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Abstract

Wireless Sensor Networks (WSNs) consist of multiple distributed nodes each with

limited resources. With their strict resource constraints and application-specific

characteristics, WSNs contain many challenging trade-offs. This thesis is concerned

with the load balancing of Wireless Sensor Networks (WSNs). We present an ap-

proach, inspired by bees’ pheromone propagation mechanism, that allows individual

nodes to decide on the execution process locally to solve the trade-off between ser-

vice availability and energy consumption. We explore the performance consequences

of the pheromone-based load balancing approach using a system-level simulator.

The effectiveness of the algorithm is evaluated on case studies based on sound sen-

sors with different scenarios of existing approaches on variety of different network

topologies. The performance of our approach is dependant on the values chosen

for its parameters. As such, we utilise the Simulated Annealing to discover op-

timal parameter configurations for pheromone-based load balancing technique for

any given network schema. Once the parameter values are optimised for the given

network topology automatically, we inspect improving the pheromone-based load

balancing approach using robotic agents. As cyber-physical systems benefit from

the heterogeneity of the hardware components, we introduce the use of pheromone

signalling-based robotic guidance that integrates the robotic agents to the existing

load balancing approach by guiding the robots into the uncovered area of the sensor

field. As such, we maximise the service availability using the robotic agents as well

as the sensor nodes.
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Chapter 1

Introduction

1.1 Background And Motivation

Wireless Sensor Networks (WSNs), also known as sensornets, consist of a large num-

ber of small distributed, autonomous, self-powered electronic nodes, each equipped

with limited resources: embedded processors, memory, batteries, radio transceivers

and environmental sensors. WSNs are envisaged for industrial, civil and military

purposes to monitor, detect and track events according to application requirements.

As the technology advances, the resource capacity of WSNs improves, whilst the

cost of the sensors decreases. However, these small, capacity-limited devices still re-

strict the performance of the applications in which they are used. One approach to

maintain the required performance, without introducing additional resources from

outside the network, is to place an excessive number of node deployments in the net-

work. This, however, causes greater computational redundancy, and thus, increases

the network overheads.

In short, resource limitations (e.g. processing and energy) and scalability issues

of WSNs are the two unique characteristics that differentiate them from traditional

wireless ad hoc networks. Therefore, managing large scale WSNs is even more dif-

ficult as they require solutions to overcome not only the limited resources of these

environments, but also the computational redundancy that results. In particular,

large scale WSNs need to carefully allocate tasks over sensors in such a way that

communicating tasks are physically close enough to each other to avoid large net-
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Chapter 1: Introduction

work latencies, but at the same time are well spread across the network to avoid

network congestion and communicational energy consumption. Furthermore, clas-

sic resource scheduling and load balancing techniques cannot handle this type of

problem due to the size and the distributed nature of the given large scale prob-

lem. This, together with time constraints to perform load balancing are some of the

key factors on performance. Optimising the performance of WSNs is a challenging

problem, in particular the issue of load balancing and resource allocation in WSNs is

NP-complete. In a networked system of N processing nodes and M communicating

tasks, there are MN possible task allocations for the system. It is implausible for

a central node to be aware of the complete state of the system to make the best

allocation decisions: communication latencies mean that the state may be stale by

the time global allocation decisions are made and disseminated. The complexity

of the problem in WSN domain together with the distributed, dynamic nature of

the resource limited WSNs result in tight timing constraints which prevent the use

of computationally heavy algorithms. As a result, there is a great need to find a

computationally lightweight load balancing algorithm that can cope with large scale

WSNs without introducing high level of redundancy. Moreover, among the resource

challenges, managing the energy usage and prolonging the network lifetime without

sacrificing much from the network performance in terms of service availability and

quality of service (QoS) has a major criticality 1.

To contextualise the given characteristics of the WSNs, we describe an exemplar

scenario of the use of WSNs: Wild-Life Sound-Based Detection Systems that are

used for bird identification, or intruder detection have a dense wireless network of

sound sensors. Each sound is sensed by many of the network nodes simultaneously.

In such systems, some techniques will allow many network nodes to process the same

sound at the same time resulting in repercussions such as computational redundancy,

shorter lifespan of nodes and low performance efficiency especially once nodes started

to run out of energy. In such techniques, where there is no attempt to distribute the

load over the network components (load balancing), the sensor nodes in the more

1Military-purpose applications and safety-critical systems are exempt.
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Passive Sensors in the 

range of the Event

Active Sensors 

Events in the Environment

Figure 1.1: Wild-Life Sound-Based Detection on Sensor Field

active areas of the sensor network (e.g. where birds appear more) will run out of

energy almost simultaneously as a result of computational redundancy. This will

lead to a shorter network lifespan and low performance efficiency.

To cope with such scenarios, an effective runtime mechanism should

• use a distributed control mechanism

• be in place to optimise the allocation of load in a way that it avoids unnecessary

computational redundancy by guaranteeing that relevant events will not go

undetected

• spread the computation and communication load across the network (and

therefore distribute the energy consumption about the network)

• increase the network lifespan.

3



Chapter 1: Introduction

1.2 Challenges and Key Design Issues

The emergence and subsequent rapid growth of WSNs has led to many open issues

for researchers. Beside the limited resource structure and the scalability issues of

WSNs that are mentioned in the previous section, WSNs have other challenges

related to the location in which they are deployed. WSNs are typically composed of

a small number of battery-powered sensor nodes are often deployed in unfriendly and

unattended remote environments. Network maintenance (i.e. changing, replacing or

reconfiguring the failed nodes) can be costly or even impractical (e.g. in cases where

the network is isolated) and as a result network lifetime and performance is highly

restricted and dependent on the survivability of the nodes. From the performance

and financial standpoint, it is more beneficial to produce a network structure which

can cope with the changes in the environment without maintenance.

The need to adapt to changing environments has always been associated with

self-adaptation, self-organisation, and self-configuration. The dynamic and unpre-

dictable nature of adaptive systems like WSNs, require self-adaptation and self-

organisation protocols. A way to enable self-adapting and self-organising behaviours

is to take inspiration from nature which is the biggest and the greatest dynamic

and adaptive system. Organic computing, or bio-inspired computing as it is often

called, takes inspiration from living objects of nature and mimics their behaviours

to achieve more robust systems in the fields of engineering and computer science.

In both 2003 and 2013 the MIT Technology Review [149] identified biology and

computational modelling/simulation of chemical and biological systems, and WSNs

as two of the ten emerging technologies that will change the world. Therefore, this

thesis focuses on finding a solution to the fundamental resource challenges of WSNs,

using bio-inspired techniques on large scale WSNs.

1.3 Research Question

The aim of this thesis is to investigate the problem of load balancing in WSNs with

a focus on adaptivity to the dynamic environment. Instead of addressing this aim

from the perspective of a small scale problem, this research will approach it from

4



1.4 Research Objectives

the perspective of large scale problem in order to inspect scalability issues of WSNs

as well as load balancing. Therefore, the research question that this thesis aims to

address is as follows:

Can a distributed bio-inspired load balancing technique be used to improve service

availability and network lifetime using adaptive and dynamic resource management

for large scale WSNs with redundant coverage?

1.4 Research Objectives

This thesis will investigate the use of biologically-inspired techniques for load bal-

ancing large-scale WSNs. The proposed bio-inspired load balancing solution in this

thesis distributes workload evenly over the network components, and balances node

energy levels. Classical load balancing techniques (in particular centralised algo-

rithms that focus on optimal solutions) are inappropriate for WSNs, due to the

changing workload dynamics and the energy costs of obtaining up-to-date state

of the distributed WSN. To address those challenges, we rely on the lightweight

and distributed nature of bio-inspired mechanisms. In this research, we present a

task mapping optimisation algorithm that addresses the trade-off between energy

efficiency and event detection at run-time, maximising service availability while re-

ducing energy consumption by restricting service times of the network components.

In detail, the research objectives of the experimental work in this thesis are:

• RO1: To implement a lightweight bio-inspired load balancing technique that

can satisfy the dynamic and adaptive requirements of large scale WSNs.

• RO2: To establish an experimental test bed to investigate the characteristics

of load distribution over network resources and the aspect of dynamic and

adaptive bio-inspired load balancing in large scale WSNs.

• RO3: To investigate the feasibility of accelerating the experimental test bed

without sacrificing accuracy to improve the performance of the experimental

test bed.

5
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• RO4: To inspect the effects of a static parameter tuning on our bio-inspired

load balancing algorithm from a large-scale perspective, and to propose a

corresponding parameter tuning method for the parameter optimisation.

• RO5: To extend the load balancing technique that is provided in RO1 to

incorporate mobile robotic agents that help distribute load more effectively

about the network.

1.5 Thesis Structure

The structure of this thesis is as follows. Chapter 2 inspects the related work

and analyses the current problems encountered in WSNs development. Chapter 3

presents our bio-inspired load balancing technique, based on the pheromone sig-

nalling mechanism of bees, as a potential solution to these problems. Chapter 3

also establishes an experimental test bed to investigate the proposed algorithm.

Following that Chapter 4 inspects the experimental test bed and introduces a new

experimental test bed that aims to improve the performance of the simulations. This

chapter also presents a search-based parameter tuning approach for our developed

pheromone signalling-based load balancing algorithm to automatically discover op-

timal parameter configurations for any given network topology. Chapter 5 argues

the benefits of using additional mobile robotic agent to increase the network per-

formance that corporates with the fixed sensor nodes. Chapter 6 concludes with a

summary of findings developed in this research.

6



Chapter 2

Literature Survey

In the previous chapter we described the wide application areas, characteristics and

challenges of WSNs. Many of the challenges of WSNs are tackled by optimisation

techniques. The chapter gives an overview of relevant literature that has attempted

to describe, analyse, or efficiently exploit optimisation techniques on WSNs. This

chapter is split into four main parts of the problem targeted in this research:

• Section 2.1 defines Load Balancing and describes why load balancing is

crucial for restricted embedded systems like WSNs explicitly. We classify

existing load balancing techniques based on their implementation area on net-

work (OSI) stack on two levels. This section also covers task mapping and

bio-inspired task mapping techniques, which are widely used to perform load

balancing on WSN. Task mapping techniques are explained in detail with

well-known algorithms and categorised in section 2.1.1. In section 2.1.2, bio-

inspired techniques that are in the field of computer science are introduced,

defined, and categorised based on their inspirations and area of application.

As most of the proposed bio-inspired techniques improve load balancing di-

rectly or indirectly, this section covers all the explored with a taxonomy briefly.

Section particularly focuses on the bio-inspired load balancing techniques.

• Section 2.2 describes Performance Evaluation and starts with the impor-

tance of the performance evaluation on WSNs. Section continues describing

the performance evaluation metrics and different evaluation techniques in sec-
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tion 2.2.2. Definitions of the evaluation metrics are given, categorised and their

differences are explained in section 2.2.1. Section 2.2.2 explains the importance

of choosing a well-suited performance evaluation technique to incorporate with

the metrics.

• Section 2.3 categorise Optimisation Techniques and introduces examples

of the relevant literature. In 2.1.1 we described task mapping optimisation. In

this section, we present traditional optimisation techniques in Section 2.3.1,

and metaheuristic search techniques in Section 2.3.2 briefly. Section 2.3.2.1

particularly covers the research that implies Simulated Annealing metaheuris-

tic search as it is widely used to optimise WSNs.

• Section 2.4 explains Network Coverage. Section starts with gives brief in-

formation on the network coverage and connectivity, expalins the different

method on how to improve connectivity and provides relevant approaches ex-

ist in the literature. Section 2.4.1 introduces variety of techniques that uses

mobile entities to increase the network coverage in WSNs. Some of the sig-

nificant research examples on increasing the network coverage using mobile

entities given.

2.1 Load Balancing

The concept of load balancing in WSNs refers to distributing work load over the

network component and is analogous to Bin Packing problem [45]. The Bin Pack-

ing problem is one of the well-known object distribution algorithms, which is often

applied to tackle optimisation problems specially in resource allocation, and schedul-

ing issues [190]. Given N items, of sizes S1, S2, S3, S4, ..., SN. The goal is to pack

items into as few bins as possible. The Bin Packing can be applied in two ways;

offline and online [77], [98]. Online techniques occur at run time, they are difficult

to implement. On the other hand online techniques are more promising and they

provide (near) optimal results. In WSNs, classic load balancing techniques are often

applied offline before runtime (static) and/or use a centralised control mechanism to

8
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manage the network load distribution. Both static techniques and approaches that

implement centralised control mechanisms do not cope with the dynamic nature of

WSNs and so much of the recently proposed load balancing techniques WSNs are

applied online (dynamic at run time). In this section, we overview some of the es-

sential research in WSN based on the applied area in different partitioning layers of

the communication model (OSI stack) [207].

The concept of load balancing has been applied at both the network level, and

the application-level of the OSI stack, and it has significant impact on low power

consumption and network performance. Both network and application-level load

balancing target efficient utilisation of resources to extend the network lifetime. At

the network-level, work-load refers to packet transfer and communication, whereas at

the application-level it refers to execution and processing the data (e.g. monitoring

the environment, sensing the temperature).

Network-Level Load Balancing Research that has focused on network-level

load balancing inspects successful packet delivery ratio, error rate, latency, link fail-

ures and bandwidth usage in context of routing particularly and it has traditionally

focused on clustering schemes, in which the protocol selects clusterhead nodes as re-

gional coordinators to bear responsibility for a system task. In LEACH [67], a form

of dynamic cluster selection is presented in which nodes periodically rotate cluster-

head responsibilities to balance their energy consumption. Nodes probabilistically

become clusterheads with probabilities governed by their remaining energy. Other

nodes transmit data to the clusterhead first, and clusterheads can be organised hier-

archically to assist with delivery back to the sink. Therefore nodes with the highest

remaining energy assume more often the burden of routing and aggregating messages

from their peers. In HEED [202] the residual energy of a node is also the primary

factor in cluster nomination decisions, however power levels upon cluster reception

are also considered in order to improve the decisions made. PEGASIS [107] improves

on LEACH by avoiding duplication of transmissions between cluster nodes, and in-

troduces aggregation of data at the clusterheads. Firefly protocols propagate control

messages to synchronise and coordinate network functions across a region, for exam-
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ple clock synchronisation [179]. Heartbeat protocols are used to verify liveness and

reachability of remote nodes (via a request-acknowledgement cycle) when dealing

with distributed processes or nodes that may fail [60]. Gossip protocols are used for

probabilistic data distribution at the network layer [63]. In [36] a reliability-based

distributed routing algorithm is implemented to achieve low-power consumption.

This dynamic approach keeps the network responsive to link dynamics by sending

broadcast beacon packets periodically and updating route information. Trumler

et al. [175] present AMUN – self-organising middleware that distributes the work

load of service-oriented applications. Their proposed technique is inspired from the

human hormone system and provides near optimal resource usage for large-scale sys-

tems. The distributed algorithm uses organisational information about hormones

information to piggy-back on top of the messages that are exchanged between nodes.

Application-Level Load Balancing Research that has focused on application-

level load balancing distributes the work load by deciding which node should execute

the requested application requirement among network entities. A static technique

presented by Zeng et al. [205] aims to improve network response time and limit en-

ergy usage. However, this approach results in overloading the network, as the map-

ping cannot adapt effectively to network conditions. Miorandi et al. [123] present

a genetic approach, involving genome mutation and crossover. DNRS [7] limits en-

ergy consumption while improving reliable event detection. BTMS [65] uses zygote

differentiation to extend the network lifetime whilst speeding up task mapping and

scheduling. Homogeneous nodes begin in a default state and within time nodes

differentiate themselves dynamically to perform distinct tasks according to their

location.

Summary

In this section, we described the purpose of load balancing for WSNs, and categorised

the application area on OSI stack. A wealth of approaches on both the network and

application-level of OSI have been given as examples of load balancing in WSNs.

Each of the approaches have their own drawbacks although they improve the network

10
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performance. In the next section, we focus on task mapping techniques which are

used as a way of optimising WSN performance.

2.1.1 Task Mapping Techniques

Task mapping is an optimisation technique that has been widely used in WSNs.

Tasks are often considered as the smallest parts of the system requirements and

functionalities that the application model consists of [199]. System functionality can

be defined as describing the hardware components on an abstract platform models.

An example of a system functionality in WSNs can be monitoring, collecting and

processing the real- time data based on the sensor readings.

Task mapping is defined by Hamouda et al. [65] as assigning tasks to network

resources and determining the task execution sequence to achieve the performance

objectives. In this research, the concept of task mapping refers to distributing re-

sponsibility for performing work across the entities of a distributed system such as

a sensor network. In WSNs, mapping techniques have been used in multi-model

approaches, where different models used in mapping process (unrelated from the

OSI layers) represent different aspects of a WSN system: platform model, appli-

cation model and mapping model. The platform model consists of the hardware

structure of the networks, mainly called as sensors. Application model consists of

system requirements and functionalities. System functionality can be defined as

describing the hardware components using abstract platform models, such as mon-

itoring, collecting and processing the real- time data. In this research tasks are the

system requirements and functionality of the application model is computation of

the tasks and inter-task communications. Mapping model, or mapper, which is the

link between the application model, and the platform model, has been defined as

the system component which plays a critical role of handling mapping-related func-

tionalities that enable explorations of mapping influence in terms of performance

metrics [14]. Only the mapping heuristics plays a critical role of maintaining the

low energy consumption, longer network lifetime and the resource availability where

platform layer and application layer remains the same.

In order to explain the task mapping process clearly, we give an example using
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Set Theory and provide a mathematical model of the concept of task mapping. The

platform model, PM = (N,L) consists of a set of nodes N and a set of bidirectional

wireless links between neighbouring nodes L. Each node nm ε N, is the tuple nm =<

mm, bcm, idrm, cdrm, wcdrm > representing its memory capacity in bytes, battery

capacity in mAh, its battery discharge rate in µAs in idle mode, its battery discharge

rate in µAs when performing a computation and its battery discharge rate in µAs

when transmitting a byte of data over its wireless interface. We use such parameters

to determine, for a given assignment of tasks to nodes, how much energy is dissipated

by each node and, over time, which nodes are still alive (i.e. have dissipated less

than their battery capacity). As the network topology is represented by the set of

links lmn ε L, each communication cij contains a sender and a receiver, which is also

represented as lmn = sm, rn. An application model AM = (T,C) consists of a set

of tasks T and set of inter-task communications C. Each task ti ε T, is the tuple

ti =< idi,mfi, ei, eti >, where idi is the name of the task, mfi is its the memory

footprint in bytes. ei is the energy consumption of the task, and eti is its execution

time. Each inter-task communication cij ε C, is also a tuple cj =< sj, rj >, where

sj ε T is the sender task and rj ε T is the receiver task of the communication. The

mapping process can be define as a surjective function f(t) where t is the tasks of

the mapping function f(t). f(t) = AP , where all the tasks in AM are being mapped

onto nodes of PM, but not all the nodes in the co-domain need to be allocated tasks.

The mapping function can also be explained separately as computation scheduling

and communication scheduling as;

mapTask(t) = mapComputation(co) +mapCommunication(c)

where mapComputation(co) = TSandmapCommunication(c) = CL.

Ost el al. [133] categorise the task mapping techniques for Network on Chips

(NoC’s) as Figure 2.1 illustrates. Due to the similarities of NoC’s and WSN’s in

terms of their resource constrained, and energy-hungry nature, their categorisation

is valid for WSNs and also relevant to this research.

According to Figure 2.1 mapping techniques are categorised into four as moment

of task mapping, number of the tasks per sensor node, mapping control system and

the architecture model. Moment when task is mapped is divided into three as offline,

12



2.1 Load Balancing

Mapping

Number of the Tasks 

Per Sensor Node

Architecture Model Mapping Control System Moment When Task is Mapped

Homogenous Offline Dynamic re-

mapping

On demand 

mapping

Heterogeneous Centralised Distributed

With resource 

reservation

Without 

resource 

reservation

Mono-tasking Multi-tasking

Figure 2.1: Categorisation of mapping techniques [133].

on demand and dynamic re-mapping. Offline mapping techniques as often referred

as static, occur in advance, whereas on demand mapping approaches refer to the

dynamic techniques which take place during execution time of the application. Since

on demand dynamic mapping approaches use fast and simple algorithms, execution

time reduces. On demand dynamic techniques can be separated into two; with

resource reservation and without resource reservation. In the resource reservation

approach, sensor nodes are being reserved before the task mapping applied, so that

this method is a guaranteed way of mapping, however, it is more time consuming and

execution time of the tasks are longer. Tasks are queued and wait until the process-

ing element finishes the execution of the previous allocations. Resource reservation

approaches are known as the guaranteed way of task mapping, whereas resource

reservation approaches may result in higher execution time due to the long queues

on the processing element. On demand dynamic mapping without resource reserva-

tion applies a mapping heuristic, if available processing element exists. This method

is not a guaranteed way of resource management but speed ups the system [133].

Mapping the task to one of the available processing element avoids queues and

this speeds up the system. Although sensornet applications use multi-tasking in

many cases number of the task mapped per sensor node may differ according to the

used heuristic; either in the form of mono- tasking or multi-tasking. In mono-task

approach one task can be mapped to a processing element, on the other hand in
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multi-task approach several tasks can be mapped to a specific sensor node. Tasks are

mapped to sensors for the task execution on different time durations depends on the

selected mapping heuristic. In order to maintain the desired performance network

control system plays an important role. Mapping control system defines whether the

mapping process is done in a centralised or distributed manner. Distributed map-

ping requires specific control mechanisms in each region (region here can be defined

as part of the platform) to control and perform the mapping, whereas in centralised

mapping methods only one network element is responsible for the mapping. Re-

quired network element may or may not have the same physical characteristics as

the nodes. As the network architecture model (platform model as we referred pre-

viously) may consist of either homogeneous or heterogeneous network elements, the

mapping technique should be able to cope with the difference in the network ele-

ments to maintain the desired service availability, QoS demands and performance

efficiency [133].

Summary

This section overviews task mapping techniques, and categorises and defines the

task mapping process. In order to avoid repetition, this section has not presented

many examples of existing techniques. In the next section, we define bio-inspired

task mapping techniques and discuss significant examples that apply bio-inspired

task mapping.

2.1.2 Bio-inspired Task Mapping Techniques

“We believe that the challenges faced by future network applications, such as scalability, adapt-

ability, and survivability/availability, have already been overcome by large scale biological systems

and that future network applications will benefit by adopting key biological principles and mecha-

nisms” [184].

Different kinds of optimisation techniques will be explained in the next section in

detail, however, we begin by stating the advantages of bio-inspired techniques over

other optimisation techniques. Many of the traditional optimisation techniques,
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particularly analytical techniques, require high computational effort and long work-

ing hours. Additionally, required time and effort grows exponentially as the size

of the problem increases. Although some traditional optimisation techniques are

very effective, they require high computational processing which cause sensor node

to run out of energy even faster. A lightweight optimisation method that requires

moderate memory and computational resources and yet produces good results is de-

sirable, especially for implementation on an individual sensor node [96]. Bio-inspired

optimisation methods are lightweight, so they are computationally efficient alterna-

tives to analytical methods and other traditional optimisation techniques. Moreover,

most of the bio-inspired approaches aim to overcome scalability, adaptability and

survivability issues of WSNs using the certain characteristic of the particular inspi-

ration. The categorisation of inspirations and their area of application are defined

below, but first we give an overview of what is organic computing and bio-inspired

behaviours.

Organic computing is defined by Dressler [42] as covering the bio-inspired mecha-

nisms in engineering and computer science related fields, that attempt to build high-

scalable architectures, which are self-organising, self-maintaining and self-healing

[42]. Biologically-inspired techniques are a field of study of observation of the social,

environmental and physiologic behaviours of complex biological systems. Biologi-

cally inspired networks are the distributed, autonomous sensor networks which have

inspirations from biology [42], [43]. Biological inspirations are used to make sys-

tems more reliable, efficient and self-organised. There are many different ecological

groups in different categories in biology to observe. The main concern is to make

the link between the computer networks or computing in general and the ecologi-

cal systems. In complex systems such as human beings, bees, ants, termites and

birds, there are many trade-offs in those systems as well as computer networks. The

challenging trade-offs in WSN depends on limited network resources, QoS, cost and

energy consumption.
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Moreover bio-inspired computing is described as a class of algorithms focusing

on efficient computing, e.g., for optimisation processes and pattern recognitions [43].

Categorisation of organic computing together based on their inspiration and area

of applications are shown by the Figure 2.3 based on Meisel et al.’s [115] research

and we have extended Meisel et al’s model to include latest research on the bio-

inspired techniques. As Figure 2.3 illustrates, organic computing is divided into

categories such as cell and developmental biology, ecology and evolutionary biology,

immunology, epidemiology and physiology. The biological inspirations are presented

in 2.2b whereas the area of application of the given biological fields are illustrated

in 2.2b.

Inspirations based on ecology and evolutionary biology are also divided into two

main subgroups; evaluation and behaviour, and ethology [115]. Evolutionary game

theory, and genetic algorithms are categorised under the evolutionary subgroup,

whereas ant colony optimisation, bee colony optimisation, and firefly oscillation are

categorised under behavioural subgroup [115]. Emergent services are inspired from

both evolutionary and behavioural subgroups. The rest of this section overviews

each category based on the biological inspiration and provides some of the significant

examples on the application area of WSNs.

We would like to start with the Emergent Services as most of the research

represented in this section contains emergent behaviour. Emergent behaviour from

a biological point of view is the behaviour observed from a colony/ group, flock or

shoal that arises out of the product of relatively simple interactions by its individ-

uals. The patterns of behaviour observed by the group (colony, flocks or shoal) are

totally distinct compared to the exhibited behaviours of the individuals. We give an

example for better understanding. In a flocks of birds, birds fly in a certain shape

(V-shape) during their migration, and each bird changes its place in that shape from

time to time based on their interaction: move along side the flock, go to the back

or to the front. The simple interaction between the birds allow them to fly faster,

and consume minimum energy during the flight, which benefits to the entire flock.

The emergent behaviour observed in this example is the special V-shape that the

flock is formed. Individuals alone cannot fly in this form and gain the same bene-
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fits. Bio-inspired computing and techniques are widely used to benefit more from

the simple interactions, just like the flock example. However, evolving desirable

emergent behaviour in our man-made systems is not easy and as we may benefit

from applying a bio-inspired technique, we may also face with unexpected/unwanted

emergent behaviour that the system is generation. From the computer science point

of view, emergent behaviour is the consequences of our bio-inspired protocols on

a system. An emergent service is the positive consequence (expected benefits) to-

wards achieving the main contribution on the system performance. On the other

side, observed repercussions of the applied bio-inspired technique (if any applicable)

is still a subset of the emergent behaviour of the required bio-inspired technique,

however, negatively unexpected/unwanted emergent behaviour is not identified as

an emergent service and it is a sort of property that we want to minimise.

Evolutionary Game Theory was devised by Borel [39] in 1921 to evaluate

multi-objective problems. Game theory represents multi-objective optimisation with

multiple decision makers, each controlling certain design variables for the given

problem [112]. Game theory is used to tackle sensor network problems in the terms of

energy efficiency [20], [53] and security issues such as denial of service (DoS) attacks

[114], [3]. Most of the studies focus on energy conservation of routing [120], [83], [35]

however, only a few researches particularly focus on load balancing [203], [153].

Game theory in WSN load balancing and especially in task mapping, is mainly used

for offline approaches like parameter tuning [83].

In 1975 Holland [68] introduced Genetic Algorithms (GA). They are consid-

ered as global optimisation techniques based on population rather than individuals.

GA loosely parallel biological evolution based on Darwin’s theory of natural selec-

tion. Populations represent a subset of possible solution space, whereas generations

represent the algorithmic iterations. Genes in the gene set (chromosome) is the de-

sign factor and alternate to find (near) optimal solutions. GAs can be easily applied

for single-objective optimisation. Adapting GAs for multi-objective optimisation

needs tailoring, but has been commonly used since VEGA in 1989. Zeng et al. [205]

present a static task mapping approach based on a GA for WSNs, which aims to

improve response time and limit energy usage. However, this approach results in
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overloading, as the mapping cannot adapt effectively to network conditions. Most

of the GA approaches use static optimisation techniques like [205] due to their com-

putational cost. On the other hand, very few dynamic approaches also use GA at

runtime [74]. Jin et al. [74] use a GA with a fitness function that considers network

lifetime as well as the time taken to execute task sets. This dynamic approach bal-

ances energy usage while extending the network lifetime. Miorandi et al. [123] also

present a genetic approach, involving genome mutation and crossover to increase

the performance of the large scale WSNs.

The organising metaphor of biological systems containing collective motion has

been useful in developing general algorithms for distributed systems and searches

over large problem sets. This comprises the field of swarm intelligence (SI). Cases

studied include flocks of birds, shoals of fish [61], herds of sheep [57] and, bacteria

colonies [147]. Although not all the comprises fileds of SI is yet applied into WSNs,

we present existing examples as bio-inspired approaches. These swarms are charac-

terised by a large number of simple agents working together to collectively obtain

useful solutions in terms of high performance efficiency. Collective motion changes

the social network structures and establishes social ties between the individuals [19].

Groups of animals such as shoals of fish increase individual and group well-being by

synchronising their motion. One of the well-explored and frequently used branch of

swarm optimisation is known to be the Ant Colony Optimisation (ACO). ACO

is based on the observation of the collective foraging behaviour of ants [16], [43].

With the use of ACO, many research studies are held on social insect routing based

on the ability of ants to converge on the shortest path from their nest to a food

source. Ant Colony Routing Algorithm (ARA) [62] aims to reduce routing overhead

for mobile ad Hoc networks. The algorithm enable of route discovery, maintenance

and failure handling to increase the successful transmission rate whilst reduced net-

work traffic, but does not consider energy-usage. Similarly, AntHocNet [38] does not

consider the energy issue but proposes efficient network routing with high successful

transmission rate and short delay time by providing alternative routing paths in

case of route failures. Energy Efficient Ant Colony Based Routing (EEABR) [25]

aims to prolong network lifetime by increasing successful communication ratio with
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a centralised approach. Each node stores limited information in their memory for

the routing tables and the minimal memory consumption enforced by the approach

leads to minimal power consumption. The algorithm considers not only the length

of the path but also the energy level of that path because it is always preferable to

select the shorter path with high energy level than the longer path with low energy

level. The biggest disadvantage of the approach is the centralised control mecha-

nism, which limits the entire usage of the proposed technique. Yingzhuang Liu et

al. [201] designed an effective ant colony based routing algorithm. Ant Colony Mul-

tiple QoS Constrained Routing (AMQRA) the authors proposed extended EEABR

for mobile ad-hoc network to improve the packet delivery ratio, and reduce the end

to end delay. Unlike EEABR, AMQRA decides the path based on a cost function

to reduce the delay and communication loss rate while increasing the QoS and op-

timised bandwidth usage. Oktem and Karaboga [131] proposed advanced EEABR

target to improve network lifespan by finding the shortest route using BCO with a

decentralised approach. Their algorithm proposes a decentralised approach based on

based on the nodes energy level and the pheromone value. ARO [195], ANT-E [161],

EARA [6], and FACO [59] are some of the other ACO-based approaches that target

efficient routing. Only ARP and FACO are energy-aware among these protocols,

whereas most of them concern about reduced network overheads and high delivery

ratios. Although PERA [10] is a ACO inspired protocol, unlike ARP and FACO, it

is based on probabilistic decisions.

Conforming to this swarm metaphor, Bee Colony Optimisation (BCO) was

introduced by Karaboga et al. [85], [84]. In their artificial bee colony algorithm

(ABC) model, bees represent search agents and their environment the space of

potential solutions, to a given problem with high quality candidate solutions rep-

resenting a pollen source that serves to encourage further exploration of the region

by additional bee agents. In the networking context, protocols have been developed

in which network packets are treated as biologically inspired agents by Karaboga.

Karaboga et al. improved their technique in [4] by tuning its parameters and modi-

fying their initial work [88]. In the Beehive protocol [186] packets search for efficient

routes through an IP network in a process modelled after the foraging behaviour of
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bees. Similar work targeted specifically at WSNs is BeeSensor [156] in which rout-

ing is performed via classes of packets following different types of bee behaviour:

for example as scouts and foragers. The redundancy introduced by BeeSensor is

capable of increasing the proportion of delivered packets compared to AODV [140],

although it experiences increased latency due to the possibility for bee packets to

select suboptimal routes during exploration. A general framework through which

a set of biological agents can attempt to simultaneously satisfy multiple possibly

conflicting objectives (such as latency, energy efficiency and delivery success in a

WSN) is provided in MONSOON [17]. Previous work has also mapped the bee

colony model more directly to WSN hardware, with individual nodes representing

individual bees, status within the hive corresponding to node responsibilities, and

signalling chemicals corresponding to data packets. Recent work has applied bee pro-

tocols specifically to WSN load balancing [160] which is inspired by the bees mating

procedure. This approach focuses on cluster set-up communication overheads by

restricting the communications with bee mating election algorithm. Removing the

redundant communications inside the cluster increase the successful delivery ration

whilst decreasing the latency.

Firefly oscillations aim to develop self-organisation mechanisms commonly to

enable robustness on massively distributed complex system particularly for clock

synchronisation. Firefly synchronisation is based on pulse-coupled oscillations, the

basic mathematical model of which has proposed by Richmond [150]. Many other

mathematical models are developed on firefly osculations in the last decade, whereas

researchers started to use firefly osculations to improve self-organisation based on

Strogatz and Mirollo’s M&S model [124]. Allen et al. proposed Reachback Fire-

fly Algorithm (RFA) [189], that improves the MAC layer timestamps and response

mechanism. In [105], Cui and Wang improved the RFA technique by considering

message delays with a late sensitivity window to reachback firing scheme (RFA with

LSW). By neglecting the delay messages, they optimised the network load and cov-

erage rate. Dynamic changes on the network scheme will bring many disadvantages

to this method, where the algorithm heavily depends on the parameters selected

for the window range. Similarly in 2012, Sun et al. [200] developed their firefly
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synchronization for clustering in WSN based on RFA. Enabling virtual clusters and

synchronizing clusters individually lead mitigation in the network load.

Datataxis (or datacabs) have inspirations from both behavioural and cell

biology that are used to develop self organisation mechanisms. The inspirational

point comes from the bacteria, where phenomenon of a bacteria naturally moves

towards a higher concentration (of phenomenon) [2], [125]. Datataxis are mainly

used for vehicle routing (VANETs) to allow larger area coverage and maximise data

harvesting. Since vehicle devices are limited in storage, losing the accumulated data

have always been a problem to tackle. Datataxis have started to be used to gather

the stored information from the vehicle especially in concentrated areas. Ensuring

application safety and time constraints are some of the key concepts of mobility of

WSNs, which most of the research held on. ADCD [64] uses datataxis to manage

information harvesting, and distribution.

Artificial Immune System (AIS) which is listed under Immunology and In-

fectious Diseases according to Meisel et al. Figure 2.3, is inspired by the human/-

mammalian immune system. Sensitivity to detecting environmental change, and

identifying the foreign/infectious agents is used in WSNs, particularly for secu-

rity purposes in anomaly detections. SASHA [15] implements a self-healing fault-

detection mechanism for faulty sensor reading. Sarajanovic and Le Boudec present

their incremental work on anomaly detection for mobile ad Hoc networks based on

AIS in [159], [158]. In both papers the authors are using immune-based mecha-

nism to improve the self-learning and adaptation on an existing routing algorithm;

DSR. Simulation results show that by improving introducing the self-adaptation

mechanism to an existing protocol perform better in terms of increased successful

transmission rate and less dropped packets. DNRS [7] is an artificial immune system

scheme which aims to limit energy consumption while retaining event detection reli-

ability by changing the signal frequency of the nodes. By enabling dynamic voltage

change, DNRS reduces the energy consumption in an autonomous way.

Information Epidemics is listed under public health and inspiration is used

to improve epidemic routing particularly in WSN. As the diseases/viruses spread in

humans, animals or plants, self-replicating malicious programs in computers (dis-
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eases of computers/computer viruses) also spread the same way and based on this

inspiration information epidemics are used to increase the level of security in com-

puter science, especially in WSNs. Epidemic routing in WSN (and in mobile ad

hoc networks) propose robust algorithms that minimise the delay and remove the

redundancy. In [180] any information from any sensor node is replicated and for-

warded to every network entity (flooding) which results with minimum data loss

but duplications of unnecessary redundant information. PREP [146] prioritises the

packets on the buffer, however, still spreads the information based on [180]; with

high network overhead.

Lindenmayer Systems are inspired from botany and initially modelled by

A. Lindenmayer in 1968 [106]. Later on mathematical models are combined by

genetic algorithms started to be used for self-organisation, self-healing and self-

adaptation mechanism. Although this technique is not commonly used in WSNs it

is important to cover this category of biological inspiration. Ponnusamy et al. [143]

used the botany inspired self-healing mechanism. In [143] an energy efficient routing

algorithm is initiated where the dynamic nature of the algorithm avoids to have gaps

on the routes.

We have presented different categories of biological inspirations and gave some

significant examples of each category together with their fields of application. How-

ever, there are many important protocols which we could not present in this section

in details. Table 3.1 summaries the application fields of each biological category and

provides some other interesting existing work in the literature.

Summary

In this section we have provided background knowledge for load balancing in WSNs,

and categorised the existing literature based on the area of implementation in the

OSI stack. In Section 2.1.1, we defined and categorised task mapping techniques

which are often used as a way to load balance in the WSNs. Later on, we focused

on bio-inspired task mapping techniques in Section 2.1.2. We categorised existing

biological inspirations and give examples for each category from the literature.

In short, the need of collaboration makes network components autonomous and
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Table 2.1: Biological inspirations and their fields of application in WSNs

Biological inspiration Application fields in WSN References

Game Theory Used to improve the security and

reduce the energy consumption

[203], [153], [120],

[83], [35], [114], [3]

Genetic Algorithms Used to optimise algorithms / pa-

rameters

[97], [13], [54], [79],

[206]

ACO Used to improve energy efficiency

and QoS in routing

[201], [10], [59], [62],

[25]

BCO Used to improve energy efficiency

and QoS in routing and load bal-

ancing

[87], [86], [131], [89],

[5]

Firefly Oscillators Used to improve self-organisation

and clock synchronisation

[189], [105], [152],

[200], [128], [50], [135],

[196], [179], [118],

[178], [197]

Datataxis Used to allow larger area coverage

and maximise data harvesting for

vehicle networks

[99], [134], [99], [64],

[2], [125]

AIS Used to identify foreign molecules

and produce beneficial cells for re-

moving the foreign molecules

[37], [171], [8], [7],

[104], [155], [154],

[129], [48], [15]

Info. Epidemics used to maximise the successful

message transmission rate and re-

duce the latency

[92], [78], [75], [71],

[66], [170]

self-organised, so that each piece of collection may rely on its own decisions based on

its local interactions. Developing autonomous, and self-organised system based on

the biological inspirations make systems more robust to changes in the network oper-

ational state, independent from the node deployment and its deterministic structure.

In the given examples of existing researches in almost all the distinct bio-inpired
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fields, we show that the presented techniques encourage emergent behaviour and

improve performance objectives. In the next section, we will provide the essentials

on performance evaluation. We will describe performance metrics used in WSNs,

categorise them and discuss the evaluation techniques for those metrics.

2.2 Performance Evaluation of WSNs

We have defined WSNs as small, autonomous, self-powered devices that are envis-

aged for industrial, civil and military purposes to monitor, detect and track events

according to application requirements. We have motivated the researches on WSN

with the limited resource capacity of the WSNs, and the need to improve their

performance by developing self-adaptation, self-healing, and self-organisation mech-

anisms. The only way to critique our proposed techniques is to apply them on

WSNs and compare them against each other in the most fairly way. In the rest of

this section, we will provide information of performance evaluation metrics and the

evaluation techniques these metrics.

2.2.1 Performance Evaluation Metrics

Pehcevski and Piwowarski [138] defined evaluation metrics as following: “An evalu-

ation metric is used to evaluate the effectiveness of information retrieval systems and to justify

theoretical and/or pragmatical developments of these systems. It consists of a set of measures that

follow a common underlying evaluation methodology.”.

In [29], and [108] commonly used network performance metrics in WSNs are

inspected and defined. Here, in this section we will focus on how these network

performance metrics are different than each other and what are the possible cate-

gories of these metrics. It is essential to specify the network performance metrics

and select the network evaluation technique and the tools to use based on the spec-

ified metrics. In Figure 2.3a we present our categorisation of network performance

metrics and in Figure 2.3b OSI model is illustrated. We divide network evaluation

metrics into two based on the level at which they are measured: system level perfor-

mance metrics and application-dependent QoS metrics. System level performance
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Network Evaluation Metrics

Application Dependent QoS MetricsSystem Level Performance Metrics

1. Response time

2. Throughput

3. Availability

4. Reliability

5. Utilisation

6. Capacity

7. Loss

1. End-to-end delay

2. Round-trip-time

3. Jitter

4. Goodput

5. Loss rate

6. Throughput

7. Utilisation

8. Mean time to failure

9. Mean time to repair 

10. Blocking probability

11. Dropping probability

12. Latency

13. Loss

14. Delay

15. Bandwidth

16. Duty cycle

Application 

Layer

Presentation 

Layer

Application 

Layer

Session Layer

Transport 

Layer

Network 

Layer

Physical 

Layer

MAC Layer

System Level Performance Metrics

Application Dependent QoS Metrics

(a) Categorisation of Network Evaluation Metrics

Physical Layer 

Data Link Layer

Network Layer

Transport Layer

Session Layer

Application Layer

Presentation Layer

(b) OSI Model

Figure 2.3: (a) Categorisation of network evaluation metrics, (b) The OSI model

[207].

metrics have high level aspects of the networks, whereas QoS metrics has low level

aspects of the system which are often application dependent and subjective. Sys-

tem level performance metrics heavily depends on the QoS metrics. For instance,

an application specific metric would be associated with the application protocols’

performance or a specific application goal, for example in the habitat monitoring

protocol “packet loss rate” or “proportion of wildlife detected”, or “proportion of en-

ergy spent on packets”. Whereas system level performance metrics are more general

and are shared with all elements of WSN deployments, e.g. “time to first battery

exhaustion”. Most of the system level performance metrics exist in the top layers
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of the OSI model; in application, presentation or session layer. In order to apply

system-level performance metrics, the technique under analysis has to take place in

one of the top layers, and the performance is evaluated from the systems’ point of

view. Similarly, application dependent QoS metrics exist in lower layers of OSI, and

evaluation of these metrics needs the application load on the lower layers of OSI,

such as transport, network or MAC layer [207].

In the last decade, with the growing interest in WSNs, improving application

dependent QoS metrics is becoming more important. Network performance can be

increased by increasing goodput, bandwidth usage, throughput, utilisation and re-

ducing delay, jitter, time to repair and packet loss rate. Little research has focused

on system-level performance metrics. Not only is there an absence of research fo-

cusing on system-level performance metrics, but there is also a big gap in evaluating

the network performance for the entire system. One of the important points in eval-

uating application dependent QoS performance metrics is evaluating the systems

performance based on the provided technique. Imagine a COFFEE protocol that

increases successful packet transmission by 20%, and reduces the packet loss rate

significantly. For this example, we can not claim that COFFEE protocol increases

the system performance 20%, especially if the proposed techniques combine different

methods. Interactions on different layers of OSI can easily have detrimental impact

on the performance, which in such a case also has to be reported. Scientifically,

it is also very important to evaluate the COFFEE protocol’s effect on the overall

network performance, not only based on the successful packet transmission or loss

rate.

2.2.2 Performance Evaluation Techniques

In the previous section we categorised the performance metrics used in WSNs into

two and discussed the importance of evaluating approaches from the point of appli-

cation dependent QoS metrics and from the overall system point of view. In this

section, we will define, describe and classify the existing performance evaluation

techniques of WSNs, together with the existing related research on WSNs.

The selection of performance evaluation metrics is a significant factor in showing
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the effectiveness of the proposed techniques. In some domains this selection might

be very obvious. For example, most of the routing protocols analyse the success-

ful transmission rate and packet loss rate as a primary or at least as a secondary

performance evaluation metrics; these two metrics are commonly used and will be

questioned and/or asked if one does not considers them in this context. In some

cases, when the application domain is not well-known, the appropriate evaluation

metrics may be less obvious, but some can be guided based on existing work. On the

other hand, in the context of selecting the performance evaluation technique can be

more open to personal decisions that it allows researchers to choose the evaluation

tools they will use based on their personal choices. It is absurd to select a high-level

performance evaluation technique to evaluate a performance metric that relates to

lower levels of OSI system. However, there are plenty of different kinds of tools

in different categories so it allows researchers to have personal decisions on tools

they will to use. The rest of this section, we categorised the performance evaluation

techniques based on their types, and present significant tools used in each category.

Experimentally evaluating the performance of novel algorithms is a fundamental

focus of WSN research [163]. Existing evaluation concepts include system-level sim-

ulators, low level simulators, and prototypes. Since WSNs are application specific

environments, researchers choose the most appropriate concept to evaluate their

target application area. Egea-Lopez defined the key points on the performance eval-

uation techniques as follows; “A ‘good’ model based on solid assumptions is mandatory to

derive trustful results. One of the challenging parts is to choose the suitable simulation tool to

represent the nature of the WSNs. The fundamental trade-off is: accuracy and necessity of details

versus performance and scalability” [47]. From our perspective the key criteria in choosing

the most appropriate performance evaluation technique are: flexibility, scalability,

complexity, implementation time, performance efficiency, financial cost and accu-

racy. Table 2.2 compares and contrasts three performance evaluation techniques

based on the key design factors. Design factors are marked with either low, medium

or high for each performance evaluation criterion.

System-level simulation models are cost-efficient and marked as low cost. Finan-

cial costs of prototypes are high, whereas low-level simulation models are listed as
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System-level Simulators Low High High Low Low High Low

Low-level Simulators Medium Medium Medium Medium High Medium High

Prototypes High Low Low High Medium Low Medium

Table 2.2: Comparison Between The Performance Evaluation Techniques.

medium cost-efficient performance evaluation techniques. System-level simulation

models are known to have short implementation duration, high scalability and flexi-

bility while providing high performance efficiency. Prototypes are considered as not

flexible and not scalable, so listed as low. The implementation duration of low-level

simulations takes more time, compared to the prototypes and system-level simula-

tion models due to their level of complexity. In terms of accuracy, prototypes provide

the most accurate results since they provide the results of real sensor deployments.

Low-level simulation models are more accurate than system-level simulation models,

because of the broader assumptions and the fact that they abstract away detail in

the system-level simulation models. In terms of evaluating protocol performance

efficiency, prototypes are known to be inefficient although they provide the most

accurate results, since they feature real WSN deployment hardware and operating

system environments [46], [47], [94]. Sensor emulations are hybrid approaches which

combine components of real hardware and simulated results; they are combination

of low-level simulators and hardware prototyping. Emulators run at either in the

bit-level or in MAC-level. Emulators financially cost more than low-level simulators,

and they have low scalability. In terms of accuracy, emulators are as accurate as

the prototypes and they provide more accurate results than system and low-level

simulators. Testbeds are designed for emulators and simulators to prevent unreal-

istic assumptions and inaccurate results. So we consider testbeds mainly part of

low-level simulators like emulators.

In the discussion above, we compared different types of performance evaluation

techniques based on their cost, scalability, flexibility, accuracy, complexity, efficiency

and implementation time. Some of the existing tools related to WSNs evaluation in
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Table 2.3: Comparison of Performance Evaluation Techniques

System-level simula-

tor

ETSSI [1], Fast, SuperFast

Low-level simulators NS2 [113], OMNET++ [181], J-SIM [165], GloMoSim

[204], OPNET, Ptolomy II, Jist [11], SSFNet, Castalia

[137], VisualSense, Viptos [30], Sidh, Prowler, sens.

Emulators TOSSIM [101], ATEMU [142], Avrora [172], Sense [168],

Emstar [58], MINT [182], Salt, EWANT.

Testbeds Motelab [188], SensorScope [73], Gnomes, emulab [139],

Signetlab [34], ORBIT.

the literature are listed in Table. 2.3 based on the categorisation of the performance

evaluation techniques. Each of the provided simulator/emulator/ testbed has very

specific characteristics. For further information on the features of each simulator

[44], [93], [47], [46], [193], [90], [166], [72], [187].

Summary

In this section we have described the importance of performance evaluation in WSNs,

categorised the performance evaluation metrics, and discussed the advantages and

disadvantages of different types of the performance evaluation techniques. We have

listed the existing work on types of performance evaluation techniques, and focused

on the system-level simulators. The number of system-level simulators that exist

in the literature is significantly less than low-level simulators/ emulators/ testbeds.

On the other hand, prototyping is also commonly used in many research studies. As

we mentioned, the main disadvantage of the system-level simulators are their level

of accuracy. Considering the amount of the research that focused on low-levels of

OSI stack, it is clear that few research studies and natural for scientists to prefer

low-level simulators rather than system-level simulators. However, we underlined

the importance of providing the overall system influence on the evaluation protocol,
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and highlighted the gap in the literature on this topic. In the next section, we will

discuss the optimisation techniques for WSNs.

2.3 Optimisation Techniques

Previously, in Section 2.1.1, we discussed task mapping optimisation and why opti-

misation is needed in WSNs. In this section we discuss different types of optimisation

in WSNs, give examples of some of the applied techniques used for WSNs optimi-

sation, and discuss the kinds of problem tackled by these techniques. The resource

limited structure of WSNs forces researchers to manage network resources more ef-

ficiently. One way to improve resource management and solve the WSN trade-off is

to use optimisation techniques. Many of the design decisions found in WSN devel-

opment relate to meeting application requirements that target to optimise WSNs.

Based on the application-specific design decisions optimisation techniques might

target challenges in:

• managing network resources, from the system point of view

• managing node resources, from an individual’s point of view

• managing operating environments.

Managing network resources from the system point of view involves decisions

like scheduling, sampling, computing, and communication. These approaches use

the system perspective to guide sensor nodes take certain actions at certain times in-

dependent from the control mechanism (centralised or distributed control). Network

dynamics (e.g. mobility of nodes, sink) play an important in network management

from the system point of view, which affects scheduling [65], sampling, computing

and communications [63]. Managing node resources from functionality of an indi-

vidual node focuses on the maximum usage of the node capacity by adjusting the

bandwidth, signal frequency, processor voltage and frequency, memory, computa-

tional resources, or energy. Operating environments consist of dynamic topology

changes [33], mobility [159], localisation [162], deployment density and spatial dis-

tribution.
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In WSNs, many research studies exist in the literature that try to improve the

concepts presented above using different kinds of optimisation techniques. In the

next section, we present some of the traditional optimisation techniques. Section

2.3.2 overviews metaheuristic search techniques that have been applied in WSNs,

focusing on Simulated Annealing.

2.3.1 Traditional Optimisation Techniques

Task mapping techniques are presented in Section 2.1.1, as an optimisation tech-

nique that is commonly used in WSNs. In this section, we describe some other

optimisation techniques and give examples of each technique from the existing liter-

ature. Linear/ non-linear programming, integer programming, Pareto optimisation,

heuristic and metaheuristic optimisation are some of the other optimisation tech-

niques that are used in WSNs to address problems in addition to task mapping

and resource allocation. Many heuristic techniques are presented in Section 2.1.2

about bio-inspired task mapping, and we present metaheuristic optimisation tech-

niques separately in the next section. Here, we focus on traditional optimisation

techniques briefly.

Linear Programming (LP) provides (near) optimal results based on a given

mathematical model of the problem under scrutiny. [80] formalise the network model

to maximise the network lifespan and focuses on schedule flows within the network.

In [76], link capacity optimisation in WSNs is applied using LP to simultaneous

optimise the of channel partitioning on code-division multiple access (CDMA) of

routing and power allocation.

Non-linear Programming (NLP) provides (near) optimal results based on

the given mathematical of the problem; they are composed of an objective function,

general constraints and variable bounds, just like LP. The difference between linear

and non-linear programming is the fact that a non-linear program includes at least

one non-linear function, which could be the objective function, or some/all of the

constraints. Many real systems are non-linear so optimisation methods can cope

with them. [132] uses formal methods by developing non-linear optimisation mod-

els, that aims to minimise the energy usage whilst maximising the data gathering
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(from sensing, transmission and processing). Similarly, in [95] fundamental limits

on the performance of information routing are modelled using non-linear optimi-

sation technique and maximum information extraction, whilst involving minimum

total energy usage. Fairness constraints on the provided routing algorithm are also

analysed based on some design factors that play a role in the topology, number of

nodes, energy levels, source rates, reception power. [76], [194] considers the physical

channel constraints in the optimisation models.

Ciciriello et al. [31] presents an efficient routing schema for decentralized WSNs

that adapts the topology by maximising the overlapping among source-sink paths.

This, therefore minimises the overall number of network links exploited. The range

assignment problem for heterogeneous sensornets are tackled in [27] by using integer

programming. The proposed algorithm selects the (near) optimal transmission range

for each node such that the energy consumption is minimised on the multi-hop

communication, between the nodes and sink. Meaning algorithm minimises the

maximum transmission power consumed at each sensor nodes.

2.3.2 Metaheuristic Optimisation Techniques

Clark et al. [32] define metaheuristic optimisation techniques as, “a set of generic

algorithms that are concerned with searching for optimal or near optimal solutions to a problem

within a large multi-modal search space and have been used to find acceptable approximations to

the solution of many NP complete problems.” They divide metaheuristic search techniques

into two; local search techniques and evolutionary search using genetic algorithms.

Hill-climbing, simulated annealing and tabu search are categorised as local search,

whereas evolutionary search using genetic algorithms (GA) is categorised separately

as population based search metaheuristic. All the descriptions can be found in [111].

As Simulated Annealing is a robust and widely used technique in WSNs, we describe

Simulated Annealing in detail and give some of the significant examples on WSNs.

2.3.2.1 Simulated Annealing on WSNs

Alike to all the other local metaheuristic search techniques, the moves applied in

simulated annealing are also based on relative desirability/ undesirability of partic-
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ular local information. They are easy to program and time efficient due to their low

level of complexity. Unlike GAs, SA is applied to the single individuals rather than

a population. Since the solution domain is sampled through all the population in

GA, evaluation of the fitness function might be costly and take a long time without

achieving to the global optima. Although exhaustive search algorithms cover the

whole search space, they are impractical, computationally unaffordable and time in-

efficient for multi criteria metrics with several parameters. They are also infeasible

if the search space is infinite.

SA is a stochastic optimization procedure for obtaining approximate solutions to

combinational optimisation problems. The idea originated from a thermal process

by obtaining low energy states of a solid metal in a heat bath [119]. The temperature

of the heat bath is increased until the metal melts and then cooled carefully and

slowly until the atomic rearrangements of the metals turns into solid state. SA is

an iterative process where the system starts rearranging itself until an improved

configuration of particular solution is found. Once the solution is found, then that

particular solution becomes the new starting point for the further rearrangements.

The iterative process will continue until the system achieves the stopping criteria,

where no further improvements can be found. This simple idea is often used to find

feasible solutions which can converge to an optimal solution.

Kirkpatrick et al [91] took the idea of annealing process and applied it to optimi-

sation problems, and since then SA has been successfully used in many diverse fields

of computer science; artificial neural network [56], pattern detection [70], NoC [110],

mobile ad-hoc networks [177], model-driven engineering [145] and software verifica-

tion [174], as well as WSNs. Some of the applied work on WSNs in this section is

as follows. Kannan et al [81], [82] present a simulated annealing metaheuristic for

WSNs that aims to localise network nodes accurately for centralised architectures.

Their technique reduces large scale localisation errors (flip ambiguity) significantly

by applying static accurate position determination by SA. The fitness function mea-

sures the sum of squared distance over all pairs. Slijepcevic and Potkonjak [164]

present a search heuristic which aims to find the optimal number of network nodes.

Deterministic node placement in clusters is also implemented to maintain high net-
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work coverage with minimum energy consumption. The fitness function subtracts

approximate measurement of minimally constraining heuristic from the most con-

strained heuristic in terms of the number of nodes. Wang at el [185] exploits a novel

fault-tolerant distributed multiclass classification fusion approach using error cor-

recting codes (DCFECC) that provides excellent fault-tolerance capability in WSN.

Park and Srivastava [136] present centralised task decomposition, transformation

and assignment solution using SA to maximize the lifetime of the network and/or

minimize the latency. Their work also includes a distributed task migration algo-

rithm at run-time which occurs based on the results of the SA search. The fitness

function measures total energy consumption, which is sum of communicational and

computational consumption for all tasks, weight of latency, weight of maximum en-

ergy consumption and penalty. RUGGED [51] energy efficient, fully distributed and

reactive routing protocol based on information gradient uses simulated annealing

concepts to discover single and multiple path explorations. Montemanni et al [126]

combine mixed integer programming with SA metaheuristic to achieve minimum

power consumption for broadcasts. Euclidean distance between nodes, channel loss

exponent, the power required to reach from source to destination calculated and

used as a parameter to measure the sum of the transmission powers of all the nodes.

More details about these techniques can be found in Table 2.4.
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Table 2.4: Literature Review about Simulated Annealing on WSNs

No Aim Tuned Parameters and Fitness Function Results

[81]

[82]

First phase is to estimate

the location of nodes accu-

rately using simulated anneal-

ing, whereas second phase is to

optimise the nodes which are

likely to have flip ambiguity

due to large scale localization

errors.

N: number of non-anchor nodes, Ni: set of neighbours of node i, d′ij and

dij : estimated and measured distance of node i with its neighbour j respec-

tively Permutation distance (∆d): Distance between one hop neighbours using

known coordinates of anchors (xi, yi)

Fitness Function: CF=

N∑
i=1

∑
jNi

(d′ij − dij)2.

Simulations performed on a total of 200 uniformly distributed

nodes in a square region of 10X10. Location of anchor

node, original location of nonanchor node, estimate location

of nonanchor node, error offset between original and estimated

location of nonanchor node are analysed.

[164]

Finding an optimal number of

network nodes and implement-

ing deterministic placement in

clusters to maintain a high net-

work coverage with minimum

energy consumption using sim-

ulated annealing

A: set of all the fields in the sensor located area. C: set of sensor nodes.Ci:

sub collections of nodes (clusters). N: number of deployed sensors. k: number

of covers. U: unmarked elements of A. V: set of available elements (current

members of C). emin(critical element): member of the smallest number in

the available sets from V, which is selected among U. m: uncovered elements

of A.

Fitness Function: Subtracting approximate measurement of minimally con-

straining heuristic from the most constrained heuristic in terms of number of

nodes.

CF=a

kj∑
i=1

1 + b

nj∑
i=k+1

1/m

Simulation results analyse average number of covers, runtime

duration is analysed to see the effects of the number of the

sensors, number of the fields (clusters) and sensing radius.

[185]

Classification fusion via error

correcting codes to incorporate

fault-tolerance capability while

reducing energy consumption,

computation time and memory

requirements.

T: code matrix to find minimum Hamming distance between vectors.

(T ((o)) = t((0), 1), t((0), 2), t((0), N)). t((0), j): jth column vector of code

matrixT ((o)). Pe: probability of error (misclassification in the code matrix).

Fitness Function: The probability of decision error =

limN→∞inf − 1/NlogPe ≥ min{0≤i≤M−1}D(δ||βi) > 0

Probability of misclassification with three code matrices with

different minimum Hamming distances Probability of misclas-

sification of DCFECC and FCA with variety channel trans-

mission error.
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Table 2.4: Literature Review about Simulated Annealing on WSNs

No Aim Tuned Parameters and Fitness Function Results

[136]

1) centralised task decompo-

sition/transformation and as-

signment for design-time, and

2) distributed task migration

for run-time support. The re-

mainder of this paper is orga-

nized as follows.

Task Decomposition/Transformation and Assignment phase: Finding task

transformation T, task assignment A. Task Scheduling Phase: radio range

assignment and task scheduling.

Fitness Function: Total energy consumption; sum of communicational and

computational consumption for all tasks, weight of latency, weight of maxi-

mum energy consumption and penalty.

Energy consumption of communication, computation, maxi-

mum and total discharge rates are shown in details at certain

conditions.

[51]

Energy efficient, fully dis-

tributed and reactive routing

protocol based on information

gradient is designed. Single

path and multiple path ex-

ploration to discover routes is

achieved by simulated anneal-

ing concepts.

di: distance of the location from peak information point, f(di): gradient in-

formation of the location with environmental noise, fmax: peak information,

f∗(di): gradient information of the location without environmental noise.

Fitness Function:

f(di) = f(di)fEN(fa(di)), fEN(fa(di))∞(fmaxfa(di))

Simulation are validated on 1)100x100 grid of 10000 sensor

nodes; 2) Sensor field of dimension 225375m2 . Analysis on

effect of at information region nodes, effect of malfunctioning

nodes, query failure rate, average energy dissipation without

lter to avoid malfunctioning nodes, average energy dissipation

with lter, percentage of sources found vs number of sources,

average energy dissipation has been explicitly illustrated.

[126]

Mixed integer programming

formulation is combined with

a new heuristic approach for

the minimum power broadcast

problem in wireless networks

using simulated annealing al-

gorithm.

dij : Euclidean distance between nodes i and j, k: channel loss exponent,

pij(Thepowerrequiredtoreachfromitoj) = (dij)

Fitness Function: Sum of the transmission powers of all the nodes.

Simulations held on 5x5 grid with 25, 50,75,100,150 and 200

nodes. Percentage improvements (%) in mean tree power of

SA + sweep over BIP. Percentage improvements (%) in mean

tree power over BIP Algorithm are analysed and comparison

between other approaches are also illustrated in the result sec-

tion.
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Summary

In this section, we define and present some examples of the traditional and meta-

heuristic optimisation techniques. Traditional optimisation techniques have been

effectively applied on WSNs, however, due to the complexity of the problem it is

not easy to apply traditional optimisation techniques to cases such as WSN. It is

important to underline that task mapping and resource allocation is orthogonal to

traditional optimisation techniques. Task mapping is an application of optimisation,

the traditional optimisation techniques we mentioned in this section are approaches

to optimisation. Metahuristic search techniques in WSNs have been used to opti-

mise algorithms offline for the fine tuning. In the next section we discuss about

the network coverage and provide some of the examples of increasing the network

coverage in WSNs.

2.4 The Network Coverage

Network connectivity and coverage are widely researched topics that focus on how

well the sensor field is monitored and tracked by sensors [69]. Approaches improving

network coverage can be categorised into three classes [127]: area coverage, point

coverage and barrier coverage. Area coverage deals with effective coverage the entire

sensor field [9], [176], whereas solutions to point coverages deal with the coverage

issues between a set of selected points. On the other side, solutions to barrier cov-

erage deal with minimising the probability of undetected penetration through the

barrier [130]. Most of the existing research on network connectivity and coverage is

developed at the lower levels of OSI stack and they deal with the lower level com-

plexities of networks. Gage [55] on the other hand, defines system-level functionality

of network coverage as the measure of the quality of system (QoS).

One of the ways that assure the network connectivity is to apply topology con-

trol based on mathematical calculations. These calculations are based on physical

characteristics and properties of the sensor field and the network components. Santi

in [157] presents ways of topology control in wireless ad hoc and sensor networks for

various network sizes, components and topologies. Santi specify the critical trans-
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mission range of nodes based on the number of nodes deployed, size of the sensor

field, and network topology. Specifying critical transmission range is one of the most

important points in his work that ensures a connected with minimum radio power

is used to save energy. Similarly, Poe and Schmitt [141] propose a node deployment

scheme for large scale network to challenge the coverage issue.

Another common way of increasing network coverage and connectivity is to use

power management mechanisms such as duty-cycling protocols where nodes are in

sleeping mode most of time and only wake up asynchronously, to conserve energy

and increase the life time of the network. However, the network performance can be

affected negatively by the low-duty cycle of the network as redundant nodes switch

between the sleep/wake cycles [103], although network has increased coverage. Duty-

cycling protocols for WSNs are also well-studied and some of the examples are as

follows [18], [41], [167], [183].

Alternatively, mobile devices are also used to address the connectivity, coverage,

and network lifetime obstacles in WSNs. Increasing network connectivity, coverage,

also benefits on performance efficiency in terms performance measures as the network

lifetime increase [14]. There are some research that have been applied on Mobile ad-

hoc networks (MANETs), Sensor and Actuator Networks (SANETs) and Wireless

Sensor and Robot Networks (WSRNs) that particularly focus on increasing the

network connectivity and coverage to increase the network performance. In any

of these application domains mobile devices are incorporated into the fixed/stable

nodes of the WSN architecture on their vehicles through airborne or ground.

In this thesis, we focus on using mobile devices/techniques to increase the net-

work coverage. In the next section we provide more information on using the mobile

techniques on the network coverage.

2.4.1 Mobile Techniques On The Network Coverage

Plenty of research exists on mobile entities on the network coverage (on MANETs,

SANETs) that focus on localisation, effective data transmission on routing proto-

cols, and power management protocols. We inspect some of the significant research

briefly to show how different aspects of the mobile network coverage and connectivity
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applied.

Effective data transmissions and routing protocols for mobile entities are one of

the highly inspected aspects that increase the network coverage. Wu and Dai [192]

present an efficient broadcasting algorithm that guarantees network coverage for

MANETS. As MANETs are constrained by the mutual interference of concurrent

transmissions between nodes, Wu and Dai focus on a protocol that guarantees the

coverage of mobile nodes based on nodes local information about its neighbourhood

which is updated periodically. The authors provide a robust protocol that resolves

the connectivity issues of MANETs, however, their approach is suffers from the need

of the GPS information used in the technique. Lowe et al. [122] focus on improving

fault tolerance of embryonic algorithms in mobile networks. According to Tong et

al. [173] self-healing by means of mobile nodes still remains a greatly unstudied area.

One potential problem with this protocol with this is that one single mobile node

is used to full routing holes. This will not solve the problem of energy depletion

at static sensor nodes as single node is not sufficient to maintain energy at sensor

nodes.

Localisation is also a key factor in terms of mobility. Melodia et. al [116]

use integer linear programming-based solutions that constructs data-aggregation

trees for Sensor-Actuator networks (SANETs), especially aims to address low energy

consumption and high reliability to maintain the localisation problem for the mobile

entities. The author believes ensuring reliability with minimum energy consumption

is the key to path from a sensor to an actuator, and then improve this path by

optimising energy while any delay is controlled.

One of the latest trends is to merge sensornet platforms with the robots as

a cooperating objects and to use a distributed resource scheduling technique for

managing the robot/sensor platform in the most resource effective way [102]. This

is because robots are physically more capable of executing heavier workload (as

opposed to sensor nodes) due to their less strict hardware constraints, it will only

be beneficial to introduce the robotic agents in WSNs. In [102], robotic agents are

used to increase the network coverage together with fixed sensor nodes. By Using

effective task allocation applied on the robotic agents the network coverage and
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performance is increased in WSRNs. Cyber-physical system (CPS) has emerged

as a promising research direction to solve the communication issues due to the

heterogeneity. Increasing the system performance by increasing the connectivity

between the heterogeneous networks elements. So far not much research focus on

combining different subclasses of embedded systems that challenges the trade-off

caused by the heterogeneity of the CPS.

Summary

In this section, we discussed network coverage in WSNs, and inspected different

ways of achieving it. Network coverage plays an important role in the performance

of WSNs. Some of the common ways to increase network coverage focus on dif-

ferent aspects of WSNs such as improving the power management schemes like

duty-cycling protocols or using mobile entities. We focused on using mobile entities

by briefly overviewing the different use of technologies, and the heterogeneous use

of the network entities on several cases in the of mobile network elements.

2.5 Summary

In this chapter we have present load balancing in WSNs, categorising it into two

as system-level and MAC-level in terms of the level of the OSI stack at which the

techniques are implemented in WSNs. Task mapping techniques, which are one of

the most common way to achieve load balancing, are presented in Section 2.1. The

analogy behind task mapping techniques is explained over the Bin Packing algo-

rithm, which is one of the oldest techniques in the fields of computer science. The

common point between the Bin Packing algorithm and task mapping techniques

are underlined as resource allocation, scheduling and execution sequence which are

certainly some of the key issues in WSNs apart from the improvements on the hard-

ware technologies. Solutions to these key issues of WSNs, bio-inspired algorithms

particularly bio-inspired task mapping techniques are shown.

In the last decade, bio-inspired approaches are have started to be used commonly

as they mimic the robustness of the nature in variety of different aspects of WSNs.
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To show the wide range of biological inspirations and the their area of applications

we inspect bio-inspired load balancing techniques in Section 2.1.2. We looked for

answers to the question: what sort of bio-inspired techniques can be used for effec-

tive resource allocation for large scale WSNs? We found out that there are plenty

of different inspirational categories each considers different area of application and

has slightly different focuses. In short, we specify the major focus of the research

that have been applied on WSNs as low-level aspects of WSNs to resolve the com-

munication problems. Improving QoS or reducing the energy consumption of any

communication protocol has also been researched heavily.

We then looked at how researchers evaluate their proposed algorithms and fo-

cused on different evaluation techniques that exist in WSNs. In Section 2.2.2 we

define the existing categories of performance evaluation in WSNs, and inspect the

evaluation performance metrics for each of the performance evaluation category. We

found that as most of the research focuses on the low-level aspects of the communi-

cation protocols, the performance evaluation metrics are also selected accordingly,

that contains low-level information. We specify the performance evaluation tools

mainly as real hardware components (prototyping), or low-level simulators (NSII,

OPNET). As reproducibility of the research on hardware components can be diffi-

cult, commonly experimental testbeds are used in order to satisfy validity for the

proposed techniques in this area. We underline the existing techniques, tools, and

the metrics in this section and the absence of system-level research that can pro-

vide high-level of aspects of WSNs such as techniques for reducing computational

and communicational redundancy or distributed scheduling of execution sequence

of WSNs.

In the third part of this chapter, we explain some of the optimisation techniques

beside task mapping optimisation. We divide this section into two and discuss tra-

ditional optimisation techniques in the first part, and focused on the metaheuristic

search optimisation on the second half of this section. We concluded that meta-

heuristic techniques, especially Simulated Annealing metaheuristic search algorithms

focus on offline optimisation for the fine tuning in WSNs, whereas traditional op-

timisation techniques can be used either at run-time or offline depending on the

42



2.5 Summary

technique itself.

In order to understand how variety of different optimisation techniques affect

network coverage and how each technique affects the overall systems performance

rather than particular metrics that is evaluated by, we briefly inspected the existing

techniques that have an influence of network coverage in Section 2.4. Although

there are plenty of techniques that involves low-level aspects of WSNs, we focused

on using mobile techniques that aims to improve network performance and gave

brief examples on couple of existing technologies that use mobile entities.

Most of the research techniques presented in this section improves network perfor-

mance in WSNs either minor or major, whilst using low-level techniques or system-

level specifications. It is clear that not much research studies focus on the system-

level aspects of WSNs and there are plenty of research gaps in this aspect of WSNs.

In Chapter 3, we will explain our load balancing technique as a solution to the

problems introduced that covers the gap in literature.
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Load Balancing Using Pheromone

Signalling

The highly dynamic nature of WSN applications requires self-organised, autonomous

behaviour to overcome their fundamental resource challenges. Our research argues

a bio-inspired solution to distribute workload evenly over the network components

and balancing node energy levels to extend the network lifetime and availability.

Classical task mapping and load balancing techniques (in particular centralised al-

gorithms focusing on optimal solutions) are inappropriate for WSNs, due to the

changing workload dynamics and the energy costs of obtaining up-to-date state of

the distributed WSN as we discuss in Chapter 2. To address those challenges, we

use bio-inspired mechanism that are computationally lightweight and able to cope

with a size and is the complexity of the problem. This research implements a task

mapping optimisation to manage the trade-off between energy efficiency and event

detection at run-time technique. We present a bee-inspired pheromone signalling

mechanism to create self-organising WSNs that maximise service availability whilst

reducing energy consumption. Our bee-inspired algorithm restricts service times of

the network components and distributes the network workload to achieve desired

high network performance. To evaluate network performance, we use service avail-

ability and energy consumption as two performance metrics. We now define the

performance evaluation metrics.

Service availability is defined as the number of services that are successfully
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completed, over the total number of requested services within a period of time. A

service is composed of a number of inter-communicating tasks, therefore a service is

completed only if all its tasks are executed by the WSN nodes. Therefore, a service

will not be completed if at least one of its tasks (i) is mapped to a node that runs

out of energy whilst executing it, or (ii) is not mapped to any node. Task mapping

therefore refers to balancing the load over network nodes, i.e. deciding which node

should execute the tasks of each requested service. A sound sensing network is used

as a case study presented in Chapter 1. Recording and processing sounds detected

is considered a service, and the load balancing objective in this case study is to

process all sounds in an energy-efficient way. The proposed dynamic load balancing

technique introduces some redundancy in order to sustain a high level of service

availability, but the level of redundancy is controlled in order to minimise energy

dissipation.

Chapter Contributions The contributions of this chapter are listed below:

• The definition of a lightweight, bee-inspired algorithm to optimise load in

WSNs.

• The implementation of the system-level simulation infrastructure to evaluate

the long-term effects of the PS algorithm.

• The deployment of real-sensor nodes to analyse the short-term effects of the

PS algorithm.

Chapter Structure Section 3.1 defines the biological background of this research,

explains the underlying biological inspiration of bee colonies and explicitly estab-

lishes a link between bees/sensor nodes and bee colonies/sensor networks. Section

3.2 describes our Pheromone Signalling-based Load Balancing resource management

algorithm. Section 3.3 explains the evaluation infrastructure in details. In Sec-

tion 3.3.1 an underlying case study is defined. Section 3.3.2 illustrates the real

sensor infrastructure on a TinyOS testbed, whereas system-level simulation model

infrastructure is explained in Section 3.3.3. The section ends with the obtained
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parameters choices that are presented in Section 3.3.4. Section 3.4 demonstrates

the effectiveness of PS algorithm in comparison to several other scenarios. In Sec-

tion 3.4.1 experimental setup defines the scenarios used for the experiments in this

chapter. Section 3.4.2 illustrates the results of the real sensor deployment to show

the short-term effects of PS algorithm, whereas Section 3.4.3 shows the system-level

simulation results in order to analyse the long-term effects of PS algorithm.

3.1 Biological Background

In the previous chapter we reviewed a number of biologically inspired optimisation

approaches. Many of the interactions among social animals are still unknown to

mankind and are considered as innate knowledge and we avoid using an inspiration

that we cannot explain scientifically. Bees are one of the most studied social ani-

mals and many of their behaviours, such as pollen collection, mating, and foreign

behaviours have previously been applied to WSNs, as explained in Chapter 2. Af-

ter examining many different aspects of bees, we recognised that there are obvious

parallels between their pheromone-based communication mechanism and load bal-

ancing. This communication mechanism is used by bees to orchestrate a bee colony

by assigning responsibilities to individual bees in order to produce an effective bee

colony; this is, in essence, load balancing. This process has been well studied and

scientifically proven, unlike some other natural processes, giving our research a solid

foundation to build upon. In this thesis, therefore, we investigate whether an al-

gorithm inspired by the pheromone-based communication mechanism used by bees

can effectively distribute work over a network.

Research in social insects [151] has uncovered innate mechanisms that can achieve

robust allocation of resources amongst large numbers of entities by making dis-

tributed decisions based on local information. Changes in pheromone levels are

used by many social animals to orchestrate the colony by assigning responsibilities

to each individual. For example, Roberts [151] reports that the pheromone produced

by a dead ant causes the other ants to throw it out of the nest. Roberts also covers

a problem directly relevant to this research, namely the process of larvae differen-
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tiation in beehives [151]. Bees have developed a special hormonal system to ensure

every beehive has a queen, which maintains the stability of the colony and orches-

trates the behaviour of all other bees. Throughout its life, a queen bee stimulates a

pheromone called Queen Mandibular Pheromone (QMP), which makes the worker

bees aware of its presence as queen. This phenomenal mechanism works as follows:

the worker bees lick the queen bee and pass the pheromone to their surrounding

neighbours and pheromone substance will move gradually through neighbours by

licking each other. If there is no pheromone passed through the worker bees, they

will then consider the queen as dead. In that case, workers will select a larva to

be fed with large amounts of the royalactin protein [151]. That protein induces the

differentiation of honeybee larvae into a queen. If worker bees keep receiving the

pheromone, they will be aware that there is a queen bee to orchestrate the colony

and will take no action towards building a new queen.

Table 3.1: Correlation between bee’s pheromone stimulation and sensor networks

Bees/Pheromone

Stimulation

Sensor Network

Queen Bee Sensor node responsible for task mapping and execution

Worker Bees Sensor node

Pheromone Level Parameter used for Queen Node selection

Lifetime of Bee Operation Lifetime of the Sensor Node

The load balancing technique presented in this chapter takes inspiration from the

behaviour of bees. Table 3.1 describes the analogy we make between bee colonies

and sensor networks. In this research, we consider that our network consists of

more than one bee colony, so that there can be many queen bees in the network

at any given time. Accordingly, the role of a queen bee denotes a sensor node

that is responsible for managing the execution of all service requests it receives.

Throughout this chapter we will refer to such a node as a Queen Node (QN). They are

dynamically differentiated from other nodes to indicate their duties; this behaviour

is conceptual and does not make specific assumptions about the capabilities of the
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queen node meaning that it can be applied to both homogeneous and heterogeneous

platforms. Any nodes not differentiated into QNs are referred to as Worker Nodes

(WNs). All QNs and WNs are capable of sensing the environment, queuing tasks,

and communicating with other nodes within range. However, in our approach only

QNs will execute tasks based only on their local information (i.e. react to a sensed

event or a service request). By allowing many nodes to become queen nodes, we are

effectively populating the network with multiple bee colonies - where each colony is

responsible for processing work in that area of the network. Multiple bee colonies are

similar to dynamic clusters where cluster-heads and members change on a periodic

basis. This cluster-like concept allows PS to increase the coverage of the network.

3.2 Load Balancing Using Pheromone Signalling

In this section we describe our load balancing algorithm. As we argue the need of

using the dynamic, decentralised, and computationally lightweight algorithm to dis-

tribute the network load onto the network elements in the beginning of this chapter,

the Pheromone Signalling algorithm (PS) aims to enable node differentiation at a

scale that produces sufficient QNs to handle all the required system functionality

(e.g. service requests, event detection) either by executing those tasks themselves

or mapping them to available WNs. Likewise, the algorithm should avoid unnec-

essary redundancy (e.g. several nodes sensing, processing and notifying the same

event multiple times). The basic strategy of the algorithm is based on the periodic

transmission of pheromone by QNs, and its retransmission by recipients to their

neighbours. The pheromone level at each node decays with time, and with distance

from the transmitting pheromone source. All nodes accumulate of each pheromone

received from QNs, and if at a particular time the pheromone level of a node is below

a given threshold this node will differentiate itself into a QN. This typically happens

when this node is too far from other QNs, or when a WN exists for too long without

receiving pheromone. The PS algorithm consists of three parts which are executed

on every node of the network: two of them are time-triggered (differentiation cycle

and decay of pheromone) and one of them is event-triggered (propagation of received
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pheromone).

Listing 3.1: PS Differentiation Cycle

1 every TQN do

2 i f (pi < thresholdQN )

3 QNi =true

4 broadcast hd = {0, pQN}

5 e l s e

6 QNi = false

The first time-triggered part, referred to as the differentiation cycle (Listing

3.1), is executed by every node of the network every TQN time units. On each

execution, the node checks its current pheromone level pi against a predefined level

thresholdQN . The node will differentiate itself into QN (or maintain its QN status)

if pi < thresholdQN , otherwise it will become a WN. If the node is a QN, it then

transmits pheromone to its network neighbourhood to make its presence felt. Each

pheromone dose pd is represented as a two-position vector. The first element of the

vector denotes the distance in hops to the QN that has produced it (and therefore

is initialised as 0 in line 4 of Listing 3.1). The second element is the actual dosage

of the pheromone that will be absorbed by the neighbours.

Listing 3.2: PS Propagation Cycle

1 when hd i s r e c e i v e d

2 i f (pd[1] < thresholdhopcount)

3 pi = pi + pd[2]

4 broadcast pd = {pd.distance[0] + 1, pd.distance[2] ∗KHOPDECAY }

5 e l s e

6 drop hd

The event-triggered part of PS deals with the propagation of the pheromone

released by QNs (as described above in the differentiation cycle) and received at

neighbouring nodes. The purpose of propagation is to extend the influence of QNs to

nodes other than their directly connected neighbours. Propagation is not a periodic

activity, and happens every time a node receives a pheromone dose. Its pseudo-code

appears in Listing 3.2. Upon receiving a pheromone dose, a node checks whether

the QN that has produced it is sufficiently near for the pheromone to be effective. It
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does that by comparing the first element of pd with a predefined thresholdhopcount.

If the pd has travelled more hops than the threshold, the node simply discards it.

If not, it adds the received dosage of the pheromone to its own pheromone level hi

and propagates the pheromone to its neighbourhood. Before forwarding it, the node

updates the pd vector element by incrementing the hop count, and by multiplying

the dosage by a decay factor 0 < KHOPDECAY < 1. This represents pheromone

transmission decaying with distance from the source.

Listing 3.3: PS Decay Cycle

1 every TDECAY do hi = hi ∗KTIMEDECAY

The second time-triggered part of the algorithm, shown in Listing 3.3 is a simple

periodic decay of the pheromone level of each node. Every TDECAY time units, pi is

multiplied by a decay factor 0 < KTIMEDECAY < 1.

It can be easily inferred from the PS differentiation cycle that each sensor node

makes its own decision on whether and when it becomes a QN by referring to local

information only: its own pheromone level pi. This allows for a highly self-organised

behaviour which fits the requirements for high-density networked embedded systems.

The computational complexity of the algorithm is very low, as each of the parts is

a short sequence of simple algorithmic operations. The communication complexity,

which in turn determines how often the PS propagation step is executed, depends on

the connectivity of the network and on the decay cycle time TDECAY . The protocol

also provides a stability property, in that a lone node with no peers will become

and always remain a queen node after a given delay, unlike in other protocols where

nodes may be probabilistically switched off for some intervals.

All three cycles of the PS are shown in Figure 3.1, where circles represent the

nodes and the written values inside the circles represent the pheromone level of each

node. Nodes shaded green indicate queen nodes. Arrows represent the propagation

of pheromone where thick arrows represented high level of pheromone propagation,

thin arrows represent low level of pheromone propagation. Figure 3.1 illustrates the

QN differentiation in iteration 1.1, and it continues with QN pheromones propaga-

tion and WN pheromone retransmission a lower dose of pheromone to their neigh-

bours in iteration 1.2. QN propagates 60 and 15 amount of pheromone to first hop
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and second hop neighbours respectively. The dramatic change in the pheromone

numbers represented in iteration 1.2 is as a result of summed up pheromone levels.

Pheromone decay is demonstrated in iteration 1.3 to indicate the elapsed time and

the pheromone decay within time. Iteration 2.1 shows the pheromone levels for each

node after all the cycles of PS is completed. Although we make the analogies with

bee colonies, the names of the nodes are misnomer. We make it more clear the

unfortunate naming of queen and worker nodes as such the queen nodes respond to
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Figure 3.1: The three important stages of the PS algorithm: differentiation, propa-

gation and decay cycles.
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these periodic detections by transmitting an event notification, while worker nodes

ignore these application events.

Summary

In this section we have presented a bio-inspired algorithm to address the trade-off be-

tween the service availability and energy consumption of WSNs. We took inspiration

from bees and developed an algorithm that mimics the pheromone signalling process

in bee colonies. Our aim was to balance the application load using a lightweight,

robust protocol whilst achieving the highest network performance with minimum

redundancy. In the rest of this chapter, we explain the evaluation infrastructure

and illustrate the experimental results of the PS technique.

3.3 Evaluation Infrastructure

In the previous section, we explained Pheromone Signalling-Based Load Balancing

technique. In this section, we explain the evaluation infrastructures that PS is ap-

plied on. In Section 3.3.1 we define the case study that we evaluate PS with through-

out this thesis. Section 3.3.2 describes an TinyOS -based experimental testbed for

evaluating PS on real sensor deployments. In Section 3.3.3 we describe a system-level

simulator we have implemented. Configuration parameters related to the evaluation

infrastructures are presented in Section 3.3.4.

3.3.1 Case Study

A case study based on a surveillance multimedia target tracking application is used

to evaluate the effectiveness of the PS approach. The goal is to compare the load

balancing solution against existing solutions, and then observe the impact of using

different values for the parameters of the algorithm. The case study uses a network

of nodes equipped with acoustic sensors to capture sounds generated by the entities

under surveillance (usually insects or birds) on a particular area [117] as we explained

in Chapter 1 with Figure 1.1. Once a node captures a sound, it processes it aiming

to identify its source and report its approximate location.
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3.3.2 TinyOS Experimental Testbed

The experimental testbed (see Figure 3.2) is intended to evaluate the short-term

behaviour of the protocol. It consists of 16 homogeneous nodes (MEMSIC Iris

nodes with 2.4GHz transceivers [117]) together with a base station that serves to

receive results and transfer them via USB to a monitoring computer.

Figure 3.2: Iris nodes used in the 4x4 grid hardware deployment

These nodes run on the open-source TinyOS operating system version 2.1 [100].

A custom modular application was developed to perform multi-hop forwarding,

sound detection, and to implement the pheromone algorithm. Message delivery

was performed using the TinyOS Active Message layer. Duty cycling MAC proto-

cols are out of the scope of this work. However, the application layer also applies a

randomised forwarding delay before packet dispatch, in order to reduce the impact

of collisions when simultaneous detection would otherwise lead to a sudden burst of

event generation.

Hardware nodes are arranged into a 4x4 regular grid and perform multi-hop rout-

ing in order to reach the sink node. Routing is pre-configured with nodes forwarding

hop-by-hop on fixed multi-hop relaying chains towards the sink node with ID 1, as

depicted in Figure 3.3. The intent of this shortest path routing in pre-configured

chains is to simulate a standard forwarding protocol applied in a simple, known test

deployment, in regular terrain, avoiding the complexities of route setup/teardown
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and illustrated with arrows in the figure. Undirected links between nodes represent

possible communication links that are not totally separated from the routing paths.
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Figure 3.3: The network topology with preconfigured multihop routing chains

During the experimental deployment, nodes are located sufficiently close for

packet transmission/reception to occur across the entire network. The simulation

scenario assumes nodes can only communicate directly with their immediate neigh-

bours, to emulate the conditions of a real large-scale deployment. However, since Iris

nodes typically achieve transmission ranges up to 50m indoors [117], it is necessary

to restrict the communicating nodes in software so packets from nodes that are not

one-hop neighbours within the topology are rejected.

To evaluate the performance of the protocol, a timer in the application layer

originates a sequence of fixed trigger events, corresponding to detections of a pe-

riodic sound source in the environment. The pheromone algorithm is executed as

described in Section 3.2, assigning statuses of QN and WN to nodes dynamically

(changing as execution proceeds). Queen nodes respond to these periodic detections

by transmitting an event notification, while worker nodes ignore these application

layer events. Further down the protocol stack, multi-hop forwarding is then used

at all nodes of the routing chain (queen and worker alike) to relay data on event

detections and packet transmissions back to the sink node for analysis at the moni-

toring computer. A baseline experiment is also performed in which the pheromone

protocol is not executed and all nodes report sensed events, in order to assess the

advantages of the load balancing protocol. In order to explore PS algorithm and it’s

real-life effects we conduct some experiment on deployed sensors that will represent
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in Section 3.4.2. By applying PS on the real sensor deployment we analysed the

short term effects of the PS and compared them with the long term aspects of the

algorithm on the system-level simulation infrastructure.

3.3.3 System-Level Simulation Infrastructure

The objective of evaluating PS using a simulator is to investigate the long term

behaviour of the load balancing algorithm. Using simulation allows exploring the

large parameter space of the load balancing technique, without the hardware and

time consumption obstacles of the real sensor deployments. Unlike real sensor de-

ployments, system-level simulation tools provide ease of use with broad applicability,

which enables evaluation of long term outcomes of the PS technique on large scale

deployments. Moreover, the short implementation duration and the cost effective

nature of system-level simulators makes them suitable for this research.

A three-tier WSN system model is designed to represent network components,

the services that run over it and the function that assigns services to network nodes.

Graph theory can be used to model a network and its services. The platform model,

PM = (N,L) consists of a set of N nodes and a set L of bidirectional wireless links

between neighbouring nodes.

Each node nm ε N, is the tuple: nm =< mm, bcm, idrm, cdrm, wcdrm >

mm memory capacity in bytes;

bcm battery capacity in mAh;

idrm battery discharge rate in µ as in idle mode;

cdrm battery discharge rate in µ as when performing a computation;

wcdrm discharge rate in µ as when transmitting a byte of data over its wireless

interface;

We use such parameters to determine, for a given assignment of services to nodes,

how much energy is dissipated by each node and, over time, which nodes are still

alive (i.e. have dissipated less than their battery capacity). As the network topology
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is represented by the set of links lmn ε L, the cost of multi-hop transmission of each

communication cij can also be taken into account if the routing algorithm used in

the network is known.

 
Figure 3.4: Services composed of (a) 8 tasks, (b) 10 tasks, (c) 14 tasks. *White

shaded circles indicate the skeleton of the DAG whereas black shaded circles are

used to populate the tasks of the DAG.

A service is a logical concept that denotes a particular subset of the systems

functionality. A service is provided by one or more network nodes, and can be

requested or triggered by end users, other nodes or even the environment. For

example, a simple service could be to provide the end-user with a temperature

reading from a particular location within the area covered by the system. A complex

service, on the other hand, could include a series of tasks that can be executed by

multiple nodes, for example the calculation of maximum, minimum and average

temperatures of that particular area. In this research, we focus on complex services

that are composed of multiple tasks. We represent a service S as a directed acyclic

graph (DAG) as Figure 3.4 illustrates, with nodes representing tasks and edges

representing inter-task communication: S = (T,C). Each task ti ε T, is a tuple:

ti =< ni,mfi, ei, eti >,

ni supplier node;

mfi memory footprint in bytes;

ei energy consumption;

eti execution time;

Each inter-task communication cj ε C , is also a tuple cj =< sj, rj >, where sj

ε T is the sender task and rj ε T is the receiver task of the communication. For
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this framework, the mapping process is defined as a function from the application

domain to the platform co-domain and is represented as F:T→ N.

To contextualise the services, we refer back to the wild life bird monitoring case

study. Tasks of each service indicate the pitch of the bird, and any sensor nodes

located in the same neighbourhood hear the same bird with same delay due to the

delay in the sound propagation. This is represented as follows: among the sensor

nodes that detect the same service get assign a DAG (containing 8, 10 or 14 tasks as

Figure 3.4 illustrates) of the same service. The sensor node where the event occurs is

assigned a DAG with 14 tasks, whereas other nearby nodes that also detect the same

event receives DAGs with fewer tasks to simulate the delay in the sound propagation.

1 2

43

Figure 3.5: Worked example on the event generation used for simulation.

Figure 3.5 illustrates a bird and four nodes labelled from one to four. Node 2,

which is coloured in green is a QN, whereas nodes 1, 3 and 4 are WNs. A bird in

this worked example lands near sensor number 2 and performs a short birdsong. In

such a scenario, the event generation used in our simulation runs as follows:

1. Real Life: Sensor number 2 detects the birdsong before the other sensors as

initially the birdsong only occurs in the detection range of sensor number 2.

Simulation: Sensor number 2 starts executing tasks related the detected bird

as the node is a QN. The DAG assigned for this node will be populated like

Figure 3.4 (c).

2. Real Life: Sensors 1, 3 and 4 detects the bird shortly after sensor number 1

as the takes longer to reach them. They detect a smaller amount of the bird
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pitch in comparison to sensor number 2 due to their increased distance from

the bird.

Simulation: Sensors 1, 3 and 4 start detecting the sound when it appears in

their detection range, however, these sensor nodes are assigned fewer tasks in

comparison to the sensor number 1 (as in Figure 3.4 (a) or (b), dependent on

the distance). This is to simulate the direction of the birdsong and to show

which node detects the bird first. As these nodes are WNs, they do not execute

the tasks that they have detected and they drop all their tasks.

In this section, we present the system-level simulation infrastructure that PS

has been implemented on and thus have only described how the application model

and platform model are simulated. An event-driven simulator has been designed

to implement both of these models. Figure 3.6 presents a UML sequence diagram

illustrating the execution of the simulator. It is controlled by the JavaSim library

[109]. The sensor network platform is created once in the beginning of the simulation

and each sensor node is created by the generatePlatform() function. The event

generator starts executing once the platform has been initialised and periodically

produces events in the network. The event generator generates one event at a time,

Loop
generateEvent()

Event Generator

new Event()

mapEvent()

generatePlatform()

new SensorNode()

getEvent()

getSensor()

mapEvent()

Event Mapper Sensor Node Sensor Network Platform

Loop

Loop

Loop

ExecuteEvent

Figure 3.6: Execution sequence of system-level simulator.
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at a location randomly selected in the sensor field. Each event consists of a number

of DAGs as explained previously in Figure 3.5. The mapper maps the event onto

the sensor nodes by assigning of the tasks of each DAG onto nearby sensor nodes

within a predefined range. Once an event has been assigned to a sensor node, the PS

algorithm decides whether or not that node will execute the event. The simulator

is sufficiently scalable as to be able to simulate hundreds of nodes, and some of the

results have been obtained on a large sparse topology and grid topology of 28x28

nodes.

3.3.4 Parameter Choices

The parameters used for the evaluation infrastructures are distinct from the param-

eters of the PS algorithm. In this section, we focus on describing the parameters

used for the evaluation infrastructures. As we used MEMSIC Iris nodes for the real

sensor deployment, we also use the MEMSIC Iris datasheets to configure the pa-

rameters for our system-level simulator. This allows us to analyse the validity of the

simulation results by comparing them with the real hardware. Some of the several

important energy parameters of our experimental platform are shown in Table 3.2.

Table 3.2: Energy related parameters

Configuration Parameters Platform Model

Battery Capacity (mAh) 1500

Idle Discharge Rate (uAs) 300

Task Computation Discharge Rate (uAs) 3000

Wireless Communication Discharge Rate per

Byte at 30kbps (uAs)

0.6
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3.4 Experimental Results

In this research, we validate our bio-inspired load balancing technique via system-

level simulation models and a small hardware prototype test-bed. In Section 2.2,

we define, explain and compare system-level simulators, low-level simulators and

prototypes. The important criteria that guided these decisions are cost, implemen-

tation duration, performance efficiency and the level of accuracy. By validating our

approach using different performance evaluation techniques, we aim to gain insight

on the implementation duration, performance efficiency and the level of accuracy of

the system level model versus the prototype, as well as demonstrating the effective-

ness of the load balancing technique. Moreover, by evaluating load balancing using

pheromone signalling algorithm on real sensor nodes we demonstrate the behaviour

of the system on a small scale, and exhibiting performance advantages of PS on a

real sensor deployment on TinyOS operating system. Evaluating the system-level

simulator helps us to analyse the long-term effects upon performance of PS in par-

ticular on a large scale where PS is more beneficial. We now define the experimental

setup in detail to explain the objective of the applied scenarios, used approaches and

their results.

3.4.1 Experimental Setup

We have created four other scenarios to compare with PS as follows:

Idle Represents the absence of load, and all nodes of the system do not dissipate

any energy on computation or communication with the neighbours.

Objective It is included as the maximum lifetime of the system if no surveillance

is performed.

Baseline Represents the execution of the case study without any load balancing

support.

Objective It represents an approach that allows high amount of redundant

computation as it does not apply any load balancing.
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BS Represents the execution of the case study using load balance based on existing

energy-aware task migration mechanisms as in [136] and [144].

Objective It includes a basic self-organising character that involves task mi-

gration to show the impact of it.

Optimal Represents an artificial scenario for WSNs where each service is executed

by only one service provider to ensure no redundant processing takes place and

minimum number of network resources is used.

Objective It is designed to show maximum possible network performance by

creating a scenario which never can occur in real life. The role of load balancing

is to have no redundancy, but this is unlikely. It is almost impossible to have a

perfect knowledge of where the event is occurring so closest we can get in real

life is to achieve minimum redundancy. However, Optimal scenario assumes

that nodes have the perfect knowledge on where events are occurring and as

a result it provides maximum possible performance without any redundancy.

Probabilistic Represents a simple random policy for WSNs where nodes execute

events with a given probability.

Objective It is created to ensure that PS provides better performance than a

random probabilistic selection.

PS Represents the execution of the case study using Pheromone Signalling Load

Balancing algorithm.

Objective It is developed to distribute network load to solve the service avail-

ability and energy consumption using computationally lightweight bio-inspired

approach.

3.4.2 TinyOS Hardware Testbed Experiment Results

Note: The work described in this section is joint work and developed in collaboration with

James Harbin, Leandro Soares Indrusiak, Paul Mitchell, David Chesmore and Fiona Polack,

and has been published in [21, 24]. Harbin was responsible for the hardware implementa-

tion and I was responsible for definition of PS and implementation of it on the simulation

infrastructure.
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Event load (bee hormone algorithm)

Packets transmitted (no load balancing)

Packets transmitted (bee hormone algorithm)

Figure 3.7: Event detections and packets for load-balancing pheromone algorithm

and baseline

This set of experiments only use two scenarios: Baseline and PS, to gain some

insight about non load balanced approach versus load balancing using pheromone

signalling due to the high cost of implementing all on hardware.

The results of our experiments are shown in Figure 3.7 illustrates the total num-

ber of event detections received over time, and the number of packets transmitted in

the network in total. Results are measured for the pheromone signalling algorithm,

compared to a baseline case with no load balancing. An event covering the entire

network occurs at 600 ms time intervals. Thus the smaller (non-zero) number of

event detections the better, since this represents minimal duplication. The results

demonstrate that following stabilisation (after 40s) the load balancing algorithm

produces a significantly smaller number of detections, reducing the total event load

to approximately a third. The reduction in packet transmission load is even more
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Figure 3.8: Event detections and packets for different queen thresholds

significant, given that preventing duplicate events being registered avoids the ad-

ditional routing load that these events generate in other network nodes. There is

an initial delay beginning event detection until after 20-40 seconds as the network

stabilises and a suitable number of nodes become QNs.

Figure 3.8 shows the impact of the queen pheromone threshold thresholdQN

upon the measured event processing and packet transmission load. These series are

not greatly influenced by doubling the queen threshold from 0.14 to 0.28. However,

if the queen threshold is doubled again to 0.56, then the pheromone algorithm

tolerates a stable state with additional queens in the network. This leads to an

approximately 10% increase in the total redundant event processing. Total packet

transmissions also increase approximately 16% due to processing these events, and

the additional pheromone propagations of the extra queens. This illustrates that if

64



3.4 Experimental Results

aggressive load balancing for energy efficiency is the priority, then queen threshold

should be minimised. However, if redundancy in event detection is preferred, then

large queen thresholds are acceptable.

3.4.3 System-Level Simulation Results

The experimental work presented in this section aims to compare the PS technique

against five scenarios: Idle, Baseline, BS, Optimal and Probabilistic. We also anal-

yse effects of different values of execution probabilities for the Probabilistic scenario.

Moreover, we analyse the effects of TDECAY and thresholdQN using a variety of dif-

ferent values for these parameters for the PS technique. We also explore the QN

distribution on the network layout using heatmaps to show the uniform use of net-

work resources. The comparison in each category of experimental results are based

on 30 different soundscape scenarios running over the given network configurations

(4x4, 7x7 and 28x28 topologies) to ensure statistical significance. Each run simu-

lates the case study for 14 weeks, which is the point at which all network nodes run

out of energy even in the Idle scenario.

Comparison against other scenarios Figure 3.9 (a) and (b), shows the per-

centages of detected events and the number of alive nodes. In x-axis values presented

in the figure illustrate the results that are captured by the end of each week (this

applies to all the other figures represented in this chapter). According to Figure

3.9 (a) and (b), the percentages of detected events and the number of alive nodes

are lowest in the Baseline scenario. In Baseline and BS scenarios all the nodes are

allowed to execute events unlike PS scenario. As a result of high redundant execu-

tions in both scenarios network lifetime is short compared to the PS. BS scenario

applies execution restriction only when a nodes energy is lower than a predefined

threshold. In this case, nodes apply task migration and as a result the number of

alive nodes is increased, as well as the percentage of detected events as opposed to

Baseline. In the Probabilistic scenario, nodes choose to ignore detected events with

a given probability, otherwise they execute them. This allows a node to conserve en-

ergy. The Baseline scenario, from the probabilistic perspective, is equivalent to the
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Figure 3.9: Experimental results: effects of PS algorithm on 4x4 mesh network

topologies showing (a) % service availability, (b) # alive nodes.

probabilistic scenario with the probability of ignore events set to 0. In Figure 3.9,

the results illustrate the Probabilistic scenario with a probability of 0.8 of ignoring

detected events (in the next section we investigate different probabilities; 0.8 scored

the highest). The results show that the Probabilistic scenario saves more energy and

66



3.4 Experimental Results

improves the network lifetime whilst increasing service availability in comparison to

Baseline and BS. The major improvement, however, is shown by the PS scenario.

The number of alive nodes remains constant until the fourth week in Figure 3.9

(b), however the percentage of the detected events dramatically drop in Figure 3.9

(a) during the first week. This occurs due to the pheromone stabilisation over the
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Figure 3.10: Experimental results: effects of PS algorithm on 7x7 mesh network

topologies showing (a) % service availability, (b) # alive nodes.
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network. As PS limits the redundant network progress by allowing pheromone/QN

procedure, a significant amount of the percentage of the detected events occurs due

to the pheromone stabilisation. In small networks like 4x4, pheromone stabilisation

over the network takes more time due to the lower number of redundant network

resources. The positive effects of pheromone propagation on large scale networks

are shown in the rest of this section as follows:

Figure 3.10 illustrates the experimental results on 7x7 mesh topology. Although

there is a quite noticeable drop in the percentage of service availability during the

first week in Figure 3.10 (a) for PS technique, network stabilisation occurs faster

than the 4x4 mesh network. This is due to the higher number of the network re-

sources on 7x7 network that allows pheromone propagation to occur more smoothly.

As the network stabilises faster, the percentage of service availability remains high

in the second, third and fourth weeks. After the fourth week, the nodes are start-

ing to run out of energy in PS as Figure 3.10 (b) shows and by the end of fourth

week the percentage service availability starts decreasing. In PS technique nodes

live longer than the Baseline, BS and Probabilistic scenarios accordingly as a result

of uniform distribution of network loads over the network nodes. The Probabilistic

scenario with 0.8 probability of staying idle performs better than Baseline and BS,

however, PS is still performs remarkably better than Probabilistic scenarios.

Similarly, Figure 3.11 also illustrates (a) the percentage of service availability,

(b) number of alive nodes for a 28x28 mesh network topology. As with Figure 3.9

and Figure 3.10 the Baseline scenario achieves the lowest detected event percentage

among all the scenarios, whereas BS improve the network performance in terms of

service availability and network lifetime slightly. The Probabilistic scenario saves

more energy than both the Baseline and BS scenarios and increases the service

availability whilst achieving longer network lifetime. There are two important and

related reasons to explain why PS technique outperforms the other scenarios. First,

and the most importantly, in 28x28 mesh network the number of redundant network

resources are the highest among other network topologies. This allows pheromone

propagation and QN selection easily and more successfully although the nodes are

strictly limited with the ThresholdQN just like small networks. Evenly distributing
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Figure 3.11: Experimental results: effects of PS algorithm on 28x28 mesh network

topologies showing (a) % service Availability, (b) # alive nodes.

the network load over time is important in PS technique, however, the sequence of

the distribution is not important. As a result, the more redundant network resources

exist in the network, more the pheromone propagation occurs successfully.

In summary, we have compared four different approaches to load balancing dif-

ferent size mesh networks - PS, BS, Baseline, and Probabilistic. PS has been shown
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to be the most effective at increasing network lifetime whilst maintaining good ser-

vice availability. The Probabilistic scenario presented in this section used 0.8 as the

probability for a node to ignore detected events. A short investigation looking to

the effects of different probabilities at the end of this section, and shows that 0.8

was the best of those analysed.

Analysing the effects of TDECAY Sensitivity analysis is partially applied to the
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Figure 3.12: Experimental results: (a) % service availability, (b) # alive nodes for

PS load balancing with different TDECAY on 4x4 mesh network topology.
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Figure 3.13: Experimental results: (a) % service availability, (b) # alive nodes for

PS load balancing with different TDECAY on 7x7 mesh network topology.

PS technique to show the impacts of the PS parameters as mentioned in Section

3.3.4. A variety of pheromone decay intervals are evaluated on our PS technique to

show the effects of the parameters on the percentage of service availability and alive

nodes on 4x4, 7x7 and 28x28 mesh network topologies. Figure 3.12 (a), Figure 3.13

(a) and 3.14 (a) shows the experimental results of the percentage service availability

on 4x4, 7x7 and 28x28 with variety of TDECAY values. Based on our understanding

of the biological background, and how the technique reflects on implementation,
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TDECAY time unit plays an important role on performance. As the TDECAY time unit

shortens the number of QNs increases. As a result, the number of detected events

increases. Since the number of QNs affects energy use, the energy consumption

of the network increases as well, whereas longer TDECAY time parameters allow

lengthening of the network lifetime.
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Figure 3.14: Experimental results: (a) % service availability, (b) # alive nodes for

PS load balancing with different TDECAY on 28x28 mesh network topology.

On the other hand Figure 3.12 (b), Figure 3.13 (b) and 3.14 (b) illustrates

the number of alive nodes (i.e. with non-zero battery levels) over time for each
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network configuration on 4x4, 7x7 and 28x28 respectively. While there is an apparent

correlation between these curves and the service availability curves discussed before,

this is not necessarily the case. For instance, if events are concentrated in a particular

area of the network, nodes in that area will be out of energy very quickly and service

availability will drop, even if the number of nodes in other areas of the network is

still high. By avoiding overloading and unnecessary redundancy, the PS approach

extended network lifetime, mean lifespan for every sensor node on average, by at

least a week in both cases.

Analysing the effects of ThresholdQN ThresholdQN is another important

parameter in PS that is used to control the QN selection. We explored all

three network topologies and the effects of the ThresholdQN on the percentage of

service availability and the network lifetime. Figure 3.15, Figure 3.16 and 3.17 shows

scenarios of the surveillance application managed by different configurations of the

PS algorithm, each of them with a different value for thresholdQN . That parameter

is used in the PS differentiation cycle, and determines whether a given node should

change into (or stay as) a queen node. With higher values for thresholdQN , nodes are

more likely to become QNs, because they would have to receive significant amounts

of pheromone from the neighbours to prevent the differentiation. With a lower

threshold, few nodes will become QNs, as even small quantities of pheromone from

a single neighbour could prevent differentiation. However, since there is no guarantee

that the differentiated QNs will be regularly distributed over the network and will

match the pattern of sound events of a given scenario, it is not trivial to find the

right value. The number of alive nodes presented in Figure 3.15 (b), Figure 3.16

(b) and 3.17 (b) change based on the ThresholdQN too. There is not a dramatic

difference in terms of network lifetime in any of the network topologies as the figures

illustrate. From this, we can conclude that ThresholdQN values has an higher impact

on service availability rather than the network lifetime.

Accordingly, Figure 3.15 (a), Figure 3.16 (a) and 3.17 (a) presents the ser-

vice availability for each network configuration on 4x4, 7x7 and 28x28 mesh net-

work respectively. Depending on the network size and the value applied for the
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Figure 3.15: Experimental results: (a) % service Availability, (b) # alive nodes for

PS load balancing with different ThresholdQN on 4x4 mesh network topology.

ThresholdQN , the performance of the PS changes. In all the cases, ThresholdQN

affects the pheromone stabilisation period over network changes, and this effects the

percentage of service availability during the first week. Only in the 28x28 network,

pheromone stabilisation takes longer when the selected value for the ThresholdQN

is not suitable. Although, PS technique is beneficial in large network, and network

stabilisation is faster and more successful, the time required for the stabilisation

increase as the values gets more and more inappropriate.
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Figure 3.16: Experimental results: (a) % service availability, (b) # alive nodes for

PS load balancing with different ThresholdQN on 7x7 mesh network topology.

The figures presented above that analyses the effects of ThresholdQN and TDECAY

shows that each alternative may produce different variations on service availability

during the early part of the system lifetime, and different degradation patterns dur-

ing the end of life. To make matters worse, other parameters also have an impact on

the metrics of interest. By changing TQN and TDECAY , it is possible to significantly

extend network lifetime at expense of service availability guarantees.
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Figure 3.17: Experimental results: (a) % service availability, (b) # alive nodes for

PS load balancing with different ThresholdQN on 28x28 mesh network topology.

Analysing the distribution of QNs Furthermore, we want to show the high

network coverage of PS technique. To do this, it is important to analyse the dis-

tribution of QNs by looking at the number of dropped events. We define dropped

events as a service that has failed to be detected by all the service providers (nodes)

that are in range of that event. Figure 3.18 (a), Figure 3.19 (a) and Figure 3.20

(a) shows the number of dropped events per node on PS technique, whereas Figure

3.18 (b), Figure 3.19 (b) and Figure 3.20 (b) shows the number of dropped events
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Figure 3.18: Experimental results: distribution of dropped events over 4x4 mesh

network topologies showing (a) on PS scenario, (b) on Optimal scenario.

per node on the Optimal scenario. In all the figures display a heat map where each

cell represents one node in the mesh network. In PS technique, we allow some level

of redundancy in order to ensure high level of service availability. This means, some

services are allowed to be executed by more than one sensor node. In a case where

a service is allowed to be executed on more than one service provider, an event is

consider as detected if it has been captured by at least one service provider. On the

other side, an event is considered as dropped if it has not been captured by any of

the service providers responsible for the required service. In the Optimal scenario,

each service is executed by best possible located in the sensor field to represent an

optimistic, artificial case of sensor networks. According to Optimal scenario, if par-

ticular service provider is not able to detect then an event is considered as an event

dropped by that service provider.

In Figure 3.18 (a) maximum number of the dropped events is higher Figure 3.19

(a) or Figure 3.20 (a), which gives hints about the level of applied redundancy in

PS technique. Results of the number of dropped events per node is as not low

as Optimal scenario which is natural. However, the difference between number of
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Figure 3.19: Experimental results: distribution of dropped events over 7x7 mesh

network topologies showing (a) on PS scenario, (b) on Optimal scenario.
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Figure 3.20: Experimental results: distribution of dropped events over 28x28 mesh

network topologies showing (a) on PS scenario, (b) on Optimal scenario.

dropped events per node on the same figures is very small, which also show that

applied level of redundancy on PS algorithm as very limited. On the other side,
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in both Figure 3.19 (a) and Figure 3.20 (a), the distribution of the dropped events

over the network is almost equal, which then shows us the network coverage of

PS algorithm. PS algorithm performs better in large networks where it limits the

redundant resource allocation low. Figure 3.19 (a) and Figure 3.20 (a) supports this

argument, where in Figure 3.19 (a) maximum number of dropped event per node is

less than Figure 3.20 (a).
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Figure 3.21: Experimental results: effects of different probabilities for the Proba-

bilistic scenario on 4x4 mesh network topologies showing (a) % service availability,

(b) # alive nodes.
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Analysing Effects of Probability Values for the Probabilistic Scenario

Among the four other scenarios that we compare PS against, the Probabilistic sce-

nario is the nearest competitor of the PS as shown in the Figure 3.9, 3.10 and 3.11.

As the nodes decide whether to execute an event based on their pheromone level

in PS, we now analyse the effects of different values of probabilities for the Prob-

abilistic scenario which also makes nodes active or passive depending on the given

probability value.

Figure 3.21, 3.22 and 3.23 shows the simulated results of five different probability

choices on 4x4, 7x7 and 28x28 mesh network. To reiterate, the Baseline scenario

represents a zero probability of staying idle when an event is detected, whereas

here we analyse four different probability levels (0.2, 0.4, 0.6 and 0.8) of staying

idle when an event is detected. The Idle scenario is also plotted to indicate the

maximum lifespan of the network.

As one would expect, the simulated results shown in the three figures demon-

strate that the lower the probability of staying idle, the less amount of energy is

saved. Moreover, as the probability of ignoring detected events increases, the net-

work lifetime improves and service availability improves. None of these probabilistic

scenarios outperform PS, meaning that we can conclude that PS is more effective

than probabilistic scenarios (as shown in Figure 3.9, 3.10 and 3.11). To make it

clear, the referred plots show the results of the most effective probability choice

against PS which is 0.8.

Analysing the Message Overhead of the PS Scenario One thing we need

to analyse is the message overhead of the PS scenario in order to show weather the

PS algorithm is overloading the network with pheromone packages.

Figure 3.24, 3.25 and 3.26 illustrate the total amount of network overhead found

in PS on 4x4, 7x7 and 28x28 mesh network topologies using a stacked bar chart.

The network overhead caused by the pheromone signalling process is shown in blue,

whereas the network overhead caused by the data dissemination is shown with pink.

Data dissemination in this set of experiments refers to the number of packets

injected in the network to transmit the successful event detections from QNs to the
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Figure 3.22: Experimental results: effects of different probabilities for the Proba-

bilistic scenario on 7x7 mesh network topologies showing (a) % service availability,

(b) # alive nodes.

sink. The number of message packets used for pheromone signalling is periodic based

on TQN of the network – 2000, 4000 and 11000 for the three networks respectively.

The propagation cycle occurs 539 times for 4x4 mesh network, 269 times for the

7x7 mesh network and 98 times for 28x28 mesh network. To recall our previous
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explanation, the pheromone signalling process starts from the QNs and pheromones

are propagated only up to two hop neighbours. Therefore, in one propagation cycle

one QN (the QN itself and it’s one hop neighbours who also propagate pheromone

packets) can inject maximum of 20 packets into the network in a mesh topology. This

means that there are three important factors that influence the network overhead

of the pheromone signalling process: the propagation cycle occurrence amount, the

number of QNs and the fact that pheromones are propagated a maximum two hop
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Figure 3.23: Experimental results: effects of different probabilities for the Proba-

bilistic scenario on 28x28 mesh network topologies showing (a) % service availability,

(b) # alive nodes.
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distant neighbours. In a 4x4 network topology, if all the nodes are QNs and each

QN can transmit up to 20 pheromone packets we should expect the pheromone

signalling overhead in the 14 weeks to be 1̄6 x 20 x 539 = 172480 packets, in the

worst case. This worst case should never occur as the nodes at the edge of the

network have fewer neighbours. The results shown in Figure 3.24, 3.25 and 3.26 are

based on the given TQN periods (2000, 4000 and 11000). The same TQN values used

in Figure 3.9, 3.10 and 3.11 to illustrate that PS algorithm provides high network

performance in comparison to other scenarios. In case of changing these TQN values,

results will definitely change as message propagation only depends on its period

which is represented with TQN . The results shown in Figure 3.24, 3.25 and 3.26 are

much lower than worst case pheromone signalling analysis which means: not every

node is QN as we claim, and the PS algorithm is not overloading the network with

redundant information. Instead, the PS algorithm propagates pheromones across

the network without causing the network to be overloaded even though pheromone

signalling packets are dramatically higher than data dissemination packets.

Interestingly, the number of data dissemination packages increases as the network
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Figure 3.24: Experimental results: analysing data dissemination overhead and

pheromone signalling overhead on 4x4 mesh network topology.

83



Chapter 3: Load Balancing Using Pheromone Signalling

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Week

N
et

w
or

k 
C

om
m

un
ic

at
io

n 
O

ve
rh

ea
d 

(p
ac

ke
ts

)

Type

Data Dissemination

PS

7x7 Mesh Network

Figure 3.25: Experimental results: analysing data dissemination overhead and

pheromone signalling overhead on 7x7 mesh network topology.

scales up as a result of routing from service provider to the sink. Considering the

fact that we use a single sink in our experiments, the number of hops to route a

package increases in larger network topologies which directly increases the network

overhead of the data dissemination packages which is also very reasonable.

On the other hand, it is important to keep in mind that data dissemination

packages are larger packages than pheromone signalling packages. The volume of

the data dissemination packages are much higher, however, Figure 3.24, 3.25 and

3.26 only shows the numbers of the packages not the volumes that these packages

worth in the network.

3.4.4 Long-term Effects of PS using the Sonoran Frame-

work

Note: The work described in this section is based on Andrew Faulkner’s research and has no

input from myself. It is presented in this thesis only for the completeness.

In addition to the short-term analysis of PS that was performed on a TinyOS
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Figure 3.26: Experimental results: analysing data dissemination overhead and

pheromone signalling overhead on 28x28 mesh network topology.

experimental testbed (Section 3.4.2) and the long-term analysis of PS on a system-

level simulator (Section 3.4.3), this section provides further validation of the simu-

lation results by presenting a study of the long-term effects of PS using the Sonoran

Framework built on top of the Mote Runner platform [26].

Faulkner [52] analysed the Idle, Baseline, and PS scenarios as described in Sec-

tion 3.4.1, as well as his own energy-aware extension to PS, PSE. PSE introduces

the ability for nodes to exhibit altruistic and egoistic behaviours. The implemen-

tation of PSE extends the behaviour of sensor nodes such that a particular mote

makes decisions based on its current energy level, displaying selfless behaviour when

it feels that its energy level is high and selfish behaviour when it has low energy.

This means that QNs can relinquish their queen status if their energy level is lower

than their neighbours, and WNs can choose to differentiate into a QN if their energy

is greater than their neighbours.

All of Faulkners simulations were executed using Mote Runner beta 11.0 on

a system running Microsoft Windows 8.1 x64 operating system, Intel Core i5-760

Quad Core @ 4 GHz CPU and 4GB Dual Channel DDR3 memory. To validate
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the correctness of the Fast simulator, experiments were run for 90 days, which is

12 weeks. A 5x5 mesh network topology is used instead of 4x4, 7x7, or 28x28

mesh network topologies to simplify the analysis (due to the excessive time required

for the experiments of all three network topologies), which can still be considered

a large network as it consists of 25 nodes. To increase confidence in the results,

experiments were repeated 25 times and the results presented are mean values over

the 25 runs, which was the maximum perceived to be achievable given the amount

of time available to perform the evaluation.

Based on the results shown in [52], Faulkner demonstrates the similar behaviour

of PS on his testbed as has been seen with the Fast simulator. Faulkners analysis

of the long-term (12 weeks) prototype using the Sonoran Framework and the Mote

Runner platform shows that PS outperforms both the Idle and Baseline (referred

to as ON in [52]) scenarios. Moreover, Faulkner’s own energy-aware extension of PS,

PSE, shows an increase in network lifetime and improves the network performance

of PS. Faulkner also evaluated the effects of adjusting the number of hops from the

queen that pheromone is propagated and found that increasing the number of hops

increases the percentage of detected events (service availability) ( [52], Figure 6.3)

and the network lifetime ( [52], Figure 6.5) for PSE.

To provide a direct comparison between Faulkners Mote Runner implementation

and the Fast simulator, and therefore evaluate the correctness of Fast with respect to

a near-hardware implementation, we have performed the same experiment on a 5x5

network. Figure 3.27 illustrates simulated results on 5x5 mesh network and compares

PS against Idle and Baseline scenarios. Figure 3.28 shows Faulkners results for PS

against the Fast simulator, comparing the number of nodes alive (as this is the

only data available for PS in [52]). As you can see the results are similar, although

Faulkners implementation has a higher network lifetime than Fast. The number of

alive nodes decreases more quickly in Fast than Faulkners implementation. This

could be due to Faulkner using a different decay period (the selected value is not

presented in [52]). However, considering that these are two distinct implementation

of PS, the behaviours in both implementations are very similar and share common

patterns with respect to the other scenarios. Incidentally, the performance of the
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Figure 3.27: Experimental results: effects of different probabilities for the PS sce-

nario on 5x5 mesh network topologies showing (a) % service availability, (b) # alive

nodes.

Fast simulator is orders of magnitude greater than Mote Runner, with a single

5x5 experiment execution taking on average 14 seconds in Fast, but 29 minutes 20

seconds in Mote Runner ( [52], Table 6.1).

As the work presented in this section does not belong to myself, and it is pre-

sented only for the completeness of this research to validate the correctness of Fast

simulator, please find further details in [52].
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Figure 3.28: Experimental results: Fast and Faulkner (Sonoran) frameworks side-

by-side on 5x5 mesh network topology.

3.5 Summary

In summary, this chapter presented a bio-inspired solution to address the challeng-

ing trade-offs of WSNs that are due to their limited processing capabilities. We

developed a bee-inspired algorithm that mimics the dynamic and distributed char-

acteristics of the nature. To improve the survivability of WSNs against the network

conditions, we correlated the sensor nodes as bees, and bee colony as the network

in our PS algorithm.

In this chapter had two major goals: addressing the service availability ver-

sus energy consumption trade-off with the PS algorithm, and demonstrating the

performance of our algorithm via the two evaluation methodologies of system-level

simulation and hardware deployment. We demonstrated the long term performance

benefit of the PS technique via a system-level simulation model. The short term

energy efficiency benefits of our load balancing technique have been evaluated on a

real sensor deployment. The advantages and disadvantages of these two performance

evaluation methodologies have been highlighted on the experimental results.

This chapter has presented a novel load balancing algorithm based on a pheromone
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signalling mechanism. This distributed and asynchronous task mapping protocol has

been shown to allow WSNs to balance service load across nodes, achieving increased

energy efficiency without significantly sacrificing service availability. Hardware re-

sults for a 4x4 grid with multi-hop routing have demonstrated a corresponding re-

duction in duplicate event detection count (to approximately a third of the baseline

event detections), and total packet transmissions. This equates to a substantial en-

ergy efficiency benefit. The impact of queen threshold levels has also been studied in

hardware, verifying that a small threshold of 0.14 provides 10% fewer duplicate de-

tections than 0.56. Moreover, it is important to compare the performance evaluation

concepts used. As noted earlier, three important factors are cost, implementation

duration, performance efficiency and the level of accuracy provided. Cost-wise, it

was expensive and time-consuming to obtain, debug, and configure the sensor nodes

for the real sensor deployment, whereas we used open source tools to develop a

system-level simulation model that could be flexibly reconfigured to model different

scenarios quickly.

We run extensive system-level simulation experiments, we analysed effects of

PS on three different size of mesh network topologies to show the effectiveness of

the algorithm on scale. We compared PS against other scenarios to illustrate the

benefits of load balancing, and PS performs. Simulation results have shown that our

technique provides longer network lifetime, increasing the service availability over

longer time scales consistent with a real deployment. Our PS technique delivers

10% longer network lifetime on average, and up to 85% higher service availability

in later stages of the system lifetime.

Analysis show that PS performs better on large scale networks. The main con-

tribution of PS is to remove the redundancy. As the the network scales up, more

redundant computation is involved and therefore, PS performs better in removing

the redundancy in large scale WSNs.

We also analysed various values of for some key parameters (ThresholdQN and

TDECAY ) are tested compared against each other on PS. The experiments have also

shown that the performance of PS algorithm is highly depends on its parameters,

giving system designers the flexibility to choose different points over the trade-off
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between service availability and network lifetime.

In the next chapter, we inspect the importance of the parameters in a systematic

manner rather than trial-and-error.
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Chapter 4

Search-Based Parameter Tuning

on the Pheromone Signalling

Based Load Balancing Algorithm

In the previous chapter we devised a bio-inspired load balancing algorithm that ad-

dresses the trade off between service availability and network lifetime. We performed

a rigorous analysis of the algorithm in real sensor deployment and system-level sim-

ulation on different network topologies. As part of the process, we found that, like

many load balancing techniques, PS has numerous parameters and its performance

depends on the values chosen for its parameters. Finding appropriate parameter

values for a given scenario is not trivial. Furthermore, the parameter values that are

appropriate for one scenario are rarely applicable to another that has, for instance,

a different application profile or network topology.

In this chapter we present a search-based approach to selecting a set of optimal

parameters for PS for any given network scenario as Figure 4.1 illustrates. The

approach considers the service availability and energy dissipation figures obtained

by each configuration of the load balancing technique, and uses those values to

explore the parameter space in search of optimal solutions. To accelerate the search,

we also define a number of improvements to the simulator used to evaluate each

parameter configuration. The proposed parameter tuning approach is then evaluated

by analysing the best configurations it can find for several scenarios, and we use
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Principle Component Analysis to identify which of the parameters have the most

critical effect on the quality of the solutions.

Network Size

Network Density

Topology

Application Workload

Network 

Performance

Parameter 

Selection
PS LOAD 

BALANCING

Figure 4.1: Automating the parameter selection for the PS algorithm

This chapter considers two main challenges. The first objective of this research is

to automatically tune the parameters of the PS algorithm for a given network config-

uration in order to maximise service availability and minimise energy consumption.

The second challenge is to accelerate the evaluation of the search technique towards

finding optimal parameter configurations quickly by speeding up the simulation in-

frastructure. We now define the fitness function we will use to evaluate parameter

selection throughout the chapter. As with the previous chapter, our performance

metrics have been defined as:

1. service availability : the number of services that are successfully completed

divided by the total number of requested services within a period of time;

2. total energy consumption: the sum of communication and computation energy

consumption within a period of time.

Our definition of service is the same with the previous chapter, however, to remind

what the service is to the reader we would like to restate it here. A service is

defined as the composition of a number of inter-communicating tasks, and therefore

a service is considered to be successfully detected only if all of its tasks are executed

by the nodes just the same way as we defined in the previous chapter. Accordingly,

our fitness function considers both the service availability and the number of alive
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nodes. We target high service availability and aim to minimise the number of time

intervals (weeks) without service (based on the number of the alive nodes) whilst

also minimising the total energy cost.

Chapter Contributions The contributions of this chapter are listed below:

• the automation of parameter selection of the PS algorithm, through a Simu-

lated Annealing search metaheuristic.

• The analyses of parameters of the PS algorithm using Principle Component

Analysis (PCA) and showing their effects individually.

• The development of a new simulation infrastructure to evolve the search metahueris-

tic faster.

Chapter Structure Section 4.1 starts by describing the general characteristic of

Simulated Annealing metaheuristic technique, and explains how the algorithm is ap-

plied to the challenge of discovering a set of optimal parameters for the PS algorithm.

Section 4.2 defines a new simulation infrastructure which focuses on performance

over accuracy. We measure the level of accuracy and execution time of newly devel-

oped simulator (SuperFast) using our network performance measurements which are

service availability and network lifetime. We compare SuperFast and Fast simulation

infrastructures and illustrate the performance effectiveness of both simulators. Sec-

tion 4.3.1 demonstrates the experimental results on pre-evaluated network topologies

in the Chapter 3 to analyse the effectiveness of the search-based parameter tuning

on PS. Principal Component Analysis is applied on PS to show the effects on the

parameters in Section 4.3.2. Additionally, new network topologies are evaluated to

illustrate parameter tuning on several untested network topology in Section 4.3.3.
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4.1 Search-based Parameter Tuning Using Simu-

lated Annealing

Relating back to the Chapter 2, we discuss a variety of different search metaheuris-

tics. We underline that the Simulated Annealing metaheuristic algorithms have low

level of complexity: they are easy to program and are time efficient. As they do not

cover the whole search space like exhaustive search techniques, they are practical,

computationally affordable and time efficient for multi-criteria metrics with several

parameters. Due to cost and performance effective nature of Simulated Anneal-

ing metaheuristic search algorithms, we decided to use them for our PS parameter

tuning approach.

In Simulated Annealing (SA) algorithms positive improvement is always ac-

cepted, whereas negative improvements may be accepted probabilistically and de-

pending on the temperature T. According to SA theory; the worse the move the less

likely it is to be accepted. A negative move is less likely to be accepted the cooler the

temperature is. The temperature T starts with a high value and gradually cooled as

the algorithm progresses. A typical pseudocode of the Simulated Annealing is given

in the Listing 4.1.

Listing 4.1: :SA Algorithm

1 I n i t i a l i s e (S0, T0, L0 )

2 k=0;

3 S=S0

4 repeat

5 f o r l=1 to Lk

6 Snew = generateNeighbours(S)

7 ∆ = f(Snew)− f(s)

8 if(∆ > 0)

9 S = Snew ( accept )

10 e l s e if(exp( ∆/Tk) > U(0, 1))

11 S = Snew ( accept )

12 e l s e r e j e c t

13 k + k + 1 ;

14 Calcu late Lenght (Lk )
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15 Calculate Temperature (Tk )

16 Unt i l S t o p p i n g c r i t e r i a

17 So lu t i on i s bes t so f a r

Certain design decisions must be taken in order to run the simulated annealing

algorithms:

1. SA configuration values : SA configuration values are temperature related

control parameters like the initial temperature T0 and the temperature is a

virtual temperature introduced only by analogy to the cooling process of met-

als at any time during SA process Tk. The cooling rate, which is often se-

lected between 0 and 1, indicates how much the temperature be cooled. The

frequency at which cooling is applied also affects the search. In some SA al-

gorithms cooling is applied once in every neighbourhood generation, whereas

researchers who prefer to explore larger search spaces applies the cooling less

frequently, only once in several neighbourhood generation.

2. Initial solution : Often in SA algorithms, the parameters for the initial

solution are the optimisation parameters and they are set to default values,

such as the minimum values within the search space.

3. Neighbourhood generation : Neighbourhoods are the part of the search

space that are prospective solutions of the problem that are produced after

altering a solution. Neighbourhood selection varies depending on size of the

search space based on number of parameters and user preference. It is more

likely that SA will find a good set of parameters with highly populated neigh-

bourhood set, however, a highly populated neighbourhood set will also increase

the cost of the search as each neighbour needs to be evaluated by the fitness

function.

4. Fitness function : The definition of the fitness function depends on the ap-

plication and varies. Researches show that fitness functions have to correlate

closely to the algorithm’s goal and have to be carefully defined in order to

produce usable results that are non-trivial to the problem [121]. Plenty of
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research studies particularly focus on methods on the importance of the defin-

ing successful fitness functions and how to specify effective fitness functions to

achieve the most significant results.

To apply SA to our PS technique, we make the following choices for each of the

previously mentioned design decisions:

1. SA configuration values : We set the initial temperature T0 to 100, and

define the stopping criteria as Tk < 1. The cooling rate is applied once in

every twenty neighbourhood generations in order to explore the search space

wider.

2. Initial solution : Each solution is a set of assignments to the key parameters

of the load balancing technique together with temperature which is represented

as a tuple S =< thresholdQN , TQN , TDECAY , QNINITIAL, Tk >. Parameters of

each solution Si ∈ S are tuned according to the given range in Table 4.1 with

the provided step values. Parameters of the initial solution are set to minimum

default values presented in Table 4.1.

Table 4.1: Parameters setting for the Simulated Annealing algorithm used for 7x7

and 28x28 mesh network

Parameters 7x7 Parameter range 28x28 Parameter range Step value

thresholdQN 3-40 3-40 1

TQN 2000-40000 2000-40000 1000

TDECAY 2000-10000 2000-10000 1000

QNinitial 2-30 12-120 1

3. Neighbourhood generation : 16 neighbours are generated in every neigh-

bourhood generation. We have evaluated the three different scenarios to show

their effects on PS which will be explained in details in Section 3.4. Once the

fitness evaluation of the entire neighbourhood is complete, candidate solutions

are selected according to the applied scenario and it becomes new starting
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point for the further rearrangements. To reduce the complexity of the fitness

function evaluation, normalisation is applied to the performance metrics.

4. Fitness function : We defined our fitness function as combination of to-

tal service availability and the minimum number of intervals without service

detections. For a better understanding, we give an example to visualise our

performance metrics first. The simulation results of one solution are shown in

Figure 4.2. Simulation time is set to 14 weeks and we evaluate the percentage

of service availability and the number alive nodes weekly for each solution.
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Figure 4.2: Fitness is derived from the sum of the values in (a) and the size of the

zero tail in (b).

Illustrated in Figure 4.2, the definition of the fitness function is the combination
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of total service availability (the sum of % detected events), which is 917 and the

number of intervals without service detections, 4. The best solution is the one that

has the highest total service availability and lowest number of intervals without

service detections. Demonstrated by the given example in Figure 4.2, our proposed

algorithm targets maximum service availability and minimum energy consumption

by defining a simple, but effective, fitness function.

Summary

In this chapter we aim to optimise the PS algorithm by automating its parameter

selection for any given network topology. For this purpose, we tailored Simulated

Annealing search metaheuristics and defined multi-objective fitness function to pro-

vide maximum service availability and minimum energy consumption. In the rest

of this chapter, we explain the evaluation infrastructure and show the experimental

results.

4.2 Evaluation Infrastructure

Previously in Chapter 3 Section 3.3.3 we explain our system-level, abstract simulator

and defined its design goals. To remind Fast simulator to reader, we summaries its

design objective and characteristics as follows:

Our design objectives was to have short implementation time, high performance

and cost efficiency over level of accuracy. To achieve our design objectives, we

created the Fast simulator which is an event-driven simulator. Fast uses the JavaSim

library [109] to synchronise the events of the multi-threaded simulation engine. It

has been developed in Java to use the advantage of the encapsulation of object-

oriented programming and runs the application and platform models in parallel.

The PS algorithm runs on top of the platform model and is integrated with the

simulation infrastructure.

Our idea was to apply search-based parameter tuning - to run SA metaheuristic

search on the Fast simulator. We designed the search metaheuristic and conduct

some experiment on the Fast simulator. The main issue about running SA meta-
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heuristic search on Fast was the execution time. The shortcomings of our experi-

ments conclude as the search space increase, execution time of Fast exponentially

increase. The motivation behind creating the SuperFast simulator that accelerates

the simulation infrastructure developed because of the execution time required for

the SA search metaheuristic to evolve.

Table 4.2: Comparison of simulators

Features Fast SuperFast

multi-hop X X

scheduling queues X X

contention on wireless channel X X

energy consumption while idle X X

energy consumption while processing X X

energy consumption while remapping tasks X X

C
on

si
d
er

at
io

n

energy consumption for communication with sink X X

multi-threaded X X

S
ea

rc
h

E
n
gi

n
e

JavaSim library X X

The multi-threaded nature of the Fast simulator allow us to simulate multi-hop

relations between nodes, task scheduling queues and energy consumption in terms

of idle, processing and communication of the nodes. Although, the multi-threaded

nature of the Fast is an advantage in terms of high level of accuracy, the same

characteristic appears to be disadvantage for the SA search metaheuristic to evolve.

Due to the complexity of the search process, the required memory space for the

hardware components and most importantly the time factor, we decided to create

a more abstract simulator than Fast which will allow us to work faster. Removing

the complexity of concurrent programming, and lowering the accuracy in certain

limits reduced the computational time and the cost of the simulation work, without

sacrificing significant accuracy. In Table 4.2 features of simulators are analysed
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from component considerations and search engine features of the two simulators.

Disabling multi-threaded nature of the Fast simulator and implementing sequential

programming instead of concurrent make SuperFast simulator time efficient. Since

most of the energy consumption kept and taken under consideration in SuperFast,

level of accuracy is preserved. Before we start presenting the results of SA, we

show a detailed comparison between the Fast and SuperFast simulators in terms of

execution time and performance accuracy.

In order to evaluate where SuperFast maintains an acceptable level of accuracy

compared to Fast, we compare two simulators on 7x7 and 28x28 mesh topologies.

Experiments presented using the Fast simulator on the percentage of service avail-

ability and the number of alive nodes are identical with the results presented in

the previous chapter. We repeat the same experiments on the SuperFast simulator

using same parameters selections for the PS algorithm and using the same platform

specifications. Figure 4.3 illustrates comparisons between the Fast and SuperFast

simulators on 7x7 mesh network topology, where Figure 4.4 compares the two sim-

ulators on 28x28 mesh network.

In Figure 4.3 (b) shows the pheromone stabilisation on 7x7 mesh network during

the first and the sixth week. On the other side, in Figure 4.4 (b) network stabilisation

only once during the first week. In small networks, pheromone stabilisation take

longer and it is more difficult as opposed to large networks. As a result we exhibit

sort of behaviour as Figure 4.3 (b) and Figure 4.4 (b) shows on different scale. In

the SuperFast simulator, the pheromone propagation implemented by adding up

the estimate amount of received pheromone to the nodes pheromone level because

of the absence of the multi-threaded nature of the simulator. By implementing

the pheromone propagation precess sequentially, we enable faster simulation. As

a results, we exhibit slightly less accurate, optimistic performance in terms of the

percentage service availability shown in both figures. The number of alive nodes

illustrated in Figure 4.3 (c) and Figure 4.4 (c) also shows that SuperFast the number

of nodes decrease sharper than Fast, and many nodes run out of energy at the

same time. This also validates that estimated processing time, energy consumption

and cost of the pheromone propagation is cut at the same time from the nodes in
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Figure 4.3: Simulator comparison of execution duration, % service availability and

# alive nodes on 7x7 mesh network.

SuperFast. When nodes calculate the energy costs, they do not do it synchronized,

instead they do it on-demand. As a results, due to the nature of milti-threaded
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Figure 4.4: Simulator comparison of execution duration, % service availability and

# alive nodes on 28x8 mesh network.

versus sequantial implemented simulators Figure 4.3 and Figure 4.4 exhibits more

realistic simulator with Fast and more optimist simulator in SuperFast.
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In short, the advantage of using SuperFast is the short execution time, whereas

the disadvantage of it is the lower level of accuracy and being less precise in terms

of the service availability and network lifetime. The simulations need to be repeated

many times in SA search metaheuristic like any other metaheuristic technique. As

a result, the desired simulation infrastructure for the metaheuristic search is the

simulation infrastructure with the shortest execution duration together with the

highest performance efficiency. In this regard, we decided to use the SuperFast

simulator over Fast where we achieve the desired characteristics of the simulation

infrastructure in terms of performance and execution time.

4.3 Experimental Results

In this section, we present experimental results of the parameter selection tool in

three stages. In Section 4.3.1, we show the effectiveness of SA-based parameter se-

lection tool on known schemas: 7x7 and 28x28 mesh network topologies to show the

effectiveness of the parameter selection tool. We achieved high network performance

on the 7x7 and 28x28 mesh network topologies by tuning the parameters manually

as we illustrated in the previous chapter. The aim of this section is to compare

the performance of our manually tuned parameters over the performance of the pa-

rameter selection tool that uses the SA metaheuristic search. By doing this set of

analysis, we show whether the parameter tool is effective or not. At the same time,

we also analyse how much effective was our manual parameter tuning for the given

mesh networks. Later in Section 4.3.2, we present experimental results on Principle

Component Analysis to show the importance of the parameters on the performance

of the PS algorithm. By applying PCA, we show the how much each parameter

affects the PS algorithms results. Using the results of the PCA, we modify the

search metaheuristic that will allow us to achieve successful set of parameters faster

by guiding the search. Last, in Section 4.3.3, we apply the parameter selection tool

onto untested/ new network schemas to analyse the effectiveness of the PS on the

new network schemes without spending time to tune the PS algorithm manually.
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4.3.1 Verifying the Effectiveness of Parameter Selection Tool

on a Known Schema

This section presents the initial set of experimental results. The goal of the first set

of experiments is to demonstrate the behaviour of the SA algorithm towards selecting

parameters that achieve high service availability and low energy consumption, and

analyse how good our intuitive parameter (which we used in the previous chapter)

search is based on small (7x7) and large (28x28) mesh network topologies. Three

different scenarios have been prepared for this purpose.

1. WS : Represents the behaviour of the SA when the search uses a fixed small

step size for the parameter values and the selection of the first encountered

fitter neighbour;

2. BF : Represents the behaviour of the SA when a search changes step size dy-

namically (between large and small) depending on the improvement on fitness

and selects randomly among fit neighbours;

3. LS : Represents the behaviour of the SA when a search changes step size dy-

namically (between large and small) depending on the improvement on fitness,

ranks the fit neighbours and selects the fittest neighbour;

We mention how important to define the fitness function in Section 4.1. We also

mentioned that defining the neighbourhood and step sizes are also very important

and depends on the application. The desired step sizes should be in the range of

not jumping too far that will cause missing good solutions, but at the same time

not a tiny amount that will have very little effect on the PS performance and SA

evolving. In order to specify the most appropriate step sizes for the solution space of

the PS algorithm, we used static (WS scenario) or dynamic (BF and LS scenarios).

We have not used random step sizes to make the parameter selection tool more

systematic.

Comparison against three scenarios on total service availability We ini-

tially implemented the WS scenario and we found out that there is not only one
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optimal and fittest solution for the PS algorithm. As a result, we have decided to

explore the larger search space within the shortest time as much as possible.
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Figure 4.5: Experimental results: improvements on total service availability showing

(a) 7x7 mesh network topology, (b) 28x28 mesh network topology.

Figure 4.5 (a) on 7x7 Mesh Network, (b) on 28x28 Mesh Network show improve-

ments on cumulative total service availability over acceptable steps of SA for WS,

BF and LS. In the 7x7 Mesh Network initial implementation, WS achieves high total

service availability in very low temperatures and the algorithm does not converge

fast due to small step sizes and neighbour selection. Whereas, LS and BF search
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algorithms converge much faster as these scenarios allow larger step sizes when there

is no improvement. In both networks, the LS scenario performs the best in terms

of achieving higher service availability in a shorter time, since the algorithm ranks

neighbours and picks the fittest neighbour. Although the WS scenario converges

faster in a large network in comparison to a small network, all three scenarios be-

have similarly on both networks in terms of achieving higher service availability and

time consumption.
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Figure 4.6: Visualisation of sample solutions on 7x7 mesh network.
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Figure 4.7: Visualisation of sample solutions on 28x28 mesh network.

Analysing the effectiveness of parameter selection tool over intuitive,

manually tuned parameters In Figure 4.6 shows three sample solutions on 7x7

mesh network, and whereas Figure 4.7 illustrates three sample solutions on 28x28

mesh network. For both networks, INTU represent the intuitive parameters that

we showed in the previous chapter, where S2, S3, S4, S4 are encountered successful

solutions by LS scenario on SA algorithm. Box plots illustrates the set of results

gained from the 30 repetition that satisfies the statistical significance, whereas the
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circles inside the box plots represent the mean values. Although the encountered

parameter sets do not outperform INTU, the experiments show that 1) the SA pro-

cess is capable of producing parameters achieving performance close to our intuitive

parameter selection, which is a strong baseline as it was extensively tuned during

the previous work; 2) our intuitive parameter selection is near-optimal.

4.3.2 Principle Component Analysis

Knowing the biological background and how the PS algorithm works, we suspect that

not all the parameters have an equal effect on the results. In order to understand

the importance of each parameter, we have decided to apply Principle Component

Analysis (PCA). The main purpose of PCA is to maximise the variance of a linear

combination of the variables in order to scale and rank them. PCA is an effective

tool that performs dimensionality reduction in which the original data is projected

to the lower dimension spanned by leading eigenvectors of the covariance matrix

of data [148]. We used the data that we gathered from SA (results of over 880

solutions), and together with the results of randomly selected parameters (results

300 solutions) to ensure that the results of PCA are not only based on the guided

search metaheuristics but also contains some samples to cover the entire search

space. Table 4.3 illustrates the impact of the four parameters of PS and highlights

that only TDECAY and TQN play a role in determining the outcome of PS. The other

two parameters depend on TDECAY and TQN .

Table 4.3: PCA on PS.

Parameters PCA results

TDECAY 4.1285

TQN 0.2564

thresholdQN 0.0000

QNinitial 0.0000
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4.3.3 Applying Parameter Selection Tool Onto New Schemas

This section presents the second set of experimental results. The goal of this set

of experiments is to show the effectiveness of the parameter selection onto a new

schema and to analyse the effectiveness of the PS on the new network schemes. This

section is divided into two as experimental design in Section 4.3.3.1 and experimental

results in Section 4.3.3.2

4.3.3.1 Experimental Setup

For our second set of experiments, we apply PS algorithm on three different sparse

network topologies with 70, 200 and 700 nodes in a 30m x 30m grid as a test case,

similar to [169]. We decide to work on sparse network topologies to provide more of a

challenge for the algorithm compared to the original regular grid topology. In a mesh

network, all the nodes are equally spaced and each node is connected to its adjacent

neighbours. Sparse networks, however, are not evenly distributed and each node may

have a different number of neighbours. The transmission range of network elements

are selected as 6m, 5m and 3m respectively to establish a connected network. In

order to specify the minimum transmission range that ensure connectivity, we use

the topology control on sparse networks by Santi [157].

Moreover, among the three SA scenarios (WS, BF and LS) the results presented

in this section uses only LS scenario as it is the quickest scenario to evolve with

highest total service availability. In addition to the LS scenario used in Section

4.3.1, we modified the step size according to the PCA results. More explicitly,

we used PCA results to guide the SA search metaheuristic towards achieving the

fittest solutions by modifying the step size of the LS scenario. The shortcomings

of the PCA results shows that TDECAY and TQN plays an important role on the

performance of the PS, whereas thresholdQN and QNinitial varies based on the values

of the TDECAY and TQN . Based on this information, we increased the neighbourhood

generation by allowing more modifications on the key parameters (TDECAY and TQN)

without changing the other two parameter’s neighbourhood generation. Therefore,

the modified LS allow us to explore PS search space in more effective way. In

the next section, we present the experimental results of the search-based parameter
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tuning.

4.3.3.2 Experimental Results
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Figure 4.8: Visualisation of sample solutions on sparse network with 70 nodes.

Figure 4.8 illustrates the experimental results on the new network configurations

and compares the intuitive parameter set, INTU with SA suggestions of successful

solutions that provides high network performance, S5 and S6. Set of parameters

presented in INTU are the intuitive parameters that we used for 28x28 mesh network.
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Instead of using parameters used for 4x4 or 7x7 mesh topologies, we used the set of

parameters used in 28x28 as it is the largest network we intuitively tuned, and we

thought this set of parameters may give good result. Although INTU performs well

with a known topology (as shown in the previous section), it performs badly with

the new network configuration as Figure 4.8 illustrates. On the other side, both

S5 and S6 deliver some service availability until the 7th week when the network

nodes run out of energy in both S5 and S6. In Figure 4.8 (b), the number of alive

nodes for INTU outperforms, where the S5 and S6 does not improve the energy

consumption as much, due to the high weekly resource usage to increase the service

availability. This shows that the S6 parameter set balances network load better than

S5 parameter set.

After tuning the parameters of sparse network with 70 nodes, we illustrate the

effectiveness of the PS technique by showing the effects of the Baseline, BS and

Optimal scenarios like we presented in the previous chapter. As shown in Figure

4.9, PS outperforms both Baseline and BS scenarios. Readers can easily notice that

Optimal scenario does not perform as well as 4x4, 7x7 and 28x28 mesh topologies

that we presented in Chapter 3.4.3. This occurs as a result of the use of the large

sensor field (30mx30m) with a few sensor nodes. Although network performance is

limited with 70 nodes in a large area, PS performs and balances the network load

over the limited network resources. In the rest of this chapter, we introduce denser

networks by adding more sensor nodes in the same sensor filed (30mx30m) to see

the effects of PS technique in various density levels of sparse network topologies.

Figure 4.10 illustrates the experimental results on a sparse network configuration

with 200 nodes and compares the intuitive parameter set, INTU, with SA suggestions

of successful solutions that provides high network performance, S7 and S8. The set

of parameters presented INTU is the same with Figure 4.8 and 28x28 mesh network

as we explained previously. Figure 4.10, S7 and S8 performs better than INTU as

expected. SA based parameter tuning balances the network load over the sensor

nodes that increases the the network performance in terms of service availability

and extends the network lifetime. In the S7, percentage of service availability drops

dramatically at the end of 4th week which we have not experienced before. This
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occurs as a result of network stabilisation, similar to what is shown at the end of

2nd week. As TQN is a very large number (49000), network stabilisation happens

for the second time in this instance unlike any other experiments.

Figure 4.11 demonstrates the effectiveness of the PS technique by showing the

effects of the Baseline, BS and Optimal scenarios. The Optimal scenario performs

better than the sparse network with 70 nodes as presented in Figure 4.9. The

denser the network is, better the Optimal scenario performs because there are more
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Figure 4.9: Experimental results: effects of PS algorithm on sparse network topology

with 70 nodes showing (a) % service availability, (b) # alive nodes.
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nodes available to execute tasks. Although network lifetime is the same with sparse

network with 70 nodes, the total service availability (area shown under the green

curve) dramatically improves. As we increase the number of the sensor nodes in

the same sensor area, we increase the network resources and this affects the network

performance positively. The Optimal scenario illustrates this hypothesis very clearly.

PS outperforms to Baseline and BS scenarios by reducing the redundant use of

the network resources and balances the network performance. On the other side,

Baseline and BS scenarios runs out of energy by the end of 6th week and both do
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Figure 4.10: Visualisation of sample solutions on sparse network with 200 nodes.
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not improve the service availability after the 5th week.

Figure 4.12 illustrates the SA-based parameter tuning on a sparse network topol-

ogy with 700 nodes. Three sets of solutions are compared to each other: INTU is

the intuitive one we used previously, whereas S9 and S10 are SA suggested set of

parameters. Although S9 and S10 are very different to each other, both perform

similarly.

Comparisons between Baseline, BS, Optimal and PS scenarios are presented in
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Figure 4.11: Experimental results: effects of PS algorithm on sparse network topol-

ogy with 200 nodes showing (a) % service availability, (b) # alive nodes.
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the Figure 4.13 to show the effectiveness of the and PS technique. The improvements

on the optimal scenario are more dramatic for the 700 node network as opposed to

70 or 200. This is due to it being more densely populated, enabling more resources

to be available to provide service. Similarly, PS technique also improves the service

availability more in denser networks. In Figure 4.9, the total service availability (area

under the black curve) is the minimum. Total service availability increase in Figure

4.10 slightly and achieves the maximum on Figure 4.12 among three sparse network

configurations. As the number of the nodes increases, the total service availability
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Figure 4.12: Visualisation of sample solutions on sparse network with 700 nodes.
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Figure 4.13: Experimental results: effects of PS algorithm on sparse network topol-

ogy with 700 nodes showing (a) % service availability, (b) # alive nodes.

increases and in all three network topologies PS balances the resource usage and

increases the network performance compared to Baseline and BS scenarios.

4.4 Summary

This chapter had two major goals. Firstly, we aimed to automate the parameter tun-

ing process needed to optimise PS for a given scenario, balancing service availability
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against energy consumption. The second goal of this chapter was accelerating the

evaluation method towards finding fit solutions quicker by evolving the simulation

infrastructure. We implemented a less accurate but very fast system level simula-

tor, SuperFast, and analysed its accuracy and execution time as compared to our

previous simulator. The advantages and disadvantages of these two simulators have

been highlighted with the experimental results.

The need for systematic parameter selection on our load balancing technique to

solve the trade-off between service availability and energy consumption in WSNs

leads us to inspect search metaheuristics. We presented a search-based technique

that uses SA to automate parameter tuning for our PS algorithm. In the first set of

experiments, we have analysed the effectiveness of Simulated Annealing by creating

three different scenarios on the known network topology. The experimental results

verify that there is more than one near-optimal solution. Based on the first set

of experimental results, Principle Component Analyses has been applied to inspect

the importance of each parameter of the parameter set. The results show that only

two of the parameters are important for the PS technique. The search technique

has been modified accordingly so that SA converges faster and is applied onto an

untested network topology. The second set of experimental results compare our

intuitive parameter set and sets of parameters found out by the SA on three different

sparse network topologies. SA-based parameter atomisation is applied on sparse

networks with 70, 200 and 700 nodes. The tuned parameters by SA outperform

the our manual ‘intuitive’ set of parameters and consequently increase the network

performance. Moreover, performance efficiency of PS are shown on these three

sparse networks and compared with Baseline, BS and Optimal scenarios. In all

scenarios, PS outperforms and manages to balance the effective use of the network

resources.

In short, PS parameter atomisation is successfully implemented and a parameter

selection tool has been created to tune the parameters of PS algorithm to any given

network schema and size. A user looking to deploy PS on their WSN could tailor

the simulator to their node specifications, define their topology and estimated load,

and use the tool to generate the optimal set of parameters for PS. We showed
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that effective network coverage increases the network performance. The way we

illustrated the network coverage in this chapter was to increase the network density.

In the next chapter, we will target to increase the network coverage by not only

adding more network nodes but by introducing some mobile network elements.
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Using Mobile Robotic Agents to

Increase Service Availability and

Extend Network Lifetime on

WSRNs

We have explained the resource constraints, characteristics and nature of WSNs in

the previous chapters. In this chapter we extend our perception of load balancing

into WSRNs to increase network performance in terms of service availability, network

coverage and lifetime using different domains in addition to WSNs.

Wireless Sensor and Robot Networks (WSRNs) are heterogeneous collections of

sensor nodes and robotic vehicles that communicate wirelessly. In the last decade

many research studies have attempted to address the challenging trade-offs of Wire-

less Sensor Networks (WSNs) that arise due to their resource limitations, however,

much work is still to be done. A recent trend is to merge different subclasses of

cyber-physical systems together to achieve the desired performance goals by bene-

fiting from their heterogeneity. This chapter presents a bio-inspired robot guidance

technique that is used to improve network coverage, service availability and energy

consumption of WSNs using robotic agents on vehicles.

The main goal of this research is to effectively guide the robots to increase the

network coverage, which will directly increase the service availability and extend
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the network performance. Effective network coverage in this research is defined as

achieving the highest service availability by moving less. To achieve the desired

effective network coverage, we have extended our PS technique to guide robots

towards the areas of the sensor field where the sensor nodes have run out of battery

and are unable to provide service. Some of the performance metrics are reused in

this chapter from Chapter 3 and only one of the performance metrics are particularly

defined for mobile robotics agents. To remind the reader of the metrics that we use

in Chapter 3, we now relist them and also define the performance metrics that we

particularly use for the robotic agents as:

• service availability: the number of services that are successfully completed

divided by the total number of requested services within a period of time;

• total energy consumption: the sum of communication and computation energy

consumption within a period of time;

• total distance travelled by robots: the total distance that a robot has travelled

during the simulation.

We have defined a service in Chapter 3 as the composition of a number of inter-

communicating tasks. The readers may remember that a service is considered to

be successfully detected only if all of its tasks are executed by the nodes. Here in

this chapter, we newly introduce the minimum total distance travelled by robots.

Ideally, it is desired to achieve the minimum total distance travelled with highest

service availability indicates efficient guiding. Therefore, we target maximising ser-

vice availability whilst minimising the total energy dissipation together with the

shortest total distance travelled by robots.

Chapter Contributions The contributions of this chapter are listed below:

• The definition of a lightweight, robot guidance algorithm based on PS to in-

crease network coverage and load balancing in WSRNs.

• The integration of robotic elements into the system-level infrastructure to

evaluate the long- term effects of the PS algorithm on WSRNs.

120



5.1 Pheromone Signalling-based Load Balancing (PS) Robot Guidance Technique

• The effects of the event distribution on the robot guidance algorithm.

Chapter Structure Section 5.1 describes our Pheromone Signalling-based Load

Balancing (PS) Robot Guidance resource management algorithm. We explore the

performance consequences of the Pheromone Signalling-based Load Balancing (PS)

Robot Guidance on an abstract level simulator to present a system perspective.

Section 5.2 illustrates how does the robotic agents is integrated to our system-level

simulation model infrastructure that we explained in Chapter 3. The effectiveness

of the algorithm is evaluated with different network topologies and investigated on

various scenarios. Section 5.3 demonstrates the effectiveness of PS-based Robot Guid-

ance algorithm on simulated experimental results on sparse topologies validate that

robot guidance based on PS increases network lifetime using a uniformly distributed

events in Section 5.3.3 and using a non-uniformly distributed events in Section 5.3.3.

5.1 Pheromone Signalling-based Load Balancing

(PS) Robot Guidance Technique

This section explains the integration of robot guidance into the PS technique. In

the PS technique, the level of pheromone indicates the resource usage in a particular

area of the network. Areas in the sensor field that have lower level of pheromone at a

given time demonstrate less resource usage as opposed to other parts of the network.

Less resource usage may due to: (1) no events occurring in the neighbourhood; (2)

events occur in the neighbourhood that are not in the detection range of particular

node; or (3) nodes are already out of energy in that part of the sensor field. In our

previous work, we apply our PS load balancing solution to cases (1) and (2), and

show that by distributing the network load evenly we balance service availability

and energy consumption. In this paper, we propose a robot guidance algorithm

based on PS to solve case (3) by guiding robots into the areas where the sensor

nodes are already out of energy. Incorporating additional robotic agents on vehicles

and guiding the agents based on PS not only balances the network load (1),(2) but

also improves the network coverage (3).
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The three existing cycles of PS are explained in Chapter 3 as the differentiation,

propagation and decay cycles. In addition to these three cycles that PS applies,

we have extended PS with the robot behaviour to solve the given problem above

(3). We now describe the robot behaviour algorithm and define how it occurs.

The standard differentiation, propagation and decay cycles apply only on the sensor

nodes, whereas the robot behaviour only occurs on robotic agents.

While the sensor nodes are deciding whether to provide a service or not to reduce

the computational redundancy, it is essential to underline that the robotic agents

are willing to provide service at all times to increase the network coverage. As

with sensor nodes, robotic agents can receive pheromone from QNs if they are in

communication range. Robotic agents act as QNs – they execute all tasks assigned

to them. However, robotic agents do not propagate pheromone to other nodes in

their communication range, so as to stop the robots interfering with the standard

pheromone signalling mechanism. Listing 5.1 presents the robot behaviour in pseu-

docode. A robotic agent moves under two conditions: 1) if a robotic agent receives

pheromone from a QN; 2) if the agent arrives at its destination without receiving

any pheromone.

Listing 5.1: Pseudocode of the PS-based robot guidance algorithm.

1 i f ( pheromone r e c e i v e d )

2 PS−guided moving d e c i s i o n

3 else i f ( a r r i v e d at d e s t i n a t i o n without r e c e i v i n g pheromone )

4 randomly move

5 else

6 broadcast communication l i n k reque s t

7 e s t a b l i s h l o c a l communication l i n k s

If a robotic agent receives pheromone it makes a moving decision and selects a

target destination in the opposite direction of the received pheromone based on PS.

The moving decision of the robotic agent is based on vector addition and its pseudo

code appears in Listing 5.2. Given the mathematical formulation in the pseudocode

and assuming all the network elements (sensor nodes and robotics agents) know their

location as x and y coordinates, we calculate the angle of the received pheromone

122



5.1 Pheromone Signalling-based Load Balancing (PS) Robot Guidance Technique

with the use of the sender’s x and y coordinates. To do this, we resolve the horizontal

and vertical components based on the amount of received pheromone level, hi, and

the coordinates of the sensor node. In order to find the magnitude, we sum up all

the horizontal and vertical components. In order to determine the direction of the

magnitude, we take arctangent of the magnitude and resolve x and y coordinates.

This process happens on-demand as the robotic agents receive pheromone from QNs.

Listing 5.2: Robot Moving Decision

1 i f (hi > 0)

2 f o r a l l the r e c e i v e d pheromones (p) o f the node

3 diffX = pSenderX − currentCoordinateX
4 diffY = pSenderY − currentCoordinateY
5 θ = ArcTangentQuadrant(diffY , diffX)

6 componentX = p.hd ∗ cos θ

7 componentY = p.hd ∗ sin θ

8 SumX+ = componentX

9 SumY + = componentY

10 magnitude =
√
SumX

2 + SumY
2

11 θdestination = ArcTangentQuadrant(SumY , SumX)

12 apply 180 degree s s h i f t to θdestination

13 c l e a r a l l r e c e i v e d pheromones

If a robotic agent does not receive any pheromone by the time it arrives to its

destination then the robotic agents picks a new destination at random and moves

towards the new destination to increase the service availability by helping the sensor

nodes. If a robotic agent does not receive any pheromone and has not yet arrived

at its destination that means it is currently moving. In this case, the robotic agent

continues to move towards its calculated destination whilst periodically broadcasting

communication requests and updates its communication links nearby nodes.

Summary

In this section we have presented a robot guidance algorithm that builds upon our

bio-inspired PS algorithm to address the trade-off between the service availability

and energy consumption of WSRNs. We extended the PS algorithm for robotic
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agents to increase the network coverage using the higher resource capacities of robots

on vehicles. We aim to guide the robotic agents effectively into the areas of the sensor

field where sensor nodes are not able to provide service so as to increase the network

coverage and therefore improve the service availability and network lifetime. In the

rest of this chapter, we explain the extended evaluation infrastructure and illustrate

the experimental results of the PS robotic guidance technique.

5.2 Integration of Mobile Robot Agents into Fast

We described our system-level simulation infrastructure Fast in Chapter 3, Section

3.3.3. In this chapter, we extend our simulation infrastructure Fast as such to

evaluate the performance efficiency of using mobile robotic agents.

In WSRN, three-tier system model is designed to represent network components,

the services that run over it and the function that assign services to network elements

as follows.

The platform model in WSRNs, PM = (R,N,L) consists of a set of R robots,

a set of N nodes and a set L of bidirectional wireless links between neighbouring

nodes and robots. Each robotic agent rm ε R, is the tuple:

rm =< mm, bcm, idrm, cdrm, wcdrm,mdrm, locm, trm >

whereas each node nm ε N in WSRNs, is the tuple:

nm =< mm, bcm, idrm, cdrm, wcdrm, locm, trm >

mm memory capacity in bytes;

bcm battery capacity in mAh;

idrm battery discharge rate in µ as in idle mode;

cdrm battery discharge rate in µ as when performing a computation;

wcdrm discharge rate in µ as when transmitting a byte of data over its wireless

interface;
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trm transmission range that specify the communication distance in meter with its

neighbouring network element;

locm location in x and y coordinate system;

As the network topology is represented by the set of links lmn ε L, the cost of

multi-hop transmission of each communication cij can also be taken into account if

the routing algorithm used in the network is known. Communication links estab-

lish between the network elements (robot and sensor, sensor and sensor, robot and

robot) based on the specified transmission range that varies according to the applied

network topology.

There are no applied changes in the application model: definition of the service

and its mathematical representation in WSNS; the information given in Chapter 3,

Section 3.3.3 is applied to WSRNs without any changes.

In this chapter, the mapping process is applied in a slightly different way. We

have not changed the definition of the mapping process, and used it as we defined

in Chapter 3 which is a function from the application domain to the platform co-

domain. However, as the entire idea of introducing robotic agents is to force them

to help sensor nodes and increase the network coverage, the mapping is additionally

applied to the robotic agents if there are some existing robotic agents where the

events occur. This means, that mapping is applied to sensor nodes as we did previ-

ously in Chapter 3 whereas the mapping process is extended for the robotic agents

given that the robotic agents are physically in events range.

Figure 5.1 illustrate the UML sequence diagram of how robotic agents are inte-

grated to the sensor nodes and the application domain using Fast. The simulation

environment does not change much: it still is an abstract simulator that controls

event-driven nature by the JavaSim library [109] with multi-threaded nature as

shown in the Figure 5.1.

5.3 Experimental Results

This section will start with the definition of the experimental setup in Section

5.3.1 and will continue presenting the experimental results on the effects of PS
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Figure 5.1: Execution sequence of system-level simulator applied on WSRNs.

Robotic Guidance technique on uniformly distributed events in Section 5.3.3 and

non-uniformly distributed events in Section 5.3.3 to show the effectiveness of PS

Robotic Guidance technique on event distribution.

5.3.1 Experimental Setup

We have created three other scenarios to compare with PS-based Robot Guidance

Technique. Some of the scenarios are the same with Chapter 3 Section and reused

in this chapter. To remind the scenarios to the reader, we relist them as follows:

Idle Represents the absence of load, and all nodes of the system do not dissipate

any energy on computation or communication with the neighbours.

Objective It is included as the maximum lifetime of the system if no surveillance

is performed.
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Optimal Represents an artificial scenario for WSNs where each service is executed

by only one service provider to ensure no redundant processing takes place and

minimum number of network resources is used.

Objective It is design to show maximum possible network performance by

creating a scenario which never can occur in real life.

PS with Random Moving Robotic Agents represents a WSRN that robotic

agents move randomly in the sensor field without interacting with the sensors

where sensor nodes apply PS load balancing technique separately.

Objective It combines basic random moves that robots present and applies PS

which sensor nodes execute.

PS Robotic Guidance represents a WSRN that robotic agents move according

to PS in the sensor field where sensor nodes apply PS load balancing technique

at the same time in parallel.

Objective It is developed to guide robotic agents to where sensor nodes are not

able provide service to increase the network coverage.

5.3.2 Effects of PS Robotic Guidance Technique on Uni-

formly Distributed Events

In this section, we present the effectiveness of the PS Robotic Guidance technique on

uniformly distributed events similar to previous chapters: Chapter 3 and Chapter

4. We use location-aware sensor nodes and mobile robotic agents (i.e. each GPS

equipped). As the most significant part of this chapter is the mobile coverage of PS

Robotic Guidance technique which involves location-awareness, it is worth specify-

ing the type of the distribution and the probability of events occurring in a given

location. When events are uniformly distributed every location in the sensor filed

has the same probability of the event occurring at it. To contextualise uniformly

distributed events we use the same case study that we explain in Chapter 1 Figure

1.1 sound-based bird detection.

In Figure 5.2 the percentage of the detected events and the number of alive nodes

are shown for 70 nodes sparse network topology for Idle, PS, Optimal, PS-Guided
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Figure 5.2: Experimental results: effects of PS Robot Guidance algorithm on 70

nodes sparse network topology on a uniform event distribution showing (a) % service

availability, (b) # alive nodes.

Move and PS-Random Move scenarios. A sparse network with 70 nodes in a 30m

x 30m grid as a test case [169]. The transmission range of network elements (both

sensors and robots) are selected as 6m to establish a connected network. In order

to specify the minimum transmission range that ensure connectivity, we use the

topology control on sparse networks by Santi [157]. Idle, PS and Optimal scenarios

are only applied on the 70 sensor nodes, whereas PS-Guided Move and PS-Random
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Move are applied both sensors and robots in the environment (70 sensors and 3

robots; 73 pieces of hardware device). PS-Random Move takes actions based on the

given probabilities. As shown in Figure 5.2 (a) and (b), the percentages of service

availability and alive nodes are lowest in the PS scenario on WSNs (no robotic

agents involved), and the highest is Optimal scenario. This means, using additional

robotic agents on the WSNs is beneficial: robots do not interfere with the sensors,

and improve network performance.

The PS-Guided Move scenario performs better, in terms of service availability,

than the PS-Random Move scenario between week 3 and week 7 as this is the time

that nodes begin to run out of energy. Starting from the week 7 there are no alive

network nodes in the sensor field in any of the PS, PS-Random Move and PS-Guided

Move scenarios, and as can be expected as there is no alive node, we do not observe

any advantage of using PS-Guided Move.

Similarly, in Figure 5.3, Idle, PS, Optimal, PS-Guided Move and PS-Random

Move scenarios are illustrated on a sparse network with 200 nodes in a 30m x

30m grid is inspected together with 3 robotic agents and the transmission range

of network elements (both sensors and robots) are selected as 5m to establish a

connected network [157]. In Figure 5.3 PS-Guided Move also performs slightly better

than PS-Random Move between week 4 to week 7. Although the difference between

the two scenarios (70 and 200 nodes sparse networks) are not significant, the sparse

network with 200 nodes performing better than the sparse network with 70 nodes in

terms of service availability. This is due to the fact that the pheromone propagation

is more effective in large scale networks and thus is why we claim that PS brings

more advantages for large scale networks. The affects of the mobile robotic agents,

and PS-Guided Move supports this claim with minor benefit.

Idle, PS, Optimal, PS-Guided Move and PS-Random Move scenarios in Figure

5.4 on a sparse network with 700 nodes in a 30m x 30m grid is inspected together

with 3 robotic agents and the transmission range of network elements (both sensors

and robots) are selected as 3m to establish a connected network [157]. Although

using mobile robotic agents increase the performance in Figure 5.4, the performance

difference between no robotic elements (PS ) and PS-Guided Move and PS-Random
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Figure 5.3: Experimental results: effects of PS Robot Guidance algorithm on 200

nodes sparse network topology on a uniform event distribution showing (a) % service

availability, (b) # alive nodes.

Move are very minor. We believe, this occurs as a result of high level of pheromone

in the environment where there are many nodes unlike the other scenario, and the

fact that PS algorithm improves the network performance particularly in large scale

networks. As a results, although mobile agents increase the network coverage, both

PS-Guided Move and PS-Random Move scenarios do not exhibit major benefits over

PS.
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Figure 5.4: Experimental results: effects of PS Robot Guidance algorithm on 700

nodes sparse network topology on a uniform event distribution showing (a) % service

availability, (b) # alive nodes.

In Figure 5.5, Figure 5.6 and 5.7, the effects of probabilities on deciding whether

to move is illustrated for both the PS-Guided Move and PS-Random Move scenarios

on sparse networks. ‘PSGM’ represents PS-Guided Move, whereas ‘PSRM’ repre-

sents PS-Random Move scenarios. Based on the given probabilities, each robot de-

cides to move or not when the moving decision occurs. As we mention in Section 5.1,

a robotic agent moves under two conditions: (1) if it receives some pheromone from
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Figure 5.5: Experimental results: effects of PS Robot Guidance algorithm on 70

nodes sparse network topology on a uniform event distribution showing various

probabilities on move (a) % service availability, (b) # alive nodes.

a QN; or (2) if the agent arrives to its destination without receiving any pheromone.

In PS-Guided Move, robots move based on PS Guidance when (1) occurs, and ran-

domly move when (2) takes place. The probabilistic moves only occur when robots

do not receive pheromone, when they are moving randomly.

Given the probabilities on both scenarios and efficiency of the various probabil-

ities in terms of service availability and number of alive nodes shown in Figure 5.5,
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Figure 5.6: Experimental results: effects of PS Robot Guidance algorithm on 200

nodes sparse network topology on a uniform event distribution showing various

probabilities on move (a) % service availability, (b) # alive nodes.

Figure 5.6 and Figure Fig:various700, we can conclude that fixed robots (probability

0 = no move) brings very small benefit but still improves the network performance.

On the other hand, when robots constantly move they achieve the highest level of

service availability and lowest level of sensor energy consumption. It is an interest-

ing point to notice that probabilities 0.25, 0.5 and 0.75 do not have much difference

on service availability and sensor energy consumption, however, the total distance
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Figure 5.7: Experimental results: effects of PS Robot Guidance algorithm on 700

nodes sparse network topology on a uniform event distribution showing various

probabilities on move (a) % service availability, (b) # alive nodes.

taken by robots are directly affected by the given probabilities. This then begs a

question: is it better to sacrifice a little from the service availability and sensor

energy usage but conserve the robots’ energy by moving less? The answer of this

question is based on the application domain and depends on how critical it is. By

implementing PS Guidance we successfully direct robots into the areas of the sensor

field where nodes are out of energy or much network activities occur. We will try
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to solve the trade-off between service availability and the total distance taken by a

robot in the future as it is not the scope of this paper. However, we have done some

basic analysis on the total distance travelled by a robot in Figure 5.8 to get an idea

of the technique on the total distance taken.
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Figure 5.8: Experimental results: effects of PS Robot Guidance algorithm on a

network topology on a uniform event distribution showing total distance travelled

by a robotic agent.

Figure 5.8 illustrates the effects of the moving decision probability of PS-Guided

Move and PS-Random Move on the total distance travelled by a robotic agent during

the simulation. Due to the large number of experiments performed, each having 3

robots, we limit the results to the total distance travelled by a single robot on a

network. The numbers in this figure are not important as they change with the

network topology. However, the behaviour of the scenarios and ratio of the results

are similar to each other in all cases.

5.3.3 Effects of PS Robotic Guidance Technique on Non-

Uniformly Distributed Events

PS Robotic Guidance technique focuses on improving the network coverage and

increasing the network performance in terms of service availability and network life-
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time particularly where sensor nodes do not provide any service as we explained. In

this section, we explore the performance consequences of PS Robotic Guidance tech-

nique on non-uniformly distributed events. We defined uniformly distributed events

in the previous section as every location in the sensor filed has the same probability

of the event occurring at it and as and we gave wild-life habitat monitoring as an

example. We now define non-uniformly distributed events for this section and will

contextualise it with an example based on the a case study. When events are non-

uniformly distributed, not every location in the sensor filed has the same probability

of the event occurring at it but some locations has higher probability of the event

occurring at them, some locations has lower probability of the event occurring at

them. To contextualise, we focus on the wild-life bird detection example once again,

however, this time considering that there are two water fountains for the birds. In

this case, although we use the same case study, the birds will not uniformly be dis-

tributed in the required area. Instead, the birds will fly around the water fountains

more than the other parts of sensor field.

Figure 5.9: Non-uniform event distribution on sensor field.

Figure 5.9 illustrates the sensor field layout of non-uniform event distribution

on 30m x 30m grid. Brown and yellow areas are coloured to indicate the water

fountains located in the sensor field under assumption that water fountain located

in the brown area is bigger and attracts more birds. Each square represents 1m x

1m, whereas blue, yellow and brown coloured areas indicate the different probability

rates. Event distribution probabilities are set as 0.1, 0.3 and 0.6 respectively for

this set of experiments. To ensure statistical significance, we have repeated each

experiment 30 times.

Figure 5.10 shows the experimental results of the effects of PS Robot Guidance
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Figure 5.10: Experimental results: effects of PS Robot Guidance algorithm on 70

nodes sparse network topology on a non-uniform event distribution showing (a) %

service availability, (b) # alive nodes.

technique on a sparse network topology with 70 nodes (a) on the percentage of

service availability, (b) the number of alive nodes. Events are non-uniformly dis-

tributed according to the Figure 5.9 with the respective probabilities. Until now,

we have not focused on non-uniformly event distributions and therefore have not

compared PS load balancing with no load balancing for this kind of event distribu-

tion. As a result, Figure 5.10 illustrates the Baseline, PS and Optimal scenarios as

137



Chapter 5: Using Mobile Robotic Agents to Increase Service Availability and
Extend Network Lifetime on WSRNs

well as the scenarios contains mobile robotic agents such as No Move, PS-Guided

Move, and PS-Random Move. The Baseline, PS and Optimal scenarios do not con-

tain any mobile entities and their objectives are the same as explained in Section

3.4.1. The Baseline scenario, where no load balancing is applied, also performs

worse than the PS load balancing technique in non-uniformly distributed events as

well as uniformly distributed events. The Optimal scenario, an artificial scenario

where no computational redundancy exists, performs better than both Baseline and

PS, as expected. All three scenarios where no mobile agents are included (Baseline,

PS and Optimal) perform visibly worse when events are non-uniformly distributed

as opposed to uniformly distributed (Figure 4.9). When events are uniformly dis-

tributed, the probability of executing one event is same for all the network loads,

however, when events are non-uniformly distributed certain parts of the network are

forced to use their network resources more. It is natural to consume the network

resources on the areas of the network where events occurs with high probability.

Introducing load balancing increases the network performance in terms of service

availability and extends the network lifetime as shown in the Figure 5.10, however,

no load balancing technique can stop the unequal use of network resources when

events are distributed non-uniformly. This is clearly shown in Optimal scenario in

Figure 5.10. Even the Optimal scenario in Figure 5.10 has lower service availability

when events are non-uniformly distributed as opposed to Figure 4.9 where events

are uniformly distributed.

In terms of mobile aspects, three scenarios are used for this set of experiments:

No Move, PS-Guided Move, and PS-Random Move. In Section , we illustrate the

effectiveness of using mobile agents by comparing a variety of different probabilities

of move. In our analysis, one of the conclusions is that using mobile robotic agents

improves network performance in terms of service availability and network lifetime

even when mobile agents have zero probability of move. This means that when the

mobile agents are randomly deployed into the network, they do not move as their

move is specified as probability zero. Although random move with zero probability

performed the worst among the other mobile scenarios, it showed us that additional

network resources increases the network performance as expected. In this set of
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experiments, we used random move with zero moving probability (which we rename

as No Move), PS-Guided Move and PS-Random Move. The PS-Guided Move and

PS-Random Move have similar results especially after week 7. This is a result of no

pheromone signalling occurring as all the nodes have already run out of energy, and

the fact that when nodes are out of energy both PS-Guided Move and PS-Random

Move scenario move around randomly. The benefit of using the PS-Guided Move

over PS-Random Move occurs when the nodes start to run out of energy until all

the nodes are out of energy and shown in by the end of week 3 to week 6. Although

No Move scenario has a minor effect on the number of alive nodes over PS, it

has significant effect on the percentage of service availability. This is due to the

possibility of random deployed mobile agents in the areas where events occur more.

Moving increases the network performance dramatically since there is a significant

difference in terms of percentage of service availability in No Move and PS-Guided

Move and PS-Random Move which clearly is shown after week 6. Our analysis on

the No Move, PS-Guided Move and PS-Random Move scenarios on a sparse network

with 70 nodes show that mobile network resources increases the network coverage

and therefore network performance in terms of service availability in Figure 5.10 (a)

and the network lifetime in Figure 5.10 (b) improved.

Figure 5.11 presents the simulated experimental results on a sparse network

topology with 200 nodes using a non-uniform event distribution (a) the percentage

of service availability, (b) the number of alive nodes. Similar to the previous figure,

the Baseline, PS and Optimal scenarios are shown as well as the scenarios contains

mobile robotic agents such as No Move, PS-Guided Move, and PS-Random Move.

The Baseline scenario performs badly in terms of service availability and it also has

the shortest network lifetime when the events are non-uniformly distributed. PS

load balancing improves the network performance in both the percentage of service

availability and it also increases the network lifetime over Baseline. The Optimal

scenario plotted in Figure 5.11 also shows that the network performance in terms

of service availability and the network lifetime is reduced over uniformly distributed

events just like Figure 5.11.

The use of the robotic agents in No Move, PS-Guided Move and PS-Random
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Figure 5.11: Experimental results: effects of PS Robot Guidance algorithm on 200

nodes sparse network topology on a non-uniform event distribution showing (a) %

service availability, (b) # alive nodes.

Move scenarios illustrates that inserting additional network resources increases the

network performance regardless although agents do not move as No Move scenario

shows. The advantage of using PS-Guided Move over PS-Random Move is shown

between week 3 to week 6, although the difference between the two scenarios are

minor. The benefits of using mobile agents are clearly shown after the week 7, where

PS-Guided Move and PS-Random Move scenarios over No Move scenario.
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Figure 5.12: Experimental results: effects of PS Robot Guidance algorithm on 700

nodes sparse network topology on a non-uniform event distribution showing (a) %

service availability, (b) # alive nodes.

Figure 5.12 illustrates the simulated results on a sparse network topology with

700 nodes using a non-uniform event distribution (a) the percentage of service avail-

ability, and (b) the number of alive nodes. Seven different scenarios are plotted

including the Idle, Baseline, PS and Optimal scenarios which has not inspected in

the previous chapters, as well as the scenarios contains mobile robotic agents such

as No Move, PS-Guided Move, and PS-Random Move. The Baseline scenario that

141



Chapter 5: Using Mobile Robotic Agents to Increase Service Availability and
Extend Network Lifetime on WSRNs

applies no load balancing performs the worst among all other scenario due to the

redundant computational consumption. PS load balancing improves the network

performance both in Figure 5.12 (a) and (b) as the algorithm reduces the compu-

tational redundancy according to the pheromone signalling mechanism. Although

the Optimal scenario performs better than any other scenarios represented in Figure

5.12, it does not perform as good when events are uniformly distributed shown in

Figure 5.12.

Effectiveness of using the additional mobile network resources are shown in No

Move, PS-Guided Move, and PS-Random Move scenarios. The advantage of using

PS-Guided Move over PS-Random Move between the end of week 5 to the beginning

of week 8. Moving robotics agents perform better in terms of the percentage of

service availability and the number of alive nodes over mobile agents that do not

move represented in the No Move scenario especially by the beginning of the week 8.

Using additional network resources increase the network performance on the sparse

network with 700 nodes although they are not moving as the No Move scenario

illustrates as well as other sparse topologies. This therefore also shows the mobility

increases the network coverage.
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Figure 5.13: Experimental results: effects of PS Robot Guidance algorithm on a net-

work topology on a non-uniform event distribution showing total distance travelled

by all three robotic agents.
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Figure 5.13 illustrates the distance travelled by robotic agents on PS-Guided

Move, and PS-Random Move scenarios on a sparse network. As No Move do not

involve any moves of the robotic agents, we do not add No Move scenario into

our plot. All three robots have the same behaviour on PS-Guided Move, and PS-

Random Move scenarios, where PS-Random Move perform slightly less moves in all

three network topologies. As a result, we decided to use only one case to illustrate

an example of robotic agents distance travelled. Based on distance travelled by the

robotic agents and their performance, we can easily say PS-Guided Move performs

better in non-uniformly distributed events in terms of all three performance metrics:

the percentage of service availability, the number of alive nodes and the distance

travelled by the robotic agents.

5.4 Summary

In this chapter, we have described an effective robot guidance technique that uses

the PS load balancing algorithm to improve the network coverage in an attempt to

address the trade-off between service availability and network lifetime in WSRNs. As

the stationary sensor nodes are limited in processing capacity, we introduce mobile

robotic agents in addition to the fixed sensornet topology. We propose to improve

network coverage by guiding the robotic agents towards the areas of the sensor field

where the sensor nodes out of battery and are unable to provide service. Thus, this

not only improves the network coverage but also increases the service availability and

extends the network lifetime. We showed two set of experimental results: 1) using a

uniform event distribution; 2) using a non-uniform event distribution. As we showed

in the previous chapters, sparse network topologies exhibit the same behaviour on

the PS algorithm. Therefore, we decided to use sparse networks as they are more

challenging as the distance between the nodes are not equal to each other. We show

the effects of the PS Robot Guidance algorithm on event distributions separately in

two different experimental sets, each containing three different sparse networks with

70, 200 or 700 nodes to show the effects of the PS Robot Guidance algorithm on

network density.
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Extend Network Lifetime on WSRNs

Extensive experimental results on both 1) uniformly and 2) non-uniformly dis-

tributed events, on three different sparse network topologies demonstrate that our

proposed PS Robot Guidance technique increases the service availability and extends

the network lifetime as a result of improved network coverage, although the total

distance travelled by the robots in high. Furthermore, we also show that using ad-

ditional network resources increase the network performance although they do not

move. From that, we believe that in the future many cyber-physical systems will

benefit from employing heterogeneous entities, and it is inevitable to merge different

subclasses of these systems in the same application.

In the future, we would like to consider the resource limitations of the robots,

examining the trade-off between the total distance taken by a robot and the total

service availability of the network.

The next chapter will be the conclusions and the future work.
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Chapter 6

Conclusions and Future Work

To conclude, I recall from earlier the research question of this thesis. Specifically:

Can a distributed bio-inspired load balancing technique be used to improve service

availability and network lifetime using adaptive and dynamic resource management

for large scale WSNs with redundant coverage?

Classical load balancing techniques that apply centralised control mechanisms

are inappropriate for WSNs, due to the changing workload dynamics and the en-

ergy costs of obtaining up-to-date state of the distributed WSN. To address those

challenges, we look to the lightweight and distributed nature of bio-inspired mecha-

nisms. In this thesis, we have presented a task mapping optimisation algorithm that

addresses the trade-off between energy efficiency and event detection at run-time,

maximising service availability while reducing energy consumption by restricting the

service times of the network components.

In numerous experiments, spanning different network sizes and topologies, we

have shown that our bio-inspired PS algorithm reduces computational redundancy

by limiting the processing capabilities of the sensor nodes.

We now summarise the contributions made in this thesis, and propose future

work.

6.1 Summary of Contributions

In short, the significant contributions of this thesis can be summarised as follows:
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Load Balancing Using Pheromone Signalling

In Chapter 3, we satisfied research objective RO1 by developing a lightweight,

bio-inspired load balancing algorithm that can satisfy the dynamic and adap-

tive characteristics of large scale WSNs. A number of experiments were con-

ducted on a wide range of network sizes and topologies to illustrate the effect

of PS technique. These all contributed to the conclusion that, given the good

set of parameter selection is input to the PS algorithm, PS reduces the com-

putational redundancy and thus, increases the service availability and extends

the network lifetime.

Development of the Fast Simulation Infrastructure

Predominately in Chapter 3, but also in Chapter 4 and Chapter 5 Fast simula-

tion infrastructure and its characteristics were presented. Fast was established

to provide a system-level perspective of the load balancing issues on WSNs, and

to investigate the characteristics of load distribution over network resources

when dynamic, distributed algorithms were applied. This, therefore, satisfied

our research objective RO2.

Development of SuperFast Simulation Infrastructure

In Chapter 4 we developed a second simulation infrastructure and its features

were shown. The SuperFast simulation infrastructure was developed to inves-

tigate the feasibility of increasing the speed of the simulation infrastructure

without sacrificing much its accuracy, and therefore address research objec-

tive RO3. The goal was to enable simulations to be performed quicker and

thus evaluate different scenarios and configurations in a shorter amount of

time, whilst still maintaining confidence in the accuracy of the results. The

competitive analysis between Fast and SuperFast was conducted to show the

accelerated speed effects in terms of time consumption and level of accuracy

on the simulation infrastructures.

Parameter Tuning for the PS Load Balancing

In Chapter 4 parameter tuning was presented for the PS algorithm. The Sim-

ulated Annealing metaheuristic was use to automate the parameter selection
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for the PS algorithm for various sizes and topologies of networks. The ex-

perimental results were illustrated to show that the applied parameter tuning

technique provides a set of parameters to maximise service availability and

minimise energy consumption of any given network configuration. Principle

Component Analysis also was applied to the PS algorithm to show the effects

of each parameter on the algorithm.

Pheromone Signalling-based Robot Guidance

In Chapter 5 an extension to the PS algorithm, used to guide robotic agents,

was presented. An extensive set of experiments were performed to show that

the effective guidance of mobile elements like robots can be used to increase

network coverage both for uniformly and non-uniformly distributed events.

This also increases the overall service availability and extends the network

lifetime. Furthermore, all experiments presented in this chapter showed that

combining different subclasses of cyber-physical systems can be used to im-

prove network performance.

6.2 Limitations

Despite the contributions listed in the previous section, this thesis also has its limi-

tations. Some of the important limitations can be listed as follows:

Level of Abstraction

Throughout this thesis, we underline that the simulation infrastructures we

used, both Fast and SuperFast, are abstract simulators. We stated the rea-

sons behind our choice as to provide a system-level perspective in order to

extract the long-term effects of PS particularly for large scale WSNs. We

applied PS on real-sensor deployment to show the short-term effects of the

algorithm. Although we validated that the observed behaviour is the same on

both simulated and deployed results, we could not analyse the difference in

the level of accuracy due to the required time and financial cost for the real-

deployments. Uncertainty in the level of accuracy on our simulated results is

one of the most significant limitations behind this research.
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Platform Specifications

All the experiments shown in this thesis use homogeneous sensor nodes and we

have not done any research on using heterogeneous sensor nodes. We would like

to underline that homogeneity or heterogeneity here only focuses on the sensor

nodes and do not mean sensor node/robot combination in Chapter 5. We

believe using heterogeneous sensor nodes in the platform model will lead some

communication issues, time delays in both computation and communication

processes and thus will effect results negatively. Furthermore, the timers of the

heterogeneous sensor nodes may be different and thus may result with some

challenges on applying time-triggered cycles of the PS algorithm such as decay

and differentiation cycles. Moreover, due to the different energy consumption

rates of heterogeneous nodes, some sensors may run out of energy faster than

the others. Overcoming these issues may need some changes in the algorithm

which may be subject to future work.

6.3 Future Work

Finally, we will address a few open problems that we think would be beneficial to

explore in the future.

Level of Abstraction

In the previous section, we mention that one of the limitations of the PS load

balancing algorithm is the uncertainty in the level of accuracy. We believe it

would be very useful to further validate the level of accuracy of the PS using

real sensor deployment where the deployment time and conditions will be same

as the simulation setup. Surely, the financial cost, time and effort required for

this research grows exponentially as the network size increase but we believe

it will be useful to show the level of accuracy at least on a small-to-medium

sized network. The results gained from this research can be used to calibrate

the simulation infrastructure. An example of this is as follows: empirical

results may show that the PS technique is 15% less accurate than the real

sensor deployment and thus results in achieving higher service availability and
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longer network lifetime in simulation than in reality. In order to make the

simulation more accurate, noise might be added into the simulation and make

the simulator (almost) as accurate as the real sensor deployment.

Verification of PS Technique using Formal Methods

In the PS load balancing algorithm, QN selection is driven by each nodes’

pheromone level and the static predefined threshold (thresholdQN), as pre-

viously explained. The number of QNs, and the QN duration are controlled

by the parameters set for the PS algorithm and applied computational redun-

dancy is only based on the parameters input to the algorithm. A scenario

where all the nodes are QNs at all times indicates that there is no load bal-

ancing being applied even though PS technique is being used. Similarly, in a

scenario where none of the nodes are QNs means there are no nodes capable

of providing service. We handle these two extreme problems with the param-

eter tuning method that is presented in Chapter 3. Empirical metaheuristic

technique applied to automate parameter selection for the PS algorithm is

validated with the experimental results in Chapter 4. We believe using sim-

ulators for WSNs are more beneficial. To recall, in Section 2.2.2 we discuss

the benefits of different types of performance evaluation techniques of WSNs,

showing a comparison between these techniques in Table 2.2. We claim that

due to low cost, financial efficiency, high scalability, performance efficiency,

and accuracy, simulators are an appropriate choice for evaluation. Simulators

are typical way to evaluate the performance of WSNs because of the reasons

listed in Table 2.2 together with the fact that simulators are closer matches of

the behaviour of WSNs than mathematical models.

Analytical models can be created as an alternative option. Using analytical

methods, however, often oversimplifies the problem domain and the results

computed using these techniques are not always sufficient for real systems [28].

This is due to the complexity, size, and stochastic nature of the problem. To

overcome the challenges of analysing WSNs, many analytical methods simplify
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the problem dramatically (see e.g. [40, 191], [12]), and thus, result in non-

realistic solutions. Analytical methods may not be capable of verifying PS as

a whole, it may be possible to perform analyses of small parts of PS – with care

given to ensure that the problem is not oversimplified. Given the advantages

and disadvantages of formally verifying PS, we think it will be beneficial to

apply some formal analysis techniques to answer specific questions such as:

- how often do nodes volunteer to become QN,

- how many QNs exist on average at any given time

- what is the probability of having at least one QN in the event occurrence

range

- how quickly does a network stabilise and how does network size affect

this

Care would be needed to ensure that the problem is not oversimplified to

answer these questions in our future work on analytical models on PS.

Improving the PS-based Robot Guidance

In Chapter 5, when we validate our PS-based Robot Guidance algorithm, and

showed that PS-based Robot Guidance algorithm covers the areas of the sensor

field where there is no service providers. However, in terms of distance travelled

by the robotic elements were not as short and efficient as near-optimal. The

research question there was: is it better to sacrifice a little from the service

availability and sensor energy usage but increase the robot lifespan by moving

less? Currently, we do not know the answer of this question, neither the

consequences of both. We believe it would be beneficial to extend the current

PS-based Robot Guidance algorithm and increase the level of the complexity

to increase the effectiveness of the network coverage.

Dependability Analysis of PS

In this thesis, we have analysed service availability and energy consumption,

however, we have not done any research towards analysing how dependable

is PS technique. The most important reason of not analysing dependability
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is because of the application domain of the PS. In this thesis, we focused on

developing a load balancing technique considering that our application domain

will be a non-critical domain such as habitat monitoring. Given a non-critical

application domain, we have shown PS technique successfully distributes the

network load over the network components. In the future, we would like to

apply PS technique on a safety-critical application domain such as fire alarm

system used for the building management. Such systems require dependable

techniques and therefore showing whether PS is a dependable technique or not

would be important progress. In case where PS is currently not dependable,

improving the algorithm towards achieving the dependability and showing the

differences between the two approaches will be an interesting work.

Using a Different Application Domain

In the previous paragraph, we mentioned about dependability analysis of the

PS for a safety-critical system. We also consider using a different application

domain that is belongs to a non-critical system such as web servers, clusters

or data centres. As the green computing is becoming more and more impor-

tant every day, variety of load balancing techniques are been introduced to

save energy on these domains. Most of these techniques apply central control

mechanisms. Applying PS as distributed load balancing technique on a com-

pletely different application domain which also is a non-critical system, will

help us to investigate how much PS can contribute towards green comput-

ing. Furthermore, we can also analyse the effects of centralised or distributed

control mechanisms on these domains which also be interesting to show.

Analysing Effects of A MAC Layer Duty-Cycling Protocol on PS

As we state in Section 3.3.2, MAC layer duty-cycling protocols are out of scope

of this research. One can easily imagine that if a duty-cycling MAC protocol

has been incorporated, then network energy dissipation would have been lower

and the network lifetime would have been increased, however it is difficult to

know without a deep investigation. It is a known fact that duty-cycling MAC

protocols are more energy efficient than traditional MAC protocols, but they
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also have some limitations. Most importantly, synchronous duty-cycling MAC

protocols may increase end-to-end delivery latency substantially; they rely on

time synchronization between nodes to determine a pre-negotiated time and

period for node communication. For example, with S-MAC [198], in each op-

erational cycle, a packet can be forwarded over a single hop only, since an

intermediate relaying node has to wait for it. In addition, the probability of

network contention is high when synchronous duty-cycling MAC protocols are

used because a sensor node is synchronised to be awake during the same short

period as its neighbours and once a neighbouring node acknowledges the re-

quest then transmission commences [49]. On the other hand, asynchronous

protocols commonly have lower latency, as transmission is on-demand. This

comes at the expense of power due to the periodic listening required by neigh-

bouring nodes. Based on the given features of synchronous and asynchronous

duty-cycling MAC protocols, using a synchronous duty-cycling MAC proto-

col together with PS may affect network performance negatively by increasing

network congestion and causing unnecessary latency. . PS signalling packages

may occur at the same time together with propagation or decay cycles. And

this may change the behaviour of PS entirely. Furthermore, using an asyn-

chronous duty-cycling MAC protocol in combination with PS may result in

a higher rate of power consumption. In short, without evaluating the effects

of duty-cycling MAC protocols together with PS technique, it is difficult to

conclude whether energy consumption of the network is likely to be lower than

the presented results in this thesis, and this would be an interesting avenue of

research to investigate in the future.

6.4 Closing Remarks

Load balancing in WSNs is almost certainly a necessity. By using bio-inspired algo-

rithms, such as a bee’s pheromone signalling mechanism, it is possible to improve the

self-organisation and autonomous characteristic in WSNs that is used to effectively

distribute the network load. Thus, improving the overall network performance in
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terms of service availability and network lifetime. We hope that the PS technique

is clear and easily implemented by any reader.
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