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Abstract

In order for a policy to be effective, the links between the policy tools and the

subsequent targets must be known, understandable, stable, and predictable. In

this respect, this thesis is composed of three separate yet related empirical studies

as summarised below, that target some important macroeconomic variables, which

play a central role in the conduct of macroeconomic policies.

First, simple regression and factor-based estimates are utilized to produce fore-

casts for Bahrain quarterly GDP growth in Chapter 2. Using a quarterly dataset

from 1995: Q1 to 2008: Q3. The simple regression model is estimated using a small

dataset, that includes six explanatory variables. These variables are selected care-

fully on the basis of in-sample correlation with the target variable. Alternatively,

a factor model based on 65 indicators is employed to forecast Bahrain’s quarterly

GDP growth. Using simulated out-of-sample experiments, the performance of both

approaches are asses and compared. The main finding from this forecasting exer-

cise is that the best forecasting performance can be reached using simple regression

estimates with a handful of variables. In particular, results of point and density

nowcasts show that the simple regression estimates, which uses industrial produc-

tion as an indicator is more accurate than the static factor approach, which uses 65

variables in the case of Bahrain. Currently, the official flash estimates of Bahrain’s

quarterly GDP are published with a delay of 90 days after the end of the reference

quarter. However, the single simple regression model reduces the lag to 54 days.

Second, as oil price fluctuations have important implications for future infla-

tion and economic growth, the aim of the third chapter in this thesis is to forecast

West Texas Intermediate (WTI) crude oil prices using a large monthly dataset, that

covers the period from March 1983 to December 2011. To achieve this aim, forecast-

ing with factor models offer a usual approach that utilizes large datasets, however;

a forecasting model which simply includes all factors in state space equation and

do not allow for time varying may be not suitable with a highly volatile market

such as oil market. To overcome these limitations, an approach that accounts both

for parameter and model uncertainty is employed. In particular, this chapter uses

the Dynamic Model Averaging (DMA) approach suggested by Koop and Korobilis

(2012). The key element of the DMA approach is that it allows both for model and

parameter to vary at each point of time. By doing so, the DMA is robust to struc-

tural breaks. Empirical findings show that DMA approach outperforms any other
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alternative model used in the forecasting literature. Results also show that there is

model but not parameter variation in this oil price forecasting exercise. Finally, the

findings suggest that the DMA approach provides a better proxy of expected spot

prices than future prices.

Third, Johansen cointegration technique is used to examine the long-run relation-

ship between oil consumption, nuclear energy consumption, oil price and economic

growth in Chapter 4. For this purpose, four industrialized countries including: the

US, Canada, Japan and France, and four emerging economies: Russia, China, South

Korea and India, over the period from 1965 - 2010. The results suggest that there

is a long-run relationship between the four variables. Exclusion tests show that at

least one energy source enter the cointegration space significantly, which implies

that energy has a long-run impact on economic growth. The emerging economies

are found to be heavily dependent on both oil and nuclear energy consumption. The

causal linkage between the variables is examined through the exogeneity test. The

results point that energy consumption (i.e., oil or nuclear) has either a predictive

power for economic growth, or a feedback impact between with real GDP growth in

all countries. Thus, energy conservation policies might have drawbacks or damaging

repercussions on economic growth for this group of countries.

JEL classification: C11, C22, C32, C50, C53, E31, E37, Q40, Q43, Q47

Keywords: Forecasting economic growth, quarterly GDP, simple regression, princi-

pal components, factor models, forecasting oil prices, model uncertainty, parameter

uncertainty, Bayesian, state space model, dynamic model averaging, oil consump-

tion, nuclear energy consumption, oil prices, economic growth, cointegration, vector

error correction model
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Introduction

1



The study of macroeconomic variables is essential for understanding the function

of any economy, especially issues regarding the behaviour of total income, output,

employment, and the general price level. Since these variables are statistically mea-

surable, they facilitate the analysis of their effects on economic performance and

provide a bird’s-eye view of the economic world as well as a strong foundation

for formulating useful economic policies. Real macroeconomic policymaking, how-

ever, faces the problem of having to assess current economic states with incomplete

statistical information. Though important economic indicators such as GDP are

published quarterly and with considerable delay, significant uncertainty surrounds

indicator estimation and thereby complicates the work of policymakers and busi-

ness people who, if not in advance, must at least promptly adjust to changes in the

underlying economic structure. Therefore, earlier realistic GDP estimates would

substantially benefit these and other economic agents.

In this respect, policymakers, the general public, and academics have been in-

terested in producing accurate GDP forecasts. Model builders have exploited recent

developments in computation to develop models, both simple and complex, that

simulate reality with high degrees of accuracy. Despite a growing need for informa-

tion to mimic economic relationships, traditional economic (i.e., small-scale) models

used for forecasting, such as univariate time series and multivariate models, cannot

accommodate more than a few time series, since they typically allow for fewer than

ten variables. Furthermore, small-scale models present users with the problem of

deciding which variables to include. In practice, forecasters and policymakers often

extract information from many series other than those that can be included in a

small-scale model. In this set-up, factor models have received the most attention,

and perhaps consequently, their use has become widespread. Several studies ad-

dress this topic, including Stock and Watson (1998, 2002a,b) for the US; Forni et al.

(2000), Forni et al. (2003), Marcellino et al. (2003) and Angelini et al. (2010) for the

Europe; Artis et al. (2005) for the UK; and Schumacher (2007) for Germany. Ex-

ploiting information from large panels, normally, should help to improve forecasts,

and early results were very promising in this respect (Stock and Watson, 2002a; Forni

et al., 2000). However, more recent applications that use this approach find little-

to-no improvement (Schumacher, 2007; Schumacher and Dreger, 2004; Gosselin and

Tkacz, 2001; Angelini et al., 2001). These conflicting results have launched lively

discussions regarding whether large-scale factor models are really as useful for fore-
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casting practice as first expected (Eickmeier and Ziegler, 2008). At the same time,

there is still a high demand for shortened lag in obtaining GDP flash estimates (i.e.,

a release of whole GDP without any further information regarding the composition

of growth). Therefore, intensive research focuses on obtaining early GDP estimates.

Currently, the US reports GDP estimates first, often within 25 days of the end of

the quarter. However, estimates lag for Europe, as the earliest GDP flash estimates

produced by Eurostat are available 45 to 48 days after the quarter’s end, due to the

slow release of data availability.

To date, the majority of empirical studies of early GDP estimates focus on devel-

oped countries, and the results regarding the usefulness of adding more data continue

to be mixed. In Chapter 2 of this thesis, we adapt the methodology typically used

in developed countries to obtain GDP flash estimates for Bahrain, which witnessed

the projection of potential economic wealth in 1932 upon the discovery of oil in the

country. In doing so, we also question whether using a larger dataset in a factor

model framework produces better forecasts than small-scale models. Such research

aims to provide early reliable estimates of GDP growth for Bahrain. In light of

the above discussion, as well as previous empirical approaches that show that both

timely and reliable GDP estimates are subject to data availability, we adopt simple

regression and factor models using two different datasets. The first dataset includes

the variable of interest (i.e., the quarterly GDP of Bahrain) with six other explana-

tory variables, which are components of GDP itself. As Bahrain is an oil exporting

country, we include in this study the refined petroleum production index (RPPI),

exports (EXPPP), metal price index (MI), oil price index (OILI), consumer price

index (CPI), and the broad money aggregate (M3).1 The second dataset includes

65 macroeconomic variables comprising industrial production, trade variables, mon-

etary aggregates, exchange rates, and prices such as the consumer price index and

share price index, among other financial variables. Both datasets span the period

from 1995:Q1 to 2008:Q3.

Regression-based estimates derive from selecting a few indicators that are cor-

related with the target variable but published more promptly. Alternatively, the

econometric approach of factor models summarises the information contained in a

large set of indicators (in our study, 65 variables) in a small number of unobserved

1In the literature, many researchers argue that lagged oil price changes are helpful in forecasting
the US real GDP growth (e.g. Bachmeier et al., 2008; Hamilton, 2011b; Ravazzolo and Rothman,
2013). Thus, oil prices are included here to improve the forecast performance for an oil exporting
country.
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principal components. The approach assumes that co-movements among variables

have a common element that can be captured by a few underlying, unobservable

variables, as seen in the static principal component model suggested by Stock and

Watson (2002a) and the dynamic factor model produced by Forni et al. (2000). In

this thesis, we use the static factor model of Stock and Watson (2002a) to nowcast

Bahrain’s GDP growth.2

Out-of-sample forecast simulations are carried out where the performance of

models has been compared based on both point and density forecast criteria. The

main finding of our out-of-sample forecast investigation is that the simple regression

model including only industrial production as an indicator variable outperforms the

static factor model of Stock and Watson (2002b), which summarises information

from 65 variables. The most accurate flash estimates using the aggregated data

are obtained after 84 days, while the official estimates are released after 90 days of

the prospective quarter’s end. However, using bridge equations for disaggregated

industrial production shorten the lag significantly by 36 days.

Recently, empirical studies of GDP forecasts such as that of Kilian and Vigfusson

(2013), question whether oil prices have a predictive power to forecast output on

the basis of the approved potential links between oil prices and macroeconomic dy-

namics (Hamilton, 2009b; Kilian and Park, 2009). Several other studies indicate

that changes in oil prices might react to or even forecast changes in intercontinental

stability and macroeconomic aggregates (see the discussion in, Alquist et al., 2001;

Kilian and Lewis, 2011; Kilian and Vigfusson, 2013; Malik and Nasereddin, 2006).

However, by reviewing historical data, it is clear that oil prices experience wide

price swings in times of either shortage or oversupply. In July 2008, the price of

oil reached a record high in both nominal and real terms, with the benchmark of

Europe Brent crude reaching $147/bbl. The price rose steadily from early 2004, but

the 18-month period beginning in January 2007 witnessed price surges of more than

150%. The situation subsequently changed dramatically as the price of oil collapsed

by more than 75% by the end of the year( i.e., from $147/bbl in July to $36/bbl in

December 2008) before rallying to roughly $70/bbl in early June 2009, where the

price remained throughout the year. By any measure, this episode is considered

one of the greatest shocks to oil prices on record. Such extreme volatility in what is

considered the primary source of energy has reopened discussions among researchers

2Boivin and Ng (2005) find that the static components serve quite well as predictors for various
US time series compared to dynamic factor estimates.
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seeking to enhance the understanding of the interaction between oil markets and the

global economy (for example see, Kilian, 2013). Not surprisingly, forecasting crude

oil prices also has become the focus of many economists and decision makers (Alquist

et al., 2001). An accurate forecast of oil prices provides information that plays an

important role in policymaking and preparing budget and investment plans for var-

ious users, including international organisations, central banks, governments, and a

range of industries such as utilities and automobile manufacturers (Baumeister and

Kilian, 2013). Hence, in Chapter 3 of this thesis, we contribute to the literature of

forecasting oil prices by using a large dataset.

In literature, Hamilton (2009b) uses a small set of indicators and argues that the

change in oil prices can be explained by their supply-demand balance by showing

that large oil price increases during 2007 and 2008 were due to strong global demand

for oil. On the production side, Hamilton (2011a) later avers that the cumulative

contribution of shocks to real oil prices is related to a number of factors. For ex-

ample, a general strike in Venezuela reduced oil production at the end of 2002 and

beginning of 2003; later, the US attack on Iraq beginning in March 2003 further

reduced oil production. Additional factors contributing to stagnation of oil produc-

tion from 2002 to 2008 included instability in places such as Iraq and Nigeria and

a fall in production in the North Sea and fields in Mexico and Indonesia, as well as

that Saudi production was less in 2007 than 2005. During 2011, oil production was

disrupted in Libya as well as in several Middle-Eastern countries that faced political

turmoil. Hamilton (2009a,b) also shows that strong growth in demand for oil from

new industrialised countries and the failure of global production to increase such

production has triggered commodity speculation, which has made slightly decreased

production an attractive option for Saudi Arabia.

By using a large dataset, Zagaglia (2010) alternatively argues that if oil futures

contracts contain information about spot prices, then omitting futures prices would

bias the view that oil prices are driven by demand and supply factors. In his study,

Zagaglia (2010) employs a factor augmented vector autoregressive model (FARVAR)

showing that financial variables include valuable information beyond that of demand

and supply factors. Though the details of the above papers differ, the general frame-

work involves the use of regression-based methods.

Recursive regression-based methods are criticized by (Koop and Korobilis, 2012)
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for three chief reasons. First, the coefficients on the predictors can change over

time. More broadly, a significant amount of literature in macroeconomics docu-

ments structural breaks and other sorts of parameter change given many time-series

variables (see Stock and Watson, 1996, among many others). Recursive methods

are too poorly designed to capture such parameter change; instead, it is better to

build models (i.e., with time-varying parameters) designed to capture it. Second,

the number of potential predictors can be large and thus result in a huge number of

models. If the set of models is defined by whether each of m potential predictors is

included or excluded, then the researcher has 2m forecasting models. This dynamic

issues substantial statistical problems for model selection strategies. Third, the

model relevant for forecasting can potentially change over time. Structural changes

concerning the monetary and fiscal policies pursued by policymakers will affect the

significance of potential predictors. For instance, some variables may predict out-

put well during recessions but not during expansions; at the same time, the set of

predictors for oil price may be different across periods of price booms and busts.

In an application, Pesaran and Timmermann (2000) document how regressors that

are useful for explaining stock returns change over time; this and other similar ar-

guments suggest that the forecasting model changes over time.

All issues addressed by Koop and Korobilis (2011, 2012), who were the first

applied a forecasting strategy called dynamic model averaging (DMA) in areas of

economic research.3 The DMA approach allows for the best forecasting model to

change over time while parameters are simultaneously allowed to change. Their

approach can also be used for dynamic model selection (DMS), in which a single

(potentially different) model can be selected as the best forecasting model at each

point in time. DMA or DMS seems ideal for the problem of forecasting oil price

since either allows the forecasting model to change over time while at once allow-

ing for coefficients in each model to evolve over time. These models involve only

standard econometric methods for state space models, such as the Kalman filter

but via empirically sensible approximations achieve vast gains in computational ef-

ficiency. Although Koop and Korobilis (2011, 2012) show that the DMA approach

outperforms standard econometric models used to forecast macroeconomic and fi-

nancial variables, this approach has not been employed to forecast oil prices. Here,

this chapter contributes to the literature of forecasting oil prices by adopting the

DMA and DMS approaches. We use a large dataset that embodies 147 time-series

3For a complete discussion on DMA, see Raftery et al. (2010).
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variables, which are meant to capture the macroeconomic, financial, and geographic

forces that drive oil prices. To the best of our knowledge, Zagaglia (2010) is the

only study that exploits information from a large dataset to forecast oil prices. The

empirical results can be summarised in two findings. First, results suggest that

the forecast generated by the DMA/DMS approach outperforms all other alterna-

tive models. Second, findings illustrate that the number of predictors clearly varies

across the out-of-sample forecasting period.

In reality, oil is not only of the greatest value among traded primary commodi-

ties, which makes it of interest to exporters and importers alike (Bacon, 1991); it is

also a key primary energy source.4 It is often argued that no other fuel can compete

with oil in many of its uses in terms of price and convenience. Demand for oil comes

mostly from developed and rapidly growing developing countries, such as the US,

EU countries, Japan, China, and India. As countries develop, factors such as in-

dustrialisation, rapid urbanisation, and higher living standards drive up energy use,

most often of oil. World demand for oil has recently grown faster than ever as the

economies of China (6.5 mb/d) and India (2.3 mb/d) have grown by 10% annually,

while the US continues to be the largest consumer. Since 2002, China’s oil consump-

tion has grown by 8% yearly, and by 2020, India’s oil imports are expected to reach

more than triple from 2005 levels and rise to 5 million barrels per day (IEA, 2006).

Along with the growth in demand speed and volume, the structure of any country’s

oil consumption is important. This is so, because the impact of oil price volatility

on an economy depends on how fast and cheap the economy can shift to alternative

energy sources. The key difference between oil and other commodities used in the

production process is that oil can have either positive or negative impact on growth.5

Given that energy plays a crucial role in the economic growth and development

in both developed and developing countries, many studies examine the impact of

energy consumption on such growth. Since the seminal contribution of Kraft and

Kraft (1978), a considerable body of literature has investigated the short and long-

term causal relationships between energy consumption and economic growth during

the past three decades. Recent studies employ models that include at least three

4On the production side, oil is an essential input into the production of most goods and services.
While most companies do not consume crude oil, they do consume petroleum products such as
gasoline, heating oil, and jet fuel, all of which are made from crude oil. Moreover, the prices of
these petroleum products closely move in line with the price of oil (Henriques and Sadorsky, 2011).

5Moroney (1992) argues that energy is a very important factor of production, as revealed by
the oil crises in the 1970s and 1980s. Thus, the impact of energy on GDP is more than just a
minor GDP expenditure.
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variables to circumvent the shortcomings of bivariate analysis. Though bivariate

analysis has its merits, it is more likely to suffer from the problem of omitted vari-

able(s), which may conceal information on additional causal channels among system

variables (see Ghali and El-Sakka, 2004; Oh and Lee, 2004; Stern, 1993, 2000, among

others). Other studies add variables to their analysis, though through a demand-side

specification with the inclusion of consumer or energy prices; in this case, represen-

tative studies include Asafu-Adjaye (2000), Belke et al. (2011), Hondroyiannis et al.

(2002) and Masih and Masih (1997). However, the energy consumption variables uti-

lized by existing literature are total energy consumption or electricity consumption

(Lee and Chang, 2008; Ozturk, 2010; Payne, 2010b; Wolde-Rufael, 2009). Although

two thirds of the world’s total energy consumption depends on crude oil, yet rela-

tively few studies address the relationship between oil consumption and economic

growth (e.g. Yuan et al., 2008; Zou and Chau, 2006).6 Furthermore, most studies

ignore the impact of the interaction between this credible energy source with other

energy sources and energy prices on economic growth.7

Currently, several concerns are associated with fossil fuels (e.g., coal, oil, gas)

and their related technologies.8 For oil, concerns include supply security, geopo-

litical sensitivity, price volatility, water pollution from off-shore installations and

tanker accidents, soil contamination in processing plants, emissions of substances

contributing to acid deposition (e.g., SOx and NOx) and to total climate change

(CO2), and the spectre of depletion (for a discussion of the relationship between

energy and the environment, see Holdren and Smith, 2000). All of these issues have

made the diversification of energy sources and finding a stable, safe, and clean en-

ergy supply a top priority in energy policymaking for many countries (Elliott, 2007;

Toth and Rogner, 2006). As part of their strategies to increase energy security,

many countries have built nuclear power plants to not only reduce the dependence

on imported oil but also to increase the supply of a secure energy source and to

6For more details see Payne (2010b,a), who provides a thorough survey of the literature con-
cerning energy consumption-economic growth and electricity consumption-economic growth.

7In an attempt to use different energy sources instead of total energy consumption, Yuan et al.
(2008) employ cointegration analysis and a vector error-correction model for China for the period
from 1963 to 2005 and use both aggregate total energy consumption and disaggregated series (i.e.,
coal, oil, and electricity consumption). As a result, they find evidence of unidirectional causality
from electricity and oil consumption to real GDP, but not from total energy to GDP.

8Fossil fuels such as coal, oil, and gas currently provide 85% of the world’s energy needs, and
fossil-fuelled economic growth is the main factor for global warming given its release of carbon
dioxide (CO2) into the atmosphere.
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minimise the price volatility associated with oil imports (Toth and Rogner, 2006).9

It is worth noting that the US Energy Information Administration’s (EIA) reports

on the world’s primary energy consumption for the period from 1985 and 2011 have

shown that the recent considerable growth of electrical consumption worldwide re-

quires a massive use of nuclear energy.10 In 2010, demands for nuclear energy and

renewable energy increased due to the limitations of fossil fuels (de Almeida and

Silva, 2009). The importance of nuclear power as a potential source of energy and

as a partial replacement for fossil fuels to eliminate emission has therefore high-

lighted the need for further research that examines the relationship between nuclear

energy consumption and economic growth (Apergis and Payne, 2010b). It is thus

essential to understand the nature of this relationship and to identify the direction

of causation, so that business people can provide logical reasons for investing in

nuclear energy, that at once attend to economic, environmental, and social concerns

(Chu and Chang, 2012).

To date, few empirical studies have focused on investigating the causal relation-

ships between oil consumption and economic growth, on the one hand, and between

nuclear energy consumption and economic growth on the other (Aktaş and Yılmaz,

2008; Yang, 2000; Yoo and Jung, 2005; Yoo and Ku, 2009; Zou and Chau, 2006;

Zhao et al., 2008). At the same time, there is a dearth of empirical research that

investigates the long-term relationships among oil consumption, nuclear energy con-

sumption, oil prices, and economic growth by using modern advances in time-series

econometrics associated with causality testing. Therefore, Chapter 4 of this the-

sis aims to investigate the long-term relationships among oil consumption, nuclear

energy consumption, oil prices, and economic growth by using Johansen cointegra-

tion technique in a parsimonious vector equilibrium correction model (PVECM). In

particular, we run our investigation among four industrialised countries: the US,

Canada, Japan, and France, and four emerging economies: Russia, China, South

Korea, and India, during the period from 1965 to 2010. This exercise provides in-

formation about the long-run relationship and the direction of linkage among the

proposed variables by employing conventional time-series datasets. Each country

has been examined separately to allow the use of a framework that accounts for

country-specific issues, such as energy patterns and economic crises. The main

9One reason for reduced Japanese oil consumption during the period from 1979 to 1985 was
the construction of several nuclear plants to generate electricity, which led to the substitution of
crude and fuel oil and thereby caused a drop in demand of around 1.2 mb/d for the whole period
(OPEC’s World Oil Outlook, 2012).

10See http://www.eiagov/forecasts/steo/
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reason for studying long-term relationships among oil consumption, nuclear energy

consumption, and economic growth is that both oil and nuclear energy play impor-

tant roles in designing effective energy policies, that account for economic growth,

environmental protection, and sustainable development. The empirical results of

the relationships among nuclear energy, oil market, and real GDP also play pivotal

roles in the implementation of energy or environmental policies for both highly in-

dustrialised and emerging economies.

The results obtained illustrate that cointegration occurs in which at least one en-

ergy input cannot be excluded from the cointegrated space for each country model.

This finding implies that a long-term relationship exists between energy consumption

and economic growth. Insofar as the results of cointegration vectors are normalised

with regard to real GDP growth, the coefficients of oil consumption are found to

affect the level of economic growth significantly and positively in six of eight coun-

tries: the US, Canada, France, China, South Korea, and India. This finding implies

that a greater use of oil stimulates real GDP growth. Alternatively, nuclear energy

consumption is shown to influence economic growth positively and significantly in

Japan, France, Russia, China, and South Korea. However, results show that nu-

clear energy consumption is negatively linked to real GDP growth in India. Though

oil prices are excluded from the cointegration space in most countries, they have a

significant negatively impact on economic growth in the cases of Canada and Rus-

sia. Also, results from PVECM show that oil consumption has a predictive power

for economic growth in the US, Japan, France, and India. Additionally, there is

feedback impact between oil consumption and real GDP growth in Canada, Russia,

China, and South Korea, where oil can be considered a limiting factor to output

growth. Regarding the nexus between nuclear energy consumption and growth, a

bidirectional relationship emerged between nuclear energy consumption and output

growth in Japan and India. Moreover, nuclear energy consumption is found to reveal

information that could predict real GDP growth in the US, Canada, France, Russia,

China, and South Korea. In most cases, oil prices are exogenous to economic growth

models, except for the US, Canada, and China.

Structurally, this thesis contains five chapters. Chapter 2 includes estimates

and forecasts for Bahrain’s quarterly GDP growth by using simple regression and

factor-based models. Therein, we assess and compare the performance of simple

regression estimates, which exploit the information available for selected indicator
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variables, with that of factor-based estimates, which use 65 variables to obtain new

factors embodying most of the potential information and treat it systematically by

following the Stock-Watson approach. Subsequently, Chapter 3 forecasts crude oil

prices by using a large dataset and DMA approach. Particularly, in this chapter,

an approach that accounts for the presence of structural breaks in the series, as

well as parameter and model uncertainty is employed. Chapter 4 then analyses

the long-term relationships among oil consumption, nuclear energy consumption, oil

prices, and economic growth by using the Johansen cointegration technique. In this

chapter, empirical investigates for the long-term relationships among the suggested

variables are provided for four industrialised countries and four emerging economies.

Lastly, Chapter 5 gives an overall conclusion for this thesis. This chapter presents a

summary for the significant findings and also gives some interesting areas to which

new research can be directed.
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Chapter 2

Estimating and Forecasting Bahrain Quarterly

GDP Growth Using Simple regression and

Factor-based methods
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2.1 Introduction

Comprehensive research and investigations to achieve a clear understanding of the

state of macroeconomic activity are important to policy makers. However, Gross

Domestic Product (i.e., GDP) data, the broadest measure of economic activity, are

published with a considerable delay after the end of the reference quarter. Earlier

realistic estimates of GDP are recommended and would be of considerable benefit,

because of the significant impact of GDP on the entire system of the national ac-

count. In fact, GDP is not only a summary measure used to assess the national

well-being in a quantified manner, but it also plays an important role in the framing

of governments and businesses’ plans for the future.

To nowcast or forecast GDP, forecasters need to take into account a large amount

of information, which arrives sequentially. Thus, new information becomes available

continuously throughout the quarter and the nowcasts and forecasts may be adjusted

in response to these changes. A part of the recent literature discusses the issue of

the amount of information that is necessary to obtain robust GDP estimates. The

answer seems to be mitigated (see Marcellino et al. (2003), Bernanke and Boivin

(2003), Forni et al. (2009), Boivin and Ng (2006), and D’Agostino and Giannone

(2012) for deep discussions on this problem).

In the context of growing data availability, recently, several approaches to tackle

the above issues and exploit information from large datasets for forecasting have

been developed. Within such an approach, factor models have received the most

attention and their use has become widespread. Several studies have been made

in this line of research, including (Stock and Watson, 1998, 2002a,b) for the US,

Forni et al. (2000), Forni et al. (2003), Marcellino et al. (2003) and Angelini et al.

(2010) for the Euro-area, Artis et al. (2005) for the UK, and Schumacher (2007)

for Germany. Exploiting information from large panels, normally, should help to

improve forecasts, and early results were very promising in this respect (Stock and

Watson, 2002a; Forni et al., 2000). However, more recent applications of this ap-

proach find no or only minor improvements (Schumacher, 2007; Schumacher and

Dreger, 2004; Gosselin and Tkacz, 2001; Angelini et al., 2001). These conflicting

results have launched a lively discussion on whether large-scale factor models are re-

ally as useful for forecasting practice as first expected (Eickmeier and Ziegler, 2008).

Also, there is still high demand to shorten the lag of obtaining flash estimates of

GDP. Therefore, intensive research has been focused on obtaining early estimates
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of GDP. Currently, the US obtains a first estimate of GDP within 25 days after the

end of the quarter. However, it lags much more for the Euro-area, as the earliest

flash estimates produced by Eurostat for GDP growth are available in 45-48 days.

This lag in the earliest estimates is subject to the availability of the related data

that might help to produce these estimates.

To date, the majority of empirical studies on early estimates of GDP have fo-

cused on developed countries, where comparing models with different dimensions to

evaluate the usefulness of adding more data, are still mixed. Hence, this chapter

adapt the methodology used in developed countries to obtain flash estimates for

the Kingdom of Bahrain.11Also, the present work questions whether the use of a

larger data set in a factor model framework leads to better empirical results than

smaller-scaled models.

Bahrain, as a pioneer of oil and metal producer in the Arabian Gulf region, wit-

nessed the projection of potential economic wealth in 1932 with the discovery of oil.

The dependency on oil products, crude oil and refined petroleum products has since

been increasing day by day. Although oil exports have contributed significantly to

achieving higher levels of GDP over the past few decades, their share of the growth

of Bahrain’s GDP has been gradually decreasing due to the volatile nature of oil

prices. As a result, export base products were diversified into non oil products such

as petrochemicals and aluminium whose share in GDP growth has progressively

increased. In spite of diversifying sources of GDP, the rates of GDP growth have

showed wide fluctuations over the period of the last ten to fifteen years. There are

three main industries within manufacturing that make up to 74% of the output (at

current prices) from 2001 to 2008. Although their proportions have changed dra-

matically, these industries are still the major components of Bahrain’s GDP. Refined

petroleum production is at the top of the major factors that make up the manufac-

turing output with 32%. Metals including aluminium constitute the second most

important factor with a proportion of 22%, while the third is chemicals production

which represents 20% of the total manufacturing output. In addition, the financial

sector accounts for nearly 21% of Bahrain’s economy (Bahrain Development Board,

report released 2010), which has grown at 4.5 % in the last quarter of 2010.

The Central Information Organization of Bahrain (CIO) collects the key macroe-

11See Appendix (A) for more information about Bahrain’s economic structure.
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conomic variables including the value added in GDP at low frequency, typically on a

quarterly basis, and releases the information with a substantial lag of 90 days after

the closing of the prospective quarter. However, other variables that have a direct

effect on the GDP level, such as trade and industrial production, are available on

a monthly basis and are published within 84 days after the end of the concerned

month.12

The aim of this chapter is to shorten the lag period and provide early reliable

estimates of GDP using different models, and to find whether using large data-rich

models improves the forecast performance or not in the case of the Kingdom of

Bahrain. In the light of the above discussion and the previous empirical approaches,

which show that both timely and reliable GDP estimates are subject to availabil-

ity of information, we adopt simple regression and factor- based models using two

different datasets.13 The first data set comprises the variable of interest which is

quarterly GDP for the Kingdom of Bahrain with six other explanatory variables in-

cluding refined petroleum production index (RPPI), exports (EXPPP), metal price

index (MI), oil price index (OILI), consumer price index (CPI), and broad money

aggregate (M3).14 The second dataset includes 65 macroeconomic variables includ-

ing industrial production, trade variables, prices such as consumer price index and

share price index, monetary aggregates, exchange rates and other financial variables.

Both datasets cover the period between 1995:Q1 - 2008:Q3.

More concretely, regression-based estimates depend on the selection of a few indi-

cators which are correlated with the target variable but are published more promptly

than the target variable. Typically, these variables are components of the GDP it-

self such as industrial production, trade, or, at least proxies of these components

based on, for example, qualitative surveys. Moreover, they are commonly available

at a monthly frequency. The quarterly aggregates of these indicator variables, give

their trending nature in (log) levels are then converted to stationary variables (if

they are non-stationary) and related to quarterly GDP via linear regression. Simple

regression estimates of quarterly GDP are then derived based on using in-sample

estimated coefficients and contemporaneous values of the indicator variables, which

12Table (2-B.1) and Table (2-B.2) present the available data for the key macroeconomic indicators
from year 1995 to 2008.

13Mazzi et al. (2009) assess the ability of both regression and factor-based approaches to nowcast
the Euro-area quarterly GDP growth. The performance of the different statistical nowcasting
models varies considerably according to which statistical model is used.

14Variables are selected based on in-sample correlation with the dependent variable. For more
details, see data section.
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by their nature are published ahead of the GDP. Under the importance of predicting

earlier and reliable estimates of GDP due to its significant role in policy making,

the main objective ought to avoid systematic forecasting errors arising from deter-

ministic shifts. In the literature, a variety of methods have been suggested. For

instance, intercept corrections, differencing, co-breaking, regime switching models,

etc., for improving forecasting accuracies. Thus, we have augmented the simple

linear equation with the intercept correction model as suggested by Clements and

Hendry (1996). The intercept correction model (IC) offers a possible solution to

deterministic shifts, as it adjusts an equation’s constant term when forecasting us-

ing the residual obtained from previous periods, which could be informative about

short-term forecast error. These features seem to be descriptive of operational eco-

nomic forecasting, and provide a rationale for using intercept corrections to correct

forecasting inaccuracy and improve the forecasts of econometric models as proposed

by Clements and Hendry (1996). Due to the fact that hard monthly indicators,

such as trade and industrial production, are published at 84 days after the end of

the entire month concerned, we construct forecasts at 84 and 54 days after the end

of the quarter. To achieve this improvement in timeliness, we use bridge equation

(BE) model for GDP growth in Bahrain to bridge the gap between the information

content of timely updated indicators and the delayed. Inclusion of specific explana-

tory indicators in the BE is not based on any causal relationship, but on the simple

statistical fact that they embody timely updated information about the dependent

variable (Baffigi et al., 2004).

Alternatively, the econometric approach of factor models summarises the in-

formation held in a large set of indicators (65 variables in our case) in a small

number of unobserved principal components. It assumes that the co-movements

among variables have a common element that can be captured by a few underlying,

unobservable variables, as seen in the static principal component model promoted

by Stock and Watson (2002a) and the dynamic factor model produced by Forni

et al. (2000). The static factor model is based on the principal components of the

variance-covariance matrix of a large data set of indicators, whereas the dynamic

factor model is based on a principal component as computed by the inverse fourier

transform of the estimated spectrum of a large data set. Although the develop-

ment of more sophisticated dynamic models is favorable from a theoretical point of

view, Boivin and Ng (2005) have shown recently that the factor model based on

static principal components is quite robust to misspecification since fewer auxiliary
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parameters have to be specified compared with dynamic factor models. In their

simulation and empirical applications for the US, Boivin and Ng (2005) find that

the static principal components serve quite well as predictors for various US time

series, compared with dynamic factor estimates. Therefore, in this paper, the static

factor model proposed by Stock and Watson (2002b) has been utilized to summarise

the available large data set into a small number of unobserved common factors in

the first step of the approach. Then in the second step, these factors are used to

predict the variable of interest, which is the GDP growth in our case.

To test robustness of models and compare simple regression models with static

factor models, out-of-sample forecast simulations are carried out where the per-

formance of models has been compared based on both point and density forecast

criteria. The main finding of our out-of-sample forecast investigation is that the sim-

ple regression model including only industrial production as an indicator variable

outperforms the static factor model of Stock and Watson (2002b), which summarizes

information from 65 variables.

The remainder of the chapter is organized as follows. Section 2.2 provides a brief

summary of the empirical literature, Section 2.3 presents the econometric method-

ology, Section 2.4 evaluate the forecast performance, and Section 2.5 discusses the

data, empirical results. Finally, Section 2.6 concludes the chapter. More details on

Bahrain’s economic structure and on the utilised data-set are presented in Appendix

A and Appendix B.

2.2 Literature Review

The standard small-scale models for practical short term macroeconomic forecast-

ing comprise: the univariate models, low order VAR models and simple regression

models. Starting from the growing use of linear autoregressive in this field, Sims

(1980) has proposed the linear VAR model to forecast US macroeconomic variables.

Although this approach has initially provided a reasonable results, the main disad-

vantage of VAR models is the problem of over parametrization with too many free

insignificant parameters, even in small-size systems. In consequence of this over pa-

rameterizations, unrestricted VAR models might provide quite poor out-of-sample

forecasts, even though within sample fitting is good. To cope with these problems,

Litterman (1986) and others develop a new technique called Bayesian vector autore-
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gression (BVAR) which aims at reducing VAR’s parameters and accordingly allows

the problem of over-fitting to be circumvented.15 Alternatively, Engle and Granger

(1987) propose the vector error correction model (VECM) that tackles the presence

of long-run relationship between macroeconomic variables. Using US data, They

find that the nominal GNP and M2 are cointegrated. Engle and Yoo (1987) exam-

ine the behavior of forecasts made from a co-integrated system. They argue that

the two-step estimator proposed by Engle and Granger (1987) can be used to model

the error correction structure and achieve a multi-step forecast gains. Gupta (2006)

examines the extensions in forecasting models using South Africa data. The inves-

tigation focuses on forecasting a number of key macroeconomic variables including

GDP, consumption, investment, short and long term interest rates, and the CPI.

He concludes that the out-of-sample forecasts performance obtained from Bayesian

vector error correction (BVECM) model outperform those which has been obtained

from classical VAR and VECM.

The development of methods for forecasting GDP has enlarged first to capture

the non-linearity. Many studies in the spirit of non-linear framework have exam-

ined the forecasting ability of non-linear modules such that of Markov switching

(MS) (Hamilton, 1989) and self-exciting threshold autoregressive (SETAR) models

(Clements and Smith, 1997). For example, Clements and Krolzig (1998) compare

the performance of both MS and SETAR models in forecasting post war US GNP.

They find that although both models are superior to linear models in capturing

certain business cycle features, they are less convincing in forecasting exercise.

Although the above approaches show plausible results in forecasting GDP using

aggregated data, they are less efficient in nowcasting exercise.16 This is so because

nowcasting is subjected to the availability of data within the entire quarter. Many

nowcasting studies tend to use the total quarterly aggregates of monthly variables

to generate short-term predictions of GDP. For example, Trehan (1992) updates a

simple model for using contemporaneous and aggregated monthly data to predict

quarterly real GDP for the US.17

15For detailed discussion on BVAR applications, see for example Sims and Zha (1998) and
Kadiyala and Karlsson (1997).

16The projection that provides estimates of current GDP using all current information is called
‘nowcast’ in Giacomini and White (2006).

17Trehan (1992) uses only three variables out of sixteen to predict US GDP, namely real retail
sales, industrial production and non agriculture employment. The selected indicators are available
earlier within the quarter in comparison to the other variables.
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However, an early picture of current economic activity is highly demanded re-

gardless the aggregation of the full data. This can be done by combining various

forecasts from different point of views through bridge equations (BE), which use

incomplete data of the prospective quarter.18 BE involves using the information

available for the first two months and forecasting the last month in the quarter.

Then this combination is used to achieve earlier prediction of the variable of in-

terest such as output. Rathjens and Robins (1993), Ingenito and Trehan (1996)

and Robertson and Tallman (1999) provide useful examples using US data, and ef-

ficiently deal with the new monthly information that becomes available within the

quarter. Using UK data, GDP growth has been forecasted from bridge equations

using a small set of selected monthly indicators, notably measures of production and

sales (for example, see Diron, 2008). Mitchell et al. (2005) focus on the construction

of a monthly indicator of UK GDP and the way it can be combined with short-

term forecasting methods to produce an estimate of quarterly GDP growth. They

examine the efficiency of their method and indicate that the outcomes are rather

satisfactory. Another successful example is proposed by Baffigi et al. (2004), who

shows that BE models are superior in nowcasting Euro-area GDP.

Yet, the above studies focus on forecasting economic activity by employing a few

number of economic indicators selected on the basis of economic theories or/and

statistical data selection process. This reveals that important information could be

missed in the omitted variables (Marcellino et al., 2003).19 Alternatively, Burns and

Mitchell (1946) suggest that business cycle phenomena is characterized by simulta-

neous co-movement in many economic activities. Hence, the idea of modeling a large

number of economic variables using a small number of factors has been employed

in many economic analysis and forecasting exercise. This notation has been for-

mally modeled by Sargent and Sims (1977), and then applied by many researchers.

However, early applications of factor models have been restricted to use relatively

small panels of time series to determine the common factors.20 For example, Stock

and Watson (1992) estimate a state-space model with an unobserved factor using

18A number of short-term indicators, such as business or consumer surveys or the industrial
production indexes, which are released at monthly frequency can be used without being fully
aggregated for the current quarter.

19Marcellino et al. (2003) discuss the uncertainty of the best approach of forecasting. They
examine several time series methods for forecasting four Euro-area variables: real GDP, industrial
production, inflation and the unemployment rate. They also propose that the small scale VAR
model could miss important information in the omitted variables, which is said to be included in
the error term.

20For more details, see Geweke (1977), Sargent and Sims (1977), Stock and Watson (1992),
Camba-Mendez et al. (2001).
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four variables. Computational difficulties make it necessary to abandon information

on many series even though they are available. Hence, the inclusion of a broader

data set is hardly possible in these approaches. More recent, Stock and Watson

(2002a,b) develop the features of static factor model to accommodate the use of a

larger dataset. In an application on the US data, Stock and Watson (2002b) static

factors are estimated by static principal components (PC) of the sample covariance

matrix. Then the forecast of the common component is simply the projection of the

variables on the factors. Using 215 predictors in simulated real time from 1970 to

1998, the factor model of Stock and Watson (2002b) (SW) shows that there is a clear

improvements in forecast performance. This has been extended later to more general

dynamic factor models (DFM) in Bernanke and Boivin (2003) and Forni et al. (2000)

(FHLR). They find that their approach can provide a substantial improvement in

contrast to Stock and Watson (2002b) model. Although both static and dynamic

factor models differ primarily in methodology used to estimate the factors, they are

broadly accepted and implemented by various institutions. For example, the Center

for Economic Policy Research (CEPR) coincident indicator of the euro-business cy-

cle (EUROCOIN) is based on FHLR, while the Federal Reserve Bank of Chicago’s

Activity Index (CFNAI) as well as the model of Kitchen and Monaco (2003) at the

US Treasury are based on SW. However, Boivin and Ng (2005) have shown that the

factor model based on static principal components (SW) method outperforms the

FHLR. They conclude that the dynamic restrictions implied by the latter method

are harmful for the forecast accuracy of the model.

Empirically, gains in forecasts performance from factor models have been exam-

ined by a number of researchers. On the one hand, many studies such as those of

Forni et al. (2001), Giannone and Matheson (2007), Stock and Watson (1989, 1992,

1999, 2002b,a) provide evidence of improvements in the forecasting performances of

macroeconomic variables. On the other hand, some studies such as that of Angelini

et al. (2001), Gosselin and Tkacz (2001) and Schumacher (2007) find only minor or

no improvements in forecasting ability. Particularly, Angelini et al. (2001) discuss

Stock and Watson (1998) technique for the Euro-area using a multi-country data set

and a broad array of variables, in order to test the inflation forecasting performance

of extracted factors at the aggregate Euro-area level. They find that the nominal

phenomena in the original variables might be well-captured in-sample using the fac-

tor approach. Out-of-sample tests have a more ambiguous interpretation, as factors

seem to be good leading indicators of inflation, but the comparative advantage of
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the factors is less clear. Nevertheless, alternative indicators such as unemployment

or money growth do not outperform them. In another example, Banerjee et al.

(2005) compare static factor and single indicator forecasts for Euro area inflation

and GDP growth using not only Euro-area series but also US macroeconomic vari-

ables. Banerjee et al. (2005) suggest that the small models forecast macroeconomic

variables better than large factor-based models. Using German economy data, Schu-

macher and Dreger (2004) examine the usefulness of a large-scale factor model using

a data set of 121 time series. Principal component analysis has been implemented to

determine the factors, which enter a dynamic model for Germany GDP. The model

is compared with alternative univariate and multivariate models. These models are

based on regression techniques and considerably smaller data sets. Out-of-sample

forecasts show that the prediction errors of the factor model are smaller than the er-

rors of the rival models. However, these advantages are not statistically significant,

as a test for equal forecast accuracy shows. Therefore, the efficiency gains of using a

large data set with this kind of factor models seem to be limited. These conflicting

results have led to a fascinating debate as to whether or not the victory claimed by

the proponents of large models was premature.

Some researchers attribute the success of large models to the different circum-

stances. For example, Banerjee et al. (2005) find that the performance of factor

models differ between countries. Factor models are comparatively good at forecast-

ing real variables in the US relative to the Europe, while the euro area nominal

variables are easier to predict than the US nominal variables, using factor models.

Furthermore, Boivin and Ng (2006) claim that the composition of the data set and

the dimensions of the cross-section are important in producing better forecasts from

factor models. They show that extending a data set not necessarily improves the

forecasting performance if the additional series are noisy or unrelated to the target

variable.

To date, the majority of empirical studies that attempt to obtain earlier flash

estimates of GDP, and compare models (with different dimensions of datasets) to

evaluate the usefulness of adding more data target the developed countries. Minor

attention has been given to construct investigations on the usefulness of small and

large scale models based on developing countries. In an attempt to do so, Gupta

and Kabundi (2010) use both small and large-scale models, including DFM to con-

struct a comparison for the forecasting ability of the models in predicting four key
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macroeconomic variables for the South African economy. The results indicate that

data-rich models such as DFMs or large-scale BVARs, are better suited in forecast-

ing key macroeconomic variables relative to small-scale models involving only the

few variables of interest.21

Hence, this chapter aims not only to shorten the lag period in GDP estimates, it

questions whether using large data-rich models leads to better empirical results than

smaller scaled models in the case of Kingdom of Bahrain. Accordingly, we focus on

both small and large-scale models to obtain Bahrain quarterly GDP growth. An ap-

plication could be interesting, because large-scale factor-models have recently been

successfully applied to forecast US and some Euro area macroeconomic variables as

discussed above. To our knowledge, this is the first application of large-scale factor

models to a very small open economy such as Bahrain. We follow the recent litera-

ture and investigate the gains of predictive accuracy when using a large number of

macroeconomic time series, that provide an exhaustive description of the Bahrain

economy. The broad data set is used to estimate the factor model, and to forecast

Bahrain GDP.

2.3 Econometric Methodology

This section provides a brief description of the two main models used to forecast

Bahrain’s GDP growth, namely, the regression-based model and factor model.

2.3.1 Regression-based Approach

The modelling framework requires only a one-period-ahead forecast. The regression-

based model is an automatic approach, which generates a large number of models

that can be encompassed by a general model given by:

∆yt = c+

p∑
i=1

αi∆yt−i +

p∑
i=0

k∑
j=1

βixt−i,j + ut (1)

Where, t=1, 2, ......T, yt is the log of Bahrain GDP, xt,j is the jth indicator vari-

able (j = 1, 2, ....k) in logs, c is an intercept, p is the number of lags, ∆ is the first

difference operator and ut is a mean zero disturbance with variance σ2. It is worth

21Gupta and Kabundi (2011) is an interesting paper that use large factor models for forecasting
macroeconomic variables for the South African economy.
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noting that equation (1) includes contemporaneous values of xj. This is so because

indicators xj are published more timely than the target variable y.22

We employ a procedure for k indicators (total number of indicators in dataset)

with p lags each, as follows: a study of q = k(p+1)+p indicators (i.e. considering the

lags of each variable in data-set as a potential indicator), constructs M = Σs
i=1

q!
(q−i)!i!

possible models, where s is the maximum number of indicators. Thus, in our case

for s = 3 (i.e. combination of three indicator variables ) and p = 4, we compute

1,159 models.23 At each time we estimate recursively Equation (1) for all possible

models and the preferred model is selected by using the Bayesian Information Cri-

terion (BIC). Then we use this model, and its estimated coefficients, and the time

t+1 values of the explanatory variables in the preferred model to compute recursive

out of sample forecast for Bahrain quarterly GDP growth recursively from 2003:Q4

to 2008:Q3 (i.e. ∆yt+1). This process is repeated by recursively adding one time

period at a time.

Then, equation (1) is augmented with the intercept correction model as sug-

gested by Clements and Hendry (1996). The intercept correction model (IC) offers

a possible solution to deterministic shifts, as it adjusts an equation’s constant term

when forecasting using the residual obtained from previous periods, which could be

informative about short-term forecast error. Clements and Hendry (1996) formally

established that when the GDP is susceptible to structural breaks, forecasts made

in ignorance of any such changes that have taken place recently can be improved by

ICs, which reflect, and so offset, deterministic shifts that would otherwise swamp

useful information from causal factors.

To attain improvement in timeliness, literature uses a strategy that has been em-

ployed to forecast quarterly aggregates of monthly indicators based on VAR models

such as Camba-Mendez et al. (2001). Another strategy, which is indeed familiar

to statistical offices, considers estimation of GDP growth when at least for some

indicators there may be an incomplete set of within-quarter information, perhaps

only two months of published data are available and the final month in the quarter

must then be forecasted. This approach has been considered in many studies for the

US (e.g., Rathjens and Robins, 1993) and for the Euro-area (see Baffigi et al., 2004;

22All indicator variables xj that enter equation (1), if necessary, are differenced until stationary.
23The number of lags p has been selected based on Akaike and Bayesian Information Criterion,

AIC and BIC, respectively.
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Rünstler and Sédillot, 2003; Sédillot and Pain, 2003). Rünstler and Sédillot (2003)

and Sédillot and Pain (2003) find that the estimates become increasingly better than

those of a benchmark autoregressive (AR) model as more monthly data within the

quarter being forecast become available. Given our aim to deliver earlier estimates

of Bahrain quarterly GDP growth, using two months data, which are available for

key indicators, such as industrial production, at 54 days after the end of the quarter,

this chapter follows the literature in forecasting the third month in the quarter for

these indicators. This means that the GDP growth would be available with a delay

of 54 days only (i.e. shorten the lag by 36 days) as shown below.

2.3.1.1 Monthly Bridge Equation

There are different methods that use monthly indicator variables to nowcast a quar-

terly variable like GDP. Bridge Equations (BE) method is one of the popular ap-

proaches that has been implemented widely, specially in studies that are focusing

on (small k) regression-based nowcast (Baffigi et al., 2004; Diron, 2008).

More concretely, bridging involves linking monthly data, typically released early

in the quarter, with quarterly data like GDP (see Baffigi et al., 2004). In effect,

a two-equations system is now used to forecast ∆yt+1, with the second equation

comprising the forecasting model for the monthly variable xt,j. The errors between

the two equations, at the underlying monthly frequency, are assumed orthogonal so

that the equations are estimated separately. In common with much previous work,

for example Diron (2008), simple AR models for xt′,j are considered as following:

xt′,j = Σp
i=1βixt′−i,j + et′,j (2)

where t′ = 1, ..., Tm denotes the monthly data with m = 3 months in the quarter.

The flash model for ∆yt, in equation (1), is therefore estimated using hard data

on xt,j. However, at the point of forecasting ∆yt+1, since a partial information are

available on xt+1,j (for some indicator variables, j), the predicted values of x̂t+1,j

from the AR model are used in equation (1). Given that the aim of this chapter is

to obtain earlier estimates of GDP growth, with only two months of hard data, BE

approach, which uses the available two months information on Bahrain’s petroleum
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production, and forecasts the final month in the entire quarter is employed.24 This

forecasted value is then combined with the two months of hard data to obtain x̂t+1,j.

2.3.2 Factor-based Approach

In modern economies the development of a large data set by statistical offices allow

policy makers and forecasters to work with more than 100 indicators. This can lead

to develop models with large numbers of indicators, and a small degree of freedom.

To overcome this problem, researchers attempt to summarise the information in-

cluded in large data-sets into a small number of (unobserved) common factors.25

There are mainly two leading factor- (or diffusion) based approaches, namely as

the static (principal components) approach of (Stock and Watson, 2002a,b) and the

dynamic (principal components) method of Forni et al. (2003) [FHLR].26 Both the

static and dynamic factor-based approaches aim to forecasting any target variable

following a two-step approach. First, the time series of factors is extracted from

the indicators. Secondly, these factors are used in forecasting. For concreteness, let

yt be the scalar time series variable to be forecasted and let Xt = [x1t, x2t,...xNt]
′

is an N dimensional vector of predictors with observations for t = 1, ..., T , and it

is assumed that the series have zero mean and variance-covariance Γ0. The factor

model representation is given by

Xt = χt(Ft) + ξt (3)

where χt(Ft) are the common components solely driven by factors Ft, and ξt is N×1

idiosyncratic components for each of the variables. The idiosyncratic component is

that part of Xt not explained by the common components. The idea behind the

factor model is that a small number r(r << N) of factors (Ft) should be able to

24Since this component accounts for around 32% of Bahrain GDP, capturing its developments
should be key to being able to forecast GDP.

25The extraction of factors that represent the “underlying state of the economy” has a long
tradition going back to Burns and Mitchell (1946). Alternatives to principal components analysis
are identification and estimation of the factors using a parametric model. For example the state
space approach can be used when the set of indicator variables is quite small (say < 12); e.g. see
Stock and Watson (1989) and Camba-Mendez et al. (2001).

26Boivin and Ng (2005) show that the key difference of these two approaches is that the latter
approach extracts the factors from the unobserved common to all information variables component.
In doing so, the dynamic principal component method of [FHLR] imposes the factor structure on
the forecasting model. However, there is no empirical evidence that the latter method outperforms
the former.
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explain most of the variance of the data, then these factors are employed to predict

the variable of interest (i.e., GDP growth in our case).

In this chapter, the static factor approach of Stock and Watson (2002b) is em-

ployed. In the first step, we extract the principal components F̂t = [f1t, f2t, ....., fqt]

from variance-covariance matrix Γ̂0 = 1
T

ΣT
t=1XtX

′
t. Then, in the second step, the es-

timated principal component F̂t are used to forecast the target variable ∆yt . More

concretely, we run a regression of the variable of ∆yt on F̂t−1 to obtain α̂ and β̂ and

then insert them in the forecast equation. This kind of method has been found to

be an effective means of modelling a large number of noisy survey variables, under-

taking both current and next period (Hansson et al., 2005).

Out-of-sample forecast for Bahrain quarterly GDP growth are computed recur-

sively from 2003:Q4 to 2008:Q3. Following Stock and Watson (2002b), this exercise

considers forecasting from various parameterization of equation (3).27 These include

(i) a regression with r factors and an intercept

∆yt+1 = α̂ + β̂F̂t + εt+1 (4)

and (ii) a regression with an intercept, lag values of factors, and of the dependent

variable

∆yt+1 = α̂ + γ̂(L)yt + δ̂(L)F̂t + εt+1 (5)

where γ̂(L) and δ̂(L) are lag polynomials. Principal component is used to extract

the factors from the selected six indicator variables for the first case and then from

the full dataset that comprises 65 variables included in Xt. On the basis of AIC and

BIC, we include two lags of each factor and two lags of the dependent variable in

equation (5).

Following Stock and Watson (2002b), we consider forecast of equations (4) and

(5), from a regression with r (1 ≤ r ≤ 15) factors. In addition to including those r

factors associated with the highest eigenvalue, we construct forecasts based on se-

27For more examples see Watson (2003) and Stock and Watson (2005).
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lecting a potentially different set of factors. We select these factors most correlated

in sample with the GDP itself.28 We suggest that in a forecasting context, this is

more sensible than selecting those factors with the highest associated eigenvalues as

it isolates those factors that best explain the variable to be forecast rather than the

independent variables. An alternative interesting method for selecting the optimal

number of factors based on their information criteria is suggested by Bai and Ng

(2002).29

2.3.3 Benchmark Model

To evaluate the performance of the models used in nowcasting, we consider as a

benchmark the first order autoregressive model:

∆yt = c+ α∆yt−1 + εt (6)

Where, yt is the log of GDP, ∆ is the first differencing operator, εt is iid (0, σ2) dis-

turbance term. We do so because Clements and Hendry (1999) argue that equation

(6) is robust to structural breaks.

2.4 Assessing Forecast Performance

In this section, we discuss the evaluation criteria used to compare the predictive

performance of the time series models in terms of point forecasts and density fore-

casts as shown below:

2.4.1 Point Forecast

The majority of research in economic forecasting pays high attention to producing

and evaluating point forecasts. Point forecasts obviously receive the first-order im-

portance in the forecast evaluation process as they are fairly easy to compute, very

easy to understand, and lead directly to the proper direction and optimal model

28Stock and Watson proposed using BIC for selecting the optimal number of factors, but with a
restriction of having a case where N >> T .

29Bai and Ng (2002) derive information criteria to determine the number of static factors r in
Equation (4). The information criteria represent the usual trade-off between goodness-of-fit and
overfitting. The information criteria can be seen as extensions to the familiar Bayes or Akaike
criteria. This method does not have any restrictions between N and T .
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to be chosen relative to this term. There are a number of ways to use statistics

to evaluate point forecasts. In this paper, we use the root mean squared forecast

error (RMSFE), residual standard deviation (RSD), and the directional accuracy

test developed by Pesaran and Timmermann (1992) (PT), which assesses how well

rises and falls in the forecast value follow actual rises and falls using the information

of the signs of yt and xt.
30

The optimality of these tests is based on the assumption that forecasts have a

quadratic loss function and the target variable follows a linear process. Under such

condition, we use the corrected Diebold and Mariano (1995) test of Harvey et al.

(1997) to evaluate whether two different forecast models are significantly different

from each other.31

2.4.2 Density Forecast

Although the forecast evaluation literature has traditionally focused on point fore-

casts, it is often difficult to summarise by a point forecast many forecasts generated

by economic models. Therefore, the fundamental outcome, that a ‘correct’ forecast

is optimal irrespective of the form of the loss function, was extended from point

forecast to include density forecasts, which is less straightforward. The true density

30Let xt = E(yt,Ωt−1) be the predictor of yt found with respect to the information set Ωt−1,
with n observations (y1, x1), (y2, x2), ..., (yn, xn) available. The test proposed by Pesaran and
Timmermann (1992) is based on the proportion of times that the direction of changes in yt is
correctly predicted by xt. The test statistic is computed as: Sn = P−P∗√

V (P )−V (P∗)
∼ N(0, 1)

where P = Z̄ = 1
nΣni=1Zi, P

∗ = PyPx + (1 − Py)(1 − Px), V (P ∗) = 1
nP
∗(1 − P ∗) and V (P ) =

n[(2Py−1)2Px(1−Px)+(2Px−1)2Py(1−Py)+ 4
nPyPx(1−Py)(1−Px)]. Zi is an indicator variable,

which takes value of one when the sign of yt is correctly predicted by xt, and zero otherwise, Py
is the proportion of times yt takes a positive value and Px is the proportion of times xt takes a
positive value . The null hypothesis, which illustrates that xt and yt are distributed independently
is set against the alternative that xt and yt are not statistically independent.

31The Diebold and Mariano (1995) test examines the null hypothesis of equal forecast accuracy
of two competing forecasts. It uses a forecast error loss differential dt = g(eAt ) − g(eBt ), which is
assumed to be a weakly stationary process with short memory. The main rationale underlying
this test is that forecast errors are usually serially correlated. In multi-step forecasting (h > 1),
forecasts errors are assumed to be at most h− 1 dependent. This is a plausible assumption, since
two consecutive h-steps-ahead forecasts have h − 1 periods with similar information in common.
The Diebold and Mariano (1995) test is a modified t − test, whereby the modification accounts
for the serial correlation of the loss differential. The mean d̄ is assumed to be asymptotically
normally distributed

√
T (d̄− µ) →d N(0, V (d̄)), whereby V (d̄) stands for the serially correlated

errors’ corrected variances of the sample mean (d̄), given by the sum of the variance and the
autocovariance up to lag h − 1 assuming that there are no autocorrelations at a lag equal to or
greater than h : V (d̄) = 1

T (γ0 + 2Σh−1r=1γτ where T denotes the sample size and the autocovariance
is given by: γτ = 2

T ΣTt=τ+1(dt− d̄)(dt−τ − d̄) the asymptotically normally distributed test statistic.
Harvey et al. (1997) argued that the DM test can be quite over sized for small samples and this
problem can be more dramatic as forecast horizons increase. They thus suggest a modified DM
test as: DM∗ = DM√

T+1−2h+
h(h−1)

T
T

.
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is never observed, but still one can compare the distribution of observed data with

density forecasts to check whether forecasts provide a realistic description of actual

uncertainty.32

The basic idea is built on the probability integral transform (PIT), which goes

back at least as far as Rosenblatt (1952).33 Diebold et al. (1998) popularised a

method based on the relationship between the data generating process, ft(yt), and

the sequence of density forecasts, pt(yt), as related through the probability integral

transform, zt, of the realization of the process taken with respect to the density fore-

cast. For a sample of n one step-ahead forecasts and the corresponding outcomes,

the probability integral transform (PIT) is simply the cumulative density function

corresponding to the density pt(yt) evaluated at yt,

zt =

∫ yt

−∞
pt(u)du (7)

= Pt(yt)

The density of zt, qt(zt), is of particular significance.34 Assuming that ∂P−1
t (zt)/∂zt

is continuous and nonzero over the support of yt, then, because pt(yt) = ∂Pt(yt)/∂yt

and yt = P−1
t (zt), zt has support on the unit interval with density:

qt(zt) =
∣∣∣ ∂P−1

t (zt)

∂zt

∣∣∣ ft(P−1
t (zt))

=
ft(P

−1
t (zt))

pt(P
−1
t (zt))

Note that if pt(yt) = ft(yt), then qt(zt) is simply the U(0, 1) density. Hence, a test

of the null hypothesis that PITs, {zt}Tt=1, is i.i.d. U [0, 1] is equivalent to a test that

the model density forecast corresponds to the true predictive density.35 Diebold

et al. (1998) argue that tests of i.i.d. uniformity may often be of little practical use

since, when the null hypothesis is rejected, it may not be apparent which leg of

32A density forecast of the realization of a random variable at some future time is an estimate
of the probability distribution of the possible future values of that variable. It thus provides a
complete description of the uncertainty associated with a prediction and stands in contrast to a
point forecast, which by itself contains no description of the associated uncertainty. For more
details on evaluating econometric forecasts, see Clements (2005).

33For more details on density forecast, see (Diebold et al., 1998; Granger et al., 1996; Granger
and Pesaran, 2000; Pesaran and Skouras, 2002; Wallis, 2003).

34To describe the distribution, qt(zt), of the probability integral transform.
35The null of i.i.d. uniformity is a joint hypothesis. For more details, see Clements (2005).
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the joint hypothesis (i.i.d. or uniformity) is violated. Berkowitz (2001) suggests an

alternative goodness-of-fit test where instead of testing for uniformity of probabil-

ity integral transform it might be more fruitful to test for normality of the inverse

cumulative distribution function (CDF) of standardised forecast errors, which be-

comes a standard normal variate under the null hypothesis that the model density

forecast equals to the true predictive density. In this case, one would test whether

the transformed realisations are i.i.d. N(0, 1).

In this chapter, the density forecasts for regression-based approach are calculated

analytically assuming the disturbance, ut, in equation (1) is i.i.d. normal; the density

is then normal with mean given by point forecast ∆ŷt+1 and variance given by σ̂2
t .

For the Stock-Watson factor method the density variance is recursively estimated

from in-sample residuals (from the second step) forecasting regression. Precisely, if

ŷt+1 is the one-step-ahead forecast of yt+1 made at time t, and σ̂t+1 is the standard

deviation of ŷt+1 then the Gaussian density forecast is F (yt+1) = N(ŷt+1, σ̂
2
t+1). The

probability integral transform values are given by {zt+1} = {Φ((yt+1−ŷt+1

σ̂t+1
))} where

Φ is the Normal CDF. {z∗t+1} = {(yt+1−ŷt+1

σ̂t+1
)} are the stadardised forecast errors that

are distributed N(0, 1) under the null.

In what follows, we consider two different tests, each of which focus on different

properties that correctly specified PITs should satisfy. In choosing what test to im-

plement, we follow Mitchell and Wallis (2011) and focus on the Ljung-Box (LB) and

Doornik and Hansen (DH) tests. The first test aims only at detecting the absence of

serial correlation in the PITs, while the second test operate not on the PITs directly,

but rather on the inverse normal transformation of the PITs.

2.4.2.1 Test for Independence (Ljung-Box)

In order to explicitly test for independence in the PITs, zt, Diebold et al. (1998) rec-

ommended looking for autocorrelation in the power transformed PIT series. Thus,

Ljung-Box is implemented to test for first order autocorrelation in the power trans-

formed PIT series, which is approximately distributed as chi- square under the null

hypothesis (see Harvey, 1991).36 According to Ljung and Box (1978), we test for

linear independence in zt using:

36Among others, Siliverstovs and Dijk (2003) and Mitchell and Wallis (2011) use the common
choice Ljung -Box to test for serial autocorrelation.
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Q = n(n+ 2)
h∑
j=1

r̂j
2

n− j
(8)

where n is the number of observation and r̂j is the estimated sample autocorre-

lation function (ACF) at lag j. Under the null hypothesis, Q has an asymptotic

chi-squared distribution with j degrees of freedom. The null hypothesis is rejected

when the p − value obtained is so small, which means that there is significant evi-

dence of autocorrelation.37

2.4.2.2 Doornik and Hansen (1994) test (DH)

Berkowitz (2001) shows that if the PIT is iid U(0, 1), then the inverse standard

normal transformation of the PIT is an iid Normal (0, 1).38 Accordingly, we follow

Mitchell and Wallis (2011), Clements and Smith (2000) and Siliverstovs and Dijk

(2003) in testing standard normality of inverse standard normal transformation of

the PIT, and use the test statistic suggested by Doornik and Hansen (1994) (DH).39

Doornik and Hansen (1994) (DH) develop a test for normality based on skew-

ness and kurtosis which has good small sample properties. The test is based on

the sum of squares of transformed measures of skewness and kurtosis, and has a χ2

asymptotic distribution under the null of iid normality (i.e. absence of skewness

and kurtosis).

2.5 Data and Empirical Results

2.5.1 Data

Since the main task of this chapter is to evaluate the gains of using a large data set

compared with a small data set to predict GDP growth, we should collect a suffi-

ciently large data set. Following the main stream in factor-based modeling literature

37The null hypothesis of Ljung-Box test is H0: all correlation coefficients up to lag ‘j′ are zero
and H1 : not all lags up to lag ‘j′ are zero.

38Normality in statistics is used to evaluate the fitting of the data in the model applied. It tests
whether it has been well-modelled by a normal distribution or not, or to compute how likely an
underlying random variable is not to be normally distributed.

39Clements and Smith (2000) use density forecast performance to compare linear models with
nonlinear forecasting models of output growth and unemployment.

31



(Stock and Watson, 2002a,b; Forni et al., 2000) that suggests collecting and using

central banks data, paying little or no attention to preselecting process, this chapter

uses the full data-set produced by the Central Bank of Bahrain. The collected data

set for the Kingdom of Bahrain, which is explained in the data Appendix B, contains

65 quarterly series over the sample period 1995:Q1 - 2008:Q3. As discussed above,

a recursive out-of-sample forecasting scheme is used to evaluate each model. Thus,

the full sample is divided into two sub-samples. The first 35 observations ( 1995:Q1

- 2003:Q3) are used for estimation and the out-of-sample forecast exercises are com-

puted recursively over the period from 2003:Q4 to 2008:Q3. We choose quarterly

time series because we want to discuss the empirical properties of the factor model

with respect to the GDP, which is available at the quarterly frequency.

We include components of industrial production, which concentrate on refined

petroleum production as it represents the main product in Bahrain, trade variables,

prices such as consumer price index and share price index, monetary aggregates and

the financial variables, which comprise a number of series including exchange rates,

interest rates, and others as shown in Table (2-B.1) and Table (2-B.2).40 Data on

metal and oil prices are available for the full period. All data are obtained from the

International Financial Statistics (IFS) database published by International Mone-

tary Fund (IMF) whereas energy and metal prices are obtained from Energy Inter-

national Agency (EIA).

Preselecting the proper indicator variables to construct the small dataset for

simple regression model is not an easy process. It might be easier whenever the

range of GDP components are collected more frequently. However, in the case of

Bahrain, we are forced to use the data that are available on a monthly basis such as

the trade, international oil prices, international aluminium prices, refined petroleum

production index, financial data, and monetary aggregates. Following Grasmann

and Keereman (2001), the independent variables were chosen by a classical trial

and error two-stage process: in the first step, these variables were identified, which

due to economic reasons were supposed to show a close correlation to the depen-

dent variable, either coincident or lagged. The second step consisted in retaining

the variables that deliver the best in-sample test results. We use a simple model

with six explanatory variables including exports (including oil products) (EXPPP),

refined petroleum production index (RPPI), metal price index (MI), oil price index

40Table (2-B.1) and Table (2-B.2) describe both the indicators used in the empirical estimation
and the source from which we obtain them.
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(OILI), consumer price index (CPI), and broad money aggregate (M3). All variables

are in log forms and if necessary, are differenced until stationary. The partial cor-

relation of these variables used as regressors in the simple regression equation with

quarterly GDP growth is generally strong as shown in Table (2.1). The strongest

correlation exists for exports including oil products (positive) and oil price index

(positive). The weaker relationship exists for consumer price index (CPI), while

the other variables have a reasonable correlation with quarterly GDP growth. The

Granger causality test applied on the relationship between GDP growth and the

independent variables gives a similar picture. The null hypothesis of no Granger

causality from the independent variables on the dependent variable can be rejected

with reasonable probability as shown in Table (2.2). Also, jointly, they significantly

cause GDP growth.41

As it is typical for the empirical indicator literature, the vector of time series

will be preprocessed. Since the principal component analysis requires stationary

time series for estimation, non-stationary time-series are appropriately differenced

and normalised to have sample mean zero and unit variance. It is worth noticing

that while the factor model previously described relies on a large dataset, the simple

model has a considerably smaller data set which is the outcome of an explicit pre-

selection. A comparison of forecasts of the factor model and the simple regression

model will shed some light on the relative efficiency of such preselections.42

2.5.2 Empirical Work and Results

In this section we discuss the results obtained from evaluating recursively an out-of-

sample period from 2003:Q4 to 2008:Q3.43As the results are classified in terms of the

data sets used, we will start discussing the results of using 6 pre-selected indicator

variables followed by the discussion of the results obtained from using 65 variables.

Table (2.3) reports the results obtained from point forecast evaluation tests for

all the models employed. The upper row specifies the name of the tests as fol-

41Classical trial and error tests result are obtained using only the first 35 observations (1995:Q1
- 2003:Q3).

42In preliminary steps of this investigation, we utilize different combinations of data sets and
found that the root mean square forecasted error become significantly different and varies from
1.979 to 13.585 in some cases. Empirical results using these alternatives can be obtained from
the authors upon request. However, these models performed worse than the alternatives presented
here.

43The model has been implemented in Gauss.
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lows: the root mean square forecast error (RMSFE), the residual standard deviation

(RSD), Diebold and Mariano (1995) test (DMpval), and Pesaran and Timmermann

(1992) test (PT). The models in the first column are: regression with three indi-

cator variables (3IV), regression with one indicator variables (SIV), regression with

forecasted industrial production (SIVIP ), first order autoregressive (AR(1)), static

Stock & Watson based on highest eigenvalue (SW) and static Stock & Watson based

on highest correlated factors (SWCORR), where (L) indicates the model augmented

with the lags of factors and the dependent variable based on AIC and BIC. Noticing

that some models were corrected using intercept correction (IC). The number inside

parentheses in the second column is such that the model with smallest RMSFE is

assigned rank 1, the second smallest rank 2, and so on. The RSD (in third column)

reveals the goodness-of-fit measure. That is, the smaller the residual standard de-

viation, the closer is the fit to the data. Results of both RMSFE and RSD make

it clear that the models differ dramatically where the regression models outperform

both factor models and the AR benchmark model, and the best performing model

is the IC model. As we discussed earlier, choosing the optimal combination of the

variables to be used has been done by BIC, the choice of the combination among the

period remained the same, where it includes the refined petroleum production index

(RPPI), exports (EXPP), and oil price index (OILI). Based on point forecasts, we

can observe that the minimum RMSFE is 0.0198, which is obtained from using a

simple regression model with three indicator variables and intercept correction at

84 days (see Figures (2.1) and (2.2)).

Also, since the BIC is left to decide on the preferred single indicator to be used

in the regression model, it selects refined petroleum production or its lags in pro-

duction sometimes, then again pays to exclude it from the set of indicator variables

considered. But in general, it is selected in most cases over time, which suggests

examining the usefulness of this single indicator variable to further shorten the lag

of obtaining the flash estimates. Particularly, using two months ‘hard’ data on in-

dustrial production and forecasted value of the final month in the quarter obtained

from BE. Based on the results of this exercise shown in Table (2.3) (SIVIP and

SIV/ICIP ), there is a loss in accuracy when forecasts are produced at 54 days when

industrial production is used as the sole indicator variable. However, we need to

consider tests constructed for evaluating density forecasts in order to choose the

optimal model. By looking carefully at the results obtained, we can notice that

intercept correction model (IC) helps to improve forecast accuracy in some cases,
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particularly simple regression models with single and three-indicator variables as

shown in Figure (2.1).

The fourth column of Table (2.3) provides the results of the Diebold and Mari-

ano (1995) test, which is built on model comparisons in terms of MSFE summarised

across series and across models, respectively. It is worth noting that the reported

findings provide evidence for rejecting the null hypothesis of equal forecasts accu-

racy for most models. There is no equal accuracy at 95% level for most of the

models except for 3IV , SIV/IC , SIV/ICIP and SW3L. This means that statisti-

cally there are no equal loss functions among the models (assuming quadratic loss

functions).44 Looking at Flash estimates using single indicator variable, forecasts at

54 (SIV/ICIP ) days are not much less accurate than those at 84 days (SIV/IC).

Although the RMSFE is in general higher when the third month in the quarter of

industrial production is forecasted, the loss in accuracy of SIV/ICIP is not sig-

nificant in comparison to the best performing model.45 According to the results of

Pesaran and Timmermann (1992) (PT) test shown in the last column of Table (2.3),

none of the results are above the 95% critical values of a standard normal variety

and thus cannot reject the hypothesis that xt and yt are statistically independently

distributed except for SW1 and SW1L models.

Substantially, tests concerning the density forecast criterion are reported in the

second and third cloumns of Table (2.4). In relation to the Doornik and Hansen

(1994) DHpval test applied to the inverse normal cumulative density transformation,

the p− value associated to Doornik-Hansen statistic is 0.0033 for the best perform-

ing 3IV/IC model, so with a significant level of 0.050, the results suggest that the

data analyzed do not have a normal distribution, in the sense of the 3IV/IC model.

Thus, it could be an optimal model that depends on the loss function. The third

column of Table (2.4) represents the p − values obtained from the Ljung-Box test

for autocorrelation in the PITs. It suggests not rejecting the null of uncorrelated

error except for the SIV model as it is not significantly different from zero. The

SW1L model could be considered a borderline case with a p− value = 0.0509. This

means that there is no autocorrelation between the y in the other models and con-

sequently, the residual of the models is white noise. The density forecast criteria

show that the best performing 3IV/IC model fails to pass both the distribution

44Diebold and Mariano (1995) test has been applied for all the models against the benchmark
model, and then for the optimal against the rest of the models.

45This is consistent with the findings of Rünstler and Sédillot (2003) for Eurozone GDP growth.
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and the independence tests. Alternatively, models including 3IV , SIV/IC, SIVIP ,

SIV/ICIP , AR and the factor models (except SW1L) satisfy the density forecasts

criteria.

Consequently, the 3IV/IC model is the optimal model based on the loss function

only due to the failure in proving that it is iid and N (0, 1). Alternatively, there

are four other models including 3IV , SIV/IC , SIV/ICIP , and SW3L that are not

significantly different from the best performing model (i.e. 3IV/IC) based on the

DM test. These models pass both point and density forecast tests. Although their

RMSFE in general is higher than that of the 3IV/IC, the, DM test shows that

the difference in the RMSFE for these models relative to the optimal performing

3IV/IC model is insignificant at 95%. Moreover, these alternatives pass the inde-

pendence and distribution tests.

In factor models, we can highlight two points. First, increasing the number of

factors seems to facilitate forecasts in terms of reducing RMSFE, thus; we investi-

gate whether increasing number of factors could obtain better results than simple

regression models and find that it becomes worse when r > 9 for the estimation using

equation (4) and mixed for the estimation using equation (4). In general, none of

the results shown in Table (2.5) is better than simple regression models up to rank

(3). Second, results obtained are improved by using the most correlated factors to

GDP in comparison to those chosen based on highest eigenvalues.

To have a complementary view of the utilized forecast performance, we have to

look at the values shown in Tables (2.6) and (2.7). Although the acquired results in

these tables, which summarise the findings of evaluating the forecast performance

of the models that embody the use of 65 time series does not help to achieve better

outcomes, we can still prove that in our case, flash estimates that are obtained using

simple regression models outperform the AR(1) benchmark model and the Stock and

Watson factor-based models as well. However, there is no significant improvement

for the use of intercept correction.

2.6 Conclusion

Early estimates of GDP are important for decision-making processes. However, data

on GDP are often published with considerable delay. There are two approaches to
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produce flash estimates, the simple regression approach, which is based on a few

number of indicators and the factor-based model, which explores the information of

large data-sets.

Our findings can be summarised as follows. The most reliable estimates could be

achieved using simple regression estimates augmented with the intercept correction

model (3IV/IC). It outperforms the AR(1) benchmark and the static factor model

as well. However, this could be considered only if the loss function is known and

the forecaster is concerned about the point forecasts as it fails both distribution and

independence tests. Alternatively, if the forecaster is concerned about the density

forecast, 3IV , SIV/IC , SIV/ICIP , and SW3L models will be interesting choices

based on both point and density forecast. Although their RMSFE is in general

higher than the 3IV/IC, the DM test shows that the difference in the RMSFE for

these two models relative to the optimal performing 3IV/IC model are insignificant

at 95%. Moreover, both of these alternatives pass the independence and distribution

tests. When we nowcast the GDP growth, industrial production appears to be both

a timely and useful indicator. Simple regression estimates that use this indicator

alone systematically outperform the other models including factor-based methods

that exploit information not just on industrial production but over 65 other indicator

variables. Our results also go in line with literature that suggests using preselected

indicator variables might improve the forecasts using factor-based models (Caggiano

et al., 2011). Stock and Watson (2004) find evidence that simple mean combination

forecasts (derived from simple indicator regression augmented with AR terms with

no more than three indicators) outperform dynamic factor model-based forecast in

many cases.

Currently, the value added of real GDP is released at 90 days after the ending of

the prospective quarter. We focus on producing forecasts of quarterly GDP growth

to two timescales. The first forecast is produced at 84 days after the end of the

quarter. At this point in time monthly key indicators are available for the three

months of the entire quarter, and therefore, using the aggregated monthly indicator

variables in models 3IV , SIV/IC, and SW3L could minimize the lag a little bit

and make it available one week earlier than the official release.

The second forecast is produced at 54 days when we have two month’s hard

data for industrial production, and only have to forecast the one remaining month

37



in the quarter using BE approach shown in Equation (2). The forecasted series is

used in the single indicator variable regression to obtain the quarterly GDP growth

using the SIV/ICIP model, and thus further shorten the lag significantly by 36 days.

As discussed earlier, flash estimates of GDP are recommended and would be of

considerable benefit because of its significant impact on policy making, thus; con-

sidering either timeliness forecasts could be helpful to use especially since we have

shown that the models applied are performing well based on recursive out-of-sample

forecast performance.

Moreover, by looking at the results obtained from using only six explanatory

variables, which are considered to have a significant direct effect on GDP growth,

it is clear that they are much better than the results obtained using 65 time series.

Accordingly, we can support the related argument in the literature that says that

more information does not always help to produce more accurate results (Boivin

and Ng, 2006). The simple regression-based models appear to offer the best means

of handling the changes in the business cycle in comparison to AR and factor mod-

els, however, it will be interesting to see in a future study whether mixed-frequency

factor models, of the sort used by Angelini et al. (2010), are able to pick up the

rapid switch in the utility of hard indicators automatically. Our finding can be seen

as an addition to the growing body of work that investigates how well factor-based

methods work relative to alternative, often simpler methods.
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Table 2.1: In Sample Correlation between the Indicator Vari-
ables and GDP Growth

Variable Correlation

EXPP 0.9349
RPP 0.4469
MET 0.1719
OIL 0.6579
CPI 0.0141
M3 -0.1554

Note: The entries in the first column are: exports including oil prod-
ucts(EXPPP), refined petroleum production index (RPPI), metal price index
(MI), oil price index (OILI), consumer price index (CPI) and broad money
aggregate (M3).

Table 2.2: In Sample Granger Causality Test

Null Hypothesis F-Statistic Probability

EXPP does not granger cause GDP 19.217 0.001
RPP does not granger cause GDP 5.783 0.022
MET does not granger cause GDP 10.161 0.038
OIL does not granger cause GDP 31.783 0.000
CPI does not granger cause GDP 7.672 0.104
M3 does not granger cause GDP 17.029 0.002

All 120.160 0.000

Note: The symbols in the first column are: Gross domestic product (GDP),
exports including oil products(EXPPP), refined petroleum production index
(RPPI), metal price index (MI), oil price index (OILI), consumer price index
(CPI) and broad money aggregate (M3).
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Table 2.3: Point Forecast Evaluation using 6 Indicator Vari-
ables

Model RMSFE RSD DMpval PT

3IV 0.0210(2) 0.0009 0.4104 -0.3191
3IV/IC 0.0198(1) 0.001 0.0000 1.1754

SIV 0.0401(7) 0.0028 0.0055 -0.319
SIV/IC 0.0266(3) 0.0011 0.1728 -0.319

SIVIP 0.0521(9) 0.0041 0.0173 -0.8091
SIV/ICIP 0.0343(5) 0.0025 0.1018 -0.8091

AR(1) 0.0851(15) 0.0083 0.0000 -1.531
AR(1)/IC 0.1202(16) 0.0188 0.0000 -0.319

SW1 0.0807(14) 0.008 0.0029 -9.99
SWCORR 0.0756(12) 0.0078 0.0055 1.1754

SW1L 0.0703(11) 0.0078 0.0147 2.239
SWCORRL 0.0583(10) 0.0044 0.0031 0.473

SW3 0.0760(13) 0.0077 0.0057 1.5953
SWCORR3 0.0467(8) 0.0028 0.0079 -0.951

SW3L 0.0393(6) 0.0016 0.2264 0.809
SWCORR3L 0.0334(4) 0.0023 0.0141 0.112

Note: This table shows the results of point forecast evaluation for predict-
ing Bahrain’s GDP growth using a small data-set. The data-set includes six
explanatory variables; exports (EXPPP), refined petroleum production index
(RPPI), metal price index (MI), oil price index (OILI), consumer price index
(CPI), and broad money aggregate (M3). The upper row specifies the name of
the tests as follows: the root mean square forecast error (RMSFE), the residual
standard deviation (RSD), Diebold and Mariano (1995) test (DMpval) in com-
parison to 3IV/IC, and Pesaran and Timmermann (1992) test (PT). The models
in the first column are: regression with three indicator variables (3IV), regres-
sion with one indicator variables (SIV), regression with forecasted industrial
production (SIVIP ), first order autoregressive (AR(1)), static stock & Watson
based on highest eigenvalue (SW) and static stock & Watson based on highest
correlated factors (SWCORR), where (L) indicates the model augmented with
the lags of factors and the dependent variable based on AIC and BIC. Noticing
that some models were corrected using intercept correction (IC). Numbers in
parentheses indicate the assigned rank, where 1 corresponds to the model with
smallest RMSFE, 2 to the second smallest, and so on.
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Table 2.4: Density Forecast Evaluation using 6 Indicator Variables

DHpval QBOXpval

3IV 0.0647 0.0562
3IV/IC 0.0033 0.5537
SIV 0.2769 0.0054
SIV/IC 0.2554 0.9916
SIVIP 0.289 0.6311
SIV/ICIP 0.2721 0.982
AR(1) 0.9679 0.2791
AR(1)/IC 0.6422 0.1687
SW1 0.9094 0.7657
SWCORR 0.5101 0.2274
SW1L 0.0723 0.0509
SWCORRL 0.3698 0.9539
SW3 0.5948 0.1308
SWCORR3 0.1752 0.0691
SW3L 0.2211 0.669
SWCORR3L 0.0645 0.9035

Note: This table shows the results of density forecast evaluation for predicting Bahrain’s
GDP growth using a small data-set. The data-set includes six explanatory variables; exports
(EXPPP), refined petroleum production index (RPPI), metal price index (MI), oil price index
(OILI), consumer price index (CPI), and broad money aggregate (M3). Table entries are
the results obtained from forecasts performance tests. The upper row specifies the name of
the tests as follows: Doornik and Hansen (1994) (DHpval) statistic for the null hypothesis
that zt ∼ N(0, 1) and Ljung and Box (1978) (QBOXpval)statistic for the null hypothesis of
no first-order autocorrelation in (zt − z)j . The models in the first column are: regression
with three indicator variables (3IV), regression with one indicator variable (SIV), regression
with forecasted industrial production (SIVIP ), first order autoregressive (AR(1)), static stock
& Watson based on highest eigenvalue (SW) and static stock & Watson based on highest
correlated factors (SWCORR), where (L) indicates the model augmented with the lags of
factors and the dependent variable based on AIC and BIC. Noticing that some models were
corrected using intercept correction (IC).
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Figure 2.1: Actual and Forecasted GDP Growth using Small Data-set
(Regression-based Approach)
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Figure 2.2: Actual and Forecasted GDP Growth using Small Data-set
(Factor-based Approach)
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Table 2.5: Point Forecast Evaluation: RMSFE for SW Approach with
Different r

Model RMSFE
SW5L 0.0307
SWCORR5L 0.0366
SW7L 0.0359
SWCORR7L 0.0341
SW9L 0.0410
SWCORR9L 0.0296
SW12L 0.0366
SWCORR12L 0.0387
SW15L 0.0381
SWCORR15L 0.0429

Note: Table entries are the root mean square forecast error (RMSFE) and the models are in
the first column. Static Stock and Watson based on highest eigenvalue (SW) and static Stock
and Watson based on highest correlated factors (SWCORR), noticing that L corresponds to
model including lags of factors and the dependent variable and the numbers beside models
indicate the assigned factors r, where SW5L for example corresponds to the model with five
factors and lags of both GDP growth and so on.
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Table 2.6: Point Forecast Evaluation using 65 Indicator Vari-
ables

Model RMSFE RSD DMpval PT

3IV 0.0806(1) 0.0076 0.0000 0.4742
3IV/IC 0.1075(11) 0.0150 0.0696 0.8935

SIV 0.0899(9) 0.0077 0.5331 2.7828
SIV/IC 0.1441(13) 0.0200 0.0073 1.1754

AR(1) 0.0851(5) 0.0083 0.0000 -1.5310
AR(1)/IC 0.1202(12) 0.0188 0.0000 -0.3190

SW1 0.0838(3) 0.0089 0.3773 -9.9900
SWCORR 0.0851(5) 0.0088 0.3521 0.4727

SW1L 0.0853(6) 0.0094 0.8362 0.8338
SWCORRL 0.0835(2) 0.0090 0.8396 0.8338

SW3 0.0850(4) 0.0086 0.3667 1.4755
SWCORR3 0.0885(8) 0.0108 0.2593 1.4755

SW3L 0.0883(7) 0.0092 0.8043 1.1464
SWCORR3L 0.0916(10) 0.0115 0.7401 0.5270

Note: This table shows the results of point forecast evaluation for predicting
Bahrain’s GDP growth using a large data-set that comprises 65 explanatory
variables. The upper row specifies the name of the tests as follows: the root
mean square forecast error (RMSFE), the residual standard deviation (RSD),
Diebold and Mariano (1995) test (DMpval) in comparison to 3IV/IC, and Pe-
saran and Timmermann (1992) test (PT). The models in the first column are:
regression with three indicator variables (3IV), regression with one indicator
variables (SIV), regression with forecasted industrial production (SIVIP ), first
order autoregressive (AR(1)), static stock & Watson based on highest eigen-
value (SW) and static stock & Watson based on highest correlated factors
(SWCORR), where (L) indicates the model augmented with the lags of fac-
tors and the dependent variable based on AIC and BIC. Noticing that some
models were corrected using intercept correction (IC). Numbers in parenthe-
ses indicate the assigned rank, where 1 corresponds to the model with smallest
RMSFE, 2 to the second smallest, and so on.
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Table 2.7: Density Forecast Evaluation using 65 Indicator Variables

DHpval QBOXpval

3IV 0.6242 0.6484
3IV/IC 0.4075 0.2124
SIV 0.4176 0.5330
SIV/IC 0.3336 0.0640
AR(1) 0.9679 0.2791
AR(1)/IC 0.6422 0.1687
SW1 0.9221 0.4144
SWCORR 0.9749 0.3551
SW1L 0.9566 0.1807
SWCORRL 0.7471 0.2096
SW3 0.9707 0.1263
SWCORR3 0.6870 0.6646
SW3L 0.8498 0.2399
SWCORR3L 0.6060 0.7981

Note: This table shows the results of density forecast evaluation for predicting Bahrain’s GDP
growth using a large data-set that comprises 65 explanatory variables. Table entries are the
results obtained from forecasts performance tests. The upper row specifies the name of the
tests as follows: Doornik and Hansen (1994) (DHpval) and Ljung and Box (1978) (QBOXpval).
The models in the first column are: regression with three indicator variables (3IV), regression
with one indicator variable (SIV), regression with forecasted industrial production (SIVIP ),
first order autoregressive (AR(1)), static stock & Watson based on highest eigenvalue (SW)
and static stock & Watson based on highest correlated factors (SWCORR), where (L) indicates
the model augmented with the lags of factors and the dependent variable based on AIC and
BIC. Noticing that some models were corrected using intercept correction (IC).
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Appendix A: Bahrain’s Economic structure

Bahrain is the smallest country in the Arabic Gulf with a population of just over

1 million including around 50% expatriate citizens. It witnessed a prompt modern-

ization and economic growth since the discovery of oil in 1932. In the late 1990’s,

Bahrain was the first state in the Arabic Gulf who initiated the idea of diversifying

the economy to prepare for the post-oil and post-gas period. Thus, serious actions

have been taken and convert it to be the most diversified economy in the region.

The GDP record in year 2005 has reached to USD 13 bn. and the level of income

increased up to USD/capita 18.000, which is sufficient to classify it as a high-income

country by World Bank standards.

However diversifying Bahrain’s economy by expanding some primary economic

sectors such as financial, aluminium and tourism could not diminish the fact that

the country is still heavily reliant on the oil sector for the most part of its revenues.

Frankly speaking, oil sector affords majority of exports and fiscal revenue in addition

to being the dominant contributor to GDP providing about 43.8% of the total in

2000, excluding oil-based manufacturing activities. In cooperation with Saudi Ara-

bia, Bahrain extracts oil from the Saudi Arabian owned Abu Saafa oil fields, which

is then imported and processed further in Bahrain. Production from these oil fields

is expected to remain constant in the next decade, but the government’s efforts to

increase the productivity of its Awali field should strengthen the national economic

activity. For example, as a result of the growing investments into recovery methods,

the Awali field would be able to produce over 100,000 barrels per day by 2016, in

comparison with about 40,000 barrels per day in 2012. Petroleum processing and

refining has been attributed for more than 70% of Bahrain’s export revenues. It also

shares with over two-thirds of government yields and sufficiently contributes in the

output. In addition, the country takes the advantage from importing cheap oil from

its neighbours which is beneficial for its economic activity for two main reasons.

First, this imported oil is refined for exports to increase the revenue. It is worth to

note that Bahrain is more of an oil-refining centre than an oil producer as refined oil

exports exceed crude oil exports. Second, it is used as a cheap energy input in the

aluminium industry. Both refined crude oil (petroleum) and aluminium are consid-

ered as the country’s main exports with a respective share of 78% and 13% in total

exports. Although crude oil production remains steady, oil related exports increased

as new refinery capacity came under steam in year 2007. There are three industries

within manufacturing which made up 74% of output (at current prices) from 2001
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till 2008. Although their proportions have changed dramatically, these industries

are still the major factors that drive the GDP. Refined petroleum production is top

of the major factors that make up the manufacturing output with a percentage of

32%. Metals including aluminium constitute the second most important factor with

a proportion of 22%, while the third is chemicals production which represents 20%

of the total manufacturing output. In addition, the financial sector accounts for

nearly 21% of the economy (Bahrain Development Board, report released 2010).

Alongside, the financial sector is one of the large sectors in Bahrain’s economy

and has been growing rapidly in the past three years through many different chan-

nels. For example, as Bahrain is a heavily oil dependent country, it benefits from the

high oil prices, which led to larger bank deposits and greater financing opportunities,

in stimulating the economic activity through government spending and development

projects. High liquidity has also provided greater investment opportunities and a

high level of construction activity which can support growth in the recent period.

Moreover, public expenditure is deployed to lighten concerns over social stability.

The government’s ongoing liberalisation of utilities should also encourage more hasty

inflows of overseas investment.

In addition to the above financial sector supports, many Gulf investors shifted

their assets into the relatively well developed financial sector of Bahrain after the

collapse of Lebanon during the civil war in the 1980’s. This helped to expand

the banking sector promptly to become one of the most outstanding in the region.

Currently, Bahrain is the leading financial centre in the region, the largest in the

Arab world and includes the largest number of international bank branches in the

Gulf Cooperation Council. However, Bahrain’s financial sector faces competition

from other Gulf States seeking to diversify their economies. Steep fluctuations and

a real estate boom have raised some concerns about dangers to regional banks, which

led to the introduction of a new financial stability directorate in the beginning of

2006, charged with monitoring the financial system for potential threats. The non-

performing loan ratio for fully commercial banks operating in the domestic market

was 6.9% in June 2006. The capital to risk-weighted assets ratio of these banks

was a more than satisfactory 27.5% in mid-2005. The services sector is dominated

by banking and finance. The latter correspond to some 25% of GDP, while also

business conferencing and tourism contribute significantly to GDP too.
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Appendix B: Data-set

This appendix describes the panel of time series for the Kingdom of Bahrain econ-

omy. The whole data set for Bahrain contains 65 series over the sample period

1995:q1 - 2008:q3. The sources of the time series are the Central Bank of Bahrain

(CBB), the Central Information Organization of Bahrain (CIO), the International

Energy Agency (IEA) and the International Monetary Fund (IMF).

Since GDP is the reference series, all time series are taken in quarterly basis to

get a better picture about the economy activities and situation. Moreover, natural

logarithms were taken for all positive time series. Most of the data that are taken

from the above sources are already seasonally adjusted. Following Stock and Wat-

son (2002), Stationarity was obtained by appropriately differencing the time series,

as the principal component (PC) estimation of the factors requires stationary time

series.

Details on variables and transformation required for stationarity are provided

below.

Table 2-B.1: Data by Economic Sectors and Sources

Economic Sectors No.series Source

Industrial Production 1 IMF
Consumer Prices 2 CIO
Monetary Aggregates 6 IMF and CBB
Interest rates 4 IMF
Trade 4 IMF
Exchange rate 7 IMF
International prices 2 EIA
Other Financial Variables 39 IMF

Total 65
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Table 2-B.2: Descriptions of Bahrain Dataset

No. series Group

1 Refined Petroleum Production IndProd
2 Exchange Rate: SDR/BD ExRate
3 Exchange Rate: USD/BD ExRate
4 Exchange Rate: BD/SDR ExRate
5 Exchange Rate: BD/USD ExRate
6 Exchange Rate Index ExRate
7 Real Effective Exchange Rate ExRate
8 Nominal Effective Exchange Rate ExRate
9 M1: National Currency Money
10 M1: Seasonally adjusted Money
11 Qusai-Money Money
12 M2 Money
13 Broad Money Money
14 Reserved Money Money
15 CPI Index Prices
16 CPI % change Prices
17 Total Exports: BD TrdFlow
18 Total Exports: USD TrdFlow
19 Total Imports: BD TrdFlow
20 Total Imports: USD TrdFlow
21 Interbank Rate :% per annum IntRate
22 Treasury Bill Rate :% per annum IntRate
23 Time Deposit Rate: 3Months % per annum IntRate
24 Commercial Lending Rate-Prime: IndexNum IntRate
25 International Reserves: SDR Financial
26 Gold:Million Ounces Financial
27 Gold AC.to National Valuation: USD Financial
28 SDR Holdings: SDRs Financial
29 SDR Holding : % Allocation per Annum Financial
30 Reserve Fun Position: USD Financial
31 Foreign exchange : USD Financial
32 Foreign exchange: SDRs Financial
33 Central Bank : USD Financial
34 Actual Holds’GS: % OF QUOTA per Annum Financial
35 Fund holdings of currency: SDRs Financial
36 Commercial banks: assets: USD Financial
37 Deposit money banks: LIAB.: USD Financial
38 Foreign assets: BD Financial
39 Claims on central government: BD Financial
40 Claims on deposit money bank : BD Financial
41 Time and saving deposits : BD Financial
42 Foreign liabilities : BD Financial
43 Central government deposits : Financial
44 Capital accounts : BD Financial
45 Other items (NET): BD Financial
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Table 2-B.2 – Continued

No. series Group

46 Reserves :BD Financial
47 Foreign assets : BD Financial
48 Claims on central government : BD Financial
49 Claims on other resident sectors : BD Financial
50 Demand deposits : BD Financial
51 Time and saving deposits : BD Financial
52 Foreign liabilities : BD Financial
53 Central government deposits : BD Financial
54 Capital accounts : BD Financial
55 Domestic credit : BD Financial
56 Capital accounts : BD Financial
57 Other items (NET) : BD Financial
58 Foreign assets : BD Financial
59 Claims on central government : BD Financial
60 Claims on other resident sectors : BD Financial
61 Liquid liabilities : BD Financial
62 Foreign liabilities : BD Financial
63 Central government deposits : BD Financial
64 Oil price Int’l
65 Aluminium price Int’l
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Chapter 3

Forecasting Crude Oil Prices Using a Large Data

Set: A Dynamic Model Averaging (DMA)

Approach
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3.1 Introduction

Two thirds of the world’s total energy consumption depends on crude oil, which

plays a key role in the production process of modern economies. Hamilton (2003,

2005) shows that nine out of ten recessions in the US have been preceded by oil price

shocks. Empirical research including Hamilton (1983), Daniel (1997), Rotemberg

and Woodford (1996) and Carruth et al. (1998) also reject the hypothesis that the

relationship between oil prices and output is just a statistical coincidence.

Recently, oil prices have made the headlines of the financial press on a daily

basis. Since the beginning of 2008, the spot price of crude oil traded in the New

York Mercantile Exchange (NYMEX) has almost doubled at its peak. Considerable

and sudden fluctuations of oil prices often have significant impact on the economic

performance of both oil importing and oil exporting countries. On one hand, a

sharp increase in oil prices have a negative effect on economic growth and inflation

in oil importing countries. On the other hand, a drop in oil prices creates a se-

ries of budgetary problems for oil exporting countries (Abosedra and Baghestani,

2004). This is so because oil prices play a vital role in determining macroeconomic

aggregates, including real GDP and inflation (see the discussion in Kilian and Vig-

fusson, 2011a,b, 2013; Kilian and Lewis, 2011). Thus, an accurate forecast of oil

prices provide a useful information which helps government agencies or other pol-

icy makers to plan and manage their resources in more efficient manner.46 In this

context, predictability of oil prices is a crucial input into the policymaking process.

For example, the European Central Bank (ECB) uses oil futures prices to construct

a proxy of inflation and output-gap forecast that guides monetary policy (Svensson,

2005). Likewise, the IMF utilizes future oil prices to forecast future and spot prices.

Future-based forecasts of oil prices play an important role in policy discussion at

the Federal Reserve Board.

Unsurprisingly, many researchers have implemented various models to forecast

crude oil prices and its determinants. Empirical research on forecasting oil prices and

its components follow two main approaches. The first approach focuses on analysing

the long-term trend of oil prices by exploiting the long-run supply-demand relation-

ship. In the long run, as petroleum is an exhaustible resource, the supply-demand

46Friedman (1969) argues that there is a positive relationship between the level of inflation and
its volatility. Under such circumstances, an accurate forecast of inflation will help to reduce both
inflation and inflation uncertainty. In doing so it will increase the information content of prices
which plays a fundamental role in the efficient allocation of resources.
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relationship is the fundamental factor that determines the long term trend in oil

prices (see Hagen, 1994; Stevens, 1995).47 It is worth noting that oil inventories are

widely accepted as an important predictor of world oil prices. This is because oil

inventories reflect the disequilibrium between the demand for and supply of oil.

The second approach has been inspired by the forward rate unbiased hypothesis

(FRU). The FRU hypothesis tests the null that the forward rate is an unbiased

predictor of the future spot rate. For instance, Coppola (2008) shows that future

contracts reflect all available information of future spot of oil prices. In contrast,

Hea and Hongb (2011) reject the null that future contract is an unbiased predictor of

future spot prices. Alquist and Kilian (2010) provide evidence that the non-change

forecast (i.e., the current spot price) is a better predictor than future prices. They

argue that this result was driven by the variability of future prices about the spot

price, as captured by the oil future spread.

Empirical results concerning the key determinants of oil prices are mixed. For

example, Hamilton (2009b) using a small set of indicators supports the conventional

view that the major oil price shocks were due to significant disruptions of crude oil

production caused by geopolitical events such as the Suez crisis, the Arab-Israel war,

the Iranian revolution, the Iran-Iraq war and the Gulf war.48 Hamilton (2009a,b)

also shows that strong growth of demand for oil from new industrialized countries

and the failure of global production to increase have triggered commodity specula-

tion which made a small production decline an attractive option for Saudi Arabia.

Alternatively, Zagaglia (2010) argues that if oil futures contracts contain information

about spot prices then omitting futures prices would bias the view that oil prices

are driven by demand and supply factors. Zagaglia (2010) uses a factor augmented

vector autoregressive (FARVAR) model, and shows that financial variables include

valuable information beyond that of demand and supply factors.49 The main differ-

ence between the papers of Hamilton and Zagaglia concerns the data-set used for

explaining oil prices. The former paper uses carefully selected indicators based on

economic theory, while the latter exploits the information of a large data-set sum-

47The factors which influence the supply-demand equilibrium relationship can be grouped into
two main categories: variables that describe the role played by the Organization of the Petroleum
Exporting Countries (OPEC) in the international oil market, and variables that measure current
and future physical oil availability (Kaufmann et al., 2004) .

48Hamilton (2009b) shows that a reduction of oil production combined with low price and income
elasticity of oil demand led to large increases of oil prices.

49Zagaglia (2010) shows that although factors extracted from a large panel of data improve the
forecast performance of a model including only future contracts, one of the factors was strongly
correlated with series used as proxies of financial development.
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marised in a small number of factors. However, both authors use regression-based

methods to explain and forecast crude oil prices.

However, Koop and Korobilis (2012) have underlined three issues that regression-

based methods fail to account for.50 First, forecasting models might be subject to

structural breaks and other source of parameter instability. In this set-up, the in-

fluence that predictors have on the target variable is time-varying and recursive

methods do not capture such time variation.51 Second, the number of potential

forecasting models can be large. If there are m potential predictors the researcher

will end up with 2m forecasting models. Third, the best forecasting model might

not be constant over time.52 Structural changes concerning the monetary and fiscal

policy pursued by policy makers will affect the significance of potential predictors.

For instance, the optimal forecasting model of inflation might have changed after

the appointment of Volker as a chairman of Fed. Furthermore, forecasting output

growth in recessions and expansions might require the use of different indicators.53

Thus, regressors that are useful for explaining oil prices might be different across

periods of oil price booms and busts.

All of these issues have been addressed by Koop and Korobilis (2011, 2012) who

introduced a forecasting strategy known as dynamic model averaging (DMA). The

DMA approach allows for the best forecasting model to change over time while

parameters, at the same time, are also allowed to change. The same strategy can

also be used for dynamic model selection (DMS) where a single forecasting model

is chosen at each point of time. Although, Koop and Korobilis (2011, 2012) show

that the DMA approach outperforms standard econometric models used to forecast

macroeconomic and financial variables, this approach has not been employed before

to forecast oil prices. Here, we contribute to the literature of forecasting oil prices by

adopting the DMA and DMS approach. We also use a large data-set that embodies

147 time series variables. These variables are meant to capture the macroeconomic,

financial and geographic forces that drive oil prices.54 To the best of our knowl-

50The same approach have been used by Koop and Korobilis (2011) and Koop and Tole (2013).
51Although, recursive and rolling forecasting methods account partially for parameter variation,

Groen et al. (2013) show that it is better to build a model that allows for time variation in
parameters.

52Pesaran and Timmermann (2000) and Sarno and Valente (2009) show that best forecasting
model is time-varying.

53Pesaran and Timmermann (1995) show how the best forecasting model for stock return changes
over time.

54Details of variables, source of data and transformations are provided in Appendix (A), Table
(3-A.1).
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edge, Zagaglia (2010) is the only study that exploited a large data set to forecast

oil prices. Our empirical results can be summarised in two findings. First, we show

that the forecast generated by the DMA/DMS approach outperforms all the other

alternative models. Second, we show that the number of predictors clearly varies

across the out-of-sample forecasting period.

The remainder of the chapter is organised as follows. Section 3.2 summarises

the background and literature review, Section 3.3 explains the econometric method-

ology, Section 3.4 describes the data and empirical results, and finally Section 3.5

concludes the chapter. Description of oil market dataset, additional information

about theories and alternative oil price measures are provided in Appendix A, B,

and C, respectively.

3.2 Background and Literature Review

3.2.1 Determinants of Oil Price

There is a vast and still growing literature that aims to explain the stochastic be-

havior of oil prices. Yet, the results concerning the key indicators are mixed. For

example, Hagen (1994) and Stevens (1995) suggest that because oil is an exhaustible

resource, the price of crude oil is determined by its supply and demand balance.

Hamilton (2009a,b) argues that the recent price fluctuations were driven by a stag-

nant supply and increase in demand driven heavily by China.55 In the same con-

text, Aastveit et al. (2012) explore the role of demand from emerging and developed

economies as a driver of the real price of oil. They find that demand from emerging

economies (most notably from Asian countries) is more than twice as important

as demand from developed countries in accounting for the fluctuations in the real

price of oil and in oil production. Furthermore, Aastveit et al. (2012) find that

different geographical regions respond differently to adverse oil market shocks that

drive oil prices up, with Europe and North America being more negatively affected

than emerging economies in Asia and South America. However, the supply-demand

equilibrium is quite complex, due to many factors that can interact and accordingly

affect this relationship (de Souza e Silva et al., 2010). The crude oil market emerges

as a reflection of the interaction of numerous participants such as producers, gov-

ernments, and consumers, and the features of exogenous effects such as economic,

climate and environmental factors (Fattouh, 2007). Barsky and Kilian (2002) argue

55Tang et al. (2010) analyze the impacts of oil price on China’s economy, and results show that
an oil price increase negatively affects output and investment, but positively affects the inflation
rate and interest rate.
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that changes in monetary policy regimes are also a key factor behind fluctuations

in the price of oil. They attribute these to the sharp increase observed in oil prices

during the 1970s. Zagaglia (2010) and Fattouh et al. (2013) pay particular attention

to investigating whether financial market information can help to forecast the price

of oil in physical markets. Zagaglia (2010) states that oil price forecasts might be

biased if one omits the impact of the financial market.

Yet, as oil prices are subjected to structural breaks that might affect the stability

of the parameters, Chai et al. (2011) analyse the dynamic impact of oil market core

factors on oil price in a time-varying framework. They include the WTI crude oil

price, OPEC oil production, OECD oil inventories, and OECD oil consumption as

endogenous variables. In contrast, China’s net imports as well as dollar index are

included as exogenous variables. The main outcomes of this analysis can be sum-

marised in four perspectives. First, oil prices become more sensitive to oil-supply

fluctuations, and delays in the oil supply impact become much shorter due to de-

velopment in globalization and information technology. Second, the impact of oil

inventories on oil prices has a time lag of two quarters but has a downward trend.

Third, the impact of oil consumption on oil price has the same time lag, but its

effect is increasingly greater. Finally, the US dollar index is always an important

factor for oil price, and its power of control increases gradually; the financial crisis

that occurred in 2008 further strengthens the influence of US dollar.

Hence, the literature has explored the forecasting ability of an enormous number

of predictors, including oil-futures prices, oil inventories, the price of crack spread fu-

tures, the price of industrial raw materials (other than crude oil), the dollar exchange

rate of major broad-based commodity exporters, US and global macroeconomic ag-

gregates, and expert survey forecasts (Alquist and Kilian, 2010; Ye et al., 2005, 2006;

Murat and Tokat, 2009; Reeve et al., 2011; Chen et al., 2010; Baumeister and Kilian,

2012). Subsequently, the empirical application of crude oil price forecasting focuses

on two main approaches. The first approach explains the behavior of oil prices based

on oil market fundamentals via structural models. The second approach has been

inspired by the forward rate unbiased hypothesis (FRU) through financial models.

The two subsections below provide discussion about these two main approaches used

in the forecasting literature of crude oil prices.
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3.2.2 Structural Models

The early class of structural models comes from the theory of exhaustible resources

suggested by Hotelling (1931).56 It has been widely accepted in oil price forecasting

literature due to its early plausible results. Indeed, Pindyck (1999) is an interesting

example of how the Hotelling model is employed to construct forecasting models of

energy prices (coal, oil, and natural gas). Using a simple model, Pindyck (1999)

shows that the models perform well only in forecasting oil prices. The insights from

such frameworks have resulted in the derivation of non-structural models that fail

to account for supply of and demand for oil and other factors that affect them (Fat-

touh, 2007).

In contrast, Bacon (1991) suggests that the price of oil is highly dependent on

its market availability, which is, in turn, a function of supply and demand. This

has initially trigged the interest in utilizing structural models to evaluate the role of

OPEC in determining the price of oil (see Griffin, 1985; Hammoudeh and Madan,

1995; Tang and Hammoudeh, 2002, among others). Bacon (1991) suggests that the

main factors that determine the OPEC supply of oil are production quotas (which

are set by OPEC and affect supply decisions) and local demand by the member

countries of the cartel. Other important indicators are: overproduction, capacity

utilization, and surplus production capacity (Zamani, 2004; Dees et al., 2007). How-

ever, the success of pricing models that focus on OPEC behavior lasted for only a

short time. Many researchers underline the practical limitations of these models as

tools for analysis. Over much of the time between 1991 and early 1999, OPEC did

relatively little to adjust production in order to accommodate consumption changes,

and sometimes, when action was taken, it was either insufficient to stabilise prices

or excessive (see Ye et al., 2006).

Alternatively, since the supply of oil is determined by the world’s oil producing

countries, including non-OPEC and OPEC production, key indicators that can be

considered are not only those variables that account for the role played by OPEC.

Other variables such as geological factors (reserves and discoveries), industrial and

government stocks and oil-substitutes could be taken into account to determine the

56The theoritical model of non-renewable resource extraction proposed by Hotelling (1931) im-
plies that the price of an exhaustible resource rises over time at the interest rate in a competitive
market equilibrium. For more information, see Appendix (B).
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global supply of oil.57 Global demand for oil is associated with the direct measures

that determine world oil consumption, such as OECD and non-OECD oil consump-

tion. Other indirect factors such as world GDP growth, exchange rate and income

elasticities of demand have been also considered in the literature (He et al., 2010;

Krichene, 2006; Scandizzo and Dicembrino, 2012).

Under the scheme of the rational developments discussed above, a number of au-

thors introduce the role of relative oil inventory level as a determinant of oil prices.58

For instance, Ye et al. (2002, 2005, 2006) develop three different models based on the

oil-relative inventory level to forecast the WTI spot price. In Ye et al. (2002), the

authors develop a model based on a monthly data-set, where oil prices are explained

in terms of OECD petroleum-inventory levels. The rationale behind this research

is that inventory levels are an appropriate proxy for the demand and supply bal-

ances, or imbalances, which accordingly provide useful information for predicting

the future price of oil.59 In Ye et al. (2005), short-term forecasts of WTI spot prices

are obtained using readily available OECD industrial petroleum inventory levels.

The model developed by Ye et al. (2005) provides good in-sample and out-of-sample

dynamic forecasts for the post-Gulf War time period. The outcomes of this forecast

demonstrate that the model has good predictive accuracy and can indeed explain,

to a large extent, oil price fluctuations (for further discussion, see Ye et al., 2005;

Baumeister and Kilian, 2012; Alquist et al., 2001).

In addition, Kaufmann (1995) proposes a model that accounts for both inven-

tory level and OPEC behavior in order to improve the forecast performance of the

real price of oil. To do so, Kaufmann (1995) uses indicators that tackle changes in

market conditions (world oil demand and the level of OECD oil stocks) and OPEC

behavior (OPEC productive capacity as well as OPEC and US capacity utilization).

Likewise, both Kaufmann et al. (2004) and Dees et al. (2007) use different mod-

els that pay particular attention to OPEC behavior in order to forecast crude oil

prices. The independent variables included are the OPEC quota, OPEC overpro-

duction (i.e., the quantity of oil produced that exceeds the OPEC quota), capacity

57Kaufmann et al. (2004) suggest that factors that influence the supply-demand equilibrium can
be grouped into two main categories: variables that describe the role played by the Organization
of the Petroleum Exporting Countries (OPEC) in the international oil market, and variables that
measure current and future physical oil availability.

58Petroleum inventory changes are a measure of the balance or imbalance between supply and
demand; they reflect the changing influence on crude oil price caused by deviation from the supply-
demand equilibrium.

59A Johansen cointegration test with intercept, no trend, and four lags finds no evidence of
cointegrating relationship between WTI crude oil spot prices and total OECD inventory variable.
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utilization, and the ratio between OECD oil stocks and OECD oil demand. The key

outcome of all the studies noted above is that OPEC is still able to influence real oil

prices. In particular, Kaufmann (1995) indicates that OPEC can influence the price

of oil over the medium and long term by adjusting the rate at which it adds capac-

ity. This has stimulated the oil-price forecasting literature to take this advantage

further and to develop models that are augmented by other global demand factors

(Zamani, 2004). It has been proven that these models are helpful to industries and

governments in making oil-related decisions, and investigating the impact of changes

in inventory and OPEC production on oil prices (Weiqi et al., 2011). In contrast,

Zamani (2004) finds that OPEC can hardly influence oil prices by shutting down in

operable capacity.

Another strand in the oil price forecasting literature investigates the forecasting

ability of non-oil variables on crude oil spot prices. For example, Lalonde et al.

(2003) construct a model in which real WTI crude oil spot price is a function of

the world output gap and the real US dollar effective exchange rate gap.60 They

also estimate an alternative specification of their model by adding the change in

crude oil inventories as another key indicator for crude oil prices. The out-of-sample

forecasting results indicate that this model outperforms the random walk model and

the autoregressive model benchmarks. However, when inventory levels are excluded

from the model, the forecasting ability is inferior to that of the two benchmarks.

However, Zamani (2004) suggests that the complexity in forecasting crude oil

prices, especially in the short term, relates to several unpredictable characters both

in economic and political aspects. It is not, therefore, just demand and supply or

inventory and consumption that influence crude oil prices; to a greater extent, there

are many irregular factors that are stochastic and unpredictable. This makes the

task of forecasting crude oil prices difficult and complex. Alquist and Kilian (2010)

also show that increased uncertainty about future oil supply shortfalls under plau-

sible assumptions causes the oil futures spread to decline61 and the precautionary

demand for crude oil to increase. They claim that this has been reflected by an

immediate increase in the real spot price that is not necessarily associated with an

accumulation of oil inventories. In these respects, it can be seen that the main

problem with this framework is the large number of potential predictors that one

60When allowing for structural breaks, Lalonde et al. (2003) reject the null hypothesis that crude
oil price has a unit root. Accordingly, they estimate and forecast the level of WTI crude oil prices
with allowance for up to three structural breaks.

61Oil futures spreads are simply the differential between two future contracts.
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can consider, and the difficulty of establishing and understanding the relationships

between them.

3.2.3 Financial Models

In oil price forecasting, financial models estimate the relationship between oil spot

price at time t (St) and oil futures price at time t with maturity T (Ft) . It inves-

tigates whether future contract prices are unbiased predictors of future spot prices,

and whether they are efficient, based on the efficient-market hypothesis (EMH).62

Based on the following reference model:

St+1 = β0 + β1Ft + εt+1, (9)

the joint null hypothesis of unbiasedness (β0 = 0 and β1 = 1) should not be rejected,

and no autocorrelation should be found in the error terms (efficiency). A rejection

of the joint null hypothesis on the coefficients β0 and β1 is usually rationalised by

the literature in terms of the presence of a time-varying risk premium.63

A sub-group of models, that are also based on financial theory but have been

less investigated, exploits the following spot-futures price arbitrage relationship:

Ft = Ste
(r+ω−δ)(T−t) (10)

where r is the interest rate, ω is the cost of storage and δ is the convenience yield.64

In this context, the long-run relationship between spot and futures oil prices has

been examined and proven by many researchers (for example, see Gülen, 1998; Sil-

vapulle and Moosa, 1999; Bekiros and Diks, 2008; Lee and Zeng, 2011).65 However,

62In theory, the relationship between spot and futures prices is driven by interest rates, conve-
nience yields, and warehousing costs (Kaldor, 1939).

63For more details on theoretical models, see Appendix (B).
64See, Clewlow and Strickland (2000) and Geman (2005), among others, for details on the

arbitrage relationship in the equation (10) for energy commodities.
65Lee and Zeng (2011) revisit the relationship between spot and futures oil prices using data that

cover a relatively long period. Lee and Zeng (2011) find that the length of futures contracts, not
surprisingly, has an influence on cointegrating relationships between spot and futures oil prices.

62



testing market efficiency in this area offers mixed conclusions.66 For example, while

Quan (1992) and Moosa and Al-Loughani (1994) argue against futures market ef-

ficiency in crude oil, Gülen (1998) presents evidence that supports it.67 Studies by

Bopp and Sitzer (1987) and Bopp and Lady (1991) are in favor of market efficiency

for the short-term (i.e., one month ahead of futures price), but reject the notion

of efficiency for longer-term futures prices. Alternatively, Foster (1996) provides an

evidence for a significant time variation characteristics in the price discovery rela-

tionship, which puts forward a new view on the nature of the relationship between

oil futures and spot markets.

In a pure forecasting exercise, Zeng and Swanson (1998) examine the forecast-

ing ability of futures prices on spot prices for four commodities including crude oil

prices. Using various econometric models, Zeng and Swanson (1998) show that both

in-sample and out-of-sample forecasting exercise provides plausible results. Abose-

dra and Baghestani (2004) compare the forecasting ability of the futures price with

naive forecasts of the spot price for one, three, six, nine, and twelve-months-ahead.

They find that both the futures price and the naive forecasts are unbiased and

efficient predictors for the spot price at all forecast horizons. Yet, the one and

twelve-month-ahead futures prices are the only forecasts outperforming the naive,

suggesting their potential usefulness in policy making. Coppola (2008) shows that

oil futures are well able to predict the spot prices; however, these results stand

only for in-sample prediction. Coppola (2008) also suggests that, indeed, valuable

information for forecasting spot oil price is embedded in the long-run spot-future

relationship. Abosedra (2005) suggests that the futures price for one-month con-

tracts tends to be efficient in forecasting. This has been accepted not only by the

academics, but also by a number of institutions that use future contracts as predic-

tors and proxies for the expected spot price. For instance, the European Central

Bank (ECB) employs oil futures prices in constructing the inflation and output-gap

forecasts that guide monetary policy (see Svensson, 2005). Likewise, the IMF relies

on futures prices as a predictor of future spot prices (see, e.g., International Mone-

tary Fund 2005, p. 67; 2007, p. 42). Futures-based forecasts of the price of oil also

play a role in policy discussions at the Federal Reserve Board. However, literature

66In an efficient market, new information is reflected instantly in commodity prices. If this is
true, then price patterns are random (see Chinn et al., 2005).

67Quan (1992) suggests that the spot and futures prices of oil are cointegrated for contracts of
three months or less, but such a long-run relationship is rejected for longer-term futures contracts.
Also, Moosa and Al-Loughani (1994) find that futures prices are neither unbiased nor efficient
predictors of spot prices.
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has lately explored the potential limitations of futures-based forecasts of oil prices

(Chinn et al., 2005; Knetsch, 2007; Alquist and Kilian, 2010). Alquist and Kilian

(2010) and Alquist et al. (2001) recently provide a comprehensive evaluation of the

forecast accuracy of models based on monthly oil futures prices. They find that

there is no compelling evidence that, monthly oil futures prices are more accurate

predictors of the nominal price of oil than simple no-change forecasts. Hea and

Hongb (2011) also recently find evidence of significant serial dependence on condi-

tional mean of deviations, which is against the joint hypothesis of unbiasedness and

market efficiency in crude oil futures markets.

Alternatively, Knetsch (2007) develops a forecasting model for oil prices based

on convenience yield.68 This approach suggests shifting the forecasting problem to

the marginal convenience yield, which can be derived from the cost-of-carry rela-

tionship.69 Although the approach does not significantly improve forecast accuracy

against the random walk model, it suggests that the out-of-sample forecasts outper-

form the approach of using future prices as a direct predictor of future spot prices.

To tackle all the above issues, Zagaglia (2010) uses a large dataset that com-

prises information on both financial and fundamentals of the crude oil market.70

The dataset includes all the data that are meant to capture information on en-

ergy demand and supply, energy prices, macroeconomic, financial, and geographical

forces that move oil prices. Zagaglia (2010) argues that if oil futures contracts con-

tain information about spot prices, then omitting futures prices would bias the view

that oil prices are driven by demand and supply factors. Using a factor augmented

VAR (FARVAR) model, Zagaglia (2010) shows that although factors extracted from

a large panel of data improve the forecast performance of a model including only

future contracts, one of the factors is strongly correlated with series that are used

as proxies of financial development. This confirms that financial variables includes

valuable information beyond that of demand and supply factors.

68The theory of storage introduces the important notion of convenience yield that accrues to
the owner of the physical commodity but not to the owner of a contract for future delivery. This
convenience yield on inventory can justify backwardation situations (Gabillon, 1991).

69The cost associated with holding the commodity until the delivery date is known as the cost
of carry. The cost of carry consists of the cost of storing oil in a tank (and perhaps insurance) and
the financial cost in the form of the opportunity cost of holding oil, or the cost of funding, and
perhaps a risk premium (for more details, see Chinn et al., 2005)

70A very recent application by Baumeister and Kilian (2013) attempts to improve the forecasting
performance of real oil prices by combining six different approaches. Each approach contains
different set of predictors that cover, in general, some macroeconomic and financial information
that affect the levels of oil price. The results from this exercise propose that the gains in accuracy
are robust over time.
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One common weakness of all the approaches that have been discussed above

is that none account for the presence of structural breaks in the series, as well as

parameter and model uncertainty, which might not be suitable for a highly volatile

market such as oil market. Thus, in this chapter, we contribute to oil price fore-

casting literature in three main aspects. First, following Zagaglia (2010), we use

a large data set that includes 147 time series variables that are meant to capture

supply-demand, energy prices, macroeconomic, financial, and geographic forces that

move oil prices.71 Second, as forecasting oil price might be subjected to structural

breaks that affect the stability of parameters, a time varying parameters framework

has been considered. Third, even the most accurate forecasting models do not work

equally well at all times’. For instance, the Baumeister and Kilian (2012) oil price

forecasting model works well during times when economic fundamentals show per-

sistent variation, as was the case between 2002 and 2011, but performing less well

at other times. Likewise, there is considerable variation over time in the ability of

oil futures prices to forecast the price of oil. Hence, we adapt a model that allows

for a set of predictors to change over time. To do so, we implement dynamic model

averaging (DMA) proposed by Koop and Korobilis (2011, 2012). The DMA allow

the best forecasting model to change over time, while parameters, at the same time,

are also allowed to change. The same strategy can also be used for dynamic model

selection (DMS) where a single forecasting model is chosen at each point of time.

3.3 Econometric Methodology

The benchmark model is a naive pth-order autoregressive AR(p) model:

yt = α +

p∑
j=1

φjyt−j + εt (11)

where the target variable yt is the crude oil prices and p is the order of lags. A

multivariate extension of the AR model based on a carefully selected vector of indi-

cators is the vector autoregressive (VAR) model:

71To the best of our knowledge, Zagaglia (2010) is the only paper that employed a large dataset
to forecast oil prices.
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Yt = c+

p∑
j=1

AjYt−j + εt (12)

where Yt is a M×1 vector of indicators including the target variable (i.e., oil prices),

Aj is M ×M matrix of coefficients at lag j, c is a M × 1 vector of intercepts and εt

is a M × 1 vector of the error terms. VAR models include a small number of indica-

tors selected on the basis of an underlying dynamic stochastic general equilibrium

(DSGE) model. However, in modern economies the development of large data sets

by national statistical offices allow policy makers and forecasters to work with more

than 100 indicators. This can lead to models with a large number of indicators

and a small number of degrees of freedom. Researchers get around this problem

by summarising the information included in a large data-set in a small number of

(unobserved) common factors.

The two leading factor (or diffusion) based approaches are the static (principal

components) approach of Stock and Watson (2002a) and the dynamic (principal

components) method of Forni et al. (2003) [FHLR]. Both the static and dynamic

factor-based approaches to forecasting any target variable follow a two-step ap-

proach. First, the time series of factors is extracted from the indicators. Second,

these factors are used in forecasting. For concreteness, let yt be the scalar time series

variable to be forecasted and let Xt = [x1t, x2t,...xNt]
′ is a N−dimensional vector of

predictors. Assuming the data admit a factor structure:

xit = χit + eit = Λft + eit (13)

where Λ is a N × q matrix of factor loadings associated with the q-vector of static

factors ft = (f1t, ..., fqt)
′. The key aspect of the factor model is that the q× 1 vector

of the unobserved latent factors summarised information extracted by all N series

(where N > q).

Here, we consider the static factor approach of Stock and Watson (2002a).72 The

72Boivin and Ng (2005) show that the key difference of these two approaches is that the later
approach extract the factors from the variance covariance matrix of χit rather than the variance
covariance matrix of xit. In doing so, the dynamic principal component method of [FHLR] imposes
the factor structure on the forecasting model. However, there is no empirical evidence that the
later method outperforms the former.
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static (Stock-Watson) approach first estimates the factors f̂t by minimising
N∑
i=1

T∑
t=1

e2
it.

Then, it uses these factors in a regression at step 2 to explain yt+1; the variable of

interest. To review:

Static Step 1 : f̂t = V̂ ′Xt/N or in stacked form f̂ = XV̂ (14)

Static Step 2: Regression: yt+1 = b′f̂t + ut+1 (15)

where V̂ denotes the N × q matrix of eigenvectors corresponding to the q largest

eigenvalues of the N ×N matrix ΣN = 1
N
X ′X.

The main shortcoming of basing factor-based indicators on latent variable is that

it is difficult to explain to users what the resulting indicators represent. Alterna-

tively, although a VAR model is the reduced form of a DSGE model, it is subject to

the omitted variable problem.73 A fundamental question raised by Bernanke et al.

(2005) is whether we can explore the theoretical insights of VAR models conditional

on a richer information set. Thus, interest in combining the structural implications

of VAR models with the information of a large data-set, summarised in a small

number of factors, lead to the development by Bernanke et al. (2005) of factor aug-

mented VARs (FAVAR). The FAVAR can be written in a state-space form with the

measurement and transition equation given by:

Xt = Λfft + ΛyYt + εt (16)

[
ft
Yt

]
= Φ̃(L)

[
ft−1

Yt−1

]
+ ε̃ft (17)

where Λf is N × q factor loading matrix, Λy is N ×M matrix of coefficients, and

the N × 1 vector of errors εt is assumed either to be a mean zero i.i.d or allowed to

73A standard illustration of this omitted variable problem is the the so-called ‘price puzzle’
observed by Sims (1992). The price puzzle is a conventional finding in the VAR literature that
there is positive relationship between monetary policy shocks and inflation. Sims (1992) argues
that the price puzzle is possibly an artifact of the omitted variables problem.
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be autocorrelated.74

Alternatively, Φ̃(L) is a conformable lag polynomial of order p and εft is i.i.d

∼ N(0,Σf ). The measurement equation (16) shows that the informational variables

Xt are related to unobserved common factors and observed variables Yt. The state

equation (17) is a VAR in (f ′t , Y
′
t ) which can be reduced to the standard VAR given

by (12) if the elements of Φ̃(L) that reflect the impact of ft−1 on Yt are equal to zero.

3.3.1 Dynamic Model Averaging

To explain DMA and DMS we modify the state space model in (16) and (17) as

follow:

yt = Ztθt + εt (18)

θt+1 = θt + ηt

where yt is the target variable being forecast and Zt is an 1×m vector of predictors

contains lagged values of yt and lagged values of the q×1 vector of the unobserved la-

tent factors extracted from a large data-set Xt using principal components analysis.

θt is an m×1 vector of coefficients, εt ∼ i.i.d. N(0, Ht) and ηt ∼ i.i.d. N(0, Qt). Such

time-varying models can be estimated using standard method involving a Kalman

Filter and smoother (see Cogley and Sargent, 2005; Justiniano and Primiceri, 2008;

Koop, 2003).75

However, the model in (18) assumes that the set of predictors included in Zt

remains constant at all points in time. This might be a strong assumption as ex-

plained in the introduction. Empirical evidence provided by Koop and Korobilis

(2011, 2012) also shows that maintaining the same forecasting model over time per-

forms poorly due to over-parameterisation problems. As a result, we adopt their

strategy in this chapter and allow for K models which utilize different sets of pre-

dictors to be applicable at different time periods:

74Stock and Watson (2002a) show that while factors help to forecast the common component,
inclusion of autoregressive terms (lags of Y ) can be seen to help the forecast of the idiosyncratic
component and hence relax the assumption of i.i.d.

75For an introduction to the Kalman Filter and Smoother see Hamilton (1994) and Kim and
Nelson (2003).
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yt = Zk
t θ

k
t + εkt (19)

θkt+1 = θkt + ηkt

where Zk
t ⊆ Zt, for k = 1, 2..., K, εt ∼ i.i.d. N(0, Ht) and ηt ∼ i.i.d. N(0, Qt). The

state-space model presented in (19) allows for different best performing model to

hold at each point of time, to do model averaging (i.e. DMA) and to select the best

performing model (i.e. DMS).

The fundamental shortcoming of model (19) is how to compute the evolution of

models over time. More concretely, a random variable St ∈ {1, 2, ..K} shows the

model applied at time t. The random variable St is assumed to form a Markov

chain with transition probability matrix P = (pij)
′
ij /∈Λ. The transition probability

pij = P (St = j|St−1 = i) is the probability that the forecasting model at time t− 1

is i and will switch to model j at time t. Such Markov switching models have been

introduced to economics by Hamilton (1989) and have been widely used widely in

economics and finance since then. However, in our framework the size of transition

probability matrix will become computational infeasible even if the number of mod-

els is small. Koop and Korobilis (2011, 2012) get around the curse of dimensionality

by using an approximation method suggested by Raftery et al. (2010).

Before explaining the main ideas of the algorithm developed by Raftery et al.

(2010) it is worth noting that Bayesian estimates of a state-space model involves

Markov Chain Monte Carlo (MCMC) methods which take draws of the states con-

ditional on the parameters (i.e., θkt |Ht, Qt) and then conditional on the states draws

the other parameters.76 With the large number of models estimated in our applica-

tion the computation of MCMC will be impossible. The key aspect of the Raftery

et al. (2010) algorithm is to avoid MCMC by obtaining a plug-in estimate of Ht and

assuming Qt = (1 − λ−1)Σt−1 where 0 < λ ≤ 1 and Σt = (θt − θ̂t)(θt − θ̂t)′. Note

that θ̂t is the Kalman filter estimate of θt and λ is known as a forgetting factor in

the sense that observations j periods in the past have a weight of λj. Values of λ

close to one suggests high parameter persistent. More concretely, λ = 1 implies that

parameters remain constant. Alternatively, as λ→ 0 we end up with a model where

76For complete description of Bayesian estimation of state-space model see Koop (2003) and
Kim and Nelson (2003).
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only the last observation is used for forecasting.

The second approximation of the Raftery et al. (2010) algorithm concerns the

efficient computation of posterior model probabilities. Let πt|t−1,k denote the prob-

ability that model k is applied at time t using information up to time t − 1. We

can use πt|t−1,k either to do model averaging or selecting the best forecast perform-

ing model. Hence, DMA use πt|t−1,k to weight K different models and DMS selects

the model with the highest πt|t−1,k. If we were to use Markov switching process to

describe the evolution of K models with transition probability P and the predictive

density of model k given by pk(yt−1|yt−2, yt−3...y1) then

πt|t−1,k =
K∑
i=1

πt−1|t−1,kpij (20)

where

πt−1|t−1,k =
πt−1|t−2,kpk(yt−1|yt−2, yt−3...y1)∑K
l=1 πt−1|t−2,kpl(yt−1|yt−2, yt−3...y1)

(21)

However, we have noted above that such a strategy is computational impossible

because P is too large even for cases where K is moderately large. Raftery et al.

(2010) circumvent this problem by replacing (20) by

πt|t−1,k =
παt−1|t−1,k∑K
l=1 π

α
t−1|t−1,l

(22)

where 0 < α ≤ 1 is another forgetting factor with interpretation similar to λ but in

terms of model rather than parameter evolution. The interpretation of α becomes

apparent if we write (22) as:

πt|t−1,k ∝
t−1∏
i=1

[pk(yt−i|yt−i−1...1)]α
i

(23)

It can be seen that values of α close to one will imply that πt|t−1,k will be larger and
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the DMS will select model k at time t if it forecasted well in the recent past.77

3.4 Data and Empirical Results

3.4.1 Data

In our empirical investigation, we use monthly data-set, which covers the period

from March 1983 to December 2011. Here, Xt embodies 147 time series variables

that are meant to capture the macroeconomic, financial and geographic flow and

stock forces that drive oil prices. The complete list of the series are available from

Energy Information Administration (EIA), where the choice of filtering each single

indicator variable is reported in Table (3-A.1) represented in Appendix (A). The

first part of Table (3-A.1) shows the data available on prices of crude oil including

the refiner price of residual fuel oil and other crude oil products, landed cost of

crude oil imports from different regions cross the worldwide, F.O.B. cost of crude oil

imports, and the refiner acquisition costs. Since the focus of this chapter is to gen-

erate forecasts for real WTI spot prices,78 all nominal prices included in the data set

Xt are deflated using the Consumer Price Index (CPI) of the United States.79 The

group of indicators reflecting the impact of macroeconomic and financial variables

on oil prices consists of series such as futures prices, consumer price indices, gold

prices and exchange rates for the major world currencies. Variables representing

geographical flow and stock factors include series on crude oil production for the

major members of the Organization of the Petroleum Exporting Countries (OPEC),

Non- OPEC and world oil production including the Special Petroleum Reserves

(SPR), petroleum consumption for major industrialised countries and total OECD,

crude oil stocks, other important crude oil products stocks, petroleum stocks, and

other key information on rigs and exploratory and developments wells drilled. For

crude oil prices, this study employs the nominal WTI crude oil spot prices, which is

considered a world benchmark crude oil spot price. The monthly spot prices were

obtained from EIA and deflated using United States Consumer Price Index: for all

urban consumers, all items, to construct real prices.

Figure (3.1) below plots spot and future prices of crude oil. The important fea-

77For instance, if we use monthly data and α = 0.99 then the forecasting model used two years
ago receives 80% weight as much as the forecasting model used last period. If α = 0.95 then
forecast performance five years ago received only 30% weight.

78For more information on alternative oil price measures, see Appendix (C).
79As standard in the literature, all series are transformed to render stationarity, they are de-

meaned and standarised before extracting the principal components.
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ture of Figure (3.1) is that there are evidence of structural breaks. More concretely,

there is a drop of spot prices in 1986 from roughly $58 to $23. Subsequently spot

prices remain stable up to 2004 and since then they start increasing reaching to

$120 in 2008 before falling to $40 with a small increase at the end of our sample. To

account for structural breaks we also forecast future prices as suggested by studies

in the carbon market. This is because future prices are more stable than spot prices.

For instance, Bredin and Muckley (2011), using future prices, show evidence of sta-

ble carbon market driven by fundamentals. Alternatively, Koop and Tole (2013)

show that there is not a significant difference (in terms of RMSFE) in predicting

future and spot prices of carbon permits.

Figure 3.1: Plot of Monthly Historical Oil Prices

A number of tests have been applied to examine the degree of integration of

the real WTI crude oil spot prices. Using different conventional tests including the

augmented Dickey and Fuller (1979) (ADF), Phillips and Perron (1988) (PP), and

Elliott et al. (1996) (DF- GLS), results shown in Table (8) demonstrate that the real

WTI prices has a unit root (i.e., I(1) process), which is consistent with many papers

in literature (For example see, Coppola, 2008; Dees et al., 2007; He et al., 2010).

However, although Ye et al. (2005) find that WTI exhibits a unit root, they decided

not to use the first order difference of WTI price because of the resulting diminished

forecasting ability. Their paper obtains short-term forecasts of the level of WTI spot

prices with a good in-sample and out-of-sample dynamic forecasts for the post-Gulf

War time period. 80 The success of using the levels of non-stationary WTI prices

in the latent paper might be attributed to the weakness of the unit root test in

80Ye et al. (2006) state that not only levels are better than differenced series in forecasting the
price of oil, it is also empirically proved that while the regressions using logarithmic variables give
a constant inverse elasticity, the forecast results are not as good as those obtained from non-log
variables.
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accounting for major events, such as oil shocks observed above, and thus fail to re-

ject the null hypothesis in the presence of structural breaks. Since the conventional

tests such as ADF, PP, and DF-GLS do not account for structural breaks, they have

been criticized thoroughly in literature. To overcome this problem, Perron (1989)

propose to allow for an exogenous break in the ADF unit root test. However, Zivot

and Andrews (1992) pointed out that the choice of exogenous breakpoints based

on prior observation of the data could introduce pre-testing problems. Therefore,

they introduce an alternative formulation to endogenously search for a break point

and test for the presence of a unit root when the process has a broken constant or

trend and have demonstrated that their tests are robust and more powerful than the

conventional unit root tests. Here, since the price of oil is subjected to structural

breaks, this study uses the endogenous one break Zivot and Andrews (1992) (ZA)

test to examine whether WTI oil prices follow a unit root process or not. Zivot and

Andrews (1992) introduce three different models to test for a unit root: model A

allows for a one-time change in the level of the series; model B permits for a one-time

change in the slope of the trend function, and model C combines one-time changes

in the level and the slope of the trend function of the series.

Choosing a model from the above three models suggested by Zivot and Andrews

(1992) is a key step in order to achieve a reliable result. For example, although

Perron (1989) proposes that the majority of economic variables can be effectively

modeled using either model A or model C, a later investigation held by Sen (2003)

explains that if one uses model A when in fact the break occurs according to model

C then there will be a substantial loss in power. He also notice that if the break

is characterized according to model A, but model C is used then the loss in power

is minor, suggesting that model C is superior to model A. Ben-David and Papell

(1998) give an idea about the choice of model B. They illustrate that if the data do

not exhibits either an upward/ downward trend, then the test power to reject the

unit root null hypothesis is reduced as the critical values increase with the inclusion

of a trend variable. Oppositely, if the variable is trended, then choosing a model

without trend may fail to capture some important characteristics of the data.

Based on these findings and since the price of oil is clearly an upward trended

variable, we choose to model it using both models B and C; which test for a unit

root against the alternative of trend stationary process with a structural break in

slope and in both trend and intercept. If the results are conflicting, results of model
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C are preferred as it is considered a superior model. Table (9) represents the results

obtained from ZA test where the null hypothesis of no-break is rejected for both

models B and C at 5% and 10% level, respectively. This implies that the price of oil

in Model B is stationary around a break in November, 1997. Alternatively, Model

C suggests that the break occurs in January, 1999. Hence, we proceeded to use the

level of WTI oil prices in our forecasting framework.

3.4.2 Estimation

We compute out-of-sample forecasts for oil prices recursively from May 2003 to

December 2011.81 We used the Bayesian information criterion (BIC) and Akaike

information criterion (AIC) to select the number of lags for the AR(p) and VAR(p)

model presented in (11) and (12).82 We followed Stock and Watson (2002) and we

consider forecast from various parameterizations of (15). These include (i) a regres-

sion with q factors and an intercept

yt+1 = c+ λft + εt+1 (24)

and (ii) a regression with an intercept, lag values of factors and of the dependent

variable

yt+1 = c+ γ(L)yt + δ(L)ft + εt+1 (25)

where γ(L) and δ(L) are lag polynomials. Principal component analysis is used to

extract the factors from the 147 informational variables included in Xt. Four factors

has been selected based on the information criteria suggested by Bai and Ng (2002).

In order to provide some understanding on the information they convey, first we

examine the correlation between extracted factors with dataset variables. Then, we

regress each of the factors on the highest correlated macroeconomic variables. Table

(3.1) reports the variance explained by each of those variables with factors. The

first factor is strongly correlated with a price index of crude oil imports (Refiner

acquisition cost of crude oil, imported). This can be interpreted as a cost indicator

of the price pressure on oil prices as all five variables are price indexes and explain

81All data transformation, preliminary tests and forecasting models are done recursively.
82Results concerning the lag selection of the AR(p) and VAR(p) based on BIC and AIC are

available from the authors upon request.
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the first factor individually with relatively high variances. Second, third and fourth

factors are highly related to stock volumes of crude oil and other crude oil products.

Figure (3.2) plots the estimated factors together with the most correlated series of

dataset. On the basis of AIC and BIC we include two lags of each factor and two

lags of the dependent variable as potential predictors in (25). However, empirical

results in our experiments show that excluding the lags of the dependent variable

(i.e., γ(L)yt) improves the forecast performance of (25). Consequently, the potential

predictors in equation (25) are 13. In this set up, we could end up with tens of

thousands (i.e., 213) different models.

To overcome the problem of dimensionality concerning the number of potential

predictor, this chapter implements the the DMA and DMS approach suggested by

Koop and Korobilis (2012). This has been done by using different combination of

values for λ and α. More concretely, the values of λ and α are allowed to ranges

between 0.93 and 1.0 with an increment of 0.005. This strategy leads us to work

with 15 possible values of each of these forgetting factors and 225 combinations. The

reported results include the findings obtained from λ = α = 0.99, λ = α = 0.975,

and the best performing combinations based on minimum root mean square forecast

error (RMSFE) for each type of oil price. We denote these forecasts as best in Table

(3.4) and Table (3.6).83

This chapter also presents the results obtained from a special case of DMA/DMS

known as Bayesian model average (BMA) where both forgeting factors are equal to

one (i.e., λ = α = 1). Alternatively, models, which allow parameters to change but

the forecasting model to remain constant are used. More concretely, we look at

time-varying first and second order autoregressive models (i.e., TVP-AR(1); TVP-

AR(2)) with values of λ= 0.99 and λ = 0.95.84

3.4.3 Empirical Results

This section focuses on the forecast comparison of DMA/DMS models to various

alternative models described above. Forecast evaluation based on the RMSFE and

the Diebold and Mariano (1995) test. The DM test for the null of forecast equality

where the best DMS is used as a benchmark. In terms of forecasting models, results

83The optimal values for forecasting WTI crude oil spot price using DMA/DMS are λ = 0.93
and α = 0.93.

84All forecast models have been implemented using oil prices returns as well. However, results
are qualitatively similar.
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for the following models are reported:

1. Forecast using AR(1) and AR(2) model with intercept;

2. Forecast using AR(1) and AR(2) augmented with four factors and an intercept

(i.e.,AR(1)-F and the AR(1)-F);

3. Forecast using first order vector autoregressive (VAR(1) ) model with inter-

cept, where the variables included are: total petroleum production (world),

total OECD crude oil consumption, US treasury bill 10+, Federal fund rate

(FFR) and the US inflation;

4. Forecast using the Stock and Watson (SW) factor model. We include the

current values of four factors selected by the Bai and Ng (2002) information

criteria;

5. Forecast using FAVAR, which includes WTI spot prices, one and three months

futures prices of oil and the factors without an intercept;

6. Forecasting using first and second order autoregressive models with time-

varying coefficients (i.e., TVP-AR(1) and TVP-AR(2) );

7. Forecasting using factor model with time-varying parameter (i.e., TVP-F);

8. Forecasting using DMA with α = λ = 0.99;

9. Forecasting using DMA with α = λ = 0.95;

10. Forecasting using DMA with α = λ = 0.93. This is the best performing

DMA/DMS model;

11. Forecasting using DMA with α = λ = 0.975;

12. Forecasting using DMA with α = 0.93 and λ = 1; and

13. Forecasting using BMA as a special case of DMA (i.e., α = λ = 1).

Table (3.2) presents OLS estimates of three models. The first model includes

four factors selected based on the test suggested by Bai and Ng (2002). The second

model adds to the first model two lags of the dependent variable. Finally the third

model augments the second model with two lags of each factor.85 Results show that

85We use the BIC to select the number of lags in model (2) and model (3).
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in model (1), all four factors are significant. However, as the number of indicators

are increased, many of them are not significant. For instance, in model (3), many

of the factors and their lagged values were found to be insignificant. At least one of

the lags of the dependent variable is insignificant. Evidence that many of the pre-

dictors being insignificant is what we expect to find if the predictors are correlated

with one another and their significance is time-dependent (see Koop and Tole, 2013).

Tables (3.3) and (3.4) present the RMSFE of classical and Bayesian models for

four forecast horizons h = one, four, six and twelve. The key message of these

results is that the DMA/DMS approach outperforms any of the other alternatives.

Figure (3.3) plots the actual and the forecasted values of the price of crude oil for

the best performing DMA and DMS models. It illustrates that both models forecast

better for short hrizons rather than long horizons. However, it is worth noting that

there is model rather than parameter variation. This is because although the time-

varying models perform poorly, the DM test presented in Table (3.6) shows that

the DMA model is not significantly different from the BMA.86 An exception to this

is the best DMS model which outperforms the BMA\ BMS models at all forecast

horizons. More specifically, the DM test shows that at forecast horizons of one, six

and twelve the best DMS model, used as a benchmark, is significantly different from

the other forecasting models.87 The poor forecast performance of the TVP-AR(2)

model justifies our choice to exclude the lagged dependent variables from the general

model given by (25). The TVP-AR(2) model performs worse than the BMA which

implies that exploring a large data set, by using factor models, brings benefits in

terms of forecasting crude oil prices. This is consistent with the better forecast per-

formance of the autoregressive models augmented with four factors (i.e. AR(1)-F

and AR(2)-F) than the performance of autoregressive models both with a constant

and time-varying coefficients.

Evidence that the extra information conveyed by the four factors outweight the

information of lagged dependent variables raises questions whether the DMA favor

parsimonious models. Figure (3.4) shows the expected number of predictors for each

forecasting exercise. For example, if we let Sizek,t be the number of predictors in

model k at time t then

86The BMA is the same as the DMA except that the parameter variation is relaxed.
87It is worth noting that for forgetting factors λ = α = 0.975 and forecast horizons above one,

the forecast performance of DMA and of DMS models is equal to the forecast performance of the
best DMS model.
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E(Size) =
k∑
k=1

πt|t−1Sizek,t (26)

is the expected number of predictors included in a DMA at time t. The results in-

dicate that for certain periods and forecast horizons we might argue that the DMA

approach favors parsimonious models. Although the maximum number of indica-

tors is twelve, Figure (3.4) shows that for the forecast horizon h = 1 and for the

period up to mid 2007 the number of predictors is nine, after 2008 the number of

predictors falls to eight. Alternatively, for forecast horizons above one and for the

period before 2007 the number of predictors is jut below eight and increases to nine

after 2008.88 Figure (3.4) indicates the number of predictors selected at each point

of time but it does not provide any information about what these indicators are.

Figure (3.5) illustrates the posterior importance of the four factors and their

two lags at all forecast horizons. The posterior importance indicates the probability

that the DMA attaches to models that include any particular indicator. There is

clear evidence that for most of the sample the posterior importance of all twelve

indicators is higher than 0.4. The importance of each indicator varies across time

and forecast horizon. For example, for the one-step ahead forecast the probability

that the current value of the first factor is included in the DMA is high at the be-

ginning of the sample; almost 0.7, but it declines to low values after 2006. Also the

weight of the first factor information decreases significantly to 0.3 at 12-steps ahead

forecast. This might be attributed to the price information included in this factor,

which comprises the refiner acquisition cost of crude oil, landed cost of crude oil

imports, and average F.O.B. cost of crude oil imports. Oil prices are thus found to

be highly responsive to costs in the short-run. Alternatively, the other three factors

that provide information about the physical availability of crude oil such as stocks

and consumption data receive less value in the forecasting exercises at short-run

horizons. In the long-run, these fundamental inputs worth much more than the

costs data and significantly improve the forecast performance. Figure (3.6) shows

the best DMS and the probability of being selected. It is rather striking that al-

though the DM tests show that best DMS outperforms any other alternative the

probability of being selected is low. Thus, it is rather inadequate to rely only on the

model constructed by the DMA approach.

88The size of model reduction achieved in our exercise by using the DMA approach is not
comparable with similar exercises implemented by Koop and Korobilis (2012, 2011) and Koop and
Tole (2013).
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Table (3.7) presents the results obtained from a forecasting exercise, where the

target variable is the price of crude oil future contract. Table (3.7) shows in line with

the argument of Bredin and Muckley (2011) that it is easier to forecast future prices

rather than spot prices. There is strong evidence across all forecast horizons and all

models that the RMSFE is lower when the target variable is the future prices rather

than the spot prices. This is not surprising because as argued by Bredin and Muck-

ley (2011) and illustrated in Figure (3.1) future markets are less subject to structural

breaks. Although, it is easier to forecast future prices rather than spot prices there

is the argument that future prices might be a poor proxy of expected spot prices.

Then, we use the relevant future prices in order to compute the RMSFE presented

at the last row of Table (3.4). Results illustrate that the future prices used as a

forecasting model outperforms all other alternatives except the best DMS model.

The latter produces more accurate forecast in terms of RMSFE than future prices

at all forecast horizons.89

3.5 Conclusion

Considerable and sudden fluctuations of oil prices have important implication for

future inflation and economic growth. For this reason among others, future oil prices

have been used by the ECB and FED as an important input into the policy making

process. Therefore, it is not surprising that researchers have developed several dif-

ferent models to predict future oil prices. However, empirical researchers have failed

to account for structural breaks, parameter and model uncertainty in forecasting oil

prices. This chapter first exploits information from a large data-set that embodies

147 time series variables. Then, the DMA approach suggested by Koop and Koro-

bilis (2012) is implemented in order to account for all three issues noted above. This

approach; which has not been employed before in forecasting oil prices, allows for

both the best forecasting model and parameters to change overtime.

The empirical results show that the forecasting models generated by the DMA

and DMS outperform any other alternative model. Results also illustrate that there

is model rather than parameter variation. For instance, not only the time-varying

parameter models perform poorly but also DMA is not significantly different from

the BMA. Furthermore, the results suggest that the DMA and the DMS are comple-

89It’s worth noting that for h=1 future prices perform better than the best DMS model.
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mentary rather than mutually exclusive. This is because although the best perform-

ing DMS model outperforms all other alternatives the probability of being included

in the DMA is low. Finally, this exercise shows that although it is easier to forecast

prices of future contracts, the best DMS model has better forecasting performance

than the model based on future contracts.
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Table 8: Results of unit root test without accounting for struc-
tural break

Variable ADF (lags) PP DF-GLS(lags)

log (WTI) -2.539 (4) -0.814 -1.811 (1)

Note: Linear trend is included. The critical values of the ADF, PP, and DF-
GLS tests at 5% level are: -3.427, -1.950, and -2.893, respectively. Number in
parentheses shows the number of lags included in the estimation.

Table 9: Results of ZA unit root test with one structural break

Variable
Model B Model C

t-statistics Break year t-statistics Break year

log(WTI) -4.798** (1) 1997:11 -5.060* (1) 1999:01

Note: The critical values of Model B are: -4.93, -4.42, and -4.11 at 1%, 5%, and
10% level. For Model C, the critical values are: -5.57, -5.08, and -4.82 at 1%,
5%, and 10% level. ***, ** and * denote significance at the 1%, 5% and 10%
respectively. Number in parentheses shows the number of lags included using t-
test which is based on mean comparison.
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Table 3.1: Share of Explained Variance of Highly Correlated Series

Factor 1 R2

Refiner Acquisition Cost of Crude Oil, Imported 0.9353
Landed Cost of Crude Oil Imports From All Non-OPEC
Countries

0.9341

Refiner Acquisition Cost of Crude Oil, Composite 0.9327
Landed Cost of Crude Oil Imports 0.9296
Average F.O.B. Cost of Crude Oil Imports From All
Non-OPEC Countries

0.9228

Factor 2

US Ending Stocks of Asphalt and Road Oil 0.3169
Other Petroleum Products Stocks 0.1123
Petroleum Consumption, Japan 0.0692
US Ending Stocks of Gasoline Blending Components 0.0672
US Ending Stocks of Total Gasoline 0.044
Petroleum Consumption, South Korea 0.0441

Factor 3

US Ending Stocks excluding SPR of Crude Oil and
Petroleum Products

0.5093

Total Petroleum Stocks 0.5064
US Ending Stocks of Crude Oil and Petroleum Products 0.5055
Other Petroleum Products Stocks 0.2193
Crude Oil Stocks, Non-SPR 0.2097

Factor 4

Crude Oil Stocks, Non-SPR 0.2931
US Ending Stocks excluding SPR of Crude Oil 0.2886
Crude Oil Stocks, Total 0.285
US Ending Stocks of Crude Oil 0.2779
Other Petroleum Products Stocks 0.1605

Note: This table reports R2 of univariate regressions of factors on macro variables. We report
the five variables with the highest correlation with the factors
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Table 3.2: Unrestricted Regressions of WTI Spot Prices on Factors

Model I Model II Model III

Constant 0.0004 0.0003 0.0004
(0.0019) (0.0017) (0.0002)

L(1)WTI -0.1789*** -0.0379
( 0.0247) (-0.0559)

L(2)WTI -0.0092 -0.0879*
( 0.0228) (0.0533)

Factor 1 0.1717*** 0.1877*** 0.1929***
( 0.0043) (0.0045) (0.0049)

Factor 2 0.0308*** 0.0271*** 0.0115
(.0069) ( 0.0066) (0.0008)

Factor 3 0.0140* 0.0171** 0.0040
( 0.0079) ( 0.0075) (0.0009)

Factor 4 -0.0154* -0.0242*** -0.0484***
(0.0086) ( 0.0081) (0.0097)

L(1)Factor 1 -0.0423***
(0.0123)

L(1)Factor 2 0.0139
(0.0089)

L(1)Factor 3 -0.0086
(0.0082)

L(1)Factor 4 -0.0029
(0.0099)

L(2)Factor 1 0.0239**
(0.0107)

L(2)Factor 2 0.0335***
(0.0091)

L(2)Factor 3 0.00329
(0.0078)

L(2)Factor 4 0.00768
(0.0096)

R2 0.8291 0.8546 0.8709

Note: This table shows the results obtained from unrestricted regressions of WTI spot prices
on factors.
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Table 3.3: Measures of Forecast Performance for Classical Models: h-step
ahead forecast RMSE

Classical models 1- Step 4- Step 6- Step 12- Step

AR (1) 0.9596 1.8172 2.1029 2.3304
AR (2) 0.8822 1.7617 2.0833 2.3107
VAR (1) 0.9297 1.6670 1.8423 1.8525

AR (1)-F 0.9083 1.4087 1.7165 2.1168
AR (2)-F 0.8653 1.4446 1.6787 2.0914
SW (4) 1.0008 1.1073 1.4781 1.9713

FAVAR 0.8756 1.5919 1.6702 1.7992

Note: This table shows the results obtained from forecasts performance tests that aim in pre-
dicting WTI crude oil prices. The upper row shows the number of forecast horizon. The models
in the first column are: first order autoregressive (AR(1)), second order autoregressive (AR(2)),
first order vector autoregressive model (VAR (1)), first order autoregressive augmented with
levels of four factors (AR(1)-F), second order autoregressive augmented with levels of four
factors (AR(2)-F), static stock & Watson factor model (SW), and factor augmented vector
autoregression (FAVAR)
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Table 3.4: Measures of Forecast Performance for Bayesian Models: h-step
ahead forecast RMSE

Bayesian TVP- models 1- Step 4- Step 6- Step 12- Step

λ = 0.99
TVP-AR (1) 0.9240 1.9152 2.3080 2.6310
TVP-AR (2) 0.8815 1.9040 2.3381 2.6578
λ = 0.95
TVP-AR (1) 0.9315 1.8113 2.0613 2.0766
TVP-AR (2) 0.8829 1.7671 2.1095 2.1119
λ = α = 1.0
BMA 0.48640 1.0931 1.2901 1.5147
BMS 0.48524 1.0559 1.2852 1.5099
λ = α = 0.99
DMA 0.4838 1.0818 1.2793 1.4999
DMS 0.4793 1.0476 1.2599 1.4709
λ = α = 0.975
DMA 0.4822 1.0969 1.3006 1.4736
DMS 0.4639 1.0285 1.2563 1.4125
λ =1, α = 0.93
DMA 0.4782 1.0676 1.2837 1.5034
DMS 0.4219 0.8984 1.1585 1.3474
λ = α = 0.93
DMA (Best) 0.4874 0.9859 1.1667 1.2465
DMS (Best) 0.4281 0.7857 1.0224 1.0629
Future 0.4007 0.8375 1.04623 1.47165

Note: This table shows the results obtained from forecasts performance tests that aim in
predicting WTI crude oil prices. The upper row shows the number of forecast horizon. The
models in the first column are: time varying parameter-first order autoregressive (TVP-AR(1)),
time varying parameter-second order autoregressive (TVP-AR(2)), bayesian model averaging
(BMA), bayesian model selection (BMS), dynamic model averaging (DMA), and dynamic
model selection (DMS).

Table 3.5: Measures of Forecast Performance for Classical Models: : DM-
relative to best DMS

Classical models 1- Step 4- Step 6- Step 12- Step

AR(1) -3.4730 -2.7706 -5.5987 -6.3613
AR (2) -3.9452 -2.9963 -4.3288 -8.1974
VAR (1) -3.3845 -2.0633 -4.1246 -5.5772
AR (1)-F -3.5828 -2.9802 -2.4886 -8.4257
AR (2)-F -3.5527 -2.8989 -3.3810 5.9114
SW (4) -3.4292 -3.8788 -1.9954 -1.9805
FAVAR -3.3796 -3.1480 -4.0099 -1.9960

Note: This table shows the results obtained from forecasts performance tests that aim in pre-
dicting WTI crude oil prices. The upper row shows the number of forecast horizon. The models
in the first column are: first order autoregressive (AR(1)), second order autoregressive (AR(2)),
first order vector autoregressive model (VAR (1)), first order autoregressive augmented with
levels of four factors (AR(1)-F), second order autoregressive augmented with levels of four
factors (AR(2)-F), static stock & Watson factor model (SW), and factor augmented vector
autoregression (FAVAR)
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Table 3.6: Measures of Forecast Performance for Bayesian Models: DM-
relative to best DMS

Bayesian TVP- models 1- Step 4- Step 6- Step 12- Step

λ = 0.99
TVP-AR (1) -3.6895 -2.1934 -2.8441 -2.5485
TVP-AR (2) -4.7397 -2.4098 -2.0495 -2.5962
λ = 0.95
TVP-AR (1) -3.6678 -2.9489 -2.4245 2.1885
TVP-AR (2) -6.4867 -2.2400 -2.9861 2.7401
λ = α = 1.0
BMA -3.9573 -1.8150* -2.9449 -2.8571
BMS -3.8694 -1.7087* -2.8978 -2.7895
λ = α = 0.99
DMA -3.9249 -1.6232* -2.7112 -2.7999
DMS -3.8093 -1.3293* -2.5287 -2.8176
λ = α = 0.975
DMA -4.0746 -1.3428* -1.7368* -2.0018
DMS -2.9247 -1.1625* -1.5098* -1.8737*
λ = 1, α = 0.93
DMA -4.0034 -1.6292* -2.8024 -2.7598
DMS 0.6466* -0.8278* -2.4800 -2.3026
DMA (Best) -6.7704 -1.3323* -2.5630 -2.4659

Note: This table shows the results obtained from forecasts performance tests that aim in
predicting WTI crude oil prices. The upper row shows the number of forecast horizon. The
models in the first column are: time varying parameter-first order autoregressive (TVP-AR(1)),
time varying parameter-second order autoregressive (TVP-AR(2)), bayesian model averaging
(BMA), bayesian model selection (BMS), dynamic model averaging (DMA), and dynamic
model selection (DMS).
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Table 3.7: RMSE for Bayesian TVP models (e = Fh − Ŝh)

1- Step 4- Step 6- Step 12- Step

WTI-Spot price
λ =α = 1.0
BMA 0.1315 0.3804 0.4133 0.58747
BMS 0.1420 0.3688 0.4288 0.5821

λ =α = 0.99
DMA 0.1202 0.3484 0.4228 0.5620
DMS 0.1453 0.3462 0.4275 0.5762
λ =α = 0.95
DMA 0.2079 0.4347 0.5664 0.6032
DMS 0.2348 0.5055 0.6036 0.6631
λ =α = 0.975
DMA 0.1459 0.3574 0.5513 0.5621
DMS 0.1703 0.3956 0.5628 0.5771

λ =α= 0.94
DMA 0.2286 0.4848 0.5546 0.6205
DMS 0.2454 0.8322 0.6304 0.7478

λ =α = 0.93
DMA 0.2468 0.8802 0.5529 0.6424
DMS 0.2631 0.8432 0.6643 0.8024
λ = 0.93, α = 0.94
DMA 0.2471 0.5437 0.5544 0.6388
DMS 0.2512 0.8584 0.6676 0.7953

Note: Table entries are the results obtained from a forecasting exercise where the target variable
was the price of crude oil future contract. The upper row shows the number of forecast horizon.
The models in the first column are: Bayesian model averaging (BMA), Bayesian model selection
(BMS), Dynamic model averaging (DMA), and Dynamic model selection (DMS).
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Figure 3.4: Expected Number of Predictors Chosen by DMA
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Figure 3.5: Posterior Importance of Factors in DMA
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Figure 3.6: Best Choosen Model (DMS) at each Point of Time
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B Theoretical Background

There are three main separate economic theories that focus on predictions for the

dynamic behavior of crude oil prices, which should all hold in equilibrium as briefed

below:

B.1 Scarcity Rent

In the case of an exhaustable resource; such that of oil, Hotelling (1931) emphasized

that the price should exceeds marginal cost and would exhibit particular dynamic

behavior over time even if the oil market were perfectly competitive.90 If there is

any unavoidable geological limits for example, global production of crude oil next

year could be less than the amount being produced this year. Under such condition,

buying the oil today in order to store it in a tank for a year, and wait to sell it into

the next year’s would be favorable. It would be even more efficient, however, for the

owner of any oil reservoir to ‘store’ the oil directly by just leaving it in the ground,

waiting to produce it until the price has risen (Hamilton, 2009a).

This scarcity rent at time t, λt , as the difference between price Pt and marginal

production cost Mt as following:

λt = Pt −Mt (3-B.1.1)

suppose the owner produces the oil today and invests the profits at interest rate it.

Then in the next year, the owner would have (1 + it)λt. If that is bigger than the

benefit from producing next year (i.e. (1+ it)λt > λt+1), then the owner is better off

producing more today and leaving less in the ground. Under a reversed inequality

in the above condition, the owner better off producing less. Thus in equilibrium,

Hotelling’s principle claims that the scarcity rent should rise at the rate of interest

as below:

Pt+1 −Mt+1 = (1 + it)(Pt −Mt) (3-B.1.2)

The initial price P0 is then determined by the transversality condition that if the

90Perfect competitive market is the market such that nor participants are large enough to have
the market power to set the price of a homogenous product.
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price Pt follows the dynamic path given by (3-B.1.2) from that starting point, the

cumulative production converges to the total recoverable stock as t→∞.

Although Hotelling’s theory and its extensions are elegant,91 there are challenges

in using it to explain the observed data. Krautkraemer (1998) surveyed some of the

literature in this area, a fair summary of which might be that efforts along these

lines are ultimately not altogether satisfying. As a result, many economists often

think of oil prices as historically having been influenced little or not at all by the

issue of exhaustibility.

B.2 Returns to Storage

As it is possible to invest by borrowing money today (denoted date t) in order to

purchase a quantity Q barrels of oil at a price Pt dollars per barrel and the agent

pay a fee to the owner of the storage tank of Ct dollars for each barrel stored for a

year, then there will be a need to borrow (Pt + Ct)Q total dollars. Next year the

agent must pay this back with interest, owing (1 + it)(Pt + Ct)Q dollars for it the

interest rate. However, the agent will have the Q barrels of oil that can be sell for

next year’s price, Pt+1. The agent can make profit only if the following condition

holds:

Pt+1Q > (1 + it)(Pt + Ct)Q (3-B.2.3)

The agent doesn’t know today what next year’s price of oil will be, but there

are some available information that can help to draw expectation which could be

denoted as EtPt+1. From (3-B.2.3), profit from oil storage is expected whenever:

EtPt+1 > Pt+ C∗t (3-B.2.4)

where C∗t reflects the combined interest and physical storage expenses:

C∗t = itPt + (1 + it)Ct (3-B.2.5)

Suppose investment agents did expect Pt+1 to be greater than Pt + C∗t . Then any-

one could expect to make a profit by buying the oil today, storing it, and selling it

91See Pindyck (1978) for more discussion on estimation of optimal pricing models for exhaustible
resources, taking into account the effects of cartelization in the oil market
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next year. If there are enough potential risk neutral investors, the result of their

purchases today would be to drive today’s price Pt up. Knowledge of all the oil

going into inventory today for sale next year should reduce a rational expectation of

next year’s price EtPt+1. As long as the inequality (3-B.2.4) held, speculation would

continue, leading us to conclude that (3-B.2.4) could not hold in equilibrium.

If the inequality were reserved, then anyone putting oil into storage is expecting

to lose money. However, this does not mean that storage become zero, because

inventories of oil are essential for the business of transporting and refining oil and

delivering it to the market. This is equivalent to a negative storage cost for oil

in the form of a benefit to your business of having some oil in inventory, which is

referred to as a ‘convenience yield’. We might then subtract any convenience yield

from physical and interest storage costs C∗t to get a magnitude C]
t , the net cost of

carry. If EtPt+1 < Pt + C]
t holds, there is an incentive to sell oil out of inventories

today, driving Pt down and C]
t up. Thus, we conclude that the following condition

should hold in equilibrium:

EtPt+1 = Pt + C]
t (3-B.2.6)

Insofar as expectations, convenience yield and risk premia are impossible to observe

directly, one might think that (3-B.2.6) does not imply any testable restrictions

on the observed relation between Pt+1 and Pt.
92 It seems inconceivable that risk

aversion or convenience yield would exhibit quarterly movements of anywhere near

this magnitude. The implication of (3-B.2.6) is that big changes in crude oil prices

should be mostly unpredictable. Given that it is the big changes that dominate this

series statistically, the finding in the previous section that oil price changes are very

difficult to predict is exactly what the theory sketched here would lead us to expect.

B.3 Futures Markets

Instead of storage, entering into a futures contract is an alternative investment strat-

egy, which would be an agreement the agent reach today to buy oil one year from

now at some price, Ft, at a price agreed today by both of them. If the agent agreed

92We could in principle modify our definition of the cost of carry C]t further to incorporate any
risk premium that may induce investors to want to hold more or less inventories.
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to buy oil at the price Ft, then the profit will exist whenever Ft < Pt+1 . In this

case, the agent will be able to re-sell the oil on next year’s spot market at price Pt+1,

where the difference is a pure profit. In such case, equilibrium requires the following:

Ft = EtPt+1 + H̃t (3-B.3.7)

where H̃t is a term incorporating any risk premium or complications induced by

margin requirements. Note that (3-B.3.7) is not an alternative theory to (3-B.2.6)-

both conditions have to hold in equilibrium. For example, if there were an increase

in Ft without a corresponding change in Pt, that would create an opportunity for

someone else to buy spot oil at time t for price Pt, store if for a year, and sell it

through a futures contract. If we chose to ignore cost of carry and risk premia, con-

ditions ( 3-B.2.6) and (3-B.3.7) together would imply that the futures price simply

follows the current spot price, Ft = Pt. In practice, one finds in the data that the

futures price and spot price differ, but often not by much, and when news causes the

spot price to go up or down on a given day, futures prices at every horizon usually all

move together in the same direction as the change in spot prices. Enormous studies

aim to understand the predictive power of futures prices and the nature of the re-

lationship between oil spot and futures price. For instance, Bopp and Sitzer (1987)

found that futures prices quoted one month ahead significantly contributed to the

price forecasting models. But, futures prices quoted more than one month ahead

did not. Chinn et al. (2005) stated that futures do not appear to well predict sub-

sequent movements in energy commodity prices, although they slightly outperform

time series models. Studies by Bopp and Lady (1991), Abosedra and Baghestani

(2004), and Alquist and Kilian (2010) found that Pt provides as good or even a

better forecast of Pt+s than does the futures price Ft.

C Measures of Oil Price

The crude oil pricing system was first under the control of large multinational oil

companies. Then the Organization of the Petroleum Exporting Countries (OPEC)

was formed to try to counter the oil companies cartel, and had achieved a high level
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of price stability until 1972.93 After the collapse of the OPEC-administered pricing

system in 1985, the oil pricing regime experienced a short lived experiment with

netback pricing, which was associated by means of a dramatic price collapse during

most of 1986 (Fattouh, 2011).

Currently, the main method for pricing crude oil in international trade is known

as market-related pricing system. It has been introduced in the second half of the

1980s and received a wide acceptance by 1988. The oil prices associated with this

pricing system are set by ‘market’. Since, crude oil is not a homogenous commodity,

there are various types of internationally traded crude oil with different qualities and

characteristics.94 In the current system, the prices of these crudes are usually set at

a discount or premium to a marker or reference price according to their quality (Fat-

touh, 2006). The variation of the quality depending upon crudes sulfur and gravity

contents, which are meant mainly for two primary products including gasoline and

heating oil. This implies that different crudes fetch different prices.

Based on crudes quality, there are four major pricing benchmarks in crude oil

world.95 First, West Texas Intermediate (WTI) crude oil, which is of a very high

quality. It has a light-weight and low sulphur content. For these reasons, it is often

referred to as ‘light, sweet’ crude oil. These properties make it excellent for making

gasoline, which is why it is the major benchmark of crude oil in the Americas. Sec-

ond, Brent Blend crude oil, which is a combination of crude oil from 15 different oil

fields in the North Sea. It is less ‘light’ and ‘sweet’ than WTI, but still excellent for

making gasoline. Third, Dubai crude oil, which is the benchmark crude oil repre-

senting the medium-heavy sour crude oils traded in the Middle and Far East. Fourth

is the Maya crude oil, representing the heavy sour crude oils sold at a significant

discount compared to WTI and Brent. Only the best known WTI and Brent crudes

have a similar quality and are actively traded in highly liquid future market with

low transaction costs, facilitating speedy price adjustment through arbitrage oper-

ations. In contrast, Dubai has only forward contracts, tradeable over the counter,

and Maya is illiquid, since it is not actively traded on any oil futures market.96

93OPEC has been created in 1960 to coordinate and unify petroleum policies among Member
Countries. The role of the OPEC was not only to secure fair and stable prices for petroleum
producers, it was extended to guarantee an efficient economic, and regular supply of petroleum to
consuming nations, and a fair return on capital to those investing in the industry.

94For detailed discussion on history of oil price regimes, see Mabro (2005).
95See Bacon (1991) for more details on crudes benchmarks.
96See Fattouh (2010) for more discussion on the dynamic behavior of crude oil price differentials.
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The prices of these benchmark crudes, often referred to as ‘spot’ market prices,

are central to the oil pricing system. The prices of these benchmarks are used by oil

companies and traders to price cargoes under long-term contracts or in spot market

transactions, by futures exchanges for the settlement of their financial contracts,

by banks and companies for the settlement of derivative instruments such as swap

contracts, and by governments for taxation purposes (Fattouh, 2011).

Empirical studies that include oil prices had diversified the measures of crude oil

prices for different purposes. Among others, Yu et al. (2008) propose an empirical

model for world crude oil spot price forecasting. They use two main crude oil price

series including WTI and Brent spot prices to test and verify the model efficiency.

Chen and Chen (2007) investigate the long-run relationship between real oil prices

and real exchange rates considering different measures of oil prices including the

world price of oil, the United Arab Emirates price of oil (Dubai), the British price

of oil (Brent), and the US West Texas Intermediate price of oil (WTI). However,

in literature WTI has been widely used by enormous studies aiming to forecast

and analyse the stochastic behavior of crude oil price. This is so, because WTI is

the available for a larger period and is excessively traded in New York Mercantile

Exchange (NYMEX). For instance, Hamilton (1983, 1985) analyse the relationship

between WTI crude oil prices and the US GNP. He et al. (2010) investigates the

cointegrating relationship between WTI prices with the global economic activity.

Others like Coppola (2008); Ye et al. (2002, 2005, 2006), and Zagaglia (2010) con-

struct forecasts of WTI crude oil prices.

The nominal price of crude oil receives much attention in the press. However,

the variable most relevant for economic modeling is the real price of oil.97 Many

authors specify their models in terms of real price of oil such as that of Elder and

Serletis (2010), Herrera et al. (2011), Lee et al. (1995), Mork (1989), and Zamani

(2004). However, Alquist et al. (2001) propose that there is still a need of empirical

studies that employ real price of oil rather than nominal prices. In this chapter, our

focus is to generate forecasts both for real spot and future prices. Thus, we use the

spot and futures prices of WTI crude oil, and deflate all the nominal prices using

the Consumer Price Index (CPI) of the US.

97For further discussion of the distinction between nominal and real energy prices see, e.g.,
Hamilton (2005) and Kilian (2008).
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Chapter 4

Analysing The Long-run Relationship between

Oil consumption, Nuclear energy consumption,

Oil price and Economic growth
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4.1 Introduction

In recent years there have been concerns among economists about the relationship

between energy consumption and economic growth. Early models such as that of

Solow (1956) do not explain how improvements in technology come about, since

this model assumes that technological change is exogenous. More recently, the main

stream of growth models of Aghion and Howitt (2009) do not include resources or

energy. However, many researchers believe that energy plays a crucial role in eco-

nomic growth view energy as being an important factor in explaining the industrial

revolution (e.g. Wrigley, 1990; Allen, 2009). Furthermore, some authors such as

Cleveland et al. (1984), Hall et al. (1986) and Hall et al. (2003) argue that there are

two main determinants for the noticeable growth in productivity. They are increase

in energy use, and the fact that innovation in technological change mainly increases

productivity by allowing the use of more energy. Therefore, high level of energy

consumption is an important factor in stimulating economic growth. This fact has

triggered interests in identifying the nature of the relationship between energy con-

sumption and economic growth in order to design an effective energy policy that

promotes economic growth.

In these efforts, Apergis and Payne (2010a) shed light on the relationship be-

tween energy consumption and GDP growth and explain how energy policies and

their objectives may affect GDP under four major hypothesis. First, under the

growth hypothesis, energy saving policies that reduce energy consumption may have

an adverse impact on real GDP.98 Accordingly, negative energy shocks and energy

conservation policies may depress economic growth. Second, the conservation hy-

pothesis proposes that an implementation of a conservation energy policy, would

not slow down economic growth. Third, the neutrality hypothesis suggests that

energy consumption has little or no impact on GDP; therefore, energy conservation

policies do not affect economic growth (Asafu-Adjaye, 2000). Fourth, the feedback

hypothesis implies that energy consumption and economic growth are jointly deter-

mined and affected at the same time. This encourages the implementation of energy

expansionary policies for long run sustainable economic growth.

Despite the great significance of a possible relationship between energy consump-

tion and economic growth, there is no consensus yet either on the existence and on

98This impact is so because the economy is very dependent on energy to grow (Masih and Masih,
1997).
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the direction of causality between them (Ozturk, 2010). These conflicting results

may arise due to different data set, countries’ characteristics, variables used, and

different econometric methodologies employed (Ozturk, 2010; Menegaki, 2014). The

findings from studies vary not only across countries, but depend also on different

methodologies within the same country (Soytas and Sari, 2003). Energy consump-

tion variables that are utilised in the existing literature are generally total energy

consumption or electricity consumption (Alvarez-Ramirez et al., 2003). However,

Sari and Soytas (2004) argue that the use of aggregate energy consumption or elec-

tricity consumption, rather than utilising different energy resources, may be another

reason behind the inconsistency in the empirical studies’ results. It is possible that

the importance of a certain energy resource for a country changes over time, which

implies that distinguishing the relationship between energy consumption and eco-

nomic growth based on empirical analysis requires utilising different energy sources

rather than using aggregate energy consumption (Sari and Soytas, 2004). The lack

of agreement on the direction of causality provides a channel for analysing and dis-

cussing the nature of the relationship between energy consumption and economic

growth. Vaona (2012) tests for causality between energy use and GDP in Italy using

three different approaches, including the Toda and Yamamoto (1995) procedure, the

Johansen cointegration test, and the Lütkepohl et al. (2004) cointegration test. In

the Vaona (2012) paper, energy has been disaggregated into renewable and non-

renewable energy (fossil fuels). The main finding shows that there is a causation

relationship between non-renewable energy and GDP, and another relationship from

one measure of renewable energy to GDP. However, the standard procedure of the

Johansen test does not find cointegration between GDP and fossil fuels at all. Using

the approach suggested by Lütkepohl et al. (2004) approach, Vaona (2012) finds

cointegration with a structural break.

Based on OPEC’s World Oil Outlook 2012, fossil fuels currently account for 87%

of the energy demand and will still make up to 82% of the global total energy by

2035. For most of the projection period, oil will remain the energy type with the

largest share since it plays a key role in the production process of modern economies.

The demand for oil is expected to reach 99.7 mb/d in 2035, rising from 87.4 mb/d

in 2011. This demand will be driven mainly by population and economic growth in

the emerging economies.99 However, oil is not only a credible fossil fuel source, it

is the major reason for global warming because of the carbon dioxide emission. It

99http://www.polsci.chula.ac.th/pitch/ep13/weo12.pdf
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also involves risks in terms of security of the supply of energy needs for many energy

importing countries, especially because it is concentrated in the unstable region of

the Middle East. These reasons have driven the interest among researchers and

policy makers to study the linkage between oil consumption and economic growth

in both developing and developed countries.

Although oil plays a crucial role in stimulating economic growth as shown above,

prices of oil have been exceptionally volatile over the past several years. Historical

data show that WTI spot oil prices increased sharply up to $145 in July 2008, and

dropped down to a very low level of $30 in December 2008. There are many reasons

that support the increase in oil prices rather than its stabilisation. Researchers such

as Hamilton (1983, 1988, 1996, 2003), Hooker (1996), and Mork (1989) suggest that

the growing demand from developing economies and unrest in many oil-supplying

countries of the Middle East and North Africa have caused oil price increases in

previous years. During these years, the fluctuations in the prices of oil resulted in

many problems that dampened the economy of both oil importing and oil exporting

countries. For instance, as oil is an important input in the production process, a

rise in the prices of oil follow-on an increase of production costs, which slows down

the economic growth of an oil importing country. These effects have been supported

through many empirical investigations such as that of Hamilton (2003, 2005), who

shows that nine out of ten recessions in the US have been preceded by oil price

shocks.

From the previous discussion, it can be seen that while there is a rapid increase

in international crude oil demand, crude oil prices have suffered from high volatil-

ity problem over the last few decades. Therefore, the priority of energy policy for

many countries has become diversifying the sources of energy, and finding a stable,

safe, and clean energy supply (Toth and Rogner, 2006; Elliott, 2007). As a part of

their strategy of increasing energy security, many countries have built nuclear power

plants, not only to reduce the dependence on imported oil, but also to increase the

supply of a secured energy source and to minimise the price volatility associated

with oil imports (Toth and Rogner, 2006).100 The US Energy Information Adminis-

tration (EIA) reports of primary energy consumption between 1985 and 2011, show

that the considerable growth of electrical consumption in the world requires a mas-

100One of the reasons for the shrinking of Japanese oil consumption during the period 1979 -
1985 was the construction of several nuclear power plants for electricity generation. This led to
the substitution of crude and fuel oil, and caused a drop in demand of around 1.2 mb/d for the
whole period (OPEC’s World Oil Outlook 2012).
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sive use of nuclear energy.101 In 2010, demands for nuclear energy and renewable

energy increased due to the limitations of fossil fuels such as oil, natural gas, and

coal (de Almeida and Silva, 2009).

Thus, the importance of nuclear power as a potential source of energy, and as a

partial replacement for fossil fuels to eliminate emissions creates the need for further

research to examine the relationship between nuclear energy consumption and eco-

nomic growth (Apergis and Payne, 2010b). It is essential to understand the nature

of the relationship and identify the direction of causation, to provide logical reasons

for investing in nuclear energy for economical concerns or for environmental and

social concerns (Chu and Chang, 2012).

To date, few empirical studies have focused on investigating the nature of the

relationship between oil consumption and economic growth (see Yoo, 2006; Zou and

Chau, 2006; Zhao et al., 2008; Aktaş and Yılmaz, 2008, among others) on the one

hand, and between nuclear energy consumption and economic growth on the other

(see Yoo and Jung, 2005; Yoo and Ku, 2009; Wolde-Rufael, 2010, among others).

There is a dearth of empirical research that looks into the dynamic relationship be-

tween oil consumption, nuclear energy consumption, oil price, and economic growth

using modern advances in time series econometrics associated with causality testing.

The purpose of this chapter is to fill this gap by investigating the long run relation-

ship between oil consumption, nuclear energy consumption, oil price, and economic

growth using Johansen cointegration analysis.

In particular, we run our investigation among four industrialised countries (the

US, Canada, Japan, and France) and four emerging economies (Russia, China, South

Korea, and India) over the period from 1965 to 2010. Our results provide informa-

tion about the nature and direction of linkage between nuclear energy consumption

and economic growth, oil consumption and economic growth, and oil prices and

economic growth. We examine each country separately to allow us to use a frame-

work that accounts for country specific issues such as energy patterns and economic

crisis. The main reason for studying the long run relationship between oil consump-

tion, nuclear energy consumption and economic growth is that both oil and nuclear

energy play an important role in designing effective energy policies that accounts

for both economic growth and environmental protection. Empirical results of the

101http://www.eiagov/forecasts/steo/
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relationship between nuclear energy, the oil market, and the real GDP also play

a pivotal role in the implementation of energy or environmental policies for both

highly industrialised countries and emerging economies.

Cointegration analysis illustrates that we cannot exclude at least one energy in-

put from the cointegration space. This implies that a long-run relationship exists

between energy consumption and economic growth. As far as the results of coin-

tegration vectors normalised with respect to real GDP growth, the coefficients of

oil consumption are found to affect the level of economic growth significantly and

positively in six out of eight countries, including the US, Canada, France, China,

South Korea, and India. This finding implies that the use of more oil stimulates

the real GDP growth. Alternatively, nuclear energy consumption has been found

to influence economic growth positively and significantly in five countries including:

Japan, France, Russia, China and South Korea. However, we find that the nuclear

energy consumption is negatively linked to real GDP growth in India. Although

oil price is excluded from the long-run equilibrium error in most countries, it is en-

dogenous and negative in the case of Canada and Russia. Furthermore, results from

the parsimonious vector equilibrium correction model (PVECM) show that oil con-

sumption has predictive power for economic growth in the US, Japan, France, and

India. Additionally, there is a feedback impact between oil consumption and real

GDP growth in Canada, Russia, China, and South Korea. Hence, oil can be consid-

ered an important factor to output growth in these countries. Regarding the nuclear

energy consumption - growth nexus, there is a bi-directional relationship between

nuclear energy consumption and output growth in Japan and in India. Moreover,

nuclear energy consumption is found to have information that could predict real

GDP growth in the US, Canada, France, Russia, China and South Korea. In most

of the cases, oil prices are exogenous to equilibrium error, except for the US, Canada

and China.

In what follows, we first provide background and a literature review in Section

4.2. Section 4.3 describes the econometric methodology. Section 4.4 illustrates the

data sources and definitions of the variables. Section 4.5 shows the empirical results,

and a conclusion is provided in Section 4.6.
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4.2 Background and Literature Review

4.2.1 Oil Price and Economic Growth

Given the essential role of crude oil in the world economy, the impact of crude oil

price movements on economy has been a matter of great interest to economists since

the 1970s. This interest has been fueled by the oil price shock of 1973 and the sub-

sequent recessions. Therefore, many researchers study the nature of the relationship

between oil price and economic activities. Early theoretical studies focus on the tra-

ditional aggregate channels of supply shocks and demand adjustments (Bruno and

Sachs, 1982; Pierce et al., 1974), while empirical investigations generally start with

the regressing GDP on oil prices and several other variables (Rasche and Tatom,

1977a,b). However, both approaches confirm the inverse relationship between oil

prices and the aggregate economic activity. In particular, Hamilton (1983) demon-

strates that an oil price increase had proceeded all but one recession in the US since

the end of World War II. Gisser and Goodwin (1986) reinforced Hamilton’s findings

for the US, and Burbidge and Harrison (1984) find supporting evidence from the

UK and Japan as well as the US.

Theoretically, researchers propose various transmission channels through which

oil prices may have an impact on economic activity. First, the most basic channel

is the classic supply-side effect. It suggests that rising oil prices are indicative of

the reduced availability of a basic input to production, leading to a reduction in

the overall potential output (see Abel and Bernanke, 2001; Brown and Yuecal, 1999,

among others). Accordingly, if the cost of production increases, growth of the output

and productivity will slow down. Second, the transfer of income from oil-importing

countries to oil-exporting countries leads to a fall in the purchasing power of firms

and households in oil-importing countries (Dohner, 1981; Fried et al., 1975). Third,

a rise in oil price would drive an increase in money demand based on real balance

effect, as proposed by Pierce et al. (1974) and Mork (1994). Then, a failure of the

monetary authority to meet growing money demand with increased supply would

boost interest rates and retard economic growth (see Brown and Yücel, 2002, for

more details).102 Fourth, as consumption is positively linked with disposable income,

oil price increase may have a negative impact on consumption. Also, this increase in

oil prices may affect investment negatively by increasing firms’ costs. Fifth, a long-

lasting increase in oil price would change the production structure and, accordingly,

102Bohi (1989, 1991) and Bernanke et al. (1997) argue that confectionary monetary policy ac-
counts for much of the decline in aggregate economic activity following an oil price increase.
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affect the level of unemployment.103 Indeed, a rise in oil prices may encourage firms

to adapt and construct new production methods that are less intensive in oil inputs.

This change generates capital and labour reallocations across sectors that can affect

unemployment in the long run (Loungani, 1986). In addition, an increase in oil

price generates inflationary pressures, which is accompanied by direct and indirect

effects (see Álvarez et al., 2011, for more details). Neither the real balance effect

nor monetary policy can alone yield both slowing GDP growth and an increase in

inflationary pressure (Brown and Yücel, 2002).

Empirical research has generated evolving impressions about the magnitude of

oil price effects on aggregate economic activity. The empirical evidence presented

in Hamilton (1983) suggests that exogenous shocks to oil prices have significant im-

pacts on real economic activity in the US. Mork (1989) confirms that the negative

correlation with oil price increases is persistent. Beyond establishing a relationship

between oil price movements and aggregate economic activity, researchers have been

assigned prominent roles to both in a number of macroeconomic models (Bruno and

Sachs, 1982; Hamilton, 1988; Rasche and Tatom, 1981). For example, Hall (1991)

uses oil prices to identify labour supply and demand. Others, such as Phelps (1994)

and Carruth et al. (1995), associate oil price shocks with the natural rate of un-

employment. Kim and Loungani (1992) explain how oil prices reduce the role of

technology shocks in real business cycle models, and depress irreversible investment

through their effects on uncertainty (Ferderer, 1996).

4.2.2 Energy Consumption and Economic Growth

Given that energy plays a significant role in economic growth (Beaudreau, 2005;

Stern and Cleveland, 2004), energy economists emphasised that it is a prime agent

in the generation of wealth (Stern, 2011). The ecological view reveals that energy

has a considerable role in income determination, which implies that the economies

that are highly dependent on energy use will be significantly influenced by the vari-

ation in energy consumption (Cleveland et al., 1984). In addition, the historical

data attest that there is a strong relationship between the availability of energy,

economic activity, and improvements in standards of living and overall social well-

being (Nathwani et al., 1992). Therefore, many empirical studies attempt to assess

the effect of energy use on economic output. However, the theoretical and empirical

103In a recent study, Doğrul and Soytas (2010) find that the real price of oil and interest rates in
Turkey improve the forecasts of unemployment in the long run.
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findings indicate that the contribution of energy to productivity improvements and

economic growth has been greatly underestimated (Sorrell, 2010).

Since the seminal work of Kraft and Kraft (1978), several researchers have inves-

tigated the causal relationship between energy consumption and economic growth.

However, empirical studies do not provide any clear-cut answer, and currently there

is no consensus among economists either on existence or on direction of causality.

For instance, using Sims (1972) causality test, Kraft and Kraft (1978) provide ev-

idence that supports a unidirectional causality running from real GNP to energy

consumption for the US using annual data that covers the period from 1947 to

1974. This finding is contested by Akarca and Long (1980), who show that Kraft

and Kraft’s study suffer from temporal sample instability. They exclude the years

1973-1974 from the sample and argue that the causal order suggested by Kraft and

Kraft (1978) is spurious and is sensitive to the sample period.

In a bivariate framework, Yu and Hwang (1984) apply both the causality test

proposed by Sims (1972) and Granger (1969) for the extended the US annual data

from 1947 to 1979. In line with Akarca and Long (1980), they find that there is no

causal linkage between income and energy usage in the US. However, repeating the

exercise using quarterly data show evidence of a unidirectional causality running

from GNP to energy consumption from 1973 to 1981. These tests also have been

applied to a number of other industrialised countries to examine the causal linkage

between energy consumption and economic growth. The results of those applica-

tions provide evidences that support the absence of causation between energy and

growth (Yu and Choi, 1985; Erol and Yu, 1987). Yu and Jin (1992) extend the

work to examine whether energy consumption and output are cointegrated for the

US. They find that energy consumption has no long term relationship with income

and employment. More recently, using the cointegration analysis proposed by Jo-

hansen and Juselius (1990), Soytas and Sari (2003) test the causal linkage between

real GDP and energy usage in ten emerging economies and G7 countries. They find

that there is a long run unidirectional causality running from energy consumption to

real GDP for Turkey, France, West Germany and Japan, while the reverse causality

exists for Italy and Korea. However, they are unable to find a cointegration relation-

ship between energy usage and real GDP in the US. Zachariadis (2007) examine the

usefulness of bivariate framework using three different time series approaches includ-

ing VECM, ARDL, and the Toda and Yamamoto (1995) model. The sample used
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in his study cover a number of industrialised countries including Canada, France,

Germany, Italy, Japan, the UK, and the US. Using aggregate and sectoral data,

Zachariadis (2007) finds that there is a cointegrating relationship for all energy-

economy pairs in the case of Japan only. On the other hand, he shows that there is

no evidence for causality at the level of the total economy, while for services as well

as transport sectors, GDP Granger causes energy consumption.

Although early studies which use a bi-variate approach are attractive because

they can be used for developing countries that suffer from a complete lack of data on

some variables of interest, one should be cautious when drawing policy implications

with the aid of bivariate causality tests on small samples (Zachariadis, 2007).104

Zachariadis (2007) underlines the importance of utilising as large a sample size as

possible and using multivariate models, which are closer to economic theory, accom-

modate several mechanisms and causality channels and provide a better represen-

tation of real-world interactions between energy use and economic growth. Thus,

recent papers employ either a trivariate or multivariate time series framework when

examining an energy-growth nexus to overcome the weakness of omitting variables

problem in bivariate approach. Most of these papers employ a neo-classical aggregate

production function, which supports the idea that capital, labour, and technological

change play a significant role in determining output. Yet, early studies implicitly

assume that energy is the only input in production. If this assumption is not true,

studies will lead to omitted variables bias. Moreover, in the case of stochastically

trending variables, there will be no evidence of cointegration, and, hence, spurious

regression outcomes will result (Stern and Common, 2001).

Using a multivariate framework, Stern (1993) tests for Granger causality in a

multivariate setting using a VAR model of GDP, capital, labour inputs, and a Di-

visia index of energy use measured in heat units.105 When both the multivariate

approach and the quality adjusted energy index were employed, he finds that energy

Granger caused GDP. Stern (2000) extends the work applied in Stern (1993) by es-

timating a cointegrating VAR for the same variables. The analysis shows that there

is a cointegrating relationship between the four variables and that energy Granger

causes GDP either unidirectionally or possibly through a mutually causative rela-

tionship. Warr and Ayres (2010) replicate this model for the US using their measures

104Payne (2010b) notes that a large body in the literature (26 of 35 studies surveyed) employ
bivariate models, which might suffer from omitted variables bias.
105Divisia index is a method of aggregation used in economics that allows variable substitution

in material types without imposing a priori restrictions on the degree of substitution.
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of energy and useful work in place of Stern’s Divisia index of energy use.106 They

find both short and long run causality from either energy or useful work to GDP but

not vice versa. After these plausible results, the methodology of Stern (1993, 2000)

has been used to examine the relationship between energy consumption and eco-

nomic growth for many countries. For instance, Oh and Lee (2004) and Ghali and

El-Sakka (2004) apply it for Korea and Canada, respectively. Using the Johansen

cointegration technique, Ghali and El-Sakka (2004) indicate that the long-run move-

ments of the proposed variables in Canada are related by two cointegrating vectors.

However, Oh and Lee (2004) show that there is only one cointegrating vector for Ko-

rea. In respect to causality testing, both studies obtain exactly the same conclusion

as Stern’s investigation for the US. Using an alternative approach proposed by Toda

and Yamamoto (1995), Bowden and Payne (2009) demonstrate that the relationship

between energy consumption and real GDP is not uniform across sectors in the US.

They suggest that prudent energy and environmental policies should recognise the

differences in the relationship between energy consumption and real GDP by sector.

Some studies use panel data to investigate the relationship between energy con-

sumption and economic growth. For example, Lee and Chang (2008) and Lee et al.

(2008) use panel data cointegration methods to examine the relationship between

energy consumption, GDP, and capital in 16 Asian and 22 OECD countries over

a three and four decades period, respectively. Lee and Chang (2008) find a long-

run causal relationship from energy to GDP in the group of Asian countries while

Lee et al. (2008) find a bi-directional relationship in the OECD sample. Similarly,

Apergis and Payne (2009) employ panel cointegration and panel causality tests for

six Central American countries and find evidence of the growth hypothesis for the

period 1980 - 2004. Taken together, this body of work suggests that the inconclu-

sive results of earlier work are possibly due to the omission of non-energy inputs.

By contrast, in recent bivariate panel data studies, Joyeux and Ripple (2011) find

causality flowing from income to energy consumption for 56 developed and develop-

ing economies, while Chontanawat et al. (2008) find causality from energy to GDP

to be more prevalent in the developed OECD countries compared to the developing

non-OECD countries in a panel of 100 countries.

Many researchers argue that if the estimated model does not account for other

possible determinants such as that of energy prices, then results may be biased. For

106‘Useful work’ is a measure that captures energy flow and energy efficiency effects.
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example, Glasure (2002) indicates that the real oil price is a major determinant of

real national income and energy consumption. Hence, literature has included oil

prices in many studies including panel data studies as an additional explanatory

variable in energy growth models. An interesting example is provided by Costantini

and Martini (2010) for 26 OECD countries (1978-2005). Using a panel vector error

correction model (VECM) of GDP, energy use and energy prices, they find that in

the short-run, energy prices cause GDP and energy use and that energy use and

GDP are mutually causative. However, in the long-run they find that GDP growth

drives energy use and energy prices. Other researchers who model a cointegrating re-

lationship between GDP, energy, and energy prices for individual countries produce

mixed results. For example, Glasure (2002) finds very similar results to Costantini

and Martini (2010) for Korea, while Masih and Masih (1997) and Hondroyiannis

et al. (2002) find mutual causation in the long run for Korea, Taiwan, and Greece,

respectively.

Although econometric techniques among researchers are diverse, investigating

whether economic growth takes precedence over energy consumption, or if energy

consumption can boost economic growth or employment, is not unanimous. The

findings from studies vary not only across countries, but they depend also on method-

ologies within the same country (Soytas and Sari, 2003). Moreover, Yang (2000)

argues that countries may differ in their energy consumption patterns and their eco-

nomic activity may depend on different energy resources. These differences could

be other explanations for the lack of unanimity in the literature regarding the re-

lationship between aggregate energy consumption and income. Furthermore, the

importance of a specific energy resource may change in a country through time.

Therefore, studies conducted for different time periods may yield different results

even for the same country. Additionally, energy is known to influence the productiv-

ity of capital and labour, and there is a lack of consensus on the relationship between

energy and employment.107 For instance, in a study on Taiwan, Yang (2000) finds a

bidirectional causality between aggregate energy consumption and GDP. However,

he observes different directions of causality when energy consumption is disaggre-

gated into different kinds, including coal, oil, natural gas, and electricity. His results

imply the importance of analysing the relationship between different sources of en-

ergy consumption and GDP.

107Studies such as those by Cheng (1995), Erol and Yu (1987) and Yu and Jin (1992) yield
contradictory results regarding the relationship between energy consumption and employment.
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In this context, Zou and Chau (2006) examine both the equilibrium relation-

ship and the predictability between oil consumption and economic growth in China.

Cointegration tests applied in their paper suggest that these two variables tend to

move together in the long run. In addition, Granger causality tests indicate that oil

consumption could be a useful factor that forecasts changes in the economy in the

short run as well as in the long run. Oil consumption is found to have great effects

on the economy. This finding indicates that the enormous use of oil in sectors like

the industry may directly drive the economy. However, this finding would probably

stimulate faster growth in oil consumption, and therefore, should be regard with

care. Conversely, economic growth could be used as a predictive factor forecasting

oil consumption only in the long run. Economic growth appears to have small ef-

fects on oil use; this lack of growth could be attributed largely to China’s energy

consumption structure.

Yoo (2006) investigates the short- and long-run causality between oil consump-

tion and economic growth in Korea by applying modern time-series techniques. The

study employs annual data covering the period of 1968 - 2002. Tests for cointegra-

tion, and Granger-causality based on an error-correction model display that there is

a bidirectional causality running from oil consumption to economic growth in Korea.

This causality means that an increase in oil consumption directly affects economic

growth and that economic growth also stimulates further oil consumption.

Lee and Chang (2005) study the stability between energy consumption and GDP

in Taiwan during the period of 1954 - 2003. They use aggregate as well as various

disaggregate data of energy consumption, including coal, oil, gas, and electricity, to

employ the unit root tests and the cointegration tests allowing for structural breaks.

The main finding is that there are different directions of causality between GDP

and various kinds of energy consumption. This conclusion indicates that there are

bi-directional causal linkages between GDP and both total energy and coal consump-

tion. However, there is a unidirectional causality running from oil consumption to

GDP. Furthermore, there is a unidirectional causality running from gas consumption

and electricity consumption to GDP that is detected in these cases. Thus, energy

acts as an engine of economic growth. The empirical result shows unanimously that

in the long run energy acts as an engine of economic growth, and that energy con-

servation may harm economic growth.
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Even though the relationship between oil consumption and economic growth in

developing countries has been questioned in a number of studies, the literature on

industrialised countries is still scarce. To my knowledge, Payne (2011) provides

evidence on uni-directional causality from petroleum consumption to real GDP in

the US economy during the period of 1949-2006 by using the Toda and Yamamoto

(1995) long-run causality test. Royfaizal (2011) investigates the relationship be-

tween crude oil import and real income in Japan. The Granger causality test on the

data covering the time span from 1992:q1 to 2006:q4 shows uni-directional causality

from crude import to economic growth. Authors thereby conclude that reducing

crude import could lead to a fall in Japan’s national income.

Serious concerns over rising fossil fuel prices, energy security, and greenhouse gas

emissions have brought the importance of nuclear energy to the forefront of the en-

ergy debates’ wider issue. As the International Energy Agency (IEA) notes, nuclear

energy is attracting new interest for increasing the diversity of energy supplies, for

improving energy security, and for providing a low-carbon alternative to fossil fuels

(International Energy Agency, IEA, 2008). On the other hand, many researchers

believe that nuclear energy, as a virtually carbon-free source of energy, is one of

the solutions to global warming and energy security (Elliott, 2007; Ferguson, 2007).

Thus, the importance of nuclear energy as a potential source of energy security and

as a virtually carbon free source of energy necessitates not only further research but

also the use of alternative testing methodologies to examine the causal relationship

between nuclear energy consumption and economic growth.

For instance, Yoo and Jung (2005) and Yoo and Ku (2009) investigate the nuclear

energy consumption and economic growth nexus for Korea. Yoo and Jung (2005)

employ annual data from 1997 to 2002 into a vector error-correction model(VECM).

One-way Granger causality running from energy consumption to economic growth

has been detected. Yoo and Ku (2009) employ time-series data to investigate 20

countries but only use the Granger causality test for six countries. The growth

hypothesis supported by South Korea, while on the other hand, the conservation

hypothesis supported by France, and Pakistan, the feedback hypothesis supported

by Switzerland, and the neutrality hypothesis supported by Argentina and Germany.

Wolde-Rufael and Menyah (2010) consider nine industrialised countries using nuclear

consumption and economic growth data and find mixed results. Their results suggest

existence of growth hypothesis for Japan, the Netherlands, and Switzerland, while
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the opposite uni-directional causality running from economic growth to nuclear en-

ergy consumption in Canada and Sweden. They also find that there is bidirectional

causality for France, Spain, the UK and the US. The results are different from those

of Lee and Chiu (2011a), who find an evidence that supports the growth hypothesis

for Japan, and a bidirectional causality for Canada, Germany and the UK.108Heo

et al. (2011) conclude that there is a unidirectional causality running from nuclear

energy consumption to economic growth in India by using the cointegration and

error-correction models. In a panel cointegration and panel causality study, Apergis

et al. (2010) find a bidirectional causality running between nuclear energy consump-

tion and economic growth, providing support for the feedback hypothesis associated

with the relationship between nuclear energy consumption and economic growth.

To date, few empirical studies have focused on investigating the relationship be-

tween oil consumption and economic growth, on the one hand, and between nuclear

energy consumption and economic growth on the other (Yang, 2000; Zou and Chau,

2006; Zhao et al., 2008; Aktaş and Yılmaz, 2008; Yoo and Jung, 2005; Yoo and

Ku, 2009). It is worth noting that the crude oil prices are considered as a key de-

terminant of both oil consumption and demand for nuclear energy. Its importance

is associated with the key roles played by its components in industrial production.

This is so because the crude oil comprises ten most essential products including nat-

ural gas, butane, propane, gasoline, home heating oil, plastics, diesel, and kerosene

and jet fuel. Therefore, it is widely believed in literature that many other energy

sources such that of nuclear energy has glow brighter only when the price of oil

was threatening at $150 a barrel in the summer of year 2008. If the prices of oil

remains relatively at low-level in comparison with alternatives in the short-run, the

widespread nuclear power plants around the world will be postponed. Roger (2000)

claim that although uranium resources are ample and spread across wide regions

of the world and nuclear plants can easily store several years worth of fuel stock

in a backroom, the inflamed spark toward nuclear power, seemed oppressed when

the price of oil decreased to $32 a barrel in December 2008 and swing around $50

for most of year 2009. This might be attributed to the fact that uranium are ac-

counts for only 2 - 3% of the total cost of nuclear plants generating costs, which

108Lee and Chiu (2011a) state that while the factors that drive different type of energy sources
have been well investigated, little only known about the drivers of nuclear energy demand. Thus,
even they aim on testing causality among nuclear energy consumption and economic growth in a
nuclear demand model, they have included only oil market information (oil prices and consumption)
as additional predictors to overcome the problem of omitted variables.
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made the prices of nuclear fuel stable at low level over a long period.109Although

oil prices are found to have a significant impact on oil consumption, demand for

nuclear energy and macroeconomic activities, it have been neglected in most energy

consumption - economic growth investigations. Observing that minor attention has

been given in the literature to tackle the interaction between oil and a new clean

energy source (nuclear energy) and taking into consideration the vital role of fluc-

tuations in oil prices, we choose in this chapter to link two literature streams and

employ the parsimonious vector equilibrium correction model (PVECM). We aim

to analyse the long-run relationship between oil consumption, nuclear energy con-

sumption, oil price and economic growth. Additionally, we search for a causality

relationship between the proposed variables and output growth.

4.3 Econometric Methodology

The objectives of our empirical estimation are to examine how the variables (i.e.,

GDP, oil and nuclear energy consumption, and oil prices) are related in the long-run

and to assess the long-run causal relationship between these variables. In line with

these objectives, our methodological approach focuses on examining the long-run

relationship(s) using the cointegration technique. Early cointegration techniques

pioneered by Engle and Granger (1987), Hendry (1986), and Granger (1986) have

made a significant contribution towards cointegration and long-run relationship(s)

analysis and causality testing between time series variables. Thus, these techniques

have become popular both as a topic for theoretical investigation of statistical issues

and as a framework within which many empirical propositions can be re-evaluated

(Perron and Campbell, 1994). The basic idea of the cointegration, in general, sug-

gests that two or more variables are said to be cointegrated, that is they exhibit

long-run equilibrium relationship(s), if they share common trend(s). More con-

cretely, Engle and Granger (1987) demonstrate that once a number of variables are

found to be cointegrated, there always exists a corresponding error-correction rep-

resentation that denotes that changes in the dependent variable are a function of

the level of disequilibrium in the cointegrating relationship (captured by the error-

correction term) as well as changes in other explanatory variable(s). In this setup,

a method of estimation and testing that has received a particular attention is the

maximum likelihood approach based on a finite VAR Gussian system developed

109The US Department of Energy provides the public with uranium prices and quantities within
its borders, as well as historical data starting from 1981. Therefore, it is not worth to think about
including it here as this study cover the period 1965 - 2010.
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by Johansen (1991).110 This technique has several advantages over the Engle and

Granger (1987) approach.111 For instance, Johansen and Juselius method tests for

all the number of distinct cointegrating vectors between the variables in a multivari-

ate setting and estimates the parameters of these cointegrating relationships. All

the tests are based on the trace statistics test and the maximum eigenvalue test.

It also treats all variables as endogenous, thus avoiding any arbitrary choice of de-

pendent variable. Moreover, this technique provides a unified framework for testing

and estimating relationships within the framework of a vector error correction mode

(VECM) (Enders, 2008). According to this technique, evidence of cointegration

rules out the possibility of the estimated relationship(s) being ‘spurious’. Also, as

long as the variables included in the cointegration space have common trend, causal-

ity; in the Granger sense must exist in at least one direction (Granger, 1986, 1988).112

Since the focus of this chapter is to investigate the relationship between energy

consumption (oil and nuclear energy) and economic growth and to assess the causal

linkage between them, whose analysis requires estimation techniques appropriate for

long-run equilibria, the Johansen test (Johansen, 1988; Johansen and Juselius, 1990;

Johansen, 1991) are used as discussed below.113

4.3.1 Cointegration Modeling

Assume that Zt is a vector including integrated series at the same order, which have

at least one cointegrating vector in the system. A general-to-specific approach is

adopted in this chapter to model both the long-run and short-run structure of vec-

tor Zt . First, the Johansen Maximum Likelihood approach is employed to estimate

and identify the cointegrating relationships among the variables included in vector

Zt . More concretely, Zt can be written as a vector autoregressive process of order

k (i.e., VAR(k)):

110For description of the procedure and detailed empirical applications, see Johansen (1988),
Johansen (1989), and Johansen and Juselius (1990).
111Engle and Granger (1987) indicate that the statistical inference for a VAR in levels can be

undertaken appropriately only if all the variables are stationary. Otherwise, one can use VAR in
differences if all the variables are integrated of order one but are not cointegrated, and through
the specification of a vector error correction model (VECM) if all variables are integrated of order
one and cointegrated.
112Failure to reject the null hypothesis that x does not cause y, does not necessarily mean that

there is in fact no causality. A lack of sensitivity could be due to a misspecified lag length,
insufficiently frequent observations (Granger, 1988), too small a sample (Wilde, 2012), omitted
variables bias (Lütkepohl, 1982), or nonlinearity (Sugihara et al., 2012).
113Although there exists a number of co-integration tests, such as the Engle and Granger (1987)

method and the Stock and Watson (1988), Johansen’s test has a number of desirable properties as
shown above.
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Zt = A0 +
k∑
i=1

AiZt−i + ut (27)

∆Zt = A0 + ΠZt−1 +
k∑
i=1

Γi∆Zt−i + ut (28)

∆Zt = A0 + αβ′Zt−1 +

p∑
i=1

Γi∆Zt−i + ut, ut is iid ∼ N(0,Σ) (29)

Where Zt denotes (4 × 1) vector containing GDP, oil consumption, nuclear energy

consumption, and oil prices (i.e., Zt = (RGDPt, OCt, NCt, ROPt). The four vari-

ables are measured by their natural logarithm so that their first difference approx-

imate their growth rates. Any long-run relationship(s) are captured by the (4× 4)

matrix Π shown in Equation (28). However, this matrix can be decomposed as

shown in Equation (29) to provide better understanding for the full system, where

β is the (4× r) matrix of the cointegrating vector and α denotes the (4× r) matrix

of speed of adjustment to last period equilibrium error. Γi represents (4 × 4) ma-

trices that guide short run dynamics of the model. In the second step, the vector

equilibrium correction models presented by Equation (29) are estimated, where the

identified matrix of cointegrating vectors β is explicitly taken into account:

∆Zt = Â0 + α̂(
r∑
i=1

β̂i
′
Zt−1) +

p∑
i=1

Γ̂i∆Zt−i + ut (30)

At this stage, Equation (30) is re-estimated by excluding any insignificant regres-

sors. The resulting parsimonious vector equilibrium correction model (PVECM) is

a reduced form model and consequently, there are simultaneity effects among the

endogenous variables including in Zt. Having estimated the PVECM, we examine

the causal linkage between the variables through exogeneity test by testing the null

αi is not significantly different from zero (i.e., H0 : αi = 0). If the null is true then

the variables included zi is exogenous with respect to all cointegrating vectors. In

the third step, we estimate Equation (30) conditional on exogenous variables.

∆Z1,t = Â0+∆Z2,t+α̂(
r∑
i=1

β̂i
′
Zt−1)+

p∑
i=1

Γ̂i∆Zt−i+ut, ut is iid ∼ N(0,Σ1) (31)
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where α̂ = [α1, 0]′, and Z2 is the vector of exogenous variables. In the fourth step, we

model any simultaneous effects in equation (31). If any of the off diagonal elements

of Σ1 is close to zero we can apply OLS to estimate each equation of (31) separately.

4.4 Data Source and Description

We use annual data-set from 1965 to 2010 for four industrialised countries (the US,

Canada, Japan, and France) and four emerging economies (Russia, China, South

Korea, and India). The variables employed include nuclear energy consumption

per capita (NC), oil consumption per capita (OC), real economic growth (GDP)

per capita (Y), and real oil price (ROP). Both Nuclear energy and oil consumption

are obtained from BP Statistical Review of World Energy (2011) where NC is ex-

pressed in terms of Terawatt-hours (TWh) and OC is measured in thousand barrels

daily. Oil consumption (OC) is the sum of inland demand, international aviation,

marine bunkers, oil products consumed in the refining process, and consumption

of fuel ethanol and biodiesel. Real GDP per capita measured based on purchasing-

power-parity (PPP) per capita in constant 2000 international dollars from the World

Development Indicators (WDI, 2011). Real WTI oil price is defined as the US dollar

price of oil. Following Lee and Chiu (2011b), oil price is converted to the domestic

currency and then deflated by the domestic consumer price index (CPI), which is

derived from International Financial Statistics (IFS, 2011) published by the Inter-

national Monetary Fund (IMF). All data are expressed in natural logarithms in the

empirical analysis.

Table (4.1) presents the descriptive statistics for the variables across all coun-

tries. Specifically, we calculate descriptive statistics (mean, standard deviation,

minimum, maximum, skewness, kurtosis and Jarque-Bera statistic for normality )

of the variables included in the analysis for our full sample of countries. It appears

that the highest mean real GDP is observed in Japan followed by the US, Canada,

France, South Korea, Russia, China, and India during the sample period (1965 -

2010). The US has the mean highest oil consumption and nuclear energy consump-

tion among the other countries. Majority of variables have negative skewness values,

which denote that the distribution of the data is skewed to the left. However, re-

sults obtained from Jarque- Bera test show that real oil price, oil consumption, and

real GDP exhibit normal distribution, while nuclear energy consumption seem to be
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characterised by a non-normal distribution.

4.5 Empirical Results

4.5.1 Preliminary Tests

Before conducting the cointegration analysis and causality testing, it is important

to determine the order of integration of the series, Id, and the optimal lag length,

k, to avoid any spurious results (Clarke and Mirza, 2006). To assess the order of in-

tegration, this study utilises three different unit root tests including the augmented

Dickey and Fuller (1979) (ADF), Phillips and Perron (1988) (PP), and the station-

arity test by Kwiatkowski et al. (1992) (KPSS). This is because of the controversies

surrounding the unit root testing (see Maddala and Kim, 1998), which may make

comparing results from different alternative tests more likely to provide the opportu-

nity to examine whether the preponderance of the evidence makes a convincing case

for stationarity or non-stationarity. Table (4.2) reports the results of unit root tests,

which indicate that the results are slightly contradictory. However, all variables are

roughly non stationary at level and integrated of order one- I(1).

In order to select the optimal number of lag length, k, Akaike (AIC), Hannan

and Quinn (HQIC), and Schwarz’s Bayesian (SIC) information criteria are used to

build a decision.114 Following Lütkepohl (1993) procedure, in this chapter we link

the maximum lag lengths (kmax) and the number of endogenous variables in the

system (m) to the sample size (T ) according to the formula m∗kmax = T
1
3 (Konya,

2004). In the case of conflicting results of the different Information criterion, the

choice done based on AIC results as suggested by Pesaran and Pesaran (1997). Re-

sults of the lag selection criteria for each country are reported in Table (4.3). Then,

diagnostic tests including normality and autocorrelation have been employed for

further investigation. Based on Lagrange-multiplier (LM) test for autocorrelation

shown in Table (4.4), we cannot reject the null hypothesis that there is no autocor-

relation in the residuals for any of the orders tested at 5% level. Also, all models

pass the normality test at 10% level or better. Thus, there is no evidence of model

misspesification in this case.

114In cointegration analysis and causality testing, if the chosen lag is less than the true lag length,
this can cause bias due to omission of relevant lags.

122



4.5.2 Cointegration Analysis

After preliminary tests, the cointegration vectors are estimated using the reduced-

rank approach suggested by Johansen (1988); Johansen and Juselius (1990) to exam-

ine the long-run relationship between oil consumption, nuclear energy consumption,

oil price and economic growth using CATs in RATs. To do so, Johansen (1988)

test has been established in order to test for the existence of r ≤ 3 cointegration

relationships among the four variables of the model. This is equivalent to testing the

hypothesis that the rank of matrix Π in Equation (28) is at most r. Reduced-rank

regression can then be used to form a likelihood ratio test of that hypothesis on

the basis of the so-called trace statistic, or alternatively, the maximum eigenvalue

statistic. Lüutkepohl et al. (2001) investigate the small sample properties of both

tests and concluded that the trace test is slightly superior, and therefore, we favour

it in our analysis. The results of testing for the number of cointegrating vectors

are reported in Table (4.5), which presents both the maximum eigenvalue (λmax)

and the trace statistics. Results of trace statics in the fifth column of Table (4.5)

show that the null hypothesis of no cointegration can be rejected at the 1% and

5% significance level, except for Canada.115 These findings suggest the existence of

one cointegration vector in each country model. Hence, a cointegration rank of one

is imposed on the VAR and the coefficients are estimated using Equation (29) as

shown in Table (4.6).

However, from the β vectors presented in Table (4.6), we can see that there are

some insignificant coefficients of different variables in the cointegration space of each

country model. Accordingly, following Johansen (1996), we test for excluding all the

proposed variables to identify the cointegrating relationship by using zero restriction

on β as shown in Table (4.7). In the US, testing the exclusion of nuclear energy

consumption and real oil price yield likelihood ratio test of 0.943, and 0.084, re-

spectively, which enable us to easily accept the null hypothesis. Following the same

method, nuclear energy consumption and real oil price are excluded from the coin-

tegrating vectors of Canada and France, respectively. Japan looks little bit different

as the cointegration vector can be identified by excluding both oil consumption and

real oil price. In emerging economies, Russia cannot reject the null hypothesis of

the exclusion test for oil consumption, which suggests, excluding it from the cointe-

grating space. The exclusion test statistics exposed in Table (4.7) for China, South

Korea and India suggest that the relation could, however, be identified by excluding

115In Canada, we reject the null hypothesis of no-cointegration at 10% level.

123



real oil prices only in these countries.

Next, we test for weak exogeneity against the null hypothesis H0 : α = 0 as

proposed by Johansen (1992, 1996). A rejection of the null hypothesis means that

there is evidence of long run causality going from the variables in the ECT to the

variable of interest (Arestis et al., 2001).116 Results shown in Table (4.8) indicate

that oil consumption is exogenous in the US, Japan, France, and India, with a test

statistics of 0.361, 0.366, 0.248, and 0.145, respectively. This implies that oil con-

sumption has a predictive power to economic growth in these countries. Nuclear

energy consumption also can not reject the null hypothesis of exogeneity in five out

of eight countries including the US, Canada, Russia, China, and South Korea. This

result illustrates that the nuclear energy consumption stimulates economic growth

in these countries.117 The results presented in Table (4.8) also show evidence to

support the weak exogeneity hypothesis for real oil price in most of the investigated

economies except for the US, Canada, and China. Accordingly, there is a unidirec-

tional causality running from real oil price to economic growth in Japan, France,

Russia, South Korea, and India.118

Then, we re-estimate the model at this point using the parsimonious vector equi-

librium correction model (PVECM) shown in Equation (30). The results of β and α

estimates are based on the above exclusion and weak exogeneity restrictions for the

investigated countries. Since all variables are in natural logarithms, the estimated

long-run coefficients can be interpreted as elasticities. In the US, we observe that

the long run oil consumption elasticity of economic growth is 0.759, which is positive

and statistically significant at 1% level. This implies that increasing oil consumption

by 1%, increases the real GDP growth by 0.759% in the US. The coefficient on the

time trend component can be interpreted as a measuring for the rate of technical

change in the US The estimated rate of technical change is 0.12%, which is close to

that estimated by Stern (2000).

116Hall and Wickens (1993) and Hall and Milne (1994) interpret weak exogeneity in a cointe-
grated system as a notion of long-run causality. For example, if we consider the economic growth
equation as following: ∆GDPt = Â0 + α̂11ECTt−1 + γ̂11∆GDPt−1 + γ̂12∆OCt−1 + γ̂13∆NCt−1 +
γ̂14∆ROPt−1, where ECTt−1 = β̂11GDPt−1 + β̂12OCt−1 + β̂13NCt−1 + β̂14ROPt−1 is the error
correction term, i.e. the cointegration relationship between the variables. Then restricting α̂11 = 0
is a test for weak exogeneity where rejection of the null hypothesis means there is evidence of long
run causality going from the variables in the ECT to GDP.
117Payne and Taylor (2010) find that there is no causal relationship between nuclear energy

consumption and economic growth in the US.
118Empirical research including Hamilton (1983), Daniel (1997), Rotemberg and Woodford (1996)

and Carruth et al. (1998) also reject the hypothesis that the relation between oil prices and output
it is just a statistical coincidence.
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In the case of Canada, it can be seen from the estimated long run relationship

that oil consumption has a positive and high significant impact on economic growth,

while output is negatively linked with oil price.119 An increase of 1% in oil consump-

tion increases the growth by 3.1% approximately. In contrast, increasing oil price

by 1% decreases the growth in Canada by 0.499 %.

Alternatively, the long run nuclear energy consumption elasticity to economic

growth in Japan shows that an increase of 1% in nuclear energy consumption in-

creases the real GDP by 0.108 %. Lee and Chiu (2011a) find that nuclear energy

demand is elastic with respect to real income in Japan, and a 1% rise in real income

raises nuclear energy consumption with a 1.436 %. They suggest that countries with

higher income levels are more likely to have their basic needs and are concerned with

environmental problems, since they have more money to invest in nuclear energy de-

velopment. Thus, for highly industrialised countries, economic development leads

to higher nuclear energy demand (Lee and Chiu, 2011a).120 The estimated techno-

logical change impact on GDP growth is 0.12% for every 1% increase.

In France, the long run relationship includes both energy sources (oil and nu-

clear power), trend and economic growth. These findings suggest that the process

of economic development in France is heavily dependent on both oil and nuclear

energy consumption, and the rate of technical change. An increase of 1% in oil

consumption increases the real GDP by 0.262%, and an increase of 1% in nuclear

energy consumption increases the real GDP by 0.049%. The coefficient on the time

trend component reveals that the rate of technical change in France improves the

real GDP by 0.11%.

The error-correction terms, α1, shown in Table (4.9) are with the expected sign

(negative) and highly significant for all for industrialised countries, except for nu-

clear energy consumption equation in Japan. The magnitude of loading factors, α1,

show the speed of adjustment to disequilibrium from its long run equilibrium value.

119Canadas’ economy is relatively energy-intensive when compared to other industrialized coun-
tries, and is largely fueled by Petroleum, which represents the highest primary energy consumption,
while nuclear energy usage is much less, with about 32% and 7% respectively from the total energy
consumption (EIA, 2012).
120In 2008, the government introduced New National Energy Strategy in light of global develop-

ments, which was heavily focused on achieving energy security. Under this strategy, the government
targeted to improve energy efficiency to 30%, increase share of electric power generated from nu-
clear energy to 30-40%, cut down the oil dependency ratio to about 80% and increase domestic
investment in oil exploration and related development projects (Sami, 2011).
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On this basis, it can be seen that when per capita real GDP deviates from its long-

run trend, 28%, 5%, 35% and 32% of that deviation will be corrected within a year

for the US, Canada, Japan, and France, respectively. Thus, the speed of adjustment

in the case of any shock to the real GDP equation is sufficiently fast and support the

notion that there is a reasonable control over economic growth, except for Canada.

Bidirectional causality hypothesis in the long-run can be tested by the significance

of the speed of adjustment, α, in Table (4.9). The t-statistics of the coefficients of

the error correction term (ECT) is used to examine the existence of long-run causal

effects. There is a strong evidence that there is a bi-directional causal linkage be-

tween oil price and economic growth in the US, which is in line with the finding of

Hamilton (1983) and Hooker (1996). In Canada, we find a bidirectional causality

between oil consumption and economic growth at 10% significance level, which is

in line with Ghali and El-Sakka (2004). Oil price, also, has a feedback effect on

Canadian real GDP growth in the long-run. Alternatively, Japans’ results suggest

the existence of a bidirectional relationship between nuclear energy consumption

and economic growth. This means that nuclear energy use derive economic growth,

and that economic growth for Japan needs to use more nuclear power. Lee and Chiu

(2011a) find that a 1% rise in Japanese income rises nuclear energy consumption

by 1.436%. They argued that countries with higher income levels are more likely

to have their basic needs and are concerned with environmental problems, as well

as they have more money to invest in nuclear energy development. The speed of

adjustment to disequilibrium is moderately high in France economic growth model,

supporting long run causality running from oil consumption, nuclear energy con-

sumption and real oil price to economic growth.

Likewise, after investigating the long run relationship between the proposed vari-

ables in industrialised countries, the marginal impacts of oil consumption, nuclear

energy consumption and real oil price on economic growth have been examined

for emerging economies. Starting with Russia, although the sample is the smallest

among countries, there is evidence of a long run relationship between nuclear energy

consumption, real oil price and economic growth. The results reported in Table

(4.9) indicate that the nuclear energy consumption has a positive and statistically

significant impact on economic growth in Russia. This shows that an increase in

nuclear energy consumption contributes to Russian economic growth at 1% signif-

icance level. A rise of 1% in nuclear energy consumption is linked with a 2.503

% increase in economic growth. On the other hand, real oil price has a negative
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impact on economic growth. An increase of 1% in real oil price decreases economic

growth by 0.140 %. Both oil and nuclear energy consumption cannot be excluded

from the cointegration space of China, South Korea and India. The estimated coef-

ficients of oil consumption and nuclear energy consumption are highly significant in

these countries. In China, increasing oil consumption by 1% increases the economic

growth by 0.82%, and increasing nuclear energy consumption by 1% rise the output

by 0.33% approximately. 121 This finding is supported by Zou and Chau (2006),

who find that oil consumption has a great effect on Chinese economy due to the

enormous use of oil in sectors like the industry, which may have direct impact on

the economy. In South Korea, increasing oil consumption by 1% increases real GDP

by 0.214%, and an increase of 0.05% approximately can be achieved by increasing

nuclear energy consumption by 1%. In India, on one hand, oil consumption coef-

ficient is positive and has a high impact on economic growth. An increase in oil

consumption by 1% increases economic growth by 1.15%. On the other hand, de-

creasing nuclear energy consumption by 1% increases the economic growth of India

by 0.104%. In literature, Wolde-Rufael (2010) examine the long run relationship

between nuclear energy consumption and economic growth in India. He finds that

nuclear energy consumption has a positive and a statistically significant impact on

Indian economic growth.122

Table (4.9) shows that all the associated loading factors, α1, in economic growth

equations for emerging economies are negative and significant, which is consistent

with our normalization. The speed of adjustment to long run equilibrium is found

to be highest in South Korea (35%) and lowest in India (3%). It can be seen that

the coefficient of ECT is significant in oil consumption equations, in Russia, China,

and South Korea. This implies that there is a bi-directional causality between oil

consumption and real GDP.123 Results of South Korea are in line with Glasure

(2002), who finds a bi-directional causality between energy consumption and GDP

121China is the largest oil consumer in the world based on BP-Statistical Review of World Energy
2012. The level of oil consumption in China increased from 720.8 to 1676.2 (million tonnes oil
equivalent) between 2001 to 2010.
122India is rich in coal and abundantly endowed with renewable energy resources in the form of

solar, wind, hydro and bio-energy. Around 53% of Indias total energy need has been met by coal
followed by oil(31%),natural gas(8%), hydroelectric power(6%), nuclear and renewable(1%each).
Accordingly, Indian government has been opposing the mandatory emission cut as proposed by
developed nations since such measure might hurt Indian economic growth (Ghosh, 2010).
123The alpha coefficient that that loads the cointegration relationship into oil consumption equa-

tion for South Korea is positive and significant, which implies that when oil consumption is above
its long-run equilibrium, it tends to accelerate further. Also, if the economic growth is deviated,
nuclear energy consumption and real price of oil interact with each other to adjust this deviation
in the long-run.
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growth. However, it is inconsistent with Oh and Lee (2004), who have detected a

uni-directional causality running from energy consumption to GDP growth in South

Korea. The coefficient of the ECT in nuclear energy consumption equation is neg-

ative and significant only in the case of India. Although this result is inconsistent

with Cheng (1999), who examine the long-run relationship between nuclear energy

consumption and economic growth in India using a bivariate model, here, we em-

ploy a multivariate model to overcome the bias results, that might be obtained from

using bi-variate models. Our result show that there is a feedback relationship be-

tween nuclear energy consumption and economic growth in India. Also, there is an

evidence of a bi-directional relationship between real oil price and economic growth

in China. This implies that the economic growth in China could be considered as

a factor for oil price fluctuation, which is consistent with the finding of Hamilton

(2009a,b).124

Substantially, the results above show that the emerging economies are very de-

pendent on energy to grow. Accordingly, energy saving policies that reduce energy

consumption may have an adverse impact on emerging economies. Our results seem

to significantly reject the neoclassical assumption that energy is neutral to growth.

Consequently, we conclude that energy is an important factor to GDP growth in

emerging economies, and, therefore, shocks to the energy supply, particularly oil

supply will have a negative effect on the economic growth of those countries.

Hansen and Johansen (1999) propose a multivariate recursive procedure to eval-

uate the constancy of both the cointegration space and the loadings of the cointe-

gration vector. Figure (4.2) shows the output of the former and consists of a graph

where values over unity imply that there is a change in the cointegration space for

a given cointegration rank. This test is performed using either X or its R repre-

sentation. In the former, the recursive estimation is performed by re-estimating all

parameters in the VECM, while in the later the dynamics are fixed and only the

long run parameters are recursively estimated. Thus, the re-representation is more

suitable when the constancy of the long run parameters are tested. The results

support the existence of a stable long run relationship although there is some insta-

bility when the short and long run parameters are estimated for most of the cases.

Specially, in the starting year of each recursive estimation for the different countries,

and from 1993 to 1994 in China, and from 1996 to 1998 in India. Such instability

124Hamilton (2009a,b) argues that the recent fluctuations in the price o oil were driven by a
stagnant supply and increase in demand driven heavily by China.
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might be due to regime switching, however, this is beyond the investigation of this

paper.

Figure (4.3) presents the test for the stability of the adjustment coefficients of

the VECM with asymptotic 95% error bounds. This test is performed once the

cointegration space has been uniquely identified, and allows one to test whether the

responses of the variables to of the variables to long-run disequilibrium are stable

over time. The results suggest that the adjustment coefficients are stable.

4.6 Conclusion

Understanding the nature of relationship between energy consumption and economic

growth is a key issue that both energy and environmental policy makers have to take

into consideration to develop effective policies. While the linkage between energy

consumption measures and economic growth has been examined for developed and

developing countries, interaction between different energy sources, energy prices

and economic growth received a little attention (for instance, Asafu-Adjaye, 2000;

Lee and Chiu, 2011a,b). This paper fills this gap in energy-economic literature by

investigating the long-run relationship between oil consumption, nuclear energy con-

sumption, oil price, and economic growth for four industrialized countries (the US,

Canada, Japan, and France), and four emerging economies (Russia, China, South

Korea, and India).

We employ the Johansen cointegration analysis to investigate the long-run rela-

tionship between the proposed variables over the period from 1965 to 2010. Empir-

ical results show that a long-run relationship exists between economic growth and

at least one energy source (oil or nuclear energy), which implies that energy is an

essential factor for production in all countries included in our sample. Additionally,

we find that oil consumption enters significantly in the cointegration space, partic-

ularly in six out of eight countries including the US, Canada, France, China, South

Korea, and India. We also found that nuclear energy consumption has a positive

and significant impact on real GDP growth in five countries including Japan, France,

Russia, China, and South Korea. However, as it can be seen from the results, the

Indian economic growth is negatively linked to nuclear energy consumption. It is

beyond the scope of this paper to through examine the underlying reasons behind
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this negative relationship.125 Finally, we show that oil prices do not have a long-run

impact on economic growth. This is because oil prices do not have significant ef-

fect in the cointegration space. Exception to this are the cases of Canada and Russia.

In addition, exogenous test with respect to the speed of adjustment shows that

oil consumption has a predictive power for real GDP in the US, Japan, France, and

India. Regarding nuclear energy consumption - growth nexus, results illustrate that

nuclear energy consumption has predictive power for real economic growth in six

countries including the US, Canada, France, Russia, China, and South Korea. On

the basis of speed of adjustment, we conclude that there is a bi-directional causal-

ity between oil consumption and economic growth in Canada, Russia, China, and

South Korea. On the other hand, there is a bidirectional causal relationship between

nuclear energy consumption and real GDP growth in Japan, and in India. In the

same spirit, results show that there is a bi-directional causality between oil price

and economic growth in the US, Canada, and China.

Overall, it is clear that the investigated countries are highly dependent on energy

consumption to stimulate economic growth. Given that six out of eight countries

are having positive and highly significant impact of oil consumption on economic

growth, and either a unidirectional or bidirectional causal relationship between them

(i.e., oil consumption and economic growth) in all countries, call for caution. These

findings reveal that high level of economic growth leads to a high level of energy

demand and/or vice versa, which has a number of implications for policy analysts

and forecasters. In order to deal with the lately concerns about the reliance on

fossil fuels and not adversely affect economic growth, energy conservation policies

that aim to curtailing energy use have to rather find ways of reducing demand on

fossil fuel. Efforts must be made to encourage industries to adapt technology that

minimise pollution. Alternatively, there is a keen interest in developing nuclear

energy in many countries as a mean of ensuring energy security, reducing emissions,

coping with the increase in energy demand all over the world, and stabilizing oil

price.126 However, nuclear safety is a global concern that needs a global solution.

125It is worth noting that only 3% of India’s total electricity comes from nuclear power
plants. An assessment of India’s nuclear sector, especially after the IndoUS Nuclear Deal
suggests that although investing in nuclear energy is relatively expensive, it could be a
sustainable and a robust alternative to fossil fuels in India. It could also reduce In-
dias increasing dependence on petroleum imports. For more information, see http :
//www.idsa.in/system/files/bookNuclearEnergyIndia.pdf
126Social aims like development of technologies in medicine, public health and agriculture call

attention to invest more in nuclear energy sector (Nazlioglu et al., 2011).
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The right balance should be struck between the quest of economic growth, nuclear

safety, clean energy and the drive towards making these countries relatively energy

independent.127

127Apergis et al. (2010) attempt to explore the causal relationship between CO2 emissions, nu-
clear energy consumption, renewable energy consumption, and economic growth for 19 developed
and developing countries. Their empirical results indicate that in the long-run, nuclear energy
eliminates emission, a 1% increase in nuclear energy consumption is associated with with a 0.477%
decrease in emission.
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Table 4.2: Tests of Unit Root

Country Variable ADF lags PP (4) PP (8) KPSS

Panel A: Highly Industrialized Countries
USA
levels OP -1.698 (0) -1.854 -1.962 0.129 (4)

OC -3.344 (1) -2.746 -2.720 0.086 (4)
NC -3.451 (1) -3.748* -4.339** 0.230** (4)
Y -3.203 (1) -2.098 -1.820 0.098 (4)

first difference OP -6.566** (0) -6.802** -6.808** 0.109 (4)
OC -4.165* (1) -3.606* -3.846 0.104 (4)
NC -4.340** (0) -4.742** -4.847** 0.163 (4)
Y -5.195** (1) -5.602** -5.721** 0.081 (4)

Canada
levels OP -1.843 (0) -1.948 -2.052 0.130 (4)

OC -2.782 (1) -2.659 -2.666 0.104 (4)
NC -0.712 (0) -0.743 -0.684 0.247** (4)
Y -2.476 (1) -2.261 -2.032 0.127 (4)

first difference OP -7.113** (0) -5.461** -5.922** 0.096 (4)
OC -3.752* (0) -0.630 -0.359 0.128 (4)
NC -6.276** (1) -1.953 -1.791 0.082 (4)
Y -5.012** (0) -0.935 -0.831 0.066 (4)

Japan
levels OP -1.809 (0) -1.926 -2.066 0.116 (4)

OC -2.153 (6) -4.108* -3.979* 0.159* (4)
NC -3.156 (7) -6.627* -6.385** 0.247** (4)
Y -3.257 (0) -3.149 -3.165 0.243** (4)

first difference OP -6.188** (0) -6.444** -6.422** 0.100 (4)
OC -3.707* (0) -3.774* -3.88* 0.137 (4)
NC -4.742** (4) -12.75** -12.96** 0.20 (4)
Y -4.566** (1) -4.482** -4.369** 0.0925 (4)

France
levels OP -1.654 (0) -1.835 -1.936 0.158* (4)

OC -3.999* (1) -3.592* -3.545* 0.124 (4)
NC -1.548 (0) -1.563 -1.592 0.114 (4)
Y -2.110 (1) -2.009 -2.114 0.261** (4)

first difference OP -6.297** (0) -6.522** -6.528** 0.108 (4)
OC -3.733* (0) -3.899* -3.984* 0.141 (4)
NC -1.974* (2) -5.741** -5.672** 0.059 (4)
Y -4.990** (0) -5.105** -5.031** 0.093 (4)
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Table 4.2 – Continued

Country Variable ADF lags PP (4) PP (8) KPSS

Panel B: Emerging Economies
Russia
levels OP -2.183 (0) -5.461** -5.922** 0.1072 (4)

OC -2.563 (2) -0.630 -0.359 0.145 (4)
NC -0.990 (0) -1.953 -1.791 0.121 (4)
Y -2.326 (2) -0.934 -0.830 0.158* (4)

first difference OP -4.488* (0) -6.096** -7.148** 0.144 (4)
OC -5.130** (4) -3.005 -2.778 0.109 (4)
NC -3.940** (0) -4.077* -4.145* 0.087 (4)
Y -2.201* (0) -2.862 -2.709 0.090 (4)

China
levels OP -1.536 (0) -1.729 -1.843 0.153* (4)

OC -1.552 (1) -2.859 -2.859 0.133 (4)
NC -1.751 (1) -6.754** -9.197** 0.114 (4)
Y -1.513 (2) -2.443 -2.772 0.241** (4)

first difference OP -6.051** (0) -6.288** -6.378** 0.118 (4)
OC -3.772* (0) -3.965* -3.920* 0.141 (4)
NC -13.323** (0) -12.320** -16.28** 0.124 (4)
Y -5.159** (0) -5.239** -5.358** 0.085 (4)

South Korea
levels OP -2.086 (0) -2.124 -2.253 0.126 (4)

OC -1.354 (2) -3.556* -3.479 0.194* (4)
NC -1.495 (0) -0.926 -0.594 0.177* (4)
Y -0.799 (0) -0.926 -0.594 0.191* (4)

first difference OP -7.668** (0) -8.048** -7.960** 0.103 (4)
OC -3.714* (1) -3.485 -3.401 0.108 (4)
NC -4.478** (4) -3.823* -3.756* 0.064 (4)
Y -6.190** (0) -6.434** -6.443** 0.088 (4)

India
levels OP -2.136 (0) -2.217 -2.176 0.143 (4)

OC -2.706 (1) -2.987 -2.828 0.097 (4)
NC -0.896 (1) -4.454** -4.291** 0.065 (4)
Y 1.118 (4) 0.967 1.467 0.025** (4)

first difference OP -6.962** (0) -7.243** -7.279** 0.082 (4)
OC -6.316** (0) -6.583** -7.127** 0.054 (4)
NC -9.373** (0) -10.46** -12.54** 0.064 (4)
Y -5.350** (3) -8.220** -8.586** 0.085 (4)

Notes: Table entries are the results obtained from unit root tests. Tests are shown in the first
row: augmented Dickey and Fuller (1979) (ADF), Phillips and Perron (1988) (PP), and the
stationarity test by Kwiatkowski et al. (1992) (KPSS). Regression include an intercept and
trend. The variables are specified in the first column: oil price (OP), oil consumption (OC),
nuclear energy consumption (NC) and real GDP (Y). All variables are in natural logarithms,
while the lag length determined by Akaike Information Criteria and are in parentheses. ‘*’ and
‘**’ indicate significance at the 10% and 5% level, respectively. The nulls for all test except for
the KPSS test are unit root.
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Table 4.3: lag Selection Criteria

Country K AIC HQIC SBIC

Panel A: Highly Industrialized Countries

USA 1 -11.6764* -11.3731* -10.849*
2 -11.665 -11.119 -10.176
3 -11.673 -10.884 -9.522
4 -11.612 -10.581 -8.799

Canada 1 -9.819 -9.515* -8.991*
2 -9.655 -9.109 -8.166
3 -9.889* -9.101 -7.738
4 -9.851 -8.820 -7.038

Japan 1 -8.635 -8.332 -7.808*
2 -8.286 -7.740 -6.796
3 -8.313 -7.525 -6.162
4 -9.536* -8.505* -6.722

France 1 -10.757* -10.453* -9.929*
2 -10.499 -9.953 -9.010
3 -10.344 -9.555 -8.193
4 -10.721 -9.690 -7.908

Panel B: Emerging Economies

Russia 1 -1.820 -1.768 -1.623
2 -8.443 -8.183 -7.461
3 -9.553* -9.084* -7.786*

China 1 -11.081 -11.1664 -10.169
2 -12.606 -12.758 -10.963
3 -122.346 -122.566 -119.972
4 -243.045* -243.282* -240.489*

South Korea 1 -7.918 -7.619* -6.984*
2 -7.771 -7.233 -6.089
3 -8.097 -7.320 -5.669
4 -8.577* -7.561 -5.401

India 1 -8.744 -8.437* -7.882*
2 -8.667 -8.115 -7.116
3 -8.316 -7.519 -6.076
4 -8.831* -7.789 -5.901

Notes: AIC, HQIC and SBIC stand for Akaike, Hannan and Quinn and Schwarz’s Bayesian
information criteria, respectively. In the case of conflicting results, we use AIC results as
suggested by Pesaran and Pesaran (1997). ‘*’ indicates significant at 5% level.
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Table 4.4: Multivariate Misspecification Tests

Country Test Test statistics

Panel A: Highly Industrialized Countries

USA
LM (1) χ2(16)=17.185 (0.374)
LM (2) χ2(16)=14.543 (0.558)
Normality χ2(8)= 13.216 (0.105)

Canada
LM (1) χ2(16)=17.185 (0.374)
LM (2) χ2(16)=16.449 (0.422)
Normality χ2(8)= 4.690 (0.790)

Japan
LM (1) χ2(16)=17.185 (0.374)
LM (2) χ2(16)=22.756 (0.120)
Normality χ2(8)= 14.046 (0.081)

France
LM (1) χ2(16)=17.185 (0.374)
LM (2) χ2(16)= 22.149 (0.138)
Normality χ2(8)= 11.790 (0.161)

Panel B: Emerging Economies

Russia
LM (1) χ2(16)= 16.846 (0.396)
LM (2) χ2(16)= 12.777 (0.689)
Normality χ2(8)= 12.447 (0.132)

China
LM (1) χ2(16)= 20.705 (0.190)
LM (2) χ2(16)= 17.946 (0.327)
Normality χ2(8)= 12.429 (0.133)

South Korea
LM (1) χ2(16)= 21.901 (0.146)
LM (2) χ2(16)= 16.628 (0.410)
Normality χ2(8)= 15.811 (0.045)

India
LM (1) χ2(16)= 15.897 (0.460)
LM (2) χ2(16)= 16.234 (0.437)
Normality χ2(8)= 14.040 (0.081)

•Notes: p− values are given in parentheses.

• Lagrange-multiplier (LM): H0: No autocorrelation at lag order.

•Normality: H0: Disturbances are normally distributed.
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Table 4.5: Johansen’s Cointegration Test

Country H0 H1 λmax Trace* 95% c.v P-Value*

Panel A: Highly Industrialized Countries

USA r = 0 4 0.783 76.347 63.659 0.002***
r ≤ 1 3 0.495 34.703 42.770 0.261
r ≤ 2 2 0.396 20.706 25.731 0.195
r ≤ 3 1 0.216 6.987 12.448 0.356

Canada r = 0 4 0.596 51.751 53.945 0.079*
r ≤ 1 3 0.452 28.681 35.070 0.215
r ≤ 2 2 0.295 7.614 20.164 0.850
r ≤ 3 1 0.078 1.796 9.142 0.811

Japan r = 0 4 0.572 68.773 63.659 0.017**
r ≤ 1 3 0.465 39.232 42.770 0.111
r ≤ 2 2 0.365 19.752 25.731 0.243
r ≤ 3 1 0.250 7.554 12.448 0.299

France r = 0 4 0.455 68.158 63.659 0.048**
r ≤ 1 3 0.398 27.715 42.770 0.643
r ≤ 2 2 0.281 17.022 25.731 0.421
r ≤ 3 1 0.207 7.649 12.448 0.290

Panel B: Emerging Economies

Russia r = 0 4 0.878 54.149 53.945 0.048**
r ≤ 1 3 0.767 27.568 35.070 0.265
r ≤ 2 2 0.393 11.807 20.164 0.475
r ≤ 3 1 0.260 4.986 9.142 0.295

China r = 0 4 0.695 51.771 47.707 0.019**
r ≤ 1 3 0.351 20.476 29.804 0.402
r ≤ 2 2 0.127 5.83 15.408 0.718
r ≤ 3 1 0.089 2.818 3.841 0.093

South Korea r = 0 4 0.779 77.884 63.659 0.002***
r ≤ 1 3 0.349 28.399 42.770 0.603
r ≤ 2 2 0.237 12.181 25.731 0.798
r ≤ 3 1 0.097 3.226 12.448 0.840

India r = 0 4 0.486 45.637 40.095 0.012**
r ≤ 1 3 0.386 14.833 24.214 0.474
r ≤ 2 2 0.217 8.117 12.282 0.229
r ≤ 3 1 0.08 2.643 4.071 0.122

Notes: The entries of the upper row show the name of the country in the first column, followed
by the null hypothesis H0, that tests for a cointegration rank of r, then H1 shows the alternative.
λmax shown in the fourth column represents the maximum eigenvalue statistics, Trace∗ shows
the trace statics, 95%c.v represents the critical values at 5% level, and finally p − values are
provided in the last column. ‘*’, ‘**’, and ‘***’ indicate significance at the 10%, 5% and 1%
level, respectively.

137



Table 4.6: Un-restricted Long-run Relationship using Johansen’s Cointe-
gration Technique

Country β1 α1

Panel A: Highly Industrialized Countries

USA OC -0.786*** ∆ GDP -0.224***
(-5.200) (-3.745)

NC -0.015 ∆ OC 0.060
(-1.203) (0.679)

ROP 0.007 ∆ NC 0.704**
(0.380) (2.026)

T -0.012*** ∆ ROP -2.998***
(-8.882) (-2.969)

Canada OC -2.433*** ∆ GDP -0.092***
(-12.012) (-3.144)

NC -0.023 ∆ OC -0.065
(-1.035) (-1.442)

ROP 0.357*** ∆ NC -0.288
(7.621) (-1.084)

∆ ROP -1.766***
Constant 7.091*** (-5.620)

(5.222)

Japan OC 0.101 ∆ GDP -0.261***
(1.427) (-3.638)

NC -0.123*** ∆ OC 0.156
(-10.413) (1.158)

ROP 0.009 ∆ NC 2.510***
(0.592) (3.451)

T -0.011*** ∆ ROP 0.024
(-9.351) (0.022)

France OC -0.249*** ∆ GDP -0.238***
(-7.656) (-2.588)

NC -0.039*** ∆ OC -0.279
(-5.402) (-0.987)

ROP 0.038*** ∆ NC 3.382***
(3.898) (4.295)

T -0.015*** ∆ ROP -4.847***
(-15.891) (-2.438)
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Table 4.6 – Continued

Country β1 α1

Panel B: Emerging Economies

Russia OC -0.002 ∆ GDP -0.166***
(-0.016) (-2.734)

NC -2.973*** ∆ OC -0.112**
(-7.347) (-2.068)

ROP 0.245*** ∆ NC 0.093
(3.073) (-1.298)

∆ ROP -0.51
(-1.558)

China OC -0.917*** ∆ GDP -0.058***
(-6.445) (-3.574)

NC -0.279*** ∆ OC -0.049**
(-3.264) (-2.036)

ROP 0.151 ∆ NC 0.014
(0.891) (0.116)

∆ ROP -0.0247**
(-2.395)

South Korea OC -0.215*** ∆ GDP -0.349***
(-29.818) (-2.662)

NC -0.042*** ∆ OC 1.679***
(-6.374) (4.460)

ROP 0.005 ∆ NC -1.027
(1.051) (-1.132)

T -0.035*** ∆ ROP -1.970
(-37.381) (-0.928)

India OC -1.214*** ∆ GDP -0.029**
(-12.508) (-2.563)

NC 0.091 ∆ OC -0.006
(1.489) (-0.401)

ROP 0.091 ∆ NC -0.258***
(0.621) (-4.660)

∆ ROP -0.024
(-0.149)

Notes: Table entries are the estimates of the un-restricted long-run relationship using Jo-
hansen’s Cointegration Technique. The long-run relationship has been normalized on the eco-
nomic growth (GDP). The variables in the first column are: oil consumption (OC), nuclear
energy consumption (NC) and real oil price (ROP). β1 represents the estimated long-run pa-
rameters and α1 shows the speed of adjustment in each equation. Numbers in parentheses are
t-statistics where ***, ** and * denote significance at the 1%, 5% and 10% respectively.
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Table 4.7: Variables Exclusion Test

Country Variable LR test p− value
USA GDP 3.824** 0.050

OC 10.136*** 0.001
NC 0.943 0.332
ROP 0.084 0.772
T 1.537** 0.025

Canada GDP 5.157** 0.023
OC 11.946*** 0.001
NC 0.276 0.599
ROP 12.184*** 0.000
Constant 9.485*** 0.002

Japan GDP 6.729*** 0.009
OC 0.457 0.499
NC 6.790*** 0.009
ROP 0.072 0.788
T 4.931** 0.026

France GDP 11.108*** 0.001
OC 6.070** 0.014
NC 8.093*** 0.004
ROP 0.754 0.385
T 7.265*** 0.007

Russia GDP 4.728** 0.030
OC 0.000 0.996
NC 11.573*** 0.001
ROP 3.543** 0.045

China GDP 5.372** 0.020
OC 4.455** 0.035
NC 4.820** 0.028
ROP 0.337 0.561

South Korea GDP 41.347*** 0.000
OC 47.101*** 0.000
NC 10.819*** 0.000
ROP 0.751 0.386
T 44.228*** 0.000

India GDP 3.934** 0.047
OC 4.669** 0.031
NC 0.723** 0.039
ROP 0.180 0.671

Notes: Table entries in the second column show the name of the variable tested for exclusion
from the cointegration relationship including: economic growth (GDP), oil consumption (OC),
nuclear energy consumption (NC) and real oil price (ROP). Tests are on the null hypothesis
that the particular variable listed is not in the cointegration space. The test is constructed
by re-estimating VECM model which which cointegration coefficient β in Equation (29) for
corresponding variable is restricted to zero. Under the null hypothesis, the test statistics is
distributed chi-squared with one degree o freedom. ‘***’, ‘**’ and ‘*’ relates to the decision to
reject the null hypothesis at 1%, 5% and 10% significant level, respectively.
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Table 4.8: Variables Exogeneity Test

Country Variable LR test p− value
USA GDP 8.094*** 0.004

OC 0.361 0.548
NC 3.155 0.076
ROP 4.366** 0.037

Canada GDP 5.154** 0.023
OC 1.424** 0.033
NC 0.692 0.406
ROP 10.091*** 0.001

Japan GDP 4.060** 0.044
OC 0.366 0.545
NC 5.970* 0.015
ROP 0.000 0.987

France GDP 3.903** 0.048
OC 0.248 0.618
NC 3.708* 0.054
ROP 1.170 0.279

Panel B: Emerging economies

Russia GDP 4.735** 0.030
OC 2.373** 0.045
NC 1.251 0.263
ROP 1.952 0.162

China GDP 9.033*** 0.003
OC 6.555** 0.010
NC 0.859 0.354
ROP 2.817* 0.093

South Korea GDP 3.903** 0.048
OC 13.846*** 0.000
NC 1.220 0.269
ROP 0.765 0.382

India GDP 7.374*** 0.007
OC 0.145 0.703
NC 5.149** 0.023
ROP 0.015 0.904

Notes: Table entries in the second column show the name of the variable tested for weak exo-
geneity including: economic growth (GDP), oil consumption (OC), nuclear energy consumption
(NC) and real oil price (ROP). Tests are on the null hypothesis that the particular variable
listed is not responsive to deviation from previous period cointegration relationship. That is
the variable’s speed of adjustment α in Equation (30) is zero. Under the null hypothesis, the
test statistics is distributed chi-squared with one degree o freedom. ‘***’, ‘**’ and ‘*’ relates
to the decision to reject the null hypothesis at 1%, 5% and 10% significant level, respectively.
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Table 4.9: Restricted Long-run Relationship using Johansen’s Cointegra-
tion Technique

Country β1 α1

Panel A: Highly Industrialized Countries

USA restricted model test χ2(4)=4.515 (0.704)
OC -0.759*** ∆ GDP -0.283***

(-6.255) (-4.770)
NC 0 ∆ OC 0.000

(0.000) (0.000)
ROP 0 ∆ NC 0.000

(0.000) (0.000)
T -0.012 ∆ ROP -2.238**

(-9.187) (-1.992)

Canada restricted model test χ2(2)= 0.749 [0.688]
OC -3.078*** ∆ GDP -0.053**

(-13.568) (-2.433)
NC 0.000 ∆ OC -0.053*

(-1.652)
ROP 0.499*** ∆ NC 0.000

(7.501)
∆ ROP -1.355***

C 11.319*** (-6.341)
(7.494)

Japan restricted model test χ2(4)= 3.782 (0.436)
OC 0.000 ∆ GDP -0.353***

(-4.823)
NC -0.108*** ∆ OC 0.000

(-13.265)
ROP 0.000 ∆ NC 2.662***

(3.289)
T -0.012*** ∆ ROP 0.000

(-12.701)

France restricted model test χ2(4)=8.446 [0.077]
OC -0.262*** ∆ GDP -0.320***

(-6.183) (-2.862)
NC -0.049*** ∆ OC 0.000

(-5.363)
ROP 0.000 ∆ NC 0.000

T -0.011*** ∆ ROP 0.000
(-9.452)
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Table 4.9 – Continued

Country β1 α1

Panel B: Emerging economies

Russia restricted model test χ2(3)= 4.871 [0.181]
OC 0.000 ∆ GDP -0.249***

(-4.888)
NC -2.503*** ∆ OC -0.156***

(-6.286) (-3.071)
ROP 0.140* ∆ NC 0

(1.986)
∆ ROP 0

China restricted model test χ2(2)=
OC -0.819*** ∆ GDP -0.054***

(-29.207) (-3.944)
NC -0.327*** ∆ OC -0.043**

(-4.251) (-2.027)
ROP 0.000 ∆ NC 0.000

∆ ROP -0.179*
(-1.941)

South Korea restricted model test χ2(3)=2.815[0.421]
OC -0.214*** ∆ GDP -0.348**

(-29.403) (-2.027)
NC -0.048*** ∆ OC 1.624***

(-8.532) (4.154)
ROP 0.000 ∆ NC 0.000

T -0.035*** ∆ ROP 0.000
(-43.800)

India restricted model test χ2(3)= 0.377[0.945]
OC -1.150*** ∆ GDP -0.028**

(-36.988) (-2.308)
NC 0.104** ∆ OC 0.000

(2.229)
ROP 0.000 ∆ NC -0.267***

(-4.478)
∆ ROP 0.000

Notes: Notes: Table entries are the estimates of the un-restricted long-run relationship using
Johansen’s Cointegration Technique. The long-run relationship has been normalized on the
economic growth (GDP). The variables in the first column are: oil consumption (OC), nuclear
energy consumption (NC) and real oil price (ROP). β1 represents the estimated long-run pa-
rameters and α1 shows the speed of adjustment in each equation. Numbers in parentheses are
t-statistics where ***, ** and * denote significance at the 1%, 5% and 10% respectively.
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Figure 4.1: Country Data
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Figure 4.2: Hansen and Johansen (1999) test of constancy of β̂
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Figure 4.3: Hansen and Johansen (1999) test of constancy of α̂
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Chapter 5

Conclusion
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This thesis comprises three separated yet related empirical studies on different

macroeconomic variables. Here in Chapter 5 we provide a summary for the major

findings from the three empirical chapters and acknowledge their possible limita-

tions. In the first study that is presented in Chapter 2, we assess the ability of two

widely used approaches to predict quarterly GDP growth for Kingdom of Bahrain.

The first approach is meant to explain and forecast GDP growth by exploiting the

information from selected indicator variables. These variables are suppose to have a

close relationship with GDP but are published more promptly than the GDP. The

second approach is factor based model, which utilizes extensive data set of macroe-

conomic indicators. Particularly, a factor model summarizes the information from

the large dataset into small number of un-observed common factors that help in pre-

dicting GDP growth. The data that are used at quarterly frequency and cover the

period from 1995:Q1 - 2008:Q3. We implement an out-of-sample forecast evaluation

based on point and density forecasts.

Results based on the root mean square forecasts error (RMSFE) indicate that

intercept correction model with three indicators (3IV/IC) outperforms any other

alternative model. However, results show that other models such as the three indica-

tors (3IV ), intercept correction with single indicator (SIV/IC) , intercept correction

using industrial production index (SIV/ICIP ), and the three factor-based (SW3L)

models, pass the density forecast criterion. The Diebold and Mariano (1995) (DM)

test demonstrates that the difference in the RMSFE between these models and the

best performing model (3IV/IC) are insignificant at 95%. Industrial production

appears to be both a timely and useful indicator for nowcasting using simple re-

gression approach based on single indicator variable (SIV/IC). Our results support

Caggiano et al. (2011) argument of efficiency of forecasts using preselected indicators.

The most accurate FLASH estimates are achieved at 84 days using 3IV , SIV/IC,

and SW3L. To produce further earlier estimates, bridge equation is a useful ap-

proach. It forecasts a key indicator of GDP growth (refined petroleum production

in our case) for the final month in quarter. This forecasted value is then combined

with the two months of hard data to obtain FLASH estimates using SIV/ICIP at

54 days (shorten the lag significantly by 36 days). Out-of-sample forecast evaluation

of SIV/ICIP model shows insignificant loss in accuracy, which is in line with liter-

ature arguments on the role of hard data such as industrial production (Bańbura
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and Rünstler, 2011; Angelini et al., 2010).

In sum, early and accurate estimates are achieved at two different timelines. A

key finding in our study is that using preselected indicator variables that are related

directly to GDP is helpful in the case of Bahrain, which implies that more data are

not always useful (Boivin and Ng, 2006). The simple regression-based models appear

to offer the best means of handling the changes in the business cycle in comparison

to AR and factor models, however, it will be interesting to see in a future study

whether mixed-frequency factor models, of the sort used by Angelini et al. (2010),

are able to pick up the rapid switch in the utility of hard indicators automatically.

Our finding can be seen as an addition to the growing body of work that investigates

how well factor-based methods work relative to alternatives, often simpler methods.

In the second study (Chapter 3), we contribute to the literature of forecasting

crude oil prices in three main folds. First, we use a large dataset that comprises

147 time series variables which are intended to capture the information on oil mar-

ket. The data-set is on monthly basis and cover the period from March 1983 to

December 2011. To our knowledge, Zagaglia (2010) is the only study that exploits

information from large data-set in an attempt to forecast crude oil prices. Second,

forecasting a highly volatile variable such as crude oil prices face structural breaks

problem, which consequently affects the stability of models parameters. Therefore,

we use a model that allows the parameter to change over time. Third, oil price is

very sensitive to market, regional, political and speculation changes, which makes

a single best model over the full period is unattractive. The best model at some

times could be a bad model at other times. Thus, we use a model that accounts for

model uncertainty. To do so, we implement the dynamic model averaging (DMA)

approach, which is suggested by Koop and Korobilis (2012), which allows for pa-

rameter and model evolution over time.

To our knowledge, other than the application of Koop and Korobilis (2012, 2011);

Koop and Tole (2013), the dynamic model averaging (DMA) and the dynamic model

selection (DMS) have not been used by macroeconomic forecasters. The present

study extend the use of DMA and DMS models to factor models with monthly large

data-set to forecast crude oil prices.

In our empirical work, we present evidence that indicates the benefits of DMA
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and DMS. In particular, the forecasting models that are generated by the DMA and

DMS outperform the other competing models in this study. Also, it does seem that

the best predictors for forecasting oil prices are changing considerably over time.

There is model rather than parameter variation in our case, and the DMA is not

significantly different from the BMA. Our results also suggest that the DMA and

the DMS are complementary rather than mutually exclusive. This is so, because

although the best performing DMS model outperforms all other alternatives, the

probability of being included in the DMA is low. Finally, we show that although

it is easier to forecast prices of future contracts, the best DMS model has better

forecasting performance than the model based on future contracts. By allowing for

parameter and model change, DMA and DMS lead to substantial improvements in

forecast performance.

Since the primary contribution of this study is to add to the literature of fore-

casting crude oil prices and compare the performance of the applied models, we may

consider alternative forecast evaluation methods such as mean absolute percentage

error (MAPE).

The primary focus of the third study, which is presented in Chapter 4, is to ex-

amine the long run relationship between energy consumption and economic growth

in selected industrialized and emerging countries. We implement this investigation

using two different energy sources including oil consumption (OC), nuclear energy

consumption (NC), real economic activity (GDP), and real oil prices (ROP) for the

period from 1965 - 2010. The sample includes four developed countries: the US,

Canada, France and Japan, and four emerging economies: Russia, China, South Ko-

rea and India. Since the results of previous studies are found to be sensitive to the

period of time and the use of total energy consumption (for instance, Asafu-Adjaye,

2000; Lee and Chiu, 2011a,b), our empirical investigation extends the period of time

in the existing literature and utilizes two different energy sources using Johansen

cointegration technique. Also, as energy prices have been neglected in many previ-

ous studies, the long-run parameters and the evidence of causality may be biased,

(see, Masih and Masih, 1997; Asafu-Adjaye, 2000). Hence, we include oil prices in

our empirical analysis.

Empirical results of this chapter can be summarized in four findings. First, oil

consumption, nuclear energy consumption, oil prices and real GDP are cointegrated
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which implies the existence of a long-run equilibrium relationship among these vari-

ables. There is at least one energy source (oil or nuclear energy) that enters signif-

icantly in the cointegration space for all investigated countries. This reveals that

energy is an essential factor for economic growth. In particular, oil consumption is

found to be highly significant in six out of eight countries including the US, Canada,

France, China, South Korea, and India, where an increase of 1% in oil consumption

increases real GDP growth by 0.759%, 3.078%, 0.262%, 0.819%, 0.214% and 1.15%,

respectively. Nuclear energy consumption also has a positive and significant impact

on real GDP growth in five countries including Japan, France, Russia, China, and

South Korea. We observe that France, China, and South Korea are highly depen-

dent on both energy sources, oil and nuclear power to stimulate economic growth.

However, the Indian economic growth is negatively linked to nuclear energy con-

sumption. This indicates that decreasing the use of nuclear energy consumption by

1% increases the economic growth for India by 0.104%, suggesting that energy con-

servation measures that are applied to reduce nuclear energy consumption may help

to lower the adverse effects of nuclear energy consumption on economic growth. Oil

prices are found to have significant and negative impact on the real GDP of Russia

and Canada, which support the inverse relationship between oil price and economic

activities that is suggested by Hamilton (1983).

Second, the coefficients of the error correction terms (ECTs) are found to be

significant in ∆GDP and ∆OC equations for Canada, Russia, China, and South

Korea. These results imply that the GDP and OC are not weakly exogenous, sug-

gesting a bi-directional long-run causality (feedback effect) between the GDP and

OC in thes countries. Alternatively, oil consumption is weakly exogenous and has

a predictive power for real GDP growth in the US, Japan, France, and India. Oil

consumption can be considered as an important factor for economic growth in these

countries.

Third, we observe that nuclear energy consumption has a predictive power for

real economic growth in six countries including the US, Canada, France, Russia,

China, and South Korea. Also, Japan and India have a bidirectional causal rela-

tionship between nuclear energy consumption and real GDP growth. These results

reveal that nuclear energy is an important factor for economic growth and it is also

widely accepted by many countries. Restricted measures on developing nuclear en-

ergy may suppress economic growth in these countries. Therefore, both governments
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and industries have to pay further attention and put on more efforts to overcome the

restricted measures in order not to harm economic growth. In other words, a nuclear

consumption growth policy should be tailored in such a way to encourages economic

growth. Especially that nuclear power is virtually carbon free energy source, that

can serve as a potential solution to both energy security and climate change prob-

lems, when safety measures are basically taken carefully into account.

Fourth, there is a strong evidence that the level of international oil price is very

important and has a predictive power for the economic growth in five out of eight

countries including: Japan, France, Russia, South Korea, and India. Thus, the in-

ternational crude oil price upsurge has significant impacts on economic growth in

these countries. Also, there is a bidirectional causality between real oil price and

real economic growth in the US, Canada, and China.

Overall, as most investigated countries are oil dependent oil-importing countries,

oil could be considered as a limiting factor to their economic growth. Thus, design-

ing efficient energy policies is a real challenge for these countries especially in the

short run. Scarcity in the supply of oil will slow down the economic growth badly. It

is vital to continue to diversify their economic base in order to insulate themselves

from the possible depletion of oil as a natural resource along with their suscep-

tibility to volatile oil prices in international markets. Furthermore, while energy

conservation policies that reduce energy consumption may have an adverse impact

on growth, policy makers need to also recognise the environmental consequences of

oil usage in the design and implementation of a sustainable energy consumption mix

that ensures future economic growth. Policy makers need to balance the needs for

sustained economic growth with the environmental costs associated with excessive

energy consumption. As such, policy makers should continue to enhance energy ef-

ficiency usage and reduce the long-run environmental consequences associated with

dependence on oil production and consumption. The appropriate balance should

properly taken into account in order to achieve the pursed level of economic growth,

satisfying the need of massive energy, being more energy independent, and using a

clean energy source for sustainable development.

Different countries have different energy consumption patterns and various sources

of energy (Sari and Soytas, 2007). Hence, different sources of energy may have vary-

ing impacts on economic growth. In our third study, we empirically investigate the
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relationship between energy consumption and economic growth using disaggregate

data for both oil and nuclear energy rather than using the aggregate data. We have

included the energy prices (oil prices) as one of the important fundamental vari-

ables which affect both the output growth and energy consumption. In a similar

econometric framework, the relationship between other sources of energy such as

electricity, natural gas or coal and output growth may also be analyzed in future

work. Further, a simple overall analysis of the relationship between energy con-

sumption and real GDP may very well mask the differential impacts associated with

the energy consumption of various sub-sectors in relation to output in the econ-

omy. The shift in the composition of output in the economy could affect the energy

consumption-output relationship due to the fact that different industries may have

different energy intensities. Accordingly, it might be worth to take into account the

sectoral differences and use sector level data to search whether there are changing

patterns in the relationship between sectoral output growth and energy consumption

in different sub-sectors.
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