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Abstract

This thesis contains a detailed study of the kinematics and physical

properties of a potential site of massive star formation; the IRDC

G035.39-00.33.

The gas kinematics are first of all investigated using high-spectral res-

olution and high-sensitivity data from the IRAM30m telescope. The

primary focus of this work is the J = 1 → 0 transition of both N2H
+

and C18O, as well as N2H
+ (3− 2). Dense gas is found to be extended

over ∼ 3 pc scales within G035.39-00.33. The C18O observations con-

firm the presence of at least three morphologically distinct filamentary

components. It is speculated that the merging of filaments may be re-

sponsible for the formation of localised density enhancements at their

interface; the potential sites for massive star and star-cluster formation.

The kinematic properties of the dense gas are then probed at high-

angular resolution, using observations of N2H
+ (1−0) from the Plateau

de Bure Interferometer. It is revealed that the dense gas of G035.39-

00.33 is organised into a complex network of mildly supersonic filaments

separated in velocity by < 1 km s−1. Whilst global velocity gradients

throughout each filament are small, there is evidence for dynamic pro-

cesses on local scales. This suggests that the kinematics are influenced

by the dense (and in some cases, starless) cores.

The physical properties of the embedded core population are derived

in the final study of this thesis. A total of 14 continuum peaks are

identified, representative of the pre- and protostellar core population

covering two main clumps within G035.39-00.33. The derived core

masses are found to be between 2.4-12.3M⊙, with sizes and densities

between 0.03-0.07 pc and 1.6×105-7.3×105, respectively. Some of the



cores exhibit irregular boundaries, which may imply the presence of

unresolved sub-structure. Although the dynamical state of each core

is dependent on both its geometry and density profile (which are both

sources of uncertainty) it is found that many of the identified cores

are unstable to collapse. Cores which are well represented by mono-

lithic, centrally condensed structures, exhibiting low virial parameters

and many Jeans masses, are good candidates for the progenitors of

intermediate-to-high-mass stars. Within the selected area of G035.39-

00.33, two of the identified cores meet this criteria.
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Chapter 1

Introduction

Massive stars (> 8M⊙) play a fundamental role in the evolution of our Galaxy.

Through powerful stellar winds and expanding Hii regions, massive stars sculpt

their local environment, which can both aid and inhibit new episodes of star for-

mation. In addition, their violent death in the form of explosive supernovae injects

heavy elements into the interstellar medium (hereafter, ISM). The enrichment of

the ISM impacts multiple physical scales, driving the evolution of galaxies, and

providing the constituent ingredients for the formation of planets.

In spite of the profound effect massive stars have on their environment, and the

subsequent interest this has evoked in astronomers, a comprehensive understanding

of their formation is still lacking. Massive stars evolve quickly, in clusters, and,

during the earliest stages of their formation, they are embedded deep within dense

molecular clouds. As massive stars are rare, they are typically found at larger

distances than their more common, low-mass counterparts. This poses a significant

technological challenge, as telescopes must have sufficient angular resolution to

disentangle them from their cluster companions.
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Understanding and categorising the initial conditions for the formation of mas-

sive stars presents a serious challenge for observers and theoreticians alike. This

thesis aims to address some of the, as yet, unanswered questions regarding the

dynamical and physical processes involved in the earliest stages of massive star

formation, with particular emphasis on their host clouds. This introductory chap-

ter is devoted to discussing some of the observational and theoretical concepts

surrounding the birthplaces of stars, and the formation of stars themselves. In

addition, the main focus of this thesis; Infrared Dark Clouds, will be introduced,

and the role they play in the current understanding of star formation, discussed.
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1.1 An introduction to molecular clouds

Star formation within our Galaxy occurs exclusively within molecular clouds. Cold

and dense (T ∼ 10-30K, nH∼ 102–105 cm−3; Stahler & Palla 2005) molecular clouds

are opaque at optical wavelengths as the background starlight is absorbed by tiny

dust grains (10−9–10−3m; Draine 2006, Mathis et al. 1977). In his photographic

survey “On the dark markings of the sky” (Barnard 1919) stated:

“I did not first believe in these dark obscuring masses. The proof

was not conclusive. The increase of evidence, however, from my own

photographs convinced me later, especially after investigating some of

them visually, that many of these markings were not simply due to an

actual want of stars, but were really obscuring bodies nearer to us than

the distant stars.”

Emission from molecular clouds however, can be detected at the millimetre and

sub-millimetre wavelengths indicative of low temperatures. Molecular clouds dis-

play a rich variety of chemistry, with over 200 species detected to date (Müller et al.

2005, Tielens 2005). It is this molecular line emission, as well as thermal emission

from dust particles, that enables astronomers to study the chemical, dynamical,

and physical structure of star-forming clouds.

As the formation of stars is intimately entwined with the evolution of their par-

ent material, the following section discusses the physical and dynamic properties,

and possible formation mechanisms of molecular clouds.
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1.1.1 The structure of molecular clouds

Physical characteristics

Molecular clouds span a wide range of scales in terms of mass, density, and physical

size. They can however, be loosely categorised into several groups. The smallest

of these are the Bok Globules (Bok & Reilly 1947), of typical size ∼ 0.2–1 pc, and

densities ∼ 103 cm−3 (Launhardt et al. 2010). In order of increasing mass, “dark

clouds” (named in reference to their ability to absorb background starlight), are

observed either in isolation (with sizes of the order ∼ 2 pc), or part of larger com-

plexes (such as the local clouds within ∼ 500 pc e.g. Taurus, Perseus, Ophiuchus).

These complexes can have masses in the region of ∼ 104M⊙, and sizes of the or-

der ∼ 10 pc (Cambrésy 1999), and may give rise to the formation of hundreds of

low-mass stars (e.g. the Taurus-Auriga complex, distance ∼ 140 pc; Kenyon et al.

1994). At the higher end of this scale are the Giant Molecular Clouds (hereafter,

GMCs), that contain ≥ 105M⊙ of material, sizes ∼ 50 pc, and number densities

∼ 100 cm−3 (e.g. Blitz 1993, and references therein). The observed power law dis-

tribution of molecular cloud masses & 105M⊙ (dN/dM ∼M−γ , whereby γ∼ 1.5–2;

e.g. Heyer et al. 2001, Roman-Duval et al. 2010, Solomon et al. 1987a), indicates

that the majority of the mass is contained within the most massive clouds.

The gas within molecular clouds is not distributed uniformly. Stars form in

concentrated regions of high density. Williams et al. (2000) introduced an opera-

tional categorisation of the structure of molecular gas within the ISM. The original

nomenclature describes clouds, clumps, and cores. Clouds are defined as extended

regions of molecular gas. The term ‘clump’ describes coherent regions in position-

position-velocity space that will lead to the formation of star-clusters. Finally,



5

Figure 1.1: Dust continuum images of the massive star forming region IRAS
19410+2336 from Beuther & Schilke (2004). The left image shows 1.2mm single-
dish data obtained with the IRAM30m telescope. The middle and right images
are 3mm and 1.3mm (respectively) data obtained with the IRAM Plateau de
Bure Interferometer. The beam sizes for each image can be found in the bottom
corners of plots. This image highlights the clumpy, fragmented, internal structure
of molecular clouds.

cores are regions out of which single stars (or binaries) form.

In more massive regions, such as GMCs, this characterisation becomes more

difficult, as distant massive “cores” have a propensity to exhibit substructure when

viewed at high-angular resolution. An example of this can be seen in Figure 1.1

which displays dust continuum emission images from the massive star forming

region IRAS19410+2336 at different spatial scales (Beuther & Schilke 2004). The

left-hand image displays single-dish data from the IRAM 30m telescope at 11′′

resolution. The structure in the left-hand panel covers . 1 pc in spatial extent, two

cluster-forming clumps are identified by the authors. The middle and right-hand

plots are interferometric images at higher-angular resolution (∼ 5.5′′ × 3.5′′ and

Chapter1/Chapter1Figs/EPS/beuther_04.eps
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∼ 1.5′′ × 1.0′′, respectively). The interferometer filters extended emission observed

in the left-hand plot, highlighting the individual cores that comprise each clump.

The internal structure of molecular clouds has characteristically low temper-

ature, in the region of ∼ 10-20K. At high column densities (>NH∼ 1021 cm−2;

Bergin et al. 2004), such as those typically observed in dense molecular clouds, gas

is shielded from the stellar ultra-violet (UV) component (Mathis et al. 1983) of

the interstellar radiation field. Heating within molecular clouds is therefore dom-

inated by cosmic ray interactions, whereas the rotational transitions of abundant

molecules (such as CO) are important for cooling (Goldsmith 2001).

Morphology

The advent of the Herschel Space Observatory (Pilbratt et al. 2010) has led to an

unprecedented insight into the structure of the cold ISM. One of the most strik-

ing results from the Herschel Galactic imaging surveys (the Gould Belt Survey;

André et al. 2010, and the Herschel Infrared GALactic plane survey; Molinari

et al. 2010), is that filamentary structures permeate through all of the observed

molecular clouds (a filament in this context refers to a structure of high-aspect

ratio, i.e. ∼ 5-10, that exhibits a significant density contrast with its surround-

ing environment; André et al. 2013). This filamentary structure is exemplified in

Figure 1.2, a composite image of the Orion B molecular cloud taken using both

the Photodetector Array Camera and Spectrometer (PACS), and the Spectral and

Photometric Imaging Receiver (SPIRE) instruments of Herschel (the blue, green,

and red colours refer to emission at 70 µm, 160 µm, and 250 µm, respectively). It

is evident from this figure that the cold gas (∼ 12K; seen in red) is ordered into a

complex network of filaments. Moreover, these filaments are spatially coincident
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Figure 1.2: A composite image of the Orion B molecular cloud (blue = 70 µm, green = 160 µm, red = 250 µm), by
the Herschel Space Observatory. In this image, warm gas (blue) can be seen surrounding regions of star formation,
whereas cold gas (red) is organised into dense filamentary structures. The Horsehead nebula can be located to the
right-hand side of the image (Image credit: N. Schneider, Ph. André, V. Könyves for the ’Gould Belt survey’ Key
Programme)

Chapter1/Chapter1Figs/EPS/orionB.eps
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with regions of star formation, indicated by the warmer (∼ 40K; blue) gas.

It has been known for many years that local star-forming clouds such as the

Orion A cloud (e.g. Bally et al. 1987) and Taurus (e.g. Schneider & Elmegreen

1979) have filamentary morphology. However, Herschel column density maps have

revealed that the existence of filamentary structure is unrelated to a cloud’s star

formation content (André et al. 2013). In the Polaris flare, more than 200 gravita-

tionally unbound starless cores can be identified (André 2013), and yet filaments

are identified throughout (Miville-Deschênes et al. 2010). However, the Herschel

Gould Belt Survey has also revealed that ∼ 70% of the identified pre-stellar cores

(identified as being gravitationally bound) are spatially coincident with filamentary

structures (André 2013).

The left panel of Figure 1.3 shows a three-colour Herschel composite image of

the Rosette molecular cloud (Schneider et al. 2010b). The three colours shown

are the 70 µm (blue), 160 µm (green), and 500 µm (red). The background image

displays hydrogen Balmer alpha (otherwise known as Hα) emission at a wave-

length, λ∼ 656 nm. The right-hand panel shows an enhanced column density map

of the same image, with the skeletal features of the dense filamentary structures

overlaid (the peak H2 column density, seen in yellow, is N(H2)∼ 2× 1022 cm−2).

The region is dominated by a single high-column density ridge situated in the

centre of the map, and secondary filaments stem from this. Star-forming cores

(indicated by the grey triangles) are spatially coincident with both filaments, and

junctions between filaments (for reference white and blue stars refer to O-stars and

known star-forming clusters, respectively). Understanding the role filaments play

therefore, is crucial to developing a complete picture of star formation.
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Figure 1.3: Left: Herschel three-colour composite image (blue = 70 µm, green
= 160 µm, red = 500 µm) of the Rosette nebula, overlaid on a Hα image (taken
from Schneider et al. 2010b). Right: Column density map of the same region. Fil-
amentary structures are highlighted in white. Grey triangles indicate the massive
dense cores identified by Motte et al. (2010), the white and blue stars are O-stars
and known star-forming clusters, respectively. This figure is taken from Schneider
et al. 2012.

Dynamic properties

The dynamic properties of molecular clouds are inferred from molecular line obser-

vations. These data regularly reveal structure not evident in column density maps.

For example, column density maps of the L1495/B213 region of Taurus, imply a

single filament of projected length > 5 pc (Palmeirim et al. 2013). However, study-

ing the emission from C18O, Hacar et al. (2013) observe significant substructure,

and identify a total of 35 filamentary components within the same region.

Molecular line observations have also revealed large scale systematic motions

(velocity gradients) within molecular clouds. Velocity gradients have been inter-

Chapter1/Chapter1Figs/EPS/rosette_schneider.eps


10

preted as representing global cloud motions, such as rotation (e.g. Imara & Blitz

2011, Imara et al. 2011, Rosolowsky et al. 2003) or accretion (e.g. Kirk et al. 2013,

Peretto et al. 2014), and therefore may have important implications for star for-

mation. It has also been suggested that observed velocity gradients may be linked

to the formation mechanism of the cloud (e.g. Schneider et al. 2010a).

As well as indicating the presence of substructure, and revealing bulk gas mo-

tions, molecular line observations also provide insight into the internal motions of

molecular clouds. Studying such motions may help discern how molecular clouds

evolve towards star formation (see also Section 1.2). In molecular clouds, non-

thermal gas motions (σNT) are often greater than those that can be attributed to

temperature alone, i.e. the isothermal sound speed of the gas; cs, given by:

cs =

√

kBT

µmH
= 0.27

(

T

20K

)1/2

km s−1, (1.1)

whereby T is the temperature (in this example it has been normalized to 20K), kB

is the Boltzmann constant, µ is the mean molecular weight of a molecule of gas,

and mH is the mass of atomic hydrogen. Larson (1979), through observations of

the 12CO (1−0) line (13CO was later used in Larson 1981 due to the high opacity of

12CO), showed that the observed line-width of molecular clouds increases with the

physical size of the considered region. This, along with two other scaling relations

that describe the dynamic properties of molecular clouds were discussed by Larson



11

(1981), and are often referred to as “Larson’s laws”:

(

σ

km s−1

)

∝

(

R

pc

)α

(1.2)

(

σ

km s−1

)

∝

(

M

M⊙

)β

(1.3)

[

n(H2)

cm−2

]

∝

(

R

pc

)γ

. (1.4)

In this case, σ refers to the estimated three-dimensional velocity dispersion, R is

the radius of the cloud, and n(H2) is the number density of molecular hydrogen.

Larson (1981) derived the exponents, α, β, and γ empirically to be 0.38, 0.2,

and -1.1, respectively (α=0.5 and γ=-1 are typically adopted; Solomon et al.

1987b, Stahler & Palla 2005). The third relation listed implies a near constant

column density for molecular clouds. This result has since been questioned as

sensitivity limits and choice of molecular tracer may influence the relationship

(e.g. Ballesteros-Paredes & Mac Low 2002).

Whilst the dispersion-size relationship is consistently observed (e.g. Caselli

et al. 1995, Heyer et al. 2009, Heyer & Brunt 2004, Larson 1979, Shetty et al. 2012,

Shirley et al. 2003), it is often interpreted in different ways. Heyer et al. (2009),

extending the study of Larson (1981), found that the velocity dispersion depends

on both the radius and the surface density, σ∝ (ΣR)1/2. Both Larson (1981) and

Heyer et al. (2009) interpret this relationship as an indication that the internal mo-

tions of clouds balance gravity, in approximate virial equilibrium. However, recent

simulations proposing a highly dynamical mechanism for the formation of molecu-

lar clouds (see Section 1.1.2) have called the interpretation of virial equilibrium into

question (this will also be discussed in relation to star formation in Section 1.2).



12

In these simulations, apparent virial balance may be replicated by gravitational

contraction of a cloud that is far from equilibrium (Ballesteros-Paredes et al. 2011,

Vázquez-Semadeni et al. 2007).

As the observed properties of molecular clouds (and the route their substructure

takes towards star formation) are influenced by their formation, the next section

is devoted to discussing some of the theories surrounding the formation of clouds,

and the origins of this complex structure.

1.1.2 Formation mechanisms of molecular clouds

Cloud formation theories are typically grouped into two main categories: “top-

down” and “bottom-up” (McKee & Ostriker 2007). Top-down mechanisms de-

scribe the formation of molecular clouds via instabilities and/or flows within the

ISM, whereas the bottom-up notion of cloud formation depends on the agglomer-

ation of smaller clouds.

Top-down formation mechanisms can be further subdivided into two groups:

those that present molecular clouds as transient entities, never reaching an equi-

librium state, resulting in a dynamic picture for cloud (and star) formation; and

those that suggest molecular clouds are close to virial equilibrium, proceeding to-

wards star formation inefficiently and quasi-statically. One of the reasons for such

a dichotomy is because of the uncertainty in the predicted lifetimes of molecu-

lar clouds. Transient clouds are expected to exist for < 10Myr before dispersal

(Hartmann et al. 2001). This is in contrast to those that predict longer lifetimes,

typically of the order ∼ 30Myr (Blitz & Shu 1980, Kawamura et al. 2009), with

observations of molecular clouds in interarm regions of external spiral galaxies
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predicting even longer lifetimes of ∼ 100Myr (Koda et al. 2009).

In reality, a combination of physical processes may occur during cloud for-

mation, with different formation mechanisms dominating under different environ-

mental conditions (Dobbs et al. 2013, Elmegreen 1993). It has also been sug-

gested that GMCs and smaller molecular clouds represent two distinct populations

(Ballesteros-Paredes et al. 2007). In this context, GMCs may form through large-

scale gravitational instabilities, with smaller molecular clouds forming through

more random turbulent compression events (i.e. events that are dependent on

environment). The following sections describe these processes in more detail.

Converging/colliding flows

Within the last 15-20 years, several studies have focused on simulating the forma-

tion of molecular clouds via the collision of supersonic flows of atomic gas within

the ISM (Audit & Hennebelle 2005, Ballesteros-Paredes et al. 1999, Heitsch et al.

2006, Hennebelle & Pérault 1999, Vazquez-Semadeni et al. 1995). Such flows are

thought to be a consequence of dynamical processes within the Galactic disc, for

example, expanding Hii regions or supernovae bubbles (Heitsch et al. 2008).

The left-panel of Figure 1.4 depicts a setup of a simulation where two flows are

set to collide (Vázquez-Semadeni et al. 2007). The compression induced by the

flow leads to an increase in the density, and a decrease in the temperature (Audit

& Hennebelle 2005, Hennebelle & Pérault 1999, Koyama & Inutsuka 2000). The

newly formed dense gas will accrete mass until it becomes Jeans unstable (the Jeans

mass will be formally introduced in Section 1.2). The formation of molecular H2

commences above a column density threshold (∼ 1021 cm−2; Bergin et al. 2004, Lee

et al. 2012b), after which the clouds “lifetime” will begin (Hartmann et al. 2001).
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Figure 1.4: Left: The setup of a simulation describing the formation of molecular
clouds via converging flows of atomic gas (Vázquez-Semadeni et al. 2007). Right:
A column density map displaying a filamentary structure formed in an equivalent
simulation (at higher resolution; Gomez & Vazquez-Semadeni 2013). The red in
this image is high density (∼ 1022 cm−2) and the black is low density (∼ 1020 cm−2).

The right-panel of Figure 1.4 is a close-up view of a structure formed within

such a simulation (Gomez & Vazquez-Semadeni 2013). An encouraging result of

the colliding flow formation mechanism is that simulations are able to reproduce

the observed filamentary morphology of molecular clouds. The broad line-widths

observed within such clouds (see Section 1.1.1) are explained by large-scale gravita-

tional collapse (Ballesteros-Paredes et al. 2007), and are not indicative of turbulent

support. This mechanism has been used to explain the relatively small age spread

of stars observed in local clouds (this is discussed in more detail in Section 1.2.1).

However, although this formation mechanism accounts for the observed large

scale supersonic motions of molecular clouds (and their observed substructure),

some simulations produce low-mass star-forming cores with a greater degree of

non-thermal motions than those observed (Offner et al. 2008). In addition, it has

Chapter1/Chapter1Figs/EPS/colliding_flows.eps
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been argued that the molecular clouds formed by such a mechanism may be mass-

limited (e.g. Dobbs et al. 2013, McKee & Ostriker 2007). The maximum mass is

restricted by the mean density and velocity correlation length of the converging

flows. While this mechanism may therefore explain the formation of less massive

clouds (∼ 104M⊙), it may be insufficient in describing the formation of 105-106M⊙

GMCs.

Gravitational instability

Large-scale instabilities may also lead to the formation of molecular clouds. The

stability of an infinitesimally thin, unmagnetised gas disc is approximated using

the Toomre parameter, Q. This describes the balance between support due to

rotation and susceptibility for collapse due to gravity (Toomre 1964):

Q =
κcs

πGΣgal

, (1.5)

whereby κ is the epicyclic frequency, cs is the sound speed of the gas, G is the

gravitational constant, and Σgal is the mean gas surface density in the disc. The

Toomre criterion imposes a critical value for collapse, i.e. if Q< 1, gravity domi-

nates over rotational support (this may vary dependent on the conditions imposed

in simulations e.g. Q∼ 1.2–1.6; Kim et al. 2001, Li et al. 2005).

Gravitational instabilities are thought to create the higher end of the mass

spectrum of molecular clouds (∼ 106M⊙; Kim & Ostriker 2006, Shetty & Ostriker

2006), and has been cited as a possible explanation for observations of regularly

spaced Hii regions in external galaxies (Elmegreen & Elmegreen 1983). In addition,

this mechanism has been used as a measure of a critical surface density for star
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formation (Martin & Kennicutt 2001). It is unclear however, whether or not

gravitational instabilities would reproduce the full mass spectrum. The production

of smaller clouds through this mechanism would require fragmentation of larger

structures (McKee & Ostriker 2007).

Cloud agglomeration

A bottom-up method of molecular cloud formation involves the agglomeration of

smaller clouds (Field & Saslaw 1965, Oort 1954). A problem faced by early models

of cloud agglomeration was that the time-scale required to produce massive clouds

was greater than the estimated lifetime of GMCs (> 108 yrs; e.g. Kwan 1979,

Scoville & Hersh 1979). Incorporating a spiral potential (causing clouds to crowd

in spiral arms), and cloud self-gravity is able to reduce the cloud formation time

(e.g. Casoli & Combes 1982, Kwan & Valdes 1987). However, McKee & Ostriker

(2007) argue that, even with the aforementioned considerations, the time-scale

needed to build clouds of 106M⊙ from smaller (∼ 104M⊙) clouds would still exceed

expected lifetimes of GMCs (i.e. star formation would occur, and disperse smaller

clouds in the time needed to form a 106M⊙ GMC).

The importance of collisions between clouds however, must not be ruled out.

More recently, coalescence models of GMC formation have suggested this may be

important within the spiral arms due to orbit crowding as a consequence of spiral

density waves (Dobbs 2008). However, whilst this mechanism may be able to form

clouds in galaxies with spiral arms, high disc surface densities are required in the

absence of spiral arms (Tasker & Tan 2009). Whilst some groups envisage cloud

collisions to result in molecular clouds that are gravitationally unbound (with star

formation proceeding in smaller gravitationally bound clumps; Dobbs et al. 2011),
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others conclude that cloud collisions are efficient at injecting kinetic energy into

GMCs, providing turbulent support against gravity, and maintaining a near virial

balance (Tasker & Tan 2009).
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1.2 An introduction to star formation

Star formation proceeds in dense molecular cloud cores when gravity overcomes

internal support. In the most simplistic sense (considering the collapse of an

isothermal sphere supported only by thermal pressure), this will occur when the

mass of the considered region (this may be applicable to clouds, or individual star

forming cores) reaches the Jeans mass (Jeans 1902):

MJ =

(

5c2s
G

)3/2(
3

4πρ

)1/2

∼ 160

(

T

20K

)3/2(
102 cm−3

n

)1/2

M⊙, (1.6)

whereby ρ and cs are the respective density and sound speed of the region, and G

is the gravitational constant. The normalization above is consistent with typical

GMC conditions (e.g. Stahler & Palla 2005). Once gravity dominates over support,

the time-scale for pressure-free, spherical collapse is given by the free-fall time, tff :

tff =

(

3π

32Gρ

)1/2

∼ 3 × 105
(

104 cm−3

n

)1/2

years, (1.7)

whereby all symbols are equivalent to those described in Equation 1.6. The large

masses (relative to the theoretical Jeans mass) of typical GMCs (∼ 105M⊙) implies

that such clouds should undergo global gravitational collapse.

Within the Milky Way, < 3M⊙ of material is converted into stars every year

(e.g. Draine 2011, Evans et al. 2009, Lee et al. 2012a). In addition, only ∼ 2% of

the mass of a GMC is converted into stars (Myers et al. 1986). This implies that

star formation is an inefficient process, which may contradict the above notion of

global gravitational collapse (Zuckerman & Palmer 1974). The following sections

are therefore devoted to discussing star formation within molecular clouds, and
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the differences between low- and high-mass star formation.

1.2.1 Virialized vs. transient clouds

Star formation in globally supported molecular clouds

The classical picture of star formation was reviewed by (Shu et al. 1987), and con-

cerns the balance between gravity and the magnetic field. Magnetic fields provide

support to molecular clouds, by suppressing the motion of ionic material perpen-

dicular to field lines (Mouschovias & Spitzer 1976). A molecular cloud is sub-

critical when the magnetic field provides sufficient support against gravitational

collapse. Star formation in sub-critical clouds may proceed via a process known

as ambipolar diffusion (Mestel & Spitzer 1956). Here, neutral particles, impervi-

ous to the effects of the magnetic field, drift across field lines under the influence

of gravity, collating to form a central density enhancement. During this process,

magnetic flux is redistributed because of tension in the field. Once enough mass

has accumulated, the core becomes super-critical, and unstable to gravitational

collapse.

In this scenario, star formation proceeds slowly. The time-scale for ambipo-

lar diffusion, tAD, is considered to be long (107 years; Mac Low & Klessen 2004).

Hence, this is often referred to as the quasi-static picture of star formation (where

tAD≫ tff). A potential issue is that observations of GMCs indicate that their

masses are typically critical or even super-critical (Crutcher 2012). This suggests

that magnetic fields (alone) are insufficient in supporting GMCs against gravita-

tional collapse.

A possible solution to such issues may be provided by the presence of super-
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sonic, or turbulent, motions within molecular clouds (see Section 1.1.1). Models

of ambipolar diffusion that incorporate significant non-thermal motions form stars

on shorter time-scales (compared to models only incorporating thermal motions),

alleviating some of the problems in the classical argument (Fatuzzo & Adams 2002,

Heitsch et al. 2004). Moreover, these turbulent motions are often considered to

provide (global) support to molecular clouds. Replacing the thermal sound speed

in Equation 1.6 with the total velocity dispersion (σobs; incorporating both thermal

and non-thermal motions) leads to an increase in the Jeans mass of the region.

For example, a total velocity dispersion of ∼ 1 km s−1 would lead to a Jeans mass

of 8000M⊙(using n=102 cm−3), i.e. a factor of ∼ (σobs/cs)
3 greater than that

presented in Equation 1.6.

In this context, GMCs are relatively long-lived (∼ 20-30Myr) structures that

are supported by magnetic fields and/or random turbulent motions in virial equi-

librium (Heyer et al. 2009, Larson 1981). Only a small fraction of the mass of

the molecular cloud is unstable to gravitational collapse, therefore star formation

proceeds slowly and inefficiently.

Star formation in transient molecular clouds

A more recent view of molecular cloud evolution follows their formation from col-

liding flows (see Section 1.1.2). In this scenario, non-thermal motions observed in

molecular clouds are indicative of gravitational collapse (not turbulent support).

A significant hurdle for the equilibrium model of molecular clouds is that tur-

bulence decays (Mac Low et al. 1998). This implies that without replenishment

of the turbulent motions, that are deemed to provide support, molecular clouds

will become gravitationally unstable and collapse rapidly. The benefit of the dy-
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namic star formation paradigm is that there is no need for the turbulence to be

replenished.

The formation of molecular clouds via colliding flows was used initially as

an explanation for the small age spreads of stellar populations observed within

local clouds (e.g. Ballesteros-Paredes et al. 1999, Hartmann et al. 2001). Stars

within the Taurus molecular cloud complex are typically found to be ∼ 1-3Myr

old (e.g. Palla & Stahler 2000). The crossing time of a molecular cloud is defined

as, tcross ≡ Lc/σobs, where Lc is the spatial extent of the cloud. For Taurus,

Lc∼ 20 pc and σobs ∼ 2 km s−1, giving tcross ∼ 1× 107 yrs. The small age spread of

stars compared with the large crossing time, implies that star formation occurring

over the large spatial extent of Taurus is not causally related, but that it may

have been triggered by a single, large-scale event. The colliding flow scenario

may therefore explain how the stellar population has formed with a small age

spread, as dense molecular gas is produced within a relatively short time-scale

(3− 5 × 106Myr; Hartmann et al. 2001).

The interpretation that the observed broad line-widths are indicative of collapse

is not new (Goldreich & Kwan 1974). However, it was quickly thought that rapid

free-fall collapse of molecular clouds may lead to a high star formation efficiency,

which is not observed (Zuckerman & Palmer 1974). Recent simulations explain low

star formation efficiency through the observation that molecular clouds typically

exhibit hierarchical structure (see Section 1.1.1). Denser regions in this hierarchy

collapse first, since tff ∝ ρ−1/2 (see Equation 1.7), leading to star formation in

the high-density cores, before the lower density clouds have collapsed completely

(Ballesteros-Paredes et al. 2011). Feedback from newly formed stars then acts to

disperse the remaining cloud, resulting in the inefficient conversion from gas to
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stars.

1.2.2 The stellar initial mass function & low-mass star for-

mation

The relative number of newly formed stars (i.e. zero-age main-sequence stars)

is often described as a function of their mass, in what is commonly known as

the initial mass function (IMF). The importance of the IMF is best explained by

considering the observation that its shape is seemingly invariant throughout the

Milky Way (Bastian et al. 2010, Offner et al. 2013). The mechanism(s) by which

low- and high-mass star formation proceeds must therefore be able to reproduce

this observed invariance.

Several functional forms of the IMF are shown in Figure 1.5. Fitting a power-

law slope, dN/dlog(M)∝M−Γ, to the IMF was introduced by Salpeter (1955),

who determined Γ∼ 1.35. However, a single power-law is not representative of

the IMF over all masses. Miller & Scalo (1979) found that the IMF is well repre-

sented by a log-normal distribution between 0.1M⊙ and ∼ 30M⊙. This however,

underestimates the number of high-mass stars. Typically the IMF is represented

by a log-normal distribution, with a power-law slope above ∼ 1M⊙ (e.g. Chabrier

2005), or a series of power-laws (e.g. Kroupa 2001).

Stars of mass . 1M⊙ are most common. The shape of the IMF also exemplifies

one of the main difficulties faced when trying to understand the formation of

massive stars: their inherent rarity. One of the most common ways to describe the

formation of massive stars is an extension of the comparatively well constrained

model for low-mass star formation. Before introducing the current theories of
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Figure 1.5: Functional forms of the IMF by various authors (Chabrier 2005,
de Marchi & Paresce 2001, Kroupa 2001, Salpeter 1955, Thies & Kroupa 2007).
With the exception of the Salpeter slope, the curves are normalised such that the
integrated mass is unity. This figure is taken from Offner et al. (2013).

(and issues with) high-mass star formation, it is therefore prudent to discuss the

generally accepted mechanism for low-mass star formation (see e.g. Larson 2003,

Shu et al. 1987 for more detailed reviews).

The formation of low-mass stars begins following the loss of support against

gravity in a pre-stellar core (di Francesco et al. 2007, Ward-Thompson et al.

1994). In the initial stages of collapse, thermal emission from dust is optically

thin. Therefore the temperature changes very little during the initial contraction

phase, whereas the density can increase by several orders of magnitude (this stage

often assumed to be isothermal).

Chapter1/Chapter1Figs/EPS/imf.eps
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As the contraction proceeds, the increase in central density leads to an increase

in optical depth above τ = 1. At this point the core becomes opaque to its own

radiation. The temperature in the central regions rises, supporting the region

against further collapse, forming a hydrostatic core (Larson 1969). At this stage

the core resides in hydrostatic equilibrium, with thermal pressure preventing fur-

ther gravitational contraction. Although this phase has not yet been conclusively

observed, there are a number of candidates for the hydrostatic core phase of star

formation (e.g. Enoch et al. 2010, Pineda et al. 2011).

A second core is formed at the centre of the first hydrostatic core once the

temperature reaches ∼ 2000K. This temperature is sufficient to dissociate H2

molecules. At this point the gas pressure can no longer provide support to the

first core and a second collapse ensues, forming a protostellar object.

Because of the angular momentum of the initial dense core, an accretion disc

forms around the central protostellar object. At this stage, bipolar outflows are

driven from the central region. Observations of accretion discs (e.g. Enoch et al.

2009, Jørgensen et al. 2005, Looney et al. 2000) and outflows are helping to cat-

egorise the initial phases of low-mass star formation (see e.g. Frank et al. 2014,

Richer et al. 2000, and references therein).

1.2.3 Massive star formation

The understanding of massive star formation faces a number of significant chal-

lenges, both observationally and theoretically. Massive stars are rare (see Fig-

ure 1.5), statistically therefore, they are found at greater distances from the Sun

(in comparison to low-mass stars). In addition, massive stars form in clustered en-
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vironments (e.g. Lada & Lada 2003). Both of these factors present observational

challenges, as identifying massive cores (as opposed to cores which may harbour

sub-fragments) necessitates high angular resolution interferometric observations.

A fundamental difference between high-mass and low-mass stars is that ther-

monuclear burning begins at the centre of massive cores while they are still deeply

embedded within their natal cloud. The Kelvin-Helmholz time is approximately

the time a star would have to collapse to its present size for the release of gravita-

tional energy to produce the observed luminosity. It is given by:

tKH =
1

2

EG

L∗
∼ 107

(

M∗

M⊙

)2(
R∗

R⊙

)−1(
L∗

L⊙

)−1

yrs, (1.8)

whereby L∗, M∗, and R∗ are the luminosity, mass, and radius of a star, respectively

(the right-hand side of Equation 1.8 represents the Kelvin-Helmholz timescale for

solar quantities). For low-mass stars, tKH > tff . This implies that the core

material will be accreted before the protostar reaches its main sequence luminosity.

However, for massive stars tKH < tff , the opposite is true. This indicates that

massive young stellar objects have no, well defined, observable, pre-main sequence

phase.

From a theoretical perspective, understanding massive star formation is mainly

approached from two (competing) perspectives; core accretion (e.g. McKee & Tan

2002, 2003) and competitive accretion (e.g. Bonnell et al. 1997). Other mechanisms

for the formation of massive stars are also possible, but are largely dependent on

environment (e.g. protostellar collisions ; Bonnell et al. 1998). These mechanisms

are discussed in more detail in the following sections.
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Core accretion

In principle, the core accretion model is an extension of the ‘standard model’ for

low-mass star formation (see Section 1.2.2). Star formation begins in the core

accretion model with a gravitationally bound core, scaled-up from the low-mass

equivalent, a high-mass starless core (HMSC).

A difference between high-mass and low-mass cores, is that non-thermal mo-

tions are observed to dominate in massive cores (e.g. Caselli & Myers 1995). Myers

& Fuller (1992) used this observation to modify the standard model for star forma-

tion, by incorporating both thermal and non-thermal motions: the “TNT” model.

McKee & Tan (2002, 2003) extended this to develop the “Turbulent Core” model.

The inclusion of turbulent motions provides support to the core (cf. Equation 1.6).

Crucially however, this also leads to an increased accretion rate (∼ 10−3M⊙ yr; Mc-

Kee & Tan 2003) enabling cores to attain greater mass through accretion before

collapse.

A challenge of this formation scenario regards fragmentation. In the core accre-

tion model, the mass reservoir out of which a massive star will form is attributed

solely to a single core. In hydrodynamic simulations of core collapse, Dobbs et al.

(2005) find that turbulent motions generate substructure, resulting in further frag-

mentation. To prevent further fragmentation therefore, massive cores must be

supported. Such support may be provided by the presence of strong magnetic

fields (e.g. Myers et al. 2013, Tan et al. 2013b), or via radiative feedback from

surrounding lower-mass protostars (e.g. Krumholz & McKee 2008).

Another challenge faced by this scenario arises due to the short Kelvin-Helmholz

time-scales of massive stars, as the radiation pressure may be sufficient to halt ac-
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cretion onto the central object. In the case of spherically symmetric accretion a

theoretical upper mass limit of massive stars is implied (∼ 40-60M⊙; Kahn 1974,

Larson & Starrfield 1971, Wolfire & Cassinelli 1987). This is an issue since massive

stars in excess of this limit are observed (e.g. η Carinae; Hillier et al. 2001).

A potential solution to this problem may be provided if mass accretion occurs

via a disc. In the simulations of Krumholz et al. (2009), a 41.5M⊙ and 29.2M⊙

companion were formed via disc accretion in < 105 years. Although this does not

greatly exceed the mass limit discussed above, at no point during the simulation

did the accretion stop due to radiation pressure. This indicates therefore that

massive stars in excess of ∼ 40M⊙, may form via disc accretion (see also e.g.

Kuiper et al. 2010).

Competitive accretion

An alternative suggestion is that there may be a paradigm change in the formation

mechanisms of low- and high-mass stars. Competitive accretion models are derived

as a way to explain the observed characteristic that most massive stars form in

clusters (de Wit et al. 2005, Lada & Lada 2003, Mason et al. 2009).

Figure 1.6 is a schematic of the proposed accretion process within a stellar clus-

ter (from Bonnell et al. 2007). The cluster gravitational potential is crucial for

the formation of massive stars. In this scenario, a high degree of fragmentation

occurs within massive clumps. Many of these fragments will produce low-mass

stars, and this model is able to reproduce the shape of the IMF (Bonnell et al.

2007). Fragments that form preferentially at the centre of the gravitational po-

tential well accrete more material than those formed elsewhere, attaining more

mass. Fragments located at the cluster centre have greater accretion rates, given
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Figure 1.6: A schematic view of the accretion process within a stellar cluster
(from Bonnell et al. 2007). Gas is funnelled down to the cluster core in order to
form massive stars at the centre. The gas reservoir is then replenished via infall
into the large-scale cluster potential.

by Ṁ ∼ πρvrelR
2
acc (whereby ρ is the local density, vrel is the relative velocity of

the star with respect to the clump gas, and Racc is the accretion radius).

If competitive accretion is the dominant mode of massive star formation, this

would imply that these objects would not form in isolation. However, recent

observations have identified several candidates for isolated massive star formation

(Bressert et al. 2012). An important task therefore is to confirm whether or not

such candidates have truly formed in isolation.

Protostellar Collisions

In this scenario, protostars coalesce at the centre of dense stellar clusters to form

larger stars (Bonnell et al. 1998). This formation mechanism would require high-

stellar densities of & 108 stars pc−3, to be efficient with respect to stellar evolution

time-scales. In comparison, Hillenbrand & Hartmann (1998) found that the Orion

Nebula Cluster (ONC) has core radius of ∼ 0.2 pc, and a central stellar density

Chapter1/Chapter1Figs/EPS/competitive_accretion.eps
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of ∼ 104 stars pc−3. This mechanism therefore, cannot be the dominant mode for

massive star formation.

Confronting theory with observations

Methods used to observationally constrain the physical processes involved in mas-

sive star formation vary. One such method is to investigate the observational

characteristics of massive star formation to make comparisons with our current

knowledge of the low mass star formation paradigm. For example, the presence

of discs around massive stars can be inferred from molecular line observations,

in which velocity gradients can be attributed to rotation, and indirectly via the

presence of bipolar outflows (see e.g. Cesaroni et al. 2007, Tan et al. 2014 and

references therein). However, identifying characteristics attributed to individual

sources may provide a biased view of the massive star formation process.

The Red Midcourse Space Experiment Source survey (the RMS survey; Lums-

den et al. 2013), has sought to provide a complete and un-biased catalogue of

massive young stellar objects (MYSOs). Such surveys can then be used to test the

theoretical framework of massive star formation against observational diagnostics.

For example, the RMS survey has been used to investigate the Galactic distribu-

tion of massive star formation (Urquhart et al. 2014), their accretion processes

(e.g. the rate of accretion; Davies et al. 2011), and to confirm the presence of discs

around MYSOs (Ilee et al. 2013).

The above described characteristics indicate that star formation has already

commenced. An alternative method used to constrain theories of massive star for-

mation is to identify and categorise their earliest phases of evolution, before stellar

feedback begins to disrupt the local environment. Studies of this nature necessi-
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tate the identification of massive, and relatively quiescent clouds. In recent years,

one such group of objects has been subjected to an intense amount of research in

the context of massive star formation: Infrared Dark Clouds (hereafter, IRDCs).

Studying the initial conditions for star formation within IRDCs provides the focus

of this thesis. The next section will introduce the properties of IRDCs, and the

role they play in our current understanding of star formation.
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1.3 The role of Infrared Dark Clouds

IRDCs were discovered in the mid-1990’s by the Infrared Space Observatory (ISO ;

Pérault et al. 1996), as “unexpected” regions of high-optical depth at mid-infrared

(MIR) wavelengths. An additional MIR survey undertaken by theMidcourse Space

eXperiment (MSX ; Egan et al. 1998), revealed the presence of ∼ 2000 clouds, seen

in silhouette between 7 µm and 100 µm. Egan et al. (1998) speculated of their

origin:

“A possible explanation for the origin of these relatively common but

unusual extincting clouds is that they are naked cores, left behind after

the envelopes of giant molecular clouds have been dispersed.”

Studying a sub-sample of these clouds further, Carey et al. (1998) suggested that

the physical properties (T < 20K; nH > 105 cm−3) of IRDCs were conducive to

the earliest stages of massive star formation. Since then, >10000 IRDCs have

been catalogued (Peretto & Fuller 2009, Simon et al. 2006a). It is important to

note that massive star formation will be restricted to the most extreme (in mass

and density) IRDCs, and that the majority of these clouds will be incapable of

forming the most massive stars (Kauffmann & Pillai 2010). However, this should

not detract from the importance of IRDCs in the field of star formation. The

following sections describe the properties of IRDCs that identify them as ideal

environments to study the initial phases of star and star-cluster formation.

1.3.1 Physical structure

IRDCs show a range of physical properties. However, generally they are found to

have: i) sizes ∼ 1-10 pc (e.g. Rathborne et al. 2006, Simon et al. 2006b); ii) signif-
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icant column densities (N(H2)∼ 1022-1025 cm2; e.g. Carey et al. 1998, Egan et al.

1998, Vasyunina et al. 2009); iii) large masses of the order 102–105M⊙ (Kainulainen

& Tan 2013, Rathborne et al. 2006, Simon et al. 2006b); iv) high densities ∼ 103–

105 cm−3 (e.g. Carey et al. 1998); v) low temperatures . 25K (e.g. Chira et al.

2013, Peretto et al. 2010, Pillai et al. 2006, Ragan et al. 2011). Extreme exam-

ples of IRDCs include the “Nessie Nebula” which has a (possibly underestimated)

length of ∼ 80 pc (Jackson et al. 2010), and G0.253+0.016, otherwise known as the

“Brick” (Longmore et al. 2012), with a mass of ∼ 105M⊙ and a radius of ∼ 3 pc.

which has been cited as a possible progenitor cloud for a young massive cluster

(although the star forming potential of this cloud is currently debated; Kauffmann

et al. 2013b).

The potential for IRDCs to harbour genuine candidates for the elusive ini-

tial stages of massive stars has long been discussed (e.g. Beuther & Steinacker

2007). IRDCs exhibit significant substructure (e.g. Peretto & Fuller 2009, Rath-

borne et al. 2007), and are typically thought of as the precursor clouds to star

clusters (Rathborne et al. 2006). Several candidates for the HMSC phase exist.

For example, the properties of core C1-S in IRDC G028.37+00.07 make it a good

HMSC candidate (R∼ 0.1 pc, M∼ 60M⊙, Σ∼ 0.5 g cm−2, and nH ∼ 6× 105 cm−3;

Tan et al. 2013a). Follow up observations using tracers of star formation kine-

matics (see Section 1.3.2) and chemistry (see Section 1.3.3) are needed in order to

establish such objects as unambiguously singular, and pre-stellar. A summary of

the physical properties of IRDCs and their cores can be found in Table 1.1.
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Table 1.1: Physical properties of star-forming structures. Adapted and updated from Rathborne et al. (2006) and
Bergin & Tafalla (2007)

Clouds Cores

Bok Globules Dark Cloud GMC IRDC Pre-Stellar IRDC

Size (pc) 0.5-2 2-20 ∼ 50 1-10 0.02–0.1 0.02–0.8

Mass (M⊙) 5-50 102–104 >105 102–105 0.5–10 10–103

Density (cm−3) 103 102–104 102 103–104 104–106 104–108

Temperature (K) 10-20 10-20 20-50 10-20 10 10–20

Example B68 Taurus W48 G035.39-00.33 L1544 C1-S

References 1, 2, 3 4, 5 6, 7, 8 9, 10, 11 12, 13, 11, 14

(1)Clemens & Barvainis (1988); (2)Bourke et al. (1995); (3) Launhardt et al. (2010);(4)Bergin & Tafalla (2007);
(5)Cambrésy (1999); (6)Blitz (1993); (7) Solomon et al. (1987a); (8) Stahler & Palla (2005); (9)KT13; (10)Peretto
et al. (2010); (11)Rathborne et al. (2006); (12)Myers & Benson (1983); (13)Ward-Thompson et al. (1994); (14)Tan
et al. (2014)
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1.3.2 Kinematics

On the large scale, IRDCs typically comprise one or more filaments that are coher-

ent in velocity (Jackson et al. 2010, Tanaka et al. 2013), similar to the structure

identified in local clouds (see Section 1.1.1). In some cases the overall velocity field

may display ordered gradients (e.g. Kirk et al. 2013, Peretto et al. 2014, Tacken-

berg et al. 2014), and inverse P-Cygni profiles indicative of infalling gas motions,

and star formation (e.g. Chen et al. 2010, Peretto et al. 2013, Rygl et al. 2013).

High-angular resolution observations reveal that the velocity structure can be

complex, and influenced by local regions of star formation (Devine et al. 2011, Ra-

gan et al. 2012). Line-widths have been observed between 0.5–4 km s−1 (dependent

on molecular tracer), consistent with varying degrees of supersonic turbulence (e.g.

Ragan et al. 2012, Sakai et al. 2008, Vasyunina et al. 2011), and may correlate with

the star formation activity of the region (Sanhueza et al. 2013). Wang et al. (2008)

found that line-widths (in this case traced by ammonia) towards G028.37+00.07

increase in cores with accompanying IR emission, i.e. star formation activity. In

addition, such cores are often associated with other distinct kinematic traits of

star formation, for instance the detection of high-velocity bipolar outflows (Wang

et al. 2011), measured using the J = 3 → 2 transition of CO). Conversely, in

regions where star formation activity is at a minimum, line-widths are smaller (al-

though still dominated by non-thermal motions; e.g. Tan et al. 2013a, measured

line-widths of ∼ 0.9 km s−1 and 1.0 km s−1 in 5 intermediate-to-high-mass cores

using the deuterated species N2D
+ and DCO+, respectively).
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1.3.3 Chemistry

IRDCs display a rich variety of chemistry. Globally, fractional abundances (de-

tected in molecules such as N2H
+, HNC, HCO+; Vasyunina et al. 2011) are similar

to low-mass dense cores. However, dense gas tracers, such as N2H
+ and NH3 are

found to be widespread (e.g. Miettinen 2014, Vasyunina et al. 2011, Zhang et al.

2009). In addition, shocked gas tracers such as SiO can also be widespread, and

may be linked to the cloud formation process rather than widespread star forma-

tion (e.g. Jiménez-Serra et al. 2010, Lis et al. 2001, Sanhueza et al. 2013). The

low temperature and high-density of IRDCs results in prominent CO depletion

(e.g. Fontani et al. 2012, Hernandez et al. 2011, Miettinen & Offner 2013). In ad-

dition, high-deuterium fractions have been observed in IRDCs (Dfrac[N2H
+]∼ 0.4-

0.7; Fontani et al. 2014). Above ∼ 30K, deuterated species are destroyed through

interaction with H2 molecules (Millar et al. 1989). High-deuterium fractions may

therefore provide a way of identifying cores in the earliest stages of star formation

(i.e. those with temperatures < 30K; Fontani et al. 2011, Tan et al. 2013a).
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1.4 IRDC summary & thesis motivation

The observed physical properties, and apparent chemical youth of IRDCs indicate

that they are excellent environments within which it is possible to study the initial

conditions for massive star and star cluster formation. However, given that IRDCs

have only been discovered (relatively) recently, our knowledge of their properties

is lacking (in comparison to that of local star-forming clouds). This thesis presents

an in-depth study of the structure of a single IRDC: G035.39-00.33. The focus of

this work is to identify and understand the kinematic signatures of cloud and star

formation, and how such traits may be linked to both the fragmentation process,

and the physical evolution of dense, star-forming cores.

The thesis is structured as follows:

• Chapter 2 presents high-sensitivity and high-spectral resolution IRAM30m

observations of G035.39-00.33. The primary molecular tracers used in this

study are the J = 1 → 0 transitions of C18O and N2H
+. The aim of

this study is to compare and contrast the kinematic information obtained

from two molecular species that preferentially trace different density regimes.

The results from this chapter are discussed in the context of comparable

IRDC observations (including previous work on G035.39-00.33), and low-

mass star forming regions. It is found that G035.39-00.33 comprises several

sub-filaments moving with relative velocity ∼ 3 km s−1. These filaments ap-

pear to overlap at the densest portion of the mapped region. It is speculated

that star formation at this location may have been induced by the merging

of the filamentary structures.
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• Chapter 3 presents high-sensitivity and high-angular resolution IRAM PdBI

observations of N2H
+ (1 − 0) towards G035.39-00.33. This is the first, in-

depth study of the kinematics of dense IRDC filaments at high-angular res-

olution. The goal of this study is to understand the kinematics of the dense

gas in relation to the star forming cores. It is revealed that velocity gradients

observed in Chapter 2 may be explained by the presence of substructure now

evident in the high-angular resolution images. Whilst global motions are

relatively small (< 0.7 km s−1 pc−1), there is evidence for dynamic processes

on local scales (1.5-2.5 km s−1 pc−1). Moreover there is evidence to suggest

that these localised gas motions may be influenced by the presence of star

formation.

• Chapter 4 primarily utilises 3.2mm continuum data from the Plateau de

Bure Interferometer (although 1.3mm submillimeter array observations are

also used for comparison). The aim of this study is to establish the physical

properties of the core population within G035.39-00.33, and to compare this

information with the dynamical behaviour of the cloud established in the

previous chapters. A total of 14 cores are identified within the mapped region

(at ∼ 4′′ resoltion). It is found that the masses of cores associated with the

massive clump discussed in Chapter 2, are greater than those associated with

the narrow IRDC filament. Two cores are identified as possible progenitors

to intermediate-to-high mass stars.

• The findings from this thesis are summarised in Chapter 5, along with a

discussion on how this work may be extended in the future.



Chapter 2

Complex, quiescent kinematics in

a highly filamentary infrared dark

cloud

2.1 Introduction

2.1.1 G035.39–00.33

This thesis forms part of a larger collaborative effort whose goal is to provide a

detailed case study of the chemistry, dynamics, and physical structure of a single

IRDC. Figure 2.1 is a Herschel image of the W48 star forming region (Nguyen

Luong et al. 2011). W44, a supernova remnant interacting with its host cloud

(Wootten 1977) is highlighted by a black circle. A number of (blue) H ii regions

dominate the image (e.g. G035.1387–00.7622 and G035.0528-00.5180; Lumsden

et al. 2013). The focus of this thesis, G035.39-00.33, appears as a tiny filamentary
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Figure 2.1: Composite Herschel image of the W48 star forming complex (image
taken from Nguyen Luong et al. 2011). The black rectangle highlights G035.39-
00.33, whereas the black circle highlights the supernova remnant W44.

structure located at the bottom of this image (highlighted by the black box).

The significance of G035.39-00.33 becomes apparent when observing this cloud

at (exclusively) longer wavelengths (i.e. the cold gas observed in the 500 µm

Herschel image; Nguyen Luong et al. 2011). Butler & Tan (2009) (hereafter, BT09)

selected 10 IRDCs with the highest contrast against the Galactic MIR background,

from the sample of 38 IRDCs studied by Rathborne et al. (2006). The BT09 sample

covered clouds with a range of morphologies (ranging from extremely filamentary

Chapter3/Chapter3Figs/EPS/W48.eps
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to elliptical in 2-D projection) and masses (from 0.2× 103M⊙ to 74.3× 103M⊙).

G035.39-00.33, cloud H of BT09, was chosen for further study because i) it is

extremely filamentary, consistent with the morphology of molecular clouds formed

in simulations of colliding flows of atomic gas (see Section 1.1.2); ii) there are

extended quiescent regions with little or no signatures of star formation activity

(as traced by 4.5, 8, 24 µm emission; Carey et al. 2009, Chambers et al. 2009); iii) it

has a kinematic distance of ∼ 2900 pc (Simon et al. 2006b). Figure 2.2 shows the

combined MIR and near infrared (NIR) extinction-derived mass surface density

plot of Kainulainen & Tan (2013) (hereafter, KT13). The spatial extent of the

IRDC is > 6 pc at a kinematic distance of 2900 pc. However, there is more diffuse

material to the north and south of the plotted region. The total mass is estimated

to be ∼ 104M⊙(KT13). The locations of the massive cores identified in 1.2mm

continuum emission by Rathborne et al. (2006) are indicated by black crosses.

This thesis describes the kinematic and physical properties of the northern

portion of G035.39-00.33. Millimetre core ‘MM7’ (Rathborne et al. 2006) or ‘H6’

(Butler & Tan 2012; hereafter BT12), the northern-most core in Figure 2.2, pro-

vides the focus for the follow-up high-angular resolution observations presented in

chapters 3 and 4.

2.1.2 Previous work

Jiménez-Serra et al. (2010), presented the first results from the molecular line study

of G035.39-00.33. One of the key findings was the discovery of faint and narrow

(∆υobs . 1 km s−1) SiO emission, traced over parsec-scales in G035.39-00.33. It

was speculated that this emission may be of different origin to the bright and
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Figure 2.2: The MIR extinction-derived mass surface density plot of G035.39–
0.33 (KT13), cloud H of BT09. The scale bar is calculated using a kinematic
distance of 2900 pc (Simon et al. 2006b). The black crosses indicate the massive
cores associated with G035.39-00.33 identified in 1.2mm continuum emission by
Rathborne et al. (2006).

Chapter3/Chapter3Figs/EPS/g035.eps
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broad SiO emission (line-width, ∆υobs ∼ 4–7 km s−1) that is spatially coincident

with regions of star formation in G035.39-00.33 (specifically the three nothern-

most crosses in Figure 2.2). Two main suggestions were put forward to explain

the narrow SiO emission: i) a population of widespread, and undetected low-mass

protostars (the IRAM30m beam at ∼ 87GHz is ∼ 28′′, and so beam dilution may

be significant); ii) the emission may be the product of a large-scale shock, possibly

linked to the formation mechanism of the cloud. Whilst a population of low-mass

protostars cannot be ruled out without higher-angular resolution observations of

shocked gas tracers, Jiménez-Serra et al. (2010) discussed how the morphology

of G035.39-00.33 is similar to structures produced in flow-driven models of cloud

formation (see Section 1.1.2). If the second scenario were to be confirmed it would

indicate that G035.39-00.33 is in an early stage of its evolution. Consequently, the

hallmarks of the cloud formation process may still be imprinted in the chemistry

and kinematics of the molecular gas.

In the second instalment of this series, Hernandez et al. (2011), presented

IRAM30m observations of the J = 1 → 0 and J = 2 → 1 transitions of C18O.

These were used in comparison with the mass surface density map of BT09. The

observed decrease in ΣC18O/Σ with increasing Σ (whereby ΣC18O and Σ are the

mass surface densities of the C18O and from BT09, respectively) was interpreted

as evidence for CO depletion due to freeze-out onto dust grains. This supports

the idea the the molecular gas in G035.39-00.33 has not been greatly affected by

stellar feedback (at least on scales equivalent to the resolution of the C18O data

presented in Hernandez et al. 2011).

Hernandez et al. (2012), explored the virial balance of the cloud through the

comparison between C18O data obtained with the IRAM30m telescope, and the
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mass surface density map. Hernandez et al. (2012) suggest that the cloud is in

approximate virial equilibrium. If this result applies generally to IRDCs, this may

suggest that star formation (including massive star and stellar cluster formation)

proceeds in structures that have reached virial equilibrium. This would be con-

sistent with the basic assumptions of the core accretion model of massive star

formation (McKee & Tan 2002, 2003; see Section 1.2.3).

Outside of this series of papers, Nguyen Luong et al. (2011) studied the cloud

using the Herschel Space Observatory. A total of 15 cores were identified as

being associated with G035.39-00.33 (an additional 13 were deemed to be outside

the IRDC). By fitting SEDs using multiple wavelength data from the “Herschel

imaging survey of OB Young Stellar Objects”1 the authors find average masses

of 2–50M⊙, sizes of 0.1–0.2 pc, and densities of 2–20× 105 cm−3. Of these cores,

∼ 60% are said to be massive (> 20M⊙) and IR quiet (24 µm flux < 1 Jy), implying

that they are in an early stage of evolution.

2.1.3 Investigating the large-scale structure of G035.39–

00.33

The apparent ubiquity of molecular filaments detected at millimetre and sub-

millimetre wavelengths throughout the cold interstellar medium has prompted

interest in their formation mechanisms and their relation to star formation (André

et al. 2010, Molinari et al. 2010). Current theoretical models describing the origins

of filamentary clouds vary from those that propose highly dynamical processes,

to those that present a more quasi-static picture (see the discussion on cloud

1http://hobys-herschel.cea.fr

http://hobys-herschel.cea.fr
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formation in Section 1.1.2, and the possible consequences for the star formation

process in Section 1.2.1). In the dynamical paradigm, colliding flows of atomic

or molecular gas, with relative speeds of ∼ 5-20 km s−1 (e.g. Ballesteros-Paredes

et al. 1999), merge, triggering the formation of cold, molecular, filamentary clouds.

Consequently, the hallmarks of such a formation mechanism may be imprinted in

the kinematic structure of the gas.

This chapter focuses on the structure and kinematics of G035.39-00.33. The

primary focus will be observations of the J = 1 → 0 transition of both N2H
+ and

C18O, obtained with the Instituto de Radioastronomı́a Milimétrica (IRAM) 30m

antenna. N2H
+ and C18O have been selected for this study since they preferentially

trace different density regimes. This allows for the comparison between the dense

gas (traced by N2H
+) and lower density (but comparatively abundant) gas traced

by C18O. In addition, N2H
+ (3− 2) and SiO (2− 1) are used for comparison.

The observations and processing of data are discussed in Section 2.2. The

results are discussed in Section 2.3, with specific focus on the physical structure,

and kinematics being presented in Sections 2.4 and 2.5, respectively. Selected

results have been chosen for a more detailed discussion in Section 2.6. Finally, the

conclusions from this chapter are presented in Section 2.7.
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2.2 Observations & data processing

The N2H
+ (1 − 0), N2H

+ (3 − 2), C18O (1 − 0), and SiO (2 − 1) observations

were mapped with the IRAM30m telescope at Pico Veleta, Spain. The N2H
+

observations were carried out in August 2008 and February 2009, C18O (1− 0) in

August 2008, and SiO (2− 1) observations in December 2008 and February 20091.

The large-scale images were obtained in On-The-Fly (OTF) mapping mode.

The off-positions used were (1830
′′

, 658
′′

) for the C18O observations, and (300
′′

,

0
′′

) for the N2H
+ and SiO data, whose emission is concentrated closer to the IRDC.

All observations were carried out using the old ABCD receivers. The Half Power

Beam Width (HPBW)2 of the IRAM30m antenna is dependent on the frequency

of the observations and varies between 9′′ and 28′′ (at 280GHz and 87GHz). The

central coordinates of the maps are α(J2000) = 18h57m08s, δ(J2000) = 02◦10′30′′

(l =35◦.517, b =-0◦.274). Saturn was used for pointing and focus. Further pointing

and line calibration was checked using G34.3+0.2. The pointing was repeated

every ∼ 2 hrs. The VErsatile SPectrometer Assembly (VESPA) provided spectral

resolutions between 20 kHz and 80 kHz.

In addition to these data, a single pointing of C17O (1− 0) was obtained with

the IRAM30m antenna towards offset= (2′′, 20′′), i.e. towards one of the most

massive clumps in the mapped area, H6. This observation was carried out in July

2012 using the Eight MIxer Receiver (EMIR). The spectral resolution is 40 kHz,

and the rms noise is ∼ 0.05K. Information on the beam sizes, frequencies, spectral

resolutions, and typical spectral rms values can all be found in Table 2.1.

1Proposal: “The formation of IRDCs: Testing Dynamic versus quiescent theories”, PI: Paola
Caselli.

2HPBW=1.166 λ

D
, where λ is the wavelength of observation and D is the telescope diameter;

http://www.iram.es/IRAMES/mainWiki/Iram30mEfficiencies.

http://www.iram.es/IRAMES/mainWiki/Iram30mEfficiencies
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The data were processed using the gildas/class package. Baselines were

removed by fitting a first order polynomial to the line-free data. Spectra were

extracted for each pixel by convolving the OTF dumps with a Gaussian profile,

increasing the signal-to-noise ratio. The convolution was performed with a Gaus-

sian whose full-width at half-maximum (FWHM) was equivalent to the IRAM30m

beam size at the frequency of the given transition. When making comparison be-

tween datasets (for example between C18O and N2H
+), the data were smoothed

to a common map resolution. Pixels were spaced by 0.5 × the FWHM of the

convolving Gaussian.

All intensities were calibrated in units of antenna temperature, T ∗
A. Converting

these intensities into units of main-beam brightness temperature was carried out

using the following equation1:

TMB =
1

fclump

Beff

Feff
T ∗
A, (2.1)

whereby fclump is the beam filling factor (assumed fclump ∼ 1), Beff and Feff are

the beam and forward efficiencies, respectively. Values for the beam and forward

efficiencies can be found in Table 2.1. These were approximated by performing a

linear fit between the frequency and the telescope efficiencies2.

The 8 µm extinction-derived mass surface density map of BT12, as modified by

Kainulainen & Tan (2013) (hereafter, KT13) to include corrections for the presence

of the NIR extinction derived IRDC envelope is utilised for comparison. The mass

surface density map has ∼ 2” resolution. When comparison is made between the

1This equation can be found in the IRAM30m manual, at
http://www.iram.es/IRAMES/otherDocuments/manuals/index.html.

2Telescope efficiencies can be found: http://www.iram.es/IRAMES/mainWiki/Iram30mEfficiencies.

http://www.iram.es/IRAMES/otherDocuments/manuals/index.html
http://www.iram.es/IRAMES/mainWiki/Iram30mEfficiencies
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Table 2.1: Details of the IRAM30m observations.

Transition Frequency Spec. Res. ∆vres Beam size Beam Forward rms†

(MHz) (kHz) ( km s−1) (arcsec) Efficiency Efficiency (K)

SiO J = 2 → 1 86846.9600a 80 2.8×10−1 28 0.77 0.98 0.02

N2H+ J = 1 → 0 93173.7637b 20 6.4×10−2 26 0.76 0.98 0.06

C18O J = 1 → 0 109782.1760c 20 5.5×10−2 22 0.73 0.96 0.14

C17O J = 1 → 0 112359.2750d 40 1.1×10−2 22 0.79∗ 0.96∗ 0.05

N2H+ J = 3 → 2 279511.8320b 40 4.3×10−2 9 0.49 0.90 0.16

a: Jiménez-Serra et al. (2010), b: Pagani et al. (2009), c: Cazzoli et al. (2003), d: Ladd et al. (1998),
∗: EMIR, †: Mean spectral rms taken across the mapped region for each transition.

mass surface density and molecular line tracers, the maps are smoothed (using a

Gaussian convolution) to an equivalent spatial resolution.
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2.3 Observational results

2.3.1 Average spectra and integrated intensity

Line profiles

Figure 2.3 shows the spectra of the isolated N2H
+ (1 − 0) hyperfine component

(F1, F = 0,1 → 1,2), the N2H
+ (3 − 2), the C18O (1 − 0), and the SiO (2 − 1),

averaged over the N2H
+ (1−0) mapped region. The spectra are expressed in terms

of main beam brightness temperature, TMB (Equation 2.2). The intensity of the

N2H
+ (1−0), N2H

+ (3−2) and SiO (2−1) lines have been multiplied by factors of

2, 1.5 and 20, respectively, for clarity. The SiO (2− 1) shows the broadest width,

with emission present up to velocities of ∼ 50 km s−1. The C18O line encloses the

emission of the other species, with the exception of the high velocity emission of

SiO (2−1), and exhibits a non-Gaussian line profile, indicative of multiple velocity

components.

The four molecular gas tracers peak at different velocities. The highest density

tracer, N2H
+ (3−2), peaks at the largest velocity, followed by (in order of decreas-

ing centroid velocity) N2H
+ (1− 0), C18O (1− 0) and SiO (2 − 1). SiO typically

traces shocked material (e.g. Jiménez-Serra et al. 2009), therefore it is expected

that the SiO will exhibit a different centroid velocity to the other species (particu-

larly the dense gas tracers). However, the shift in centroid velocities observed in the

more quiescent molecular cloud tracers C18O and N2H
+, is unexpected. Although

C18O and N2H
+ trace different density regimes (critical densities ∼ 2× 103 cm−3

and 1.4×105 cm−3, respectively1), in low-mass star-forming regions their centroid

1Estimated for a temperature of 10K from values provided in the Leiden Atomic and Molec-
ular DAtabase (LAMDA; Schöier et al. 2005); http://home.strw.leidenuniv.nl/~moldata/

http://home.strw.leidenuniv.nl/~moldata/
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Figure 2.3: Average spectra of (Red) the isolated component of N2H
+(1 − 0),

(Black) N2H
+(3−2), (Blue) C18O (1−0), and (Green) SiO (2−1). The N2H

+(1−0),
(3 − 2) and SiO (2 − 1) intensities have been multiplied by factors of 2, 1.5 and
20, respectively.

velocities are typically coincident (Hacar & Tafalla 2011, Walsh et al. 2004). This

feature will be analysed in more detail in Section 2.5.

Intensity distributions

Figure 2.4 presents integrated intensity maps of the J = 1 → 0 transitions of both

N2H
+ (Red contours; F1, F = 0,1 → 1,2 hyperfine component), and C18O (Blue

contours). Figure 2.5 displays the integrated intensity map of N2H
+ (3 − 2). The

IRAM30m antenna beam size associated with each frequency is shown in the top-

left corner of each map (see Table 2.1 for absolute values). The spectra have been

integrated between 40–50 km s−1, to include all of the emission (see Figure 2.3).

In each case, the contours are overlaid on the mass surface density map of KT13.

The N2H
+ (1 − 0) and (3 − 2) emission is extended over a significant portion

Chapter3/Chapter3Figs/EPS/average_spectra.eps
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Figure 2.4: Contour maps representing the integrated intensity of (Left) N2H
+

(1− 0) isolated component and (Right) C18O (1− 0), overlaid on the mass surface
density map of KT13. Contours in both cases start at 10σ and increase in 5σ
steps (σ∼ 0.05K km s−1 and 0.15K km s−1, respectively). The dashed contour
seen in the right hand panel is added to emphasise the location of the peak in
C18O (1 − 0). The red and blue circles in the top left of each panel refer to the
beam sizes of the IRAM30m telescope (26′′ and 22′′ at the frequency of N2H

+

and C18O, respectively). White crosses indicate locations of the massive cores
identified within G035.39-00.33 (BT12, Rathborne et al. 2006).

Chapter3/Chapter3Figs/EPS/intensity_c_n.eps


56

Figure 2.5: Integrated intensity contours of N2H
+ (3− 2), overlaid on the mass

surface density map of KT13. Contours start at 3σ and increase in 1σ steps
(σ∼ 0.5K km s−1). The dashed contour is the 2σ level. White crosses indicate
the positions of massive cores identified in BT12. Coloured symbols are 4.5µm
(green squares; Chambers et al. 2009), 8µm (red circles) and 24µm (red triangles;
Carey et al. 2009, Jiménez-Serra et al. 2010) sources found in the direction of the
IRDC.

Chapter3/Chapter3Figs/EPS/intensity_n.eps


57

Figure 2.6: Integrated intensity as a function of mass surface density for the
(Red) isolated component of N2H

+ (1 − 0), (Blue) C18O (1 − 0), (Green) SiO
(2 − 1), and the (Black) N2H

+ (3 − 2). The N2H
+ integrated intensity spectra

within the region of the starless core H6 are displayed in Cyan. Least-squares
fits are shown with respect to the C18O data, and to H6 for the J = 1 → 0 and
J = 3 → 2 transitions of N2H

+.

of the mapped region. In low-mass star forming regions, N2H
+ emission is typi-

cally correlated with the location of dense cores (e.g. André et al. 2007, Caselli

et al. 2002a, Friesen et al. 2010), whereas abundant molecules (such as CO and its

isotopologues), are known to trace extended filamentary structures (e.g. Hacar &

Tafalla 2011, Mizuno et al. 1995). In low-mass star forming regions, it is uncom-

mon to see high-density tracers such as N2H
+ extending over parsec-scales. Given

that the critical density of the N2H
+ (1 − 0) transition is ∼ 105 cm−3, this may

Chapter3/Chapter3Figs/EPS/intensity_scatter.eps
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imply that the overall number density of G035.39-00.33 is similar to the average

density of nearby low-mass dense cores (i.e. at least one order of magnitude higher

than the average density of the clouds within which nearby low-mass cores are

embedded, ≤ 103 cm−3; e.g. Pineda et al. 2008). This will be further investigated

in Section 2.4.2.

The N2H
+ (3− 2) emission peaks towards two out of the three massive cores1

contained within the mapped region (H5, H6: white crosses in Figure 2.5). The

peak of the N2H
+ (1 − 0) emission is also coincident with the position of core

H6. The C18O (1 − 0) peaks away from core H6 (within ∼ 1 beam size). This is

consistent with the evidence for freeze-out of CO, most prominent towards core

H6 (Hernandez et al. 2011). Emission from both N2H
+ transitions traces the

morphology of the extinction fairly well, whereas the emission from the C18O

(1− 0) covers a larger area (as expected).

Figure 2.6 shows the total integrated intensities of the J = 1 → 0 (F1, F = 0,1

→ 1,2), and J = 3 → 2 transitions of N2H
+, C18O (1 − 0), and SiO (2 − 1) as a

function of mass surface density. To highlight the properties of the H6 region, data

from this location have been highlighted in cyan2. In each case, the mass surface

density of KT13 has been re-gridded onto the map of the molecular species, and

smoothed to an equivalent spatial resolution. The lines indicate least-squares fit

to the data. In the case of the J = 1 → 0 and J = 3 → 2 these lines have been

fitted with respect to the core data, whereas all C18O (1− 0) data are fitted.

1The term “cores” in this context makes reference to the terminolgy used in Rathborne et al.
(2006), following their identification in 1.2mm continuum emission. No assumptions are made
with regards to the potential star forming content of these objects.

2In order to separate this core from the rest of the data the ∼ 5σ level of the N2H
+ (3− 2)

intensity (between -20.0 ≤ ∆α ≤ 20.0 and -10.0 ≤ ∆δ ≤ 50.0) is taken and attributed to the
core.
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Table 2.2: Correlation strengths between molecular line emission and mass sur-
face density

Transition Sample size rs P

N2H
+ (1 − 0) 120 0.77 <0.001

N2H
+ (1 − 0): H6 15 0.53 0.04

C18O (1− 0) 220 0.87 <0.001

C18O (1 − 0): H6 15 0.04 0.87

SiO (2− 1) 94 0.51 <0.001

N2H
+ (3 − 2) 227 0.40 <0.001

N2H
+ (3 − 2): H6 50 0.57 <0.001

The Spearman rank correlation coefficient, rs is calculated in order to investi-

gate the strength of the correlation between emission from each molecular tran-

sition and the mass surface density. All but one of the tested correlations are

significant to the 0.05 level, indicating that in the majority of cases, there is some

correlation between the molecular line emission and the mass surface density. How-

ever, some of the correlations are stronger than others. Both the N2H
+ (1−0) and

C18O (1−0) show strong positive correlations with mass surface density. However,

the correlation between emission from the H6 region and the mass surface density

in N2H
+(1 − 0), while still significant, is weaker than that over the whole map.

The same test for the C18O (1− 0) shows that there is no correlation between its

emission and the mass surface density. This makes sense given the spatial sepa-

ration between the C18O emission peak and the mass surface density peak at the

location of H6 (see Figure 2.4). The SiO (2− 1) and N2H
+ (3− 2) show moderate

correlations with the mass surface density. However, the correlation between the

H6 N2H
+ (3− 2) emission is stronger. All information on the correlation tests can

be found in Table 2.2.
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The C18O/N2H
+ integrated intensity ratio

Tafalla & Santiago (2004) used CO depletion as a “chemical clock”, to indicate an

evolutionary sequence of individual cores. This is achieved by taking two species

that show different amounts of depletion at high densities. C18O freeze-out be-

comes prominent at densities upwards of a few 104 cm−3 (e.g. Caselli & Ceccarelli

2012), whereas N2H
+ (1− 0) remains in the gas phase up to densities ≥ 105 cm−3

(e.g., Caselli et al. 1999, Tafalla et al. 2002). Moreover, N2H
+ takes longer than

C18O to form, due to the slower neutral-neutral reactions involved in the produc-

tion of N2, the parent species of N2H
+ (e.g. Hily-Blant et al. 2010). Therefore,

an early stage of evolution would be characterised as having undepleted C18O and

a low abundance of N2H
+. As a core increases in density, C18O begins to freeze-

out. Thus, with time, the C18O abundance falls while N2H
+maintains a relatively

large abundance up to volume densities of ≥ 105 cm−3. Once star formation begins

to heat the surrounding environment, C18O returns to the gas phase. Tafalla &

Santiago (2004) use the ratio, R:

R =

[

IC
18O

1−0

IN2H+

1−0

]

, (2.2)

to asses core evolution.

Figure 2.3 indicates that the profiles of the C18O and N2H
+ differ. This is due

to the presence of multiple velocity components throughout the map (the presence

of multiple velocity components will be discussed in more detail in Section 2.5).

To account for this, emission for both the isolated component of N2H
+ and the

C18O is integrated between 44-46 km s−1, focusing solely on the most prominent

component. The N2H
+ integrated emission is then scaled by its relative statistical
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Figure 2.7: Integrated intensity ratio, R = [IC
18O

1−0 /IN2H+

1−0 ], as a function of mass
surface density. The dotted line indicates where R=1. Uncertainties in R are
estimated from the measured integrated intensity values. Uncertainties in Σ are
not shown but are of the order ∼ 30% (KT13).

weight (∼ 0.11) before comparison.

Regions in which R is large, coupled with relatively low N2H
+ intensity, may

be indicative chemical youth, and warrant follow-up observations (cf. L1521E;

Tafalla & Santiago 2004). However, this analysis is merely intended as a guide,

given that the R value is susceptible to both multiple velocity components and

optical depth effects.

Figure 2.7 shows R versus the mass surface density. No R values larger than

1.0 are found at Σ≥ 0.09 g cm−2. In addition, R has a value < 1 throughout the

whole filament, except in the northern regions (away from the greatest extinction).

Therefore no evidence is found for dense regions without C18O depletion. This is

consistent with both the widespread dense gas presented here, and the widespread

Chapter3/Chapter3Figs/EPS/r.eps


62

C18O depletion presented in Hernandez et al. (2011).

2.3.2 Optical depth

The non-Gaussian line profiles and velocity shift identified in Figure 2.3 will be

analysed in more detail in Section 2.5.4, and discussed in Section 2.6.1. However,

at this stage it is important to investigate whether or not such traits are being

influenced by optical depth effects.

The optical depth of the N2H
+ (1 − 0) line can be estimated directly, by per-

forming a hyperfine structure (HFS) fit in gildas/class. Measuring the optical

depth of C18O (1 − 0), however, requires an optically thin isotope, for example

C17O (1 − 0). Both N2H
+ (1 − 0) and C17O (1 − 0) exhibit hyperfine structure.

The opacity of individual hyperfine components can be estimated using (Stahler

& Palla 2005):

τ(v) = τTOT

n
∑

i=1

ri exp

[

− 4ln(2)

(

(v − v0 −∆vi)
2

(∆v)2

)]

(2.3)

whereby, v is the velocity, τTOT is the total opacity, ri is the intensity of the ith

hyperfine component (relative to the total intensity of the line), that is displaced

in velocity by ∆vi from the i=0 component (centred on v0), and ∆v is the FWHM

line-width. Since the velocity separation between the F1, F =0,1→ 1,2 component

and its neighbouring hyperfines is large (in comparison to the FWHM of the ob-

served line), the opacity at the centre of this isolated line can be approximated by

τi∼ τTOTri. This is true only when the line is sufficiently narrow such that the iso-

lated component does not overlap with adjacent hyperfines. The relative velocities

of the hyperfine components for N2H
+ (1 − 0) were obtained from Caselli et al.
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(1995), and the C17O (1−0) from Ladd et al. (1998). The HFS fitting technique in

gildas/class makes comparison between the predicted and observed intensities

of the hyperfine components, deriving the total optical depth (along with the VLSR

and ∆v).

The optical depth of N2H
+ (1−0) was measured for every pixel in the mapped

area. The mean (total) optical depth, τTOT, throughout the map is < 3. The peak

optical depth is located at offset= (-33.5′′, 138′′) and has a value τ ∼ 11.0± 0.5.

Given that the isolated hyperfine component has a statistical weight of ∼ 0.11

(Caselli et al. 1995), the maximum optical depth of this component therefore is

∼ 1.2, and the mean value is < 0.33. Towards H6, the optical depth is slightly

above the mean value.

Unfortunately, the C17O (1 − 0) has not been observed over the full extent of

the C18O (1 − 0) map. However, a single pointing has been obtained towards H6

(2′′, 20′′). One can estimate the optical depth of C18O from the C17O by assuming

the latter is optically thin. Figure 2.8 shows the spectra of C18O (left panel) and

C17O (right panel) at this location. It was not possible to obtain a good fit to the

C17O spectrum without fixing τ . The C17O (1− 0) spectrum was best reproduced

by using a two component HFS fit with τ =0.1 (see red and green fits to the data).

In the case that C18O (1 − 0) is optically thin, the ratio of the line temperatures

should reduce to the typical Galactic abundance ratio, 18O/17O∼ 3.65 (Penzias

1981). The optical depth can therefore be established using:

R =
T peak
C18O

T peak
C17O

=
1− exp [−τ(v)]

1− exp [−τ(v)/a]
(2.4)

where a=3.65, i.e. the predicted relative abundance. In Figure 2.8, the C17O
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Figure 2.8: A comparison between the (left) C18O (1 − 0) and (right) C17O
(1− 0) spectra at the location of H6. The intensity of the C17O (1− 0) spectrum
has been multiplied by a factor ∼ a/ri ∼ 11, whereby a is the typical Galactic
18O/17O abundance ratio ∼ 3.65 (Penzias 1981), and ri is the statistical weight
of the isolated hyperfine component (∼ 0.33; see red line at ∼ 43.4 km s−1). The
coloured Gaussian profiles are the result of a three and two component Gaussian
and HFS fit to the C18O (1− 0) and C17O (1− 0) spectra, respectively. The blue
component evident in C18O (1 − 0) emission (<44 km s−1) is not evident in the
C17O (1− 0) spectrum.

intensity has been multiplied by a factor ∼ a/ri ∼ 11, whereby ri is the statistical

weight of the isolated hyperfine component (∼ 0.33; see the low-velocity component

of Figure 2.8). It is immediately clear that the scaled intensity of the red C17O

(1 − 0) component is comparable to that observed in C18O (indicating that the

absolute relative intensity ratio is ∼ 3.65). From Equation 2.4 it is found, τ ∼ 0.12.

Conversely, it is evident the peak temperature of the green C18O component is less

than the corresponding scaled C17O component. In this case, τ ∼ 1.25. Therefore,

this component is moderately optically thick at the location of H6.

Chapter3/Chapter3Figs/EPS/tau_c18o.eps
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Since H6 is one of the densest portions of the mapped region (with the exception

of the other identified cores), it is assumed that the optical depth of C18O (1− 0)

derived here is greater than elsewhere in the mapped region (this statement is

also consistent with excitation analysis performed towards G035.39-00.33; Du &

Yang 2008, Hernandez et al. 2011). Consequently, the influence of opacity on the

derived physical and kinematic properties of G035.39-00.33, in both the isolated

component of N2H
+ (1− 0) and C18O (1− 0), is expected to be small.
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2.4 Analysis: The physical properties of G035.39–

00.33

2.4.1 Column density

The column density can be estimated for each pixel in the map from the integrated

emission of N2H
+ (1 − 0) and C18O (1 − 0). For optically thin emission (see

Section 2.3.2) the column density can be calculated using Caselli et al. (2002b):

Ntot =
8πItot
λ3A

gl
gu

1

Jν(Tex)− Jν(Tbg)

1

1− exp (−hν/kBTex)
×

Qrot(Tex)

gl exp (−El/kBTex)
. (2.5)

In this analysis, Itot represents the integrated intensity (in the case of N2H
+ this is

taken across the isolated component and scaled by the relative statistical weight:

Itot = 1
ri

∫

TMB dv, whereby ri is the relative statistical weight ∼ 0.11), A is the

Einstein coefficient for spontaneous emission (3.63×10−5 s−1 and 6.266×10−8 s−1

for the J = 1 → 0 transitions of N2H
+ and C18O, respectively; Schöier et al. 2005),

gu and gl are the statistical weights for the upper and lower states, respectively,

Jν(Tex) and Jν(Tbg) are the equivalent Rayleigh-Jeans excitation and background

temperatures (Tbg =2.73K), λ and ν are the wavelength and frequency of the

J = 1 → 0 transition, and kB and h are the Boltzmann and Planck constants,

respectively. Qrot(Tex) is the partition function which is given by:

Qrot(Tex) =

∞
∑

J=0

(2J + 1) exp (−EJ/kBTex). (2.6)
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For every line transition there exists a critical density of H2, ncrit, at which col-

lisional and radiative downward transitions have equal rates. Above this critical

density, collisional de-excitation is most effective. The critical densities of H2 for

C18O (1−0) and N2H
+ (1−0) are ∼ 103 cm−3, and ∼ 105 cm−3, respectively. Since

N2H
+ (1 − 0) has a critical density of ∼ 105 cm−3, and it is widespread, it is as-

sumed that the ambient density of the IRDC is greater than the C18O (1 − 0)

critical value. For this analysis it is therefore assumed that C18O is in local ther-

modynamic equilibrium (LTE). In LTE the energy levels are populated according

the Boltzmann distribution, and characterised by a single temperature, Tex =Tkin.

There are no measurements of the gas temperature across G035.39-00.33. Gas

temperatures have been measured towards other IRDCs, using NH3 observations,

and values are typically found to be < 20K (e.g. Pillai et al. 2006, Ragan et al.

2011). Towards G035.39-00.33, the dust temperature is estimated to be ∼ 15K

(Nguyen Luong et al. 2011). At high densities (> 104.5 cm−3), gas and dust tem-

peratures are expected to be coupled (Goldsmith 2001). Although a simplistic

assumption (given that the dust and C18O may not be tracing equivalent regions),

a fiducial value of Tex =Tkin =15K is used for the C18O (1 − 0) column density

calculation. Given the simplicity of this assumption it is worth noting for exci-

tation temperatures of 10 and 25K the column density should be multiplied by

∼ 0.8 and 1.33, respectively.

For N2H
+ (1 − 0) the excitation temperature can be estimated using the fol-

lowing:

Tex =
hν

kB

[

ln

(

1 +
(hν/kB)

TMB + J(Tbg)

)]−1

(2.7)

where TMB is the brightness temperature of the N2H
+ (1− 0) line.
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By simply taking the integrated intensity, the influence of multiple velocity

components are ignored. This therefore gives an estimate for the total column

density (but not columns of individual components). The mean value of the derived

excitation temperatures (Tex =5.11K) is adopted for the calculation (for Tex =15K

the column density should be multiplied by ∼1.1).

Substituting all parameters into Equation 2.5, yields:

N(N2H
+) = 1.5× 1012Itot (K km s−1) cm−2, (2.8)

and for C18O:

N(C18O) = 1.2× 1015Itot (K km s−1) cm−2. (2.9)

The mean N2H
+ column density across G035.39-00.33 is N(N2H

+) = (1.14 ±

0.11) × 1013 cm−2, peaking in the south at offset (5.5′′, -122′′), with a value of

(2.33± 0.25) × 1013 cm−2. The minimum value of N(N2H
+) is located in the

north, at offset (5.5′′, 125′′), where N(N2H
+)= (2.33± 0.69)× 1012 cm−2. The un-

certainties on these values are estimated by propagating errors in ∆υ (measured),

TMB (measured), and Tex. The true uncertainty is expected to be larger given the

simplistic assumptions discussed above.

A significant correlation (Spearman rank correlation coefficient, rs=0.77, P < 0.001)

between the column density of N2H
+ (1−0) and the mass surface density is found

(as expected given the strong correlation found in Figure 2.6 between the N2H
+

(1−0) integrated intensity and the mass surface density). A least-squares fit to the

data gives N(N2H
+)=(9.8±0.3)×1013Σ+(1.5±0.2)×1012. This implies a constant

fractional abundance of N2H
+ (w.r.t. H2 molecules) of ≃4×10−10. This fractional

abundance is consistent with values quoted towards other IRDCs (10−10–10−9; e.g.
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Miettinen et al. 2011, Vasyunina et al. 2011), and is similar to low-mass cores (a

few times 10−10; Caselli et al. 2002b, Crapsi et al. 2005).

The average C18O column density throughout the filament isN(C18O)= (3.82± 0.04)

× 1015 cm−2, peaking at position (-10.0, 34.0), north-west of the extinction peak

of H6 with a value of (5.95± 0.72)× 1015 cm−2. This is consistent with Hernandez

et al. (2011), who found evidence of CO freeze-out towards the location of H6. In

the instances where the optical depth of the C18O (1− 0) becomes significant (see

discussion in Section 2.3.2), one must correct for the opacity using (Goldsmith &

Langer 1999):

Cτ =
τ

1− e−τ
. (2.10)

Therefore, for an observed opacity of τ ∼ 1.25 (Section 2.3.2), the correction fac-

tor, Cτ ∼ 1.75. This indicates that the column density of C18O (1 − 0) may be

underestimated by a factor of ∼ 2 towards H6. This may provide an explanation

for the observed plateau in C18O integrated emission towards high mass surface

densities in Figure 2.6.

2.4.2 Number density and kinetic temperature

As mentioned in Section 2.3.1, the detection of widespread N2H
+ emission through-

out G035.39-00.33 may indicate that the ambient gas density is greater than that

observed in nearby low mass star forming regions (∼ 103 cm−3; Pineda et al. 2008).

The emission from multiple transitions of the same molecular species can be used,

in conjunction with a radiative transfer model, to investigate this theory. For this

analysis, the radiative transfer code radex (van der Tak et al. 2007) is used1.

1The source code for radex can be downloaded here:
http://home.strw.leidenuniv.nl/~moldata/radex.html

http://home.strw.leidenuniv.nl/~moldata/radex.html
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The interdependence of the local radiation field and molecular level populations

means that solving radiative transfer problems is complex. radex circumvents this

issue by introducing an escape probability β, the probability that a photon will

escape the region from where it was created. This escape probability is dependent

on an assumed geometry and the optical depth of the investigated line emission.

By assuming a geometry, radex effectively decouples the radiative transfer and

level population calculations. The model line emission produced as a result of

this assumed geometry can then be used to make direct comparison with the

observed emission. Three geometries are available in radex to create the model

line emission: a uniform sphere; an expanding sphere (Large Velocity Gradient,

LVG); or a plane-parallel slab. The LVG and plane-parallel approximations are

used in this analysis to make comparison with the observed emission from the J =

1 → 0 and J = 3 → 2 (smoothed to an equivalent spatial resolution) transitions

of N2H
+.

Input parameters and best fit determination

In order to produce the model emission, radex requires a number of input pa-

rameters. The spectral range is limited to 90–290GHz, which incorporates the

J = 1 → 0 and J = 3 → 2 transitions of N2H
+. Since this analysis focuses on

estimating the volume density and kinetic temperature of G035.39-00.33, radex

also requires an estimate of the column density. The column density values esti-

mated for each pixel in Section 2.4.1 are therefore used. Finally, radex requires

an estimate of the line-width for the selected molecular species (the line-width and

column density are used to derive an estimate for the optical depth). The average

line-width between the N2H
+ (1− 0) and (3− 2) is used, as suggested in van der
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Tak et al. (2007). This final parameter makes the assumption that both the N2H
+

(1 − 0) and (3 − 2) are tracing the same material, and therefore the line-widths

are expected to be similar in each pixel. For G035.39-00.33 however, this is not

always true. In many instances the widths of the J = 1 → 0 and J = 3 → 2 lines

vary. To account for this, a limit is imposed on the line-width ratio of the two

transitions:

0.5 ≤
∆υ(1−0)

∆υ(3−2)
≤ 2.0. (2.11)

If this condition is satisfied then the pixel is selected and the mean line-width

chosen as an input parameter to the calculation. The remaining input parameters

are dependent on the method used to estimate either the temperature, density or

both.

The model emission from radex is then compared to the observed emission of

N2H
+. The best fitting solution is found using the following minimisation:

χ2 =
1

3

[(

IOBS
1−0 /I

OBS
3−2 − IRADEX

1−0 /IRADEX
3−2

σ(IOBS
1−0 /I

OBS
3−2 )

)2

+

(

IOBS
1−0 − IRADEX

1−0

σ(IOBS
1−0 )

)2

+

(

IOBS
3−2 − IRADEX

3−2

σ(IOBS
3−2 )

)2]

, (2.12)

where IOBS refers to the observed integrated intensity of the molecular line tran-

sition and IRADEX refers to that produced by radex. For the N2H
+ (1 − 0)

emission the total integrated intensity (across all hyperfine components) is com-

pared against the radex output. Caselli et al. (2002b) set a threshold intensity

level above which an accurate measurement of the optical depth could be obtained,

IOBS/σ≥ 20 (since an increased rms can influence the peaks of the individual com-

ponents). Since the observed N2H
+ (3 − 2) emission does not satisfy this criteria
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Figure 2.9: Number density maps of G035.39-00.33 obtained from the observed
N2H

+ line intensity ratio, R= I1−0/I3−2, and the use of the radex code (using the
LVG approximation). From left to right, the number density maps are created by
assuming constant temperatures of 10K, 15K, and 20K, respectively. The crosses
indicate the position of massive cores from BT12. Mass surface density contours
of KT13 are used to highlight the morphology of the IRDC.

(at any position in the map), the opacity is fixed at τ =0.1 during the HFS fit-

ting procedure. Prior to comparison with observations therefore, the model N2H
+

(3− 2) emission is corrected using Equation 2.10.

Given the above assumptions radex can be used to constrain both the H2 num-

ber density and the kinetic temperature throughout G035.39-00.33. This analysis

has been divided into two sections. In the first, one of either the kinetic tempera-

ture or number density is fixed in order to constrain the other (both are quantified

Chapter3/Chapter3Figs/EPS/dens_lvg.eps
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Figure 2.10: The same as Figure 2.9, but for the plane-parallel slab geometry.

separately). In the second section, both the number density and temperature are

left as free parameters in the calculation, and solved for simultaneously.

Fixed parameter estimates:

Figures 2.9 and 2.10 show the number density maps of G035.39-00.33 for the LVG

and plane-parallel slab approximations, respectively. Each respective map has

been produced by fixing the temperature at 10, 15, and 20K (shown from left to

right in both figures, respectively), and varying n[H2] between 103-108 cm−3. Each

map is shown with an equivalent density scale such that direct comparison can be

Chapter3/Chapter3Figs/EPS/dens_slab.eps
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Figure 2.11: Kinetic temperature map of G035.39-00.33 obtained from the ob-
served N2H

+ line intensity ratio, R= I1−0/I3−2, and the use of the radex code
(using the plane-parallel slab approximation). Constant number densities used in
the radex calculation are shown at the top of each map. The crosses and contours
are equivalent to those in Figures 2.9 and 2.10.

made between the derived n[H2] values at different temperatures, and between the

two geometrical assumptions.

For the LVG model, mean number densities of 9.6× 104 cm−3, 4.4× 104 cm−3,

and 3.0× 104 cm−3 are found for temperatures of 10K, 15K, and 20K, respectively.

For the plane-parallel slab approximation, mean number densities of 4.3× 104 cm−3,

2.0× 104 cm−3, and 1.4× 104 cm−3 are found for temperatures of 10K, 15K, 20K,

respectively.

Chapter3/Chapter3Figs/EPS/temp_slab.eps
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Figure 2.12: χ2 surface plots derived from Equation 2.12. From left to right and
top to bottom the map locations are (-7.5′′, -122.0′′), (-20.5′′, 8.0′′), (5.5′′, 21.0′′),
and (18.5′′, -70.0′′), respectively.

Figure 2.11 is the result of imposing a constant number density across the map

to study the variation in temperature. Only the plane-parallel slab approximation

is shown (since the LVG approximation produces a qualitatively similar result).

The three maps correspond to three different values of number density (the mean

number density derived in Figure 2.10). A temperature increase towards cores H5

and H6 is observed. However, it is interesting to note the largest temperatures

(∼ 35-45K for n[H2]∼ 1.4×104 cm−3) are observed either side of both the H5 and

H6 core markers, rather than being directly coincident with them. In the next

Chapter3/Chapter3Figs/EPS/chisq_plot_21.eps
Chapter3/Chapter3Figs/EPS/chisq_plot_4.eps
Chapter3/Chapter3Figs/EPS/chisq_plot_29.eps
Chapter3/Chapter3Figs/EPS/chisq_plot_33.eps
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section the both the number density and temperature are left as free parameters

to investigate this further.

Free parameter estimates:

An alternative method of estimating both the number density and kinetic temper-

ature is to leave both parameters free. In this way, a solution that best describes

the observed emission can be found without having to impose either a number den-

sity or a temperature. For this analysis a 100× 100 grid of number density (varied

between 103-108 cm−3) and temperature (varied between 5-55K) is created. Best

fitting parameters are derived for each map pixel following the minimisation of

Equation 2.12.

Figure 2.12 is a sample of four χ2 surfaces shown in n[H2] versus Tkin param-

eter space. These positions have been selected as they provide a representative

view of the χ2 distribution as a result of this analysis. The top-left panel of Fig-

ure 2.12 is typical of the mean χ2 value (∼ 40). It has been taken from location=

(5.5′′, -109.0′′), and has χ2∼ 38. The bottom-left panel is taken from the H6 re-

gion= (5.5′′, 21.0′′), and is poorly constrained with χ2∼ 102. The top-right and

bottom right panels are examples of where the parameters are well-constrained

according to Equation 2.12, at locations (-20.5′′, 8.0′′) and (18.5′′, -70.0′′), respec-

tively (χ2∼ 0.8 and 1.0, respectively).

Figure 2.13 shows the result of this analysis over the full mapped region. Over-

plotted for reference are the locations of 4.5, 8, and 24 µm emission (see also

Figure 2.5). Some of the observed 4.5, 8, and 24 µm sources are coincident with a

(slight ∼ 2K) increase in temperature. A good example of this is the bright 8 and

24 µm source observed to the south-east of H6.
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Figure 2.13: H2 number density (left) and kinetic temperature maps (right) of
G035.39-00.33, derived using radex under the plane-parallel slab approximation.
Overlaid are the mass surface density contours of KT13. Locations of massive
dense cores are indicated with black crosses (BT12). The locations of 4.5, 8,
and 24 µm, are shown as green squares, open red circles, and open red triangles,
respectively (see also Figure 2.5).

Chapter3/Chapter3Figs/EPS/vol_temp.eps
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An unexpected result of this analysis is the density increase towards the edges

of the H6 region. A possible explanation for this is that the analysis is influenced

by the presence of multiple velocity components (see Section 2.5). Where multiple

velocity components are evident (e.g. towards the H6 region, and towards the

south of the map (below ∆δ∼ -109′′), the fits are typically less-well constrained

(see the bottom-left hand panel of Figure 2.12). Not all components observed in

N2H
+ (1− 0) will be necessarily observed in N2H

+ (3− 2), given its larger critical

density (this is analogous to the C18O and C17O spectra observed in Figure 2.8).

The relatively simplistic method of taking the total integrated intensity of the

N2H
+ (1−0) employed here, may therefore influence both the number density and

temperature in these regions. Comparing trends in different regions as a result of

this analysis should therefore be approached with caution. However, assuming the

geometry of an expanding sphere, as opposed to a plane-parallel slab, would alter

these results by a factor of & 2 (see Figures 2.9 and 2.10). The global properties

(i.e. a mean number density and kinetic temperature values of ∼ 4× 104 cm−3

and ∼ 12K, respectively) are therefore expected to be representative of the region

traced by N2H
+ (1− 0) and N2H

+ (3− 2).
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2.5 Analysis: The kinematics of G035.39–00.33

2.5.1 Evidence for multiple velocity components

Figure 2.14 displays the spectra of the N2H
+ (1−0) isolated component and C18O

(1 − 0) over the full extent of the N2H
+ (1 − 0) map. This is overlaid on top of

the mass surface density map of KT13 (smoothed to an equivalent resolution).

As noted in the previous sections (and by Jiménez-Serra et al. 2010), multiple

velocity components appear at various positions within the cloud (e.g. around

core H6 and towards the south). This is more apparent in C18O (1 − 0) as it

traces the lower-density, highly-abundant gas. However, in the south and central

regions, the N2H
+ line profiles are very similar to those presented by the C18O

spectra. Given that both the C18O (1 − 0) and the isolated component of N2H
+

(1 − 0) are typically optically thin (see Section 2.3.2), the similarity between the

spectral profiles is unlikely to be the result of self-absorption. In particular, the

profiles of the N2H
+ (1− 0) spectra around the H6 region, with a prominent blue

peak and “red shoulder”, are simply due to the superposition of different velocity

components (see offsets (-7.5′′, 8′′), (-7.5′′, 20′′), (5.5′′, 8′′), and (5.5′′, 21′′)), and

are not due to infall motions (Evans 1999, Myers et al. 2000).

A more detailed view of the gas distribution can be found in Figure 2.15. Here

the channel maps of the emission seen in N2H
+ (1 − 0) (F1, F = 0,1 → 1,2) and

C18O (1 − 0), between ∼ 42 and 48 km s−1, integrated in velocity increments of

0.2 km s−1 are presented, superimposed on the mass surface density map. It is

evident that the emission from different velocity components is morphologically

distinct. The first of these components (Filament 1) can be seen between ∼ 42

and 44 km s−1. In C18O (1 − 0) the component is seen to run from north-east to
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Figure 2.14: Spectra of the (Red) N2H
+ (1 − 0) isolated hyperfine component

and (Blue) C18O (1− 0) at all positions in the cloud, overlaid on the mass surface
density map of KT13 (smoothed to an equivalent resolution). Spectra are shown
between 41-49 kms−1 and -0.1–1.2 K. The intensity of the N2H

+ (1 − 0) spectra
have been multiplied by a factor of 2 for clarity.

Chapter3/Chapter3Figs/EPS/spectra_map.eps
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Figure 2.15: Channel maps of (Red) N2H
+ (1 − 0) isolated hyperfine component and (Blue) C18O (1 − 0), overlaid

on the mass surface density map. The intensity has been integrated in velocity increments of 0.2 km s−1 (velocity in
top left corner represents the lower integration limit). In both cases, contours start from 3σ and increase in 3σ steps
(3σ∼ 0.02K km s−1 and 0.04K km s−1 for N2H

+ and C18O, respectively).

Chapter3/Chapter3Figs/EPS/chan_maps.eps


84

south-east, curving to the west toward the centre of the map. The N2H
+ (1 − 0)

emission in this component is restricted to the most southern portion of the cloud.

The gas distribution changes shape between ∼ 44 and 46 km s−1 (Filament 2),

peaking towards the positions of the massive cores (see white crosses in Figure 2.4

for locations). The N2H
+ (1 − 0) follows the morphology of Filament 2, and is

extended over the whole filament, indicating the presence of widespread dense gas.

Both species follow the shape of the extinction map, from north-west to the south,

curving slightly to the east. Finally, another component is evident between ∼ 46

and 48 km s−1 (Filament 3). This emission overlaps spatially, and is similar in

morphology to the previous component (although the emission peaks are offset by

∼ a beam size). This makes the two components difficult to disentangle. However,

given that this component appears as a well defined feature in both the spectra

(Figure 2.14), and the channel maps (Figure 2.15), it is considered to be a separate

velocity component.

2.5.2 Position-velocity analysis

Figure 2.16 shows position-velocity (PV) diagrams of both species (N2H
+ (1 − 0)

(F1, F = 0,1 → 1,2) in red, and C18O (1− 0) in grey-scale), slicing the cloud from

north to south, at each offset right ascension in the N2H
+ (1− 0) map. The three

velocity components identified in Figure 2.15 are evident in the PV maps. Towards

the west of the cloud (∆α=-33.5′′), the N2H
+ (1 − 0) emission follows the C18O

(1−0) emission in both the north (∼ 46.1 km s−1) and south (∼ 45.0 km s−1). This

velocity difference occurs over a distance of ∼ 1.5 pc (angular distance estimated

from the 6σ emission contour; ∼ 110′′, between -70′′<∆δ < 40′′). As Filament 2



85

Figure 2.16: Position-Velocity diagrams of both (Red) N2H
+ (1 − 0) (F1, F =

0,1 → 1,2) isolated component and (Grey-scale) C18O (1 − 0). Cuts are taken
from north to south through the cloud at each offset right ascension (see top-left
of each panel). Emission in N2H

+ (1 − 0) and C18O (1 − 0) is plotted from 3σ
(σ∼ 0.06K for N2H

+, and σ∼ 0.14K for C18O; taken as the mean spectral RMS in
both species), and increases in 3σ steps. Vertical dotted lines refer to the centroid
velocities derived from the GGF (see AppendixA.1). Horizontal dashed lines at
offsets ∆α = -20.5 and 7.5, at ∆δ = -105.3, -92.3, and 21.7, refer to the positions
of cores H4, H5, and H6 (the quoted ∆α values are -16.3, 4.4, 3.0; BT12).

Chapter3/Chapter3Figs/EPS/pv.eps
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covers the full extent of the map (see Figure 2.15), this velocity difference is inter-

preted as a gradient rather than the influence of multiple components (Filament 3

appears as a separate high-velocity, 46.8 km s−1, emission peak at ∆δ∼ 40′′). This

gradient therefore has a magnitude of ∼ 0.7 km s−1 pc−1. Such a small gradient

is comparable to those found in low-mass cores (e.g. Caselli et al. 2002a), but

here it is seen over a significantly larger extent. Within the ∆α=-7.5′′ slice, the

large-scale gradient observed in N2H
+ emission appears as a discontinuity in ve-

locity at the location of H6. There is a change in velocity of ∼ 0.6 km s−1 over a

distance of ∼ 0.5 pc (estimated from the centres of the two 12σ peaks), implying

a velocity gradient of 1.2 km s−1 pc−1. Velocity discontinuities such as this have

been explained as accretion signatures in other regions of intermediate-to-high-

mass star formation (e.g. Peretto et al. 2006). Additional observations of known

infall tracers would be needed to confirm this.

Towards the centre of the cloud (∆α=-20.5′′ and -7.5′′), the emission is stronger

(max intensity of N2H
+ (1 − 0) (F1, F = 0,1 → 1,2) at -33.5′′ = 0.82Kkms−1

compared to 1.25Kkms−1 at 5.5′′). The emission is also spread over a large velocity

range (∼ 3.5 km s−1). Filament 1 is most prominent in the slices -33.5<∆α<-

7.5′′, whereas Filament 3 is most prominent between -20.5′′<∆α< 5.5′′. This

makes sense given the morphology of the filaments seen in Figure 2.15, in which

Filament 1 bends to the west of the cloud. Core H6 lies between -7.5′′<∆α< 5.5′′

at ∆δ=20′′. At this offset, all three components are visible, with Filament 2 being

the most prominent in N2H
+ (1−0). The spatial coincidence of all three filaments

at the location of H6 can also be seen in Figure 2.15. The spatial coincidence of the

velocity components at the locations of the most massive cores in the region (as

well as emission features merging in velocity; see Figure 2.15), may be indicative of
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interaction/merging between filaments (as first suggested in Jiménez-Serra et al.

2010).

2.5.3 Centroid velocity and line-width

The centroid velocity and line-width of the filamentary structures associated with

G035.39-00.33 can be extracted by fitting multiple Gaussian profiles simultane-

ously to the spectral features. To do this, a simple fitting routine was developed:

the Guided Gaussian Fit (hereafter, GGF). The details of this fitting routine are

outlined in AppendixA.1.

Figure 2.17 shows the centroid velocity map of Filament 2 in N2H
+ (1 − 0)

(F1, F = 0,1 → 1,2) and C18O (1 − 0), as derived from the GGF method. The

velocity field in both species follows a similar pattern, there is a distinct velocity

shift of ∼ 0.5 km s−1 from low-velocity (45.4 km s−1) south of H6, to high-velocity

(45.9 km s−1) north of H6. This velocity shift occurs within a single beam width,

corresponding to a local velocity gradient of ∼ 1.5 km s−1 pc−1. This feature ap-

peared as a velocity discontinuity in the PV diagrams of Figure 2.16. The perceived

“jump” in velocity may be a resolution effect, and higher angular resolution obser-

vations would be needed to confirm whether the change happens smoothly. The

abrupt (but relatively small) velocity change is common to both the dense material

and the lower density envelope, which implies it originates from the larger scale

structure of the cloud.

South of H6 the velocity structure appears relatively uniform, although there

is some evidence for variation on local scales. For example, there is a local increase

in velocity in both species at offset (0′′,-30′′), increasing from ∼ 45.25 km s−1 in the
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surrounding area, to 45.5 km s−1 towards the centre. This location coincides with

a peak in N2H
+ (3−2) emission (see Figure 2.5) and is not directly associated with

any 4.5, 8, or 24 µm emission, indicating the presence of dense, quiescent gas.

Figure 2.17 also shows the N2H
+ (1− 0) and C18O (1− 0) line-width (FWHM)

maps of Filament 2, as derived from the GGF method. Adopting an average

kinetic temperature of 15K (Nguyen Luong et al. 2011 and Section 2.4.2), the

thermal width (∆υ2
T=8 ln(2) σ2

T, whereby σT =
√

(kBT/mobs), kB is the Boltzmann

constant, T is the kinetic temperature of the gas, and mobs is the mass of the

observed species= 29 a.m. u. and 30 a.m. u. for N2H
+ and C18O, respectively)

for both species is ∼ 0.15 km s−1 (σT ∼ 0.07 km s−1). For T ∼ 15K, the isothermal

sound speed is cs∼ 0.23 km s−1 (given a mean mass per molecule of 2.33 a.m. u.),

which corresponds to a Gaussian FWHM of 0.54 km s−1. It is evident therefore

that the observed line-widths range from approximately transonic (i.e. in the north

of G035.39-00.33, where σobs/cs=1) to supersonic, σobs/cs∼ 4.5.

On average, C18O (1 − 0) and N2H
+ (1 − 0) line-widths have similar values.

This is in contrast to low-mass star-forming regions. Here, C18O (1 − 0) is typ-

ically found to be broad in comparison to high-density gas tracers (by a factor

between 1.5 and 2; e.g. Fuller & Myers 1992, Hacar & Tafalla 2011). How-

ever, in G035.39-00.33 this is consistent with the finding that N2H
+ is widespread

across the filament and not preferentially tracing dense cores as in low-mass

star-forming regions (see Figure 2.4). In both species, the line-widths are nar-

rower towards the northern portion of the cloud and (to a lesser extent) towards

H6, indicating the presence of relatively quiescent gas (of lower turbulent con-

tent). The mean line-width values for each filament are 1.53 km s−1 ± 0.46 km s−1,

1.22 km s−1 ± 0.07 km s−1, and 1.07 km s−1 ± 0.12 km s−1, for N2H
+. For C18O the
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Figure 2.17: VLSR and ∆υ maps of Filament 2, as derived from the Guided Gaussian Fits (see Appendix,A.1). Maps
on the left represent the VLSR of (Left) N2H

+ (1 − 0) and (Right) C18O (1 − 0). Maps on the right represent the
line-width, ∆υ of (Left) N2H

+ (1 − 0) and (Right) C18O (1 − 0). Black crosses indicate the positions of the massive
cores from BT12.

Chapter3/Chapter3Figs/EPS/vlsr_dv.eps
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Figure 2.18: VLSR of the individual velocity components as a function of mass
surface density for (Top) N2H

+ (1 − 0) and (Bottom) C18O (1 − 0). The right
of each plot shows a histogram of the VLSR information. The uncertainty in the
VLSR is derived from the Gaussian fits. The uncertainty in Σ is not shown, but is
estimated to be ∼ 30% (KT13).

mean line-width values are 1.54 km s−1 ± 0.20 km s−1, 1.42 km s−1± 0.07 km s−1,

and 1.09 km s−1± 0.10 km s−1, for Filaments 1, 2, and 3, respectively.

Figure 2.18 displays the VLSR of the isolated component of N2H
+ (1 − 0) and

C18O (1− 0) as a function of mass surface density. The three filaments are clearly

seen as well-separated velocity components. The average velocities of the individ-

Chapter3/Chapter3Figs/EPS/vlsr_msd.eps
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ual components differ slightly between the two species. The mean VLSR observed for

each filament in N2H
+ is 42.95 km s−1±0.17 km s−1, 45.63 km s−1 ± 0.03 km s−1,

and 46.77 km s−1± 0.06 km s−1, for Filaments 1, 2, and 3, respectively. For C18O

the mean VLSR values are, 43.65 km s−1± 0.12 km s−1, 45.40 km s−1 ± 0.03 km s−1,

and 46.76 km s−1 ± 0.05 km s−1, for Filaments 1, 2, and 3, respectively.

The abrupt change in velocity observed in Filament 2 (Figure 2.16 and 2.17)

is seen in Figure 2.18 as the “gap” between the two groups of blue points. Some

of the velocities associated with H6 are filling this gap, suggesting that this core

may have formed at the interface of material moving at different velocities.

It is noted from Figure 2.18 that the relative velocity between Filament 2 and 1

(∼ 2.68 km s−1, and 1.75 km s−1, for N2H
+ and C18O, respectively) is larger than

that between Filament 2 and 3, in both species (∼ 1.14 km s−1, and 1.36 km s−1,

for N2H
+ and C18O, respectively). In addition, the relative velocity difference

between Filaments 2 and 1 is greater for N2H
+ than it is for C18O. This may

explain the velocity difference in peak emission observed in Figure 2.3 (see also

Figure 2.14). The observed velocity shift is quantified in the next section.

2.5.4 The N2H
+–C18O velocity shift

Figure 2.19 is a map of the N2H
+ –C18O velocity shift measured across Filament 2,

overlaid with contours of SiO (2− 1) from Jiménez-Serra et al. (2010). The N2H
+

(1 − 0) emission is largely red-shifted with respect to the C18O (1 − 0) emission

(positive values). The largest velocity shifts are seen to the north and south of the

cloud. North of offset ∆δ = 86.0, the average velocity shift is 0.22± 0.04 km s−1,

and south of offset ∆δ = -70.0′′, it is found to be 0.26± 0.04 km s−1, between these
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Figure 2.19: Map of the velocity shift between N2H
+ (1 − 0) and C18O (1 − 0)

shown for Filament 2 only. Overlaid in black contours is the SiO (2− 1) emission.
Contours are 3σ to 0.5Kkm s−1 in steps of 3σ (∼ 0.1Kkm s−1). Black crosses
refer to the positions of the massive cores from BT12.

offsets, the velocity shift 0.13± 0.04 km s−1. No correlation is found between the

velocity shift and the SiO (2 − 1) integrated intensity. The mean value of this

velocity shift is 0.18± 0.04 km s−1. Although the velocity shift is small (of the

order of the sound speed for a 15K gas), it is systematically skewed to positive

values.

Figure 2.20 shows the velocity difference between N2H
+ and C18O as a function

Chapter3/Chapter3Figs/EPS/velshift_map.eps
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Figure 2.20: Velocity shift between N2H
+ (1− 0) and C18O (1− 0) as a function

of mass surface density. The right of the plot shows a histogram of this velocity
shift information. The uncertainty in Σ is not shown, but is estimated to be ∼ 30%
(KT13).

of mass surface density. No correlation is found, but the shift is clearly present

across the whole filament. The fact that this velocity shift is seen over the full

extent of the cloud, and that the N2H
+ (1 − 0) is systematically red-shifted with

respect to the C18O (1 − 0), suggests that this shift is not the result of random

(turbulent) motions. In addition, given that both the isolated component of N2H
+

(1− 0) and C18O (1− 0) are expected to be optically thin (see Section 2.3.2), this

feature is unlikely to be due to the influence of opacity on the line profiles.

The velocity shift is not constant along the filament. Figure 2.21 shows the

N2H
+ –C18O velocity difference as a function of declination along the four central

Chapter3/Chapter3Figs/EPS/velshift_histo.eps


94

Figure 2.21: Velocity shift between N2H
+ (1− 0) and C18O (1− 0) as a function

of offset in declination along four strips of constant right ascension (see legend in
top right). The blue line refers to the strip passing closer to the center of core
H6. Horizontal dotted lines correspond to the mean values of the velocity shift,
0.18±0.04 km s−1, and the zero line. Vertical dotted lines indicate the positions in
offset declination of the three massive cores from BT12.

strips at fixed right ascension offsets -7.5′′, 5.5′′, 18.5′′ and 31.5′′. From this figure

it is clear that the shifts in the north and south have similar magnitudes, while

variations are present in between. The variations along the four strips appear

similar from the south, up to ∆δ∼ -80′′, where the magnitude of the velocity shift

observed in the central and eastern portions of the map diverges. Towards ∆δ∼ -

40′′ the velocity shift remains around ∼ 0.2 km s−1 in the east, whereas no velocity

shift is seen in the central regions. To the north of H6 (∆δ∼ 35′′) the strip at

Chapter3/Chapter3Figs/EPS/velshift_dec.eps
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∆α=-7.5′′ (and to a lesser extent the strip passing through the peak of core H6)

show different behaviour to the outer strips at ∆α=18.5′′ and 31.5′′, respectively.

This is the declination at which the abrupt change in velocity is observed (see

Figure 2.17). At ∆δ=-40′′ (in the ∆α=-7.5′′ and 5.5′′ strips), and at the peak

of core H6, there appears to be little velocity shift. However, these locations are

surrounded by sharp variations. This is especially evident toward core H6. A

discussion on a possible origin of this velocity shift can be found in Section 2.6.
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2.6 Discussion

2.6.1 Are the filaments of G035.39–00.33 interacting?

A possible explanation for the observed velocity shift between the N2H
+ (1 − 0)

and C18O (1−0) of Filament 2, is that there is relative motion between the IRDC

filament (as traced by N2H
+ emission), and its lower-density “envelope” (as traced

by the highly-abundant C18O emission).

The velocity shift between cores and their respective envelopes has been stud-

ied towards low-mass star forming regions. In general, it has been found that

cores, and the envelopes they are embedded within, are velocity coherent (e.g.

Hacar & Tafalla 2011, Kirk et al. 2007, Walsh et al. 2004). This term is used

to describe regions where the motions of cores, with respect to their surrounding

envelope, are smaller in magnitude than those described by the thermal sound

speed (∼ 0.2 km s−1). Hacar & Tafalla (2011) studied the centroid velocities of

N2H
+ (1 − 0) and C18O (1 − 0) in L1517, and found a good match between the

two tracers. The implication of this is that star-forming cores have little relative

motion with respect to their natal filaments.

In the case of G035.39-00.33, it is clear that N2H
+ (1− 0), and to some extent

N2H
+ (3− 2), are tracing extended structures, and not just cold, dense cores (see

Figures 2.4 and 2.5). This implies that any observed velocity shift would be a

feature of the large-scale structure of G035.39-00.33.

The channel maps in Figure 2.15 clearly show that significant N2H
+ (1 − 0)

emission is present over a narrower range of velocities compared to that of the

C18O (1 − 0). In particular, at the lowest velocities identified with Filament 1

(between 42 and 44 km s−1), N2H
+ is practically undetected along most of the
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filament. Whereas Filament 3 (between 46 and 48 km s−1) exhibits significant

N2H
+ (1− 0) emission up to 47 km s−1. In addition, Figure 2.15 shows that at the

locations of the most massive cores appear at the interface of multiple velocity

components, and that there are no clear boundaries in velocity between filaments

(this is clearly evident in the case of C18O). It was suggested in Section 2.5.1,

that this may support the idea that filaments are merging, as first suggested by

Jiménez-Serra et al. (2010) as an explanation for the widespread detection of SiO

emission across G035.39-00.33.

It is speculated that the observed velocity shift between N2H
+ and C18Omay be

result of merging filaments in G035.39-00.33. Filament 3 is of higher density than

Filament 1 (supported by the observed widespread detection of C18O emission,

in the absence of N2H
+, across Filament 1), which would imply that Filament

3 is more massive than Filament 1 (over the same spatial extent). Filament 3

would therefore be more effective at “sweeping-up” material during any interaction.

This may lead to an asymmetric distribution of material along the line of sight,

with a greater amount of low-density material residing at low-velocities. This

would imply a blue-shift of the C18O line, as is observed (see Figure 2.20). The

variation in the magnitude of this velocity shift across the map may by explained

by inhomogeneities along the interacting Filaments 1 and 3. The merger scenario

is sketched in Figure 2.22.

2.6.2 The Dynamical evolution of G035.39–00.33

The high-sensitivity and high-spectral resolution maps in both N2H
+ (1 − 0) and

C18O (1− 0) have revealed that the dense gas of the G035.39-00.33 is surrounded
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Figure 2.22: Schematic figure illustrating the kinematics of G035.39-00.33.

by complex, lower-density filamentary structures moving at relative velocities of a

few kms−1.

Hernandez et al. (2012) suggested that the filamentary complex was in near

virial equilibrium. It should take at least a single crossing time for a structure

to reach virial equilibrium. The crossing time is estimated using tcross=2Rf/σf ,

whereby Rf is the radius of the filament (Hernandez et al. 2012 use their “in-

ner” filament radius, corresponding to the peak in extinction =0.465 pc), and

σf ∼ 1.08 km s−1 (the velocity dispersion of the inner filament after applying a cor-

rection for the envelope; Hernandez et al. 2012). The crossing time is therefore

tcross ∼ 0.8Myr.

Is this time-scale consistent with the build up dense gas at the intersection

point of two lower-density structures? If filament merging is responsible for the

observed increase in density of the central IRDC (and in particular, towards the

Chapter3/Chapter3Figs/EPS/schematic.eps
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most massive cores), it is possible to estimate the time it would take to create the

observed density contrast using (McKee & Ostriker 2007):

taccum =
Σf

vflowρH,flow
(2.13)

where Σf is the final mass surface density of the filament, ρH,flow is the mean mass

density of the merging Filaments, 1 and 3, and vflow is the relative merger velocity.

This equation can be further expressed as:

taccum ∼ 2
Rf

vflow

nH,f

nH,flow

→

2.0

(

Rf

0.5 pc

)(

vflow
5 km s−1

)−1(
nH,f/nH,flow

10

)

Myr, (2.14)

where Rf is the radius of the filament, here normalized to 0.5 pc, i.e. 36′′ (i.e.

close to the 10σ level of N2H
+ in Figure 2.4, and the inner filament radius re-

ported in Hernandez et al. 2012). Assuming that the velocity components in

the plane of the sky have similar magnitudes, this implies a collision velocity of

vflow ∼ 5 km s−1. Finally, in Section 2.4.2 the volume density of Filament 2 was

estimated to be ∼ 4× 104 cm−3. Jiménez-Serra et al. (2014) estimate a volume

density of ∼ 5.1× 103 for Filament 1 (the lowest density filament). Assuming that

this is representative of the pre-collision density, a density contrast of ∼ 10 is used

in the above calculation.

It is therefore estimated that the merger of two structures moving with a rela-

tive speed of 5 km s−1 would be sufficient to produce a factor of 10 increase in the

number density over a region ∼ 1 pc in scale, in ∼ 2Myr. Since taccum >tcross this

is consistent with the suggested state of near virial equilibrium Hernandez et al.
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(2012).

It should be noted that the ratio of the mean densities is difficult to estimate.

In this analysis it is assumed that the density of the inner IRDC is similar to that

estimated in Section 2.4.2, whereas the pre-collision densities are similar to those

estimated for Filament 1 (Jiménez-Serra et al. 2014). Hernandez et al. (2012)

estimated a density contrast of a factor of ∼ 3–4 for the case of the inner filament

and its immediate envelope. The volume density measured towards the H6 region

in Hernandez et al. 2012 is nH2
∼ 1× 104 cm−3. The factor of ∼ 4 difference in

central density presented here may be a result of using N2H
+ for the analysis, since

the volume density estimated in Section 2.4.2 is restricted to regions of particularly

high density, as traced by N2H
+ (3−2). A density contrast of ∼ 4 in Equation 2.14

is therefore likely to be a lower limit to the ratio used in Equation 2.14 and results

in taccum ∼ tcross ∼ 0.8Myr.

The above evidence therefore appears consistent with a scenario in which the

density fluctuations observed throughout G035.39-00.33 have been produced due

to the merging of several velocity coherent filaments. In particular, this may be

responsible for the localised density increase towards H6. Star formation induced

as a result of merging filamentary structures has been suggested in other star-

forming regions, for instance in the massive star-forming region W33A (Galván-

Madrid et al. 2010), in the low-mass star-forming region Serpens (Duarte-Cabral

et al. 2011), and in the L1641-N region (Nakamura et al. 2012).

However, it is also noted that the kinematics of G035.39-00.33 are relatively

quiescent (at least on these large spatial scales). Toward the northern portion

of the IRDC, where star formation activity is at a minimum (see Figure 2.5),

the line-widths are similar to the thermal width for a 15K gas (see Section 2.5.3
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and Figure 2.17). Here, C18O (1 − 0) line widths become close to 0.5 km s−1,

similar to those measured in low mass star-forming regions (e.g. Fuller & Myers

1992). Where the interaction is expected to be more prominent, the line-widths are

notably broader, with σobs/cs ∼ 2–4, however this might be explained by embedded

(but not yet prominent) star formation activity (see also Devine et al. 2011, Ragan

et al. 2012).

In addition, although velocity gradients are observed, they are small in mag-

nitude (∼ 1 km s−1 pc−1, see Section 2.5.3). Schneider et al. (2010a) identify the

presence of variable velocity gradients throughout the DR21 star forming ridge.

These velocity gradients are prone to changes in direction. It is suggested that

such gradients may be produced during the collision of atomic flows, whereby

different regions retain the signature of the external flow that has formed them

(Ballesteros-Paredes et al. 1999). In this scenario, the complexity in the velocity

field arises because of inhomogeneities in the clumpy cloud structure and/or flows.

The quiescent velocity structure of G035.39-00.33 suggests that if filaments are

merging, then this interaction must be relatively “gentle” (in comparison to the

highly dynamical formation mechanisms of molecular clouds that discuss collisions

of relative velocity ∼ 10 km s−1, see Chapter 1, Section 1.1.2). Jiménez-Serra et al.

(2014) discussed the prospect that Filaments 1, 2, and 3 formed from a single tur-

bulent cloud, and the subsequent convergence of the filaments occurs as the parent

cloud collapses. The representative velocity of the interaction would then be given

by the free-fall velocity of the cloud, vff ∼ 2 km s−1, i.e. close to the observed value

(Jiménez-Serra et al. 2014). This may indicate that the merging of filamentary

components in G035.39-00.33 is the result of gravitational collapse, rather than

an event triggered by energetic phenomena such as, for example, expanding H ii
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regions, or supernovae bubbles (Heitsch et al. 2008).

One possible way to corroborate evidence for filament collisions would be to

observe other species expected to be abundant in the mantles of CO-rich dust

grains. For example CH3OH may also be expected to be widespread across the

cloud in a scenario involving filament mergers. In addition, high-angular resolution

observations of shocked gas tracers (such as SiO) are needed in order to rule out

a population of lower-mass stars which may also explain the widespread emission

of SiO.
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2.7 Conclusions

This chapter presents high-sensitivity and high-spectral resolution data of the

IRDC G035.39-00.33, selected as it is expected to be in a relatively early stage

of formation, and it shows little traces of star formation activity. From this anal-

ysis it is concluded that:

1. A total of 3 velocity components are identified in emission from the J =

1 → 0 transition of both C18O and N2H
+. The relative velocities between

Filaments 1 and 2 in N2H
+ and C18O are ∼ 2.7 km s−1and ∼ 1.8 km s−1,

respectively. Similarly, the relative velocity between between Filaments 2

and 3 in N2H
+ and C18O are ∼ 1.1 km s−1 and ∼ 1.4 km s−1, respectively.

2. The mean line-widths observed in N2H
+ and C18O are similar in all filaments

(Filament 2 shows the greatest difference with ∆υN2H+/∆υC18O∼ 0.85). This

is in contrast to low-mass star forming regions, and is consistent with the

observation that N2H
+ is widespread within G035.39-00.33 (and is not re-

stricted to star-forming cores). Line-widths indicate the presence of mildly

supersonic motions with σobs/cs≥ 1, for a sound speed of 0.23 km s−1 at 15K.

3. Analysis using radiative transfer code, radex, gives an average H2 number

density across the IRDC of ∼ 4×104 cm−3 and a mean kinetic temperature

of ∼ 12K.

4. There is a local maximum in N2H
+ emission at the location of the most

massive core in the region, H6. This is also spatially coincident with multiple

filamentary components. It is speculated that the local density fluctuations



106

(and, by inference, star formation) observed throughout G035.39-00.33, may

be attributed to the merging of filaments.

5. A widespread velocity shift (∼ 0.2 km s−1) is observed between the N2H
+

(1−0) and C18O (1−0), which may be consistent with the on-going merging

of filaments (in which Filament 1 is less massive than Filament 3). The fila-

ment merger scenario was first suggested by Jiménez-Serra et al. (2010) as a

possible explanation for the detection of widespread SiO emission throughout

G035.39-00.33. It is estimated that for two filaments merging at a velocity

∼ 5 km s−1, it would take ∼ 2Myr to induce an order of magnitude increase

in the density at their interface.

6. Large-scale velocity coherence (indicated by comparable line widths at most

positions, lack of large velocity gradients < 1 km s−1 pc−1) is evident across

G035.39-00.33. If the filament merger scenario is correct therefore, this lack

of disturbance would imply that the process is occurring gently.

7. This study has highlighted the importance of high-spectral resolution data

of different gas tracers to unveil the kinematics and correctly interpret line

asymmetries. Asymmetric blue-peaked profiles found across G035.39-00.33

are due to multiple velocity components along the line of sight. No evidence

of large-scale infall motions are found. Higher-angular resolution observa-

tions are needed to isolate single centres of accretion (i.e. the star-forming

dense cores analogous to the well-studied low-mass cores).



Chapter 3

The dynamical properties of

dense filaments in the IRDC

G035.39–00.33

3.1 Introduction

One of the many challenges faced by astronomers when attempting to categorise

the initial conditions of massive star formation is the inherent rarity of these ob-

jects (see Section 1.2). Consequently, one must extend the search for quiescent

massive star forming regions beyond local (< 500 pc) clouds. This presents a sig-

nificant technological challenge since greater angular resolution is required in order

to study massive star forming environments.

The previous studies in the series of papers dedicated to the investigation of

G035.39-00.33, have predominantly focused on data obtained with single-antenna

telescopes. As a consequence, this research has been limited to investigating the
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large-scale structure of G035.39-00.33. As an example, the beam size of the

IRAM30m telescope at the frequency of the J = 1 → 0 transition of N2H
+

(ν0=93173.3637MHz; Pagani et al. 2009) is ∼ 26′′ (see Table 2.1). Therefore at

the distance of G035.39-00.33 (2900 pc; Simon et al. 2006b) the spatial resolution

is ∼ 0.4 pc. Comparing this with the spatial resolution of the 30m antenna at the

distance of Taurus (∼ 140 pc; Kenyon et al. 1994), ∼ 0.02 pc, highlights the fact

that equivalent observations are sensitive to very different spatial scales.

Nevertheless, the previous single dish studies have revealed G035.39-00.33 to

be an extremely complex structure, consisting of several, morphologically distinct

filaments (Chapter 2) exhibiting common velocity gradients (Jiménez-Serra et al.

2014). Whilst observations indicate that G035.39-00.33 may be close to virial

equilibrium, this remains consistent with the cloud having formed recently (Her-

nandez et al. 2012). The observed widespread CO depletion (Hernandez et al.

2011), and N2H
+ emission (Chapter 2), implies the presence of cold, dense gas

that extends over parsec scales. Jiménez-Serra et al. (2010) suggested that the

presence of widespread SiO emission may be a relic of the cloud formation process,

with Chapter 2 and Jiménez-Serra et al. (2014) proposing scenarios to explain the

observed kinematics and chemistry of the region. The remaining sections of this

thesis aim to enhance this project through high-angular resolution interferometric

observations.

There are currently few studies dedicated to understanding the internal kine-

matics of IRDCs at high-angular resolution. Ragan et al. (2012) used the Very

Large Array (VLA) and Green Bank Telescope (GBT) to study the kinematics

of ammonia within a sample of 6 IRDCs down to spatial scales of ∼ 0.1 pc. The

authors report relatively organised velocity fields, with localised disruptions due to
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embedded star formation (observed as changes in the velocity gradients). Such dis-

ruptions are also typically combined with an increase in velocity dispersion, which

may be indicative of infall or outflow motions. In other high-resolution studies,

IRDCs have been found to comprise several velocity components and filaments

(Devine et al. 2011, Peretto et al. 2013).

The focus of this chapter is to study G035.39-00.33 at both high-angular and

high-spectral resolution, setting the goal of documenting the kinematic structure

of the dense filamentary network that comprises G035.39-00.33. Moreover, this

work will be linked to the embedded core population in Chapter 4. The structure

of this chapter is as follows: Details of the observations can be found in Section 3.2.

Observational results are presented in Section 3.3. The detailed kinematic analysis

of these data is presented in Section 3.4. These results are discussed in Section 3.5,

and in Section 3.6, the findings are concluded. A detailed step-by-step method of

the Gaussian fitting routine, and filament classification algorithm can be found in

the AppendixA.2.
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3.2 Observations & data reduction

The N2H
+ observations were carried out using the IRAM Plateau de Bure Inter-

ferometer (PdBI), France. A 6-field mosaic has been obtained. The final map area

is ∼ 40′′ × 150′′ (corresponding to ∼ 0.6 pc× 2.1 pc, at a distance of 2900 pc). The

mosaic covers the inner area of the cloud. The PdBI is suited to observing this

long but narrow filament as the width of the filament, traced by N2H
+ (1− 0), is

comparable to the primary beam at ∼ 93GHz (∼ 54′′; see Chapter 2, Figure 2.4).

Observations were carried out over six days in May, June and October 2011, in the

C and D configurations (using 6 and 5 antennas, respectively) offering baselines

between 19m and 176m to achieve an angular resolution of ∼ 4′′ at ∼ 93GHz.

The narrow-band correlator was configured to cover the N2H
+ (1 − 0) transi-

tion (frequency of the isolated, F1, F = 0,1 → 1,2, component = 93176.2522MHz;

Pagani et al. 2009), with a bandwidth of 20MHz. The final spectral resolution is

0.14 km s−1. In addition, theWideX correlator was used for the 3.2mm continuum.

The line-free channels gave a total bandwidth of ∼ 3GHz. System temperatures

varied between 125–150K. In each observation session, phase and amplitude were

calibrated using quasars 1749+096 and 1827+062. Bandpass calibration was car-

ried out using 1749+096 on all dates except 03/06/2011 and 06/06/2011, in which

3C454.3 and 3C273 were used, respectively. Flux calibration was carried out using

MWC349 (model flux=1.15 Jy) on all dates. The data reduction was performed

using gildas1/clic as part of the gildas software.

In addition to the PdBI data, existing IRAM 30m N2H
+ (1−0) data has been

used to incorporate short-spacing information to the interferometric map. For

1gildas: Grenoble Image and Line Data Analysis System, see
http://www.iram.fr/IRAMFR/GILDAS

http://www.iram.fr/IRAMFR/GILDAS
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more details on these data see Chapter 2. The merging of the two data sets was

completed within the gildas software package, mapping, by using ‘uvshort’.

The central coordinates of the PdBI data were re-projected such that both maps

have reference coordinates of α(J2000)=18h57m08.0s, δ(J2000)=2◦10′30.0′′.

The merged mosaic was CLEANed using the Hogbom cleaning algorithm in the

gildas/mapping software (as recommended in cases where sidelobes are promi-

nent). CLEANing was performed using a robust weighting factor of 3.16 (gildas

task ‘uv stat weight’ provides information on robust weighting parameters).

This weighting factor ensures that the sidelobes are reduced sufficiently to re-

move artefacts from the data, whilst the rms noise is increased by only ∼ 10%.

Following the CLEAN procedure, the synthesised beam has angular size 3.9′′ ×

3.2′′ (position angle= 27◦). The data has been converted to units of main beam

brightness temperature using the task ‘combine’ in mapping, by multiplying by

11.35K (Jybeam−1)−1.

To perform spectral analysis, spectra have been extracted from individual pix-

els (0.8 ′′×0.8 ′′) within the cube. These data have then been smoothed using a

Gaussian weighting (full width at half maximum, FHWM=the major axis of the

synthesised beam∼ 4′′). This reduces the spatial resolution to ∼ 5′′. Pixel spac-

ings are equivalent to 0.5× the major axis of the synthesised beam (∼ 2′′). The

typical spectral RMS noise in each pixel is 0.1K. The analysis is restricted to the

isolated hyperfine component (F1, F = 0,1 → 1,2) of N2H
+ (1−0) unless otherwise

stated. This is because the isolated component is expected to be optically thin

(this statement will be justified in Section 3.3.3).

The 3.2mm continuum data has also been CLEANed using the Hogbom algo-

rithm. The synthesised beam is 4.2′′ × 3.1′′, with a position angle of 17.3◦. The
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typical map RMS noise is 0.07mJybeam−1, estimated from emission-free regions.

In this work the continuum data is used for comparison only. A full discussion and

analysis of the continuum data will be provided in Chapter 4.

Utilised throughout this paper is the 8 µm extinction-derived, 2 ′′ resolution,

mass surface density map of Butler & Tan (2012), as modified by Kainulainen

& Tan 2013 (hereafter, KT13) to include corrections for the presence of the near

infrared extinction-derived IRDC envelope. When direct comparison with N2H
+

data has been made, the mass surface density has been smoothed to an equivalent

spatial resolution.
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3.3 Observational Results:

3.3.1 Intensity distribution & moment analysis

Figure 3.1 displays the results of moment analysis covering the PdBI map. The

zeroth, first, and second order moments are calculated using the following:

M0 =

∫

TMB(v) dv, (3.1)

M1 =

∫

TMB(v)v dv
∫

TMB(v) dv
, (3.2)

M2 =

∫

TMB(v −M1)
2 dv

∫

TMB(v) dv
(3.3)

where TMB is the brightness temperature of the line and v is the velocity. Moment

analysis has been performed between 42–48 km s−1 (to incorporate all emission

in the average spectrum), and above 0.3K (the 3σ level). The left-hand panel

of Figure 3.1, compares the spatial distribution of the N2H
+ (1 − 0) integrated

intensity (black contours; zeroth order moment) with the mass surface density, as

derived in KT13 (colour scale). To highlight the densest portion of the cloud, the

(solid) contours are plotted from 10σ (the dotted contour refers to the 5σ level).

The central panel of Figure 3.1 displays the VLSR map (first order moment), and

is shown here between 44.5–47.0 km s−1 (this narrower velocity range has been

chosen to pick out the variation in velocity from the brightest emission). The

right-hand panel displays the velocity dispersion of the N2H
+ (1− 0) emission, or

second order moment, between 0.0–1.5 km s−1.

It is evident from the left-hand panel of Figure 3.1, that the N2H
+ emis-

sion is extended over a large portion of the cloud. This confirms the result
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from Chapter 2 that the dense gas is extended over parsec scales in G035.39-

00.33. The emission traces the morphology of the mass surface density very

closely. The white cross indicates the position of H6, as determined in BT12

(position: α(J2000)=18h57m08.2s, δ(J2000)=2◦10′51.7′′, corresponding to offset:

∆α=2.99′′, ∆δ=21.7′′). It is clear from Figure 3.1 that the peak in N2H
+ emis-

sion (at offset 1.67′′, 22.59′′) and the peak of H6, as determined from extinction

mapping (BT12), are spatially coincident (within a single PdBI beam).

The velocity distribution indicates that higher velocities are situated towards

the northern and western regions of G035.39-00.33. There are also localised areas of

high-velocity (see offset 5′′, -25′′, this was also noted in the single dish observations

of Chapter 2). Since moment analysis is insensitive to multiple spectral features,

this may indicate regions where additional velocity components effect the overall

trend (see Section 3.4).

A map of the velocity dispersion (i.e. the second order moment) is shown in

the right-hand panel of Figure 3.1. The velocity dispersion is fairly constant across

G035.39-00.33, with a mean value of 0.45 km s−1. A notable exception to this is

observed towards the south-west of H6 (peak value > 1 km s−1). This location

coincides with red-shifted velocity peaks evident in the first order moment map.

In Chapter 2, a high-velocity component (filament 3;∼ 47 km s−1) was shown to

overlap spatially with the “main” IRDC filament (filament 2; 45.63 km s−1) at the

location of H6. This may indicate that the velocity dispersion is influenced by

the presence of an additional component. The presence of multiple velocity com-

ponents will be further explored in Section 3.4. Considering a mean velocity dis-

persion of 0.45 km s−1, the estimated ratio between the thermal and non-thermal

contributions is ∼ 7 (for N2H
+, with a molecular weight of 29 a.m.u., the thermal
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Figure 3.1: Left: Integrated intensity contours (black) of N2H
+ (1 − 0), overlaid on top of the mass surface density

plot from Kainulainen & Tan (2013). The spectra have been integrated between 42 km s−1 and 48 km s−1, focusing
solely on the isolated (F1, F = 0,1 → 1,2) hyperfine component. Contours increase from 5σ (dotted contour) in steps
of 5σ (solid contours; where σ∼ 0.1K km s−1). The synthesised PdBI beam is shown as a white ellipse in the bottom
left-corner (the filled black circle is the effective spatial resolution of the map following Gaussian smoothing). The
white cross indicates the location of H6, from Butler & Tan (2012). The boxes indicate the regions of interest that
have been selected to show in more detail in Figure 3.2. Centre: Map of the velocity field using first order moment
analysis. Right: Map of the velocity dispersion using second order moment analysis. The moment analysis has been
performed above 3σ, between a velocity range of 42–48 km s−1. The contours are identical to the left panel.

Chapter4/Chapter4Figs/EPS/moment_analysis.eps
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contribution to the total dispersion is σT =0.07 km s−1, for gas at 15K; a rea-

sonable estimate based on the dust temperature within G035.39-00.33; Nguyen

Luong et al. 2011). Comparing this with the sound speed for the mean molecule

at an equivalent temperature (cs =0.23 km s−1, using a mean mass per molecule

of 2.33 a.m.u.) gives σobs/cs∼ 2, similar to Chapter 2 (in N2H
+), but smaller than

that Jiménez-Serra et al. (2014).

Figure 3.2 displays the integrated intensity at the six locations highlighted by

the black boxes in the left-hand panel of Figure 3.1 (colour scale, between 0.0 – 4.0

K kms−1). Overlaid are the individual N2H
+(1 − 0) spectra (isolated component

only) associated with these regions (these locations have been selected to show

a range of spectral features). A dotted line at 45.8 km s−1 (the mean centroid

velocity within the map, as calculated from the moment analysis displayed in the

central panel of Figure 3.1), is highlighted in each spectrum, for reference. The

profiles of the N2H
+ spectra vary throughout the cloud. In three out of the six

regions mapped (regions 2, 3, and 4) there is strong evidence for the presence

of multiple velocity components, with further evidence in the remaining regions.

Referring back to Figure 3.1, regions 2, 3, and 4 cover the bulk of the emission

around H6. Within the vicinity of H6, substructure that is not evident in the

single-dish maps of Chapter 2 is detected (see Section 3.4).

How the intensity of the emission changes with respect to the velocity of

the gas can be seen in the channel maps of Figure 3.3. This displays the emis-

sion (red contours) of N2H
+ between 44.0 – 48.0 km s−1 integrated in increments

of 0.5 km s−1. In the single-dish maps presented in the previous chapter, fila-

ments 2 (45.63± 0.03 km s−1) and 3 (46.77± 0.06 km s−1), whilst clearly spec-

trally resolved (due to the high-spectral resolution of the IRAM 30m backends;
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Figure 3.2: Regions of interest as defined in Figure 3.1 (left panel). Here the in-
tegrated intensity has been overlaid with individual spectra throughout the maps.
The intensity has been integrated over the velocity range 42-48 km s−1, and is dis-
played between 0.0K kms−1– 4.0K km s−1(σ∼ 0.1K km s−1). Only the isolated
(F1, F = 0,1 → 1,2) component is shown, for clarity. The spectra are shown be-
tween 44.0–48.0 km s−1 (x-axis) and from -0.1–3.5 K (y-axis). The vertical dotted
line indicates a velocity of 45.8 km s−1, the mean velocity as calculated from the
moment analysis displayed in Figure 3.1.

Chapter4/Chapter4Figs/EPS/spectra_plot.eps
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∼ 0.07 km s−1), were not resolved spatially (the IRAM30m beam at 93GHz∼ 26′′).

These velocity components, can now be resolved both spectrally and spatially. In

the 46.5 km s−1 panel, it is evident that filament 3 follows a different portion of the

extinction map compared to the main bulk of material observed at lower velocities,

between 45.0–46.5 km s−1.

The component identified previously as filament 2 (Chapter 2; VLSR ∼ 45.63

km s−1), can now be subdivided into two structures. This is most evident in

panels 45.0 km s−1 and 46.0 km s−1, respectively, with 45.5 km s−1 displaying a

transition between the two (this is also evident in the spectra of Figure 3.2). These

components are hereafter referred to as F2a and F2b (F2a is the more blue-shifted

of the two; see Figure 3.3).

Although F2a and F2b are similar in their emission peaks, there are some

notable differences. Firstly, F2a is more prominent in the southern portion of the

mapped region, up to H6. F2b, is more prominent in the north. Secondly, not

all emission peaks are directly coincident. For instance, the peak observed in the

north in F2b (offset ∼ -5′′, 50′′; see 46.0 km s−1 panel) is not evident in F2a (see

45.0 km s−1 panel).

Since F2a is more prominent south of H6, and F2b to the north, treating these

two components as a single entity would result in a velocity field that appears to

show a discontinuity close to the location of H6. This velocity change at the posi-

tion of H6 was noted in Chapter 2 (and was also discussed in Jiménez-Serra et al.

(2014), studying various transitions of CO isotopologues), and is indeed observed

in the moment analysis here (central panel, Figure 3.1). If the complex kinematics

within G035.39-00.33 are to be understood, then the existence of multiple veloc-

ity components poses a significant problem that needs to be addressed. Special
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Figure 3.3: Channel maps of the N2H
+ (1 − 0) isolated component (F1, F = 0,1 → 1,2). The intensity has been

integrated in increments of 0.5 km s−1 (velocity in top left corner represents the lower integration limit). Contours are
from 0.1K km s−1 (dotted contour; ∼ 5σ over a 0.5 km s−1 velocity range), and increase in 0.2K kms−1 steps (solid
contours). Contours are overlaid on the mass surface density plot of KT13. Labels F2a, F2b, and F3 refer to the
individual filaments discussed in Section 3.3.1, and analysed in Section 3.4.

Chapter4/Chapter4Figs/EPS/channel_maps.eps
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attention is committed to this topic in Section 3.4.

3.3.2 Position-velocity analysis

Figure 3.4 shows the dissection of G035.39-00.33 into slices that have been selected

for PV analysis. Two major longitudinal cuts (A and B, shown in dot-dashed red

and solid cyan, respectively, with A being the most northerly) have been selected

based on the densest regions of the cloud (as seen in extinction). In this section,

the gas motions both along the main axis of the IRDC, and perpendicular to it

are explored.

The standard deviation of column density values measured in a region ∼ 10
′

away from the G035.39-00.33 provides a lower limit to which Σ can be probed

(KT13). This value is ∼ 0.007 g cm−2 (which corresponds to a column density of

∼ 2×1021 cm−2 or an extinction, Av = 1.6mag; KT13). For the gas motions along

the main axis, slices are defined by only considering mass surface density values

with Σ≥9× this lower limit, i.e. 0.063 g cm−2 (corresponding to Av = 14.5mag).

This preferentially selects the brightest N2H
+ emission (Figures 3.1 and 3.10 show

the close relationship between mass surface density and N2H
+ emission). For the

slice definition, an intensity-weighted mean offset right ascension was calculated

at each increment in offset declination. The mean of these values was then used

to make the longitudinal cuts (red dot-dashed and solid cyan lines in Figure 3.4).

Figures 3.5 and 3.6 show PV cuts A and B (identified by dot-dashed red and

solid cyan lines in Figure 3.4). Figures 3.7 and 3.8 show the PV data perpendicular

to the slices A and B (from east–west), as highlighted in Figure 3.4 (dashed lines).

Perpendicular to cut A and cut B, 8 and 25 slices are taken respectively. Each
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Figure 3.4: The mass surface density plot from KT13, overlaid with locations
of the PV slices discussed in Section 3.3.2. Dot-dashed red and solid cyan lines
indicate the longitudinal cuts taken from north to south, and dashed lines represent
radial slices. Radial slices have been numbered from A0–A7 in the case of cut A,
and B0–B24 in the case of cut B. The dashed white box shows the extent of the
PdBI map in N2H

+ (1− 0).

radial slice is separated by 2 map pixels (in declination).

Velocity gradients are evident throughout G035.39-00.33. The emission along

slices A and B suggest overall negative velocity gradients from north to south.

However, the presence of multiple spectral components makes their interpretation

difficult. Multiple spectral features were evident in Figure 3.2 and discussed in

Section 3.3.1. Comparing with the spectra, and the channel maps of Figure 3.3,

Chapter4/Chapter4Figs/EPS/pv_locations.eps
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Figure 3.5: Position-velocity diagram of cut A (see red dot-dashed line in Fig-
ure 3.4). The filled contours are in units of main beam brightness temperature,
and correspond to the 5σ, 10σ, 15σ, and 20σ levels (where σ=0.1K). The ver-
tical dotted line refers to the location of continuum peak N (see later discussion,
Section 3.5 and Figure 3.19).

F2a and F2b appear at distances > 40′′ along cut A, whereas F3 is mainly present

north of this location. In cut B however, both F2a and F2b are present over the

entire length, and so any change in velocity with respect to distance along the PV

slice, may be representative of a velocity gradient.

In cut B (Figure 3.6) the broadest velocity span is present between 40′′–50′′

(with corresponding offsets: 0′′.∆δ. 10′′), slightly to the south of the H6 region.

Multiple velocity components are also observed in the radial PV slices (Figures 3.7

and 3.8). The frequency at which these components are observed increases towards

H6. In Figure 3.7 (slice A6) components F2a, F2b, and F3 are identified in the

diagram, exhibiting separations in both position and velocity.

Chapter4/Chapter4Figs/EPS/pv_a.eps
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Figure 3.6: Position-velocity diagram of cut B (see cyan solid line in Figure 3.4).
The filled contours are in units of main beam brightness temperature and corre-
spond to the 5σ, 10σ, 15σ, and 20σ levels (where σ=0.1K). The vertical dotted
line represents the position of H6 along the length of the PV slice.

There is a common elongation in the emission between the peaks identified as

components F2a and F2b in a number of PV slices. Whilst this is also evident

close to H6 (see for example slices A5, A6, A7, B1, B2, B5), it is preferable to

estimate the magnitude of this gradient away from the complexity of this location.

Between -40′′<∆δ < -15′′, i.e. south of H6, there is a peak in N2H
+ emission

that is IR-quiet (Figure 3.1). This emission is covered in Figure 3.8 by slices B12–

B16. The magnitude of this gradient is estimated by firstly selecting the emission

> 9σ, in the black dashed boxes shown in Figure 3.8 (criteria (i) Busquet et al.

2013: filament emission defined to have SNR> 9), and secondly, selecting PV slices

within which the 9σ emission extends over at least 11′′ (∼ 2× the map resolution).

An intensity weighted position for each incremental step in velocity contained

Chapter4/Chapter4Figs/EPS/pv_b.eps
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Figure 3.7: Position-velocity diagrams of the 8 slices perpendicular to cut A
indicated by dashed red lines in Figure 3.4. The filled contours are in units of
main beam brightness temperature, and correspond to the 5σ, 10σ, 15σ, and 20σ
levels (where σ=0.1K). The three filaments F2a, F2b, and F3, are clearly seen as
emission peaks in slice A6.

within the selected area is then calculated. Following similar analysis to Hily-

Blant et al. (2005), who investigated rotation in the Horsehead nebula, a linear fit

is calculated (under the assumption of solid body rotation) for each box using the

intensity weighted position versus velocity. The mean magnitude of this gradient

is -13.9± 2.0 km s−1 pc−1.

In the analysis of Hily-Blant et al. (2005), rotation, rather than shear is favoured

as an explanation for velocity gradient patterns in the Horsehead nebula. In the

case of G035.39-00.33, the observed gradient may be indicative of shear (relative)

motions between filaments. Such shear motions have been discussed in relation to

the formation of massive dense cores in DR21 (OH) by Csengeri et al. (2011b), who

report velocity shears of 2–3 km s−1. However, due to the relatively small angular

separation of the two filaments, and considering the uncertainties that arise due

to projection effects, this result is approached with caution.

Chapter4/Chapter4Figs/EPS/pv_a_radial.eps
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Figure 3.8: Same as Figure 3.7 but for the 25 slices perpendicular to cut B, see
dashed cyan lines in Figure 3.4. The black dotted lines in boxes B12–B16 represent
the limits over which the velocity gradient (red dashed line) has been calculated.
For more information, see Section 3.3.2.

3.3.3 A note on the optical depth of N2H
+ (1–0)

The identification of multiple velocity components necessitates a discussion on the

optical depth of the N2H
+ (1 − 0) line emission. In Chapter 2 (Section 2.3.2), the

hyperfine structure of N2H
+ (1−0) was used to show that the isolated component

was optically thin (mean total optical depth over all 7 hyperfine components < 3,

corresponding to an optical depth of the isolated component, ∼ 0.33). In addition,

the presence of multiple velocity components in N2H
+ could be verified as the line

profiles were similar to the optically thin C18O (the optical depth of C18O was

Chapter4/Chapter4Figs/EPS/pv_b_radial.eps
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estimated to be . 1 in the densest portion of the mapped region, see Chapter 2).

In this analysis, no optically thin tracer was available. However, the line is

assumed to be optically thin for the following reasons:

1. This study utilises only the isolated hyperfine component of N2H
+ (1 − 0),

which has a statistical weight of ∼ 0.11 (Caselli et al. 1995).

2. If the presence of multiple components was simply an effect attributed to

the optical depth, then one would assume that multiple velocity components

would be restricted to the high-density regions. However, this is not the case;

there is also evidence for multiple velocity components away from H6.

3. There is some evidence for multiple velocity components evident in the N2H
+

(3 − 2) spectra (from the IRAM30m antenna presented in Chapter 2), and

these peaks align (within uncertainties) with those observed in the PdBI

data, when smoothed to an equivalent resolution. The fact that the N2H
+

(3− 2) line does not peak in between F2a and F2b (as would be expected if

the J = 1 → 0 transition was optically thick, and the J = 3 → 2 transition,

thin) suggests that they trace similar kinematics, and the J = 1 → 0 isolated

hyperfine component is not significantly affected by optical depth effects.

Figure 3.9 shows the J = 1 → 0 and J = 3 → 2 N2H
+ spectra at offset

(2.5′′, 12.5′′). Both data sets have been smoothed to an equivalent spatial

resolution of 15′′. In addition, the N2H
+ (3 − 2) has been smoothed to a

similar spectral resolution (∆vres ∼ 0.16 km s−1). In spite of the fact that

the spectral noise is greater in the N2H
+ (3− 2) data (σ=0.26K), multiple

spectral components are evident. Moreover, the observed components are in

agreement with those observed in the N2H
+ (1− 0) data.
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Figure 3.9: N2H
+ J = 1 → 0 (black; intensity mutliplied by a factor of 3

for clarity), and J = 3 → 2 (red) spectra from offset = (2.5′′, 12.5′′). The data
have been smoothed to a comparable ∼ 15′′ spatial resolution. The green lines
indicate the fit to each spectrum. A two component Gaussian fit is shown in the
case of N2H

+ (1− 0) (component 1: VLSR =45.2± 0.1, ∆υ=1.1± 0.1; component
2: VLSR=46.8± 0.1, ∆υ=1.5± 0.2). A two component hyperfine structure fit
(using gildas/class) has been performed in the case of N2H

+ (3 − 2). In each
case the optical depth has been fixed at τ =0.1 (component 1: VLSR =45.1± 0.2,
∆υ=1.3± 0.4; component 2: VLSR =46.8± 0.4, ∆υ=1.9± 0.9).

4. Figure 3.10 shows the N2H
+ (1− 0) integrated intensity versus mass surface

density over the whole cloud. There is a strong correlation between these

two properties (Spearman rank correlation coefficient, rs=0.72, P < 0.001),

and no plateau is observed towards higher extinction (as would be expected

in the case of high optical depth).

5. Multiple component hyperfine structure fits have been performed at several

locations and the fit results are consistent with the isolated components being

optically thin. Figure 3.11 shows the full spectrum (including all hyperfine

components) at offset= (3.6′′, 12.7′′) as an example (this spectrum is one

Chapter4/Chapter4Figs/EPS/32_10.eps
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Figure 3.10: Integrated intensity of N2H
+ (1 − 0) vs. mass surface density. In-

tensity has been integrated between 42.0 – 48.0 km s−1. Integrated intensity values
are plotted above the typical 3σ uncertainty (∼ 0.3K km s−1). The uncertainty in
the mass surface density is estimated at ∼ 30% (see KT13 for more details). The
red line indicates the best fit to the data.

of the brightest, and most complex). The hyperfine structure of the N2H
+

(1−0) line can be used to estimate the optical depth of the individual velocity

components (see Chapter 2). Overlaid are markers indicating the velocities

of hyperfine components corresponding to F2a (cyan), F2b (red), and F3

(green). The height of each line corresponds to the expected intensity of in-

dividual hyperfine components assuming optically thin conditions. The solid

curve represents a three component hyperfine structure fit performed using

the gildas/class software. The total optical depth of the fitted lines are

5.28 (0.12), 7.92 (0.10), 0.11 (0.05), respectively. For the isolated hyperfine

components therefore, the optical depths are ∼ 0.7, 0.9, 0.01, respectively.

Chapter4/Chapter4Figs/EPS/ii_ext.eps
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Figure 3.11: N2H
+ (1 − 0) spectrum from offset= (3.6′′, 12.7′′). Coloured lines

indicate respective velocities of all hyperfine components of individual velocity
components. The solid black line is the result of a hyperfine structure fit, incor-
porating the three velocity components observed.

This indicates that the isolated components are just partially optically thick

towards the H6 region. It must be noted however, that whilst the hyperfine

structure can be fitted in some locations, the complexity of the spectra and

the blending of spectral components means that fitting routines can converge

to ambiguous results. An accurate optical depth measurement for each pixel

in the map is therefore not feasible.

It is concluded from this analysis that the observed spectral components repre-

sent independent velocity structures, rather than being a consequence of significant

optical depth.

Chapter4/Chapter4Figs/EPS/tau_n2hp.eps
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3.3.4 N2H
+ column density

The column density of the N2H
+ (1 − 0) line can be estimated by scaling the

integrated intensity of the isolated hyperfine component by its statistical weight

(0.11; assuming it is optically thin) following the method outlined in Chapter 2.

In this instance, Equation 2.5 reduces to:

N(N2H
+) = 1.3× 1012Itot (K km s−1) cm−2. (3.4)

The excitation temperature was estimated from the output parameters of a fit to

the hyperfine structure, using gildas/class, at the offset of peak N2H
+ emis-

sion (1.67′′, 22.59′′), giving a value of ∼ 7.4K. The column density is estimated

for every pixel in the map. The peak column density at offset (1.67′′, 22.59′′) is

(4.7±0.5)×1013 cm−2. The mean value over the map is estimated to be = (1.3±0.2)×1013 cm−2.

In the extreme case whereby the optical depth of each of the isolated hyperfine com-

ponents approach τ ∼ 1, a correction factor of ∼ 1.6 would need to be made to the

column density. In Section 3.3.3 an example spectrum is shown (offset= 3.6′′,12.7′′,

i.e. close to the H6 region), with a multiple-component hyperfine structure fit. In

this example, corresponding τ values of the isolated hyperfine components are all

< 1. Generally speaking therefore, the correction should be < 1.6.

As the integrated intensity is directly proportional to the column density (in the

optically thin case), the correlation derived in Figure 3.10 can be used to estimate

a fractional abundance of N2H
+ molecules, with respect to H2 (as derived from

the mass surface density). Assuming a mean mass per molecule of 2.33 a.m.u.,

the correlation (shown as the red line in Figure 3.10), implies a constant fractional

abundance of, [N2H
+/H2] = (3.8± 0.1)×10−10 (consistent with Chapter 2), similar
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to the N2H
+ abundance found in low-mass dense cores (e.g. Caselli et al. 2002a),

and towards other IRDCs (10−10–10−9; e.g. Miettinen et al. 2011, Vasyunina

et al. 2011). The fractional abundance at peak column density is [N2H
+/H2] =

(6.8± 2.2)×10−10 (this uncertainty is estimated from the 30% uncertainty in the

mass surface density; KT13).
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3.4 Analysis: Kinematics of the dense gas within

G035.39-00.33

As shown in Section 3.3, a high-degree of complexity is observed in the N2H
+ (1−0)

emission towards G035.39-00.33. Fitting these data is challenging for a number

of different reasons: i) there are multiple velocity components along the line of

sight; ii) the velocity separation between components is < 1 km s−1 (comparable

with the typical FWHM observed; see right-panel of Figure 3.1); iii) each of these

components is likely to exhibit its own velocity structure, leading to blending of

the spectral features. In Chapter 2 a simple fitting routine (dubbed the Guided

Gaussian Fit) was developed that enabled separation of molecular line data into

individual components. The Gaussian fitting of the PdBI data, however, presents

a more significant challenge due to the additional structure observed in the high-

angular resolution map.

Analysis of the PdBI data has been performed using a semi-automated Gaus-

sian fitting procedure. Briefly, the technique works by assuming that the profiles

of the spectra remain relatively constant over suitably small angular distances

(. 0.1 pc). Therefore, one can reduce the number of spectra to fit by only fitting

the average spectrum within a user defined area (see AppendixA.2 for details). The

output values from the fit to the average spectrum are then used as free-parameter

inputs to each spectrum within the area. By overlapping areas, multiple fits are

performed to a single spectrum. This ensures a smooth transition between adja-

cent areas. A minimisation technique is then used to compare fits to individual

spectra, selecting the “best fit”. Individual velocity components are then grouped

using an algorithm devoted to seeking out similar components within a user de-
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Table 3.1: Fit parameters for the Gaussian profiles to the spectra shown in
Figure 3.12.

Filament ∆α ∆δ Tpeak σTpeak VLSR σVLSR ∆υ σ∆υ RMS Residual

(′′) (′′) (K) (K) ( km s−1) ( km s−1) ( km s−1) ( km s−1) (K) (K)

F2b -16.06 69.87 1.38 0.17 46.12 0.08 0.72 0.04 0.09 0.09

F3 -16.06 69.87 0.86 0.21 46.75 0.11 0.67 0.06 0.09 0.09

F2a 3.64 22.59 1.92 0.04 45.20 0.01 0.63 0.01 0.04 0.03

F2b 3.64 22.59 2.09 0.02 46.06 0.01 0.91 0.01 0.04 0.03

F2a -4.24 10.77 0.76 0.03 45.05 0.02 0.87 0.02 0.06 0.08

F3 -4.24 10.77 0.77 0.03 47.29 0.02 1.03 0.02 0.06 0.08

F2a 7.58 8.80 0.70 0.07 44.82 0.05 0.69 0.04 0.08 0.10

F2b 7.58 8.80 1.43 0.05 45.93 0.03 1.12 0.05 0.08 0.10

F3 7.58 8.80 0.60 0.07 47.03 0.04 0.62 0.04 0.08 0.10

fined area. This algorithm follows the same underlying principles as the “Friends

In VElocity”, FIVE, algorithm developed by Hacar et al. (2013), in that velocity

components are grouped based on how closely they are linked in both position and

velocity simultaneously (by calculating the velocity gradient; see AppendixA.2),

utilising position-position-velocity space.

Figure 3.12 displays individual spectra towards four positions in the N2H
+ map

(only the isolated hyperfine component is shown). The offset right ascension (top)

and offset declination (bottom) are highlighted in the top-left corner of each spec-

trum. For each spectrum, the Gaussian fit to each velocity component (F2a= cyan;

F2b= red; F3=green), and the total fit to the line is overlaid (black). The fit pa-

rameters to each Gaussian profile are reported in Table 3.1. For reference, the

3×rms level is highlighted in each panel with a horizontal dotted line. These

spectra have been highlighted to show the broad range of profiles, and the fitting

procedure’s ability to cope with such diversity. The velocity structure is analysed

in more detail in the following sections.
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Figure 3.12: Example spectra from four positions (see top left hand corner of each plot for position: top = ∆α,
bottom = ∆δ in arcsec) in the cloud. The vertical dashed line indicates the velocity as calculated from the first
order moment, whereas the vertical dotted lines refer to the velocity dispersion as calculated from the second order
moment (moment analysis performed over a velocity range 42–48 km s−1, and where TMB> 0.3K; see Section 3.3.1).
The horizontal dotted line corresponds to the 3×rms value for each spectrum. Cyan, red, and green Gaussian profiles
are fits to individual velocity components, F2a, F2b, and F3, from the fitting procedure outlined in AppendixA.2.
The black profile indicates the total fit to the line. The fit parameters for each Gaussian component can be found in
Table 3.1.

Chapter4/Chapter4Figs/EPS/spectra.eps
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3.4.1 Centroid velocity

Figure 3.13 is a position-position-velocity (PPV) representation of the individual

velocity components within the cloud. The image shown in position-position space

at the base of the figure is the mass surface density map from KT13, overlaid with

N2H
+ contours (identical contours are shown in Figure 3.1). The vertical dotted

line indicates the position of H6, and is used for reference.

Six velocity components are identified in total. Cyan and red refer to filaments

F2a, and F2b, and filament F3 is displayed in green. Velocity components 4, 5, 6

are displayed in purple, dark blue, and orange, respectively. The combined contri-

bution of components 4, 5, and 6 to the overall number of Gaussian fits is < 5%,

and they are therefore not considered to be “filaments” (percentage contributions

of each component can be found in TableA.1).

Figure 3.14 displays a histogram of centroid velocities of F2a, F2b, and F3 (red,

cyan, and green, respectively), as well as that of the N2H
+ IRAM30m data (black).

In Chapter 2, the peak at 46.77± 0.06 km s−1 was interpreted as filament 3. The

double peaked component between ∼ 45-46.5 km s−1 (mean VLSR =45.63 km s−1),

was classified as filament 2, the brightest and therefore “main” filament of the

IRDC. The dual-peaked velocity of filament 2 was noted in Chapter 2 and was

interpreted as a gradient occurring at the position of H6. Figure 3.14 shows that

F2a and F2b peak at similar velocities to the dual peaks of filament 2 in the

single-dish data. This suggests that both components were also spectrally evident

in the single dish data. However, the sub-components were not categorised as

such as they could not be spatially resolved. There is also slight evidence for a

double peak evident in the F3 classification. This can be seen as a sharp peak in
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Figure 3.13: Three dimensional position-position-velocity (PPV) cube showing the centroid velocity of the three
velocity components: (cyan) F2a, (red) F2b, and (green) F3, observed across G035.39-00.33. Additional velocity
components, C4, C5, and C6, are shown in purple, blue, and orange, respectively (see AppendixA.2 for more details).
Unassigned data points are shown in black. The mass surface density map can be seen at the base of the cube (grey
scale), overlaid with N2H

+ (1 − 0) integrated intensity contours. Contour levels increase from 5σ (dotted contour;
where σ∼ 0.1K km s−1) in steps of 5σ (solid contours), as with Figure 3.1. The vertical dotted line corresponds to the
position of H6.

Chapter4/Chapter4Figs/EPS/ppv_h.eps
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Figure 3.14: Histogram of the centroid velocity at peak intensity of individual
velocity components in both the (colour) PdBI data, and (black) IRAM 30m
data of Chapter 2, as determined by the Gaussian fitting technique outlined in
AppendixA.2. Filaments 2a, 2b, and 3, are shown in Cyan (horizontal hatch),
Red (vertical hatch), and Green (45◦ hatch), respectively. The vertical dashed line
represents the mean velocity derived from the moment analysis in Section 3.3.1.

Figure 3.15 (see ∆δ∼ 10′′), in which the VLSR of each velocity component versus

offset declination is plotted (the possible origins of this structure are discussed in

more detail in Section 3.5.1).

Filaments F2a, F2b, and F3 have mean VLSR values of 45.34± 0.04 km s−1,

46.00± 0.05 km s−1, and 46.86± 0.04 km s−1, respectively. The mean VLSR of F2a

and F2b is (45.67± 0.03) km s−1, which is comparable with the quoted value for

filament 2 in Chapter 2 (45.63 km s−1). Velocity separations between individual

velocity components are (0.66± 0.06) km s−1, and (0.86± 0.06) km s−1, between

F2b–F2a, and F3–F2b, respectively. Although components 4, 5, and 6 have similar

mean velocities (all < 45 km s−1), they are separated in position, and there are not

Chapter4/Chapter4Figs/EPS/vlsr_histo.eps
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Figure 3.15: Centroid velocity for filaments F2a (cyan), F2b (red), and F3
(green) as a function of offset declination. Additional velocity components, C4,
C5, and C6, are shown in purple, blue, and orange, respectively. Unassigned data
points are shown in black. The vertical dotted line refers to the offset declination
of H6.

enough consecutive data points to conclude that they belong to a single component.

In spite of this, it is interesting to note that the velocities of these components are

most similar to those derived for filament 1 (Chapter 2 and Jiménez-Serra et al.

2014). It is possible that these components may represent high-density portions

of filament 1, that are not observed in the low-angular resolution N2H
+ maps of

Chapter 2 (perhaps due to beam dilution), but are observed CO (Jiménez-Serra

et al. 2014).

The separation between the mean velocities of each individual component are

comparable (< 1 km s−1). Each velocity component has a total 3σ dispersion in

VLSR that is roughly equivalent to the magnitude of the velocity separation between

components. This indicates that there is overlap between velocity components.

Chapter4/Chapter4Figs/EPS/vlsr_dec.eps
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This can be seen in Figure 3.13 and even more clearly in Figure 3.15. Additionally,

Figure 3.15 shows that it is common for unassigned data points (shown in black)

to reside at the boundaries of component definitions. These typically represent

positions where there is a transition from multiple to single components, i.e. the

limit of the fitting method where individual spectral features can no longer be

distinguished.

In general, Figures 3.13 and 3.15 show that the velocity dispersion over all

filaments is broadest slightly south of H6. It is also evident that F2a is more

prominent towards the south of H6, while F2b mainly traces the region north of

H6 (confirming the result found in Figure 3.3). F3 is not evident south of ∆δ∼ -

30′′, which is consistent with Chapter 2.

It is noted that there is a gap in the F2b structure at ∆δ∼ -50′′. Whilst the

classification scheme identifies the component both above and below ∆δ∼ -50′′ as

F2b, it is noted that further mapping of the southern region would be needed to

establish whether or not this is a truly independent structure (see AppendixA.2

for velocity component classification parameters).

3.4.2 Velocity gradients

By looking at the VLSR of each individual filament simply as a function of offset

declination, as has been plotted in Figure 3.15, it is clear that each individual ve-

locity component has its own complex structure, exhibiting both global, and local,

velocity gradients. Overall velocity gradients (calculated using a linear fit between

the velocity and offset declination) are small in the north–south direction. F2a

and F2b have almost negligible overall velocity gradients (0.08± 0.02 km s−1 pc−1,
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positive in the north–south direction; and 0.07± 0.01 km s−1 pc−1, negative in the

north–south direction, respectively) between -70′′.∆δ. 70′′. F3 has a positive

gradient in the north–south direction, 0.30± 0.04 km s−1 pc−1 (measured between

-25′′.∆δ. 70′′).

Small velocity gradients over the whole cloud indicate that the gas motions

are relatively quiescent (in the north-south direction). However, local fluctuations

along each filament axis are large compared to the overall gradient. For instance,

between 10′′. ∆δ . 40′′, F2a and F3 show opposing velocity gradients of magni-

tude ∼ 1.5 km s−1 pc−1. In addition, velocity gradients may exist in the east–west

direction. Therefore, to analyse the gas motions further, a 2-D representation of

the velocity gradient is required.

The left-hand panel of Figure 3.16 shows the mass surface density from KT13.

Black contours highlight the continuum emission, starting at 3σ (where σ= 7×10−2

mJybeam−1) and increasing in steps of 2σ. Overlaid are the extended 4.5 µm

(green squares; Chambers et al. 2009), 8 µm (red open circles), and 24 µm emis-

sion (red open triangles; Carey et al. 2009), as well as the low-mass cores (yellow

squares) and high-mass cores (magenta squares) identified using Herschel (Nguyen

Luong et al. 2011). The right hand panels show the VLSR maps and spatial loca-

tion of all three velocity components, as deduced from the Gaussian fitting routine.

Overlaid on top of each map are arrows indicating the magnitude and direction of

velocity gradients in 2-D. To achieve this the analysis of Goodman et al. (1993)

has been followed. By assuming the centroid velocities of observed lines take an

approximately linear form:

VLSR = V0 + A∆α +B∆δ, (3.5)
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whereby ∆α and ∆δ are offsets in right ascension and declination, least-squares

minimisation can be used to estimate values of A and B, using mpfit2dfun (Mark-

wardt 2009). The velocity gradient, ∇v, can then be calculated for a cloud at

distance D, using (Goodman et al. 1993):

∇v =
(A2 +B2)1/2

D
, (3.6)

and its direction, Θ∇v (direction of increasing velocity, measured east of north),

using:

Θ∇v = tan−1

(

A

B

)

. (3.7)

This method has been adapted following the procedure outlined in Caselli et al.

(2002a) to calculate multiple gradients within a given region with a good determi-

nation of VLSR (seven contiguous positions with significant measurements of VLSR).

In the case of the PdBI data, the velocity gradient at the location of a given pixel

is estimated only if there are a total of 38 pixels within a circular area of 6′′ (see

the black circle in Figure 3.16). The equivalent pixel area would incorporate at

least 7 synthesised beams of the PdBI.

For F2a, the overall velocity gradient (calculated incorporating all positions

for that filament) has a magnitude of (0.23± 0.01) km s−1 pc−1 in a direction

(-168.7± 1.7)◦ east of north. However, the mean magnitude of individual ve-

locity gradients (calculated using the multiple arrow technique) is (1.83± 0.05)

km s−1 pc−1. The overall gradients for F2b, and F3 have magnitudes, (0.56± 0.01)

km s−1 pc−1, and (0.70± 0.02) km s−1 pc−1, at angles Θ∇v =(-91.1± 0.2)◦ and (-

132.3± 1.2)◦ east of north, respectively. However, as with F2a, the mean val-

ues of individual gradients are comparatively larger, with corresponding values
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Figure 3.16: (Left) Mass surface density from KT13, overlaid with the PdBI 3.2mm continuum (black contours).
Continuum contours are from 3σ and increase in steps of 2σ (σ=7×10−2 mJybeam−1, as calculated from emission
free regions in the map). Magenta and yellow squares refer to the high-mass and low-mass dense cores identified in
Nguyen Luong et al. (2011), respectively. Red circles and red triangles refer to the 8, and 24 µm emission, respectively
(Carey et al. 2009, Jiménez-Serra et al. 2010), and green squares refer to the “green fuzzies” (extended 4.5 µm emission)
identified by Chambers et al. (2009). (Left-centre, right-centre, and right) VLSR maps of filaments F2a, F2b, and F3,
as deduced from the Gaussian fitting routine (see text and AppendixA.2 for more details). The velocity ranges are
44.9–45.8 km s−1, 45.6–46.4 km s−1, 46.4–47.4 km s−1, for F2a, F2b, and F3, respectively. Continuum contours are
overlaid in black. The yellow cross indicates the position of H6 from BT12. The arrow size depicts the magnitude of
the velocity gradient at each position, and each arrow points in the direction of increasing velocity. The white arrow
situated in the right panel displays a velocity gradient of magnitude 5 kms−1 pc−1, and the black circle in the top-left
of the panel indicates the spatial extent over which the gradients are calculated (see Section 3.4.2).

Chapter4/Chapter4Figs/EPS/velgrad.eps
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of (1.65± 0.07) km s−1 pc−1, and (2.33± 0.11) km s−1 pc−1, for F2b and F3, re-

spectively. It is concluded therefore, that although overall gradients are observed

in each individual filament, the gas motions are dominated by localised flows of

material.

In contrast to Jiménez-Serra et al. (2014), gas motions are highly non-uniform

and unique to individual filaments (rather than each filament exhibiting simi-

lar north–south velocity gradients). This complexity is highlighted in F2a (Fig-

ure 3.16). Around H6 (yellow cross) the gas motions flow in multiple directions.

East of ∆α∼ 10′′, gas motion is directed towards the east. West of here, but north

of ∆δ∼ 10′′, a positive south–north gradient is found. The arrows here are point-

ing towards the continuum core to the north–west of H6. South of ∆δ∼ 10′′, the

velocity increases towards the south of H6. The arrows here appear to point in

the direction of the two continuum peaks between -15′′<∆δ < 5′′.

South of H6, between -70′′.∆δ. -15′′, the gas motions are not exclusively

directed along the main filament axis. Here, it is evident that the large spreads in

velocity observed in Figure 3.15 are represented by motions perpendicular to the

main filament axis. In this region, gradients are opposing each other (see position

-20′′<∆δ < -40′′), whereas in the very south (< -50′′), the velocity gradient is di-

rected from east–west. It should be noted however, that in this southern location,

the velocity does decrease again further to the west, which would, again, indicate

opposing gradients (see Figure 3.16, F2a, between -10′′<∆α< 0′′ and ∆δ <-60′′).

In F2b, around H6, the velocity increases towards the position of the continuum

core situated slightly east of the yellow cross. To the north of H6, there is a positive

velocity gradient from the north–east of H6, to the north–west corner of the map.

Finally, in F3, the velocity gradient analysis shows a uniform transition from
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low to high velocity in the north–east to south–west direction just above H6. South

of here however, there is evidence for two opposing velocity gradients centred on

the continuum peak(s) to the south–west of H6. This peak in continuum is also

coincident with 8 µm and 24 µm emission.

In each filament there is evidence that the velocity gradients are directed to-

wards some of the peaks observed in the continuum emission. This implies that

the continuum peaks are influencing the dynamics of the surrounding gas. This

shall be discussed in more detail in Section 3.5.

3.4.3 Line-width

Figure 3.17 presents the line-width (i.e. the FWHM of the Gaussian components

derived in the fitting procedure) at every position in G035.39-00.33, for filaments

F2a (left), F2b (centre), and F3 (right). Black contours highlight the continuum

emission (contours are identical to Figure 3.16).

Figure 3.17 shows that the distribution of line-widths across each filament is

quite varied. Mean line-widths of (0.83± 0.04) km s−1, (0.77± 0.04) km s−1, and

(0.71± 0.04) km s−1, are found for filaments F2a, F2b, and F3, respectively.

There is no obvious spatial correlation between the continuum emission peaks

and the FWHM of the N2H
+ velocity components. In F2a, broad line-widths of

∆υ∼ 1.5 km s−1 are observed between -20′′<∆δ < -30′′. Towards H6, the line-

width distribution varies towards individual continuum peaks (0.5 km s−1 .∆υ

. 1.5 km s−1).

The left-hand panel of Figure 3.18 shows a histogram of the ratio between the

non-thermal and thermal components of the velocity dispersion, for F2a, F2b,
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Figure 3.17: Line-width (∆υ, FWHM) maps (colour scale) of filaments F2a
(left), F2b (centre), and F3 (right), calculated using the fitting method outlined in
AppendixA.2. Continuum emission is highlighted by the black contours. Contours
are the same as in Figure 3.16. The white cross indicates the position of H6 from
BT12.

and F3. The non-thermal velocity dispersion is determined from the observed

line-width using the following equation (Myers 1983):

(σNT)
2 = (σobs)

2 − (σT)
2 (3.8)

σNT =

√

∆υ2
obs

8ln(2)
−

kBTkin

mobs
(3.9)

where σNT, σobs, and σT, refer to the non-thermal, the observed, and the ther-

Chapter4/Chapter4Figs/EPS/dv.eps
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Figure 3.18: Left: Histogram of σNT/σT, for filaments F2a, F2b, and F3, shown
in cyan (horizontal hatch), red (vertical hatch), and green (45◦ hatch), respec-
tively. The vertical dashed line refers to σNT/σT =1. σT=0.066 km s−1, for N2H

+

(29 a.m.u.) at 15K. Right: Histogram of σNT/cs (markings have the same meaning
as the left-hand panel). The sound speed, cs is estimated for a mean molecular
mass of 2.33 a.m.u. and has a value ∼ 0.23 km s−1.

mal dispersion, respectively. ∆υobs refers to the observed line-width (FWHM

derived from the fitting procedure), kB is the Boltzmann constant, Tkin is the

kinetic temperature of the gas, and finally mobs refers to the mass of the observed

molecule (29 a.m.u for N2H
+). Assuming a gas temperature of 15K (Fontani et al.

2012, Pillai et al. 2006, Ragan et al. 2011), the thermal dispersion of the gas is

∼ 0.07 km s−1. For F2a, F2b, and F3, mean σNT/σT values of 5.4, 5.0, and 4.7 are

found, respectively.

The right-hand panel of Figure 3.18 shows a histogram of the ratio between

the non-thermal component of the velocity dispersion and the sound speed for a

molecule of mean mass 2.33 a.m.u.. The mean σNT/cs values derived for filaments

F2a, F2b, and F3, are ∼ 1.6, 1.4, and 1.4, respectively. This indicates that the

filaments are mildly supersonic. It is worth noting that increasing the mean tem-

Chapter4/Chapter4Figs/EPS/dv_histo.eps
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perature of the cloud to 25K would result in the non-thermal motions being com-

parable to the sound speed. Whilst there are no gas temperature measurements

towards G035.39-00.33, the 15K estimate is based on the dust temperature maps

of Nguyen Luong et al. (2011). In these maps, very little temperature fluctuation is

observed in the central regions (although these maps are of lower angular-resolution

than that studied here). The general trend observed in Figure 3.18 therefore, is

not expected to change significantly.
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3.5 Discussion

3.5.1 Gas dynamics surrounding continuum peaks

Continuum images confirm that the H6 region has fragmented into multiple cores

(see left-panel of Figure 3.16). This is in contrast to the single 1.2mm contin-

uum peak identified by Rathborne et al. (2006) (at 11′′ resolution). Between

5′′ <∆δ < 40′′, there are 6 continuum peaks in total. Two out of the six cores

are associated with observable signatures of star formation, as traced by 4.5, 8,

and 24 µm emission (Carey et al. 2009, Chambers et al. 2009, Jiménez-Serra et al.

2010). This implies the presence of embedded protostars. In this section the kine-

matics surrounding both of these continuum cores, plus a further core located to

the east of the H6 marker are discussed.

The continuum peaks discussed in this section have been labelled N, E, and

SW, in Figure 3.19. Overlaid are the velocity gradients, closest to the E and

SW cores, observed in F2b and F3. The light coloured arrows are identical to

those in Figure 3.16, whereas the darker arrows represent the velocity gradients

calculated from the VLSR of 27 pixels (i.e. the constraint imposed in Section 3.4.2

has been relaxed). This gives a better idea of the spatial extent of the velocity

gradients, but they are not included in any analysis due to their lower significance

(see Section 3.4.2 for further description of the velocity gradient analysis).

It is stressed that the arrows in the velocity gradient analysis do not indicate

the direction of flow of gas, they simply point towards the direction of increasing

velocity. Therefore, depending on the orientation, and physical structure of the

cloud, there could be several explanations for the observed velocity structure. In

this discussion two opposing scenarios are considered that may explain the observed
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Figure 3.19: A close up image of the region surrounding H6. The size and
direction of the arrows correspond to the magnitude and direction of the velocity
gradient (pointing in the direction of increasing velocity). Dark green and dark
red arrows refer to the velocity gradient calculated at each point, using velocities
from the surrounding 27 pixels (note - this is used for a spatial representation only,
and not used in the analysis), light green and light red arrows refer to the velocity
gradient calculated from the surrounding 38 pixels, for F2b and F3, respectively
(see Section 3.4.2 for details). The symbols have the same meaning as in the left
panel of Figure 3.16.

Chapter4/Chapter4Figs/EPS/velgrad_closeup.eps
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pattern of velocity gradients: i) infalling material, and ii) outflowing material.

Scenario 1: Infall

Due to the symmetry in the arrow pattern observed towards the SW core, this

continuum peak provides the focus for further discussion. In the infall scenario,

the arrows would depict a flow of N2H
+ converging onto the SW continuum

core. The mean magnitude of the velocity gradients towards the SW core is

∼ 2.5 km s−1 pc−1 over a spatial extent of ∼ 0.5 pc. This mean velocity gradi-

ent is comparable with those observed within the Serpens South cluster-forming

region (1.4 km s−1 pc−1 measured over ∼ 0.33 pc; Kirk et al. 2013) and the DR21

filament (0.8–2.3 km s−1 pc−1 measured over ∼ 80′′, equivalent to ∼ 0.7 pc using

the distance of the DR21 ridge as 1700 pc; Schneider et al. 2010a).

Kirk et al. (2013) and Friesen et al. (2013) interpret the observed velocity gradi-

ents in Serpens as flows of material along the filament towards star forming regions.

This interpretation arises from making an assumption regarding the geometry of

the filament. In the case of the Serpens, assuming the filament is inclined towards

the observer, the velocity structure can be interpreted as accretion flows towards

the Serpens South Cluster (Kirk et al. 2013).

In the case of G035.39-00.33, if the velocity gradient is depicting flow of ma-

terial onto the SW core, the geometry must be different from that observed in

Serpens. This is because, rather than a single north–south velocity gradient, there

are two opposing velocity gradients. The velocities increase towards a maximum.

Geometrically, this may be explained by an arced filament.

This geometry is further explored in Figure 3.20. For simplicity, rather than

an arc, the filament is assumed to be a “kinked” cylinder, with angles Θ and Φ
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Figure 3.20: A schematic to explain the velocity gradient pattern in Figure 3.19,
under the assumption of infalling gas. vfil is the global redshift of F3, Θ is the
inclination of the northern part of the filament with respect to the plane of the
sky, and Φ is the inclination of the southern part of the filament with respect to
the plane of the sky (increasing from the south). In the case shown, Θ = 45◦, and
Φ = 55.6◦ (these have been arbitrarily chosen, although the difference in angles is
used to explain the difference in the magnitude in the observed velocity gradient).

representing the inclination of each end of the cylinder with respect to the plane

of the sky. Adopting the same reference system as Kirk et al. 2013, 0◦ is parallel

to the plane of the sky, whereas 90◦ lies directly along the line of sight. vacc,sky and

vacc,los represent the velocity of the accreting material in both the plane of the sky,

and that along the line of sight, respectively.

In the reference frame of the SW continuum peak, the filament gas (to the north

and south of the core) is blue-shifted relative to the core (see grey-scale of F3 panel

of Figure 3.16). If the filament was structured as shown in Figure 3.20, then this

would imply gas accretion along filaments towards the core. In the context of the

Chapter4/Chapter4Figs/EPS/infall.eps
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main IRDC filament (vmean =45.8 km s−1, as calculated from the moment analysis

of Section 3.3.1), F3 as a whole is red-shifted. vfil represents the velocity of the

F3 system (core + filament), and this is assumed to be equivalent to the velocity

at the location of the continuum peak (∼ 47.4 km s−1). If vacc,los < (vfil − vmean), a

global red-shift of F3 will be observed with respect to vmean.

The mass flow along the filament is estimated by first obtaining an approximate

value for the mass contained within the dotted area surrounding the SW core in

Figure 3.19. The total mass surface density (taken from KT13) contained within

this region is converted to a mass of ∼ 96M⊙. The mass surface density of the

filament envelope is estimated by calculating an average value (per pixel) from

several polygons, selected to be below a mass surface density of 0.07 g cm−2 (i.e.

10× the lower limit probed by the near infrared extinction map; see KT13 for

discussion). Subtracting the estimate for the envelope contribution (∼ 21M⊙),

gives a total mass in this region of the filament of 75M⊙.

This mass estimate incorporates all filaments within the dashed area. To es-

timate the contribution of F3 to the total mass, it is assumed that all filaments

have the same (constant) fractional abundance of N2H
+. By using the intensi-

ties and line-widths derived from the Gaussian fitting routine, one can calculate

the relative contribution each filament makes to the total mass in the specified

area. The percentage contribution F3 makes to the total integrated intensity (and

therefore mass) in the area is ∼ 46%. The mass contribution of F3 is therefore

(34.5± 17)M⊙ (estimating a ∼ 50% uncertainty in the mass due to 30% and 20%

uncertainties in the mass surface density and distance, respectively). This gives

a mass per unit length, M/Lobs =m=(69± 37)M⊙ pc−1, whereby Lobs is the ob-

served filament length of ∼ (0.5± 0.1) pc (i.e. the length of the dotted box in
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Figure 3.19).

The mean line-width (∆υobs) of F3 from the Gaussian decomposition in this

region is 0.61 km s−1. The total 1-D velocity dispersion (of the mean molecule)

can be calculated using (Fuller & Myers 1992):

σTOT =

√

∆υ2
obs

8ln(2)
+ kBTkin

(

1

µmH
−

1

mobs

)

(3.10)

whereby µ is the atomic weight of the mean molecule (2.33), and mH is the mass of

a Hydrogen atom. The above line-width therefore, corresponds to a 1-D velocity

dispersion of σTOT ∼ (0.340± 0.03) km s−1 (this uncertainty incorporates both the

error in the measured FWHM (given the Gaussian fitting routine) ∼ 7%, and an

estimated 33% uncertainty on the temperature, i.e. 15± 5K). The equation for

the virial mass per unit length for an isothermal self-gravitating cylinder (Ostriker

1964, Stodólkiewicz 1963) as modified to include the total velocity dispersion of a

mean molecule (i.e. including both the thermal and non-thermal contribution to

support; Fiege & Pudritz 2000) is:

(M/L)crit = mcrit =
2σ2

TOT

G
. (3.11)

This gives a value of mcrit=(53± 9)M⊙ pc−1, i.e. m/mcrit=1.3± 0.7. This value

is similar to that derived by Busquet et al. (2013) for several filaments in the

G14.225–0.506 complex.

The velocity gradients directed towards the continuum peak are not symmetric

(north of the central position, and south of this point have mean gradients of

∼ 2 km s−1 pc−1, and 3 km s−1 pc−1, respectively). It is noted however, that this
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may simply be a geometric effect caused by the kink in the filament. For simplicity,

the velocity gradient at each point is assumed to be constant. Assuming that the

northern portion of the filament is inclined at Θ=45◦ (this is an arbitrary choice),

would result in the southern portion being inclined by Φ=55.6◦ (or Θ=124.4◦).

The flow of mass along the filament, Ṁ , is calculated using (Kirk et al. 2013):

Ṁ = vaccρA = vaccm, (3.12)

where vacc is the velocity of the accreting material, ρ is the mass density of the

filament, A is the area perpendicular to the flow, and m is the mass per unit

length. Accounting for projection effects, Equation 3.12 can be rewritten:

Ṁ =
∇vM

tan(Θ)
, (3.13)

using vacc,obs =∇vLobs, where vacc,obs and Lobs are the observed line of sight ac-

cretion velocity (attributed to the velocity change along the filament), and the

observed filament length, respectively (these values are subject to inclination ef-

fects). Here, ∇v is the calculated velocity gradient. Assuming an inclination angle

of 45.0◦ north of the core, corresponding to 55.6◦ to the south (see Figure 3.20),

and a velocity gradient, ∇vacc,los =(2.0± 0.1) km s−1 pc−1 (the mean value calcu-

lated north of the core), a total mass accretion rate of ∼ (7± 4)×10−5M⊙ yr−1 is

found. Figure 3.21 shows how the mass accretion rate would vary with inclination

angle according to Equation 3.13.

A value for the free-fall time of the cylinder, assuming homologous collapse, is



158

estimated following the analysis of Pon et al. (2012):

τ1D = τ3DA

√

(

2

3

)

, (3.14)

where τ1D is the cylinder collapse time-scale, for a cylinder of aspect ratio, A,

and where τ3D is the classical free-fall time-scale for the collapse of a sphere with

an equivalent (constant) volume density (τ3D=
√

[3π]/[32Gρ]). At a filamentary

mass flow rate of 7×10−5M⊙ yr−1, ∼ (36± 25)M⊙ could be accumulated at the

central continuum core within an estimated free-fall time of (5± 3)×105 yrs (for

a cylinder of aspect ratio, A=Lobs/2r∼ 2.8±0.8, and τ3D ∼ (2.3± 0.9)×105 yrs),

i.e. similar to the mass of the filament within this region.

A filamentary mass flow of 7×10−5M⊙ yr−1 is approximately twice that ob-

served towards the Serpens South cluster (3×10−5M⊙ yr−1; Kirk et al. 2013). It

is also greater than that traced towards specific continuum peaks in the Serpens

South cluster-forming region (1.4×10−5M⊙ yr−1; Friesen et al. 2013). In SDC13,

Peretto et al. (2014) estimate a mass accretion rate of 2.5×10−5M⊙ yr−1 towards

the convergence point of three filamentary structures, whose velocity patterns in-

voke a similar structure to that discussed in Figure 3.20. Towards SDC335.579-

0.272 Peretto et al. (2013) quote a global mass infall rate of 2.5×10−3M⊙ yr−1.

However, the quoted filamentary mass accretion rate (7×10−4M⊙ yr−1; a factor of

10 larger than that observed in the F3 filament), is the combined accretion rate of

6 filaments. In addition, the mass flow rate within F3 is much smaller than that

calculated in Jiménez-Serra et al. (2014), i.e. 5×10−3M⊙ yr−1, estimated from the

velocity gradients observed in CO emission using the IRAM 30m telescope. This

will be discussed further in Section 3.5.2.
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Figure 3.21: Filamentary mass flow rate versus inclination angle for the velocity
gradient pattern surrounding the SW core. Highlighted by dashed lines are the
mass accretion rates for the northern (black) and southern (red) portions of the
filament inclined at angles Θ=45◦ and Φ=55.6◦, respectively (see Figure 3.20).
The summation of the two dashed accretion rates gives the total mass accretion
rate along filament F3, Ṁ ∼ 7×10−5 M⊙ yr−1.

This velocity pattern is not isolated to this core. Velocity gradients of F2b

point towards the ‘E’ continuum peak (see Figure 3.19). Using the same ge-

ometry outlined above for this continuum peak, a similar mass accretion rate

of ∼ (8± 4)×10−5 M⊙ yr−1 is estimated. The mass per unit length of F2b in

this region is (115±56)M⊙ pc−1; greater than the critical mass per unit length,

mcrit=(59±11)M⊙ pc−1, by a factor of ∼ 2±1. The free-fall time estimated for

this region is (2± 1)×105 yrs (where Lobs =0.45 pc, and r=0.13 pc). Therefore,

within a single free-fall time, assuming a constant accretion rate, an additional

Chapter4/Chapter4Figs/EPS/massacc_projection.eps
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∼ (16± 11)M⊙ of material may accumulate at the continuum peak.

Similar geometry to that illustrated in Figure 3.20 has been previously used to

explain filamentary accretion by Balsara et al. (2001). Here, material is directed

along filamentary structures, decelerating towards a core situated at the apex. In

the observation presented here, the magnitude of the velocity gradient decreases

towards the central region. However, this alone is not an indication that the mass

flow is decelerating towards the centre of the continuum peak.

The reduction in velocity gradient towards the centre is because each gradient

is calculated from a relatively large area (see Section 3.4.2). Therefore, towards the

centre of the core, the area over which the calculation is performed incorporates

velocities that oppose each other (see top-left of F3 panel in Figure 3.16). However,

the velocity gradient between the location of peak velocity and the surrounding

material can be estimated for a given pixel using:

∇vi =
(VLSR,peak − VLSR,i)

d
, (3.15)

whereby VLSR,peak is the maximum value of velocity (offset = -2.27′′, 10.77′′), VLSR,i

is the velocity of a surrounding point, and d is the angular separation between

those points. The velocity gradients both to the north, and south of the contin-

uum peak decrease with decreasing angular separation, i.e. ∇vn ( km s−1 pc−1)=

(1.5± 0.1)d+(2.5± 0.1), and ∇vs ( km s−1 pc−1)= (27.2± 0.1)d+(0.8± 0.1)), re-

spectively. This implies that the velocity gradient is largest at both ends of the fil-

ament, as predicted during free-fall collapse of cylinders (e.g. Myers 2005, Peretto

et al. 2007, Pon et al. 2011). However, it is noted that this decreasing gradient

(with respect to the core) may simply be a geometric effect. If the filament has
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Figure 3.22: A schematic to explain the velocity gradient pattern observed in the
top panel, under the assumption that it represents an expanding shell of material.
The angles and symbols are identical to Figure 3.20

.

an arc-like structure, a constant accretion velocity may appear as a deceleration

towards the core (along the line of sight) as velocity is “lost” to the plane of the

sky.

High-angular resolution observations of infall tracers may help to constrain

some of the questions this geometry raises (cf. the analysis of Kirk et al. 2013

exploiting HNC self-absorption to estimate infall rates).

Scenario 2: Expanding shell

An alternative scenario would involve the opposite geometry to that discussed

above. In this case, the N2H
+ emission and the velocity pattern observed, may

be explained by an expanding shell of dense gas (possibly due to the interaction

Chapter4/Chapter4Figs/EPS/shell.eps
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Figure 3.23: CO (1 − 0) IRAM30m data observed towards the SW core (see
Section 3.5.1). There is tentative evidence for a high-velocity, red-shifted wing
(46.5-49.0 km s−1) of emission which may indicate the presence of an outflow to-
wards this location.

of outflows, and/or stellar winds, see Figure 3.22 for a schematic). In symmetry

with the infall scenario, only the gas associated with F3 is depicted. The SW peak

is coincident with 8 µm, and 24 µm emission. Figure 3.23 is shows a IRAM30m

12CO (1−0) spectrum taken towards the location of the SW core. There is tentative

evidence for a high-velocity, red-shifted wing. This may indicate the presence of

an outflow at this location.

Additional supporting evidence for expanding shells around the protostellar

objects in G035.39-00.33, arises from the velocity structure of core labelled ‘N’ in

Figure 3.19. An ‘U’-shaped structure (above 10σ) is evident in Figure 3.5 between

25′′.D. 50′′ (where ‘D’ corresponds to the distance along the PV slice), centred

on ∼ 40′′ (Figure 3.5). This corresponds to the offset location of core N. Such

structures have been discussed by Arce et al. (2011), who have modelled expanding

Chapter4/Chapter4Figs/EPS/12co_30m.eps
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bubbles in a turbulent medium and applied this to shell-like structures in Perseus.

If the source is located in the centre of the filament, a ring-like structure will be

observed in the PV plane. However, Arce et al. (2011) show that if the source

is located to the near, or far side of the natal filament/cloud, then emission (of

the filament/cloud) in the PV plane would be in a U-shape, either red-shifted or

blue-shifted away or towards the observer, respectively. Relating this back to core

N, the observed emission pattern in the PV analysis may indicate the interaction

between an embedded protostar and the surrounding dense gas (and this may

therefore be analogous to the SW core).

Similar structures are also observed towards the SW core (see ‘C’-shaped struc-

tures in slices B4–B6 in Figure 3.8, which dissect the SW core). However, such

patterns may simply be explained due to the emergence of additional components

(also note that F3 is detected away from the SW core; see slices A0–A4 in Fig-

ure 3.7). This is therefore inconclusive.

It is noted that the velocity gradient arrows of F2a show a similar pattern to

those seen in F3, but in the opposite direction, i.e. arrows point away from the SW

core (see Figure 3.16). The fact that the apex of both the F2a and F3 structures

are not directly coincident (there is a projected separation of the apex of 0.17 pc),

could be explained by a non-symmetric interaction between the outflow and the

cloud.

The expanding shell scenario would suggest that the SW continuum core is

situated at an intermediate velocity between F2a and F3 (i.e. at a velocity most

similar to F2b∼ 46 km s−1). One can crudely estimate the momentum of the swept

up material using:

Pshell = Mshell(VLSR,peak − VLSR,edge), (3.16)
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whereby Mshell is the mass of the shell (i.e. of filament F3) estimated in the

previous section (34.5± 17M⊙), VLSR,peak is the peak velocity in the system, and

VLSR,edge is the velocity at the boundary of the velocity gradient analysis. The

velocity difference (VLSR,peak −VLSR,edge) is ∼ 0.7 km s−1, which gives a momentum

of ∼ 24± 12M⊙ km s−1. This momentum is smaller than those observed towards

expanding shells in Perseus (typical values > 100M⊙ km s−1, although it is depen-

dent on the mode of star formation; Arce et al. 2011). In addition, the observed

spatial extent of the Perseus shells are larger (∼ 1 pc, compared with 0.2-0.3 pc

in G035.39-00.33). However, Quillen et al. (2005) report smaller cavities (of the

order 0.1–0.2 pc), with velocity widths ∼ 1-3 km s−1 in NGC1333, comparable to

the peak velocity difference between F2a and F3 (see Figure 3.15). In this scenario,

“filaments” or, more correctly, shells in G035.39-00.33 may have originally made

up a single structure that has subsequently separated as a natural consequence of

the dynamic process of star formation.

It must be noted however, that whilst there is some evidence for broad red-

shifted emission of CO (1-0) at the SW core, no blue-shifted emission is evident at

the location of the F2a apex. In addition, in the region of the SW core, filaments

F2a and F3 provide contributions of 49% and 46%, to the total integrated inten-

sity (the remaining 5% is attributed to F2b), respectively. This would suggest

therefore, that if the continuum peak was situated at an intermediate velocity,

this position is almost devoid of N2H
+ emission, as it has been “swept up” by

the expanding shell. However, N2H
+ emission is typically detected in the regions

surrounding forming protostars (at an equivalent scale to the PdBI observations

∼ 15000 au; e.g. Fontani et al. 2008, Tobin et al. 2013). This may indicate that

the SW protostar is significantly influencing the surrounding environment, and
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the N2H
+ abundance has reduced as a consequence. Finally, as evidenced in Fig-

ure 3.17, no obvious broadening of the lines is observed towards the apex of these

structures. If F2a and F3 are treated as a single (expanding shell) entity, as in the

moment analysis of Figure 3.1, a broadening of the dispersion is observed. However,

as can be clearly seen from offset location (-4.24′′, 10.77′′) in Figure 3.12, there are

two Gaussian components, that show no evidence of line-wings. Follow-up high-

angular resolution observations of molecular outflow, and shocked gas tracers are

needed in order to validate this scenario.

3.5.2 Disentangling the complex kinematics of G035.39-

00.33

Interpreting velocity components: Independent structures or projection

effects?

The “simple” picture of G035.39-00.33 appearing as a single filamentary structure

in the extinction map of KT13, is a deceptive one. Previous single-dish studies

(Chapter 2, Jiménez-Serra et al. 2010, 2014) have revealed that G035.39-00.33 in

fact comprises multiple filamentary structures along the line of sight. Moreover,

these filaments overlap towards the position of the most massive core in the region,

H6 (Chapter 2, Jiménez-Serra et al. 2014). Large-scale kinematic studies revealed

the presence of three filaments, filament 1, 42.95± 0.17 km s−1; filament 2 (the

main IRDC filament), 45.63± 0.03 km s−1; and filament 3, 46.77± 0.06 km s−1

(Chapter 2). Due to the high-angular resolution of this study, it is evident that

filament 2 can be resolved into two separate structures, F2a (45.34± 0.04 km s−1)

and F2b (46.00± 0.05 km s−1). In addition, the high-angular resolution PdBI map
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reveals that individual filaments can be both spectrally, and spatially resolved (see

Section 3.3.1).

Figure 3.24 highlights the “spine”, i.e. the peak intensity for each filamentary

structure identified in the PdBI data (as derived from the fitting routine outlined

in AppendixA.2). This image has been generated by calculating an intensity-

weighted offset right-ascension for every offset declination. The decomposition

of G035.39-00.33 into multiple velocity components bears striking resemblance to

the intricate filamentary structure observed in the L1495/B213 complex in Taurus

identified by Hacar et al. (2013). In L1495/B213, a total of 35 structures have been

identified. In addition, these filaments can be grouped into several “bundles” based

on their chemical and kinematic properties. Hacar et al. (2013) suggest a possible

hierarchical route of fragmentation from cloud→ bundles→ filaments→ cores. In

the case of G035.39-00.33, given the discussion posed in Section 3.5.1, it is interest-

ing to ask the question, ‘are the observed filaments part of the initial conditions of

star formation, or are they a consequence of projection effects, and/or protostellar

feedback?’

Previous single-dish studies, Chapter 2 and Jiménez-Serra et al. (2014), noted

the presence of a large-scale (∼ 2–3 pc) velocity gradient, with Jiménez-Serra et al.

(2014) suggesting several plausible reasons for its origin. One scenario involves

global accretion of material onto H6, along filament 2. In this scenario, estimating

a mass accretion rate gives a value of the order 5×10−3M⊙ yr−1, two orders of

magnitude greater than the mass accretion rate estimated towards cluster forming

regions in the Serpens molecular cloud (Friesen et al. 2013, Kirk et al. 2013).

This may suggest that F2a and F2b actually represent a change in velocity (i.e.

from low-to-high velocity), but are in fact still part of the same parent structure
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Figure 3.24: The peak intensity “spine” of each filament in G035.39-00.33(see
text for details), overlaid on the mass surface density map of KT13, and the 3.2mm
continuum contours. Cyan, red, and green refer to filaments F2a, F2b, and F3,
respectively. The additional symbols, and contour values are identical to those in
Figure 3.16.

Chapter4/Chapter4Figs/EPS/intensity_spine.eps
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(filament 2). This “jump” in velocity would be similar to the velocity structure

of collapsing filaments generated in numerical simulations of colliding flows by

Gomez & Vazquez-Semadeni (2013). However, in order to simultaneously observe

two spectral velocity components (as opposed to a single component that exhibits

an abrupt change in velocity at the location of star formation; Gomez & Vazquez-

Semadeni 2013) over a large spatial extent (as is observed in G035.39-00.33; see

Figure 3.24), the filament would have to be aligned close to the line of sight. Whilst

this cannot be ruled out, G035.39-00.33 is extended over several parsecs in the

plane of the sky, and therefore this seems unlikely.

An alternative scenario would be that F2a and F2b may represent the ra-

dial collapse of the filaments. This would explain why two spectral features are

observed over a large spatial extent. In this scenario, F2a and F2b would repre-

sent the front and back of an inclined, radially collapsing filament. By inference

therefore, this would mean that the N2H
+ is depleted at intermediate velocities

(as the optical depth of the isolated components is typically τ < 1, as seen in

Section 3.3.3). Although depletion of N2H
+ has been observed towards low-mass

starless cores (e.g. Bergin et al. 2002, Caselli et al. 2002b), the observed abun-

dance decrease is typically limited to a factor of ∼ 2. In addition, it is clear from

Figure 3.10 that the observed integrated N2H
+ emission rises with increasing mass

surface density, suggestive of optically thin conditions and negligible depletion (in

fact, there is some indication that the N2H
+ abundance actually increases towards

regions of high extinction).

The PdBI data therefore imply that the global north-south velocity gradient

observed in single-dish data may, in fact, be explained by the presence of sub-

structure within “filament 2” (i.e. F2a and F2b). Smith et al. (2013), using model
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emission profiles from hydrodynamic simulations of a collapsing cloud, show that

multiple velocity components are common in optically thin molecular line tracers

in massive star forming regions. Moreover, they show that the degree of multi-

plicity increases with greater angular resolution. This is analogous to the contrast

between line-profiles observed in chapter 2 and this chapter. This also confirms

that high-angular resolution observations are a necessity when investigating the

complex kinematics of massive star forming regions.

The PdBI data indicates that the gas motions are dominated by local veloc-

ity gradients of the order ∼ 1.5–2.5 km s−1 pc−1, whereas global velocity gradi-

ents, and those observed in the north–south direction are smaller by comparison

(∼ 0.7 km s−1 pc−1, and < 0.3 km s−1 pc−1, respectively; see Section 3.4.2). Given

that the filaments are resolved spectrally, have differing velocity patterns, and

(in the case of F2a/F2b and F3) are resolved spatially (cf. Figure 3.3), they are

identified as independent structures.

Complex velocity patterns

Away from H6, in the very south of F2a (∆δ < -50′′) and in the north of F2b

(∆δ > 40′′), uniform gradients in the east→west direction are observed. In addi-

tion, the velocity pattern observed in F2a at offset (8′′, -30′′) indicates that velocity

increases towards the centre of the filament (see also Figure 3.1). This feature is

spatially coincident with a localised increase in the velocity dispersion (see Fig-

ure 3.17). Gradients such as these do not seem to be associated with any specific

continuum peak. Thus, it is possible that these gradients may represent global mo-

tion of the filaments, rather than those related to the early stages of star formation

(as mentioned in Section 3.3.2).
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The non-thermal motions of G035.39-00.33’s sub-filaments are mildly super-

sonic. The mean velocity dispersion (as calculated from the Gaussian fitting rou-

tine) across all three filaments is ∼ 0.33 km s−1. Whilst the derived supersonic line-

widths are in contrast to low-mass star forming filaments (e.g. Hacar et al. 2013,

who find σNT/cs∼ 0.61± 0.17 km s−1, using N2H
+ towards the L1495/B213), they

are narrower than those observed towards other IRDCs. Sanhueza et al. (2012)

find that broad N2H
+ line-widths are correlated with the star formation activity

of clumps. They find line-widths in the range 1.6–4.6 km s−1 (corresponding to

dispersions of ∼ 0.7–2.0 km s−1). Higher-spectral resolution studies are needed to

verify results such as these in regions where a broad velocity dispersion may be

explained by presence of unresolved spectral features. In regions where multiple

spectral features are evident, moment analysis misleadingly indicates a larger dis-

persion than that of the individual components (by a factor of ∼ 2; see Figure 3.1,

and the spectrum at offset= -4.24′′, 10.77′′ in Figure 3.12, for example). Gaus-

sian decomposition of the spectra is therefore necessary to establish the velocity

dispersion of individual filaments.

The left hand panels of Figure 3.25 show how the non-thermal velocity disper-

sion of each individual filament changes with respect to the main beam brightness

temperature at all positions in the cloud. In Hernandez et al. (2012), the total

velocity dispersion derived from the C18O (2−1) was identified to decrease towards

the central, and dense portion of G035.39-00.33. Similarly, in Jiménez-Serra et al.

(2014), the relationship between the non-thermal dispersion and TMB was studied

for CO isotopologues, 13CO (2− 1), 13CO (3 − 2), and C18O (2− 1). In all cases

σNT was shown to increase with decreasing TMB with a power law trend. The

dependency of σNT on TMB was also shown to decrease with the increasing critical
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Figure 3.25: Non-thermal velocity dispersion (σNT) for F2a, F2b, and F3, derived
from N2H

+ FWHM for every position in the cloud, versus (from left-to-right)
main beam brightness temperature (TMB), offset declination (∆δ), and offset right
ascension (∆α), respectively. In each plot, the horizontal dotted and horizontal
dashed lines refer to the approximate thermal velocity dispersion for N2H

+ at 15K
(=0.066 km s−1), and the sound speed for a mean molecular mass of 2.33 a.m.u
(= 0.23 km s−1), respectively. Vertical dashed lines refer to the location of H6 (∆δ
= 21.71′′, ∆α = 2.99′′), from BT12.

density of molecular line tracers. In Figure 3.25, a similar trend for filaments F2a

and F2b is found, in that there is an overall decrease of the non-thermal compo-

nent with increasing brightness. In Pineda et al. (2010), studying star formation

in the B5 region of Perseus, intensity (in this case antenna temperature) is used

as a proxy for density. The trend of decreasing turbulent motion with increasing

intensity therefore represents a “transition to coherence” within close proximity to

the location of star forming cores.

Chapter4/Chapter4Figs/EPS/dvnt.eps
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In contrast to filaments F2a and F2b however, turbulent motion actually in-

creases towards H6 in filament F3. This is evident in the central, and right-hand

panels of Figure 3.25. Here, the relationship between σNT, offset declination (cen-

tral panels), and offset right ascension (right-hand panels) is plotted for each fila-

mentary structure in G035.39-00.33. In the central and right-hand panels of F3,

it is evident that the broadest lines, and therefore the lines with the greatest non-

thermal component, are spatially coincident with H6. In low-mass star-forming

regions, pre-stellar cores show slight (∼ 60%) line broadening towards their cen-

tres, possibly due to the infall of material (Crapsi et al. 2005). In G035.39-00.33,

this peak is not directly coincident with the SW continuum core discussed in Sec-

tion 3.5.1. Instead, the peak in the non-thermal velocity dispersion is coincident

with a starless core to the north of here (see Figure 3.17). Higher-angular resolu-

tion observations of higher-density tracers are needed in order to understand the

behaviour of star forming cores in relation to the surrounding dense filamentary

material.



173

3.6 Conclusions

This chapter has presented a detailed kinematic study using high-sensitivity and

high-spectral resolution PdBI observations of N2H
+ (1-0) towards G035.39-00.33.

The results and analysis lead to the following conclusions:

1. Multiple filaments are identified both spectrally and spatially. F2a, F2b, and

F3 have mean centroid velocities of 45.34± 0.04 km s−1, 46.00± 0.05 km s−1,

46.86± 0.04 km s−1, respectively.

2. The abrupt change in velocity noted at the location of H6 (Chapter 2, Jiménez-

Serra et al. 2014), rather than being indicative of large scale flows towards

H6, may be explained due to the decomposition of filament 2 into two fila-

ments (F2a and F2b).

3. F2a, F2b, and F3 have mean line-widths (FWHM) of (0.83± 0.04) km s−1,

(0.77± 0.04) km s−1, and (0.71± 0.04) km s−1, respectively. The ratio of

non-thermal to thermal (for N2H
+) velocity dispersion for each velocity com-

ponent is 5.4, 5.0, and 4.7, respectively. The ratio of the non-thermal compo-

nent of the line-width to the isothermal sound speed for an average molecule

(mass = 2.33 a.m.u.) at 15K are 1.6, 1.4, and 1.4, respectively. This indi-

cates that the gas motions are mildly supersonic. In regions where multiple

spectral components are evident, moment analysis can overestimate the non-

thermal contribution to the line-width by a factor & 2.

4. Globally, the kinematics of the gas are relatively quiescent, indicated by

the small velocity gradients observed over each filament (of the order <
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0.7 km s−1 pc−1). Locally, however, the mean velocity gradients can reach ∼

1.5–2.5 km s−1 pc−1.

5. There is some indication that the kinematics of the dense gas may be in-

fluenced by the self-gravity of dense cores within filaments, or possibly by

outflow feedback from already forming stars. Further molecular line obser-

vations are required to discern between these two scenarios. For these two

opposing scenarios the following has been calculated:

(a) Infall : The mass accretion rate is estimated to be∼ (7±4)×10−5 M⊙ yr−1.

The filaments retain their structure within the vicinity of H6, and in-

dividual filaments appear to feed individual cores. The SW continuum

core could accrete an additional (36± 25)M⊙, in an estimated free-fall

time of (5± 3)×105 yrs.

(b) Expanding shell : The momentum for the expanding shell is estimated

to be ∼ (24± 12)M⊙ km s−1. The dense filamentary structures may

have been separated from the main body of IRDC material due to the

dynamic processes of star formation.

This analysis highlights the importance of combining high-sensitivity and high-

spectral resolution data at high-angular resolution, to put quantitative constraints

on the dynamics of high-mass star forming regions.



Chapter 4

Unveiling the core population of

the filamentary infrared dark

cloud G035.39–00.33

4.1 Introduction

Whether or not massive stars form through a similar mechanism to low-mass

stars, or by means of a different paradigm is an open question (see Section 1.2).

Intermediate and massive stars may be born from relatively high-mass pre-stellar

cores which are more massive than the thermal Jeans mass. Understanding and

categorising the initial conditions for star formation would not be complete without

studying the physical properties of the pre- and protostellar cores out of which stars

form.

IRDCs have long been discussed in the context of massive star and stellar

cluster formation (e.g. Battersby et al. 2010, Rathborne et al. 2006). More recently,



176

IRDC clumps and cores have been subjected to targeted follow-up observations

at high-angular resolution attempting to verify their status as the pre-cursors to

massive stars (e.g. Rathborne et al. 2007, Tan et al. 2013b, Wang et al. 2014). Such

studies have revealed hierarchical fragmentation in dense molecular gas from the

clump-scale down to 0.01 pc. Typically, the mass of the fragments is significantly

greater than the Jeans mass. This indicates that turbulence and/or magnetic fields

may play a significant role in the earliest stages of clustered star formation.

The previous chapters have presented in-depth analysis of both the large- and

small-scale kinematics of G035.39-00.33. Chapter 2 revealed that the image of

G035.39-00.33 as a single filament (as can be seen in the mass surface density

map of Figure 2.2), is deceptive. G035.39-00.33 comprises a complex network of

filamentary structures. Chapter 2 also suggested that these filaments appear to

overlap towards the densest core in the map, H6. Chapter 3 revealed that at high-

angular resolution, the velocity field of each of these filaments is complex, with

local gradients dominating over global gradients. Moreover, the kinematics of the

gas appears to be influenced by the presence of continuum cores.

To date, no attempt has been made to identify the core population of G035.39-

00.33 at high-angular resolution. The aim of this chapter is to reveal the underly-

ing embedded core population and level of fragmentation, as well as establishing

masses, densities, and sizes of the star-forming cores within G035.39-00.33. By

incorporating the wealth of kinematic information extracted in Chapters 2 and 3

the dynamical state of the cores will also be determined. The ultimate goal of this

chapter is to understand the star formation potential of IRDC G035.39-00.33.

This chapter is organised as follows: Details of the observations can be found

in Section 4.2. The observational results and the methodology used to identify
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structure within the data is described in Section 4.3. In Section 4.4 the physical

parameters of identified structures are extracted. The findings are discussed in

Section 4.6 before being concluded in Section 4.7.



178



179

4.2 Observations

4.2.1 Plateau de Bure Interferometer

The 3.2mm continuum observations were carried out using the IRAM PdBI,

France. A 6-field mosaic was used to cover the inner area of the IRDC as can be

seen in Figure 4.1. The final map size is ∼ 40′′ × 150′′ (corresponding to ∼ 0.6 pc×

2.1 pc, at a distance of 2900 pc). Further details of the observations can be located

in Chapter 3. The 3.2mm continuum data was CLEANed using the Hogbom algo-

rithm. Line-free channels give a total bandwidth of ∼ 3GHz. The natural weight-

ing of the data results in a synthesised beam of 4.2′′× 3.1′′, with a position angle of

17.3◦. The typical rms map noise level is 0.07mJybeam−1 as approximated from

emission-free regions.

The analysis within this chapter utilises the N2H
+ (1−0) data discussed further

in Chapter 3. Both the merged PdBI and IRAM30m data, and the PdBI-only

data are shown. The PdBI-only data have been reduced in the same manner as

the merged data set (more details on the reduction can be found in Chapter 3).

The resulting synthesized beam has angular size 3.9′′ × 3.1′′ (position angle =

33◦).

4.2.2 Submillimeter Array

The 1.3mm continuum data was observed using the Submillimeter Array (here-

after, SMA), in the subcompact configuration1. Observations were performed in

a single track in March 2011. The phase centre of the observations was set at

1Proposal: “The initial conditions of massive star and star cluster formation in IRDCs.”, PI:
Izaskun Jiménez-Serra
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α(J2000)=18h57m08s.00, δ(J2000)=02◦10
′

50
′′

.0 (i.e. towards the H6 region).

The receivers were tuned to an LO frquency of 218.112GHz and the correlator

provided a spectral resolution of 3.25MHz (i.e., ∼ 4.5 km s−1). The continuum

emission was extracted using the line-free channels from a maximum available

bandwidth of 6.6GHz. Four higher spectral resolution chunks were used to ex-

tract line data (not discussed here).

The data calibration was carried out within the IDL MIR1 software package.

Continuum subtraction, imaging, and deconvolution were performed in MIRIAD.

The synthesised beam has dimensions 6.7′′ × 5.1′′, with a position angle of -36.6◦.

Following CLEANing, the map centre was then re-projected to the centroid coor-

dinates of the PdBI observations.

1https://www.cfa.harvard.edu/cqi/mircook.html

https://www.cfa.harvard.edu/∼cqi/mircook.html
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4.3 Observational results: identifying substruc-

ture

The left-hand panel of Figure 4.1 shows the spatial extent of the PdBI 6-field mo-

saic (dotted circles) with respect to the mass surface density map of G035.39-00.33

(KT13). The 3.2mm continuum emission is overlaid in black contours. Contour

levels begin at 3σ, and increase in 2σ steps (where σ∼ 7×10−2mJybeam−1).

In addition, the locations of extended 4.5 µm emission (otherwise known as Ex-

tended Green Objects; EGOs; Cyganowski et al. 2008) are shown as green squares

(Chambers et al. 2009). The positions of 8 µm and 24 µm sources are overlaid

as red circles, and red triangles, respectively (Carey et al. 2009, Jiménez-Serra

et al. 2010). Massive (> 20M⊙) and low-mass cores reported by Nguyen Luong

et al. (2011) are overlaid as Cyan and Yellow squares, respectively. Finally the

locations of the most massive 1.2mm continuum peaks are plotted as black crosses

(Rathborne et al. 2006).

Rathborne et al. (2006), using observations of 1.2mm continuum emission from

the IRAM30m telescope (11′′ resolution), identified only a single ‘core’ in the

region mapped using the PdBI, MM7 (hereafter H6; BT09). Figure 4.1 reveals

G035.39-00.33 harbours multiple cores that are spatially coincident with the re-

gions of greatest extinction. Close-up images of H6 are displayed in the right-hand

panels of Figure 4.1. The top panel is the PdBI 3.2mm data, whereas the bottom

panel displays the 1.3mm SMA data. The peaks identified in the SMA data can

be located in the PdBI image, however, the PdBI data reveals substructure not

detected by the SMA. This is due to the factor of ∼ 2 increase in angular resolution.
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Figure 4.1: Left: The mass surface density plot of KT13 (grey-scale) overlaid
with 3.2mm continuum contours. Contour levels start at 3σ and increase in steps
of 2σ (where σ∼ 7×10−2 mJybeam−1). Dotted circles indicate the 6-field mosaic
performed with the PdBI. Cyan and yellow squares refer to the high-mass and
low-mass dense cores identified in Nguyen Luong et al. (2011). Red circles and
red triangles refer to the 8, and 24 µm emission, respectively (Carey et al. 2009,
Jiménez-Serra et al. 2010), and green squares refer to the “green fuzzies” (extended
4.5 µm emission) identified by Chambers et al. (2009). Right-top: Close-up image
of the square in the left-hand panel enclosing the H6 region (contour levels are
the same as the left-hand panel). The PdBI beam (4.2′′ × 3.1′′; P. A.=17.3◦) is
indicated in the bottom left-hand corner. Right-bottom: 1.3mm Submillimeter
Array continuum contours. Contours start at 3σ, and increase in 9σ steps (where
σ∼ 0.3mJybeam−1). The SMA beam (6.7′′ × 5.1′′; P. A.= -36.6◦) is indicated in
the bottom left-hand corner. In both cases the dotted contour refers to the negative
2σ level.

Chapter5/Chapter5Figs/EPS/cont_map.eps
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4.3.1 Methodolgy: dendrograms

In order to extract information on the observed continuum peaks, a form of struc-

ture tree analysis is used. Dendrograms have become a popular technique to

understand structure in astronomical data (Goodman et al. 2009, Houlahan &

Scalo 1992, Kirk et al. 2013, Rosolowsky et al. 2008). This technique is desirable

as the primary function is to detect hierarchical structures within data, thus al-

lowing one to compare the properties of cores to those of their natal clumps. This

analysis uses astrodendro1, a Python package used to compute dendrograms

from astronomical data.

Dendrograms are split into three main components: trunks, branches, and

leaves. To compute the dendrogram, it is stipulated that significant emission lies

above the 3σ threshold (∼ 0.2mJybeam−1 and 0.9mJybeam−1, for the 3.2mm

PdBI and 1.3mm SMA data, respectively). This defines the trunk of the den-

drogram (although it is possible for structures to not have any parent material).

Secondly, each subsequent structure must be > 2σ above the value of its parent

material. This identifies branches (or leaves), embedded within parent material

(i.e. the trunk or branch). Thirdly, a leaf must include (at least) the equivalent

number of pixels as there would be in the synthesised beams of either the PdBI or

SMA data (24 and 32, respectively). A leaf is the final piece in the dendrogram

hierarchy, and represents the limit imposed by angular resolution.

The astrodendro package calculates the location, area, peak, and total fluxes

of the identified structures. The sizes of the dendrogram leaves are estimated using

1http://www.dendrograms.org/

http://www.dendrograms.org/
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the effective radius, Reff :

Reff =

√

NpixApix

π
, (4.1)

where Npix is the total number of pixels that have an area Apix. This value corre-

sponds to the radius of a circle that would have the equivalent area of the dendro-

gram structure (i.e. spherical geometry is assumed). The final radius is expressed

following deconvolution with the synthesized beam of the data, using the following

equation:

Rdecon =
[(2Reff)

2 − (θmean)
2]1/2

2
, (4.2)

where θmean is the geometric mean of the major and minor axes of the synthesized

beam. If however, Rdecon <θmean/2, i.e. where a source is only marginally resolved,

then Reff is used for the radius. In the following sections, when reference is made

to the ‘radius’ of a given structure, the above considerations are implicit.

4.3.2 The hierarchical structure of G035.39–00.33

The upper left-hand image of Figure 4.2 is a surface plot of the 3.2mm continuum

emission. The intensity of the emission increases from blue to red, highlighting the

substructure within G035.39-00.33. The result of the dendrogram analysis can be

found in the lower left-hand plot of Figure 4.2. The y-axis corresponds to the peak

flux of each structure. Leaves are denoted by coloured vertical lines. The local

merge levels that stem from branches (i.e. the average flux level of the parent

structure to which multiple leaves are embedded), are indicated by horizontal

lines. In total, 14 leaves are identified. The mean radius of the leaves is ∼ 0.04 pc,

comparable to the observed sizes of IRDC cores (e.g. Tan et al. 2013b). Each leaf

is denoted by the prefix PdBI and an ID number in Table 4.1 (designated in order
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of increasing offset declination). There are two main parent structures, the first

of which contains the leaves in the region of H6 (from PdBI 8–14), and the second

is just south of here (leaves PdBI 3–7). PdBI 1 & PdBI 2 merge with the other

leaves at a flux of ∼ 2σ, indicating that all continuum leaves have the same parent

structure1. Information regarding identified leaves is presented in Table 4.1.

The right-hand plot of Figure 4.2 shows the location of the dendrogram leaves

overlaid on the 3.2mm continuum map (grey scale). Each number corresponds

to the leaf ID in the dendrogram plot in the left-hand panel. Leaves that have

no associated 4.5, 8, or 24 µm emission (i.e. where no IR emission is spatially

coincident) are colour-filled. Those leaves that overlap spatially with IR emission

sources are not filled. These leaves are also represented as dashed lines in the

dendrogram plot. Hereafter, leaves are referred to as being either IR dark and IR

bright, respectively. The prospect that IR bright and IR dark leaves represent two

distinct populations will be discussed further in Section 4.6.2.

The left-hand panel of Figure 4.3 is the dendrogram extracted using the 1.3mm

SMA data (to be compared with PdBI 8-14 in Figure 4.2). Only 2 leaves are iden-

tified (these are denoted by the prefix SMA and then an ID number designated

in order of increasing offset declination). Once again, any leaf spatially coincident

with either 4.5, 8, or 24 µm emission is shown as both a dashed line in the dendro-

gram, and an non-colour filled contour in the continuum map. The larger radii of

the identified SMA leaves (mean radius ∼ 0.065 pc compared with 0.04 pc for the

PdBI leaves) is consistent with the lower angular-resolution of the SMA data.

In this analysis, and specifically in relation to the PdBI data, the term ‘fila-

1It is important to note that this may not be the case if one was to include additional velocity
information.
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Figure 4.2: Left-top: The 3.2mm PdBI continuum flux as a 3-D surface plot,
highlighting the continuum peaks to be identified in the dendrogram analysis. Left-
bottom: The dendrogram tree structure of G035.39-00.33. Leaves are indexed in
increasing value of offset declination. Right: The PdBI 3.2mm continuum map
highlighting the spatial extent of the leaves identified in the dendrogram on the
right. Each leaf is colour coded and labelled. Non-colour-filled contours correspond
to those leaves that are spatially coincident with either 4.5, 8, 24 µm emission (or
some combination of these; Carey et al. 2009, Chambers et al. 2009, Jiménez-Serra
et al. 2010), which further correspond to the dashed lines in the dendrogram.

ment’ is used to describe the largest structure identified in the dendrogram, which

encompasses multiple all leaves. As discussed above, two main clumps are identi-

fied within G035.39-00.33, one incorporating the H6 leaves, hereafter referred to

as the H6 clump, and one to the south of here, hereafter referred to as the nar-

row clump (due to its association with the darkest, and most narrow, filamentary

Chapter5/Chapter5Figs/EPS/pdbi_dendro.eps
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Figure 4.3: Left: The dendrogram tree structure of the H6 region identified
with the SMA 1.3mm continuum. Leaves are indexed in increasing value of offset
declination. Right: The SMA 1.3mm continuum map highlighting the spatial
extent of the leaves identified in the dendrogram on the right. Each leaf is colour
coded and labelled. Non-colour-filled contours correspond to those leaves that are
spatially coincident with either 4.5, 8, 24 µm emission (or some combination of
these; Carey et al. 2009, Chambers et al. 2009, Jiménez-Serra et al. 2010), which
further correspond to the dashed lines in the dendrogram.

portion in the mapped region).

Given that identification of the smallest components of the dendrogram hier-

archy is limited by the angular resolution of the observations, they will retain the

identifier ‘leaves’ (and not cores). It is evident from Figure 4.2, that a number of

the leaves exhibit asymmetric boundaries (and in the case of PdBI 13 and PdBI 14,

these are very irregular). This is inconsistent with the assumption of spherical sym-

metry (see Section 4.3.1). It is plausible that a number of these leaves comprise

several structures unresolved at the resolution of the PdBI data. By continu-

ing to refer to these structures as leaves, no assumptions are made regarding the

possibility of substructure, as has been observed in recent investigations into the

Chapter5/Chapter5Figs/EPS/sma_dendro.eps
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Table 4.1: Output parameters from dendrogram analysis.

ID ∆αa ∆δ IR quiet?b Sc
peak Sd

tot Se
parent Sf

corr Area Rg
decon

(′′) (′′) (4.5/8/24 µm) (mJy beam−1) (mJy) (mJy beam−1) (mJy) (pc2) (pc)

PdBI 1 2.3 -61.6 N 0.41 1.23 0.15 0.55 0.013 0.059

PdBI 2 1.5 -48.6 N 0.63 1.73 0.15 0.94 0.015 0.064

PdBI 3 3.8 -33.4 Y 0.52 0.62 0.23 0.20 0.005 0.031

PdBI 4 5.3 -25.8 Y 0.51 0.69 0.27 0.19 0.005 0.032

PdBI 5 9.1 -19.0 Y 0.51 0.49 0.27 0.13 0.004 0.035

PdBI 6 4.6 -7.6 Y 0.53 0.38 0.34 0.08 0.003 0.028

PdBI 7 1.5 -0.8 Y 0.67 0.90 0.34 0.22 0.006 0.034

PdBI 8 -2.3 12.9 N 0.60 1.94 0.26 0.63 0.015 0.063

PdBI 9 7.6 22.8 Y 1.03 1.50 0.40 0.57 0.007 0.038

PdBI 10 0.8 22.8 Y 0.74 1.09 0.40 0.28 0.006 0.034

PdBI 11 -6.1 28.1 Y 1.10 1.88 0.27 0.90 0.010 0.051

PdBI 12 3.0 33.4 N 0.53 0.81 0.27 0.20 0.007 0.038

PdBI 13 -11.4 38.8 N 0.50 1.88 0.26 0.48 0.016 0.065

PdBI 14 -16.0 42.6 Y 0.50 1.35 0.24 0.43 0.011 0.054

SMA 1 0.8 9.7 N 12.82 19.85 4.61 8.29 0.019 0.066

SMA 2 7.1 22.4 Y 19.19 23.24 4.61 12.21 0.018 0.064

a Positions correspond to the offset locations of the peak fluxes within each leaf. b “N” indicates that there is either
4.5/8/24 µm (or a combination of these) spatially coincident with the leaf. c Peak flux density of dendrogram
leaf. d Integrated flux within the leaf area. e Flux height of first leaf merger. This is used to estimate the flux
correction for “core” material (see text for details). f Corrected leaf flux, see Section 4.3.3. g Deconvolved radius
of leaf, see Equation 4.2.

hierarchical fragmentation of IRDCs (e.g. Rathborne et al. 2007 and Wang et al.

2014 who reserve the term ‘condensation’ for substructure evident within IRDC

cores).

4.3.3 Flux correction

The dendrogram analysis technique’s primary function is to identify hierarchical

structure within data. In calculating the physical properties of dendrogram leaves,

Rosolowsky et al. (2008) presented three different “paradigms” in their analysis:

i) bijection; ii) clipping; iii) extrapolation. Such considerations were imposed
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Figure 4.4: A histogram of the flux correction factor, µcorr (following the nomen-
clature of Ragan et al. 2013). This is defined as the ratio of uncorrected to corrected
total leaf flux. The mean value of µcorr is 3.3.

because of the concern that closed objects, defined using intensity contours, may

be inaccurate and influenced by projection. The bijection paradigm attributes all

flux within a contour boundary to a given structure (e.g. a dendrogram leaf). The

clipping paradigm applies a flux correction to an object by assuming that leaves are

embedded within a structure whose brightness is equivalent to the merge level flux

(i.e. the peak flux of the parent branch, see Section 4.3.1). In the extrapolation

paradigm, the flux is extrapolated to the zero-intensity isosurface.

Ragan et al. (2013), using the dendrogram analysis technique to identify sub-

structure within IRDCs adopted the clipping paradigm. To perform this correc-

tion, the flux of the parent level is subtracted from each pixel within the leaf

boundary. The flux correction factor, µcorr, is defined as the ratio of uncorrected

to corrected flux. Figure 4.4 displays a histogram of µcorr, indicating that on aver-

age, fluxes are corrected by a factor 3.3. Rosolowsky et al. (2008) noted that the

clipping method provides an overly conservative estimate of the flux. In this analy-

Chapter5/Chapter5Figs/EPS/flux_cor.eps
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sis, the bijection paradigm is therefore adopted as the fiducial method for deriving

the physical properties of G035.39-00.33 (the extrapolation paradigm has not been

selected since it is thought to be most applicable in regions with negligible parent

material). However, both the bijection and clipping paradigms are used in parallel,

and their relevance is discussed further in Section 4.6.2. Throughout the remaining

sections of this chapter the fluxes estimated via the bijection and clipping methods

are referred to simply as ‘uncorrected’ and ‘corrected’ fluxes, respectively. Infor-

mation relating to the extracted dendrogram leaves (peak, integrated, branch, and

corrected fluxes) can be found in Table 4.1.
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4.4 Analysis: Deriving the physical properties of

G035.39–00.33

4.4.1 Mass and density estimates

The masses of continuum peaks identified in the dendrogram analysis are deter-

mined using the following equation (Hildebrand 1983):

M =
Sνd

2Rgd

κν,dBν(Td)
, (4.3)

whereby Sν is the observed integrated source flux density, d is the distance to

the object, Rgd is the gas-to-dust mass ratio, κν,d is the dust opactity coefficient

at a frequency, ν, and Bν(Td) is the Planck function at a dust temperature of

Td. In the interest of making comparison with several other studies, Kauffmann

et al. (2013a) have taken mass estimates quoted in the literature and normalized

these against a set of common parameters. The same parameter selection will

be adopted here. The parameters used are as follows: A distance of 2900 pc is

assumed for G035.39-00.33 (Simon et al. 2006b). A gas-to-dust ratio of Rgd =100

is adopted. As a function of frequency, κν,d =κν0,d(ν/ν0)
β, where β is the dust

emissivity spectral index. An opacity law for dust grains with thin ice mantles

coagulating for 105 yr at a density of 106 cm−3 is adopted from (Ossenkopf &

Henning 1994), i.e. κν0,d =0.9 cm2g−1 at a frequency of ν0=230GHz. A value of

β=1.75 (Battersby et al. 2011) is used to interpolate to κν,d at 3.2mm. A value

of κν,d ∼ 0.18 cm2g−1 is therefore used at ν =93GHz. A value of 15K is assumed

for the dust temperature (Nguyen Luong et al. 2011).
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Figure 4.5: A box plot showing the range in masses of the PdBI leaves. Diagonal
lined, and filled boxes represent uncorrected and corrected leaves, respectively.
Red boxes are IR dark whereas blue boxes are IR bright. The figure highlights
the minimum and maximum extent of the data, the length of the box represents
the interquartile range, the horizontal line represents the median, and the width
of each box is proportional to the square root of the number of data points (9 and
5 for the IR dark and IR bright leaves, respectively).

Using Equation 4.3, the uncorrected leaf masses range from ∼ 2.5 to 12.5M⊙,

whereas the corrected masses are smaller, ranging from 0.5 to 6.0M⊙. Figure 4.5

shows the mass distribution before (striped boxes) and after (filled boxes) flux

correction. In this diagram, leaves that are IR bright and IR dark are shown sep-

arately. Following the flux correction, masses are smaller, and cover a narrower

range. The derived physical properties can be found in Table 4.2. The derived

masses (and uncertainties) can be found in Columns 5 and 9 (for the uncorrected

and corrected leaves, respectively). The uncertainties quoted for the masses in-

corporate only the error in flux (∼ 10%) and the uncertainty in distance (∼ 20%;

Simon et al. 2006b). The implications of the above parameter selection, in partic-

Chapter5/Chapter5Figs/EPS/mass_boxplot.eps
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ular, the influence the dust temperature and opacity coefficient may have on the

results will be discussed further in Section 4.6.1.

The particle number density1 for the individual dendrogram leaves is computed

assuming spherical geometry using:

n =
M

4
3
πR3

deconµmH

∼ 3.4 × 105
(

M

10M⊙

)(

Rdecon

0.05 pc

)−3

cm−3. (4.4)

Uncorrected leaves have volume densities in the range n∼ 1.5–7.5× 105 cm−3 (for

the corrected leaves, n∼ 0.5–3× 105 cm−3). These values are consistent with those

measured towards other IRDCs. For example, Tan et al. (2013b) studying 6

IRDC cores with ALMA find hydrogen number densities in the range nH∼ 0.8–

6.0× 105 cm−3. These values have been recomputed correcting for Rgd =100 fol-

lowing Kauffmann et al. (2013a) (Tan et al. 2013b have used Rgd =147, and the

quoted range is 1.22–8.74× 105 cm−3). These values correspond to a mean particle

number density range of n∼ 0.5–3.6× 105 cm−3, for cores of radii ∼ 0.03–0.09 pc.

Number densities of the PdBI leaves can be located in Columns 6 and 10 of Ta-

ble 4.2.

Figure 4.6 is a mass versus radius plot for the PdBI dendrogram leaves (shown

in colour). Crosses with circles refer to IR bright leaves. Overlaid as black squares

are the IRDC cores identified in 1.34mm continuum observations by Tan et al.

(2013b) using ALMA. In addition, the loci of constant particle number density (n)

are shown as diagonal dotted lines. The dashed and dot-dashed lines refer to the

theoretical threshold (1 g cm−2) for massive star formation proposed by Krumholz

& McKee (2008), and the empirically derived threshold proposed by Kauffmann

1The particle number density, n, and mass density, ρ, are related by ρ=µmHn, where µ∼ 2.33
is assumed as the mean mass per particle.
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Figure 4.6: Amass versus radius plot for the uncorrected dendrogram leaves iden-
tified in G035.39-00.33. Crosses with circles represent IR bright leaves. The black
solid line represents a least-squares fit to the PdBI leaves (where M ∝R1.5± 0.2

decon ).
Black squares represent cores identified in the Tan et al. (2013b) study (the masses
have been corrected according to the parameter selection used in this work, see
Section 4.4.1). The dashed and dot-dashed lines refer to the theoretical (1 g cm−2;
Krumholz & McKee 2008) and empirical (M =580M⊙ R4/3; Kauffmann & Pillai
2010) lower limit for massive star formation. Dotted lines represent the loci of con-
stant volume density (from top-left to bottom-right the values are 107, 106, 105,
104, 103 cm−3, respectively). The grey box indicates the location of the corrected
leaves (see Section 4.3.3).

& Pillai (2010). In the case of the latter, the derived threshold has been reduced

from the original relationship of M ≥ 870M⊙ R4/3M⊙ to M ≥ 580M⊙ R4/3M⊙, to

make direct comparison with the PdBI masses, which make use of the Ossenkopf

& Henning (1994) dust opacity models (see Dunham et al. 2011, Kauffmann et al.

2013a for a discussion on this correction).

It has previously been suggested that a power-law scaling exists between the

Chapter5/Chapter5Figs/EPS/mass_size.eps
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masses and radii of pre-stellar cores (e.g. Kramer et al. 1996, Larson 1981, Motte

et al. 2001). More recently, such studies have been performed towards IRDCs

in the interest of identifying the physical properties of potential high-mass pre-

stellar cores (e.g. Gómez et al. 2014, Kauffmann & Pillai 2010, Ragan et al. 2013).

The uncorrected leaves follow a power law trend of M ∝R1.5± 0.2
decon (Spearman rank

correlation coefficient, rs ∼ 0.84, P < 0.001). Studies of other IRDCs have revealed

steeper slopes closer to M ∝R3 using similar methods (e.g. Ragan et al. 2013).

Ballesteros-Paredes & Mac Low (2002) and Shetty et al. (2010), through the

use of simulated observations, showed that mass-size relationships may be the

influenced by projection effects. Here, structures in synthetic spectral observations

(i.e. PPV space) may not correlate with physical structures in the simulations.

The same is true for structures extracted from 2-D column density maps.

The definition of R also plays a role in influencing the mass-size relation-

ship. Using the effective radius, rather than the deconvolved radius it is found

∼ 1.7± 0.2. Corrected leaves would return exponents of 2.0± 0.2 and 2.4± 0.2 for

the deconvolved and effective radii, respectively. The uncertainty in this trend is

therefore expected to significant. As discussed in Ragan et al. (2013), the expo-

nent is sensitive to the method by which the radii of sources are measured. One

must therefore be cautious when drawing conclusions regarding the stability of the

leaves.
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4.4.2 Fragmentation analysis

Spherical (Jeans) fragmentation

If fragmentation is governed by the Jeans instability, then the maximum mass that

thermal pressure can support against gravity is given by the Jeans mass:

MJ =
π5/2

6

(

kBT

GµmH

)3/2(
1

ρ

)1/2

=
π5/2c3s

6
√

G3ρ
, (4.5)

whereby cs is the isothermal sound speed of the average particle (if the internal

pressure of the gas is dominated by non-thermal motions, the total, i.e. thermal

plus non-thermal, velocity dispersion of the mean particle is used instead), G is

the gravitational constant, and ρ is the mass density, calculated using ρ=µmHn,

where n is the number density estimated in Section 4.4.1. The isothermal sound

speed of the gas is estimated for a temperature of 15K using cs =
√

kBTkin/µmH.

Thus cs∼ 0.23 km s−1. It is convenient to rewrite Equation 4.5 as:

MJ ≈ 1.7

(

T

15K

)3/2(
n

105 cm−3

)−1/2

M⊙, (4.6)

where T and n have been normalized to 15K and 105 cm−3, respectively. Columns 7

and 11 of Tables 4.2 display the Jeans masses for the uncorrected and corrected

leaves, respectively. In addition, the ratio of the calculated masses to Jeans masses

can be found in Columns 8 and 12. In all cases the uncorrected leaves exhibit super-

critical masses (super-Jeans). In contrast however, several of the corrected leaves

are consistent with having sub-Jeans masses, or masses similar to the Jeans mass

(> 50% of the leaves remain super-Jeans). The instances where M >MJ (and the

identified leaf is centrally peaked with a low aspect ratio) are unstable against
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collapse. If these leaves are not collapsing, this would suggest that non-thermal

mechanisms (e.g. turbulence or magnetic pressure) are providing support. This is

particularly important in cases where leaves exhibit a super-critical Jeans masses

in the corrected data (e.g. PdBI 9). Instances whereby leaves have irregular shapes

but are still super-Jeans, could indicate that further fragmentation may have oc-

curred, or is occurring (e.g. PdBI 8). Higher angular resolution observations would

be needed to confirm such results.

The Jeans length is defined as the critical size scale above which perturbations

grow exponentially. It is given by:

λJ = cs

(

π

Gρ

)1/2

= 0.08

(

T

15K

)1/2(
n

105 cm−3

)−1/2

pc. (4.7)

By estimating the (projected) separation between leaves one can make compari-

son between this, and the expected separation following thermal fragmentation,

i.e. λJ. The average nearest neighbour separation of the leaves is ∼ 0.12 pc (with

an estimated uncertainty of ∼ 30% given the 20% uncertainty in the distance mea-

surement summed in quadrature). The mean number density of the uncorrected

PdBI leaves is∼ 4× 105 cm−3. Substituting this into Equation 4.7 gives λ∼ 0.04 pc.

Given that 0.12 pc is expected to be a lower limit to the separation (considering

projection effects, and the fact that individual leaves may be embedded in different

filaments; Chapter 3), this suggests that the fragment spacing is inconsistent with

thermal Jeans fragmentation (at the resolution of the PdBI observations).
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Table 4.2: The physical properties of the dendrogram leaves.

Uncorrected Corrected†

ID ∆α ∆δ Rdecon Ma
3.2mm nb Mc

J
M/MJ M3.2mm n MJ M/MJ

(′′) (′′) (pc) (M⊙) (105 cm−3) (M⊙) (M⊙) (105 cm−3) (M⊙)

PdBI 1 2.3 -61.6 0.059 7.8 ( 2.4) 1.6 2.4 3.2 3.5 ( 1.1) 0.7 3.7 1.4

PdBI 2 1.5 -48.6 0.064 11.0 ( 3.3) 1.8 2.3 4.7 6.0 ( 1.8) 1.0 3.2 2.6

PdBI 3 3.8 -33.4 0.031 3.9 ( 1.2) 5.4 1.3 2.9 1.3 ( 0.4) 1.8 2.3 1.0

PdBI 4 5.3 -25.8 0.032 4.4 ( 1.3) 5.4 1.3 3.3 1.2 ( 0.4) 1.5 2.6 0.9

PdBI 5 9.1 -19.0 0.035 3.1 ( 0.9) 3.0 1.8 1.8 0.8 ( 0.2) 0.8 3.5 0.5

PdBI 6 4.6 -7.6 0.028 2.4 ( 0.7) 4.5 1.5 1.7 0.5 ( 0.2) 1.0 3.1 0.4

PdBI 7 1.5 -0.8 0.034 5.7 ( 1.7) 6.1 1.3 4.5 1.4 ( 0.4) 1.5 2.5 1.1

PdBI 8 -2.3 12.9 0.063 12.3 ( 3.7) 2.1 2.2 5.7 4.0 ( 1.2) 0.7 3.8 1.9

PdBI 9 7.6 22.8 0.038 9.6 ( 2.9) 7.3 1.2 8.3 3.6 ( 1.1) 2.8 1.9 3.1

PdBI 10 0.8 22.8 0.034 6.9 ( 2.1) 7.4 1.1 6.0 1.8 ( 0.5) 1.9 2.3 1.6

PdBI 11 -6.1 28.1 0.051 12.0 ( 3.6) 3.7 1.6 7.4 5.7 ( 1.7) 1.8 2.3 3.5

PdBI 12 3.0 33.4 0.038 5.2 ( 1.6) 4.1 1.5 3.4 1.3 ( 0.4) 1.0 3.1 0.8

PdBI 13 -11.4 38.8 0.065 12.0 ( 3.6) 1.8 2.3 5.1 3.1 ( 0.9) 0.5 4.6 1.3

PdBI 14 -16.0 42.6 0.054 8.6 ( 2.6) 2.4 2.0 4.3 2.8 ( 0.8) 0.8 3.6 1.4

a Mass estimate derived using the uncorrected flux and the parameters outlined in Section 4.4.1. b Number density
estimated for a particle of mean mass 2.33 a.m. u.. c The Jeans mass assuming T =15K. † Masses, densities, and
Jeans masses for the flux-corrected leaves.

Cylindrical fragmentation

Given that G035.39-00.33 is highly filamentary, it is prudent to also discuss cylin-

drical fragmentation. The mass of the filament can be extracted from the dendro-

gram analysis. Using Equation 4.3, the total mass of the filament (i.e. the trunk

containing all branches and leaves) is ∼ 160± 80M⊙. Considering the filament

extends over ∼ 1.8 pc this gives a mass per unit length, mf ∼ 90M⊙ pc−1.

For an infinite, isothermal, self-gravitating cylinder, collapse will occur ifmf >mcrit,

where the critical mass per unit length is given by (Ostriker 1964, Stodólkiewicz

1963):

mcrit =
2c2s
G

∼ 24.5

(

T

15K

)

M⊙. (4.8)
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This indicates that a temperature of 55K would be needed to support a filament

of mf =90M⊙ pc−1. Alternatively, replacing cs in Equation 4.8 with the mean

velocity dispersion of the filament(s) (∼ 0.45 km s−1, measured from the J = 1 → 0

transition of N2H
+; Chapter 3), mcrit∼ 94M⊙ pc−1, giving mcrit/mf ∼ 1.

In the case of cylindrical gravitational collapse, over-densities will tend to grow

with a characteristic spacing (i.e. the interval at which the instability grows the

fastest). This type of instability has been used to explain the regular spacing of star

forming cores in filamentary clouds (e.g. Jackson et al. 2010, Miettinen 2012, Wang

et al. 2011, 2014). The filament scale height is given by H = cs(4πGρ)−1/2. For an

infinite isothermal cylinder, whose radius R≫H , the spacing between fragments

is given by (Nagasawa 1987, Tomisaka 1995):

λmax = 22H =
22cs

(4πGρ)1/2
∼

0.8

(

T

15K

)1/2 (
n

104 cm−3

)−1/2

pc. (4.9)

Assuming a filament radius ∼ 0.12 pc (taken as the diameter of the largest leaf

in order to incorporate all of the emission), the average number density of the

filament (assuming cylindrical geometry, a length of 1.8 pc, and a mass of 160M⊙)

is n∼ 3.5× 104 cm−3, and so H ∼ 0.02 pc and R≫H . Under these assumptions

λmax ∼ 0.4 pc (which corresponds to ∼ 28′′ at a distance of 2900 pc). Alternatively,

using the mean velocity dispersion in Equation 4.9 gives λmax ∼ 0.85 pc (or ∼ 60′′).

While the characteristic separation of the leaves is much smaller than either of these

values, the separation between the centre of the H6 and narrow clumps (defined

as the difference between mean offsets in ∆α and ∆δ covering the emission region

of each clump) is comparable, with ∼ 0.7± 0.2 pc (assuming a 20% uncertainty in
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the location of both central locations).

If however, the number density is taken to be that of the mean density of

the uncorrected dendrogram leaves, n∼ 4× 105 cm−3, then λmax ∼ 0.13 pc in the

case of thermal fragmentation. This is very close to the expected lower limit

of leaf separation. Kainulainen et al. (2013) found that fragmentation in IRDC

G11.11–0.12 is scale-dependent, with core separations reducing to the Jeans length

in the highest density regions. In the same way, fragmentation within G035.39-

00.33 may therefore be scale dependent. However, it should be noted that this

analysis does not account for projection affects. One must therefore proceed with

caution when interpreting fragmentation analysis such as this. This is particularly

important in the case of G035.39-00.33, where multiple velocity structures are

apparent (Chapter 3), and may exhibit their own fragmentation length-scales.
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4.5 Analysis: The dynamical state of the den-

drogram leaves

4.5.1 The virial parameter

The approximate balance between a (spherical or spheroidal) cloud fragment’s ki-

netic and gravitational energy can be expressed (in terms of observable quantities)

in the form of the virial parameter, α, (Bertoldi & McKee 1992):

α ≡
5σ2

TOTR

GM
, (4.10)

whereby σTOT, R, and M are the velocity dispersion (calculated for a particle of

mean mass 2.33 a.m. u., including both thermal and non-thermal motions), radius,

and mass associated with the clump/core being evaluated. It is also possible to

write the virial parameter in the form α=Mvir/M , where Mvir=(5σ2
TOTR)/G is

known as the virial mass. By using the PdBI 3.2mm continuum data in conjunc-

tion with the N2H
+ (1 − 0) presented in Chapter 3, it is possible to examine the

dynamical state of the dendrogram leaves. Equation 4.10 ignores any effect mag-

netic fiels and surface pressures may have on the dynamical state of the leaves.

Since the relative contributions of these effects are not known in G035.39-00.33,

this analysis is intended to serve only as an approximation.

A value of σTOT is quantified for each dendrogram leaf through the identification

of corresponding N2H
+ (1−0) emission peaks. To calculate σTOT via the observed
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velocity dispersion of N2H
+ the following is used (Fuller & Myers 1992):

σTOT =

√

∆υ2
corr

8 ln (2)
+ kBT

(

1

µmH
−

1

mN2H+

)

, (4.11)

whereby µ is the atomic weight of the mean molecule (2.33), mH is the mass of

a Hydrogen atom, mN2H+ is the mass of the N2H
+ molecule (29 a.m. u.), T is

the kinetic temperature of the gas (assumed to be 15K; see Section 4.4.1), and

∆υ2
corr is the observed line-width of the N2H

+ corrected for the spectral reso-

lution, ∆υ2
corr=∆υ2

obs–∆υ2
channelwidth, with ∆υchannelwidth ≡∆vres = 0.14 km s−1 for

the N2H
+ (1− 0) PdBI observations.

Chapter 3 revealed that the N2H
+ (1−0) emission is divided into several velocity

components. Each dendrogram leaf is therefore linked to a corresponding filament.

The underlying assumption here is that all continuum emission is associated with

a single filament (which may, or may not be the case in reality). Values of VLSR and

∆υobs were established for each leaf by performing a Gaussian fit to the average

spectrum taken over the area covered by the leaf, using the gildas/class package.

This was performed for both the merged and PdBI-only data. In the cases where

the spectra showed multiple components, the emission was checked against the

PdBI-only position-position-velocity cube. To be linked to a filament, N2H
+ peaks

must lie within a given radius of the corresponding dendrogram leaf (equivalent to

the geometric mean of the major and minor axes of the synthesized PdBI beam

=3.65′′). The N2H
+ peak with the smallest projected distance was then selected

(typically this was the brightest component). This method was successful for all

leaves except for PdBI 9, which displayed an ambiguous result. The classification,

VLSR, ∆υcorr, and ∆υTOT values are presented in Table 4.3, for both the merged
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Table 4.3: The kinematic properties of the dendrogram leaves.

Merged PdBI + 30m data PdBI only

ID ∆αa ∆δa Rdecon Fil. VLSR ∆υcorr ∆υTOT Mvir M
kρ=1.0

vir
M1.5

vir M2.0
vir VLSR ∆υcorr ∆υTOT Mvir M

kρ=1.0

vir
M1.5

vir M2.0
vir

(′′) (′′) (′′) ( km s−1) ( km s−1) ( km s−1) (M⊙) (M⊙) (M⊙) (M⊙) ( km s−1) ( km s−1) ( km s−1) (M⊙) (M⊙) (M⊙) (M⊙)

PdBI 1 2.3 -61.6 0.059 F2a 45.4 1.1 1.3 19.2 17.2 15.4 11.5 45.6 0.7 0.9 9.5 8.6 7.7 5.7

PdBI 2 1.5 -48.6 0.064 F2a 45.5 0.8 0.9 7.0 6.3 5.6 4.2 45.6 0.5 0.8 4.7 4.2 3.8 2.8

PdBI 3 3.8 -33.4 0.031 F2a 45.7 1.0 1.1 16.3 14.6 13.1 9.8 45.8 1.0 1.1 17.2 15.4 13.8 10.3

PdBI 4 5.3 -25.8 0.032 F2a 45.7 1.4 1.5 14.5 13.1 11.7 8.7 45.8 1.8 1.8 22.0 19.8 17.7 13.2

PdBI 5 9.1 -19.0 0.035 F2b 46.2 0.4 0.7 3.2 2.9 2.6 1.9 46.2 0.5 0.7 4.1 3.7 3.3 2.5

PdBI 6 4.6 -7.6 0.028 F2a 45.7 0.9 1.1 7.7 6.9 6.2 4.6 45.8 0.8 0.9 5.9 5.3 4.7 3.5

PdBI 7 1.5 -0.8 0.034 F3 46.6 0.5 0.8 4.2 3.8 3.4 2.5 46.5 0.5 0.8 4.2 3.8 3.4 2.5

PdBI 8 -2.3 12.9 0.063 F3 47.1 1.1 1.2 8.7 7.8 7.0 5.2 47.3 1.6 1.7 16.7 15.0 13.4 10.0

PdBI 9 7.6 22.8 0.038 F2a 45.1 0.9 1.1 8.3 7.4 6.6 5.0 44.9 0.6 0.8 4.6 4.1 3.7 2.8

PdBI 9a - - - F2b 46.0 0.6 0.8 4.3 3.9 3.5 2.6 46.1 0.2 0.6 2.4 2.2 1.9 1.4

PdBI 10 0.8 22.8 0.034 F2a 45.2 0.5 0.8 7.7 6.9 6.2 4.6 45.2 0.5 0.7 7.3 6.5 5.8 4.4

PdBI 11 -6.1 28.1 0.051 F3 46.7 0.6 0.8 4.9 4.4 4.0 3.0 46.5 0.8 1.0 7.1 6.4 5.7 4.3

PdBI 12 3.0 33.4 0.038 F2b 45.8 1.0 1.1 8.8 7.9 7.0 5.3 45.7 0.7 0.9 5.7 5.1 4.6 3.4

PdBI 13 -11.4 38.8 0.065 F3 46.7 0.8 1.0 9.8 8.8 7.9 5.9 46.6 0.6 0.8 7.0 6.3 5.6 4.2

PdBI 14 -16.0 42.6 0.054 F3 46.7 0.4 0.7 3.6 3.2 2.9 2.2 46.8 0.4 0.7 3.4 3.0 2.7 2.0

a Both fits are shown for PdBI 9 as the identification of the leaf presents an ambiguous result. Given that the line-width of the PdBI only data for the fit to
F2b is ∼ 0.2 km s−1 (see Column 13), and the spectral resolution of the PdBI data is 0.14 km s−1, the F2a association is used throughout the analysis.
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and PdBI-only data.

Figure 4.7 displays the results of this virial analysis. The left-hand panels dis-

play the mass versus virial mass for the uncorrected leaves. Each dendrogram leaf

is highlighted in a different colour according to Figure 4.2. The size of each symbol

is proportional to 1/α, estimated using Equation 4.10. The dot-dashed and dashed

lines correspond to the best-fit lines to the uncorrected and corrected masses, re-

spectively (see Section 4.3.3). Loci of α=2, and 1, are indicated by black lines,

and incorporate the light-grey and dark-grey shaded areas respectively. The uncer-

tainty in the virial parameter is estimated to be ∼ 55%, assuming uncertainties of

∼ 25% in the virial mass (incorporating the uncertainty on the measured FWHM

and a 20% uncertainty in the distance), and ∼ 50% in the continuum masses, re-

spectively (see Section 4.6.1 for a discussion on the sources of uncertainty in the

mass calculations).

The top-left panel displays virial masses established from line-widths taken

from the merged PdBI and IRAM30m data, whereas the bottom-left panel is for

the PdBI-only data. In both the merged and the PdBI-only data, PdBI 4 shows

the largest virial parameter (α∼ 2.9 and 4.4, respectively).

However, PdBI 11 exhibits the lowest virial parameter in the merged data

(α∼ 0.5), whereas PdBI 9 has the lowest virial parameter in the PdBI-only data

(α∼ 0.5). This reflects the changes in line-width observed when using the PdBI-

only data. In the case of PdBI 11, the line-width is greater in the PdBI-only data

than in the merged data, whereas for PdBI 9, the opposite is true. For reference,

neither of these leaves are IR bright by the classification presented here, although

PdBI 9 is bright at 70 µm (Nguyen Luong et al. 2011). This serves as an illus-

tration, highlighting how the virial mass calculation is sensitive to fluctuation in
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Figure 4.7: Left panels: Uncorrected leaf mass versus virial mass for the PdBI
dendrogram leaves. The colour of each leaf is coded according to Figure 4.2. As
with Figure 4.6, the crosses with circles refer to those leaves that have spatially co-
incident 4.5, 8, or 24 µm emission. The size of each symbol is proportional to 1/α,
whereby α is calculated using Equation 4.10 (the size of the white symbol in the
box refers a α=0.5). light- and dark-grey shaded areas indicate the loci of where
α=2 and 1, respectively, below which structures are super-critical, and therefore
unstable to gravitational collapse (with only thermal pressure for support). The
dot-dashed and dashed lines refer to least-squares fits to the uncorrected and cor-
rected data, respectively (see Section 4.3.3). The top and bottom panels refer to
virial masses calculated for the merged PdBI and IRAM30m, and PdBI-only data
sets, respectively. Right panels: Boxplots of the virial parameters estimated ac-
cording to different density profiles, ρ∝R−kρ , where kρ =0, 1, 1.5, 2. The open
circles refer to outlying points (values greater then or less than 1.5× the interquar-
tile range from the 75th and 25th percentiles, respectively). These are PdBI 4 and
PdBI 6 for the merged data, and PdBI 4 for the PdBI-only data, respectively.

Chapter5/Chapter5Figs/EPS/vir.eps
Chapter5/Chapter5Figs/EPS/vir_po.eps
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spatial scales.

In spite of the fact that the mean virial parameters are approximately equal us-

ing the different datasets (α∼ 1.5), it is found that virial parameters evaluated for

the PdBI-only data, differ from those for the merged data by on average ∼ 30%. In

the majority of cases (65%) the line-width decreases when considering the PdBI-

only data. However, it is important to note that in some cases the line-width

increases in the PdBI-only data (e.g. PdBI 8 and 11). Virial parameters derived

from the comparison between merged (i.e. the PdBI and IRAM30m N2H
+ data)

molecular line, and the interferometric-only continuum data are therefore unreli-

able, as they trace different spatial scales (this was also noted in Beuther et al.

2013).

4.5.2 Density profile variation

The virial parameter is sensitive to variations in both the physical geometry of

cores, and their density profile (Bertoldi & McKee 1992). For aspect ratios of less

than two, i.e. for spherical or spheroidal cores (as is assumed in this analysis),

the correction factor is small (∼ 1). The correction for a non-uniform density

distribution is given by:

a =
(1− kρ/3)

(1− 2kρ/5)
, (4.12)

where kρ is the power law index of the density profile (ρ∝R−kρ). Therefore:

Mvir =
5σ2

TOTR

aG
= φ

(

Rdecon

1 pc

)(

∆υTOT

1 km s−1

)2

M⊙, (4.13)
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Table 4.4: Virial parameters estimated assuming different density profiles.

Uncorrected Corrected

ID ∆α ∆δ Rdecon M3.2mm α α α α M3.2mm α α α α

(′′) (′′) (′′) (M⊙) kρ = 1.0 kρ = 1.5 kρ = 2.0 (M⊙) kρ = 1.0 kρ = 1.5 kρ = 2.0

PdBI 1 2.3 -61.6 0.059 7.8 ( 2.4) 1.2 1.1 1.0 0.7 3.5 ( 1.1) 2.7 2.4 2.2 1.6

PdBI 2 1.5 -48.6 0.064 11.0 ( 3.3) 0.4 0.4 0.3 0.3 6.0 ( 1.8) 0.8 0.7 0.6 0.5

PdBI 3 3.8 -33.4 0.031 3.9 ( 1.2) 4.4 3.9 3.5 2.6 1.3 ( 0.4) 13.2 11.9 10.6 7.9

PdBI 4 5.3 -25.8 0.032 4.4 ( 1.3) 5.0 4.5 4.0 3.0 1.2 ( 0.4) 18.3 16.5 14.7 11.0

PdBI 5 9.1 -19.0 0.035 3.1 ( 0.9) 1.3 1.2 1.1 0.8 0.8 ( 0.2) 5.0 4.5 4.0 3.0

PdBI 6 4.6 -7.6 0.028 2.4 ( 0.7) 2.4 2.2 1.9 1.5 0.5 ( 0.2) 11.0 9.9 8.9 6.6

PdBI 7 1.5 -0.8 0.034 5.7 ( 1.7) 0.7 0.7 0.6 0.4 1.4 ( 0.4) 3.0 2.7 2.4 1.8

PdBI 8 -2.3 12.9 0.063 12.3 ( 3.7) 1.4 1.2 1.1 0.8 4.0 ( 1.2) 4.2 3.7 3.3 2.5

PdBI 9 7.6 22.8 0.038 9.6 ( 2.9) 0.5 0.4 0.4 0.3 3.6 ( 1.1) 1.3 1.1 1.0 0.8

PdBI 10 0.8 22.8 0.034 6.9 ( 2.1) 1.1 0.9 0.8 0.6 1.8 ( 0.5) 4.1 3.7 3.3 2.4

PdBI 11 -6.1 28.1 0.051 12.0 ( 3.6) 0.6 0.5 0.5 0.4 5.7 ( 1.7) 1.2 1.1 1.0 0.7

PdBI 12 3.0 33.4 0.038 5.2 ( 1.6) 1.1 1.0 0.9 0.7 1.3 ( 0.4) 4.6 4.1 3.7 2.7

PdBI 13 -11.4 38.8 0.065 12.0 ( 3.6) 0.6 0.5 0.5 0.4 3.1 ( 0.9) 2.3 2.0 1.8 1.4

PdBI 14 -16.0 42.6 0.054 8.6 ( 2.6) 0.4 0.4 0.3 0.2 2.8 ( 0.8) 1.2 1.1 1.0 0.7
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where φ∼ 208, 187, 167, 125 for kρ =0, 1, 1.5, and 2, respectively (following Ma-

cLaren et al. 1988). The virial masses calculated using Equation 4.13 can be found

in Table 4.3. The right-hand panels of Figure 4.7 are box plots of the virial pa-

rameters estimated assuming kρ =0, 1, 1.5, and 2. Virial parameters for both the

uncorrect and corrected leaves are shown, and in both instances virial parameters

decrease with increasing kρ.

Virial parameters for the corrected leaves are greater than the uncorrected

leaves by a factor of ∼ 3.5. This is to be expected, given that the fluxes are

smaller by µcorr∼ 3.3 on average (see Section 4.3.3). Although the density profiles

of star forming cores is uncertain, a value kρ ∼ 1.5 has been estimated for regions

of massive star formation, (e.g. Beuther et al. 2002, Butler & Tan 2012, van der

Tak et al. 2000). Using kρ ∼ 1.5 as a fiducial value for the uncorrected leaves, con-

sidering the PdBI-only data, returns a mean virial parameter of α∼ 1, with ∼ 70%

of all leaves found to have α< 1. Virial parameters for all density distributions

are presented in Tables 4.4 (these are shown exclusively for the velocity dispersions

estimated from the PdBI-only data as virial parameters measured from the merged

data are inaccurate, see Section 4.5).

For the corrected masses, using kρ∼ 1.5, and rearranging Equation 4.13, one

can estimate the line-width (for a particle of mean mass ∼ 2.33 a.m. u.) needed

to provide Mvir=Mcorr, and therefore α=1 (where Mcorr represents the mass of

flux-corrected dendrogram leaves). On average this line-width is found to be

∼ 0.6 km s−1. Using Equation 4.11 it is possible to estimate the observed line-width

that one would expect to observe for (for example) N2H
+ (withmN2H+ = 29 a.m. u.,

and assuming T =15K) in the case that the corrected leaves are virialized. This

would equate to a line-width of ∼ 0.3 km s−1 (or dispersion σ= 0.13 km s−1) for
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N2H
+ (i.e. significantly narrower than those observed). This indicates that a sig-

nificant reduction in line-width is required in order for the corrected leaves to be

virialized.

The large virial parameters of the corrected leaves may be consistent with

the flux correction (see Section 4.3.3) underestimating the masses, as suggested

by Rosolowsky et al. (2008) (i.e. the virial mass is large by comparison). An

alternative explanation may be that the velocity dispersions of the leaves are over-

estimated, and hence so is the virial mass (see Equation 4.10). Pineda & Teixeira

(2013) showed that the line-width of cores in NGC2264-D traced by N2H
+ (3−2)

were∼ 70% of the N2H
+ (1−0) values. High-resolution observations of high-density

gas tracers, or higher J-transitions of N2H
+, would be needed to investigate this

possibility.
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4.6 Discussion

4.6.1 Uncertainties

Deriving the physical properties from dust emission at millimetre wavelengths re-

quires an a priori knowledge of the dust temperature, and the dust emissivity spec-

tral index, β. Both of these values are dependant on environment. Consequently,

the mass calculations performed in Section 4.4.1 are sensitive to variations in these

properties. It is prudent therefore, to discuss the influence these choices may have

on the derived masses, and how further observations will help to constrain this

information.

Temperature

To estimate the masses of each of the dendrogram leaves in Section 4.4.1, a temper-

ature of 15K has been used. Nguyen Luong et al. (2011) studied G035.39-00.33

using Herschel to establish dust temperature maps. By fitting a pixel-by-pixel

grey-body SED (using only the four longest wavelength Herschel bands, i.e. 160,

250, 350, and 500 µm), the dust temperature was shown to vary between 13-16K.

However, the resolution of the temperature map is 37′′, and is therefore sensitive

to larger spatial scales than those traced by the PdBI.

Nguyen Luong et al. (2011) also established the temperature of each of the

cores identified in the Herschel images (see cyan and yellow squares in Figures 4.1

and Figure 4.2), at a resolution of 12′′ (the fluxes detected at longer wavelengths

must be scaled to account for the difference in resolution). The emission peaks

detected in both the Herschel maps and the 3.2mm continuum map presented

here are PdBI 2, 8, 9, 12 (corresponding to cores 12, 18, 6, 28 in the notation of
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Nguyen Luong et al. 2011). These cores have SED derived temperatures of 14, 14,

16, and 11K, respectively.

In addition to these Herschel temperatures, Rathborne et al. (2010) studied

the dust properties of several IRDC cores as a follow-up study to Rathborne et al.

(2006). The H6 region (classified as core MM7 in Rathborne et al. 2006) was

included in this study. Using 24, 350, 450, and 1200 µm data, the SED derived

temperature for H6 was 34K.

The above discrepancy in the derived temperatures may arise following the

inclusion of 24 µm emission in the Rathborne et al. (2010) study. The location of

MM7 (as deduced in the lower angular resolution study of Rathborne et al. 2006)

does not directly coincide with any of the 3.2mm PdBI peaks, nor the 24 µm

emission obtained from Carey et al. (2009). This is evident in Figure 10 of Nguyen

Luong et al. (2011). The inclusion of the 24 µm emission in the SED fit leads to an

increase in the derived temperature (J. Rathborne, 2014, private communication).

A uniform temperature of 34K, incorporating this 24 µm flux, is therefore likely

to be an overestimate.

Dust emissivity spectral index

The dust in both diffuse and dark clouds is consistent with an emissivity spec-

tral index βISM ∼ 1.8± 0.2 in the sub-mm (Draine 2006). Hill et al. (2006) find

1.5.β. 3, with values typically close to ∼ 2 for a survey of southern massive

star forming regions. However, in probing the smaller scale structure of massive

star forming regions (< 5000AU scales), several studies find β∼ 1-2 (e.g. Cesaroni

et al. 1999, Galván-Madrid et al. 2010, Zhang et al. 2007).

An estimate for β can be extracted from the 3.2mm PdBI, and 1.3mm SMA



213

data. To do this, a taper has been applied during the imaging of the PdBI data,

such that the synthesized beam is approximately equal to that of the SMA. The

peak flux in the SMA data (18.4mJybeam−1; see SMA2 in Table 4.1) is then com-

pared to the flux in the new (degraded resolution) PdBI map at the same location

(1.4mJybeam−1). The spectral index of an SED fitting these two points is α∼ 3.

Assuming the Rayleigh-Jeans approximation is valid at these long wavelengths

(α=2+β), β∼ 1.

An alternative (but crude) estimate for β can be derived using the 3.2mm data

in conjunction with the mass surface density map of KT13. The beam-averaged

column density, N , is quantified using:

N =
Sν,peakRgd

ΩbeamµmHκν,dBν(Td)
, (4.14)

where Sν,peak is the peak flux density (i.e. the peak flux of a dendrogram leaf),

and Ωbeam is the solid angle of the beam (the remaining variables have the same

meaning as those in Equation 4.3). Assuming that the column density derived from

Σ (smoothed to the equivalent spatial resolution of the PdBI data) represents an

upper limit to the column density (since it traces a high-dynamic range, from

Av ∼ 1-100mag; KT13), one can estimate κν,d, assuming a temperature. As with

the mass calculations, Td =15K is assumed. In the estimation of Σ, BT09, use

a gas-to-dust ratio, Rgd, of 156, and κν0,d =1.056 cm2 g−1 at ν0=250GHz. These

values are therefore adopted in the estimation of β. Any source with associated

8 µm emission has been rejected from this analysis as this would lead to an un-

derestimate of the column density derived from Σ (since Σ is derived from 8 µm

extinction).
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Figure 4.8: A box plot showing the range in β values for the IR dark PdBI leaves,
as derived from the mass surface density. The figure highlights the minimum and
maximum extent of the data, the length of the box is equivalent to the interquartile
range, the horizontal line represents the median, and the width of the box is
proportional to the square root of the number of data points. The mean β value of
0.96 is highlighted by the horizontal dashed line. The grey shaded area represents
the uncertainty in β following the propagation of 30% errors in the mass surface
density.

Figure 4.8 shows range in β values estimated for the IR-dark PdBI cores. Values

are found within the range β∼ 0.5-1.3, with a mean value of β∼ 1. The uncertainty

in β for each dendrogram leaf is represented by the shaded grey area. This is

computed by propagating the estimated 30% error in the mass surface density

only (KT13).

Whilst these derived values are consistent with observations in massive star

forming regions that find β∼ 1-2, both methods suffer from significant uncertainty.

In the case of estimating β from the interferometric observations, the spatial cov-

erage of the SMA and PdBI data in the (u, v) plane is not equivalent (the PdBI

data is sensitive to a range ∼6-55 kλ, whereas the SMA data is sensitive to ∼7-

42 kλ). Qualitatively, as the PdBI is sensitive to a greater range of spatial scales,

Chapter5/Chapter5Figs/EPS/beta.eps
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this estimate for β is likely to represent a lower limit (a decrease in PdBI flux with

respect to the SMA flux would increase β). Similarly, estimating β from the mass

surface density (with uncertainty ∼ 30%) relies on poorly constrained estimates of

Td and κν0,d.

Flux correction

Another potential source of error comes from the uncertain flux distribution of

the hierarchical structures identified in G035.39-00.33. The analysis presented

in Section 4.4 has used two different flux measurements in order to estimate the

physical parameters. Ragan et al. (2013) suggested that a correction must be

applied to the flux of leaves with identifiable parent structure. Applying this

correction makes an attempt to separate a leaf’s flux from the parent material

within which it is supposedly embedded. This correction however, is relatively

simplistic as it is unable to account for projection effects. Ultimately, multiple

leaves may appear to be embedded within a single parent branch (in the plane of

the sky), when they are in fact well-separated (along the line of sight cf. the ‘faux-

filaments’ created in the simulations of Moeckel & Burkert 2014). If this is the

case, then the flux of the parent material will be overestimated (and the masses,

underestimated). It is (qualitatively) concluded therefore, that the flux-corrected

masses are most likely underestimated, as suggested by Rosolowsky et al. (2008).

This discussion proceeds assuming that the uncorrected fluxes provide the most

accurate description of the leaf masses.
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Summary of uncertainties

Accounting for the above uncertainties, it is noted that: i) a temperature of 10K

would lead to an increase in the masses of the cores by a factor of ∼ 1.6, whereas

a temperature of 34K would lead to a reduction in the masses by a factor of ∼ 2.5

(using β=1.75); ii) using β=2 instead of the fiducial value of 1.75 would lead to

a factor of ∼ 1.25 increase in the mass, whereas β=1 would lead to a factor of ∼ 2

decrease in the mass (using T = 15K). In the extreme cases whereby T =34K

and β=1, and T =10K and β=2, the mean (uncorrected) masses are 1.5M⊙ and

15M⊙.

The above highlights the uncertainty in estimating masses from the dust prop-

erties. To constrain both properties, a more thorough analysis is needed. Further

work, particularly focusing on the constraint of the (u, v) coverage of the PdBI

and SMA data, ensuring that both sets of data cover an equivalent spatial scale

(see the recent work of Galván-Madrid et al. 2010 and Maud et al. 2013 for a

methodology), will provide a more accurate estimate of β.

However, the above discussion is intended as a consistency check for the choices

of T = 15K and β=1.75 in the mass calculations. Propagating errors in the values

of the flux (10%), distance (20%), temperature (30%), and opacity coefficient

(30%), returns an expected uncertainty on the derived masses of & 50%.
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4.6.2 The star formation potential of G035.39–0.33

Linking the physical and kinematic properties of G035.39–00.33

The dynamical state of the cores was investigated in Section 4.5. On average, the

virial parameter is found to be ∼ 1.5, although modifications for the density pro-

file of the cores results in lower values. PdBI 9 and 11 exhibit sub-virial masses

irrespective of the density profile assumed (as do PdBI 13, and 14, however, these

leaves have irregular shapes and therefore may contain unresolved substructure).

Cores would appear sub-virial if their masses were overestimated. Given the esti-

mated uncertainty (∼ 55%) the upper limit of the virial parameter of PdBI 9 would

be α∼ 0.8 (i.e. the core would still be sub-virial).

The presence of low virial parameters have previously been identified in other

massive star forming regions (e.g. Csengeri et al. 2011a, Li et al. 2013, Pillai et al.

2011). Whilst low virial parameters suggest that cores are unstable to gravitational

collapse, this is not necessarily an indication that cores are collapsing (Kauffmann

et al. 2013a). Moreover, as suggested by Tan et al. (2013b), low virial parameters

derived for cores that are not in free-fall gravitational collapse, may indicate the

presence of dynamically important magnetic fields. Such considerations have been

excluded in the analysis of Section 4.5.

Virial parameters derived for the leaves in the narrow clump are typically higher

than those observed in the H6 clump (mean virial parameters of 2.8 and 0.8,

respectively). Since the velocity dispersions of leaves associated with both clumps

are comparable, this is most likely because the leaves situated along the narrow

filament are less massive than those observed in the H6 region (mean masses 4M⊙

and 9.5M⊙, respectively). This is consistent with other regions of massive star
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formation in which clusters (and more massive cores) are formed at the junctions

of several filaments (Schneider et al. 2012). It is speculated that the merging of

multiple filaments may be responsible for the increase in mass and density observed

in this region (as suggested in Chapter 2).

No significant trends are observed between either the mass or radius and the

velocity dispersion of the individual leaves (the null hypothesis, i.e. that there is no

correlation, is accepted at the P =0.05 level; this has been tested with all leaves,

and considering both IR bright and IR dark leaves individually). All identified

leaves exhibit trans- or supersonic non-thermal motions for the estimated temper-

ature of 15K (σNT/cs& 1) with the exception of PdBI 14, in which σNT/cs∼ 0.7.

It has been suggested that line-broadening towards nearby pre-stellar core centres

in low-mass star forming regions may be indicative of infall of material (Caselli

et al. 2002b, Crapsi et al. 2005). However, this may also be produced by embedded

protostellar activity.

The two leaves with the broadest measured dispersions are PdBI 4 and PdBI 8.

Both leaves exhibit complex velocity fields in the N2H
+ (1−0) emission. Chapter 3

selected PdBI 8 (referring to this peak as the “SW core”) for a more detailed study.

By making an assumption regarding the geometry of the filament, it was found

that such a velocity field may be consistent with either filamentary accretion, or an

expanding shell of dense gas. This may indicate that the onset of star formation is

influencing the kinematics of the surrounding gas. Identifying signatures of infall

(for example the asymmetric profiles traced by optically thick molecular lines, e.g.

Evans 1999, Myers et al. 2000) with high-angular resolution observations, may aid

in establishing whether or not the identified leaves are actively accreting material.

Section 4.4.2 showed that the projected separation between leaves is similar
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to that expected from the thermal fragmentation of a cylinder, which may seem

counter-intuitive given the prominence of non-thermal motions throughout G035.39-

00.33. Teixeira et al. (2006, 2007), studying the substructure of NGC 2264-D (oth-

erwise known as the Spokes cluster), identified several protostellar objects with

separations comparable to the expected Jeans length, in spite of the non-thermal

motions identified using N2H
+ (1 − 0) emission (Peretto et al. 2006). Pineda &

Teixeira (2013) found that when observing N2H
+ (3 − 2), a probe of higher den-

sity gas, that the velocity dispersions decrease by 30%. Whilst the separation of

leaves may be influenced by projection effects in G035.39-00.33 (see Section 4.4.2),

this may signify that higher density gas tracers are required in order to accurately

measure the dynamical state of the PdBI leaves.

Structure identification

The observations presented here primarily focus on the H6 region of G035.39-

00.33, originally identified as MM7 in the survey of Rathborne et al. (2006), and

the dense, filamentary IRDC ridge. It is found that the H6 region comprises several

structures that are only revealed at high-angular resolution. Encompassed within

the original angular FWHM diameter of the H6 region derived by Rathborne et al.

(2006) using 1.2mm continuum emission (∼ 40′′), are five substructures, revealed in

the ∼ 4′′ resolution PdBI observations. The lower angular resolution observations

(∼7′′) performed with the SMA at 1.3mm identify two out of these five structures.

In total, fourteen leaves are identified in the dendrogram analysis. The mean

radius of the leaves is ∼ 0.04 pc similar to cores identified in other IRDCs (Tan

et al. 2013b, Zhang et al. 2009), although the irregular boundaries of the leaves (see

Figure 4.2) may indicate that unresolved fragments may also be present. Recent
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high-angular resolution observations of IRDCs have referred to such structures as

‘condensations’, the dense nuclei of star-forming IRDC cores (Rathborne et al.

2007, Wang et al. 2014).

According to the dendrogram, two main branches are identified (the H6 and

narrow clump), which contain twelve of the fourteen identified leaves. These

branches, and the remaining two leaves, are associated with a larger filament,

the darkest structure identified in MIR extinction. This implies that the structure

of G035.39-00.33, is organised into a hierarchy of filaments, clumps, and cores,

which is consistent with recent observations of other IRDCs (Beuther et al. 2013,

Pillai et al. 2011, Ragan et al. 2013, Wang et al. 2011, 2014). Of the fourteen

identified dendrogram leaves, five have spatially coincident emission at 4.5, 8, or

24 µm (or a combination of these). This indicates that star formation may have

commenced within some of the leaves, whereas others remain dark up to 70 µm.

A Kolmogorov-Smirnov two-sample test is used to identify whether or not the

IR bright and IR dark leaves are derived from the same population. This has been

performed using the mass surface density, estimated from the uncorrected leaf

masses and absolute areas (see column 9 of Table 4.1). A significant difference is

found between the two populations (K-S probability, p∼ 0.013), with the IR dark

cores having a greater surface density on average (0.21 g cm−2 compared with the

IR bright value of 0.16 g cm−2). However, given the small number of leaves in each

sample, and the relative uncertainties in both the masses and radii, one should

approach this result with caution. However, this does indicate that more in-depth

investigation is needed to confirm the star formation content of these leaves.

Figure 4.6 shows that the uncorrected leaves fall very close to the empiri-

cal threshold for massive star formation derived by Kauffmann & Pillai (2010).
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PdBI 9 and PdBI 11 both lie above this threshold. The masses of the dendro-

gram leaves can be compared with the empirical limit using M/MHM (where

MHM=580R4/3M⊙). Kauffmann & Pillai (2010) refer to this ratio as the “com-

pactness”. The PdBI leaves have compactness values in the range 0.5–1.3 (with

a mean of 0.8). In addition, all PdBI leaves exhibit super-critical Jeans masses

(assuming a temperature of 15K; see Section 4.4.2).

The mean masses (∼ 7.5M⊙), radii (∼ 0.04 pc), and volume densities (∼ 4×105

cm−3) derived for the PdBI leaves are consistent with such parameters derived in

other IRDCs (e.g. Tan et al. 2013b), and intermediate-to-high mass star forming

regions (e.g. Peretto et al. 2006). It is noted that many of the dendrogram leaves

also show values typical to those observed in low-mass star forming regions (Caselli

et al. 2002a), particularly those associated with the narrow clump. However, leaves

that are well represented by monolithic, centrally concentrated structures (with

no traceable substructure), that have compactness parameters > 1, that contain a

number of Jeans masses, and have low virial parameters are good candidates for

the progenitors to intermediate-to-high mass stars. In this sample, PdBI 9 and 11

satisfy this criteria.
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4.7 Conclusions

This chapter presents a high-angular resolution study of the physical properties of

the highly filamentary IRDC G035.39-00.33. The results and analysis of the work

lead to the following conclusions:

1. Multi-resolution studies using SMA and PdBI images at 1.3mm (∼ 7′′ reso-

lution) and 3.2mm (∼ 4′′ resolution), respectively, reveal increasing levels of

fragmentation in the H6 region. The SMA images identify two substructures,

whereas the same region observed with the PdBI reveals five structures.

SMA2 is shown at the PdBI resolution to exhibit two further structures,

PdBI 9 and PdBI 10.

2. Dendrogram analysis reveals the presence of fourteen leaves in total, five of

which have spatially coincident 4.5, 8, or 24 µm emission (or some combi-

nation of these). Whilst some of the leaves appear centrally condensed and

monolithic, others have highly irregular boundaries, which may imply the

presence of unresolved substructure.

3. Leaves have radii, Rdecon: 0.028-0.065 pc; masses, M : 2.4-12.3M⊙; num-

ber densities, n: 1.6×105-7.3×105 cm−3. The most massive and dense of

the dendrogram leaves are consistent with recent high-angular resolution

observations of other IRDC cores (e.g. Tan et al. 2013b), and with other

intermediate-to-high mass cores (e.g. Peretto et al. 2006). However, several

of the dendrogram leaves are consistent with the properties of low-mass star

forming cores (e.g. Caselli et al. 2002a). Further observations at additional

wavelengths will help to constrain the physical parameters of the dendrogram
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leaves.

4. The masses and radii of leaves associated with the narrow filament are smaller

than those identified towards the H6 region. This is consistent with obser-

vations of other regions in which clustered, massive star formation is found

at the intersection of multiple filaments. It is speculated that the merger

of filaments in G035.39-00.33 may be responsible for the increased mass of

cores at this location.

5. All leaves are found to exhibit super-critical Jeans masses for their respective

densities. Moreover, a number of cores appear to be dynamically unstable

following virial analysis.

6. Not all line-widths decrease when considering the PdBI-only data over the

merged PdBI plus 30m data. This may be the result of embedded star-

formation, or dynamic effects such as accretion.

7. Although the leaves are typically found to exhibit trans- or supersonic line-

widths (σNT/cs& 1), their projected spacing is consistent with that predicted

by the thermal fragmentation of a cylinder (∼ 0.12 pc). Further high-angular

resolution observations of molecular lines known for tracing high-critical den-

sities are required in order to search for the presence of quiescent gas in this

context.

8. There is also some evidence that the fragmentation length may be scale-

dependent, with larger structures having separations that are more consistent

with turbulent fragmentation. However, this affect may be influenced by

projection.



Chapter 5

Conclusions

What are the initial conditions for massive star and cluster formation? Answer-

ing such a complex question requires detailed studies of molecular clouds that are

in an early stage of their evolution. The large masses (∼ 103-105), high densities

(∼ 103-105 cm−3), and low temperatures (< 25K) of IRDCs indicate that these

objects could prove to be of great importance in answering such a question. In

addition, recently formed molecular clouds may still have signatures of their for-

mation processes imprinted in their chemical, kinematic, and physical structure.

IRDCs therefore provide a unique opportunity to study the processes of both cloud

and star formation, simultaneously. In spite of this, the study of IRDCs is still in

its relative infancy. The following sections summarise the findings of this thesis,

before discussing possible avenues for future work.
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5.1 Summary

The image of G035.39-00.33 as a simple filamentary structure, as it appears in

silhouette against the bright MIR Galactic background, is deceptive. This thesis

confirms that G035.39-00.33 is organised into a network of morphologically distinct

molecular filaments. By probing multiple physical scales, this thesis presents a

detailed investigation into the kinematics and physical structure of a potential site

of massive star formation.

Chapter 2 utilises high-spectral resolution and high-sensitivity observations from

the IRAM30m telescope to study the kinematic structure of G035.39-00.33. N2H
+

(1−0) and C18O (1−0) were chosen for this study since they allow us to compare

and contrast the kinematics of the dense gas (as traced by N2H
+) and the more

abundant material (as traced by C18O).

The C18O observations indicate that G035.39-00.33 is divided into at least

three sub-filaments, two of which exhibit extended N2H
+ emission. In low-mass

star forming regions N2H
+ is known to trace regions of high-density (e.g. Caselli

et al. 2002a, Hacar & Tafalla 2011, Hacar et al. 2013, Tafalla et al. 2004). The

prominence of N2H
+ emission associated with certain structures, compared with

its absence in others, implies that G035.39-00.33’s sub-filaments have different

density structure (a result that has since been confirmed by Jiménez-Serra et al.

2014).

Chapter 2 revealed that one of the sub-filaments of G035.39-00.33 is most

prominent (filament 2 in the classification of Chapter 2). The N2H
+ (1−0) emission

associated with the main filament is extended over > 3 pc, implying the presence

of widespread dense gas. Investigating this further revealed that the mean number
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density across G035.39-00.33 is greater than that generally found in low-mass star

forming regions (e.g. Pineda et al. 2008). This is consistent with the observation

of widespread CO depletion throughout G035.39-00.33 (Hernandez et al. 2011.

Towards the locations of the most massive cores within G035.39-00.33 (as orig-

inally identified in 1.2mm continuum emission Rathborne et al. 2006), multiple

velocity components are detected. Jiménez-Serra et al. (2010) suggested that fil-

ament merging may be responsible for the detection of widespread SiO emission

throughout G035.39-00.33. Chapter 2 speculated that such a process may also

be responsible for the density enhancements at the locations of the most massive

cores. It was estimated that it would take ∼ 2Myr to result in an ∼ order of mag-

nitude increase in density at the interface of two merging filaments moving with

relative velocity ∼ 5 km s−1.

Chapter 3 set out to extend this study by investigating the kinematic prop-

erties of the dense sub-filaments at high-angular resolution. It was shown that

moment analysis, widely used in the interpretation of molecular line data, may be

insufficient in describing the dynamics of massive star forming regions.

Moment analysis was unable to accurately describe the high-angular resolution

data, leading to the erroneous interpretation of large-scale velocity gradients and

line broadening. Correctly interpreting velocity gradients in molecular clouds is

important. Velocity gradients may provide observational clues as to how cluster-

forming clumps attain their mass, through the accretion of matter along filaments

(e.g. Kirk et al. 2013, Peretto et al. 2014, Tackenberg et al. 2014, this was also

presented as one of the possible explanations for the large-scale gradient observed

in G035.39-00.33; Jiménez-Serra et al. 2014). However, the analysis presented in

Chapter 3 should provide an important cautionary note. The high-angular resolu-
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tion N2H
+ (1 − 0) data reveal sub-structure not evident in the single dish maps

presented in Chapter 2. It is apparent that the presence of sub-components may

mimic a large-scale velocity gradient when they are observed at lower-angular res-

olution.

Three sub-filaments separated in velocity by < 1 km s−1 pc−1 were classified

from the high-angular resolution N2H
+ (1 − 0) data (this does not include the

low-velocity, and low-density filament 1 identified in Chapter 2). The intricate

network of filamentary components in G035.39-00.33 bears striking resemblance

to that of the L1495/B213 complex in Taurus described by Hacar et al. (2013).

In contrast with the findings of Hacar et al. (2013) however, the dense gas of

G035.39-00.33 is widespread, and exhibits mildly supersonic non-thermal motions,

consistent with observations of other IRDCs (Battersby et al. 2014, Miettinen

2012). The widespread detection of high-density material in IRDCs may represent

an important difference between the physical properties of low- and high-mass star

forming regions.

The overall velocity gradients observed in the sub-filaments of G035.39-00.33

are small (< 0.7 km s−1 pc−1). Locally however, observed velocity gradients are

larger by comparison (of the order 1.5–2.5 km s−1 pc−1), and the velocity struc-

ture of each identified component is independent from the next. Moreover, it is

shown that the local velocity gradients may be influenced by the embedded core

population that provides the focus for Chapter 4.

Chapter 4 revealed a total of 14 continuum peaks, representative of the pre-

and proto-stellar core population covering an area of ∼ 1.3 pc2 in G035.39-00.33.

This is in contrast to previous low-angular resolution studies of G035.39-00.33 (e.g.

Nguyen Luong et al. 2011, Rathborne et al. 2006). Their masses (2.4-12.3M⊙),
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sizes (0.03-0.07 pc), and volume densities (1.6×105-7.3×105 cm−3), are consistent

with those estimated from other high-angular resolution observations of IRDCs

(e.g. Tan et al. 2013b). Whilst some of the identified cores appear centrally

condensed and monolithic, others exhibit irregular boundaries, which may imply

the presence of unresolved substructure.

The N2H
+ (1 − 0) presented in Chapter 3 was used in conjunction with the

3.2mm continuum data to investigate the dynamical state of the identified cores.

Although the dynamical state of each core is dependent on both its geometry and

density profile it is found that many of the identified cores are unstable to collapse.

Cores which are well represented by monolithic, centrally condensed structures,

exhibiting low virial parameters and many Jeans masses, are good candidates for

the progenitors of intermediate-to-high-mass stars. Within the selected area of

G035.39-00.33, two of the identified cores meet this criteria.

5.2 Future work

Although the properties of IRDCs have been intensively researched in recent years,

there is still much that we can learn about the cloud and star formation processes

through their study. The following section discusses how the research presented

in this thesis can be further developed, and highlights possible avenues for future

study.

High angular resolution observations of cluster forming clumps:

To understand the role filaments play in the formation of massive cores, we must

peer deep into dense molecular clouds; unveiling the population of quiescent pre-
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stellar cores. This will be investigated in a future study of the H6 region of

G035.39-00.33 using the Atacama Large Millimeter Array (ALMA).

Chapter 4 revealed that the clumps of G035.39-00.33 are highly fragmented.

In addition, some of the identified continuum peaks display irregular boundaries.

This may imply fragmentation on scales smaller than those probed by the PdBI

data presented in Chapter 4. The ALMA study of the H6 clump will identify the

core population complete to a resolution of ∼ 0.02 pc. This will aid in establishing

whether or not the more massive cores within the H6 region show further sub-

structure, and help to understand the fragmentation process.

The core accretion model of high-mass star formation invokes turbulence and/or

magnetic fields to provide pressure support in massive cores for which thermal

support is insufficient (McKee & Tan 2002, 2003). Chapter 3 revealed that N2H
+

(1 − 0) traces the dense filamentary structures of G035.39-00.33, and does not

exclusively trace the dense cores. One must therefore utilise tracers of even higher

density gas to establish the turbulent content of the individual nodes of star for-

mation. ALMA will be used to probe the dense gas of the H6 region using the

J = 3 → 2 transition of N2H
+. The line-width distribution can then be tested

against theories of either thermal or turbulent fragmentation.

This project will also study the kinematics of the star forming cores with respect

to their surrounding filaments. Several studies of low-mass star forming regions

show that the centroid velocities of dense cores are in good agreement with that

of their envelope (e.g. Hacar & Tafalla 2011, Kirk et al. 2007, Walsh et al. 2004).

Because of the greater density of the filaments in G035.39-00.33, this can be tested

using the J = 1 → 0 and J = 3 → 2 transitions of N2H
+. Studying the dynamics

of the gas in this region with ALMA may also help to resolve the ambiguous



231

interpretation of the velocity gradient patterns identified in Chapter 3. This may

help us to understand the mass assembly of these cores.

A statistical study of the kinematics of IRDCs:

Another important question to address is whether or not G035.39-00.33 is a “typ-

ical” IRDC. To answer this, the IRAM30m telescope will be used to study the

kinematics of the 10 IRDCs presented in Butler & Tan (2009).

The IRDCs in the chosen sample display a range of morphologies (from ex-

tremely filamentary, to elliptical in 2-D projection), and have a variety of masses

(from cloud I ∼ 2× 102 M⊙ to cloud C ∼ 7.4× 104M⊙; Kainulainen & Tan 2013).

It has been suggested that masses of clouds formed via colliding flows of atomic

gas are limited to . 103-104M⊙(e.g. McKee & Ostriker 2007). Studying the kine-

matic properites of clouds with a variety of physical properties and morphologies

is therefore important in establishing their origins.

The early indications from this work are that, within this sample, the IRDCs,

as with G035.39-00.33, comprise several velocity coherent structures. Figure 5.1

highlights some of the preliminary results of this study. Figure 5.1 is a position-

position-velocity diagram highlighting different velocity components observed in

C18O (1−0) emission towards IRDC G028.37+00.07 (cloud C). The velocity struc-

tures have been extracted using the tool developed in Chapter 3. It is clear that

the molecular gas is distributed across different structures separated in velocity

space by a few kms−1. There is evidence for velocity gradients throughout the

map, and C18O overlapping regions coincide with the enhancement of the mass

surface density in each IRDC. Moreover, the systemic velocities of the massive

cores studied by Tan et al. (2013a) appear to be associated with different velocity
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components. Similar features are also observed in the PPV structure of the other

IRDCs in the sample.

A complimentary study investigating tracers typically associated with shocked

gas across these clouds is also under-way (Jiménez-Serra et al., in prep.). The

combination of these studies will establish whether or not the kinematics and

chemistry of G035.39-00.33 are typical of IRDCs.

Investigating the influence of environment on star formation in IRDCs:

How does star formation vary under different physical conditions? Answering this

question requires the study of molecular clouds that are subjected to different

environmental conditions. One way to address this question is by comparing and

contrasting the kinematic and physical properties of IRDCs contained within the

Galactic disc, to those situated within the central molecular zone (CMZ) of the

Galaxy.

The CMZ extends to a radius < 0.5 kpc from the Galactic centre, and con-

tains ∼ 10% of the Galaxy’s total molecular gas. The general properties of GMCs

within the disc is known to vary from those of the CMZ. GMCs within the CMZ

exhibit greater column and volume densities (by ∼ two orders of magnitude), have

a greater velocity dispersion over a given physical extent (15–50 km s−1 over the

area of a GMC), and have a higher kinetic temperature (see Longmore et al. 2014,

Molinari et al. 2014, and references therein).

As well as hosting some of the most prominent sites of star formation within the

Galaxy (Sgr B2 and Sgr C), and examples of young massive clusters (the Arches

and Quintuplet clusters), the CMZ also contains some of the most extreme IRDCs.

G0.253+0.016 otherwise known as the “Brick” is a well studied example of such
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Figure 5.1: Position-position-velocity cube highlighting the velocity structure of
cloud C (G028.37+00.07). These structures have been extracted from the C18O
(1 − 0) data using a Gaussian fitting routine presented in Chapter 3. At the
base of the figure is the mass surface density map of Kainulainen & Tan 2013.
Contour levels at the top of the image refer to the total integrated intensity over
the full velocity range shown in the z-axis. The contour levels are from 40–60%
peak integrated intensity in 10% intervals, and then 65-95% in 5% intervals (peak
integrated intensity is ∼ 14K km s−1). Contours at the bottom of each figure refer
to the intensity of each spectral component integrated over their representative
velocity range (contours are 50–90% peak integrated intensity increasing in 10%
increments). The location and systemic velocity of the cores identified in N2D

+

(3 − 2) emission with ALMA by Tan et al. (2013a) are shown (79.4 km s−1 and
81.2 km s−1 for C1-S and C1-N, respectively).

Chapter6/Chapter6Figs/EPS/ppv_c.eps
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a cloud (Bally et al. 2010, Higuchi et al. 2014, Immer et al. 2012, Johnston et al.

2014, Kauffmann et al. 2013b, Lis & Menten 1998, Lis et al. 1994, Longmore et al.

2012, Rathborne et al. 2014). For a cloud containing ∼ 105M⊙ of gas within a

radius of ∼ 3 pc, G0.253+0.016 shows very little signs of star formation activity.

Consequently, G0.253+0.016 is one of the best examples of IRDCs to study the

initial conditions for massive cluster formation.

Molinari et al. (2011) suggested that molecular gas within the CMZ was or-

ganised into a “twisted ring”. Longmore et al. (2013) proposed that gas in this

ring, and by inference, star formation, may be influenced by passing close to the

super-massive black hole, Sgr A*, at the centre of the Milky Way. In this sce-

nario, clouds that have recently (or are yet to) passed Sgr A* should show less star

formation activity than those for which a significant amount of time has elapsed

since passage. Even though the star formation potential of G0.253+0.016 is cur-

rently under debate (e.g. Johnston et al. 2014, Kauffmann et al. 2013b, Rathborne

et al. 2014), studying the dynamics of molecular clouds in this region provides an

opportunity to investigate the influence of environment on star formation.
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5.3 Concluding remarks

Since their discovery as dark extinction features against the bright MIR Galactic

background, Infrared Dark Clouds have received significant interest from the star

formation community. In particular, Infrared dark clouds provide an exciting

opportunity to investigate the initial conditions for massive star and star cluster

formation.

The study of G035.39-00.33 presented in this thesis has revealed the kinematics

of its dense filamentary network for the first time. Understanding the dynamics of

massive star and star cluster formation is important to help test current theoretical

models, and to make comparisons with the low-mass star forming environment.

This thesis represents a step towards achieving this. However, in order to fully

understand the dynamics of massive star forming regions, this study must be

extended to different environments. The unprecedented capabilities of facilities

such as ALMA and the planned upgraded to PdBI, NOEMA (Northern Extended

Millimetre Array), will provide both the resolution and sensitivity needed to de-

construct complex molecular clouds, and help identify the initial conditions for

massive star formation.
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Appendix A

Gaussian fitting routines

A.1 Fitting routine 1: The Guided Gaussian Fit

(GGF)

This fitting routine has been used for the analysis of Chapter 2. Multiple velocity

components are evident in both the C18O and N2H
+ data (see Section 2.5.1). The

following steps outline the methodology used to fit these data:

1. Using Figures 2.3 and 2.15, three windows are defined based on the profile of

the average spectra, and the differing morphology of the filamentary struc-

tures. The same windows are used for both C18O and N2H
+: 42-44 km s−1,

44-46 km s−1, and 46-48 km s−1.

2. Using these spectral windows as a guide, three Gaussian components are

fitted to the average spectra in gildas/class. The average spectra that are

fitted differ slightly between C18O and N2H
+:
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Figure A.1: Average spectrum of the C18O (1 − 0) shown in blue. Overlaid in
green are the three components associated with the average spectrum at velocities,
43.411 km s−1, 45.197 km s−1, and 46.330 km s−1.

(a) For C18O: FigureA.1 displays the average C18O spectrum taken over the

entire mapped region, with the CLASS fit results of three Gaussian pro-

files overlaid. These peak at velocities of, (Filament 1) 43.411 km s−1,

(Filament 2) 45.197 km s−1, and (Filament 3) 46.330 km s−1.

(b) For N2H
+: The average spectra are taken from the regions of emission

(and not over the entire mapped region). This is because Filaments

1 and 3 cover a smaller area in N2H
+ emission than they do in C18O.

The centroid velocities for the N2H
+ components are: 42.985 km s−1,

45.582 km s−1, and 46.834 km s−1, for Filaments 1, 2, and 3, respec-

tively.

3. The observed velocity dispersion from each Gaussian fit is calculated using,

σobs =∆υobs/2
√

2 ln(2).

4. Using the observed velocity dispersion as a window, the integrated intensity

Appendix1/Appendix1Figs/EPS/figureA1.eps
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Figure A.2: Spectra at offset (-7.5′′, 21′′). C18O (1 − 0) is shown as the dashed
profile, in blue with the results of the GGF shown in green. N2H

+ (1−0) is shown
as the solid profile, in red with the results of the GGF in yellow.

is calculated for every spectrum in the mapped region, between the lim-

its VLSR±σobs, whereby VLSR is the centroid velocity of each component as

derived from the average spectra.

5. This integrated intensity is then used as a guide. The standard detection

threshold for Gaussian profiles is the 3σ level. In the case of G035.39-00.33,

three overlapping velocity components are observed. For any individual com-

ponent to be fitted therefore, a higher signal-to-noise ratio is required. In the

case of the IRAM30m data, this was set at S/N≥ 9. This guide therefore

indicates how many, and which velocity components should be fitted for any

given spectrum.

6. As a secondary guide, the optically thin, isolated hyperfine component of the

N2H
+ spectrum, is overlaid when fitting the C18O. If:

Appendix1/Appendix1Figs/EPS/figureA2.eps
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(a) multiple components are observed in the emission profiles of both species:

the same features are fitted in both C18O and N2H
+.

(b) a component is detected in C18O, but and not in N2H
+: The intensity

of this profile is checked against the GGF intensity constraint, and

also checked spatially using Figure 2.15. If the intensity constraint is

satisfied, then the C18O component is fitted.

An example of this fitting procedure can be seen in Figure A.2. This shows the

C18O (blue) and N2H
+ (red) spectra at offset (-7.5′′, 21′′), C18O (1 − 0) in blue,

and N2H
+ (1−0). This location is close to H6. The results of the guided Gaussian

fit are shown in green and yellow, respectively.

A.2 Fitting routine 2: Gaussian fitting & fila-

ment classification

This fitting routine has been used in the analysis of Chapter 3. The routine con-

sists of two main components: A Gaussian fitting procedure, and a classification

algorithm that identifies and groups components. In the next two sections the

step-by-step methodology from fitting to classification is described.

A.2.1 Fitting routine

1. Firstly, a coverage is defined. The user is asked to provide a radius and

spacing. This refers to a radius of a circle, within which the routine will

compute an average spectrum from all spectra contained within this limit.

The spacing refers to the placement of these preliminary areas. Specifically,
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it is an integer number of pixels, starting at the first position in the map.

The radius and spacing number should be selected such that a complete

coverage of the map is achieved. The radius should be large enough to

sufficiently reduce user input, but small enough to avoid diluting the main

features within the spectra. For this particular data set, a radius of 6′′, with

a spacing of 5.91′′ (i.e. 1.5 × pixels), was used. This provided full coverage

with 175 preliminary areas.

2. For each area, all spectra contained within the confining radius are averaged.

The user then defines how many Gaussian components to fit to each average

spectrum, and to provide initial estimates for the intensity, velocity, and

line-width of each component.

3. A minimisation algorithm, mpfitfun (Markwardt 2009), is used to find

best fit results for the single or multiple Gaussian components, displaying

the result to the screen.

4. Once satisfied (the residual to the fit is also displayed), the mpfitfun fit

results are then used as initial free-parameter estimates for each individual

spectrum contained within the preliminary area.

5. The cycle is complete when no more preliminary areas remain.

In order for the routine to identify multiple velocity components, a number of

constraints must be satisfied:

1. The spectrum must contain a velocity channel with a measured intensity

greater than a user defined intensity threshold (based on the rms). All posi-
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tions that do not contain a velocity channel with intensity greater than this

threshold are discarded.

2. The FWHM of all Gaussian components must be broader than the velocity

resolution (∆vres). Although simplistic, in very rare occasions the minimi-

sation algorithm can converge on a non-physical solution - typically an ex-

tremely narrow (FWHM <<∆vres), and bright velocity component. These

solutions are discarded by the program, and the spectra refit.

3. The separation in centroid velocity between two peaks must be greater than

the half-width at half-maximum (HWHM) of the brightest component de-

fined by the average spectrum. This is to prevent the minimisation algorithm

converging towards a two component fit, when the spectrum only shows a

single peak.

4. The centroid velocity of each Gaussian component in individual spectra must

lie within a velocity range defined by VLSR–FWHMav < VLSR < VLSR+FWHMav,

where FWHMav refers to the FWHM of the same component identified in the

average spectrum. This ensures that the same velocity component is fitted

in each spectrum, whilst also allowing for velocity gradients on a spectrum-

to-spectrum basis.

If the above conditions are not satisfied, the program will aim to fit a lower amount

of velocity components, repeating the above checks until they are satisfied. Once

satisfied, in order to be verified, the residual value of the resultant fit must be less

than 3σ.
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Due to the preliminary areas having some level of overlap with neighbouring

areas, there are multiple fits to the same position. The benefit of this is that it

ensures a smooth transition between areas. In order to select the “best fit” to the

spectrum, the solution with the lowest χ2
red is therefore chosen.

A.2.2 Classification routine

To group velocity components, the map is divided into boxes. Each box has an

area of ∼ 12′′×12′′ (the equivalent area would contain 9 synthesised PdBI beams).

Next, the box with the greatest total integrated intensity is identified. Velocity

component classification begins within this box using the following procedure:

1. From the data-set containing the Gaussian fits, the position within the box

with the greatest integrated intensity is selected: this is the “seed” position.

It is Identified whether or not this position has multiple velocity components

associated with it. The first velocity component is selected.

2. The angular distance to every position within the area is calculated using:

di =
√

(Xseed/branch −Xi)2 + (Yseed/branch − Yi)2 (A.1)

(see step 4 for “branch” explanation).

3. All positions within a radius equivalent to the maximum distance between

two adjacent pixels in the grid are selected. For the PdBI map this is equiv-

alent to
√

(1.97)2 + (1.97)2∼ 2.8′′ or ∼ 0.04 pc at a distance of 2900 pc.

4. Each of these positions is then cycled through, calculating the velocity gra-

dient between each spectral component, and the velocity component of the
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seed position (∇v ≡
|Vi−Vseed/branch|

di
, where Vi is the velocity component of the

selected position, Vseed/branch is the velocity component of the seed (branch)

position, and di is the angular distance defined in step 2). If the velocity

gradient is ≤ 2 km s−1 pc−1 (which corresponds to a velocity difference of

∼ 0.1 km s−1 over a distance of 0.04 pc) then accept these components as

“linked”. If linked, this position is registered as a new “branch” location.

5. Fit components that have then been classified as linked, are then removed

from the data set. This ensures no component will be linked twice. For each

of the boxes, catalogues are created for the linked components.

6. Each branch location is now cycled through, and steps 2–5 are repeated.

However, rather than using the seed velocity, the branch velocity is used.

7. Once no more branch locations can be attributed to the original seed, move

on to the next seed velocity component and repeat steps 2–5

8. Continue until all velocity components from the seed have been exhausted.

9. Repeat steps 1–8 until all seed locations have then been exhausted.

This method groups Gaussian components that are closely linked in velocity (the

initial linking gradient over ∼ 0.04 pc is ∼half of the velocity resolution in the

case of the PdBI data). For each box one or more catalogues are returned that

contain the linked velocity components. These catalogues contain the kinematic

information extracted using the fitting procedure above (see A.2.1).

The above constraints leave a number of points unassigned. In order to group

the unassigned data, angular distance from the brightest position in the cloud
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versus VLSR is plotted for every Gaussian component within the area. Easily

distinguished are the velocity components that have been fitted according to the

method outlined above. The remaining unassigned data points are then linked to

the group that is closest in velocity. If this presented an ambiguous result, for

example in a box where two components converge into a single Gaussian fit, with

no obvious asymmetry, then the data point remains unassigned. This analysis is

repeated for each box in the mapped area.

At this point, all boxes are independent from the surrounding areas. In order

to link velocity components between boxes, the brightest box is selected first, and

the eight surrounding boxes are arranged in order of descending total integrated

intensity. By linking boxes that are directly adjacent to one another the risk of

linking different velocity components is minimised (maximum distance between

two points in adjacent boxes ∼ 34′′; or ∼ 0.5 pc at a distance of 2900 pc). Finally,

once the procedure is complete, individual positions are checked by eye to see

whether or not a different number of velocity components would better represent

the data.

The routine returns the following parameters for each individual velocity struc-

ture: Ra, Dec, line intensity (with uncertainty), centroid velocity (with uncer-

tainty), FWHM (with uncertainty), base RMS, χ2
red, residual value. The base

RMS is calculated within a user defined velocity range. The χ2
red and residual

values are derived from the output parameters of mpfitfun.

TableA.1 highlights some statistics on the fitting procedure. Out of 1554 po-

sitions in the mapped region, a total of 1117 have been fitted with a total of 1700

Gaussian components. This highlights the degree of multiplicity in the cloud and

the complexity of the spectra. Following the above procedures, ∼ 9% had to be
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Table A.1: Statistics regarding the fitting and classification procedures.

Attribute value

Total number of pixels 1554

Total number of pixels fitted 1117

Percentage number of fits (%) 71.9

Number of positions refitted (%) <10.0

Total number of Gaussians fitted 1700

Degree of multiplicity (components per pixel) 1.5

F2a (%) 40.5

F2b (%) 35.3

F3 (%) 15.6

C4 (%) 1.4

C5 (%) <1.0

C6 (%) <1.0

Unclassified data (%) 5.9

refitted by hand. The majority of components have been attributed to filaments

F2a, F2b, and F3, with contributions from additional components at various po-

sitions in the cloud (C4, C5, and C6 are identified as individual components, but

cannot be linked to either each other or F2a, F2b, and F3, due to separation in

either velocity or position). In total ∼ 6% of the fits remain unclassified.
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Smith, L., Kim, S., Mizuno, N., Onishi, T., Mizuno, A. & Fukui, Y.
(2009). The Second Survey of the Molecular Clouds in the Large Magellanic
Cloud by NANTEN. II. Star Formation. ApJS, 184, 1–17.

Kenyon, S.J., Dobrzycka, D. & Hartmann, L. (1994). A new optical ex-
tinction law and distance estimate for the Taurus-Auriga molecular cloud. AJ,
108, 1872–1880.

Kim, J., Ryu, D. & Jones, T.W. (2001). Three-dimensional Simulations of the
Parker Instability in a Uniformly Rotating Disk. ApJ, 557, 464–474.

Kim, W.T. & Ostriker, E.C. (2006). Formation of Spiral-Arm Spurs and
Bound Clouds in Vertically Stratified Galactic Gas Disks. ApJ, 646, 213–231.

Kirk, H., Johnstone, D. & Tafalla, M. (2007). Dynamics of Dense Cores
in the Perseus Molecular Cloud. ApJ, 668, 1042–1063.

Kirk, H., Myers, P.C., Bourke, T.L., Gutermuth, R.A., Hedden, A. &
Wilson, G.W. (2013). Filamentary Accretion Flows in the Embedded Serpens
South Protocluster. ApJ, 766, 115.

Koda, J., Scoville, N., Sawada, T., La Vigne, M.A., Vogel, S.N.,
Potts, A.E., Carpenter, J.M., Corder, S.A., Wright, M.C.H.,
White, S.M., Zauderer, B.A., Patience, J., Sargent, A.I., Bock,
D.C.J., Hawkins, D., Hodges, M., Kemball, A., Lamb, J.W., Plam-
beck, R.L., Pound, M.W., Scott, S.L., Teuben, P. & Woody, D.P.
(2009). Dynamically Driven Evolution of the Interstellar Medium in M51. ApJL,
700, L132–L136.

Koyama, H. & Inutsuka, S.I. (2000). Molecular Cloud Formation in Shock-
compressed Layers. ApJ, 532, 980–993.

Kramer, C., Stutzki, J. & Winnewisser, G. (1996). Structure and excitation
conditions of the southern part of the Orion B molecular cloud: a CO multiline
study. A&A, 307, 915–935.

Kroupa, P. (2001). On the variation of the initial mass function. MNRAS, 322,
231–246.



260

Krumholz, M.R. & McKee, C.F. (2008). A minimum column density of
1gcm−2 for massive star formation. Nature, 451, 1082–1084.

Krumholz, M.R., Klein, R.I., McKee, C.F., Offner, S.S.R. & Cun-
ningham, A.J. (2009). The Formation of Massive Star Systems by Accretion.
Science, 323, 754–.

Kuiper, R., Klahr, H., Beuther, H. & Henning, T. (2010). Circumvent-
ing the Radiation Pressure Barrier in the Formation of Massive Stars via Disk
Accretion. ApJ, 722, 1556–1576.

Kwan, J. (1979). The mass spectrum of interstellar clouds. ApJ, 229, 567–577.

Kwan, J. & Valdes, F. (1987). The spatial and mass distributions of molecular
clouds and spiral structure. ApJ, 315, 92–103.

Lada, C.J. & Lada, E.A. (2003). Embedded Clusters in Molecular Clouds.
ARA&A, 41, 57–115.

Ladd, E.F., Fuller, G.A. & Deane, J.R. (1998). C 18O and C 17O Obser-
vations of Embedded Young Stars in the Taurus Molecular Cloud. I. Integrated
Intensities and Column Densities. ApJ, 495, 871.

Larson, R.B. (1969). Numerical calculations of the dynamics of collapsing proto-
star. MNRAS, 145, 271.

Larson, R.B. (1979). Stellar kinematics and interstellar turbulence. MNRAS,
186, 479–490.

Larson, R.B. (1981). Turbulence and star formation in molecular clouds. MN-
RAS, 194, 809–826.

Larson, R.B. (2003). The physics of star formation. Reports on Progress in
Physics , 66, 1651–1697.

Larson, R.B. & Starrfield, S. (1971). On the formation of massive stars and
the upper limit of stellar masses. A&A, 13, 190–197.

Launhardt, R., Nutter, D., Ward-Thompson, D., Bourke, T.L., Hen-
ning, T., Khanzadyan, T., Schmalzl, M., Wolf, S. & Zylka, R. (2010).
Looking Into the Hearts of Bok Globules: Millimeter and Submillimeter Con-
tinuum Images of Isolated Star-forming Cores. ApJS, 188, 139–177.

Lee, E.J., Murray, N. & Rahman, M. (2012a). Milky Way Star-forming
Complexes and the Turbulent Motion of the Galaxy’s Molecular Gas. ApJ, 752,
146.



261
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F. & Gómez, G.C. (2012). Aspect Ratio Dependence of the Free-fall Time for
Non-spherical Symmetries. ApJ, 756, 145.

Quillen, A.C., Thorndike, S.L., Cunningham, A., Frank, A., Guter-
muth, R.A., Blackman, E.G., Pipher, J.L. & Ridge, N. (2005). Turbu-
lence Driven by Outflow-blown Cavities in the Molecular Cloud of NGC 1333.
ApJ, 632, 941–955.

Ragan, S.E., Bergin, E.A. & Wilner, D. (2011). Very Large Array Observa-
tions of Ammonia in Infrared-dark Clouds. I. Column Density and Temperature
Structure. ApJ, 736, 163.

Ragan, S.E., Heitsch, F., Bergin, E.A. & Wilner, D. (2012). Very Large
Array Observations of Ammonia in Infrared-dark Clouds. II. Internal Kinemat-
ics. ApJ, 746, 174.

Ragan, S.E., Henning, T. & Beuther, H. (2013). APEX/SABOCA observa-
tions of small-scale structure of infrared-dark clouds I. Early evolutionary stages
of star-forming cores. ArXiv e-prints .

Rathborne, J.M., Jackson, J.M. & Simon, R. (2006). Infrared Dark Clouds:
Precursors to Star Clusters. ApJ, 641, 389–405.

Rathborne, J.M., Simon, R. & Jackson, J.M. (2007). The Detection of
Protostellar Condensations in Infrared Dark Cloud Cores. ApJ, 662, 1082–1092.

Rathborne, J.M., Jackson, J.M., Chambers, E.T., Stojimirovic, I.,
Simon, R., Shipman, R. & Frieswijk, W. (2010). The Early Stages of Star
Formation in Infrared Dark Clouds: Characterizing the Core Dust Properties.
ApJ, 715, 310–322.

Rathborne, J.M., Longmore, S.N., Jackson, J.M., Foster, J.B., Con-
treras, Y., Garay, G., Testi, L., Alves, J.F., Bally, J., Bastian,
N., Kruijssen, J.M.D. & Bressert, E. (2014). G0.253+0.016: A Centrally
Condensed, High-mass Protocluster. ApJ, 786, 140.

Richer, J.S., Shepherd, D.S., Cabrit, S., Bachiller, R. & Church-
well, E. (2000). Molecular Outflows from Young Stellar Objects. Protostars
and Planets IV , 867.



270

Roman-Duval, J., Jackson, J.M., Heyer, M., Rathborne, J. & Simon,
R. (2010). Physical Properties and Galactic Distribution of Molecular Clouds
Identified in the Galactic Ring Survey. ApJ, 723, 492–507.

Rosolowsky, E., Engargiola, G., Plambeck, R. & Blitz, L. (2003).
Giant Molecular Clouds in M33. II. High-Resolution Observations. ApJ, 599,
258–274.

Rosolowsky, E.W., Pineda, J.E., Kauffmann, J. & Goodman, A.A.
(2008). Structural Analysis of Molecular Clouds: Dendrograms. ApJ, 679, 1338–
1351.

Rygl, K.L.J., Wyrowski, F., Schuller, F. & Menten, K.M. (2013). Initial
phases of massive star formation in high infrared extinction clouds. II. Infall and
onset of star formation. A&A, 549, A5.

Sakai, T., Sakai, N., Kamegai, K., Hirota, T., Yamaguchi, N., Shiba,
S. & Yamamoto, S. (2008). A Molecular Line Observation toward Massive
Clumps Associated with Infrared Dark Clouds. ApJ, 678, 1049–1069.

Salpeter, E.E. (1955). The Luminosity Function and Stellar Evolution. ApJ,
121, 161.

Sanhueza, P., Jackson, J.M., Foster, J.B., Garay, G., Silva, A. &
Finn, S.C. (2012). Chemistry in Infrared Dark Cloud Clumps: A Molecular
Line Survey at 3 mm. ApJ, 756, 60.

Sanhueza, P., Jackson, J.M., Foster, J.B., Jimenez-Serra, I.,
Dirienzo, W.J. & Pillai, T. (2013). Distinct Chemical Regions in the
”Prestellar” Infrared Dark Cloud G028.23–00.19. ApJ, 773, 123.

Schneider, N., Csengeri, T., Bontemps, S., Motte, F., Simon, R., Hen-
nebelle, P., Federrath, C. & Klessen, R. (2010a). Dynamic star forma-
tion in the massive DR21 filament. A&A, 520, A49.

Schneider, N., Motte, F., Bontemps, S., Hennemann, M., di
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