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Abstract

Traditionally uniform arrays are used to implement beamformers. However, in order to avoid

grating lobes the maximum adjacent sensor separation is half of the operating wavelength.

For large aperture sizes this can be problematic due to the cost associated with the number of

sensors required. Instead sparse arrays become a desirable alternative, as they allow separations

greater than half a wavelength while still avoiding grating lobes due to the non-uniform nature

of the sensor locations. However, the tradeoff is their unpredictable sidelobe behaviour which

means some degree of optimisation is required. This thesis looks at methods to optimise the

sensor locations to give a desirable array response. Firstly, this is done using genetic algorithms,

where a size constraint can be applied on the optimisation process with the response designed

to be robust against norm-bounded steering vector errors. Compressive sensing based design

methods are also considered as a more efficient alternative, with methods of enforcing the size

constraint and ensuring robustness again considered. Design examples show that a comparable

performance to genetic algorithms can be achieved in a much shorter computation time. The

original formulation of the compressive sensing problem can be converted to a modified l1 norm

minimisation for the design of wideband and vector-sensor arrays. For the wideband case the

design method is also extended to consider frequency invariant beamformers and temporal

sparsity.
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Chapter 1

Introduction

1.1 Introduction

Array signal processing is a widely studied subject with a wide range of applications (e.g.

radar, sonar, medical imaging and communications) [1–3]. It deals with multiple sensors (e.g.

antennas for use with synthetic aperture radar (SAR) or microphones for processing speech

signals) placed at different locations, processing signals arriving from various directions. This

can be split into three further sub-areas: signal detection, direction of arrival (DOA) estimation

and beamforming.

There are three classes of arrays determined by the structure of the sensor locations. These

are: linear arrays, where the sensors are in a straight line; planar arrays, where the sensors

are spaced over a surface and volumetric (or three-dimensional) arrays, where the sensors are

spaced within a volume. The discussion that follows focuses on linear arrays. However, the

methods developed in this thesis can be extended to the other two array structures with some

further work.

Traditionally the beamforming problem used to be applied to uniform linear arrays (ULAs),

where in order to avoid grating lobes the adjacent sensor separation had to be no larger than

λ/2 [2]. However this can become prohibitive in some scenarios due to factors such as cost,

weight and complexity of implementation. As a result sparse (or non-uniform) arrays have

become a desirable alternative due to the fact that a larger mean adjacent separation is allowed,

while still avoiding grating lobes due to the randomness of sensor locations [4–6]. This means

that a linear array with a given aperture can be implemented using less sensors. Alternatively

the same number of sensors could be used providing more degrees of freedom (DOF) allowing

a better beam response to be achieved.

Such a saving can be particulary useful in applications such as airborne SAR. Here resolution
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is determined by aperture length, i.e. the longer the length the better the resolution. However,

the combined weight of the antennas required for a ULA has issues regarding whether the

moving platform can become airborne or its efficiency after it is. As a result the smaller

number of antennas associated with a sparse array, and the corresponding weight reduction, is

advantageous in this instance.

However, the downside to using sparse arrays is the unpredictable sidelobe behaviour asso-

ciated with them [4–6]. As a result careful consideration has to be given to sensor locations to

ensure that an acceptable performance is achieved.

The first solution to the problem of sensor locations is to use an existing sparse array struc-

ture, or one with a closed-form solution. Minimum redundancy arrays (MRAs) and minimum

hole arrays (MHAs) were proposed as early solutions to the problem of where to place the

sensors in an array [2, 7–12]. Nested and co-prime arrays were later proposed as an alterna-

tive [13, 14], and unlike MRAs\MHAs have a closed-form solution.

However, if a sparse array is required to fulfil a specific application, it maybe desirable

instead to optimise the sensor locations to meet a given performance level. This is a highly

non-linear optimisation problem and can be solved using a variety of methods such as dynamic

programming [5], genetic algorithms (GAs) [15–28], simulated annealing (SA) algorithms [29–

31] and Taguchi’s method [32]. Such methods can either be used to thin an array or design a

sparse array from scratch.

Unfortunately, design methods such as GAs can take a long time to reach a solution, es-

pecially if a large or complicated problem is being considered. Even when a solution is then

reached it is not guaranteed to be the global optimal solution. As a result more efficient de-

sign methods based on compressive sensing (CS) [33], have been proposed [34–40]. Further

improvements in terms of sparseness of the result have also been achieved using a reweighted

l1 minimisation formulation [41–43].

1.2 Original Contributions

Firstly, the following contributions have been made to the problem of designing sparse arrays

by methods such as GAs:

1. Previous work using GAs typically assume sensors of no physical size. This means the

sensors can fit in any location in the optimised array geometry. However, in practice the

sensor obviously has some physical size. In some cases, especially for wideband antenna

arrays [44], the sensor size can be larger than λ/2. This can result in some solutions

where the sensor cannot physically fit in the optimised locations. As a result, in this
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thesis a solution is suggested where the constraint of the sensor’s physical size can be

enforced through the fitness function of the GA [45, 46]. Although we use GAs to verify

the effectiveness of this design method the same could be achieved with similar methods

such as SA algorithms.

2. Previous work designing fixed sparse beamformers has focused on the traditional beam-

forming scenario, i.e. the steering vector of the array is assumed to be exactly known. In

practice this will not always be the case as model perturbations such as sensor location

error, mutual coupling and individual sensor response discrepancies may be present. This

results in a mismatch between designed and achieved steering vectors, which in turn can

have a detrimental effect on the beam response of the array. As a solution to this an

extension to the least squares (LS) approach to beamforming that considers robustness

to steering vector errors [46,47] is proposed. A GA can then be used to optimise the sen-

sor locations to give a robust sparse array by basing the fitness function on the proposed

beamforming scheme.

The limitations of GAs make design methods based on alternative, more efficient methods

desirable. As a result, this thesis will also look at CS-based designed methods and the following

contributions have been made:

1. With CS-based methods a dense grid of potential sensor locations is assumed, with spar-

sity then introduced by finding the set of weight coefficients with the minimum number

of non-zero valued entries. However, this can result in active locations that are very close

together and may not be physically viable. As a result three methods of enforcing a

minimum spacing of the sensors physical size are proposed [48].

2. Previous CS-based work again assumes the steering vector of the array is known exactly.

As with GAs this is not always the case and a solution that is robust to steering vector

error is desirable. An extra constraint is derived and applied to CS problems in order to

ensure this is achieved [48,49].

3. The CS-based design methods are extended for the design of sparse wideband beamform-

ers [50, 51], with the extended case of frequency invariant beamformers (FIBs) [51], also

considered. This involves reformulating the problem to ensure that all weight coefficients

associated with a given location are simultaneously minimised. Methods that introduce

temporal sparsity are also proposed.

4. A similar reformulation is proposed for a sparse vector-sensor array based on a quater-

nionic signal model. In this case it is necessary to ensure that the real and three imag-

inary parts of the weight coefficients are simultaneously minimised. If this is not done

then sparsity is not guaranteed.
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Comparisons are then also drawn between the CS and GA based designed methods.

1.3 Thesis Outline

The outline of this thesis is as follows:

In Chapter 2, a review of sparse arrays is given. This begins with a review of general

narrowband and wideband array structures. Next this chapter then considers why and how

sparse arrays can be used. Known sparse array geometries such as MRAs, MHAs, nested

arrays and co-prime arrays are then given. The motivations for using such structures are

considered and finally optimisation techniques that can design sparse arrays are considered as

an alternative.

In Chapter 3, a more detailed review of GAs is given, along with considering how they have

been used in the design of sparse sensor arrays. The limitations of these methods are considered

in terms of assuming sensors of no physical size, assuming the steering vector of the array is

known exactly and potential solutions are proposed. Finally, this chapter then consider reasons

why an alternative optimisation scheme may still be required.

In Chapter 4, design methods based on CS are considered as an alternative to methods based

on GAs. Firstly, a review of CS is presented and then the problem of enforcing a minimum

spacing of the sensor’s physical size is considered. An extra constraint that can ensure a

solution that is robust to steering vector error is also derived and applied to the CS problem.

Comparisons are drawn with GA-based design methods.

In Chapter 5, a reformulation of the CS is considered in order to guarantee a sparse wide-

band array can be designed. This is done by simultaneously minimising all weight coefficients

associated with a given sensor location. It is also possible to introduce temporal sparsity to

the design problem, or in other words reduce the complexity of the tapped delay-lines (TDLs)

associated with a sensor. Two methods of achieving this are considered: firstly a second l1

minimisation for a given set of sensor locations and secondly a minimisation problem that

simultaneously considers location and temporal sparsity. Again comparisons are drawn with

GA-based design methods.

In Chapter 6, the CS problem is reformulated to deal with the design of vector-sensor arrays

based on a quaternionic signal model. First a review of quaternions and the signal model are

provided. The required reformulation is then given, with various scenarios considered, such as

with or without robustness constraint and the incorporation of a size constraint.

Finally in Chapter 7, conclusions are drawn and an outline of future potential work is

provided.
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Chapter 2

Review of Sparse Arrays

2.1 Introduction

In this chapter a review of general array structures is given, along with how and why they can

be used with sparse array geometries. Example array structures will be reviewed and a brief

explanation presented of why optimising sensor locations in a sparse array may be a desirable

alternative.

2.2 General Array Structures

This section will first review the general narrowband and wideband array structures that are

used in this thesis, as well as discussing the grating lobe condition for ULAs . This grating

lobe condition specifies the maximum adjacent sensor separation that a ULA can have while

still avoiding grating lobes. Its significance becomes apparent when the motivation for using

sparse arrays is considered below.

Figure 2.1 shows a general narrowband array structure consisting of M sensors, [1–3]. It is

assumed that the sensors are omnidirectional and have identical responses. Also shown are the

M received signals, xm[n], for m = 0, 1, 2, . . . ,M−1, with a direction of arrival θ. These signals

impinge on the array from the far field, i.e. a plane wave signal model is assumed. Finally it

is assumed that the signal is wide sense stationary, meaning it has a constant mean and its

spatial covariance is only dependent on sensor lags rather than particular sensor locations.

The steering vector for this array is given by

s(Ω, θ) = [1, e−jµ1Ωcos θ, . . . , e−jµM−1Ωcos θ]T , (2.1)

where Ω = ωTs is the normalised frequency with temporal sampling period Ts, µm = dm
cTs

for
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Figure 2.1: A general narrowband array structure.

m = 0, 1, 2, . . . ,M − 1, dm denotes the distance between the mth sensor and the zeroth sensor

at the pase reference point, c is the speed of propagation of the wave and {·}T denotes the

transpose operation. It is worth noting at this point that the aperture of the array is given by

the distance dM−1.

The response of the array is then given by

p(Ω, θ) = wHs(Ω, θ), (2.2)

where wH is the Hermitian transpose of the weight coefficient vector

w = [w0, w1, ... wM−1]
T . (2.3)

This structure can be used for the implementation of narrowband and multiband beam-

formers. However, a wideband beamformer could not be efficiently implemented using this

structure.

Instead, Figure 2.2 shows the general wideband array structure that should be used, [1–3].

Here it can be seen that there is now a tapped-delay line (TDL), length J , associated with each

sensor location. In effect this means there are multiple weight coefficients for each sensor and

the output of the beamformer, y[n], is now a sum of differently delayed versions of the received

array signals.

For the wideband array the steering vector is now given by

s(Ω, θ) = [1, · · · , e−jΩ(J−1), e−jΩµ1 cos(θ), e−jΩ(µ1 cos(θ)+1),

· · · , e−jΩ(µ1 cos(θ)+(J−1)), · · · , e−jΩ(µM−1 cos(θ)+(J−1))]T . (2.4)
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Figure 2.2: A general wideband array structure.

The response is given by

P (Ω, θ) = wHs(Ω, θ), (2.5)

where the weight coefficients

w = [wT
0 , wT

1 , ... wT
M−1]

T , (2.6)

with

wm = [wm,0 , wm,1 , ... wm,J−1]
T . (2.7)

For both of the structures the maximum adjacent sensor spacing that can be used for a

ULA is half the minimum operating wavelength (the wavelength for the highest frequency of

interest). This can become problematic when implementing arrays with a large aperture size

because of the costs associated with the large number of sensors required. Other factors such as

the weight of the sensors can become prohibitive in radar applications if the array is attached

to a moving platform such as a plane. This is because the weight can effect whether the plane

can fly efficiently or not.

In these instances sparse arrays become a desirable alternative. This is because the non-

uniform nature of the adjacent sensor separations avoids the introduction of grating lobes, while

also allowing separations greater than half of the minimum operating wavelength [4, 6]. As a

result a given aperture size can be implemented with fewer sensors, reducing the cost e.t.c.

associated with the array. Furthermore, for a given aperture size and number of sensors a

larger number of degrees of freedom (DOF) can be achieved. This allows a better performance

in terms of the response of the beamformer. These issues will be considered in more detail in

the rest of this chapter.
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2.3 Correlation Matrix, Co-Array and Sparse Arrays

For a ULA with adjacent separation of d, the correlation matrix of a sensor array can be given

by (2.8) [2].

Rx = E[x[n]xH [n]], (2.8)

where x[n] contains xm for all values of m for a given interval n. The elements of Rx are given

in the following form

Rx((i− j)d), i = 0, ...,M− 1; j = 0, ...,M− 1. (2.9)

This means that when finding the correlation matrix it is not the actual sensor locations which

are important but the separation between them. In other words the value of Rx((i − j)d) in

(2.9) will be the same for i = 0, j = 3 and i = 2, j = 5. Therefore, this means there is no need

to repeat separations as the missing entries from the correlation matrix can be estimated using

any of the other entries resulting from the same separation between sensors.

The idea of the co-array has also been introduced as a way of showing how many times each

sensor lag is repeated [2, 10,13]. For an array with uniform weight coefficients this is given by

c(γ) =
∑

|i−j|=γ

wiw
∗
j , (2.10)

where ∗ indicates the conjugate operation. In other words we are evaluating the correlation of

the weight coefficients for given values of i and j.

The following properties apply to the co-array:

1. For any array with M sensors it is known that c(0) = M, i.e. the number of times it is

possible to have i = j.

2. The value of c(γ) = c(−γ) as the separations between locations are the same but with i

and j reversed.

3. The maximum separation, i.e. |i− j| is the aperture of the array, can only occur once.

4. The sum of the number of times that all the non-zero valued entries of the co-array occur

gives the maximum number of DOF; this will be M(M− 1).

From this it can be concluded that there are two reasons for why sparse arrays are, or can be

used. Firstly, when considering a grid of sensor locations there is no need to repeat a separation

of a given number of grid locations. This is because the missing entries of the correlation matrix

can be estimated using an entry coming from the same lag between sensors. As a result this

has led to the development of the sparse array structures detailed in the next section of this
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chapter. Secondly, for any array structure a sparse array will increase the number of DOF as

there will be less repeated separations. As a result, the array should perform better than a ULA

of the same length and number of sensors, i.e. the number of DOF will be closer to M(M− 1).

Alternatively, the same performance could be achieved using fewer sensors, therefore saving on

cost, weight e.t.c.

2.4 Example Sparse Array Structures

In this section details will be given about some example sparse array structures, and how the

idea of the co-array leads to their creation. First minimum redundancy arrays (MRAs) and

minimum hole arrays (MHAs) will be considered, followed by nested and co-prime arrays.

2.4.1 Minimum Redundancy and Minimum Hole Arrays

Minimum redundancy arrays (MRAs) have been well studied and exploit the fact that spatial

lags between sensors give the array’s covariance matrix [2,7,10]. In other words only the relative

distance between sensors is important rather than the actual locations. As a result repeated or

redundant spatial lags can be removed, thus allowing the use of less sensors (in a non-uniform

arrangement) compared to a ULA.

In an ideal MRA, there will be no redundancies (repeated spatial lags) and no holes (missing

spatial lags) in the co-array. However it is only possible to have linear ideal MRAs consisting

of 4 or less sensors. Table 2.1 gives the ideal MRAs with the four-sensor example illustrated in

Figure 2.3 [7].

When the number of sensors exceeds 4, holes are then introduced into the co-array [2, 7,

52]. The same happens when planar or volume arrays are considered. In these instances the

cross correlation terms relating to the missing lags cannot be estimated directly. However,

some techniques have been suggested to solve this issue when looking at the problem of DOA

estimation [53,54].

Table 2.1: Known ideal MRAs

M Location

1 0

2 0 1

3 0 1 3

4 0 1 4 6
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denotes the location of a sensor

1 23

Figure 2.3: Four antenna ideal MRA structure.

In a minimum redundancy array, the aim is to keep the number of redundancies as low as

possible and avoid the introduction of any holes into the co-array. Conversely for a minimum

hole array (MHA) the aim is to keep the number of holes in the co-array as low as possible

while avoiding the introduction of redundancies. Equation (2.11) gives the maximum aperture

length for linear MRAs and MHAs.

Ma =
M(M− 1)

2
−MR −MH , (2.11)

whereMa is the aperture of the array, M the number of sensors, MR the number of redundancies

and MH the number of holes. For MRAs and MHAs the following values apply MH = 0 and

MR = 0 respectively. Once the aperture length has been found it can be used to find the ratio

of the array length to the length of a hypothetical perfect array (no redundancies or holes in

the co-array) with the same number of sensors. This is found by setting MH and MR to zero

in (2.11). The resulting ratios (D) are shown in Table 2.2 [2]. As per the above discussion D

can be found using

D =
Ma

Mt

, (2.12)

where Mt is the theoretical maximum aperture length with no holes or redundancies.

Unfortunately there are no closed-form solutions for the geometry of MRAs. As a result,

exhaustive computer search routines are required to find the sensor locations. It is possible to

exploit some properties of known MRAs in order to achieve an efficient search algorithm. For

example exploiting patterns in known MRAs, exploiting the symmetry of potential arrays and

knowing the number of ways a given separation can be achieved. Three methods are proposed

in [12] to reduce the search space required by the search algorithms:

Method 1 For M sensors giving a maximum aperture of Ma there are two ways of getting a

spacing of Ma − 1; either the left most or right most spacing has to be a spacing of 1.

As they are mirror images, only one of these configurations need be considered. Further

savings can be made by considering each subarray (and any mirror images) when placing

a single sensor at a time.
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Table 2.2: Example non-redundant arrays

M Sensor Separations D

2 1 1

3 1 2 1

4 1 3 2 1

5 1 3 5 2 1.1

6 1 3 6 2 5 1.13

7 1 3 6 8 5 2 1.19

8 1 3 5 6 7 10 2 1.21

9 1 4 7 13 2 8 6 3 1.22

10 1 5 4 13 3 8 7 12 2 1.22

Method 2 Count redundancies as each sensor is placed. If the limit of allowed redundancies

(found from (2.11)) for a given number of sensors and a known aperture is exceeded then

holes must be present in the co-array. When this happens the subarray with this geometry

shouldn’t be considered any further, as by definition it could no longer be an MRA.

Method 3 Representing the array by a binary word allows fast and efficient calculation of the

co-array, which can be used to check if a given array geometry is an MRA or not.

One possible search algorithm for MRAs is as follows: Find all possible permutations of

sensor locations for a given array size. Then check if the structure is that of an MRA or not. If

an MRA structure is found it is recorded. Otherwise, the length of the array being considered

is increased by one which also adds a redundancy into the co-array. Once an MRA has been

found no further increase in length will be considered, as the minimum number of redundancies

will be exceeded. At this point all other arrays with the same length as the discovered non

redundant array will also be checked to see if they also give an MRA [8–10].

An approach exploiting method 3 is given in [11]. For a uniform grid of potential sensor

locations the array structure can be represented as a binary word (x[n]) by setting the bits in

the word to 1 if a sensor is present at that location, otherwise the bit remains set as 0, where

each bit corresponds to a grid location. The autocorrelation of x[n] can then be found as

z[n] =
∑
k

x[k]x[n+ k] (2.13)

However in order to avoid carrying errors (and an incorrect representation of the co-array) the

different contributions to z[n] are combined by an OR operation rather than by addition. This

is possible as it is not necessary to know the exact z[n], just which elements are non zero.
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As with the other methods, each possible array configuration can be checked by placing one

sensor at a time and then checking the co-array found using this method. Redundancies are

then counted as each sensor is placed and when the limit (found from (2.11)) is reached the

configuration is considered no further. MHAs can be found in a similar manner to the MRA

search algorithms described here.

Bounds on the number of redundancies and holes in an array can be found [12]. For linear

MRAs the bound on the number of redundancies is given by

MR ≥ M2

2 + 3π
− M − 1

2
(2.14)

and for linear MHAs the bound on the number of holes is given by

MH ≥ M2

3π − 2
− (M − 1)(3π + 2)

2(3π − 2)
. (2.15)

In both (2.14) and (2.15) the respective bounds can be estimated by the first terms when a

large number of sensors is used.

2.4.2 Nested Arrays and Co-Prime Arrays

Nested [13, 14] and co-prime arrays [14] offer a useful alternative to MRAs and MHAs as a

closed-form solution for the array geometry can be found, while still offering an increase in

DOF compared to ULAs (but less than MRAs offer). This makes them easier to construct than

MRAs as there is no need for exhaustive computer searches to find the desired array structure.

Nested arrays are formed by joining two or more ULAs together and can offer on the order

of M2 DOF from M sensors while still operating in a passive scenario. A two-level nested

array (combination of two ULAs) is the only level of nested array that offers a filled co-array

(consisting of 2M2(M1+1)− 1 elements). In such a nested array the first or inner ULA has M1

sensors with an inter element spacing of d1. The outer or second ULA consists of M2 sensors

that are spaced d2 = (M1 +1)d1 apart. This results in sensors being located at points given by

the sets given in

S1 = {md1,m = 1, 2, ...,M1}

S2 = {n(M1 + 1)d1, n = 1, 2, ...,M2}, (2.16)

where S1 gives the co-array values due to the first nested ULA and S2 the values due to the

second nested ULA. The final combined co-array is then given by the set

Sc = {nd1, n = −N, ..., N,N = M2(M1 + 1)− 1}. (2.17)

An example of a two level nested array is shown in Figure 2.4 and its difference co-array is

illustrated in Figure 2.5. In the example M1 = M2 was found to be optimal for 2-level nested
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arrays with an even number of sensors. For an odd number of sensors the following was found

to be the optimum: M1 =
M−1
2

and M2 =
M+1
2

.

level 2

denotes a sensor location

d 2d 3d 4d 8d 12d

level 1

Figure 2.4: Two-level nested array.
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Figure 2.5: Co-array of nested array structure in Figure 2.4

The nested array structure can be extended to a higher number of levels of nesting at the

expense of no longer having a filled uniform co-array. For these cases the sensor locations are

given by Sk−level =
k∪

i=1

Si, where

Si = {md
i−1∏
j=1

(Mj + 1), m = 1, 2, ...,Mi} i = 2, ..., k

S1 = {md, m = 1, ...,M1}. (2.18)

The problem of finding the optimum number of nested levels and the distribution of sensors

within them then arises. This can be summarised by the following problem:

max
kϵR+

max
M1,...,MkϵR+

DOFk subject to
k∑

i=1

Mi = M. (2.19)
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The solution to this is an exponentially spaced nested array with a single sensor in each level.

This means antenna locations of 1d, 2d, 4d, . . . are required.

(Ν−1)Μλ/2

0 Νλ/2 (Μ−1)Νλ/2

0 Μλ/2

Figure 2.6: Co-prime sparse array structure.

The co-prime sparse array structure is shown in Figure 2.6. This structure consists of two

arrays with their zeroth sensor aligned (the only one that is). As a result the zeroth sensor

can be shared between the two arrays. One array has M sensors with a spacing of Nλ/2 while

the second has N sensors with a spacing of Mλ/2. M and N are co-prime, i.e. they have no

common factors other than 1.

For this sparse array structure the difference co-array is given by

x(k1, k2) = Nk1 −Mk2 (2.20)

and the corresponding negative values, where 0 ≤ k1 ≤ M− 1 and 0 ≤ k2 ≤ N− 1. There are

MN distinct values in this co-array within the range −M(N− 1) ≤ x(k1, k2) ≤ N(M− 1). This

represents less DOF than is offered by the nested array structure. However co-prime arrays are

preferential when mutual coupling is a major concern, as larger adjacent sensor spacings are

allowed.

2.5 Optimisation as an alternative

The previous section considered some example sparse array structures. MRAs and MHAs came

from the desire to have co-arrays without repeating or missing values. However, no closed-form

solutions are possible for finding the sensor locations for either class of array. Instead exhaustive

computer searches have been used to generate tables of known MRAs and MHAs. Although

helpful in some situations, if a structure is not known for the length of array you wish to use,

the lengthy search procedures have to be used again. This makes structures with a closed-form

solution a desirable alternative and leads to the development of nested and co-prime arrays.

However, as an alternative to any of these example structures the sensor locations in a sparse

array can be optimised in order to achieve the optimal performance for given criterion. For
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example, it may be necessary to minimise the peak sidelobe level (PSL) or the error between a

desired and achieved response. Alternatively, locations that give a set of sensor locations which

are robust to steering vector errors may be desired. Optimisation methods which can be used

to achieve these aims will briefly be summarised in this section of the chapter.

The first method that can be used is genetic algorithms (GAs), [15–28], where the process

of natural selection is mimicked to achieve the optimisation. The suitability of each solution is

evaluated, with the most suitable being used to create new possible solutions. This is repeated

until a stopping criterion is met.

In simulated annealing (SA), [29–31], the process of a substance cooling to form a perfect

crystal is mimicked. To do this the energy function of a solution is evaluated to give its

suitability. A small change is then introduced to the solution, e.g. sensor locations are altered,

and the function is re-evaluated. If the energy value is less, the solution is more suitable and

is kept. This is repeated until a final solution is achieved, i.e. no further change in the energy

value which in turns indicates the suitability of the solution is no longer changing.

Taguchi’s method, [32], exploits the concept of orthogonal arrays (OAs). Here there is a

group of potential sensor locations and their weight coefficients can be assigned to given levels

within the range of 0 to 1. The levels giving the best performance (e.g. lowest PSL) are then

selected and used in the next iteration as the central values for a reduced optimisation range.

This is repeated until a stopping criterion is reached.

These three methods have one thing in common: they all involve the evaluation of a function

in order to asses the suitability of a possible solution. As a result, the extensions discussed in

the next chapter which guarantee a robust response with a minimum adjacent sensor separation

could be applied to any of the three methods, or to other similar design methods. GAs have

been chosen as the example algorithm to validate the ideas due to the ease of implementation

with existing MATLAB toolboxes [55].

2.6 Summary

In this chapter a review of general narrowband and wideband linear array structures has been

presented. Details have also been provided as to why and how they can be extended to the

case of sparse arrays, along with details of example structures and methods of optimisation.

For ULAs the adjacent sensor separation is usually half of the operating wavelength in order

to avoid the introduction of grating lobes. However, this can be problematic when considering

an array with a large aperture due to the cost associated with the number of sensors required.

As a result, sparse arrays become a desirable alternative, due to the non-uniform nature of the
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adjacent sensor separations avoiding the introduction of grating lobes while allowing separations

greater than half the operating wavelength.

The performance level of an array is determined by the number of DOF present, which

is determined by the number of distinct values in the co-array. These values are determined

by the distance between sensors rather than the actual sensor locations. As a result, it is

desirable to have an array structure that does not repeat given separations. This resulted in

the development of MRAs, where the aim is to have the minimum number of repeated co-array

values as possible.

For four or less sensors it is possible to get ideal MRAs, where there are no repeated co-array

values or any missing co-array values. However, when more than four sensors are used there

will either be repeated values or missing values. The missing values cannot be estimated and

as a result you may instead look for an MHA where some values are repeated to avoid having

any missing, rather than an MRA.

Unfortunately, there are no closed-form solutions for the sensor locations for either MRAs

or MHAs. Instead exhaustive computer searches have to be conducted. As an alternative, a

structure such as nested or co-prime arrays could be used, or the sensor locations could be

optimised to ensure a set performance level with respect to a given criterion is reached.

Various optimisation strategies could be used such as GAs, SA and Taguchi’s method. These

techniques all look to evaluate a possible solution in terms of its performance for a set criteria

e.g. PSL. In the following chapter GAs will be considered in more detail, with extensions

provided to ensure that a robust solution or a minimum adjacent sensor separation is achieved.

Although implemented in this thesis using a GA, the same ideas can easily be applied to the

other optimisation methods. The drawbacks to such methods will also be considered, prompting

the search for an alternative method.
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Chapter 3

Genetic Algorithm Based Sparse Array

Design Method

3.1 Introduction

This chapter looks at the design of sparse arrays using GAs. The next section first looks

at a review of GAs and how they have already been used in the design of sparse arrays. A

common problem of disregarding the sensor’s physical size is then highlighted and a solution

proposed. Next a method of designing a fixed robust beamformer is considered, along with how

the method can be incorporated into a GA to optimise the sensor locations in a sparse array.

3.2 Review of Genetic Algorithms

GAs are an optimisation scheme that mimics the behaviour of evolution and natural selec-

tion [15]. In practice, this means there is a group (population) of potential solutions (individu-

als). The suitability (fitness) of each individual in the population is then evaluated. Next, the

fittest individuals are selected for breeding (crossover and mutation) to create the population

for next generation (iteration). This process involves the selection of two individuals who swap

genetic information with each other. In the case of designing sparse sensor arrays this means

information about sensor locations is exchanged between the two individuals. To complete the

breeding process mutation is randomly applied with a predetermined probability. This intro-

duces random changes into the potential solutions and makes it less likely that the algorithm

will become stuck in a non-optimal solution. This results in new potential solutions which are

known as the offspring, whose fitness is also evaluated (using the fitness function). Now the

fitness of both the parents (individuals selected from the previous generation) and the offspring
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is known. A new population of individuals is then created from the overall fittest individuals

from both the parents and offspring. The process is repeated until a stopping criterion is met,

usually a maximum number of generations.

An early piece of work in the design of sparse arrays was that by Haupt [16], where a ULA

is thinned by introducing zero-valued weight coefficients and the fitness function used by the

GA minimises the PSL. A binary code was used to encode the information relating to whether

the sensor was present, ‘1’, or not, ‘0’. As this could result in a large optimisation problem, for

the sake of efficiency a symmetrical structure was assumed. The mutation applied randomly

altered bits in the code from 1 to 0 or vice versa; typically this happened two times per iteration

and the GA was stopped after a predetermined number of iterations. Similarly, in [22] a binary

coding scheme is also used. However, the design method aimed to design an array with a fixed

number of antennas rather than thinning an array.

Similarly, many other schemes have been used that look to minimise the PSL of the opti-

mised sensor locations. For example Yan and Lu proposed a design method for arbitrary array

geometries, where the array weighting vector is directly represented as a complex number in

the chromosome [17]. As a result, decimal crossover replaces the binary scheme used in [16].

This has the advantage of being a simple representation scheme that improves the processing

time by removing the need for binary encoding. The stopping criterion of the GA was also

altered to stop either after a set number of iterations or when a satisfactory result is achieved.

They also reported that in some situations several shorter runs may provide a better solution

than one longer run, where there is a risk of becoming stuck in local minimum.

Lommi et al. [19] also proposed various improvements to simple GA based design methods.

Firstly, both the weight coefficients and locations are optimised (rather than thinning a ULA

or using a predetermined fixed set of locations). This is achieved by fixing the aperture of

the array (keeping the mainlobe width reasonably constant) and varying the locations of a set

number of sensors in between. However, the locations are still limited to a grid of potential

locations with a separation of λ/2. In order to remove the likelihood of the individuals with

the lowest fitness values creating offspring, fitness scaling is also applied. This is implemented

in such a way that the fitness of the best individuals is raised even further. The result of this

should be a faster convergence rate.

Yang et al. [21] aimed for better performance and consistency than what was typically

achieved solely using genetic algorithms. As a result some element positions within the array

were selected using the principles of MRAs. This ensured a set level of spatial resolution.

The remaining element positions were then selected by optimization with a genetic algorithm.

Resulting arrays were shown to have better performance and consistency in both simulations

and experimental results.
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Chen et al. [23–25] suggested a modified genetic algorithm (MGA). The search space is

reduced by assuming the array is symmetrical around a central sensor, again with the final

locations giving the minimum PSL. A real-valued coding scheme is used for the sensor locations.

For a feasible solution the locations have to remain in the correct order, with those closest to

the central point coming first. Therefore, the MGA resets the order during the processes of

crossover and mutation in order to achieve a feasible solution. Using these improvements it is

possible to enhance the results obtained by using methods which design thinned arrays.

Cen et al. [26] proposed a different alteration to the genetic algorithm. It focused on

improving the process of the crossover of genetic information between individuals, as well as

allowing a self supervised mutation. The optimization process can handle both sensor locations

and weight coefficients, and has been shown to be capable of achieving lower sidelobes at a faster

convergence rate compared to the standard GA. This method was called the improved genetic

algorithm (IGA) and was applied to a scenario where the minimum number of sensors delivering

a set performance level was desired [27]. After the IGA was applied to optimize locations and

weights of the elements in the array, the elements that had the smallest contribution to the

array’s performance were removed. This is repeated until the performance drops below the set

desired level.

A further way of increasing the convergence of GAs is to alter the selection scheme used

to that of the stud GA [18]. In this scheme the fittest individual (or stud) is selected in each

population and shares its genetic information with the other individuals during the breeding

process. This can lead to improved accuracy, efficiency and reliability.

Difference sets (DS) and almost difference sets (ADS) have also been successfully used in

the design of sparse arrays [56,57], and merged with GAs to help give an improved performance

[20,28]. DS and ADS can be used to analytically find thinned array geometries with a reasonably

controlled sidelobe behaviour. However, the performance in terms of PSL is often sub-optimal

and there is only a limited set of DS and ADS sequences for specific scenarios. However, this

can be overcome by creating the initial population of a GA using shifted versions of DS or ADS

which ensures that the initial population gives some solutions that are at least reasonable. As

this is better than a random starting point the GA should then require less iterations to reach

the optimal solution.

There are some common points between these schemes. They all look at minimising the

PSL of the array and assume sensors of no physical size. In some cases this can clearly lead

to problems with some array geometries not being able to be practically implemented, i.e. the

sensors not being able to fit in the given locations.

In the following work the PSL fitness function will be replaced by one based on the least

squares (LS) approach to beamforming [3]. Along with this a method of enforcing a minimum
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adjacent sensor separation of the sensor’s physical size, by including it in the fitness function

of the array, is illustrated. This is all implemented using a simple GA structure. However, it

could be equally well implemented with any of the improvements mentioned above.

3.3 Basic Genetic Algorithm Structure Used

The following flow diagram shows the basic GA structure that has been used in this thesis.

However, the alterations presented in the previous section of this chapter, or alternatively other

similar schemes such as SA, could equally well be employed. Each stage of the GA will also be

discussed below.

Met

Evaluate the fitness of individuals

Select the best individuals

Breeding

Evaluate the fitness of offspring

Test for end condition

Select final solution

Create the initial population

Mutation

Not met

Figure 3.1: Structure of the GA used.

It can be clearly seen that the GA used has 8 parts as detailed below:

1. Create the initial population: This is simply the random creation of the initial set of

individuals/potential solutions. The first and last sensor are first placed to give the
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maximum possible aperture of the array. Then the remaining sensors are placed randomly

between these locations. Note, unlike the majority of previous research, the locations are

not limited to a grid of potential locations.

2. Evaluate the fitness of individuals: The fitness value for each individual is simply assigned

using the fitness function, e.g. minimising the PSL or LS error (see Section 3.4 for more

detail).

3. Select the best individuals: This is achieved by employing stochastic universal sampling

(SUS) [58].

4. Breeding: Multiple point crossover is used.

5. Mutation: Mutation as used in the breeder genetic algorithm is applied [59]. This is

applied in such a way that the aperture of the array is maintained, i.e. mutation will not

effect the locations of the first and last sensor.

6. Evaluate the fitness of offspring: As for stage 2 the fitness function for each of the offspring

is evaluated.

7. Test for end condition: In this instance the end condition is whether a set number of

generations has been reached. Until the set number has been reached stages 2 to 6 are

repeated. When the predetermined number of generations has been met the final solution

is then selected. An alternative to ending after a set number of generations would be to

end the GA after a set performance level has been achieved in terms of the fitness function.

However, this may prevent the GA from reaching the optimal solution.

8. Select final solution: The fittest individual is selected as the final solution.

This can be implemented using a genetic algorithm toolbox developed by The University of

Sheffield for use with MATLAB [55].

3.4 Least Squares Based Fitness Functions

As a general rule, when a GA is used the objective is to maximise the fitness function which is

being considered. This means that the fittest individual gives the best solution to the problem

being considered. Often when designing sparse sensor arrays a fitness function based upon the

PSL is used [16,17,24,26]. However, in this thesis a fitness function based on the LS approach

to beamforming, [3], is used. This allows both the efficient optimisation of the sensor locations

and an efficient method of finding the optimal weight coefficients.
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3.4.1 Least Squares Approach to Beamforming

The aim of the LS approach to beamforming is to minimise the difference between a desired

response and the designed response [3]. In practice this is achieved by minimising a cost function

to give the optimal weight coefficients.

First consider the cost function

JLS =

∫
Ωi

∫
Θ

F (Ω, θ)|wHs(Ω, θ)−D(Ω, θ)|2dΩdθ (3.1)

where Ωi is the frequency range of interest, Θ is the angle range of interest, and F(Ω, θ) is the

weighting function, which is often 1 in the mainlobe and αLS in the sidelobe. D(Ω, θ) is the

desired beam pattern and it is normally 1 in the mainlobe and zero in the sidelobe regions. In

quadratic form (3.1) becomes

JLS =

∫
ΩI

∫
Θ

F (Ω, θ)(wHs(Ω, θ)−D(Ω, θ))(wHs(Ω, θ)−D(Ω, θ))HdΩdθ

= wHQw−wHa− aHw+ d (3.2)

where

Q =

∫
ΩI

∫
Θ

F (Ω, θ)S(Ω, θ)dΩdθ, (3.3)

a =

∫
ΩI

∫
Θ

F (Ω, θ)s(Ω, θ)dΩdθ, (3.4)

d =

∫
ΩI

∫
Θ

F (Ω, θ)D(Ω, θ)dΩdθ (3.5)

and S(Ω, θ) = s(Ω, θ)sH(Ω, θ).

However, it is difficult to get a closed-form solution to (3.2) due to the integrations. Instead

they should be approximated with discrete summations giving the discrete version of the cost

function as follows

JLSD
= wHQDw−wHaD − aH

Dw+ dD (3.6)

where

QD =
∑

Ωk∈ΩI

∑
θl∈θML

S(Ωk, θl) + αLS

∑
Ωk∈ΩI

∑
θl∈θSL

S(Ωk, θl), (3.7)

aD =
∑

Ωk∈ΩI

∑
θl∈θML

s(Ωk, θl), (3.8)

dD =
∑

Ωk∈ΩI

∑
θl∈θML

1 (3.9)

θML is the mainlobe region, θSL the sidelobe region and ΩI the frequency range of interest. θl

and Ωk are the direction and frequency that are currently being considered.
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Taking the gradient of (3.6) with respect to w and setting it to zero gives the following

expression for the optimal weight coefficients

wLS = Q−1
D
a

D
. (3.10)

Below are three simple design examples, based on a 10-element ULA with adjacent sensor

separation of 0.5λ. For the narrowband case the single frequency Ω = π is considered, for the

multiband Ω1 = 0.75π and Ω2 = π and finally for the wideband ΩI = [0.5π, π] sampled every

0.05π. In each of the three cases the mainlobe is designed to be the single point of θML = 90◦

and the sidelobe region of θSL = [0◦, 80◦]
∪
[100◦, 180◦] being sampled every 1◦. The value of

αLS = 0.8 is kept constant, the TDL length J = 1 for the narrowband and multiband examples,

while for the wideband example J = 20.
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Figure 3.2: Beam response for the narrowband LS beamformer based on a 10-element ULA.

Figures 3.2, 3.3 and 3.4 show the beam response corresponding to the narrowband, multi-

band and wideband examples respectively. In each figure the plotted lines represent the re-

sulting array response at the different normalised frequencies of interest. For each example the

mainlobe is at the desired locations for all frequencies of interest, sufficient sidelobe attenua-

tion has been achieved and the sidelobe levels drop off further from the mainlobe as would be

expected with the LS approach.
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Figure 3.3: Beam response for the multiband LS beamformer based on a 10-element ULA.
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Figure 3.4: Beam response for the wideband LS beamformer based on a 10-element ULA.

3.4.2 Least Squares Fitness Function

The problem to consider now is how the LS cost function can be included in a fitness function

that a GA can optimise, in order to find the sparse array sensor locations. To achieve this the
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following fitness function is used

Fiti =
1

JLSD

(3.11)

where i is the individual currently being considered. In order to evaluate (3.11) it is necessary

to find the optimal weight coefficients, wLS, for the individual. Once these have been found it

is possible find JLSD
and in turn Fiti. Note, the fitness function has been set to 1

JLSD

as the

smaller values of JLSD
will give a better response, while maximising the overall fitness function

as desired. The following three subsections will show examples of how the GA can be used to

design sparse sensor arrays.

3.4.2.1 Narrowband Design Example

Firstly, a narrowband design example was considered, where the normalised frequency of inter-

est was Ω = π, with a corresponding wavelength of λ (which remains constant for the following

two design examples as well). The GA was tasked with optimising the locations of 14 sensors

spread over an aperture of 10λ. A population size of 50 was used, with 45 offspring created

in each of the 100 generations and a mutation rate of 0.25 applied. For the evaluation of the

LS based fitness functions the mainlobe was designed to be at θML = 90◦, with the sidelobe

regions θSL = [0◦, 80◦]
∪
[100◦, 180◦] being sampled every 1◦. Finally, the value of αLS = 0.8

was selected.

At this point it is also worth considering the tradeoffs associated with the different param-

eters that have been selected above. Here, there are four parameters associated with the GA

that should be considered. In each case the selection was made based on experience of fine

tuning the different parameters prior to carrying out the final design example. They are as

follows:

1. Population size: The larger the population, the faster the convergence to the optimal

solution should be. This is because there are more individuals in each generation, which

improves the likelihood that the optimal solution will be in a given generation. However,

increasing the population size too far will give an unacceptable increase in the computation

time associated with the design example.

2. Number of offspring: Increasing the number of offspring in each generation increases how

likely the process of breeding will produce the optimal solution. However, this also in-

creases the number of times the crossover operation is used. This has the knock on effect

of undesirably increasing the computation time.

3. Mutation rate: As the mutation is used to make the algorithm less likely to get stuck

in a non-optimal solution, if its probability of occurring is too small then it will fail
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in its task. In other words a high enough rate of mutation will not occur and the non-

optimal solution will remain in the population affecting the amount of optimisation that is

achieved. However, if the rate is increased too far then the search will become completely

random and the optimisation will not be guaranteed to occur.

4. Number of generations: Obviously the more generations there are, the longer the algo-

rithm has to converge to the optimal solution. Therefore, making it more likely to happen.

However, experience suggests that the rate of convergence drops off as the number of com-

pleted generations increases. This means a given generation achieves a relatively smaller

amount of optimisation and eventually there is more benefit in saving on computation

time by having less generations in total. In addition to this, if the algorithm does get

stuck in a non-optimal solution it does not matter how many generations there are, the

optimal solution will not be reached. Therefore, it would be better to start a second GA

rather than continuing.

The selection relating to aperture length, frequency of interest, number of sensors, value of

αLS used and angles of interest are largely selected as an example and similar performances

could be expected with different selections. However there are four points which are worth

noting.

1. Mainlobe location: Firstly, we have in this instance selected a mainlobe of 90◦ as we are

considering a narrowband array with real-valued weight coefficients. In this instance this

is the only mainlobe which can be used.

2. Width of transition region: The number of DOF decides the performance of the array

and is in turn partly determined by the number of sensors, i.e. the more sensors there are

the more DOF there will be. In practise this places a limit on the width of the transition

region between the sidelobe regions and mainlobe that can be implemented. The narrower

the transition region, the more DOF have to be used to implement it. This means that

even if a given transition width can be implemented there may not be enough DOF left

for sufficient sidelobe suppression. Therefore, careful consideration has to be given to the

transition widths selected for a given number of sensors.

3. Value of αLS: The larger this values the more relative importance is placed on suppressing

the sidelobe regions of the response. It is necessary to ensure that it is large enough to

offer sufficient sidelobe attenuation without adversely affecting the performance in terms

of mainlobe location and transition region width. In this instance experience of fine tuning

the variables for the design example suggests αLS = 0.8 is an appropriate choice.

4. Frequency at which the angular region is sampled : This has to ensure enough angular

points are considered when matching the designed response to the desired response in the
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LS approach to beamforming. In other words if enough angular points are not considered

an acceptable performance in terms of sidelobe suppression can not be guaranteed. How-

ever, the more frequent the angular range is sampled the the longer there computation

time will be, so again there is a tradeoff to be considered. Experience suggests that be-

tween 1◦ and 5◦ is an acceptable range (in terms of performance and computation time)

to choose from.
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Figure 3.5: Mean and maximum fitness values for the narrowband array designed using a GA

and LS based fitness function.

Figure 3.5 shows how the mean and maximum fitness values changed at each iteration of the

GA for the parameter values selected. Here it can be seen that both have increased indicating

that the desired optimisation is likely to have been achieved, meaning that at least one solution

in the final population should be better than those in the initial populations. The optimised

sensor locations are shown in Table 3.1, with the response being shown in Figure 3.6. We can

see that a desirable response has been achieved, with the mainlobe in the correct location and

sufficient sidelobe attenuation being achieved.

3.4.2.2 Multiband Design Example

Next a multiband example was considered, where the normalised frequencies of interest were

Ω1 = 0.5π and Ω2 = π. Apart from this the remaining parameters remained the same.

Figures 3.7 and 3.8 show the resulting fitness levels and response respectively. Again the

required optimisation is evident and a desirable response has been achieved for both normalised
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Table 3.1: Sensor locations for the narrowband array designed using a GA with LS based

fitness function.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 4 2.97 8 5.75 11 7.50

1 0.73 5 3.67 9 6.49 12 9.08

2 1.48 6 4.34 10 7.34 13 10.00

3 2.24 7 5.02
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Figure 3.6: Beam response for the narrowband array designed using a GA and LS based

fitness function.

Table 3.2: Sensor locations for the multiband array designed using a GA with LS based fitness

function.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 4 4.75 8 7.42 11 9.26

1 2.13 5 5.62 9 7.97 12 9.58

2 3.02 6 6.46 10 8.39 13 10.00

3 3.85 7 6.74

frequencies (i.e. the mainlobe is in the correct location and sufficient sidelobe attenuation has

been achieved at each frequency). The resulting optimised locations are given in Table 3.2.
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Figure 3.7: Mean and maximum fitness values for the multiband array designed using a GA

and LS based fitness function.
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Figure 3.8: Beam response for the multiband array designed using a GA and LS based fitness

function.

3.4.2.3 Wideband Design Example

For the wideband design example the normalised frequency range of [0.5π, π] was sampled every

0.05π and the TDL length set to J = 15. Here the length of the TDL, J has been selected to give
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a balance between performance in terms of the desirability of the array’s response (i.e. mainlobe

being in the correct location and the amount of sidelobe attenuation) and the computation time.

In general, it is reasonable to expect a larger value of J to give a more desirable response while

increasing the computation time required to complete the GA. A similar argument as for how

frequently the angular range is sampled, can be applied to the selection of the number of

frequency points that are considered. In other words there have to be enough to ensure that

the entire frequency range has a desirable response while also ensuring the computation time is

not increased too much. The number of points selected here is based on experience and gives a

good balance between the two performance criterion. Finally, it is worth noting that all though

this array structure could implement an off-broadside design example, this has not been done

to ensure consistency with the previous design examples.
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Figure 3.9: Mean and maximum fitness values for the wideband array designed using a GA

and LS based fitness function.

Table 3.3: Sensor locations for the wideband array designed using a GA with LS based fitness

function.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 4 2.08 8 4.41 11 6.81

1 0.32 5 2.54 9 5.14 12 7.75

2 0.53 6 3.09 10 5.93 13 10.00

3 1.39 7 3.73
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Figure 3.10: Beam response for the wideband array designed using a GA and LS based fitness

function.

Again the remaining parameters were kept the same as for the previous two design examples.

From Figure 3.9 it is apparent that the desired optimisation is likely to have been achieved and

Figure 3.10 shows a desirable response has been achieved for the frequency range of interest (i.e.

all mainlobes in the correct locations and sufficient sidelobe attenuation). For completeness the

optimised sensor locations are shown in Table 3.3.

The three considered design examples have shown that it is possible to design narrowband,

multiband and wideband sparse arrays using a simple GA with LS based fitness function. In

the next section a method of incorporating a size constraint into the design method, to ensure

a minimum adjacent sensor separation of the sensor’s physical size, is considered.

3.5 Enforcing a Physical Size Constraint

As mentioned, the previous methods for designing sparse arrays using GAs have not considered

the physical size of the sensor. However, in practice it is possible for the sensor sizes to be

relatively large, especially in the case of wideband antenna arrays, where it is possible for the

size of the antennas to be larger than λ/2 [44]. Thus, it is necessary to enforce a minimum

spacing of the sensor’s physical size in order to ensure the final solution can be implemented

practically. A method of solving this, by enforcing the size constraint through the fitness

function of the GA is proposed in this section [45,46].
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3.5.1 Changes to the Genetic Algorithm Structure

The new method, which will now be presented, follows the general structure shown in Figure

3.1 However, alterations are made to how the initial population is created and how the fitness

function is evaluated.

Firstly, the initial population now has to be generated in a manner ensuring that the size

constraint is met. As before the first and last sensor locations are initially placed to give

the maximum allowed aperture. The remaining locations are again randomly placed between

the these two locations. However, this is implemented while ensuring that no adjacent sensor

separations are smaller than the minimum spacing determined by the size constraint of the

sensor’s physical size.

Secondly, the size constraint has to be incorporated into the fitness function. Here the

fitness function is still being based on the cost function associated with the LS approach to

beamforming. The fitness of the initial population is found by applying the LS fitness function

as before, as it is known that all individuals in the initial population pass the size constraint due

to the manner in which they were generated. However, the fitness function for the remaining

generations has to be altered in order to incorporate the size constraint, as it is no longer

guaranteed that all individuals will meet the size constraint. This is achieved by using the

following

Fiti =

{
1

JLSD

size constraint passed,

min(Fitg−1) size constraint failed,
(3.12)

where g is the current iteration of the GA and JLSD
is the LS cost function found in (3.6). By

setting the fitness value of individuals that fail the size constraint to the minimum from the

previous generation it can be ensured that they will not be selected for the breeding process over

individuals complying with the size constraint. As a result, only individuals passing the size

constraint will be selected, giving at least one solution in the final population which complies

with the size constraint.

Multiband and wideband design examples will now be provided to validate the effectiveness

of the proposed design method. A narrowband design example will not be considered partly

because narrowband sensors are less likely to be large enough to cause an implementation issue.

However, if the more complicated multiband and wideband design examples are successful it will

be reasonable to assume the design method will be equally effective in the design of narrowband

arrays. Again the parameter values have been chosen to give a good balance in the tradeoffs

previously discussed in this chapter, with the values used being the result of experience of

selecting different values.
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3.5.1.1 Multiband Design Example

First a multiband design example with the normalised frequencies Ω1 = 0.5π and Ω2 = π are

considered. The desired mainlobe is set to the single location of θML = 90◦ with the sidelobe

regions given by θSL = [0◦, 80◦]
∪
[100◦, 180◦] being sampled every 1◦. The value αLS = 0.8 is

also used.

The GA looked to optimise 10 sensor locations over a maximum possible aperture of 15λ,

with the sensor size assumed as being 0.8λ (and being identical for each sensor). Its initial

population contained 50 individuals with 45 offspring created in each iteration. A mutation

rate of 0.25 was applied, with the GA being allowed to run for 100 generations.
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Figure 3.11: Maximum and mean fitness levels for the multiband design example using a GA

with 0.8λ size constraint.

Figure 3.11 shows how the maximum and mean fitness levels changed at each generation

of the GA. Here it can be seen that, as with the examples in Section 3.4.2, there has been an

increase in both the mean and maximum fitness values. This indicates that as desired some

optimisation has occurred and at least one individual in the final population will comply with

the size constraint. However, it is worth noting that the increase in maximum fitness value has

been less significant than for the example without the size constraint incorporated. This is due

to the fact that some offspring will not comply with the size constraint, their fitness value being

set to the minimum of the previous iteration and the overall rate of optimisation reduced.

The resultant sensor locations are given in Table 3.4. We can see that the minimum adjacent

sensor separation is 0.82λ, which occurs between sensors 6 and 7. This means that the solution
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Table 3.4: Multiband sensor locations for the sparse array designed using a GA with 0.8λ size

constraint.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 3 9.20 6 11.79 8 13.45

1 7.52 4 10.06 7 12.61 9 15.00

2 8.36 5 10.92

complies with the size constraint. The resulting beam response is shown in Figure 3.12, where

the mainlobe is in the correct location for both frequencies and sufficient sidelobe attenuation

has been achieved.
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Figure 3.12: Beam responses for the multiband sparse sensor array designed using a GA with

0.8λ size constraint.

3.5.1.2 Wideband Design Example

Now a wideband design example will be considered. The frequency range of interest is ΩI =

[0.5π, π] and is sampled every 0.05π, with a TDL length of J = 10. This is less than used in

the previous wideband design example as the process of checking the size constraint increases

the computation time required. A smaller TDL length helps offset this while still being able to

give a desirable performance, as will be verified below. Again the normalised frequency Ω = π

has an associated wavelength of λ. All remaining parameters are the same as for the multiband

design example.
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Table 3.5: Wideband sensor locations for the sparse array designed using a GA with 0.8λ size

constraint.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 3 9.26 6 11.81 8 13.54

1 7.58 4 10.12 7 12.67 9 15.00

2 8.41 5 10.97
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Figure 3.13: Maximum and mean fitness levels for the multiband design example using a GA

with 0.8λ size constraint.

Firstly it is worth noting from Figure 3.13 that the maximum and mean fitness values have

again increased, showing that some optimisation has been achieved. The resulting sensor loca-

tions are shown in Table 3.5. In this instance there is a minimum adjacent sensor separation of

0.83λ, which occurs between sensors 1 and 2. Therefore the size constraint has again been suc-

cessfully enforced. The resulting response in Figure 3.14 indicates that an acceptable response

(i.e. each frequency of interest has the mainlobe in the correct location and sufficient sidelobe

attenuation) has also been achieved.

3.6 Design of Robust Sparse Array

In the previous sections of this chapter and other sparse array design methods based on GAs, the

traditional beamforming scenario is assumed, where the assumption is made that the steering
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Figure 3.14: Beam responses for the wideband sparse sensor array designed using a GA with

0.8λ size constraint.

vector of the array is exactly known. However, in practice this is not guaranteed to be the case.

Model perturbations such as sensor location errors, mutual coupling and individual sensor

response discrepancies may be present. When one or more of these perturbations are present

there will be a mismatch between designed and achieved steering vectors. In turn this can

have a detrimental effect on the beam response of the array. As a result, it will be desirable

to optimise the sensor locations of the sparse array to give a solution that is robust to such an

error.

This has been widely studied in the area of robust adaptive beamforming and more recently

in the area of fixed beamformer design. Ways of solving this problem include diagonal loading,

worst case optimisation and robust Capon beamformers [60–66]. These methods all take slightly

different routes to solving the problem but they make a common assumption of there being a

norm-bounded steering vector error.

In the work that follows below this assumption is used to extend the LS approach to beam-

forming to the robust case (Section 3.6.1). The cost function that is derived is then used as a

fitness function in a GA in order to optimise the sensor locations in a sparse array to give a

response that is robust to steering vector errors (Section 3.6.2) [46,47].
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3.6.1 Robust Beamformer Design Based on Least Squares Formula-

tion

3.6.1.1 Problem Formulation

First it is assumed that there is a norm-bounded steering vector error, and the actual and

designed steering vectors are related as follows

s̃ = s+ e, (3.13)

where s̃ is the actual steering vector, s is the designed steering vector and e is the steering

vector error vector. It is now assumed the error is norm-bounded, i.e.

||e||2 ≤ ε, (3.14)

where ||.||2 denotes the Euclidean norm and ε ∈ R+. Using this, along with the triangle and

Cauchy-Schwartz inequalities [60], it is possible to find the maximum possible change in array

response due to the error as follows

|wH s̃−wHs| = |wHs+wHe−wHs| = |wHe|. (3.15)

As the error is norm-bounded, the final expression for the maximum possible change in array

response is given as

|wHe| ≤ ε||w||2. (3.16)

This gives a limit on the possible change to the beam response. In other words the difference

in the response can be no more than ε||w||2.

As a result it is possible to consider ε||w||2 as a measure of the robustness of a given set

of weight coefficients. Therefore, when designing a fixed robust beamformer it is desirable that

ε||w||2 is as small as possible, while still giving an acceptable performance in terms of the

desirability of the response; a more desirable response is a closer match to the ideal response.

To achieve the ideal scenario of a desirable and robust response it is possible to add ε||w||2 to

the traditional LS approach to beamforming as follows

JRLS = βRLSε||w||2 + (1− βRLS)JLS, (3.17)

where 0 ≤ βRLS ≤ 1 is a weighting term that decides the relative importance placed on desir-

ability and robustness of the response. Increasing the value of βRLS increases the importance of

the first term in the cost function JRLS, which means that more importance is placed on robust-

ness. By selecting βRLS = 0 the cost function reverts to that associated with the traditional

LS approach to beamforming.
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As previously discussed JLS is given by

JLS =

∫
Ωi

∫
Θ

F (Ω, θ)|wHs(Ω, θ)−D(Ω, θ)|2dΩ, dθ (3.18)

where Ωi is the frequency range of interest, Θ is the angle range of interest, F(Ω, θ) is a weighting

function (one is chosen for the mainlobe and αRLS in the sidelobe region), and D(Ω, θ) is the

desired response which is chosen to be one for the mainlobe and zero in the sidelobe region in

our design. Substituting this into (3.17) gives

JRLS = βRLSε||w||+ (1− βRLS)

∫
ΩI

∫
Θ

F (Ω, θ)|wHs(Ω, θ)−D(Ω, θ)|2dΩdθ

= βRLSε||w||+ (1− βRLS)

∫
ΩI

∫
Θ

F (Ω, θ)(wHs(Ω, θ)−D((Ω, θ))

(wHs(Ω, θ)−D(Ω, θ))HdΩdθ

= wHQ̂w−wH â− âHw+ d̂, (3.19)

where

Q̂ = βRLSεI+ (1− βRLS)

∫
ΩI

∫
Θ

F (Ω, θ)S(Ω, θ)dΩdθ, (3.20)

â = (1− βRLS)

∫
ΩI

∫
Θ

F (Ω, θ)s(Ω, θ)dΩdθ, (3.21)

d̂ = (1− βRLS)

∫
ΩI

∫
Θ

F (Ω, θ)D(Ω, θ)dΩdθ (3.22)

and S(Ω, θ) = s(Ω, θ)sH(Ω, θ).

As before, the integration operations are replaced by discrete summations as an estimate

and gives (3.23) as the discrete version of the cost function JRLS.

JRLSD
= wHQ̂Dw−wH âD − âH

Dw+ d̂D, (3.23)

where

Q̂D = βRLSεI+ (1− βRLS)
∑

Ωk∈ΩI

∑
θl∈θML

S(Ωk, θl) + (3.24)

(1− βRLS)αRLS

∑
Ωk∈ΩI

∑
θl∈θSL

S(Ωk, θl),

âD = (1− βRLS)
∑

Ωk∈ΩI

∑
θl∈θML

s(Ωk, θl), (3.25)

d̂D = (1− βRLS)
∑

Ωk∈ΩI

∑
θl∈θML

1, (3.26)

θML is the mainlobe region, θSL the sidelobe region and ΩI the frequency range of interest, θl

and Ωk are the direction and frequency that are currently being considered.

Taking the gradient of (3.23) with respect to w and setting it to zero gives the following

expression for the optimal weight coefficients

wRLS = Q̂
−1

D
â

D
. (3.27)
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3.6.1.2 Design Examples

Two simple design examples, one narrowband and one multiband, based on a ULA with 10

sensors and an adjacent sensor separation of 0.5λ will now be given. The values αRLS = 0.7,

βRLS = 0.01 and ε = 1 are used for both examples. For the narrowband design example the

normalised frequency Ω = π is considered with an second normalised frequency being considered

for the multiband design example giving Ω1 = 0.8π and Ω2 = π. The mainlobe has been selected

for the single point of θML = 90◦ and the sidelobe region of θSL = [0◦, 80◦]
∪
[100◦, 180◦] is

sampled every 1◦.

When assessing whether the design is robust or not N=1000 randomly generated error

vectors, which meet the norm-bounded constraint in (3.14), are considered. For the nth error

vector the achieved response at normalised frequency Ωk and angle θl, pn(Ωk, θl), is found and

the mean achieved response is given by

p̄(Ωk, θl) =
1

N

N−1∑
n=0

pn(Ωk, θl), (3.28)

which is then used to find the variance and the normalised variance of the achieved array

response,

var(Ωk, θl) =
1

N

N−1∑
n=0

|pn(Ωk, θl)− p̄(Ωk, θl)|2, (3.29)

normvar(Ωk, θl) =
1

N

N−1∑
n=0

|pn(Ωk, θl)− p̄(Ωk, θl)|2

|p̄(Ωk, θl)|2
. (3.30)

A close match between mean achieved and designed responses, along with low variance levels,

would indicate that robustness has been achieved.

However, it is worth noting that it is possible for both measures of the variance to give

different values. This is due the introduction of the normalisation term in (3.30). In other

words when the value of the mean achieved response is almost zero-valued, this term results in

there being a large normalised variance level.

The beam response, variance and normalised variance for the narrowband example are

shown in Figures 3.15, 3.16 and 3.17 respectively. It can be clearly seen that the mainlobe

of the designed response is in the correct location and there is sufficient sidelobe attenuation.

There is also a good match between the designed and mean achieved responses, especially

around the mainlobe where they are almost exact. Along with the low variance levels this

suggests robustness has been achieved. This is important since if any model perturbations are

present, causing steering vector error, it will still be reasonable to expect the achieved mainlobe

to be in the correct location along with an acceptable level of sidelobe attenuation.
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Figure 3.15: Beam response for the narrowband robust beamformer based on a 10-element

ULA.
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Figure 3.16: Variance levels for the narrowband robust beamformer based on a 10-element

ULA.

With the addition of the second frequency for the multiband example we arrive at the

responses shown in Figures 3.18 and 3.19, respectively. For both normalised frequencies the

designed and mean achieved mainlobes are in the correct location with sufficient sidelobe at-
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Figure 3.17: Normalised variance levels for the narrowband robust beamformer based on a

10-element ULA.
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Figure 3.18: Beam response for the multiband (Ω1 = 0.8π) robust beamformer based on a

10-element ULA.

tenuation. There is also a good match between the two responses for both Ω1 = 0.8π and

Ω2 = π. Along with the low variance levels shown in Figure 3.20, and normalised variance

levels in Figure 3.21, this indicates that the response at both normalised frequencies is robust
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Figure 3.19: Beam response for the multiband (Ω2 = π) robust beamformer based on a

10-element ULA.
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Figure 3.20: Variance levels for the multiband robust beamformer based on a 10-element

ULA.

to steering vector errors.

This indicates that the extension of the LS formulation to the robust case can successfully be

used to design a fixed robust beamformer. The problem now is to optimise the sensor locations
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Figure 3.21: Normalised variance levels for the multiband robust beamformer based on a

10-element ULA.

in a sparse array in order to allow the efficient implementation of such a beamformer. This

problem is addressed in the next section of this chapter.

3.6.2 Genetic Algorithm Based Design Method For Robust Sparse

Arrays

This subsection now looks at the design of sparse robust beamformer using the GA structure

shown in Figure 3.1 in Section 3.3 of this chapter. Here the only change is the fitness function

which is now given by

Fiti =
1

JRLSD

, (3.31)

where for each individual in the current generation the optimal weight coefficients, wRLS, are

found and then used to evaluate JRLSD
. The size constraint is now enforced using

Fiti =


1

JRLSD

if passed,

min{Fitg−1} if failed.
(3.32)

Narrowband and multiband design examples will now be considered.
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3.6.2.1 Narrowband Design Example

Firstly, a narrowband design example without size constraint will be considered. The nor-

malised frequency of interest is Ω = π, with a corresponding wavelength of λ. The GA looked

to optimise the locations of 12 sensors spread over an aperture of 10λ. This was done with a

population size of 50 creating 45 offspring in each of the 100 generations, with a mutation rate

of 0.25. The values αRLS = 0.8, βRLS = 0.01 and ε = 1 were also used. Again, the parameter

values here have been selected based on experience of getting a good balance in terms of the

tradeoffs that have been previously discussed. In this instance βRLS selects the relative impor-

tance placed on desirability of response and robustness of the solution. A large value would

give a more robust response but may adversely affect the desirability of the designed response.
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Figure 3.22: Mean and maximum fitness values for the robust narrowband array without size

constraint.

Figures 3.22, 3.23, 3.24 and 3.25 show the resulting fitness levels, beam responses, vari-

ance and normalised variance, respectively. The rise in the mean and maximum fitness values

indicates that the desired optimisation has occurred. This has led to an acceptable designed

response, with the mainlobe in the correct location and sufficient sidelobe attenuation being

achieved. There is also a close match between the designed and mean achieved responses,

especially around the mainlobe location. Along with the low normalised variance levels this

indicates that a robust solution has been achieved.

The resulting sensor locations are shown in Table 3.6. We can see that the minimum adjacent

sensor separation is 0.16λ (between sensors 6 and 7) in this example. However, if sensors with
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Figure 3.23: Beam response for the robust narrowband array without size constraint.
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Figure 3.24: Variance for the robust narrowband array without size constraint.

a size of 0.80λ are used this array would not be able to be practically implemented.

When the size constraint was enforced, the resultant fitness levels, responses, variance levels

and normalised variance levels are shown in Figures 3.26, 3.27, 3.28 and 3.29, respectively.

Again some degree of optimisation has been achieved as shown by the increase in mean and

maximum fitness values. However, the increase in maximum fitness value has been reduced
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Figure 3.25: Normalised variance for the robust narrowband array without size constraint.

Table 3.6: Sensor locations for the narrowband robust sparse array without size constraint.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 3 4.60 6 6.87 9 8.52

1 0.64 4 5.35 7 7.03 10 9.29

2 3.11 5 6.14 8 7.74 11 10.00

due to the addition of enforcing the size constraint. Despite this an acceptable performance

is still achieved in terms of desirability of the designed response and robustness to a norm-

bounded steering vector error. For completeness the sensor location for the example with the

size constraint are shown in Table 3.7, where it can be seen that the minimum adjacent sensor

separation is 0.80λ (i.e. the size constraint has successfully been enforced). This separation is

achieved between all sensors other than sensors 0 and 1, 3 and 4, 5and 6, and 11 and 12, where

a larger separation is achieved.

At this point it is worth noting that more careful consideration has to be given to the number

of sensors for a given aperture size compared to when the size constraint is not implemented.

This is because if too many are included in the design then the aperture may not be long

enough for a solution to be possible. In less extreme cases the only possible solutions approach

that of a ULA with an adjacent sensor separation of the sensor’s size. This may offer a further

explanation for the reduction the amount of optimisation.
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Figure 3.26: Mean and maximum fitness values for the robust narrowband array with size

constraint.
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Figure 3.27: Beam response for the robust narrowband array with size constraint.

3.6.2.2 Multiband Design Example

Now a multiband design example is considered, where the only change in parameters is the

introduction of a second normalised frequency of interest, Ω = π/2. Again an example without

47



0 20 40 60 80 100 120 140 160 180
−45

−40

−35

−30

−25

−20

−15

θ (degrees)

V
ar

ia
nc

e 
of

 b
ea

m
 p

at
te

rn
 (

dB
)

Figure 3.28: Variance for the robust narrowband array with size constraint.
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Figure 3.29: Normalised variance for the robust narrowband array with size constraint.

the size constraint will be considered first. Figure 3.30 shows that the desired optimisation has

again been achieved. Figures 3.31 and 3.32 show the resulting designed and mean achieved

response for both normalised frequencies of interest. Both show a desirable designed response

(mainlobe in the correct location and sufficient sidelobe attenuation for both frequencies of

interest) and there is a good match with the mean achieved response, which along with the low
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Table 3.7: Sensor locations for the narrowband robust sparse array with size constraint.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 3 2.78 6 5.20 9 7.60

1 1.18 4 3.59 7 6.00 10 8.40

2 1.98 5 4.39 8 6.80 11 10.00

variance levels in Figures 3.33 and 3.34 indicates that robustness has been achieved.
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Figure 3.30: Mean and maximum fitness values for the robust multiband array without size

constraint.

Table 3.8: Sensor locations for the multiband robust sparse array without size constraint.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 3 2.32 6 4.95 9 7.52

1 0.62 4 3.20 7 5.81 10 8.98

2 1.48 5 4.07 8 6.66 11 10.00

Table 3.8 gives the optimised sensor locations, with the minimum adjacent sensor separation

less than 0.80λ. When the size constraint is enforced the optimised locations shown in Table

3.9 are obtained, where the size constraint is clearly met.

Figure 3.35 shows that some optimisation has occurred to obtain these locations. The

49



0 20 40 60 80 100 120 140 160 180
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

θ (degrees)

B
ea

m
 p

at
te

rn
 (

dB
)

 

 
Designed Response
Mean Achieved Response

Figure 3.31: Beam response for the robust multiband (Ω1 = 0.5π) array without size con-

straint.
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Figure 3.32: Beam response for the robust multiband (Ω2 = π) array without size constraint.

designed and mean achieved responses for the two normalised frequencies of interest are shown

in Figures 3.36 and 3.37, respectively. Both designed responses show an acceptable performance.

There is also a close match between the designed and mean achieved responses, which along
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Figure 3.33: Variance for the robust multiband array without size constraint.
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Figure 3.34: Normalised variance for the robust multiband array without size constraint.

with the low variance levels in Figures 3.38 and 3.39 shows a robust solution has been obtained.

Therefore it has been demonstrated that it is possible to design a robust sparse sensor

arrays using a design method based on a GA. Furthermore, it is also possible to incorporate a

size constraint to ensure a minimum sensor separation is achieved. This solves the problem of

arrays not being able to be implemented in practice. Although only narrowband and multiband
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Table 3.9: Sensor locations for the multiband robust sparse array with size constraint.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0 3 2.55 6 5.12 9 7.59

1 0.86 4 3.40 7 5.96 10 8.39

2 1.67 5 4.27 8 6.79 11 10
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Figure 3.35: Mean and maximum fitness values for the robust multiband array with size

constraint.

design examples have been given here, it is straightforward to design wideband arrays in the

same manner.

3.7 Summary

This chapter has looked at how GAs can be used in the design of sparse sensor arrays. The

GAs work by selecting the fittest individuals for breeding, creating new individuals/solutions

with which to repeat the process. After a set number of generations/iterations of the algorithm,

the fittest/best solution is selected and used as the final design. Usually the PSL of the array

is used as the fitness measure. However, this chapter has also considered the LS approach to

beamforming as an alternative performance measure on which to base the fitness function.

Previous work using GAs all assumed a sensor with no physical size, i.e. the sensor only

takes up a single discrete point in space. However, this is obviously not the case in practice and
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Figure 3.36: Beam response for the robust multiband (Ω1 = 0.5π) array with size constraint.
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Figure 3.37: Beam response for the robust multiband (Ω2 = π) array with size constraint.

in some cases a sensor could be larger than λ/2 in size. When this occurs it is possible that the

optimised sensor locations might not be practically implementable. As a result a solution to the

problem of ensuring a minimum spacing of the sensor’s physical size is proposed in this thesis.

This is done by enforcing the size constraint through the fitness function used by the GA and
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Figure 3.38: Variance for the robust multiband array with size constraint.
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Figure 3.39: Normalised variance for the robust multiband array with size constraint.

ensure the solution can be implemented in practise. The fitness value assigned to individuals

that don’t pass the size constraint is the minimum value from the previous generation. This

means that the individual will not be selected for the breeding process, ensuring the locations

that have failed the constraint don’t get replicated in the offspring. From experience of different

design examples this method always gives locations that meet the size constraint. It is also
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more efficient than an alternative method which allows offspring to be rejected and regenerated

until the size constraint is met.

In some extreme cases when the separations between sensors approach the minimum allowed,

coupling could cause a degradation in the performance of the array. To counteract this the

concept of virtual size associated with the sensor can be considered. Whereby the virtual size

of the sensor is larger than its physical size, resulting in a larger minimum spacing between the

sensors in the array. For example if the sensor’s size is 0.8λ we could have a virtual size of 1λ,

meaning adjacent sensors will be at least 2× (1− 0.8λ) = 0.4λ apart.

There may also be other model perturbations encountered in practice in addition to the

coupling problem considered above, such as sensor location errors and individual sensor response

discrepancies. When one or more of these are present there will be a mismatch between the

designed and achieved steering vectors. As a result, the response of the array will be different to

what was expected. To avoid this, in this chapter, an extension the LS approach to beamforming

is proposed in order to design robust weight coefficients, where the maximum possible change

in array response due to a norm-bounded steering vector error is found and combined with

the traditional LS beamforming cost function. The new cost function is then minimised in the

same way to find the optimal weight coefficients. This can then be used as the basis of a fitness

function that a GA can use to design a set of sparse sensor locations that are robust to steering

vector error. This ensure that an acceptable array performance will be achieved, even in the

presence of model perturbations.

It is worth noting that although the work presented in this chapter uses a simple GA it

could also be used in conjunction with various other improvements that can be made to the GA.

Alternatively the ideas could be used with other optimisation methods, such as SA algorithms

which carry out optimisations based on functions similar to the fitness function used by GAs.

However, common problems associated with such methods are the potentially long computation

times and the uncertainty in reaching the global optimal solution. Failure to reach the global

optimal solution within the allowed number of generations could be alleviated by allowing the

GA to run until the maximum fitness value levels off to a constant. This would however make

the computation time even longer. As a result, a more efficient procedure for designing sparse

sensor arrays is desirable. Design methods based on CS are one such alternative and will be

considered in the next chapter.
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Chapter 4

Compressive Sensing Based Design

Methods

4.1 Introduction

This chapter looks at the use of compressive sensing (CS) as an alternative to GAs to design

sparse sensor arrays. A review of the original problem formulation is given along with how it

can be extended to design a robust array. This will then be considered along with reformulating

the problem as a series of reweighted l1 minimisations in order to improve the sparsity of the

solution.

For both the l1 and reweighted l1 minimisation problems a large grid of potential sensor

locations is required, with sparsity being introduced through zero-valued weight coefficients.

It is possible that this could result in sensor locations that are very close together. As has

been considered in the previous chapter this can cause issues if the sensor size is large, i.e.

the array will not be able to be implemented in practice. Therefore, it would be advantageous

to have procedures in place to enforce a minimum spacing of the sensor’s physical size upon

the minimisation. In the simplest form this can simply be merging locations that are too

close together. Alternatively, schemes based on an iterative procedure and the reweighted l1

minimisation are presented. All are compared with the previously considered GA-based design

methods in the last chapter.

At this point it is worth noting that the term compressive sensing in this instance can only

be loosely applied. This is because traditionally CS deals with the recovery of sparse signals.

This can be achieved by solving an l1 norm minimisation. However, the problems considered

in this chapter do not involve a sparse signal that is to be recovered. Instead the sparsity

being considered is that of the spatial sampling of a signal, resulting in an array with non-
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uniform adjacent sensor separations. This problem can be solved using the same mathematical

formulations as is used in CS. As a result, previous research has continued to use the CS label

and the same will be done in the remainder of this thesis (the same applies for the formulations

in the following two chapters).

4.2 Review of Compressive Sensing Based Design

The idea behind CS is to improve upon the sampling rate (twice the frequency of interest)

while still recovering the signal of interest [33]. This can form the basis of sparse sensor array

design methods. In such methods the idea is to find the minimum number of sensors which

still give an exact, or almost exact, match to a reference pattern [34–37]. Ideally this would

be formulated as the minimisation of the l0 norm (which gives the number of non-zero values)

of the weight coefficients. However, in practice this has to be approximated as the l1 norm

minimisation problem which is associated with CS.

When using the l1 norm minimisation the larger non-zero valued weight coefficients are

penalised more heavily than the smaller ones. This is different from the l0 norm minimisation

where all non-zero valued weight coefficients are penalised in a uniform manner. As a result, the

sparsity of the solution can be improved by converting the problem into a series of reweighted l1

minimisations that are solved iteratively (see Section 4.5), where the reweighting term is added

to more heavily penalise smaller non-zero valued weight coefficients [41–43].

Alternatively, the deterministic framework can be converted into a probabilistic framework

and solved using a relevance vector machine [67]. This approach has been used in the design

of sparse arrays with real-valued and complex-valued weight coefficients [38–40]. These design

methods have been shown to be able to efficiently solve the problem being considered. However,

they are not considered in this thesis because the extensions that will be considered in this,

and following chapters, can easily be implemented in the deterministic form and solved using

already available software packages [68,69]. Extending the probabilistic framework to consider

the work being considered in this thesis is a potential area of future work.

4.3 Problem Formulation

The problem of designing sparse narrowband sensor arrays can be summarised as finding the set

of weight coefficients with as few non-zero valued coefficients as possible, while still achieving
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an acceptable response. As a first formulation this gives

min ||w||0
subject to ||pr −wHS||2 ≤ α (4.1)

where ||w||0 is the number of nonzero weight coefficients in w, pr is the vector holding the

desired beam response at sampled frequency points Ωk and angle θl, k = 0, 1, · · · , K − 1,

l = 0, 1, · · · , L − 1, S is the matrix composed of the steering vectors at the corresponding

frequencies Ωk and angles θl, and α ∈ R+ places a limit on the allowed difference between the

desired and the designed responses. In this constraint || · ||2 denotes the l2 norm.

In detail, pr and S are respectively given by

pr = [Pr(Ω0, θ0), · · · , Pr(Ω0, θL−1), Pr(Ω1, θ0), · · · , Pr(Ω1, θL−1), ..., Pr(ΩK−1, θL−1)]

and

S = [s(Ω0, θ0), · · · , s(Ω0, θL−1), s(Ω1, θ0), · · · , s(Ω1, θL−1), · · · , s(ΩK−1, θL−1)].

Here the desired response Pr(Ω, θ) can be obtained from that of a traditional uniform linear

array, or simply assumed to be an ideal response, i.e., one at the mainlobe area and zero for

the sidelobe area.

However, (4.1) is computationally expensive and the problem can be more efficiently ex-

pressed as a minimisation of the l1 norm of the weight coefficients [33], i.e.

min ||w||1
subject to ||pr −wHS||2 ≤ α . (4.2)

As well as being able to design sparse narrowband arrays this formulation is also effective

in the design of multiband arrays, where the same structure (J = 1) is used for K different

normalised frequencies. Two simple design examples using this formulation will be presented

below.

4.3.1 Design Examples

In this subsection a narrowband and a multiband design example will be provided. No wideband

design examples considered in this chapter as they require the reformulation proposed in the

next chapter to guarantee a sparse solution. For both of the design examples considered there

is a grid of 200 potential sensor spread over an aperture of 10λ, where λ is the wavelength

associated with the frequency of interest (Ω = π). The mainlobe is designed to be the single

point of θML = 90◦, with the sidelobe region given by θSL = [0◦, 80◦]
∪
[100◦, 180◦] and sampled

every 1◦.
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As with the GA based design methods there is a tradeoff when selecting the sidelobe regions

and how frequently they are sampled. If not frequently enough there is a chance that some

angular points within the sidelobe regions will not be sufficiently suppressed. However, if

increased too far there will be little improvements in terms of the array’s response but there

could be issues with memory requirements when solving problems with apertures of a larger

size. Experience suggests that every 1◦ gives a reasonable balance in most cases. Again in

these examples, and those that follow in the rest of this chapter, will only consider broadside

mainlobe locations. This is because a narrowband array structure with real valued weight

coefficients are again being considered.

The choice in the number of potential sensor locations also has an effect in a similar manner.

The number has to be large enough to ensure that the grid of locations has a reasonable chance

of including the optimal (in terms of giving the minimum number of active sensors) locations.

Therefore, increasing the number of potential sensors can help improve the performance of the

array in terms the number of sensors required. However, if increased too far there will again

be an issue of reducing amounts of improvement and eventual memory requirement issues.

Experience and previous research suggest sampling the spatial region between every 0.05λ and

0.1λ is sufficient to give acceptable results [42].

4.3.1.1 Narrowband Design Example

For the narrowband example the value α = 0.3 was placed on the constraint in (4.2). The choice

in value of α is a tradeoff in how desirable the response is and the level of sparsity (number

of sensors) achieved. Experience suggests this values gives a reasonable performance for both

performance measures in this instance and results in an array consisting of the 14 active sensors

shown in Table 4.1. Here it can be seen that the array is spread over the full aperture of 10λ

with a mean adjacent sensor separation of 0.77λ. Figure 4.1 shows the resulting beam response.

The mainlobe is at the desired location of θ = 90◦ with sufficient sidelobe attenuation being

present.

Table 4.1: Narrowband sensor locations for the sparse array designed using CS.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 4 3.14 8 6.11 11 8.44

1 0.78 5 3.89 9 6.86 12 9.22

2 1.56 6 4.65 10 7.66 13 10.00

3 2.34 7 5.35
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Figure 4.1: Response of the narrowband sparse array designed using CS.

4.3.1.2 Multiband Design Example

For the multiband design example the value α = 0.4 is placed on the constraint limiting the

error allowed between the desired and designed responses. In this instance considering the

second frequency of interest has made the problem more complicated. As a result a slightly

larger value of α has been necessary in order to achieve the same level of sparsity. The two

normalised frequencies now being considered are Ω1 = 0.8π and Ω2 = π. Table 4.2 shows the

resulting 13 active sensor locations, which are spread over an aperture of 10λ with a mean

adjacent sensor separation of 0.83λ. As for the narrowband design example, the resulting

responses, Figure 4.2, show that a desirable performance has been achieved.

Table 4.2: Multiband sensor locations for the sparse array designed using CS.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 4 3.29 7 5.85 10 8.37

1 0.78 5 4.15 8 6.71 11 9.22

2 1.63 6 5.00 9 7.56 12 10.00

3 2.44
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Figure 4.2: Response of the multiband sparse array designed using CS.

4.4 Robustness Constraint

In the previous subsection, the traditional beamforming scenario was assumed. As discussed in

Chapter 3, this is not always the case as model perturbations can cause a mismatch between

designed and achieved steering vectors.

In order to ensure that the l1 minimisation problem returns a robust solution an extra

constraint on the minimisation problem is included. This is to ensure that the previously found

maximum change in response due to a norm-bounded error remains below a predetermined

acceptable level [48,49], i.e.

ε||w||2 ≤ γ (4.3)

where ε ∈ R+ places a bound on the expected steering vector error, as discussed in the previous

chapter.

Adding this as an extra constraint to (4.2), leads to

min ||w||1
subject to ||pr −wHS||2 ≤ α, ε||w||2 ≤ γ, (4.4)

where the second constraint ensures that the difference in array response, caused by the norm-

bounded error, remains below a predetermined acceptable level specified by γ ∈ R+.
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4.4.1 Design Examples

In this subsection, design examples will be provided to illustrate the effects of adding the

robustness constraint to the l1 norm minimisation problem. For ease of comparison the same

parameters as in Section 4.3.1 will be used here. For both the narrowband and the multiband

design examples the values of γ = 0.16 and ε = 1 were used for the robustness constraint. These

values are selected after experience with fine tuning the different parameters used. Generally

speaking decreasing the value of γ for a give value of ε makes the solution harder to achieve

but should give a more robust solution.

As with the GA design method a good match between designed and mean achieved responses

is required, along with low normalised variance levels, in order to indicate that a robust solution

has been achieved. When testing the mean achieved response and variance levels 1000 error

vectors are randomly generated that meet the norm-bounded constraint.

4.4.1.1 Narrowband Design Example

Table 4.3 shows the resulting sensor locations for the robust narrowband array. It is clear that

the addition of the robustness constraint has resulted in 4 extra active sensor locations.

Table 4.3: Narrowband sensor locations for the robust array designed using CS.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 5 3.84 10 5.43 14 7.66

1 0.78 6 3.92 11 6.11 15 8.44

2 1.56 7 4.60 12 6.18 16 9.22

3 2.34 8 4.67 13 6.86 17 10.00

4 3.14 9 5.35

The designed and mean achieved responses for the array are shown in Figure 4.3. Again

the mainlobe is in the desired location, with sufficient sidelobe attenuation also having been

achieved. There is also a good match between the designed and mean achieved response which,

along with the low variance levels shown in Figures 4.4 and 4.5, indicate that robustness has

been achieved. Note, again as expected there different levels have been achieved by the two

variance measures, due to the introduction of the normalisation term.
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Figure 4.3: Designed and mean achieved responses for the narrowband robust sparse array

designed using CS.
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Figure 4.4: Variance levels for the narrowband robust sparse array designed using CS.

4.4.1.2 Multiband Design Example

In this multiband example, there are 7 extra sensors required as shown in Table 4.4. Figures

4.6 and 4.7 show the resulting designed and mean achieved responses for both normalised
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Figure 4.5: Normalised variance levels for the narrowband robust sparse array designed using

CS.

frequencies of interest. In both cases the mainlobe is in the correct location, with sufficient

sidelobe attenuation and a good match between the designed and mean achieved responses.

Along with low variance levels shown in Figures 4.8 and 4.9, this verifies the robustness of the

design result.

Table 4.4: Multiband sensor locations for the robust sparse array designed using CS.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 5 3.29 10 5.05 15 7.51

1 0.78 6 3.37 11 5.8 16 7.59

2 1.63 7 4.10 12 5.90 17 8.37

3 2.44 8 4.20 13 6.66 18 9.22

4 2.51 9 4.95 14 6.73 19 10.00

4.5 Iteratively Solved Reweighted Minimisations

In this section details of how the problem can be converted into a series of iteratively solved

reweighted minimisations will be considered. This is done in order to make the solution a closer

approximation to the l0 norm, thereby improving the sparsity of the result.
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Figure 4.6: Designed and mean achieved responses for the multiband, Ω1 = 0.8π robust sparse

array designed using CS.
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Figure 4.7: Designed and mean achieved responses for the multiband, Ω2 = π robust sparse

array designed using CS.

4.5.1 Problem Formulation

In the traditional CS formulation the l1 norm is used as an approximation of the l0 norm for

ease of computation. However, these two norms act in different ways and it is possible to
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Figure 4.8: Variance levels for the multiband robust sparse array designed using CS.
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Figure 4.9: Normalised variance levels for the multiband robust sparse array designed using

CS.

improve the sparsity of the solution by making the problem a closer approximation of the l0

norm minimisation.

Unlike the l0 norm, which penalises all non-zero values equally, the l1 norm penalises larger

non-zero values more heavily. Therefore, it is desirable to alter the l1 minimisation problem so
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that it penalises all non-zero values in a more uniform manner. This can be done by changing

the problem to that of an iteratively solved reweighted l1 norm minimisation problem [41] as

given by

min
M−1∑
m=0

aim|wi
m|

subject to ||pr −wH
i S||2 ≤ α (4.5)

where i is the current iteration, wi = [wi
0,w

i
1, . . . wi

M−1]
T holds the current estimate of the

weight coefficients, aim = (|wi−1
m | + ϵ)−1 and ϵ > 0. The iterative algorithm would then follow

the steps below:

1. Set i = 0 and find an initial estimate of the weight coefficients wi by solving (4.2).

2. i = i+ 1, and find the reweighting terms aim.

3. Solve (4.5).

4. Repeat steps 2 to 3 until ||wi||0 = ||wi−1||0 = ||wi−2||0 i.e. until the number of active

locations has remained the same for three iterations [42]. Increasing this further may

allow for further reductions but adversely effects the computation time required.

The small positive-valued ϵ is included for numerical stability and it also means that a

zero-valued entry in one iteration will not guarantee a zero-valued entry in the next iteration.

A suitable value for ϵ is slightly below the planned minimum weight coefficient value [42].

The addition of the reweighting terms aim ensures that all non-zero values are penalised in

a more uniform manner. A large weight coefficient in the previous iteration will give a small

reweighting term in the current iteration. This means that the non-zero valued weight coefficient

associated with the location is likely to be repeated in the current iteration. Conversely, a small

weight coefficient will give a large reweighting term and therefore the location is less likely to

be repeated in the current iteration.

This formulation has been successfully used in the design of sparse narrowband arrays

[42, 43, 48]. Also as with the traditional l1 minimisation problem, it is possible to add the

robustness constraint in order to ensure a robust solution. This gives the following formulation

of the problem

min
M−1∑
m=0

aim|wi
m|

subject to ||pr −wH
i S||2 ≤ α, ε||wi||2 ≤ γ. (4.6)

It is then solved using the same basic procedure as detailed above. However, the initial estimate

of the weight coefficients should be found using (4.4) and (4.5) in step 3) is replaced by (4.6).
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4.5.2 Design Examples

Now compare the performance of the reweighted l1 minimisation problem with the original l1

norm minimisation. This will be done both with and without the robustness constraint. Again,

to allow a fair comparison, the same parameters as used in the design examples above will be

selected. The value of ϵ = 9× 10−4 (just less than the minimum weight coefficient that will be

implemented) is also required.

4.5.2.1 Narrowband Design Examples

Table 4.5: Narrowband sensor locations for the sparse array designed using reweighted l1

minimisation.

m dm/λ m dm/λ m dm/λ m dm/λ

0 1.56 3 3.87 6 6.13 8 7.64

1 2.36 4 4.62 7 6.88 9 8.44

2 3.12 5 5.38
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Figure 4.10: Response of the narrowband sparse array designed using reweighted l1 minimi-

sations.

Table 4.5 shows the resulting sensor locations when the robustness constraint is not consid-

ered. Here it can be seen that the reweighted design method has resulted in four less sensors

in the result. However, the aperture of the array has also been reduced meaning there is no
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significant change in the mean adjacent sensor separation. The resulting response is shown in

Figure 4.10, with an acceptable performance achieved.

Adding the robustness constraint gives the 14 active locations as shown in Table 4.6. Again

there has been a reduction in the number active sensors compared to the solution from the

original CS formulation. In this instance there is also an increase in the mean adjacent sensor

separation which has risen to 0.65λ. Figure 4.11 shows the resulting designed and mean achieved

responses, with the variance levels shown in Figures 4.12 and 4.13.

Table 4.6: Narrowband sensor locations for the robust sparse array designed using reweighted

l1 minimisation.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.76 4 3.89 8 5.43 11 7.66

1 1.56 5 4.60 9 6.11 12 8.44

2 2.34 6 4.67 10 6.86 13 9.25

3 3.14 7 5.35
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Figure 4.11: Designed and mean achieved responses of the narrowband robust sparse array

designed using reweighted l1 minimisations.
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Figure 4.12: Variance levels for the robust sparse array designed using reweighted l1 minimi-

sations.
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Figure 4.13: Normalised variance levels for the robust sparse array designed using reweighted

l1 minimisations.

4.5.2.2 Multiband Design Examples

The reweighted formulation without robustness constraint results in the 11 active sensors listed

in Table 4.7, which is 2 fewer active sensor locations than required in the example solved using
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Table 4.7: Multiband sensor locations for the sparse array designed using reweighted l1 min-

imisation.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.80 3 3.32 6 5.85 9 8.39

1 1.61 4 4.15 7 6.68 10 9.20

2 2.46 5 5 8 7.54
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Figure 4.14: Responses of the multiband sparse array designed using reweighted l1 minimisa-

tions.

the original CS formulation. However,there is no significant change in the mean adjacent sensor

separations. Figure 4.14 shows the resulting beam responses for the two frequencies of interest.

For both a desirable response has been achieved in terms of mainlobe location and sidelobe

attenuation.

With the addition of the robustness constraint the resulting array consists of 18 active

locations, as given in Table 4.8. It can be seen that there are 2 fewer sensors than the solution

from the original CS formulation. The sensors are still over the same aperture length, giving an

improved mean adjacent sensor separation of 0.59λ. The designed and mean achieved responses

for the two normalised frequencies of interest are shown in Figures 4.15 and 4.16. Both designed

responses show acceptable performance levels. There is also a close match between the designed

and mean achieved responses. Along with the low variance levels shown in Figures 4.17 and

4.18, it clearly demonstrates the robustness of the design result.
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Table 4.8: Multiband sensor locations for the robust sparse array designed using reweighted

l1 minimisation.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 5 3.37 10 5.80 14 7.54

1 0.80 6 4.15 11 5.88 15 8.37

2 1.63 7 4.22 12 6.66 16 9.20

3 2.46 8 4.95 13 6.73 17 10.00

4 3.29 9 5.05
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Figure 4.15: Designed and mean achieved responses of the multiband, Ω1 = 0.8π, robust

sparse array designed using reweighted l1 minimisations.

4.6 Enforcing the Size Constraint

However, the solutions to both the l1 and reweighted l1 minimisation problems can lead to

active locations that are too close together, due to the dense sampling grid of potential sensor

locations required. This may lead to impractical solutions due to the sensors not fitting in the

specified locations. As a result, a minimum adjacent sensor separation of the sensor’s physical

size (it is assumed the sensors are of uniform size) has to be enforced. Three proposed methods

are detailed below [48]. The first design method simply involves merging locations that are too

close together, the second an iterative process placing a sensor in each iteration, the third an

altered reweighting scheme.
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Figure 4.16: Designed and mean achieved responses of the multiband, Ω2 = π, robust sparse

array designed using reweighted l1 minimisations.
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Figure 4.17: Variance levels for the multiband robust sparse array designed using reweighted

l1 minimisations.

4.6.1 Post-Processing Method

A straightforward method is to merge the resultant locations which are too close. However, it

is not difficult to modify the standard design methods in (4.4) and (4.6) to make sure that if
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Figure 4.18: Normalised variance levels for the multiband robust sparse array designed using

reweighted l1 minimisations.

needed at least the first two active sensors have a large enough spacing.

Assume the size of the sensor is da and the allowed maximum aperture for the array is dM−1.

Then instead of sampling the distance dM−1 uniformly with M potential sensor locations, the

first two potential locations are selected with a separation of da as shown in Figure 4.19.

M−1

a

Uniform Sampling

d

d

0 1 2 3 M−1

Figure 4.19: Sampling of potential active sensor locations for the post-processing method.

First use (4.4) or (4.6) to obtain the initial active locations. If the first location (d0) is

included in the initial result, then the second active sensor location (d1) will be at least a

distance of da away from it according to the sampling scheme in Figure 4.19.

Next to decide the second active location, it is necessary to first find the next cluster of
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initial active locations with an adjacent spacing less than da. Then take the average of the

clustered locations as the second active location. Note that when forming this cluster of initial

active locations, it should be ensured that the distance from the first to last locations of the

cluster is less than da, otherwise the cluster should be split into multiple sub-clusters so that

the maximum possible number of sensors for the region are retained. The remaining locations

should then be found in the same manner. Obviously, it is not possible to obtain the optimal

solution using this method. However, in the design examples that follow it can be seen that a

satisfactory design result can still be obtained.

4.6.2 Iterative Minimum Distance Sampling Method

This method is a further modification of the post-processing method described in Section 4.6.1.

After finding the first active location (location 0 in Figure 4.19) and the second one (through

merging the first cluster of active locations) according to the procedure in Section 4.6.1, the

next stage is to sample the aperture between location 2 and location M uniformly with the

distance between location 1 and location 2 being da as shown in Figure 4.20.

M−1

Uniform Sampling

d

a
d

0 1 2 M−1

Figure 4.20: Sampling of potential antenna locations, where locations 1 and 2 are final active

locations obtained by the procedure in Section 4.6.1.

Then using the design method (4.4) or (4.6), it is possible to obtain the initial active locations

between location 2 and M − 1 in Figure 4.20 and following the post-processing procedure the

third final active sensor location can be found.

Fixing the first, second and third active locations, uniformly sampling between location 3

and M − 1, where the distance between location 3 and location 2 is da, we obtain another set

of initial active antenna locations. Repeat this process until the remaining range is less than

the size of the antenna.

The basic framework of the l1 minimisation problem in these two proposed design methods

follows that of previous CS-based work. As a result it would be reasonable to assume that
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a solution will be guaranteed in a majority of cases that the previous work does. However,

the addition of the size constraint and the iterative nature of the iterative minimum sampling

method means that in some cases a solution may not be reached. This is because an extra

constraint, in the form of the minimum adjacent separation, has been placed on the problem

being considered. As a result getting the balance between level of sparsity and desirability of

the response (selection of α) is harder to achieve. In the case of the iterative minimum sampling

method it is also possible that the method could fail at a given iteration. However, it would

still be possible to obtain a suitable solution by applying the post processing method to the

active antenna locations found in the previous iteration.

4.6.3 Reweighted Method

In order to enforce the size constraint and exploit the extra sparsity of the reweighted l1

minimisation problem, the reweighting scheme used in (4.6) is changed to

aim =


(|wi−1

m |+ ϵ)−1 m = 0

(|wi−1
m |+ ϵ)−1 m > 0 and constraint met

(ϵ)−1 otherwise.

(4.7)

Now instead of repeating the iterative process until the number of active locations has remained

the same for three iterations, as detailed in Section 4.5, the process is continued until the size

constraint is enforced.

Unfortunately, this algorithm will not always guarantee a viable solution, due to the presence

of ϵ in the calculation of reweighting terms. The inclusion of ϵ is required for numerical stability,

but also prevents a zero-valued weight coefficient in the current iteration guaranteeing a zero-

valued weight coefficient in the next iteration. However, experience of different design examples

suggests that if a solution is possible it should be reached within 5 iterations. This is similar

to what has been found in previous research where no size constraint is enforced [42].

4.6.4 Design Examples

Next this subsection will present design examples for the three methods and compare them

to results obtained using the robust sparse array design method with physical size constraint

discussed in the previous chapter. The design examples were all implemented on a computer

with an Intel Core Duo CPU E6750 (2.66GHz) and 4GB of RAM.

As in the previous chapter the robustness of the solution will be determined by generating

1000 different error vectors meeting the norm-bounded constraint. The mean achieved response,
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variance of response and normalised variance of response will again be found using (3.28), (3.29)

and (3.30). For all design examples sensor locations with negligible contributions to the overall

response (weight coefficient values below 1× 10−3) were discarded and some degree of location

merger was required. As a result, the final weight coefficients may no longer be optimal for

the final antenna locations. However, the locations will allow the effective design of a robust

beamformer using the formulation as detailed in Chapter 3, Section 3.6.1. The same method

is also used to find the coefficients for the comparison GA design examples. In both cases the

same values of αRLS and βRLS are selected when finding the optimal weight coefficients, in order

to allow a fair comparison. Note, that αRLS and βRLS here are not the same as the variables α

and β used in the CS-based design methods.

4.6.5 Narrowband Design Examples

First a comparison for the narrowband case was considered. Initially the three proposed meth-

ods were used to design a sparse array with an aperture of 15λ, where λ is the wavelength

associated with the signal of interest (Ω = π). This aperture was then split into a grid of

300 potentially active sensor locations, with each active sensor assumed to have a size of 0.8λ.

The desired mainlobe was set to the single point of θML = 90◦ with the sidelobe regions set

as θSL = [0◦, 80◦]
∪
[100◦, 180◦] being sampled every 1◦. The values of α = 0.75 and γ = 0.4

were placed on the constraints in the optimisations and the value ε = 1 also used. After the

discarding and merging of initial locations, the values of αRLS = 0.8 and βRLS = 0.01 were used

in the redesigning of the weight coefficients. All these values are selected because experience

suggests they give a good balance between the tradeoffs previously discussed in this chapter.

Figures 4.21, 4.22 and 4.23 show the resulting beam response, variance and normalised

variance for the post processing method, respectively. For both responses the mainlobe is in

the correct location (i.e. at the point θ = 90◦) and sufficient sidelobe attenuation has been

achieved. It can also be seen that there is a reasonable match between the designed and mean

achieved responses, especially around the mainlobe of the response. Along with the low variance

levels this indicates that the design method has achieved a robust solution.

Table 4.9 gives the 17 resulting sensor locations from the post processing design method.

They give an aperture of 14.61λ with a mean adjacent sensor separation of 0.91λ. It is also

clear that the size constraint has been successfully met with the minimum adjacent separation

being that of the sensor’s physical size.

Figures 4.24, 4.25 and 4.26 show the resulting beam response, variance and normalised

variance for the iterative minimum distance sampling method respectively. For both responses

the mainlobe is in the correct location (i.e. at the point θ = 90◦) and sufficient sidelobe
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Figure 4.21: Beam response for the narrowband robust beamformer, designed using the post-

processing design method.

0 20 40 60 80 100 120 140 160 180
−50

−45

−40

−35

−30

−25

−20

θ (degrees)

V
ar

ia
nc

e 
of

 b
ea

m
 p

at
te

rn
 (

dB
)

Figure 4.22: Variance levels for the narrowband robust beamformer, designed using the post-

processing design method.

attenuation has been achieved. There is also a reasonable match between the designed and

mean achieved responses, especially around the mainlobe area. Along with the low variance

levels this indicates that the proposed design method has achieved a robust solution.
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Figure 4.23: Normalised variance levels for the narrowband robust beamformer, designed

using the post-processing design method.

Table 4.9: Sensor locations for the narrowband robust beamformer, designed using the post-

processing design method.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 5 4.41 9 7.64 13 11.26

1 0.80 6 5.22 10 8.45 14 12.55

2 1.88 7 6.02 11 9.25 15 13.39

3 2.76 8 6.83 12 10.06 16 14.61

4 3.58

Table 4.10: Sensor locations for the narrowband robust beamformer, designed using the

iterative minimum sampling design method.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 5 4.51 9 7.94 13 11.39

1 0.80 6 5.38 10 8.79 14 12.29

2 1.98 7 6.22 11 9.70 15 13.28

3 2.80 8 7.10 12 10.50 16 14.32

4 3.66
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Figure 4.24: Beam response for the narrowband robust beamformer, designed using the iter-

ative minimum sampling design method.

0 20 40 60 80 100 120 140 160 180
−60

−55

−50

−45

−40

−35

−30

−25

−20

θ (degrees)

V
ar

ia
nc

e 
of

 b
ea

m
 p

at
te

rn
 (

dB
)

Figure 4.25: Variance levels for the narrowband robust beamformer, designed using the iter-

ative minimum sampling design method.

Table 4.10 gives the 17 resulting sensor locations from the iterative minimum distance sam-

pling design method. The locations give an aperture of 14.32λ with an adjacent sensor separa-

tion of 0.90λ. Again it can be seen that the size constraint has been successfully implemented
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Figure 4.26: Normalised variance levels for the narrowband robust beamformer, designed

using the iterative minimum sampling design method.

with the minimum spacing being that of the sensor’s physical size.
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Figure 4.27: Beam response for the narrowband robust beamformer, designed using the

reweighted design method.

The final of the three CS-based design methods used is the reweighted method with the

resulting response and variance shown in Figures 4.27, 4.28 and 4.29, respectively. Again the
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Figure 4.28: Variance levels for the narrowband robust beamformer, designed using the

reweighted design method.
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Figure 4.29: Normalised variance levels for the narrowband robust beamformer, designed

using the reweighted design method.

mainlobe is in the desired location for both the designed and mean achieved responses and

sufficient sidelobe attenuation has been achieved. As with the previous two methods it can be

seen that a robust solution has been achieved, due to the good match between the two responses
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and the low variance levels.

Table 4.11: Sensor locations for the narrowband robust beamformer, designed using the

reweighted design method.

m dm/λ m dm/λ m dm/λ m dm/λ

0 1.61 4 4.82 7 7.22 10 11.69

1 2.41 5 5.62 8 8.13 11 12.54

2 3.21 6 6.42 9 10.84 12 13.39

3 4.01

Using this method the resulting array had only 13 active sensors, with an aperture of 11.79λ.

The locations are given in Table 4.11. Although this has 4 fewer sensors than the previous two

methods the shorter aperture means the mean adjacent separation is still in the same region,

with a value of 0.98λ. As with the previous two design methods it is again clear that the

minimum spacing has been successfully kept as the sensor’s physical size.

It is now desired to compare the performance of these methods to that of the GA-based

design method for robust sparse sensor arrays which was discussed in the previous chapter.

As the main advantage that is expected is a faster computation time we will only provide a

single comparison with the GA-based design method, with the parameters being taken from

the post-processing design example. As for the redesigning of the weight coefficients in the CS

methods, the values of αRLS = 0.8, βRLS = 0.01 and ε = 1 are used when finding the weight

coefficients and the fitness value in the GA. These values match those used in the redesign of

the weight coefficients for the CS-based design methods to allow a fair comparison. For the GA

a population of 60 individuals was used, creating 54 offspring in each of the 100 generations. In

addition a mutation rate of 0.4 was used. These values were found to give a reasonable balance

between the optimisation rate and computation time of the GA-based design method.

Table 4.12: Sensor locations for the narrowband robust beamformer designed using a GA.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 5 5.00 9 8.21 13 11.41

1 1.77 6 5.80 10 9.01 14 12.21

2 2.58 7 6.61 11 9.81 15 13.01

3 3.38 8 7.41 12 10.61 16 14.61

4 4.19

The resulting sensor locations are given in Table 4.12, with Figures 4.30, 4.31 and 4.32

showing the resulting responses and variance levels, respectively. It can be clearly seen that
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the size constraint has again been met. In addition both responses show the mainlobe in the

correct location with sufficient sidelobe attenuation in both responses. There is also a good

match between the responses around the mainlobe. Although the match is not as close in the

sidelobe regions, the mean achieved response provides acceptable sidelobe attenuation.
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Figure 4.30: Beam response for the narrowband robust beamformer, designed using a GA.
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Figure 4.31: Variance levels for the narrowband robust beamformer, designed using a GA.
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Figure 4.32: Normalised variance levels for the narrowband robust beamformer, designed

using a GA.

The various design methods will now be compared in a quantitative way, by considering the

following criteria: the number of active sensors (||w||0), the aperture length, the mean adjacent

sensor separation, ||pr −wHS||2, ε||w||2, and finally, the computation time. These values are

summarised for the narrowband design examples in Table 4.13.

Table 4.13: Summary of performance measures for the proposed methods and a GA (narrow-

band).

Method Post-Pro Iterative Reweighted GA

||w||0 17 17 13 17

Aperture/λ 14.61 14.32 11.79 14.61

Mean Separation/λ 0.91 0.90 0.98 0.91

||pr −wHS||2 0.15 0.19 0.36 0.02

ε||w||2 0.34 0.31 0.33 0.31

Computation time 4.84 80.00 8.21 12664.04

(seconds)

The first thing to mention is that the expected reduction in computation time is clear,

when using one of the three CS based design methods. Even though the iterative nature of the

iterative minimum distance sampling method has somewhat increased the computation time,

compared to the post-processing method, it is still a considerable improvement compared to
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the GA method.

Secondly, it can be seen that all of the methods have managed to provide a suitably sparse

solution, with the mean sensor separation being larger than λ/2 in every case. The reweighted

method has given the sparsest solution. However, although there are less sensors than for the

other methods the slightly smaller aperture size of the solution means the mean spacing is still

comparable to the other three methods.

Thirdly, comparing the values of ||pr − wHS||2 it can be seen that the three CS based

design methods have been unable to meet the level of performance of the GA. However, the

desirability of the response in each case is still acceptable. This is because the mainlobes are

all in the correct locations and sufficient sidelobe attenuation has been achieved.

Comparing the values of ε||w||2 show that a similar performance in terms of robustness is

achieved by all of the design methods. This indicates that all four methods have limited the

effect that a norm-bounded steering vector error has on their response to a similar level.

Finally, it is worth noting that just because one method has performed better in a given

category here it does not always mean this will be the case. All this comparison has illustrated

is that a comparable/acceptable performance, compared to the GA, can be achieved by the

three design methods in a shorter period of time.

4.6.6 Multiband Design Examples

Next a multiband example will be considered, where the two normalised frequencies of interest

are Ω1 = 0.75π and Ω2 = π. Again the assumptions of an aperture of 10λ and sensor size of

0.8λ are made, where λ is the wavelength associated with the signal with normalised frequency

Ω2 = π. The desired mainlobe is set to the single point of θML = 90◦ with the sidelobe regions

θSL = [0◦, 80◦]
∪
[100◦, 180◦], sampled every 1◦. Also, the values αRLS = 0.8, βRLS = 0.01 and

ε = 1 are used.

Firstly, consider the GA-based design method and use the resulting array to find the limits

for the constraints in the three CS-based design methods. A population size of 60 individuals

is employed creating 54 offspring in each of the 100 generations of the GA. In addition, a

mutation rate of 0.4 was used with the resulting array consisting of ten sensors. All of these

parameters are selected from the experience of fine tuning them and are subject to the same

tradeoffs that have been previously discussed. However, it is possible that similar performances

can be achieved with altered values.

Table 4.14 details the resulting sensor locations and it can clearly be seen that the minimum

spacing of the sensor’s physical size has been met. The mean adjacent sensor separation is 0.91λ,
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Table 4.14: Sensor locations for the multiband robust beamformer designed using a GA.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 3 2.73 6 5.19 9 7.61

1 1.10 4 3.55 7 6.00 10 8.41

2 1.92 5 4.37 8 6.81 11 10.00

significantly larger than the half wavelength setting of a standard ULA.
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Figure 4.33: Beam response of the multiband robust beamformer (Ω1 = 0.75π), designed

using a GA.

Figures 4.33 and 4.34 show the resulting beam response for the two frequencies of interest.

In both cases the designed mainbeam is at the required location of θ = 90◦ and the sidelobes are

sufficiently attenuated. There is also a good match between the designed and mean achieved

responses, especially in the region of the mainlobes. Along with the low variance levels shown

in Figures 4.35 and 4.36, this shows that some degree of robustness has been achieved.

From this array it is possible to obtain the values of ||pr − wHS||2 and ε||w||2 and use

them as the limits on the constraints in the CS-based design methods, which gives the values of

α = 0.70 and γ = 0.30. In the design the aperture of 10λ is split into a grid of 200 potentially

active sensor locations for the three methods.

Firstly, the post-processing method gives 11 active sensor locations over an aperture of 9.49λ

as detailed in Tab. 4.15. It can be seen that the physical size constraint has been successfully
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Figure 4.34: Beam response of the multiband robust beamformer (Ω2 = π), designed using a

GA.
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Figure 4.35: Variance levels for the multiband robust beamformer, designed using a GA.

implemented, with a mean adjacent separation of 0.95λ.

Figures 4.37 and 4.38 show the resulting beam response for the two normalised frequencies

of interest, with the variance levels being shown in Figures 4.39 and 4.40, respectively. Similar

observations as in the GA design example can be made here.
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Figure 4.36: Normalised variance levels for the multiband robust beamformer, designed using

a GA.

Table 4.15: Sensor locations for the multiband robust beamformer designed using the post-

processing design method.

n dn/λ n dn/λ n dn/λ n dn/λ

0 0.00 3 3.32 6 5.86 9 8.41

1 1.41 4 4.15 7 6.69 10 9.49

2 2.49 5 5.03 8 7.57

Table 4.16: Sensor locations for the multiband iterative minimum distance sampling design

method.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 3 2.87 6 5.47 9 8.07

1 1.19 4 3.72 7 6.34 10 9.23

2 2.01 5 4.62 8 7.20

Next the iterative minimum distance sampling method was considered, which results in 11

active sensor locations over an aperture of 9.23λ, with a mean adjacent sensor separation of

0.92λ. The size constraint has clearly also been successfully implemented, as shown in Table

4.16.

The responses for the two normalised frequencies of interest can be seen in Figures 4.41
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Figure 4.37: Beam response for the multiband robust beamformer (Ω1 = 0.75π), designed

using the post-processing design method.
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Figure 4.38: Beam response for the multiband robust beamformer (Ω2 = π), designed using

the post-processing design method.

and 4.42, respectively, again with an overall satisfactory result, as also demonstrated by the

variance levels shown in Figures 4.43 and 4.44.

Finally, the reweighted design method is considered, and the result is 12 active sensors
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Figure 4.39: Variance levels for the multiband robust beamformer, designed using the post-

processing design method.
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Figure 4.40: Normalised variance levels for the multiband robust beamformer, designed using

the post-processing design method.

spread over an aperture of 9.2λ as detailed in Table 4.17. This gives a slightly reduced mean

adjacent sensor separation of 0.84λ. However, there are still less sensor than an equivalent ULA

of the same length would have, meaning sparsity has still been introduced. Moreover, the size
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Figure 4.41: Beam response for the multiband robust beamformer (Ω1 = 0.75π), designed

using the iterative minimum distance sampling design method.
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Figure 4.42: Beam response for the multiband robust beamformer (Ω2 = π), designed using

the iterative minimum distance sampling design method.

constraint has been met.

Figures 4.45 and 4.46 show the resulting beam response for both normalised frequencies of

interests. For both frequencies the designed mainlobe is in the correct location with sufficient
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Figure 4.43: Variance levels for the multiband robust beamformer, designed using the iterative

minimum distance sampling design method.
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Figure 4.44: Normalised variance levels for the multiband robust beamformer, designed using

the iterative minimum distance sampling design method.

sidelobe attenuation also being achieved. It can also be seen that the mean achieved response

gives a good match for both normalised frequencies. Along with the low variance levels shown

in Figures 4.47 and 4.48, this shows that a robust solution has been achieved.
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Table 4.17: Sensor locations for the multiband robust beamformer designed using the

reweighted design example.

n dn/λ n dn/λ n dn/λ n dn/λ

0 0.80 3 3.27 6 5.83 9 8.34

1 1.61 4 4.12 7 6.68 10 9.20

2 2.41 5 4.97 8 7.54 11 10.00
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Figure 4.45: Beam response for the multiband robust beamformer (Ω1 = 0.75π), designed

using the reweighted design method.

As with the narrowband design examples it is possible to make a qualitative comparison of

the four design methods. To this end, Table 4.18 summarises the same performance measures

as used in the narrowband comparison.

Again the first thing to note is that the three proposed methods have improved computation

times compared to the GA-based design method. As with the narrowband examples the non-

iterative nature of the post-processing method means that it shows the largest improvement.

It is also worth noting that the inclusion of a second signal of interest has increased the com-

putation time of all the methods. As with the narrowband design examples it is worth noting

that further fine tuning of the parameters associated with the GA would result in multiple

runs through the algorithm. This means that to truly get the best result possible from the GA

method the computation time would be significantly increased further.

A comparable level of sparsity, compared to the GA, has been introduced by three proposed
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Figure 4.46: Beam response for the multiband robust beamformer (Ω2 = π), designed using

the reweighted design method.
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Figure 4.47: Variance levels for the multiband robust beamformer, designed using the

reweighted design method.

design methods. It can be seen that although the post-processing and iterative minimum

distance sampling methods have resulted in one less sensor, compared to the GA, the slightly

shorter aperture size means no significant improvement has been achieved in terms of the mean
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Figure 4.48: Normalised variance levels for the multiband robust beamformer, designed using

the reweighted design method.

Table 4.18: Summary of performance measures for the proposed methods and a GA.

Method Post-pro Iterative Reweighted GA

||w||0 11 11 12 12

Aperture/λ 9.49 9.23 9.2 10

Mean Separation/λ 0.95 0.92 0.84 0.91

||pr −wHS||2 1.05 0.90 0.46 0.70

ε||w||2 0.28 0.29 0.31 0.30

Computation time 7.05 28.71 12.65 1459.39

(seconds)

adjacent sensor separation. On the other hand, the reweighted method has given the same

number of sensors as the GA but over a shorter aperture. As a result, there has been a slight

decrease in the value of the mean adjacent sensor separation. However, this method still gives

an acceptable level of sparsity.

On the other hand the values of ||pr−wHS||2 indicates that the post-processing and iterative

minimum distance sampling methods have failed to give a response as desirable as the GA. This

could be caused by two factors: firstly, some sensor locations have been merged in these two

design methods; secondly, the aperture of the designed array is shorter than for the GA designed

array. However, it can also be seen that the reweighted design method has produced the most
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desirable response despite having the shortest aperture of all. The improvement compared to

the other two CS-based design methods is likely to be due to the fact that no sensor locations

are merged.

Checking the values of ε||w||2, it indicates that a comparable and acceptable performance

in terms of robustness against a norm-bounded steering vector error has been achieved. Only

the reweighted design method gives a slightly worse performance than the GA design method.

However, this highlights the trade-off between response desirability and robustness, as it also

gives the most desirable response.

As with the narrowband examples it is worth pointing out that a method which gives

the best performance for a given criteria in this case does not guarantee that it always will.

However, the proposed CS-based methods have consistently provided a performance that is

comparable to the GA in a shorter computation time. As a result it can be concluded that for

any problem one of the proposed methods will be able to provide a suitable solution in a much

shorter period of time than a GA.

4.7 Summary

In this chapter a review has been presented of how CS-based design methods can be used to

design sparse narrowband arrays. The CS design methods work by trying to find the set of

weight coefficients with the minimum number of non-zero values which still gives an acceptable

response. When applied to a large grid of potential locations this can introduce sparsity into

the final array. The problem is first formulated as a l0 minimisation which is then approximated

as a l1 minimisation in practice for computation reasons.

Previous work using such a design method assumed the traditional beamforming scenario,

i.e. the steering vector is known exactly. However, it has already been discussed why this is

not always the case due to the presence of model perturbations. When this is the case it is

necessary to employ a design method that gives a solution which is robust to steering vector

errors. To achieve this, an extra constraint has been derived based on the maximum possible

response change due to a norm-bounded error. When added to the minimisation problem it can

be ensured that the change is kept below a predetermined acceptable value allowing a robust

solution to be achieved.

The design examples in this chapter have also highlighted a further tradeoff between ro-

bustness and sparseness. They have shown that when the robustness constraint is added the

resulting array generally requires more sensors to implement. This can be explained by con-

sidering the fact that if there are more sensors in the array, then each individual sensor will
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have a relatively smaller contribution to the overall response of the array. As a result an error

associated with an individual sensor will have less of an effect on the achieved response. Hence,

the array should be more robust to steering vector error, but at the cost of including some extra

sensors.

This chapter has also shown how extending the l1 minimisation problem to a series of

reweighted l1 minimisations can improve the sparseness of the solution. This is due to the

achievement of a better approximation of the l0 norm. To justify this consider the fact that

the l0 norm uniformly penalises all non-zero values. However, the l1 norm penalises larger

non-zero values more heavily. Therefore, a reweighting term (based on coefficients in the

previous iteration) is added in order to more heavily penalise smaller coefficients, bringing

the minimisation closer to the l0 norm minimisation. This results in large weight coefficients

creating a small reweighting term meaning they are more likely to be present in the next

iteration. However, the opposite is true for small coefficient values. The iterative process is

then repeated until the number of active sensors has been constant for three iterations.

Both the l1 and reweighted l1 minimisation problems involve the use of a large, dense, grid

of potential sensor locations. As a result, this means the resulting array could have element

locations that are designed to be very close together. In some instances, especially multiband

and wideband antenna arrays, the sensors could be larger than λ/2, creating problems when we

try to practically implement the array. As a result, it is desirable to have a design procedure

that enforces a minimum spacing of the sensor’s physical size. Three methods of achieving

this have been discussed in this chapter. Firstly, a post-processing method, where the sensor

locations which are too close together are merged after the minimisation problem. Secondly,

an iterative minimum distance sampling method, where sensor locations which meet the size

constraint are iteratively found. Finally, a reweighting method, where the traditional way

of finding the reweighting terms are found in a way that penalises locations failing the size

constraint. The nature of this method means it is not always guaranteed to find a suitable

solution. However, experience shows that at least one of the methods will be able to find a

comparable solution to GA-based methods in a shorter computation time.

Here the design of narrowband and multiband sparse arrays has been considered. However,

the formulations above will not work in the case of wideband arrays where the TDL length

J > 1 means that there is more than one coefficient associated with each sensor. As a result, to

introduce sparsity the problem has to be reformulated in such a way that all coefficients along

a TDL are simultaneously minimised. This follows a similar reformulation sequence as when

considering the l1 minimisation of complex values and will be presented in the next chapter.
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Chapter 5

Wideband Sparse Array Design Based

on Compressive Sensing

5.1 Introduction

In this chapter the CS-based design is extended to the wideband case. However, for wideband

arrays there is a TDL length J > 1, i.e. there are multiple weight coefficients that are associated

with each sensor location. In order to introduce sparsity each of these coefficients has to be

zero-valued. The traditional formulation of the CS problem can not guarantee this as it just

minimises the number of non-zero valued weight coefficients rather than considering which

sensor location they are associated with. Note, that as with the previous chapter CS is used

loosely as a label for the design methods in this chapter.

In this chapter the proposed solution is to reformulate the problem as a modified l1 minimisa-

tion problem [50,51], to ensure that the coefficients along a TDL are simultaneously minimised,

therefore introducing sparsity to the array. The design method can also be extend to the design

of frequency invariant (FI) beamformers by adding an extra constraint based on the response

variation (RV) of the array [51]. Furthermore, the case of temporal sparsity (along the TDL)

is considered to reduce the number of non-zero valued weight coefficients along each active

TDL. In this way the implementation complexity of the beamformer can be reduced. Finally,

each problem will be given both in the traditional minimisation form as well as a reweighted

minimisation.
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5.2 Wideband Design

5.2.1 Problem Formulation

In the previous chapter it was shown that

min ||w||1
subject to ||pr −wHS||2 ≤ α (5.1)

is successful in designing sparse narrowband sensor arrays. However, it will not guarantee a

sparse solution for a wideband array model of TDL length J, because (5.1) only minimises the

number of non-zero valued weight coefficients, and does not consider which TDL the weight

coefficient is on. However, for a sensor location to be considered inactive for a wideband array,

all weight coefficients along the TDL have to be zero-valued.

To achieve a sparse solution, it is necessary to reformulate (5.1) in order to ensure all weight

coefficients along the TDL are simultaneously minimised and a scheme similar to that used in

the minimisation of complex data is used [70]. In the l1 minimisation of complex values the data

are split into real and imaginary parts which are simultaneously minimised through a modified

l1 minimisation scheme. A similar scheme is used below in order to formulate the problem in

a way that will guarantee a sparse wideband solution.

First rewrite (5.1) as

min t ϵ R+

subject to ||pr −wHS||2 ≤ α, |⟨w⟩|1 ≤ t (5.2)

where

|⟨w⟩|1 =
M−1∑
m=0

||wm||2. (5.3)

Now we decompose t to t =
∑M−1

m=0 tm, tmϵ R+. In vector form, this becomes

t = [1, · · · , 1]


t0
...

tM−1

 = 1T t. (5.4)

Then (5.2) can be rewritten as

min
t

1T t

subject to ||pr −wHS||2 ≤ α

||wm||2 ≤ tm, m = 0, · · · ,M− 1. (5.5)

100



Define

ŵ = [t0, w0,0, · · · , w0,J−1, t1, · · · , wM−1,J−1]
T , (5.6)

ĉ = [1,0J , 1,0J , · · · ,0J ]
T (5.7)

and

ŝ(Ω, θ) = [0, 1, · · · , e−jΩ(J−1), 0, e−jΩµ1 cos(θ), e−jΩ(µ1 cos(θ)+1), · · · ,

e−jΩ(µ1 cos(θ)+(J−1)), · · · , e−jΩ(µM−1 cos(θ)+(J−1))]T , (5.8)

where 0J is an all-zero 1× J row vector. A matrix Ŝ similar to S can be created from ŝ, given

by

Ŝ = [ŝ(Ω0, θ0), · · · , ŝ(Ω0, θL−1),

ŝ(Ω1, θ0), · · · , ŝ(Ω1, θL−1), · · · , ŝ(ΩK−1, θL−1)]. (5.9)

Now the final formulation for the sparse wideband array design problem is obtained as

min
ŵ

ĉT ŵ

subject to ||pr − ŵHŜ||2 ≤ α

||wm||2 ≤ tm, m = 0, · · · ,M− 1, (5.10)

where as with the narrowband case the desired response can be the ideal one, i.e. pr has a one

for the mainlobe location and zeros for the sidelobe regions.

5.2.2 Design Examples

Four design examples will now be given to verify the effectiveness of this formulation, two

broadside design examples and two off-broadside examples. For all of them the wavelength λ is

that for a signal with normalised frequency Ω = π. For example considering microphones and

speech signals with a highest frequency of 10KHz and a sampling frequency of 20KHz, gives a

wavelength of 3.4cm at a speed of 340m/s.

Both this problem and those that follow in the rest of this chapter can be solved using cvx,

a package for specifying and solving convex programs [68,69].

Off-broadside design examples can now be considered as we are no longer looking at a

narrowband array structure. The TDLs and extra weight coefficients\delays associated with

a wideband array structure allow the implementation of off-broadside design examples with

real-valued weight coefficients. For both of the off-broadside design examples the mainlobe

locations are selected as examples. Similar performances can be expected for other locations,

but with some degradation when the locations approach the extremities of the angular region.
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5.2.2.1 Design Example 1: Broadside Mainbeam

Here a mainbeam location of θML = 900 is assumed and sidelobe regions of θSL = [00, 800]∪
[1000, 1800], which is sampled every 1◦ in the design. The normalised frequency range of

interest is ΩI ∈ [0.5π, π], sampled every 0.05π with a TDL length of J = 15. An aperture

of 10λ is split into a uniform grid consisting of 100 potentially active locations. The value of

α = 10 was used to place a limit on the allowed response error in the constraint in (5.10).

These values were chosen based on experience with different parameters in previous attempts

at solving the design problem.

Table 5.1: Sensor locations for the first design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 4 3.28 8 5.81 12 8.38

1 0.81 5 4.09 9 5.96 13 9.19

2 1.62 6 4.24 10 6.72 14 10.00

3 2.42 7 5.00 11 7.58

The resulting array consisted of 15 sensor locations, spread over the full 10λ aperture, as

detailed in Table 5.1. Here it can be seen that there is a reduction of 6 sensors compared to

an equivalent ULA with adjacent sensor separation of 0.5λ. Figure 5.1 shows the resulting

response, where for each of the sampled normalised frequencies the mainlobe is at the correct

location and sufficient sidelobe attenuation has been achieved.

5.2.2.2 Design Example 2: Broadside Mainbeam

Next the second broadside design example will be considered, where the sidelobe regions have

been kept the same as in the previous design example. However, the frequency range of interest

has now been increased to [0.3π, π], with 15 sampled frequency points and a TDL length of

J = 20 is used. The aperture being considered has been increased to 20λ split into a grid of

200 potentially active locations. With a value of α = 13 placed on the limit of the constraint,

which leads to the 32 active sensor locations given in Table 5.2. Again the full aperture is used,

meaning there is a reduction of 9 sensors compared to an equivalent ULA with an adjacent

separation of 0.5λ. Figure 5.2 shows that the resulting response has the mainlobe at the correct

location for all frequencies of interest. There is also sufficient sidelobe attenuation.

It is worth noting that the increase in the value of α and TDL length J in this design example

was due to the fact that more normalised frequencies were being considered. If the value of α

had remained the same it will have meant there was less error allowed per normalised frequency
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Figure 5.1: Beam response for the wideband beamformer, design example 1.

being considered, which may have prevented a sparse solution being achieved. As general rule

increasing the TDL length also helps the array provide a better wideband response. This is

desirable in this more complicated broadside example. However, if the value of J was increased

too far then there would be a problem of memory requirements that may have prevented a

solution being reached. The use of a longer aperture also allows more sensors in the final array.

This provides more DOF, which in turn allows the improvements in the arrays response in

terms of transition region width and sidelobe suppression. This has proved useful in this case

where we are considering more normalised frequencies.

Table 5.2: Sensor locations for the second design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 8 6.28 16 10.10 24 14.62

1 0.80 9 7.19 17 10.90 25 14.77

2 1.71 10 7.34 18 11.06 26 15.63

3 2.61 11 8.09 19 11.81 27 16.48

4 3.52 12 8.24 20 11.96 28 17.39

5 4.37 13 9.00 21 12.71 29 18.29

6 5.28 14 9.14 22 12.86 30 19.20

7 5.43 15 9.90 23 13.72 31 20.00
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Figure 5.2: Beam response for the wideband beamformer, design example 2.

5.2.2.3 Design Example 3: Off-Broadside Mainbeam

The first off-broadside design example will now be considered, where we have a mainlobe

location of θML = 1250. The sidelobe regions are θSL = [00, 1150]
∪
[1350, 1800], sampled every

1◦ in the design. In this instance the frequency range of interest is [0.4π, 0.9π], with 11 sampled

frequency points and a TDL length of J = 25. A uniform grid of 100 potentially active locations

is spread over an aperture of 10λ. The limit used in the constraint is set to α = 9.

Table 5.3: Sensor locations for the third design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 5 3.08 10 5.61 14 8.13

1 0.61 6 3.74 11 6.31 15 8.79

2 1.26 7 4.39 12 6.92 16 9.44

3 1.87 8 5.00 13 7.53 17 10.00

4 2.47 9 5.15

Table 5.3 shows the 18 resulting active locations, while Figure 5.3 shows the resulting beam

response at each normalised frequency. Clearly sparsity has been successfully included as fewer

sensors are required compared to what the equivalent ULA would use. The desired mainbeam

location has been achieved for all frequencies other than Ω = 0.9π where the mainbeam is

roughly at 124◦, but still very close to the designed main beam direction. At all normalised
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Figure 5.3: Beam response for the wideband beamformer, design example 3.

frequencies sufficient sidelobe attenuation has been reached, as in the previous two examples.

5.2.2.4 Design Example 4: Off-Broadside Mainbeam

Finally, one more off-broadside design example is considered. The desired mainlobe location is

now θML = 500, with the sidelobe region given by θSL = [00, 400]
∪
[600, 1800], sampled every 1◦.

A TDL length of J = 25 is used, with the frequency range [0.5π, 0.9π], and 9 sampled frequency

points. The aperture size is 20λ, with 200 uniformly spaced potential sensor locations. Finally,

the value of α = 7 is used. It is worth noting that is less than in the previous off-broadside design

example. Although it is hard to make a comparison due to the different mainlobe locations

e.t.c. this is partly due to the fact that less normalised frequencies are being considered.

Table 5.4: Sensor locations for the fourth design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 5 13.02 10 15.73 15 18.24

1 11.16 6 13.42 11 16.33 16 18.84

2 11.71 7 14.02 12 16.78 17 19.55

3 12.21 8 14.57 13 17.19 18 20.00

4 12.71 9 15.13 14 17.69

The resulting array consists of 19 active locations spread over the full aperture of 20λ, as
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shown in Table 5.4, again with fewer sensors than would be used by an equivalent ULA. Figure

5.4 shows the resulting beam response at each of the sampled normalised frequencies. The

desired mainlobe location is achieved for the frequency range [0.5π, 0.7π], with the location

being at 51◦ for the remaining normalised frequencies. However, as this is only 1◦ off what

was desired a signal arriving at the desired mainlobe location will only suffer a small amount

of degradation. Experience of using this design method suggests that the achieved mainlobes

should always be within 2◦ if a suitable selection for the limit on the error (α) is selected. For

all normalised frequencies there is sufficient sidelobe attenuation.

0 20 40 60 80 100 120 140 160 180
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

θ (degrees)

B
ea

m
 p

at
te

rn
 (

dB
)

Figure 5.4: Beam response for the wideband beamformer, design example 4.

5.3 Frequency Invariant Constraint

Although the above formulation has been shown to successfully design sparse wideband arrays,

it does nothing to account for the discrepancies between responses at different frequencies.

This has resulted in signals with different frequencies being treated in different ways. In some

applications, such as the processing of speech signals, this may become problematic. As a result

a formulation that ensures a frequency invariant (FI) response is desirable, i.e. the response is

the same or very similar at each frequency considered.

The idea of response variation (RV), a measure of the difference between responses at

different frequencies to that of the reference one, has been used to account for this in the

past [71–73]. In the next subsection a constraint is derived, based on the idea of RV, that can
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be added to the wideband formulation of the CS problem in order to ensure a FI response is

achieved [51].

5.3.1 Constraint Formulation

The RV is a measure of how close the response at each frequency is to that of the reference

frequency and can be defined as

RV =
∑
ΩI

∑
ΘFI

|ŵH ŝ(Ω, θ)− ŵH ŝ(Ωr, θ)|2dΩdθ

= ŵHQRV ŵ, (5.11)

where

QRV =
∑
ΩI

∑
ΘFI

(ŝ(Ω, θ)− ŝ(Ωr, θ))(ŝ(Ω, θ)− ŝ(Ωr, θ))
H , (5.12)

ΘFI is the angular range over which RV is calculated, Ωr is the reference frequency, and the

normalised frequency range of interest, ΩI , is sampled K times. If RV = 0, it implies that the

responses at each sampled frequency point are the same.

To design an FI response, it is necessary to limit RV to a small positive value as follows

RV ≤ σ2, (5.13)

where σ2 ∈ R+. This can be simplified to

RV = ||LT ŵ||22 ≤ σ2, (5.14)

where L = VU1/2, U is a diagonal matrix containing the eigenvalues of QRV , and V the

corresponding eigenvectors.

Now (5.14) can be added to (5.10) in order to design a sparse frequency invariant wideband

beamformer. This gives us the following problem

min
ŵ

ĉT ŵ

subject to ||pr − ŵHŜ||2 ≤ α

||wm||2 ≤ tm, m = 0, · · · ,M− 1

||LT ŵ||2 ≤ σ. (5.15)

When the RV constraint is applied over the angular range ΘFI = [0◦, 180◦], i.e. the entire

angular range, it is no longer necessary to match the response at every frequency to the ideal

response. This is because the aim is to achieve a response at every frequency the same as, or
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very close to, the response at a reference frequency. As a result as long as the response at the

reference frequency is sufficiently close to the desired response, and the RV constraint is strict

enough, then all the responses should be sufficiently close to the desired response. Therefore

pr and Ŝ are now given by

pr = [Pr(Ωr, θ0), · · · , Pr(Ωr, θL−1)]

and

Ŝ = [ŝ(Ωr, θ0), · · · , ŝ(Ωr, θL−1)].

5.3.2 Design Examples

This subsection will now consider both a broadside and an off-broadside design example to

verify the effectiveness of this response. In both cases the wavelength λ is that of a signal with

normalised frequency Ω = π.

It is also worth noting that the resulting locations that are directly adjacent on the grid

of potential locations have been merged, along with locations with negligible contributions

being disregarded. As a result the locations and weight coefficients that are left may no longer

give the optimal solution. However, the resulting locations will allow the efficient design of

a frequency invariant beamformer (FIB) via the constrained least squares (CLS) approach to

beamforming [73].

In brief the idea behind the CLS approach to FIB design is to minimise a cost function, JCLS,

whilst ensuring a unitary response is maintained for the mainlobe of the reference frequency.

This gives the following problem

min
w

JCLS = wHQCLSw subject to CHw = f, (5.16)

where

QCLS =
K−1∑
k=0

L−1∑
l=0

(s(Ωk, θl)− s(Ωr, θl))(s(Ωk, θl)− s(Ωr, θl))
H + βCLS

∑
θl∈θSL

S(Ωr, θl),

(5.17)

C = s(Ωr, θML), f = 1 and S(Ωr, θl) = s(Ωr, θl)s(Ωr, θl)
H . The solution is given by

wCLS = Q−1
CLSC(CHQ−1

CLSC)−1f . (5.18)

In the two design, the value βCLS = 0.01 is used in the redesigning of the coefficients for the final

locations. This value is selected because it gives a good balance between response desirability

and FI property of the response. Similar values have also been used in previous research [73].
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5.3.2.1 Design Example 1 - Broadside Mainlobe

For this design example the mainlobe is set to θML = 90◦ and sidelobe regions of θSL =

[0◦, 80◦]
∪
[100◦, 180◦], which were sampled every 1◦. The normalised frequency range of interest

is given by ΩI = [0.5π, π] and is sampled every 0.05π, with the reference frequency Ωr = π. A

grid of 100 potential sensor locations over an aperture of 10λ is considered with a TDL length

of J = 25. The limits on the constraints are set to α = 0.9 and σ = 0.01. Note, the value

of α has been reduced here as only one normalised frequency is no being matched to the ideal

desired response. As a result, less error should be allowed to avoid all weight coefficients ending

up zero valued.

Table 5.5: Sensor locations for the broadside design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.91 4 3.33 8 5.71 12 7.68

1 1.92 5 3.69 9 6.31 13 8.08

2 2.32 6 4.29 10 6.67 14 9.09

3 2.83 7 5.00 11 7.17
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Figure 5.5: Beam response for the broadside design example with FI constraint.

This gives the 15 active sensor locations as given in Table 5.5, with an aperture of 8.18λ

and a mean adjacent sensor separation of 0.58λ. The resulting response is shown in Figure 5.5.

We can see that the mainlobe is in the designed location and sufficient sidelobe attenuation has

been achieved for all of the normalised frequencies of interest. The response is also clearly FI.

109



5.3.2.2 Design Example 2 - Off-Broadside Mainlobe

Now consider an off-broadside design example, where the mainlobe is chosen to be at θML =

125◦, with the sidelobe regions, θSL = [0◦, 115◦]
∪
[135◦, 180◦], being sampled every 1◦. The

normalised frequency range of interest is ΩI = [0.4π, 0.9π] and is sampled every 0.05π, with

the reference frequency Ωr = 0.9π. A grid of 100 potential sensor locations, with a TDL length

J = 25 was considered. The maximum possible aperture for the array is 10λ, with the values

α = 0.82, σ = 0.075 and ϵ = 9× 10−4. Note, different values of α and σ are being used here as

a different mainlobe location is being considered, meaning different parameter values give the

best tradeoff between different performance measures.

Table 5.6: Sensor locations for the off-broadside design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 5 2.98 10 5.91 14 8.08

1 0.56 6 3.54 11 6.46 15 8.64

2 1.36 7 4.09 12 7.02 16 9.44

3 1.92 8 4.70 13 7.53 17 10.00

4 2.47 9 5.30

This resulted in the 18 active sensor locations as detailed in Table 5.6, with an aperture

of 10λ and mean adjacent sensor separation of 0.59λ. The resulting beam response at each

normalised frequency is shown in Figure 5.6 with a clear FI property. At each normalised

frequency the mainlobe is at 124◦. As this is within 1◦ of what was desired it is still acceptable

(as the desired mainlobe location will not suffer much attenuation). There is also sufficient

attenuation in the sidelobe regions.

5.4 Temporal Sparsity

Ideally, it is desired to have a beamformer with as low an implementation complexity as possible,

something which is not considered in any of the above formulations. This is similar to the

design of low-complexity finite impulse response (FIR) filters such as those using sums of

power of two to represent each coefficient so that multiplications can be realised by simple

shifts and additions [74–77]. An alternative method, which will now be presented, is to design

a beamformer with as few as possible non-zero valued weight coefficients along its TDLs. At

the same time it is important to ensure that an acceptable response is still achieved.
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Figure 5.6: Beam response for the off-broadside design example with FI constraint.

5.4.1 Introducing Temporal Sparsity for a Given Array Geometry

5.4.1.1 Problem Formulation

One way of achieving this would be to use an l1 minimisation similar to what is used in CS-based

design methods for narrowband beamformers. However, in this case rather than considering

a dense grid of potential sensor locations there is a fixed set of locations for which the set of

weight coefficients with the minimum number of non-zero values is desired. A beamformer

designed in this way would have a reduced implementation complexity.

In the first instance, as with narrowband CS, this problem is formulated as

min ||w||0
subject to ||pr −wHS||2 ≤ α , (5.19)

where pr is the desired response, w is the weight coefficient vector for the fixed set of locations

and S contains the steering vectors for the fixed array geometry. However, it is necessary to

replace the l0 norm for the l1 norm in practice. This gives

min ||w||1
subject to ||pr −wHS||2 ≤ α . (5.20)

For a fixed set of sensor locations the solution to (5.20) gives a sparse set of weight coef-

ficients, meaning there are less non-zero valued coefficients required to implement the array,
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therefore reducing its complexity. As with the problem of finding a sparse wideband array it

is possible to add the RV constraint to this optimisation problem in order to guarantee a FI

response. This gives the following formulation of the problem

min ||w||1
subject to ||pr −wHS||2 ≤ α

||LTw||2 ≤ σ. (5.21)

5.4.1.2 Design Examples

Design examples, based on ULA and a sparse linear array (SLA), illustrating this design method

will now be considered. As usual in both cases the the wavelength λ is that for a signal with the

corresponding normalised frequency Ω = π. In both cases a comparison with traditional beam-

forming techniques (i.e. no temporal sparsity)) is considered. For the case of not considering

FI the LS approach as presented in Chapter 3 Section 3.4.1 will be used. For the comparison

considering FI, the CLS approach will again be used.

Firstly, consider a ULA consisting of 15 sensors with an adjacent sensor separation of

0.5λ. The desired mainlobe is set to the location θML = 90◦ and the sidelobe regions are

θSL = [0◦, 80◦]
∪
[100◦, 180◦]. The frequency range of interest is ΩI = [0.5π, π], with a reference

frequency of Ωr = π and a TDL length J = 15.
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Figure 5.7: Beam response for the LS wideband beamformer, based on a ULA.

For the LS-based comparison array the value αLS = 0.7 was used. The resulting array
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is shown in Figure 5.7 and the resulting error between the designed and achieved response is

||pr −wHS||2 = 5.39. This is now used as the value of α in the proposed design (without RV

constraint). The resulting beam response is shown in Figure 5.8, with Table 5.7 comparing the

two designs.
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Figure 5.8: Beam response for the wideband beamformer designed with the proposed method

without RV constraint, based on a ULA.

It can be clearly seen that both design methods have given a suitably desirable response.

The values of ||pr−wHS||2 show that the proposed method has achieved the same performance

as the LS approach in terms of desirability of the response. However, this has been achieved

using on average 9.2 less weight coefficients per TDL. As a result the proposed method has

designed a beamformer with reduced implementation complexity.

Table 5.7: Performance summary for the ULA design examples (no FI).

Array ||w||0per TDL ||pr −wHS||2
LS method 15 5.39

l1 minimisation 5.8 5.39

Next, compare the performance of the proposed method, using the ULA, with RV constraint

to that of the CLS approach to beamformer design. The value of βCLS = 0.05 is used in the CLS

approach to give the response shown in Figure 5.9. This gives the values of ||pr−wHS||2 = 0.61

and ||LT ŵ||2 = 0.05. These values are then used as the limits on the constraints, i.e. α and

σ, respectively. Note in this case as the FI constraint is applied over the entire angular range
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Figure 5.9: Beam response for the CLS wideband beamformer, based on a ULA.

the value of ||pr −wHS||2 only has to be calculated at the reference frequency. The resulting

response from the proposed method is shown in Figure 5.10, with Table 5.8 comparing the two

results.
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Figure 5.10: Beam response for the wideband beamformer designed with the proposed method

with RV constraint, based on a ULA.

Again it can seen that both results have the mainlobe in the correct location with sufficient
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sidelobe attenuation being achieved. It is also evident in both cases that a reasonable perfor-

mance in terms of the FI property has been achieved. The values of ||pr−wHS||2 and ||LT ŵ||2
indicate that the proposed method has achieved a comparable performance to that of the CLS

approach but with less non-zero valued weight coefficients.

Table 5.8: Performance summary for the ULA design examples (FI).

Array ||w||0per TDL ||pr −wHS||2 ||LT ŵ||2
CLS method 15 0.61 0.05

l1 minimisation 10 0.61 0.05

Next a comparison will be considered to see if the proposed method still gives a com-

parable performance when basing the resulting beamformer on a SLA. To do this the loca-

tion detailed in Table 5.3 is used. The mainlobe is at θML = 125◦ and the sidelobe regions

θSL = [0◦, 115◦]
∪
[135◦, 180◦]. The frequency range of interest is ΩI = [0.4π, 0.9π], with a

reference frequency of Ωr = 0.4π and a TDL length of J = 25.

First, the value of αLS = 0.7 was used in the LS approach giving a value of α = 5.17 for use

in the proposed method. This leads to the response shown in Figure 5.11, with the response

for the LS approach shown in Figure 5.12. For both methods the mainlobe of the response is

within 1◦ of what is designed for all of the normalised frequencies that are considered. It is also

obvious that reasonable sidelobe attenuation has also been achieved.
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Figure 5.11: Beam response for the wideband beamformer designed with the proposed method

without RV constraint, based on a SLA.
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Figure 5.12: Beam response for the LS wideband beamformer, based on a SLA.

Table 5.9: Performance summary for the SLA design examples (no FI).

Array ||w||0per TDL ||pr −wHS||2
LS method 25 5.17

l1 minimisation 14.89 5.17

Table 5.9 compares the performance of the two methods. Here, it can be seen that the

proposed method has given a performance in terms of response desirability which again is

comparable to the LS approach. However, this has been achieved using significantly less ac-

tive weight coefficients. As a result, the beamformer designed using the proposed method is

significantly less complex to implement.

Now the performances of the proposed method with RV constraint and the CLS approach

are compared. With a value of βCLS = 0.05, the CLS designed beamformer gives values of

α = 0.71 and σ = 0.10. The resulting response is shown in Figure 5.13, where the mainlobe

is within 1◦ of what is designed. Sufficient sidelobe attenuation is also achieved. Using these

values of α and σ with the proposed method then gives the response shown in Figure 5.14.

Again the mainlobe is always within 1◦ of what is designed, with sufficient sidelobe attenuation

also being present.

Looking at Table 5.10 shows that the proposed design method has given a comparable

performance, in terms of both response desirability and the FI property, using less non-zero

valued weight coefficients.
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Figure 5.13: Beam response for the CLS wideband beamformer, based on a SLA.
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Figure 5.14: Beam response for the wideband beamformer designed with the proposed method

with RV constraint, based on a SLA.

Therefore, these design examples show that the proposed method consistently provides a

comparable performance compared to traditional approaches, but with less required coefficients,

for arbitrary linear array geometries. However, the proposed method can only be used if a ULA

or known sparse linear array geometry can be used. This may not always be the case and in
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Table 5.10: Performance summary for the SLA design examples (FI).

Array ||w||0per TDL ||pr −wHS||2 ||LT ŵ||2
CLS method 25 0.71 0.10

l1 minimisation 16.1 0.71 0.10

some situations a method that simultaneously considers location and temporal sparsity may be

required. A formulation that does this is considered in the next subsection.

5.4.2 Combined Location And Temporal Sparsity Formulation

5.4.2.1 Problem Formulation

When a suitable set of sensor locations are not known it is necessary to formulate the problem

in a way that simultaneously minimises the number of active locations whilst also reducing the

number of non-zero valued weight coefficients associated with the remaining locations. As a

starting point, first return to the following formulation of the wideband CS problem

min |⟨w⟩|1 subject to ||pr −wHS||2 ≤ α. (5.22)

As with the design of narrowband arrays using CS this can be solved using an l1 minimisation.

Now alter (5.22) to consider both the original modified l1 norm and a traditional l1 norm.

This results in the following formulation

min β|⟨w⟩|1 + (1− β)||w||1
subject to ||pr −wHS||2 ≤ α . (5.23)

Here, β is a weighting term that decides the relative importance placed on location (modified l1

norm) and temporal (l1 norm) sparsity. However, the exact effects on performance of changing

β is hard to predict. This is because although placing more importance on the first term should

increase the location sparsity of the array, if more locations are removed, this also means that

there is a reduction in the number of non-zero valued weight coefficients; conversely, decreasing

β puts more importance on temporal sparsity, and therefore, there should be less non-zero

valued weight coefficients. However, if enough weight coefficients are removed this may then

result in a given location becoming inactive.

Next rewrite (5.23) as

min t ϵ R+

subject to ||pr −wHS||2 ≤ α, β|⟨w⟩|1 + (1− β)||w||1 ≤ t. (5.24)
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Using the previous definitions of ŵ, ĉ, ŝ and the decomposition of t, this can be rewritten as

min
ŵ

ĉT ŵ

subject to ||pr − ŵHŜ||2 ≤ α

β||wm||2 + (1− β)||wm||1 ≤ tm, m = 0, · · · ,M− 1. (5.25)

As with the formulation considering location sparsity only, it is again possible to add the RV

constraint derived in Section 5.3 in order to guarantee an FI response. This gives the final

formulation of the problem as

min
ŵ

ĉT ŵ

subject to ||pr − ŵHŜ||2 ≤ α

β||wm||2 + (1− β)||wm||1 ≤ tm, m = 0, · · · ,M − 1

||LT ŵ||2 ≤ σ. (5.26)

Again when the RV constraint is applied over the full angular range ([0◦, 180◦]), the value of

||pr − ŵHŜ||2 only has to be evaluated at the reference frequency.

5.4.2.2 Design Examples

Design examples will now be given to verify the effectiveness of this design method, by a series of

design examples with the effects of different values of the weighting function β being highlighted.

Note that for the design examples presented in this section there will be no redesigning of the

weight coefficients after the merging and discarding of initial locations. As a result, more careful

consideration has to be given to the parameters used, especially when selecting the threshold

below which locations and coefficients will be considered inactive.

For the first set of design examples, consider a mainlobe of θML = 90◦ with the sidelobe

regions given by θSL = [0◦, 80◦]
∪
[100◦, 180◦] being sampled every 1◦. The normalised frequency

range of interest is ΩI = [0.5π, π]. This is sampled every 0.05π and the reference frequency is

Ωr = π. A grid of 100 potential sensors spread over an aperture of 10λ with a TDL length of

J = 25 is considered. The limits on the constraints are α = 0.9 and σ = 0.01. Finally, locations

were considered inactive if their combined weight coefficient value is less than 1 × 10−3, with

individual weight coefficients being discarded if their value is less than 1× 10−9.

Table 5.11 summarises how different values of β affect the performance of the combined

minimisation formulation. The first thing that can be seen is that it is indeed hard to predict

the effect of different values of β. Although decreasing β (meaning more importance on temporal

sparsity) has decreased the number of weight coefficients per TDL, its effect on the number of

locations has been less obvious. Table 5.11 also shows that β = 0 gives the solution with the
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Table 5.11: First performance summary for the combined minimisation formulation and dif-

ferent values of β.

β 1 0.9 0.8 0.5 0

Number of active locations 17 21 21 21 15

Aperture/λ 8.18 7.98 8.38 7.78 7.98

Mean spacing/λ 0.51 0.40 0.42 0.39 0.57

||pr −wHS||2 0.90 0.90 0.90 0.91 0.90

||LTw||2|| 0.08 0.20 0.17 0.13 0.18

||w||0per TDL 25 20.16 14.88 11.68 10

fewest number of sensors and the largest mean adjacent sensor separation. Instinctively, it may

have been expected that this would have come from using a value of β = 1, where only the

number of active locations are minimised. However, in this instance the discarding of weight

coefficients that are below the threshold after using a value of β = 0 has also introduced location

sparsity. This is because enough weight coefficients have been removed along some TDLs

to mean their combined weight coefficient value has also dropped below the corresponding

threshold. However, this will not always happen and the only way to guarantee a sparse

wideband solution is to employ the modified l1 norm minimisation.

Looking at the mean adjacent sensor separation, we can also see that for some values of

β, it has a value less than λ/2. This means a ULA with an adjacent separation of λ/2 would

use less sensors, thus removing the point of using a sparse array in the first place. In other

words the sparse array designed using values of β = 0.9, 0.8 and 0.5 would require more sensors

making them more expensive than the ULA. This is also evident by the fact that there has

been a significant increase in the number of active sensors.

Finally, it is worth noting that the values of ||pr −wHS||2 and ||LTw||2 show a reasonably

constant performance has been achieved in all of the examples. However, the one exception is

using the value of β = 1 which has given a better performance in terms of FI.

This set of design examples has shown that it is hard to guarantee a suitable solution using

this method. However it is possible that this could be due to having the aperture of the array

too short or the width of the transition region between the mainlobe and sidelobes being too

narrow. As a result two further sets of design examples will be considered to address these

issues.

Firstly consider a larger aperture of 15λ with a grid of 150 potential sensor locations and a

TDL length of J = 15. The value of α = 0.91 is now used but the remaining parameters are

the same as in the first set of design examples. The performance for different values of β is
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summarised in Table 5.12.

Table 5.12: Second performance summary for the combined minimisation formulation and

different values of β.

β 1 0.9 0.8

Number of active locations 15 21 21

Aperture/λ 10 10 10

Mean spacing/λ 0.71 0.50 0.50

||pr −wHS||2 0.91 0.91 0.91

||LTw||2|| 0.17 0.10 0.20

||w||0per TDL 15 11.7 9.9

It can be seen that decreasing the value of β has again increased the number of active

sensors, which would be expected as less importance has been placed on the minimisation of

the number of active sensors. However, using a larger possible aperture has increased the final

aperture size in the considered examples. As a result, the mean adjacent sensor separation

matches the grating lobe condition and the same number of sensors is used as in an equivalent

ULA. On the other hand it is possible that there has been an increase in the DOF thus allowing

an improved performance in terms of the resulting response. The number of weight coefficients

required per TDL has also decreased as β increases as per expected. This shows that a larger

aperture size has offered some improvement but some difficulties in selecting β still remain.

We can also see that the performance in terms of the array’s response is reasonably constant

despite the values of β. However, although the values of ||pr −wHS||2 suggest the desirability

of the response at the reference frequency is acceptable, the values of ||LTw||2 indicate that the
performance is insufficient in terms of FI.

Next consider an example where the transition region has been widened, i.e. the sidelobe

regions are now given by θSL = [0◦, 75◦]
∪
[105◦, 180◦]. An aperture of 10λ is split into a grid

of 100 potentially active sensor locations. The same normalised frequency range and reference

frequency is used with a TDL length J = 15. The values α = 0.91 and σ = 0.03 are selected,

and locations with a combined weight coefficient value of 1 × 10−3 are considered inactive,

with weight coefficients smaller than 1 × 10−6 being discarded. Table 5.13 summarises the

performance for different values of β.

Here it has been shown that increasing the transition region has resulted in the same issues

that have been discussed above. The main issue in this case is that there is no solution with

a suitable FI performance. This can largely be due to not being able to redesign the weight

coefficients using the CLS approach. The weight coefficients could be redesigned using the

second minimisation problem given by (5.21). However, if this second minimisation is being
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Table 5.13: Third performance summary for the combined minimisation formulation and

different values of β.

β 1 0.9 0.8

Number of active locations 11 15 17

Aperture/λ 7.78 7.78 7.78

Mean spacing/λ 0.78 0.56 0.49

||pr −wHS||2 0.92 0.92 0.91

||LTw||2|| 0.31 0.16 0.16

||w||0per TDL 15 12.6 9.24

used then there is no advantage in using the combined minimisation method in the first place.

It is also worth noting that no suitable solution was found for an off-broadside design example

with θML = 125◦. For these reasons the previous method of introducing temporal sparsity is

more appropriate when using the modified l1 minimisation formulation of finding the sensor

locations in a sparse wideband array.

5.5 Robust Wideband Problem

The robustness constraint used in the previous chapter can be added to the proposed wideband

formulations to ensure a sparse wideband beamformer robust against norm-bounded steering

vector errors. A design method for such an array will now be presented.

5.5.1 Problem Formulation

The first stage of the problem is to optimise the active locations of the sparse array while

ensuring a robust response is possible, where the robustness constraint is added to (5.15),

giving

min
ŵ

ĉT ŵ

subject to ||pr − ŵHŜ||2 ≤ α

||wm||2 ≤ tm, m = 0, · · · ,M− 1

||LT ŵ||2 ≤ σ.

ε||w||2 ≤ γ, (5.27)

where the same definitions of ŵ and ĉ are used.
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Once this problem is solved the final locations will be found by discarding those with

negligible contributions to the response and merging those on directly adjacent grid locations.

Although this means the weight coefficients are no longer optimal the locations can still be used

to efficiently implement a robust FIB. To do this the weight coefficients have to be redesigned

in such a way as to minimise the error between a desired and achieved response while also

ensuring a robust and FI response. This problem is given by

min
w

||pr −wHS||2
subject to ||LTw||2 ≤ σ

ε||w|| ≤ γ, (5.28)

where the FI constraint is applied over ΘFI = [0◦, 180◦]. The values of σ and γ are found by

evaluating ||LT ŵ||2 and ε||w||2 using the final locations and weight coefficients found by solving

the problem above.

If it is desired to introduce temporal sparsity, the weight coefficients have to be redesigned

for a final time. The problem of minimising the number of non-zero valued weight coefficients

should be solved subject to maintaining the desirability of the response, the FI performance

and the robustness of the solution. This is achieved by solving

min
w

||w||1
subject to ||pr −wHS||2 ≤ α

||LTw||2 ≤ σ

ε||w|| ≤ γ. (5.29)

Here the values of α, σ and γ can be found by evaluating ||pr − wHS||2, ||LTw||2 and ε||w||
from the solution to (5.28).

5.5.2 Design Examples

A broadside and an off-broadside design example are now presented to verify the effectiveness

of the proposed design. In both cases the same parameters will be used as in Section 5.3.2,

with the addition of ε = 5 and γ = 0.0001 for evaluating the robustness constraint in (5.27).

These values were selected to give reasonable tradeoff between ensuring robustness against the

possibility of adding extra sensors as discussed in the previous chapter. At the same time,

keeping the remaining parameters constant from he previous example will also allow a fair

comparison for the wideband case.
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5.5.2.1 Broadside Design Example

For the broadside design example the resulting array consists of 13 active sensors spread over

an aperture of 6.16λ with fewer sensors than required for an equivalent length ULA. It is

worth noting that although we have less sensors than when the robustness constraint was not

considered, the resulting aperture of the array is also shorter. This has resulted in a shorter

mean adjacent sensor separation, 0.51λ compared to 0.58λ, meaning less savings have been

made in terms of the number of sensors. The active sensor locations are detailed in Table 5.14.

Table 5.14: Sensor locations for the robust broadside design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 1.92 4 3.94 7 5.61 10 7.07

1 2.42 5 4.39 8 6.06 11 7.58

2 2.93 6 5.00 9 6.57 12 8.08

3 3.43

Using the initial solution the values of σ = 0.22 and γ = 0.08 were found for use solving

(5.28). However, this gives a result that performs poorly in terms of the FI of the response. As

a result the value of σ was reduced to σ = 0.01. This improved the performance in terms of

the FI of the response and has no non-zero valued weight coefficients. The designed and mean

achieved responses are shown in Figures 5.15 and 5.16, respectively, with Figures 5.17 and 5.18

showing the variance levels. It can be see that the designed response has the mainlobe in the

correct location for all of the normalised frequencies of interest and there is sufficient sidelobe

attenuation. In addition, there is also a good match between designed and mean achieved

responses, with reasonably low variance levels. As a result it is evident that robustness has

been successfully introduced into the design.

It is worth noting that, as in the previous chapter, the values of the variance and normalised

variance differ significantly. This is expected due to the normalisation term (of the mean

achieved response) used. If there is a small mean achieved response value, it will in turn give

a large normalised variance value. This explains the larger values found in the normalised

variance figures.

Now we introduce TDL sparsity to reduce implementation complexity, by solving (5.29).

Using the previous solution to (5.28), the values of α = 0.94, σ = 0.01 and γ = 0.08 were found.

However, using these values provided no significant reduction in the number of non-zero valued

weight coefficients. As a result, the implementation complexity has not been reduced. In order

to improve the reduction in complexity the value of α was increased to α = 0.95. This reduced

the number of non-zero valued weight coefficients per active location to 12.39, suggesting a
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Figure 5.15: Designed beam response for the broadside robust wideband beamformer with no

temporal sparsity.

0 20 40 60 80 100 120 140 160 180
−40

−35

−30

−25

−20

−15

−10

−5

0

θ (degrees)

B
ea

m
 p

at
te

rn
 (

dB
)

Figure 5.16: Mean achieved beam response for the broadside robust wideband beamformer

with no temporal sparsity.

significant reduction in implementation complexity.

Figures 5.19, 5.20, 5.21 and 5.22 show the designed response, mean achieved response and

variance levels, respectively. These figures show that the introduction of temporal sparsity still
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Figure 5.17: Variance levels for broadside robust beamformer with no temporal sparsity.
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Figure 5.18: Normalised variance levels for broadside robust beamformer with no temporal

sparsity.

gives an acceptable designed response. There is also a reasonable match between designed and

mean achieved responses, in addition to low variance levels.
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Figure 5.19: Designed beam response for the broadside robust wideband beamformer with

temporal sparsity.
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Figure 5.20: Mean achieved beam response for the broadside robust wideband beamformer

with temporal sparsity.

5.5.2.2 Off-Broadside Design Example

In this instance the solution to (5.27) gave the 19 active locations detailed in Table 5.15.

Although it is one active sensor more than is found without the robustness constraint over
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Figure 5.21: Variance levels for broadside robust beamformer with temporal sparsity.
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Figure 5.22: Normalised variance levels for broadside robust beamformer with temporal spar-

sity.

the same aperture, the mean adjacent sensor separation is still larger than half the minimum

operating wavelength. As a result we can say less sensors are used than in an equivalent ULA.

This solution gave the values σ = 0.30 and γ = 0.23 for use when solving (5.28). Although

this gave a reasonable response, there was obvious room for improvement in terms of the FI
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Table 5.15: Sensor locations for the robust off-broadside design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 5 2.98 10 5.51 15 8.13

1 0.56 6 3.48 11 6.01 16 8.64

2 1.36 7 3.99 12 6.52 17 9.49

3 1.92 8 4.60 13 7.07 18 10.00

4 2.47 9 5.05 14 7.58

of the response. As a result, the value of σ = 0.1 was used instead. The designed response

for this value of σ is shown in Figure 5.23. This shows that an acceptable response has been

achieved, with the mean achieved response shown in Figure 5.24 also being a reasonable match.

Moreover, reasonably low variance levels can be seen in Figures 5.25 and 5.26.
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Figure 5.23: Designed beam response for the off-broadside robust wideband beamformer with

no temporal sparsity.

In order to reduce the implementation complexity we now solve (5.29) using the values

α = 0.85, σ = 0.1 and γ = 0.23. Note here it was necessary to increase the value of α from

the original value, found from the previous solution, of 0.81 in order to ensure a design with

temporal sparsity.

Using these values reduced the number of non-zero valued weight coefficients required per

location by 11. The final designed response is shown in Figure 5.27 and it can be seen that

even with the desired temporal sparsity, an acceptable response has been achieved. The close
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Figure 5.24: Mean achieved beam response for the off-broadside robust wideband beamformer

with no temporal sparsity.
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Figure 5.25: Variance levels for off-broadside robust beamformer with no temporal sparsity.

matching mean achieved response (Figure 5.28) and low variance levels (Figures 5.29 and 5.30)

shows that robustness to norm-bounded steering vector error has been achieved.

All these suggest the proposed design method has been validated. It is worth noting that

the values of α, σ and γ from the previous solution have not always given a suitable solution.
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Figure 5.26: Normalised variance levels for off-broadside robust beamformer with no temporal

sparsity.

However, they have always been a good starting point and changing one of them has given an

acceptable result.
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Figure 5.27: Designed beam response for the off-broadside robust wideband beamformer with

temporal sparsity.
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Figure 5.28: Mean achieved beam response for the off-broadside robust wideband beamformer

with temporal sparsity.
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Figure 5.29: Variance levels for off-broadside robust beamformer with temporal sparsity.

5.6 Reweighted Wideband Problem

In this section, the above problems are reformulated as a series of iteratively solved reweighted

minimisations [51], by following a scheme similar to that in the narrowband formulation, in
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Figure 5.30: Normalised variance levels for off-broadside robust beamformer with temporal

sparsity.

order to improve the levels of sparsity introduced into the solutions.

5.6.1 Problem Formulation

First it is necessary to consider how the simplest form of the problem, given by (5.10), can

be reformulated as a series of reweighted minimisations. In the narrowband formulation the

reweighting term is applied to ensure each non-zero valued weight coefficient is penalised in a

more uniform manner. Therefore, it makes sense that for the wideband problem the aim is

to ensure that each overall location is penalised in a more uniform manner. To this end the

reweighting terms should now be found using the combined weight coefficient values for a given

sensor location.

This leads to the following reweighted formulation of the wideband CS problem

min
ŵ

ĉT ŵ

subject to ||pr − ŵHŜ||2 ≤ α

aim||wm||2 ≤ tim, m = 0, · · · ,M− 1

||LT ŵ||2 ≤ σ (5.30)

where the FI constraint has been added, wm = [wi
m,0, ...,w

i
m,J−1]

T ,

ŵ = [ti0,w
i
0,0, · · · ,wi

0,J−1, t
i
1, · · · ,wi

M−1,J−1]
T , (5.31)
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ĉ = [ai0,0J , a
i
1,0J , · · · ,0J ]

T , (5.32)

aim = (||wi−1
m ||2 + ϵ)−1. (5.33)

and wi−1
m = [wi−1

m,0, ...,w
i−1
m,J−1]

T .

As discussed, the reweighting terms are now found using the overall contribution of all

weight coefficients associated with a given location. As a result, a location with a large overall

contribution now gives a small reweighting term in the next iteration, thus more likely to be

repeated. On the other hand, a small contribution will lead to a large reweighting term and is

more likely to be discarded in the next iteration. Again the small-valued ϵ is required to ensure

numerical stability and in this instance should be selected as the minimum combined weight

coefficient (for a given location) that will be implemented.

The problem in (5.30) is solved following the same iterative procedure detailed for the

narrowband formulation of the problem. An initial estimate of the weight coefficients can be

found using (5.15) and then used to find the reweighting terms in the first iteration.

A set of temporally sparse weight coefficients can then be found for the resulting sparse

locations using either (5.21) or its reformulated iterative reweighted form (following the scheme

in the previous chapter for simple reweighted l1 minimisation reformulation).

However, if it is necessary to simultaneously introduce locations and temporal sparsity into

the design the problem in (5.26) becomes

min
ŵ

ĉT ŵ

subject to ||pr − ŵHŜ||2 ≤ α

aim(β||wm||2 + (1− β)||wm||1 ≤ tm), m = 0, · · · ,M− 1

||LT ŵ||2 ≤ σ, (5.34)

where

ŵ = [ti0,w
i
0,0, · · · ,wi

0,J−1, t
i
1, · · · ,wi

M−1,J−1]
T (5.35)

ĉ = [ai0,0J , a
i
1,0J , · · · ,0J ]

T , (5.36)

wm = [wi
m,0, · · · ,wi

m,J−1]
T , (5.37)

aim = (β||wi−1
m ||2 + (1− β)||wi−1

m ||1 + ϵ)−1, (5.38)

with ϵ being a small value as before. Also the problem in (5.34) is solved following the same

iterative procedure previously considered with an initial estimate of the weight coefficients

found using (5.26).

As with the previous formulations of the wideband CS problem, the robustness constraint
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derived in Chapter 4 can again be applied to (5.30), leading to

min
ŵ

ĉT ŵ

subject to ||pr − ŵHŜ||2 ≤ α

aim||wm||2 ≤ tim, m = 0, · · · ,M − 1

||LT ŵ||2 ≤ σ

ε||w||2 ≤ γ, (5.39)

where the solution gives a sparse array that can be efficiently used to design a robust wideband

beamformer. Temporal sparsity and an acceptable final response can then be found using the

same procedure described in Section 5.5.

5.6.2 Design Examples

Design examples, both broadside and off-broadside, will now be presented to verify the effec-

tiveness of the proposed reweighted formulations. The design examples will be implemented on

computer with an Intel Core Duo CPU E6750 (2.66GHz) and 4GB of RAM.

Sensor locations with overall negligible contributions to the overall response are discarded

with locations merged on directly adjacent grid locations. As a result, the final weight coeffi-

cients may no longer be optimal for the final sensor locations. However, when sparsity along

a TDL is not being considered, the locations will allow the effective design of an FIB using

the constrained least squares (CLS) formulation as detailed in [73]. When considering sparsity

along the remaining TDLs this redesign is not possible. As a result more care should be taken

when selecting the parameters to be used.

At this point the performances of the proposed methods will also be compared to that

achieved using a GA-based design example. The GA will optimise the locations of the sparse

array, with the CLS method used to find the weight coefficients and as the fitness function

(|J−1
CLS|) in the GA. In order to allow a fair comparison, the same values of βCLS = 0.01 will

be used in both the GA and in the re-design of weight coefficients for the CS methods. The

initial population of the GA consists of 30 individuals creating 27 offspring in each generation.

A mutation rate of 0.25 and a maximum of 30 generations were employed. When making

the performance comparison, the following were considered: mean adjacent sensor separations,

|JCLS| and computation time. Although this is only a small population size, and increasing

the size may help improve the performance of the algorithm, this would be at the cost of a

larger computation time. This would not be desirable as a long computation is the original

motivation for looking at an alternative to GAs in the first place.
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5.6.2.1 Broadside Design Example with Location Sparsity Only

In this example the mainlobe is designed to be at θML = 90◦ and sidelobe regions θSL =

[0◦, 80◦]
∪
[100◦, 180◦], which were sampled every 1◦. The frequency range of interest ΩI =

[0.5π, π] was sampled every 0.05π, with the reference frequency Ωr = π. A grid of 100 potential

sensor locations was spread uniformly over an aperture of 10λ. The values α = 0.9, σ = 0.01,

ϵ = 9× 10−4 and a TDL length J = 25 were used.

Table 5.16: Sensor locations for the broadside design example with location sparsity only.

m dm/λ m dm/λ m dm/λ m dm/λ

0 1.92 3 3.74 6 5.66 9 7.17

1 2.83 4 4.34 7 6.26 10 8.08

2 3.33 5 5.00 8 6.67

The resulting array consists of 11 active sensor locations, as detailed in Table 5.16. Note

that the parameters are the same as for the broadside design example in Section 5.3.2. As a

result, it can be seen that the reweighted formulation has reduced the number of active sensors

by 4. Figure 5.31 shows the resulting beam response, where the mainlobe is in the correct

location for each frequency of interest, sufficient sidelobe attenuation is achieved and there is a

good performance in terms of the FI property.
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Figure 5.31: Beam response for the broadside wideband beamformer, designed using the

proposed method with location sparsity only.
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Table 5.17: Sensor locations for the comparison GA broadside design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 3 1.63 6 3.48 9 5.53

1 0.27 4 2.16 7 4.12 10 6.16

2 1.12 5 2.80 8 4.77

Now design a sparse array using a GA for a performance comparison with array designed

using the proposed method. To allow a fair comparison, use the same number of sensors over

the same aperture length as detailed in Table 5.16. This results in the sparse array listed in

Table 5.17. Figure 5.32 shows the resulting beam response at each frequency of interest. Similar

comments about the response from the proposed design method can again be made here, i.e.

an acceptable performance has been achieved.
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Figure 5.32: Beam response for the wideband beamformer, designed using the comparison

GA design method.

Now the two methods will be compared in a more qualitative way, with Table 5.18 sum-

marising the three performance measures considered. The main advantage to the proposed

method can clearly be seen, i.e. a shorter computation time. This is despite the increase in

time from using the reweighted formulation of the problem. In fact the difference would be

more noticeable if a larger population size\more generations were used or if the time required

to fine tune the extra GA parameters, such as the mutation rate, was also included. Both of

the arrays have the same mean adjacent sensor separation and as this is greater than λ/2 it
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can be said that both are sparse. Finally, when comparing the value of JCLS, it can be seen

that the proposed method has given a comparable performance.

Table 5.18: Broadside performance comparison.

Method Reweighted CS Formulation GA

Mean Spacing/λ 0.62 0.62

JCLS 0.04 0.04

Computation Time(minutes) 130 436

5.6.2.2 Off-Broadside design example With Location Sparsity Only

Now an off-broadside design example with θML = 125◦ is considered. The sidelobe regions,

θSL = [0◦, 115◦]
∪
[135◦, 180◦], are sampled every 1◦, with the frequency range of interest, ΩI =

[0.4π, 0.9π], being sampled every 0.05π. The reference frequency was selected to be Ωr = 0.9π.

A grid of 100 potential sensor locations was spread uniformly over an aperture of 10λ. The

values α = 0.82, σ = 0.075, ϵ = 9× 10−4 and a TDL length J = 25 were used.

Table 5.19: Sensor locations for the off-broadside design example with location sparsity only.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 4 3.03 8 5.25 12 7.58

1 0.51 5 3.54 9 5.86 13 8.08

2 1.92 6 4.14 10 6.46 14 9.49

3 2.42 7 4.75 11 6.97 15 10.00

This resulted in an array with 16 active sensor locations, as given in Table 5.19, over the full

possible aperture of 10λ. Here using the reweighted minimisations has given a further saving

of 2 sensors. The resulting response for these locations is shown in Figure 5.33. As for the

broadside design example the mainlobe is in the correct location for each sampled normalised

frequency, sufficient sidelobe attenuation is present and there is a good FI performance.

Next a GA designed array is required for comparison with the proposed method. This

results in the locations in Table 5.20, with the beam response in Figure 5.34. Again it can be

seen that a satisfactory response has been achieved.

Table 5.21 summarises the performance criteria to allow a qualitative comparison of the

performances, where it can be seen that the computation time is shorter for the reweighted

formulation of the CS problem, which is consistent with what was achieved for the broadside

design example. Again the mean adjacent sensor separations show both methods have been
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Figure 5.33: Beam response for the off-broadside wideband beamformer, designed using the

proposed method with location sparsity only.

Table 5.20: Sensor locations for the comparison GA off-broadside design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.00 4 3.16 8 5.08 12 7.23

1 0.78 5 3.37 9 5.84 13 7.78

2 2.27 6 4.16 10 6.31 14 9.16

3 2.63 7 4.75 11 6.77 15 10.00

Table 5.21: Off-broadside performance comparison.

Method Reweighted CS Formulation GA

Mean Spacing/λ 0.67 0.66

JCLS 0.01 0.01

Computation Time(minutes) 146 944

able to introduce a similar level of sparsity into the design. Again a comparable performance

has been achieved in terms of JCLS for both design methods. However, what is important is

that the proposed method has achieved this in the shorter computation time. This is the case

in both examples.
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Figure 5.34: Beam response for the off-broadside wideband beamformer, designed using the

comparison GA design method.

5.6.2.3 Design Examples Illustrating the Effects of ϵ and How the Reweighting

Terms Are Initialised

Now consider the effects of using different values of ϵ and different methods of selecting the

initial reweighting terms. First to be considered is using different values of ϵ while making an

initial estimate of the weight coefficients to get the reweighting terms in the first iteration. Next

will be using different methods of selecting the initial reweighting terms. When making the

comparison it is necessary to consider the following as measures of performance: the number

of active locations, the mean adjacent sensor separation and JCLS.

Table 5.22: ε performance comparison.

ε 0 9× 10−4 1

Number of active locations NA 11 17

Mean Spacing/λ NA 0.62 0.51

JCLS NA 0.04 0.01

The values ϵ = 0 and ϵ = 1 will be considered and compared to ϵ = 9× 10−4 as used in the

design example above. Table 5.22 summarises how the three values performed. As expected

using ϵ = 0 failed to give a solution. It can also be seen that the value ϵ = 1 has significantly

increased the number of active sensors, to the extent that there is only a negligible sparsity.
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This means, even with the improvement in response desirability, there is no benefit to using

the value ϵ = 1. The increased number of sensors is to be expected, due to the fact that a

larger value of ϵ will give a smaller reweighting term. As a result, the location is penalised less

harshly and is more likely to be repeated in the next iteration. With this being repeated over

all the possible sensor locations the result is more active sensors in the final design. This shows

that it is best to set the value of ϵ to just less than the minimum combined weight coefficient

value that will be implemented.

Now consider alternative methods to selecting the initial reweighting terms: uniform reweight-

ing terms and two sets of randomly generated reweighting terms. The performance summary is

given in Table 5.23. As might be expected the uniform method gave the same solution as was

achieved above. This is because deriving an initial estimate of the weight coefficients to obtain

the first reweighting terms is equivalent to having an extra iteration with all the reweighting

terms being equal to one. It is also clear that using randomly generated initial reweighting

terms has lead to an unpredictable performance. Although it may be possible to improve the

sparsity of the solution, we have seen this can be at the cost of desirability of the response.

There is also no guarantee that a less sparse solution may be achieved. For these reasons

it is obvious that the best method is to continue obtaining an initial estimate of the weight

coefficients.

Table 5.23: Initial reweighting terms performance comparison.

Initial reweighting terms Uniform Random 1 Random 2

Number of active locations 11 9 13

Mean Spacing/λ 0.62 0.66 0.58

JCLS 0.04 0.10 0.01

5.6.2.4 Design Examples Including Sparsity Along the TDLs

Next to be considered are design examples with sparsity along the TDLs. However, as it has

already established that CS based design methods give a comparable performance to GAs,

no more GA comparisons will be considered. The number of active sensor locations, overall

number of non-zero valued weight coefficients, ||pr − wHS||2 and ||LTw||2 will be considered

when evaluating the performance of the two (reweighted formulations) methods of introducing

TDL sparsity.

Firstly, the broadside design example was considered. In this instance any weight coefficients

with a value less than 1× 10−9 were discarded. The values of α and σ for the method involving

a second l1 minimisation were found from the locations and weights found using the original
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reweighted CS formulation. For the simultaneous minimisation method a value of β = 0.8,

with the previously defined parameters, was used in an attempt to achieve a reasonable balance

between the location and temporal sparsity.

Table 5.24 compares the performance of the two methods with the previously found array.

Here, “CLS” gives the performance of the array in the previous subsection, “Two-step” gives

the performance of the method with a second reweighted l1 minimisation and “Combined” gives

the combined minimisation performance.

Table 5.24: Broadside performance comparison for TDL sparsity.

Method CLS Two-Step Combined

Number of Sensors 11 11 17

Aperture/λ 6.16 6.16 8.38

Mean Spacing/λ 0.62 0.62 0.52

Mean||w||0per TDL 25 14.8 18.5

||pr −wHS||2 0.90 0.90 0.90

||LTw||2 0.03 0.03 0.10

It can clearly be seen that the addition of the second term in the combined minimisation

problem has led to an increase in the number of active sensor locations. This is due to the fact

that both forms of the sparsity are now being considered, instead of solely focusing on location

sparsity. As with the non-reweighted formulation of the problem it has proved hard to get a

good balance between the two. In other words, it seems that considering temporal sparsity al-

ways reduces location sparsity when the problem is formulated in this manner. A result of this

increased number of sensors means that there is a smaller adjacent sensor separation compared

to the other two designs, despite there being a larger aperture overall. In addition to this the

combined minimisation formulation also requires the use of more weight coefficients per TDL

compared to the method requiring a second series of reweighted minimisations. Although it

suggests that this method is not as good as finding the sparse weight coefficients for fixed loca-

tions, it still successfully introduces both forms of sparsity. Therefore, it is still an acceptable

method if the sensor locations are not known beforehand. It is also worth noting that this de-

sign example matches an example from the first example set in the non-reweighted formulation

of the problem. However, unlike the non-reweighted formulation, the reweighted formulation

has reduced the number of active sensors required (for this value of β). This suggests that the

reweighted form of the problem has improved the results but still has not addressed all of its

problems.

The values of ||pr − wHS||2 and ||LTw||2 show that finding the weights using a second

iterative reweighted problem has given the same performance in terms of response desirability
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and RV. However, this is achieved using, on average, 12.2 less weight coefficients per active

sensor. This means that the complexity of implementing the beamformer has been reduced

without sacrificing overall performance.

On the other hand, there is an increase in ||LTw||2 for the combined minimisation method

which suggests that the introduced sparsity has had a detrimental effect on the array’s perfor-

mance. This could be partly due to the fact that there is no redesign of weight coefficients after

the merger and discarding of sensor locations. The effect of discarding small non-zero valued

weight coefficients is negligible compared to this. As a result, reducing the threshold below

which weight coefficients are discarded will only offer a small improvement, while in some cases

drastically increasing the number of non-zero valued weight coefficients. It may be easier to

tighten the constraint value in the first place, but this may also increase the number of active

sensors and weight coefficients. Alternatively, the weight coefficients could be redesigned using

a further series of iteratively solved reweighted minimisation, but this would remove the need

of the combined minimisation in the first place (i.e. it is more beneficial to consider the two

types of sparsity separately if two minimisations are being used).
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Figure 5.35: Beam response for the broadside wideband beamformer, designed using a second

reweighted 11 minimisation.

The beam response for the second reweighted minimisation and combined minimisation

formulations are shown in Figures 5.35 and 5.36, respectively. It can be seen that in both cases

the mainlobe is the desired location with sufficient sidelobe attenuation. It is also clear that

the response for the combined minimisation problem does not exhibit as good a performance

in terms of the FI property. This was expected when considering the values of ||LTw||2 for the

143



0 20 40 60 80 100 120 140 160 180
−70

−60

−50

−40

−30

−20

−10

0

θ (degrees)

B
ea

m
 p

at
te

rn
 (

dB
)

Figure 5.36: Beam response for the broadside wideband beamformer, designed using the

combined minimisation formulation.

two arrays. For completeness the locations for the combined minimisation are also shown in

Table 5.25.

Table 5.25: Sensor locations for the broadside design example using the combined location

and temporal sparsity formulation.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.81 5 3.43 9 5.56 13 7.68

1 1.31 6 4.04 10 5.96 14 8.08

2 1.92 7 4.44 11 6.57 15 8.69

3 2.32 8 5.00 12 7.17 16 9.19

4 2.83

Now the off-broadside design example will be considered. However, the combined minimisa-

tion formulation will not be used, because it has already been established that it does not give

as good a performance as using the second series of iteratively solved reweighted minimisations

for a fixed set of locations (as was clearly for the case for both the broadside design example

and the non-reweighted formulations of the problem).

As with the broadside example, the values of α and σ, for the second reweighted minimisa-

tions are found using the results from the previous off-broadside design example. However, the

threshold level below which weight coefficients are discarded is increased to 1 × 10−6. This is
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necessary to ensure that a satisfactory performance can still be achieved for the off-broadside

case. The performance of the resulting array with the previously designed off-broadside design

example is summarised in Table 5.26. Note that the aperture or mean adjacent sensor separa-

tions are no longer being considered as a performance measure because the same locations are

used in both cases.

Table 5.26: Off-broadside performance comparison for TDL sparsity.

Method CLS Two-Step

Mean||w||0per TDL 25 16.4

||pr −wHS||2 0.82 0.82

||LTw||2 0.03 0.08

Here it can be seen that the response at the reference frequency is equally desirable for both

designs. There is also a slight increase in the value of ||LTw||2 indicating that the RV is greater

for the array designed using a second series of iteratively solved reweighted minimisations. This

suggests its performances in terms of the FI property is not as good. However, the values are

still comparable and the increase is acceptable when considering there is also, on average, 8.6

less weight coefficients per active location.
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Figure 5.37: Beam response for the off-broadside wideband beamformer, designed using a

second reweighted 11 minimisation.

The resulting beam response is shown in Figure 5.37, where the mainlobe is always within

1◦ of what is desired and sufficient sidelobe attenuation is achieved. As expected, although a
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reasonable performance is achieved in terms of the FI property, it is not as good as the example

where temporal sparsity was not considered.

5.6.2.5 Broadside Robust Sparse Wideband Array Design Example

Design examples will now be considered to verify that the proposed method can be used to

design a robust wideband FIB. The parameters in the broadside design example considered in

Section 5.6.2.1 are again used, with the addition of ε = 5 and γ = 0.0001 for evaluation of the

robust constraint. This is done to allow a fair comparison.

Table 5.27: Sensor locations for the broadside reweighted robust sparse array design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 1.92 3 3.94 6 5.56 9 7.07

1 2.93 4 4.44 7 6.06 10 8.08

2 3.43 5 5.00 8 6.57

The 11 resulting locations are shown in Table 5.27. This is the same number of active sensors

as when the robust constraint was not considered. However, the locations are not identical.

Again it can be seen that sparsity has been successfully realised in the design, as the mean

adjacent sensor separation is 0.62λ.

Using this result, the values σ = 0.04 and γ = 0.24 were found for solving the problem in

(5.28). As expected, the result did not include any zero-valued weight coefficients. The resulting

designed response, mean achieved response and response variance levels are shown in Figures

5.38, 5.39, 5.40 and 5.41, respectively. These show that the desired response has the mainlobe

in the correct location for each normalised frequency, there is sufficient sidelobe attenuation

and the response is sufficiently FI. There is also a good match between the designed and mean

achieved responses, especially around the mainlobe area. Along with the low variance levels

this indicates that the proposed design method has successfully designed a robust beamformer.

The final problem to be considered is the reduction in the beamformer’s implementation

complexity. The values of α = 0.87, σ = 0.04 and γ = 0.24 were found for solving (5.29).

In this instance, the resulting weight coefficients were all non-zero valued. This means the

implementation complexity has not been reduced and the previous design should be used as

the final design.

However, by sacrificing some response desirability by raising α to 0.9 a temporally sparse

solution could be found. This rise in the value α reduced the number of non-zero valued weight

coefficients to 13.1 per TDL. The final designed response, mean achieved response and variance
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Figure 5.38: Designed beam response for the broadside robust wideband beamformer with no

temporal sparsity.
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Figure 5.39: Mean achieved beam response for the broadside robust wideband beamformer

with no temporal sparsity.

levels are shown in Figures 5.42, 5.43, 5.44 and 5.45, respectively. It can be seen that the

designed response still shows an acceptable level of desirability despite the increase in the value

of α. Similar to the example when temporal sparsity was not considered, the response is FI.
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Figure 5.40: Variance levels for broadside robust beamformer with no temporal sparsity.
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Figure 5.41: Normalised variance levels for broadside robust beamformer with no temporal

sparsity.

Comparing the mean achieved response to the designed response it can be seen that a reasonable

match has been achieved. There are also low variance levels, suggesting that robustness has

again been achieved.
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Figure 5.42: Designed beam response for the broadside robust wideband beamformer with

temporal sparsity.
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Figure 5.43: Mean achieved beam response for the broadside robust wideband beamformer

with temporal sparsity.

5.6.2.6 Off-Broadside Robust Sparse Wideband Array Design Example

Finally, an off-broadside design example is considered. The values of ε = 5 and γ = 0.0001

were this time added to the parameters considered in the above off-broadside design example
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Figure 5.44: Variance levels for broadside robust beamformer with temporal sparsity.
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Figure 5.45: Normalised variance levels for broadside robust beamformer with temporal spar-

sity.

and (5.39) solved. The result is 16 active locations detailed in Table 5.28, which can efficiently

be used to implement a robust FIB. Here there is a mean adjacent sensor separation of 0.63λ

which again suggests less sensors have been used than by a ULA of the same length. Although

this is the same number of sensors as when the robustness constraint is not used, the locations
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are not identical.

Table 5.28: Sensor locations for the off-broadside robust sparse array design example.

m dm/λ m dm/λ m dm/λ m dm/λ

0 0.61 4 3.43 8 5.56 12 7.58

1 1.31 5 4.04 9 5.96 13 8.08

2 2.42 6 4.55 10 6.57 14 9.49

3 2.93 7 5.05 11 7.07 15 10.00

Using this solution, the values of σ = 0.08 and γ = 0.50, are used when solving (5.28). Again

the solution at this stage has no temporal sparsity, i.e. all the weight coefficients are non-zero

valued. The designed response is shown in Figure 5.46, with the mean achieved response being

shown in Figure 5.47. For both responses the mainlobe is within 1◦ of what was designed,

sufficient sidelobe attenuation has been achieved and the response is FI. As there is also a

reasonable match between the two responses and with the low variance levels shown in Figures

5.48 and 5.49, it can be said that robustness to norm-bounded steering vector errors has again

been achieved.
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Figure 5.46: Designed beam response for the off-broadside robust wideband beamformer with

no temporal sparsity.

Now use the values of α = 0.81, σ = 0.08 and γ = 0.50 found from this solution to introduce

temporal sparsity by solving (5.29). However, using these constraint limits, there was no

significant reduction in the number of weight coefficients per location. To improve the temporal
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Figure 5.47: Mean achieved beam response for the off-broadside robust wideband beamformer

with no temporal sparsity.
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Figure 5.48: Variance levels for off-broadside robust beamformer with no temporal sparsity.

sparsity, the value of α was increased to 0.85. This reduced the average number of weight

coefficients used per TDL to 14.19.

Obviously the increase in the value of α has made the response less desirable. However,

the response at the reference frequency is still acceptable with a good level of FI also being
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Figure 5.49: Normalised variance levels for off-broadside robust beamformer with no temporal

sparsity.
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Figure 5.50: Designed beam response for the off-broadside robust wideband beamformer with

temporal sparsity.

shown. The designed response is shown in Figure 5.50, with a good match achieved by the mean

achieved response as shown in Figure 5.51. With the low variance levels in Figures 5.52 and

5.53, this suggests robust response has been achieved, even with the introduction of temporal
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Figure 5.51: Mean achieved beam response for the off-broadside robust wideband beamformer

with temporal sparsity.
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Figure 5.52: Variance levels for off-broadside robust beamformer with temporal sparsity.

sparsity.
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Figure 5.53: Normalised variance levels for off-broadside robust beamformer with temporal

sparsity.

5.7 Summary

This chapter has studied how it is possible to reformulate the traditional l1 minimisation prob-

lem associated with CS for the wideband case. As there is more than one weight coefficient

for each sensor location in the wideband case, the narrowband formulation of the CS problem

will not guarantee a sparse solution for the wideband array model. This is because it only

minimises the overall number of non-zero valued weight coefficients without considering which

sensor they are associated with. However, for a sensor location to be considered inactive all

weight coefficients along its TDL need to be zero-valued. For simultaneous minimisation of all

weight coefficients along each TDL, a modified l1 norm minimisation was proposed, which has

been shown to successfully give sparse solutions.

A special case of wideband beamformers is the FIB. For FIB it is expected that there will

be little variation between responses at each frequency and the reference frequency. In this

chapter there is a derivation for a constraint that can be added to the wideband formulation of

the CS problem in order to ensure that such a beamformer can be designed. This is achieved

by using the idea of RV, which measures the variation in response at each frequency to the

reference one, with RV=0 implying the responses are identical at each of the frequencies. To

ensure a FI response in our design, the RV is added as a constraint and kept below a small

predetermined value.

When considering wideband arrays there are two types of sparsity that can be considered.
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First is the location sparsity that has been traditionally considered in the design of sparse arrays

and has been already discussed. Secondly, it is also possible to consider temporal sparsity along

the TDLs of the array. Two methods of achieving this have been considered in this chapter.

Firstly, the problem can simply be considered as finding the set of weight coefficients for a fixed

set of sensor locations. This can be simply solved as an l1 norm minimisation. However, if a

suitable set of sensor locations is not already known it is possible to simultaneously consider

location and temporal sparsity by adding a second term to the cost function of the modified

l1 norm minimisation problem to account for temporal sparsity. The advantage of using one

of these two methods compared to traditional wideband beamforming techniques, is that there

is a reduced implementation complexity, through a reduced number of non-zero valued weight

coefficients.

As with the narrowband formulation it is also possible to add the robustness constraint.

Again this will ensure the resulting response is robust to a norm-bounded steering vector error.

This is especially important when considering array elements such as microphones, as they are

particularly susceptible to model perturbations such as position errors.

Using the narrowband reweighted l1 minimisation problem as motivation it is also possible

to achieve a similar improvement in sparsity for the wideband problem. However, in this

case the reweighting terms are now found from\applied to the overall sensor location rather

than individual weight coefficients. This improved sparsity comes at the cost of an increased

computation time, due to the iterative nature of the reweighted algorithm. The difference

is more apparent than for the narrowband formulation, as the wideband problem is more

complex. Comparisons with a simple GA-based design method have shown that this increased

computation time is still favorable compared to with the GA design method.

It has been shown, through the provided design examples, that the reformulation has suc-

cessfully given sparse wideband arrays. In the next chapter it will be shown how a similar

extension of the complex-valued l1 minimisation problem can be used in the design of a sparse

vector-sensor array. This is required as the signal model being considered is quaternionic,

meaning the weight coefficients, steering vectors and desired response have to be split into real

and three imaginary parts. For a sparse solution it is necessary to simultaneously minimise the

four parts of the weight coefficients associated with a given location, which is why a similar

reformulation is required.
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Chapter 6

Sparse Vector-Sensor Array

6.1 Introduction

This chapter will consider the problem of designing a sparse vector-sensor array. For such an

array a quaternionic signal model is advantageous. However, this leaves responses, steering

vectors and weight coefficients that are quaternions. In other words all values are made up of a

real and three imaginary components. To be able to solve this problem the quaternion values

have to be broken into their four constituent parts, which in the case of the weight coefficients

then have to be simultaneously minimised to ensure a sparse solution is achieved. As a result

a reformulation of the CS problem, similar to that presented in the previous chapter, has to be

used. This method is presented in this chapter after a review of the basics of quaternions and

the signal model used. Note that in this chapter, as with the previous two chapters, CS is used

as a loose label rather than in its strictest form. This is because there is no sparse signal being

recovered, instead the aim is to design a sparse vector-sensor array.

6.2 Review of Vector-Sensor Arrays

The majority of previous beamforming work has tended to assume that isotropic array elements

are used. As a result the signal polarisation is not considered in the signal model being used.

Instead vector-sensors, such as crossed-dipole pairs, can be used [78–80]. This class of sensors

allows the measurement of both horizontal and vertical components of the received signal.

Considering the polarisation in this way allows an improvement in array performance. The

key advantage is that it should be possible to attenuate signals which do not have the desired

polarisation characteristics. In other words a signal arriving from the desired look direction

but with the wrong polarisation information should be able to be ignored.
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A vector-sensor array can be represented in two ways. Firstly, the long vector approach was

used where each component of the vector sensor is represented by a complex number [78–82].

Alternatively, a quaternion based signal model has been used more recently in the areas of

adaptive beamforming and DOA estimation [83–87]. In this chapter, the quaternionic signal

model for a vector-sensor array will be used in the design of a sparse vector-sensor array.

6.3 Review of Quaternions

A quaternion is a hypercomplex number defined as follows [88]

q = R(q) + iI(q) + jJ(q) + kK(q) (6.1)

where R(q) is the real part of the quaternion and I(q), J(q) and K(q) are the three imaginary

components. Similarly for vectors and matrices of quaternions the following apply

v = R(v) + iI(v) + jJ(v) + kK(v),

M = R(M) + iI(M) + jJ(M) + kK(M). (6.2)

The conjugate and modulus of a quaternion are given by

q∗ = R(q)− iI(q)− jJ(q)− kK(q), (6.3)

|q| =
√

R2(q) + I2(q) + J2(q) +K2(q). (6.4)

The imaginary units i, j and k satisfy the following

ii = jj = kk = −1, (6.5)

ij = −ji = k; jk = −kj = i; ki = −ik = j. (6.6)

Finally {.}▹ denotes the conjugate transpose of quaternionic vectors and matrices.

6.4 Quaternion Signal Model

Figure 6.1 shows the new array structure under consideration. Here there are M crossed-dipole

pairs with an adjacent separation of d. At each of the locations one of the dipoles is parallel

to the x-axis and the other to the y-axis. It can also be seen that a signal’s DOA is defined by

the angles θ and ϕ. Without any loss of generality it can be assume that the signal impinges

upon the array from the y-z plane. In other words ϕ = π/2 or −π/2. The angle θ is limited to

0 ≤ θ ≤ π/2. Finally, a plane wave signal model is assumed, i.e. the received signals impinge

on the array from the far-field.
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Figure 6.1: Linear Array consisting of M crossed-dipole pairs.

Firstly, the spatial steering vector of the array is given by

ss(θ, ϕ) = [1, e−j2πd sin θ sinϕ/λ, . . . , e−j2π(M−1)d sin θ sinϕ/λ]T , (6.7)

where λ is the wavelength of the signal of interest and {.}T denotes the transpose. Secondly,

the spatial-polarisation coherent vector is given by

sp(θ, ϕ, γsp, ηsp) =

[− cos γsp, cos θ sin γspe
jηsp ] for ϕ = π/2

[cos γsp,− cos θ sin γspe
jηsp ] for ϕ = −π/2 ,

(6.8)

where γsp ∈ [0, π/2] is the auxiliary polarization angle and ηsp ∈ [−π, π) is the polarization

phase difference.

Now the array’s structure can be split into two sub-arrays, one parallel to the x-axis and

one to the y-axis. The steering vector for each sub-array will be complex-valued and given by

sx(θ, ϕ, γsp, ηsp) =

− cos γspss(θ, ϕ) for ϕ = π/2

cos γspss(θ, ϕ) for ϕ = −π/2
(6.9)

and

sy(θ, ϕ, γsp, ηsp) =

cos θ sin γspe
jηspss(θ, ϕ) for ϕ = π/2

− cos θ sin γspe
jηspss(θ, ϕ) for ϕ = −π/2.

(6.10)

To derive the steering vector for the array as a whole, the steering vectors for the two sub-arrays

have to be combined as follows

s(θ, ϕ, γsp, ηsp) = sx(θ, ϕ, γsp, ηsp) + isy(θ, ϕ, γsp, ηsp). (6.11)

The response of the array is given by

p(θ, ϕ, γsp, ηsp) = w▹s(θ, ϕ, γsp, ηsp), (6.12)
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where w is the quaternionic weight coefficient vector defined as

w = [w1, w2, ... wM ]T , (6.13)

and wm is a quaternionic value for m = 1, 2, · · · ,M .

6.5 Quaternionic Compressive Sensing Based Design

Method

This section will show how the CS problem can be reformulated to guarantee a sparse vector-

sensor array when a quaternionic signal model is used. The reformulation is required to ensure

all parts of the weight coefficients are simultaneously minimised and follows a scheme similar to

that used in the minimisation of complex-valued data [70]. Design examples will be provided

to verify the effectiveness of the formulation.

6.5.1 Problem Formulation

First consider Figure 6.1 as being a grid of potential crossed-dipole locations and that there

is desired response given by Pr(θ, ϕ, γsp, ηsp). The maximum possible aperture of the array is

therefore given by (M − 1)d, where M is a large number. Spareness is now introduced into

the design by finding the coefficients with the minimum number of non-zero values while still

matching the designed response to the desired response. As with previous formulations, it is

assumed that the desired response is the ideal one (i.e. a one for the mainlobe and zeros for

the sidelobe regions).

The narrowband formulation of the problem is used as a starting point. This is given by

min ||w||1
subject to ||pr −w▹S||2 ≤ α . (6.14)

However, as things stand this is not effective in the design of a sparse vector-sensor array

based on a quaternionic signal model. Instead the problem has to be reformulated in order to

account for the fact the the weight coefficient at each location has a real and three imaginary

components. To give a sparse solution all four parts of the quaternionic weight coefficient has

to be simultaneously minimised.

The first stage of the reformulation is to write (6.14) as

min t ϵ R+

subject to ||pr −w▹S||2 ≤ α , |⟨w⟩|1 ≤ t (6.15)
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where

|⟨w⟩|1 =
M∑

m=1

||wm||2, (6.16)

where wm = [R(wm), I(wm), J(wm), K(wm)]
T .

Next it is necessary to decompose t so that t =
∑M

m=1 tm, tmϵ R+. In vector form this gives

t = [1, · · · , 1]


t1
...

tM

 = 1T t. (6.17)

This means that the minimisation problem can now be written as

min
t

1T t

subject to ||pr −w▹S||2 ≤ α

||wm||2 ≤ tm, m = 1, · · · ,M. (6.18)

Now define

ŵ = [t1, R(w1),−I(w1),−J(w1),−K(w1), · · · ,

R(wM),−I(wM),−J(wM),−K(wM)]|T (6.19)

ĉ = [1, 0, 0, 0, 0, · · · , 1, 0, 0, 0, 0]T , (6.20)

p̂r = [R(pr), I(pr), J(pr), K(pr)] (6.21)

and

Ŝ =



0 0 0 0

R(s1) I(s1) J(s1) K(s1)

−I(s1) R(s1) −K(s1) J(s1)

−J(s1) K(s1) R(s1) −I(s1)

−K(s1) −J(s1) I(s1) R(s1)
...

...
...

...

0 0 0 0

R(sM) I(sM) J(sM) K(sM)

−I(sM) R(sM) −K(sM) J(sM)

−J(sM) K(sM) R(sM) −I(sM)

−K(sM) −J(sM) I(sM) R(sM)

,



(6.22)

where sm contains the designed contribution of the mth vector sensor to the array’s steering

vector for all combinations of θ, ϕ, γsp and ηsp, of interest.
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This allows us to arrive at the final form of the problem given by

min
ŵ

ĉT ŵ

subject to ||p̂r − ŵT Ŝ||2 ≤ α

||wm||2 ≤ tm, m = 1, · · · ,M. (6.23)

6.5.2 Design Examples

Broadside and off-broadside design examples will now be presented to validate the effectiveness

of this design method. In both cases, a positive value of θ indicates the value range θ ∈ [0◦, 90◦]

for ϕ = 90◦, while negative values of θ ∈ [−90◦, 0◦] indicate an equivalent range of θ ∈ [0◦, 90◦]

with ϕ = −90◦. This also applies to all design examples considered in this chapter. For both the

broadside and off-broadside design examples a maximum possible aperture of 10λ is assumed,

with a potentially active sensor location every 0.02λ and λ is the operating wavelength.

For both the broadside and the off-broadside design examples three values of α will be

considered. These will illustrate the effects of relaxing the limit on the constraint on the

amount of error allowed between the desired and designed responses. In both cases the values

used will be α = 0.9, 0.7 and 0.5, respectively. Both of these problems and those that follow

in the remainder of this chapter can be solved using cvx, a package for specifying and solving

convex programs [68,69].

Note, the auxiliary polarisation angle and polarisation phase difference used in what follows

have been chosen as an example. Similar performances are possible for other combinations

of the two variables, if the correct values are selected for the remaining parameters. Such a

selection should be made based on the tradeoffs discussed previously in this thesis.

6.5.2.1 Broadside Design Example

In this instance the mainlobe of the desired response is set to θML = 0◦ and ϕML = 90◦. The

sidelobe regions are given by θSL = [10◦, 90◦] for both ϕSL = 90◦ and ϕSL = −90◦, where the

range of θ is sampled every 1◦ for both of the regions. The polarisation characteristics are

defined by (γsp, ηsp) = (0◦, 0◦).

The results for the three values of α are summarised in Table 6.1. Here it can be seen that

increasing the value of α to 0.9 has led to less active sensors being required. Although the

aperture has also been reduced the mean adjacent separation is still larger than for the other

two values of α. This would suggest that the level of sparsity has been increased but as a larger

value of α has been used, this means the response will be the worst approximation of the desired

response. Figure 6.2 shows the resulting response for the three values of α. Although all three
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Table 6.1: Summary of broadside designs for different values Of α.

α 0.9 0.7 0.5

Number Active 12 16 16

Aperture Length/λ 8.48 10 10

Mean Spacing/λ 0.77 0.67 0.67

show an acceptable response in terms of mainlobe location and sidelobe attenuation, it can be

seen that the smaller values of α have given the best approximation of the ideal response, as

expected. The locations for α = 0.9 are shown in Table 6.2 as an example.
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Figure 6.2: Broadside mainlobe design examples.

Table 6.2: Active locations for the broadside design example with α = 0.9.

m dm/λ m dm/λ m dm/λ m dm/λ

1 0.76 4 3.13 7 5.37 10 7.65

2 1.56 5 3.89 8 6.11 11 8.44

3 2.35 6 4.63 9 6.87 12 9.24

6.5.2.2 Off-Broadside Design Example

An off-broadside design example will now be considered with the desired mainlobe location

defined by the angles θML = 25◦ and ϕML = 90◦. In this instance the sidelobe regions are now
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given by θSL = [0◦, 10◦] and θSL = [40◦, 90◦] for ϕSL = 90◦, and θSL = [0◦, 90◦] for ϕSL = −90◦.

Again the range of θ is sampled every 1◦ for the sidelobe regions and the same polarisation

characteristics are used.

Table 6.3: Summary of off-broadside designs for different values of α.

α 0.9 0.7 0.5

Number Active 14 16 28

Aperture Length/λ 7.68 8.88 10

Mean Spacing/λ 0.59 0.59 0.37
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Figure 6.3: Off-broadside mainlobe design examples.

The resulting responses for the three values of α are shown in Figure 6.3, with Table 6.3

summarising the performances in terms of the level of sparsity. In this instance it is clear that

the number of sensors required has decreased with each rise in the value of α. Again although

there is a decrease in the aperture length, the mean adjacent sensor separations show that the

level of sparsity has increased as well. It is worth noting that the example with α = 0.5 has

given a solution that requires more sensors than an equivalent ULA. As expected it can be seen

that the value of α = 0.9 has given the worst approximation of the ideal response. However,

the three responses all show an acceptable performance has been achieved. The active locations

for a value of α = 0.9 are shown in Table 6.4 as an example.
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Table 6.4: Active locations for the off-broadside design example with α = 0.9.

m dm/λ m dm/λ m dm/λ m dm/λ

1 1.16 5 3.51 9 5.89 12 7.67

2 1.74 6 4.11 10 6.49 13 8.26

3 2.33 7 4.71 11 7.08 14 8.84

4 2.92 8 5.29

6.6 Robust Sparse Vector-Sensor Array

To design a robust sparse vector-sensor array, we can again limit the maximum possible change

in array response to a small value. Design examples will be given to illustrate the effectiveness

of the method and the changes introduced by using adding the constraint.

6.6.1 Problem Formulation

As for the previous two formulations discussed in Chapters 4 and 5, it is possible to add a

constraint to ensure a sparse robust vector-sensor array is achieved.

The addition of this constraint gives

min
ŵ

ĉT ŵ

subject to ||p̂r − ŵT Ŝ||2 ≤ α

||wm||2 ≤ tm, m = 1, · · · ,M

ε||w||2 ≤ γ , (6.24)

where w = [R(w1), I(w1), J(w1), K(w1), R(w2), ..., K(wM)]
T and the remaining definitions are

the same as which were discussed in the previous section of this chapter.

6.6.2 Design Examples

In this section narrowband design examples are presented to illustrate the effects of adding

the robustness constraint. To achieve this, two examples will be considered. The first will not

consider robustness in the design and the second will then use the same parameters with the

robustness constraint added.

The desired mainlobe is set to the single point defined by the angles θML = 0◦ and ϕML =

90◦. The sidelobe regions are given by θSL = [10◦, 90◦] for both ϕSL = 90◦ and ϕSL = −90◦.

Again the range of values of θ is sampled every 1◦. A maximum possible aperture of 10λ sampled
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every 0.05λ is assumed, where λ is the operating wavelength. Finally a value of α = 0.95 and

polarisation characteristics (γsp, ηsp) = (0◦, 0◦) are selected.

This resulted in 10 active locations spread over an aperture 6.90λ with a mean adjacent

separation of 0.77λ, as detailed in Table 6.5. Figure 6.4 shows the resulting response, where

the mainlobe is in the correct location and sufficient sidelobe attenuation has been achieved.

Table 6.5: The resultant crossed-dipole locations without considering robustness constraint.

m dm/λ m dm/λ m dm/λ m dm/λ

1 1.55 4 3.88 7 6.13 9 7.65

2 2.35 5 4.63 8 6.88 10 8.45

3 3.13 6 5.38
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Figure 6.4: Beam response without considering robustness to steering vector error.

Now consider the effect of adding the robustness constraint to the design. For the evaluation

of the robustness constraint the values γ = 0.01 and ε = 1 are selected. As in the previous

two chapters 1000 different steering vector error vectors are generated and the mean response,

variance and normalised variance were found using (6.25), (6.26) and (6.27) respectively. Note,

it is expected that the two measures of the variance will again give different results. This is

because when there is an almost zero-valued entry in the mean achieved response there will be a

large normalised variance value due to the normalisation term in (6.27). A robust solution will

be indicated by low variance levels and a close match between the designed and mean achieved
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responses.

P̄ (θk, ϕk, γsp, ηsp) =
1

N

N−1∑
n=0

Pn(θk, ϕk, γsp, ηsp), (6.25)

var(θk, ϕk, γsp, ηsp) =
1

N

N−1∑
n=0

|Pn(θk, ϕk, γsp, ηsp)− P̄ (θk, ϕk, γsp, ηsp)|2, (6.26)

normvar(θk, ϕk, γsp, ηsp) =
1

N

N−1∑
n=0

|Pn(θk, ϕk, γsp, ηsp)− P̄ (θk, ϕk, γsp, ηsp)|2

|P̄ (θk, ϕk, γsp, ηsp)|2
. (6.27)

Table 6.6: The resultant crossed-dipole locations considering robustness constraint.

m dm/λ m dm/λ m dm/λ m dm/λ

1 1.55 4 3.88 7 5.33 10 6.88

2 2.35 5 4.63 8 5.40 11 7.65

3 3.13 6 4.70 9 6.13 12 8.45
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Figure 6.5: Beam response considering robustness to steering vector error.

The resulting active locations are shown in Table 6.6, with the designed and mean achieved

response shown in Figure 6.5. It is clear that the addition of the robustness constraint resulted

in there being 2 more active sensor locations. As this is over the same aperture length the mean

adjacent separation has reduced to 0.63λ, meaning the level of sparsity has been reduced. Again

an acceptable designed response has been achieved, and there is also a close match between

the designed and mean achieved responses which, along with the low variance levels shown in

Figures 6.6 and 6.7, indicates a robust solution has been achieved.

167



−90 −70 −50 −30 −10 10 30 50 70 90
−100

−90

−80

−70

−60

−50

−40

−30

−20

θ (degrees)

V
ar

ia
nc

e 
of

 b
ea

m
 p

at
te

rn
 (

dB
)

Figure 6.6: Variance levels.
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Figure 6.7: Normalised variance levels.

6.7 Reweighted Quaternionic Problem

This section will look at the problem of improving the sparsity of the solution by converting the

modified l1 minimisation problem into a series of iteratively solved reweighted minimisations.

This will be conducted in a similar fashion to the reweighted wideband minimisations in the
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previous chapter. Here the reweighting term will instead focus on the single absolute weight

coefficient value associated with each crossed-dipole pair. Design examples will be provided to

verify the effectiveness of this formulation.

6.7.1 Problem Formulation

As for the design of sparse arrays consisting of isotropic array elements, it is possible to im-

prove the sparsity of the solution by converting the problem into a series of iteratively solved

reweighted minimisations, by penalising locations with a small absolute weight coefficient value

so that it is unlikely to be repeated in the next iteration.

This leads to

min
ŵ

ĉT ŵ

subject to ||p̂r − ŵHŜ||2 ≤ α

aim||wm||2 ≤ tim, m = 0, · · · ,M− 1 (6.28)

where

ŵ = [ti0, w
i
0,0, · · · , wi

0,J−1, t
i
1, · · · , wi

M−1,J−1]
T , (6.29)

ĉ = [ai0,04, a
i
1,04, · · · ,04]

T (6.30)

and

aim = (||wm||2 + ϵ)−1 (6.31)

with ϵ being set to slightly below the minimum implemented absolute weight coefficient value

for a given location.

This is then solved by following the same basic framework as detailed in Section 4.5 of

Chapter 4. However, the initial estimate of the weight coefficients are obviously now found

using (6.23).

Again it is also possible to add the robustness constraint giving

min
ŵ

ĉT ŵ

subject to ||p̂r − ŵHŜ||2 ≤ α

aim||wm||2 ≤ tim, m = 0, · · · ,M− 1

ε||w||2 ≤ γ . (6.32)

6.7.2 Design Examples

A broadside (θML = 0◦, ϕML = 90◦) design example will now be presented in order to verify the

effectiveness of this design method. Its performance will also be compared to that of the original
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modified l1 minimisation formulation. To do this the original formulation will be considered

first, with the reweighted formulation given second to highlight its improvements.

The sidelobe regions are defined by θSL = [15◦, 90◦] for both ϕSL = 90◦ and ϕSL = −90◦,

where the range of values of θ considered are sampled every 1◦. A grid of 150 potential sensor

location spread over an aperture of 15λ was considered, where λ is the operating wavelength.

Again in this example the polarisation characteristics are given by (γsp, ηsp) = (0◦, 0◦).

The original modified l1 minimisation resulted in 44 active sensor locations spread over an

aperture of 13.38λ. This gives a mean adjacent sensor separation of 0.31λ, indicating that a

ULA of equivalent length could be implemented with less active sensors.

In order to introduce sparsity into the solution the first approach to try would be to increase

the value of α. For an example a value of α = 0.91 gives 20 active locations over an aperture of

10.17λ, with a mean adjacent sensor separation of 0.54λ. However, as the value of α has been

significantly increased the designed response will not be as close a match to the ideal one.

Instead, using the reweighted formulation with the original parameters gives 14 active loca-

tions over an aperture of 8.56λ with a mean adjacent sensor separation of 0.66λ. This indicates

that switching to the reweighted minimisations has improved the mean adjacent sensor sepa-

ration and introduced sparsity into the design. As the original value of α has been used, there

will be no degradation in performance in terms of the designed response. For completeness

Table 6.7 shows the active locations and Figure 6.8 the resulting designed response.

Table 6.7: The resultant crossed-dipole locations.

m dm/λ m dm/λ m dm/λ m dm/λ

1 3.22 5 6.54 9 8.15 12 10.12

2 4.03 6 6.85 10 8.46 13 10.97

3 4.88 7 7.35 11 9.26 14 11.78

4 5.74 8 7.65

6.8 Enforcing the Size Constraint

In this section the issue of enforcing the size constraint on the minimisations will be considered.

The same methods that were proposed in Chapter 4 will be considered here. However, there is

currently no suitable method of redesigning the weight coefficients after the merger of locations

so more care will have to be given when selecting the parameters used.

170



−90 −70 −50 −30 −10 10 30 50 70 90
−70

−60

−50

−40

−30

−20

−10

0

θ (degrees)

B
ea

m
 p

at
te

rn
 (

dB
)

Figure 6.8: Beam response for the iteratively solved reweighted minimisations.

6.8.1 Post-Processing Method

First, the post-processing method as described in Chapter 4 is considered. Here we are consid-

ering a grid of 200 potential sensor locations spread over an aperture of 10 λ, where a sensor size

of 0.8λ is also assumed. The desired mainlobe is defined by θML = 0◦ and ϕML = 90◦, with the

sidelobes being given by θSL = [10◦, 90◦] for ϕ = ±90◦. The values of α = 0.95, γ = 0.01 and

ε = 1 were used when evaluating the constraints in (6.24) and the polarisation characteristics

are given by (γsp, ηsp) = (0◦, 0◦).

Table 6.8: The resultant crossed-dipole locations for the first design example after the post

processing method has been applied.

m dm/λ m dm/λ m dm/λ m dm/λ

1 0.80 3 2.43 5 4.47 7 6.74

2 1.61 4 3.24 6 5.88 8 8.11

After the post-processing was applied to merge clusters of locations that were too close

together 8 active sensor locations are obtained, spread over an aperture of 7.31λ as given in

Table 6.8. This gives a mean adjacent sensor separation of 1.04λ with a minimum spacing of

0.81λ (between sensors 1 and 2, and 3 and 4). As a result sparsity has been introduced and

the size constraint enforced.

However, Figure 6.9 shows the resulting response before and after the post processing has
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After Post Processing

Figure 6.9: Beam response before and after post-processing has been applied to the first

example.

been applied. Here it can be seen that although the response before post-processing is accept-

able, the response after post-processing clearly is not.

As a second example, now consider a grid of 300 potential locations spread over an aperture

of 15λ. The values of α = 0.85, γ = 0.1 and ε = 1 were used and all remaining parameters were

kept the same as in the previous example.

Table 6.9: The resultant crossed-dipole locations for the second example design after the post

processing method has been applied.

m dm/λ m dm/λ m dm/λ m dm/λ

1 1.61 5 4.92 8 7.50 11 10.06

2 2.42 6 5.82 9 8.35 12 10.91

3 3.25 7 6.64 10 9.20 13 11.74

4 4.10

Table 6.9 shows the resulting 13 active sensors spread over an aperture of 10.13λ. In this

instance the mean adjacent sensor separation is 0.84λ with the minimum separation also being

achieved. Also, in this case Figure 6.10 shows an acceptable response is still achieved. It is

worth noting that this could largely be due to the fact that a larger aperture is used, meaning

less locations should have been merged.
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Figure 6.10: Beam response before and after post processing has been applied to the second

example.

These two examples suggest that the signal model now being used is more sensitive to the

merger of locations than that used in Chapter 4. As there is also no redesign of the coefficients

more care has to be given to the parameter selection to ensure a satisfactory result. It would

be expected to see similar results using the iterative minimum distance sampling method as

the merger of sensor locations is again required. Therefore, it will not be considered again in

this chapter. However, this should not be an issue for the reweighted method and as a result

this will be considered in the next subsection.

6.8.2 Reweighted Method

In order to avoid the need to merge sensor locations the reweighted method of enforcing the

size constraint can instead be used. As there is no longer a need to merge sensor locations the

robustness constraint does not need to be considered, unless you want to design a robust sparse

array.

As an example consider the array designed using the iteratively solved reweighted minimi-

sations in the previous section of this chapter. In this instance the minimum adjacent sensor

separation is 0.30λ. If it is desired to consider sensors with a physical size of 0.80λ this array

would not be able to be implemented in practice.

Instead it is possible to alter the reweighting scheme to incorporate the size constraint as
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discussed in Chapter 4 and solve the iterative reweighted minimisations. Here the aperture is

now also split into a grid of 600 potential sensor locations.

This gives 12 active sensor locations spread over an aperture of 12.6λ. The mean adjacent

sensor separation is now 1.15λ with a minimum spacing of 0.82λ (between sensors 3 and 4,

5 and 6, and 8and 9). Here it can be seen that as well as enforcing the size constraint, the

level of sparsity has also been improved. Table 6.10 shows the 12 active locations and Figure

6.11 shows the designed response. It is clear that the mainlobe is in the correct location and

sufficient sidelobe attenuation has been achieved.

Table 6.10: Crossed-dipole locations for 0.8λ size constraint enforce with the reweighted

method.

m dm/λ m dm/λ m dm/λ m dm/λ

1 0.80 4 4.03 7 6.51 10 8.99

2 2.38 5 4.86 8 7.34 11 9.94

3 3.21 6 5.68 9 8.16 12 13.40
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Figure 6.11: Beam response for 0.8λ size constraint enforce with the reweighted method.

6.9 Summary

In this chapter the design of sparse vector-sensor arrays based on quaternionic signal model has

been considered. To ensure the four components of the weight coefficients are simultaneously
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minimised the original CS formulation has been converted into a modified l1 minimisation. This

reformulation follows a similar structure to that used for the minimisation of complex values

and the wideband reformulation discussed in the previous chapter. The result of the process

is a design method which has been shown to be effective in the design of sparse vector-sensor

arrays when considering a single set of polarisation information.

Again it is possible to ensure a response is robust to norm-bounded steering vector errors.

As has previously been seen this is achieved with the addition of an extra constraint on the

minimisation process. This constraint aims to keep the maximum possible change in array

response due to a norm-bounded steering vector error below a predetermined acceptable level.

As with the examples using the previous array\signal models the constraint has been shown

to be effective. A design example has been given to illustrate this and show the effect the

constraint has on the number of active sensors required.

It has also been shown that the sparsity of the solution can be improved by converting

the problem into a series of iteratively solved reweighted minimisations. In this instance the

reweighting terms penalise locations with smaller absolute weight coefficient values more heav-

ily than those with a larger value. As a result, the small non-zero valued weight coefficients

are unlikely to be repeated in the next iteration, whereas the large non-zero values are likely

to be repeated. As with the reweighting schemes discussed in previous chapters the itera-

tive procedure is repeated until the number of active sensors has remained constant for three

iterations.

Both the modified l1 minimisation and the iteratively solved reweighted minimisations can

result in active locations that are very close together. This is due to the dense nature of the grid

of potentially active locations. This can be problematic if the senors with a large physical size

are required, due to sensors not physically fitting into the designed locations. The methods of

enforcing the size constraint that were presented in Chapter 4 have been considered again here.

Design examples have shown that while the post-processing method can be successful when

considering apertures of a large size, when considering smaller apertures the response seems

more sensitive to the post processing merger than for with previous signal model. It would be

expected to see similar results from the iterative minimum distance sampling method as the

merger of some locations is required in this method too. However, no merging of locations

is required for the reweighted method of enforcing the size constraint so this may be a more

appropriate choice for this signal model.

Finally, the main advantage to using vector sensor arrays would be the ability to consider

signals with different polarisation characteristics. In other words it would be desirable to have

the ability to attenuate signals arriving from the desired look direction which have different

polarisation characteristics. However, this has so far not been successfully achieved with the
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design methods proposed in this chapter and further research is required. One way of achieving

this goal in the long run may be to consider a planar array structure.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

For ULAs the maximum adjacent sensor separation is half of the minimum operating wave-

length, in order to avoid the introduction of grating lobes. However, when a large array aperture

is considered this can become prohibitive due to the cost associated with the number of sensors

required. As a result, sparse arrays become a desirable alternative due to the fact that their

non-uniform nature avoids the introduction of grating lobes while allowing sensor separations

greater than half the operating wavelength.

However, the trade-off from using sparse arrays is their unpredictable sidelobe behaviour.

This means some degree of optimisation of sensor locations is required in order to ensure that

an acceptable performance level is achieved. Traditionally this is achieved using non-linear

methods such as GAs. A considerable amount of research has been completed in this area,

with various improvements suggested for the GA used in the design methods. For example

convergence rates could be increased by using a stud GA, or the initial population could com-

prise of shifted DS or ADS. One thing they tend to have in common is the fitness function used

minimises the PSL of the resulting response. However, this thesis proposes using an LS based

fitness function. In this instance the aim is to minimise the difference between a desired and

designed array response. As well as optimising the sensor locations, this also allows the optimal

weight coefficients to be found in an efficient manner. Design examples have shown that this

fitness function can be successfully used in the design of sparse sensor arrays.

Previous work using such methods has also tended to assumed sensors of no physical size, i.e.

they take up a single point in space. However, in practice this is not the case and for multiband

and wideband arrays the sensor size can even be larger than half of the operating wavelength.

For these cases it is possible that the array could not be practically implemented due to the
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sensors not fitting in the designed locations. In this thesis a solution to the problem of enforcing

an adjacent sensor separation of the sensor’s physical is proposed. This is achieved by setting

the fitness value of any individual that does not meet the size constraint to the minimum from

the previous generation so that it will not be selected for the breeding process and at least

one individual in the population of the next iteration will comply with the constraint. The

effectiveness of this proposed method has been verified by design examples.

It is also true that the traditional beamforming scenario has been assumed in this previous

work. In other words the steering vector of the array is assumed to be known exactly. However,

in practice, there can be model perturbations such as location errors, mutual coupling and

individual sensor response errors. If one or more of these errors are present there will be

a mismatch between the designed and achieved steering vectors, which in turn can cause a

change in the array’s response. As a result, it is desirable to optimise the sensor locations in

order to ensure a robust beamformer can be efficiently implemented. In this thesis a solution

is proposed to the problem of designing a robust sparse sensor array using a GA based design

method. This is achieved by adding the maximum possible change in array response, due to a

norm-bounded steering vector error, to the traditional LS cost function. Then by assigning the

fitness function used by the GA to minimise this function a robust solution can be achieved.

Narrowband and multiband design examples have shown that this method can successfully be

used to design robust sparse arrays.

In this thesis no direct comparisons have been made between the proposed GA based design

methods and those that have been used in previous research. This is due to the fact that a

LS based fitness function has been used in this work, compared to the PSL fitness functions

that have been previously used, making any direct comparisons unfair. However, the important

thing to note is that this work has made two important improvements not considered in the

previous research. Firstly, enforcing the size constraint to ensure a minimum spacing, and

secondly, achieving a response that is robust to steering vector error. The alterations that

achieve these improvements can also be used with previous improvements made to GAs in

order to take advantage of thing like the improved convergence rate offered by the stud GA.

The disadvantages to using GAs is the relatively long computation time with no guarantee

that the global optimal solution will be reached. As a result a more efficient alternative method

to find the sensor locations is desirable. One such method is CS, where the aperture of the

array is split into a dense grid of potential sensor locations. Sparsity is then introduced by

finding the set of weight coefficients with the minimum number of non-zero valued entries while

still giving an exact, or close, match to a desired response. This problem is the l0 minimisation

of the weight coefficients which is approximated by the l1 norm in practice. However, unlike

the l0 norm the l1 norm penalises larger non-zero values more heavily than smaller non-zero
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values. As a result sparsity can be improved by bringing the minimisation problem closer to

that of the l0 norm minimisation by converting it into a series of iteratively solved reweighted

l1 minimisations. A small weight coefficient in the current iteration leads to a large reweighting

term in the next iteration meaning the non-zero valued weight coefficient is not likely to be

repeated. For large non-zero valued weight coefficients the opposite is true. The iterative

process is then repeated until the number of active locations has remained constant for three

iterations.

However, due to the dense nature of the grid of potential locations it is again possible

to end up with locations which are too close together for the sensors to physically fit. As a

result this thesis has considered three methods of enforcing a size constraint on the CS process.

The first simply looks to merge clusters of locations that are too close together after the CS

process has been completed. A further extension to this is a process where locations are found

iteratively. This is achieved by finding a location by merging the first cluster of sensor locations

that are too close together. The CS process is then reapplied to the remaining space along the

aperture of the array and the process repeated until no space remains for additional sensors.

Both of these processes involve the merger of sensor locations which can be considered as a

model perturbation causing a steering vector error. As a result, an added constraint is first

derived in this thesis and then placed on the minimisation process to ensure the maximum

possible change in the array’s response is kept below a predetermined acceptable value. This

has the added advantage that the final design is also robust to other steering vector errors.

The final method involves altering the reweighting scheme so that all sensor locations which

fail to comply with the size constraint are heavily penalised in the next iteration. This is

then repeated until the size constraint has been met. Although this method will not always

guarantee a solution, experience suggests that when one is possible it will be found within five

iterations. A comparison has also shown that these three methods can achieve a comparable

performance to a GA-based design method, within a shorter computation time. This highlights

the main advantage of the proposed methods over existing GA based methods, an improved

efficiency.

Although the traditional formulation of the CS problem is effective in the design of nar-

rowband arrays it will not guarantee a sparse wideband solution. This is due to there being

multiple weight coefficients associated with each sensor location in the wideband array struc-

ture. Instead, for the first time, in this thesis the process is reformulated as a modified l1 norm

minimisation in order to ensure all weight coefficients along a TDL are simultaneously min-

imised thereby allowing the introduction of sparsity. As with the narrowband problem this can

be converted into a series of reweighted minimisations to improve the sparsity of the solution,

as illustrated by design examples. In this instance the reweighting term now penalises locations

with a small combined weight coefficient value more heavily, rather than considering individual
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weight coefficients.

Design examples have shown that this modified l1 norm minimisation is effective in the

design of sparse wideband arrays. However, no consideration is given to the discrepancy in

responses at different normalised frequencies. An extra constraint is derived added to the

minimisation in order to ensure an FI response is achieved. This is based on the RV which

is a measure of the difference between the responses at each frequency to that at a reference

frequency. By limiting this to a small value an FI can be achieved. Comparisons with a GA-

based design example have again shown that a comparable performance can be achieved in a

shorter computation time. It is also possible to add a constraint again to limit the maximum

possible change in array response due to a norm-bounded steering vector error, in order to

ensure a robust solution.

It is also desirable to decrease the implementation complexity of a wideband beamformer.

One way of achieving this is to reduce the number of non-zero valued weight coefficients along

the TDLs, i.e. introduce temporal sparsity. This thesis proposes two methods for solving

the problem in this way. Firstly, it is possible to find the set of weight coefficients for a

fixed set of locations that has the minimum number of non-zero valued entries while still

ensuring an acceptable response is achieved. Design examples have shown that a comparable

performance can be achieved but with less non-zero valued weight coefficients when compared

with traditional beamforming methods. Secondly, the minimisation process can be altered so

that location and temporal sparsity is simultaneously considered. Experience suggests that it

is hard to obtain a good balance when considering the relative importance placed on the two

sparsities in the minimisation process. So when possible the first method is preferred.

The final problem considered in this thesis was the design of a sparse vector-sensor array

based on a quaternionic signal model. For such a signal model the steering vector, weight

coefficients and array response all have one real and three imaginary parts. The elements of

the array can be crossed dipole pairs and have the added advantage of considering polarisation

information. In order to ensure a sparse solution this thesis again reformulate the CS problem as

a modified l1 minimisation to ensure all four parts of the weight coefficients are simultaneously

minimised. As with the narrowband and wideband formulation the problem can be converted

into an iteratively solved reweighted minimisation problem and a constraint added to ensure

a robust response. Design examples have been shown to validate the design method when

considering a single set of polarisation information.
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7.2 Future Work

The first element would be to extend the design methods to consider planar and volume arrays.

This should be relatively simple in the case of GA-based design method, where we just have

to consider a set number of sensor locations over two dimensions. However, it may not be so

straightforward when considering the CS-based design methods due to the memory require-

ments, especially for the wideband formulation of the problem. In other words as it is now

necessary to consider a dense grid of potential sensor locations over two or three dimensions,

each with multiple weight coefficients, there will be a large amount of data that has to be

considered. It would also be possible to convert the problem into a probabilistic framework

and solve using a relevance vector machine [67]. The efficiency of this framework may make it

easier to design sparse planar and volume arrays.

Although CS-based methods to enforce the size constraint have been shown to be effective,

as of yet no rule has been derived to show when a result can be guaranteed. Of additional value

would be a method to determine the minimum number of sensors required to give a response

with a given desirability before the minimisation process is solved. This would help reduce

the uncertainty surrounding what bounds should be placed on the constraints, as it would be

possible to find out beforehand how many sensors each bound would give.

Finally, the modified l1 norm minimisation for quaternionic arrays has so far only been shown

to be effective when considering a single set of polarisation information. The real advantage

to using the vector-sensor arrays with quaternionic signal models is that signals arriving from

the same direction but with different polarisation information can also be attenuated. As a

result further work is required to achieve this. It may be possible that the solution would be to

consider a sparse planar vector sensor array. Alternatively the reweighted minimisation method

may offer more chances of success compared to the original modified l1 norm minimisation.
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