shows the most similar cranial vaults to A. boisei are those of H. erectus. It is 

noteworthy that the present studies also indicate a degree of similarity between 

the cranial morphology of A. boisei and that of Homo erectus. This is particularly 

pronounced in the studies of Fourier data and is in keeping with the distance 

matrix based upon vault dimensions published by Bilsborough (1972). That the 
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similarity is most pronounced in the studies of Fourier components may well 

reflect the fact that, unlike the linear and angular measurements, these data 

completely describe vault morphology (note, in the studies of Fourier data 

KNM - ER 3733, which has the most rounded vault, was omitted). Fourier data 

do not give disproportionate weighting to the morphology of regions with more 

identifiable landmarks (e. g. face and base) and which can therefore be measured 

more thoroughly. 

This even description of morphology may well explain the fact that Sts 5 is 

apparently quite distinct from A. boisei in the studies based upon Fourier data 

(again consider the findings of Bilsborough, 1973). 

In a later study Bilsborough (1984) demonstrated that in a combination of 

analyses based upon a wide range of cranial regions A. boisei was highly 

distinctive. This is, again, in keeping with the results of each of the current 

studies. Despite the relationships discussed above the Mahalanobis' distances 

between A. boisei and each other OTU are generally large and in the plots of 

canonical axes from each study (figs. 43,4.4,4.6,4.7,4.9,4.10) the crania are 

markedly separated from other OTUs on one or other axis. 

b) A. afiicanus - Sts 5 

The species A. africanus is represented in this study by a single cranium 

from Sterkfontein, Sts 5. The study of 34 linear and angular measurements 

indicates that Sts 5 is most similar to Pan (11.10 SDU) and A. boisei (11.72 

SDU) and that it is widely separated from all other OTUs (table 4.4). This 
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result is similar to that from the study of 25 midline measurements (table 4.5). 

It is reflected in the clustering of Sts 5 with Pan and A. boisei in the 

phenograms from both studies (figs. 4.1,4.2) and in the closeness of Sts 5 to 

these OTUs in the canonical analyses of these sets of data (figs 4.3,4.4). 

By contrast, the studies of Fourier data indicate more distinctiveness in the 

cranial morphology of Sts 5. This is particularly pronounced in the analyses of 

20 paired sine - cosine Fourier coefficients where Sts 5 is very widely separated 

from all OTUs (nearest overall to Asiatic H. erectus, 17.40 SDU and see 

canonical axis 3, fig. 4.6 and clusters last with all other OTUs in the UPGMA 

Phenogram fig. 4.5). In the absence of Fourier data from other representatives 

of A. africanus it is impossible to be certain of the reliability of this result. 

When the data which were "noisy" in the studies of modern groups are removed, 

however, the pattern of relationships of Sts 5 changes considerably. 

The study of 30 sine-cosine Fourier components suggests a degree of 

distinctiveness in the cranial morphology of Sts 5 but indicates that it is most 

similar -overall to Pan (12.44 SDU). The results, again, indicate a likeness to 

Asiatic H. erectus (13.06 SDU), and to A. boisei (14.80 SDU). This pattern of 

relationships is more like that derived from angles and measurements and this 

is reflected in the UPGMA phenogram from the 30 Fourier components (fig. 4.8) 

in which Sts 5 clusters with A. boisei and Pan. The canonical analysis of this data 

further confirms these phenetic relationships with Sts 5 being close to Pan on 

CAs I, 11 and III, and widely separated on CAs IV and V. 
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All of the analyses agree in that they point to a general similarity of Sts 

5 to Pan though the studies of Fourier data consistently emphasise some 

distinctiveness. A degree of similarity to A. boisei is also demonstrated especially 

by the studies of angles and dimensions (though Sts 5 and A. boisei are close 

on CAs I and II in the studies of Fourier data). All analyses indicate, however, 

that Sts 5 has an overall cranial morphology which is more like 'Pan than A. 

boisei. Few other phenetic studies of hominids include ape data. One of the few 

which does is that of Boyce (1969) who, by contrast with the present study found 

a consistently greater similarity between A. africanus and A. crassidens (from 

Swartkrans) than between A. africanus and Pan. This difference in result may well 

reflect the greater facial and masticatory development which is found in East 

african "robust" australopithecines (Grine, 1981, Bilsborough and Wood, 1988). 

The general similarity of the midline projection of Sts 5 to that of Asiatic 

H. erectus indicated from the studies of Fourier data again disagrees with the 

findings of Boyce (1969) and of other workers (e. g. Bilsborough, 1984) who used 

more anatomically extensive data. This result should, however, be interpreted in 

the light of the facts that the distances between Sts 5 and Homo erectus are 

generally very large, the Fourier data are scaled, and that, in common with 

Homo erectus, Sts 5 has a neurocranium which is relatively large with respect 

to the viscerocranium, and possesses in the midline, a glabellar torus with 

supraglabellar sulcus, a frontal rising above the upper margin of the orbit and 

an occipital with lower scale less curved than the upper (see Howells, 1980 and 

the casts). It seems, again, that neurocranial similarity has proportionally more 
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weighting in studies of Fourier data than in those of linear and angular 

measurements. 

c) Early Homo, OH 24 and KNM - ER 1470 

All of the studies of this chapter agree in indicating a relatively large 

difference in cranial morphology between KNM - ER 1470 and OH 24. In both 

of the distance matrices from the studies of angles and dimensions the furthest 

OTU from KNM - ER 1470 is OH 24 (tables 4.4 and 4.5). Those from Fourier 

data (tables 4.6 and 4.8) point to a greater relative similarity. This finding is 

consistent with the suggestion from the earlier studies that viscerocranial 

morphology predominates in the phenetic similarity implied by angles and 

dimensions whilst neurocranial similarity predominates in the analyses of Fourier 

data. 

The Mahalanobis' distance between male and female gorillas which was 

calculated in chapter 2 from 25 angles and dimensions was 5.5 SDU and from 

20 sine cosine Fourier coefficients, 6.4 SDU. This compares with a distance of 

more than 16 SDU between KNM - ER 1470 and OH 24 from the equivalent 

studies in this chapter. These findings indicate that it is highly unlikely that the 

fossils represent sexual morphs of the same species, a conclusion which concurs 

with those of Chamberlain (1987) and Chamberlain and Wood (1987) but 

disagrees with that of Stringer (1986). Other workers, e. g. Lieberman et aL (1988) 

have shown that there is considerable variation in early Homo. They compared 

the degree of difference between KNM - ER 1470 and KNM - ER 1813 with the 



337 

degree of sexual dimorphism in Gorilla and concluded that it is unlikely that the 

differences between these two crania can be explained on the basis of sexual 

dimorphism. 

The studies of angles and dimensions both indicate that KNM - ER 1470 

shows a degree of similarity to A. boiscl (tables 4.4 and 4.5). Considering that 

these data seem to give emphasis to visccrocranial similarity (see above), this is 

consistent with the findings of Bilsborough and Wood (1988) and with the 

suggestion made by some workers (Walker, 1976, Krantz, 1977) that KNM - ER 

1470 should be Included in Australopithecus. The results of the studies of Fourier 

data, however, suggest a greater difference in cranial proportions between KNM - 

ER 1470 and A. boisei. The distance matrices (tables 4.6,4.8) Indicate a much 

greater similarity to fossil a. m. Homo than to any other OTUs Including A. boisei. 

Again this finding is consistent with the different emphasis of the Fourier data 

and with the more bulbous neurocranium of KNM - ER 1470. It does not lend 

support to the Inclusion of KNM - ER 1470 in Australopithecus. 

The phenetic affinities of Oil 24, as judged by both the studies of Fourier 

data and those of linear and angular measurements. are less clear. All analyses 

Indicate that it is widely removed from other OTUs (tables 4.4,4.5.4.6 and 

4.8). In the plots of canonical axes (rigs. 4.3,4.4,4.6,4.9 and 4.10) it is distant 

from other OTUs on the combination of at least two axes from each study. This 

is consistent with the outcome of a cladistic analysis by Chamberlain and Wood 

(1987) In which Olduvai If. habilis appears to be "a relatively primitive hominid 

that nonetheless shares some derived characters with other post-A. afa cnuis 
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hominid taxa". The fact that the large distance between OH 24 and other OTUs 

is emphasised by both the Fourier data and angles and dimensions might indicate 

that OH 24 is distinctive in both neurocranial and viscerocranial proportions. 

d) Homo erectus 

The analyses using Fourier data differed from those using linear and 

angular dimensions In not Including KNM-ER 3733. Since early African Homo 

erectus has a different cranial morphology from that of the Asiatic representatives 

(e. g. Stringer, 1984, Wood, 1984, Dilsborough and Wood, 1986) no direct 

comparison between studies is possible. 

Despite this difference all of the studies agree in indicating that 

Neanderthals are most similar to ffomo e cc: us. In the study of 25 angles and 

dimensions the distance between Homo Irraus and Neanderthals Is 6.1 SDU and 

between Ho, no erectus and the Kabwe cranium 7.6 SDU (table 4S). When 9 

off - midline dimensions (mainly breadths) are also taken into account (study of 

34 angles and dimensions) the distance from Homo erectus to the Neanderthals 

is 7.78 SDU and to the Kabwe cranium, 11.03 SDU. This disproportionate 

Increase in the tlon: o erectus - Kabwe distance Indicates that Kabwe differs 

more from Homo erccnis in relative cranial and facial breadths (data scaled for 

midline area) than do the Neanderthals. 

In contrast to the studies of angles and dimensions, those using Fourier data 

Indicate a much greater relative distance between Homo crrctus and the Kabwe 

cranium. The Neanderthals are closest to lfo, no errctus In both studies (12.52 
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SDU - 20 coeffs., 10.08 SDU - 30 comps. ); next closest is KNM - ER 1470 

(13.72 SDU - 20 coeffs., 10.67 SDU - 30 comps. ); next closest are fossil a. m. 

Homo sapiens, Negroes and then other OlUs (see tables 4.6 and 4.8). The 

Kabwe cranium is more widely separated being 18.64 SDU away from Homo 

erectus in the study of 20 Fourier coefficients and 15.74 SDU In that of 30 

components. 

A multivariate study of cranial proportions by van Vark (1984) indicated 

that Asiatic Homo crcctus is closer (Mahalanobis' D2) to recent crania than are 

Steinheim and Broken Ifill (Kabwe); in turn, Steinheim and Kabwe appeared 

close to each other. In general this result is not borne out by the distance 

matrices from the studies presented here. Kabwe and Steinheim are not mutually 

close (see below) and Kabwe is generally closer to fossil a. m. Homo than is 

Homo erectus. The Steinheim cranium is further from fossil a. m. 11onto than is 

Homo erectus in all of the studies except that of 30 Fourier components. 

The differences between the studies of Fourier data and those of angles and 

dimensions may be the result of the different composition of the groups of If. 

erectus in each. The studies of Fourier data include only Asiatic Homo erectus 

which is considered to exhibit a number of autapomorphics (Stringer, 1984, 

Wood, 1984, and Wood in Bilsborough and Wood, 1986). These autapomorphies 

might be expected to render the If. cactus group relatively less like other OTUs, 

and this is, indeed what is found (see the comparisons of distance matrices, 

tables 4.7 and 4.9). 
0 
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It is clear from the preceding discussions, however, that the studies of Fourier 

data differ from those of angles and dimensions because of the different ways in 

which the data describe cranial morphology. The greater difference between 

Homo erectus and the Kabwe cranium and the relative proximity of KNM - ER 

1470 and fossil a. m. hominids to H. errctus (though distances are large) In the 

studies of Fourier data may reflect aspects of cranial morphology to which the 

Fourier data are more sensitive than arc the angles and dimensions. 

On the one hand the linear and angular measurements indicate a moderate 

degree of similarity between Homo erectus, the Kabwe cranium and the 

Neanderthals. On the other, the Fourier data, whilst indicating some similarity 

between the Neanderthals and Homo ercctus, point to a greater degree of 

distinctiveness in Homo erectus. The above consideration of the results with 

respect to the phenetic affinities of other OTUs has suggested that the principal 

difference between analyses of Fourier data and those of linear and angular 

dimensions relates to the lesser relative weighting given to viscerocranial and 

basicranial morphology by the Fourier data. This is, in turn, a consequence of 

the greater ease with which landmarks can be identified on the viscerocranium 

and cranial base. 

It may be, therefore, that the greater distinctiveness in Homo erectus in the 

analyses of Fourier data occurs because the sample in these studies comprises 

two low vaulted Asiatic representatives of which the cast of "1'it ecanthropus IV" 

Is heavily reconstructed and the cast of "Sinaniluwpus" is almost entirely sculpted. 

The apparent similarity with the Kabwe cranium when linear and angular 
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measurements are studied probably reflects similarity In the facial and basicranial 

regions more than In the vault. 

e) Archaic Homo sapiens, Kabwe and Steinheim 

In the analyses of linear and angular dimensions the Kabwe and Steinheim 

crania show a degree of similarity to Neanderthals and more modern Homo 

(tables 4.4 and 4S). The Steinheim cranium appears more distinctive than the 

cranium from Kabwe and this Is reflected In the UPGMA phenograms and the 

canonical analyses (figs. 4.1,4.2,43 and 4.4). 

In the studies of Fourier data, however, the Kabwe cranium is at least as 

distinctive as Steinheim (tables 4.6 and 4.7, figures 4.5-4.10). The Kabwe 

cranium is more widely separated from the Neanderthals (see CAs III and IV 

In figures 4.9 and 4.10, and CAs IV and V in figure 4.7) than Is the case In the 

studies of linear and angular measurements (see figures 4.3 and 4.4 and appendix 

II). In all of the studies the two crania show little affinity for each other and 

both appear to share some similarities with modern forms, though in different 

ways (as reflected by the different patterns of associations on canonical axes). 

The degree of difference which is demonstrated between the Steinheim and 

Kabwe crania is consistent with the phylogenetic model of hominid evolution 

proposed by Brauer (1984). In this model the Kabwe cranium represents a 

population of archaic Ifomo sapicnu which Is phylogeneticzlly distinct from the 

line which later gave rise to Neanderthals and which includes Steinheim. It 

should be noted, however, that in the analyses of angles and dimensions and of 
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20 Fourier coefficients Kabwe is more like Neanderthals than is the Steinheim 

cranium. The finding of a consistent and relatively large distance between 

Steinheim and Kabwe contradicts the results of the multivariate studies of cranial 

morphology undertaken by van Vark (1984). His finding was that these crania 

are relatively close (in terms of Mahalanobis' distances). 

The results of Stringer's (1974a) analysis of variables from the whole 

cranium of a number of fossil hominids (his analysis number 14) Indicated that 

Steinheim, Kabwe and the Neanderthals form a triangle of phenetic relationships 

(again, not agreeing with findings of van Vark, 1984) and that these OTUs arc 

nearly equidistant from each other. Furthermore, his analysis places a group of 

Upper Paleolithic crania considerably further away from Steinheim and Kabwe 

than are the Neanderthals. Of the studies presented here all agree In that 

Steinheim is more nearly equidistant from fossil a. m. Ifomo, Neanderthals and 

Kabwe whilst the studies of angles and dimensions disagree with those of Fourier 

data in placing the Kabwe cranium relatively closer to fossil a. m. Homo and 

Neanderthals. 

The disagreements between these analyses and those of other workers, 

between the results obtained by different workers and between the analyses of 

angles and dimensions and those of Fourier data are most likely a result of the 

different aspects of shape described by the different variables used in the studies. 
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f) The Neanderthals 

In the studies of 34 angles and dimensions the most similar OTU to the 

Neanderthals appears to be Homo erectus (7.78 SDU, table 4.4). This contrasts 

with the study of 25 midline and projected midline measurements where the 

Neanderthals are closer to the Kabwe cranium (5.8 SDU) than to Homo erectus 

(6.10 SDU). The difference in result is most likely a consequence of the lack of 

data relating to cranial breadths in the 25 variable analysis and indicates a 

relatively wider face and base in the Kabwe cranium. 

By contrast, in both studies of Fourier data the Neanderthals are nearest to 

fossil a. m. Homo sapiens. The group comprising floh: o cnectus is more distant 

and the Kabwe cranium Is even further removed (tables 4.6 and 4.8). The 

Steinheim cranium is more widely removed from the Neanderthals than Is Kabwe 

in all of the studies except that of 30 Fourier components (compare tables 4.4, 

4.5,4.6 and 4.8). 

The matrix of Mahalanobis' distances calculated by Stringer (1974a) In his 

analysis (number 14 in his study) of a suite of cranial measurements from a 

number of fossil hominids Indicates that the Kabwe cranium is nearer to 

Neanderthals (44 SDU2) than Is the Steinheim cranium (61 SDU2). His study did 

not Include representatives of Homo erectus. Ile further noted, from a series of 

multivariate studies, that "the distance between 'classic' Neanderthal and 

anatomically modern populations ... is always relatively large -. thus the results cast 

doubt on the possibility of a close relationship between the 'classic' Neanderthals 

and the Upper Paleolithic populations". 
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The results of the analyses in the current study do not agree entirely with 

the findings of Stringer. Steinheim is closer to the Neanderthals than is Kabwe 

in the study of 30 Fourier components and in both studies of Fourier data fossil 

a. m. populations are closer to the Neanderthals than any other OTUs. 

The results of the current studies show greater agreement with those of 

van Vark (1984). His multivariate analysis of cranial dimensions indicates that 

the Neanderthals are closer to Asiatic Nano erectus than any other OTU (D2 

Q 15.6). Of the crania common to his and to the current analyses, next nearest 

to Neanderthals are his Upper Paleolithic group, then recent men, then Kabwe 

and finally Steinheim (D2 Q 32.5,39.1,39.6,43.5 respectively). 

g) Skhul V 

In all of the studies of linear and angular measurements and Fourier data 

the modern negroes and a. m. fossils are nearly cquidistant from and are the 

nearest OTUs to Skhul V. next are the Neanderthals and the Kabwe cranium 

which are, again, nearly equidistant (tables 4.4,4.6,4.5 and 4.8). 

Stringer's analysis of cranial measurements from diverse anatomical regions 
(analysis 14) places Hottentots and Tasmanian aborigines nearest to Skhul V, 

next is his sample of Upper Paleolithic crania, other modern and fossil a. m. 

populations are approximately as far away and of the crania common to his study 

and the current ones the Kabwe cranium is closer to Skhul V than are the 

Neanderthals. These results generally concur with those of the current analyses 

as do those of Howells (1970) in which Skhul V appears most like modern 
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populations and less like "classic" Neanderthals. 

h) Anatomically modern fossils of Homo sapiens 

The relationships of the a. m. fossils have already largely been considered 
in the earlier discussions. However, it is a consistent finding of all of the studies 

described in this chapter that the a. m. fossils are very similar to the modern 

negro population. This is reflected in the distance matrices (tables 4.4,4.5.4.6, 

and 4.8), UPGMA phenograms and canonical analyses (figs 4.1 to 4.10). This high 

degree of similarity is consistent with the findings of all other workers (see the 

review presented earlier). 
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CONCLUDING DISCUSSION 

The studies presented in this chapter have set out to further examine the 

applicability and utility of Fourier analysis relative to linear and angular 

measurements in describing hominoid cranial morphology. 
In the studies of chapter 2 the principal difference between the results of 

analyses of Fourier data and of other data appeared to be In the degree of 

discrimination between OTUs whilst the pattern of separation of OTUs remained 

relatively constant. By contrast, the studies of this chapter, which Include fossil 

hominids, have demonstrated differences In both the pattern and the degree of 

discrimination resulting from analyses of different data. The studies of canonical 

axes Indicated that underlying all analyses there is a common pattern of group 

relationships which becomes increasingly difficult to discern as successively higher 

axes are examined. 

Earlier, it was suggested that the differences may be the result of either the 

different description of shape effected by the different methods or of errors to 

the calculation of Fourier coefficients. In order to gain an insight into the 

explanation for the differences In result it has been necessary to undertake 

analyses of different sets of Fourier data and to compare the results of the 

current studies with those obtained by previous workers. 

A reduced set of Fourier components was selected on the basis of their 

ability to describe the differences between modern groups with a minimum of 

"noise" and a maximum of discrimination. When the results of the analysis of 
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this data were compared with the results of the analysis of the fuller Fourier 

data it was found that there was a considerable degree of agreement. 

Some OTUs, particularly those represented by single specimens showed a 

relatively large shift in apparent morphological affinity and adopted a relationship 

to other OTUs which Is more consistent with the studies of linear and angular 

measurements and the studies of other workers. From these findings It is 

concluded that a partial explanation for the differences In result between studies 

of the first 20 Fourier coefficients and those of linear and angular measurements 

may well be measurement error (because errors In measurement cannot be 

"damped" in these OTUs by the calculation of group means). 

It was noted from the study of 30 Fourier components, however, that most 

OTUs still seemed to be in a different position relative to other OTUs when 

compared to the analyses of angles and dimensions. This suggests that the effects 

of "noise" are minimal and that the differences between the results obtained from 

Fourier data and linear and angular measurements reflect real differences In the 

shape descriptions provided by the different data. 

A more detailed comparison of the findings of the analyses of angles and 

dimensions and of Fourier data with those of other workers was undertaken. It 

was noted from these that there is some disagreement between the results of 

studies presented here and those of other workers. The degree of disagreement 

varies from OTU to OTU, from study to study and from worker to worker. 

Consistently, the impression that different studies give emphasis to different 
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aspects of morphology was gained. This seems to be another part of the 

explanation for the differences between the results of studies of Fourier data and 

of angles and dimensions. 

The results presented in this chapter should serve as a caution to workers 

who employ phenetic methodologies. The use of (even slightly) different data In 

analyses employing exactly the same numerical techniques can give rise to very 

different patterns of phenetic relationships between OTUs. This has been pointed 

out by several workers (e. g. Wiley, 1981, Ridley, 1986 and many others). The 

differences in results when different data are used are additional to the 

differences In patterns of phenetic relationships that result from the use of 

different phenetic methods (again see Wiley, 1981 and Ridley, 1986). 

Why then do the studies of Fourier data disagree to some extent with the 

studies of angles and dimensions? It has already been noted that the description 

of a cranium by angles and dimensions is entirely dependent on the identification 

of landmarks. The anatomy of hominoid crania dictates that useful landmarks 

are more frequently found in the facial and basal regions. The vault, which may 
be considerably expanded in more recent Homo, presents few such landmarks 

despite its relative size. 

Fourier data, on the other hand, require only one or two landmarks for 

their derivation and they give equal weighting to all regions of the outline. Thus, 

the values of Fourier coefficients derived from a cranial outline will be 
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representative of the whole morphology. The proportionate influence of facial, 

basal and vault regions will be determined not by the number of identifiable 

landmarks but by the proportion of the outline which is made up of them. Many 

differences in result seem to be related to differences in the way in which the 

data describe neurocranial and viscerocranial morphology. 

Why then did the studies of modern groups show a greater degree of 

agreement between the analyses of different shape measures? The studies of 

modern groups utilised data from apes and men. The apes are very different 

from the men whilst within the men and the apes there is a greater degree of 

general similarity. It is to be expected, therefore, that the large differences in 

morphology between apes and men are given considerable emphasis (as reflected 

in large distances between them) In the analyses of all types of data. Conversly, 

all of the analyses might be expected to agree in indicating considerable 

similarities within apes and men. 

The studies of between-group differences in this chapter contrast with the 

earlier ones in that the fossils provide a more varied range of morphology. As 

such the number and types of differences demonstrated between OTUs when 

different descriptions of morphology are employed are themselves more varied. 
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Summary 

In this chapter a study is presented which compares the outcome of 

phenetic studies of fossil hominid crania using Fourier data with that of 

comparable studies using linear and angular measurements. Earlier studies of the 

cranial morphology of extant hominoids using these same methods of 

morphological description resulted in nearly identical patterns of phenetic 

discrimination irrespective of data type. In contrast. the studies of fossil material 

have resulted in a reduced (though significant, as judged by matrix correlations) 

degree of correspondence between the phenetic relationships Implied by linear 

and angular measurements and those implied by Fourier data. 

A detailed examination of the results together with a consideration of the 

findings of phenetic studies of hominid cranial morphology undertaken by 

previous workers has Indicated the following; 

a) The studies of Fourier data and those of linear and angular measurements 

show a significant degree of agreement. 

b) There is also a general agreement between these studies and those of previous 

workers. 

c) There are, however, a number of ways In which the phenctic relationships 

implied by the Fourier data disagree with those Implied by linear and angular 

measurements. These disagreements appear to be related to differences in the 

morphological descriptions provided by the different data. 

d) There also exists some disagreement between the phenetic relationships 

Implied between fossil crania In the studies of previous workers. 
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It is concluded that: 

a) Fourier analysis is not a "simple" substitute for linear and angular 

measurements. 

b) Fourier data describe cranial morphology In a different way to linear and 

angular dimensions. The former treats each part of the cranial outline as being 

of equal weight whilst the latter weights anatomical regions according to the 

number of identifiable landmarks and the measurement protocol. The consequence 

Is that different phenctic patterns emerge. 

c) The outcome of a phenetic study Is critically dependent upon the measurement 

(descriptive) procedure which Is employed. 
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CIIAI'I'ER 5 

Cranial form in the IIominoidca. 

Concluding remarks 
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Gcncral 

The principal aim of the work presented In this thesis has been to 

examine the merits of a number of methods which offer potential in the 

description of hominoid cranial form. To this end, three studies have been 

undertaken. 

In the first, the phenetic relationships of the crania of extant hominoids 

were examined using data obtained by a variety of new and more traditional 

approaches to morphological description. The analysis concentrated on a 

comparison of the patterns of group dispositions that resulted and on an 

examination of the ability of the various approaches to allow an accurate 

determination of the affinities of crania of unknown provenance. The results 

indicated that there was little difference in the patterns of phonetic 

relationships obtained although it did appear that the analyses based upon 

linear and angular measurements and Fourier coefficients provided the widest 

separation between the groups. 

The second study employed linear and angular measurements and Fourier 

coefficients in an examination of within - group cranial variability. In general the 

results led to similar conclusions about the patterns of sexual dimorphism in 

extant hominoid crania and the influence of size on cranial morphology. The 

analyses of Fourier data differed from those of linear and angular 

measurements, however, in that purely size related variation was given a smaller 

weighting relative to morphological variation attributable to other sources. 
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The third study employed these same two approaches to morphological 

description in a study of the patterns of cranial variation between certain fossil 

hominids. By contrast with the first study the methods resulted in different 

patterns and degrees of discrimination between the groups. 

Overall consideration of results 

The results obtained from the different studies show an apparent conflict. 

From the first it seems that the choice of method for the description of cranial 

morphology has little influence on the observed pattern of between-group 

relationships. The second study suggests that this stability in the face of 

different data Is less marked In studies of within-group variation. The third 

study, however, produces a result which conflicts with that from the first in 

suggesting that, in some studies, between-group relationships will be Influenced 

by the choice of data. 

The hypothesis that the pattern of phonetic relationships which is observed 

between crania Is independent of the method used to describe morphology is 

clearly falsified. 

The reasons why this is so have been considered earlier, they are brought 

together here, however, so that some general comments and recommendations 

can be made. 

From the descriptions of the methods of morphological description 

furnished In the introduction to the first study It is evident that the data which 

they generate differ In a number of ways. Shape factors and Fourier coefficients 

provide a description which gives every point on the boundary of an outline 
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equal weighting. This contrasts with linear and angular measurements, indices, 

and the method of least squares which give disproportionate weighting to those 

regions where landmarks are plentiful. 

In the first study two families of shapes were studied, one represented by 

the apes, the other by the men. Within both the ape and human groups cranial 

morphology Is broadly similar. Between men and apes, however, marked 

contrasts In cranial morphology exist. The distance matrices calculated between 

these extant groups reflect this in indicating small distances between the races 

of men and between the apes whilst between the men and apes distances are 

large. The pattern of differences between groups is discontinuous and this 

emerges irrespective of the method used to describe cranial morphology. 

The study of patterns of antra-group variation contrasts with the first 

study in that more subtle variations in cranial morphology are examined. The 

results derived from Fourier data contrast with those from linear and angular 

measurements in the emphasis given to the weighting of morphological 

differences (such that those related to size are more pronounced on higher 

principal components). This contrast reflects differences in the descriptions of 

morphology which are provided by the two sets of data and especially the fact 

that variations in regions which are relatively unsampled by landmark based 

data are fully sampled by Fourier data. 

In the third study patterns of variation between fossil and extant 

hominoids were examined. In this study the pattern of relationships was more 

continuous than in the first, where the pattern of between group phcnetic 

relationships is largely discontinuous. The fossils present a range of cranial 

morphologies which vary from being largely ape-like to being largely like 
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anatomically modern Homo. Consequently the differences between the 

descriptions of cranial morphology provided by Fourier data and by linear 

dimensions and angles were more clearly demonstrated. 

In the course of a detailed comparison of the findings of the analyses of 

linear and angular dimensions with those from Fourier data and those of other 

workers it was noted that the degree of agreement varied from OTU to OTU, 

from study to study and from worker to worker. Consistently the impression 

was gained that Fourier data gave different weighting to the various anatomical 

regions from that provided by linear and angular measurements. In consequence 

the observed patterns of phenetic relationships were markedly influenced by the 

choice of craniomctric technique. 

General comments and recommendation 

It is clear from the studies presented here that it is feasible to apply 

numerous methods, some traditional some new, to phenetic studies and that 

these may lead to different results. It follows that craniometric problems should 

be precisely defined and the most appropriate methodology chosen for the task 

at hand. 

It is self evident that studies which ask specific questions about specific 

anatomical regions must rely upon landmarks for the collection of at least some 

of the data which are to describe those regions. This is because landmarks are 

needed to define the regions themselves. Furthermore, landmark based data 

allow specific questions regarding defined anatomical differences to be explored. 
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By contrast landmark independent methods of morphological description 

treat the whole cranium as a single object. However the differences which 

emerge are not readily interpretable in a language familiar to the anatomist. 

It may be of interest to know that cosine component 2 is weighted more 

heavily in data calculated from one cranial tracing rather than another but the 

anatomical meaning of this finding is unclear. On the other hand landmark 

independent methods offer the advantage that they are easily automated, give 

even emphasis to all points on an outline and can result in a precise and 

complete description of a cranial tracing. 

From these conclusions it is recommended that: 

a) the choice of method for craniometric problems be determined with due 

regard for the task at hand, 

b) the investigator be aware of the potential pitfalls and advantages of each 

method in furnishing answers to specific questions, 

c) the investigator be aware of the fact that the use of different morphological 

descriptions may give rise to different results. 
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Appendix Ai 

Order of presentation 

Cro - Magnon 1 
Gamble's Cave 4 
Gough's Cave 1 
Chancelade 1 
Predmost 3 
Brno 3 
Mladec 1 
Fish hock 1 
Keilor 1 
Wadjak I 

Le Moustier 1 
Ia Chapelle -tux -Saints 1 
La Ferrassie 1 
Monte Circeo 1 
Gibraltar 1 
Skhul V 
Kabwc 1 
Steinheim 1 
'Sinanthropus' 

Sangiran 4 
KNM - ER 3733 
Sts 5 
011 24 
0115 
KNM-ER 406 
KNM - ER 1470 (three reconstructions) 
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CRO-MAGNON I 

1 MAX. LENGTH (G - OP) 205.00 
2 MAX CRANIAL BREADTH 152.00 
3 BASI-13REGMATIC HEIGHT 135.00 
4 AURICULAR HEIGHT 127.00 
5 POSTORBITAL BREADTH 104.00 
6 FRONTAL HEIGHT 34.00 
7 FRONTAL CHORD 126.00 
8 PARIETAL HEIGHT 24.00 
9 PARIETAL CHORD 118.00 

10 OCCIPITAL IIEIGIIT 37.00 
11 OCCIPITAL CHORD 103.00 
12 FORAMINAL LENGTH 41.00 
13 FORAMINAL BREADTH 27.00 
14 B-L-O 86.00 
15 L-O-BA 108.00 
16 UPPER FACIAL HEIGHT 66.00 
17 PALATAL LENGTH 59.00 
18 PALATAL BREADTH 40.00 
19 NASAL BREADTii 22.00 
20 NASAL HEIGHT 50.00 
21 SUBNASAL HEIGHT 16.00 
22 ORBITAL HEIGHT 27.00 
23 ORBITAL BREADTH 45.00 
24 INFRAORB BREADThI 62.00 
25 BIZYGOMATIC BREADTH 143.00 
26 BASI - INFRAORBITAL LENGTh I 87.00 
27 BASI -NASAL LENG11 I 102.00 
28 BASI - PROSTI ZION LENGTI I 107.00 
29 BASI-STAPIIYLION LENGTH 47.00 
30 BA-N-B 71.00 
31 BA -N- PR 75.00 
32 N-B-L 103.00 
33 N- BA - PR 37.00 
34 0 -BA-N 170.00 

Notes 

1. 

2. 

3. 

Notes 

2 
3 

Damage to the posterior palate meant that the palatal length and the 
craniogram tracing in this region were estimated. 

The presence of encrustations on the face required the estimation of this 
dimension. 

Damage to both zygomatic arches required the estimation of this dimension 
from the general contour of the arches. 
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GAMBIX. 'S CAVE? 4 

1 MAX. LENGTH (G - OP) 190.00 
2 MAX CRANIAL BREADTH 135.00 
3 BASI-BREGMATIC HEIGHT 136.00 
4 AURICULAR HEIGHT 114.00 
5 POSTORBITAL BREADTh I 95.00 
6 FRONTAL HEIGHT 29.00 
7 FRONTAL CHORD 110.00 
8 PARIETAL IIEIGIiT 27.00 
9 PARII3TAL CHORD 126.00 

10 OCCIPITAL IIEIGIIT 24.00 
11 OCCIPITAL CHORD 87.00 
12 FORAMINAL LENGTH 35.00 
13 FORAMINAL BREADTH 26.00 
14 B-L-O 77.00 
15 L-O-BA 148.00 
16 UPPER FACIAL HEIGHT 73.00 
17 PALATAL LENGTI H 53.00 
18 PALATAL BREADTH 46.00 
19 NASAL BREADTH 26.00 
20 NASAL HEIGHT 58.00 
21 SUBNASAL HEIGHT 15.00 
22 ORBITAL HEIGHT 41.00 
23 ORBITAL BREADThI 38.00 
24 INFRAORB BREADTH 62.00 
25 BIZYGOMATIC BREADTH 140.00 
26 BASI - INFRAORBITAL LENGTH 88.00 
27 BASI -NASAL LENGTH 106.00 
28 BASI - PROSTI I ION LENGTh I 93.00 
29 BASI-STAPHYLION LENGTH 50.00 
30 BA-N-B 78.00 
31 BA-N-PR 60.00 
32 N-B-L 103.00 
33 N- BA - PR 42.00 
34 0 -BA-N 134.00 

Notes 

Notes 

1. Damage to posterior palate required the reconstruction of the posterior 
palate. The positions of Staphylion and of the craniogram tracing were 
estimated In this region. 
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GOUG1 i'S CAVE 1 

I MAX. LENGTI I (G - OP) 195.00 
2 MAX CRANIAL BREADTI1 140.00 
3 BASI-BREGMATIC HEIGHT 148.00 
4 AURICULAR HEIGHT 123.00 
5 POSTORBITAL BREADTH 103.00 
6 FRONTAL HEIGHT 27.00 
7 FRONTAL CHORD 120.00 
8 PARIETAL HEIGHT 23.00 
9 PARIETAL CHORD 120.00 

10 OCCIPITAL HEIGHT 27.00 
11 OCCIPITAL CHORD 103.00 
12 FORAMINAL LENGThI 43.00 
13 FORAMINAL BREADTH 35.00 
14 B-L-O 88.00 
15 L-O-BA 123.00 
16 UPPER FACIAL HEIGHT 67.00 
17 PALATAL LENGTH 47.00 
18 PALATAL BREADTH 39.00 
19 NASAL BREADTII 28.00 
20 NASAL HEIGHT 49.00 
21 SUBNASAL HEIGHT 17.00 
22 ORBITAL HEIGHT 36.00 
23 ORBITAL BREADTH 43.00 
24 INFRAORB BREADTH 55.00 
25 BIZYGOMATIC BREADTH 139.00 
26 BASI - INFRAORBITAL LENGTH 81.00 
27 BASI-NASAL LENGTH 112.00 
28 BASI - PROS II ION LENGTH 96.00 
29 BASI-STAPIIYLION LENGTH 50.00 
30 BA -N-B 79.00 
31 BA -N- PR 58.00 
32 N-B-L 106.00 
33 N- BA - PR 36.00 
34 0 -BA-N 144.00 

Notes 

1. Damage to foramen magnum required estimation 
2. The position of Prosthion was estimated. 
3. The position of Staphylion was estimated. 
4. Damage to the left side of the face meant that 

estimated by reference to the right side. 
S. The position of Nariale was estimated. 
6. Right orbit damaged, dimension from left. 

2 
2,3 

4 
5 
2.5 

6 
4 
4 
4 

2 
3 

2 

2 

of this dimension. 

Notes 

thcsc dimensions were 
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CIIANCELADE I 
Notes 

1 MAX. LENGTI i (G - OP) 197.00 
2 MAX CRANIAL BREADTH 138.00 
3 BASI-BREGMATIC HEIGHT 153.00 1 
4 AURICULAR HEIGHT 129.00 
5 POSTORBITAL BREADTH 102.00 
6 FRONTAL HEIGHT 33.00 1 
7 FRONTAL CHORD 126.00 1 
8 PARIETAL HEIGHT 28.00 
9 PARIETAL CHORD 122.00 1 

10 OCCIPITAL HEIGHT 27.00 
11 OCCIPITAL CHORD 99.00 
12 FORAMINAL LENGTH i 38.00 2 
13 FORAMINAL BREADTH 33.00 2 
14 B-L-O 92.00 1 
15 L-O-BA 121.00 2 
16 UPPER FACIAL HEIGHT 70.00 
17 PALATAL LENGTH 52.00 3 
18 PALATAL BREADTH 41.00 4 
19 NASAL BREADTi1 28.00 
20 NASAL HEIGHT 57.00 
21 SUBNASAL HEIGHT 14.00 
22 ORBITAL HEIGHT 34.00 
23 ORBITAL BREADTH 41.00 
24 INFRAORB BREADTH 49.00 
25 BIZYGOMATIC BREADTH 141.00 5 
26 BASI - INFRAORBITAL LENGTH 90.00 2 
27 BASI - NASAL LENGTI I 117.00 2 
28 BASI - PROSTE ZION LE-NG711 99.00 2 
29 BASI-STAPIIYLION LENGTH 47.00 2,3 
30 BA -N-B 78.00 1,2 
31 BA -N- I'R 58.00 2 
32 N-B-L 100.00 1 
33 N- BA - PR 37.00 2 
34 0-BA-N 148.00 2 

Notes 
1. The position of ßregma was estimated on the reconstruction. 
2. The region of the foramen magnum was heavily reconstructed. The 

foraminal breadth is a complete estimate and the position of the basion is 
also estimated though with confidence. 

3. The position of staphylion is estimated though with confidence. 
4. The left alveolus is damaged, estimate from right. 
5. Estimate based on half measurement from reconstructed right zygomatic 

arch. 
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PRI? DMOST 3 

vi 

Notes 
I MAX. LENGTI i (G - OP) 203.00 
2 MAX CRANIAL BREADTH 149.00 1 
3 BASI-BREGMATIC HEIGHT 136.00 
4 AURICULAR HEIGHT 127.00 
5 POSTORBITAL BREADTH 104.00 
6 FRONTAL HEIGHT 26.00 
7 FRONTAL CHORD 121.00 
8 PARIETAL HEIGHT 25.00 2 
9 PARIETAL CHORD 119.00 2 

10 OCCIPITAL HEIGHT 30.00 2 
11 OCCIPITAL CHORD 99.00 2 
12 FORAMINAL LENGTH 41.00 
13 FORAMNNAL BREADTH 33.00 3 
14 B-L-O 90.00 2 
15 L-O-BA 106.00 2 
16 UPPER FACIAL HEIGHT 76.00 
17 PALATAL LENGTH 57.00 4 
18 PALATAL BREADTH 43.00 
19 NASAL BREADTH 26.00 
20 NASAL HEIGHT 62.00 
21 SUBNASAL HEIGHT 14.00 
22 ORBITAL HEIGHT 31.00 
23 ORBITAL BREADTH 45.00 
24 INFRAORB BREADTH 57.00 5 
25 BIZYGOMATIC BREADTH 144.00 6 
26 BAS! - INFRAORBITAL LENGTh I 93.00 
27 BASI -NASAL LENGTH I 111.00 
28 BASI - PROSTE I ION LENGTI I 114.00 
29 BASI -STAPI IYLION LENGTH 59.00 4 
30 BA-N-B 72.00 
31 BA-N-PR 73.00 
32 N-B-L 105.00 2 
33 N- BA - PR 40.00 
34 0- BA -N 168.00 

Note 

1. 
2. 
3. 
4. 

5. 
6. 

Right parietal damaged, estimate from left. 
Position of lambda is an estimate. 
Estimated because of damage. 
The positions of staphylion and the 
estimated. 
Estimated from half dimension. 

craniogram tracing in this region are 

Right zygomatic arch is missing, estimate from left. 
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BRNO 3 

vii 

1 MAX. LENGTH (G-OP) 182.00 
2 MAX CRANIAL BREADTII 127.00 
3 BASI - BREGMATIC HEIGHT 140.00 
4 AURICULAR IIEIGHIT 116.00 
5 POSTORBITAL BREADTH 92.00 
6 FRONTAL HEIGHT 23.00 
7 FRONTAL CHORD 107.00 
8 PARIETAL HEIGHT 25.00 
9 PARIETAL CHORD 118.00 

10 OCCIPITAL HEIGHT 25.00 
11 OCCIPITAL CHORD 100.00 
12 FORAMINAL LENGTH 34.00 
13 FORAMINAL BREADTI i 29.00 
14 B-L-O 87.00 
15 L-O-BA 118.00 
16 UPPER FACIAL HEIGHT 63.00 
17 PALATAL LENGTI1 50.00 
18 PALATAL BREADTH i 39.00 
19 NASAL BREADTI1 30.00 
20 NASAL HEIGHT 51.00 
21 SUBNASAL HEIGHT 13.00 
22 ORBITAL HEIGHT 35.00 
23 ORBITAL BREADTH 40.00 
24 INFRAORB BREADTH 54.00 
25 BIZYGOMATIC BREADTH 122.00 
26 BASI - INFRAORBITAL LENGTI I 84.00 
27 BAST -NASAL LENGTH i 103.00 
28 BASI -PROS 1I ION LENGTH i 96.00 
29 BASI - STAPI IYLION LENGTI I 48.00 
30 BA-N-B 85.00 
31 BA-N-PR 66.00 
32 N-B-L 102.00 
33 N- BA - PR 37.00 
34 0 -BA-N 149.00 

Notes 

1. Deficient right parietal, estimate. 
2. Damaged temporal fossae, estimate from general contours. 
3. The positions of the Staphylion and posterior palate were estimated. 
4. Missing parts of nasal bridge, estimated dimension. 
5. Estimated from intact right half. 
6. Damaged zygomatic arches, estimated from general contours. 

Notes 

2 

3 

4 
5 
6 

3 
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MI. ADEC I 

1 MAX. LENGTH (G - OP) 199.00 
2 MAX CRANIAL BREADTH 143.00 
3 BASI-BREGMATIC HEIGHT 139.00 
4 AURICULAR HEIGHT 121.00 
5 POSTORBITAL BREADTH 100.00 
6 FRONTAL HEIGHT 32.00 
7 FRONTAL CHORD 116.00 
8 PARIETAL IIEIGIIT 20.00 
9 PARIETAL CHORD 122.00 

10 OCCIPITAL HEIGHT 32.00 
11 OCCIPITAL CHORD 100.00 
12 FORAMINAL LENGTH 43.00 
13 FORAMINAL BREADTH 30.00 
14 B-L-O 88.00 
15 L-O-BA 111.00 
16 UPPER FACIAL HEIGHT 66.00 
17 PALATAL LENGTI1 56.00 
18 PALATAL BREADTH 43.00 
19 NASAL BREADTH 24.00 
20 NASAL HEIGHT 53.00 
21 SUBNASAL HEIGHT 13.00 
22 ORBITAL HEIGHT 31.00 
23 ORBITAL BREADTH 42.00 
24 INFRAORB BREADTI i 56.00 
25 BIZYGOMATIC BREADTH 138.00 
26 BAST - INFRAORBITAL LENGTH I 87.00 
27 BAS! - NASAL LENGTI 1 103.00 
28 BASI-PROSTHION LENGTH 108.00 
29 BASI - STAPI IYLION LENGTI I 51.00 
30 BA-N-B 79.00 
31 BA-N-PR 75.00 
32 N-B-L 102.00 
33 N- BA - PR 37.00 
34 0- BA -N 159.00 

Notes 

1. Positions of Staphylion and palatal outline estimated. 

Notes 

2 

2. Estimated from Right side, left zygomatic arch missing. 
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FISH IIOEK I 

Notes 

1 MAX. LENGTH (G - OP) 200.00 
2 MAX CRANIAL BREADTH 151.00 
3 BASI-BREGMATIC HEIGHT 130.00 
4 AURICULAR HEIGHT 117.00 
5 POSTORBITAL BREADTH 106.00 
6 FRONTAL HEIGHT 32.00 
7 FRONTAL CHORD 125.00 
8 PARIETAL IIEIGIiT 25.00 
9 PARIETAL CHORD 125.00 

10 OCCIPITAL HEIGHT 31.00 
11 OCCIPITAL CHORD 88.00 
12 FORAMINAL LENGTH 39.00 
13 FORAMINAL BREADTH 30.00 
14 B-L-O 76.00 
15 L-O-BA 139.00 
16 UPPER FACIAL HEIGHT 57.00 
17 PALATAL LENGTH 50.00 
18 PALATAL BREADTH 1 42.00 
19 NASAL BREADTh i 25.00 
20 NASAL HEIGHT 43.00 
21 SUBNASAL HEIGHT 15.00 
22 ORBITAL HEIGHT 32.00 
23 ORBITAL BREADTH 38.00 
24 INFRAORB BREADTH 55.00 
25 BIZYGOMATIC BREAD711 132.00 
26 BAST - INFRAORBITAL LENGTI1 82.00 
27 BAST -NASAL LENGTH 93.00 
28 BASI - PROSTH ION LENGTI i 98.00 
29 BASI - STAPI IYLION LENGTh I 48.00 
30 BA-N-B 71.00 
31 BA-N-PR 78.00 
32 N-B-L 100.00 
33 N- BA - PR 35.00 
34 0 -BA-N 154.00 

Notes 

Cranium largely intact, some damage in the region of the posterior palate 
though no great problem in estimation of the outline. 
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KEILAR 1 

X 

1 MAX. LENGTI I (0-OP) 202.00 
2 MAX CRANIAL BREADTH 146.00 
3 BASI-BREGMATIC HEIGHT 137.00 
4 AURICULAR HEIGHT 125.00 
5 POSTORBITAL BREADTH 102.00 
6 FRONTAL HEIGHT 23.00 
7 FRONTAL CHORD 112.00 
8 PARIETAL IIEIGI iT 24.00 
9 PARIETAL CHORD 126.00 

10 OCCIPITAL IIEIGIiT 34.00 
11 OCCIPITAL CHORD 107.00 
12 FORAMINAL LENGTH 40.00 
13 FORAMINAL BREADTH 32.00 
14 B-L-O 83.00 
15 L-O-BA 112.00 
16 UPPER FACIAL HEIGHT 70.00 
17 PALATAL LENGTH 72.00 
18 PALATAL BREADTH 47.00 
19 NASAL BREADTh I 27.00 
20 NASAL HEIGHT 52.00 
21 SUBNASAL HEIGHT 18.00 
22 ORBITAL HEIGHT 30.00 
23 ORBITAL BREADTH 40.00 
24 INFRAORB BREAD'T'H 60.00 
25 BIZYGOMATIC BREADTII 140.00 
26 BAST - INFRAORBITAL LENGTI1 93.00 
27 BASI - NASAL LENGTI I 110.00 
28 BASI - PROSTI I lON LENGTH I 112.00 
29 BASI-STAPIIYLUON LENGTH 40.00 
30 BA-N-B 76.00 
31 BA-N-PR 73.00 
32 N-B-L 109.00 
33 N- BA - PR 37.00 
34 0 -BA-N 160.00 

Notes 

1. Foraminal breadth estimated from left half. 

Notes 

2 

2. Estimate from general contours of remaining parts of zygomatic arches. 



Appendix A xi 

WADJAK I 

1 MAX. LENGTH (G - OP) 202.00 
2 MAX CRANIAL BREADTh 1 152.00 1 
3 BASI-BREGMATIC HEIGHT 139.00 3 
4 AURICULAR HEIGHT 121.00 
5 POSTORBITAL BREADTI! 99.00 2 
6 FRONTAL IiEIGIiT 24.00 
7 FRONTAL CHORD 117.00 
8 PARIETAL IIEIGIiT 36.00 
9 PARIETAL CHORD 143.00 

10 OCCIPITAL HEIGHT 15.00 3 
11 OCCIPITAL CHORD 87.00 3 
12 FORAMINAL LENGTH 35.00 3 
13 FORAMINAL BREADTH 29.00 3 
14 B-L-O 79.00 
15 L-O- BA 125.00 3 
16 UPPER FACIAL IIEIGIIT 70.00 4 
17 PALATAL LENGTH 61.00 4,5 
18 PALATAL BREADTH 44.00 
19 NASAL BREADTI1 28.00 
20 NASAL HEIGHT 52.00 
21 SUBNASAL HEIGHT 20.00 4 
22 ORBITAL HEIGHT 35.00 
23 ORBITAL BREADTH 42.00 
24 INFRAORB BREADTH 65.00 
25 BIZYGOMATIC BREADTII 142.00 6 
26 BASI - INFRAORBITAL LENGTI 1 95.00 3 
27 BASI -NASAL LENGTH 1 111.00 3 
28 BASI - PROSTI! ION LENGTI I 113.00 3,4 
29 BASI - STAPI IYLION LENG711 52.00 3,5 
30 BA-N-B 75.00 3 
31 BA -N- PR 73.00 3,4 
32 N-B-L 96. (X) 
33 N- BA - PR 36.00 3,4 
34 0 -BA-N 162.00 3 

Notes 

Notes 

1. Both parietals badly damaged, dimension based upon half measurement 
taken from reconstructed left side. 

2. Estimated with regard to the general contours of the damaged temporal 
fossae. 

3. Estimated dimensions because of damage to foramen magnum. 
4. Position of Prosthion estimated from general contours. 
5. Position of Staphylion estimated from general contours. 
6. Positions of zygomatic arches estimated from contours 
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Lia MOUSTTfR 1 

1 MAX. LENGTI i (G - OP) 205.00 
2 MAX CRANIAL BREADTI1 150.00 1 
3 BASI-BREGMATIC HEIGHT 139.00 
4 AURICULAR IIEIGIiT 126.00 
5 POSTORBITAL BREADTH 111.00 2 
6 FRONTAL HEIGHT 21.00 
7 FRONTAL CHORD 108.00 
8 PARIETAL IIEIGIiT 24.00 
9 PARIETAL CHORD 115.00 

10 OCCIPITAL IIEIGIiT 33.00 3 
11 OCCIPITAL CHORD 103.00 3 
12 FORAMINAL LENGTH 32.00 3 
13 FORAMINAL BREADTH 29.00 
14 B-L-O 88.00 3 
15 L-O- BA 110.00 3 
16 UPPER FACIAL IIEIGIiT 70.00 4 
17 PALATAL LENGTH 70.00 4 
18 PALATAL BREADTh I 46.00 4 
19 NASAL BREADTH 28.00 4 
20 NASAL HEIGHT 53.00 4 
21 SUBNASAL HEIGHT 18.00 4 
22 ORBITAL HEIGHT 42.00 
23 ORBITAL BREADTH 44.00 
24 INFRAORB BREADTI i 76.00 4 
25 BIZYGOMATIC BREADTH 145. X1 5 
26 BASI - INFRAORBITAL LENGTI I 110.00 4 
27 BASI - NASAL LENGTI I 127.00 4 
28 BASI - PROSTIIION LENGTI I 127.00 4 
29 BASI -STAPI IYLION LENGTH 56.00 4 
30 BA-N-B 72.00 4 
31 BA-N-PR 73.00 4 
32 N-B-L 115.00 4 
33 N- BA - PR 32.00 4 
34 0- BA -N 154.00 3,4 

Notes 

Notes 

1. Estimated to account for fragmented left parietal. 
2. Estimated with regard to damaged left temporal fossa. 
3. Estimated position of Opisthion. 
4. The facial skeleton is badly damaged and larýcly missing, these estimates 

are taken from the reconstructed cast and estimated where necessary. 
5. Both zygomatic arches are damaged. estimate Is based upon the general 

contour. 
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LA CIIAPEUIB-AUX-SAINTS 1 

Notes 

1 MAX. LENGTH (G - OP) 215.00 1 
2 MAX CRANIAL BREADTH 160.00 1 
3 BASI-BREGMATIC IIEIGIIT 133.00 1 
4 AURICULAR HEIGHT 114.00 1 
5 POSTORBITAL BREADTH 111.00 1 
6 FRONTAL HEIGHT 26.00 1 
7 FRONTAL CHORD 108.00 1 
8 PARIETAL IIEIGIiT 18.00 1,2 
9 PARIETAL CHORD 115.00 1,2 

10 OCCIPITAL HEIGHT 35.00 1,2 
11 OCCIPITAL CHORD 94.00 1,2 
12 FORAMINAL LENGTH 51.00 1 
13 FORAMINAL BREADTH 31.00 1 
14 B-L-O 91.00 1,2 
15 L-O- BA 110.00 1,2 
16 UPPER FACIAL HEIGHT 81.00 
17 PALATAL LENGTI i 65.00 3 
18 PALATAL BREADTH 50.00 4 
19 NASAL BREADTH 34.00 
20 NASAL IIEIGIiT 61.00 
21 SUBNASAL HEIGHT 20.00 
22 ORBITAL HEIGHT 36.00 
23 ORBITAL BREADTH 47.00 
24 INFRAORB BREADTH 69.00 
25 BIZYGOMATIC BREADTh! 148.00 5 
26 BASI - INFRAORBITAL LENGTH I 104.00 
27 BAST - NASAL LENGTh I 117.00 
28 BASI - PROSTi ZION LENGTH 130.00 
29 BAST-STAPIIYUON LENGTH 65.00 3 
30 BA-N-B 73.00 
31 BA -N- PR 80.00 
32 N-B-L 115.00 2 
33 N- BA - PR 38.00 
34 0- BA -N 151.00 

Notes 

1. The cranial vault is fragmented but the reconstruction appears adequate. 
2. Estimated position of Lambda. 
3. Positions of Staphylion and cranial tracing estimated in this region. 
4. Estimated from general contour of the alveolus. 
5. Right zygomatic arch missing, estimate from left. 
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LA FfRRASSII 1 

Notes 

1 MAX. LENGTH I (G - OP) 212.00 
2 MAX CRANIAL BREADTH 159.00 
3 BASI-BREGMATIC IIEIGIiT 136.00 
4 AURICULAR HEIGHT 115.00 
5 POSTORBITAL BREADTH i 109.00 
6 FRONTAL HEIGHT 23.00 
7 FRONTAL CHORD 123.00 
8 PARIETAL HEIGHT 23.00 
9 PARIETAL CHORD 114.00 

10 OCCIPITAL WEIGHT 30.00 
11 OCCIPITAL CHORD 97.00 
12 FORAMINAL LENGTH 44.00 
13 FORAMINAL BREADTH 34.00 
14 B-L-O 90.00 
15 L-O- BA 115.00 
16 UPPER FACIAL HEIGHT 92.00 
17 PALATAL LENGTH 59.00 
18 PALATAL BREADTII 49.00 
19 NASAL BREADTI i 32.00 
20 NASAL IIEIGIiT 65.00 
21 SUBNASAL HEIGHT 26.00 
22 ORBITAL 1IEIGIIT 37.00 
23 ORBITAL BREADTh 1 48.00 
24 INFRAORII BREADTH 82.00 
25 BIZYGOMATIC BREADTh I 149.00 
26 BAST - INFRAORBITAL LENGTI 1 96.00 
27 BASI - NASAL LENGTI I 123.00 
28 BAST - PROSTI ZION LENGTH 123.00 
29 BASI - STAPI IYLION LENGTI i 65.00 
30 BA-N-B 68.00 
31 BA -N- PR 68.00 
32 N-B-L 114.00 
33 N- BA - PR 44.00 
34 0 -BA-N 153.00 

Notes 

2 
2,3 

1 
2 

4 
5 
1 
5 

2 
3 

2 

2 

1. Cast is reconstructed in these regions, dimensions taken from this 
reconstruction. 

2. Position of Prosthion is estimated. 
3. Position of Staphylion is estimated. 
4. Estimate from right orbit. 
S. Right maxilla damaged estimated from left. 
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MONTf? CIRCEO 1 
Notes 

1 MAX. LENGTH (G - OP) 205.00 
2 MAX CRANIAL BREADTH 157.00 
3 BASI-BREGMATIC HEIGHT 123.00 
4 AURICULAR HEIGHT 107.00 
5 POSTORBITAL BREADTH 99.00 1 
6 FRONTAL HEIGHT 20.00 
7 FRONTAL CHORD 118.00 
8 PARIETAL HEIGHT 16.00 
9 PARIETAL CHORD 98.00 

10 OCCIPITAL HEIGHT 43.00 
11 OCCIPITAL CHORD 92.00 
12 FORAMINAL LENGTH 45.00 2 
13 FORAMINAL BREADTH 1 29.00 2 
14 B-L-O 87.00 2 
15 L-O-BA 120.00 2 
16 UPPER FACIAL IIEIGIHT 78.00 
17 PALATAL LENGTH 47.00 
18 PALATAL BREADTii 47.00 3 
19 NASAL BREADTII 30.00 1 
20 NASAL HEIGHT 64.00 
21 SUBNASAL HEIGHT 15.00 
22 ORBITAL IIEIGIIT 36.00 
23 ORBITAL BREAD111 40.00 
24 INFRAORB BREAD711 71.00 3 
25 BIZYGOMATIC BREADTH 146.00 1 
26 BASI - INFRAORBITAL LENGTH 84.00 3 
27 BAST -NASAL LENGTI i 104.00 
28 BASI - PROST) I ION LENGTH 110.00 
29 BASI - STAPI IYLION LENGTh 1 63.00 
30 BA-N-B 67.00 
31 BA -N- PR 73.00 
32 N-B-L 117.00 
33 N- BA - PR 43.00 
34 0 -BA-N 149.00 2 

Notes 
The cast which is available in the British Museum (Nil) is clearly largely 

sculptured. All of the measurements are taken from this cast/reconstruction. The 
reliability of these dimensions as an indicator of the values found in the original 
is considered elsewhere in this thesis. 

1. Estimated from the left side, right side encrusted and damaged. 
2. Damaged foramen magnum, estimate. 
3. Damaged and encrusted, estimate 
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GIBRALTAR I 
Notes 

1 MAX. LENGTH (G - OP) 193.00 
2 MAX CRANIAL BREADTH i 152.00 1 
3 BASI-BREGMATIC HEIGHT 124.00 2 
4 AURICULAR HEIGHT 109.00 2 
5 POSTORBITAL BREADTH 109.00 3 
6 FRONTAL HEIGHT 25.00 2 
7 FRONTAL CHORD 114.00 2 
8 PARIETAL HEIGHT 23.00 2 
9 PARIETAL CHORD 126.00 2 

10 OCCIPITAL IIEIGIiT 23.00 4 
11 OCCIPITAL CHORD 73.00 4 
12 FORAMINAL LENGTH 38.00 4,5 
13 FORAMINAL BREADTH 30.00 5 
14 B-L-O 82.00 2,4 
15 L-0- BA 129.00 4,5 
16 UPPER FACIAL HEIGHT 72.00 6 
17 PALATAL LENGTH 62.00 6 
18 PALATAL BREADTH 45.00 7 
19 NASAL BREADTH 33.00 
20 NASAL HEIGHT 54.00 
21 SUBNASAL HEIGHT 17.00 6 
22 ORBITAL HEIGHT 39.00 
23 ORBITAL BREADTH 43.00 
24 INFRAORB BREADTH 63.00 
25 BIZYGOMATIC BREADTH i 146.00 3 
26 BASI - INFRAORBITAL LENGTI I 89.00 3,5 
27 BAST- NASAL LENGTI I 109.00 5 
28 BASI - PROSTI ZION LENGTH I 114.00 5,6 
29 BASI - STAPI IYLION LENGTI i 52.00 5 
30 BA -N-B 68.00 5,2 
31 BA -N- PR 75.00 5,6 
32 N-B-L 102.00 2 
33 N- BA - PR 38.00 5,6 
34 0 -BA-N 158.00 5 

Notcs 

I. Substantial damage to vault, estimate based on right side. 
2. Based upon estimated position of brcgma. 
3. Estimate from right side. 
4. Estimated position of opisthion. 
5. Damaged in the region of foramen magnum, estimated dimensions. 
6. Estimated position of prosthion. 
7. Estimated from general contour of alveolus. 
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FS-SKIILJI. V 

Notes 

1 MAX. LENGTH i (G - OP) 193.00 1 
2 MAX CRANIAL BREADTH I 144.00 
3 BASI-BREGMATIC HEIGHT 126.00 2 
4 AURICULAR HEIGHT 115.00 
5 POSTORBITAL BREADTH 102.00 3 
6 FRONTAL HEIGHT 23.00 1 
7 FRONTAL CHORD 106.00 1 
8 PARIETAL HEIGHT 26.00 
9 PARIETAL CHORD 123.00 

10 OCCIPITAL IIEIGIIT 31.00 
11 OCCIPITAL CHORD 94.00 
12 FORAMINAL LENGTH 40.00 2 
13 FORAMINAL BREADTH 29.00 4 
14 B-L-O 83.00 
15 L-O-BA 107.00 2 
16 UPPER FACIAL IIEIGIHT 75.00 5 
17 PALATAL LENGTI1 63.00 5 
18 PALATAL BREADTH 48.00 
19 NASAL BREADTH 31.00 5 
20 NASAL HEIGHT 55.00 5 
21 SUBNASAL HEIGHT 19.00 5 
22 ORBITAL HEIGHT 31.00 5 
23 ORBITAL BREADTH 47.00 5 
24 INFRAORB BREADTH 62.00 5 
25 BIZYGOMATIC BREADTH i 145.00 
26 BASI - INFRAORBITAL LENGTH I 83.00 2.5 
27 BAST - NASAL LENGTH I 96.00 2.5 
28 BASI - PROSTI I ION LENGTH 112.00 2.5 
29 BASI - STAPI IYLION LENGTI I 50.00 2 
30 BA -N-B 76.00 2.5 
31 BA-N-PR 81.00 2.5 
32 N-B-L 102.00 
33 N-BA-PR 41.00 2,5 
34 0- BA -N 170.00 2,5 

Notes 

1. Position of glabella taken from reconstructed cast. 
2. Based upon reconstructed position of basion. 
3. Damaged left temporal fossa, estimated from reconstruction. 
4. Estimated from left. 
5. Based upon the facial reconstruction. 
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KAIWf 1 

1 MAX. LENGTI i (G - OP) 211.00 
2 MAX CRANIAL BREADTH 148.00 
3 BASI-BREGMATIC IIEIGIiT 133.00 
4 AURICULAR IIEIGIiT 115.00 
5 POSTORBITAL BREAD77I 101.00 
6 FRONTAL IIEIGIIT 21.00 
7 FRONTAL CHORD 124.00 
8 PARIETAL HEIGHT 17.00 
9 PARIETAL CHORD 114.00 

10 OCCIPITAL HEIGHT 31.00 
11 OCCIPITAL CHORD 90.00 
12 FORAMINAL LENGTH 43.00 
13 FORAMINAL BREADTH 39.00 
14 B-L-O 88.00 
15 L-O-BA 122.00 
16 UPPER FACIAL HEIGHT 89.00 
17 PALATAL LENGTH 67.00 
18 PALATAL BREADTh I 50.00 
19 NASAL BREADTH 32.00 
20 NASAL HEIGHT 64.00 
21 SUBNASAL HEIGHT 26.00 
22 ORBITAL HEIGHT 40.00 
23 ORBITAL BREADTH 50.00 
24 INFRAORB BREADTH 73.00 
25 BIZYGOMATIC BREADTH 149.00 
26 BAST - INFRAORBITAL LENGTI I 90.00 
27 BASI - NASAL LENGTI I 113.00 
28 BASI-PROSTIiION LENGTH 119.00 
29 BASI - STAPI IYLION LENGTH i 54.00 
30 BA -N-B 68.00 
31 BA-N-PR 71.00 
32 N-B-L 109.00 
33 N- BA - PR 45.00 
34 0- BA -N 153.00 

Notes 

1. Estimate includes reconstructed opisthocranion. 

2. Estimate includes reconstructed right half. 

Notes 

1 
2 

2 

3 

3. Estimate from left side. 
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STEH NI I E? 1 MI 

Notes 

1 MAX. LENG711 (G - OP) 186.00 
2 MAX CRANIAL BREADTII 134.00 1 
3 BASI-BIZEGMATIC HEIGHT 115.00 
4 AURICULAR IIEIGITT 109.00 
5 POSTORBITAL BREADTH 97.00 1 
6 FRONTAL HEIGHT 24.00 
7 FRONTAL CHORD 97.00 
8 PARIETAL HEIGHT 15.00 
9 PARIETAL CHORD 96.00 

10 OCCIPITAL IIEIGITT 40.00 2 
11 OCCIPITAL CHORD 94.00 2 
12 FORAMINAL LENGTH 34.00 2 
13 FORAMINAL BREADTH 27.00 2 
14 B-L-O 86.00 2 
15 L-O- BA 107.00 2 
16 UPPER FACIAL HEIGHT 69.00 3 
17 PALATAL LENGTI i 65.00 3 
18 PALATAL BREADTH 42.00 1,3 
19 NASAL BREADTH 31.00 1,3 
20 NASAL HEIGHT 50.00 3 
21 SUBNASAL HEIGHT 17.00 3 
22 ORBITAL HEIGHT 32.00 1,3 
23 ORBITAL BREADTH 37.00 1,3 
24 INFRAORB BREADTH 61.00 1,3 
25 BIZYGOMATIC BREADTH 128.00 3,4 
26 BASI - INFRAORBITAL LENGTH 79.0() 1 
27 BASI - NASAL LE-NGT11 93.00 
28 BASI - PROSTI ZION LENGTI I 107.00 1,3 
29 BASI -STAPIIYLION LENGTH 43.00 
30 BA-N-B 75.00 
31 BA -N- PR 83.00 1,3 
32 N-B-L 112.00 
33 N- BA - PR 38.00 1,3 
34 0 -BA-N 160.00 2 

Notes 

This specimen is badly damaged and may be distorted. All interpretations of the 
results based upon it should bear this damage in mind. 

I. Estimated from right side. 
2. Dama? c in region of foramen magnum, estimated breadth and position of 

opisthion. 
3. Estimate attempts to account for facial distortion and damage 
4. Estimate from right, zygomatic arch missing, based on general contour. 
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"S/NANTIIROPUS" 

Notes 

1 MAX. LENGTH (0-OP) 194.00 
2 MAX CRANIAL BREADTH 143.00 
3 BASI-BREGMATIC IIEIGIiT 121.00 
4 AURICULAR HEIGHT 99.00 
5 POSTORBITAL BREADTH i 95.00 
6 FRONTAL HEIGHT 21.00 
7 FRONTAL CHORD 110.00 
8 PARII3TAL HEIGHT 17.00 
9 PARIETAL CHORD 114.00 

10 OCCIPITAL HEIGHT 19.00 
11 OCCIPITAL CHORD 77.00 
12 FORAMINAL LENGTH 27.00 
13 FORAMINAL BRE-AD711 24.00 
14 B-L-O 85.00 
15 L-O-BA 119.00 
16 UPPER FACIAL HEIGHT 76.00 
17 PALATAL LENGTI i 60.00 
18 PALATAL BREADTH 4100 
19 NASAL BREADTH 30.00 
20 NASAL HEIGHT 54.00 
21 SUBNASAL HEIGHT 23.00 
22 ORBITAL HEIGHT 34.00 
23 ORBITAL BREADTH 43.00 
24 INFRAORB BREADTI i 49.00 
25 BIZYGOMATIC BREADTH i 148.00 
26 BAST - INFRAORBITAL LENGTI 1 105.00 
27 BASI - NASAL LENGTI1 126.00 
28 BASI - PROSTI I ION LENGTI 1 131.00 
29 BASI - STAPI I YLION LENGTH 71.00 
30 BA-N-B 61.00 
31 BA-N-PR 77.00 
32 N-B-L 112.00 
33 N-BA-PR 34.00 
34 0 -BA-N 162.00 

Notes 

The cast is of a sculpted reconstruction (Weidenreich, 1937). All 
measurements were taken from this reconstruction. 
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SANGIRAN 4 

1 MAX. LENGTI I (G - OP) 200.00 
2 MAX CRANIAL BREADTH 157.00 
3 BASI - BREGMATIC HEIGHT 102.00 
4 AURICULAR HEIGHT 94.00 
5 POSTORBITAL BREADTH 101.00 
6 FRONTAL HEIGHT 20.00 
7 FRONTAL CHORD 107.00 
8 PARIETAL HEIGHT 12.00 
9 PARIETAL CHORD 93.00 

10 OCCIPITAL HEIGHT 34.00 
11 OCCIPITAL CHORD 76.00 
12 FORAMINAL LENGTH 37.00 
13 FORAMINAL BREADTH 33.00 
14 B-L-O 78.00 
15 L-O-BA 130.00 
16 UPPER FACIAL HEIGHT 76.00 
17 PALATAL LENGTH 84.00 
18 PALATAL BREADIII 60.00 
19 NASAL BREADTH I 35.00 
20 NASAL HEIGHT 48.00 
21 SUBNASAL HEIGHT 31.00 
22 ORBITAL HEIGHT 34.00 
23 ORBITAL BREADTH 44.00 
24 INFRAORB BREADTH 72.00 
25 BIZYGOMATIC BREADTH 169.00 
26 BASI - INFRAORBITAL LENGTh I 96.00 
27 BASI - NASAL LENGTI 1 104.00 
28 BASI - PROSTI Z ION LENGTI i 125.00 
29 BASI - STAPI IYLION LENGTH 43.00 
30 BA -N-B 58.00 
31 BA -N- PR 86.00 
32 N-B-L 124.00 
33 N- BA - PR 38.00 
34 0 -BA-N 151.00 

Notes 

Notes 

1 
1 
1 
1 
1 
1 
1 

1. This specimen consists of a calotte and palate. The intervening facial and 
neurocranial elements have been reconstructed in plaster by Weidenreich 
(1941a). The vositions of I3reama. IIasion. Stanhvlion. Nariale. Nasinn. 
G1abeUa, the zygomatic arches, and the major part of the face are taken 
from the reconstruction. All of the measurements taken between these 
landmarks and in these regions should be regarded as estimates. 
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KNM-ER 3733 

1 MAX. LENGTH (G - OP) 178.00 
2 MAX CRANIAL BREADTH 137.00 
3 BASI-BREGMATIC HEIGHT 105.00 
4 AURICULAR IiEIGIiT 93.00 
5 POSTORBITAL BREADTH 92.00 
6 FRONTAL HEIGHT 16.00 
7 FRONTAL CHORD 99.00 
8 PARIETAL IIEIGIiT 17.00 
9 PARIETAL CHORD 86.00 

10 OCCIPITAL IIEIGIiT 34.00 
11 OCCIPITAL CHORD 86.00 
12 FORAMINAL LENGTH 32.00 
13 FORAMINAL BREADTH 32.00 
14 B-L-O 95.00 
15 L-0- BA 90.00 
16 UPPER FACIAL HEIGHT 78.00 
17 PALATAL LENGTH 57.00 
18 PALATAL BREADTH 1 33.00 
19 NASAL BREADTh I 35.00 
20 NASAL IIEIGIiT 50.00 
21 SUBNASAL HEIGHT 28.00 
22 ORBITAL HEIGHT 37.00 
23 ORBITAL BREADTH 43.00 
24 INFRAORB BREADTH 73.00 
25 BIZYGOMATIC BREADTII 136.00 
26 BASI - INFRAORBITAL LENG71 I 81.00 
27 BAST - NASAL LENGTI I 99.0() 
28 BASI - PROSTI ZION LENGTH 115. (() 
29 BASI - STAPI I YLI ON LENGTI i 57.00 
30 BA-N-B 63.00 
31 BA-N-PR 81.00 
32 N-B-L 116.00 
33 N-BA-PR 41.00 
34 0-BA-N 175.00 

Notes 

1. Estimated position of 13regma 
2. ? distorted. 
3. Prosthion position unclear - estimated. 
4. Estimate accounts for damage to alveolus. 
5. Estimate from left 
6. Estimate to account for damage to orbits. 
7. Estimate 
8. Staphylion position estimated 

3 
3,8 
4 

3 
6 
6 
7 
5 
7 

Notes 
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Sts 5 

Xxiii 

1 MAX. LENGTI i (G - OP) 147.00 
2 MAX CRANIAL BREADTH 100.00 
3 BASI-BREGMATIC HEIGHT 105.00 
4 AURICULAR HEIGHT 74.00 
5 POSTORBITAL BREADTH 66.00 
6 FRONTAL HEIGHT 18.00 
7 FRONTAL CHORD 76.00 
8 PARIETAL I IEIGI iT 15.00 
9 PARIETAL CHORD 84.00 

10 OCCIPITAL HEIGHT 16.00 
11 OCCIPITAL CHORD 57.00 
12 FORAMINAL LENGTH 30.00 
13 FORAMINAL BREADTH 24.00 
14 B-L-O 100.00 
15 L-O- BA 130.00 
16 UPPER FACIAL HEIGHT 71.00 
17 PALATAL LENGTH i 72.00 
18 PALATAL BREADTI1 38.00 
19 NASAL BREADTI1 25.00 
20 NASAL HEIGHT 43.00 
21 SUBNASAL HEIGHT 29.00 
22 ORBITAL HEIGHT 29.00 
23 ORBITAL BREADTH 37.00 
24 INFRAORB BREADTH 46.00 
25 BIZYGOMATIC BREADTII 126.00 
26 BAST - INFRAORBITAL LENGTI 1 87.00 
27 BAST - NASAL LENGTH I 92.00 
28 BASI - PROSTH ION LENGTH 126.00) 
29 BAST-STAPI! YLION LENGTH 53.00 
30 BA-N-B 74.00 
31 BA-N-PR 99.00 
32 N-B-L 106.00 
33 N- BA - PR 34.00 
34 0 -BA-N 134.00 

Notes 

Notes 

Relatively complete. Minimal reconstruction of posterior palate, posterior 
part of nasal septum, left vault and prosthion. 
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01124 
Notes 

1 MAX. LENGTH (G -OP) 145.00 1 
2 MAX CRANIAL BREADTH 118.00 1 
3 BASI - BREGMATIC HEIGHT 89.00 1 
4 AURICULAR IIEIGIiT 74.00 1 
5 POSTORBITAL BREADTH 72.00 2 
6 FRONTAL HEIGHT 15.00 1 
7 FRONTAL CHORD 76.00 1 
8 PARIETAL HEIGHT 16.00 1 
9 PARIETAL CHORD 93.00 1 

10 OCCIPITAL HEIGHT 21.00 1 
11 OCCIPITAL CHORD 69.00 1 
12 FORAMINAL LENGTH 29.00 1 
13 FORAMINAL BREADTH 25. W 1 
14 B-L-O 6dß 1 
15 L-O-BA 149.00 1 
16 UPPER FACIAL HEIGHT 60A) 3 
17 PALATAL LENGTH 54.00 3 
18 PALATAL BREADTH 36.00 
19 NASAL BREADTH 25.00 
20 NASAL HEIGHT 39.00 
21 SUBNASAL HEIGHT 23.00 3 
22 ORBITAL HEIGHT 30.00 
23 ORBITAL BREADTH 35.00 4 
24 INFRAORB BREADTI1 50.00 4 
25 BIZYGOMATIC BREADTH 114.00 5 
26 BASI - INFRAORBITAL LENGTI I 64.00 4 
27 BASI-NASAL LENGTH I 66.00 
28 BASI - PROSTHION LENGTI I 92.00 3 
29 BASI - STAPI IYLION LENGTH 39.00 
30 BA-N-B 77.00 1 
31 BA-N-PR 94.00 3 
32 N-B-L 110.00 1 
33 N- BA - PR 40.00 3 
34 0- BA -N 140.00 

Notes 
Týh cranium was fragmented and badly crushed when found (Lcakcy, 1969). The 
cast which was measured is taken from the reconstruction of Leakey, Clarke and 
Lcakey (1971). 
1. Estimate based upon the reconstruction, missing fragments. 
2. Temporal fossae damaged bilaterally. 
3. The position of prosthion is estimated. 
4. Estimate based upon right side/half dimension. 
5. Estimate from contours, zygomatic arches missing. 
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oils 

XXV 

1 MAX. LENGTH (G-OP) 166.00 
2 MAX CRANIAL BREADTH 120.00 
3 BASI - BREGMATIC HEIGHT 99.00 
4 AURICULAR HEIGHT 77.00 
5 POSTORBITAL BREADTH 67.00 
6 FRONTAL HEIGHT 10.00 
7 FRONTAL CHORD 89.00 
8 PARIETAL HEIGHT 21.00 
9 PARIETAL CHORD 97.00 

10 OCCIPITAL HEIGHT 21.00 
11 OCCIPITAL CHORD 62.00 
12 FORAMINAL LENGTH 28.00 
13 FORAMINAL BREADTH 25.00 
14 B-L-O 84.00 
15 L-O- BA 12200 
16 UPPER FACIAL HEIGHT 94.00 
17 PALATAL LENGTH 84.00 
18 PALATAL BREADTH 41.00 
19 NASAL BREADTH 34.00 
20 NASAL HEIGHT 63.00 
21 SUBNASAL HEIGHT 34.00 
22 ORBITAL HEIGHT 35.0() 
23 ORBITAL BREADTH 40.00 
24 INFRAORB BREADTH 60.00 
25 BIZYGOMATIC BREADTH 162.00 
26 BASI - INFRAORBITAL LENGTH 108.00 
27 BASI - NASAL LENGTH 105.00 
28 BASI - PROSTHION LENGTH 138.00 
29 BASI - STAPHYLION LENGTI i 57.00 
30 BA-N-B 61.00 
31 BA-N-PR 88.00 
32 N-B-L 115.00 
33 N- BA - PR 43.00 
34 0- BA -N 157.00 

Notes 

I. Estimated position of IIregma. 
2. Damaged temporal fossae. 
3. Estimate accounting for damaged maxillae. 
4. Estimate taken from reconstruction. 

Notes 

I 
1 
x 
1 
1 
1 
1 

3 

4 
4 
4 
4 
4 
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KNM - f? R 406 

1 MAX. LENGTH (0- OP) 158.00 
2 MAX CRANIAL BREADTH 111. (0 
3 BASI-BREGMATIC HEIGHT 105.00 
4 AURICULAR HEIGHT 76.00 
5 POSTORBITAL BREADTH 66.00 
6 FRONTAL IIEIGIIT 12.00 
7 FRONTAL CHORD 93.00 
8 PARIETAL IIEIGIIT 15.00 
9 PARIETAL CHORD 84.00 

10 OCCIPITAL IIEIGITT 12.00 
11 OCCIPITAL CHORD 59.00 
12 FORAMINAL LENGTH 34.00 
13 FORAMINAL BREADTH 32.00 
14 B-L-O 97.00 
15 L-O-BA 125.00 
16 UPPER FACIAL HEIGHT 77.00 
17 PALATAL LENGTH 66.00 
18 PALATAL BREADTH 48.0) 
19 NASAL BREADTH 28.00 
20 NASAL NEIGTET 52.00 
21 SUBNASAL HEIGHT 27.00 
22 ORBITAL HEIGHT 36.00 
23 ORBITAL BREADTH 37.00 
24 INFRAORB BREADTH 68.00 
25 BIZYGOMATIC BREADTH 175.00 
26 BASI - INFRAORBITAL LENGTH i 100.00 
27 BASI -NASAL LENGTH 104.00 
28 BASI - PROSTI I ION LENGTH 130.00 
29 BASI - STAPI IYLION LENGTH I 64.00 
30 BA-N-B 64.00 
31 BA-N-PR 90.00 
32 N-B-L 114.00 
33 N- BA - PR 37.00 
34 0 -BA-N 140.0O 

Notes 

1. Left temporal fossa filled with mineral. 

2. Estimated position of prosthion. 

3. Both alveoli encrusted, estimate. 

Notes 

2 
2 
3 

2 

2 

2 
2 
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KNM-fR 1470 - FACE ANTERIOR 

1 MAX. LENGTH i (G - OP) 171.00 
2 MAX CRANIAL BREADTH 114.00 
3 BASI - BREGMATIC HEIGHT 123.00 
4 AURICULAR IIEIGIIT 96.00 
5 POSTORBITAL BREADTH 77.00 
6 FRONTAL HEIGHT 16.00 
7 FRONTAL CHORD 93.00 
8 PARIETAL HEIGHT 14.00 
9 PARIETAL CHORD 97. (() 

10 OCCIPITAL HEIGHT 16.00 
11 OCCIPITAL CHORD 65.00 
12 FORAMINAL LENGTH 32.00 
13 FORAMINAL BREADTH 28.00 
14 B-L-O 98.00 
15 L-0- BA 130.00 
16 UPPER FACIAL HEIGHT 92.00 
17 PALATAL LENGTH 60.00 
18 PALATAL BREADTH 44.00 
19 NASAL BREADTH 27.00 
20 NASAL HEIGHT 58.00 
21 SUBNASAL HEIGHT 35.00 
22 ORBITAL IIEIGIHT 38.00 
23 ORBITAL BREADTH 41.00 
24 INFRAORB BREADTh I 52.00 
25 BIZYGOMATIC BREADTI1 132.00 
26 BASI - INFRAORBITAL LENGTH 110.00 
27 BASI - NASAL LENGTH 126.00 
28 BASI - PROST1IION LE-NGTI 1 126.00 
29 BASI-STAPIIYLION LENGTH 65.00 
30 BA-N-B 67.00 
31 BA -N- PR 69.00 
32 N-B-L 115.00 
33 N- BA - PR 43. (X) 
34 0- I3A -N 130.00 

Notes 

This fossil is badly fragmented and lacks many parts of the cranial base, 
vault, face and palate. A large number of measurements are estimates. For 
details see the notes relating to the "intermediate reconstruction, overleaf. 
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KNM-ER 1470 - FACE INTfRMI? DIATI? 

Notes 

1 MAX. LENGTH i (G - OP) 171.00 
2 MAX CRANIAL BREADTH 118.00 
3 BASI - BREGMATIC HEIGHT 114.00 1 
4 AURICULAR IIEIGIiT 95.00 2 
5 POSTORBITAL BREADTH 78.00 
6 FRONTAL HEIGHT 14.00 
7 FRONTAL CHORD 92.00 
8 PARIETAL HEIGHT 14.00 
9 PARIETAL CHORD 100.00 

10 OCCIPITAL HEIGHT 18.00 1 
11 OCCIPITAL CHORD 70.00 1 
12 FORAMINAL LENGTI i 32.00 1 
13 FORAMINAL BREADTH 28.00 1 
14 B-L-O 93.0) 1 
15 L-O-BA 117.00 1 
16 UPPER FACIAL HEIGHT 91.00 
17 PALATAL LENGTI1 59.00 3 
18 PALATAL BREAD711 43.00 3 
19 NASAL BREADTH 28.00 3 
20 NASAL HEIGHT 56.00 
21 SUBNASAL HEIGHT 37.00 
22 ORBITAL HEIGHT 38.00 4 
23 ORBITAL BREADTH 42.00 4 
24 INFRAORI BREADTH 52.00 3 
25 BIZYGOMATIC BREADTH 132.00 3 
26 BASI - INFRAORBITAL LENGTI 1 100.00 1.3 
27 BASI - NASAL LE-NGTI 1 113.00 1 
28 BASI - PROSTI I ION LENGTH 116.00 1 
29 BAST - STAP1 IYLION LENGTI I 58.00 1.3 
30 BA -N-B 67.00 1 
31 BA -N- PR 68.00 1 
32 N-B-L 114.00 
33 N- BA - PR 47.00 1 
34 0 -BA-N 151.00 1 

Notes 

I. Foraminal region missing, estimated position of boundaries. 
2. Estimated position of porion. 
3. Estimated by Professor E. 11. Ashton, checked for anatomical sense by 

myself. 
4. Taken from reconstruction 
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KNM-ER 1470 - FACE POSTERIOR 

1 MAX. LENGTH (G - OP) 170.00 
2 MAX CRANIAL BREADTH 117.00 
3 BASI-BREGMATIC HEIGHT 106.00 
4 AURICULAR IIEIGlrr 93.00 
5 POSTORBITAL BREADTH 77.00 
6 FRONTAL HEIGHT 16.00 
7 FRONTAL CHORD 91.00 
8 PARIETAL IIEIGIrT 16.00 
9 PARIETAL CHORD 97.00 

10 OCCIPITAL HEIGHT 23.00 
11 OCCIPITAL CHORD 71.00 
12 FORAMINAL LENGTH 3100 
13 FORAMINAL BREADTH 28.00 
14 B-L-O 86.00 
15 L-O-BA 121.01 
16 UPPER FACIAL HEIGHT 90.00 
17 PALATAL LENGTI i 53.00 
18 PALATAL BREADTH I 43.00 
19 NASAL BREADTI1 27.00 
20 NASAL HEIGHT 56.00 
21 SUBNASAL IIEIGIiT 36.00 
22 ORBITAL IIEIGIiT 38.00 
23 ORBITAL BREADTH 40.00 
24 INFRAORB BREADTH 54.00 
25 BIZYGOMATIC BREADTH 133.00 
26 BAST - INFRAORBITAL LENGTH 92.00 
27 BAST- NASAL LENGTH 103.00 
28 BASI - PROSTI I ION LENGTH 110.00 
29 BASI -STAPI IYLION LENGTI I 60.00 
30 BA-N-B 66.00 
31 BA -N- PR 70.00 
32 N-B-L 116.00 
33 N- BA - PR 50.00 
34 0 -BA-N 153.00 

Notes 

Sec notes relating to previous reconstructions. 
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INTRODUCTION 

The identification of suitable groups for Canonical Analysis 

In this appendix, I outline the problems associated with the identification 

of suitable groups of fossil crania for the canonical analyses of chapter 4. A 

series of studies is presented which allow consideration of the validity of the 

chosen groups and the consideration of patterns of morphological variation within 

them. 

Mahalanobis' distances and Canonical Analysis 

Mahalanobis' D2 (Mahalanobis, 1936) is widely used in numerical taxonomy 

(see the review of previous multivariate studies of cranial form in hominids, 

chapter 4). The Mahalanobis' distance, unlike Euclidean distance, is free of 

distortions consequent upon character correlations. Mahalanobis' distances, 

however, can only be derived from data taken from populations and the 

calculation employs "knowledge" of antra OTV variation. 

The Mahalanobis distance is closely related to discriminant analysis as first 

described by Fisher (1936). The space of the original data is transformed into 

a new space in which the axes arc stretched and skewed in order to produce 

hyperspherical clusters of OTUs. The skewing corrects for correlations and the 

stretching is in inverse proportion to the standard deviation of the groups on 

each axis (resulting in an equalisation of the "scale" of each axis). Distances 

measured between OTUs in this space are independent of correlations between 
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the original variables and the space is scaled such that the distances between 

OTUs are expressed in pooled within-group standard deviation units. The 

distance between an individual and a group centroid relates to the likelihood of 
its being a member of that taxon. 

It follows that a requirement for the calculation of D2 is that the groups in 

the analysis have identical or very similar variances on each of the original 

dimensions. If this is not the case then some transformation of the data (sec 

Sokal and Rohlf, 1969) may provide an adequate correction, 

Gower (1966) has described a technique, principal coordinate analysis, for 

deriving an ordination of group dispositions from a distance matrix without 

reference to the original data. When applied to a Euclidean distance matrix the 

resultant principal coordinates are equivalent to principal components. When 

applied to a Mahalanobis' distance matrix the principal coordinates are effectively 

canonical variates. In this way canonical analysis is closely allied to Mahalanobis' 

D2. 

The Mahalanobis distance can be calculated only when groups of organisms 

have already been defined. This is potentially a serious problem. It effectively 

limits the applicability of the Aiahalanobis' distances and canonical analysis to 

situations where higher taxonomic groupings have been discerned by earlier 

numerical or visual studies. 
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The problem of defining groups 

It follows from the preceding discussion that it is absolutely essential that 

prior to undertaking a canonical analysis groupings of OTUs which are not 

unduly variable have to be defined. One method which is widely used (see 

chapter 2) relies upon the identification of suitable groupings from the visual 

study of the material and by reference to pre-existing literature. It seems that 

in general this approach produces reliable and satisfactory results (again see 

chapter 2, and especially van Vark, 1984). 

The alternative, more "phenetically pure" approach relies upon the 
identification of morphological discontinuities by earlier phenetic studies using 

such statistics as Euclidean distances and PCA. This approach is particularly 
important when classifications are "immature". for instance when dealing with a 

rapidly expanding collection of fossils. 

The concept of discontinuity in the identification of taxa Is fundamental to 

phenetics. Sneath and Sokal (1973) liken the approach to the "natural method" 

of the French botanist Michel Adanson (1727-1806). Adanson's method aimed 

to discover classes which contained "no plants which do not agree together in 

the ensemble of their characters" (Glass, 1959). This Idea was linked In 

Adanson's mind with the a belief In the "Great Chain of Being" and the 
"Principle of Continuity". Fissures in the continuity of Nature were held by 

Adanson to be the result of the disappearance of Intermediate forms, or of 
ignorance of their existence. Today, knowledge of evolution allows us to add 
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differential rates of evolution in taxa to the list of possible causes of apparent 
discontinuity (see, for example, Bilsborough, 1973). It is a fundamental position 

of modern phenetecists that the discovery of groups is an indispensable first step 
in the construction of classes (Sneath and Sokal. 1973) and this approach is 

implicit in the work of several authors (e. g. Stringer, 1974a, Creel and Preuschoft, 

1976, Brauer, 1984, van Vark, 1984). 

The identification of suitable groups of fossils for Canonical Analysis 

The studies of chapter 4 are principally intended to compare the results of 

the study of the cranial morphology of fossil groups by linear and angular 

measurements with those obtained by study of Fourier data. Considering the 

preceding discussions It is essential that the groups of fossils used In these 

studies are homogenous, not unduly variable and distinct. 

The review of the literature presented in chapter 4 has served to illustrate 

that there is debate about the constitution, degree of overlap of and the number 

of classes represented by fossils attributed to Australopithecus, Homo erraus, 

archaic Homo sapiens, and fossil a. m. ilomo sapiens. A further problem arises 

because of the need to estimate a large number of variables from the fossil 

material. 

In order to justify the groupings submitted to the canonical analyses of 

chapter 4 it was necessary to undertake a series of analyses directed towards 

defining suitable groupings of fossil crania. In addition these studies have allowed 

the examination of patterns of within -group variability. 
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MATERIALS AND METHODS 

A. Materials 

The fossil casts used in this study are listed in table 4.1. and the modern 

groups used in the construction of univariatc bar charts and in canonical analyses 

are described in chapter 2 (sec table 2.1). 

II. Methods 

Measurement methods 

The 34 linear and angular measurements used in this enquiry arc described 

In chapter 2 (tables 2.2 and 2.3) and listed In chapter 4 (table 4.2). Problems of 

estimation of dimensions and angles are discussed in chapter 4 and In appendix 
A. 

Statistical analysis 

Unhvariate analjsis 

It was noted in chapter 2 that the variances of variables within the modern 

groups were, in general, positively correlated with the magnitude of their mean 

values: the bigger the group mean. the bigger the variance. following the 

recommendation of Sokal and Rohlf (1969: p382) the data were log transformed, 

this resulted in nearly equal within group variances. This equality allowed the 

calculation of a pooled within-group variance which was used to draw a bar 

chart for each of the 34 variables of table 4.2. On each bar chart the mean 

+/- 2 standard errors and the upper and lower 95 confidence limits of each 
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modern group together with the magnitude of the variable within each of the 

fossil specimens were indicated. 

Multivariate analysis 

Multivariate analysis comprised: 

a) The calculation of a matrix of Euclidean distances between fossil material 

using data which were scaled, by ratio, for the square root of the area of the 

midline projection of each cranium. 

b) Two series of principal component analyses of correlation matrices of the data 

from the fossil crania. 

I. Analyses of 34 nrw variables 

The 34 variables listed in table 4.2 were submitted to principal component 

analyses using the S. A. S. (1982) package. Groups were Identified by 

discontinuities in the pattern of overall variation as represented by the scores 

of individuals on principal components. The patterns of variation within these 

phonetic groups were then assessed by further principal components analyses. The 

influence of size on the observed patterns of variation was examined by 

calculating the correlation of the scores of individuals on each component with 

their "size" (the square root of the midline area). 



Appendix B viii 

II. Analyses of 34 scaled variables 

It was clear from the results of the studies described above that size had 

a considerable effect upon the observed patterns of variation between the fossil 

crania. For this reason an identical series of principal component analyses was 

undertaken using data adjusted (by ratio) for differences in the midline areas 

of each cranium. The calculation of the correlation of the scores of individuals 

on principal components with their sizes allowed the investigation of patterns 

of size related shape change (see ch. 3). 

It can be argued that the use of correlation matrices may give rise to 

distortions In the resultant PCAs because equal weighting Is given to characters 

Irrespective of their magnitude. The converse argument can be applied to 

analyses based upon variance-covariance matrices, that undue weighting is given 

to character magnitude. The choice of correlation matrices was made after 

preliminary analyses using both correlation and variance-covariance matrices 

resulted In virtually Identical results. 

c) The PCAs outlined above failed to clearly define the affinities of certain 

crania (Skhul V and Steinheim, sec results, later) and conflicted with the results 

of other workers in their attribution of the Kabwe 1 cranium so two canonical 

analyses designed to clarify the fossil groupings were undertaken. 7hcsc employed 
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34 scaled variables (table 4.2) from the fossil crania and from the crania of the 

negro and chimpanzee groups described in chapter 2 (table 2.1). In the first 

canonical analysis the problematic crania were included in the group to which 

they appeared most similar and in the second they were excluded. 



Appendix Bx 

RESULTS 

A. Univariate analysis 

The univariate bar charts produced using log transformed data and pooled 

standard deviations are presented in appendix C. 

The results of the univariate studies are best considered in two parts; first 

the patterns of difference which arc demonstrated between the modern crania 

and second those patterns which exist between the fossil crania. 

Study of the bar charts shows a clear split betwccn the humans and the 

apes in a large number of dimensions. In general the dimensions from the 

human populations are larger than those from the apes, the exceptions are upper 

facial height, palatal length. basi-prosthion length and basi-staphylion length. 

This pattern of differences reflects the fact that the ape neurocrania are generally 

smaller than human ones but ape faces are more prognathous. 

There are some variables in which the separation between apes and men 

Is less marked. These include foramen magnum length, the angle 

lambda - opisthion - basion, palatal breadth, nasal breadth, subnasal height, orbital 

height and breadth, infraorbital breadth and the angle nasion-basinn-pros thion. 

The positions of the fossils on the charts are less easy to summarise. In 

general there are two groups of fossils: those which consistently share very 

similar values of most variables with the human populations and those which 

show a more variable pattern of similarities. In the first group can be placed all 
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of the fossils of recent Homo sapiens, the Steinheim cranium, Skhul V, Kabwe, 

and all of the "classic" Neanderthal crania. The second group includes all the 

remaining crania and shows much more variability. 

In general the erectus grade casts are more similar to the humans than 

the apes. They show a large within-group variability in some dimensions: In 

palatal length and breadth Weldenreich's reconstruction of a female Sinanthropus 

is very large, far larger than any modern human and the within-group variability 

in these dimensions is larger than that seen in any extant species. 

A problematical group of fossils comprises early Ilomo and the 

australopithecines. No clear pattern of relationships can be seen. In some 

variables they are similar and ape - like (occipital chord, cranial breadth and 

postorbital breadth); In others they are similar and human like (parietal height, 

parietal chord, basi - prosthion length and angle nasion - brcgma -lambda) In the 

remainder they show a mixture of ape-like and human-like features. No 

obvious groupings emerge. 



Appendix B xii 

B. Multivariate analyses 

I. Principal Components Analyses 

Raw data 

The plots of the scores of fossils on the lower order principal components 

are given in figures B. 1 to B. 9. Figure B. 1 illustrates the results of an analysis 

in which all fossils were submitted to PCA. The abbreviated fossil names which 

are used In all plots of PCAs are generally self evident, they are also given in 

table 4.1 for clarity. Figures B. 2 to B. 9 illustrate principal component analyses 

which were carried out upon the phenetic groupings discernable from the studies 

of figure B. I. These further studies concentrate on the examination of patterns 

of variation between individuals which scored low, intermediate, and high values 

on PCI, of figure B. I. 'Buse three groups comprised material which has been 

attributed to Australopithecus and homo lrabilis, to 11omo cºruus and to fossil 

subspecies of Homo sapiens. The proportion of the total variance which is 

accounted for by the first five principal components from each study is given 

In table B. la. The correlations of the scores of individuals on these first five 

PCs with the size variable (square root of the midline area) are given in table 

B. lb. 

a. PCA of all fossil crania 
In figure ß. 1 are presented plots of the first four principal components from 

the analysis of all the fossil crania. It can be seen from table B. 1n that these 

four PCs between them express 7310 of the total within group variance and 

from table 13.1b that the first component is the only one which shows a 
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FIGURE B. 1 - Principal Components Analysis of 34 raw smear and angular dimensions 
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TABLE ill 

Principal component analyses of 34 raw variables 

a. The cumulative proportions of the total variance expressed on each PC(%) 

PC I II UI IV V 

GROUP 

All Fossils 34 57 67 73 8o 

It Sap. subsp. 34 50 62 72 to 

a. m. JL sap. 29 49 66 76 as 

Neanderthals 
+ archaic Asap 40 59 74 84 92 

Apiths+Jl. hab. 46 70 87 96 99 

b. The correlation of the sire variable vhith indi%idual scores on ICs I-V 

PC I II III IV V 

GROUP 

All Faaaila 0.96" 0.20 -0.06 0.00 -0.11 

H. Says.: ubsp. 0.21 0.84" 033 -022 -0.12 

a. m. H. tap. 0.74" -0.129 0.32 0.21'9 -0.12 

Ncandcrthals 
+ archaic 11sap 0.94" 0.20 -0.18 0.04 ON 

Apiths+1L hab. 0.97" 0.10 -0.0111 0.17 0.07 

p -C 0-01- *0 
Others are NS 



Appendix II xv 

strong correlation with cranial size (riO. 96, P<0.001). 

Figure II. Ia is a plot of PCI vs. PCII from this analysis. Several clumpings 

of crania are clearly seen. The largest group comprises all the "classic" 

Neanderthals, recent fossils of homo sapiew, the Kabwc cranium, Skhul V and, 

peripherally, the Steinheim cranium. 

A group of crania which have been attributed to the grade of porno crcctus 
form a central cluster, these are KNM - ER 3733, Weidenreich's reconstruction 

of "Sinanthropru" and his reconstruction of the Sangiran 4 cranium. The pattern 

of within-group variability of these "erectus" grade crania which is demonstrated 

in this study should be regarded with caution: all three crania have been heavily 

reconstructed and the Asian representatives are almost entirely sculpted. 

A third cluster is formed by the three reconstructions of KINN - CR 1470 

and a fourth clear grouping is that of Oil 5 with KNM - ER 406, these two 

crania lie close to each other even on PCs III and IV (Cgs B. Ib and c). 

Two fossils which are outliers arc Sts 5 and Oil 24. They do not form a 

tight cluster though Sts 5 is the nearest cranium to Oil 24 on the combination 

of PCs I and H. 

It has already been noted that the scores of crania on PCI correlate highly 

with the square root of their midline areas (note this may not be a simple size 

relationship - see Ch. 3). PCI1 seems to reflect a different phenomenon which 

might be described as "robusticity". Crania which scare highly on PC 11 are the 

Neanderthals, Sangiran 4 and 0115 and KNAM -Eft 406. Low scores on PC 11 

characterise the less robust crania such as 011 24, Sts 5 and fossil a. m. Homo 
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No clear significance can be attached to the scores of fossils on PCs III and 

IV. 

The remainder of the principal component analyses using 34 raw cranial 

dimensions were directed to the examination of patterns of variation within the 

phenetic groups identified in this first PCA. The three main groupings are the 

subspecies, archaic and anatomically modern of Homo sapiens, the grade of Homo 

erectus, and the australopithecines and early Homo. 

b. Archaic and fossil ant. flonw sapiens 

Figure II. 2a is a plot of PCI vs. PCII from the analysis of these crania. The 

major part of the variance within this collection of crania is expressed along PCI, 

this PC correlates only 0.21 (N. S. ) with cranial size (table ß. 1b). Large scores 

on PCI are obtained by robust crania, small scores by more gracile ones. The 

split between Neanderthal and Neanderthal -like crania and more modern ones 

occurs at about the middle of PCI but it is by no means clear cut. The crania 

from Predmost, Gibraltar and es-Skhul all have very similar locations though, 

in general, the more recent crania have a lower score. 

Scores on PCII correlate very well with the size variable (table ß. 1b, r-0.84, 

P<0.001). and the clearest distinction to be observed on it is the separation of 

the Steinheim cranium from all the others. The average value for the square 

root of the midline area in the "classic" Neanderthals and Neanderthal-like 

crania is 15.03cm, that for Steinheim is 13.57cm. Principal component Ill (rig 
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FIGURE D2 - Principal Components Analysis of 34 raw linear and angular dimensions 
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B. 2b) contributes little to the problem of group identification. 

In Figure B3a is presented a three dimensional plot of PCs I vs II vs 1II. 

Pyramids symbolise the Neanderthal and Neanderthal - like crania and Steinheim, 

circles indicate the more modern crania. It is clear from this diagram that no 

clear distinction between the Neanderthal and Neanderthal-like and more 

modern crania can be made on the basis of the first three components. From 

figure B. 3b it can be seen that PCIV also fails to help in this matter. 
The fact that Neanderthal and Neanderthal-like crania are not 

distinguished clearly from more modern ones is at first sight alarming since 

these crania can be readily distinguished by eye. The problem, however, Is less 

severe than appears at first sight. Later studies will demonstrate that the effects 

of size come to so dominate the phenetic relationships between crania that a 

degree of confusion occurs. For now the reader will be asked to accept that the 

Neanderthal and Neanderthal - like crania are phenctically distinguishable from 

the more modern human crania. On this basis two further principal component 

analyses were carried out: one on the recent fossils of Homo sapiens and one 

on all of the Neanderthal and Neanderthal-like crania plus the Steinheim 

cranium. 

C. Recent fossils of Homo sapiens. 

Figures B. 4 and B. 5 arc plots from the principal components analysis of 

the recent fossils of Homo sapiens. 'Buse fossils have been recovered from a 

wide geographical area. They are of unclear sexual attribution. 
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FIGURE B3 - Principal Components Analysis of 34 raw linear and angular dimensions 
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FIGURES H. 4 - Principal Components Analysis of 34 raw linear and angular dimensions 
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FIGURE BS - Principal Components Analysis of 34 raw Gasar and angular dimensions 
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The plot of PCI vs PCII accounts for only 49Jo (table B. la) of the total 

within group variability, higher PCs need to be examined in order to obtain a 

fuller picture. There are, however, several interesting points which arise from the 

study of individual PCs. PCI correlates 0.74 (P<0.001) with the size variable 

(table B. 1b) the smaller crania have negative scores, the larger, positive. 

PCs II, III, IV and V seem to reflect geographical differences. On PCII 

negative scores characterise the European crania and positive scores the fossils 

from further afield. Thus, the fossil from Java, Wadjak 1 has the largest score 

on PCII, next is the fossil from East Africa, Gamble's cave 1 this Is followed 

by the Keilor 1 and the Fish I lock 1 crania. These last two are not markedly 

separated from the European material. Their distinctive features are more clearly 

emphasised by higher components. The Fish I lock 1 cranium is clearly separated 

from all the others by PC III and the Keilor 1 cranium Is well separated by 

PCs IV and V. PCV has, at its other extreme the Gamble's cave I cranium. 

The overwhelming picture of these PCAs is one of an homogenous group 

of European fossils and a more disparate collection of African and Australasian 

fossils. Each of the fossils from outside Europe differs from each of the others 

in a different way. 

cL Neap: denhals, Kabwe 1, Skl: ul V and the Steinheinz cranium. 
The plots which resulted from the PCA of these crania are given In figures 

B. 6 and B. 7. PCI correlates well with size (table B. lb -r-0.94, P<0.001) and 



Appendix B xxiii 

FIGURE B. 6 - Principal Components Analysis of 34 raw linear and angular dimensions 
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FIGURE B. 7 - Principal Components Analysis of 34 raw linear and angular dimensions 
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this accounts for 40% (table B. 1a) of the total variability. The Steinheim cranium 

is the smallest of this group and occupies the most negative score on PCI. Next 

is placed the Skhul V cranium. The other extreme of PCI is occupied by La 

Ferrassie 1. A clear point which arose from the studies of chapter 3 was that 

care must be taken in interpreting the first PC as a pure size vector despite a 

high correlation with the size variable. This is because there may be an 

underlying size/shape relationship. Further light will be cast upon this point by 

the studies using scaled data. 

PC II has the cranium from Lc Moustier at its positive extreme and that 

from Monte Circeo at the negative extreme. The Le Mousticr cranium is 

separated by about 3 SDU from the remainder of the crania and the Monte 

Circeo cranium by about 2 SDU. The cranium from I. e Moustier is believed to 

be that of an adolescent, the shape change described by this PC is orthogonal 

to that on the "size" component, PCI. It is possible, therefore, that the I. e 

Mousticr cranium differs from the remainder In a way which is not purely 

related to the static allomctry observed amongst adults, but to a pattern of 

growth allometry which is different, it should be noted, however, that the 

specimen is poorly reconstructed. The reasons for the nearly equal but opposite 

distinction afforded to the Monte Circeo cranium are less clear, perhaps growth 

plays a part in this too, however it seems that the cast available in the British 

Museum is largely sculpted (Stringer, pers. comm. ) and as such is not an 

accurate representation of the original shape. 

On the higher PCs (fig. D. 6 and 13.7) some of the other crania arc 

distinguished. PCIII distinguishes the Gibraltar 1 cranium, PCIV the cranium 
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FIGURE B. 8 - Principal Components Analysis of 34 raw linear and angular dimensions 
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from La Chapelle - aux - Saints, and PCV the cranium from Kabwe. 

e. Australopithecines and early Homo 

The PCA of this grouping produced the plots presented in figures B. 8 and 
B. 9. PCI correlates strongly with the size variable (table B. Ib - r-0-97, 
P<0.001), accordingly KNM - ER 406, Oil 5 and the three reconstructions of 
KNM - ER 1470 occupy the positive pole and Sts 5 and Oil 24 the negative 

one. Again, in the light of the studies of ch. 3 care must be taken in 

interpreting this as a pure size component. 

The spread of crania along PCII is interesting in that the cranium Oil 24 

is placed at the positive extreme together with the three reconstructions of 

KNM - ER 1470 and the three australopithecine crania are at the negative 

extreme. On PCIII Sts S is close to KNM - ER 406, on PCIV it is close to OI I 

5 and on PCV all australopithecines are close. On the higher PCs (111,1V & V) 

the specimens which have been attributed to early Homo are more randomly 

distributed. 

Scaled data 

An identical series of PCAs to those described using 34 raw variables was 

carried out using 34 variables which were adjusted by ratio against the square 

root of the midline area of each cranium. The equivalent plots of the scores of 

individuals on the first few PCs are presented in figures B. 10 to B. 18. In table 

B. 2a are presented the proportions of the total variance which arc accounted 
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for by the first five PCs from each analysis. Table B. 2b lists the correlations of 

the square root of the midline area with the scores of individuals on these first 

five components. 

Table B. 3 lists the Euclidean distances between fossil crania calculated from 

the 34 scaled variables. 

Plots of the scores of fossil and modern crania on canonical axes calculated 

from 34 scaled variables are presented in figures B. 19 and B. 20. 

a. PCA of all Fossil crania 

In figure B. 10 are presented plots of the scores of crania on the first 4 

PCs of the analysis which used scaled data from all of the fossil material. At 

first glance the plot of PCI vs PCII (55% of total variance) appears radically 

different from that of figure B. 1 which used raw data. However this appearance 

is largely due to the fact that the scores of the crania on the first PC are 

reversed. When allowance is made for this the relationships between the crania 

are generally similar to those in fig B. 1. The scores of crania on the first PC 

have a marked correlation with the size variable (table B. 2b -rn -0.70, 

P<0.001) despite the fact that simple size has been removed from the data. 

This reflects the fact that a general trend in human evolution has been an 

increase in brain volume which has been associated with a change in cranial 

shape. A number of clusters are apparent from figure B. 10a (PCI vs PCIi). The 

largest is placed towards the negative pole of PCI and centrally on PCII. It 

includes all of the fossils which have been attributed to archaic and modem 
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TABLE B2 

Principal component analysts of 34 scaled variables 

a. The cumulative proportion of the total variance expressed on each PC (, ) 

PC I II III IV V 

GROUP 

All Fossils 37 55 66 72 78 

H. Sap. subsp. 36 50 60 71 $o 

a. m. N. Sap. 26 49 66 76 as 

Neanderthals 
+ archaic Hsap 32 53 70 82 91 

Apiths +HJwb. 37 64 83 95 98 

b. The correlation of the size variable with indi%idual score: on PG I -V 

AC I II III IV V 

GROUP 

All Fossils -0.70" 0.22 0.25 0.00 0.03 

11 Sap. subsp. 0.08 0A5 -0.22 0.31 0.75** 

a. m. 11. Sap. 0.48 -035 0.33 0.17 0.29 

Ncandcrthali 
+ archaic If Sap. 0.79" 0A9 -0.21 0.15 0.05 

Apiths+ll hab. 0.91" 0.37 0.00 -0.13 0.09 

P<0.01-" 
Others are NS 
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TA9LE ©. ] 

EiCL! DEAN DISTANCE MATRIX 

Calculated from scaled data 

CR0-MA GAMBLE COUGHS CHANCE PREDMO BRNO 3 MLADEC 
CRO-MAGNON 1 0.0 66.4 45.2 44.4 25.4 45.2 21.6 

GAMBLES CAVE 4 66.4 0.0 40.7 43.4 64.5 46.1 64.9 

GOUGHS CAVE 1 45.2 40.7 0.0 18.4 45.4 26.0 33.3 

CHANCELADE 1 44.4 43.4 18.4 0.0 42.3 26.5 33.0 
PREOMOST 3 25.4 64.5 45.4 42.3 0.0 45.6 24.5 

BRNO 3 45.2 46.1 25.0 26.5 46.5 0.0 29.6 

MLADEC 1 21.6 64.9 33.3 33.0 24.5 29.8 0.0 

FISH HOEK 1 42.9 46.0 44.0 47.6 62.6 46.2 40.4 

KEILOR 1 28.7 57.3 41.5 41.6 20.8 37.0 23.8 

WADJAK 1 44.8 49.1 49.0 46.9 40.6 47.5 39.2 

MOUSTIER 1 60.0 67.2 57.0 67.5 40.3 56.6 46.4 

CHAPELLE A. S. 53.5 70.6 63.0 65.1 40.3 
1 39 

65.6 
7 62 

48.2 
50.5 

FERRASIE 1 52.9 63.0 56.6 59.1 
0 60 

. 
44.4 

. 
60.8 48.1 CIRCEO 1 

GIBRALTAR 1 
50.0 
48.1 

61.0 
50.0 

54.4 
$3.4 

. 63.7 42.0 57.0 44.2 

SKHUL 5 30.4 66.0 54.3 54.6 27.0 49.8 29.7 

KABWE 50.2 56.5 53.6 53.1 39.1 69.6 46.6 

SINANTHROPUS 65.6 74.7 73.2 71.2 51.6 
1 61 

74.0 
101.0 

61.9 
86.0 

SANGIRAN 4 83.9 90.3 96.2 09.3 . 
6 92 99.1 88.6 

STS 5 06.3 91.7 06.8 95.9 . 
60 4 76.3 77.0 

OH 24 
OH 5 

64.9 
104.6 

69.2 
103.7 

82.0 
112.7 

66.4 
110.9 

. 
93.8 106.6 101.0 

ER 406 108.4 101.9 109.0 109.0 90.5 100.5 102.3 

14701 96.3 76.6 63.9 82.0 82.3 63.0 65.4 
7 67 

14702 75.6 71.3 72.2 70.8 62.1 69.1 
87 6 

. 65.3 
14703 71.8 67.0 70.3 70.9 60.6 

40 3 
. 

46.9 35.5 
STEINHEIM 1 36.7 60.6 55.6 58.1 . 6 64 00.3 81.0 
3733 75.8 108.6 06.4 97.8 . 

FISH H KEILOR WADJAK MOUSTI CHAPEL FERRAS CIRCIO 

CRO-MAGNON 1 42.9 28.7 44.0 60.0 63.6 $2.9 60.0 
61 0 

GAMBLES CAVE 4 46.0 57.3 49.1 67.2 70.6 63.0 
5 66 

. 64.4 
COUGHS CAVE 1 44.0 41.5 49.0 67.0 63.0 . 1 $9 6040 
CHANCELADE 1 47.6 41.6 46.0 67.6 65.1 

AO 3 
. 

30 1 4.4 4 
PREDMOST 3 8.2 20.8 

9 37 
40.6 
47 5 

40.3 
$6 6 

. 
65.5 

. 
62.7 60.0 

BRNO 3 
MLADEC 1 

4 
40.4 

. 
23.0 

. 39.2 
. 

46.4 48.2 60.3 46.1 

FISH HOEK 1 0.0 47.6 41.6 66.0 66.4 66.3 66.4 
61 6 

KEILOR 1 47.5 0.0 36.6 37.6 46.1 45.5 
62 2 

. 61.7 
WADJAK 1 41.8 38.6 0.0 60.0 55.0 

4 32 
. 1 37 51.4 

MOUSTIER 1 66.0 
4 66 

37.6 
46.1 

50.0 
65.0 

0.0 
32.6 . 0.0 

. 26.1 36.6 
CHAPELLE A. S. 
FERRASIE 1 

. 
65.3 46.5 62.2 37.9 26.6 0.0 32.4 

CIRCEO 1 56.4 51.6 61.7 61.4 36.6 32.6 0.0 
47 6 

GIBRALTAR 1 42.4 44.0 30.4 47.2 
4 

43.3 
43 6 

41.9 
46 5 

. 49.7 
SKHUL 5 52.2 26.9 

7 43 
36.9 
40 0 

6.8 
43.1 

. 
34.3 

. 21.7 36.1 
KABWE 
SINANTHROPUS 

58.3 
72.5 

. 
60.5 

. 54.9 47.4 44.3 47.4 66.0 

SANGIRAN 4 56.0 76.9 83.2 69.3 10.8 6412 64.1 

STS 5 97.6 59.2 91.9 87.3 43.4 60.1 00.3 

OH 24 67.4 78.1 79.7 01.9 $6.2 60.0 77.1 

OH 5 112.1 95.0 94.5 86.6 10.6 02.6 00.1 

ER 406 112.7 101.2 100.0 69.6 84.1 11.6 66.5 

14701 07.2 84.0 03.6 71.6 70.3 67.6 77.7 

14702 84.3 65.2 68.3 59.4 57.4 02.0 62.6 

14703 78.4 64.1 67.5 62.6 07.9 61.6 55.3 

STEINHEIM 1 57.0 32.7 59.2 46.3 46.6 11.1 44.3 

3733 100.6 76.4 64.6 60.1 52.1 51.4 68+5 
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GIBRAL SKNUL KABWE SINANT SANGIR BTB, 5 ON 24 
CRO-MAGNON 1 46.1 30.4 50.2 66.0 43.9 96.3 $4.0 
GAMBLES CAVE 4 50.0 66.0 66.5 74.7 00.3 91.7 69.2 
GOUGMS CAVE 1 53.4 54.3 53.6 73.2 96.2 96.8 02.0 
CHANCELADE 1 53.7 54.6 55.1 71.2 90.3 $S. 9 00.4 
PREDMOST 3 42.0 27.0 39.1 51.6 81.1 92.0 00.4 
BRNO 3 57.0 49.6 59.5 74.0 101.0 40.1 75.3 
MLADEC 1 44.2 29.7 46.6 61.9 66.0 66.6 77.0 
FISH HOEK 1 42.4 52.2 56.3 72.5 86.0 97.0 67.4 
KEILOR 1 44.0 28.9 43.7 60.5 76.9 09.2 70.1 

WADJAK 1 30.4 36.9 46.0 54.9 83.2 01.9 70.7 
MOUSTIER 1 47.2 46.8 43.1 47.4 69.3 47.3 01.9 
CHAPELLE A. S. 43.3 43.6 34.3 44.3 59.8 03.4 66.2 
FERRASIE 1 41.9 46.5 21.7 47.4 04.2 09.9 89.9 
CIRCEO 1 47.5 40.7 35.1 60.0 64.1 09.3 77.1 
GIBRALTAR 1 0.0 38.9 35.8 44.2 62.7 62.6 72.2 
SKHUL 5 36.9 0.0 42.3 57.4 73.7 07.0 76.6 

KABWE 35.8 42.3 0.0 49.4 60.0 03.3 01.7 

SINANTHROPUS 44.2 57.4 49.4 0.0 64.7 74.7 00.3 
SANGIRAN 4 62.7 73.7 56.0 64.7 0.0 06.2 84.9 
515 5 62.6 87.8 83.3 74.7 06.2 0.0 71.0 
OH 24 72.2 76.6 81.7 09.3 04.9 71.0 0.0 
OH 5 82.5 67.5 76.7 64.2 67.0 60.8 92.3 
ER 406 86.8 95.3 02.6 72.2 72.3 56.5 95.3 

14701 75.1 07.9 67.0 60.6 66.4 66.9 02.4 
14702 60.3 64.6 51.0 46.6 75.6 59.5 61.1 

14703 58.1 60.7 46.0 50.1 71.9 62.6 71.0 
STEINHEIM 1 52.6 33.7 48.4 6445 71.3 80.1 69.1 
3733 74.4 65.9 69.2 66.2 71.0 109.6 119.4 

OH 5 ER 406 14701 14702 14703 STEINN 3733 

CRO-MAGNON 1 104.6 108.4 96.3 75.6 71.0 36.7 75.0 

GAMBLES CAVE 4 103.7 101.9 76.6 71.3 67.0 49.0 100.0 
COUGHS CAVE 1 112.7 109.0 83.9 72.2 70.3 65.6 06.4 

CHANCELADE 1 110.9 109.0 02.0 70.6 70.0 56.1 07.6 
PREDMOST 3 03.6 96.5 82.3 62.1 60.6 40.3 64.6 
BRNO 3 106.6 108.5 03.0 69.1 67.0 49.9 99.3 

MLADEC 1 101.0 102.3 85.4 67.7 66.3 31.6 01.0 
FISH HOEK 1 112.1 112.7 07.2 04.3 70.4 17.0 100.6 

KEILOR 1 95.0 101.2 84.0 65.2 64.1 32.7 76.4 

WAOJAK 1 94.5 100.0 03.6 66.3 67.5 69.2 $4.9 

MOUSTIER 1 06.6 89.6 71.0 69.4 62.6 46.3 00.1 

CHAPELLE A S. 80.5 04.1 70.3 97.4 57,9 46.6 62.1 
. FERRASIE 1 02.5 05.6 67.8 52.8 61.5 92.1 51.4 

CIRCEO 1 69.1 08.5 77.7 02.0 55.3 44.3 66.5 
GIBRALTAR 1 02.5 66.6 75.1 60.3 60.1 62.0 74.6 
SKNUL 5 67.5 95.3 07.9 64.6 60.7 33.7 00.0 
KABWE 78.7 82.6 67.0 61.0 49.8 46.4 99.2 

SINANTHROPUS 64.2 72.2 56.6 46.0 60.1 04.5 66.2 
SANGIRAN 4 67.8 72.3 66.4 76.6 71.9 71.3 71.0 

818 6 60.0 56.5 66.9 99.5 62.6 00.1 109.5 
OH 24 92.3 95.3 92.4 01.0 71.9 09.1 119.4 
OM 6 0.0 43.1 64.4 66.3 57.5 09.3 07.2 
ER 406 43.1 0.0 63.7 05.2 66.9 91.1 06.0 
14701 64.4 63.7 0.0 32.6 43.3 04.7 97.9 
14702 56.3 65.2 32.6 0.0 10.1 43.0 79.7 
14703 57.5 66.5 43.3 16.1 0.0 69.0 79.0 
STEINHEIM 1 09.3 95.1 44.7 63.0 09.0 0.0 71.6 
3733 6702 95.6 97.9 79.7 79.0 71.9 000 
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Homo sapiens. At one extreme are placed all of the Neanderthal and archaic 

Homo sapiens fossils and at the other all of the crania of more modern aspect. 

The bridge between these two groups is made up of the crania from es-Skhul 

and Steinheim. 

Another, smaller cluster consists of the three reconstructions of KNM - ER 

1470 and a separate, tight, cluster contains Oil 5 and KNM-ER 406. Oil 24 

is distant from both of these clusters as is Sts 5. These results concord with 

those obtained using raw data except that the Neanderthal and archaic Homo 

sapiens fossils are more clearly distinguishable from the more modern crania. A 

major difference in result, however, is that the three specimens of the grade of 

Homo erectus are widely separated. This result is in agreement with the relatively 

large Euclidean distance between these crania (table B3). Principal components 

III and IV account for 11% and 6%, respectively, of the total within group 

variability and exhibit variation with no clear biological meaning. 

The remaining studies using scaled data have concentrated on two aspects, 

first the differences between the Neanderthal, Neanderthal -like and more 

modern human crania second the examination of shape differences within 

Identifiable phenetic groups. 

b. Archaic and rcccnt Homo sapiens 

Figures B. 11 and B. 12 present plots from the PCA of the large cluster 

containing the subspecies of Homo sapiens. There Is no significant correlation 

between the scores of fossils on the first 3 PCs and the size variable (table 
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FIGURE 13.12 - Principal Components Analysis of 34 scaled linear and angular dimensions 
adjusted for the square root of the mldline area 
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B2b). In sharp contrast to the study using raw data a clear separation Is observed 

on PCI between the more modern crania and the Neanderthal and archaic forms. 

Modem crania occupy the negative pole whilst the remainder occupy the positive. 

The Steinheim cranium occupies an intermediate position and is immediately 

flanked by the crania from Predmost on the negative side and Skhul V on the 

positive. Within the more recent fossils of Homo sapiens PCII serves to 

distinguish the Gamble's cave 4 and Wadjak 1 crania and PCIII the Wadjak 1 

and Fish Hoek 1 crania. PCIV (fig B. 12b) clearly separates the adolescent I. e 

Moustier cranium from the rest. In the three dimensional plot of PCs I vs II 

vs III (fig. B. 12a) the Neanderthals and archaic Homo sapiens are marked by 

pyramids, a. m. fossils by circles. The demarcation between them , 
is emphasised. 

The Euclidean distance matrix generally confirms the pattern of similarities 

indicated by the PCAs. On average the Steinheim cranium Is equidistant from 

the "classic" Neanderthals and fossil a. m. humans and the Skhul V cranium Is 

slightly nearer to the fossil a. m. humans than to the "classic" Neanderthals. 

a Recent fossils of Homo sapiens 

Figures B. 13 and B. 14 present the plots from the PCAs of the more recent 

fossils of Non: o sapiens. The study of scaled data generally repeats the results 

of the study of raw data. The fossils from Europe and those from a wider 

geographical distribution are not clearly separated on PCI. In fact, PCI seems 

to show a scatter of crania which has little obvious biological meaning (there 

is a small but non-significant correlation of scores of crania on this PC 
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FIGURE 8.14 - Principal components Analysis of 34 scaled linear and angular dimensions 
adjusted for the square root of the midline area 
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with their size variable, table B2). It accounts for only 26% of the total within 

group variance. PCII accounts for 23% and demarcates the European fossils on 

its negative pole from the others on its positive pole. On this component, 

however, the Fish Hock and Keilor crania are very close to the cranium from 

Predmost. The higher PCs do, however, give the impression of distinctiveness in 

certain fossils: Fish flock 1 is distinctive on PC 111, Keilor 1 on PC IV, and 

Wadjak 1 and Gamble's cave 4 occupy extreme positions on opposite poles of 

PC V. 

d Neanderthals, Kabwe 1, Skl: u! V and the Stcinhcim craniwns 

Figures 13.15 and 13.16 present the results of PCA of this group of fossils. 

Scores on PCI correlate 0.79 (P<0.001) with the size variable. At its negative 

extreme is the Steinheim cranium which is quite distinct from the remainder. 

Intermediate between it and the "classic" Neanderthals is the Skhul V cranium. 

At the other extreme of PCI lies the La Ferrassie 1 cranium. It is likely that the 

size variable correlates so highly with scores on this component because of the 

different cranial morphology which characterises the larger Neanderthals (sec 

chapter 3). PCII separates the adolescent cranium. Le Aloustier 1, from the rest 

of the crania, again (sec raw data analysis) the Monte Circco cranium occupies 

the opposite pole of this component. Some of the higher components (fig 13.16) 

serve to distinguish certain crania (e. g. PCV distinguishes Kabwe 1 at one 

extreme and La Chapelle 1 at the other) and others show no clear pattern (e. g. 

III and IV). This analysis, like that using the raw data, has failed to show a 
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FIGURE B. 15 - Principal Components Analysis of 34 scaled linear and angular dimensions 
adjusted for the square root of the midline area 
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FIGURE B. 16 - Principal Components Analysis of 34 scaled linear and angular dimensions 

adjusted for the square root of the midline area 

8) 

b) 

PRINZ 

0 

"1 

"! 

., 

.4 
.. 

PRINT 

"i 

f 

08 

. 

tý 

s 

0 

`A 

E 

H0 

C 

F 

"ý ýt "t 0/t34$ 

Pfttkl 

Mort AAAD4' ®80 CIA" CCCto" OOO? CPA& 
ECC OJMA fff *ASK. COG MCUtf HH H$ UUPI 

9 

fig D. 16 

-s "a -t 0tt74"" 

Palk& 

Nýu+t AAA Dur BDB tzAc[ CCC 22 SK DDD f[nnýº 
EEE"IMA fffKA"rt GGG#"*T HHH1112$ 



Appendix B xliii 

clear difference between the Kabwe cranium (from Zambia) and the European 

Neanderthals. 

The Euclidean distance matrix also indicates that the Kabwe cranium is very 

similar to the "classic" Neanderthals and is most similar to the La Ferrassie 1 

cranium (table, B3,21.7). 

e. Australopithecines and early Homo 

The plots of scores on principal components I-V are presented In figures B. 17 

and B. 18. The results of the analysis of scaled data are remarkably similar to 

those that were presented earlier from raw data (representatives of early Homo 

cluster on PCII and Sts 5 is close to KNM - ER 406 on PCII1, to 011 5 on 

PCIV and to both on PCII). The size variable has a large correlation with scores 

on PCI (r=0.91, P<0.001), despite the fact that data have been scaled. As a 

consequence the robust australopithecincs (Oil 5 and KNM - ER 406) occupy 

one pole whilst Off 24 and Sts 5 occupy the other. The three reconstructions 

of KNM - ER 1470 are close to the representatives of A. boisci on PC I though 

PC II which accounts for a significant proportion of total within group variability 

(PCI - 37%, PCI! - 27%) clearly separates early Jionto from the 

australopithecines. The three reconstructions of KNM - ER 1470 appear somewhat 

scattered on the higher components (esp. PCV) but the spread of these 

reconstructions is of the same order as that between the representatives of A. 

boiscl. 
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FIGURE B. 17 - Principal Components Analysis of 34 scaled linear and angular dimensions 
adjusted for the square root of the midline area 
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EIGURU 5.18 - Principal Components Analysis of 34 !! near and angular dimensions adjusted 
for the square root of the midline area 
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II. Canonical Analyses 

The PCAs and the Euclidean distance matrix discussed above do not 

distinguish the Kabwe 1 cranium from the "classic" Neanderthals. They also 

suggest that the Skhul V cranium is within the extreme limits of morphological 

variation of this group, tending towards the a. m. fossils. Since these findings 

disagree with those of other workers (discussed later), they were further tested 

by two canonical analyses. In the first the Kabwe and Skhul V crania were 

included in a group together with the "classic" Neanderthals, in the second they 

were entered separately. 

The plots of the first three canonical axes from these studies are presented 

in figures B. 19 and B. 20 (these three axes account for >95% of the total 

between group variability in both analyses). In general there is a high degree of 

concordance between the analyses, suggesting that the inclusion of the Kabwe and 

Skhul V crania in a group together with the "classic" Neanderthals has little if 

any effect on the phenetic relationships of this and the other groups of crania. 

In figure B. 19 the group comprising the "classic" Neanderthals and the 

Kabwe and Skhul V crania appears no more variable than the chimpanzees and 

only a little more so than the negroes. This contrasts markedly with the study 

In which the Kabwe and Skhul V crania were entered separately. in figure 13.20 

both the Skhul V on axis 11 and Kabwe on axis III crania are markedly 

separated from the "classic" Neanderthals. 

The Mahalanobis' distances calculated In the course of this analysis suggest 

that both the Kabwe and the Skhul V crania are significantly different from the 
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"classic" Neanderthals and a. m. fossils (Kabwe - Neand. -10.1 SDU, P<0-01, 

Kabwe-a. m. =9.9 SDU, P<0.01, Skhul V-Neand. -11.05, P<0.01, Skhul V- 

a. m. =7.7 SDU, P<0.01). 
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FIGURE B. 19 - Canonical Analysis of 34 scaled linear and angular dimensions adjusted for 
the square root of midline area. The Kabwc + Skhul V crania are included 
in the group of Neanderthals and Neanderthal-like crania 
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FIGURE B. 20 - Canonical Analysis of 34 scaled linear and angular dimensions adjusted for 

the square root of midline area. the Kalme + Skhul V crania are separate 
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DISCUSSION OF RESULTS 

A. Univariate analysis 
By and large the univariate analyses have been of little use In determining 

phenetic groups. In general apes contrast with men In a number of dimensions. 

Certain fossils consistently appear like the modern humans, Including all of the 

fossil crania of anatomically modern Homo sapiens, the "classic" Neanderthals, 

Skhul V, Kabwe 1, and the Steinheim cranium. The specimens attributable to the 

grade of Homo erectus are generally more like the modern humans than the 

apes but there is evidence of a high degree of variability within this grouping. 

The specimens of early Homo (KNM - ER 1470, Oll 24) and of Australopithecus 

also appear to be variable in morphology. 

Considering the problems of character correlation and of adequately 

summarising the information contained in the charts of appendix C It Is my 

intention to concentrate on a summary and discussion of the results of the 

multivariate study. 

B. Multivariate analysis 

The principal aim of this series of multivariate analyses has been to identify 

clusterings of fossil crania which appear distinct from other crania and which are 

not unduly variable. The studies have also allowed the examination of patterns 

of within-group variability. 
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C. The identification of phenetic groups 

The PCAs of raw data (Cgs B. 1-9) allow the identification of a number 

of discontinuities in the variation of cranial form in fossil hominids which suggest 

the following groupings: 

a) Archaic and anatomically modern (a. m. ) Homo sapiens 

b) The crania attributed to Nano erectus 

c) The crania of A. boisei 

d) Isolated crania (KNM - ER 1470, Off 24, Sts 5, and 

Steinheim) 

Principal component I represents a major component of this separation and 

scores on it appear to be related to size differences between the crania (they are 

significantly correlated with the square root of cranial midline area - table B. 1, 

r=0.96, P<0.001). 

The study of scaled data (fig. B. 10) produces similar results. Once again the 

correlation of the scores of crania on PCI with their "size" is large and significant 

(table 8.2, r= -0.70, p<0.001). This suggests that scores on PCI should not be 

interpreted as reflecting simple size effects, rather they reflect complex shape 

differences associated with (but not necessarily entirely consequent upon) cranial 

vault expansion. Reasonable confidence can therefore be attached to the assertion 

that these preliminary' phenetic groupings arc not purely determined on the basis 

of size differences but that shape differences also intrude. 



Appendix B Iii 

The preliminary phenetic groupings were studied by further PCAs and by 

canonical analyses: 

a) Archaic and recent Homo sapiens 

Anatomically modem Homo sapiens 

It has been noted earlier that the PCAs using both raw and scaled data 

from the group of fossil a. m. humans have demonstrated differences between the 

European crania and those from different regions. 

Within the European crania Predmost 3 is most like Skhul V (figs. B. 2, 

B. 11) and the "classic" Neanderthals. Smith (1984) has noted that this cranium 

is clearly modern in morphology but that the face and supraciliary ridges are 

robust, the vault and forehead is relatively low and there is a well-developed 

occipital hemi-bun. He uses these featurm which he has noted in other fossil 

a. m. central European material. to suggest a degree of morphological continuity 

between the preceding Neanderthal populations and fossil a. m. humans. This he 

takes to imply continuity in the gene pool. The impression of some degree of 

similarity between the robust Predmost 3 cranium and Neanderthals Is supported 

by the current analyses. 

The other central European fossils (Mladec I and Brno 3), are placed more 

centrally within the fossil a. m. sample in the PCAs (figs. B. 2-B. 5, B-11-B. 14) 

though the Euclidean distance matrix indicates that the nearest neighbour to 

Predmost 3 is Mladec 1 and to Mladec 1 Is Brno 3. Smith (1984) considers 

Mladec 1 and Frayer (1984) considers Brno 3 to be female. The differences 
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between the female and the male central European crania may be the result of 

the large degree of sexual dimorphism noted within Upper Paleolithic crania by 

Frayer (1984) though Brno 3 is further from Mladec 1 (29.8 units) than is 

Mladec 1 from Predmost 3 (26.5 units). The evidence for morphological 

continuity between this population and Neanderthals is no greater than that for 

continuity between western Europeans and Neanderthals (see figs. B. 2 and B. 11). 

Stringer et aL (1984) in reviewing the western European record did "not 

recognise any fossil specimens with an intermediate morphology between 

Neanderthal and modern types". 

On the one hand Smith, (1984) sees continuity between central European 

fossil a. m. Homo sapiens and Neanderthals while on the other, Stringer et a! 

(1984) see discontinuity between western Europeans and Neanderthals. The 

evidence of this study is that the central and western European fossil a. m. 

material is very similar and that such a contrast In opinion is unjustified. 

It may be argued that the current study suffers from inadequate data to 

adequately describe the differences in cranial morphology between "classic" 

Neanderthals and fossil a. m. humans and may therefore fail to properly describe 

intermediacy. Against this it can be said that a morphological discontinuity 

between these fossils could be identified from studies based on scaled data (fig. 

B. 11) and less clearly from raw data (fig. B. 2). 

Wolpoff et aL (1984) have considered the morphological relationships of the 

Wadjak 1 cranium. They indicate a number of features in which it is reminiscent 

of both australoid and southern Chinese crania and point to a number of 
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dissimilarities between it and the Keilor 1 cranium (conura Weidenreich, 1945). 

This study has clearly demonstrated the distinctive morphology of both crania 
(figs. B. 4, B. 5, B. 13, B. 14). Wadjak 1 is separated from all other fossil a. m. 

crania on PCII and Keilor on PCIV in the analyses of both raw and scaled data. 

The two crania from Africa, Fish Hock 1 and Gamble's Cave 4 are distinct 

from all other fossil a. m. crania on PCs III and V respectively from the PCAs 

based on both scaled and raw data (figs. B. 4b, BSb, B. 13b, ß. 14b). Furthermore 

they appear quite different from each other in these analyses. This is consistent 

with their different attributions (Fish Nock - Bushman, Keith, 1931, Gamble's 

cave - Nilotic Negro, Rightmire, 1975). 

Neanderthal and Neandenha! -like crania 

In the PCAs of raw data the "classic" Neanderthal group overlaps the 

group of fossil anatomically modern crania (figs. B. 1, B. 2.13.3). It is clear from 

the studies of scaled data (figs. B. 10, B. 11, B. 12) that this overlap reflects size 

influences because, using scaled data, there is a clear discontinuity between the 

"classic" Neanderthals and anatomically modern forms. To the positive extreme 

of PCI are the "classic" Neanderthals and the Kabwe 1 cranium and to the 

negative extreme are the anatomically modern crania. 

The representatives of archaic and modern forms of Naito sapiens are 

arranged as two overlapping spheroidal distributions (fig. B. 11a). T he region of 

overlap is occupied by the Steinheim cranium, Skhul V and Predmost 3 in the 
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studies of scaled data (fig B. 11). The studies of raw data, however, separate the 

Steinheim cranium from the representatives of archaic and fossil a. m. Iforno 

sapiens (rigs B. 1-2). 

Had the Steinheim, Skhul V and Kabwe crania not been included in this 

study there would have been little difficulty in demonstrating a phenetie group 

of anatomically modern Homo sapiens and a distinctive group of "classic" western 

European Neanderthals. The inclusion of these crania has, however, led to some 

difficulties in identifying discontinuities. The Steinheim and Skhul V crania appear 

intermediate in morphology between fossil a. m. flomo sapiens and the "classic" 

Neanderthals whilst the Kabwe cranium is not differentiated from the "classic" 

Neanderthals by the PCAs or the Euclidean Distance matrix (table 13.3). It is 

worthwhile re-examining the metrical findings of previous workers in relation 

to the affinities of these fossils. 

The degree of similarity between the Kabwe cranium and the "classic" 

Neanderthals of Europe has been considered by several authors (e. g. Woodward, 

1921, Morant, 1928, Singer, 1954). Morant (1928) whilst demonstrating metrical 

differences considered it more similar to the Neanderthals than to modern 

humans. From a comparison of individual measurements he concluded that the 

"Neanderthaloid type is rather less widely removed from modern man than the 

Rhodesian" (= Kabwe 1) (but a generalised coefficient suggested the reverse). 

Stringer (1974a) in his multivariate study of the cranial morphology of later 

Pleistocene hominids presents D2 matrices based upon analyses of regional and 

more anatomically comprehensive data. His study, based upon 25 variables from 
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a wide anatomical distribution, shows that the nearest neighbour to the centroid 

of his cluster of "classic" European Neanderthals Is the Kabwe 1 cranium. The 

distance suggests a difference which is significant at the 1% level. The Steinheim 

cranium and Skhul V are further from the "classic" Neanderthal centroid and are 

also significantly different. All three crania are statistically significantly distant 

from the centroid of crania from the Upper Paleolithic. 

Howells (1970) has examined the relationship of Skhul V to modern human 

and "classic" Neanderthal crania. lie does not present a matrix of distances but 

his plots of discriminant functions indicate that the morphology of Skhul V is 

broadly Intermediate between modern and Neanderthal crania. 

Van Vark (1984) concluded that the Steinheim and Kabw"e I crania o"while 
being mutually relatively close, are very distinct from all other skulls". 11C 

presents a distance (D2) matrix In which Steinheim and Kabwe 1 are separated 

by 13 SDU (N. S. ) whilst both are about 40 SDU (P<0.05) from the "classic" 

Neanderthal centroid. In studies where all fossils were entered as Individuals the 

nearest neighbours to Skhul V are recent and Upper Paleolithic humans 

(D2-6.7-40 SDU) followed by "classic" European Neanderthals (D2"19-55 

SDU). 

Consistently these studies have shown that the Kabwc 1, Skhul V and the 

Steinheim crania are different from the crania of the "classic" Neanderthals, a 

finding which contrasts with those of the PCAs presented above. 

The canonical analyses considered earlier also conflict. The study which 

Included the Kabwe and Skhul V crania in a single group together With the 
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"classic" Neanderthals did not suggest any increased within-group variability 

relative to the modern groups. This contrasts with the large and significant 

Mahalanobis' distances calculated between the Kabwe and Skhul V crania and 

the centroids of the "classic" Neanderthals and fossil am. humans when they were 

entered separately into a canonical analysis (fig. 13.20). 'lids canonical analysis 

resulted In a pattern of dispositions of the Kabwe, Skhul V, Neanderthal and 

fossil a. m. crania which agrees with that found by Howells (1970) and Stringer 

(1974a) (Incidentally, the stepwise removal of "classic" Neanderthals from their 

group in a series of unreported canonical analyses failed to show any significant 

difference between each and the remainder). 

These findings arc problematical. The PCAs and Euclidean distance matrix 

suggest that the Kabwe cranium and to a lesser extent Skhul V are 

indistinguishable (using these data) from the "classic" Neanderthals whilst 

canonical analysis suggests the reverse. The reasons for this are unclear but it 

may be a result of the fact that canonical analysis is a discriminant technique 

and, as such, variables are given different weightings in accordance with their 

utility in distinguishing groups (Mardia, pers. comm. ). 

It is clear from the canonical analysis that the Kabwe I and Skhul V crania 

are distinct from the "classic" Neanderthals and fossil a. m. humans. The fact that 

this was not confirmed by preliminary PCAs or from an examination of the 

Euclidean distance matrix illustrates a potential weakness in numerical phenetie 

studies. The hypotheses that Kabwe I and Skhul V have distinct morphologies 

were tested only because of prior work by others. In isolation, the preliminary 
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multivariate studies would have been misleading. 

b) Homo erectus 
The crania representing the grade of Homo erectus are clearly identifiable 

in figure B. 1 as an apparently homogenous group. The study of scaled data (fig. 

B. 10) does, however, suggest a high degree of morphological variability (though 

only 1.5-2 times that within fossil a. m. Homo sapiens). This implies that though 

their sizes are similar they differ in morphology. This view is consistent with the 

findings of Stringer (1984), Wood (1984) and Bilsborough and Wood (1986) but 

disagrees with the assessment of Rightmire (1984a). 

It should be noted that each of the representatives of Homo crrctus Included 

in this study has been heavily reconstructed (see appendix A) and may well be 

inaccurate. With this in mind I have included the representatives of Homo exclus 

in a group for canonical analyses in order to allow an assessment of their overall 

affinities. 

c) Australopithecines and early Ilomo 

The PCAs of this restricted collection of lite Pliocene and early Pleistocene 

fossils are presented in figures B. 8,13.9 (raw data), 8.17 and B. 18 (scaled data). 

In both studies PCI separates the gracile crania (Off 24 and Sts 5) from those 

which are more robustly constructed in the facial region (A. boisci and KNht - 
ER 1470, Bilsborough and Wood, 1988). There is a high correlation of the scores 

of crania on PCI with the square roots of the areas of their midline projections 
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in both studies (scaled and raw data). This may well primarily reflect the 

differences in facial rather than neurocranial proportions. 

A clear grouping of the two crania of A. boisci is evident from the studies 

of both raw and scaled data (figs. B. 1, B. 10) in which they appear distinct from 

Sts 5, a representative of A. africanus. This finding Is consistent with the 

consensus view (e. g. Howell, 1978, Grine, 1981). 

The studies consistently point to a distinction between each of 011 24, Sts 

5 and KNM - ER 1470 and the remaining crania though KNM - ER 1470 appears 

most similar to A. boisci. The large difference in morphology between the 

representatives of early Homo, OH 24 and KNM - ER 1470, is consistent with 

the findings of Chamberlain and Wood (1987). 

As a result of the PCAs I have included the two representatives of mot. boiscf 

as a group in the canonical analyses of chapter 4 and have entered each of Off 

24, Sts 5 and KNM - ER 1470 separately. 
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CONCLUSIONS AND SUMMARY OF PIJENL'TIC GROUPS 

The preceding discussion has indicated the following subdivision of fossils: 

1. Representatives of fossil a. m. Homo sapiens 

2. Skhul V 

3. "Classic" European Neanderthals 

4. Kabwe 1 

5. Steinheim 

6. representatives of the grade Homo erectus 

7. A. boisei 

8. KNM - ER 1470 

9. Sts5 

10. OH 24 

This division of fossils largely concurs with the results of PCA and with the 

Euclidean distance matrix but its justification also depends on the results of 

preliminary canonical analyses which were undertaken because of the findings of 

other workers. 

That these canonical analyses were necessary indicates a potential pitfall in 

the identification of phenetic groups of fossils. PCAs and Euclidean distance 

matrices treat all the data as being of equal weight. This is an inevitable 

consequence of the formulation of phenetic studies. It is clear from a cladistle 

viewpoint, however, that similarity may be the result of retained primitive 

characters as well as the result of shared derived characters. 
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The inevitable consequence of grouping by all types of similarity (phenctics) 
is that phylogenetically important differences may be swamped by phylogenetically 

less important similarities. The canonical analyses, by their nature, emphasise 

differences between groups by giving characters unequal weightings according to 

their discriminatory values. It is only as a result of the canonical analyses, 

undertaken because of the findings of previous workers, that significant 

differences between Kabwe 1, Skhul V and the "classic" Neanderthals were 

identified. 

Despite the difficulties encountered in the Identification of fossil groups 

(especially in determining the limits of variation in the "classic" Neanderthals) the 

PCAs of restricted subsets of fossil crania have shown a high degree of 

concordance with the studies of previous workers. This suggests that the need to 

estimate data has not resulted in any major errors and that the results of the 

multivariate studies are generally reliable. 

The preliminary multivariate studies presented in this appendix have served 

to ensure that the groups of fossils which are included in the studies of chapter 

4 will not result in any distortions of between-group relationships which might 

confuse the comparison of Fourier data and linear and angular measurements. 
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Figure C. 14 - Univariate bar charts, pooled within group standard dcvlatfdn, 
logged data. 
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Figure C. 15 - Univariate bar charts, pooled within group standard dc%iatlon, 
logged data. 
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Figure C. 16 - Univariate bar charts, pooled within group standard dcviati)n, 
logged data. 
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Figure C. 17 - Univariate bar charts, pooled within group standard deviation, 
logged data. 


