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Abstract 

Permanently implanted biomaterials may cause problems to the host body associated 

with long term chronic inflammation which would eventually require revision surgery. 

The development of biodegradable materials which can be absorbed, consumed and 

excreted by the patient is therefore of interest. Magnesium alloys have for a long time 

been considered as potential biomaterials for load-bearing applications due to their 

excellent biological properties including superior biochemical and biomechanical 

compatibility compared to other alternatives such as biodegradable polymers and 

bioceramics. 

However, the application of magnesium material in the biological area is still limited 

due to its intrinsically poor corrosion performance in the biological environments. 

Therefore, various methods have been explored to control the degradation rate of 

magnesium in biological fluid, of which plasma electrolytic oxidation (PEO) is the most 

promising method. PEO is a plasma-assisted anodising process that can convert the 

surface of magnesium into a ceramic layer, thus preventing the corrosive medium 

contacting the substrate; therefore, the degradation rate can be reduced. Furthermore, 

highly biocompatible coatings can be produced when appropriate electrolytes are 

used in the PEO process. 

Motivated by the beneficial properties of magnesium and corrosion protection 

provided by the PEO technique, considerable efforts have been devoted towards the 

development of magnesium implants based on PEO protection. Nevertheless, the 

corrosion rate of magnesium has not been reduced to an acceptable level and a 

universal PEO process appropriate for magnesium has not yet been established. 

In the present study, PEO processes on commercially pure (cp) magnesium and the 

resulting coating characteristics have been systematically studied. Through this 

progressive study, a biologically friendly electrolyte containing Ca and P compounds 

have been developed. An appropriate current regime for this electrolyte has also been 

studied. Finally, a hydroxyapatite layer, intended to enhance the sample bioactivity, 

was deposited on the PEO coated cp magnesium. The PEO process was studied 
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according to key electrical characteristics including voltage transient, and 

voltage/current waveforms. Scanning electron microscopy (SEM), energy dispersive 

X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were employed to study the 

surface and cross-sectional morphology, elemental composition, phase composition 

of the coatings. Residual stress induced by the PEO process is also studied using 

XRD method. The corrosion properties of the coated samples in simulated body fluid 

(SBF) were studied using electrochemical methods including open circuit potential 

(OCP) monitoring, electrochemical impedance spectroscopy (EIS) measurement, and 

potentiodynamic polarisation scans. The mechanical properties, including static 

tensile properties and cyclic fatigue performance of the coated samples were also 

studied to verify the applicability of magnesium in biological areas from the 

mechanical point of view. 

The results indicated that the combination of a pulsed unipolar (PUP) current regime 

of 3000 Hz  and an electrolyte composed of 12 g/l Na3PO4·12H2O and 2g/l Ca(OH)2 

provides the best process stability and success of Ca and P incorporation. Moreover, 

the corrosion resistance of cp magnesium in the SBF could be improved by more than 

10 times. Nevertheless, such protection is very limited as the coating was degraded 

rapidly in the simulated body fluid, which is due to the chemical instability of MgO at 

the pH of SBF. Tensile and cyclic fatigue tests demonstrated that the PEO coated cp 

magnesium possesses sufficient mechanical properties for general load-bearing 

biomedical applications even though the fatigue strength is significantly deteriorated 

by the surface modification. Further work required to achieve better control over the 

biodegradation process of Mg implants can be outlined as follows: (i) robustness of 

the developed PEO process should be explored on other corrosion resistant 

magnesium alloys containing biologically friendly elements (like Ca, Zn, Mn); (ii) 

addition of F-, SiO3
2- in the electrolyte to facilitate the formation of stable compounds 

besides MgO in the PEO coating, thus reducing the degradation rate of magnesium 

based implants.
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Chapter 1 Introduction 

1.1 Background 

Magnesium and its alloys are considered promising biomaterials due to their good 

biocompatibility and mechanical properties. However, the application of magnesium alloys in 

the biomedical sector is hindered because of their poor corrosion performance in the 

corrosive physiological environment. Fortunately, plasma electrolytic oxidation (PEO) (also 

known as micro-arc oxidation (MAO) or spark anodising) has provided an effective means to 

reduce the corrosion rate of magnesium by converting its surface into a barrier oxide ceramic 

layer. Such conversion occurs on the surfaces of anodically polarised valve metals with the 

assistance of plasma discharge events. PEO treatments are usually conducted in an 

apparatus composed of a conventional electrolytic cell and a power supply with high voltage 

output. By applying high voltage/current between the anode (the component to be treated) 

and the cathode made of a noble metal (usually stainless steel), a ceramic coating is formed. 

The PEO process and the final coating characteristics are highly dependent on several 

factors, including the electrolyte composition, substrate material, power supply regime and 

even the geometry of the electrolytic cell. It should be born in mind that these factors are 

essentially interdependent, making the process quite complex.  

The PEO technique has been attracting extensive interest as it could provide significant 

advantages from two aspects: the process itself and the coating properties. Besides low 

capital cost, the PEO process is flexible and there is almost no limitation on the shape and 

size of the components made of valve metals (Mg, Al, Ti, Zr). Moreover, the PEO process 

allows utilising of non-toxic compounds, thus can be considered as an environmentally 

friendly technique compared with other coating processes like conversion treatments. The 

coatings produced by this technique can possess a wide thickness range, providing wear and 

corrosion protection to the substrate. Other protective, decorative as well as multifunctional 

coatings could also be produced by adjusting the process parameters.  

Recently, the application of PEO techniques has been expanded into the biomedical area. In 

vivo studies have proven that porous PEO coatings are able to stimulate the regeneration of 

bone tissue. In addition, considering the good biocompatibility of magnesium alloys, 
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significant research effort has been devoted towards development of magnesium based 

biomaterials with their degradation rate being controlled using PEO technique. The bioactivity 

of the magnesium based implants can also be enhanced by incorporating Ca and P into the 

PEO coatings [1]. However, in the existing publications, PEO coatings are mainly produced in 

Ca-free electrolyte, which makes the formation of Ca containing PEO coating impossible. The 

possibility of Ca and P incorporation in the PEO coating has been investigated in some 

preliminary work [2, 3]. Nevertheless, this work is mainly focused on producing coatings and 

characterise their properties and the results have not always been satisfactory. For the 

purpose of practical application (reduced degradation rate and enhanced bioactivity), 

systematic study of the PEO process on magnesium substrate is absolutely necessary. 

1.2 Aim and Objectives 

The main objective of this project is to facilitate development of novel biodegradable 

magnesium alloy implants with the degradation rate controlled and the bioactivity enhanced 

by PEO-based coatings. This involves optimisation of PEO process parameters including 

electrolyte composition and current regime as well as development of appropriate post 

treatments.  Upon the completion of the research at this stage, the following progressive 

objectives are intended to be achieved: 

(i) A Ca- and P- containing electrolyte is to be developed to meet the prerequisite of 

producing bioactive PEO coating; 

(ii) A current regime suitable for the developed electrolyte in (i), without compromising the 

PEO process stability, is to be explored; 

(iii) A suitable post treatment capable of producing hydroxyapatite on the PEO coated cp 

Mg is to be studied; 

(iv) The corrosion process in the simulated body fluid of the surface engineered cp Mg 

using the parameters developed through (i) to (iii) will be discussed;  

(v) Mechanical applicability of the surface engineered Mg biomaterials is to be studied. 

1.3 Thesis Overview 

In order to meet the above mentioned objectives, various studies are included in this work, 

which is distributed into the various chapters of this thesis. 

Chapter 2 reviews the history of biomaterials development and explains why magnesium is 
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considered as a prospective biomaterial from the historical viewpoint. The advantages and 

disadvantages of magnesium-based biomaterials are reviewed.  

Chapter 3 provides a brief review of the background literature on the PEO technique, 

including essential details of the coating formation process with emphasis on the effects of 

electrolyte, current regimes (DC or unipolar/bipolar pulsed DC) on the process 

phenomenology and resulting coating characteristics. 

Chapter 4 describes the experimental equipment and procedures utilised in the present work 

with principles of each method briefly explained. The experimental methods used here 

include specimen preparation, plasma electrolytic oxidation process, coating thickness 

measurement, SEM and EDX analysis, XRD phase and residual stress analysis. The 

corrosion performance of the coatings is studied using in vitro electrochemical methods, while 

static tensile tests and cyclic fatigue experiments are conducted to evaluate the mechanical 

properties of the coated samples. 

Chapter 5 introduces the effects of electrolyte composition and DC current density amplitude 

on the PEO process stability and final coating properties. The coatings produced in a 

conventional electrolyte are compared with those produced in novel calcium containing 

electrolyte. The optimised electrolyte and DC current density is selected based on PEO 

process stability and final coating performance in a simulated physiological environment. 

Chapter 6 discusses the effects of pulsing frequency on the PEO coatings produced using 

pulsed unipolar PEO process (PUP-PEO coatings) by comparing the coatings produced over 

a frequency range of 100 Hz upto 5000 Hz. The PEO process is studied by numerical 

analysis of the current and voltage waveforms during the PEO process. Residual stress 

within the PEO coating is characterised using the XRD sin2ψ method. The relationship 

between the PEO process characteristics, residual stress within the coating and final coating 

corrosion performance is addressed. 

Chapter 7 compares the coatings produced in the pulsed unipolar (PUP) and pulsed bipolar 

(PBP) DC current regime with adjusted negative biasing amplitude. It concludes that for the 

studied electrolyte and Mg combination, the introduction of negative biasing could deteriorate 

the coating morphology and properties due to hydrogen liberation during the negative 

biasing. 
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Chapter 8 successfully applies an external hydroxyapatite (HA) layer on the surface of a 

PEO coating using electrodeposition (CED) methods. The pores within the PEO coating are 

partially sealed with the HA layer and the corrosion properties of the PEO coating are 

moderately enhanced. The degradation of the coatings in the SBF at 37±1 oC is carefully 

studied through the comparison of EIS spectra with different immersion periods, it is found 

that the coatings could only provide temporary corrosion protection. By study of the corroded 

morphologies, different stages of the corrosion process are identified. 

Chapter 9 deals with the mechanical properties of the coated samples. By comparing the 

static tensile properties and cyclic fatigue performance with those published in the literature, 

the applicability of magnesium for biomedical application is demonstrated from a mechanical 

viewpoint. 

Chapter 10 provides a combined discussion based on the previous results obtained from 

Chapters 5 to 9. Together with the overall conclusions of this thesis, the outlook for the 

prospective of the magnesium based biomaterials is also drawn in this chapter.
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Chapter 2 Magnesium as a Biomaterial 

2.1 A Brief History of Biomaterials 

A biomaterial has been defined as “a nonviable material used in a medical device, intended to 

interact with biological systems” by Williams in 1987 [4]. The use of biomaterials dates far 

back into ancient civilisations [5, 6], mainly driven by the desire to pursue improved life quality. 

It is found that gold was used in dentistry by Chinese, Aztecs and Romans about 2500 years 

ago [7]. Actually, almost all the accessible materials had been tried as biomaterials by our 

ancestors; from natural non-metallic materials like wood and sea shells to metallic ones like 

gold, bronze and iron. These materials were implanted in almost every part of the body from 

eyes and nose to teeth and legs to restore the impaired body function or just for the purpose 

of decoration. Nevertheless, early attempts at using materials in the body were hit-and-miss, 

with a rather low success rate owing to the lack of knowledge in the related areas. About 150 

years ago, scientists and surgeons began to systematically study the reactions between the 

body and implanted materials. 

The success rate of implant operations has improved significantly since the development of 

aseptic surgical techniques in 1860s by British surgeon Joseph Lister [8, 9], who is believed 

to be the founder of modern biomaterials. Moreover, driven by the development of materials 

synthesis and processing technology, the materials accessible for biomedical applications 

have increased dramatically since the beginning of the 20th century. Around the 1930s, 

stainless steel and cobalt chromium alloys were introduced in the biomedical area. The first 

research paper on polyethylene as a synthetic implant material was published in 1947 [10]. At 

somewhat later, first totally artificial hip was successfully implanted by Charnley [11, 12] , 

which is regarded as another milestone in the history of biomaterials. Based on the early 

pioneering works, the concept of biocompatibility was proposed around 1950s, after which 

the research in this field had transformed from “try it out” stage to the modern designed 

biomaterials era.  

Gradually, surgeons began to realise that the designed implants must be able to perform the 

intended functions without causing any adverse effect to the host body; this requirement is 

generally called ‘biocompatibility’. At the very beginning, a material was usually considered as 
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biocompatible if no toxic effects were caused to the host body. However, more experience 

has proven that even if an implant is not causing any toxic effect, it cannot be simply regarded 

as biocompatible if it is seriously rejected by the host body. Therefore, a more general 

definition of biocompatibility was proposed by Williams as the ability of an implant to perform 

with an appropriate host response in a specific application [13].  

2.2 The State-of-the-Art in Biomaterials  

Progressive investigations together with advances in related subjects like biological science, 

materials science and engineering, biochemistry and even gene engineering have led to the 

increased availability of biomaterials, which is of significance not only in terms of elimination 

of patient morbidity but also from the economic aspect. Today the biomedical devices industry 

has blossomed into a huge market of about $100 billion US dollars worldwide affecting more 

than 20 million patients, and an annual increase of 5-7% is expected owing to the aging 

population and increased accidents [14]. A survey carried out by Lysaght [14] has shown that 

about 35% of all the implants are related with the hard tissues, such as, bone replacement 

and support. The growing demand as well as the huge market have been stimulating the 

development of novel bone substitutions for clinical application.  

To develop desirable implants for orthopaedic applications, the implant materials have to be 

carefully selected. The implants must be tolerated by the host body, which is guaranteed by 

their biocompatibility. As an organ supporting human body, bone is experiencing mechanical 

forces of different types. Yousif  [15] has investigated the biomechanical properties of femur 

bone using the finite element modelling method and claims that the stress imposed on the 

bone at walking is about 9.48 MPa, and the value can be as high as 35 MPa in landing from a 

normal jump [16]. The fact that the bones undergo dynamic rather than static forces in most 

cases has further increased the complexity of the situation. Therefore, orthopaedic implants 

must possess appropriate mechanical properties to fulfil their designed functionality. 

Furthermore, it is a prerequisite to make sure the implants are corrosion-resistant during their 

service life, because the service environment of the implants contains corrosive species [17]. 

Corrosion attack may cause serious problems not only to the implant itself but also to the host 

body. The mechanical integrity of the implants will be seriously deteriorated by the corrosion 

process. Furthermore, the corrosion products will accumulate around the implant sites, 

causing inflammatory reactions and, in the worst case, the death of the patient. 
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Figure 2-1 Schematic diagrams of artificial hip joint (left) and knee implant (right) [18]  

Based on the aforementioned requirements, different types of orthopaedic devices have been 

developed according to their implantation site and corresponding service environments, as 

shown in Table 2-1. Currently, permanent orthopaedic implants can be made of metal alloys 

(stainless steel, cobalt-base alloys and titanium-base alloys), polymers (ultrahigh molecular 

weight polyethylene (UHMWPE)), ceramics (alumina (Al2O3), zirconia (Zr2O3), and 

hydroxyapatite (HA)) and composites (eg Al2O3/PTFE) in clinical practice; their advantages 

and limitations are summarised in Table 2-1. Sometimes, different types of materials are 

utilised together in a specific case to produce improved properties. A ceramic coating may be 

applied on a metallic implant to offer improved wear resistance and bioactivity while 

maintaining the toughness of the base metal. Figure 2-1 schematically shows that an artificial 

hip joint is usually made up of different materials, where the hip stem and metallic cup are 

made of Ti-6Al-4V alloy providing the necessary mechanical strength. A ceramic coating 

applied on the outer surface of the metallic cup is beneficial for the biological response of the 

implants. Polymers are also utilised in the cases shown in Figure 2-1 to reduce the friction 

between the metallic cup and femoral head.  

Despite wide applications, these permanent implants inevitably cause problems to the host 

body. Issues may arise due to the discrepancy between the elastic moduli of metallic or 

ceramic implants and the natural bone. After implantation, a larger proportion of the normal 

mechanical load is borne by the metallic implant because of its higher elastic modulus [19]. 

Correspondingly, the load imposed on the bone will be lower, and the bone will be gradually 

remodelled to adopt the lower load, resulting in a weaker bone [19]. This phenomenon is 

known as “stress shielding”. This effect, whereby a reduction in bone density occurs as a 

result of reduction in the normal stress on the bone due to an implantation, can be reduced by 
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the implantation of a device with an elastic modulus similar to that of natural bone [20]. 

Although the stress shielding effect for the polymeric implants is not that significant, they do 

suffer from opposite problems associated with insufficient mechanical strength.  Moreover, 

in the long term after implantation, implant debris are gradually released into the surrounding 

tissues because of wear, leading to chronic inflammatory reactions. A revision surgery is 

usually required to replace the implant when the chronic inflammation is unacceptably 

significant, thus increasing the morbidity of patients as well as the costs of health care. In 

some cases like a fractured bone in a young teenager, a permanent implant is not necessarily 

required because of the high remodelling ability of the bones. In such cases, a temporary 

implant which can be gradually dissolved, consumed and excreted on the completion of 

self-healing process is usually desired. Taking these considerations into account, 

development of biodegradable and bioactive materials that can stimulate the regeneration of 

host tissue in contrast with the traditional bio-inert materials has become an attractive 

research topic. 

Table 2-1 Summary of common biomaterials in practical application [21] 

Material Advantage Disadvantage Application 
Polymers    

Nylon Ductile, Not strong Artificial ligament 
PTFE Light, Prone to creep Suture 
Polyester Easy to Fabricate  Accetabular cup 
Silicone   Vascular 

Prosthesis 
Metals    

Stainless Steel Ductile Prone to corrosion Artificial joint 
Cobalt Alloy Strong Unwanted release Bone plate and 

screw 
Titanium Alloy Tough  Dent root implant 

Ceramics    
Aluminum 

Oxide 
Bioactive Brittle Dental prosthesis 

Carbon Biocompatible Weak in tension Joint prosthesis 
Hydroxyapitate Strong in 

compression, 
Stiff 

Fragile Orthopedic implant 

2.3 Biodegradable Magnesium Alloys 

The history of magnesium alloys as biomaterials dates back to 1878, when physician Edward 
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C. Huse used some magnesium wires as ligatures to stop bleeding blood vessels of three 

human patients [22]. After that, numerous efforts have been devoted towards the 

improvement of magnesium alloys performance in physiological environments. Magnesium 

alloys have been tried as ligature wires, blood vessel anastomosis connectors, aneurysm 

treatment wires, artificial joints and other applications [22]. Up to now, magnesium alloys 

have been widely regarded as potential biomaterials thanks to their outstanding 

biocompatibility as well as excellent mechanical properties [23-26]. Therefore, magnesium 

has attracted more research attention than traditional permanent implants made of stainless 

steel, as presented in Figure 2-2. 

 
Figure 2-2 Annual publications yield for the past ten years on research of magnesium and its 

alloys as well as stainless steel as biomaterials [27] 

2.3.1 Advantages of Magnesium Biomaterials 

The biocompatibility of magnesium alloys is much better than stainless steel, titanium and 

cobalt alloys. Magnesium ions are the fourth most abundant cations in the human body and 

are essential for biological function of all the living cells [28, 29]. About 30 grams magnesium 

are contained in a 70-kg human body [30], and are involved in various biological processes 

such as DNA repair, protein transformation, enzyme activation and cellular respiration [31]. In 

addition, the presence of magnesium has been reported to be beneficial to the regeneration 

and growth of bone tissue [32], making it suitable for bone fixtures. The important role of Mg 

in these biological processes makes Mg deficiency a potential health risk [28]. In order to 

maintain normal activity of the human body, about 420 mg magnesium per day is 

recommended for an adult man and the number is 320 mg for woman by US Food and 
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Nutrition Board [33]. Moreover, extra magnesium can be excreted through urine, thus leading 

to no harm to the body [29]. Actually, there are no inflammatory reactions reported in the 

areas adjacent to magnesium alloy implants [34]. 

Apart from biocompatibility, mechanical properties also contribute to making magnesium 

alloys ideal candidates for biomaterials. The density of magnesium alloys and nature bone 

are 1.7-2.0 g/cm3 and 1.8-2.1 g/cm3 , respectively. The elastic modulus of magnesium alloys 

is 41-45 GPa, much closer to that of human bone (3-20 GPa) compared with other metallic 

biomaterials (Table 2-2). So the risk of stress shielding effects from implanted magnesium 

alloys can be greatly reduced compared with their titanium, cobalt, and stainless steel 

counterparts [19]. Although the static mechanical strength of magnesium is usually much 

lower than the conventional metallic biomaterials, it is still sufficient for the application in the 

human body. For example, the compressive strength of AZ31 alloy varies from 110 MPa to 

about 189 MPa depending on the deformation procedure and following heat treatment, which 

is closer to that of natural bone (160-240 MPa) compared with other metallic implants. 

Table 2-2 Summary of mechanical properties of metallic biomaterials [25, 26, 35, 36] 

Materials/Tissue Density 
/(g/cm3) 

Elastic 
Modulus/GPa 

Compressive Yield 
Strength/MPa 

Tensile 
Strength/MPa 

Cortical Bone 1.8-2.0 5-23 164-240 35-283 
Ti6Al4V 4.4-4.5 110-117 758-1117 830-1025 
Stainless Steel 7.9-8.1 189-205 170-310 480-620 
Co-Cr  Alloy 8.3-9.2 230 450-1000 1000 
Mg Alloy 1.74-2.0 41-45 65-100 125-135 

Stimulated by their outstanding properties, various magnesium alloys have  been studied for 

medical applications. The current studies have been focused on several aspects. The 

biomedical performance of industrial commercialised magnesium alloys has been studied 

both in vitro and in vivo. Cortical bone screws made of commercial AZ31 alloy were implanted 

into hip-bones of sheep by Ozgur [37]; it was found that the bone tissue regeneration ability is 

enhanced by the implants. Improved cytocompatibility and cell growth has been claimed by 

Witecka et al when AZ91 alloy was investigated in vitro [38]. Similar results have been 

published by Witte [39] in his comparative study on the in vivo biological response of AZ31, 

AZ91, WE43, LAE442 alloys. Developments of biodegradable materials from commercial 

http://www.refdoc.fr/?traduire=en&FormRechercher=submit&FormRechercher_Txt_Recherche_name_attr=auteursNom:%20(DUYGULU)
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magnesium alloys are facilitated by their vast availability. However, the biomedical application 

of these commercial alloys is rather controversial because of the content of biologically toxic 

elements in these alloys. Therefore, novel alloys containing biologically friendly elements 

have been widely studied. Due to their non-toxicity in the human body, Zn, Ca and Mn have 

been suggested as promising alloying elements to develop biomedical magnesium alloys 

[40-42].  

2.3.2 Disadvantages of Magnesium Biomaterials 

Despite the attractive advantages mentioned above and considerable investigations in this 

area, the development of magnesium alloys as biomaterials is still in its infancy. The intrinsic 

poor corrosion resistance of magnesium alloys significantly restricts their clinical application 

[43]. The standard electrode potential of magnesium is only -2.37V so magnesium alloys are 

very susceptible to corrosion attack, especially when they are contacted with other metals 

facilitating the formation of galvanic cell. The Pourbaix diagram of magnesium in water 

presented in Figure 2-3 suggests that corrosion is the thermodynamically favourable process 

when magnesium is placed in aqueous solution of pH<11.3.  

Worse still, the Pilling-Bedworth ratio of magnesium alloy is only 0.81, less than 1, so the film 

formed on the surface of magnesium alloy cannot provide effective protection from further 

corrosion. In weak alkaline aqueous solution of the human body fluid (pH=7.4), magnesium 

alloys will react with the surrounding environment as follows: 

Anodic reaction: Mg → Mg2+ + 2e− ( 2.1 ) 

Cathodic reaction: 2H2O + 2e− → H2 ↑ +2OH− ( 2.2 ) 

Overall reaction: Mg + 2H2O → H2 ↑ +Mg(OH)2 ( 2.3 ) 

The corrosion product of magnesium hydroxide Mg(OH)2 can serve as a temporary protective 

layer. However, in a chloride containing environment, if the Cl- concentration is more than 30 

mmol/L, Mg(OH)2 will transfer into soluble MgCl2 which would cause pitting corrosion, thus 

losing its protection [43-45]. So in physiological fluid, where the chloride concentration is 

about 150 mmol/L, magnesium alloys will suffer from severe corrosion. Although the anodic 

product, Mg2+, can be tolerated by the human body as stated, the corrosion products from the 

cathodic reaction cause serious problems to the host tissue. Firstly, hydrogen gas can be 
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generated in the body at a rate higher than the tolerable level (0.01 ml/cm2/day) [39, 46, 47]. 

Song [47] has studied the hydrogen evolution of various magnesium alloys in simulated body 

fluid. The results showed that the hydrogen evolution rate of most magnesium alloys is too 

high to be dealt with by the host body. The presence of hydrogen gas (Figure 2-4(a)) can 

cause separation of tissue and tissue layers Figure 2-4(b), which will delay the healing 

process of the surgery area. If the gas is in the blood circulation system, the blood stream 

may be blocked, ultimately leading to the death of the patient [47]. As a result, the hydrogen 

gas has to be syringed out of the body [39]. Secondly, the generation of OH- through the 

corrosion of magnesium alloys can cause local alkalisation of body fluid adjacent to the 

implant [30, 48]. The normal pH of physiological fluid is about 7.4-7.6. Although the body 

system can balance small pH changes, if the pH value changes too much, the health of the 

body can be put at risk [49]. So it is essential to maintain the normal pH level. Finally, since 

the implant materials are utilized to support the host tissue, they have to possess sufficient 

strength for a period of time to allow the healing to take place as just stated. Although 

corrosion properties of magnesium alloys make them promising biodegradable materials, too 

high a corrosion rate also causes a severe problem of premature loss of mechanical integrity.  

 
Figure 2-3 Pourbaix diagram of magnesium in water at 25 oC [45] 

Fortunately, the drawbacks of magnesium alloys as biomaterials can be overcome by 

improving their corrosion resistance [18, 30, 46, 50]. The corrosion mechanism of magnesium 
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alloys has been studied and many methods have been proposed to decrease their corrosion 

rate [20, 43, 51, 52]. 

 
Figure 2-4 Average hydrogen evolution rates of various magnesium alloys (a) [47] and the 

accumulation of the hydrogen gas around magnesium implant (b) [39] 

2.3.3 Methods to Improve Corrosion Resistance of Magnesium Alloys 

The corrosion resistance can be improved by eliminating the impurities in the alloy. It has 

been shown that Fe, Ni, Cu and Co are typical impurities in magnesium, which are 

detrimental to their corrosion properties [44, 45]. Iron, nickel, copper and cobalt inclusions in 

the magnesium alloys often act as the cathodic sites compared to the Mg matrix [45, 52]. As a 

result, magnesium alloys suffer from galvanic corrosion when the concentration of these 

impurities is more than a limited level [45, 52]. Song’s study [47] showed that the corrosion 

rate of high-purity (hp) magnesium is much lower than that of commercially pure (cp) 

magnesium, Figure 2-4(a).  

Apart from purification, alloying is another important strategy to improve both the mechanical 

properties and corrosion resistance of magnesium [34, 53]. Currently, the most common 

alloying elements are Al, Mn, Zn, Zr and Ca [44, 53]. The corrosion resistance of magnesium 

alloys can be improved by alloying with aluminum up to 4 wt.% [44, 54]. However, the 

aluminum element is detrimental to the human health, since it may cause many physiological 

problems such as Alzheimer’s disease [55] and muscular fiber damage [56], So Witte [53] 

suggested that the aluminum containing magnesium alloys should not be implanted into the 

human body. Manganese and zinc can improve the corrosion resistance of magnesium by 

eliminating the detrimental effects caused by the impurities [22]. In fact, the Fe/Mn ratio is an 
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important factor influencing the corrosion rate of magnesium alloys. The corrosion rate 

remains low when the Fe/Mn ratio is lower than 0.032 [22], but increases dramatically beyond 

that. Rare-earth elements can be employed to improve the corrosion resistance as well as the 

mechanical properties [39, 57]. However, they are usually toxic for implant applications. 

Therefore they are not appropriate alloying elements in biomaterials. 

Besides alloying, another appropriate way to improve the corrosion resistance of magnesium 

alloys is surface treatment [30, 46, 58]. Coatings can separate the substrate from its 

surrounding corrosive environment, thus reducing the corrosion rate. Song [30, 47] compared 

the in vitro corrosion property of AZ91 alloy with and without anodized coating. While 

hydrogen evolution from AZ91 is about 0.5 ml/cm2 per day, it is negligible from the anodised 

alloy. Currently many coating methods have been proposed, such as conversion coating, 

anodising and plating.[46, 59].  

Conversion coatings are produced by chemical or electrochemical treatment of a metal 

surface to produce a superficial layer of substrate metal oxides, chromates, phosphates or 

other compounds that are chemically bonded to the surface [60]. They are used on metals for 

corrosion protection, optimized surface mechanical properties or just for decorative purposes. 

Conversion coatings are now the most common methods for magnesium protection. 

Numerous efforts have been made towards investigation of the coating process. The 

corrosion performance of AZ31 magnesium alloy with zinc phosphate conversion coatings is 

much better than that of the bare alloy [61]. However, this technique has to be improved to 

avoid the use of environmentally hazardous Cr6+ before being accepted as a valuable coating 

process for implant applications [46, 54]. 

Electrochemical plating has been proved effective to protect magnesium alloys from 

corrosion attack [53, 54]. In the process, a metal salt is reduced to its metallic form on the 

surface of the workpiece, providing a barrier between the substrate and environment. If the 

metal is reduced by an external polarisation, the process is called electroplating, otherwise it 

is electroless plating. The corrosion resistance of ZM6 magnesium alloy can be improved by 

a modified electroless nickel plating with a novel pretreatment procedure as claimed by Gao 

[62]. Sun [63] performed electroless plating on anodised AZ31 alloy, and the corrosion current 

density decreased from 1.66×10-5 A/cm2 to 2.72×10-6  A/cm2, suggesting an increased 

corrosion resistance. Unfortunately, electrochemical plating faces several challenges. Firstly, 
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for the electroplating process, the coating is generally not uniform due to the uneven 

distribution of current density. Secondly, electrochemical plating requires a proper 

pretreatment procedure which usually involves toxic chemicals and is time-consuming. As a 

result, different pretreatments have to be developed for different alloys. Finally, eliminating 

toxic chemicals is also necessary to create an environmentally friendly plating process for 

coating magnesium alloys.  

Protective coatings can also be produced by condensation of a vaporised material on the 

surface of a substrate, and this technique is called physical vapor deposition (PVD). The PVD 

process has been proven to be a suitable method for protection of magnesium alloys from 

corrosion and wear [46, 60]. Wu [64] studied corrosion properties of PVD coated AZ31 alloy 

and found that after being coated with Al2O3, the corrosion resistance was much better than 

that of the bare material. Similar results were also obtained by Atun [65] when TiN coating 

was deposited on AZ91 magnesium alloy. The PVD process has to be performed in high 

vacuum environment, which contributes to high capital costs. The line-of-sight process 

makes it difficult to be applied on complex samples like the bone fixtures. Moreover, due to its 

high electronegativity, the surface of magnesium is usually covered by an oxide film, which 

would inevitably lead to poor adhesion between the coating and substrate.  

Anodising is an electrolytic process for producing a thick, stable oxide film on metals and 

alloys [60]. Due to the excellent corrosion and wear resistance provided by this technique, the 

anodising process has been widely studied and greatly developed since its first industrial 

scale utilization in 1923 [51]. Now the anodising process is one of the main surface treatment 

techniques for protection of various substrates such as aluminum, magnesium, and titanium 

alloys. [51, 60]. A big step forward in the development of anodising technique was made 

when plasma has been introduced to this technology in 1960s [66]. Several plasma assisted 

anodising processes such as the Magoxid, Anomag, HAE and Keronite processes have been 

currently commercialised [51, 60]. Plasma electrolytic oxidation (PEO) is a generic term used 

to describe the plasma assisted anodising processes. The PEO process is much better than 

the aforementioned coating processes in the following aspects. The electrolyte used in PEO 

is more environmentally benign than those in conversion coatings. The adhesion strength 

between the coating and substrate is higher than the plated coatings. Another advantage of 

PEO over plating lies in a much easier pretreatment procedure. There is almost no limitation 

to the size and shape of the workpiece in PEO; therefore the processes are quite flexible. 
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Compared to PVD processes, the equipment used for PEO is much cheaper. Actually, PEO 

has been considered as one of the most suitable surface treatments for magnesium alloys for 

implant applications by offering a biologically favourable environment [67, 68]. This technique 

has been given major attention in the present work. 
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Chapter 3 Introduction to Plasma Electrolytic Oxidation 

Plasma electrolytic oxidation (PEO) is a versatile surface treatment technique widely used in 

various industrial areas such as automotive, aerospace and oil & gas due to the good coating 

properties, including corrosion- and wear-resistance. The application of PEO also extends 

into the biomedical sector because of its ability to produce biocompatible and bioactive 

coatings. The wide applications prospects have triggered extensive investigations into this 

technique, which is reviewed in the present chapter. It contains two parts; the first part covers 

general fundamentals of the PEO process, while the second part reviews the current 

research on the PEO treatment of magnesium alloys. 

3.1 State-of-the-art Research Activity on PEO 

3.1.1 General Characteristics of PEO Treatment 

PEO is a plasma-assisted anodising process for the production of hard ceramic coatings on 

light-weight valve metals (aluminium, magnesium and titanium alloys) in neutral or weakly 

alkaline aqueous solutions [66]. Because of a relatively poor understanding of the coating 

formation mechanism [66], it has also been called micro-arc oxidation, anode spark 

electrolysis, or plasma electrolytic anode treatment. Now it is widely recognised that PEO is 

essentially an electrochemical oxidation process, converting the surface of the metallic 

substrate into its oxide. PEO has evolved from the conventional hard anodising technique; 

therefore, the basic equipment layout is similar (except for a significantly higher voltage 

applied in PEO) and is schematically illustrated in Figure 3-1.  

 

Figure 3-1 Schematic Illustration of the PEO process 
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In the PEO process, the substrate serving as the working electrode (anode) together with a 

counter electrode (cathode, usually made of graphite or stainless steel), are immersed into a 

neutral or weakly alkaline aqueous electrolyte. An external power supply is connected to the 

two electrodes providing energy necessitated for the coating process. Therefore the 

substrate is oxidised according to the basic oxidation process similar to conventional hard 

anodising: 

 M → Mn+ + ne− ( 3.1 ) 

Correspondingly, a reduction reaction takes place on the counter electrode: 

 2H2O + e− → H2 ↑ +2OH− ( 3.2 ) 

The metal cations interact with the anions in the electrolyte forming metallic oxide on the 

surface of the working electrode. Because in the PEO process a much higher potential and 

current density is applied compared with conventional anodising, therefore discharges occur, 

providing the most distinctive feature of this process (Figure 3-1). The resulting plasma 

modifies the growing oxide layer and allows its further thickening [69]. Also the PEO process 

leads to more gas liberation than the conventional anodizing. Due to the gas liberation and 

discharge activity, the coatings produced by the PEO technique can be more porous than 

conventional hard anodic oxide films (Figure 3-2). For the same reason of discharge activity, 

the electrochemical reactions involved in the PEO process are more complicated, leading to 

various phenomena apart from discharging such as extensive gas liberation [70] and acoustic 

emission [71, 72]. While only a Faradaic process is involved in the conventional hard 

anodising, some non-Faradaic processes occur concurrently with the proceeding discharging 

phenomena, as proposed by Sengupta [73]. Through the study of excessive gas generation, 

Snizhko et. al. [70] have proven that the non-Faradaic processes like thermal dissociation of 

water are also involved in the PEO process. Currently, the research in PEO treatment is 

mainly focused on two aspects. On one hand, the fundamentals of PEO process are being 

studied to achieve a better understanding of mechanisms underlying this novel process. For 

this purpose, various phenomena (discharge activity, gas liberation, and acoustic emission) 

involved in the PEO process as mentioned above are widely characterised. Other studies are 

focused on characterisation of various coating properties such as corrosion resistance [67, 

74-76], wear properties [77, 78], photocatalytic efficiency [79-81], bioactivity [82, 83] and 

thermal shock resistance [84, 85]. The effects of treatment parameters (including current 
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regime, electrolyte composition and substrate type) on the process phenomenology and final 

coating properties are also included in the two groups of studies. 

 
Figure 3-2 Typical porous morphology of coating produced on AM50 magnesium alloy in 

Na3PO4 and KOH electrolyte by pulsed unipolar current PEO treatment, the coating thickness 
is about 37 µm [69]. 

3.1.2 Effect of Current Regime on the PEO Process 

As shown in Figure 3-1 an external power is supplied to the PEO system, which provides a 

direction for the investigation of the PEO process. Various current modes (direct current (DC), 

alternating current (AC) and pulsed current) can be applied, as shown in Figure 3-3. Several 

variables (current density, voltage magnitude, pulse frequency and positive/negative duty 

cycle) would influence the PEO process and coating properties [86]. The coating 

morphologies are significantly affected by the applied current density or voltage magnitude. 

Srinivasan et. al. [87] studied the effects of DC current density on microstructure and 

corrosion properties of PEO coatings on AM50 alloy, revealing that, with the same treatment 

time of 15 min, when the current density increased from 15 to 150 mA/cm2 the corresponding 

coating thickness and roughness were almost doubled. An increase in average pore diameter 

and overall porosity of the PEO coatings was also observed. Apart from surface morphology, 

other aspects of the coating are also influenced by current density/voltage magnitude. In an 

investigation on residual stress of PEO coatings on Al alloy, Khan et.al. [88] reported that the 

coatings produced at a higher current density of 20 A/dm2  contain more α-Al2O3 (higher α/γ 

Al2O3 ratio) compared with that at lower current density of 5 A/dm2, and the resultant direct 
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in-plane residual stress tended to decrease with the increase in current density. Similar 

results were also published by Gu et. al. [89]; the residual stress within the PEO coating 

produced on AZ31 magnesium alloy decreased significantly when the processing voltage 

increased from 250 V to 350 V. However, an increased internal stress with applied current 

density is reported by Kuznetsov et. al. [90] when the PEO coatings are produced on an 

aluminium alloy 1520 in an electrolyte of 5 g/l KOH and 25 g/l H3BO3. The effects of current 

density on the coating morphology and structure undoubtedly affect the final coating 

properties. Gu and Zheng [67] studied the effects of DC voltage magnitude on the final 

properties of the PEO treated Mg-Ca alloy, and found that the coating produced at an 

intermediate voltage magnitude of 360 V had the best corrosion resistance and bioactivity 

compared with those produced at 400 V and 300 V.  

 
Figure 3-3 Major electric waveforms utilised in the PEO process, (a) DC, (b) AC , (c) pulsed 

unipolar (PUP), (d) pulsed bipolar (PBP) and (e) modified PBP current regime. 

Apart from the DC current regime, AC and pulsed current regimes are attracting more interest 

because they provide a more controllable PEO process and better coating quality [91], which 

is attributed to the absence of long-lasting discharges as observed under DC mode during the 
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PEO process [92], and this hypothesis was confirmed by Arrabal et. al. [71]. The average 

pore size (a result of the discharging events) in PEO coatings produced using a pulsed 

unipolar (PUP) current is much smaller than that under DC condition. Comparative studies of 

the coating morphologies produced under DC and PUP modes confirm that the coating 

produced in PUP mode is more compact with smaller pores [78]. Not only is the surface 

morphology improved, the bond strength of the coating with the substrate is also enhanced 

by the pulsed current regime, as claimed by Xin et. al. [93]. Correspondingly, worse corrosion 

resistance of the coatings under the DC condition than those produced in the AC regime was 

observed. These results are in good agreement with other publications [78, 94, 95]. By 

introducing AC or pulsed current mode an additional parameter, pulse frequency may affect 

the PEO processes and corresponding coating properties. According to Figure 3-3, the pulse 

frequency is defined as follows: 

For unipolar pulsed current mode: 𝑓𝑢 =
1

𝜏𝑜𝑛 + 𝜏𝑜𝑓𝑓
 ( 3.3 ) 

or 

In Equation (3.4), 𝜏+
𝑜𝑓𝑓 and 𝜏−

𝑜𝑓𝑓 may be 0 for the calculation of pulse frequency of the 

current waveform shown in Figure 3-3 (d).  

The final PEO coating characteristics including morphology, corrosion and mechanical 

properties, can be controlled by adjusting the parameters regarding to the pulsed current 

regime. Firstly, the pulse frequency and duty cycle affect the final coating properties to 

different extents. After investigating coatings produced at various pulse frequencies, 

Srinivasan et. al. [96] reported a decreased average pore diameter within the PEO coating 

fabricated at higher frequencies upto 1000 Hz compared with those produced at 10 Hz. Su et. 

al. [97] also reported enlarged pore diameter and increased porosity due to higher discharge 

activity and more vigorous gas liberation at lower pulse frequencies when producing PEO 

coatings on ZM5 magnesium alloy at various frequencies, as shown in Figure 3-4. Such 

correlations between the pulse frequency and coating morphology are quite universal and 

present good consistency among the results published by other researchers [97, 98]. 

For modified bipolar pulsed 
current mode: 

𝑓𝑏 =
1

𝜏+
𝑜𝑛 + 𝜏+

𝑜𝑓𝑓
+ 𝜏−

𝑜𝑛 + 𝜏−
𝑜𝑓𝑓

 ( 3.4 ) 
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Apart from pulse frequency, characteristics of PEO coatings are also affected by the duty 

cycle, an important parameter describing the pulsed current regime. Following Figure 3-3, 

the duty cycle can be defined as follows: 

For unipolar pulsed current 𝛿 = 𝜏𝑜𝑛𝑓𝑢 ( 3.5 ) 

 
For positive duty cycle of bipolar pulsed current: 

 𝛿+ = 𝜏+
𝑜𝑛𝑓𝑏 ( 3.6 ) 

And negative duty cycle of bipolar pulsed current: 

 𝛿− = 𝜏−
𝑜𝑛𝑓𝑏 ( 3.7 ) 

 

 
Figure 3-4 Surface morphology of PEO coatings produced on ZM5 magnesium alloy in an 
electrolyte composed of 0.018 M NaOH + 0.016 M (NaPO3)6 + 0.19 M NaF at 2 A/dm2 at 

different frequencies (a) and (c) 100 Hz; (b) and (d) 800 Hz for various processing time 60 
min (a and b) and 100 min (c and d). Adapted from [97] 

Dehnavi et. al [99]. systematically studied the effects of applied current density and duty cycle 

on the growth behaviour of PEO coating on 6061 aluminum alloy, and the results indicated 

that the duty cycle would affect the coating morphology, i.e. a lower duty cycle would lead to a 

more uniform Si distribution in the coating and a higher porosity. The difference in the coating 

morphology will certainly result in different coating properties; for example, a higher 

microhardness with smoother profile across the coating thickness at lower duty cycles was 
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found by Aliofkhazraei et. al. [100] when producing PEO coating on cp titanium substrate 

using unipolar current regimes of variable duty cycles in an electrolyte of 15 g/l NaAlO2 + 2 g/l 

Na3PO4. 

In the pulsed bipolar (PBP) current mode an extra parameter, negative biasing amplitude 

would also affect the PEO coatings. A more compact and less porous PEO coating could be 

produced when the negative biasing magnitude was increased, as reported by Su et. al. [101] 

in their study of PEO treatment on ZK60 magnesium alloy using PBP current mode. This 

effect appears to be consistent, as similar results were published independently by Yao et.al. 

[102].  

3.1.3 Effect of Electrolyte 

Apart from the current mode, electrolyte is another important factor influencing the PEO 

process and the resulting coating properties [103-106]. The composition and concentration of 

the electrolyte are the two factors that affect the PEO process. Firstly, electrolyte additives 

influence coating characteristics, including chemical composition, thickness and surface 

morphology, leading to different coating composition, structure and performance. Ghasemi et. 

al. [103] produced PEO coatings on AM50 magnesium alloy in KOH electrolyte with different 

additives, and found that the coating produced in a silicate-containing electrolyte had a 

thickness of about 8 µm, and around 1 µm in the aluminate-containing electrolyte. Moreover, 

the coatings produced in different electrolytes contained different phase constituents, with 

Mg2SiO4, Mg3(PO4)2 and MgAl2O4 being identified in the Si-, P- and Al-containing electrolyte, 

respectively. Secondly, the PEO coatings produced in electrolytes with the same additives but 

with different concentrations can also have different characteristics. It is established that an 

increased electrolyte concentration would result in thicker and more porous PEO coatings [88, 

105, 107]. Up to now, many different alkaline solutions have been studied in the PEO 

technique [108].  

3.1.4 Effect of Substrate Type 

Currently, PEO coatings have been produced on various types of valve metals; it is obvious 

that substrates composition and morphology influence both the PEO process and the 

coatings from different aspects. The electrolytes commonly used for the PEO treatment of Al 

alloys would not be suitable for the treatment of Ti- and Mg- based alloys, and vice versa. 
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Moreover, PEO coatings produced on similar metallic substrate with different alloying 

elements also present different characteristics. After systematically studying PEO coatings on 

different magnesium alloys, Arrabal et. al. [71] concluded that the coating growth rate was 

dependent on the elemental composition of the substrate; the chemical phase content of the 

coating is also affected after the oxidation and incorporation of alloying elements into the 

PEO coating. Moreover, PEO coatings produced on substrates with the same alloying 

contents but different microstructures show different morphologies. More porous PEO 

coatings were obtained on Ti6Al4V alloy compared with those produced on Ti6Al7Nb alloy, as 

published by Apachitei et. al. [109]. Jiang et. al. [110] fabricated PEO coatings on AZ91D 

magnesium alloy with different grain sizes, and it was found the coating produced on the 

ultra-fine grained substrate was more compact and less porous, providing better corrosion 

protection in a 3.5 wt.% NaCl solution. PEO treatment of shot peened Ti-6Al-4V alloy 

presented significantly different voltage transients compared to the unpeened alloy, as found 

by Apachitei et. al. [111]. 

3.1.5 Effect of Treatment Time 

The processing time has multiple effects on the PEO coatings. The coating thickness is found 

to increase with prolonged processing time, however, with different increment behaviour. For 

example, Hussein et. al. [112] reported a linear increase in coating thickness with processing 

time (Figure 3-5 (a)), whereas non-linear behaviour is reported by Wang et. al. [113] (Figure 

3-5 (b)). Longer PEO treatments usually result in a larger average pore diameter, as shown in 

Figure 3-4, which is consistent with the results reported by Sundararajan et. al. [114] and 

Duan et. al. [115]. Correspondingly, the coating roughness increases dramatically at the start 

of the PEO treatment, and afterwards remains almost constant, as found by Rožić et. al. 

[116]. 

Studies on the effects of the various processing parameters (electrolyte chemistry, 

processing time, current regime) on the PEO coating characteristics provide large amounts of 

information regarding to the PEO process, and the results from different studies are 

consistent, i.e. the coating porosity and average pore diameter within the coating can be 

increased by either increasing the supplying energy density (high voltage/current density, 

longer pulse time) or by increasing the electrolyte conductivity (higher electrolyte 

concentration) or by increasing PEO treatment time. Based on these results, researchers are 
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trying to find out the mechanism underlying the PEO coating formation. 

 
Figure 3-5 (a) Linear [112] and (b) non-linear growth [113] of the PEO coating with processing 

time 

3.2 Coating Formation Mechanisms 

Studying the phenomenology of the PEO process is an effective method to disclose the 

complex coating formation mechanism. To this point, electrical transients [115], discharge 

events [92, 117, 118], gas liberation [70, 119, 120], and even acoustic emission [72] observed 

during the PEO process have been widely studied.  

3.2.1 Electrical Transients  

The electrical transient analysis includes voltage (galvanostatic PEO) and current 

(potentiostatic PEO) transients during PEO processing. It is commonly acknowledged that 

the PEO coating formation kinetics would be described by the electrical transient. To this 

point, electrical transients are widely reported in the literatures [71, 92, 98, 121-123]. The 

recorded voltage generally increases with processing time under galavanostatic PEO 

conditions, whereas decreasing current behaviour is usually observed in the potentiostatic 

PEO process. The behaviour of the voltage/current transient is attributed to the thickening of 

the PEO coating on the substrate surface, as claimed by Yerokhin et. al. [121]. A typical 

voltage transient during the PEO process of 6082 aluminium alloy (recorded by Yerokhin et. 

al. [124]) is shown in Figure 3-6(a). Different stages during the PEO process can be identified 

according to the slopes of the voltage transient (Figure 3-6(b)). The substrate is passivated 

immediately based on Faraday’s law upon the start of the PEO process (Stage I), leading to a 

linear voltage increase. In the second stage, the voltage increase rate is rather low because 
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oxidation and dissolution of the coatings occurs concurrently. Afterwards, the voltage 

increases further, indicating the continuous growth of the PEO coating, which is accompanied 

by a considerable amount of tiny sparks moving around the substrate surface. When the PEO 

process enters the final stage, the voltage increases even slower, indicating a slower rate of 

coating thickness increase [121]. The sparking in this stage becomes less populous 

compared with that in the previous stages. According to Duan et. al. [115], large defects 

within the PEO coating are mainly developed in this final stage . 

Although the 4 stages are commonly identified in the literature, the duration of each stage is 

strongly dependent on the electrolyte chemistry, current mode and substrate type [122, 123, 

125]. The second stage mentioned above is hardly identified on the voltage transient curve in 

the work carried out by Liang et. al. [123] when the PEO coating was produced on AM60 

magnesium alloy in electrolyte containing Na2SiO3 and KOH. A similar method can also be 

applied for the analysis of current transient during the potentiostatic PEO process, however, it 

should be borne in mind that, instead of increasing, the overall current will decrease because 

of the growth of PEO coating.  

 
Figure 3-6 Voltage transient recorded during the PEO treatment of 6082 aluminium alloy the 

treatment is conducted in 1 g/l KOH electrolyte with current density of 467 A∙m2. Figure is 
reproduced from [124]. (a) and identification of different PEO stages based on voltage 

transient (b) 
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3.2.2 Discharge Events Evaluation 

Discharge characteristics determine the thermal and chemical reactions involved in the PEO 

process and thus play an important role in the phase formation, coating structure and thermal 

stress within the coating. Therefore, characterisation of the discharge events has attracted 

considerable research interest [92, 117, 118, 126-131]. One of the pictures from the literature 

showing the variation of discharge events in the PEO process with time is presented in 

Figure 3-7 [129].  

 
Figure 3-7 Evolution of discharge events with PEO treatment of AA5754 Al alloy in the 
electrolyte of Na2SiO3 and KOH at a current density of 100 mA/cm2, (a) 5 s, (b) 60 s,  

(c) 90 s, (d) 120 s, (e) 180 s and (f) 300 s. The picture is reproduced from [129] 

The interpretation of Figure 3-7 discloses the following facts regarding the changes in 

discharge events with PEO processing time, i.e. an increase in the average discharge size 

and individual discharge intensity, a decrease in discharge population and changing of the 

discharge colour. These observations agree with other publications [117, 126, 128]. By 

studying digital video images of the discharges, Yerokhin et. al. [118] concluded that the 

discharge dimensions are in the range of 0.01-1.35 mm2. The discharge diameters reported 

by Matykina et. al. [131] fall in the range from about 80 µm  up to >370 µm. To make these 

data more comparable, the units of the data reported by Matykina et. al. is converted to mm2 

assuming the discharges are round shaped, that is from 5 x 10-3 mm2 to >0.1 mm2. Then it is 

obvious that there exists a discrepancy, i.e. much finer discharges were observed by 

Matykina et. al., which is probably due to the difference in the electrolyte, substrate and 

current mode, applied during the PEO processes. The duration or lifetime of individual 

discharge event was also extensively studied; regardless of the methods used, the results 

indicate that the lifetime of discharges is on the order of tens to hundreds of µs. The 

discharge colour change during the PEO process is mainly due to the difference of the 

species ionised in the PEO process, which have been studied by optical emission 
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spectroscopy (OES) [126-129, 132]. Through the spectroscopic study of discharges, Jovović 

et al. [129] reported that three types of discharges exist in the PEO process for magnesium, 

and thus proposed that the PEO process involves the ejection of the evaporated anode 

materials through the discharge channels, regardless of substrate material and electrolyte 

composition.  

In spite of intensive research activity, it is still not fully understood how the discharge 

behaviour and resultant coating characteristics are influenced by the current regime, 

electrolyte chemistry and substrate material, as they are interdependent on each other. 

Nevertheless, these studies together provide the foundation for the study of mechanisms in 

the PEO process. Although there is still some disagreement about the exact mechanisms, it 

is generally accepted that the process involves oxidation of the metal substrate, formation of 

oxide coating, dielectric breakdown of the pre-formed coating due to the high voltage, as well 

as melting, ejection and solidification of the coating in the discharge channels, accompanied 

by gas generation. 

3.3 PEO Treatment of Magnesium for Biomedical Applications 

From the first part of this review (Section 3.1), it is clear that the studies of PEO treatment 

have been focused on the effect of processing parameters, in combination with surface 

characterisation and phenomenological investigation of the process. Generally, those 

research methods are also utilised for the investigation of PEO treatment on magnesium 

alloys from the vast research conducted by different research institutions worldwide. Only 

work targeting biomedical applications is reviewed in the following part of this chapter. As 

already stated, improvement of corrosion resistance is the main reason for employment of the 

PEO technique in the development of biodegradable Mg alloy implants. The factors 

mentioned in Section 3.1 certainly affect the PEO process on magnesium alloys; therefore, 

the following part of this section would be focused on the effects of those aspects including 

substrate, electrolyte and current regime. 

3.3.1 PEO Treatments of Mg Alloys  

To develop biodegradable magnesium implants with acceptable biodegradation rate, PEO 

coatings have been produced on various magnesium alloys. Arrabal et. al. [71] conducted 

PEO treatment on various Mg alloys, and the results indicated that the PEO process 
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(discharge activity, electrical transient) and the coating characteristics (surface morphology, 

phase composition and corrosion resistance) were affected by alloying elements.  Currently 

PEO coatings have been produced on AM50 [2], AZ91D [77], WE43 [133], AZ31 [74], 

Mg-Zn-Ca [134], ZX50 [135], ZK60 [136] in order to develop biodegradable magnesium 

implants. However, those efforts have various limitations. Firstly, Al and rare-earth elements 

are usually biologically toxic causing problems to the host body, which is particularly 

important for resorbable implants. Secondly, the PEO process parameters (electrolyte, 

current regime and treatment time) used in those works are different, leading to scattered 

results, because of which, universal PEO process parameters that are suitable for all types of 

magnesium alloys have not been established. Producing PEO coatings on cp Mg can be of 

significance considering the elimination of possible adverse effects of toxic elements and 

developing generic PEO process parameters that may be suitable for a range of magnesium 

alloys. 

Various electrolytes have been studied in the PEO treatment of Mg alloys, which is usually 

performed in the base electrolyte of KOH/NaOH with different additives like silicate (SiO3
2-), 

phosphate (PO4
3-), aluminate (AlO2

-) and fluoride (F-) species [137]. KOH/NaOH 

concentration has certainly significant influence on the PEO process and coating properties. 

The correlation of KOH concentration with PEO coating characteristics was studied by Ko et. 

al. [138]. The results revealed that coatings prepared in an electrolyte with a higher 

concentration of KOH exhibited superior corrosion resistance. In addition, the increase in 

KOH concentration decreases the breakdown voltage [138] because of the increase in 

electrolyte conductivity. Passivation of Mg alloys may also be promoted by the increase in the 

KOH/NaOH concentration, thus leading to a higher growth rate of PEO coatings [76]. 

However, more coating defects can be produced in the coatings in more concentrated 

electrolytes (more KOH/NaOH) because of the stronger discharging activity caused by the 

high electrolyte conductivity [105, 107]. After comparing PEO coatings on AZ91 alloy 

produced in an electrolyte based on Na2SiO3 (18 g/l) and tannic acid (4 g/l) with different 

amounts of NaOH, Zhang et. al. [139] concluded coatings produced in an electrolyte with 10 

g/l (0.25 M) NaOH addition performed best in terms of corrosion resistance. However, for the 

electrolytes with other additives, this optimised NaOH/KOH concentration may not result in 

the best corrosion resistance. 

Additions of phosphate, silicate, fluoride, aluminate and some other salts to the base 
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KOH/NaOH electrolyte extend the process window for growth of PEO coatings with desirable 

anti-corrosion properties. Each of the additives can influence the final coating thickness, 

morphology, phase composition and anti-corrosion performance in different ways. The 

addition of phosphate and fluoride in the electrolyte promotes the formation of stable phases 

like Mg3(PO4)2 [104] and MgF2 [140, 141] which can be used as a physical barrier layer, 

protecting the substrate from corrosion attack. The coating deposition rate is increased in the 

presence of silicate because of the rise in electrolyte conductivity [103, 142]. Borate can 

facilitate oxide film growth by providing oxygen to the magnesium cation through 

decomposition of B4O7
2- anions [104]. Furthermore, other additives like permanganate [75] 

and various nanoparticles [125] have also been considered for the PEO treatment of 

magnesium for corrosion protection. 

It has been acknowledged that fluoride is the most effective additive in the electrolyte in terms 

of corrosion protection. Yan et. al. [104] compared PEO coatings prepared on AZ91D 

magnesium alloys in the base electrolyte of 3-8 g/l KOH with different additions of NaH2PO4 

(4-8 g/l), Na2B4O7 (5-10 g/l) and KF (5-10 g/l) under pulsed voltage mode (340-400 V) for 1-2 

h; the final results indicated that the addition of KF significantly increased the corrosion 

resistance of the coatings in 3.5 wt.% NaCl solution (corrosion rate 3 x 10-9 A/cm2).  

Various current regimes have also been applied in order to produce coatings with the best 

corrosion resistance [71, 143, 144]. The interdependence of the electrolyte chemistry and 

current regimes applied in the PEO process makes it impossible to find a universal current 

regime for all types of electrolyte. However, it is generally accepted that a constant current 

density mode provides better process control and considerable savings in treatment time 

[145].  

In vitro and in vivo corrosion evaluation of the PEO coatings produced in base electrolytes 

with those additives coupled with different current regimes indicates that, with proper current 

regime and electrolyte composition, the corrosion rate of magnesium in a simulated biological 

environment could be reduced significantly compared with that of the bare substrate [74, 77, 

135, 146]. However, these PEO coatings can only provide temporary protection from 

corrosion attack and, after penetration of the electrolyte through coating defects, the 

corrosion rate will be significantly accelerated [135]. Figure 3-8 shows the in vivo degradation 

process of ZX50 implant pins with time; in the first 4 weeks, the pins with the PEO coating 
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perform much better (larger volume left). Afterwards, the degradation rate of the PEO coated 

alloy is increased and the sample completely vanished within 12 weeks. 

3.3.2 Production of Bioactive PEO Coatings on Mg Alloys 

Generally, biodegradable implants should exhibit sufficient corrosion resistance and 

mechanical integrity for at least 12 weeks in the human body [147]. Therefore, the corrosion 

protection offered by PEO coatings is still insufficient, which stimulates more investigation on 

the PEO treatment of magnesium alloy to further reduce the degradation rate. Reducing the 

degradation rate still remains the primary strategy; however, attention has gradually moved 

towards bioactive coatings which can promote the healing process with minimum adverse 

effects while providing sufficient corrosion protection. Based on this requirement, 

considerable research efforts have been devoted towards producing PEO coatings 

containing biologically friendly compositions [1, 148, 149]. Hydroxyapatite (Ca10(PO4)6(OH)2, 

HA) can promote bone calcification and resorption due to its similarity to the natural bone 

apatite [21, 148, 150]. Tricalcium phosphate (Ca3(PO4)2, TCP), also possesses significant 

bioactivity, which can be attributed to the fact that TCP can transform to HA in the biological 

environment [21]. Apart from its high bioactivity, HA also possesses high stability in human 

body fluid and thus can protect the implants by preventing the corrosive medium from 

penetrating into the substrate. The in vivo characterisation of HA coated Mg-Zn-Ca alloy 

carried out by Wang et. al. [151] revealed accelerated bone regeneration and reduced 

degradation rate. Ca and P are the main elemental constituents of HA and TCP; therefore, 

incorporation of Ca and P compounds into PEO coatings is a prerequisite to the formation of 

HA or TCP, thus enhancing the bioactivity of PEO coatings on magnesium alloys.  

 
Figure 3-8 Micro CT images of implanted ZX50 pins with and without PEO coatings after 

different periods of implantation. The PEO coating was produced at constant current density 
of 14 mA/cm2.The picture is reproduced from reference [135]  
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Following the fact that the ionic species in the electrolyte will be present in the PEO coatings 

[103], preparing Ca- and P-containing electrolyte for the PEO process is the most 

straightforward method to incorporate Ca and P elements into the resultant PEO coating, 

which has been proven effective by Yao et. al. [3]. It is found that the Ca/P ratio in PEO 

coatings is dependent on the processing parameters, i.e. a longer processing time results in a 

higher Ca/P ratio in the PEO coating [3]. However, no Ca and/or P containing phases can be 

determined by XRD results in Yao’s publication [3]. Nevertheless, the potentiodynamic 

polarisation results suggested significant improvement in corrosion resistance of the PEO 

coatings.  

In an effort to produce Ca- and P- containing PEO coatings on AM50 magnesium alloy, Bala 

Srinivasan et. al. [2] prepared the base electrolyte using Ca(OH)2 rather than KOH/NaOH 

with additives of Na3PO4. The coatings are produced under a pulsed DC current mode 

(current density: 30 mA/cm2). The EDX results indicate appreciable amounts of Ca and P 

content in the PEO coatings. Again, similar to Yao’s results, the XRD results cannot identify 

any Ca-containing phases although Mg3(PO4)2 is present in the coating. After the immersion 

corrosion test for 150 hours, most of the coating survives, indicating effective corrosion 

protection.  

Through addition of Ca- and P-contained compounds into the electrolyte for the PEO 

treatment, Ca and P elements were also successfully incorporated into the resultant coatings 

by other researchers [152, 153]. These preliminary results are quite encouraging from the 

aspect of successful incorporation of Ca and P, which, however, is not the end of the story 

because of the absence of Ca and P containing phases in the PEO coatings. Moreover, 

attention is mainly focused on the effects of the electrolyte on Ca and P content in the PEO 

coating in the preliminary efforts, and the importance of the current regime is, unfortunately, 

not highlighted in the literature. Therefore, systematic studies on the optimised electrolyte 

composition and corresponding current regime are still required to further improve the implant 

bioactivity and corrosion resistance.  

Apart from the research activities regarding the optimisation of processing parameters to 

produce stable Ca and P containing phases in PEO coatings, other efforts are devoted 

towards the enhancement of coating bioactivity through post treatments [46, 149, 154]. Not 

only can the bioactivity be enhanced, but also the corrosion resistance can be improved 
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because: (a) the pores produced in the PEO coating can be sealed by the top layer [155] and 

(b) the bioactive layer itself provides an additional barrier layer protecting the substrate from 

corrosion attack. Additional bioactive layers have been successfully produced on magnesium 

surfaces through the sol-gel method [156, 157], electrophoretic deposition [158, 159], and 

electrodeposition methods [160, 161]. By dipping the PEO coated Mg-Zn-Ca alloy into a 

chitosan solution, the pores and other defects within the coatings can be sealed, as found by 

Hu et. al. [155]. An additional HA layer was fabricated through electrochemical deposition on 

top of the PEO coated Mg-Zn-Ca alloy by Guan et. al. [134]. The in vivo degradation rate 

remained at 0.12 mm/year in the first 12 weeks after implantation, which increased to 1.24 

mm/year after 18 weeks of implantation. The degradation rate of the coated samples is much 

smaller than that of the bare substrate over the whole process of implantation, which is 

attributed to the additional HA layer, as follows from comparison with the results shown in 

Figure 3-8. 

As stated in the previous chapter, mechanical performance is the other factor determining the 

in-service applications of magnesium-based implants besides corrosion resistance; 

mechanical properties are however not highlighted in the literature. Although the strength of 

bare magnesium alloys is sufficient for most static load-bearing biomedical applications, the 

situation becomes far more complex when the movements of patients is considered, where 

dynamic stress can be imposed on the magnesium implants. For example, in a paper by 

Morlock et. al. [162] it was reported that about 1 million walking steps are taken by patients 

with hip joint operations. Moreover, Yousif et. al. [15] claimed a stress of about 10 MPa to be 

imposed to the bones in each step for a patient of 70 kg. Therefore, it is of significance to 

study the mechanical properties of biodegradable magnesium alloys with PEO coatings, 

which can be conducted from two aspects: (a) the effects of PEO coatings on the static 

tensile strength and dynamic fatigue performance of magnesium alloys; (b) the effects of in 

vitro corrosion on the fatigue properties of the coated magnesium alloys. From the limited 

publications in the literature, it can be concluded that the fatigue properties of the sample 

would be deteriorated by the presence of a PEO coating [109, 163-165]. However, none of 

these publications deal with the underlying mechanism causing the reduction in fatigue 

endurance, other than reporting the experimental results. Moreover, whether or not the 

fatigue properties of the coated magnesium alloys are still sufficient for load-bearing implant 

applications is not demonstrated. Therefore, further research in this aspect is still needed.  
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Chapter 4 Experimental Procedures 

4.1 PEO Coating Unit 

The present project involves the investigation of the PEO process, including current regime 

and electrolyte composition, to produce Ca- and P-containing coatings on magnesium for 

biomedical applications. The former aspect of study relies upon free and precise control of 

the current supplied to the PEO cell, whereas all of the parameters associated with the 

electrolyte should be kept the same other than the one under investigation for the electrolyte. 

To satisfy these requirements, PEO coatings in this work are fabricated using a PEO coating 

installation consisting of three parts: Power Supply System, Electrolytic Cell and Controlling 

Computer. 

In the power supply system, two DC power supply units (Advanced Energy MDX II 15 kW and 

30 kW) powered by a 3-phase mains supply provide two external DC inputs to a pulse 

generator (SPIK 2000A) coupled with an arbitrary waveform generator (Agilent 33220A, 20 

MHz).  The DC units are remotely controlled by the host computer through a National 

Instruments NI-PXI-8430 card, while the waveform generator is operated through a 

NI-PXI-5922 card. Such a power supply system enables the free control of PEO process with 

various current parameters (voltage/current density amplitude, frequency, duty cycle). The 

voltage and current transient behaviour during the PEO treatment allows the PEO process to 

be monitored, providing insights into coating development, reflecting the coating morphology 

and final properties, as stated in Chapter 3. Therefore, it is critical to collect the electrical 

(current/voltage) transients of the PEO process. For this purpose, the present PEO coating 

system uses a Tektronix A6303 current probe coupled with a current amplifier (Tektronix 

TM502A) and a Tektronix P5200A 50MHz high voltage differential probe to monitor, 

respectively, the current and voltage signal waveforms, and such signals are recorded by a 

NI-PXI-5922 data acquisition card. Detailed current and voltage signals can also be recorded, 

with much higher sampling rate in the PEO coating system, using a Tektronix TDS 430A 

digital oscilloscope. Because the electrolyte temperature significantly affects the PEO coating 

morphology, it is also critical to monitor the temperature variation, which is performed using a 

thermocouple connected to a NI-SCC-68 DAQ board and NI-PXI-6220 card. All data 

acquisition cards mentioned above are embedded in a host computer operated on a NI 
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PXI-1071 chassis, and use the Labview environment to record and graphically display the 

various signals.  

A cylindrical stainless steel tank (Ø 160 x 140 mm) is used in the electrolytic cell system to 

both contain the electrolyte and serve as the counter electrode. The cylindrical counter 

electrode is beneficial to the PEO process as it provides a symmetrical electric field, which is 

a prerequisite for uniform coating thickness. To provide a uniform electrolyte composition, a 

magnetic stirrer is applied through the PEO process. Cooling water was passed through a coil 

made of a stainless steel tube to maintain the electrolyte temperature within the desirable 

range during the PEO treatment.  

4.2 Mg Substrate Preparation 

In the present research, commerically pure magnesium (cp-Mg) was used as the substrate. 

The chemical composition of the substrate material identified by inductively coupled plasma 

atomic emission spectroscopy (ICP OES) is listed in Table 4-1. Disc samples with 

dimensions of 15.8 mm by 7 mm were cut out of an extruded cp-Mg rod using an IsoMet 

5000 presision saw (Buehler), which used a non-ferrous cutting wheel with thickness of 1 mm; 

the rotating and cutting speed is set at 3000 RPM and 3 mm/min, respectively. Then an M3 

threaded hole was manually tapped in the sample for the purpose of electrical connection 

required in the PEO treatment. Correspondingly, the M3 thread was also produced at one end 

of an aluminium rod ( 3.3 x 150 mm). Before PEO treatment, the discs were successively 

ground using abrasive SiC paper to obtain a fine surface finish. Then the samples were 

ultrasocially degreased in acetone for 3 minutes and rinsed in distilled water. The prepared 

sample discs and connection aluminium rod are schematically presented in Figure 4-1.  

Table 4-1 Chemical composition of cp-Mg substrate material 

 Elemental Al Cu Fe Mn Ni Si Zn Magnesium  
Composition /wt.% 0.005 <0.005 <0.005 0.01 <0.005 <0.01 <0.005 balance 

4.3 Electrolyte Preparation 

Since the electrolyte composition for the PEO treatment of cp-Mg is to be optimised, various 

electrolytes have been prepared in the present project. Detailed compositions of those 

electrolytes are presented in associated chapters. In general, the chemicals used in the 

project were weighed using an electrical balance (DENVER Instrument MXX-2001) with 
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precision of ±0.1 g. After completely dissolving the chemicals in distilled water, the electrolyte 

conductivity and pH were measured using a conductivity meter (HANNA HI9835) and a pH 

meter (HANNA pH 211), respectively.  

 

Figure 4-1 Schematic diagrams showing dimensions of cp-Mg disc (a) and connecting 
aluminium rod (b) used in the PEO treatment 

4.4 Hydroxyapatite Deposition 

As stated in Chapter 3, formation of hydroxyapatite on the sample surface could stimulate 

beneficial effects to the implant/host response. In the present study, the cathodic 

electrodeposition (CED) method was utilised to form hydroxyapatite layers to enhance the 

bioactivity of PEO coatings. An apparatus similar to that used for the PEO treatment was 

utilised for the CED process, containing an electrolytic cell, a counter electrode (stainless 

steel plate) and working electrodes (sample to be treated). A saturated calomel electrode 

(SCE) was also utilised to monitor the polarisation behaviour during the CED treatment. In the 

CED process, the sample was cathodically polarised using a Solartron 1286 potentiostat. The 

treatment was carried out in either potentiostatic or galvanostatic mode, with details provided 

in Chapters 8 and 9. An electrolyte composed of (M) 0.043 Ca(NO3)2, 0.025 NH4H2PO4 and 

0.1 NaNO3 was prepared by dissolving the corresponding chemical agents in distilled water. 

NaNO3 was used to enhance the ionic strength of the electrolyte. The pH of the electrolyte 

was adjusted to pH=5 at room temperature by addition of an appropriate amount of 

(HOCH2)3CNH2 (Tris), considering the maximum solubility of HA at this pH value. The 

deposition process was carried out at a temperature range of 75±3 oC using a water bath 

(Clifton NE4-8T). 

(a) (b) 
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4.5 Coating Morphology Characterisation 

Since the properties of PEO coated magnesium are directly determined by the morphology, it 

is critical to observe the coating morphology development under different treatment 

conditions. It is a prerequisite to reveal the relationship between the morphology, processing 

parameters and final coating properties. 

4.5.1 Coating Thickness Measurements 

The coating thickness is of interest here because of the following reasons. On one hand, the 

corrosion resistance and mechanical properties which are important for biomedical 

application are influenced by the coating thickness; on the other hand, coating thickness 

reflects the PEO process efficiency. For a given processing time and applied voltage, a 

greater coating thickness suggests higher process efficiency. In the present study, the 

thickness of the PEO coatings was analysed using an Electrometer 355 Coating Thickness 

Gauge equipped with N4 standard anodisers probe with an accuracy of ±1 µm. The probe 

utilises a relatively high frequency signal (up to several mega-Hertz) to generate an 

alternating electric field in the substrate beneath the coating. The field causes eddy currents 

to circulate in the substrate which in turn induce associated magnetic fields. These fields 

interact with the probe and cause electrical impedance changes that are dependent on the 

coating thickness. Before performing the measurement, the thickness gauge was zeroed by 

pressing the probe against a well-polished sample surface made of the same material as the 

substrate. Then the gauge was calibrated using dielectric films of known thickness. About 20 

measurements were taken from each coated sample. The results of the measurements were 

statistically analysed, and the arithmetic average is taken as the coating thickness. 

4.5.2 Coating Morphology Observation by Scanning Electron Microscopy 

Scanning electron microscopy (SEM) is a widely used technique in various areas like 

materials, physics, biology, etc.. In SEM, the electron beam generated by a biased filament is 

focused by electromagnetic lens and directed towards the sample, where the high energy 

electrons will interact with the atoms of the specimen, emitting different kinds of signals. Of 

the signals, secondary electrons (SE) are very sensitive to characteristics of surface 

morphology such as roughness, porosity, cracks, etc.; as a result, the interpretation of SE 

image is of significance to reveal surface morphologies. Apart from SE images, the 
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elementary composition within the sample surface can also be evaluated by collecting 

characteristic EDX spectra using a detector attached to the SEM. 

In the present study, the plain surface and cross sectional morphologies of the coatings were 

observed using JEOL JSM-6400 and/or FEI Inspect F SEM instruments operated at an 

acceleration voltage of 15-20 kV. The chemical composition of the coatings was evaluated by 

EDX attachments (Oxford instruments) to the electron microscopies. To prepare the 

cross-sectional specimens, the coated magnesium discs were firstly cut into halves using the 

IsoMet 5000 precision saw mentioned in Section 4.2. However, the cutting speed was 

reduced to 1.5 mm/min to eliminate the risk of damaging the coating. Then the sample was 

cold mounted using an epoxy resin (MetPrep Ltd.) before being subjected to grinding and 

polishing. The samples were firstly ground using SiC abrasive papers of upto 4000 grit. Then 

a polish cloth of 1 μm was used for polishing. Since magnesium is a relative soft material, just 

soapy water was used during the polishing for the purpose of lubrication. It also prevents the 

temperature increase, eliminating the oxidation of magnesium substrate. 

For surface plane SEM observation, the samples were stuck on an aluminium stub (Ø30 x 10 

mm) using electrical conductive carbon tape. Both the cold mounted cross sectional samples 

and the surface plane samples were sputter coated with carbon to eliminate the charging 

effects under electron bombmartment during the SEM observation.  

4.5.3 Coating Phase Characterisation by XRD 

The phase composition of the coating was characterised using X-ray diffraction method. The 

basics of this technique rely on the fact that crystals contain periodic arrangements of atoms. 

When the incident X-ray beam interacts with a crystal, it is reflected by different atomic planes. 

When the reflected beams are in phase, they will be amplified (constructive diffraction), 

otherwise they will be dismissed (destructive diffraction). The schematic of the XRD principle 

is illustrated in Figure 4-2. Then the relationship between the crystal lattice plane spacing, 

wavelength of incident X-ray and the incident angle follows the Bragg’s Law: 

 2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 ( 4.1 ) 

Where 𝑑 is the crystal lattice plane spacing, 𝜃 is the incident angle and 𝝀 is the incident 

X-ray wavelength. This equation clearly shows the relationship between the diffraction 

pattern observed when X-ray is diffracted through the crystal lattice and the atomic plane 
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spacing. 

 

Figure 4-2 Schematic illustration of XRD principle (the black dots represent atoms) 

Equation (4.1) guarantees specific diffraction patterns for each phase; therefore, XRD is 

widely used for phase identification. In the present project, the XRD experiment was 

performed on a Siemens D5000 X-ray diffractometer operated at 40 kV and 30 mA with Cu 

Kα radiation (wavelength λ=0.154 nm). The samples were scanned under the normal coupled 

θ-2θ geometry in the range of 2θ from 15º to 85º, at a step size of 0.02º, with dwell time of 2 

s/step. The obtained diffraction patterns were analysed using Bruker EVA software. 

4.5.4 Residual Stress of the Coatings by XRD 

Residual stress is built up within the PEO coating because of (1) the steep temperature 

gradient during the PEO process and (2) the difference of the molar volume between the 

substrate and its oxide. Depending on the type (tensile or compressive) and magnitude of the 

residual stress, the mechanical properties as well as corrosion performance of the material will 

be influenced. It is generally realised that compressive residual stress is beneficial for the 

wear properties, while tensile stress is usually detrimental for both mechanical properties and 

corrosion performance, as it could easily cause cracking, especially in the corrosive 

environment. Therefore, it is critical to quantify the type and magnitude of the residual stress. 

In the present study, the residual stresses in the PEO coatings were evaluated using XRD. In 

this measurement, the strain in the crystal lattice is measured, assuming a linear elastic 

distortion of the crystal. The inter-planer spacing of an unstressed material produces a 

characteristic diffraction pattern, as stated in Section 4.5.3. When the material is under stress, 

elongation and contraction will be produced within the crystal lattice, therefore inter-planar 

spacing of the (hkl) lattice planes would be changed causing a shift in diffraction peaks. The 
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magnitude of the shift (strain) could be calculated by comparing the inter-planar spacing with 

and without stress defined by Equation (4.1). By solving the generalised Hooke’s law, the 

stress generating the strain can be calculated through the following equation: 

 𝜎 =
𝐸

(1 + 𝑣)𝑠𝑖𝑛2𝜓
∙

𝑑𝜓 − 𝑑0

𝑑0
  ( 4.2 ) 

Where 𝜎 is the direct in-plane residual stress, 𝐸 and 𝑣 are the Elastic’s modulus and 

Possion’s ratio of the material under investigation, respectively; 𝑑𝜓  is the crystal plane 

spacing of the stressed crystal at the tilt angle 𝜓. 𝑑0 is the unstressed crystal lattice spacing, 

which can be obtained from the X-ray diffraction pattern of the unstressed crystal powder.  

In the present study, the measurement was performed at the diffracted peak corresponding 

with the (422) crystal plane of MgO at 2𝜽=127.28° because of its high sensivity to strain. The 

test was conducted on the same X-ray diffractrometer mentioned in Section 4.4.3 in the 2𝜽 

range of 125o to 130o at different 𝜓 angles (-45o, -33.75o, -22.5o, -11.25o, 0o, 11.25o, 22.5o, 

33.75o). The final results are analysed using a Bruker stress software package . 

4.6 In vitro Electrochemical Corrosion Evaluation 

As stated in Chapter 2, the application of magnesium in the biomedical area is limited by its 

poor corrosion performance. Therefore, investigating the effects of PEO coatings on 

corrosion behaviour of Mg comprises the major research activity within this project. To 

characterise the corrosion properties of PEO coated magnesium, electrochemical methods 

were utilised. The simplified simulated body fluid (8.74 g/l NaCl, 0.35 g/l NaHCO3 and 0.28 

g/l Na3PO4·12H2O) utilised previously in [121] was prepared for the electrochemical corrosion 

test in Chapter 5.  For the corrosion tests in Chapters 6-9, a more universal SBF was 

prepared according to the procedure suggested by Kokubo [166, 167], the composition of 

which is listed in Table 4-2. 

Table 4-2 The reagents used to prepare 1L SBF 

Reagent NaCl NaHCO3 KCl K2HPO4·3H2O MgCl2·6H2O CaCl2 Na2SO4 Tris 1.0M-HCl 

Mass /g 8.035 0.355 0.225 0.231 0.311 0.292 0.072 6.118 Adjust pH to 
7.4 

Basically, the corrosion of magnesium is a result of the balance between metallic magnesium 

oxidation (anodic reaction) and reduction of corrosive species (cathodic reaction), which 
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involves electron transfer. The electrons are released from the oxidation process and 

consumed by the reduction process. Therefore, it is appropriate to study this process using 

electrochemical methods. In the present study, the corrosion properties are interpreted by 

monitoring the evolution of open circuit potential (OCP) with time, electrochemical impedance 

spectroscopy (EIS), and potentiodynamic polarisation scans. 

The open circuit potential is the potential of the working electrode under investigation relative 

to the reference electrode when no external polarisation or current are applied to the cell. The 

OCP values are monitored in the present study for two reasons. On one hand, the changes in 

the collected OCP represent the free corrosion process of the working electrode, as the 

potential of the reference electrode remains unchanged during the measurement. On the 

other hand, OCP provides a baseline for EIS and potentiodynamic measurements.  

It is easy to figure out how the corrosion activity changes during the free corrosion process by 

comparing the OCP values. However, this does not provide sufficient information regarding 

the kinetics of the corrosion process, i.e. the precise corrosion rate, and kinetic processes 

involved in the corrosion mechanism. Therefore, EIS and potentiodynamic polarisation 

measurements are also carried out in the present study. 

EIS is a powerful method to study the coating degradation process. In the EIS measurement, 

the corrosion system is perturbed from its equilibrium state by a small external polarisation 

signal (over a range of frequencies), and the corresponding current response is recorded, 

reflecting different kinetic processes. The basics of this technique can be defined as: 

 𝑍(𝑗𝜔) =
�̃�

𝐼
 ( 4.3 ) 

where �̃� is the external perturbation voltage signal, 𝐼 is the corresponding current response, 

and 𝑍(𝑗𝜔) is the impedance of the system, which is a function of frequency 𝜔. While it is 

relatively easy to collect the impedance spectra using a sophisticated impedance/gain phase 

analyser, the data interpretation is rather complicated. Typically, the impedance spectra are 

modelled by assuming a circuit made of resistors, capacitors and inductors, the values of 

which are extracted through fitting an equivalent circuit to the spectrum generated. These 

values are then correlated with physical phenomena, i.e coating structure and properties, to 

verify that the circuit model is a reasonable representation of the corrosion process. Although 

the equivalent circuit analysis of EIS spectra is not difficult with the help of commercial 
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software packages, an understanding of the basic impedance calculations (revealing the 

values of electrical elements involved) is also required to correlate the observed variation of 

parameter values with the physical processes occurring during corrosion. The basic 

calculations of the EIS methods can be found in [168, 169].  

However, the question regarding how fast the materials are corroded is still not answered 

explicitly by EIS. Therefore, potentiodynamic polarisation is applied to deal with such 

concerns. Potentiodynamic polarisation involves changing the potential of the working 

electrode and monitoring the corresponding current. Useful information regarding corrosion 

mechanisms, susceptibility to corrosion in a designated environment (thermodynamic 

information) and corrosion rates (kinetic information) can be derived from this technique. Tafel 

extrapolation is the commonly used method for the data interpretation, if the anodic and/or 

cathodic polarisation curves reveal Tafel behavior, which assumes charge transfer control of 

each electrode reaction. Figure 4-3 schematically illustrates the data interpretation using 

Tafel extrapolation method. Then the corrosion rate i𝑐𝑜𝑟𝑟 of the samples could be derived 

Stern-Geary equation:  

 i𝑐𝑜𝑟𝑟 =
1

𝑅𝑝
∙

𝑏𝑎 ∙ 𝑏𝑐

2.3 (𝑏𝑎 + 𝑏𝑐)
 ( 4.4 ) 

where 𝑅𝑝 is the polarisation resistance, 𝑏𝑎 and 𝑏𝑐 are the anodic and catodic Tafel slopes, 

respectively.  

 

 
Figure 4-3 Schematic illustration of potentiodynamic polarisation curve analysis using Tafel 

extrapolation 
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As illustrated in Figure 4-3, the intersection of the two Tafel branches defines the corrosion 

process. The corrosion potential, Ecorr is related to thermodynamic aspect, revealing the 

susceptibility to corrosion, whereas the corrosion current density icorr, defines the averaged 

rate of corrosion over the sampled surface area. Generally, a higher Ecorr and a lower icorr 

usually mean a higher corrosion resistance and a better anti-corrosion performance. 

It is worth noting that this method is only valid when apparent Tafel behaviour is observed, i.e. 

the anodic and/or cathodic polarisation is/are controlled by activation polarisation processes. 

Unfortunately, this is not always the case; in practice, the activation polaristion is usually 

complicated by other polarisation mechanisms, including mass transfer processes, which 

makes the data interpretation difficult. Various methods have been proposed to solve this 

problem. For the mass transfer controlled process, the limiting current density revealed by the 

polarisation curve is usually taken as the measure of corrosion current density icorr, whereas 

for the curves showing multiple activation polarisation processes, the different processes 

involved are firstly figured out before applying the Tafel analysis for icorr identification. The icorr 

is an electrochemical term, which can be converted to linear corrosion rate assuming 

occurrence of uniform corrosion based on Faraday’s Law: 

 ℎ =
𝐼𝑐𝑜𝑟𝑟 ∙ 𝑀

𝑛 ∙ 𝐹 ∙ 𝜌
 ( 4.5 ) 

Where ℎ is the corrosion rate in m/s, 𝑀 in g/mol and ρ in g/m3 are, respectively, the molar 

mass and density of the metal under corrosion, 𝑛 is the number of electrons transferred in 

the corrosion process, and 𝐹= 96485 C/mol is the Faraday constant. Equation (4.4) helps in 

converting icorr to a more convenient term. However, such conversion of corrosion rates also 

depends on the form of corrosion process and is not applicable for localised corrosion. The 

interpretation of corrosion rate is carefully discussed in the relevant chapters. 

The aforementioned electrochemical corrosion properties were evaluated using a Solartron 

1286 potentiostat coupled with a 1260 frequency gain/phase analyser. Since the surface of 

the sample is of primary concern, a standard plain three-electrode cell was utilised for this 

purpose, as illustrated in Figure 4-4. A platinum plate (10 x 25 mm) was used as the counter 

electrode, whereas a saturated calomel electrode (SCE) (0.2444 V vs. standard hydrogen 

electrode (SHE)) was used as a reference electrode. Both the reference electrode and the 

counter electrode were inserted into appropriate holes in the cell as shown in Figure 4-4. The 
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coated sample served as the working electrode, which was spring-loaded against an orifice in 

the bottom of the cell. The exposed surface area of the sample was 0.738 cm2. During the 

experiment, the sample was aerated by purging air bubbles through the air inlet hole (Figure 

4-4). The cell was filled with 250 ml of SBF. The corrosion experiments were conducted under 

a constant temperature of 37±1 oC to simulate the physiological environment. For this 

purpose, the whole cell was sealed and placed inside a water bath (Clifton NE4-8T) 

maintaining the required constant temperature. 

 
Figure 4-4 Schematic illustration of the plane three-electrode cell used for the electrochemical 

corrosion evaluation 

For the electrochemical evaluation, the OCP of the sample was first stabilised by ensuring 

that the potential change is < 10 mV for a period of > 10 minutes. Once the OCP had 

stabilised, EIS spectra were collected over the frequency range of 0.01 Hz to 1 MHz with an 

AC perturbation amplitude of 10 mV around the OCP. The perturbation of 10 mV was applied 

because (a) the potential is sufficient to result in significant signal / noise ratio and (b) any 

potential higher than this increases the risk of affecting the linearity and stability of the system, 

which is required for the interpretation of EIS measurements. To reveal the kinetic processes 

involved in corrosion, EIS spectra were collected every hour after the stabilisation of the OCP. 

The validity of the EIS data was confirmed using a Kramers–Kronig transformation [170], as 

suggested in [168, 169]. Finally, the potentiodynamic polarisation measurement was 

conducted in a potential range from -0.7 V to 1 V vs. OCP at a scanning rate of 1.667 mV/s. 
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After the corrosion evaluation, the samples were subjected to SEM observation in order to 

find out a correlation between the corrosion processes identified by the EIS analysis and the 

corroded morphologies. It is worth noting here that the corrosion products were retained on 

the corroded samples in order to provide indications about the corrosion process. The SEM 

sample preparation and observation were conducted according to the standard procedure 

described in Section 4.5.2.  

4.7 Evaluation of Mechanical Properties of the PEO Coated Magnesium 

Apart from sufficient corrosion resistance, implants (bone fixtures, screws) made of 

magnesium should also possess adequate mechanical properties, i.e. strength, ductility to 

support the fractured bones. In the present project, mechanical properties of the samples are 

characterised from different aspects. 

4.7.1 Tensile Property Characterisation 

Tensile testing is an easy and reliable method to determine two basic mechanical properties 

of concern, i.e. strength and ductility. To reveal the effects of the coatings on the mechanical 

properties of magnesium, tensile tests were conducted on samples with and without coatings. 

Tensile samples were manufactured according to ASTM E8-04, as presented in Figure 4-5. 

The gauge length was 33 mm, and the diameter of the gauge part was 6 mm. The fillet radius 

was set at 6 mm. The grip length of 25 mm was assumed to be sufficient to provide a robust 

locking of the sample during the test. After machining, the samples were manually ground 

using SiC abrasive paper of 4000 grit to remove all the machining grooves, which could 

concentrate the stress and affect the evaluation of the tensile properties. After the grinding, a 

surface finish of Ra ~ 20 nm was achieved. After being thoroughly cleaned, the sample 

surface was modified with PEO coating followed by cathodic electrodeposition (CED) 

treatment, where the PEO coated sample is cathodically polarised in an electrolyte saturated 

with HA. The production of CED layer is described correspondingly in Chapter 9. The tensile 

tests were conducted at room temperature using a universal tensile testing machine 

(Hounsfield Test Equipment). The tensile rate was set at 5 mm/min.  
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Figure 4-5 A drawing of the sample used for tensile experiment 

4.7.2 Fatigue Property Characterisation 

Tensile tests provide an indication of the implant strength under statically stressed condition, 

which is not sufficient to represent the practical situation because cyclic stress would usually 

be applied to the implant due to daily activities of the patient, as mentioned in Section 3.3.2. 

Therefore, it was deemed important to study the mechanical properties of the implant under 

cyclic loading conditions. For this purpose, rotating bending fatigue tests were conducted in 

the present project. Fatigue samples were manufactured according to ASTM F1801-97 

standard, as shown in Figure 4-6. The pre-treatment procedure of the sample was similar to 

that of the tensile samples, involving the grinding and degreasing. Then the PEO coatings 

were formed on the radial gauge surface of the samples by masking the two gripping ends. 

Upon completion of the surface treatment, the samples were immersed in SBF at 37 ± 1 oC 

for 2 hours before being subjected to fatigue tests. 

 
Figure 4-6 A drawing of the sample used for fatigue tests 

Figure 4-7 illustrates schematically the operation of the rotating bending fatigue machine. 

During the test, a force F was applied at the loading bearings, which were coupled with the 

sample (Figure 4-7). By rotating the sample, a dynamic stress σ was applied to the sample 

surface, as shown in Figure 4-8. The tests are performed at a frequency of 100 Hz, with the 
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stress ratio R= -1. It is worth noting that the magnitude of the stress varies along the 

longitudinal direction of the sample because of the variation of the bending moment along this 

direction. Meanwhile, the stress is also varied in the transverse direction, and the maximum 

stress is imposed on the sample surface. The detailed calculation of stress distribution along 

longitudinal direction of the sample is presented in Appendix A, which demonstrates that the 

maximum stress value is imposed in the middle of the sample. The fatigue test was set up to 

achieve either complete specimen fracture or 107 load cycles if the specimen does not fail. 

The fatigue life and strength were determined using the obtained S-N curves.  

 
Figure 4-7 Schematic illustration of the rotating bending fatigue test operation 

 
Figure 4-8 Illustration of the dynamic stress imposed on the samples during fatigue tests 

4.8 Summary 

The experimental methods and procedures mentioned above are essential to achieve the 

objectives listed in Section 1.2. And those methods are followed in Chapters 5-9. 

Nevertheless, the methods mentioned here are too generalised to provide all the 

experimental details required in each specific chapter. For example, the detailed composition 

of electrolyte used for the PEO treatment is not described here but presented in each specific 

chapter. Therefore, in order to get a clear picture of the experimental parameters applied 

(Chapters 5-9), the reader is recommended to refer to the specific chapter of interest.  
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Chapter 5 Effects of Electrolyte on PEO Treatment of Commercially Pure 

Magnesium 

The importance of the electrolyte in the PEO process and its effects on the final coating 

characteristics has been highlighted in Chapter 3. As stated, the classical electrolytes have 

to be modified to produce bioactive PEO coatings that can promote bone regeneration on 

magnesium based biodegradable implants. Therefore, in the present study, different 

calcium-containing electrolytes were prepared, in which the PEO coatings are fabricated on 

commercially pure (cp) magnesium using the simple DC current mode. The final coating 

microstructures, including surface morphology and phase composition, were characterised 

using the experimental methods and procedures discussed in Chapter 4. The in vitro 

corrosion properties of the final coatings were investigated using electrochemical methods in 

a simplified simulated body fluid at 37 ± 1 oC. At the end of this chapter, the electrolyte 

providing sufficient PEO process stability and resulting in coatings of the highest corrosion 

resistance is selected for further study. 

5.1 Coating Fabrication 

The dimensions of the cp magnesium samples and details of the equipment used to produce 

PEO coatings are described in Chapter 4. For the coating fabrication, three different 

electrolytes were utilised. Firstly, a classical PEO electrolyte composed of KOH and 

Na3PO4·12H2O, termed as the ‘base’ electrolyte, was prepared. A similar electrolyte was also 

used in other work [69]. In order to obtain more biocompatible coatings, calcium was 

introduced into the base electrolyte either by replacing KOH with Ca(OH)2 or by addition of 

Ca(NO3)2·H 2O; these were termed as calcium- and nitrate-modified electrolytes, respectively. 

The PEO treatments were conducted under DC polarisation. In the base and calcium 

modified electrolytes, the processes were carried out in the galvanostatic mode, while in the 

nitrate electrolyte, a potentiostatic mode because it is hard to find out an appropriate current 

density that can promotes sample passivation . Details of the electrolyte concentration, 

applied current/voltage magnitude and treatment time are presented in Table 5-1.The 

samples were treated for 5 minutes, unless otherwise specified (Table 5-1).  
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Table 5-1 Parameters of DC-PEO process used in the present study 

Sample ID Anodising Conditions 

 Electrolyte  Current Mode  Time /min 

 Composition C /g·L-1  i / mA·cm-2 U /V   

A1 
KOH 

Na3PO4·12H2O 

2 

3 

 30 -  5 

A2  40 -  5 

A3  50 -  5 

B1 
Ca(OH)2 

Na3PO4·12H2O 

2 

12 

 30 -  5 

B2  40 -  5 

B3  50 -  5 

C1 
NaOH 

Ca(NO3)2·4H2O 

Na3PO4·12H2O 

120 

53 

80 

 - 70  5 

C2  - 70+80  5+5 

C3  - 80  5 

C4  - 90  0.5 

5.2 Characteristics of PEO Process 

The recorded voltage transients during the PEO process in the base and calcium modified 

electrolytes and the current transient in the nitrate electrolyte are shown in Figure 5-1. Under 

DC conditions, the PEO cell can be simply considered as a series combination of resistances 

RM, Rc and Re corresponding to the Mg substrate, PEO coating and electrolyte, respectively. 

Therefore the overall voltage V at the power supply output can be described as follows: 

 𝑉 = 𝐼(𝑅𝑀 + 𝑅𝑐 + 𝑅𝑒)  ( 5.1 ) 

Considering RM and Re do not change during the PEO process, then the voltage variation with 

time can be derived by the differentiation of equation (5.1) with respect to time:  

 𝑑𝑉

 𝑑𝑡
= 𝐼

𝑑𝑅𝑐

𝑑𝑡
 ( 5.2 ) 

When a dense coating is assumed, the coating resistance Rc can be related to its thickness D 

and overall surface area A, according to the following equation: 

 𝑅𝑐 = 𝜌
𝐷

𝐴
 ( 5.3 ) 

Where ρ, the resistivity of the coating material, together with A can be considered as constant 
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for a given sample. It is easy to obtain the following equation by substituting equation (5.3) to 

(5.2): 

  𝑑𝑉

𝑑𝑡
=

𝐼𝜌

𝐴
×

𝑑𝐷

𝑑𝑡
 ( 5.4 ) 

Under the galvanostatic PEO mode, the current I is maintained constant. If all the constant 

parameters are combined in equation (5.4), it is easy to conclude that the rate of voltage 

change (the slope in the voltage transient curve) is proportional to the coating growth rate. 

For the voltage control mode, the voltage remains constant during the PEO process, and the 

relationship between the recorded current and oxide coating growth behaviour can be 

obtained from Equation (5.5): 

 𝑑(𝐼−1)

𝑑𝑡
=

𝜌

𝐴𝑉
×

𝑑𝐷

𝑑𝑡
 ( 5.5 ) 

Where 𝑉 is the applied external voltage and 𝐼 is the corresponding current measurements. 

Therefore, it is straightforward that the coating growth rate 𝑑𝐷

𝑑𝑡
 is inversely proportional to the 

current decay behaviour. 

Based on equations (5.4) and (5.5), the coating growth behaviour can be reflected by the 

voltage and current transients during the PEO process. Correspondingly, the voltage 

presents an increasing trend at constant current PEO mode while a decreasing trend is 

recorded for the potentiostatic PEO process, as shown in Figure 5-1(c). In the present case, 

the voltage increases rapidly following a linear behaviour within a very short period of time, 

(about 15 s), upon the start of PEO process as shown in Figure 5-1 (a) and (b), suggesting a 

rapid passivation of magnesium in the electrolyte. It has been recognised that the passivation 

in this stage is governed by Faraday’s law. When the voltage increased further to a critical 

value of >50 V in both the base and calcium-modified electrolytes, tiny sparks began to 

appear on the sample surface, which was also accompanied by intense gas liberation. During 

this period, the voltage increased further but at a lower rate, indicating a lower rate of coating 

thickness increase according to Equation (5.4). It is obvious that the growth rate in this period 

is dependent on the applied current density and the electrolyte composition. By fitting the 

voltage transient behaviour in this period recorded in the base electrolyte, it is found that 

when the applied current density increased from 30 to 40 mA/cm2, the voltage transient also 

increased from 2.52 to 3.82 V/s, respectively. When a current density of 50 mA/cm2 was 

applied, the voltage became quite unstable in this period, featuring a downward through 
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(Figure 5-1(a)), which is believed to come from the coating dissolution. 

 
Figure 5-1 Voltage vs. time response for PEO treatments at different current densities 
(mA·cm2) (a,b) and current variation at 70 V (c) within: (a) base electrolyte; (b) calcium 

modified electrolyte and (c) nitrate-modified electrolyte 
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In the calcium-modified electrolyte, a higher rate of voltage increase was observed when the 

applied current density increased from 30 to 50 mA/cm2. With increasing treatment time, the 

tiny discharges evolved into larger ones and became less populous. The voltage reached a 

stable value in all cases, although the final voltages were not the same for different PEO 

treatments. In the base electrolyte, the final voltages were lower than those in the calcium 

modified electrolyte. This steady voltage behaviour indicated that the coating thickness 

changes insignificantly during this period of time. Although the steady voltage behaviour lasts 

until the completion of the PEO process for the current density of 30 mA/cm2 in both the base 

and calcium modified electrolytes, the voltage transient became rather unstable for the last 

100 s for both of the electrolytes when the current density increased up to >40 mA/cm2, as 

shown by the shaded region in Figure 5-1. The fluctuations are believed to be either coming 

from the simultaneous formation and dissolution of the PEO coatings or resulting from 

formation and healing processes of large defects like pores and large cracks. When the 

coating is dissolved, the thickness is reduced and a sharp decrease in voltage transient 

would be expected based on equation (5.4). On the other hand, the electrical resistance of 

the PEO coatings would be short circuited by the large defects filled by the electrolyte of low 

resistance; thus, when the defects are healed by the molten coating material, the voltage is 

recovered. Therefore, a sharp voltage reduction is observed on the voltage transient. 

Furthermore, the fluctuation amplitude in the calcium modified electrolyte is much stronger 

than that in the base electrolyte, indicating a less stable PEO process in the calcium modified 

electrolyte when the applied current density is higher than 40 mA/cm2. The typical current 

transient during potentiostatic treatment in the nitrate modified electrolyte at 70 V is shown in 

Figure 5-1(c). The highest current was observed once the ramp period finished and 

afterwards the current decreased at a rate that gradually decreased during the process. 

Finally, the current stabilised at 250 mA, although some fluctuations were observed in this 

steady state condition, towards the middle of the treatment (around 30-80 s) (Figure 5-1(c)). 

The current decrease during the potentiostatic treatment is also associated with the coating 

thickness evolution, as described by equation (5.5). 

The above analysis shows that the PEO process stability is compromised due to the 

utilisation of a nitrate-modified electrolyte. Such instabilities are also observed at higher 

current densities for the calcium-modified electrolyte.  
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5.3 Coating Morphology 

The surface morphologies of the PEO coatings obtained in the base electrolyte are shown in 

Figure 5-2. Typical porous morphologies are observed at all current densities, which are 

attributed to the discharge activity and gas evolution during the PEO process, as stated in 

Chapter 3.  While the smallest pores in all the coatings are less than 1 µm, the largest pore 

diameters increased from ~10.5 µm at a current density of 30 mA/cm2 to ~23.2 µm and ~45.3 

µm for a current density of 40 mA/cm2 and 50 mA/cm2, respectively.  On average, larger 

pore diameters are observed in the coatings produced at higher current densities. After 

analysis of the SEM images using ImageJ software, it is found that the average pore 

diameters for the coatings obtained at i=30, 40, and 50 mA/cm2 are 2.51, 4.25, and 5.7 µm, 

respectively.  The increase in the pore size with current density is probably due to the more 

powerful discharges caused by the higher energy injection. It is worth noting that the pores 

are sometimes overlapped with finer pores being observed at the bottom of larger ones, as 

marked by the white circles in Figure 5-2.  Moreover, there are cracks present in the 

coatings, as indicated by the white arrows in Figure 5-2.  It is believed that the cracks are 

attributed to significant temperature difference between the coating and electrolyte, creating 

rapid cooling. During the PEO process, the temperature within the discharge channels can be 

as high as several thousand degrees Celsius [117], and the cooling rate provided by the cold 

(<30 oC) electrolyte is considerable. Resultant local thermal shocks cause cracking in the 

ceramic surface layer.  Generally, the local temperatures in the discharge channels at higher 

current densities are greater than those at lower current densities [128], which results in 

longer overall crack lengths in the coatings produced at higher current densities (Figure 5-2). 

Similar porous morphologies are also observed in the coatings produced within the calcium 

modified electrolyte, which show numerous small pores (Figure 5-3).  Specifically, the pore 

diameters in the coating produced at 30 mA/cm2 fall in the range from <1 µm to ~9 µm. When 

the current density increases to 40 mA/cm2, the final pore size does not increase significantly. 

In contrast, the pore diameters increase dramatically when the applied current density 

increased up to 50 mA/cm2, being in the range from <1 µm to >9 µm,.  In contrast with the 

results observed in the base electrolyte, very few cracks are seen in the coatings produced at 

30 and 40 mA/cm2 although much larger cracks are observed in the coating produced at 50 

mA/cm2 in the calcium modified electrolyte compared with that produced at the equivalent 

base electrolyte (Figures 5-2(c) and 5-3(c)). 
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Figure 5-2 SEM surface morphologies of PEO coatings produced in the base electrolyte at 

current densities (mA/cm2) of : (a) 30, (b) 40 and (c) 50 

In contrast, the morphologies of the coatings obtained in the nitrate electrolyte are 

significantly different (Figure 5-4), featuring much finer porosity. This may result from the high 

dissolution rate of the coatings, consistent with the fluctuations in current transient shown in 

Figure 5-1(c). 

Cross-sectional morphologies shown in Figure 5-5 give further details of the coating 

microstructure. Obvious porosity observed in the cross-sectional morphologies is generally 

consistent with the results of surface plane SEM analysis (Figure 5-2). In addition, some 

pores are large enough to penetrate through the coating thickness, as indicated by the circle 

in Figure 5-5.  Nevertheless, the calcium-modified electrolyte yielded much more compact 

coatings through the thickness than its two counterparts, therefore, a better corrosion 

resistance could be predicted.  Moreover, the coatings showed high roughness, both surface 

and interfacial, and some evidence of weakened bonding with the substrate, e.g. sites of 

delamination and interfacial porosity in the coatings produced in calcium electrolyte at 40 
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mA/cm2; at the same time the bonding of other coatings appeared to be better (Figure 5-5). 

No apparent coating was observed on the samples treated in the nitrate modified electrolyte 

at 90 V (Figure 5-4(d)), which is probably due to the dissolution rate of magnesium 

exceeding the oxide formation rate under these conditions. 

 
Figure 5-3 SEM surface morphologiies of PEO coatings produced in the calcium modified 

electrolyte at current densities (mA/cm2) of: (a) 30, (b) 40 and (c) 50 

Apart from the coating morphologies, cross-sectional SEM images also revealed the coating 

thickness, which is analysed using a computer programme called ImageJ.  15 data points 

are randomly selected on the cross-sectional images, the average of which is taken as the 

coating thickness (Figure 5-6).  It is evident that higher current densities would result in 

higher coating thickness, i.e. the coating thickness increased from 9.58 µm at 30 mA/cm2 to 

15.69 µm at 40 mA/cm2 in the base electrolyte.  The calcium modified electrolyte yielded a 

coating thickness of 5.55 µm at 30mA/cm2 to 9.18 µm at 50 mA/cm2.  Therefore, the 

coatings obtained in the calcium modified electrolyte were much thinner at all the applied 

current densities.  The coating produced in the nitrate electrolyte at 70 V is thinner than that 

produced in the base electrolyte at 30 mA/cm2; even thinner coatings are produced when the 
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applied voltage is increased and the coating is too thin to be observed when the voltage is 

increased up to 90 V. 

 
Figure 5-4 SEM morphologies of PEO coatings produced in the nitrate modified electrolyte at 

the voltage of: (a) 70 V, (b) 70 V+ 80 V, (c) 80 V and (d) 90 V/0.5 min 

 
Figure 5-5 Cross-sectional morphologies of PEO coatings obtained at different current 

densities in: (A) base electrolyte, (B) Calcium-modified electrolyte and (C) Nitrate-modified 
electrolyte 
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In addition, the coating roughness is related to the applied current density and voltage.  In 

the calcium modified electrolyte, the coating roughness increases with increasing current 

density, as reflected by the higher thickness deviations (Figure 5-6), this is in good 

agreement with the analysis of the voltage transient (heavier fluctuations at higher current 

densities) (Figure 5-1).  In contrast, finer coating roughness is observed with increasing 

current densities in the base electrolyte, as shown by the thickness deviations in Figure 5-6.  

The highest roughness is observed in the coatings produced in the nitrate-modified 

electrolyte at 70 V.  From the analysis of the cross-sectional SEM images, it could be 

concluded that the coating formation ability is reduced when the base electrolyte is modified 

as in the present study.  

 
Figure 5-6 Coating thickness evolution with applied (a) current density in base and calcium- 

modified electrolyte and (b) voltage amplitude in nitrate-modified electrolyte 
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5.4 Surface Chemical and Phase Composition 

Typical EDX spectra from the coatings produced in the present study are shown in Figure 5-7, 

with relative contents of elements detected being summarised in Table 5-2. The EDX spectra 

from coatings in the base and calcium modified electrolyte are similar, containing Mg, O and 

P (Figure 5-7(a)), but surprisingly phosphorus was not detected in the coatings obtained in 

the nitrate-modified electrolyte (Figure 5-7(b)), although the concentration of phosphate salt 

there was very high. Moreover, Ca is also absent in all spectra of the coatings produced in the 

calcium containing electrolytes. This is inconsistent with the result published by Srinivasan et 

al [122], where an appreciable amount of Ca was identified in the PEO coatings produced 

using a pulsed unipolar current mode.  According to general understanding of the coating 

formation mechanism during PEO processing [114], cations and anions are driven in opposite 

directions by the electric field developed in the discharge channels. This can explain the 

absence of Ca in DC-PEO coatings, suggesting that its incorporation under pulsed unipolar 

conditions as published by Srinivasan et al [122] may be associated with either direct 

adsorption or precipitation in the form of calcium phosphate during the pulse off time. The 

absence of phosphorus in the coatings produced in the nitrate modified electrolyte may be 

due to nitrate anions preventing adsorption of phosphate groups on the oxidised surfaces. 

Moreover, the P contents detected from the coatings obtained in the base electrolyte are 

almost the same, regardless of the applied current density. In contrast, the phosphorus 

content of the coating fabricated in the calcium modified electrolyte is significantly reduced to 

9 at.% at the current density of 30 mA/cm2. Afterwards, P content climbs up to 14 at.% when 

the current density increases to 40 mA/cm2.  

 
Figure 5-7 Typical EDX spectra of PEO coatings obtained with different process parameters 

in (a) base and calcium-modified electrolyte and (b) nitrate-modified electrolyte 
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XRD patterns of the coated samples are shown in Figure 5-8. Strong magnesium peaks in 

the patterns correspond to the metal substrate. The coatings produced in the base electrolyte 

(Figure 5-8(a)) are mainly composed of magnesium oxide (MgO) and a relatively minor 

amount of magnesium phosphate (Mg3(PO4)2). Similarly, the coatings fabricated in the 

calcium modified electrolyte are composed of magnesium oxide (Figure 5-8(b)), but, 

surprisingly, no phosphorus containing phase was identified although the EDX analysis 

suggested an appreciable amount of phosphorus in these coatings. This indicates that in the 

presence of calcium hydroxide, phosphate crystallisation is suppressed and it tends to be 

incorporated into the coating as an amorphous component rather than a crystallite compound. 

In the coatings formed in the nitrate electrolyte MgO is also the only crystalline phase (Figure 

5-8(c)), which is consistent with the results of EDX analysis. 

Table 5-2 Summary of EDX results 

Sample ID Elements (at.%) 

Mg O P 

A1 37 48 15 

A2 39 47 14 

A3 35 50 15 

B1 45 46 9 

B2 39 47 14 

B3 38 50 12 

C1 65 35 - 

C2 64 36 - 

C3 62 38 - 

5.5 Corrosion Evaluation 

5.5.1 Electrochemical Impedance Spectroscopy 

After the open circuit potential in the simplified simulated body fluid has been stabilised for 1 

hour, the electrochemical impedance spectroscopy response of the samples was measured 

to reveal the corrosion properties of the coatings. Characteristic impedance diagrams of 

PEO-coated cp-Mg samples in the simplified simulated body fluid are presented in Figures 
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5-9, 5-10 and 5-11. The EIS behaviour is significantly affected by the PEO process 

parameters, i.e. electrolyte and voltage / current magnitude. Specifically, the overall 

impedance of the samples treated in the base electrolyte (Figure 5-9) increases with 

increasing current density, indicating an increase in corrosion protection [171]. The complex 

plot from the sample coated at 30 mA/cm2 exhibits two loops: the capacitive loop at high and 

medium frequencies is believed to originate from the charge transfer process, and the other 

one at low frequencies is in the inductive domain, indicating the presence of pitting corrosion 

process [172]. The data can be adequately fitted by the equivalent circuit shown in Figure 

5-9(c) , in which Rct represents the charge transfer resistance and the constant phase 

element (CPE1) reflects a non-ideal behaviour (e.g. distributed properties resulting from 

roughness and porosity) of the double layer capacitance. 

Complex and Bode plots obtained from the coatings produced in the base electrolyte at 40 

and 50 mA/cm2 are also presented in Figure 5-9(a) and (b). Although a loop at high to 

medium frequencies appears as a similar depressed semicircle (as in the aforementioned 

situation), the complex plot show a linear behaviour rather than an inductive loop at low 

frequencies in these cases. Also in the low frequency domain, the phase Bode plot 

intersected with the vertical axis at about ~π/8 (Figure 5-9(b)), suggesting the existence of a 

mass transport process through the porous coatings [172, 173]. The high impedance 

magnitude resulting from the mass transport process demonstrates that the corrosion 

process was dominated by the mass transport / diffusion process. As a result, a classical 

Randles type equivalent circuit (containing a normal semi-infinite Warburg element, 

representing the diffusional mass transport) was utilised to analogise the corrosion process, 

as shown in (Figure 5-9(d)). Similar equivalent circuits has also been utilised in the scientific 

literature to represent the kinetic corrosion processes involving charge transfer processes 

[174-176].  
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Figure 5-8 X-ray diffraction of cp-Mg samples PEO coated in: (a) base, (b) calcium-modified 

and (c) nitrate-modified electrolyte 
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Figure 5-9  EIS analysis of PEO coatings obtained in the base electrolyte at different current 

densities: (a) complex plot, (b) Bode plots, (c) equivalent circuit for coating A1 and (d) 
equivalent circuit for coatings A2 and A3. The solid lines in the figure represent the fitting 

results 
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Figure 5-10 EIS analysis of coatings obtained in the calcium-modified electrolyte at different 
current densities: (a) complex plot, (b) Bode plots, and (c) equivalent circuit for coating B2 
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Figure 5-11 EIS analysis of PEO coatings obtained in the nitrate-modified electrolyte at 
different voltages (a) and (b) complex plots and (c) Bode plots 
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Similar diffusion-controlled impedance behaviour was observed for the coatings produced in 

the calcium modified electrolyte at 30 and 50 mA/cm2 (Figure 5-10), and also in the nitrate 

electrolyte at 70 V, both alone and followed by a subsequent further treatment at 80 V (Figure 

5-11). 

However, the previously established equivalent circuits were not appropriate to analogise the 

impedance behaviour of those coatings fabricated in the calcium-modified electrolyte at 40 

mA/cm2 (Figure 5-10), and in nitrate-modified electrolyte at 80 V (Figure 5-11). In the phase 

angle Bode plots, two time constants were clearly seen; one-in the medium to high frequency 

range and the other at low frequencies. The additional time constant compared to the former 

situation was attributed to the contribution of the bulk of the PEO coating to the corrosion 

protection. This is consistent with the cross-sectional morphologies of these coatings which 

appear to be much better adhered to the substrate compared to other coatings (Figure 

5-5(b)).  Taking into consideration the coating morphology, an equivalent circuit containing 

two time constants was proposed to interpret the EIS behaviour (Figure 5-10(c)) and is fitted 

well with the experimental data. In the circuit, CPE1 represents the outer porous region of 

PEO coatings and CPE2 corresponds to the inner dense region of the coatings. The 

equivalent circuit data for all the proposed circuits are summarised in Table 5-3.  

By comparing the values of the circuit elements, the contributions of the corresponding kinetic 

reactions to the overall corrosion process can be analysed. For all coatings where the 

behaviour involves diffusion processes, the corrosion resistance from the Warburg 

impedance (W), due to the semi-infinite diffusion of charged particles, is significantly larger 

than that of the resistance of the charge transfer process (Rct) and the resistance of the 

coatings (Rc), as listed in Table 5-3, suggesting that the corrosion rate is mainly determined 

by a mass transfer process. Overall, the sum of Rct and coating resistance Rc, together with 

the diffusion impedance W can be considered as a measure of corrosion impedance 𝑍 [172, 

177]: 

 𝑍 = 𝑅𝑐 + 𝑅𝑐𝑡 + 𝑊𝑅 ( 5.6 ) 

After substituting the relevant data from Table 5-3 into the above equation, it is easy to 

conclude that the coatings of B1, B3, C1 and C2 showed the highest corrosion resistance.  
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Table 5-3 Results of EIS data fitting by equivalent circuits presented in Figures 5-9, 5-10 and 

5-11 

Sample ID Rc 

(kΩ∙cm2) 

CPE1-T 

(S∙sn) 

CPE1-P Rct 

(kΩ∙cm2) 

W-R 

(kΩ∙cm2) 

W-T 

(s) 

W-P 

 

CPE2-T 

(S∙sn) 

CPE2-P 

A1 0.77 2.49 0.71 0.35 - - - - - 

A2 - - - 1.21 2.45 40 0.56 173 0.73 

A3 - - - 2.16 15.57 76 0.40 75.1 0.62 

B1 - - - 1.24 9700 1.2e10 0.37 90.0 0.66 

B2 1.22 1.97 0.66 2.40 - - - 1279 0.86 

B3 - - - 6.66 103.75 2879 0.32 27.4 0.59 

C1 - - - 5.24 175.58 0.1 0.68 43.0 0.33 

C2 - - - 8.99 62.87 645.8 0.36 15.5 0.58 

C3 1.36 223 0.67 11.47 - - - 883 0.82 

C4 1.66 69.3 0.68 2.6e7 - - - 740 0.58 

Mg 0.02 32.5 0.66 1.08 17.57 22.1 0.41 49.2 0.73 

5.5.2 Potentiodynamic Polarisation Evaluation 

The corrosion behaviour of magnesium samples with and without PEO coatings evaluated by 

the potentiodynamic polarisation technique in the simplified simulated body fluid at 37±0.5 oC 

is presented in Figure 5-12. Since the corrosion potential (Ecorr) provides an insight into the 

driving force for the corrosion processes, the corrosion current density (icorr) describes the 

corrosion from a kinetic point of view. The potential at which the anodic current density equals 

the cathodic current density is taken as Ecorr, while different methods are applied to derive icorr , 

depending on the potentiodynamic polarisation behaviour. For those coatings in which the 

polarisation curves exhibited Tafel behaviour, the Tafel extrapolation method is utilised to 

derive icorr, and for those coatings not showing Tafel behavior, the limiting current density is 

taken as the measure of icorr. The results are summarised in Table 5-4. As can be seen, the 

corrosion potential and corrosion current density for the uncoated magnesium substrate were 

-0.73 V vs. SCE and 12 µA/cm2, respectively. The PEO coatings produced in the calcium- 

and nitrate-modified electrolytes showed more noble behaviour in the SBF in terms of 

corrosion potential, while coatings produced in the base electrolyte showed lower Ecorr  value, 

compared to the uncoated substrate Figure 5-12 . 
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Figure 5-12 Potentiodynamic polarisation curves of cp-Mg samples with PEO coatings 
obtained in different electrolytes: (a) base, (b) calcium-modified and (c) nitrate-modified 

electrolyte 
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For the coatings produced in the base electrolyte at 30 mA/cm2, Tafel behaviour was 

observed in the anodic and cathodic branches of the potentiodydnamic polarisation curve and 

the icorr determined by the Stern-Geary analysis was 6.16 µA/cm2. The absence of Tafel 

behaviour in other coatings was attributed to the fact that the charge transfer process was 

affected by diffusion, which is consistent with the EIS results. 

Since a higher corrosion potential does not necessarily mean a lower corrosion rate, it is 

more reasonable to take icorr for the corrosion evaluation. The coatings could improve 

corrosion protection to some extent if their icorr was lower compared with that of the uncoated 

magnesium substrate. From this point of view, the coatings produced in the base electrolyte 

at 30 mA/cm2, in the calcium-modified electrolyte at 40 and 50 mA/cm2, and in the 

nitrate-modified electrolyte at 70 V alone and followed by the treatment of 80 V are all able to 

inhibit the corrosion process. Although the coating obtained in the base electrolyte at 30 

mA/cm2 presented an icorr lower than 12 µA/cm2, the driving force for the corrosion process 

was even higher than that of the magnesium substrate. Therefore, the protection ability of this 

coating should be considered with care. It is likely that the coatings obtained in the base 

electrolyte would not provide the best protection to the magnesium substrate. Moreover, the 

coatings fabricated in the nitrate-modified electrolyte at 70 V showed the lowest corrosion 

rate, which is lower than that of the uncoated substrate by a factor of 5. The high corrosion 

resistance from these coatings was consistent with the EIS results, and was also attributed to 

a better bonding between coating and substrate (Figure 5-5). However, a limited ability would 

exist for the coating produced in this electrolyte to control a biological response by introducing 

calcium phosphorus containing compounds into their structure. From this study, it was found 

that, with the appropriate treatment process, it is possible to produce a PEO coating on 

magnesium alloy with improved corrosion performance in a simulated body fluid. 

Assuming uniform corrosion, icorr can be used to estimate equivalent thickness loss h 

according to Faraday’s law as described by Equation 4.4. Estimated thickness losses of the 

sample due to corrosion attack for 12 weeks which is recognized as the minimum time 

required to accomplish the in vivo healing process is summarised in Table 5-4. It can be seen 

that the sample would suffer several microns of thickness loss; however the detrimental 

effects of corrosion would be under estimated by the Equation 4.4. In practice the 

degradation of Mg often proceeds via pitting mechanism and is influenced by the cells, 

protein and flowing body fluid [178] compared to the static electrolyte in the electrochemical 
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cell. Moreover, a possibility of anodic reactions generating Mg+ ions [179] should also be 

taken into account.  

Table 5-4 Results of potentiodynamic data analysis of PEO coated and uncoated cp-Mg 
samples and equivalent thickness loss (after 12 weeks in service) converted by Faraday’s 
law 

Sample ID A1 A2 A3 B1 B2 B3 C1 C2 C3 C4 Mg 

Ecorr /mV -1.42 -0.88 -0.74 -0.65 -0.49 -0.59 -0.65 -0.52 -0.71 -0.62 -0.73 

Icorr /µA∙cm-2 6.16 21 14.4 61.4 4.34 8.48 2.52 5.24 22.6 68.8 12 

h /µm 33.7 111.5 76.4 326 23 45 13.3 27.8 120 365.3 63 

 

5.6 Summary 

DC plasma electrolytic oxidation in three different electrolytes with different current modes 

was utilised to produce coatings on cp-Mg samples. The In vitro corrosion performance of 

these coatings was evaluated with various electrochemical techniques, and the following 

inferences can be made: 

(1) The PEO process becomes rather unstable in the calcium-modified electrolyte 

when the applied current density is >40 mA/cm2. The coating growth rate in 

the nitrate-modified electrolyte is too low because of the higher dissolution rate 

compared with the coating growth rate. 

(2) PEO coatings produced in the base electrolyte consist of crystallite MgO and 

Mg3(PO4)2 phases, while the formation of Mg3(PO4)2 is hindered in the 

calcium- and nitrate-modified electrolytes, possibly due to the presence of 

calcium salts in the electrolyte. 

(3) PEO coatings produced in the calcium-modified electrolyte at 40 and 50 

mA/cm2 and those fabricated in the nitrate-modified electrolyte at 70 V (and at 

70 V followed by further treatment at 80 V), showed a superior corrosion 

performance in the simplified simulated body fluid compared with coatings 

produced in the base electrolyte and the uncoated substrate. 

(4) Considering the PEO process stability, coating composition and corrosion 

performance, identification of PEO parameters resulting in the best coating 

characteristics for development of Mg-based biodegradable implants involves 
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the utilisation of the calcium-modified electrolyte prepared in the present study. 

For the sake of simplicity, DC current was applied at this stage. However, the 

current regime could be optimised for Ca incorporation and further 

improvement of corrosion performance by employing pulsed DC current 

regimes, which is the target of the next research stage discussed in the 

following chapter. 
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Chapter 6 Effects of Pulse Frequency on PEO treatment of cp-Mg for 

Biomedical Application 

As reviewed in Chapter 3, the utilisation of pulsed DC current regimes during PEO treatment 

generally results in better process control and superior coating corrosion resistance due to 

the absence of large long-lasting discharge events compared with the simple DC current 

mode. Also, by comparing the results presented in Chapter 5 and those published by 

Srinivasan et al [122], an assumption was made in Chapter 5 that the introduction of pulsed 

DC regime would be essential to incorporate Ca into the PEO coatings thus improving the 

bioactivity of the coatings for biomedical applications; this, however, still needed to be proved. 

Moreover, it is widely acknowledged that the pulse frequency significantly affects the PEO 

process and coating properties. However, the correlation between the applied pulse 

frequency and the final coating characteristics has not been established. It was the objective 

to solve such problems in the work presented in this chapter. For this purpose, PEO coatings 

were produced on cp-magnesium substrates, using the calcium-modified electrolyte 

developed in the previous chapter, under unipolar pulsed current regimes with a range of 

pulse frequencies. Correspondingly, the PEO process and coating properties are 

characterised following the experimental procedures described in Chapter 4.  

6.1 Coating Fabrication 

The PEO coatings were produced on cp-magnesium substrates, the preparation of which 

involved cutting, degreasing and rinsing following the procedures described in Chapter 4. 

The electrolyte used in the present study contained: 2 g/l Ca(OH)2 and 12 g/l Na3PO4∙12H2O 

(pH = 12.6;  = 13.2 mS cm-1). The electrolyte preparation procedure has been mentioned in 

Chapter 4. The PEO treatments were carried out for 10 minutes at an average current 

density of 30 mA/cm2. The coatings were produced under unipolar pulsed current mode with 

10% duty cycle and with the pulse frequency varied from 100 to 5000 Hz.  

6.2 Characteristics of PEO Process 

Recorded voltage transients of the PEO processes at different pulse frequencies are shown 

in Figure 6-1. As explained in Chapter 5, the main potential increase during the PEO process 
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contributes to the growing ceramic coating. Considering that the electrical resistance of the 

coating is proportional to its thickness, the coating growth behaviour during the galvanostatic 

PEO process can be simply represented by the voltage transient as described by Equation 

(5.4). 

 
Figure 6-1 Voltage vs. time response for PUP-PEO treatments at different frequencies 

It is clear from Figure 6-1 that, regardless of the pulse frequency, all the voltage curves show 

similar behaviour. Initially, the voltage increases rapidly at a rate of about 6 V∙s-1, indicating 

fast passivation of the sample surface associated with the beginning of oxidation process. 

After about 1 minute, the voltage growth rate slows down to 1.33 V∙s-1. During this period, the 

oxide growth is accompanied with intense gas liberation, with tiny sparks becoming visible, 

rapidly moving around on the sample surface. When the voltage reaches about 470 V, the 

PEO process enters its final stage, during which the voltage increases only slightly, 

suggesting a marginal increment in the coating thickness. The most significant observation at 

this stage is that the spark population on the sample surface degrades, while the average 

spark size increases. Some of the discharges also remain relatively static on the sample 

surface, rather than moving around as in the second stage. As shown in the inset in Figure 

6-1, at the beginning of PEO treatments carried out with higher pulse frequencies, the 

voltages increased much more slowly. However in the final stage, they climb up at slightly 

higher rates compared with those of the coatings produced at lower pulsing frequencies, 

ending up with higher final values. Therefore, thicker coatings are expected from the 
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treatments with higher pulse frequencies.  

The coating performance is determined not only by its thickness but also by its quality, i.e. the 

defects within it. The first passivation stage is critical to the final coating morphology and 

resultant properties; therefore it is important to understand the corresponding voltage 

behaviour shown in the inset in Figure 6-1. For treatments carried out at 100 Hz, there is a 

plateau in the voltage transient from 17 up to 24 s (marked by the arrow in Figure 6-1), which 

indicates that oxidation is balanced by some other processes (like dissolution of oxidised 

coating). In addition, for a pulse frequency of 2000 Hz, the voltage drops sharply at about 17 

s for 3 seconds, a feature which is also observed for 5000 Hz. This abnormal voltage drop 

can be explained from two aspects. On one hand, the coating dissolution rate may 

temporarily exceed the formation rate. The coating (and even substrate) dissolution process 

will lead to local alkalisation of the electrolyte, favouring re-passivation, as suggested by the 

Pourbaix diagram of magnesium (Figure 2-3). Therefore the voltage would further increase. 

On the other hand, some defects may be formed in the coating, providing local paths of low 

resistance. Increased current through the defect sites will facilitate their healing so the 

voltage would continue to increase. No matter which process dominates, it will be detrimental 

to the inner part of the final coating, creating less compact inner regions with worse corrosion 

performance. 

Figure 6-2 depicts characteristic current and voltage waveforms recorded during the PEO 

process at 3000 Hz. Both waveforms deviate from the ideal rectangular pulse shape shown in 

Figure 3-3(c). Sharp peaks are observed at the front of current pulses during which the 

current fluctuates vigorously. These fluctuations disappear abruptly at the end of each pulse, 

with no current through the cell observed during the pauses, indicating that they may be 

caused by the discharging activity during the PEO process. Analysis of the current response 

to the voltage step may potentially be useful for understanding discharge mechanisms [180], 

but it is hardly applicable here due to large deviations in the current behaviour. 
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Figure 6-2 Typical electrical waveforms collected during PEO process at 3000 Hz 

In contrast, the voltage remains relatively steady during the pulse and reduces gradually 

during the pause. The rate and extent of the voltage drop varies with the pulse frequency as 

shown in Figure 6-3, reflecting post-discharge relaxation processes taking place in the 

system. Evaluation of the voltage behaviour during the pause is therefore of significance, as it 

may provide information on the effects of pulsed current parmeters on the properties of 

resulting coatings. Considering the dielectric nature of the PEO coating and the configuration 

of the PEO system, the voltage decay behaviour can be simply represented by superposition 

of several processes, each of which can be described by a universally regonised Debye-type 

dielectric relaxation with characteristic magnitude Ui and time constant 𝜏𝑖. Since the voltage 

decay exhibits a periodic relaxation type behaviour, it is sufficient to analytically fit it with the 

following equation [181]: 

 𝑈(𝑡) = 𝑈𝑡→∞ + ∑ 𝑈𝑖 ∙ exp [
−(𝑡−𝑡0)

𝜏𝑖

𝑛
𝑖=1 ]  ( 6.1 ) 

Where U(t) is the instant voltage value at time t, 𝑈𝑡→∞ is the voltage at sufficiently long after 

the pulse is paused, t0 is the pause start time and n is the number of relaxation processes 

involved. The characteristic parameters of the relaxation processes were revealed by 

non-linear least squares fitting of the voltage transient by equation (6.1), realised by a 

trust-region algorithm [182]. Through comparing the R2 values along with the standard errors 

for the curves fitted with different n = 1…4, the best fits were obtained with n = 2 for the pulse 

frequencies <2000 Hz, indicating that two relaxation processes were involved, whereares n = 
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1 resulted in sufficient fitting accurancy only at higher frequencies. The fitting results are 

presented by solid lines in Figure 6-3, with obtained values of characteristic parameters 

collaited in Table 6-1. 

A relaxation time 1 < 100 µs identified for all the pulse frequencies is consistent with a 

characteristic time constant for interfacial capacitive discharging of anodic oxide films (10-5 s) 

[183], and can be attributed to this process in the PEO coating. The ceramic film formed on 

the sample surface during the PEO process is sandwiched between the metal substrate and 

an electrolyte of relatively low electrical resistance. It can therefore be simply seen as a 

capacitor which is charged at the beginning of the pulse and then partly discharged via 

sparks. When the pulse is over, a sudden voltage decrease from the external power supply is 

compensated by releasing the charge remaining at the interfaces of the PEO coating.  

Table 6-1 Corresponding fitting parameter values for the recorded voltage decay 

Frequency/Hz U1/V U2/V 𝜏1/µs 𝜏2/ µs R2 

100 495 66 22 8984 0.989 

500 460 60 26 2942 0.990 

1000 450 87 31 1852 0.989 

2000 437 144 39 2273 0.997 

3000 426 - 62 - 0.997 

5000 429 - 54 - 0.995 

Figure 6-4 shows the evolution of the characteristic time constant for this relaxation process 

with pulse frequency, indicating that the capacitor discharging relaxation time increases from 

22.0 µs at 100 Hz to 62.1 µs at 3000 Hz. However, with the pulse frequency increasing further 

up to 5000 Hz, the relaxation time decreases to 54.1 µs. Although the capacitor discharging 

effect is not directly depended on the pulse frequency, it is affected by coating characteristics 

(i.e. thickness, roughness, porosity and specific surface area, etc) (influenced by the pulsing 

frequency). .Based on this consideration, the capacitor discharging time constant is affected 

by the pulsing frequency, as observed in Figure 6-4. 
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Figure 6-3  Voltage waveforms collected at different pulse frequencies with fitting results by 

solid lines: (a) 100 Hz, (b) 2000 Hz and (c) 3000 Hz 
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Figure 6-4 Relaxation time constants derived from voltage waveforms and final coating 

residual stress at different pulse frequencies 

In order to characterise the PEO process through this relaxation process, an assumption was 

made that the pores formed in the PEO coating are cylindrical and deep enough to penetrate 

throughout the coating. This allows the coating immersed in the electrolyte to be represented 

by a parallel combination of the coating capacitance Ccoat, and resistance of the electrolyte in 

the pores Rpore. Then the capacitive discharging time constant can be calculated by [184]: 

 τ1  =  R𝑝𝑜𝑟𝑒 ∙ C𝑐𝑜𝑎𝑡 ( 6.2 ) 

Considering the fraction of the substrate surface area A0 covered by pores is α, Rpore can be 

obtained by [184]: 

 Rpore =  ρ ∙ h/(α ∙ A0) ( 6.3 ) 

where  is the electrolyte resistivity in the pores, h is the coating thickness. The coating 

capacitance can easily be derived through the basic relationship [184]: 

 C𝑐𝑜𝑎𝑡 = ε0 ∙ ε ∙ (1 − α) ∙ A0/h ( 6.4 ) 

Where  = 8.85×10-12 F m-1 is the permittivity of free space, and  is the relative permittivity of 

the coating, which can be considered as being constant (because the permittivity is only 
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determined by coating composition). By substituting equations (6.3) and (6.4) into equation 

(6.2), the relaxation time constant can be derived: 

 τ1 = 𝜌 ∙ 𝜀0 ∙ 𝜀 ∙ (1 − 𝛼)/𝛼 ( 6.5 ) 

Assuming = const, 1 is inversely proportional to the basal area of the pores. Therefore, the 

increased relaxation time constant obtained with increasing pulse frequency suggests 

decreased coating porosity. 

Moreover, for the pulse frequencies <2000 Hz, another relaxation process with much longer 

characteristic time constant (2= 10-2…10-3 s) contributing to the voltage decay was identified, 

as shown in Figure 6-4. This may be caused by the dielectric relaxation of the coating 

material [183]. During each current pulse, the coating material is polarised by the high electric 

field forming stretched electric dipoles in the oxide structure that gradually return to the initial 

state upon removal of the external polarisation. Thus the dielectric relaxation mechanism can 

also compensate for the cut off of the external power supply but in a different time scale. It is 

understandable that this relaxation process should take place for all the pulse frequencies, 

however above 2000 Hz, the pause is too short to reveal the characteristic relaxation time 

constant. 

By comparing the weight contribution of the two relaxation processes to the overall voltage 

decay, it is evident that most of it is due to the capacitive discharging process and the 

contribution of the dielectric relaxation only accounts for a small fraction and can even be 

neglected at higher pulse frequencies (>2000 Hz). 

6.3 Coating Thickness Evaluation 

Coating thicknesses measured using the Elcometer 355 eddy current gauge are presented 

by the bar chart shown in Figure 6-5. All the coatings are thicker than 20 µm; the thickest 

coating (25.1 µm) corresponds to the pulse frequency of 5000 Hz, and the thinnest one (20.6 

µm) – to 100 Hz. The coating thickness is not uniformly distributed as indicated by the 

standard deviation bars shown in Figure 6-5. The overall trend is that higher pulse 

frequencies lead to thicker PEO coatings, although the coating produced at 500 Hz is almost 

as thick as that at 3000 Hz. Figure 6-6 shows strong correlation between the final voltage 

and the coating thickness, which is consistent with the theoretical analysis of the voltage 

transients discussed in Section 6.2. 
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Figure 6-5 Dependence of PUP-PEO coating thickness produced on cp Mg at various pulse 

frequencies 

 
Figure 6-6 Correlation between the final voltage and coating thickness of the PUP-PEO 

coatings produced at various frequencies 

6.4 Coating Chemical and Phase Composition 

The EDX results indicate that, regardless of the pulse frequency, all coatings are composed 

of Mg, O, P, Ca, and Na; only the spectrum of the coating produced at 3000 Hz is therefore 

presented in Figure 6-7. However, atomic concentrations of these elements are slightly 

different, as summarised in Table 6-2. The coatings produced at higher frequencies tend to 

contain less Mg and more O (with the coating produce at 5000 Hz being an exception). This 
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result is verified by the Mg/O ratio, which is <1, indicating that the abundant O may be 

combined with other elements, possibly Ca and/or P, besides Mg in the coating. The 

presence of Ca in all the coatings is consistent with previous results by Srinivasan, et al [122] 

although its concentration does not show significant dependence on the processing 

parameters. Considering that Ca can facilitate bone regeneration, the identification of Ca in 

the coatings is encouraging. Compared with the results on DC PEO of Mg presented in 

Chapter 5, it is verified that the presence of Ca is due to the application of unipolar pulsed 

current, i.e. may be caused by either direct adsorption or precipitation in the form of calcium 

phosphate during the pause. 

 
Figure 6-7 Representative EDX spectrum of the PUP-PEO coating produced at 3000 Hz 

Table 6-2 Chemical composition of the PUP-PEO coatings produced at varies pulse 
frequencies 

Frequency/Hz 
Elemental composition/ at.% 

Ca/P Mg/O 
Mg O  P Ca Na 

100 46.4 45.3 7.4 0.4 0.5 0.057 1.02 

500 42.9 49.1 7.1 0.5 0.5 0.069 0.87 

1000 35.9 56.0 7.2 0.4 0.5 0.061 0.64 

2000 33.7 57.0 8.4 0.5 0.4 0.057 0.59 

3000 32.8 57.6 8.6 0.4 0.6 0.049 0.57 

5000 39.3 52.7 7.1 0.4 0.5 0.056 0.74 

XRD patterns of the coated samples are shown in Figure 6-8 to facilitate a better 

understanding of how the elements identified by the EDX analysis are combined in the 

coatings. It can be seen that all coatings are mainly composed of MgO, with minor 
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Na4Ca(PO3)6 and Mg peaks corresponding to the metal substrate. In the PEO process, 

magnesium is anodically oxidised to Mg2+ which is driven through the discharge channels 

towards the coating/electrolyte interface to react with OH- and/or O2, forming MgO. In all the 

samples, the strongest MgO peaks correspond to the (200) crystal planes and the analysis of 

relative intensities of other peaks suggests that magnesia crystallites are randomly oriented 

in the coating. This allows the crystallite sizes of the MgO phases to be evaluated using 

Scherrer’s equation as shown in Figure 6-9. It is clearly seen that the crystallite size 

decreases with increasing pulse frequency, although the coating produced at 100 Hz has a 

crystallite size smaller than that for 500 Hz. In the PEO process, once the MgO crystals are 

initiated, their growth rate is affected by several factors, of which temperature is the most 

significant. A longer-lasting discharging activity resulting from lower pulse frequencies may 

lead to higher local temperatures, favouring the crystal growth and resulting in larger 

crystalline sizes. The P and Ca containing crystalline phase Na4Ca(PO4)6 was identified at 

2=29.0o and 30.8o in all the coatings, which is in contrast with previous study results 

presented in Chapter 5. However, the Ca/P ratio identified by the EDX analysis (Table 6-2) is 

about 0.06, which is about 2 times less that of the stoichiometric ratio in Na4Ca(PO4)6. It may 

be that the new phase only consumes part of the Ca and P content, with the remainder being 

incorporated in the MgO matrix as an amorphous constituent. 

 
Figure 6-8 XRD patterns of the coatings produced at different frequencies 
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Figure 6-9 Dependence of MgO crystallite size on the current pulse frequency in the 

PUP-PEO processes 

6.5 Coating Morphology 

Surface plane SEM micrographs shown in Figure 6-10 are typical for PEO coatings porous 

morphologies, with porosity varying depending on the pulse frequency. We used ImageJ 

software for the coating porosity analysis because it is easy to operate even though there has 

been many ways to characterize coating porosity [185]. The mean average pore size 

presented in Figure 6-11 tends to reduce with increasing frequency from 5.1 µm at 100 Hz to 

about 3.4 µm at 5000 Hz, however a rather large scatter of individual data points makes this 

trend statistically insignificant. In order to make certain of such observation, Figure 6-12 

provides pore size distribution histograms based on statistical analysis of over 300 pores 

randomly selected in the microscopic images of each coating. All but the coating produced at 

100 Hz have the most abundant pore size at around 2 m, which is virtually independent of 

frequency, whereas the main frequency effect consists in narrowing down the pore size 

distribution at the expense of large pores (this is also reflected in smaller standard deviations 

of data points corresponding to higher frequencies in Figure 6-11). While pores <1 µm  were 

identified in all the coatings, the size of largest pores decreased gradually from >22 µm  to <9 

µm  when the pulse frequency increased from 100 Hz to 5000 Hz, which is consistent with the 

results of the voltage decay analysis discussed in Section 6.2.  
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Figure 6-10 Surface morphologies of PUP-PEO coatings produced at different frequencies 

Within the coating produced at 100 Hz, more than 70% of the measured pore diameters were 

in the range of 1 to 6 µm  (Figure 6-12), and the pores <1 µm  and >16 µm  occupy only <5%, 

with the largest pore size being >22 µm . In contrast, the pore diameters fall in the range of 0.3 

to 8.5 µm  for the coating fabricated at 5000 Hz, of which >90% have a relatively uniform 

distribution in the range of 1 to 6 µm . The porous morphologies are attributed to the discharge 

activity and gas evolution during the PEO process. The sparks formed at the 

electrode/electrolyte interface cause the metal substrate and pre-formed coating material to 

melt and the Mg atoms of the substrate may be ionised due to high temperatures developed 

in the discharge channels [118]. The metal species are driven towards the electrolyte by the 
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electric field and/or pressure gradients. Once met and reacted with the electrolyte species, 

they resolidify forming porous crater-like surface structures. At high frequencies, a single 

discharge lifetime is likely to be limited by the pulse duration; therefore smaller pores are 

formed on the coating surface and the size distribution will be narrower (Figure 6-12). 

 
Figure 6-11 Dependence of average pore size in the PEO coatings on the pulse frequency 

Similar to the results observed in Chapter 5, cracks are also visible on the coatings produced 

at lower pulse frequencies, as indicated by the white arrows in Figure 6-10. Under scrutiny, 

they appear to be guided by the porosity caused by discharging and gas liberation processes. 

The cracks are associated with relaxation of internal stress within the coatings, which is 

discussed in more detail in the following section. Here it is worth noticing that crack formation 

seems to be influenced by the pulse frequency. The overall crack length in the coatings 

produced at lower frequencies is longer compared to those fabricated at higher frequencies, 

where the cracks are hardly seen on the coatings produced at 3000 Hz and 5000 Hz. The 

cracks in the PEO coatings provide additional paths for the corrosive media to penetrate 

towards the substrate and are therefore detrimental for the corrosion performance of Mg 

biomaterials. 
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Figure 6-12 Pore size distributions of the PUP-PEO coatings produced at different 
frequencies 

Cross-sectional micrographs of the PEO coatings presented in Figure 6-13 provide details of 

morphological features across the coating thickness as well as its bonding to the substrate. 

Porous features can be observed across all coatings, which is consistent with corresponding 

surface morphologies (Figure 6-10). The pore size at the coating surface is generally larger 

than that closer to the interface and some pores are deep enough to go through the coating 

and reach the substrate (Figure 6-13), which supports the assumptions made in the voltage 

waveform analysis (Section 6.2). Undulated coating-substrate interfaces are typically 

observed, indicating coating formation by a localised inward propagation mechanism, rather 
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than uniform oxide film growth across the whole surface. The interfacial waviness is reduced 

in the coatings produced at higher frequencies, supporting the speculation of discharge size 

being limited by the pulse duration under such conditions. The implication for the corrosion 

performance is that these coatings should demonstrate a lesser tendency for pitting as their 

resistance would be more uniformly distributed across the surface. 

 
Figure 6-13 Cross sectional morphologies of PUP-PEO coatings produced at different 

frequencies 

6.6 Residual Stress Characterisation 

In-plane direct residual stresses identified by the sin2 XRD method in the studied coatings 
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are presented in Figure 6-4. The stresses are tensile and the overall trend is that the stress 

magnitude decreases with increasing pulse frequency from 192 MPa at 100 Hz to 141 MPa at 

5000 Hz. However, the coating produced at 2000 Hz shows the highest in-plane internal 

stress of about 212 MPa. The residual stress state is a trade-off between internal stress 

generation and relaxation processes. Internal stresses in the PEO coatings are generated 

due to surface oxidation, electrostriction of the formed dielectric film and its local heating by 

discharge activity [186]. The surface oxidation of Mg occurs with a negative volume change, 

which puts the coating under tension whereas the underlying substrate is compressed to 

maintain the intimate bonding with it. This is consistent with general observation of tensile 

residual stresses in the coatings but would not explain the quantitative difference between 

them as all the coatings are in the same thickness range. The second contributing factor – 

electrostriction, appears only during the current pulse. It forces Mg2+-O2- dipoles to align along 

the electric field, i.e. normally to the sample surface, which would add to in-plane tension 

within the coating. However, this addition is also independent of the pulse frequency as the 

electrostriction, being a quadratic function of electric field across the coating, is also 

independent of the current density. Nevertheless subsequent dielectric relaxation is 

frequency-dependent, as discussed in Section 6.2, and should be significant only for the 

frequencies <2000 Hz. 

Finally, temperature gradients developed in radial directions of discharge channels [118] 

would result in thermal stress that is proportional to the gradient magnitude considering the 

same thermal expansion/contraction coefficient.  The temperature field around the 

discharge site depends on the event lifetime which is not restricted by the pulse duration at 

lower frequencies, resulting in higher maximum temperatures and steeper gradients. 

Therefore, the thermal stress would tend to be higher at lower frequencies, concentrating 

around the pores and promoting crack formation at these sites. When the stress induced in 

the coating is locally high enough, the elastic strain energy stored in the material structure is 

released to form new surfaces. Thus most of the thermal stress will be released through the 

cracks at lower frequencies (<2000Hz) whereas at this threshold value it would be barely 

sufficient to cause cracking. Although the stress generated at 2000 Hz seems to be not as 

high as that at lower frequencies, most of it would be built up in the coating, with only slight 

relaxation through cracking so that much shorter cracks would appear as observed in Figure 

6-10. At higher frequencies (3000 Hz), the pulse duration is so short that not enough stress 
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could be built up; therefore, cracks are hardly observed and lower residual stresses are 

developed. Thus, the maximum residual stress observed for the coating formed at 2000 Hz 

could be explained based on the superposition of thermal stress generation, dielectric 

relaxation and cracking processes. The accumulation of tensile residual stress in the coating 

would be expected to facilitate corrosion processes as the surface energy of the system is 

increased. 

6.7 Electrochemical Corrosion Evaluation 

6.7.1 Open Circuit Potential Evolution 

As already advised in Chapter 4, the open circuit potential (OCP) is an important parameter 

describing the susceptibility of a material to corrosion degradation in a given environment. 

The OCP evolution behaviour of the cp magnesium with PEO coatings produced at various 

pulse frequencies is presented in Figure 6-14.  The OCP of the coated samples exhibited 

broadly similar behaviour.  Immediately after immersion, the OCP values of the coated 

samples shifted in the negative direction, which might be attributed to the penetration of the 

SBF through the PEO coating defects towards the substrate.  Such a process happens 

quickly (within <20 min), after which the OCP moves back to more noble values, possibly due 

to the gradual accumulation of corrosion products within the coating defects.  The OCP 

values were eventually stabilised, suggesting a stable corrosion condition was established.  

However, the OCP of the cp-Mg behaved slightly differently within the initial 5 minutes of 

immersion. Specifically, an upward rather than downward shift was observed on the OCP 

curves of the cp-Mg sample in the first 5 minutes of immersion; such behaviour has been 

regarded as occurring due to rapid formation of a passive film on the sample surface. After 

this short period, the OCP of cp-Mg behaved like those of the other PEO coated samples, 

and finally stabilised.  The inset table in Figure 6-14 summarises the stable OCP values 

after 3 hours’ immersion. It is obvious that the stable OCP values of the coated samples were 

dependent on the pulse frequency of the PEO process. Moreover, the coated samples 

exhibited more noble OCP values than the bare cp-Mg, suggesting that the coated samples 

are less susceptible to corrosion attack.  

6.7.1 Electrochemical Impedance Spectroscopy 

Characteristic EIS spectra of the PEO coated Mg samples after 1 hour of immersion in the 
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simulated body fluid at 37±1 oC are presented in Figure 6-15.  The EIS spectra of cp-Mg 

without PEO coating is also presented here for comparison. The validation of each spectrum 

has been checked through direct integration of the Kramers-Kronig (K-K) transformation of 

the real and imaginary components. One typical K-K transformation result from the PEO 

coating produced at pulse frequency of 3000 Hz in the SBF is shown in Figure 6-16, where a 

good correlation between the experimental and transformed data is displayed, suggesting the 

collected EIS data is linear, causality and stable. The validation of the EIS spectra was, 

therefore, verified. 

 
Figure 6-14 Open Circuit Potential Evolution of cp Mg with PUP-PEO coatings produced at 

various pulse frequencies in the SBF at 37 oC 

From the EIS spectrum shown in Figure 6-15 it is clear that, regardless of pulse frequency, all 

the EIS spectra of samples immersed in SBF characteristically display two capacitive loops in 

the frequency range of > 0.1 Hz (in the first quadrant of the Complex plots), as well as an 

inductive loop in the lower frequency range. The inductive loop is presented in the fourth 

quadrant of the Complex plots (Figure 6-15(a)) by a positive imaginary component Z’’ and a 

decreasing real component Z’. Correspondingly, the inductive behaviour is also reflected by 

the Bode magnitude plot (|Z| vs. Frequency) by the decreasing impedance magnitude |Z|, in 

the low frequency range of <0.1 Hz, as shown in Figure 6-15(b). Similar characteristics were 

also presented by the EIS diagram of cp magnesium. The capacitive loops in the high 

frequency region (10-104 Hz) are believed to originate from the contribution of the PEO 
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coating to the corrosion process. As magnesium has high oxygen affinity, a passive film 

naturally formed on its surface. Such fact has been reflected by the OCP evolution shown in 

Figure 6-14.  In this regard, a capacitive loop in the high frequency region is also observed 

for the cp magnesium sample. Obviously, the natural film is considerably thinner than the 

PEO coating, therefore, its semi-circle in this frequency region is much smaller than the 

coated samples (Figure 6-15(a)).  The capacitive semi-circles in the medium frequency 

range (0.1-10 Hz) are associated with the charge transfer process. The inductive behaviour, 

originating from the coverage of corrosion sites at the coating/substrate interface by the 

corrosion products [187], has been recognised in several independent publications [188] as 

an evidence of active corrosion processes involving adsorption and/or desorption of a 

corrosion intermediates Mg+ ion. Actually, the formation of intermediate single-charged Mg 

has been proposed by Song [189] to explain the abnormal negative difference effect of 

magnesium corrosion, and this hypothesis has also been accepted by other researchers 

[190]. Corresponding with the three loops presented by the complex plots, three regions 

could also be identified in the phase angle Bode plots of all the samples (Figure 6-15(b)): a 

complete peak in the high frequency region (10-104 Hz), a depressed peak in the medium 

frequency region (0.1-10 Hz), and inductive behaviour in the low frequency region (<0.1 Hz), 

featuring positive phase angle. 

The corrosion resistance of the samples is qualitatively comparable through the EIS spectra 

considering that larger semi-circles usually indicate higher corrosion resistance. In this regard, 

PEO coating produced at 3000 Hz exhibits the highest in vitro corrosion resistance in the SBF 

as it provides the largest semi-circles and the highest overall impedance (|Z| vs. Frequency 

Bode plots (Figure 6-15(b)) compared with other samples. Meanwhile, the smallest 

semi-circles are observed in the EIS spectra of the cp-magnesium sample, suggesting the 

corrosion resistance of cp magnesium in SBF at 37±1 oC has been improved significantly by 

PEO coating.  

It is common practice to interpret EIS results with the assistance of equivalent circuits [173]. 

The three loops mentioned above indicate that three kinetic processes with different time 

constants were involved in the in vitro degradation of magnesium with and without PEO 

treatment. Based on the characteristics of the EIS spectra, three parts should be included in 

the equivalent circuits for the degradation of PEO coated magnesium. Firstly, the porous 

oxide coating, weather it is naturally formed (cp-Mg) or artificially fabricated (PEO-Mg), could 
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be represented by a parallel combination of resistor and capacitor [168], of which, the resistor 

describes the resistance of the pores filled with corrosive electrolyte, and the capacitor 

defines the capacitance originating from the coating itself.  Secondly, the charge transfer 

process involved in the corrosion process can generally be analogised by a parallel 

combination of a resistor (charge transfer resistance) and a capacitor (double layer 

capacitance) [168]. The inductive loop exhibited by the EIS spectra could be represented by a 

series combination of resistor and inductor. In the practical situation, the capacitors are 

usually replaced by constant phase elements (CPEs) due to the dispersive characteristics of 

the systems attributed to the coating defects and interface roughness [168]. Although the 

inclusion of the three parts in the equivalent circuit is widely acknowledged, there has been 

dispute on how the three parts should be connected. Some researchers suggests series 

connection [191], while others prefer parallel combination [190]. There is no doubt that these 

can all result in sufficient accuracy of fit by adjusting the values of the elements; however, it is 

hard to find the physical ground of those simple connections for the far more complicated 

system with porous coatings To evaluate the corrosion rate of magnesium, Birbilis et. al. [188] 

used a more complicated equivalent circuit as shown in Figure 6-17. The circuit provides a 

reasonable combination of the first two parts associated with the coating and charge transfer 

process, the physical meaning of the connection of the third part (inductor) is also verified 

considering the inductive behaviour arising from the coating/substrate interface covered by 

the corrosion product. Similar circuits have also been used by others to interpret the EIS 

diagram of AZ31 magnesium alloy with composite coatings [192]. 

In the circuit, Rs= ~35 Ω cm2 represents the resistance of SBF between the substrate and the 

reference electrode. A least squares fitting method was used to fit the experimental data 

against the proposed circuits, and the fitted elemental values are summarised in Table 6-3. 

With the values shown in Table 6-3, the circuits could provide sufficient fit (χ2<0.01) to the 

experimental data. The fitting results are also plotted in Figure 6-15 by the solid lines. 

After the circuit has been verified, the impedance of the corrosion system can be expressed 

according to the following equation [188]: 

 
𝑍 = (

1

𝑍𝑅1 + (
1

𝑍𝑅2
+

1
𝑍𝐶𝑃𝐸2

)
−1 +

1

𝑍𝐶𝑃𝐸1
+

1

𝑍𝑅3 + 𝑍𝐿
)−1 + 𝑍𝑅𝑠 ( 6.6 ) 
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where Zi represents the impedance value of each involved element In his publication on the 

corrosion rate determination of magnesium, Birbilis et al [188] stated that the polarisation 

resistance Rp (an important parameter in determining corrosion rate), could be defined as the 

difference in impedance between zero frequency impedance (|Z| where f→0) and the solution 

resistance (|Z| where f→infinity). When the frequency is sufficiently low (f→0), the impedance 

of capacitive components (CPEs) in Figure 6-17 tends to be infinite, while the inductive 

component can be considered short circuited (|Z|→0). Therefore, the polarisation resistance 

of the corrosion system could be obtained as [188]: 

 𝑅𝑝 = |𝑍|𝑓→0 − |𝑍|𝑓→∞ = (
1

𝑅1 + 𝑅2
+

1

𝑅3
)−1 ( 6.7 ) 

By substituting the corresponding values in Table 6-3 into equation (6.7), it is easy to derive 

the polarisation resistance of the different coatings. To make the corrosion degradation rate 

comparable, the Rp values are also summarised in Table 6-3. It can be seen that the coating 

produced at a pulse frequency of 3000 Hz results in the highest polarisation resistance of 

862.67 Ω∙cm2, which is significantly higher than that of the cp magnesium (69.56 Ω∙cm2). 

Considering that corrosion rate is inversely proportional to the polarisation resistance [193], it 

is straightforward that the coating produced at 3000 Hz provides best protection to the 

underlying magnesium substrate over in vitro corrosion attack, and the corrosion resistance 

of the cp magnesium is significantly improved by the PEO coating. The improvement factor ∆ 

could be obtained by the following equation: 

 ∆=
𝑅𝑝(𝑐𝑜𝑎𝑡𝑖𝑛𝑔) − 𝑅𝑝(𝑐𝑝 − 𝑚𝑔)

𝑅𝑝(𝑐𝑝 − 𝑚𝑔)
× 100% ( 6.8 ) 

where Rp(coating) and Rp(cp-mg) are the polarisation resistance of the cp magnesium with 

and without PEO coating, respectively.  According to equation (6.8), the extent to which the 

in vitro corrosion resistance of cp magnesium is improved could be calculated, and the results 

are also listed in Table 6-3. Therefore, the protection ability of the coatings produced at 

different frequencies could also be assessed. It is now clear that the best two PEO coatings in 

terms of corrosion protection are produced at pulse frequency of 3000 Hz and 500 Hz, and 

have improved the corrosion resistance by more than 10 times, while the least protection 

(about 3 times) is provided by the coating produced at 2000 Hz, which might be due to the 

highest elastic strain energy caused by its highest internal stress.  
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Figure 6-15 Impedance spectra of the PUP-PEO coated samples in SBF:(a) Complex plots 

and (b) Bode Plots 
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Figure 6-16 Typical K-K transformation of the real and imaginary components of the EIS 

collected after 1 hour in vitro immersion of the PEO coating produced at 3000 Hz, the solid 
lines represents the calculated results 

 
Figure 6-17 Equivalent circuits used to represent the EIS diagram of magnesium shown in 

Figure 6-15 

6.7.2 Potentiodynamic Polarisation Evaluation  

Potentiodynamic polarisation curves of the coated samples, and also of the bare cp 

magnesium for comparison, after 3 hours of immersion in SBF are provided in Figure 6-18.  

The corrosion rates of the samples are qualitatively comparable, based on the relative 

positions of the potentiodynamic polarisation curves: the curves falling to the right would 

result in higher corrosion rate than those to the left.  In this regard, the curve associated with 

the cp Mg is placed at the furthest right to those curves of the coated samples (Figure 6-18), 

suggesting higher corrosion resistance of cp Mg after PEO treatment.  Following the same 

principle, it can be concluded that the coatings produced at 500 Hz, 3000 Hz and 5000 Hz 

provides the lowest corrosion rate, thus offering best corrosion protection, as opposed to that 

produced at 2000 Hz; this is generally consistent with the above EIS results. However, the 

protection provided by the coatings is rather limited because the anodic branches of the 

curves exhibit high currents for relatively low overpotentials.  
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Additionally, neither the anodic nor the cathodic branches of the polarisation curves present 

any reliable Tafel regions, which makes it impossible to derive an accurate corrosion rate 

using conventional Tafel extrapolation methods.  Nevertheless, the free corrosion potential 

Ecorr could still be derived from the tip where the anodic current density equals the cathodic 

current density of the curves. The free corrosion potential, falling in the range of –(1.6…1.4) V 

vs. SCE, could be derived from the polarisation curves.  Such Ecorr values present good 

agreement with other published data [65, 188, 194].  

6.7.3 Corrosion Morphology Analysis 

Figure 6-19 shows surface morphologies of the coated samples following the 

electrochemical tests. Compared to the original coating morphologies (Figure 6-10), it is 

evident that the corrosion attack caused partial damage to all the coatings, resulting in 

formation of corrosion pits. In some areas however the original porous morphology of each 

coating could still be resolved, although the pore edges appear distorted. Mud cracks are also 

observed at the bottom of the corrosion pits as shown by the insets in Figure 6-19, which is 

consistent with other work [195]. A simplified assessment of the protection provided by the 

PEO coating can be made using the fraction of coating left after the corrosion test, with higher 

fraction suggesting better surface protection. Following this procedure, the smallest damage 

was incurred by the coating produced at 3000 Hz (Figure 6-19), which is in agreement with 

EIS and polarisation curve analysis. 

Besides the two aforementioned areas, other morphological regions can be observed on the 

surface where corrosion pits have not yet been formed but the PEO coating had been 

attacked severely.  Figure 6-20 discloses characteristic details of these regions for the 

coating produced at 5000 Hz. As can be seen, the reaction of the PEO coating material with 

the SBF results in formation of needle-like crystalline precipitates. To understand possible 

mechanisms underlying such precipitation, EDX analysis was carried out for surface areas 

(A)-(D), with results presented in the inset table in Figure 6-20. After the corrosion test, Cl 

appears on the surface, indicating that the Cl- species contained in the SBF were involved in 

the corrosion process. Also the Ca/P ratio in the mud-crack area (C) has increased from 

0.056 to 0.57, which is due to the release of soluble calcium phosphates into the SBF, 

indicating possible chemical dissolution of the coating material during in-vitro corrosion  
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Table 6-3 .Results of EIS data fitting by equivalent circuits presented in Figure 6-15 

Frequency/Hz R1 

/Ω·cm2 
R2 /Ω·cm2 R3 /Ω·cm2 CPE1-T 

/S∙sn 
CPE1-P CPE2-T / 

S∙sn 
CPE2-P L Rp 

/Ω·cm2 
Δ χ2 

100 1044 465.9 1314 2.1×10-5 0.81 9.0×10-4 0.88 36153 702.58 9.1 0.0074 
500 886 452.5 2026 1.8×10-5 0.84 8.0×10-4 0.79 29578 806.00 10.6 0.0032 
1000 1024 258.5 1849 2.2×10-5 0.79 9.6×10-4 1 27349 757.25 9.9 0.011 
2000 664.07 292.3 453 1.7×10-5 0.85 8.7×10-4 0.88 25129 307.40 3.4 0.0048 
3000 1207 367.6 1908 2.1×10-5 0.80 7.2×10-4 0.91 48986 862.67 11.4 0.0040 
5000 985.3 472.3 1421 2.0×10-5 0.83 9.4×10-4 0.81 30560 719.53 9.3 0.0037 
Cp-mg 68.06 86.05 126.8 3.7×10-5 0.87 7.9×10-3 0.57 435 69.56 - 0.0028 
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Figure 6-18 Potentiodynamic polarisation behaviour of cp-Mg samples with PUP-PEO 

coatings produced at different pulse frequencies after 3 hours’ immersion in SBF 

Based on these observations, the corrosion process of the PEO coated samples can be 

presented as follows. Upon immersion into SBF, two processes may occur simultaneously: (i) 

penetration of SBF towards the substrate through defects (e.g. pores and cracks) within the 

coating and (ii) chemical dissolution of the coating, since at the test temperature, the SBF pH 

= 7.4 thermodynamically favours MgO conversion into Mg(OH)2: 

 MgO +  H2O →  Mg(OH)2 ( 6.9 ) 

This reaction (6.9) would release Mg2+ into the surrounding SBF as the thermodynamically 

stable pH range of Mg(OH)2 is pH>11.46.  The Mg2+ would combine with the anions OH- and 

Cl-  to form magnesium oxychloride, which is the thermodynamically favourable process 

based on the following reaction [196-198]:  

 xMg2 + +Cl− + yOH− + zH2O → Mgx(OH)yCl · zH2O ( 6.10 ) 

The formation of magnesium oxychloride is verified by the EDX analysis in Figure 6-20, 

where only Mg, O and Cl are identified from the needle-like crystals observed in region E. 

According to the Le Chatelier principle [199], the formation of Mg2+ is accelerated by reaction 

(6.10) and the presence of Cl- in the SBF is therefore detrimental to the corrosion 

performance of the PEO coatings. The above reactions would be further accelerated at the 

edges of the pores and cracks because of relatively high free surface energy at those sites 

compared with the flat coating surface. Preferential edge corrosion results in enlargement 

and shape distortion of the coating defects compared to those prior to the test. 
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Figure 6-19 Surface morphologies of PEO coated samples after potentiodynamic polarisation tests 
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Figure 6-20 Different Corrosion Morphologies of the PEO coatings produced at 5000Hz and corresponding chemical compositions 
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Until the electrolyte reaches the metal substrate, these chemical dissolution processes would 

prevail in the overall corrosion process, with underlying magnesium being hardly affected. 

With corrosion proceeding, the coating is eventually perforated at certain weak points, i.e. 

deep pores and large cracks, and electrochemical corrosion of magnesium based on 

reactions (2.1)-(2.3) commences, yielding corrosion pits on the sample surface. Further 

corrosion causes the pH value within the pits to increase, making Mg(OH)2 

thermodynamically stable; thus the pits become filled with the corrosion product. Additionally, 

the mud-cracks observed in Figures 6-19 and 6-20 within the corrosion pits are likely to 

result from dehydration of Mg(OH)2 due to electron bombardment during the SEM 

observation: 

 Mg(OH)2 → MgO + H2O ( 6.11 ) 

The molar volume of Mg(OH)2 is larger than that of MgO, therefore, when Mg(OH)2 is 

dehydrated to MgO, the cracks are expected to be formed. 

6.8 Summary 

This chapter has discussed correlations between characteristics of the pulsed unipolar PEO 

process and associated Ca- and P-containing coatings on biodegradable magnesium, in 

connection with their corrosion behaviour in-vitro, and resulted in the following findings: 

(1) The PEO coatings possess a porous morphology regardless of the processing frequency. 

However, the average pore size and distribution are frequency dependent, so that higher 

pulse frequencies result in coatings having a more uniformly distributed porosity with a 

smaller mean average pore size. This is likely to be due to discharge lifetime being 

limited by the pulse duration at frequencies 3000 Hz. 

(2) Calcium is incorporated into all coatings which also contained Mg, O, P and Na. With 

increasing pulse frequency, the content of P increased; however, the Ca content did not 

show significant changes, indicating that its incorporation may be due to either direct 

adsorption or precipitation in the form of calcium phosphate during the pulse off period. 

(3) Tensile residual stresses are developed in the PEO coatings on Mg as a result of 

superposition of oxidation, electrostriction and thermal stresses influenced by dielectric 

relaxation and cracking processes. Generally the stress tends to relax with increasing 

pulse frequency, which is mainly due to reduction of thermal load on the system, 
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although the highest stress identified in the coatings produced at 2000 Hz indicates that 

dielectric relaxation may also play important role at lower frequencies. 

(4) Produced PEO coatings are capable of improving corrosion resistance of biodegradable 

Mg, with the best corrosion protection provided by the coating fabricated at 3000 Hz 

followed by those produced at 500 and 5000 Hz. Corrosion protection by such coatings 

relies mainly upon smaller structural defects that promote deposition of solid corrosion 

products, retarding mass exchange between the Mg substrate and the SBF. 

(5) PEO provides an efficient means to control the corrosion rate of resorbable magnesium 

biomaterials. However, further research is required to enhance barrier properties of the 

coatings and incorporate non-resorbable calcium phosphate compounds in the surface 

layer. 
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Chapter 7 Effects of Negative Pulsing on PEO Treatment of Commercially 

Pure Magnesium  

As outlined in Chapter 6, PEO coatings were produced in the optimised electrolyte 

determined in Chapter 5 under the unipolar pulsed current mode. The effects of pulse 

frequency on the PEO process and final coating characterisation were discussed. It was 

concluded that the PEO coating produced at 3000 Hz presented the best in vitro corrosion 

performance compared with its counterparts produced at other frequencies. As stated in 

Chapter 3, apart from unipolar pulsed current regime, PEO coatings can also be produced 

under bipolar pulsed current mode. It has also been claimed in other studies that applying 

negative biasing during the PEO process will result in much better coating properties [78, 93, 

94, 108]. However, the effects of the negative biasing on the PEO coating have not been 

established because the negative biasing is highly dependent on other parameters such as 

electrolyte composition and pulse frequency. The effects of negative biasing on the PEO 

coating produced in the electrolyte investigated in Chapter 5 are studied in the present 

chapter. 

7.1 Coating Fabrication 

PEO coatings were produced on commercially pure magnesium, and the details of the 

substrates including chemical composition, dimensions and preparation procedures were 

described in Chapter 4. The PEO treatments were conducted in the biologically friendly 

electrolyte containing 2 g/l Ca(OH)2 and 12 g/l Na3PO4∙12H2O, as identified in Chapter 5. 

Following the study in Chapter 6, a pulsed bipolar current regime (schematically illustrated in 

Figure 3-3(e)) was developed and applied here. Based on the results in Chapter 6, the 

applied pulsing frequency 𝑓 = 1/(𝜏+
𝑜𝑛 + 𝜏+

𝑜𝑓𝑓
+ 𝜏−

𝑜𝑛 + 𝜏−
𝑜𝑓𝑓)was set at 3000 Hz. The positive 

current density and duty cycle were set at i+=30 mA/cm2 and 𝜏+
𝑜𝑛/(𝜏+

𝑜𝑛 + 𝜏+
𝑜𝑓𝑓

+ 𝜏−
𝑜𝑛 + 𝜏−

𝑜𝑓𝑓)= 

10%, respectively. The negative duty cycle 𝜏−
𝑜𝑛/(𝜏+

𝑜𝑛 + 𝜏+
𝑜𝑓𝑓

+ 𝜏−
𝑜𝑛 + 𝜏−

𝑜𝑓𝑓) was also set at 

10%, with negative current density varied from 10 to 20 mA/cm2. All the treatments were 

carried out for 10 minutes, except for those not providing sufficient passivation to sustain the 

oxidation process. 
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7.2 PEO Process Characterisation  

 
Figure 7-1 Positive Voltage Transients of the (a) PUP-PEO process and PBP-PEO treatment 

with negative current density of (b) 10 mA/cm2 and (c) 20 mA/cm2 

As stated in the previous chapters, monitoring the voltage transient during PEO treatment is 

of significance to study the PEO process and predict the coating characteristics including 

morphology and corrosion properties. The positive voltage behaviour during the PEO 

processes recorded in the present study is presented in Figure 7-1. Similar to the results 

reported in Chapter 6, the voltage transient experienced a steady increase after the start of 

the unipolar PEO process (Figure 7-1). Depending on the rate of voltage increase, the PEO 

process could be divided into several stages. In the first stage (0-36 s), the voltage increased 

rapidly at a rate of 7.42 V/s up to 280 V, suggesting a rapid passivation process of the 

substrate as described by Equation (5.4). Then the voltage increasing behaviour continued 

but at a lower rate of 0.94 V/s. This stage lasted for about 110 s to drive the voltage up to 440 

V. This stage was accompanied by two apparent phenomena: intense gas liberation, which 

was independently verified as being mainly oxygen by Snizhko et al [70] and Guo et. al. [119]; 

and the  appearance of tiny sparks moving around on the sample surface, which has long 

been suggested as a result of local breakdown events of the preformed oxide coating 

because of high energy intensity. Afterwards, the voltage was slightly increased to 500 V 

within the period of 110-600 s, resulting in an increment rate of 0.17 V/s, and indicating that 

the coating thickness has only marginally increased compared with that at the former stages. 
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It is worth noting here that less discharge events were observed, whereas the average 

discharge dimensions were considerably larger compared with those in the former stage.  

A similar increasing trend was also recorded when the process has been conducted under 

the unipolar current regime with a negative current density of 10 mA/cm2 (curve b in Figure 

7-1), which, however, presented two apparently different features. On one hand, the 

application of negative current biasing of 10 mA/cm2 resulted in lower overall voltages during 

the PEO process (i.e. curve-b is placed below curve-a in Figure 7-1), and the final voltage 

reduced from 500 V to 460 V, indicating a thinner PEO coating. On the other hand, vigorous 

fluctuations were present in the initial stage (0-50 s) of the PEO process with negative current 

density of 10 mA/cm2 as marked in Figure 7-1, suggesting that the stability of the PEO 

process with such parameters was undermined compared with the unipolar treatment. 

According to Equation (5.4), it is expected that these fluctuations resulted from concurrent 

coating formation and dissolution. Furthermore, when the negative current density was 

further increased to 20 mA/cm2, the PEO process was unsuccessful, which is reflected by the 

voltage behaviour as shown by curve-c in Figure 7-1. Upon the start of the PEO process, the 

voltage rapidly increased to about 43 V within the first 5 seconds; afterwards, it decreased 

sharply to 22 V, which was not sufficient to sustain the oxide film growth. Then the voltage 

remained at this level although with some minor variations with magnitude of <2 V (inset in 

Figure 7-1). Due to the high sample dissolution rate under these conditions, the treatment 

was stopped after 400 s. Finally, a smooth metallic surface finish rather than a ceramic 

coating was achieved after this treatment. It was highly possible that the dissolution process 

overcame the oxidation process when the negative pulse amplitude was 20 mA/cm2. 

The unipolar PEO process can be considered as a bipolar PEO process with negative current 

density of 0 mA/cm2. Therefore, from the analysis of the voltage transients during the PEO 

processes, it can be predicted that increasing the negative current density from 0 to 20 

mA/cm2 could result in thinner ceramic coatings, which was verified by the measurements 

using the eddy-current method (Figure 7-2); such results are in good agreement with those 

reported by Yao et al [102]. 
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Figure 7-2 Correlation of the PBP-PEO coating thickness with the applied negative current 

density 

7.3 Coating Morphologies 

The appearance of the PBP-PEO coatings produced with different negative pulse current 

densities are presented in Figure 7-3. Under unipolar conditions, the coating exhibited a 

smooth surface as shown in Figure 7-3(a), and no obvious defects can be observed by 

naked eye. However, apparent scars of about 1 mm in diameter, inside which the ceramic 

coating was only loosely bonded with the substrate, could be identified for the bipolar PEO 

coating produced with negative biasing of 10 mA/cm2 (as indicated by the white arrows in 

Figure 7-3(b)). Comparing the two images, it is likely that the defects observed in Figure 

7-3(b) may be formed during the negative pulsing of the PEO treatment. While the dominate 

process at the substrate during the positive biasing of the PEO process was the coating 

thickening, the main reaction involved during the negative biasing was H2 gas generation 

underneath the coating. Then gas would eventually be liberated, leaving scars on the coating. 

Similar process would also affect the corrosion process of the coated Mg, which would be 

explained in detail later. Apparently, the integrity of the PEO coating was deteriorated by 

these scars. Correspondingly, detrimental effects of the scars on the corrosion protection 

ability of the coating could be predicted.  
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Figure 7-3 Appearance of the coatings formed at negative current density (a) 0 mA/cm2 and 

(b) 10 mA/cm2 

While the optical images presented in Figure 7-3 only reveal the macro morphology of the 

coating, SEM images disclosing those on the micro scale as presented in Figure 7-4. The 

two coatings exhibited typical porous morphologies, even if the differences in pore diameter 

were significant. Qualitative analysis of the SEM images indicated that the average pore 

diameter of the bipolar PEO coating was apparently smaller than that of the unipolar PEO 

coating. To reveal quantitative information, the SEM images were statistically analysed and 

the results indicated that the pore diameters of the coating fabricated under unipolar current 

regime ranged from 0.3 µm to around 6.9 µm, which resulted in an average pore diameter of 

2.83±1.54 µm. However, the pore diameters fell in the range of 0.2 to 4.3 µm for the PBP 

PEO coating with a negative pulse current density of 10 mA/cm2. Correspondingly, the 

average pore diameter was reduced to 1.47±0.80 µm. This result is consistent with that 

published by Xin et. al.[93] who reported a more compact ceramic coating after applying 

cathodic current pulses. The presence of the pores within the PEO coatings has been 

attributed to the appearance of discharge events during the PEO treatment, i.e. higher 

discharge intensities normally result in larger pore diameters. Therefore, smaller pore 

diameters might result from two aspects; reduced discharge intensity in each cycle and/or 

avoidance of repeating discharge at one location. Since the anodic current density remained 

the same in the present study, the intensity of the discharge which only occurs during the 

anodic cycle was also the same. According to Sah et. al. [200], it is likely that the cathodic 

duty cycle promotes randomisation of the anodic breakdown, thus reducing the pore 

diameters within the PEO coating.  



Chapter 7 Effects of negative biasing on PEO treatment of cp Mg 
 

107 
 

 
Figure 7-4 SEM images of the PBP-PEO coatings fabricated in the present chapter at 

negative current density of (a): 0 and (b) 10 mA/cm2
 

 

Figure 7-5 Cross-sectional morphologies of the PBP-PEO coatings produced in the present 
chapter at negative current density of (a) 0 and (b) 10 mA/cm2 

Cross-sectional morphologies of the coatings produced in the present study are shown in 

Figure 7-5, which exhibited a much thinner coating for the PBP process with negative current 

density of 10 mA/cm2, compared with the PUP treatment (consistent with the eddy current 

probe measurements (Figure 7-2)). Corresponding to the surface images shown in Figure 

7-4, the cross-sectional morphologies also presented porous characteristics, and the pores in 

the unipolar PEO coating were much larger than those of the bipolar coating. Moreover, the 

large pores were largely confined to the outer regions of the coating, whereas the pores close 

to the substrate interface were much finer. 

7.4 Chemical and Phase Composition of the Coatings 

The EDX results indicate that, regardless of current regime, all the coatings were composed 

of Mg, O, P, Ca, and Na; therefore, only the representative spectrum of the coating produced 

under the bipolar current regime with negative biasing of 10 mA/cm2 is presented in Figure 

7-6. Atomic concentrations of the elements in the PEO coatings are summarised in Table 7-1. 

Substrate 

Coating 

Resin Resin 

Coating 

Substrate 
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Taking account the accuracy of the EDX technique, there was no significant difference in 

concentrations of the chemical elements between the coatings. While the coatings contained 

considerable amounts of Mg and O, the concentration of P was much lower. Only trace 

amounts of Ca and Na were identified in the coatings. The ratio of Mg/O is <1, indicating that 

the abundant O may be combined with other elements, possibly Ca and/or P, besides Mg in 

the coating. The presence of Ca in all the coatings was consistent with previous results 

published by Srinivasan [122], and was in good agreement with the results presented in 

Chapter 6, even though its concentration does not show significant dependence on the 

processing parameters, i.e. the current regime. 

 
Figure 7-6 Typical EDX spectrum of the coatings produced under PBP-PEO conditions 

Considering the fact that the elements O, P, Ca and Na only existed in the electrolyte before 

the PEO treatment, the identification of these elements in the PEO coating is roughly 

suggestive of the coating formation mechanism. During the PEO process, the substrate was 

first passivated rapidly in the electrolyte, forming a thin barrier oxide layer on the substrate 

surface. This is supported by the behaviour of the voltage transient presented in Section 7.2. 

Once the voltage reached a critical value (usually called the breakdown voltage), discharge 

events took place. Driven by the electric field in the discharge channels, the cations, Mg2+, 

moved outwards while the anions of OH-, O2-, PO4
3- were driven inwards through the 

discharge channels. The combination of cations with anions resulted in thickening of the 

coating. The following two possible reasons might lead to the incorporation of cations Na+ 

and Ca2+ presented in the electrolyte into the PEO coating; (i) Due to the high energy injection, 

the cations Na+ and Ca2+ are further ionised, forming part of the plasma, as being confirmed 
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by optical emission spectroscopy (OES) studies [126].  Upon the completion of an individual 

discharge activity, the ionised Na and Ca could be combined with other species and 

resolidified, forming part of the coating; or (ii) their presence in the coating might just be 

attributed to simple absorption process as during the pulse off stage. Na+ and Ca+ may be 

also driven towards the sample surface during the negative pulse as the electric field was 

reversed for the bipolar treatment, which could be verified by the higher Na+ concentration in 

the PBP-PEO coating (Table 7-1). 

Table 7-1 Chemical composition of the PUP- and PBP-PEO coatings with different negative 
current densities 

Current Mode 
Elemental Composition / at.% 

Ca/P Mg/O 
Mg O  P Ca Na 

PUP 35.8 58.5 5.2 0.2 0.3 0.032 0.61 

PBP 36.2 58.2 5.9 0.2 0.4 0.032 0.62 

To facilitate an understanding of how the elements identified by the EDX analysis are 

combined in the coatings, XRD patterns of the coated samples are shown in Figure 7-7. It 

can be seen that the coatings are mainly composed of MgO, with minor Na4Ca(PO3)6. The 

Mg peaks correspond to the metal substrate. In both of the samples, the strongest MgO 

peaks correspond to the (200) crystal planes and the analysis of relative intensities of other 

peaks suggests that magnesia crystallites were randomly oriented in the coating. This 

allowed the crystallite sizes of the MgO phases to be evaluated using Scherrer’s equation. 

The results indicate that a finer average crystallite size of 28.9 nm was formed when the PEO 

treatment was conducted in the bipolar mode, compared with 34.2 nm determined in the 

unipolar PEO coating. As discussed in Chapter 4, the crystallite size is determined by several 

factors, of which temperature is the most significant one. Higher temperatures would tend to 

favour crystallite growth. During the unipolar PEO process, the discharges are more likely to 

take place at localised sites as discussed in Section 7.3 and the temperature there is, 

therefore, repeatedly increased. However, during the bipolar PEO process, the repeating of 

discharge events at localised sites is inhibited, as described by Sah et al [200]; therefore, the 

temperature at these sites may be not high as those in the unipolar PEO process. Therefore, 

higher crystallite growth rate could be anticipated in the unipolar PEO process, resulting in 

larger crystallite size compared with that of the bipolar PEO coating, as found in the present 
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study. The P and Ca containing crystalline phase Na4Ca(PO3)6 was identified in both coatings 

by the peaks at 2=29.0o and 30.8o. Such a phase was also identified in the coatings 

produced under unipolar pulsed current regime, as discussed in Chapter 6. The bipolar PEO 

process resulted in a higher content of Na4Ca(PO3)6 phase in the coating, i.e  higher 

Na4Ca(PO3)6/MgO intensity ratio compared with the unipolar PEO treatment was observed. 

Moreover, the Ca/P peak ratio identified by EDX analysis (Table 7-1) is about 0.03, which is 

much lower than that of the stoichiometric ratio in Na4Ca(PO3)6. It may be that this phase only 

consumes part of the Ca and P content, with the remainder being incorporated in the crystal 

lattice of MgO 

 
Figure 7-7 XRD patterns of the coatings produced under PUP- and PBP current regimes in 

the presented study 

7.5 Electrochemical Corrosion Evaluation 

7.5.1 Open Circuit Potential 

As stated in Chapter 4, the evaluation of OCP behaviour might predict the degradation 

susceptibility of the coatings. Based on this consideration the OCP evolution with immersion 

time was recorded for different samples including the bare magnesium substrate for the sake 

of comparison, as shown in Figure 7-8. It is clear that the OCP value of bare magnesium was 
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more negative than the two coated samples within 3 hours of immersion, indicating that the 

PEO coatings provided positive effects to the samples in terms of corrosion protection. The 

OCP value of the bare cp Mg first increased to -1.79 V vs. SCE from -1.81 V vs. SCE within 

250 s before going down to -1.83 V vs. SCE up to 500 s after immersion, suggesting the 

destruction of the passive film on the magnesium surface upon immersion. Then the OCP 

value gradually shifts in the noble direction. Therefore, reconstruction of a thin protective film 

on the substrate surface could be expected.  

 
Figure 7-8 Open circuit potential of the cp Mg with PUP- and PBP-PEO coatings in the SBF at 

37±1  oC 

Immediately after immersion into the SBF, the PBP PEO coating with a negative current 

density of 10 mA/cm2 presented the same OCP value of -1.76 V vs. SCE (Figure 7-8). Then it 

started to shift to the negative direction by 30 mV within 700 s for the Mg substrate with PEO 

coating produced under PUP condition, indicating the penetration of SBF through the coating 

defects due to the chemical instability of MgO in SBF, as claimed by Liang et. al.[201]. With 

prolonged immersion time, the SBF gradually penetrated through the defects towards the 

interface between the PEO coating and substrate, resulting in corrosion of the substrate. The 

corrosion sites at the interface of the coating and substrate were gradually covered by the 

corrosion products, which imposed an inhibition effect to the corrosion process. Therefore, 
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the OCP value increased gradually at a rate of 0.072 mV/s to -1.58 V vs. SCE within the 

period of 700-3400 s, as shown in Figure 7-8. Thereafter, the OCP value remained stable 

with some minor variations of magnitude less than 10 mV, indicating the establishment of 

stable conditions. The minor variations displayed by the OCP curves in the final stages can 

be attributed to the formation and passivation of corrosion pits during the immersion process. 

Once a new corrosion pit was formed, it would be reflected by a decrease in the OCP value, 

which would increase again as the corrosion products were developed and extruded into the 

pitted area. 

The unipolar PEO coating produced similar OCP behaviour during the immersion process, 

and the final OCP value was slightly lower than that of the bipolar coating. However, it took a 

longer time (about 5000 s) before the OCP reached a stable level as compared with that of 

the bipolar coating, indicating that it took longer time for the SBF to penetrate through the 

coating because of the higher coating thickness as presented in Figures 7-3 and 7-6. 

7.5.2 Electrochemical Impedance Spectroscopy 

Figure 7-9 compares the EIS behaviour after 2 hours of immersion for the coated samples 

and the bare substrate. Analysis of these plots could disclose effects of the current regime 

utilised in the present study, on the corrosion performance of the samples in SBF at 37±1 ºC. 

The complex plots exhibited two depressed semicircles in the first quadrant, and an 

additional loop was also observed in the fourth quadrant (inductive loop) for all samples 

(Figure 7-9 (a)). As discussed in Chapter 6, the presence of the three loops indicates three 

kinetic processes involved in the corrosion process. For the surface modified samples, the 

semicircles at high frequency (1 to 10000 Hz) correspond to the contribution of the outer 

porous region of the coating and the loops at medium frequency (0.1 to 1 Hz) are attributed to 

the effects of the inner compact region of the PEO coating (Figure 7-5). When the frequency 

was low enough (0.01 to 0.1 Hz), the inductive response from the corrosion process became 

significant, which indicates the samples may be affected by pitting corrosion [202]. The 

inductive behaviour was believed to be caused by relaxation of monovalent Mg+ intermediate 

ions in the corrosion pits [168]. Actually, the assumption of the presence of Mg+ ions is 

reasonable, as it provides a satisfactory explanation of negative difference effect (NDE) 

during the corrosion process of Mg [44]. As discussed in Section 7.5.1, a passive film was 

formed on the substrate surface immediately after being immersed into the SBF, therefore the 

three-loop behaviour was also present on the EIS spectra collected for the bare substrate, as 
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displayed by the inset in Figure 7-9(a).  

Although the three-loop behaviour was exhibited by all the samples, significantly different 

features could still be identified. It was obvious that the radius of the semicircles generated by 

the unipolar PEO coating was significantly larger than that of the bipolar coating, and the 

smallest semicircles were produced by the bare substrate. The smaller semicircles meant 

lower impedance magnitude and lower corrosion resistance. Although the data presented in 

the high frequencies ranges presented smoothed behaviour, that in the low frequency range 

was rather scattered because of the minor changes of surface state due to the corrosion 

process. 

EIS Bode plots for PUP and PBP PEO coated Mg are presented in Figure 7-9(b). 

Corresponding with the three semicircles observed in the Complex plots, three relaxation 

time constants were also presented by the three peaks in the phase angle Bode plots. The 

peak in the high frequency range (1-10000 Hz) is obvious, whereas those in the medium to 

low frequency range (0.01-1 Hz) are strongly affected by the coating degradation and 

substrate corrosion process, which showed consistent result with the scattered semicircles 

observed in the Complex plots (Figure 7-9(a)). When the negative current density during the 

PBP-PEO treatments has been increased from 0 to 10 mA/cm2, the peak in the high 

frequency range was shifted from 1200 Hz to 3000 Hz, whereas the peak generated by the 

bare substrate was positioned at 4000 Hz. The shift of the peak position is indicative of the 

corrosion performance as weaker coatings usually result in peaks at higher frequency [203]. 

From this aspect, the unipolar PEO coating is better than the bipolar coating in terms of 

corrosion protection [204]. Apart from the changes of the peak positions, decreased peak 

height could also be observed, indicating decreased capacitive behaviour of the coating [205]. 

The PUP-PEO coating (negative biasing 0 mA/cm2) generated the highest peak with a 

maximum phase angle of -60o, whereas lower maximum phase angles of -53o, -28o were 

identified for the PBP-PEO coating (negative biasing of 10 mA/cm2) and Mg substrate, 

respectively. The smaller absolute maximum phase angle was an indication of lower 

corrosion resistance [206, 207]. 
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Figure 7-9 EIS spectra of the samples with PEO coatings of different current regimes in the 
SBF at 37±1 oC after immersion of 2 hour (a) Complex plots and (b) Bode plots (The fitting 

results are represented by the solid lines) 
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As suggested in [203, 207, 208], the breakpoint frequency fb, at which the phase angle equals 

45o can be used as another parameter describing the corrosion performance of the samples,. 

In the present study, fb was increased from 27 Hz to 60 Hz when the negative current during 

the PEO process increased from 0 (PUP) to 10 mA/cm2 (PBP), respectively, as marked by 

the dashed horizontal line in Figure 7-9(b), which indicated a higher number of active 

corrosion sites at the interface of the PBP-PEO coating [203, 207, 208]. It should be 

mentioned here that a breakpoint frequency was not observed for the bare substrate due to 

the fact that the naturally formed passive film in the SBF on the substrate surface was too thin 

[208]. Since the EIS spectra in the high frequency range reflect the performance of the 

coating, the changes in the phase peaks (including the position and height) at high frequency 

provided some indications about the coating characteristics in the SBF. The shift of highest 

peaks and breakpoint frequency to the high frequency direction showed good agreement with 

the model proposed by Mansfeld [208] and suggested worse corrosion performance of the 

coatings as claimed in other publications [208, 209]. Based on these observations, it can be 

confidently concluded that after PEO treatments, the corrosion performance of the 

magnesium substrate in the SBF was improved and the PUP PEO coating regime provided 

better corrosion protection than the bipolar regime. 

The corrosion performance of the samples can also be illustrated by the impedance 

magnitude Bode plots, which are also presented in Figure 7-9(b). The highest impedance 

magnitude in the test frequency range was observed for the unipolar PEO coating, indicating 

superior corrosion performance, while the bare substrate showed the least corrosion 

resistance as reflected by its lowest impedance magnitude. Corresponding with the highest 

peaks of the phase angle Bode plots, straight lines with slopes (∆|Z|/∆log (𝑓)) of <1 could be 

identified in the impedance magnitude Bode plots of the coated samples; however, a linear 

region was not apparent in the curve generated by the bare substrate (Figure 7-9 (b)). Such 

straight lines could be ascribed to the capacitance behaviour of the coatings. Theoretically, 

the ideal capacitor should have resulted in a straight line with the slope of 1, smaller slopes in 

the present study were due to dispersed capacitance behaviour caused by the coating 

characteristics, like roughness and defects. In addition, the two ǀZǀ vs. Frequency Bode plots 

generated by the coated samples almost coincided with each other when the frequency was 

higher than 100 Hz, suggesting similar effects of the outer porous coating on the corrosion 

process. However, when the frequency was lower than 100 Hz, the difference of the two 
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curves became apparent and significantly lower impedance magnitude was observed for the 

bipolar PEO coating, indicating a lower corrosion resistance. 

The above analysis of the EIS spectra provides a qualitative comparison of the coating 

performance in the SBF which, however, is not sufficient. In the present study, the EIS 

spectra were also analysed using the equivalent circuit (EC) method. Because of the 

similarity of the cross-sectional features and EIS characteristics of the coatings in the present 

study with those of the PUP-PEO coatings produced in Chapter 6, the EC proposed in 

Figure 6-17 is also utilised here to fit the EIS spectra. In the proposed EC, Rs represents the 

resistance of the electrolyte between the sample and counter electrolyte, R1 is used to 

describe the resistance of the pores filled with the SBF, CPE1 illustrates the dispersed 

capacitance behaviour of the outer porous region of the coatings, R2 is the charge transfer 

resistance resulting from the compact region of the coatings. CPE2 represents the double 

layer capacitance in the electrochemical corrosion process and, as stated above, the inductor 

L is employed to represent the adsorption of intermediate Mg+ ions at the corrosion sites. In 

the present study, the capacitive behaviour is represented by the constant phase elements 

(CPE1 and CPE2) (rather than ideal capacitors) because of inhomogeneities in the surface 

condition. The impedance of a constant phase element is a function of frequency and can be 

defined as [168]: 

 
𝑍(𝜔) =

1

𝑄(𝑗𝜔)𝛼
 ( 7.1 ) 

where 𝝎 is the angular frequency, 𝑗 = √−1, 0<α<1, and Q is a constant with dimension 𝐹 ∙

𝑠α−1. When α=1, equation (7.1) describes an ideal capacitor, and the impedance of a pure 

resistor can be calculated when α=0. 

The fitting results are represented by the solid lines in Figure 7-9. From phase element and 

quality of fit values (2) shown in Table 7-2, it can be seen that all the EIS curves are fitted 

with adequate accuracy. The corrosion performance of the samples can be assessed by 

comparing the elements values. It is clear that the PUP PEO coating provides the highest R1 

value of 750.2 Ω·cm2, almost 2 and 10 times higher than that of PBP PEO coating and the 

bare substrate, respectively.  

Based on the physical meaning of R1, the value of which could be described as: 
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 𝑅1 = 𝜌
𝑑

𝐴
 ( 7.2 ) 

where quantities d and A are directly proportional to the average pore depth and diameter, 

and ρ is the electrical resistivity of the electrolyte in the pores.  

According to the surface morphology analysis of the coatings (Figure 7-4), smaller pores 

were identified in the PBP PEO coating, which is expected to have larger R1 than that of 

unipolar PEO coating. The unexpected behaviour of R1 could be attributed to the scars 

observed on the bipolar PEO coating (Figure 7-3), which were significantly larger defects 

than the micro pores, i.e. a larger A value in Equation (7.2), resulting in lower R1. For the 

same reason, a slightly smaller R2 is generated by the bipolar coating than the unipolar 

coating, suggesting a more vigorous corrosion process. The values of CPE2-T for the coated 

samples presented a considerable difference, i.e. the unipolar coating generated much larger 

CPE2-T value (about 2 times) than the bipolar coating. As CPE2 was raised from the 

corrosion pits, its capacitance could be attributed to the accumulation of corrosion products. 

Assuming the overall surface area involved in the corrosion process was A’ and the thickness 

of corrosion product was D, its effective capacitance Ceff could be calculated by [184]: 

 C𝑒𝑓𝑓 = ε0εA’/D ( 7.3 ) 

where ε0 is the permittivity of free space and ε is the relative dielectric constant of corrosion 

products. Since the CPE constant CPE-T is directly proportional to its effective capacitance 

Ceff [210], a higher Ceff could be derived for the unipolar PEO coated sample. Because the A’ 

of the bipolar coating is much larger than that of unipolar coating then, considering that the 

corrosion process mainly took place at the scars (Figure 7-3), thicker corrosion products 

must have been accumulated for the bipolar coating resulting in lower Ceff. From the above 

comparison of R1, R2 and CPE2-T values, it could also be concluded that the corrosion 

resistance of the unipolar coating was significantly higher than that of the bipolar coating.  

The corrosion performance of the samples presented here is also compared based on their 

polarisation resistance Rp values, that can be calculated following equation (6.7). With the Rp 

values summarised in Table 7-2, it is clear that the polarisation resistance of the unipolar 

PEO coated sample (508 Ω·cm2) is much higher than that of the sample with bipolar PEO 

coating (113 Ω·cm2). Correspondingly, after 2 hours immersion in SBF, the unipolar PEO 



Chapter 7 Effects of negative biasing on PEO treatment of cp Mg 
 

118 
 

coating has improved the corrosion resistance of cp Mg by a factor of 6, whereas the bipolar 

PEO coating only improved the corrosion resistance by a factor of 0.6. 

Table 7-2 Fitting results for impedance spectra of the PUP- and PBP-PEO coated samples 
shown in Figure 7-9 
Sample 
ID 

R1  
/Ω·cm2 

R2  
/Ω·cm2 

R3  
/Ω·cm2 

CPE1-T 
/S∙sn 

CPE1-P CPE2-T 
/ S∙sn 

CPE2-P L Rp 
/Ω·cm2 

Δ χ2 

Unipolar 783.6 333.9 932.6 2.3e-5 0.85 1.1e-3 0.91 35639 508.35 6.3 0.0016 
Bipolar 331.3 118.6 151.2 2.3e-5 0.85 6.0e-4 0.17 7653 113.16 0.6 0.0053 
cp-Mg 68.06 86.05 126.8 3.7e-5 0.87 7.9e-3 0.57 435 69.56 - 0.0028 

7.5.3 Potentiodynamic Polarisation Evaluation 

As stated in Chapter 4, comparison of EIS spectra cannot always provide a precise corrosion 

rate. Therefore, potentiodynamic polarisation tests were performed in the present study, and 

the polarisation curves of all the samples are presented in Figure 7-10. It can be clearly seen 

that after the surface modification the tips of the polarisation curves were shifted to a more 

positive region from -1.56 V vs. SCE for the bare Mg to -1.41 V vs. SCE and -1.43 V vs.SCE 

for the unipolar and bipolar PEO coating, respectively. Furthermore, the overall curves of the 

coated samples were also moved to the lower current density direction, indicating the 

corrosion properties of the magnesium substrates were inhibited by the PEO coatings. In 

detail, the recorded current density of the bare cp Mg increased dramatically when it was 

anodically polarised even by a small overpotential, i.e. the current density increased by two 

orders of magnitude when the polarisation potential was increased by 20 mV to -1.54 V vs. 

SCE, suggesting a marginal corrosion resistance. Afterwards, when the sample was further 

polarised anodically, the current density increased only slightly (even when the polarisation 

potential was increased by 900 mV to -0.62 V vs. SCE), which is due to the accumulation of 

corrosion products covering the sample surface. The anodic branches of the PEO coated 

samples exhibited different behaviour (Figure 7-10). When the samples were anodically 

polarised by the same potential magnitude, a higher increase of current density was 

observed on the bipolar PEO coated samples, suggesting a worse inhibition efficiency 

compared with that of the unipolar PEO coating. When the samples were sufficiently 

polarised (with potential > -1.0 V vs. SCE), the two curves almost coincided with each other 

and were in parallel with that of the bare magnesium, which meant that the corrosion process 

was reduced by the accumulation of corrosion products. The processes taking place during 

cathodic polarisation should be the same, as indicated by the overlapped cathodic 
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polarisation branches of the coated samples.  

 
Figure 7-10 Potentiodynamic polarisation curves of bare cp-Mg sample and those with 

PUP-and PBP-PEO coatings after 3 hours’ immersion in SBF at 37±1 oC 

After careful analysis of the polarisation curves, the corrosion potential Ecorr and current 

density icorr of the samples can be derived. From the curves shown in Figure 7-10, it is clear 

that linear behaviour is present on the cathodic branches of all the samples, meaning the 

cathodic reactions of all the samples were under activation control. However, the situation of 

the anodic curves was more complicated. For the sample with a unipolar PEO coating, when 

the polarisation potential increased from -1.35 V vs. SCE to approximately -1.18 V vs. SCE, 

the curve showed a well-defined linear range: starting at more than 50 mV away from the 

curve tip and lasting for more than one current density decade, as might arise from an 

activation polarisation process. Similar linear behaviour was also exhibited by the anodic 

curve of the bipolar PEO coated sample. Based on the characteristics of the polarisation 

curves, the Tafel extrapolation method was utilised here to derive the corrosion potential (Ecorr) 

and corrosion current density (icorr), and the results are summarised in Table 7-3.  The 

corresponding Tafel slopes are also listed in Table 7-3. As for the bare magnesium, the linear 

region on the anodic curve was too short to reveal any reliable Tafel behaviour (Figure 7-10), 

therefore, the Stern-Geary analysis was no longer applicable. In this case, the potential at 

which the anodic current density equalled the cathodic current density was taken as Ecorr. For 

the determination of icorr, the linear region of the cathodic branch was extrapolated to Ecorr, 

and the intersection was taken as the corrosion current density icorr as suggested in [211]; 

these results are also included in Table 7-3. Because of the absence of the linear region, the 
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Tafel slopes cannot be derived for the bare substrate in the present study.  

Table 7-3 Results of potentiodynamic polarisation curves analysis for cp-Mg with and without 

coatings 

Current Regime Ecorr (V vs. SCE) icorr ( µA·cm2) ba (mV/decade) bc (mV/decade) 

Unipolar -1.41 10.45 73 -243 

Bipolar -1.43 18.08 45 -254 

Bare Mg -1.56 437.62 - - 

By comparing the corresponding values, the effects of the coatings on the corrosion process 

could be evaluated. After applying the PEO coatings, the corrosion current density of bare 

magnesium decreased by more than 40 times from 437.62 µA·cm2
 to 10.45 µA·cm2 and 

18.08 µA·cm2 respectively when the negative current density increased from 0 (unipolar) to 

10 (bipolar) mA/cm2, and better corrosion protection was provided by the unipolar PEO 

coating, suggesting that applying a negative biasing has a detrimental effect on the corrosion 

performance, which is in good agreement with the analysis of coating appearance and EIS 

results. Such results are also reflected by a lower anodic Tafel slope of the bipolar coating 

compared with that of the unipolar coating, as shown in Table 7-3.  

The cathodic Tafel slope bc exhibited a value close to the theoretical value (-240 mV/decade) 

for the 2-electron charge transfer process, which verifies the applicability of Tafel 

extrapolation for the cathodic branches. Also from the obtained Tafel slope value, the 

cathodic reaction (2.2) of Mg corrosion could be verified. 

 2H2O + 2e− → H2 ↑ +2OH−  (2.2) 

However, if the corrosion process of magnesium is as simple as that described by Reaction 

(2.1): 

 Mg → Mg2+ + 2𝑒− (2.1) 

Then, as a 2-electron charge transfer process, it should also have resulted in an anodic Tafel 

slope of around 240 mV/decade. Apparently, it is not the case, as significantly smaller anodic 

Tafel slopes were derived for the coated samples, indicating the corrosion process is much 

more complicated. Actually, the anodic Tafel slope is close to the theoretical value of (40 
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mV/decade) for the multistep 1-electron charge transfer process [212], this provides some 

indication on the corrosion mechanism of magnesium in SBF. Reaction (2.1) occurs more 

readily through some elementary electrode processes. In the analysis of EIS results, the 

involvement of Mg+ during the corrosion process was assumed. Actually, according to the 

results published by Song et al [189] and Cao et al [187] the following elementary steps are 

involved in the magnesium corrosion. Firstly, Mg is converted to a monovalent ionic specie 

Mg+: 

 Mg ⇔ Mg+ + 𝑒− ( 7.4 ) 

As Mg+ has high reactivity, it can quickly be oxidised into the expected divalent species Mg2+ 

in aqueous SBF according to the following reaction: 

 Mg+ + H2O → Mg2+ + OH− + 1/2H2 ( 7.5 ) 

This 2-step mechanism would reduce the energy barrier for the corrosion process and, 

therefore, is kinetically more favourable than reaction (2.1). Since reaction (7.4) has, a much 

slower rate, it determines the overall corrosion rate and the resulting Tafel slope. From Table 

7-3, it is clear that the derived anodic Tafel slopes, especially from the unipolar PEO coated 

sample, are slightly higher than the theoretical value (40 mV/decade) determined from the 

elementary reactions (7.4) and (7.5), which might be attributed to the concurrence of reaction 

(2.1) with the elementary reactions. Actually, Natta [213] has found that the occurrence of 

reactions (7.4) and (7.5) cannot prevent reaction (2.1). Therefore, strictly speaking, the 

measured polarisation curves come from two different kinetic processes. Normally, the 

presence of more than 1 charge transfer processes would result in the absence of a linear 

region in the polarisation curves, which is in contrast to the present situation where a 

well-defined linear part is observed. This may be because the contribution of reaction (2.1) is 

too small. Assuming the fractional contribution of reaction (2.1) is X, then the elementary 

reactions contributes the rest (1-X) fraction, then the overall anodic Tafel slope might be 

calculated according to the following equation: 

 b𝑎 = 240𝑋 + 40(1 − 𝑋) ( 7.6 ) 

Substituting the b𝑎 values in Table 7-3 into Equation (7.6), it is concluded that only 16.5% 

and 2.5% of the current density originates from reaction (2.1) for the unipolar and bipolar 
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PEO-coated samples, respectively. Because of the two charge transfer processes, the 

corrosion current density Icorr obtained from the Tafel extrapolation provides only an 

approximation to the real corrosion rate.  

7.5.4 Corroded Surface Appearance 

The appearance of the coatings after potentiodynamic polarisation tests is presented in 

Figure 7-11. Generally, it can be recognised that both of the coatings were badly corroded 

leaving some black corrosion sites and blisters on the surface. By comparing the two images 

in Figure 7-11, it is clear that many more corrosion sites with diameters in the range of 

0.1-1.2 mm. are present on the bipolar PEO coating, indicating a worse anti-corrosion 

performance compared with the unipolar coating, consistent with the results of EIS and 

potentiodynamic polarisation measurements.  

 
Figure 7-11 Corroded surface appearance of the coatings produced at current regimes of (a) 

unipolar and (b) bipolar (10 mA/cm2 negative biasing) 

The mechanism underlying the formation of the blisters and exposure of corrosion sites is 

schematically illustrated in Figure 7-12. When the samples were subjected to the corrosion 

test, the SBF began to penetrate through the pores towards the substrate. Once it reached 

the substrate, an electrochemical corrosion process took place, the atomic Mg was oxidised 

at the anodic site to Mg+ and Mg2+ according to Reactions, (7.4) and (2.1)), therefore free 

electrons are released. The free electrons were then transferred to the cathodic sites and 

consumed in the cathodic reaction (Figure 7-12), generating hydrogen gas, according to 

Reaction (2.2). Hydrogen could also be generated based on elementary reaction (7.5). Due 

to the presence of the PEO coating, hydrogen gas was trapped at the coating/substrate 

interface, resulting in the increases of hydrogen pressure underneath the coating (Figure 

7-12). More hydrogen would be released as the corrosion process proceeded and the 

hydrogen pressure would eventually get sufficient to cause the coating to blister, as shown in 
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Figure 7-11. When the hydrogen pressure was sufficiently high, it would break the blisters, 

exposing the black corrosion sites on the surface (Figure 7-11). 

 
Figure 7-12 Schematic illustration of the mechanisms underlying the formation of blisters 

7.6 Summary 

PEO coatings were produced on commercially pure magnesium substrates with unipolar and 

bipolar current regimes with negative current density of 10-20 mA/cm2. The in vitro corrosion 

performance of the coatings was studied using electrochemical methods. After comparing the 

PEO processes and coating characteristics, the following inferences can be made: 

(1) The negative biasing deteriorated the stability of the PEO process in the 

studied electrolyte. Apparent defects could be observed on the bipolar PEO 

coating with negative current density of 10 mA/cm2. When the negative current 

density increased to >20 mA/cm2, the PEO coating could not be produced, 

which is likely to be an indirect result of the application of negative biasing, 

whereby the a local pH is reduced due to the cathodic process attracting H+ to 

the sample surface. 

(2) There was no apparent difference in the chemical and phase compositions of 

the unipolar and bipolar PEO coatings, even though high Na+ is incorporated 

into the coating during the PBP-PEO process (negative current density of 10 

mA/cm2) because of the effect of electric field associated with the negative 

biasing. 

(3) The corrosion rate of the magnesium substrate was reduced by the PEO 

coatings, and the corrosion performance of the unipolar PEO coating was 

better than that of the bipolar PEO coating. 

(4) Combining the process stabilities and corrosion performance of the coatings, it 

was apparent that negative biasing was not appropriate to produce corrosion 

resistant coatings in the present electrolyte.  
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(5) The corrosion resistance of the coatings was still too low, and further research 

in this area was still required. 
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Chapter 8 Effects of Hydroxyapatite Coating on in vitro Corrosion 

Performance of PEO Coated Magnesium  

The corrosion performance of cp magnesium in simulated body fluid has been improved 

through optimisation of plasma electrolytic oxidation parameters (electrolyte, electrical 

parameters) as described in Chapters 5 and 6. However, the efforts to synthesise and 

incorporate hydroxyapatite (HA) into PEO coatings seems unsatisfactory, even though Ca 

and P were successfully incorporated into the PEO coatings by combination of Ca and P 

containing electrolyte and unipolar pulsed DC current mode. Considering the information 

presented in Chapter 3, calcium phosphate compounds are essential to enhance the 

osteoconduction of magnesium implants. Calcium phosphate compounds, ideally HA, can be 

deposited on the implant surfaces through other methods as stated in Chapter 3. In the 

present chapter, the fabrication of a HA layer on top of the PEO coated magnesium through a 

cathodic electrodeposition (CED) method is discussed, and the in vitro corrosion properties of 

the coated samples are evaluated using electrochemical methods including open circuit 

potential measurement, electrochemical impedance spectroscopy and potentiodynamic 

polarisation characterisation. 

8.1 Coating Fabrication 

Duplex coatings comprising the base PEO coating and top HA layer were produced on the 

surface of cp magnesium substrates in the present chapter. The PEO coating was produced 

in the optimised electrolyte composed of 2 g/l Ca(OH)2 and 12 g/l Na3PO4∙12H2O. 

Considering the published beneficial effects of fluoride on the HA deposition published in the 

literature [72], another electrolyte was prepared by addition of 5 g/l KF to the optimised 

electrolyte for PEO coating fabrication. The PEO treatments were conducted under the 

unipolar pulsed DC current regime optimised in Chapter 6 with a current density of 30 

mA/cm2, a duty cycle of 10% and a frequency of 3000 Hz.  

Once the PEO coatings had been produced, the samples were thoroughly rinsed before 

being subjected to HA deposition, which was carried out using a cathodic electrodeposition 

technique. The electrolyte used for HA deposition contained 0.043 M Ca(NO3)·4H2O, 0.025 M 

NH4H2PO4 and 0.1 M NaNO3, to provide a Ca to P ratio of 1.72. This is slightly higher than the 
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theoretical value of 1.67 in the stoichiometric HA and would therefore favour its precipitation. 

The electrolyte pH was adjusted to 5 at room temperature using tris(hydroxymethyl)amino 

methane (HOCH2)3CNH2). During the deposition process, the PEO coated magnesium discs 

were the cathode, and a cylinder (60 mm by 20 mm) made of 1 mm thick stainless steel 

plate was placed around the magnesium disc and served as the anode. A constant voltage of 

1 V was provided between the two electrodes. The deposition process was conducted at 

75±3 oC for 20 minutes. 

8.2 Characterisation of Surface Treatment Processes 

A typical voltage transient during the PEO process used in the present study is presented in 

Figure 8-1. The voltage behaviour is similar to that presented in Chapter 6 (Figure 6-1), and 

nothing unexpected was observed, indicating the high repeatability of the PEO process under 

the optimised parameters. Once the process was started, the voltage increased, however 

with different rates at different periods of time. The PEO treatment can therefore be divided 

into four stages (Figure 8-1). In stage Ⅰ, lasting for about 25 s, the voltage increased rapidly 

in a linear manner. In stage Ⅱ (25-75 s), the voltage increased further at a lower rate, with 

intense gas bubbles appearing on the sample surface, and at the end of this stage the 

voltage increased up to 300 V. In the third stage, the voltage increased gradually to about 430 

V; Similar to the stage Ⅱ, intense gas liberation was observed at the sample surface. When 

the voltage reached 340 V, numerous tiny sparks began to randomly move around on the 

sample surface. In the final stage, the voltage increased to about 490 V, with previously 

observed tiny sparks becoming larger and less populous. 

Once the PEO coated samples were subjected to the CED treatment, numerous tiny bubbles 

began to appear on the sample surface. As the potential was applied, the bubbles built up 

and a progressive decrease in the current was observed, reflecting the accumulation of CED 

coating on the sample surface. 

8.3 Coating Morphology and Structure Characterisation 

Morphologies of the produced coatings are shown in Figure 8-2. Consistent with the results 

presented in Chapter 6, a typical crater-like porous topography is observed on the PEO 

coated magnesium (Figure 8-2 (a) and (b)). 
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Figure 8-1 Voltage transient during the PEO treatment of the present study 

 

Figure 8-2 Surface and cross-sectional morphologies of PEO coatings without (a),(b) and 
with (c),(d) CED layers  
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The size and spatial distribution of pores on the PEO coating are not uniform. The largest 

pores observed on the PEO coating are about 6 µm, while the smallest are less than 1µm. 

Some cracks are also visible, as indicated by the white arrow in Figure 8-2 (a). A similar 

porous morphology is also observed on the cross sectional images of the PEO coating 

(Figure 8-2 (b)). In terms of the average porosity, the PEO coating can be divided into two 

regions, an outer porous region and an inner barrier region which is highlighted by white 

dashed lines in Figure 8-2 (b). From the cross-sectional SEM image, an overall coating 

thickness of 25 µm is identified, of which the barrier region is only about 2 µm (Figure 8-2).  

SEM observation of the PEO coated sample after CED treatment shows that the porous 

surface morphology formed by the PEO process can hardly be seen (Figure 8-2 (c)). Instead 

numerous needle-like crystals are observed. It is evident that the crystals are grown around 

the island-like features. Comparison between Figure 8-2 (a) and (c) shows that these 

features are actually formed in the craters of the PEO coating surrounded by the pores. This 

provides an indication on how the CED layer was deposited on the PEO surface. According to 

the first kinetic law [214, 215], the edges around the pores in the PEO coating appear to 

provide preferred nucleation sites for primary HA crystals because of their relatively high 

surface energy. After being formed, these HA nuclei are likely to grow in one, two or three 

dimensions, as suggested by Eliaz [216], and Dorozhkin [217]. In the present study, 

one-dimension growth of the nuclei may take place as the needle-like crystals are observed 

in Figure 8-2 (b). However, there are different propagation directions for different crystals, 

leaving space between the dendrites. Examination of the cross-sectional morphology reveals 

the CED layer present on top of the PEO coating, as shown between the two dashed lines in 

Figure 8-2 (d). The rough surface of the PEO coating determines the CED layer also to be 

non-uniform in thickness, so that the final surface is not smooth. Although a continuous CED 

layer fills in the large pores on the surface of the PEO coating, the fact is that the pores are 

only partly blocked and tiny voids still remain. 

Both coatings (the PEO coating and CED coating) are comprised of similar elements as 

identified by EDX analysis of the surfaces, therefore only the spectrum of the PEO coating 

followed by the CED treatment is presented in Figure 8-3. The atomic concentrations of the 

elements from the PEO coating with and without CED layer are summarised in Table 8-1. 

Because the Ca/P ratio is an important factor in predicting the bioactivity of implants, these 

values for different samples are also included in Table 8-1. While an appreciable amount of P 
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is identified in the PEO coating, only a trace amount of Ca is detected. However, after CED 

treatment, the Ca content on the coating surface has increased by a factor of about 140, the 

P content is doubled compared with the PEO coating, while the O concentration is only 

increased slightly.  

The Ca/P ratio on the surface has significantly increased from 0.017 to 1.230, slightly less 

than the theoretical value (1.667) in stoichiometric HA. This can be explained from two 

aspects: phosphorus in the PEO coating can also be detected on the CED treated sample, 

and it maybe that a Ca-deficient rather than the stoichiometric HA has been formed in the 

CED process. Another explanation relies on the fact the EDX is a surface characterisation 

method, it is therefore reasonable to assume that the Ca is mainly located on the CED layer, 

which is also verified by the elemental mapping shown in Figure 8-4. Mg is not identified in 

the top Ca-rich layer which can simply be regarded as the CED coating (Figure 8-4). The 

absence of Mg in the CED layer indicates that the CED coating is simply precipitated on the 

top of the PEO coating, and no chemical reactions with the PEO coating material are involved 

in the CED treatment. 

 
Figure 8-3 Typical EDX spectrum from the PUP-PEO coating following CED treatment 

Table 8-1 Elemental composition of the PUP-PEO coatings with and without CED treatment 
identified by EDX (at.%) 

Sample O F Na Mg P Ca Ca/P 
PEO 53.0 6.6 2.9 31.4 6.0 0.1 0.017 
PEO+CED 67.2 1.6 1.0 3.8 11.8 14.6 1.230 
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Figure 8-4 Elemental distribution within the duplex PEO-CED treatments 

XRD patterns of the PEO-coated magnesium samples with and without the CED layer are 

shown in Figure 8-5. It can be seen that the PEO coating is mainly comprised of MgO, with 

metallic Mg from the substrate also identified. Consistent with previous results discussed in 

Chapters 5 and 6, instead of HA, Ca and P were combined with Na and O in the PEO 

process to form Na4Ca(PO3)6. However, after CED treatment, peaks corresponding to HA can 

be identified (Figure 8-5), indicating that crystalline HA was formed during CED treatment. 

Since the HA peak at 2θ = 25.85º corresponding to the (002) crystal plane is not affected by 

other peaks of Mg and MgO, it is used to calculate the crystallite size of HA using the 

Scherrer equation [218]. The calculation reveals that the average crystallite size is about 41 

nm.  

 
Figure 8-5 XRD patterns from the PEO-coated Mg samples with and without CED treatment 
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8.4 Electrochemical Corrosion Evaluation 

8.4.1 Open Circuit Potential 

As stated in Chapter 4, the open circuit potential is a suitable parameter to evaluate the 

corrosion tendency of a material in a specific environment, i.e. a more negative OCP value 

suggests a higher corrosion tendency, therefore the evaluation of OCP behaviour can also 

predict the driving force for the coating degradation process. Based on these considerations 

the OCP evolution with immersion time is recorded for different samples including the bare 

magnesium for the sake of comparison, as shown in Figure 8-6. It is clear that the OCP value 

of bare magnesium is more negative than the two coated samples within 4 hours of 

immersion, indicating that the PEO coating with and without CED layer has provided positive 

effects to the sample in terms of corrosion protection. The OCP value of the bare cp Mg first 

increased to -1.792 V within 250 s before going down to -1.834 V up to 500 s after immersion. 

Then the OCP value shifts in the noble direction rather than the negative direction as verified 

for its surface modified counterparts. 

Immediately after the immersion, the PEO coated sample shows the noblest OCP value of 

-1.547 V compared with -1.586 V and -1.808 V for the CED treated sample and bare 

magnesium, respectively (Figure 8-6(a)). Then the OCP of the PEO coated Mg slightly shifts 

to the noble direction to -1.543 V within 30 s before decreasing to about -1.723 V up to 30 min. 

Then the OCP becomes stable.  

However, after the CED treatment, different OCP behaviour was observed in the first 500 s 

after the immersion, which can be divided into several stages (Figure 8-6(a)). In the first 

stage (up to125 s), the OCP moves in the positive direction to about -1.554 V although there 

is a downward trough around 85 s. Then in the second stage (125-260 s), the OCP shifts 

negatively by 10 mV before another downward trough in the time range between 260 and 500 

s which is defined as the third stage. Then the OCP shifts in the negative direction further to 

-1.64 V up to 2500 s before a temporary stable stage is reached. 

Within the second and third stages of immersion, OCPs of all three samples move to the 

noble direction to different extent (Figure 8-6(b) and (c)). The OCP value of bare Mg 

increases by about 70 mV from -1.732 V to -1.663 V. However, for the PEO coated sample 

the OCP value shows a higher rate of increase in the second hour of immersion and is 
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stabilised at -1.608 V at the end of the third stage. In the fourth immersion hour (Figure 8-6 

(d)), while the CED treated sample suffers a slight decrease in OCP by 10 mV, the OCP of the 

PEO coated sample increases by 20 mV before reaching a new stable level at -1.578 V. 

 
Figure 8-6 OCP evolution of the PEO coated cp Mg with and without CED treatment in SBF at 

37±1 oC within the (a) 1st hour (b) 2nd hour (c) 3rd hour (d) 4th hour 

8.4.2 EIS Analysis 

Figure 8-7 compares the EIS behaviour after 1 hour of immersion for all the samples. 

Analysis of these plots can disclose effects of the surface modification methods utilised in the 

present study on the corrosion performance of the samples in SBF at 37±1 ºC. The complex 

plots present two depressed semicircles in the first quadrant, and additional loops are also 

observed in the fourth quadrant (inductive loop) for all the samples (Figure 8-7(a)). The 

presence of the three loops indicates that (as seen in the previous chapters) there are three 

processes with different time constants taking place in the corrosion process for all the 

samples. For the surface modified samples, the semicircles at high frequencies (10 to 1000 

Hz) correspond to the contribution of the outer porous region of the coating and the loops at 

the medium frequency (0.1 to 10 Hz) directly result from the inner barrier region of the coating, 

consistent with the cross-sectional morphologies in Figure 8-2. When the frequency is low 

enough (0.01 to 0.1 Hz), the inductive response from the corrosion process becomes 
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significant, which indicates that the samples are suffering from pitting corrosion [202]. A thin 

film is formed on the sample surface immediately after immersion. As a result, three similar 

loops are also observed in the EIS spectra of bare Mg as displayed by the inset in Figure 

8-7(a). In addition, the samples with surface modification provide higher overall impedance 

magnitudes compared with their bare Mg counterpart, and the highest impedance magnitude 

is observed from the sample with the CED treatment (Figure 8-7(b)). Similar to the 

characteristic feature of the complex plots, three different time constants could also be 

verified in the phase vs. frequency Bode plots as well (Figure 8-7(c)), reflected by one 

complete peak in the frequency range of >10 Hz, a depressed peak in the frequency range of 

0.1-10 Hz and the positive phase in the low frequency range of <0.1 Hz. To be specific, the 

overall phase angle of the bare Mg is lower than the coated samples throughout the studied 

frequency range (Figure 8-7(c)). This is straightforward considering the passive film on bare 

Mg is much thinner than the fabricated coatings. After the CED treatment, the maximum 

phase angle in the high frequency range (10 to 1000 Hz) has been shifted to higher 

frequency compared with the sample with a single PEO coating. 

The comparison of EIS data from each sample after different immersion periods provides 

insights into the degradation behaviour of all of the samples. The spectra obtained from the 

bare Mg in the first four hours coincide with each other, indicating that once the stable 

condition was established in the first hour after immersion, the surface condition of the bare 

Mg does not experience significant changes. However, for the coated samples different 

behaviour can be observed because of the coating degradation, as shown in Figures 8-8 and 

8-9. 
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Figure 8-7 Comparison of EIS spectra for the cp Mg substrate with PEO and PEO/CED 

treatments obtained after 1 hour immersion (a) complex plots, (b) impedance amplitude vs. 
frequency plots and (c) phase vs. frequency Bode plots 
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The complex plots of the PEO coated Mg with different immersion periods from 1 h to 4 h are 

shown in Figure 8-8(a). It can generally be seen that with the immersion time prolonged from 

1h to 4h, the radius of the semicircles become smaller indicating less corrosion protection 

provided by the coating. Within the first 2 hours of immersion in SBF, there is no significant 

change in the EIS behaviour in the high frequency range (f>10 Hz), although at lower 

frequencies, a smaller semicircle is identified. After 3 hours immersion, the semicircles in the 

high frequency range show significant shrinkage while those at medium frequency, 

corresponding to the barrier region of the PEO coating, become negligible, which suggests 

that the PEO coating is gradually degraded during the immersion process. The decrease in 

the overall impedance magnitude, especially after 2 hours of immersion can be clearly seen 

in the Bode plots as shown in Figure 8-8(b), which demonstrates worsening corrosion 

protection provided by the PEO coating with increased immersion time. The phase angle 

Bode plots present different behavior, although three different time constants can be 

identified in all the plots (Figure 8-8(b)). The maximum phase angles in the high frequency 

range (f>10 Hz) become smaller and shifted to lower frequencies. Consistent with the 

complex plots, the extremes of phase angle at medium frequency (0.1 to 10Hz) have become 

so small that they have to be identified with extreme care. 

Similar degradation behaviour is also observed for the duplex PEO plus CED treated Mg, by 

analysing the EIS behaviour after different immersion times, which is shown in Figure 8-9 

However, different features compared with the PEO coating without the CED treatment can 

still be identified. Compared with the complex plot after an immersion period of 1 hour, 

smaller semicircles are identified not only at low frequencies but also in the high frequency 

range (Figure 8-9(a)), which is not the case for the sample with only PEO coating. From the 

impedance magnitude Bode plots (Figure 8-9(b)) it is obvious that, with increasing immersion 

time, the overall impedance decreases especially in the lower frequency range. Three 

extremes in phase angle Bode plots is also observed, which further indicates three time 

constants in the tested frequency range (Figure 8-9(b)). 
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 Figure 8-8 Variation with immersion time of the impedance 

spectra for the PEO coating without CED reatment (a) 
complex plots and (b) Bode plots 

Figure 8-9 Variation with immersion time of the impedance 
spectra for the PEO coating with CED treatment (a) complex 

plots and (b) Bode plots 
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8.4.3 Potendiodynamic Polarisation Evaluation 

Figure 8-10 shows the potentiodynamic polarisation curves of different samples tested in 

SBF at 37±1 ºC . It can be clearly seen that after the surface modification the tips of the 

polarisation curves have been shifted to a more positive region from -1.56 V for the bare Mg 

to -1.47 V and -1.42 V for the PEO coated sample with and without CED treatment, 

respectively. Moreover, the overall curves are also moved to the lower current density 

direction. In detail, the recorded current density of the bare Mg increases dramatically when it 

is anodically polarised even by a low potential, i.e. the current density increases by two 

orders of magnitude when the polarisation potential is increased by 20 mV to -1.54 V, 

suggesting that the polarisation resistance is too low. Afterwards, when the sample is further 

polarised anodically, the current density only increases slightly even when the polarisation 

potential is increased to -0.6 V, which is due to the accumulation of corrosion products on the 

sample surface. Similar behaviour is also observed in the anodic branch of the PEO coated 

sample (Figure 8-10). The anodic polarisation branch shows a different behaviour for the 

PEO coated sample with CED treatment. Rather than being smooth, the anodic branch is 

bent as indicated in Figure 8-10, which may be a result of CED coating breakdown; 

afterwards the behaviour of the anodic branch is similar to that in the bare Mg sample. The 

cathodic branches of all the curves present similar behaviour, which are more or less in 

parallel even though the curve position for the surface modified sample is shifted to the left in 

the diagram (Figure 8-10). 

 
Figure 8-10 Potentiodynamic polarisation curves of PEO coated cp Mg with and without CED 

treatment after 4 hours’ immersion in SBF  
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8.4.4 Corroded Surface Morphology 

The SEM surface morphology images of the PEO coated Mg after the potentiodynamic 

polarisation tests are presented in Figure 8-11. Figure 8-11(a) shows that corrosion pits are 

visible on the coating surface. In terms of the extent of corrosion damage, different regions 

can be identified as marked by the circles in Figure 8-11(a). Figure 8-11(b) shows the 

features of region (B), which is furthest away from the corrosion pit. It is clearly seen that the 

porous morphology of the PEO coating is retained in this region after the test, although the 

shape of the pores is distorted compared with the features before testing. When moving to 

the region (C), closer to the corrosion pits, large cracks begin to show up within the PEO 

coating. Although thermal shock cracks have already been present on the surface before the 

corrosion test, these cracks became much larger as a result of the corrosion process and 

provide preferred corrosion sites where needle-like deposits are observed (Figure 8-11(f)). 

Region (D) in Figure 8-11(a) is located just at the pit edge; this is the most active site for the 

corrosion to proceed. The enlarged feature derived from this region presents a considerable 

amount of needle-like crystals as shown in Figure 8-11(d). Figure 8-11(e) illustrates the heart 

of one corrosion pit; similarly to region (D) in Figure 8-11(a), the typical topology of the PEO 

coating cannot be identified anymore. Instead, large mud cracks are observed (Figure 

8-11(e)), this observation is in good agreement of other publications [195, 219]. 

Figure 8-12 shows the corrosion morphology of the PEO combined with CED treated Mg 

after the electrochemical corrosion test. Similarly to the sample with PEO coating, corrosive 

pits are also present on the CED treated sample surface after the corrosion test, as shown in 

Figure 8-12, with characteristic regions marked as (B) and (C). Region (B) is relatively far 

away from the corrosion pit, indicating the least corrosion attack. The needle-like features 

originally observed on the surface of the CED coating (Figure 8-2) can hardly be seen after 

the corrosion test. Instead a distorted porous morphology is identified as shown in Figure 

8-12(b). Moreover, in the sites where the corrosion process proceeds, the surface coating is 

not completely removed, as indicated by the arrows in Figure 8-12(b). One of the sites is 

enlarged in Figure 8-12(c), providing the detailed morphology inside it. After the surface 

coatings have been destroyed by the corrosion process, mud cracks are left in the corrosion 

pits, as illustrated in Figure 8-12(c). The formation of mud cracks are due to the dehydration 

of Mg(OH)2 in the SEM observation. 
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Figure 8-11 Corrosion morphologies of the PEO coated cp-Mg. Figures (b), (c),(d) and (e) 
correspond to regions (B),(C),(D) and (E), respectively of Figure (a). Figure (f) shows the 

enlarged feature around the crack (region F) indicated in Figure (c) 

The chemical composition of the regions marked in Figures 8-11 and 8-12 is listed in Table 

8-2. It is evident that it differs significantly for the different regions. Specifically, Cl is observed 

in all the regions, while F is not identified in the regions which have undergone severe 

corrosion attack (PEO-D,E and CED-D). The presence of Cl indicates its involvement in the 

corrosion process. As F is only contained in the PEO coatings, the absence of F in the severe 

corrosion sites can be attributed to the dissolution of the coatings during the corrosion 
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process. Comparing the chemical composition before and after the corrosion test, the Ca 

content in the PEO coated sample is considerably enriched with P by corrosion process. The 

Ca/P ratio in regions (B) and (C) that are corroded to the least extent have increased by 

almost 10 times to 0.14 compared with the value of 0.017 before the corrosion test. Even 

when the coatings are completely corroded away in the PEO-E region, an increased Ca/P 

ratio is identified. However, after the corrosion test, the overall Ca/P ratio of the CED treated 

sample is decreased from 1.23 to about 1.02. The CED-D region provides a Ca/P ratio of 

0.58. 

 
Figure 8-12 Corrosion morphologies of the CED treated PEO coatings on Mg, with images (b) 

and (c) corresponding to the circled regions in (a) and image (d) to the circled region in (b) 

8.5 Discussion 

8.5.1 Coating Evolution in Each Stage of the PEO process 

As described in Chapter 5, the PEO cell can simply be considered as a series of resistances 

corresponding to the Mg substrate, PEO coating, and electrolyte between the working 

electrode and counter electrode under DC condition. Therefore, the overall voltage is 

distributed proportionately among these elements according to their electrical resistance 
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based on Ohm’s law. Throughout the PEO process the resistance of the substrate and 

electrolyte are assumed to remain constant. Increased coating thickness leads to increased 

electrical resistance, thus the corresponding overall voltage is also subject to increase 

(Figure 8-1). From this standpoint, analysis of the voltage transient provides insight into the 

coating thickness evolution. 

Table 8-2 Chemical composition of different regions in the corroded samples identified by 
EDX 

Region 

ID 

Element / at.% 
Ca/P 

Mg O P Ca Na F Cl 

PEO-b 22.6 55.4 9.0 1.3 3.6 8.0 0.2 0.14 

PEO-c 21.1 55.6 9.1 1.2 3.6 8.0 1.5 0.13 

PEO-d 24.0 73.0 - - - - 3.0 - 

PEO-e 27.3 69.9 1.1 0.6 0.5 - 0.5 0.52 

CED-a 17.4 70.6 4.2 4.3 0.5 2.7 0.4 1.02 

CED-b  8.7 62.8 9.6 10.4 1.6 6.8 0.1 1.08 

CED-c 28.8 70.3 0.4 0.2 0.2 - 0.1 0.58 

CED-d 13.2 61.7 9.3 6.8 1.3 7.0 0.7 0.74 

The voltage transient in stage I of Figure 8-1 is linearly fitted with a slope of 7.07 V/s, while in 

stage III, the value is only 0.56 V/s, and in the fourth stage the voltage only marginally 

increased with the slope of 0.18 V/s, indicating a marginal increase in coating thickness. 

Other publications also reported the similar voltage behaviour and concluded the coating 

thickness remains almost constant in the final stage of the PEO treatment [121]. The result in 

the present study indicates that the coating growth rate in the first stage is more than 30 times 

higher than that in the following stages. However, this value may be overestimated because 

the coating resistance can be partially short circuited by the discharge channels filled with 

electrolyte in the following stages. From this viewpoint, it may be that the coating thickness in 

the final PEO stage is also increased, but it becomes more porous, which is consistent with 

other publications [68, 113, 220].  

The PEO process directly results in the porous morphology observed in Figure 8-2. In PEO 

treatment, when the voltage is high enough to cause breakdown of the preformed passive 

films (stage I and II in Figure 8-1), discharge channels are formed through the films (stage III 
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in Figure 8-1). The temperature within the discharge channels is sufficient to melt the 

substrate metal. Driven by the high electric field, the melted metal is moving through the 

channels towards the coating surface, and the anion species like OH- move in the opposite 

direction. When the melted metal reacts with the anion species, coating material is formed. 

The resolidification of the melted material around the discharge channel leads to the 

crater-like pores. Also the gas liberation in the process can contribute to the porous 

morphology.  

8.5.2 Mechanisms Underlying HA Deposition 

CED treatment has resulted in HA layer deposited on top of the PEO coating, as observed in 

Figure 8-2 and verified by XRD analysis (Figure 8-5). The precipitation of HA is mainly due to 

the electrolyte prepared for the CED treatment according to the following reaction [21]: 

 5Ca2+ + 3PO4
3− + OH− → Ca5(PO4)3(OH)  ( 8.1 ) 

Therefore the equilibrium solubility product of HA, Ksp can be calculated as: 

 Ksp = [Ca2+]5 ∙ [PO4
3−]3 ∙ [OH−]  ( 8.2 ) 

Here the bracketed symbols indicate activities of corresponding species that can be 

approximated by their concentrations in the solution to simplify the evaluation. Despite the 

large variation in the Ksp value due to the presence of other species like CO3
2- in the solution, 

it is in the order of 10-58 [221, 222]. In the present study, the concentrations of Ca2+, PO4
3- and 

OH- are 0.0043 M, 0.025 M and 10-9 M, respectively. The ion product in the electrolyte is 

much higher than the equilibrium value, therefore the electrolyte used in the CED process is 

oversaturated with respect to HA, leading to the spontaneous precipitation of HA.  

However, this explanation, without considering the effects of electric field and the multiple 

species associated with phosphorus, e.g. H2PO4
-, HPO4

2- and PO4
3-, can only be used to 

pre-screen the possibility of HA precipitation from the thermodynamic point of view. The 

kinetic aspect is essential to figure out the role of those factors in the HA precipitation 

procedure. Since the PEO coated Mg sample is connected to the cathodic terminal, it is 

understandable that the tiny bubbles are the result of hydrogen evolution in the electrolyte of 

pH 5 according to reaction (8.3): 

 2H+ + 2e− → H2 ↑ ( 8.3 ) 
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As the above reaction proceeds, H+ will be depleted near the corroding surface, leading to a 

locally increased pH value, therefore, further hydrogen may be liberated by reaction (8.4): 

 2H2O + 2e− → 2OH− + H2 ↑ ( 8.4 ) 

As a result, there will be an increase in pH values in the vicinity of the sample surface, 

causing a decrease in H+ concentration according to the Hendersion-Hasselbalch equation 

[223]. Correspondingly, local HPO4
2- concentration will be increased according to Le 

Chatelier's principle [199] based on the following reaction: 

 H2PO4
− → HPO4

2− + H+ ( 8.5 ) 

As a consequence, the formation of CaHPO4∙2H2O is promoted, according to the following 
process:  

 Ca2+ + HPO4
2− + 2H2O →  CaHPO4 ∙ 2H2O ( 8.6 ) 

Since CaHPO4∙2H2O is well recognised to be a precursor of apatite nucleation [224],  it 

should promote the HA formation. Actually, it may transform into thermodynamically stable 

apatitic calcium phosphate by a dissolution-precipitation mechanism as suggested by Tang 

[225]. Since the sample is negatively biased, Ca2+ is driven towards the sample surface by 

the electric field, which favours the CaHPO4∙2H2O transformation: 

 (6 − x)CaHPO4 ∙ 2H2O + (4 − x)Ca2+ + (2 − x)H2O
→ Ca10−x(HPO4)𝑥(PO4)6−x(OH)2−x + 8H+ + 12H2O ( 8.7 ) 

Where x is a constant, if it is equal to 0, stoichiometric HA is formed, otherwise, the product 

will be Ca deficient apatite which is the most likely result according to the EDX results.  

8.5.3 Mechanisms underlying in Vitro Electrochemical Corrosion Behaviour 

The EIS technique provides detailed insights into the degradation behaviour of the samples in 

the physiological environment. The higher overall impedance from the CED treated sample 

suggests better protection compared to the sample with single PEO coating, and both the 

samples with surface modification are superior to the bare Mg in terms of corrosion protection 

(Figure 8-7). Right after immersion in SBF, the coatings are gradually degraded with time, 

resulting in lower overall impedance (Figures 8-8 and 8-9). Based on the cross-sectional 

morphologies (as well as the EIS behavior), the EIS curves can be fitted using equivalent 
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circuits (EC), which is a widely used method in EIS analysis. Since the EIS spectra exhibited 

similar characteristics as those observed in Chapter 6, the EC proposed in Chapter 6 (Figure 

6-17) is also used here for the interpretation of the present EIS diagram. The experimental 

data is fitted against the proposed EC and the corresponding fitting results are presented by 

the solid lines in Figures 8-7, 8-8 and 8-9, the corresponding values of each element are 

listed in Table 8-3. 

In the proposed EC, Rs is the electrolyte resistance between the sample and counter 

electrode. R1 and the first constant phase element (CPE1) are used to represent the 

resistance and capacitance behaviour attributed to the outer porous coating (Figure 8-2). R2 

represents the charge transfer resistance originated from the inner barrier region (Figure 8-2) 

during the corrosion process and the corresponding capacitance is represented using CPE2. 

To define the physical meaning of each element more clearly, the equivalent circuit is 

schematically explained in Figure 8-13. The use of constant phase elements rather than pure 

capacitors illustrates the dispersed properties originating from the porous and rough coatings. 

With the element values shown in Table 8-3, all the EIS curves are fitted with adequate 

accuracy (see 2 values in Table 8-3). It is easy to assess the coating degradation behaviour 

by analysing the evolution of EC elements with immersion time. In Table 8-3, HA-1 means 

immersion of the PEO coating with CED treatment for 1 hour, whereas the PEO-1 means the 

immersion of the single PEO coating for 1 hour in the SBF. 

 
Figure 8-13 Schematic illustration of the equivalent circuit proposed for the EIS analysis 

Once the porous sample is immersed into the SBF, the pores are filled in with the electrolyte. 
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The associated resistance, sometimes called pore resistance [69], is termed as R1 here. 

Assuming that the average pore length is d, cross-sectional area is a and the electrolyte 

resistivity is s, the coating resistance can be obtained by: 

 R1 = ρ𝑠 ∙ d/a ( 8.8 ) 

It is easy to conclude that the coating resistance is proportional to the pore lengths and 

inversely proportional to the cross-sectional area of the pore. Since the coating material MgO 

is only thermodynamically stable at pH>13.83 [44], it will be dissolved gradually in the SBF 

with pH= 7.4. Therefore, the coating is becoming thinner, leading to a decreased pore length 

d. Moreover, the dissociation of the coating material around the pores will result in a larger 

pore cross sectional area a, which can be observed in the corroded surfaces (Figures 8-11 

and 8-12). Therefore decreased R1 with immersion time is observed according to the EIS 

curves, as shown in Figure 8-14. 

After CED treatment, the pores within the PEO coating are partially blocked (Figure 8-2 (c)), 

resulting in a decreased cross-sectional area a. Therefore higher R1  is derived from the CED 

treated sample compared with the sample with only PEO coating within the immersion period 

from 1 to 4 hours (Figure 8-14(a)). Although the apatite produced by the CED treatment can 

hardly be dissolved in SBF, the coating integrity is gradually reduced because the underneath 

PEO layer is gradually dissolved by the SBF penetration into the coating (Figure 8-12). 

Therefore, a tendency for the coating resistance R1 to decrease is derived from the CED 

treated sample as shown in Figure 8-14(a). 

However, upon immersion of the sample with single PEO coating in the SBF, it can easily 

penetrate into the large pores within the outer region (Figure 8-2). According to the EIS data, 

the corrosion process takes place at the interface between the substrate and PEO coating, 

which will lead to an increase in local pH of the SBF in the pores. As a result, the dissolution 

of MgO, the coating material, is inhibited, resulting in a constant coating resistance R1 within 

the first two hours after immersion. A sharp decrease of R1 is observed when the sample is 

immersed for 3 hours (Figure 8-14(a)). Corrosion pits may have formed at this stage to short 

circuit the barrier coating resistance. Afterwards, the coating resistance increased slightly; 

this may be due to the deposited film of corrosion products covering the corrosion pits, or 

corrosion products exporting and extruding into the pits to block the porosity 
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Table 8-3 Results of EIS data fitting by equivalent circuit presented in Figure 6-17 
Sample R1 

/Ω·cm2 
R2  
/Ω·cm2 

R3  
/Ω·cm2 

CPE1-T  
/S∙sn 

CPE1-P CPE2-T  
/S∙sn 

CPE2-P L Rp  
/Ω·cm2 

Δ χ2 

HA-1 1727 1327 3481 3.5×10-6 0.85 3.57e-4 0.64 32876 1626.8 22.4 0.0024 
HA-2 1232 577.1 3267 7.0×10-6 0.88 10.05e-4 0.68 49321 1164.3 15.7 0.00013 
HA-3 1160 170.9 1377 1.1×10-5 0.87 22.7e-4 0.98 39247 676.8 8.7 0.00317 
HA-4 858.1 65.88 1214 1.4×10-5 0.843 0.014 1.00 23445 524.7 6.5 0.011 
PEO-1 775 648.2 1472 9.8×10-6 0.879 8.01e-4 0.70 19320 723.6 9.4 0.00038 
PEO-2 780.1 544.2 1639 1.5×10-5 0.878 10.79e-4 0.76 35588 732.5 9.5 0.0011 
PEO-3 210.1 321.2 259.3 2.1×10-5 0.816 5.1e-6 1.00 6778 174.3 1.5 0.011 
PEO-4 70.44 249.7 332.2 4.4×10-5 0.60 3.17e-5 0.93 4151 163.0 1.3 0.0047 
Cp Mg 68.06 86.05 126.8 3.7×10-5 0.87 7.9×10-3 0.57 435 69.6 - 0.0028 
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Figure 8-14 Variation of coating resistance (a) and capacitance (b) with immersion time 

The coating capacitance C can be calculated according to the following equation: 

 C = ε0 ∙ 𝜀 ∙ 𝐴/𝐷 ( 8.9 ) 

where 𝛆𝟎 is the free space permeability and 𝜺 is the relative permeability of the coating 

material, MgO.  

Therefore, the capacitance is proportional to the surface area 𝑨 and inversely proportional to 

the coating thickness 𝑫 . Upon immersion, the coating thickness gradually decreases 

because of dissociation of the coating material, as mentioned above. In contrast, the effective 

surface area of the coating increases. As a result, the capacitance of the PEO coated 

samples with and without CED treatment decreases with prolonged immersion time as shown 

in Figure 8-14(b). 

The evolution of the empirical constant (CPE-P) of the constant phase element with 

immersion time provides further details about the contribution of different coating regions to 

the corrosion process. CPE1-P, the empirical constant of CPE1, remains higher than 0.8 

throughout the immersion up to 4 hours, indicating distorted capacitance behaviour of the 

outer porous coating, as suggested by Vladikova [226]. However, significant change is 

observed on the empirical constant attributed to the inner barrier region for both the PEO 

coated samples with and without CED layer. Up to 2 hours after immersion, the values of 

CPE2-P for the sample with the CED layer are almost the same at about 0.6 (Table 8-3), 

suggesting a distorted diffusion behaviour [226], which means that in the first 2 hours the SBF 

penetrates towards the substrate through a diffusion process. During this immersion period, 

the barrier region is not significantly dissolved, revealing capacitive behaviour, which 

distorted the diffusion process. Afterwards, the CPE2-P values reduce significantly to about 
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0.1, which can simply be regarded as a distorted resistance [226]. This can be explained by 

the formation of corrosion pits at the interface between the substrate and the barrier coating. 

When the pits are large enough, the effect of the barrier region on the corrosion process is 

short circuited by the electrolyte in the corrosion pits. In contrast, CPE2-P of the sample with 

single PEO coating gradually increases from 0.69 to 0.94 with immersion time. Similar to the 

CED treated sample, once immersed into the SBF, the barrier region protects the substrate 

by slowing down the diffusion of electrolyte towards the coating substrate interface. The 

barrier region is badly corroded (Figure 8-11), leading to the accumulation of corrosion 

product within the pits (Figure 8-11), which forms a temporary protection layer with dispersed 

capacitance behaviour. 

The polarisation resistance (Rp) of the coatings in SBF could also be calculated from the EIS 

spectrum according to Equation (6.7) and the improvement factor (Δ) for polarisation 

resistance induced by the coatings (compared with that of cp Mg) is also obtained following 

Equation (6.8); both Rp and Δ values are also summarised in Table 8-3. These values are 

also plotted against immersion period to make it easier for comparison (Figure 8-15). It is 

now clear that the polarisation resistance of the PEO coating is improved by the subsequent 

CED treatment and with prolonging immersion time, both of the coatings are severely 

degraded, gradually losing their protection ability. Specifically, within 1 hour of immersion in 

SBF, the corrosion resistance of the cp Mg is improved by 22 times by the duplex PEO+CED 

coatings; this values is reduced to about 9 after 4 hours of immersion. 

 
Figure 8-15 Evolution of polarisation resistance of the PEO coated cp Mg with and without 

CED treatment (a) derived from EIS diagram, and (b) the degradation of protection provided 
by the coatings 
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Apart from the coating degradation behaviour revealed by the EIS curves, corroded 

morphologies also disclose details of the corrosion processes. Since regions separated from 

the corroded morphology experience corrosion attack to different extents, they can be taken 

as examples of surface degradation at different stages of corrosion. When the PEO coated 

sample is immersed into the SBF (Figure 8-11(b)), two processes take place: penetration of 

SBF towards the substrate interface through the coating defects, i.e. cracks and pores, and 

dissolution of MgO. Firstly, the coating material MgO is converted to Mg(OH)2 according to 

reaction (6.9). As discussed, Mg(OH)2 is readily dissolved in the SBF (pH=7.4) as the 

thermodynamically stable pH range of Mg(OH)2 is pH>11.46 [44], therefore Mg2+ will be 

released into the SBF. At this stage the coating still provides protection to the substrate, 

although becoming thinner and partly damaged, which is consistent with the EIS analysis and 

observation of the corroded morphology (Figure 8-11(b)). 

Then, with longer immersion time, the released Mg2+ combines with Cl- and OH- anions in 

coating defects to form magnesium oxychloride, which is the thermodynamically favourable 

process based on reaction (6.10) [196-198, 227]: 

The formation of magnesium oxychloride is verified by the EDX analysis in Figure 8-11(d), 

where only Mg, O and Cl are identified. The formed magnesium oxychloride is shaped in 

needle-like structures as observed in Figure 8-11(d) and (f). 

With longer immersion times, the SBF finally reaches the substrate at some localised sites, 

where corrosion pits are formed. At the bottom of the corrosion pits, the oxidation of the 

substrate according to Reaction (2.1) and the elementary Reactions (7.4) and (7.5) 

dominates the corrosion process: 

 Mg → Mg2+ + 2e− (2.1) 

 Mg ⇔ Mg+ + 𝑒− (7.4) 

 Mg+ + H2O → Mg2+ + OH− + 1/2H2 (7.5) 

The product of the above reactions (Mg2+) can be further transformed to magnesium 

oxychloride according to reaction (6.10). As a redox process, the oxidation of Mg is coupled 

with the cathodic reduction of H2O according to reaction (2.2). 

For the CED treated sample the corrosion mechanism is generally the same: including the 
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dissolution of coating and oxidation of substrate. However one should bear in mind that the 

top CED layer provides an additional barrier effect on the penetration of SBF towards the 

substrate, thus lowering the corrosion rate. It should be mentioned here that once the 

corrosion pits are formed, the oxidation of the substrate and the dissolution of the coating 

material MgO would take place simultaneously, and more pits at discrete sites could be 

formed. 

The electrochemical corrosion only takes place at the bottom of the corrosion pits, therefore 

there is limited exchange of the electrolyte inside the pits with the main volumed SBF 

electrolyte. According to reaction (8.4), the pH value inside the pits will increase 

spontaneously, with corrosion process proceeding. When the pH is high enough to drive the 

substrate to reach the passivity zone in the Pourbaix diagram, Mg(OH)2 is accumulated in the 

pits. In the EDX data taken from the bottom of a pit (PEO-e in Table 8-2), the ratio of 

Mg/(O+Cl) is about 0.38, less than the theoretical value of 0.5 when only Mg(OH)2 and MgCl2 

are present; this is because a part of the detected O may come from a compound containing 

Ca, P, O and H. Therefore, the accumulation of Mg(OH)2 is verified by the EDX results. 

The presence of mud cracks in the PEO coating has been attributed by the dehydration of 

Mg(OH)2 as suggested by [228] according to: 

 Mg(OH)2 → MgO + H2O ( 8.10 ) 

The molar volume of Mg(OH)2 is larger than that of MgO, therefore, when Mg(OH)2 is 

dehydrated to MgO, the cracks are expected to be formed as observed in Figure 8-11(e) and 

Figure 8-12(c). 

The accumulation of corrosion products and limited access of the SBF electrolyte volume to 

the corrosion pits significantly affects the potentiodynamic polarisation behaviour of the 

samples. When the samples are slightly polarised in the anodic direction, the oxidation of Mg 

is under activation control. However, when the polarisation potential moves further away from 

the free corrosion potential, the effect of the corrosion product accumulation takes place. 

Then the corrosion process is under activation/concentration polarisation control, leading to 

quasi passivation tails in the anodic branches (Figure 8-10). These passivation tails are 

almost in parallel, indicating that similar corrosion processes take place for all the samples. 

When the samples are cathodically polarised, the cathodic branches in Figure 8-10 represent 
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the reduction of H2O according to reactions (8.4).  

8.6 Summary 

A cathodic electrochemically deposited (CED) Hydroxyapatite layer has been successfully 

deposited on PEO coated biodegradable cp Mg, and the corrosion performance of the coated 

samples was evaluated using electrochemical techniques, including impedance spectroscopy 

and potentiodynamic polarisation test. The findings in the present work are as follows: 

(1) The porous PEO coating is covered with the CED layer, which possesses needle-like 

crystalline structures of HA; 

(2) The PEO coating decreased the corrosion rate of Mg by ~9 times, which is further 

reduced by ~22 times due to the subsequent CED treatment; 

(3) The following three processes occur simultaneously upon immersion of the coated Mg 

samples into the SBF (leading to in vitro corrosion) is: (i) penetration of the SBF 

towards the coating/substrate interface, (iii) the chemical dissolution of the PEO 

coating and (iii) electrochemical corrosion of the substrate. 

(4) The PEO treatment combined with the CED coating provides a novel method to 

develop biocompatible magnesium-based materials with lower corrosion rates. The 

bioactivity of the implants is also expected to be enhanced. This, however, needs to 

be verified in further research. 
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Chapter 9 Mechanical Properties of cp Magnesium with Duplex 

Hydroxyapatite and PEO Coatings 

In vitro Corrosion performance of cp magnesium in the physiological environment was 

improved by PEO coating through the optimisation of electrolyte combination (2 g/l Ca(OH)2 

and 12 g/l Na3PO4∙12H2O, Chapter 5), current regime parameters (Chapters 6 and 7) and 

post treatment procedures (Chapter 8).  However, these studies dealt mainly with corrosion 

performance of the coatings, whereas the mechanical properties were overlooked.  The 

importance of mechanical properties of the biomedical implants has been highlighted in 

Chapters 2 and 3. At this point, the mechanical properties of the coated samples need to be 

evaluated.  In the present chapter, the effects of the duplex surface treatments combining 

PEO coating and electrodeposited HA layer on the static tensile strength as well as fatigue 

performance of cp magnesium samples are discussed.  After comparing the mechanical 

properties of the samples with those published elsewhere [15, 16, 162], the applicability of the 

surface engineered cp magnesium for load bearing biomedical applications is demonstrated. 

9.1 Experimental Procedure 

In the present chapter, tensile properties and fatigue strength of the PEO and PEO+CED 

treated samples (as well as bare cp magnesium) were evaluated. For this purpose, two types 

of samples were prepared. For tensile tests, the samples were produced according to ASTM 

E8-04 standard with dimensions presented in Figure 4-7. Fatigue samples were made 

according to ASTM F1801-97 (Figure 4-8). Disc samples of the dimensions described in 

Chapter 4 were also prepared for the purpose of coating morphology evaluation. The sample 

surfaces were manually polished using SiC paper to achieve the final roughness of Ra ~0.02 

mm. Prior to PEO treatment, the samples are ultrasonically degreased using acetone. The 

PEO treatment was conducted using the optimised electrolyte (2 g/l Ca(OH)2 and 12 g/l 

Na3PO4∙12H2O). Because fluoride could enhance the stability of HA, 5 g/l NaF was also 

added into the PEO electrolyte. The unipolar pulsed current regime (frequency: 3000 Hz, duty 

cycle: 10%, current density: 30 mA/cm2) was utilised as suggested in Chapters 5 and 6 to 

fabricate the PEO coatings. 

Then the PEO coated samples were thoroughly rinsed before being subjected to the HA 
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deposition, which was performed in an aqueous electrolyte composed of 0.043 M 

Ca(NO3)·4H2O, 0.025 M NH4H2PO4 and 0.1 M NaNO3. The pH value of the electrolyte was 

adjusted to 5.0 at room temperature using tris(hydroxymethyl)amino methane 

(HOCH2)3CNH2). In the HA deposition, which was conduced using Solatron 1260 potentiastat 

under galvanostatic mode with the current density of 0.04 mA/cm2, the PEO coated samples 

were the cathode and a stainless steel plate was the anode. Also a saturated calomel 

electrode (SCE) was used to record the potential transient during the CED treatment. The 

deposition process was conducted at 75±3 oC for 30 minutes. 

The tensile tests and rotating bending fatigue experiments were conducted accoring to the 

procedures described in Chapter 4. The tensile tests were carried out at a strain rate of 5 

mm/min. For the evaluation of the fatigue strength, various dynamic loads were applied with 

frequency of 100 Hz and stress ratio of -1, and the corresponding number of cycles to fracture 

was recorded. The basic relationships used for the stress calculation can be found in 

Appendix A. After the tests, the fractured topography was studied using SEM to reveal the 

effects of the coating on fatigue crack initiation, propagation and final fracture. 

9.2 Potential Transient during CED Treatment 

 
Figure 9-1 Potential transient during the galvanostatic CED process with current density of 

0.4 mA/cm2 utilised in the present study  

The PEO treatment in the present study was the same as that described in Chapter 8, the 
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voltage transient of the PEO process exhibited similar behaviour to that shown in Figure 8-1 

and is therefore, not presented here. The potential transient of the galavanostatic CED 

process conducted in the present study is presented in Figure 9-1. As can be seen, once the 

CED process started, the potential shifted rapidly in the positive direction at a rate of 1.56 V/s 

from -4.6 V vs. SCE to about -3.4 V vs. SCE within 1 second. Afterwards, the potential 

increased much slower at a rate of <0.02 V/s to -3.1 V vs. SCE, and finally stabilised around 

-2.86 V vs. SCE, indicating that the HA deposition finally reached a steady state. Due to the 

deposition of the HA layer, the total coating thickness increased, which drove the potential to 

more noble values, as suggested by Shi et al.[98].  

9.3. Coating Morphology 

The surface of the PEO coating exhibited a smooth white appearance, and after the CED 

treatment, island-like features could be observed with a naked eye. The surface 

morphologies of the coated samples are shown in Figure 9-2. The PEO coating was 

produced using the same parameters as discussed in Chapter 8, and no inconsistence was 

found in surface morphology of the coatings produced here and those presented in Chapter 

8.. Nevertheless, the PEO coating morphology is also presented in this chapter for the sake 

of comparison. Similar with the results presented in Chapter 8, crater-like porous 

microstructures can be observed on the surface of the PEO coating (Figure 9-2(a)) with 

cracks appeared around the craters (Figure 9-2(b)). Such morphologies could not be 

observed any more after the CED treatment. Instead, the sample surface featured island-like 

structures (Figure 9-2(c)). Higher magnification SEM image showed that the island-like 

structure was actually clusters of needle- and plate-shaped crystals, as shown in Figure 

9-2(d). This observation was different with the potentiostatic CED coating presented in 

Chapter 8, where only needle-like crystals were observed (Figure 8-2). Therefore, both one- 

and two-dimensional growth of HA crystals after the nucleation could be envisaged according 

to the models proposed by Eliaz [216], and Dorozhkin [217].  Moreover, the large unfilled 

space between the crystal dendrites exhibited by the potentiostatic CED coating (Figure 8-2) 

could no longer be identified in the galavanostatic CED coating (Figure 9-2). As a result, the 

defects on the coating surface were reduced by the CED treatment, which would facilitate the 

passivation of the sample, as consistent with the analysis of Figure 9-1.  
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Figure 9-2 Surface morphologies of (a),(b) PEO coating and (c),(d) PEO coating following HA 

deposition. 

The cross-sectional SEM images of the PEO coated samples before and after CED treatment 

are shown in Figure 9-3. Similar to the results presented in Figure 8-2, two different regions 

could be identified within the PEO coating based on the difference of porosity, as marked in 

Figure 9-3(a). The PEO coating appears to be bonded well with the substrate, even though 

there is a small region of de-bonding marked as ‘Crack’ in Figure 9-3(a). Nevertheless, the 

compact region itself is continuous. Examination of the cross-sectional morphology of the 

PEO coating after CED treatment revealed that the HA layer was deposited on top of the PEO 

coating, as shown between the two dashed lines in Figure 9-3(b). From the cross sectional 

image, it could be determined that the PEO coating of 21.24±2.9 µm is covered by a CED 

layer of a thickness of 1.50±0.23 µm. This thin CED layer could cause several effects. On one 

hand, the CED layer itself appears much more compact compared with the porous PEO 

coating (Figure 9-3). On the other hand, the pores within the PEO coating are partly filled 
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after CED treatment, resulting in a finer porosity, as determined from Figure 9-3. It could be 

predicted that the compact coating would inhibit the penetration of corrosive medium towards 

the substrate, thus improving the corrosion resistance of the substrate. Again, such 

observations provide further explanation to the potential transient behaviour during the CED 

process (Figure 9-1). 

 
Figure 9-3 Cross sectional morphologies of PEO coatings before (a) and after (b) CED 

treatment 

Apart from the positive effect of reduced defects, CED treatment also induced detrimental 

effects to the PEO coating. In detail, the continuity of the compact region within the PEO 

coating as discussed above was compromised; as a result, the two regions of the PEO 

coating could not be observed any more. Yet worse, some areas of delamination of the 

coatings could be determined, as shown in Figure 9-3(b). Such delamination must be raised 

during the CED process considering the much better bonding exhibited by the single PEO 

coating, as shown in Figure 9-3(a). In the CED process, considerable amount of H2 gas was 

generated at the interface between the substrate and PEO coating. Such gas was initially 

accumulated underneath the PEO coating because of the continuity of the compact PEO 

region and the hydrogen pressure was increased gradually, causing local delamination of the 

PEO coating from the substrate. When the pressure was high enough, the hydrogen gas 

would be liberated out of the sample surface and such phenomenon had been observed 

throughout the CED process. During the CED treatment, the gaps between the coating and 

substrate were filled with electrolyte. Such process would compromise the increasing 

potential transient of the CED process presented in Figure 9-1. Moreover, such delamination 
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could possibly deteriorate the corrosion resistance of the coated samples.  

The XRD patterns of the PEO coated samples before and after CED treatment are presented 

in Figure 9-4.  By comparing the two patterns, it was clear that randomly oriented HA 

crystals have been formed during the CED treatment. The mean HA crystallite size of 77.7 

nm could be calculated according to the Scherrer equation. Such crystallite size is 

significantly larger than that observed in Chapter 8, which might be attributed to a longer 

crystal growth time allowed by the CED treatment (10 minutes longer here than that applied 

in Chapter 8). Moreover, after comparing the patterns shown in Figure 9-4 with the standard 

diffraction pattern of perfect HA crystal, it was found that all the peaks associated with the HA 

crystals were shifted to the positions of higher 2θ angles. For example, the strongest HA peak 

at 2θ=26.042o in Figure 9-4 should be positioned at 2θ=25.897o for the perfect HA crystal. As 

a hexagonal packed crystal, the inter-lattice spacing of the HA crystals could be calculated by 

[229]: 

 
𝑑 =

1

√
4
3

(
ℎ2 + ℎ𝑘 + 𝑘2

𝑎2 ) +
𝑙2

𝑐2

 ( 9.1 ) 

where 𝑑 is the inter-lattice spacing of (ℎ𝑘𝑙) lattice plane, 𝑎 and 𝑐 are the lattice constants 

of HA crystal. The shifts of the X-ray diffraction peaks indicated that the HA crystals deposited 

in the presented study were strained, and a smaller inter-lattice spacing could be predicted 

according to the Braggers Law. According to Equation ( 9.1 ), smaller 𝑎 and 𝑐 could be 

predicted compared with the perfect crystals. Therefore, compressive stress was imposed to 

the HA crystals deposited in the CED process. Such compressive stress may be attributed to 

the substitution of OH- with other cations, possibly F-. Actually, such substitution could readily 

occur on thermodynamic grounds (ΔE=-0.4…-0.6) kJ/mol) [230]. After incorporation of F-, the 

lattice parameters are changed accordingly. Since F- (1.32 Å) is smaller than OH- (1.68 Å), 

such substitution would result in the contraction in the a-axis [230]. Since F only substituted a 

small fraction of the total OH groups, the crystals were still identified as HA rather than 

fluorapatite from the XRD patterns (Figure 9-4). 



Chapter 9 Mechanical properties of cp Mg with duplex HA/PEO coatings 
 

158 
 

 
Figure 9-4 XRD patterns of the PEO coated samples before and after CED treatment 

9.4 Tensile Mechanical Properties  

Tensile stress vs. strain curves of the samples tested are presented in Figure 9-5. It is clear 

that the stress firstly increased with strain and, when the samples were strained by >25%, the 

stress began to decrease until the final failure. Although smooth curves were obtained, their 

behaviour was determined by different mechanisms, and even continuously increasing 

behaviour was driven by two different reasons. Generally, two stages are present in a tensile 

test, elastic and plastic deformation. Therefore, the information regarding the elastic 

properties (elastic modulus (E) and yield strength (σY)) and those associated with plastic 

deformation (ultimate tensile strength (σUTS) and elongation (ε)) could be derived from the 

tensile curves. Since there is no apparent elastic-plastic transition of the tensile curves for all 

the samples, the flow stress (σ0) (flow stress is defined as the mean of σUTS and the stress at 

which deviation from Hookean behavior is first observed) is used to represent their yield 

strength, and the results are summarized in Table 9-1. For the bare substrate, the tensile 

stress increased linearly following Hooke’s law in the elastic region, as exhibited in Figure 

9-5, the slope of which was taken as E and its value is listed in Table 9-1. The deformation 

caused in this elastic stage was reversible upon the removal of external stress. However, 

irreversible damage might be induced to the coated samples even in this stage of low strain 
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[231] , and large cracks would be likely to form in the coating due to the elastic modulus 

mismatch between coating/substrate. During the tensile test, as the sample is strained by an 

external load, a shear stress will develop at the coating/substrate interface; therefore a tensile 

stress is induced within the coating. At sufficient load, the coating begins to crack as the 

induced tensile stress exceeds the tensile strength of the coating [231]. In the present study, 

the cracking of the coating was reflected by the tensile curves. While the tensile curve of the 

bare magnesium was pretty smooth in the elastic region, ‘dog-leg’ behaviour could be 

observed in the tensile curves of the two coated samples, as presented in Figure 9-5 (b), 

which might be attributed to periodic cracking of the coatings. The presence of such ‘dog-leg’ 

behavior makes the identification of elastic modulus difficult. Nevertheless, the amplitudes of 

their elastic modulus are still comparable through detailed analysis. If the coated samples 

were seen as laminated composites, their effective elastic modulus Ec could be calculated by 

the following equation [232]: 

 𝐸𝑐 = ∑ 𝑉𝑖𝐸𝑖

𝑛

𝑖=1

 ( 9.2 ) 

where 𝑽𝒊  and 𝑬𝒊 are the volume fraction and elastic modulus of the 𝑖𝑡ℎ  component, 

respectively. In the present study, 𝑖 = 1,2,3 correspond to the bare substrate, PEO coated 

substrate and PEO+CED treated substrate, respectively. Since the elastic modulus of MgO in 

the PEO coating was 249 GPa [233], much higher than that of Mg (~45 GPa) and HA (~100 

GPa) [234], significantly higher effective elastic modulus of the coated magnesium could be 

obtained according to Equation (9.2). To this end, a higher stress was required to strain the 

sample to the same extent, and resulting higher slopes compared with that of the magnesium 

substrate, as indicated by the first set of dashed lines in Figure 9-5 (b). So it could be 

concluded that the elastic modulus of the substrate was enhanced by the PEO coating, and 

further increased by the subsequent CED treatment. Such observation was consistent with 

the results of nanoindentation tests reported by Khan et al. [235].  

When the samples were further strained, cracks could be formed at some localised sites of 

the top coating, which would cause decrease of effective elastic modulus according to the 

following equation [234]: 

 𝐸𝑐
′ = 𝐸𝑐(1 − 𝑓𝑁𝑐3) ( 9.3 ) 
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where 𝐸𝑐 is the original effective elastic modulus of the specimen without cracking, 𝑁 is the 

volumetric crack density, 𝑐 is proportional to the crack length and f is a function of crack 

orientation. Such decreased effective elastic modulus was reflected by the decreased slopes 

on the tensile curves, as shown by the second set of dashed lines in Figure 9-5 (b). As 

tension proceeded, the un-cracked coating helped in bearing the stress, causing an increase 

in the slope of the tensile curves, as presented by the set of dash lines 3 in Figure 9-5 (b). 

This process repeated, and sequentially cracked the majority of the coating; therefore, such 

‘dog-leg’ behaviour was not apparent in the tensile curves of the later stages (Figure 9-5).  It 

is worthwhile mentioning that such periodic sequential cracking of brittle coatings on elastic 

substrates was also proposed by Thouless et al. [236, 237] through theoretical calculation. 

Actually, formation of cracks during the tensile experiment could be observed on the sample 

surface, which is presented in Figure 9-6.  

When the bare magnesium substrate was strained beyond the elastic region, it underwent 

plastic deformation. As shown in Figure 9-5, increasing stress with strain was also observed 

at this stage; this was believed to be driven by work hardening mechanism, as described by 

the Ramberg-Osgood equation [238]: 

 ε =
𝜎

𝐸
+ (

𝜎

𝐾
)

1
𝑛 ( 9.4 ) 

where σ is the stress at plastic strain 𝜀, 𝐾 is the strength co-efficient and 𝑛 is the work 

hardening exponent. The decreasing stress presented at the final stage of the tensile curves 

was due to the formation of fatal cracks and/or localised plastic deformation of the sample. 

Also at this stage, large cracks became apparent on the sample surface, as presented in 

Figure 9-6. Regardless of the mechanisms, the maximum stress at each curve was attributed 

to σUTS, and the results are summarised in Table 9-1. It is obvious that after the PEO 

treatment, the elongation of the system at the UTS slightly increased from 33.1% to 36.3%, 

and was marginally decreased to 35.7% by the subsequent CED treatment. The σUTS values 

of 157.2 MPa and 158.0 MPa were derived for the cp magnesium samples before and after 

the PEO treatment, respectively, indicating the σUTS was not affected by the PEO coating. 

However, after CED treatment, the σUTS of the sample increased by almost 10 MPa to 166.4 

MPa, as shown in Figure 9-5 and Table 9-1.  
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Figure 9-5 (a) Tensile curves of the samples used in the present study (a); (b) enlarged view 

of the initial parts of the curves as shown in (a) 

 
Figure 9-6 Surface of the PEO coated cp magnesium during the tensile test. (The elongation 

is 7.5%) 
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Table 9-1 Summary of tensile mechanical properties of the samples 

 E /GPa σ0 /MPa σUTS /MPa ε /% 

Bare Mg 43.4 98.5 157.2 33.1 

Mg-PEO - 90.5 158.0 36.3 

Mg-PEO-CED - 92.5 166.4 35.7 

With Figure 9-6 presenting only the macroscopic surface appearance of the coated samples 

during the tensile tests, nothing about the micro-structure of the coating could be ascertained. 

Therefore, following the tests, the samples were subjected to SEM observation to reveal the 

changes of the coating on the micro scale. A typical appearance of the PEO coated sample 

after the tensile test is presented in Figure 9-7, illustrating the surface damage characteristic 

of both PEO and PEO+CED coatings. As expected (and consistent with the above analysis), 

large cracks were present on the coating surface, most of which were perpendicular to the 

direction of tension. Roughly, these cracks were in parallel, leaving regular spacing between 

each other (Figure 9-7). Such separation of the cracks has been theoretically discussed by 

Agrawal and Raj [239] based on a sinusoidal shear stress distribution, which would cause 

midpoint cracking during the tensile test. Similar coating crack behaviour and appearance 

has also been experimentally observed and reported by Asquith et al [231] and Hiromoto et al. 

[240]. Although the cracks would deteriorate the corrosion protection ability of the coatings, 

they are unavoidable because they are caused by the mismatch of the elastic moduli 

between the metallic substrate and ceramic coating, as suggested in the literature [236, 237, 

241, 242].  

 
Figure 9-7 Cracking patterns in the PEO coating after the tensile test 
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From the analysis of tensile curves, it was found that not only the initial stage, but also the 

final fracture of the samples was affected by the surface coatings. In the present study, the 

fracture topography of the samples was investigated using SEM as well, to reveal the 

influence of coating on the fracture mechanics. Figure 9-8 presents the macro-scale fracture 

topography of the samples. Because the two coated samples presented similar macro 

features, only the topography of the PEO+CED treated sample is shown here (Figure 9-8(b)). 

It could be clearly seen that, due to the presence of top coatings, the fracture behaviour was 

significantly altered compared with that of the bare magnesium sample. The latter exhibited a 

flat fracture plane forming an angle of ~45o with respect to the tensile direction, indicating that 

the failure took place along the plane of maximum shear stress. However, multiple slip planes 

were observed in the coated samples, as shown in Figure 9-8(b). In the tensile tests, two 

processes occurred simultaneously: formation and propagation of interior micro cracks and 

cracking of the coating surface (Figure 9-7). The cracks formed in the ceramic coating (due 

to elastic modulus mismatch) would easily propagate into the metallic substrate due to good 

metal-oxide bonding (Figure 9-3), causing multiple notches to the sample. Each notch would 

grow along its preferable slip plane from the surface inwards the sample interior, which might 

eventually meet with the slip plane of other notches, thus forming multiple fracture surfaces, 

as presented in Figure 9-8. 

 
Figure 9-8 Macroscale fracture appearance of (a) bare magnesium and (b) PEO+CED 

treated magnesium samples after tensile tests 

The above explanation relies heavily on the formation of notches at the interface of substrate 
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and coating. Actually, such features could be identified on the surface of the coating after the 

fracture, as presented in Figure 9-9. Apparently, the deep crack circled by the dashed line in 

Figure 9-9 (a) is not restricted within the top coating, but has grown into the substrate, 

causing the notch effect, as mentioned above. After the removal of the top coating, similar 

crack became apparent on the sample surface (Figure 9-9 (c)). During the tensile test, the 

stress at the tip of these cracks would be concentrated, facilitating the propagation of these 

cracks and final failure of the samples, as observed in Figure 9-9 (b). 

 
Figure 9-9 (a) and (c) formation of interface notches during tensile tests and (b) fracture of the 

sample at one of the interface notches 

The tensile fracture topographies of the samples on micro scale are presented in Figure 9-10. 

As could be observed, the fracture surface consisted of numerous cleavage marks, which is 

typical for the hexagonal close-packed (HCP) magnesium crystals. In the HCP crystals, there 

are only three slip systems available at room temperature, and the deformation by dislocation 

slip cannot sustain large strains. Twinning, as an important deformation mechanism, could be 
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activated and would contribute to the sustained deformation of magnesium. The footprint of 

deformation twinning in the fracture surface of magnesium is well documented by other 

researchers [243]. Apart from the cleavage features, tiny dimples are also produced in the 

tensile test, as marked in the magnified fracture topography (Figure 9-10 (b)). Formation of 

dimples could be attributed to coalescence of microvoids, and is indicative of local plastic 

deformation. Since the coating only modified the surface structure of the substrate, its bulk 

microstructure remained unaltered, the fracture topography of the coated samples exhibited 

similar fracture behaviour to that of the bare substrate, as shown in Figure 9-10 (c). 

 
Figure 9-10 Secondary electron images of tensile fracture topography of (a) (b) pure 

magnesium, and (c) PEO coated sample 

9.5 Fatigue Properties 

The tensile tests provided the static strength of the samples, this, however, only roughly 

demonstrated the applicability of coated magnesium in biomedical applicaitons from the 
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mechanical standpoint because of the dynamically stressed service environment of 

load-bearing implants, as already explained in Chapter 3 and highlighted at the beginning of 

this chapter. The dependency of applied stress on the number of cycles to failure (S-N curves) 

for the bare magnesium and PEO+CED treated samples are presented Figure 9-11. The S-N 

fatigue curve of the PEO+CED treated sample after 2 hours in vitro immersion in the 

simulated body fluid at 37 oC is also included in Figure 9-11, to reveal the effects of corrosion 

on the fatigue properties. The in vitro immersion for 2 hours was selected here based on the 

electrochemical corrosion results presented in Chapter 8, during which apparent coating 

degradation was observed (Figure 8-9).  

 
Figure 9-11 S-N fatigue curves of the samples studied, the point defined by the two dashed 
red lines indicates the requirement on the load-bearing implants in a service life of 12 weeks 

based on the results published in [15, 162] 

It took longer for all the samples before fracture failure when a lower external stress was 

applied during the fatigue test, and no fracture could be observed on the samples even after 

107 cycles when the stress was low enough, e.g. the sample with duplex coatings did not 

break at an external stress amplitude of 10 MPa (Figure 9-11). By comparing the S-N curve 

of the substrate with that of the PEO+CED coated samples, it was found that the top coatings 
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tend to deteriorate the fatigue performance of cp magnesium in the region of high cycles, i.e. 

lower fatigue strength limit (i.e survival at 107 stress cycles) was observed for the coated 

sample compared with the bare substrate. Similar effects of a porous coating on the fatigue 

performance of the substrate were also reported by other researchers [109, 111, 165, 244]. 

Specifically, the fatigue strength of the bare magnesium decreased from 20 MPa to 10 MPa 

after PEO+CED treatment. However, the fatigue performance of the bare magnesium was 

enhanced slightly by the surface treatments in the low cycle region (σ>σY), as indicated by 

Figure 9-11. The worst fatigue performance was observed after 2 hours’ in vitro immersion 

test when the applied external stress amplitude was >15 MPa. The S-N curves of the 

PEO+CED treated sample before and after in vitro corrosion almost coincided with each 

other when external stress amplitude was <15 MPa, indicating similar fatigue performance. A 

fatigue strength limit of 10 MPa was produced from the coated sample after in vitro corrosion 

test (Figure 9-11). By comparing the cyclic fatigue strength limit with the static tensile 

strength of the samples, it was found that the fracture strength in the fatigue condition was 

only around 10% of that under the static tensile condition. Nevertheless, the fatigue strength 

limit was still higher than that required in the daily activities of the patient, as indicated in 

Figure 9-11. Therefore, the applicability of magnesium based implants using the PEO+CED 

surface treatment was demonstrated from the viewpoint of fatigue performance. 

Up to now, there is considerable debate concerning the cause of fatigue reduction of the PEO 

coated substrates. Nevertheless, it was still acknowledged that three factors may be 

responsible for such change in fatigue performance [244]: (a) the change in the 

microstructure of the underlying substrate as a consequence of surface treatment, (b) 

formation of defects, like notches, on the surface of the magnesium substrate during the 

coating process and (c) stress concentrations at the interface to the porous layer (and within 

the coating). Actually, accumulation of internal stress was reported in Chapter 6, where 

compressive stress was identified at the surface of the underlying magnesium substrate. 

Compressive internal stress was also found within the top HA layer from the analysis of XRD 

results in Section 9.3. The cross sectional SEM images of the coatings (Figure 9-3) indicated 

rough coating surface and coating/substrate interface, inducing numerous defects.  Based 

on these observations, factors (b) and (c) could be originated in the PEO process, affecting 

the fatigue performance. In fact, Apachitei et al [109] had attributed the reduced fatigue 

strength to the combination of these two factors. How these factors may influence the fatigue 
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performance will be discussed in the following part of this chapter through the analysis of the 

fatigue fractographs of the samples together with corresponding S-N curves (Figure 9-11). 

 
Figure 9-12 (a): Fatigue fractography analysis of the PEO+CED treated magnesium at 

low-cycle condition (applied stress of 40 MPa) and magnified SEM images of corresponding 
regions (b),(c) and (d) in (a). 

The fatigue fractography analysis of the PEO+CED treated sample in the low cycle region is 

shown in Figure 9-12 (a), in which three regions could be identified and are marked as region 

(b), (c) and (d). These three regions could be seen, respectively, as the footprints of the three 

stages in the fatigue process, i.e. crack initiation, crack propagation and final fracture. 

Therefore, fatigue life of the sample was determined by the three stages. It is evident that the 

cracks were firstly initiated (region (a)), then propagate to the base metal (region (c)), leading 

to the final failure at the centre of the sample (region (d)). To clearly reveal the effect of the 

fatigue process, magnified features of the three regions are also presented in Figure 9-12.  

One of the crack initiation sites can be identified in Figure 9-12 (b). Even though part of the 
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coating is damaged by the final fracture, most of it is still bonding well with the substrate 

(Figure 9-12 (b)). A crack with length of >20 μm is evident in Figure 9-12 (b), which must 

have been initiated at the top coating and propagated down to the base metal considering the 

well-bonded coating after fracture  The propagation of the cracks formed in the crack 

initiation sites was characterised by the beach marks ( Region (c) of Figure 9-12(a)). 

Simultaneously, crack coalescence also took place, as shown in Figure 9-12 (c). The 

ultimate failure of the sample was manifested in the appearance of intergranular fracture 

facets, in contrast with the ductile fracture observed in the static tensile test.  

 
Figure 9-13 (a) Fractography analysis of the PEO+CED treated magnesium sample failed in 
the high cycle fatigue region (applied stress of 20 MPa); (b) crack propagation beach marks; 

(c) a typical crack nucleation site and (d) cracks penetrating into the substrate. 

However, when the applied external stress was reduced to 20 MPa, different appearance of 

fatigue fracture was produced, as shown in Figure 9-13. The three regions mentioned in 

Figure 9-12 are not quite distinguishable. Unlike the numerous crack initiation sites observed 
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in Figure 9-12, much less crack initiation sites could be observed, as being circled by dashed 

lines in Figure 9-13 (a). A magnified image of one of the sites is presented in Figure 9-13 (c), 

where it is clear that the crack originated at the coating/substrate interface (Figure 9-13 (d)), 

which could be judged by noticeable delamination of the top coating from the substrate 

(Figure 9-13 (c)). Similar with the observations of Figure 9-12 (c), beach marks (indicated by 

the arrows in Figure 9-13(b)) were also identified due to the crack propagation process.  

The fatigue fractograpy analysis of corroded sample with PEO+CED coatings is presented in 

Figure 9-14. Due to the presence of corrosion effect, totally different fatigue fracture 

appearance was observed. Based on the observations presented in Figure 7-13, the coating 

was also delaminated from the substrate because of cathodic hydrogen liberation during 

corrosion process. Yet worse, the corrosion process left numerous corrosion pits that could 

penetrate to the magnesium substrate. Such corrosion pits could provide notch-like effect to 

the materials under fatigue test. Therefore, the crack initiation process was much easier than 

for uncorroded samples, causing worse fatigue performance, as shown in Figure 9-11. 

 
Figure 9-14 (a) Fatigue fractograpy analysis of the corroded sample with PEO+CED coating 

and (b) magnified image showing corrosion effects. (The applied external stress for the 
fatigue test is 15 MPa) 

The above analysis concluded that the fatigue fracture behaviour of the PEO+CED treated 

sample was different when different external stress was applied. In the low cycle region (high 

external stress) condition, cracks were initiated within the brittle coating, while 

coating/substrate interface provided preferable crack initiation sites for the low stress (20 
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MPa) condition. Such conclusions could be confined by examination of cross sectional 

images of the samples after fatigue fracture. The samples were sectioned at a distance away 

from the final fracture surface to avoid its influence on the cross-sectional features. The 

comparison of the cross-sectional images is exhibited in Figure 9-15. Consistent with the 

features presented in Figures 9-12 and 9-13, the bonding of the coating with the substrate at 

the external stress of 40 MPa was not affected. Therefore, the cracks formed in the brittle 

coating could easily penetrate into the substrate while such penetration was unlikely when 

the stress was reduced to 20 MPa because of serious delamination (Figure 9-15 (b)).  

According to the above observations, the compressive residual stress (see Chapter 6) 

induced to the underlying substrate was present throughout the low-cycle fatigue life, which 

would inhibit the crack formation and propagation. Therefore, a better fatigue performance 

was observed in this low-cycle region compared with the bare substrate of free surface that 

could not provide any inhibition to crack development. In the high cycles region (low applied 

stress) however, the effect of compressive residual stress was likely to be eliminated due to 

residual stress relaxation. In fact, the relaxation of residual stress in the high cycle fatigue test 

has been extensively reported in the literature [245, 246]. Also, due to the relaxation of 

residual stress, the coating became delaminated from the substrate, as observed in Figure 

9-15 (b). In this case, another factor induced by the PEO process, increased interfacial 

roughness, determined the fatigue behaviour. The rough interface could be seen as 

preformed notched defects. Therefore, fatigue cracks were more readily initiated, causing a 

worse fatigue performance as compared with the finely polished uncoated substrate, 

according to the following equation [247]: 

 𝜎𝑚𝑎𝑥 = 𝜎(1 + 2√𝑎/𝜌) ( 9.5 ) 

where 𝜎𝑚𝑎𝑥 is the actual stress at the tip of the crack, 𝜎 is the applied external stress, 2𝑎 

is the crack length and 𝜌 is the radius of curvature of the crack tip. In the present study, 

infinite 𝜌 could be expected for the finely polished surface of the uncoated magnesium; 

therefore, the stress is not concentrated at the sample surface. However, notches would be 

induced at the coating/substrate interface, as be marked in Figure 9-15 (a). Since the tips of 

the notches are sharp, a relatively small 𝜌 could be expected. Therefore, the stress at these 

tips is substantially concentrated, favouring crack formation and propagation.  

After in vitro corrosion, the effect of coating was compromised by the damage induced by 
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corrosion process. Corrosion channels could be identified after in vitro immersion of the 

PEO+CED treated samples Figure 9-15 (c), which were due to periodic fracture of the  HA 

layer. At the bottom of such corrosion channels, large cracks were observed to penetrate into 

the substrate, which could possibly induce the final fracture. The applied stress would be 

concentrated at the tips of the corrosion cracks (notches), causing the local stress to become 

much higher than the applied nominal stress, allowing fast crack development (initiation and 

propagation). It should be mentioned here that the notches formed in the corrosion process 

were sharper and deeper than those mentioned in the above paragraph, thus being much 

more detrimental to the fatigue performance, according to Equation (9.4).Therefore, the 

worst fatigue performance was observed from the corroded samples as shown in Figure 

9-11.  

 
Figure 9-15 Cross-sectional SEM images of PEO+CED treated samples after fatigue fracture: 

(a) 40 MPa, (b) 20 MPa and (c) fatigue cross sectional image of corroded sample with 
external stress of 20 MPa.  

9.6 Summary 

In the present Chapter, duplex PEO+HA coatings were successfully fabricated on the top of 
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cp magnesium and the static tensile and cyclic fatigue mechanical properties of the samples 

were evaluated. The influence of top coatings on the mechanical properties of the samples 

was discussed, and the findings are as follows: 

(a) The subsequent CED treatment could provide effective sealing to the pores of the 

PEO coating. However, the coating bonding with the substrate was deteriorated due 

to hydrogen liberation at the coating/substrate interface during the CED process. 

(b) The static tensile mechanical properties of the bare substrate were not significantly 

affected by the top coatings. However, the periodic cracking of the top coatings due to 

elastic moduli mismatch affected the fracture behaviour. 

(c) The fatigue performance of the bare substrate was enhanced by the top coatings in 

the low-cycle region possibly due to the presence of compressive residual stress. 

However, a reduced fatigue limit was observed in the high-cycle region because of 

increased roughness of the coating/substrate interface. 

(d) The fatigue performance of the coated samples was further reduced by the 

subsequent in vitro corrosion process, with fatigue cracks being initiated at the 

corrosion pits.  

(e) The applicability of the surface treated cp magnesium in biomedical applications was 

demonstrated from the mechanical standpoint. 

The corrosion fatigue tests that involved evaluation of fatigue performance during corrosion 

exposure could be more desirable for practical purpose, which, however, would be a subject 

of future work. 
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Conclusions and Perspectives 

Conclusions 

In the present project, the PEO processing parameters have been progressively optimised to 

facilitate the development of biodegradable magnesium implants with their degradation rate 

and biological response controlled by engineered surfaces based on PEO coatings. Firstly, 

one promising electrolyte composed of only physiologically friendly compounds has been 

selected from the modification of conventional phosphate based electrolyte. Then, the effects 

of current regime parameters have been studied by comparing coatings produced with 

different PEO current waveforms. Finally, a post treatment producing a crystalline HA layer on 

the PEO coating has also been investigated in order to enhance the bioactive properties of 

cp-Mg. The optimised PEO processing parameters have been selected based on two basic 

criteria through the present project: (i) the process stability should not be compromised and (ii) 

the corrosion resistance of the cp magnesium substrate should be improved. To this end, two 

basic experimental procedures have been conducted: PEO process characterisation and 

evaluation of resulting coatings. The mechanical properties of the magnesium substrates with 

PEO+HA coatings produced using the optimised parameters have also been studied to 

demonstrate their applicability in the biomedical area. The findings of this project are 

summarised in the following part of this chapter. 

i) The electrolyte used for the PEO treatment of magnesium must be capable of 

providing a wide region of stable passivation; otherwise PEO coating could not be 

produced. For this reason, the electrolyte composed of Ca(NO3)2 , NaOH, and 

Na3PO4∙12H2O is not suitable for the coating production on cp magnesium using 

PEO treatment. 

ii) Current regimes, i.e. DC (with different current density), pulse unipolar (with 

various pulse frequency and duty cycle) and pulse bipolar (with different negative 

biasing amplitude) strongly affect the PEO process and final coating 

characteristics in the following ways:  

a) Increasing the DC current densities during the PEO process would 

possibly affect the process stability, especially at the later stage of PEO 

treatment. Correspondingly, coatings produced at a current density of 30 
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mA/cm2 provide superior corrosion protection compared with those 

produced at higher current densities of 40 mA/cm2 and 50 mA/cm2. 

b) Compared with DC PEO coatings, those produced under pulsed unipolar 

current conditions possess better corrosion protection. After characterising 

the coatings produced at various frequencies from 100 Hz to 5000 Hz, the 

pulsing frequency is optimised at 3000 Hz, which results in lower residual 

stress in the PEO coating and the best corrosion performance. 

c) When introducing negative biasing to the optimised unipolar current 

(frequency 3000 Hz, current density of 30 mA/cm2 and duty cycle of 10%), 

it was found that the integrity of the coating deteriorated, due to hydrogen 

liberation at the coating/substrate interface during the negative bias step. 

Correspondingly, a worse in vitro corrosion performance was observed. It 

was concluded therefore, that the bipolar PEO process is not an option for 

the present electrolyte. 

d) In DC PEO treatment, only Mg, O and P were identified in the resulting 

coatings, even though a significant amount of Ca was present in the 

electrolyte. After applying pulsed PEO treatment, Ca was successfully 

incorporated into the coating, and the Ca content seems to be independent 

of the pulsing parameters (frequency, negative biasing current density).  

e) Even though the incorporation of Ca and P in the coating was successful, 

the formation of HA in the PEO coating has been failed and the coatings 

are mainly composed of MgO. 

iii) Subsequent treatment using a cathodic electrodeposition (CED) technique 

successfully applied a HA layer on top of the PEO coating. Such relatively dense 

coating could partially seal the pores and defects within the PEO coating. 

Consequently, the corrosion resistance of the coated sample is further increased 

by ~22 times compared with that of the PEO coated cp-Mg.  

iv) The duplex PEO+HA coatings on cp-Mg could only provide temporary corrosion 

protection, exhibiting a high degradation rate in the corrosive simulated body fluid 

environment. 

v) Several stages could possibly take place during the corrosion process of the 

surface of duplex PEO+CED treated cp magnesium. Initially, the corrosive 

medium penetrates through the top HA coating towards the PEO coating and 



Conclusions and Perspectives 
 

176 
 

substrate. Then the PEO coating is dissolved, resulting in larger surface defects. 

Due to the PEO coating dissolution, the top HA layer becomes detached from the 

surface, reducing its corrosion resistance. When the corrosive medium reaches 

the coating/substrate interface, the substrate starts corroding, leading to partial 

delamination of the coating due to hydrogen liberation and formation of corrosion 

pits.  

vi) A minor increase of the static tensile strength of the bare magnesium is observed 

after the PEO+CED treatment. However, the fracture behaviour is significantly 

altered by the top coatings. Periodic cracking of the coatings is observed and 

multiple fracture surfaces are present on the coated samples. 

vii) The fatigue performance of the bare substrate was enhanced by the coatings in 

the low cycle region possibly due to the induction of compressive residual stress. 

But reduced fatigue limit was observed in the high cycles region because of 

increased roughness of the coating/substrate interface. The fatigue performance 

of coated samples was further reduced by the subsequent in vitro corrosion 

process, where the corrosion pits served as preformed notches at the 

coating/substrate interface. Nevertheless, the static/cyclic mechanical properties 

can still satisfy the practical requirement for load-bearing biomedical applications. 

Future Work 

The corrosion resistance of cp magnesium in SBF has been improved by the optimised PEO 

process and further enhanced by subsequent CED post treatment to form a HA film. However, 

its degradation rate in the simulated physiological environment is still too fast for future 

clinical applications. Further studies are still needed to reduce the corrosion rate, which 

remains the priority of future research. The high degradation rate of PEO-coated magnesium 

is determined by several factors, which indicate further research directions. Firstly, the 

optimised PEO processing parameters would be applied on other corrosion resistant 

magnesium alloys containing biologically friendly elements (like Ca, Zn, Mn) to evaluate their 

universality. Secondly, formation of stable phases other than MgO would possibly reduce the 

degradation rate because MgO will essentially be dissolved in the SBF at a pH of 7.4; such a 

strategy could be achieved by addition of compounds formed by oxidising electrolyte anions 

(like F- or SiO3
2-) that could easily passivate magnesium in the existing electrolyte. Thirdly, the 
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defects (pores and cracks) within the PEO coatings should be reduced or ideally eliminated 

the penetration of corrosive medium towards the substrate.  

The post PEO treatment CED-HA film could enhance the bioactivity of the coated samples. 

However, two contradictory effects could influence the corrosion performance of the 

substrates. On one hand, defects within the PEO coating would be partially sealed, reducing 

the corrosion rate. On the other hand, liberation of excess hydrogen in the deposition process 

could deteriorate the bonding of PEO coating with the substrate, which is detrimental for the 

corrosion protection. Therefore, it is an essential requirement to balance the two aspects, 

probably by adjusting the deposition time and current density. 

In terms of coating properties, the present work only evaluates the in vitro corrosion 

performance of the coated samples using electrochemical methods. However, the toxicity of 

the coated samples remains to be assessed, which could be conducted through simple in 

vitro cell culture experiments or through practical in vivo implant operation.  

The effects of pre-corrosion on the fatigue performance of the coated samples were 

investigated in the present project. Corrosion fatigue tests that involved fatigue performance 

during exposure to the corrosion environment are more desirable for practical purpose, which 

should be planned as future work. 
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Appendix A Calculation of stress distribution in the fatigue test 

 

This appendix deals with the calculation of stress distribution during the rotating bending 

fatigue test as mentioned in Chapter 4. To make the calculation more general, all the 

dimensions are replaced by letters, as shown in Figure.A-1. A coordinate system is built with 

the x axis along the longitudinal direction of the sample and y axis is along its transverse 

direction (Figure.A-1). 

 
 
 
 
 
 
 
 
 
 
 
 
Then the equation describing the radius part of the sample can be derived as: 

 (𝑥 −
𝐿0

2
)2 + [𝑦 − (𝑅 +

𝑑0

2
)]2 = 𝑅2 ( A.1 ) 

Then 𝑦, the vertical distance of the sample surface from the neutral axis (𝑥 axis)can be 

expressed as a function of 𝑥: 

 𝑦𝑥 = 𝑅 +
𝑑0

2
− √𝑅2 − (𝑥 −

𝐿0

2
)2 ( A.2 ) 

When a force of F is applied at the end of shaft, as shown in Figure.A-1, the resulting 

bending moment 𝑀 at point of 𝑥 can be expressed as: 

 𝑀𝑥 = 𝐹(𝐿0 + 𝐿1 − 𝑥) ( A.3 ) 

Where 𝐹0 is the gravity of the shaft. 

According to engineering mechanics, the stress caused by the bending moment at the point 

of 𝑥 can be calculated through: 

 𝜎𝑥 =
𝑀𝑥 ∙ 𝑦𝑥

𝐼
 ( A.4 ) 

Where 𝜎𝑥 is the bending stress at point 𝑥, 𝐼 is the moment of intertia around the neutral 

Figure A-1 Fatigue test setup 
F 
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axis. 

For a beam with circular cross section, 𝐼 can be expressed as: 

 𝐼 =
𝜋 ∙ 𝑦𝑥

4

4
 ( A.5 ) 

Substituting equations ( A.2 )( A.3 )( A.5 ) to equation ( A.4 ), the stress distribution on the 

sample surface along the 𝑥 axis can be calculated based on the following equation: 
 

 
𝜎𝑥 =

4𝐹(𝐿0 + 𝐿1 − 𝑥)

𝜋[𝑅 +
𝑑0
2 − √𝑅2 − (𝑥 −

𝐿0
2 )

2

]3

 ( A.6 ) 

It can be found that the bending stress imposed on the sample surface at point of 𝑥 is 

directly proportional to the applied force 𝐹.  

The bending stress distribution on the sample surface along the long the longitudinal direction 

can be derived by substituting the sample dimension in to Equation ( A.6 ): 

 𝜎𝑥 =
4𝐹(101 − 𝑥)

𝜋[42.5 − √1600 − (𝑥 − 13.92)2]3
 ( A.7 ) 

 

According to Equation ( A.7 ), the distribution of bending stress on the sample surface with 

different applied forces can be calculated and the result is presented in Figure A-2. It seems 

that, the maximum stress is applied exactly at the middle of the sample, which increases with 

increased force applied at the end of driven shaft. 

 
Figure A-2 The bending stress distribution along the longitudinal direction with different 

applied forces
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[1]. Euromat 2011 conference, France, September 2011, Poster on PhD project. 

[2]. 20th Annual International Anodizing Conference & Exposition, October 2011, USA, Poster 
on PhD project. 

[3]. International conference on Metallurgical Coatings and Thin Films (ICMCTF), USA, April 
2012, Oral Presentation on PhD project.  

[4]. Department Poster Competition, May 2012, Sheffield, Poster on PhD project. 
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