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Abstract 

Although field cases reported the presence of chloride in situations in which 
concrete suffered from the thaumasite form of sulfate attack (TSA), few laboratory 
studies have been carried out into the impact of chloride ions on TSA.  In fact the 
literature contains contradictory results with some studies indicating that chloride 
reduces TSA, while others show the opposite and, moreover, no published 
experimental data have been found that address the role of chloride ions on the 
extent of thaumasite formation, the effect of thaumasite formation on cement 
chloride binding capacity or chloride induced corrosion of steel reinforcement in 
conditions conducive to thaumasite formation. Thus, the aim of this study was to 
investigate these issues with respect to the performance of standard Portland 
Cement (PC) and Portland Limestone Cement (LF) mortars and other binders based 
on blends of PC with pulverised fuel ash (PFA) or ground granulated blast furnace 
slag (GGBS) that potentially may be more resistant to TSA. Siliceous fine aggregate 
and a water to binder ratio of 0.6 were used to cast specimens that, following 
curing, were exposed to various solutions containing sulfate and / or chlorides at 
5°C and at approximately 20°C for a period of up to 630 days.   

The performance of the samples was assessed by regular visual inspections and 
mass changes together with measurements of length, porosity and oxygen 
permeability. The pH and chemistry of the test solutions were monitored and the 
deterioration products were investigated using XRD, IRS and SEM/EDX 
techniques. The effect of chloride concentration on the solubility of calcite and 
gypsum was also investigated. Water soluble chloride was evaluated in order to 
measure free chloride of powdered samples taken from different depths into the 
specimens. Linear polarization resistance and visual observations were used to 
monitor the corrosion of steel reinforcement in the experiments and the degree of 
carbonation in selected specimens was also evaluated.   

All specimens stored at 5°C, except those stored in the combined sulfate and 2.0% 
chloride solution, suffered from TSA, where the greatest deterioration occurred to 
LF mortars.  The extent of thaumasite degradation was concentration sensitive, 
where damage was accelerated at 0.5% and mitigated at 2% in the conditions 
investigated, where this mitigation effect is attributed to pH increase, Friedel’s salt 
deposition, increased gypsum solubility and reduced calcite solubility. At low 
concentrations, corrosion risk increases due to the reduction of chloride binding 
capacity of thaumasite-affected areas of the cement. 

The use of slag and fly ash as cement replacements delayed sulfate attack, 
probably due to the consumption of calcium hydroxide and improved pore 
structure. However, mortars made with these cements and exposed to DS4 (BRE 
Ground aggressivity Class) magnesium sulfate at low temperature suffered 
conventional sulfate attack. The presence of chloride in solution led to further 
enhancement of sulfate resistance of fly ash mortars, probably due to the positive 
effect of high chloride binding capacity. However, it enhanced lime leaching in 
GGBS mortar which would provide more calcium ions required for gypsum 
precipitation. At high chloride concentration (2.0%) and due to high gypsum 
solubility, no gypsum was formed.  

The non chloride binding capacity of thaumasite means that where TSA occurred, 
the reinforcement was increasingly vulnerable to damage. An additional 
implication of poor binding capacity of thaumasite is that because C-S-H can be 
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transformed to thaumasite, physically adsorbed chloride on C-S-H would be 
released into the pore solution which would tend to increase corrosion risk.   
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1. Introduction 

 

 

1.1 Background  

Exposure of concrete structure components to external sulfates leads to 

deterioration owing to the formation of expansive phases, such as ettringite, 

gypsum and thaumasite, depending on the exposure conditions. The 

thaumasite form of sulfate attack (TSA) has been receiving great attention from 

researchers and engineers since it was discovered in a number of concrete 

bridge structures in the UK in 1998 (Thaumasite Expert Group, 1999).  

According to  Crammond (2003) for thaumasite to form sulfate, calcium, 

carbonate and silicate in the presence of water are required in low temperature 

conditions (5 to 150C).  It is generally accepted that for extensive thaumasite 

formation to occur, low temperature conditions are necessary, various 

researchers, including Irassar et al. (2005), Martinez-Ramirez et al. (2011), 

Abubaker et al. (2013) and, Hartshorn et al. (2002) point out the possibility of 

its formation at higher temperature (e.g. 15-200C). The main risk factors 

leading to TSA have been reported by the Thaumasite Expert Group (1999), 

established by the UK Government to consider the risks, diagnosis, remedial 

works and guidance on new construction, after identification of TSA in 

degraded foundation concrete of 10 motorway bridges on the M5 motorway 

near Cheltenham in the west of England in 1998. 

TSA can lead to severe degradation of concrete. The deterioration can be much 

more severe than inflicted by the conventional form of sulfate attack.  This is 

because as it is associated with the degradation of the calcium silicate hydrate 

(C-S-H) gel, the main binding phase of the cement (Macphee and Diamond, 

2003, Glasser et al., 2008), particularly when sulfates are associated with the 

magnesium ions and low pH as both contribute to the decomposition of C–S–H 

(Hobbs, 2003). 

There are two different proposed mechanisms leading to thaumasite formation, 

known as the direct route and the woodfordite route. In the direct route, 

thaumasite results from reactions between C–S–H, calcium sulfate, calcium 

carbonate and water (Heinz and Urbonas, 2003). In the woodfordite route 

(Bensted, 2003b), it is proposed that thaumasite forms as a result of reaction 
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between ettringite, C–S–H and carbonate ions in the presence of excess water. 

It have also been proposed that thaumasite formation can occur through the 

heterogeneous nucleation of thaumasite on the surface of ettringite when the 

disintegration of C–S–H takes place in cement paste (Köhler et al., 2006).  

In recent years, the employment of limestone blended cements is gaining 

popularity due to their technical, economic, and environmental benefits. Many 

of the recent studies on this topic concluded that cementitious materials 

incorporating limestone filler are more susceptible to thaumasite attack due to 

the presence of carbonate ions. The damage of mortar and concrete made with 

Portland-limestone cement due to the formation of thaumasite during sulfate 

attack at low temperatures is well documented (Torres et al., 2003, Torres et 

al., 2006, Irassar, 2009b).  

Several field cases (Slater et al., 2003, Eden, 2003) reported the presence of 

chloride in medium where concrete suffered from TSA. Chloride may also be 

present accompanied by sulfate ions, particularly in concrete structure near 

the sea, where ground water, becomes mixed with seawater or is contaminated 

with sea spray.  In addition, significant amounts of chloride and sulfate ions 

may be present as a result of the use of de-icing salt during winter time, where 

concentration will vary according to run-off. The current view reported by TEG 

(1999), is that for concrete placed in an aggressive environment, the presence of 

chloride mitigates or reduces the concrete’s vulnerability to sulfate attack. 

Previous studies by Zuquan et al. (2007) and Ekolu et al. (2006) have shown 

that the presence of chloride ions in association with sulfate delays or mitigates 

the conventional form of sulfate attack, where ettringite is the main 

deterioration product. However, Torres (2004)  and Sotiriadis et al. (2012) note 

that there is very little information available about vulnerability to the 

thaumasite form of sulfate attack of concrete/mortar simultaneously exposed 

to both chloride and sulfate solutions at low temperature. However, according 

to an experimental study carried out at Sheffield University by Torres (2004), 

the extent of deterioration due to thaumasite formation in 20 mm mortar cubes 

depended on chloride concentration in solutions where 1 and 2.0% chloride 

present in solutions resulted in accelerated attack. Samples made with 

Portland cement blended with 15% limestone filler that were immersed in 

sulfate solution containing 2.0% Cl- displayed damage similar to that for pure 

sulfate solution. Less damage occurred to samples immersed in sulfate and 

0.5% Cl- solution, whereas more severe damage was observed in samples 
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immersed in sulfate plus 1.0%Cl-. On the other hand, according to a recent 

study (Sotiriadis et al., 2012), in which a 2.1% chloride concentration and 100 

mm concrete cubes were used; TSA was mitigated. The lack of published 

detailed information regarding the effect of chloride on thaumasite sulfate 

attack emphasises the importance of such investigation.  

An additional aspect associated with the presence of chloride ions is higher risk 

of corrosion of steel reinforcement. Based on the observations made during 

inspection and analysis of the structures examined by the Highways Agency, 

Wimpenny and Slater (2003) pointed out that the increased risk of chloride 

induced corrosion can be lead by higher concentration at the depth of the 

reinforcement as a consequence of TSA development. Chloride binding capacity 

of cement matrix was reported by Torres (2004) to be affected by TSA. No 

experimental work has been reported in the published literature investigating 

the effect of thaumasite related damage of mortar/concrete cover on corrosion 

resistance of steel reinforcement; hence, it would be also of great interest to 

investigate the impact of TSA on corrosion resistance of steel reinforcement.   

The use of mineral admixtures such as PFA and GGBS are reportedly (Tsivilis 

et al., 2003, Skaropoulou et al., 2013, Skaropoulou et al., 2009, Hill et al., 

2003)  effective in preventing TSA at 5°C; however, the presence of chloride 

alongside sulfate at low temperature was found to have a negative effect on the 

performance of concrete made with these components (Sotiriadis et al., 2013).  

   

1.2 Research Questions: 

The main research questions that will be addressed in this investigation are: 

- What role can chloride have on TSA, and how does this vary with 

chloride concentration? 

- To what extent chloride mitigates or accelerates TSA? 

- Is TSA sensitive to chloride concentration? 

- What is the mechanism for any effect played by chloride? 

- What is the implication of TSA in the presence of chloride on rebar 

corrosion risk? 

- How chloride affects the performance of fly ash and slag cements in 

environment prone to thaumasite formation? 

- What effect thaumasite formation (TF) has on chloride binding capacity? 
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1.3 Aim and Objectives  

The aim of this research is to clarify the effects of chlorides on thaumasite form 

of sulfate attack (TSA) in mortars with different binder compositions and 

implications on corrosion of steel reinforcement.    

In order to achieve this aim, a numbers of objectives were identified, as follows: 

 To investigate the role of chloride and its concentration on thaumasite 

sulfate attack. 

 To investigate the mechanism for any effect played by chloride. 

 To investigate the impact of TF on chloride binding capacity. 

 To investigate the implications of TSA in the presence of chloride on 

rebar corrosion risk. 

  To study the effect of chloride on performance of fly ash and slag 

cements in environment prone to thaumasite formation. 

 

1.4 Structure of the thesis 

This thesis is organised into seven chapters as follows: 

Chapter 1:  Background and justification for the study 

Chapter 2: Review of available literature related to TSA, factors affecting 

thaumasite formation, the role of chloride on sulfate attack, the role of pH on 

thaumasite formation, the role of temperature on thaumasite formation, the 

use of pulverised fly ash and ground granulated blast-furnace as cement 

replacement in controlling TSA, the corrosion resistance of steel reinforcement 

simultaneously subjected to sulfate and chloride environment; 

Chapter 3: Description of the materials and test methods adopted in the 

laboratory study; 

Chapter 4: Results of the assessment of the effect of chloride concentration 

and temperature on performance of cement mortars subjected to sulfate 

exposure; 

Chapter 5: Results of the assessment of corrosion resistance of steel rebars 

embedded in cement mortars subjected to composite sulfate and chloride 

solutions; 

Chapter 6: A discussion of the results obtained in the research; 
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Chapter 7: Overall conclusions, the implications of the research for engineering 

and recommendations for future research work. 
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2. Literature review 

 

 

2.1 Introduction  

This Chapter presents a review of available literature related to thaumasite 

sulfate attack (TSA), factors affecting thaumasite formation, the role of chloride 

on sulfate attack, the role of pH on thaumasite formation, the role of 

temperature on thaumasite formation, the use of pulverised fly ash (PFA) and 

ground granulated blast-furnace slag (GGBS) as cement replacement in 

controlling TSA, and the corrosion resistance of steel reinforcement 

simultaneously subjected to sulfate and chloride environment. 

2.2 Sulfate attack of concrete 

Deleterious changes that occur in cementitious materials as a consequence of 

the chemical interactions between sulfate ions and hydrated cement paste is 

known as sulfate attack (Neville, 1995). There are now considered to be two 

main types of sulfate attack, which are described below. In the conventional 

form of sulfate attack, formation of ettringite (3CaO.Al2O3.3CaSO4.32H2O) and 

gypsum (CaSO4.2H2O) which result in expansive degradation of the concrete, 

whereas in the thaumasite form of sulfate attack the main product is 

thaumasite (CaSiO3.CaCO3.CaSO4.15H2O), which is a soft, weak materials that 

possesses no capacity for binding the aggregate particles together (Thaumasite 

Expert Group,1999), which of these to occur depends mainly upon the 

environment of the exposure conditions. 

2.3 Conventional form of sulfate attack 

Until the identification of thaumasite form of sulfate attack, the conventional 

type of sulfate attack was the only widely known type of degradation when 

cementitious materials were subjected to sulfate solution. This form of attack 

depends on the cation (s) present (Neville, 1995), where calcium and sulfate 

ions react with C3A to form ettringite. Sodium and sulfate ions react with the 

calcium aluminate hydrates to form ettringite and with the portlandite to form 

gypsum.  
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Magnesium and sulfate ions react with portlandite, and calcium silicate 

hydrates, to precipitate brucite. The brucite can react further with the calcium 

silicate hydrates to form magnesium silicate hydrates, which result in non-

cohesive products. Due to the low solubility of brucite, these reactions can 

continue to completion, giving greater deterioration of the cement paste than is 

the case for other sulfate solutions (Bonen and Cohen, 1992). The mechanism 

of attack is still not completely clear. 

2.4 Thaumasite form of sulfate attack  

Crammond (2003) reported that for thaumasite to form, reactions of calcium, 

sulfate, carbonate and silicate ions should occur in wet, cold (favourably less 

than 15°C) conditions. The first case of thaumasite in concrete was reported in 

the United States in 1965, and several other field cases have since been 

reported elsewhere in European countries, Canada, Africa and United States 

(Crammond, 2002). However, it did not receive any considerable thought in the 

UK until the observation in 1998 of ten cases in the foundations of over-bridges 

along the M5 motorway in Gloucestershire, UK (Crammond, 2003). A 

Thaumasite Expert Group was immediate established by the UK Government to 

consider the risks, diagnosis, remedial works and guidance on new 

construction. The first report of Thaumasite Expert Group (1999) confirmed 

that the deterioration in the concrete was due to the presence of thaumasite. 

Since 1999, degradation due to thaumasite formation has been recognised as a 

new form of sulfate attack, which has the potential to impact adversely on a 

wide range of elements and a variety of building materials (Crammond, 2002). 

Two classifications to thaumasite have been given by the Thaumasite Expert 

Group (1999). The first classification is the ‘Thaumasite form of Sulfate Attack’ 

(TSA) where considerable attack of the concrete/mortar matrix has taken place 

as a consequence of transformation of cement hydrates to thaumasite, in which 

the attack is characteristic by a white soft, mushy mass. The second term is 

‘Thaumasite Formation’ (TF) in which thaumasite formed precipitates in pre-

existing voids and cracks without causing damage to the concrete/mortar. 

The primary risk factors for thaumasite formation as pointed by Crammond 

(2003) are: 

• A presence of sulfates and/or sulfides in the ground; 

• Availability of carbonate; 

• Availability of silicate; 
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• Availability of mobile groundwater, and   

• Low temperatures (Lower than 5°C). 

Crammond (2002) points out that TSA is the main damaging mechanism 

relating to the incidence of thaumasite in new constructions. It was detected in 

high-quality, buried concretes made with limestone aggregate and subjected to 

sulfate-bearing groundwater. It is suggested by Crammond (2003) that, TSA is 

not a new incident and took place previously, but was not detected probably for 

the following reasons: 

• Failure to identify thaumasite in standard sulfate resistance examinations 

• Developed methodical technique    

• Buried concrete elements are not usually examined  

• Post-construction improvement of sulfate levels in the ground; and 

• Use of limestone filler in OPC. 

2.5 Mechanism of thaumasite formation 

Bensted (2003a) suggests two possible formation routes for thaumasite, the 

direct route and the woodfordite route. In the Direct route, thaumasite forms by 

the general reaction of sulfate with carbonate, silicate and excess water in the 

presence of calcium ions. In the woodfordite route, thaumasite and ettringite 

form as last products from a solid solution, which takes place during the 

reaction between ettringite, silicate and carbonate in the presence of surplus 

water.  It is suggested that the rate of thaumasite formation increases as it is 

formed. Bensted (2003) notes that both reactions are slow. 

Crammond (2003) suggests that thaumasite may also form through a solution 

mechanism in which sulfate attack occurs in the conventional way until the 

alumina is consumed and ettringite stops to precipitate. This leaves sulfate ions 

in solution that then will lead to seek for a new sulfate-bearing host, such as 

the portlandite. If carbonate/bicarbonate ions are available, the end product 

formed will be thaumasite rather than gypsum. 

An investigation by Köhler et al. (2006) showed that thaumasite is not formed 

through the woodfordite route and the direct route is very slow. They suggest 

that thaumasite forms through a heterogeneous nucleation of thaumasite on 

the ettringite surface when the breakdown of C-S-H occurs in the cement 

matrix.  
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2.6 Factors affecting thaumasite formation 

A number of factors are implemented in thaumasite formation, including 

silicate, sulfate, carbonate, pH, temperature and wet environment. 

2.6.1 Source of silicate 

The required silicate for thaumasite originates from the silicate containing 

phases in the cement paste, mainly the C-S-H phases which are the main 

binding phase in cement.  Residue unhydrated clinker grains such as alite 

(C3S) and belite (C2S) are a secondary silicate bearing phase (Crammond, 2003) 

2.6.2 Source of sulfate 

The external available sulfate-ions in the soil can be present in a variety of 

different sulfur minerals either already as sulfates or as sulfides which are able 

to become converted to sulfate-ions. Sulfates arise mainly in soils as calcium 

sulfates. However, other secondary elements such as magnesium sulfate and 

sodium sulfate may also be present (Crammond, 2003) 

The presence of sulfides, which are usually found in usual ground as the 

mineral pyrite and other less frequent minerals such as marcasite and 

pyrrhotite, can contribute to the source of sulfate ions (Longworth, 2003). 

Sulfide-bearing clays contain in their un-weathered state a negligible amount of 

sulfate-bearing phases but considerable amounts of pyrite. Such clay had been 

categorised as harmless regarding sulfate attack in the past (Crammond, 2003). 

Hobbs and Taylor (2000) pointed out that oxidation of pyrite to sulfate can 

increase significantly the sulfate level in the ground and this reaction has been 

described by Longworth (2003) and many others. 

Other sources of sulfate-bearing material in ground or in contact with the 

structure are in failure materials such as cinder and ash waste products, 

furnace bottom ash, spoil from mining of oil shale and coal which are found 

around old industrial areas as well as seabed (Crammond, 2003), (Crammond, 

2002).  Aggregates, cements and cement products as well as sulfate-based 

binders such as plaster and cement renders are potential source of sulfate that 

provide a basis partly for the formation of thaumasite in above ground 

constructions (Sims and Huntley, 2004).   

2.6.3 Source of carbonate 

Carbonate is a necessary component for thaumasite to form. The main sources 

of carbonate ions are likely to be internal, from limestone aggregates or cement 



Chapter 2: Literature review 

 

10 
 

filler (Crammond, 2003), (Irassar, 2009a), where part of the cement is replaced 

by finely ground limestone. 

Limestone fillers are considered, by BRE (2005), to be the most susceptible 

binder for the formation of TSA with attack extent increasing with the amount 

of limestone added. This has been confirmed by Hartshorn et al. (1999), 

Justnes (2003), Torres et al. (2004a) and Skaropoulou et al. (2012). Current UK 

and European Portland cements (CEM I), BS EN 197-1:2011 are allowed to 

include up to 5% limestone filler as a small addition. According to Torres et al. 

(2006), this can result in even higher vulnerability to thaumasite.  

It was thought that only fine dust carbonate particles would contributed to TSA 

but investigations on affected concretes in the laboratory and field have shown 

that good quality carbonate aggregates are also able to initiate deterioration 

(Crammond, 2003), however, smaller limestone particles are the more reactive 

according to Crammond (2003).  

A secondary internal source is the carbonated layer in concrete, which is 

formed on the concrete surface by reaction with atmospheric CO2. It was 

concluded by Sims and Huntley (2004), Collett et al.(2004), Gaze and 

Crammond (2000),   Eden (2003),  Thomas et al. (2003), and Torres et al. (2006) 

in which concrete were made without carbonate containing materials, that 

atmospheric carbon dioxide and the consequent carbonation of 

concrete/mortar would have been the only available carbonate source 

contributing to TSA.   

2.6.4 Source of water 

Water is required for sulfate attack, providing transfer means for the sulfate-

ions and supporting the chemical interactions. The supply of water in regarding 

TSA in buried concretes is mobile groundwater, which arises naturally. The 

quantity of water is often subject to increase during the construction phase 

when the overburden is removed and the ground undergoes swelling. The 

formation of a sump during foundation works, or later damage in drainage are 

also possible causes for this increase (Crammond, 2003), (Loudon, 2003). 

2.6.5 Effect of temperature 

It has been reported in many investigations including Bensted(1999), 

Crammond et al. (2003), Pipilikaki et al. (2008), Skaropoulou et al. 

(Skaropoulou et al., 2012) that the most favourable temperature for thaumasite 

to form is 5°C. However, evidence of thaumasite formation was reported in 
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warm climates by Diamond (2003), Martinez-Ramirez et al. (2011), Irassar et al. 

(2005), Lee et al. (2008), Blanco-Varela et al.(2006), and  Hartshorn et al. 

(2002). Hartshorn et al. (2002) also reported the formation of thaumasite in 

35% limestone filler specimens stored in magnesium sulfate solution at 20°C 

after a year, but the degree of attack was less than at 5°C.  

According to Crammond (2003) thaumasite is possibly formed at lower 

temperatures for four reasons:  

• The decrease in thaumasite solubility; 

• The increase in stability of Si(OH)6; 

• The increase in CO2 solubility; and 

• The increase in portlandite solubility. 

2.6.6 The role of pH 

Since the stability of thaumasite phase is pH sensitive, many investigations 

have been conducted to examine the role of pH on thaumasite formation. 

Hobbs and Taylor (2000) suggested that thaumasite was formed in the M5 

bridge structure as a result of sulfuric acid attack, during the oxidation of 

pyrite.  Hill et al. (2003) found that when concretes containing carbonate 

aggregates were cured in high levels of sulfuric acid, the degradation product 

was gypsum rather than thaumasite.  Zhou et al. (2006) reported that the 

presence of acid does not encourage thaumasite formation, since the observed 

deterioration of the concrete detected in acid conditions was due to gypsum 

precipitation rather than thaumasite. 

Jallad et al. (2003) reported that the change in the pH value of the surrounding 

environment influenced the stability of thaumasite. At pH lower than 11, 

thaumasite reacted with the ions present in the solutions, and some 

transformation to calcium phosphate, calcium silicate and calcium carbonate 

was observed. At pH levels higher than 11, small quantities of calcium 

carbonate were observed, while thaumasite showed stability in conditions 

where pH equal to 13 was present. 

Both Hartshorn et al.(1999) and Tsivilis et al.(2003)  concluded that in the 

reaction to form thaumasite, portlandite is a reactant, which also implies that 

the conditions in which thaumasite will form must be alkaline. Crammond 

(2003) suggested that when the pH decreases towards 7, hydroxyl ions are 

consumed in the immediate vicinity of the thaumasite forming, leading to the 

dissolution of more portlandite which will initially maintain a high pH. Once 

this portlandite is consumed, the pH can only remain high as a result of more 
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hydroxyl ions diffusing in from other parts of the cement paste. As these 

hydroxyl ions are also consumed, the pH eventually decreases, and the 

thaumasite becomes less stable, and dissociates, forming calcium carbonate 

and releasing calcium and sulfate ions.   

The type of sulfate solution plays a role in modifying pH which results in 

changing the main phases of sulfate attack.  Magnesium sulfate solution may 

be buffered at pH close to 7 due to the low solubility of brucite as Lawrence 

(1992) states. The replenishment of test solution can control this change of pH 

as reported by Higgins and Crammond (2003), Justnes (2003) ,Bellmann and 

Stark (2007), Lee et al. (2008), Barker and Hobbs (1999), Hartshorn et 

al.(1999), Torres et al. (2006), Vuk et al. (2002). Increasing the volume of 

solution to volume of the specimen ratio is another approach which can be 

used to avoid changing in pH in solution as reported in a review paper by 

Irassar (2009).  

Gaze and Crammond (2000) pointed out that the thaumasite would only form 

when pH value is higher than 10.5 and as soon as it is formed; it is very stable 

even al low pH.  

The following explanation was suggested by Collett et al.(2004) with regard to 

the role of pH on thaumasite formation; at pH below 10.55 and due to 

equilibrium of carbonate ions at the pH value around 10.55 when the 

temperature drop to 5°C, more bicarbonates ions would convert into carbonic 

acid, which would result in fewer free carbonate ions being available for 

thaumasite formation. 

2.7 Degradation mode of thaumasite  

The conditions leading to TSA in concrete are described in Section 2.6. The 

destruction and consumption of cement matrix, namely C-S-H phase during 

formation of thaumasite results in formation of white mushy materials on 

surface and within the body of concrete or mortar.  

Based on field observation, Hobbs and Taylor (2000) suggest that the formation 

of ettringite and thaumasite are expansive reactions and control of this 

expansion by the undamaged part of concrete results in fine cracks parallel to 

the face of concrete component. Ramezanianpour and Hooton (2013) reported 

that the expansion of mortar bars started as a result of ettringite and gypsum 
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formation and expanded greatly and finally collapsed due to the formation of 

thaumasite. 

In investigation carried out by Slater et al. (2003) for Highways Agency on the 

trunk roads in Gloucestershire, UK, the typical attack pattern to the buried 

vertical concrete elements was softening accompanied by greatest degree of 

expansion at the face of the concrete. 

According to a research carried out by Smallwood et al. (2003) there was 

differences in the nature of deterioration of the concrete exposed to sulfate 

solution at 5°C and that exposed to sulfatic clay at 5°C. In the solution, 

materials resulting from chemical reactions constantly spalls from the outer 

part of specimens which keep them constantly exposed to the aggressive 

solution.   

Based on a long-term investigation into chemical degradation vulnerability of 

different types of concrete that were exposed to pyrite rich clay reported by 

Abubaker et al. (2014), the deterioration due to thaumasite attack 

characterised by formation of white mushy material, spalling, loss of edge, 

exposure of aggregate and loss of cementitious matrix. 

 

2.8 Identifications of thaumasite 

The identification of TSA and its reaction products can be unmistakably 

achieved using a combination of techniques, i.e. X-ray diffraction (XRD) and 

scanning electron microscopy (SEM) (Skaropoulou, 2006, Pouya, 2007). A 

combination of XRD and SEM with energy dispersive X-ray analysis (EDX) can 

also be used for the identification of TSA reaction products (Freyburg and 

Berninger, 2003). Infrared spectroscopy (IR) is also a powerful technique which 

can be used besides SEM/EDX and XRD to identify the solid solutions between 

thaumasite and ettringite (Barnett et al., 2002), (Pipilikaki et al., 2009). 

Before the development of these techniques, it was very difficult to distinguish 

the main reaction products of the classical and the thaumasite form of sulfate 

attack and misidentification was common (Crammond, 2003).  Ettringite and 

thaumasite have very close similarities in their atomic structure and differ 

principally in the aluminium and silicon content (See Table 2.1), but they are 

very difficult to be distinguished using XRD.  
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Table 2.1. Chemical composition of ettringite and thaumasite (Eden, 2003). 

 Ettringite Thaumasite 

SiO2 0.00 19.4 

Al2O3 15.0 00.0 

CaO 49.5 54.5 

SO3 35.5 26.1 

  

2.9 The role of chloride in sulfate attack 

2.9.1 Conventional form of sulfate attack 

Many studies have shown that the presence of combined chloride and sulfate 

result in mitigating sulfate attack.  BEN-YAIR (1967 ) observed less expansion 

in Portland cement immersed in combined sulfate and chloride compared to 

specimens placed in pure sulfate solution of the same concentration. The 

positive impact of chloride ions in delaying the expansion due to sulfate attack 

was also observed by Al-Amoudi et al. (1995). 

Al-Amoudi et al.(1995) investigated the effect of cation type related to the 

sulfate on concrete damage due to sulfate attack and the effect of chloride on 

sulfate attack in OPC and blended cements. They found that the presence of 

chloride tends to mitigate sodium sulfate attack. They attributed this to the 

solubility enhancement of gypsum and ettringite in presence of chloride. In 

magnesium sulfate environments, the chloride also mitigates the gypsum 

attack, but the chloride ions did not greatly affect the attack of magnesium 

sulfate on C-S-H.   

Santhanam et al. (2006) investigated the performance of mortar samples made 

with OPC cement that were exposed to simulated seawater and groundwater 

solutions at about 21°C. The chloride ion concentration of seawater used was 

19.09 g/l compared to only 1.04 g/l for groundwater. Similar concentration of 

sulfate ions (2233 mg/l as SO3) was used. The restriction of expansive ettringite 

formation and the protection provided by brucite formation against the further 

ingress of the solution into the mortar seems to be main reasons for mitigation 

effect of chloride in case of seawater, according to the author.   

Dehwah (2007) did not note deterioration in OPC and blended cement concrete 

samples placed in sodium chloride and sodium sulfate solutions even in 4% 

SO4
-2.  However, in magnesium sulfate solutions, surface deterioration was 

noted in OPC and PFA concrete when the sulfate level was 2.5% and more. 
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GGBS concrete showed deterioration when the magnesium sulfate level was as 

low as 1%.   

A study conducted by Zuquan et al. (2007) also indicated that the availability of 

chloride in solution with sulfate delayed sulfate attack in concretes and the 

author attributed this behaviour to the following: (I) lower diffusion rate of 

sulfate in combined solution compared with sulfate only solution.  (II) Higher 

rate of chloride diffusion than sulfate. Factor would result in rapid reaction 

between chloride ions and C3A to form Friedel's salt (3CaO.Al2O3.CaCl2.10H2O), 

which will lessen the formation of gypsum and ettringite. (III) The increase in 

sulfate product solubility. 

2.9.2 Thaumasite form of sulfate attack 

Several field cases have shown that chloride was present when concrete 

suffered attack by thaumasite. In investigation carried out by Slater et al. 

(2003) for Highways Agency on the trunk roads in Gloucestershire, UK in which 

concrete structures suffered severe deterioration. Rust staining and chloride 

contamination related to steel corrosion were also present in thaumasite 

affected structures several metres under ground level.  

According to an examination by Eden (2003) on many cores taken from bridge 

foundations throughout the UK, high chloride concentrations were also found 

in the cement paste of TSA degraded concrete.   

An experimental study carried out at Sheffield University by Torres (2004) 

aimed to investigate the role of chloride ions on thaumasite formation.  Three 

levels of chloride concentration (0 % Cl- , 0.5% Cl-, 1.0% Cl- and 2% Cl-) as 

sodium chloride were added to 0.6% SO4
-2 as magnesium sulfate. 20 mm 

mortar cubes made with ordinary Portland cement (OPC) and different 

replacement of limestone fillers (0%, 5% and 15%) and water to binder ratio of 

0.5 were placed in water, pure sulfate solution, combined sulfate and chloride 

solutions up to 12 months.  It was concluded that the role of chloride ions on 

sulfate attack depends on the temperature and found that it mitigated the 

conventional sulfate attack at 20°C but it increased the TSA at 5°C. It was also 

found that the effect of chloride concentration on the performance of the mortar 

in magnesium sulfate depended on temperature and cement composition.  No 

clear trend was observed to the damage of the samples with 15% limestone 

filler and with regard to chloride concentration at 5°C. Samples immersed in 

sulfate and 2.0% Cl- showed similar damage to those immersed in pure sulfate. 

The least damage occurred to samples immersed in sulfate and 0.5% Cl-, 
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whereas the greatest damage was observed in samples immersed in sulfate and 

1.0%Cl-.  

Contradictory to the above observations, recent published study by Sotiriadis et 

al. (2012) and Sotiriadis et al. (2013) in which a 2.1% chloride concentration 

and 100 mm limestone concrete cubes were used; TSA was mitigated and high 

potential of thaumasite solubility in presence of chloride is suggested by the 

authors for this mitigation effect of composite solution. 

2.10 Using slag and fly ash to avoid or mitigate 

thaumasite sulfate attack   

It is reported by Bellmann and Stark (2007) that thaumasite formation can be 

prevented, if an adequate amount of pozzolanic admixtures is used as much as 

to guarantee the consumption of portlandite and the Ca/Si ratio in the 

produced C-S-H phases is decreased. They suggested that cement structure 

with low Ca/Si ratio should be produced in the binder to avoid the thaumasite 

formation at low temperatures. However, in magnesium sulfate solution the 

produced C-S-H possessed low Ca/Si ratio of PFA was reported to be subjected 

to attack by magnesium and sulfate ions. One reason for this may be the low 

pH nature of pore solution in PFA mortars. 

2.10.1 Pulverized Fly Ash (PFA) 

Part of a study by Tsivilis et al. (2003) aimed to examine the role of fly ash on 

formation of thaumasite in limestone cement mortar. Mortar specimens were 

prepared with limestone cement containing 15 percent and 30 percent fly ash 

replacement of cement. The specimens were stored in a 1.8% magnesium 

sulfate solution and cured at 5°C and 25°C. It was concluded that the inclusion 

of fly ash retarded the thaumasite formation.  

A result of further 3-year investigation by Skaropoulou et al. (2013) and  (2009) 

indicated that the performance of limestone cement concrete against sulfate 

attack was improved when fly ash used as cement replacement. 

Concrete incorporating fly ash was studied as a part of long term durability 

work conducted by Hill et al. (2003). Test results indicated that fly ash concrete 

was attacked by ettringite, rather than thaumasite sulfate attack.  Concretes 

incorporating 30% or more fly ash did not show degradation when subjected to 
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tidal marine environment, and no evidence of thaumasite formation was seen 

by  Thomas et al. (2003). 

However,  Mulenga et al. (2003) reported that either mitigation or promotion of 

thaumasite formation when using high replacement level of fly ash will depend 

on the type of cement used. Deterioration of specimens as a result of 

thaumasite formation was observed in mixtures of sulfate resisting Portland 

cement (SRPC) with 50% fly ash addition. Thaumasite was also detected in 

mixtures prepared with SRPC without fly ash but without deterioration. Blends 

of Portland limestone cement with 40% fly ash showed restricted formation of 

thaumasite while blending by 50% resulted in no thaumasite formation at all. It 

was concluded that thaumasite can also be formed in mixtures including fly 

ash. 

2.10.2  Ground granulated blast furnace slag (GGBS) 

Higgins and Crammond (2003) investigated the role of slag replacement (70% 

GGBS/30PC) in concrete placed in sulfate solution at 5°C and 20°C. The 

results indicated that slag replacement produced high resistance to TSA and 

their general sulfate resistance was significantly improved in mix where 

carbonate was present. 

Hill et al. (2003) found that slag concrete was more resistant to TSA and did not 

show evidence of thaumasite formation.  It was also reported by Tsivilis et al. 

(2003) that the inclusion of slag resulted in enhanced the sulfate attack 

resistance of limestone cement. They reported that the slow reaction of 

pozzolans seem to be unable to offer efficient resistance to sulfate attack if the 

concrete is exposed to sulfates prior to the begging action of pozzolanic 

reaction. A part of five years study by Skaropoulou et al. (2009),  also show that 

the inclusion of slag significantly enhanced the resistance of the limestone 

cements against sulfate attack. 

Brown et al. (2003) investigated samples stored in magnesium sulfate solution 

in a laboratory for 4 years. They concluded that the replacement of OPC cement 

by slag results in sulfate resistance similar to that of concrete made with 

sulfate resistance-Type V cement. They noted that the reduction in permeability 

is more significant in enhancing sulfate resistance than is compositional 

control. 
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According to a long term laboratory investigation by Abubaker et al. (2014) on 

the performance concrete made with different binders immersed in clay, 25% 

replacement with fly ash concrete was found to be susceptible to TSA.  

Based on thermodynamic model, Juel et al. (2003) found that as a result of 

their high aluminate contents, slag and fly ash cements should provide greater 

resistance to thaumasite form of sulfate attack. However, a recent laboratory 

investigation by Sotiriadis et al. (2013) reported that the presence of chloride in 

sulfate solutions accelerated thaumasite sulfate attack of slag and fly ash 

concretes due to thaumasite formation. 30% PFA and 50% GGBS replacement 

of limestone cement were used in this study.  

2.11 Chloride transport into concrete subjected to 

sulfate attack 

Zuquan et al. (2007) investigated the damage process caused by the presence of 

combined sulfate and chloride solutions on plain and fly ash (20% and 30%) 

concretes subjected to  conventional form of sulfate attack, using 3.5% sodium 

chloride and 5% sodium sulfate solutions. The experimental results showed 

that the presence of sulfate in combined solution enhanced the resistance to 

chloride penetration into concretes at early stage of exposure, but the reverse 

trend was found at a later period. According to the authors, this may be related 

to the development of ettringite formation.  It was also reported that fly ash 

increased the penetration of chloride into concretes at the early stage but 

reduced it at later age. The authors explain this by the lower hydration rate of 

fly ash at early ages.  

The benefit of using fly ash in reducing the chloride ingress was also confirmed 

by Thomas and Matthews (2004) who conducted a study on concrete subjected 

to a marine environment for 10 years old. They concluded that chloride 

concentration was reduced significantly in the fly ash concretes compared with 

cement only, and they found increasing fly ash content resulted in lower 

chloride levels within the concrete.  

Santhanam et al. (2006) states that the presence of a thick layer of brucite, 

which results from the reaction between magnesium sulfate and chloride ions, 

on the surface of mortar samples immersed in seawater solution could have 

resulted in improving the resistance against the further ingress of aggressive 

solution into mortar.  
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Based on field investigation, reported by Slater et al. (2003) thaumasite affected 

areas offered little resistance to chloride penetration as a result of open cracks 

which provided access in the damaged areas.  

2.12 Chloride binding capacity of cement 

Chloride binding is the term used when chlorides react chemically with 

tricalcium aluminate (C3A) or its hydrates to form calcium chloro-aluminate, 

C3A·CaCl2·10H2O, known as Friedel's salt, and can also physically bind due to 

its adsorption on the surface of C–S–H.   

Chloride binding is important for evaluating the service life of concrete; 

according to Yuan et al. (2009) for the following reasons: (1) lessening of the 

free chlorides levels in the surrounding area of the steel rebar; (2) removal of 

chloride from the diffusion flux, so delaying the access of chloride to reach the 

steel surface, (3) The consequent reduction in structure pores and the transport 

of chloride ion as Friedel’s salt is formed.    

2.13 Factors affecting chloride binding 

2.13.1 Chloride concentration 

Higher levels of chloride binding when using higher chloride concentration have 

been reported. Arya et al. (1990) examined the effect of different chloride 

concentrations on binding capacity of OPC cement paste with water to cement 

ratio of 0.5. They found that the bound chloride increased with increasing 

chloride level in solution. Loser et al. (2010) also found that chloride binding for 

CEMI, estimated by the difference between total and free chloride, depends on 

the chloride level in the pores. 

2.13.2 Supplementary cementitious materials 

Dhir et al. (1997) investigated the impact of PFA replacement at 0, 17, 33, 50 

and 67% on chloride binding of cement paste for a W/B ratio of 0.55. The 

results indicated that the capacity of chloride binding increases with the 

increase in PFA replacement up to 50%, and then decreases at 67%. The 

authors suggested the following reasons for this behaviour:  the reduction in 

the calcium hydroxide content of 50% PFA levels did not reached a level that 

affects the stability of Friedel’s salt and its ferrite analogue, but beyond this 

level it does. Enhancement in binding of chloride due to the replacement of fly 

ash was also reported by Arya et al.(1990), Arya and Xu (1995).  
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According to Dhir and Jones (1999), higher binding capacity in PFA cement 

may be primarily attributed to the high alumina content in fly ash, which leads 

to the formation of more Friedel’s salt.  However, reductions of chloride binding 

when 30% of cement replaced with fly ash was reported by Nagataki (1993).  

Loser et al.(2010) explain a variable influence of PFA on binding capacity of 

cement due to the variation of fly ashes used. 

It have been also shown that replacement of cement with slag increases the 

chloride binding in external chlorides as reported by Nagataki (1993), Arya et 

al. (1990) and Dhir et al.(1997)) as well as internal chlorides as reported by Luo 

et al. (2003) , Arya et al. (1990) and Arya and Xu (1995). The high alumina 

content and the consequent Friedel’s salt formation is considered to be the 

main reason according to Dhir et al. (1996) and (1997). The high level of 

chloride binding of slag may be also attributed to the increase in adsorbed 

chlorides, according to Arya et al. (1990). Xu (1997) studied chloride binding in 

cement paste with admixed chloride, and found that the higher binding 

capacity of slag-cement paste moved out when the sulfate ion in slag-cement 

paste is increased to the same level as cement paste. He attributed the higher 

binding capacity of slag-cement to the dilution effects of sulfate ions. 

However, it is also found by Mohammed and Hamada (2003) that increased 

slag replacement led to a reduction in the chloride-binding ability. Loser et al. 

(2010) points out that whether the addition of slag or fly ash will increase 

chloride binding or not depends to large extent on the reactivity of mineral 

admixture used. 

2.13.3 Temperature 

In a study carried out by Arya et al. (1990) it was found that chloride binding 

increases as curing temperature increases when chlorides were introduced 

internally into the mix made with OPC and water to cement ratio of 0.5. The 

authors attributed this to the rapid reaction rate as temperature increases  

2.14 Chloride binding capacity of cement subjected to 

sulfate attack  

The chloride binding capacity of cement under conventional sulfate attack has 

been investigated by several researchers.  In general, the presence of sulfate 

found to reduce chloride binding capacity as reported by Xu (1997), Ehtesham 

Hussain et al.(1994) and Xu et al.(2013). According to Ehtesham Hussain et al. 
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(1994) this is probably due to the faster interaction of sulfate than chloride with 

C3A when they both present. It was also reported by Xu et al. (2013) that 

during the sulfate attack, Friedel’s salt can be  transformed into ettringite, 

which contributes to the release of bound chloride. 

With regard to thaumasite, a study carried out by Torres (2004) on mortar 

samples made with Ordinary Portland Cement containing 15% limestone filler 

and placed in combined chloride and sulfate solution at 5°C for 12 months 

found that Friedel’s salt was absent in TSA affected materials which was 

attributed by the author to the instability of Friedel’s salt in presence of 

thaumasite. It could not be established whether the chloride binding capacity of 

the cement matrix was reduced since Friedel’s salt was absent within the 

corroded material where thaumasite was abundant, as explained by the author. 

2.15 Chloride induced corrosion of steel rebars in 

concrete/mortar subjected to sulfate attack 

2.15.1 Background 

Chloride induced corrosion is one of the main causes for the reduction in the 

surface life of concrete structures. Besides internal sources, chloride can 

penetrate into concrete from different external sources such as seawater, soil, 

ground water and de-icer salts.   

Due to high alkalinity of pore solution of concrete, thin protective layer forms 

on the steel rebar surface and consequently the steel is protected from 

corrosion. The stability of this layer is affected by the change in the pH of the 

surrounding environment. The formation of CH during the hydration of cement 

results in environment with high alkalinity (Mehta, 2006  ).  However, according 

to Mehta (2006), the protective layer may be destroyed as a result of the 

decrease in the alkalinity of the pore solution due to carbonation, or by the 

ingress of chlorides to the interface region. 

In the presence of chloride ions, depending on the Cl−/OH− ratio, it is reported 

that the protective layer is damaged even at high pH. According to Mehta (2006  

), it is reported that with a Cl−/OH− ratio higher than 0.6, rebar will not be 

protected against corrosion probably due to either increase in permeability or 

instability of the protective film under these circumstances. 
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2.15.2 Laboratory studies   

Several studies have been conducted into the effect on the corrosion rate of 

steel rebar of sulfate ions alone and concomitant with chloride.  Al-Tayyib et al. 

(1988) studied the effect of sulfate ions on rebar corrosion using simulated 

concrete pore solution. In this study, carbon steel specimens were placed in 

saturated CH solutions containing different levels of sulfate and the corrosion 

rate was evaluated by liner polarization resistance (LPR) and A.C. impedance. 

The results indicated that in the presence of sulfate and at 22°C, active 

corrosion was caused by change in the nature of iron oxide film.  

In further investigations, Al-Tayyib and S Khan (1991) compared the corrosive 

resistance of steel in actual concrete subjected to sulfate ions with that with 

chloride ions. Reinforced concrete specimens introduced with equal amounts of 

sulfate and chloride ions were stored in potable water for up to 808 days and 

then in 3% SO4
-2 and 3% Cl- solutions for a period of 60 days. Half-cell potential 

and corrosion rate measurements were made during the entire exposure period 

of 868 days. It was concluded that the sulfate ions were corrosive to the rebar 

but in less activity than chloride. 

A study carried out by Cheng et al. (1990) using AC impedance technique show 

that the role of chloride and sulfate ions on the electrochemical properties and 

corrosion activity of steel bar in concrete made with either ASTM-Type I or 

sulfate resisting-Type V cements were different. They observed that sulfate ions 

could significantly change the mechanistic parameters of surface layer, and the 

sulfate-induced corrosion might be more aggressive. 

AI-Amondi (1993) studied the impact of sulfate ions, combined effect of 

chlorides and sulfates, on rebar in cement paste for 500 days. The steel 

corrosion was assessed by corrosion potentials and linear polarization 

resistance techniques. Results indicated that the corrosion was negligible in 

specimens stored in sulfate only solution. The corrosion activity was higher in 

specimens stored in composite solutions compared to those stored in chloride 

only solution. The author explained the increased corrosion in combined 

chloride and sulfate solution by the reaction of sulfate and chloride ions with 

the metal surface as compared to corrosion of rebar in the presence of chloride 

ions only. 

Further investigation conducted by Al-Amoudi (1995) examined the corrosion 

activity of steel embedded in concrete in a mixed magnesium-sodium sulfate 
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solution. Type I, Type II and Type V, PFA, silica fume (SF) and GGBS and two 

water-to-binder ratios (0.5 and 0.35) were used in the study. Corrosion 

behaviour was monitored using corrosion potentials and polarization 

resistance. The results of the investigation indicated that plain cement 

concretes made with Type I cement could not protect the rebar from corrosion. 

PFA and GGBS concretes showed higher extents of corrosion. SF concrete 

showed the greatest corrosion resistance. Within the initial 500 days of 

monitoring, all samples showed passivity. According to the author, this may be 

due to the low diffusivity of sulfate ions to the steel surface. 

Jarrah et al. (1995) investigated the electrochemical activities of rebar in OPC 

and blended cement concrete placed in only sulfate, only chloride and 

composite sulfate and chloride solutions. Their results indicated that the 

combined sulfate and chloride did not considerably affect the corrosion 

initiation time but the corrosion rate was considerably increased by the amount 

of sulfate ions related to the chloride ions. 

Saleem et al. (1996) conducted a study to estimate the role of combined 

chloride and sulfate solution on the electrical resistivity of concrete. Reduction 

in electrical resistivity of concrete was observed as a result of sulfate 

contamination which increases the corrosion rate in carbonated concrete. 

Sakr, (2005) reported that the existence of chloride and sulfate solutions in the 

surrounding environment generally decreased the negative effects of sulfate 

ions on steel rebar. According to Sakr (2005) the high solubility of the 

component part of cement and of hydro-sulpho-aluminate due to the presence 

of chloride ions in sulfate solution was the main reason. 

2.15.3 Field investigations related to TSA  

It has been suggested by Slater et al.(2003) that thaumasite affected areas 

offered little resistance to chloride diffusion, due to the damage infected in the 

matrix that results in the opening cracks and flows.  Also, it has been reported 

that the concentration of chloride was reduced at the surface and increased at 

the reinforcement-matrix interface (Eden, 2003). Based on the observations 

made during inspection and analysis of the M5 structures operated by the 

Highways Agency, Wimpenny and Slater (2003) proposed what may have 

happened during sulfate attack. They looked at four stages of reaction. The first 

stage was when the surface of the concrete was just starting to react with 

chemicals in the surrounding ground, progressing to stage four when all the 
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concrete, up to the depth of the reinforcement bars, had been affected, to some 

degree, by the ingress and subsequent reaction of the concrete with the 

external chemical species. They pointed out that the increased risk of chloride 

induced corrosion is probably related to concentration at the depth of the 

reinforcement as a consequence of TSA development. 

2.16 Concluding remarks 

Based on the literature review, it is concluded that there has been limited data 

available dealing with the role of contamination effect of chloride and sulfate 

ions on the performance of concrete and the majority of these data have been 

obtained under conventional form of sulfate attack. Although, extensive work 

has been found dealing with the performance of concrete/mortar made with 

supplementary materials and the effect of temperature and the role of pH on 

thaumasite formation, very limited data are available dealing with the role of 

chloride ions on thaumasite form of sulfate attack and different points view are 

present. Moreover, no published laboratory work has been found dealing with 

the chloride binding capacity and chloride induced corrosion under thaumasite 

form of sulfate attack, In addition, there is no enough data available dealing 

with the role of chloride ions on performance of fly ash and slag cements in 

environment prone to thaumasite formation. Therefore, laboratory work is 

required to cover all of these aspects of chloride ions present in medium where 

concrete is prone to thaumasite form of sulfate attack.  
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3. Experimental programme 

 

 

3.1 Introduction  

This chapter details the materials, equipment and the experimental work 

carried out to study the performance against thaumasite form of sulfate attack 

of mortar mixes made with different cements exposed to sulfate only and 

composite sulfate and chloride solutions.  The cements used were CEMI, CEMI 

blended with 10%LF (CEMI-LF), CEMI blended with 50%PFA (CEMI-PFA) and 

CEMI blended with 70%GGBS (CEMI-GGBS).  Details of the materials, mortar 

mixtures, stored temperature, test solutions and test methods, as summarised 

in Figure 3.1, are described below.  

 

Figure 3.1.Schematic view of experimental programme. 



Chapter 3: Experimental programme 
 

26 
 

3.2 Materials 

3.2.1 Cement (CEMI 52.5N) 

Commercial CEMI 52.5N cement manufactured by Paragon Industries, 

conforming to the requirements of BS EN 197-1:2011, the chemical and 

mineralogical compositions of which are given in Table 3.1, was used.  The 

standard production cement was delivered with approximately 3.5% inter-

ground limestone, as determined by Thermogravimetric analysis (TGA).   

3.2.2 Limestone Filler (LF) 

The limestone filler used was obtained from the Hanson Group.  It conformed to 

the requirements of BS EN 197-1:2011, where the chemical composition is 

given in Table 3.1.  

3.2.3 Ground Granulated Blast Furnace Slag (GGBS) 

The ground granulated blast-furnace slag (GGBS) was obtained from Hanson 

Heidelberg Cement Group, UK. It complied with BS EN 15167-1:2006 and the 

mineralogical composition determined using XRF is shown in Table 3.1. 

3.2.4 Pulverized Fly Ash (PFA) 

Pulverised fly ash (PFA) conforming to BS EN 450-1:2005+A1:2007 obtained 

from Ash Solutions Ltd was used. Its chemical composition is shown in Table 

3.1. 

3.2.5 Aggregate 

Siliceous medium graded natural concrete sand (passing 5mm sieve) 

conforming to BS EN 12620:2002-Al 2008 was used. The chemical composition 

and physical properties of this sand are given in Table 3.2.   

3.2.6 Water 

Standard portable tap water available at the laboratory was used to make all 

mortar mixes. 
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Table 3.1.Chemical and mineralogical composition of cement, LF, PFA and GGBS 

(XRF analyses performed at Leicester University).   

Oxide/Phases 
(Mass, %) 

Material 

CEM I (52.5N) Limestone PFA GGBS 

SiO2 19.85 0.63 50.83 35.58 

CaO 64.61 55.2 2.56 40.66 

Al2O3 4.67 0.28 24.95 12.82 

Fe2O3 2.74 0.15 9.78 0.45 

Na2O 0.23 < 0.003 0.92 0.32 

K2O 0.45 0.054 3.54 0.63 

MgO 1.09 0.47 1.72 7.52 

SO3 3.015 < 0.002 0.44 2.38  

LOI 2.52 42.89   

C3S 68.28    

C2S 5.4    

C3A 7.74    

C4AF 8.34    

 

 

Table 3.2 Chemical composition and physical properties of concrete sand, as 

provided by the supplier. 

 

 

 

3.3 Mixing and casting of mortars 

A series of mortar cubes (50mm), prisms (40x40x160 mm), cylinders 

(100Øx50H), cylinders (50Øx100H) were cast according to mixes shown in 

Table 3.3, using a fixed water to binder ratio of 0.6, binder to sand ratio of 

1:2.5. This high w/b ratio was selected to accelerate chemical diffusion and 

Component (%) Property Value 

Silica (SiO2) 94.8 Aggregate Abrasion Value  4.1 

Aluminium (Al2O3) 2.9 Aggregate Crushing Value  12 

Calcium (CaO) 

<  

0.1 Aggregate Impact Value 
19 

Calcium carbonate (CaCO3) 0.1 Magnesium sulfate Soundness 88 

Iron (Fe2O3) 
0.8 

Relative density (Oven dry) 

O.D 
2.82 

Magnesium (MgO) 0.2 Relative density    S.S.D 2.63 

Magnesium carbonate (MgCO3) 
0.4 

Water Absorption by weight 

(%) 
0.5 

Manganese  (MnO) 

<  

0.1 

  

Potassium  (K2O) 0.9   

Sodium (Na2O) 0.1   
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interaction, thus allowing identification of any potential reactions within a 

shorter time frame.  

The limestone, PFA and GGBS replacements were dry mixed with CEMI cement 

prior to the inclusion of the aggregate and which was further dry mixed prior to 

the addition of the water. The moulds were filled in two layers and where 

applicable, 10mm diameter mild steel reinforcement bars were installed.  The 

samples were compacted on a vibrating table to remove any entrapped air after 

each layer was poured. The moulds were then covered with plastic sheets for 

the first 24 hours at room temperature (~20°C), before they were transferred 

into curing water for 6 days at 20°C, followed by 21 days in air at room 

temperature (~20°C). The specimens were then marked and placed in individual 

containers, with specific solutions, until required for testing. The 50 mm cube 

specimens were weighed before being placed in solutions. 

The steel bars were degreased and coated with bitumen at the mortar-air 

interface and at their ends to prevent crevice corrosion. Table 3.4 shows the 

chemical composition of steel rebars used in this study. 

In order to monitor the pH and chemical changes to the test solutions, a range 

of 20mm mortar cubes were also mixed and cast separately using similar 

materials and procedures to those mentioned above. These were kept in small 

plastic containers at 5 and 20°C. 

 

Table 3.3. Mortar mixtures. 

Mix  Binder 
Per weight of binder 

CEMI LF    PFA GGBS Water Sand 

CEMI CEMI 1 0       0        0 0.6 2.50 

CEMI-LF CEMI/10%LF 0.9 0.1    0        0 0.6 2.50 

CEMI-PFA CEMI/50%PFA 0.5 0      0.5      0 0.6 2.50 

CEMI-GGBS CEMI/70%GGBS 0.3 0       0       0.7 0.6 2.50 

 

 

Table 3.4. Chemical compositions of steel rebar (wt. %), as provided by the 

supplier. 

C Mn Si  P S  Cr  Ni  Cu Mo  Al  Sn  V  Ti  N Ca 
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3.4 Test solutions 

As shown in Table 3.5, five solutions were made by dissolving sodium chloride 

(NaCl) and Epsom salt (MgSO4.7H2O) in deionised water as follows: sodium 

chloride only (2.0% Cl-), magnesium sulfate only (0.6% SO4
2-) and three 

combinations of chloride and sulfate (i) magnesium sulfate plus 0.5% chloride 

(ii) magnesium sulfate plus 1.0% chloride (iii) magnesium sulfate plus 2.0% 

chloride. The concentration of sulfate was equivalent to Design Sulfate Class 

DS4 according to BRE Special Digest 1:2005. The solutions were replenished 

every three months up to 12 months and then left until the end of the 

experiment. Since, all containers were covered, the solution did not evaporate. 

Table 3.5 Compositions of test solutions. 

Test  solutions 

  Salts in test solutions 

 [g/l]  [%] 

SO4
2- Mg2+ Cl- SO4

2- Mg2+ Cl- 

Water 0 0 0 0 0 0 

C20 0 0 20 0 0 2.0 

Sulfate only  (S) 6.0 1.52 0 0.6 0.152 0 

SC5  6.0 1.52 5 0.6 0.152 0.5 
SC10  6.0 1.52 10 0.6 0.152 1.0 

SC20  6.0 1.52 20 0.6 0.152 2.0 

 
 

3.5 Curing regime 

3.5.1 Initial curing  

After de-moulding, the specimens were placed in water at 20°C for 6 days and 

then they were air-cured for 21 days at laboratory temperature (~20°C). This 

procedure is considered to be close to the circumstances in field constructions 

(Kakali et al., 2003). Figure 3.2. Shows the specimens undergoing air curing 

before transferred to solutions. 

3.5.2 Long term exposure to sulfate/chloride solutions  

Mortar cubes, prisms and cylinders were placed in different types of solutions 

in individual containers at two different temperatures, namely 5±0.5 and at 20 

±1°C (room temperature) till the testing dates.  Figure 3.3 and Figure 3.4 show 

the view of the containers in the controlled temperature tanks which were 

maintained at 5°C by circulating chilled water around the containers. Other 

containers were stored in the laboratory at about 20°C. 
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Figure 3.2. Mortar specimens in air curing (~20°C-room temperature). 

 

 

 

Figure 3.3 Containers in 5°C temperature tanks. 
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Figure 3.4 Containers at 20°C in laboratory room.  

 

3.6 Test method 

The performance of the samples was monitored using the following 

techniques/procedures:  

3.6.1 Visual observations assessment  

A visual assessment of the 50 mm cubes was made on a monthly basis by 

removing the cubes from the solutions and photographing them. Particular 

note was made of any changes in colour, spalling and precipitation of any 

materials.  

3.6.2 Mass measurement 

Mortar cubes of 50mm were taken regularly from their containers and the 

surface was dried and any loose parts were removed by hand before weighing.  

3.6.3 Length change 

40x40x160mm mortar prisms were used to monitor the length change. The 

specimens were taken from their containers at the end of experimental work 

and changes in length were measured according to BS 812-123:1999. 
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3.6.4  Sample preparation for X-ray diffraction (XRD) and infrared 

spectroscopy (IRS)  

Samples were taken from surfaces of sound and attacked mortar cubes for XRD 

and IRS examination. They were air dried at room temperature to avoid any 

change in crystallization of deteriorated materials. The samples were then 

crushed using a porcelain mortar and pestle to pass a 150 micron sieve in 

order to remove quartz from the fine aggregate and reduce the size of quartz 

peak on the XRD trace. The passed materials were further ground to pass a 63 

micron sieve. In order to avoid contamination from other samples, the sieve, the 

mortar and pestle were washed with acetone between each sample preparation. 

The powders were kept in air tight containers at about 5°C before tests. For 

corrosion specimens, selected mortar-steel interface samples were taken and 

treated as mentioned above for XRD analysis.  

3.6.5 X-ray diffraction (XRD) 

The XRD pattern can show obvious movement in peak position and this should 

be adjusted by direction on other peaks, such as quartz and calcite, or using an 

internal standard, before the final evaluation (Freyburg and Berninger, 2003). 

Because the primary peaks at about 9°2θ are almost identical for thaumasite 

and ettringite, therefore the differences of secondary peaks must be used as 

distinction angles (Stark, 2003). The peak position of the general reaction 

products according to published literature by Stark (2003), Hill et al.(2003), 

Nobst and Stark (2003) are listed below: 

Calcite: 29.4°2 θ   Portlandite:    18.0; 34.0°2θ 

Aragonite: 26.3°2θ Quartz:   26.5°2 θ 

Gypsum: 11.6°2θ Brucite: 18.5; 38.0°2θ 

Ettringite:  9.0; 15.8; 18.9°2θ Thaumasite:   9.2; 16.0; 19.4°2θ 

 

XRD analyses were performed using a Philips PW 1830 X-ray generator using a 

copper electrode operating at 40 kV and 30 mA with a scanning speed of 

2θ/min with step size 0.02 over a 2θ range of 5–55. The database of the Joint 

committee for Powder Diffraction Files (JCPDF) built into WinXPOW software 

was used to identify the different phases in the patterns.    

3.6.6 Infrared spectroscopy (IRS)  

As mentioned in Chapter 2, due to the similarity in crystal structure of 

ettringite and thaumasite, it is not easy to differentiate between these minerals 
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using XRD. However, octahedral coordinated silica in thaumasite can be 

distinguished from ettringite using this technique (Barnett et al., 2002). 

Thaumasite has a distinctive vibration waveband of 500 cm-1, in contrast to 

octahedral coordination of aluminate in ettringite, which is characterised by a 

waveband at 855cm-1. 

The infrared spectroscopy analysis was performed alongside XRD, using the 

same powder samples. The samples for IR spectroscopy were made using 2 mg 

of sample to 200 mg of potassium bromide (KBr) which were ground together 

until a fine homogeneous material was achieved. A 12 mm disc of the sample 

was then prepared and tested. The IR spectrum was determined using a Perkin-

Elmer FT-IR 2000 spectrometer. The equipment was set to scan the samples in 

Mid infrared (MIR) range of 4800-370 cm-1. Before scanning the sample, the 

background was first scanned in order to eliminate atmospheric effects.  

3.6.7 Scanning electron microscopy (SEM) and energy dispersive X-ray 

analysis (EDX) 

Changes in microstructure of mortars provide evidence about the nature of 

reactions and deterioration mechanisms and any changes in composition 

reflect the chemical interactions between the aggressive ions in solution with 

cement paste. The detection of materials using scanning electron microscopy 

(SEM) is becoming more popular in material science. Deterioration products, 

such as thaumasite have distinctive appearance, and can also be identified 

without problems using the included energy dispersive x-ray analysis (EDX) 

((Pipilikaki et al., 2009), (Torres et al., 2003), (Brown et al., 2004)).  

Mortar samples exposed to test solutions for 450 and 630 days were resin 

saturated under vacuum, cut and polished to be analyzed by means of 

backscattered electron imaging and energy dispersive X-ray analyzer. After 450 

days, samples (1cm cube) were cut from the corner of prisms using a dry 

diamond cutting wheel to avoid any possible change to the structure of 

deteriorated surface and to prevent washing out any soluble compounds such 

as calcite and gypsum. Then the samples were dried in a desiccator, 

impregnated with epoxy resin and manually ground using in four grades of 

silicon carbide paper (400, 800, 1000 and 1200) and the surface polished using 

diamond discs of between 0.25µ and 6µ. The surface of sections was cleaned 

using isopropanol between each stage. Carbon coating was used to prevent the 

build up of surface electrical charges during scanning. After 630 days, similar 
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procedure was followed but on fracture samples collected from the surface of 

cubes. The specimens were analysed using an Inspect F scanning electron 

microscope (SEM) with an accelerating voltage of 20 Kv. Chemical analysis 

using an energy dispersive X-ray (EDX) system and the appropriate link 

software was employed to identify the phases present. 

  

In order to identify the nature of the deteriorated products after 360 days of 

immersion, fractured samples from the surfaces of prisms were taken and dried 

in a desicator and then fixed to a carbon tape on a metal disc, exposed for a few 

minutes to vacuum to remove any moisture and dust, and immediately placed 

in the Electron Microscope (Carl Zeiss Merlin Field Emission SEM).  

3.6.8 Chemical analysis of test solutions 

Chromatography technique was used for this. Dionex DX-120 system was used 

to separate the ions; in a system comprising an AS40 automated sampler, 

analytical pump and conductivity detector. The system was interfaced with 

Dionex Chromeleon software (Version 6.11) which used to collect the data and 

control the auto-sampler. 

The ions that could be quantitatively determined include anions like fluoride, 

acetate, chloride, nitrite, bromide, nitrate, phosphate and sulphate; as well as 

cations like sodium, ammonium, potassium, magnesium and calcium. 

Special attention was paid to the concentration of sulfate, calcium, chloride and 

magnesium ions. Due to very high concentration of elements in the solutions, 

the samples were first diluted using dilute machine MICROLAB 500. Some 

duplicate samples were run to examine the accuracy of the test. 

3.6.9 pH measurement of test solutions 

Chemical reactions depend on electric charges of various ions present in the 

system and these can be partly monitored by means of pH measurement.   

The pH of solutions in the individual containers was measured regularly after 

the immersion of specimens using digital pH meter with an electrode (Type 

HI8424 HANNA).  This was calibrated before taking the reading and it was also 

washed by deionised water between each measurement.   

3.6.10 Calcite and gypsum solubility 

Because, calcite and gypsum have significant roles in thaumasite formation, 

the effect of chloride level on the solubility of calcite and gypsum was also 
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investigated. Calcite and gypsum were dissolved in prepared solutions in 

concentrations similar to those used in this study. The solutions were manually 

vibrated on daily basis. After a week, the solutions were filtered and samples 

were analysed using the ion chromatography technique. The amount of calcium 

ion in the solutions was used as indication for both calcite and gypsum 

solubility, since both are the only source of calcium. 

3.6.11 Open porosity  

The open porosity accessible by water was measured using the simple method 

of water displacement. Porosity measurement by saturated technique is not as 

accurate as that measured by other technique such as mercury intrusion 

porosimetry (MIP) techniques, but its simplicity enables it to be used to indicate 

and compare open porosity values in the samples.  A 50 mm cube was vacuum 

saturated until constant weight was achieved and weighed in water and air. 

They were then dried in an oven at 105°C for 24 hours and weighed again, the 

porosity was then calculated.  

3.6.12 Oxygen permeability  

The oxygen permeability was measured using the CEMBUREAU-type gas 

permeameter (Verdier et al., 2002). At the end of experiment work and after 

performing corrosion measurement (900 days of exposure), 25 mm diameter 

and 10mm high cores were taken from the central sound part of the corrosion 

specimens and they were then dried in an oven at 105°C until constant weight 

obtained. They then tested for air permeability. The obtained results compared 

with initial values (after initial 28 days immersion in water), in which 

cylindrical specimens with 100mm diameter and 50mm height were used. The 

modified Darcy’s equation was used to calculate intrinsic oxygen permeability 

(Verdier et al., 2002):  

                                          (3.1)             

Where, K = intrinsic permeability (m2)  

µ= viscosity of gas (for oxygen at 20°C = 2.02x10-5 N.s/m2)  

Q = flow rate (m3/s)  

Pout = outlet pressure (=1 bar at standard temperature and pressure)  

Pin = inlet pressure (=2 bars used)  

A =cross sectional area of specimen (m2)  

L= length of specimens (m) 
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A negative aspect of this test is the need for oven-drying the samples. Due to 

the sensitivity of pressure induced flow to micro-cracking that oven-drying at 

105°C, could cause, the results may not be values of the absolute intrinsic 

permeability.  Its use, however, is reasonable for comparative study. 

 

3.6.13 Chloride content and diffusion 

 Chloride content: 

Cylindrical mortar specimens (Ø100xH50mm) made with different binders were 

used to evaluate chloride concentration profiles and diffusion. All surfaces 

except top face of the specimens were sealed with bitumen coating so that 

immersion in test solutions would result in the chloride penetration occurring 

only in one-direction (See Figure 3.5). The test solutions respectively contained 

2.0% chloride only and combined sulfate and 2.0% chloride. Water-soluble 

chloride contents were determined as they are assumed to be accountable for 

the corrosion process. The specimens were taken at the required ages from the 

axis so that 1 cm from edge was left at four different depth intervals; 0-5mm, 5-

10mm, 10-15mm and 15-20mm using equipment shown in Figure 3.6.  

Powdered samples were obtained by slow-speed grinding using steel wheels. 

The powders so obtained were sieved through 150 micron in order to reduce the 

amount of aggregate, then kept in oven at 50°C for 24 hours, and then stored 

in sealed plastic bags until tested. Water extraction was carried out on collected 

powders as described by Zuquan et al., (2007) for free (water soluble) chloride 

content measurement. A 3 g of the powder was weighed to the nearest ± 0.001 

g and dispersed in 100 ml of distilled water at room temperature, and stirred 

for approximately 1 minute.  After this it was left to stand for 24 hours. The 

extract was filtered using a fast grade Whitman filter paper and made up to 100 

ml with distilled water. Orion 4 Star pH/ISE bench top meter and combined 

chloride ion selective electrode was used in order to measure chloride 

concentration. Before the measurement, the electrode was calibrated using 

standard solutions.  

 

 Chloride diffusion: 

There are two different ways of determining diffusion: 1) the intrinsic diffusion 

coefficient which describes the movement of substance where the flux is 

calculated per unit cross sectional area of the pores and the concentration in 
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the free liquid and 2) the apparent diffusion coefficient which describes the 

movement of an ion where the flux is calculated per unit area of the porous 

material and the average concentration in the material (Lizarazo and Claisse, 

2009). The apparent diffusion coefficient is calculated in this thesis because it 

is usually the one used to predict the service life of reinforced concrete 

structures. 

The chloride binding capacity factor is defined as the ratio of total chloride ions 

per unit volume of solid to the free chloride ions per unit volume of liquid, as 

Lizarazo and Claisse (2009) explain.  

In this work, the specimens were partly dry (21 days in air) before exposure to 

test solutions. This led to chloride penetration being partly due to absorption 

when the specimens were placed in the solution. The consequence of this would 

be rapid penetration of chloride as absorption is a relatively rapid transport 

mechanism. It should be mentioned that the effect of absorption on chloride 

diffusion was ignored. 

The chloride concentration profiles for one dimensional migration into a semi-

infinite medium would be expected to follow an error function solution to Fick’s 

second law as in Equation 3.2 (Zuquan et al., 2007).  The experimental results 

were exponentially fitted to this to calculate chloride diffusion coefficient.  

                          
 

    
                        

where; D = apparent diffusion coefficient (m2/s); t = time of exposure (s); C(x,t) 

= chloride concentration at depth x after time t (%/ww); Cs = surface chloride 

concentration (%/ww); and erf is the error function.  

Surface chloride concentration (Cs) values were estimated from the best fit 

(exponential fit) to experimental data and then D values were calculated by 

iteration to generate the best fit by least squares. 

 

Figure 3.5. Schematic diagram for diffusion. 
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Figure 3.6 Grinding equipment used to collect powders. 

 

3.6.14 Carbonation depth by phenolphthalein 

Corrosion specimens were used to investigate the carbonation depth of 

specimens made with different binders at the end of experimental programme. 

Chang and Chen,(2006) explain that the depth of carbonated layer in a 

concrete/mortar component can be evaluated by several different methods.  In 

this study it was assessed by spraying a solution of phenolphthalein on freshly 

split mortars as described by Al-Amoudi et al.(1991). The indicator becomes 

pink in contact with alkaline concrete (pH > 9) and colourless at lower pH 

values.  At the end of experimental work, specimens stored in SC20 solution at 

5°C were split in half and the carbonation depths were evaluated visually on 

the half specimens. 

3.6.15 Corrosion evaluation 

Evaluation of corrosion was made by means of linear polarisation resistance 

(LPR) and visual assessment of steel surface at the end of experimental work on 

reinforced mortar specimens made with different binders stored in composite 

sulfate and 0.5% chloride (SC5) and composite sulfate and 2.0% chloride(SC20) 

solutions at 5 and 20°C.  

Steel 
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Plastic mould collect 
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controller Depth 
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After 720 days of exposure, reinforced mortar specimens transferred from 

covered boxes to open large containers with similar solutions at room 

temperature (~20°C). Because the solutions were subject to evaporation, the 

levels in the containers were regularly checked and compensated. The first LPR 

measurements were then taken. 

After 720 days, the corrosion was subjected to acceleration by applying a 

positive 100 mV DC voltage to the steel bar (anode) , where the  negative 

terminal consisted of stainless steel mesh (cathode) immersed in the solution 

(electrolyte). This acceleration continued for 180 days and the LPR 

measurements were taken twice: after 720 days and after a further 180 days of 

acceleration (720 plus 180 days). After finishing all the LPR measurements, the 

specimens were broken open to facilitate visual examination of the state of steel 

surfaces. 

To ensure a stable system, the 900 days LPR measurements were taken after 3 

days of disconnecting the applied voltage (+100mV). Some samples were 

repetitively tested in order to examine the accuracy of the test. No significant 

variations were found between the repeated measurements.    

A. Linear polarisation technique  

Among several methods that exist to measure corrosion rates in concrete, the 

most frequently used is linear polarization resistance (LPR), a non-destructive 

technique that provides quantitative information regarding corrosion rate 

(Andrade and Alonso, 2001). It can be used in both field and laboratory 

investigations. However, (Claisse, 1988) pointed out that care should be taken 

when considering evaluation of corrosion using this technique and correction 

against uncompensated resistance errors should be made. The fundamental 

theory of the linear polarization technique to determine the corrosion rate of 

each steel bar embedded in mortar is to apply a slowly changing voltage close to 

the corrosion potential and to record polarization current. The polarization 

resistance (Rp) of the reinforcing steel is defined as the slope of a potential-

current density plot at the corrosion potential (Claisse, 1988) as: 

 

     
  

  
                                                       

where;  

∆V is applied potential and;  
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∆I is current response. 

The corrosion current density then can be calculated from the Stern-Geary 

equation (Broomfield, 1997): 

 

          
 

  
                                                                         

 

where; B is a constant that can be determined from Tafel slopes; βa and βb for 

the anodic and cathodic reactions, respectively.  

The values of B are taken from the empirical values of 26 and 52 mV 

(Broomfield, 1997), for active and passive steel, respectively. In this study, B 

equal to 26 was used.  

In this study, the electrochemical measurements was made using the 

equipment shown in Figure 3.7, which is a VersaSTAT 3F potentiostat model, 

manufactured by Princeton Applied Research. A carbon rod placed outside the 

specimen was used as a counter electrode, while a saturated calomel electrode 

used as the reference electrode. The polarization resistance (Rp) determinations 

were performed at a scan rate of 0.167 mV/s over a range of ± 10 mV. A 

computer program, VersaStudio model, developed by EG&G Princeton Applied 

Research, was used for applying the potential scan, analysing the data, and 

calculating the polarization resistance (Rp), corrosion current (Icorr) 

Parameters. Figure 3.8 is a schematic diagram for these measurements. LPR 

measurements were repeated on selective specimens in order to examine the 

accuracy of the test. Since, the purpose of the tests in this study was to provide 

comparative data rather than absolute values of the parameters, no corrections 

were made to the results, which may result in overestimated values. 

 

 

Figure 3.7. Corrosion equipment. 
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Figure 3.8. Set up of corrosion measurements by LPR. 

 

B. Visual assessment of steel surface area  

At the end of the experimental work and after all LPR measurements were 

carried out, the corrosion specimens were broken open and the steel rebars 

were removed, cleaned by acetone and photographed. The extent of corrosion 

was then visually examined. 
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4. Performance of cement mortars subjected to 

sulfate and chloride exposure at 5 and 20°C 

 

 

 

4.1 Introduction  

This chapter presents and discusses the results of the evaluation of 

performance of mortar specimens made with four types of binders exposed to 

combined action of sulfate (Class DS4 as magnesium sulfate) and chloride (0, 

0.5,1 and 2%Cl-) solutions at 5 and 20°C. The performance of CEMI, CEMI 

blended with 10% limestone filler (CEMI-LF), CEMI blended with 50% 

pulverised fly ash (CEMI-PFA) and CEMI blended with 70% ground granulated 

Blast-furnace (CEMI-GGBS) mortars stored in sulfate solution only were 

compared to those immersed in composite sulfate and chloride solutions in 

terms of the severity of thaumasite attack after 6, 9, 12, 15, 18 and 21 months 

exposure at 5, and 20°C.  

The evaluation of the performance of the specimens was based on visual 

observations, mass change, expansion, chemical analysis of test solutions as 

well as X-ray diffraction, infra-red spectroscopy and scanning electron 

microscopy of deterioration products and powdered sample. In order to 

investigate the effect of chloride on leaching of cement mortar, the pH and the 

chemistry of the test solutions of different binders were monitored at early 

exposure periods (during the 180 days of immersion) using 20mm mortar cubes 

kept in small plastic containers at 5 and 20°C. The effect of chloride level on 

the solubility of calcite and gypsum was also investigated. Details about mix 

proportions, mortar casting, curing, preparation of test solutions and 

experimental details were given in Chapter 3. 

 

4.2 Visual observation assessment 

The assessment by visual inspections was mainly made on 50mm cubes, 

however, since some 20mm cubes, particularly those made with GGBS and 

PFA, showed attack at 90 and 180 days of immersion they were also 

investigated. It should be mentioned that the main purpose for using 20mm 
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mortar cubes was to monitor the pH and chemical changes in the test solutions 

during the early exposure period. The assessment was made in terms of surface 

features e.g. cracking, change in colour, swelling and spalling, using a 

qualitative scale for damage, given in Table 4.1. 

Table 4.1. Summary of visual assessment for 50mm mortar cubes. 

Sample Code 
(Binder-Solution) 

Temp. 

(°C) 
Exposure period in solution (days) 

90 180 360 630 

CEMI- S  

5 

0 2 3 4 

CEMI-SC5 0 2 4 5 

CEMI-SC10 0 2 2 2 

CEMI-SC20 0 0 0 0 

CEMI-LF-S 1 2 3 5 

CEMI-LF-SC5 1 3 5 6 

CEMI-LF-SC10 1 2 2 3 

CEMI-LF-SC20 0 0 0 0 

CEMI- S  

20 

0 0 0 0 

CEMI-SC5 0 0 0 0 

CEMI-SC10 0 0 0 0 

CEMI-SC20 0 0 0 0 

CEMI-LF-S 0 0 1 1 

CEMI-LF-SC5 0 0 1 2 

CEMI-LF-SC10 0 0 0 1 

CEMI-LF-SC20 0 0 0 0 

0= No visible damage, 1= minor cracking to corners and edges, 2= moderate 

damage at corners and edges, 3= severe attack at corners, 4= cracking and 

spalling, 5= swelling of surfaces, and 6=extensive cracking and swelling. 

 

 

4.2.1 Visual assessment after 90 days 

50mm cubes: 

This section presents the performance of the 50mm mortar cubes exposed to 

sulfate only and combined action of sulfate and chloride (0.5, 1 and 2% Cl-). 

The first signs of damage were detected within 100 days of immersion in sulfate 

only, SC5 and SC10 solutions at the corners and edges of the CEMI and CEMI-

LF specimens at 5°C, and it was more evident in the CEMI-LF specimens. This 

damage characterised by formation of microcracks and deposition of white 

materials on corners and edges of mortar cubes. 

20mm cubes: 

As for 50mm cubes, and as Figure 4.1 illustrates, the 20 mm mortar cubes 

made with CEMI-LF immersed in SC5 solutions at 5°C showed the earliest 

signs of damage in contrast to the other mortars and solutions. This 

degradation which occurred after 74 days of exposure consisted of softening, 

microcracks and the deposition of white materials on corners and edges of the 
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cubes. The presence of 1% chloride in SC10 solution (Figure 4.2) caused a 

delay to 90 days of immersion in the instigation of damage.  

 

Figure 4.1. 20mm mortar cubes of CEMI-LF mortar stored for 74 days in SC5 at 

5°C. 
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Figure 4.2. 20mm cubes of CEMI and CEMI-LF stored for 90 days at 5°C. 

 

4.2.2 Visual assessment after 180 days 

50mm cubes: 

The 50mm specimens stored for 180 days in test solutions at 5°C are shown in 

Figure 4.3. It can be noted that CEMI and CEMI-LF mortar samples exposed to 

S, SC5 and SC10 solutions at 5°C suffered further attack as time progressed.  

Differences due to the chloride concentration and carbonate content were 

evident. The highest extent of damage was observed for CEMI-LF specimens 

exposed to SC5 solution at 5°C. At 20°C, all specimens remained intact with no 

visual damage, which was also the case for CEMI-PFA and CEMI-GGBS mortar 

specimens stored at both temperatures. 
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20mm cubes: 

Figure 4.4 shows the appearance of the 20mm of CEMI-LF mortar specimens 

placed for 180 days in different solutions at 5°C. It can be seen that the results 

follow similar trends, but extent of attack was more advanced compared with 

the 50mm cubes. This was probably because of the higher interaction rate in 

smaller sample size. However, after replenishment of the solution at 90 days, 

mortars in SC20 solution showed clear evidence of attack.  

The attack in 20mm mortar cubes containing PFA and GGBS showed different 

results, depending on temperature and test solution. At 5°C, one of CEMI-PFA 

(Figure 4.5) mortar samples stored in sulfate only (S) solutions suffered attack 

by cracking, whereas, combined sulfate and chlorides (0.5 and 2.0%) solutions 

showed no marks of damage at this stage of exposure. In contrast in mortars 

made with CEMI-GGBS shown in Figure 4.6, damage consisting of cracking 

along edges occurred for SC5 solution. All mortars stored at 20°C remained 

intact at this stage of immersion. 
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Test Solution 
180 days 

CEMI CEMI-LF 

Only sulfate  

(0.6%SO4) 

  

Sulfate plus 0.5% 

chloride 

  

Sulfate plus 1.0% 

chloride 

  

Sulfate plus 2.0% 

chloride 

  

Figure 4.3. CEMI and CEMI-LF mortar stored for 180 days at 5°C. 
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Figure 4.4. General view of 20mm of CEMI-LF specimens stored for 180 days at 

5°C. 

 

 

 

 

Figure 4.5. 20 mm CEMI-PFA mortar cubes stored for 180 days in S at 5°C. 
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Figure 4.6.20mm CEMI-GGBS mortar cubes stored for 180 days in SC5 at 5°C. 

 

4.2.3 Visual assessment after 360 days 

Figure 4.7 shows the appearance of the specimens stored for 360 days. It can 

be noted that the effect of chloride on the sulfate attack became clearer as time 

passed. It was evidently chloride level and temperature dependent, as seen by 

both form and intensity of the damage at the different solutions at 5°C, where 

CEMI-LF samples showed the highest extent of attack. The intensity varied with 

the concentration of chlorides in solutions. The worst case occurred in 

specimens immersed in the combined solution of sulfate and 0.5% chloride, 

followed by those stored in sulfate only and then combined sulfate and 1.0% 

chloride solutions. No signs of deterioration of specimens placed in combined 

sulfate and 2.0% chloride (SC20) solution occurred at this age.  

At 20°C and as time progressed, CEMI-LF specimens stored in sulfate (S) only 

and SC5 solutions showed small microcracks on mortar edges, whereas no 

damage was detected in any specimens stored in SC10 and SC20. No signs of 

attack at this stage were observed for mortar samples made with CEMI-PFA 

and CEMI-GGBS. 
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Test 

Solution 

360 days 

 CEMI CEMI-LF 

 20°C  5°C  20°C  5°C 

Only 

sulfate  

(0.6%SO4) 

    

Sulfate 

plus 0.5% 
chloride 

    

Sulfate 
plus 1.0% 

chloride 

    

Sulfate 

plus 2.0% 

chloride 

    

Figure 4.7. CEMI and CEMI-LF mortar specimens stored for 360 days at 5 and 

20°C. 

 

 

4.2.4 Visual assessment after 630 days 

Figure 4.8 shows the CEMI and CEMI-LF specimens after 630 days storage at 5 

and 20°C. As time progressed, the effect of chloride and temperature on the 

character and extent of sulfate attack became clearer. It was obvious that it 

was chloride and temperature dependent, as seen by both form and intensity of 

the damage at different solutions, more markedly at 5°C. CEMI-LF samples 

showed the highest degree of attack, where the intensity varied with the 

concentration of chlorides in solutions. The worst case occurred in specimens 

placed in SC5, followed by those stored in sulfate only (S) and (SC10) solutions; 

whereas, no signs of damage at this age was observed for specimens immersed 

in SC20. 

At 20°C and as time progressed, the damage of specimens placed in SC5 

became more evident, but with slower rate compared with those at 5°C. Mortar 
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specimens made with CEMI and immersed in the same solutions showed less 

attack, as characterized by small microcracks on the edges. No damage was 

observed in any CEMI and CEMI-LF specimens stored in SC20 at 20°C, or in 

CEMI-PFA and CEMI-GGBS samples, as Figure 4.9 illustrates. 

Figure 4.10 shows the general view of cubes and prisms after 630 days of 

immersion. It should be mention that prisms were used for length change 

measurement shown later in Section 4.4. It can be noted that cubes and prisms 

exhibited similar damage trend, in which severe attack, characterised by 

forming extensive mushy materials, were observed on surface layers of 

specimens in SC5 solution. As shown in Table 4.1, the sequence of the attack 

severity in CEMI and CEM-LF mortar stored in different solutions at 5°C was as 

follows, with relatively higher degradation degree in CEMI-LF mortars: 

Combined sulfate and 0.5% chloride (SC5) > Sulfate only (S) > Combined 

sulfate and 1.0% chloride (SC10) > Combined sulfate and 2.0% chloride (SC20).  

 

Test 
Solution 

630 days 

 CEMI CEMI-LF 

At 20°C At 5°C At 20°C At 5°C 

Sulfate  

(0.6%SO4) 

    

Sulfate 
plus 0.5% 

chloride 

    

Sulfate 

plus 1.0% 

chloride 

    

Sulfate 

plus 2.0% 

chloride 

    

Figure 4.8.CEMI and CEM-LF mortar specimens stored for 630 days in solutions at 

5 and 20°C. 
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Test 

Solution 

630 days 

 CEMI-PFA CEMI-GGBS 

 20°C  5°C  20°C  5°C 

Sulfate  
(0.6%SO4) 

    

Sulfate 

plus 0.5% 

chloride 

    

Sulfate 

plus 2.0% 
chloride 

    

Figure 4.9. PFA and GGBS mortar specimens stored for 630 days in solutions at 5 

and 20°C. 
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Test Solution CEMI CEMI-LF 

Sulfate  

(0.6%SO4) 

 

Sulfate plus 0.5% 
chloride 

 

Sulfate plus 1.0% 

chloride 

 

Sulfate plus 2.0% 

chloride 

 

Figure 4.10. General view of CEMI and CEMI-LF mortar in containers stored for 

630 days at 5°C. 

 

 

4.3 Mass change up to 630 days 

In this section the changes in mass of the 50mm mortar cubes are presented. 

Figure 4.11 and 4.12 respectively show the mass changes for CEMI and CEMI-

LF mortar cubes stored for 630 days in test solutions at 5°C. All specimens 

initially showed weight gain in all test solutions. However, whereas this 

increase in weight continued for specimens stored in composite sulfate and 

2.0% chloride (SC20) solution for the whole exposure period, specimens stored 

in combined sulfate and 0.5% chloride (SC5) solution showed first loss in mass 
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after 160 days, while those stored in sulfate only (S) solution began to lose 

mass after 270 days. Mass loss was greater for the CEMI-LF mortars than for 

CEMI mortars, at 360 days in composite sulfate and 0.5% chloride solution 

(SC5) amounting to 4.5 % and 1.4 % of the 28-day mass, respectively, and this 

increased to 9.4 % and 3.7 %, respectively after 630 days of immersion.  

At 20°C and as shown in Figure 4.13 and 4.14, CEMI and CEMI-LF mortar 

cubes showed continuous gain in mass for the whole exposure period. 

Similarly, CEMI-GGBS and CEMI-PFA samples (Figure 4.15) stored in all test 

solutions at 5 and 20°C showed continuous gain in mass during the 

experiment. Visually, those specimens remained intact and no signs of damage 

were observed during the experiment.  

  

 
 

Figure 4.11. Mass changes for CEMI mortar cubes stored 630 days at 5°C. 
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Figure 4.12. Mass changes for CEMI-LF mortar cubes stored 630 days at 5°C. 

 

 
 

Figure 4.13. Mass changes for CEMI mortar cubes stored for 630 days at 20°C. 
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Figure 4.14. Mass changes for CEMI-LF mortar cubes stored 630 days at 20°C. 

 

 

Figure 4.15.Mass changes for CEMI-PFA mortar cubes stored 630 days at 5°C. 
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Figure 4.16. Mass changes for CEMI-PFA mortar cubes stored 630 days at 20°C. 

 

 

 

Figure 4.17. Mass changes for CEMI-GGBS mortar cubes stored 630 days at 5°C. 
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Figure 4.18. Mass changes for CEMI-GGBS mortar cubes stored 630 days at 20°C. 

 

4.4 Length change up to 630 days 

This section presents the measurements of length changes during 630 days of 

immersion in sulfate only and composite solutions at 5 and 20°C of CEMI and 

CEMI-LF mortar. These measurements were carried out on prisms that had 

been cast and cured in the same manner as was used for the cubes, shown in 

Figure 4.10. 

All CEMI and CEMI-LF mortar prisms stored for 630 days in test solutions 

showed slight increase (Expansion) in length, as given in Figure 4.19. It can be 

also seen that there was no significant variations in the expansion values 

among the samples. Although, SC10 samples at 5°C showed lower extent of 

surface attack compared with sulfate only and SC5 samples, they showed the 

highest expansion values of 0.081% and 0.095% for CEMI and CEMI-LF, 

respectively. Samples in SC5 solutions which showed the highest extent of 

surface degradation showed no remarkable change in length when compared 

with other samples.  

The intensive sulfate attack (Figure 4.10) on surfaces of limestone cement 

mortars does not appear to have significantly affected the mortar expansion 

under investigated conditions.  
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Figure 4.19.Length change variations for CEMI and CEMI-LF mortars stored for 

630 days at 5 and 20°C. 

  

    

4.5 Mineralogy of deteriorated materials 

In order to clarify the findings reported in the previous sections, the mineralogy 

of deteriorated products was identified by means of X-ray diffraction (XRD) and 

infrared spectroscopy (IRS). In cases in which mortar specimens remained 

almost intact, the sound surfaces were also investigated.    

4.5.1 X-ray diffraction (XRD) 

Degraded materials collected from surfaces of mortar cubes which suffered 

visual attack after storage in different solutions at 5 and 20°C for 630 days 

were analyzed by means of X-ray diffraction (XRD) in order to identify their 

mineralogy. In cases in which cubes remained almost intact, the surface was 

scratched and the dry ground powder was analyzed. The results are presented 

and discussed in the following sections. Since CEMI-LF mortar at 5°C showed 

the highest extent of attack, the XRD of these degraded surface materials are 

also compared to samples of sound core material. Degraded surface samples 

from 20mm CEM-PFA and CEMI-GGBS mortar cubes which showed visible 

attack after 180 days of immersion, were also analyzed by XRD.  

 XRD analysis of CEMI and CEMI-LF mortars stored at 5 and 20°C 

Figure 4.20 and 4.21 show the XRD patterns of samples collected from the 

degraded surfaces of CEMI and CEMI-LF mortar specimens stored for 630 days 
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in S, SC5 and SC10 solutions compared with that taken from intact surface of 

SC20 at 5°C. It can be clearly seen that the presence and intensity of some 

phases depended strongly on test solutions chemistry. The peaks used for the 

identification of the various phases are shown in Table 4.2. 

Table 4.2. Peaks for various phases. 

Phase Peak on XRD trace (CuKradiation used) - 2angles 
(degrees) 

Calcite (C) 23.05, 29.4, 35.97, 39.40, 43.16, 47.5, 56.56, 57.40 and 58.08 

Thaumasite (T) 9.2, 16.0, 18.12, 19.4, 23.4, 26.01, 28, 32.83, 35.73 and 41.66 

Gypsum (G) 11.6, 20.72, 29.1, 31.1, 32.0, 33.3 and 34.5 
Brucite (B) 18.52 and 37.98 

Aragonite (A) 26.21, 27.22, 33.13, 36.18, 37.26, 37.88 and 45.85 

Portlandite (P) 18.01, 34.17, 28.72 and 47.25 

Friedel’s salt (F) 11.2 and 31.18 

Ettringite (E) 9.09, 15.8, 17.83, 18.9, 22.94, 25.61, 27.5, 32.26, 35.023, 
40.87, and 41.97 

Quartz (Q) 26.62, 20.85, 42.5, 47.12 and 50.1 

 

Calcite was detected in both mixes and as expected, strong peaks were detected 

in CEMI-LF mortar samples. The presence of relatively strong peaks for 

thaumasite, gypsum, brucite, aragonite and the absence of portlandite were 

detected in both mixes samples and for sulfate only (S) and composite sulfate 

and 0.5% chloride (SC5) solutions. Instead, marked peaks for Friedel’s salt; 

portlandite, ettringite and traces of thaumasite were detected in samples in 

composite sulfate and 2.0% chloride (SC20) solution.  

The increase in the dissolution of portlandite at lower temperature would result 

in a rapid reaction with sulfate ions to form gypsum and brucite, both of which 

were identified in the degradation products of mortar immersed in sulfate only 

and combined sulfate and 0.5% chloride solutions.  The very low solubility of 

brucite would cause a reduction in pH so that ultimately C-S-H would become 

more vulnerable to sulfate attack. This process appeared to occur more rapidly 

in mortar specimens immersed in combined sulfate and 0.5% chloride (SC5) 

solution, which showed higher degree of attack.  

In addition, Friedel’s salt becomes unstable in pH lower than 10 (Goñi and 

Guerrero, 2003), which is a value attained when insoluble brucite precipitates 

at the surface. It is also reported by Torres (2004) that Friedel’s salt is not 

stable in the presence of thaumasite which may explain why it was not present 

in the degraded mortars stored in SC5. Due to the use of Philips aluminium 

sample holder, peaks at 38.47 and 44.7 2theta for aluminium were presented 

for all samples.  
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At 630 days, thaumasite was rarely detected in SC20 mortars, instead Friedel’s 

salt which is a non-expansive product, was observed. It is possible that at high 

chloride concentration, the amount of Friedel’s salt produced could present a 

physical barrier impeding ingress or chemical diffusion and it may also result 

in limiting the availability of aluminates phases free to engage in degrading 

sulfate bearing products. In addition, mortars in SC20 solution were 

distinguished by exhibiting clear peaks for portlandite with low peaks for 

ettringite and no peaks for gypsum. 

Quartz were detected in all samples with strong peaks for those in SC10 and 

SC20 samples, which showed low or no attack. The siliceous aggregate used is 

the main source of quartz in all samples.   

At 20°C, the XRD patterns of material samples collected from surfaces of CEMI 

and CEMI-LF mortar specimens stored for 630 days in different solutions are 

shown in Figure 4.22 and 4.23. All samples showed strong peaks for 

portlandite, with relatively more in CEMI samples. The reduction in portlandite 

intensity in CEMI-LF samples was expected due to the dilution effect of 

limestone filler. The decreased portlandite dissolution as temperature increased 

is one main reason why sulfate attack is slow at 20°C compared with 5°C. 

In case of CEMI-LF mortars, the SC5 sample showed the lowest portlandite 

peak intensities. Traces of gypsum and brucite were detected in both sulfate 

only and SC5 of CEMI-LF samples, with relatively higher peak intensities in the 

SC5 sample. Portlandite most probably reacted with sulfate and magnesium 

ions to form gypsum and brucite, both found in the surface layer of SC5 

mortar, but with smaller quantities compared with samples stored at 5°C. This 

indicated earlier reactions between portlandite and magnesium sulfate in both 

samples, more evidently in SC5. The higher solubility of gypsum at higher 

temperature might result in decreasing the chance of gypsum formation in 

samples stored at 20°C.  

It can be clearly seen that the intensity of Friedel’s salt increased in all samples 

as chloride level increased in solutions. CEMI samples showed higher peak 

intensities for Friedel’s salt than CEMI-LF samples. This was also expected as it 

would be caused by the diluting effect of limestone filler which reduced the 

amount of C3A in the system.  

Traces of thaumasite were detected in all samples, more evidently in CEMI-LF 

sample stored in SC5 solution. Thaumasite was also reported (Martinez-



Chapter 4: Performance of cement mortars subjected to sulfate and chloride exposure at 5 and 
                     20ċ. 
 

62 
 

Ramirez et al., 2011, Hartshorn et al., 2002, Irassar et al., 2005) to form at 

ambient temperature, however, it is generally accepted that extensive 

thaumasite formation is associated with low temperature conditions. 

Aragonite, which is a metastable form of calcium carbonate compared with 

calcite, was also detected in all samples stored in all solutions at 20°C, but with 

higher amounts in composite solutions and lesser quantities than at 5°C. 

Gollop and Taylor (1995) reported that aragonite precipitation is kinetically 

favoured over calcite if magnesium sulfate is present. 

 

 

 

Figure 4.20. XRD patterns of CEMI samples stored for 630 days at 5°C. 
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Figure 4.21.XRD patterns of CEMI-LF samples stored for 630 days at 5°C. 

 

 

 

Figure 4.22. XRD patterns of CEMI samples stored for 630 days at 20°C. 
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Figure 4.23. XRD patterns of CEMI-LF samples stored for 630 days at 20°C. 

 

 XRD analysis of sound core materials for CEMI-LF mortars stored at 5 

°C 

Figure 4.24 and 4.25 show the XRD patterns of degraded surface and sound 

core material samples for CEMI-LF mortar specimens stored for 630 days in S 

and SC5 solutions at 5°C. Since the degraded materials of surface mortar was 

presented and discussed above, this section will focus on the core of samples. It 

can be seen in Figure 4.24 that the main sulfate phases in the core sample of 

sulfate only solution were ettringite and gypsum, both in low intensities but no 

thaumasite peak was detected. The presence of strong peaks for portlandite 

indicates that no significant interaction with sulfate took place, as portlandite 

is not stable in presence of sulfate, as found in the surface sample.  

In case of SC5 and SC20 (Figure 4.25 and 4.26) core samples, it can be seen 

that no gypsum and almost similar peak intensities for ettringite were detected 

and instead of gypsum, moderate peak intensities for Friedel’s salt were present 

in SC5 and SC20 core samples. This indicates that penetration of chloride into 

the mortars was more rapid than for sulfate.  All results indicate that the core 

of CEMI-LF mortars, which showed extensive surface degradation, remained 

intact within this period of exposure. This may explain why these mortars 

showed negligible expansion.  
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Figure 4.24. XRD patterns for degraded surface and sound core samples for CEMI-

LF specimens stored 630 days in sulfate only solution at 5°C. 

 
 

 

Figure 4.25. XRD patterns for degraded surface and sound core samples for CEMI-

LF specimens stored 630 days in SC5 at 5°C. 
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Figure 4.26. XRD patterns for sound surface and core samples for CEMI-LF 

specimens stored 630 days in SC20 at 5°C. 

 

 XRD analysis of CEMI-PFA mortars at 5 and 20°C 

XRD patterns for CEMI-PFA samples stored in test solutions at 5 and 20°C are 

shown in Figure 4.27 and 4.28, where ettringite was observed to be a dominate 

sulfate phase in all samples. Traces of gypsum were found only in the S 

sample; while it was absent in the composite solution samples. This would 

indicate that S sample would be subjected to earlier sulfate attack compared 

with those stored in composite solutions, as was observed later in 20mm cubes. 

Instead, Friedel’s salt was detected in all composite solution samples, with 

higher intensities at 20°C. The higher chloride level in solution, the greater the 

amount of Friedel’s salt formed. The higher quantities of aluminates in the fly 

ash also resulted in relatively more Friedel’s salt, compared to other cements. 

Friedel’s salt which is non-expansive product, would inhibit the transport of 

sulfate ions ingress through the sample, which in turn would reduce gypsum 

formation within the interior of the sample. The strong peaks for calcite in all 

surface samples could be mainly due to standard carbonation (See Chapter 5) 

of calcium hydroxide present in the cement matrix by dissolved atmospheric 

CO2. This is further confirmed by absence of portlandite in the surface layer. It 

was reported by Bellmann and Stark, (2008) that in the absence of calcium 
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hydroxide, the CSH has a much lower calcium/silicon ratio and a higher 

resistance against the formation of thaumasite.  

At this stage of exposure, no clear peaks for thaumasite were detected by XRD 

in any CEMI-PFA samples. Moreover, the relatively low concrete/mortar matrix 

permeability (See Chapter 5) produced by incorporation of fly ash may have 

resulted in lower sulfate diffusion and inhibited its interaction with cement 

paste. The performance of CEMI-PFA mortars at both temperatures further 

improved in presence of chloride, as indicated by XRD analysis.  

      

 

 

 

Figure 4.27. XRD patterns for CEMI-PFA samples stored for 630 days at 5°C. 
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Figure 4.28. XRD patterns for CEMI-PFA samples stored for 630 days at 20°C. 

 

 XRD analysis of CEMI-GGBS mortars at 5 and 20°C 

Figure 4.29 shows the XRD patterns for CEMI-GGBS samples stored in the 

different test solutions at 5°C. It can be seen that traces of gypsum were 

detected in S and SC5 samples, while, no gypsum and instead higher peaks for 

Friedel’s salt were detected in the SC20 sample. This indicates that CEMI-

GGBS specimens placed in S and SC5 solutions would be subjected to earlier 

attack, as confirmed later by the 20mm cubes. The formation of Friedel’s salt, 

more evidently in SC20 samples, would inhibit ingress of sulfate ions into the 

sample, which consequently reduced gypsum formation within its interior. 

Moreover, this indicates that aluminates rapidly engaged in Friedel’s salt 

formation which reduced the possibility of more ettringite formation. Lowering 

peak intensities for ettringite for composite solution samples show that this 

effect increases for higher chloride concentrations. The high slag replacement 

level would have produced C-S-H gel with lower calcium/ silica ratio which is 

capable of binding more alumina in its structure that would also result in a 

further reduction in ettringite.  

The strong peaks for calcite in all samples could also be due either to the 

presence of limestone in CEMI or carbonation of CH present in cement matrix 

by dissolved atmospheric CO2, which would provide a source of carbonates for 
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thaumasite formation. Traces of thaumasite were detected only in S and SC5 

samples.  

The absence of portlandite peaks in all surface samples indicated that it was 

consumed either during the pozzolanic reaction or by carbonation to form 

calcite. It is frequently reported (Kandasamy and Shehata, 2014, Veiga and 

Gastaldini, 2012, Atahan and Dikme, 2011) that the consumption of 

portlandite in GGBS mortar/concrete is the key factor for the resistance GGBS 

cement possess against sulfate attack, as portlandite is not stable in presence 

of sulfate ions. 

Samples stored in sulfate only and composite sulfate with 0.5% chloride 

solutions showed traces of gypsum, whereas, no gypsum and instead stronger 

peaks for Friedel’s salt were detected in sample stored in composite sulfate with 

2.0% chloride, probably due to the increase in gypsum solubility as chloride 

increases in solution (See Section 4.9).  

The XRD patterns for CEMI-GGBS samples stored at 20OC are shown in Figure 

4.30, from which it can be observed that portlandite was not present in any 

samples regardless of solution composition. This may be a result of carbonation 

or/and its consumption during pozzolanic reactions.  

Ettringite and gypsum were observed as the main sulfate phases in S and SC5 

samples, whereas thaumasite was detected in small traces. Since these 

samples did not show any visual signs of attack in this immersion period, it is 

expected they would be subjected to sulfate attack after a longer exposure time. 

It should be mentioned here that the relatively high permeability (water/binder 

ratio of 0.6) of the CEMI-GGBS mortars in this study might be the main 

reasons why these samples showed rapid sulfate interaction.   

It was noted that the intensity of peaks for Friedel’s salt increased and those for 

ettringite decreased as chloride in solution increased, in that SC20 sample 

showed the highest peak intensities for Friedel’s salt and lowest peak 

intensities for ettringite. This may indicate the rapid engagement of aluminates 

in the formation of Friedel’s salt resulted in lowering active aluminates available 

for ettringite formation.     
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Figure 4.29.XRD patterns for CEMI-GGBS samples stored for 630 days at 5°C. 

 

 

 

 

 

Figure 4.30. XRD patterns for CEMI-GGBS samples stored for 630 days at 20°C. 
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XRD analysis of CEMI-PFA and CEMI-GGBS samples of 20mm cubes at 

5°C: 

Figure 4.31 shows the XRD patterns for CEMI-PFA surface samples stored for 

180 days in sulfate only and composite solutions at 5°C. It can be seen that 

ettringite was detected in all samples and with approximately similar peaks 

intensities, while, high intensity gypsum peaks were only detected in sulfate 

only solutions. Since mortar placed in this solution showed visual damage 

(Figure 4.5), it is most likely attributed to gypsum formation.  Instead, peaks for 

Friedel’s salt were detected in samples placed in composite solutions and its 

peak increased as the dissolved chloride level rose.  No portlandite was detected 

in any sample, which could be a result either of pozzolanic reaction or 

carbonation by atmospheric CO2. However, traces of brucite were detected in 

all samples which indicate reactions between sulfate and portlandite also took 

place. In addition, small traces of thaumasite were also detected in all samples. 

At this early stage of exposure, the presence of chloride in solutions led to 

mitigation of sulfate attack, which most likely attributed to the formation of 

Friedel’s salt, as discussed earlier. 

In case of the CEMI-GGBS samples, the XRD patterns of surface samples after 

180 days of storage in sulfate only and composite solutions at 5°C are 

presented in  

Figure 4.32, which shows that ettringite was detected in all samples, but with 

lower peaks intensities in the SC20 sample. This observation may be due to the 

reduction in the amount of available C3A as it was mostly consumed during 

Friedel’s salt formation. This most likely caused a reduction in sulfate 

interaction in the mortar sample stored in SC20 solution. 

High intensity gypsum peaks were detected in S and SC5 samples, but not in 

SC20. The observed attack (Figure 4.6) in S and SC5 mortars, most likely 

related to gypsum precipitation. The decalcification of C-S-H gel due to the 

aggressiveness of magnesium sulfate solution can be the main source of 

calcium ions in pore solution for gypsum formation.  

Calcite was detected as a main phase of carbonate in all samples, but with 

relatively higher peak intensity for the SC20 sample, which may be related to 

its solubility as chloride concentration decreased.     

Traces of thaumasite were detected in samples placed in sulfate only and SC5 

solutions, but not in SC20 solution. The reduction of calcite peaks in samples 
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placed in sulfate only and SC5 solutions may indicate its involvement in 

thaumasite formation, as they both showed traces of thaumasite peaks.    

Relatively high peak intensities for ettringite were observed in CEMI-PFA 

samples compared with CEMI-GGBS samples. This was expected due to higher 

aluminates contents of CEMI-PFA cement compared with CEMI-GGBS cement. 

The results of the small cube sets indicate that CEMI-PFA and CEMI-GGBS 

mortars would also be subjected to sulfate attack, but after a longer time 

interval. In case of CEMI-PFA, the presence of chloride in solutions led to 

delayed sulfate attack, which was most likely due to the formation of Friedel’s 

salt, as discussed earlier. However, the presence of chloride did not benefit 

CEMI-GGBS mortar against sulfate attack which may also be attributed to 

lower Friedel’s salt formation.  

 

 

Figure 4.31. XRD patterns for CEMI-PFA samples stored for 180 days at 5°C. 
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Figure 4.32. XRD patterns for CEMI-GGBS samples stored for 180 days at 5°C. 

 

4.5.2 Analysis by infrared spectroscopy  

In order to obtain further evidence about the deterioration process and to 

confirm the XRD identifications of thaumasite, ettringite and other minerals, IR 

spectroscopy was used. This technique enables silicon in octahedral 

coordination, as in thaumasite, to be identified by a waveband at 500cm-1, in 

contrast to octahedral coordination of aluminate in ettringite, which is 

characterised by a waveband at 855cm-1 (Zhou et al., 2006, Torres et al., 

2004b, Bensted and Satya Prakash, 1976, Barnett et al., 2002).  

The degraded materials affecting CEMI-PFA and CEMI-GGBS 20mm cubes 

stored for 180 days in test solutions at 5°C were also investigated by this 

technique. 

IR analysis of CEMI and CEMI-LF samples: 50mm cubes: 

At 5°C, the surface deterioration products of CEMI and CEMI-LF samples in 

sulfate only (S), composite sulfate and 0.5% chloride (SC5) and composite 

sulfate and 1.0% chloride (SC10) solutions were examined and compared with 

material from the sound surfaces of mortars stored in solution with sulfate and 

2.0% chloride (SC20).  The relevant infra-red spectra are shown in Figure 4.33 

to 4.35.  The spectra of degraded samples (Figure 4.33 and 4.34) show the 

presence of thaumasite and ettringite.  This indicates that thaumasite was not 
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present as the end member of the solid solution series with ettringite as found 

by Torres et al. (2004). It can clearly be seen in spectra of the deteriorated 

surfaces of mortars stored in S, SC5 and SC10 solutions that peak belong to C-

S-H was absent, while it was strongly present in SC20 samples (Figure 4.35), 

which did not show any visual deterioration after 630 days of immersion. In the 

deteriorated surfaces, it was most likely that the C-S-H is converted into 

thaumasite as confirmed later by SEM analysis. These results agree with the 

XRD findings in showing that thaumasite or thaumasite-ettringite solid 

solution resulted from the attack in all deteriorated materials. 

At 20°C, the degraded sample of CEM-LF mortar surface stored in SC5 was 

examined and compared with material from the surfaces of mortars stored in 

sulfate only and SC20 solutions, shown in Figure 4.36. It can be clearly seen 

that the sulfate attack product of SC5 sample was thaumasite, while peaks for 

C-S-H in case of CEMI-LF mortar samples stored in sulfate only and SC5 

solutions at 20°C indicate that less damage occurred compared with those 

stored at 5°C. 

Peaks at around 600 cm-1,670 cm-1 and 1100 cm-1 are indicative of SO4
2- 

groups, which belong to sulfate phases such as thaumasite, ettringite and 

gypsum. Peaks around 712, 875 and 1400 cm-1 relate to CO3
2- groups that 

belong to thaumasite and calcite.  The double peaks around 700 cm-1 and 

around 1480 cm-1 are assigned by Torres (2004) to aragonite. Peaks at around 

815 cm-1 and 966 cm-1 are related to C-S-H (García Lodeiro et al., 2009).  
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Figure 4.33. Infrared spectra for CEMI degraded samples at 5°C. 

 

 

 

Figure 4.34. Infrared spectra for CEMI-LF degraded samples stored at 5°C. 
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Figure 4.35. Infrared spectra for CEMI and CEMI-LF surface samples stored in 

SC20 at 5°C. 

 

 

 

Figure 4.36.Infrared spectra for surface samples of CEMI-LF stored at 20°C. 
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IR analysis of CEMI-PFA and CEMI-GGBS samples of 20mm cubes at 5°C: 

Degraded products from some of the CEMI-PFA and CEMI-GGBS 20mm 

mortars cubes that showed earlier attack than the 50mm cubes were also 

examined by IR technique.   

Figure 4.37 to 4.39 show IR spectra for degraded surfaces and sound core 

samples of CEMI-PFA and CEMI-GGBS mortars stored for 180 days in sulfate 

only and SC5 solutions at 5°C.  

The presence of sulfate peaks at 600 and 670 cm-1 which is attributed to 

gypsum and the absence of a 500 cm-1 thaumasite peak in all degraded surface 

samples indicates that the attack of the surface was mostly related to gypsum 

formation, which confirmed the XRD finding. Peaks at 855 cm-1 assigned to 

AlO6 group and SO4 associated peaks at 1100 cm-1, attributed to ettringite 

phase, and were clearly identified in degraded surface samples of CEMI-PFA 

mortar in sulfate only and SC5 solutions. However, the degraded surface of 

CEMI-GGBS in S and SC5 solutions showed very weak peaks at 855 cm-1 and 

lower peaks at 1100 cm-1, which indicated more ettringite formed in the surface 

material of the CEMI-PFA sample, which was also found by XRD analysis. It 

should be mentioned that the fly ash contained higher aluminates which most 

probably reacted with sulfate to generate ettringite.    

Peaks associated with C-O group in the form of calcite were identified at 713 

and 875 cm-1, more evidence for this in the surface samples. These relatively 

higher peaks for calcite in surface samples may reflect the higher degree of 

carbonation in this layer on account of exposure to atmospheric CO2 before 

immersion.    

The disappearance or the reduction of C-S-H peaks (peaks at 966 cm-1 in IR 

spectra in the degraded surface samples compared with core samples indicated 

the decalcification of C-S-H due to magnesium ions attack. In the degraded 

surfaces, it is most likely that the C-S-H is converted into M-S-H as indicated 

later by SEM analysis. 

The results discussed in this section confirm the XRD finding in which mortars 

made with either CEMI-PFA or CEMI-GGBS as cement replacement and 

exposed to magnesium sulfate solution can be deteriorated by gypsum 

formation but not thaumasite. This may be due to the absence of adequate 

internal amounts of carbonate required for thaumasite formation and instead 
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the availability of high concentration of calcium and sulfate ions in mortar pore 

solution, which promoted gypsum formation.  

 

 

Figure 4.37. IR spectra for CEMI-PFA sample stored 180 days in sulfate only 

solution at 5°C. 

 

 

Figure 4.38. IR spectra for CEM-GGBS sample stored 180 days in sulfate only 

solution at 5°C. 
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Figure 4.39. IR spectra for CEMI-GGBS sample stored 180 days in SC5 at 5°C. 

 

4.6 Scanning electron microscopy (SEM) and energy 

dispersive X-ray (EDX) analysis  

Scanning electron microscopy and energy dispersive X-ray system (SEM/EDX) 

were performed on fracture surfaces after 360, 450 and 630 days immersion to 

identify the deteriorated products. The 450 day samples consisted of 10 mm 

cubes cut from the corners of the prisms which were stored in the same 

containers as the cubes. 

SEM/EDX of degraded materials after 360 days of exposure:  

Fracture samples collected from surfaces of CEMI-LF mortars stored for 360 

days in S, SC5 and SC10 solutions at 5°C shown in Figure 4.40 to 4.42 show 

prismatic fine needle shaped crystals < 0.5 μm in thick and up to 10 μm long 

as the dominant product. EDX analysis shown in Figure 4.43, indicates that as 

these crystals consisted mainly of calcium, sulfur, oxygen, aluminium, silicon 

as well as a small amount of carbon, they are a thaumasite-ettringite solid 

solution series as reported by Torres et al. (2004). 
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Figure 4.40. Morphology of degraded 

surface of CEMI-LF mortar stored 360 

days in sulfate only solution at 5°C. 

 

Figure 4.41. Morphology of degraded 

surface of CEMI-LF mortar stored 360 

days in SC5 at 5°C. 

 

 

Figure 4.42. Morphology of degraded 

surface of CEMI-LF mortar stored 360 

days in SC10 at 5°C. 

 

Figure 4.43. EDX of the needles 

(thaumasite-ettringite solid solution) in 

Figure 4.41. 

 

SEM/EDX of CEMI and CEMI-LF mortars stored 450 days at 5°C 

The microstructure images of CEMI and CEMI-LF mortar samples stored for 

450 days in sulfate only and composite sulfate and chloride solutions at 5°C 

are given in this section.  

Figure 4.44 and 4.48 show SEM images of CEMI and CEMI-LF degraded 

surface mortar samples that were stored in S. Both mortars showed strong 

alteration, as indicated by transformation of grey areas of cement to darker 

colour areas, and by the spreading of cracked areas. The EDX (Figure 4.46 and 

4.49) analysis of dark grey area showed it contained mainly of Ca, Si, S and Al 

which is attributed to structure of thaumasite-ettringite solid solution series. 

Thaumasite needles 
Thaumasite needles 
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The cracked light grey area also consisted of Ca, S, Al and Si, but with Al to Si 

ratio more than one (Figure 4.45) so both these areas were thaumasite–

ettringite solid solution but with different Al: Si ratios. This finding is consistent 

with thaumasite being formed from ettringite by replacement of Al by Si, as 

suggested by Bensted (2003b). 

It was also observed in Figure 4.44 that both cracked and dark areas were 

surrounded by secondary gypsum as EDX analysis in Figure 4.47 indicates. 

Gypsum may have formed at an early stage and then acted as a major source of 

sulfate for thaumasite formation, as reported by Schmidt et al. (2008) and 

Hartshorn et al. (1999) who noted that thaumasite formation is often 

accompanied by formation of secondary gypsum when magnesium sulfate was 

present.  Further discussion of this issue is presented in Chapter 6. 

 

 

Figure 4.44. SEM image of CEMI sample stored 450 days in sulfate only solution. 
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Figure 4.45. EDX of cracked light grey 

area (with Al:Si >1) in Figure 4.44. 

 

Figure 4.46. EDX of dark grey area 

(with Al: Si <1) in Figure 4.44. 

 

 

 

 

Figure 4.47. EDX of light grey area (gypsum) in Figure 4.44. 
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Figure 4.48. SEM image of CEMI-LF sample stored 450 days in sulfate only 

solution. 

 

 

 

 

Figure 4.49. EDX of point shown in Figure 4.48 
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Composite sulfate and 0.5% chloride (SC5) samples: The SEM images in 

Figure 4.50 show the severe sulfate attack damage in CEMI-LF specimens after 

450 days exposure to SC5 at 5°C. The massive intensity of the attack in CEMI-

LF samples is very clear; the outer layer of the cement matrix has suffered 

conversion the dark grey area of thaumasite or thaumasite-ettringite solid 

solution (Figure 4.53) that dominates the attacked area.  

In addition most of interfacial zones between the aggregate particles and the 

cement matrix have been removed, which explains the loss in the binding 

capacity of cement as it was converted to thaumasite. Closer investigation 

(Figure 4.51) showed obvious degradation of C-S-H occurred due to the 

deposition of thaumasite within the matrix. Detail 2 (Figure 4.52) shows the 

shape of thaumasite crystals developed within the matrix.  

The EDX (Figure 4.53) analysis also indicates the absence of chloride in the 

dark grey area of samples stored in SC5 solution which is in agreement with 

the XRD analyses (Section 4.5.1), in that Friedel’s salt was absent from the 

deteriorated material in this sample. Such an absence of chloride from the 

degraded materials may indicate low or reduced chloride binding capacity of 

thaumasite-affected area, as was suggested by Torres, (2004).  

The cement matrix of CEMI sample (Figure 4.54 and 4.55) also suffered 

chemical degradation, but with lower severity than CEMI-LF, as indicated by 

the change in colour and the existence of microcracks. The EDX shown in 

Figure4.56 indicates that these microcracks were related to thaumasite-

ettringite solution.  

The dark area (Figure 4.55) of the CEMI sample consists of high magnesium 

and low calcium, as indicated by EDX shown in Figure 4.57; which indicates 

that the C-S-H was decalcified.  
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Figure 4.50. SEM image of CEMI-LF 

sample stored for 450 days in SC5. 

 

 

Figure 4.51. Detail 1 in Figure 4.50. 

 

Figure 4.52.Details 2 (Thaumasite 
needles) in Figure 4.51. 

 

Figure 4.53.EDX of dark grey area in 

Figure 4.51 

 

Detail 2 Aggregate 

Thaumasite 
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Figure 4.54. SEM image of CEMI sample 

stored 450 days in SC5. 

 

 

 

Figure 4.55. SEM image of CEMI sample 

stored for 450 days in SC5. 

Figure4.56. EDX of (Thaumasite-

ettringite solid solution) in Figure 

4.54 

 

 

 

Figure 4.57. EDX of (Mg-C-S-H) 

in Figure 4.55. 

 

 

Composite sulfate and 1.0% chloride (SC10) samples: Figure 4.58 and 4.58 

show SEM images for CEMI and CEMI-LF mortar surfaces, respectively, stored 

for 450 days in SC10 solution at 5°C. It can be also noted these mortars 

suffered from microcracks formation, which were associated with thaumasite 
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and thaumasite-ettringite solid solution, as the EDX shown in Figure 4.59 and 

Figure 4.62 indicate. 

The extent of damage was lower than for sulfate only and SC5 samples, as 

indicated by denser microstructure. The EDX analysis (Figure 4.60) showed 

clearly formation of Friedel’s salt on mortar surface. The amount of Friedel’s 

salt produced could present a physical barrier impeding ingress or chemical 

specie and it may also limit the availability of aluminates phases free to engage 

in degrading sulfate bearing products. 

 

Figure 4.58. SEM image of CEMI sample 

stored 450 days in SC10. 

 

Figure 4.59. EDX of thaumasite -

ettringite solid solution in Figure 

4.58. 

 

 

Figure 4.60. EDX of Friedel's salt in Figure 4.58. 
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Figure 4.61. SEM image of CEMI-LF 

sample stored 450 days in SC10. 

 

Figure 4.62. EDX for the point in 

Figure 4.61. 

 

Composite sulfate and 2.0% chloride (SC20) samples: Figure 4.63 and 4.66 

show SEM images for CEMI and CEM-LF samples stored in SC20 at 5°C. 

Although mortar specimens stored in SC20 solution showed no obvious 

damage, the EDX analysis (Figure 4.64 and 4.67) indicate that thaumasite was 

formed but without causing obvious deterioration to the specimens. Therefore, 

at this stage the samples could be said to have suffered thaumasite formation 

(TF) rather than TSA as would be expected, but the deterioration would be 

slower. Sotiriadis et al., (2012) attributed such a mitigation effect to the rapid 

penetration and interaction of chloride ions compared to sulfate.  

Friedel’s salt which is a non-expansive product, was determined by EDX shown 

in Figure 4.65 and 4.68. As mentioned above, it is possible that at high chloride 

concentration, the amount of Friedel’s salt produced could present a physical 

barrier impeding ingress of chemical specie and it may also result in limiting 

the availability of aluminates phases free to engage in degrading sulfate bearing 

products. It was reported (Irassar et al., 2005)  in a study conducted to 

investigate the effect of C3A content of cement on thaumasite formation, that 

cement with zero C3A, such as SRPC and containing limestone filler showed no 

thaumasite formation.  

Aggregate 

Thaumasite-ettringite 

solid solution 
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Figure 4.63. SEM image of CEMI sample stored 450 days in SC20. 

 

 

 

 

Figure 4.64. EDX for 2 in Figure 4.63. 

 

Figure 4.65. EDX Friedel's salt in Figure 

4.63. 
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Figure 4.66. SEM image of CEMI-LF sample stored 450 days in SC20. 

 

 

 

Figure 4.67. EDX of cracked material in 

Figure 4.66. 

 

 

Figure 4.68. EDX of Friedel's salt in 

Figure 4.66. 

 

 

 

SEM/EDX of CEMI-LF mortar stored 630 days at 20°C 

The SEM images of samples taken from surface layer of mortar specimens 

stored in S, SC5 and SC20 solutions at 20°C are shown respectively in Figure 

4.69, 4.72 and 4.75. Mortar sample stored in sulfate only solution showed 

evidence of thaumasite formation, as indicated by EDX shown in Figure 4.71 , 

which probably caused visually observed small micro-cracks on some parts of 

the mortar surface within this stage of exposure. The SEM images (Figure 4.72 
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and 4.73) of the SC5 sample showed deposition of thaumasite or thaumasite-

ettringite solid solution (Figure 4.74) within the cement matrix and around the 

aggregate particles, whereas this sample showed clear damage on the surface 

edges after 630 days. However, SC20 sample showed denser microstructure 

(Figure 4.75) and no clear formation of thaumasite was detected. Instead, 

Friedel’s salt was dominantly presented in the surface region of SC20 sample, 

as determined by EDX shown in Figure 4.76.  

It was reported by Hartshorn et al.(2002) that thaumasite can also form at 

ambient temperature, but at slower rate than at 5°C. The presence of 0.5% 

chloride in solution also showed that mortar damage due to thaumasite 

formation seems to accelerate when samples are stored in SC5 solution at 

20°C. However, the higher deposition of Friedel’s salt may also play a role in 

mitigating sulfate attack in SC20 mortar, as reported by Zhang et al. (2013).  

 

 

 

Figure 4.69. SEM image of CEMI-LF sample stored 630 days in sulfate only 

solution at 20°C. 
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Figure 4.70. Detail 1 in Figure 4.69. 

 

Figure 4.71. EDX of cracked 

material in Figure 4.70. 

 

 

 

Figure 4.72. SEM image of degraded CEMI-LF sample 

stored in 630 days in SC5 at 20°C. 

 

Figure 4.73. Detail 1 in 

Figure 4.72. 

 

Figure 4.74. EDX of 

dark grey area in Figure 

4.72 
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Figure 4.75. SEM image of CEMI-LF sample 

stored 630 days in SC20 at 20°C. 

 

 

 

 

 

Figure 4.76. EDX of Friedel's 

salt in Figure 4.75. 

 

SEM/EDX of CEMI-PFA mortars stored 630 days at 5°C: 

The SEM images of samples taken from surfaces of CEMI-PFA mortar 

specimens stored for 630 days in sulfate only, SC5 and SC20 solutions at 5°C 

are shown respectively in Figure 4.77, 4.79 and 4.81.It should mention that the 

PFA mortar specimens did not show any visual signs of damage and remained 

intact during the experiment. The SEM/EDX analysis indicated no thaumasite 

or thaumasite-ettringite solid solution was formed in any CEMI-PFA samples, 

except those stored in sulfate only solution which showed traces of thaumasite-

ettringite solid solution (mixed dark gray and cracked areas in Figure 4.77) 

and, as indicated by the EDX analysis of Figure 4.78. The carbonated layer may 

provide carbonate ions for thaumasite formation, as reported by Torres et al. 

(2003). 

Partly reacted particles of PFA distributed in the cement matrix indicate 

participation in the pozzolanic reactions and depletion of portlandite from the 

system. It should be noted that scattered formation of thaumasite-ettringite 

solid solution within the matrix of sample stored in sulfate only solution 

resulted in microcracks which could increase the diffusion of sulfate ions into 

the pore structure of the binder paste. This may indicate that after longer 

exposure period, this mortar may be subjected to TSA. 
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No clear formation of thaumasite occurred within this stage of exposure in 

mortars exposed to composite sulfate and chloride solutions (Figure 4.79 and 

4.81). Instead, dark grey areas that are attributed to Mg–rich phases, as 

determined by EDX (Figure 4.80 and 4.82) were detected in both samples.  

The production of sub silica gel as a result of pozzolanic reactions led to 

improve mortar compaction, and acted to delay the ingress of sulfate ions. This 

retardation may improve in presence of chloride, as the reactive aluminium 

phases in fly ash reacted with chloride, producing Friedel's salt, which would 

tend to block pores and result in a further reduction in sulfate ingress, as 

mentioned earlier. Hong and Glasser (2002) reported that fly ash and slag 

cement exhibit high chloride binding due to the high alumina content and the 

consequent formation of C-A-S-H which has ability to bind chloride, which 

would further reduce free chloride available in pore solution, and thus reduce 

the corrosion risk.   

Blanco-Varela et al. (2006) found that thaumasite formation decreased as the 

content of C3A decreased. This may suggest that the consumption of C3A in the 

presence of chloride associated with the formation of Friedel’s salt enhanced 

the performance of CEMI-PFA mortars placed in composite sulfate and chloride 

solutions.   
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Figure 4.77. SEM image of CEMI-PFA sample 

stored 630 days in sulfate only solution at 5°C. 

 

 

 

 

 

Figure 4.78. EDX of cracked 

material in Figure 4.77. 

 

 

 

 

Figure 4.79. SEM image of CEMI-PFA sample 

stored 630 days in SC5 at 5°C. 

 

 

 

 

 

Figure 4.80. EDX of dark area 

(Mg rich phase) in Figure 4.79. 
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Figure 4.81. SEM image of CEMI-PFA sample 

stored 630 days in SC20 at 5°C. 

 

 

 

 

Figure 4.82. EDX of dark grey 

area (Mg rich phase) in Figure 

4.81. 

 

SEM/EDX of CEMI-GGBS mortars stored 630 days at 5°C: 

Figure 4.83, 4.86 and 4.89 show SEM images of CEMI-GGBS samples stored 

for 630 days in sulfate only, and composite sulfate and chloride solutions at 

5°C. According to visual inspection, no signs of damage were observed in any 

CEMI-GGBS mortar specimens within the experiment period. However, the 

investigations of the microstructure of mortar samples indicate that 

interactions between cement matrix and sulfate took place, as indicated by 

changing in colour of the sulfate only mortar sample (Figure 4.83) and 

spreading of microcracks in the SC5 and SC20 mortar samples (Figure 4.86 

and 4.89). 

The dark grey areas in the SEM image of sulfate only sample consisted (Figure 

4.84) mainly of S, Si, Ca and Al with Ca/Si ratio of about 0.5 which may 

attribute to a phase similar to thaumasite- solid solution, as reported by   

Pouya (2007) who found that the incorporation of sulfate and aluminates in the 

structure of C-S-H gel being formed involved slight deterioration of the main 

cementitious matrix towards phases like thaumasite-ettringite solid solution. 

The high slag replacement level produced secondary C-S-H gel with lower 

calcium/ silica ratio which was capable of binding more alumina in its 

structure which resulted in reduced ettringite formation, as explained by Gollop 

and Taylor (1996).  
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The deposition of light area in the sulfate only sample surrounding the darker 

one was attributed to gypsum, as indicated by EDX (Figure 4.85) analysis. It 

was reported by Schmidt et al (2008) that gypsum deposition precedes 

thaumasite formation and then acts as a source of sulfate for its formation, 

which may explain why phases similar to thaumasite-ettringite solid solutions 

were extensively formed surrounding gypsum deposition.  

In case of composite solutions, scattered microcracks in the SC5 and SC20 

mortar samples was found to relate to thaumasite-ettringite solid solutions, as 

indicated by EDX analysis (Figure 4.87 and 4.91). The EDX for some areas 

surrounding the cracks in SC5 sample (Figure 4.88) indicated that secondary 

C-S-H gel incorporating sulfate, aluminates and magnesium in its structure 

was present.  The EDX (Figure 4.90) analysis for secondary C-S-H gel of SC20 

sample (Figure 4.89) further showed chloride bound in its structure.  

The microstructure of CEMI-GGBS mortars indicated that after longer exposure 

period, all mortars, including those exposed to composite solutions, would be 

subject to sulfate attack, due to either gypsum or/and thaumasite formation. It 

should be mentioned that slag-cement /mortars can perform well if produced 

with low water to cement ratio, as well documented in the literature.  
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Figure 4.83. SEM image of CEMI-GGBS sample stored 630 days in sulfate only 

solution at 5°C. 

 

 

 

 

 

Figure 4.84. EDX of dark grey area in 

Figure 4.83. 

 

Figure 4.85. EDX of light grey area 

(gypsum) in Figure 4.83. 
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Figure 4.86. SEM image of CEMI-GGBS sample stored 630 days in SC5 at 5°C. 

 

 

 

 

 

Figure 4.87. EDX of 1 (Cracked area) in 

Figure 4.86. 

 

Figure 4.88. EDX of 2 (C-S-H) gel with 

Ca/Si =0.5) in Figure 4.86. 
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Figure 4.89. SEM image of CEMI-GGBS sample stored 630 days in SC20 at 5°C. 

 

 

 

 

Figure 4.90. EDX of 1 in Figure 

4.89. 

 

Figure 4.91. EDX of 2 in Figure 4.89. 
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SEM/EDX analysis of CEMI-GGBS samples of 20mm cubes at 5°C: 

 

Figure 4.92 shows the SEM image of CEMI-GGBS sample stored 180 days at 

5°C. Although no visual damage was observed, the EDX scan in Figure 4.94 

indicates that thaumasite or thaumasite-ettringite solid solution was formed in 

this sample, which confirms the XRD finding. Although, no gypsum was 

detected in this part of sample by SEM/EDX analysis, its formation was 

confirmed by XRD analysis. It should mention that gypsum was also confirmed 

by both SEM/EDX and XRD analysis in 50mm mortar cubes placed in sulfate 

only solution, which indicates that with long-term storage to sulfate only 

solution, this mortar would be subjected to damage due to gypsum formation. 

An SEM image of a degraded SC5 samples appears in Figure 4.95 in which 

intensive attack by the formation of prismatic crystals particularly around the 

aggregate. EDX analysis shown in Figure 4.96, confirmed the presence of 

gypsum.  It was indicated by Figure 4.97 that the C–S–H in regions close to this 

gypsum was decalcified, which is the most probable source of the calcium 

required.  This process appears to have occurred more rapidly in SC5 mortars, 

which showed early deterioration due to gypsum deposition and as visually 

observed. 
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Figure 4.92. SEM of CEMI-GGBS sample stored 180 days in sulfate only at 5°C. 

 

     

 

 

 

 

Figure 4.93. EDX of 1 in Figure 4.92. 

 

 

Figure 4.94. EDX of 2 in Figure 4.92. 
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Figure 4.95. SEM images of CEMI-GGBS samples stored 180 days in SC5 at 5C. 
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Figure 4.96. EDX of prismatic 

crystals and light grey area around 

aggregate particles in Figure 4.95-D. 

 

Figure 4.97. EDX of dark area (M-S-H) in 

Figure 4.95-D. 

 

 

 

4.7 Chemical analysis of test solutions 

In order to monitor the changes of chemical compounds of test solutions of 

combined mortar specimens made with CEMI and CEMI blended with 10% 

limestone filler over the experimental period, the concentration of sulfate, 

calcium, chloride and magnesium were measured using the ion 

chromatography technique after different durations of exposure of 50mm 

mortar cubes and prisms to test solutions at 5 and 20°C. In order to monitor 

the change of the chemistry of test solutions within the early exposure period, 

for each cement binder, a 20mm mortar cubes were also cast. Due to very high 

concentration of ions in the test solutions, diluted sample of solutions were 

tested to avoid any potential problems with the measurements.  

 Chemical analysis of test solutions of CEMI and CEMI-LF mortar 

specimens:  

Table A. 1 and A.2 (See Appendix) summarise the results of chemical analysis 

of test solutions at 3, 6, 9, 12 and 18 months after the samples were placed in 

the test solutions. It should be mentioned that the solutions were renewed 

every 3 months up to 12 months, after which the replenishment ceased. 
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Variations in ion concentration against time and temperature are presented 

and discussed in the following sections. 

At 5°C: 

Variations of sulfate, calcium, magnesium, and chloride ions in test solutions of 

combination of mortar samples made with CEMI and CEMI-LF at 5°C are 

shown in Figure 4.98 to 4.101, where as can be seen in Figure 4.98 in sulfate 

only solution, the concentration of sulfate ions decreased with time. This 

reduction may be related to the penetration of sulfate ions through deteriorated 

mortar, as noted in visual observations, and a raised extent of deterioration as 

time progressed.  In addition, the formation of thaumasite and gypsum would 

result in sulfates being bound in insoluble compounds.   

Clearly the lowest drop in sulfate ion value was found for SC5 solution for most 

of exposure periods.  The reduction, which was about 46% at 630 days of 

exposure compared with 41% for sulfate only solution, while SC10 and SC20 

showed only a reduction of around 16%. The large drop in sulfate in S and SC5 

solutions may be attributed to higher formation of sulfate products in forms of 

thaumasite and gypsum, as indicated by XRD analysis, remembering that 

stronger intensity peaks for these minerals were found in SC5 samples 

compared to other solutions. This impact could be a consequence of higher 

penetration of sulfate ions through the deteriorated mortar. These results are 

also in agreement with the mass changes noted in Section 4.3, in which mortar 

samples stored in composite sulfate and 0.5% chloride solution showed the 

highest extent of deterioration.  

In the case of SC20, however, the variation in sulfate concentration was 

approximately zero which indicated lower sulfate ingress and denser structure 

as samples immersed in this test solution did not show any evidence for 

damage.  No gypsum was precipitated and only traces of thaumasite that were 

detected by XRD analysis for samples taken from outer part of mortar 

immersed in SC20.  

The variation of calcium is shown in Figure 4.99, where the highest value was 

found in both sulfate only and combined sulfate and 0.5% chloride (SC5) 

solutions, and more pronounced in SC5 solution, which at 630 days of 

exposure, showed about 3.6 times higher release in calcium relative to that of 

sulfate only solution.  As shown in Figure 4.100 both solutions exhibited the 

lowest reduction in magnesium concentration, with a greater reduction for SC5 
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solution. After 630 days of exposure, the SC5 solution showed the highest drop 

of magnesium concentration of about 77%, while in sulfate only solution, the 

fall was about 41%. Magnesium ions are most likely to be consumed during the 

reaction with portlandite and CSH to form both brucite and non-binding Mg-S-

H, as indicated by XRD and SEM/EDX results shown in Sections 4.5.1and 4.6, 

respectively. 

The variation of chloride concentration in test solutions is shown in Figure 

4.101, from which it can be seen that the highest chloride consumption was 

found in SC20 mortars. This may be attributed to high chloride binding and 

lower sulfate interaction of cement mortars placed in SC20 solution, as 

indicated by XRD and SEM/EDX analyses.  After 9 months of storage, chloride 

consumption decreased in SC5 mortars, which might be related to the attack of 

Friedel’s salt by sulfate, which would release free chloride to solution. This may 

also indicate the increase in the amount of free chloride in the pore solutions of 

the SC5 mortars. In turn, this would increase the corrosion risk for steel 

reinforcement in concrete/mortar in such conditions, as will be investigated in 

Chapter 5, Sections 5.8 and 5.9. Similar observations of lower damage were 

found in case of SC10 solution, but after 12 months of exposure.  However, in 

the SC20 solution the samples showed a continuous increase in chloride 

consumption, probably due to higher chloride binding. 

 

 

 

Figure 4.98. Variation of sulfate ion in test solutions at 5°C. 
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Figure 4.99. Variation of calcium ion in test solution at 5°C. 

 

 

 

 

 

 

 

 

Figure 4.100. Variation of magnesium ion in test solution at 5°C. 

 

 

 

 



Chapter 4: Performance of cement mortars subjected to sulfate and chloride exposure at 5 and 
                     20ċ. 
 

108 
 

 

Figure 4.101. Variation of chloride concentration in composite solutions at 5°C. 

 

At 20°C 

The 12 months results for chemical analysis of test solutions at 20°C are 

shown in Figure 4.102 to 4.105; indicate that no significant activities occurred 

in test solutions at 20°C, which contrasted with those at 5°C. The negligible 

change in ion concentrations with time in all test solutions, which was in line 

with the visual observations, XRD and SEM data.  After 12 months of exposure, 

as shown in Figure 4.102, both sulfate only and SC5 solutions showed a slight 

drop in sulfate concentrations. This may be attributed to the formation of 

thaumasite and gypsum, as confirmed later by XRD analysis, although no 

remarkable reduction in sulfate level was observed for the rest of the solutions.  

Data in Figure 4.103 for calcium shows that sulfate only solution showed the 

highest Ca concentration, and furthermore its value increased from about 40 

mg/l at 3 months to about 120 mg/l after 9 months. This increase in calcium 

ions in the sulfate only solution may be attributed to CH leaching, which would 

compensate the low pH of sulfate solution.  

It can be also seen in Figure 4.104 that all solutions at 20°C showed no 

significant change in magnesium ion within 12 months of exposure, except for 

a slight drop at 12 months in sulfate only and SC5 solutions. This reflects the 

negligible interactions between magnesium ion with cement past in systems at 

20°C, as was also confirmed by XRD.  
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In the early exposure period amount to the first 9 months, sulfate only solution 

specimens showed highest calcium and lowest sulfate concentrations. These 

changes were mainly related to relatively higher initial dissolution of CH and 

rapid ingress of sulfate in mortar samples placed in sulfate only solution 

compared with composite solution, in which the presence of chloride in sulfate 

solution at 20°C influenced sulfate ingress and as follows: 1) In the early 

exposure period, the higher chloride diffusion compared with sulfate resulted in 

the formation of Friedel’s salt in mortar samples exposed to composite sulfate 

and chloride solutions. The formation of non-expansive product, Friedel’s salt, 

would tend to block the pores and consequently reduce the amount of sulfate 

ingress. 2) At the latter stages, the presence of chloride in solution would result 

in elevating the pH of mortar pore solution which, in turn, would decrease the 

dissolution of portlandite.  

Chloride concentration in composite solutions at 20°C are shown in Figure 

4.105, from which it can be seen that the higher the chloride in sulfate 

solution, the higher its consumption by mortar specimens. This may reflect the 

higher chloride binding and lower sulfate interaction of cement mortars as 

chloride level increases in solution, as also indicated by XRD analyses 

described in Section 4.5.1.  

 

         

 

Figure 4.102. Variation of sulfate ion in test solutions at 20°C. 
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Figure 4.103. Variation of calcium ion in test solutions at 20°C. 

 

 

 

 

 

Figure 4.104. Variation in magnesium ion in test solutions at 20°C. 
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Figure 4.105. Variation of chloride concentration in test solutions at 20°C. 

 

 Chemical analysis of test solutions of 20mm mortar cubes:  

Table A. 3 and A.4 (See Appendix) summarise the ion levels in sulfate, chloride, 

magnesium and calcium of test solutions of 20mm mortar cubes made with 

different binders stored for 180 days at 5 and 20°C. 

Since, as visually observed, CEMI-LF mortars stored at 5°C showed highest 

extent of damage, the chemical change with time was investigated in more 

details for test solutions containing CEMI-LF mortar samples. 

 

Test solutions for CEMI mortar at 5 and 20°C:  

Figure 4.106 shows concentrations of sulfate, calcium and magnesium ions in 

test solutions for CEMI mortar samples stored for 180 days at 5 and 20°C. At 

5°C, all solutions showed significant drops in sulfate ions and increase in 

calcium ions. The drop in sulfate was most probably attributed to the formation 

of higher amounts of thaumasite and gypsum in these samples and also due to 

higher penetration of sulfate ions through deteriorated mortar, as visually 

observed.  

At 20°C, Figure 4.106 records that the highest sulfate reduction, from 6000 to 

4200 mg/l, was found in sulfate only solution, with no significant changes in 

magnesium and calcium in the 20°C test solution. The reduction in the amount 

of sulfate indicates higher sulfate interactions in these samples linked to the 

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

20000 

SC5 SC10 SC20 

C
l C

o
n

ce
n

tr
at

io
n

 (
m

g/
l)

 

Test solution 

Initial values 

3 months 

6 months 

9 months 

12 months 



Chapter 4: Performance of cement mortars subjected to sulfate and chloride exposure at 5 and 
                     20ċ. 
 

112 
 

formation of sulfate products. This also indicates that these mortars would be 

subjected to sulfate attack earlier than others. 

 

 

 

Figure 4.106. Concentration of sulfate, magnesium and calcium in CEMI solutions 

after 180 days at 5 and 20C. 

 

 

Test solutions for CEMI-LF mortar at 5 and 20°C:  

Variations of sulfate, calcium and magnesium ions in test solutions for CEMI-

LF mortar samples stored for 180 days at 5 and 20°C are shown in Figure 

4.108 to 4.110. 

At 5°C  and as can be seen in Figure 4.107, that during the first 28 days of 

exposure, the higher the chloride level present in sulfate solution, the higher 

the calcium release.  On the other hand SC20 solution showed the highest 

value of around 400 mg/l at 28 days exposure. This release in calcium was 

mainly associated with initial dissolution of portlandite, which in turn led to 

increase the initial pH (Section 4.8) of test solutions. At 56 days, all solutions 

showed reduction in calcium which could be related to its reaction with 

dissolved carbon dioxide derived from the atmosphere. As time passed and 

before solution replenishment, S and SC5 solutions showed higher calcium 

release compared with SC10 and SC20 solutions but this may be due to rapid 

propagation of microcracks in these mortars such that more lime was exposed 

to the solution.  
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After replenishment, all solutions showed significant increase in calcium 

concentration which indicates that more lime exposed to test solutions due to 

higher amount of propagated cracks, as visually observed. After 180 days of 

storage, a significant drop in sulfate and magnesium as Figure 4.108 and 4.109 

reveal, followed by release of calcium was found in all test solutions stored at 

5°C. The lowest drop in sulfate was found in SC20 solutions, indicating lower 

sulfate where bound in an insoluble compounds.  

At 20°C, however, no remarkable release in calcium and reduction in sulfate 

and magnesium concentrations were found in all solutions (Figure 4.110). The 

concentration amounts were approximately equal in all test solutions at 20°C. 

It can be also noted that the higher the chloride in solution, the lower the 

reduction in sulfate. Mortar samples stored in all solutions at 20°C remained 

intact at this age of exposure. However, mortars stored at 20°C could be 

subjected to sulfate attack after a longer exposure period, as cement hydration 

products are not stable in the presence of sulfate and magnesium ions.  

 

 

Figure 4.107. Variation of calcium level in CEMI-LF solutions stored 180 days at 

5°C. 
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Figure 4.108. Variation of sulfate level in CEMI-LF solutions stored for 180 days at 

5°C. 

 

 

Figure 4.109. Variation of magnesium level of CEMI-LF solutions stored 180 days 

at 5°C. 
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Figure 4.110. Concentration of sulfate, magnesium and calcium ions in CEMI-LF 

solutions stored 180 days at 20°C. 

 

Test solutions for CEMI-GGBS mortar at 5 and 20°C:  

The variation of ion concentrations for sulfate, magnesium and calcium of test 

solutions for CEMI-GGBS mortar samples stored for 180 days at 5 and 20°C 

are shown in Figure 4.111 and 4.112, respectively.  It can be seen that sulfates 

remained at an almost constant level in SC20 solution at both temperatures 

after 180 days. However, sulfate only and SC5 solutions showed the lowest 

sulfate level at 5°C. This indicated that higher sulfate products formed or 

higher sulfate ingress in these mortars. Both surface samples showed 

significant amount of gypsum deposition, as indicated by the XRD and 

SEM/EDX results in Sections 4.5.1 and 5.6.  

Sulfate only and SC5 solutions showed also high reduction in concentration of 

magnesium compared with SC20 at 5°C. This was expected due to higher 

interaction and ingress as these mortars showed damage at this stage of 

exposure.  

As found by SEM/EDX in Section 4.6, magnesium can replace calcium in C-S-

H gel to form solid solutions of M-C-S-H, increasing the amount of calcium ions 

and silica gel in the pore solution. The availability of high concentrations of 

calcium and sulfate ion would promote the formation of gypsum. At 20°C, a 

noticeable reduction in magnesium and an increase in calcium concentration 

were also observed, as shown in Figure 4.112. This may indicate a similar 

scenario occurred for mortars stored at 20°C, in which the replacement 
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between Mg and Ca ions occurred due to the attack of C-S-H by magnesium. 

Since gypsum solubility is higher at higher temperature, the damage due to 

gypsum formation of mortar stored at 20°C would be expected to take a longer 

time. Higher concentration of calcium, occurred for composite sulfate and 

chloride solutions, compared with sulfate only solutions at both temperatures. 

    

 

Figure 4.111. Variation of sulfate, magnesium and calcium ions in CEMI-GGBS 

solutions after 180 days at 5°C. 

 

 

 
Figure 4.112. Variation of sulfate, magnesium and calcium ions in CEMI-GGBS 

solutions after 180 days at 20°C. 
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Test solutions for CEMI-PFA mortar at 5 and 20°C:  

Figure 4.113 and 4.114 show the variation of ion concentrations of sulfate, 

magnesium and calcium of test solutions for CEMI-PFA mortar samples stored 

for 180 days at 5 and 20°C, respectively.  Sulfate only solution at 5°C showed a 

clear reduction in the amount of sulfate and magnesium followed by increase in 

calcium level compared with composite solutions, which showed no significant 

change in the level of sulfate, magnesium ions and no noticeable release in 

calcium. This implied higher sulfate and magnesium interactions of mortar 

samples stored in sulfate only solution, which confirmed visually determined 

(Section 4.2, Figure 4.5) and XRD analysis results (Section 4.5.1). 

As mentioned earlier, the replacement of calcium in C-S-H gel by magnesium 

would result in increasing the concentration of calcium ions in the pore 

solution, and with of high amount of sulfate ions in solution would promote 

gypsum formation. However, at 20°C, no significant variations in ion 

concentrations were found after 180 days of exposure to all solutions, as shown 

in Figure 4.114.   

According to the results obtained, it is clear that the availability of chlorides in 

sulfate solution benefited CEMI-PFA mortar samples resistance against sulfate 

attack at this stage of immersion, particularly at 5°C. This could be related to 

the higher diffusion rate of chloride ions compared with sulfate ions that would 

result in rapid interaction with aluminates phases and consequently reduce 

sulfate interaction, as discussed previously. 

 

 

Figure 4.113. Variation of sulfate, magnesium and calcium ions in CEMI-PFA 

solutions after 180 days at 5°C. 
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Figure 4.114. Variations of sulfate, magnesium and calcium ions in CEMI-PFA 

solutions after 180 days at 20°C. 

 

4.8 pH measurement of test solutions: 

In this section, the pH of test solutions for the 20 mm mortar cubes made with 

different binders stored for 180 days at 5 and 20°C are presented and 

discussed. 

pH of CEMI-LF samples at 5 and 20°C: 

Figure 4.115 and 4.116 show the pH variation in CEMI-LF samples placed in 

water and test solutions at 5 and 20°C, respectively. After immersion, it can be 

seen that all solutions showed sharp increases in the pH, which was associated 

to leaching of alkalis from outer parts of cement mortars.  

The pH value of samples placed in water rapidly reached its maximum, of about 

12.3, and gradually decreased towards 8.5 through the time of the experiment 

at both temperatures. Because the pH became almost stable at around 9.0, it is 

most likely that initial dissolution of calcium hydroxide was followed by the 

precipitation of calcium carbonate.   

The pH of test solution showed a significant dependency on temperature and 

chloride level in solution. It can be noticed that the pH of all test solutions 

stored at 5°C were mostly higher than 10.5. At later ages, all test solutions were 

alkaline with pH higher than 11.0. However, at 20°C and after replenishment, 

all solutions showed a pH value lower than 10.0.  
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In case of sulfate only solution and before replenishment, it can be seen that 

the pH value almost stabilized at around 10.5. After replenishment, the pH 

increased sharply from a value of around 7.0 to reach 10.0 at 7 days and then 

it slightly increased to 10.5 at 137 days. Sulfate only solution showed 

continued increase in the pH and reached highest value of 11.5 at 180 days of 

immersion. It is postulated that the increased value in the pH was due to more 

lime being leached into the solution as a result of higher extent of deterioration 

as time progressed, as visually observed in Section 4.2. The chemical analysis 

shown in Section 4.7 of this test solution showed an increase in the amount of 

calcium ions, mainly attributed to leaching of calcium hydroxide. 

When 0.5% chloride was present in the sulfate solution (SC5), the solution 

maintained a pH value around 10.6 during the 49 days of immersion and then 

showed sudden increase to reach a highest value of 12.1 at 88 days of 

immersion. This sudden increase in the pH value may suggest incidence of 

more damage and more lime leached into the solution. It should be mentioned 

that SC5 mortar samples showed the earliest and the highest extent of attack, 

as visually observed (Section 4.2) and as indicated by chemical analysis 

(Section 4.7). After replenishment, again SC5 solution showed an increase in 

the pH value, and reached a maximum of 12.5 at 147 days of immersion. Such 

an increase in the pH value could be related to further degradation at the 

surface of the samples either by propagation of more cracks or surface 

deterioration, or both.  This was observed at low temperature but not at 20°C at 

this age.  

The composite sulfate and 1.0% chloride (SC10) solution also showed an 

increase in pH value, which reached 12.2 at 35 days exposure. The pH fell to 

11.0 at 56 days, and then rose to reach 12.1 at 88 days. The pH value 

remained above 10.5 during the early exposure period. After replenishment, 

also SC10 solution showed an increase in the pH value as time passed, to reach 

a value of 12.1 at 180 days of immersion. This increase in pH value also 

indicated increase in the extent of damage with time.  

In case of SC20, the solution showed slight increase in the pH value from 10.5 

at 7 days to 10.8 at 21 days followed by a sharp rise in the pH value from 10.8 

at 21days to 12.2 at 35 days. After that the pH remained almost stable at about 

12.2 until the solution was replenished at 90 days. Such a rapid increase in the 

pH could be associated with a higher rate of initial dissolution of portlandite 

into SC20 solution, as will be discussed in Chapter 6. During this immersion 
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period, SC20 mortars did not show any signs of visual damage. After 

replenishment, again this solution showed sharp increase in the pH to about 

10.3 between 99 to 137 days of immersion and reached a high value of 11.8 at 

180 days. Again, such an increase in the pH value could be related to damage 

that occurred at the surface of the samples which resulted in more lime 

becoming exposed to test solution, as visually observed. 

At 20°C, all solutions showed an increase in pH, but generally with lower 

values than at 5°C, which was probably due to decreased portlandite 

dissolution. However, no significant changes in pH were observed in any 20⁰C 

test solutions after replenishment and they mainly remained in the range of 

between 9 and 10. This indicates a lack of significant interactions between 

cement paste and the test solution. As mentioned in Section 4.2, visually, none 

of the mortar specimens stored at 20°C showed damage during the 180 days 

exposure period.   

With respect to the formation of thaumasite, Gaze and Crammond (2000) 

reported that thaumasite forms only in an alkaline environment with pH above 

10.5, and the results of the current study appear to agree with this. Further 

dissection is given in Chapter 6, regarding the role of the pH of composite 

sulfate and chloride solutions on thaumasite formation. 

 

 

Figure 4.115.pH change in CEMI-LF stored for 180 days at 5°C. 

 



Chapter 4: Performance of cement mortars subjected to sulfate and chloride exposure at 5 and 
                     20ċ. 
 

121 
 

 

Figure 4.116. pH change in CEMI-LF stored for 180 days at 20°C. 

 

pH of CEMI-GGBS samples at 5 and 20°C: 

The pH profiles of CEMI-GGBS solutions at 5 and 20°C are given in Figure 

4.117 and 4.118, respectively. The consumption of calcium hydroxide during 

surface carbonation and pozzolanic reactions resulted in maintaining a low pH 

value in all CEMI-GGBS solutions.  This was more obvious after solution 

replenishment as this was after most of the alkalis in the outer layer of mortar 

specimens had been leached into the solutions.  

It can be observed that the pH of test solutions depended on chloride 

concentrations and temperature. At 5°C and before the solutions were 

replenished, the sulfate only and SC5 solutions showed a gradual increase in 

the pH, where the former solution increased least, from a value of 10.0 at 7 

days to about 10.8 at 74 days, while the maximum for SC5 solution was 11.6 

at 74 days. The gradual increase in pH of these solutions may be related to 

increase in released alkalis into solutions as more sulfate diffused into the 

inner parts of the samples in contrast to SC20 solution in which a sharp rise in 

the pH from around 10.0 at 21 days to 11.5 at 35 days of immersion occurred.  

This was followed by a slight decrease in value. This decrease up to 35 days of 

immersion may be attributed to rapid interactions of chloride with cement 

paste in which Friedel’s salt initially formed and blocked the pores which 

reduced sulfate and chloride penetration into the mortar. The greater pH 

increase in the composite solution also related to the interaction of sodium 

chloride, as mentioned above.  
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At 20°C, the initial immersion period resulted in increases in pH of all solutions 

up to 35 day of exposure, with higher values for composite solutions. After that 

there was a noticeable drop, which was not the case for the 5°C tests. This 

reduction in pH at higher temperature may be related to the decrease in the 

dissolution of lime. 

After replenishment, the pH of test solutions for both temperatures dropped 

below the threshold pH value (10.5) for thaumasite formation, with lower values 

for the systems at 20°C, however, the pH remained low enough for the 

decalcification of C-S-H and the promotion of gypsum and as a result of most 

alkalis washed out into the solution. 

The slight increase of pH at 5°C with time may indicate that the inner part of 

the mortar samples was becoming exposed to the solution. Within this stage of 

immersion, as recorded in Section 4.2, visual damage was only observed in SC5 

samples.  However, at 20°C and after replenishment, the pH of all solutions 

remained almost constantly at a value lower than 9.0 which would favour the 

stability of calcium carbonate. Mortars stored in all solutions remained intact 

and no marks of damage were observed. 

It should be mentioned that the open microstructure, due to the high water to 

cement ratio used, prompted rapid interactions between sulfate, magnesium 

and chloride ions and the cement matrix.  The use of high water to binder ratio 

would have produced a mortar of relatively high permeability and because 

compared to standard cement, CEMI blended with GGBS would undergo slow 

initial hydration, it was expected that pH would increase during the first 90 

days of exposure of CEMI-GGBS mortars. 
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Figure 4.117. pH change in CEMI-GGBS solutions stored for 180 days at 5°C. 

 

 

 

Figure 4.118. pH change of CEMI-GGBS solutions stored for 180 days at 20°C. 

 

pH of CEMI-PFA samples at 5 and 20°C: 

The pH variations of CEMI-PFA solutions at 5 and 20°C are shown in Figure 

4.119 and 4.120, where in Section 4.2 damage was reported to these specimens 

stored for 180 days in sulfate only solution. On the other hand, samples placed 

in composite sulfate and chloride solutions remained intact and no such 

damage was observed within this period of immersion.  

The pH of test solutions showed dependency on chloride level and storage 

temperature, in that the composite solutions showed higher pH values than 
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sulfate only solutions. SC20 showed the highest increase of pH value to 11.9 at 

56 days of immersion, where as in SC5 the value was 11.6 at 74 days and in 

sulfate only solution there was no such increase in pH, but instead it remained 

at around 10.3 during the 90 days of immersion. This was probably due to 

formation of magnesium hydroxide which consumed part of the hydroxyl ions.  

As the pozzolanic reaction between PFA and portlandite during cement 

hydration would result in less calcium hydroxide being available in the system, 

it would take longer to compensate the reduction of pH at early stage of 

exposure. 

After replenishment when most of available alkalis on mortar surfaces had 

already leached into the solutions, the pH of all solutions fell in value.  In the 

20°C systems it attained an almost constant value at around 9.5, while at 5°C, 

the value was around 10.0. At such low pH values, the C-S-H would be 

subjected to decalcification which would promote gypsum formation in 

presence of high level of sulfate. 

 

 

 

 

Figure 4.119. pH change in CEMI-PFA solutions stored for 180 days at 5°C. 
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Figure 4.120. pH change of CEMI-PFA solutions stored for 180 days at 20°C. 

 

4.9 The effect of chloride concentration on solubility of 

calcite and gypsum 

The results of solubility of calcite and gypsum are presented in this section. 

Figure 4.121 shows the saturation level of calcium ions of CaCO3-NaCl-MgSO4-

H2O-CO2 and CaSO4-NaCl-MgSO4-H2O-CO2 schemes at 5°C from which the 

affects of chloride concentration on the solubility of both calcite and gypsum 

are very clear. Furthermore, the solubility of calcite decreased as chloride 

concentration increased in that 0.5% chloride resulted in higher calcite 

solubility than 2.0% chloride did.  In the tests calcium concentration reached 

204 mg/l for SC5 compared with 32 mg/l for SC20.  

The solubility of gypsum increased as chloride concentration increased where 

the solution made with 2.0% chloride showed higher gypsum solubility, in 

which the calcium concentration reached 283 mg/l compared with 127 mg/l 

for SC5.  

Higher carbonate availability would raise the potential for thaumasite formation 

Irassar (2009a). An investigation by Duan and Li (2008) demonstrated that 

calcite solubility increased as chloride concentration increased up to certain 

amount and then decreased. In this study, in which sulfate was also present, 

Figure 4.121 indicates that calcite has higher solubility in combined sulfate 

and 0.5% chloride solution than solution containing combined sulfate and 

2.0% chloride. 
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Visual assessment (Section 4.2) and mass loss (Section 4.3) showed that the 

extent of attack due to thaumasite formation depended on chloride 

concentration in solution, in which limestone mortar stored in SC5 showed 

greatest damage compared to those stored in SC10 and SC20 chloride. This 

behaviour corresponds with the calcite solubility tests, in which a higher 

calcium and carbonate release occurred for a low chloride concentration (SC5), 

compared to that of SC20. It seems that this is a significant factor affecting 

thaumasite formation, which is enhanced by the presence of calcium and 

carbonate ions in the pore solution. 

Moreover, it can be also seen (Figure 4.121) that as the chloride level increases 

in sulfate solutions, the solubility of gypsum increases. This is also in 

agreement with the findings of XRD (Section 4.5.1), in which the intensity of 

gypsum decreased as the chloride increases in solution. Thaumasite formation 

considered to be a slow process compared to gypsum and ettringite formation 

and is the last phase formed in sulfate attack, and it may require gypsum or 

ettringite to initially be formed, as previously reported by Ramezanianpour and 

Hooton,(2013).  

 

 

 

Figure 4.121. Calcium ion levels of CaCO3-NaCl-MgSO4-H2O-CO2 and CaSO4-NaCl-

MgSO4-H2O-CO2 schemes at 5°C. 
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4.10 Summary 

The main findings of these investigations into the performance of CEMI, CEMI 

blended with10%LF, CEMI blended with 50%PFA and CEMI blended with 

70%GGBS mortar specimens subjected to combined action of sulfate and 

chloride in terms of thaumasite form of sulfate attack at 5 and 20°C are 

presented in this section.  

Most available research reported in the literature concerns the investigation of 

the effect of chloride on sulfate attack at 20°C, in which ettringite would be the 

main deterioration product. Furthermore, an extensive literature search 

identified very few available studies into the effect of chloride on sulfate attack 

at low temperatures and under conditions conducive to thaumasite formation.  

Even then the results were conflicting, with some studies indicating mitigation 

of attack and others enhancement of attack.  This is probably due to the 

complexity of the chemical interactions at various concentrations.  

In addition, the use of mineral admixtures such as PFA and GGBS are 

reportedly effective in preventing TSA at 5°C; however, the presence of chloride 

alongside sulfate at low temperature was found to have a negative effect on the 

performance of concrete made with these components.  Accordingly, the 

performance of mortar specimens made with different binders subjected to 

sulfate and chloride at 5 and 20°C was evaluated in terms of visual 

observation, mass change, length change, monitoring of pH and chemistry of 

test solutions and mineralogy of deteriorated materials.  

The experimental results obtained from this study indicate that the presence of 

chloride and its concentration have a significant impact on the performance of 

mortar in sulfate exposure in such conditions. The following findings can be 

drawn from the results: 

 Early evidence  of damage due to TSA were observed in CEMI and CEMI 

blended with 10%LF mortar samples exposed to DS4, composite DS4 and 

0.5% chloride and composite DS4 and 1.0% chloride solutions stored at 5°C. 

Deterioration in the form of cracking and deposition of white materials 

appeared only after 100 days of storage in these solutions where  CEMI 

blended with 10%LF experienced three times greater deterioration than 

CEMI mortar, as determined by mass loss shown in Figure 4.11and 4.12.    
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 After 360 days exposure, both CEMI and CEMI blended with 10%LF mortar 

specimens exposed to sulfate only (S), composite sulfate and 0.5% chloride 

(SC5) and composite sulfate and 1.0% chloride (SC10) solutions at 5°C 

showed clear evidence of thaumasite attack, whereas no sign of deterioration 

occurred in specimens exposed to composite sulfate and 2.0 chloride (SC20) 

solutions. Samples exposed to combined sulfate and 0.5% chloride (SC5) 

solution stored at 5°C showed the largest deposit of thaumasite on the outer 

layer of the specimens (Figure 4.7).   

 At 630 days of exposure CEMI blended with 10%LF mortar samples suffered 

from extensive thaumasite attack at 5°C with greater damage to samples in 

combined sulfate and 0.5% chloride (SC5) compared to sulfate only solution. 

It is probable that the effect of chloride on extent of attack became more 

evident as temperature decreased because of enhanced TSA at 5°C. As 

shown in Figure 4.10, extensive deterioration was accompanied by loss of 

edges and corners with large amounts of mushy materials around the 

samples and in the bottom of containers. 

 XRD (Figure 4.21), IRS (Figure 4.34) and SEM/EDX (Figure 4.51) confirm 

that the deterioration observed in CEMI and CEMI blended with10%LF 

specimens stored at 5°C, with or without chloride presence, was due to 

thaumasite or thaumasite-ettringite solid solution formation. 

 At 20°C and after 630 days of exposure, SEM/EDX assessment (Figure 4.70 

and Figure 4.72) of CEMI blended with 10%LF mortars in sulfate only and 

combined sulfate and 0.5% chloride (SC5) solutions showed the attack was 

due to thaumasite formation. 

 Assessment by mass loss indicated that CEMI and CEMI blended with 

10%LF mortar specimens stored in composite sulfate and 0.5% chloride 

(SC5) at 5°C had the greatest deterioration degree due to thaumasite and 

secondary gypsum formation. This depends on carbonate content and 

chloride level in sulfate solution. The sequence of degradation degree of both 

CEMI and CEMI blended with 10%LF mortar stored in different solutions at 

5°C was as following with relatively higher deterioration degree in case of 

CEMI blended with 10%LF mortars (Figure 4.11and 4.12): Combined sulfate 

and 0.5% chloride (SC5) > Sulfate only (S) > Combined sulfate and 1.0% 

chloride (SC10) > Combined sulfate and 2.0% chloride (SC20). At 20°C, 

although, CEMI blended with 10%LF mortars stored in SC5 showed cracks 
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on mortar surface, no mass loss was found in case of mortars stored in any 

solutions at 20°C.  

 Evaluation by length change at 5°C (Figure 4.19) indicates that the extensive 

formation of thaumasite in the outer layers of CEMI and CEMI blended with 

10%LF mortar stored in composite sulfate and 0.5% chloride does not 

contribute to any significant length change of mortar bars.  

 At 5°C, the pH (Figure 4.115) measurement of CEMI blended with 10%LF 

samples showed that pH generally remained above the threshold required for 

stability of thaumasite (pH=10.5) and before any mark of attack was 

observed. For samples stored in composite sulfate and 0.5% chloride 

solution, pH increased gradually after 56 days of immersion corresponding 

to rapid attack on these samples which then resulted in greater damage and 

more of the inner parts of samples being exposed to sulfate solution. 

However, the high pH of solution made with 2.0% chloride due to higher 

initial CH dissolution may have protected the samples from sulfate attack.  

 The absence or low chloride peaks in thaumasite structure (Figure 4.53) 

indicate its catalytic role on thaumasite formation. 

 

 Chloride binding capacity of the cement matrix is reduced within the 

degraded materials where thaumasite was the dominate sulfate phase 

(Figure 4.51). The consequence of the reduction in chloride binding capacity 

of limestone cement mortars due to thaumasite formation will be subjected 

to further discussion in Chapter 5. 

 The chemical analysis of test solutions (Figure 4.98 to 4.100) further 

confirmed the highest extent of damage to the outer layers of CEMI and 

CEMI blended with 10%LF specimens stored in composite sulfate and 0.5% 

chloride (SC5) at 5°C. This solution showed the largest release in calcium 

and highest reduction in sulfate and magnesium concentrations.  

 Superior performance against sulfate attack was found where cement 

mortars incorporated 50%PFA in that no visual damage was observed in any 

samples after 630 days in any test solutions at both temperatures (Figure 

4.9). However, the SEM/EDX analysis (Figure 4.77) showed small traces of 

thaumasite were formed in PFA mortars at 5°C, which suggests that with 

time TSA will occur.  
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 The presence of 0.5% or 2.0% chloride in DS4 sulfate solution led to a 

further improvement in the performance of PFA mortar samples against 

sulfate attack (Figure 4.31). This may be attributed to the high aluminates 

contents in its composition. This resulted in high chloride binding in form of 

Friedel’s salt that blocked the pores and reduced the opportunity for 

interaction between aluminates and sulfate ions. This seemed not to be the 

case when chloride was present in GGBS mortars, placed in DS4 solution as 

indicated by XRD (Figure 4.32) and SEM/EDX (Figure 4.95). 

 CEMI blended with 70% GGBS mortar samples showed also good 

performance against sulfate attack, as they did not show any visual damage 

within 630 days of exposure to any test solutions at both temperatures 

(Figure 4.9). However, the XRD and SEM/EDX analysis of mortar samples 

placed in sulfate only and composite sulfate and 0.5% chloride at 5°C 

showed clear deposition of gypsum. This indicates that GGBS mortars stored 

in these solutions could be subjected to sulfate attack involving gypsum 

formation, as confirmed in 20mm samples (Figure 4.95). 

 At 20°C, the presence of chloride seemed to mitigate sulfate attack, with the 

only exception being CEMI blended with 10%LF specimens stored in 

composite sulfate and 0.5% chloride, where after 630 days of exposure 

cracks at edges was observed (Figure 4.8). The damage was related to 

thaumasite formation, as indicated by XRD (Figure 4.23), IR (Figure 4.36) 

and SEM (Figure 4.72) results.    

 As indicating by SEM/EDX (Figure 4.77) analysis, mortars made with 50% 

PFA replacement exposed to sulfate only solutions could be subjected to TSA 

but with longer exposure time. However, the presence of chloride in 

solutions mitigates sulfate attack in PFA mortars. Pulverised fuel ash (PFA) 

mortars stored in combined sulfate and chloride solutions have the highest 

chloride binding capacity, as indicated by XRD results. This may be related 

to the higher aluminates content in the composition of PFA compared with 

the other cements used in this study.  

 Also, it is indicated by SEM/EDX analysis that incorporation of 70%GGBS of 

cement mortars exposed to sulfate only (Figure 4.83) and combined sulfate 

and 0.5% chloride solution (Figure 4.95) would be subjected to sulfate attack 

due to gypsum precipitation. Evidence of thaumasite formation was also 

detected in all GGBS mortars (Figure 4.86). The high water to binder ratio 
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used in this study should be considered when considering about the 

performance of GGBS and PFA cements.  

 Mortars made with 50%PFA as cement replacement showed the most 

effective performance against sulfate attack at low temperature.  

 A 0.5% chloride concentration combined in a DS4 (BRE Ground aggressivity 

Class) sulfate solution (Figure 4.10) accelerated thaumasite formation in 

mortar specimens of CEMI and CEMI blended with 10%LF leading to early 

onset of specimen deterioration in comparison with sulfate only solution or 

solutions with higher chloride concentrations. At the higher chloride 

concentrations studied, thaumasite formation was delayed leading to 

mitigation at 2.0% chloride during the period of study.   

 The study demonstrates that the underlying cause of the effect chloride has 

on the resistance to TSA is the control it exerts over the solubility of calcite 

and gypsum, and this effect is concentration sensitive (Figure 4.121). Calcite 

solubility is increased at 0.5% chloride concentration leading to greater 

availability of CO3 in the pore solution which enhances thaumasite 

formation and mortar/concrete deterioration. At higher chloride 

concentration, calcite solubility is reduced, favouring the formation of 

Friedel’s salt which it is believed reduces chemical ingress/interaction 

through a physical barrier effect. 

 The low pH values of pore solution of PFA and GGBS mortar specimens may 

play a role on promoting gypsum formation.    
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5. Corrosion behaviour of steel rebars embedded 

in cement mortars subjected to sulfate and 

chloride exposure 

 

 

5.1 Introduction  

This chapter presents the evaluation of corrosion of steel rebars embedded in 

cement mortars made with CEMI and CEMI blended with 10%LF, 50%PFA and 

70% GGBS exposed for 900 days to solutions of composite sulfate (0.6% SO4
2- 

as magnesium sulfate) and chlorides (0.5 and 2.0% Cl-) at 5 and 20°C. 

Evaluation was made by means of linear polarisation resistance (LPR), visual 

inspection of state of rebar surfaces and chloride diffusion and carbonation 

depth measurements at the end of the experiment. The oxygen permeability 

and porosity of mortars made with the different binders were also examined. X-

ray diffraction (XRD) was carried out on dry materials collected from steel-

mortar interfaces, together with scanning electron microscopy (SEM) and 

energy dispersive X-ray (EDX) analysis which were performed on steel-mortar 

interfaces of selected sound and degraded mortar specimens at 5°C. 

Details about mix proportions, mortar casting, curing, preparation of test 

solutions and all experimental details are given in Chapter 3. 

 

5.2 Visual assessment of mortars after 900 days of 

exposure 

Figure 5.1 to 5.4 show the corrosion suffered by specimens (50mm Ø x 100mm 

H) stored for 900 days in composite sulfate and 0.5% chloride (SC5) and 

composite sulfate and 2.0% chloride (SC20) solutions at 5 and 20°C. As 

explained in Section 4.2, the extent of deterioration depends upon chloride 

level, binder type and temperature.  

At 5°C, CEMI and CEMI-LF mortars stored in SC5 exhibited deterioration, more 

serious in the latter, at the bases of the samples. It can also be observed in 

Figure 5.5 that the damage occurred few millimetres underneath a carbonated 
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layer. No signs of damage were observed for any specimens placed in SC20 

solution at 5°C.  

At 20°C, all mortar specimens remained intact with no visible damage in all 

solutions. Moreover, mortar specimens made with CEMI-GGBS and CEMI-PFA 

placed in solutions at 5 and 20°C performed well against sulfate attack. 

  

    
CEMI CEMI-LF CEMI-PFA CEMI-GGBS 

Figure 5.1. Mortar specimens stored for 900 days in SC5 at 5°C. 

 

 

    

CEMI CEMI-LF CEMI-PFA CEMI-GGBS 

Figure 5.2. Mortar specimens stored 900 days in SC5 at 20°C. 
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CEMI CEMI-LF CEMI-PFA CEMI-GGBS 

Figure 5.3. Mortar specimens stored for 900 days in SC20 at 5°C. 

 

       

 
 

    
CEMI CEMI-LF CEMI-PFA CEMI-GGBS 

Figure 5.4. Mortar specimens stored for 900 days in SC20 at 20°C. 
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Figure 5.5. Degraded part of CEMI mortar at 5°C shown in Figure 5.1. 

 

 

5.3 Open porosity and Oxygen permeability 

measurements 

In this section, the change in porosity and permeability of mortar specimens 

made with different binders in SC5 at 5°C are evaluated. Porosity was 

measured using 50mm mortar cubes after 28, 180 and 270 days. 

After 900 days, oxygen permeability of core samples (Figure 5.6) collected from 

sound parts of mortar specimens were also evaluated and compared with the 

initial permeability (after 28 days immersion in water). The results are 

summarised in Table 5.1. 

 

 

 

Thin carbonated 

layer  

Degraded materials  
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Table 5.1.Summary of air permeability and open porosity measurements. 

Mix 

Oxygen permeability x 10-15  

(m2) 

Open porosity 

(%) 

Days 

28 day in  water 900 day in SC5 28  180  270  

CEMI  5.17   1.57 20.1 18.8 17.3 

CEMI-LF 9.04 1.79 20.9 19.2 18.0 

CEMI-PFA  8.15  0.90 23.3 15.9 14.0 

CEMI-GGBS  6.43  0.89 23.8 14.0 13.1 

 

 

As Figure 5.7 demonstrates after 28 days of immersion replacement of CEMI by 

10% limestone filler increased permeability by approximately 75% equivalent to 

standard cement (CEMI).  This may be due to the dilution effect of limestone 

filler which reduced cement hydration products and consequently increased the 

porosity. This probably led to rapid ingress of sulfate and interaction in this 

mortar and it would also provide a more open system for chloride penetration 

compared to other mortars.  

CEMI-PFA and CEMI-GGBS mortar samples exhibited increase in initial 

permeability by about 57 and 24%, respectively, compared with standard 

cement, which may be attributed to the slow pozzolanic reactions of the 

cements. As time passed, and after 900 days of exposure, however, CEMI-PFA 

and CEMI-GGBS samples showed great reduction in permeability by about 42 

and 43%, respectively, giving values much lower to those of standard cement. 

The reduction in permeability and porosity values were observed for all mortars 

but were more evident in those containing PFA and GGBS.    

CEMI-GGBS and CEMI-PFA samples also displayed great decreases in open 

porosity with time (Figure 5.8) compared with those for CEMI and CEMI-LF. 

After 270 days of exposure, CEMI-GGBS and CEMI-PFA specimens showed 

reduction in open porosity by about 45 and 40%, respectively, compared with 

approximately 14% for CEMI and CEMI-LF (Values corresponds to those at 28 

days immersion in water). This may be attributed to pore size refinement of 

cement past as a result of pozzolanic reactions of mortars made with GGBS and 

PFA, as reported by Leng et al., (2000). As expected and as Figure 5.9 explains 

the lower the porosity of mortars, the lower permeability.     
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Figure 5.6. Drilled core for permeability test after 900 days of exposure. 

 

 

 

 

 

 

 

Figure 5.7. Variation in oxygen permeability for mortar samples made with 

different binders. 
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Figure 5.8. Changes of open porosity for mortars stored in SC5 at 5°C. 

 

 

Figure 5.9. Open porosity vs. oxygen permeability for mortars with different 

binders. 

 

 

5.4 Determination of carbonation depth 
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atmospheric carbon dioxide. Since, calcium hydroxide is not stable in presence 

of sulfate, it can be expected that mortar with higher carbonation depth would 

stand longer against sulfate attack. 

Pictures showing all the phenolphthalein treated mortars are given in 

Appendix. A typical treated mortar is shown in Figure 5.10. In the non-

carbonated part of the specimen, where the mortar was still highly alkaline, a 

purple-red colour was obtained after spraying with phenolphthalein, whereas in 

the carbonated part of the specimen where the alkalinity of mortar was 

reduced, no coloration occurred. Generally, low carbonation depth values were 

observed for all mortars and this was expected due to the short period of 

exposure to air (21 days). However, CEMI-GGBS and CEMI-PFA had higher 

carbonation depths compared with CEMI and CEMI-LF mortars. 

The higher permeability of CEMI-GGBS and CEMI-PFA mortars at early stage 

(during initial curing) would allow the access of carbon dioxide into these 

specimens, leading to greater carbonation depths.  It was also reported by 

Kinoshita et al. (2014) that blended cement systems with fly ash or slag showed 

a larger CO2 gain than that of standard OPC cement, which may also explain 

why CEMI-PFA and CEMI-GGBS mortars showed higher carbonation depths. 

No clear difference was observed in carbonation depths for mortars made with 

CEMI and CEMI-LF. However, the difference was more obvious for CEMI-PFA 

and CEMI-GGBS specimens. Mortars made with CEMI-PFA showed the highest 

carbonation depths, indicating its higher permeability and porosity during 

initial curing, as explained in Section 5.3. 

With sulfate exposure mortar/concrete with higher depth of carbonation may 

resist sulfate attack due to the consumption of portlandite in the carbonated 

zone, which otherwise is highly unstable in presence of sulfate.  

The increase in the carbonation depths for mortars made with fly ash and slag 

as cement replacement may also cause a rise in electrical resistivity which is 

considered (Morris et al., 2002) to be a good indicator for evaluating corrosion 

risk.    

The relationship between the resistivity measurement and the carbonation 

depth by phenolphthalein measurement was also investigated by Claisse (1988) 

who found that a resistivity increases by a factor of up to about 10 for silica 

fume concrete. Morris et al.(2002) based their assessment of the value of 
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electrical resistivity to evaluate corrosion risk on research in which steel rebars 

appeared to behave passive state when concrete resistivity was higher than 30 

kΩ.cm and active state when the resistivity dropped to 10 kΩ.cm. 

 

 

 

Figure 5.10. Typical treated mortar by phenolphthalein solution. 
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Table 5.2. Summary of chloride contents at different depths. 

Mix Solution 

Depth 

(mm) 

Chloride content (% mass of mortar) 

5°C 20°C 

90  

   

180 

days  

270    90  

 

180 

days  

270  

CEMI  

C20 

0-5 0.20 - 0.62 0.30 - 0.54 

5-10 0.17 - 0.55 0.27 - 0.48 

10-15 0.07 - 0.40 0.17 - 0.40 

15-20 0.02 - 0.27 0.07 - 0.26 

SC20 

0-5 0.33 - 0.81 0.20 - 0.83 

5-10 0.20 - 0.63 0.17 - 0.73 

10-15 0.10 - 0.45 0.10 - 0.55 

15-20 0.07 - 0.24 0.03 - 0.36 

CEMI-LF 

C20 

0-5 0.24 - 0.93 0.23 - 0.79 

5-10 0.17 - 0.77 0.20 - 0.65 

10-15 0.13 - 0.72 0.13 - 0.56 

15-20 0.11 - 0.47 0.10 - 0.43 

SC20 

0-5 0.20 - 0.90 0.23 - 0.62 

5-10 0.17 - 0.71 0.17 - 0.55 

10-15 0.13 - 0.63 0.13 - 0.40 

15-20 0.07 - 0.47 0.10 - 0.27 

CEMI-PFA 

C20 

0-5 0.20 0.56 - 0.23 0.53  - 
5-10 0.22 0.52  - 0.16 0.43 - 
10-15 0.11 0.37 - 0.13 0.37 - 
15-20 0.07 0.29  - 0.1 0.23 - 

SC20 

0-5 0.20 0.47  - 0.20 0.46 - 

5-10 0.18 0.35  - 0.19 0.35 - 

10-15 0.12 0.28 - 0.10 0.24 - 

15-20 0.06 0.25 - 0.07 0.23 - 

CEMI-GGBS 

C20 

0-5 0.33 1.44 - 0.33 1.41 - 

5-10 0.12 0.92 - 0.15 0.75 - 

10-15 0.09 0.46 - 0.08 0.46 - 

15-20 0.01 0.41 - 0.02 0.35 - 

SC20 

0-5 0.30 1.35 - 0.33 1.32 - 

5-10 0.14 0.77 - 0.10 0.65 - 

10-15 0.07 0.42 - 0.06 0.36 - 

15-20 0.02 0.32 - 0.02 0.36 - 

 

As expected, the chloride content decreased with depth, and the highest 

chloride concentration occurred in the 0-5 mm surface layer where the mortar 

was in direct contact with the test solutions. Expected increases in chloride 

content as time passed were observed for all samples.  

The chloride contents at different depths showed dependency on exposure 

period, binder type and presence of sulfate in composite solution, as Figure 

5.11  to 5.18 demonstrate.  

At 5°C (Figure 5.11) the presence of sulfate in composite solution for 90 days 

increased chloride content for CEMI mortars, which may indicate propagation 

of microcracks in SC20 mortars.  At 20°C (Figure 5.12) lower chloride contents 
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were observed in mortars placed in composite solution than those in C20. This 

may be due to blocked mortar pores by sulfate products. 

After 270 days of exposure, the presence of sulfate in composite solution stored 

at both temperatures led to increase chloride concentrations at different 

depths, probably due to the propagation of new microcracks.    

In case of CEMI-LF mortars (Figure 5.13 and 5.14) after 90 days of immersion 

the mortars showed slight reduction in chloride content where this was greater 

for SC5 than SC20. After 270 days the presence of sulfate in SC20 solution 

reduced chloride ingress, which may be attributed to the formation of sulfate 

products which filled the open pores.  

Incorporation of 50% PFA had no positive effect against chloride ingress after 

90 and 180 days of exposure, as Figure 5.15 and 5.16 illustrates. Higher 

chloride contents were observed for most depths compared to CEMI. This may 

be due to the low pozzolanic activity of PFA, as indicated by permeability and 

porosity results shown in Section 5.3. Fly ash has a relatively low surface area 

and pozzolanic activity, thus at normal temperatures the pozzolanic reaction is 

very slow (Mehta and Gjørv, 1982).   

However, with time and due to pore refinement of fly ash mortars, as indicated 

by permeability results after 900 days of immersion and as also reported by 

Thomas et al. (1999), lower paths would be available for chloride ingress. In 

addition, the high aluminate content of PFA cement would chemically bound 

chloride (Section 4.5.1 in Chapter 4), resulting in reduction in the amount of 

free chloride in the pore solution. 

It can be seen in Figure 5.17 and 5.18 that, replacement by 70% slag caused 

the greatest reduction in chloride content at deeper depths. The presence of 

sulfate in composite solutions at both temperatures also led to decreased 

chloride ingress.  
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Figure 5.11. Chloride contents for CEMI mortars stored 90 and 270 days at 5°C. 

 

 

 

 

Figure 5.12. Chloride contents for CEMI mortars stored 90 and 270 days at 20°C. 
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Figure 5.13. Chloride contents for CEMI-LF mortars stored 90 and 270 days at 

5°C. 

 

 

 

 

 

Figure 5.14. Chloride contents for CEMI-LF mortars stored 90 and 270 days at 

20°C. 
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Figure 5.15.Chloride contents for CEMI-PFA mortars stored 90 and 180 days at 

5°C. 

 

 

 

 

 

Figure 5.16. Chloride contents for CEMI-PFA mortars stored 90 and 180 days at 

20°C. 

 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

2.5 7.5 12.5 17.5 

C
h

lo
ri

d
e

 c
o

n
te

n
t 

(%
) 

Depth from surface (mm) 

C20 90 days 

SC20 90 days 

C20 180 days 

SC20 180 days 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

2.5 7.5 12.5 17.5 

C
h

lo
ri

d
e

 c
o

n
te

n
t 

(%
) 

Depth from surface (mm) 

C20 90 days 

SC20 90 days 

C20 180 days 

SC20 180 days 



Chapter 5: Corrosion behaviour of rebars in cement mortars subjected to sulfate and chloride 
                      exposure. 
 

146 
 

 

Figure 5.17. Chloride contents for CEMI-GGBS mortars stored 90 and 180 days at 

5°C. 

 

 

 

 

 

Figure 5.18. Chloride contents for CEMI-GGBS mortars stored 90 and 180 days at 

20°C. 
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5.5.2 Chloride diffusion:   

In this section, the apparent chloride diffusion coefficient for cement mortars 

made with different binders stored in chloride only (2.0%) and composite 

sulfate and 2.0% chloride solutions at 5 and 20°C were evaluated and the 

results for different chloride profiles are presented in Table 5.3 and Figure 5.20.  

The error function solution to the Fick’s second law (Section 3.6.13 in Chapter 

3) was fitted to the exponential fit, which showed good correlation with the 

experimental chloride profiles, to calculate the apparent chloride diffusion 

coefficient. Surface chloride concentration (Cs) values were estimated from the 

best fit (exponential fit) to experimental data (Section 5.5.1) and then diffusion 

coefficient (D) values were calculated by iteration to generate the best fit by 

least squares.  

Figure 5.19 shows an example for the exponential fit of the chloride profile for 

CEMI mortars stored 90 days in SC20 at 5°C. It should be mentioned that the 

solutions were replenished every 90 days. 

 

 

 

 

 

 

Figure 5.19. Chloride profile for CEMI mortars stored 90 days in SC20 at 5°C. 

 

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0 5 10 15 20 

C
h

lo
ri

d
e

 c
o

n
te

n
t 

(%
) 

Depth from surface (mm) 

Expermintal  data 

Exponential fit 



Chapter 5: Corrosion behaviour of rebars in cement mortars subjected to sulfate and chloride 
                      exposure. 
 

148 
 

Table 5.3. Chloride diffusion coefficient and surface concentrations (least squares 

best fit). 

Mix Age (days) Solution     

Best fit values 

D (× 10-12 m2/s) Cs  (% mortar) 

    5°C          20°C        5°C           20°C 

CEMI 

90 
C20 8.5 14.9 0.27 0.38 

SC20 7.0 11.6 0.44 0.26 

270 
C20 9.0 11.9 0.73 0.62 

SC20 5.4 8.9 0.98 0.98 

CEMI-LF 

90 
C20 22.6 24.3 0.27 0.27 

SC20 21.2 23.3 0.24 0.26 

270 
C20 13.9 13.7 1.04 0.88 

SC20 12.8 9.1 0.99 0.73 

CEMI-PFA 

90 
C20 19.6 22.1 0.26 0.26 

SC20 18.1 17.6 0.25 0.25 

180 
C20 17.5 14.4 0.65 0.61 

SC20 15.4 12.3 0.52 0.53 

CEMI-GGBS 

90 
C20 2.7 3.7 0.50 0.48 

SC20 3.5 2.0 0.45 0.55 

180 
C20 4.5 3.8 1.82 1.80 

SC20 3.7 3.3 1.75 1.71 

 

 

 

 

 

 

Figure 5.20. Chloride diffusion coefficients for mortars with different binder. 
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 CEMI and CEMI-LF mortars:   

The chloride diffusion coefficients for CEMI and CEMI-LF mortar specimens 

stored in composite sulfate and 2.0% chloride solutions at 5 and 20°C are given 

in Figure 5.21.  

The diffusion coefficient after 90 days of exposure ranged between 7 and 

24.3x10-12 m2/s, which indicates high diffusivity characteristic of CEMI and 

CEMI-LF mortars. This is expected because of the high water to binder ratio 

used in this study (W/B=0.6). CEMI-LF mortars showed higher diffusion values 

than CEMI. An increase in diffusion coefficient by up to 3 times was observed 

for CEMI-LF compared to CEMI. This may be attributed to the lower availability 

of clinker which in turn increased the water to cement ratio compared to that 

without replacement. Increase in the volume of macro-pores in mortar made 

with limestone filler was reported by Moukwa, (1989).  

As time progressed, diffusion values declined in all mortars, probably due to 

increase in cement hydration products which resulted in compacted 

microstructures. 

It can also be observed that the diffusion coefficient for mortars stored for 90 

and 270 days in composite sulfate and 2.0% chloride solution were lower than 

those stored in 2.0% chloride only solutions. This may be related to the 

formation of sulfate products which filled pores at this stage of immersion, as 

also suggested by Zuquan et al. (2007). However, at a longer exposure period 

sulfate attack would result in more rapid ingress of chloride. The generation of 

excessive expansive thaumasite crystals (Section 4.6 in Chapter 4) in pores and 

around aggregate particles would give rise to the rapid ingress of chloride into 

mortars, as suggested by Slater et al. (2003). Thus, higher chloride diffusion is 

expected in case of mortars exposed to SC5, which showed visual damage, than 

those in SC20, as confirmed later by corrosion measurement shown in Section 

5.8 and 5.9. 
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Figure 5.21. Chloride diffusion coefficient for CEMI and CEMI-LF mortars stored 

90 and 270 days in chloride only (C20) and composite sulfate and 2.0% chloride 

(SC20) solutions at 5 and 20°C. 
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the diffusion was half that of standard cement. It was reported by Leng et al. 

(2000) that replacement by fly ash or slag can improve resistance to chloride 

penetration which they attributed to the following factors:  

1. In PFA and GGBS concretes more calcium silicate hydration products 

are present in the concrete matrix and may therefore adsorb more 

chloride ions and block diffusion paths. 

2. The pore size and pore shape are improved due to the replacement with 

fly ash and slag. 

3. PFA and GGBS have more C3A which can adsorb more chlorides to form 

Friedel’s salt. 

 

It was reported by Claisse (1988) that the initial electrical current flows though 

a concrete sample depends mainly on the mobility of hydroxyl ions in the pore 

solution. Claisse (1988) attributed the increase in resistivity that occurs in 

silica fume concrete to the consumption of calcium hydroxide by the pozzolan. 

Since hydroxyl ions are consumed in pozzolanic reactions that occur with PFA 

and GGBS, concretes and mortars containing these binders are also expected 

to have high electrical resistivity, where the increase would depend on the 

amount of pozzolan present. 

 

  

 

Figure 5.22. Chloride diffusion coefficient for CEMI-PFA mortars stored for 90 and 

180 days in chloride only (C20) and composite sulfate and 2.0% chloride (SC20) 

solutions at 5 and 20°C. 
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Figure 5.23. Chloride diffusion coefficient for CEMI-GGBS mortars stored in 

chloride only (C20) and composite sulfate and 2.0% chloride (SC20)  

solutions at 5 and 20°C. 
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Thaumasite was also detected in the 5°C sample. Instead, relatively strong 

peaks for portlandite and moderate peaks for Friedel’s salt were detected in 

20°C sample, indicating the existence of a protective layer with high pH value 

surrounding the steel bar.  

 

 

Figure 5.24. XRD pattern for CEMI-LF interface samples stored in SC5 at 5°C (Top, 

red) and 20°C (Bottom, blue). 

 

 CEMI-PFA samples in SC5 at 5 and 20°C: 

The XRD patterns in Figure 5.25 indicate that ettringite was present in 

relatively small amounts. The quantities of portlandite in CEMI-PFA samples 

were also low, as indicated by its relatively small peak intensities. This was due 

to both the dilution of standard cement and the pozzolanic reaction of PFA 

which would result in less CH and higher C-S-H gel production in the matrix. 

However, the reduction does not necessarily mean that the corrosion risk of 

steel bars in concrete/mortar also increases as factors such as the permeability 

and diffusion also control the rate of corrosion. 

Instead, Friedel’s salt was detected as relatively strong peaks in both samples, 

with higher peak intensities at 20°C, reflecting the high chloride binding 

capacity feature of fly ash cement and the increase in this as temperature 

increases. Because Friedel’s salt is unstable when the pH value of pore solution 

is lower than 10, its presence with relatively moderate peak intensity in 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

5 10 15 20 25 30 35 40 45 50 55 

A
b

so
lu

te
 i

n
te

n
si

ty
  

2 Theta, degrees 

T- Thaumasite 

E-Ettringite 

G-Gypsum 
Q-Quartz 

C-Calcite 

P- Portlandite 

 

Q 

 G 

 

E/T 

 

F 

 

Q 

 

E 

 

C 

 

C 

 

C

  

 

C 

 

P 

 

E 

 
G

  

 

P 

 

   

P 

 

E 

 

P 

 

G 

 

G 

 

F 

 

   

P 

 

Q 

 

Q 

 

   

P 

 

E T 

 

E

   
C 

 
Q 

 

A 

 

A 

 



Chapter 5: Corrosion behaviour of rebars in cement mortars subjected to sulfate and chloride 
                      exposure. 
 

154 
 

interface samples, would indicate a pore solution with high pH value, 

maintaining a sufficient value to protect steel rebars from corrosion.    

 

Figure 5.25. XRD pattern for CEMI-PFA interface samples stored in SC5 at 5 °C 

(Top) and 20°C (Bottom). 
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Figure 5.26. Generally, both patterns were of similar peak intensities. Small 

amounts of both ettringite and portlandite were detected in both samples.  This 

may be due to the dilution of cement and to the pozzolanic reaction, but its 

presence indicate that further C-S-H gel could be produced. This would further 

contribute to improving the mortar microstructure, particularly near steel bars. 

Consequently, the transport properties of mortar against chloride and sulfate 

ingress would have improved and resulted in enhancing the corrosion 

resistance of steel bar.   

The presence of portlandite peaks indicates high pH of the pore solution, which 

would avoid the depassivation of steel bars.  

Weak peak intensities were observed for calcite, which would be accounted for 

the limestone filler present. Low peak intensities for Friedel’s salt were detected 

in GGBS samples compared with those for PFA, probably due to compacted 

microstructure of GGBS mortars, as demonstrates by diffusion measurements 

described in Section 5.5.2.  
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Figure 5.26. XRD patterns for CEMI-GGBS interface samples stored in SC5 at 5 °C 

(Top) and 20°C (Bottom). 

 

5.7 SEM/EDX of steel-mortar interface samples 

Interface samples for CEMI-LF mortars stored in composite sulfate and 0.5% 

chloride solutions (SC5) at 5 and 20°C were selected and examined by scanning 

electron microscopy and Energy Dispersive X-ray analysis (SEM/EDX).   

Figure 5.27 and 5.28 show the SEM image for an interface sample at 5°C, in 

which changes to the mortar microstructure are indicated by the colour 

differences between dark grey and the light grey region close to the rebar. The 

EDX analysis in Figure 5.30 of the dark grey areas indicated the presence 

mainly of calcium, silicate, aluminate, sulfur which implies that the C-S-H had 

suffered transformation towards thaumasite, whereas, the light grey areas 

surrounding the steel bars consisted mainly of Fe and less Ca and Cl (Figure 

5.29), which is interpreted as expanded steel corrosion products on the bar 

surface, as discussed later in Section 5.9.  

The degradation of the outer surface layer of CEMI-LF mortars placed in SC5 at 

5°C, probably led to rapid chloride ingress and consequently an increased 

corrosion risk, as indicated by the presence of iron oxide in this region. The low 

binding capacity of deteriorated materials would also provide extra free chloride 

available in pore solution, which would increase the corrosion risk. Closer 

investigation (Figure 5.28) showed also formation of extensive microcracks, 

which probably attributed to expansive corrosion products. 
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No changes in colour, and therefore no microstructural changes, were observed 

for SC5 mortar interface sample that had been stored for 900 days at 20°C, as 

SEM (Figure 5.31) image indicates.  

 

 

  

Figure 5.27. SEM image for SC5 steel-mortar interface sample stored 900 

days at 5°C. 
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Figure 5.28. Detail 1 in Figure 5.27. 

 

 

 

 
 

 
Figure 5.29. EDX for 1 (Iron oxide) in 

Figure 5.27. 

Figure 5.30. EDX for 2 in Figure 5.27. 
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Figure 5.31. SEM image for SC5 interface sample after 900 

days at 20°C. 

 

 

 

5.8 Linear Polarization Resistance (LPR) 

This section presents and discusses an evaluation of corrosion of steel rebars 
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(SC20) solutions at 5 and 20°C by linear polarization resistance (LPR).   

The extent of corrosion was evaluated at the end of 180 days of continuous 

acceleration (Acceleration procedure given Section 3.6.15 in Chapter 3) and 

compared with the situation before acceleration (720 days). Table 5.4 presents 

the corrosion results obtained after 24 and 30 months of exposure. All 

polarisation curves obtained by LPR measurements are given in the Appendix. 
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Table 5.4. Variations in corrosion measurements. 

 

Mix 

 

 

Sample 

no. 

 

 

Temp. 

(°C) 

 

 

Chloride  

level 

Corrosion current density 

(µA/cm2) 

*Before 

acceleration 

(720 days) 

**After 

acceleration 

(900 days) 

CEMI 1 

5 

0.5% 

0.60 6.13 

CEMI 2 0.53 2.02 

CEMI-LF 1 0.92 3.40 

CEMI-LF 2 0.75 6.07 

CEMI-PFA 1 0.23 0.13 

CEMI-PFA 2 0.24 0.15 

CEMI-GGBS 1 0.28 0.30 

CEMI-GGBS 2 0.17 0.21 

CEMI 1 

20 

0.49 1.93 

CEMI 2 0.60 1.15 

CEMI-LF 1 1.03 2.66 

CEMI-LF 2 0.80 2.28 

CEMI-PFA 1 0.12 0.13 

CEMI-PFA 2 0.10 0.22 

CEMI-GGBS 1 0.27 0.28 

CEMI-GGBS 2 0.26 0.12 

CEMI 1 

5 

2.0% 

0.82 1.89 

CEMI 2 0.54 3.72 

CEMI-LF 1 0.59 5.10 

CEMI-LF 2 0.69 3.90 

CEMI-PFA 1 0.19 0.20 

CEMI-PFA 2 0.23 0.10 

CEMI-GGBS 1 0.21 0.32 

CEMI-GGBS 2 0.15 0.17 

CEMI 1 

20 

0.61 2.43 

CEMI 2 0.54 3.76 

CEMI-LF 1 0.85 3.03 

CEMI-LF 2 0.33 5.20 

CEMI-PFA 1 0.28 0.32 

CEMI-PFA 2 0.28 0.16 

CEMI-GGBS 1 0.27 0.22 

CEMI-GGBS 2 0.20 0.13 
*
Before acceleration: After 24 months of storage in solutions with no applied voltage.  

**
After acceleration: After applying +100mV continuously for 6 months (See Section 3.6.15). 

 

 CEMI and CEMI-LF specimens at 5 and 20°C 

The corrosion current densities (Icorr) of steel rebars in CEMI and CEMI-LF 

specimens stored for 720 and 900 (24 normal submersion plus 6 months under 
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acceleration) days in test solutions at 5 and 20°C is presented in Figure 5.32. 

The Icorr values presented here are the average measurements of two samples.  

After 720 days of exposure and before acceleration, the corrosion current 

densities (Icorr) values ranged between 0.539 and 0.915 µA/cm2, suggesting that 

all steel rebars embedded in CEMI and CEMI-LF mortar specimens were in an 

active state (0.5-1 µA/cm2), corresponding to moderate corrosion (Andrade and 

Alonso, 2001)  

CEMI-LF samples showed higher corrosion values than CEMI which may be 

due to the dilution effect of limestone filler and the higher water to cement 

ratio. These factors would result in a relatively open pore systems thus allowing 

chloride penetration in CEMI-LF mortars compared with standard cement, as 

indicated by diffusion results shown in Section 5.5.2 and as shown in Figure 

5.33.  

In addition, CEMI-LF samples in SC5 solutions exhibited higher corrosion 

values compared with those in SC20, probably due to lower chloride binding 

capacity in case of SC5 mortars compared with those in SC20 (Section 4.5.1 in 

Chapter 4).  

After 180 days of continuous application of +100mV, all samples showed great 

increase in Icorr values, as Figure 5.32 illustrates. For mortars stored in SC5 at 

5°C, the Icorr increased from 0.565 and 0.835 µA/cm2 before acceleration to 

4.075 and 4.735 µA/cm2 after acceleration, which indicated high corrosion rate 

(Andrade and Alonso, 2001) for CEMI and CEMI-LF.  This indicates a reduction 

by a factor of up to 7 in the corrosion resistance of steel rebar after 

acceleration. 

CEMI and CEMI-LF mortars exposed to SC5 at 5°C showed damage  (Section 

4.2) due to thaumasite formation (Section 4.5) and this most probably provided 

open paths for rapid chloride ingress (Slater et al., 2003). The damage also 

caused a reduction in mortar cover to the steel (Figure 5.5), which probably 

reduced time for corrosion initiation. Applying +100mV continuously for 180 

days accelerated chloride penetration, which rapidly reached the steel surface, 

as indicated by corrosion measurements. This appears to occur more rapidly in 

samples that also displayed visual damage (Figure 5.1). 

The rate of Icorr increase after 180 days of acceleration (900 days) depended on 

whether the specimens were intact or deteriorated. Whereas specimens placed 
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in SC5 at 5°C which exhibited damage (Figure 5.1) due to thaumasite 

formation, presented a greatly increase rate in Icorr values than those stored in 

SC5 at 20°C, which remained intact (Figure 5.2). This increase was 

approximately 7.2 and 5.7 times (corresponding to values after 720 days) for 

CEMI and CEMI-LF, respectively, compared with about 2.8 times for those at 

20°C.  

This damage probably occurred in mortar cover due to thaumasite formation 

involving open cracks and flaws, contributed in accelerating corrosion risk, as 

reported by Slater et al., (2003); and also due to more free chloride available in 

pore solutions due to low chloride binding capacity of deteriorated materials 

(Section 4.5.1 in Chapter 4), as also suggested by (Glass and Buenfeld, 2000, 

Glass et al., 2000).  

 

 

Figure 5.32. Variations in corrosion current densities for steel rebars in CEMI and 

CEMI-LF mortars stored in SC5 and SC20 at 5 and 20°C. 

0 
0.5 

1 
1.5 

2 

2.5 
3 

3.5 

4 
4.5 

5 

CEMI CEMI-LF CEMI CEMI-LF CEMI CEMI-LF CEMI CEMI-LF 

5°C 20°C 5°C 20°C 

Before acceleration  After acceleration  

C
o

rr
o

si
o

n
 c

u
rr

e
n

t 
d

e
n

si
ty

 
(µ

A
/c

m
2
) 

SC5 SC20 



Chapter 5: Corrosion behaviour of rebars in cement mortars subjected to sulfate and chloride 
                      exposure. 
 

162 
 

 

Figure 5.33. Corrosion current density (Icorr) vs. diffusion coefficient (D) for CEMI 

and CEMI-LF specimens stored in SC20 at 5 and 20°C (Diffusion was calculated 

after 270 days of exposure, whereas corrosion was measured after 900 days). 

  

 

 CEMI-PFA and CEMI-GGBS specimens at 5 and 20°C 

The corrosion measurements of steel rebars embedded in CEMI-GGBS and 

CEMI-PFA mortars revealed (Figure 5.34 and 5.35) no significant changes in 

Icorr values before or after acceleration, indicating low activities on the surfaces 

of steel rebars. Icorr for all samples exhibited values lower than 0.5 µA/cm2, 

corresponding to low corrosion (Andrade and Alonso, 2001).  

Figure 5.34 and 5.35 illustrate that the corrosion resistance of steel bars in 

CEMI-GGBS and CEMI-PFA mortars showed no change before and after 

acceleration, indicating no significant amount of chloride reached the steel 

surfaces. After acceleration, CEMI-PFA and CEMI-GGBS samples stored in 

SC20 at 20°C exhibited Icorr values of 0.24 and 0.175 µA/cm2, respectively, 

compared with about 3.1µA/cm2 for CEMI sample, indicating 12 to 17 times 

increase in corrosion resistance of steel rebar in mortars made with PFA and 

GGBS compared to standard cement (CEMI) mortar. 

This high corrosion resistance of steel bars in PFA and GGBS mortars may be 

related to the depletion of calcium hydroxide and production of extra C-S-H gel, 
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porosity, permeability and diffusion measurements described in Sections 5.3 

and 5.5.   

Based on an extensive experimental work, Claisse (1988) found that concrete 

with silica fume showed improvement in corrosion resistance and this was 

primarily attributed to the consumption of calcium hydroxide which was 

caused by the pozzolanic activity of the silica fume. 

Mindess et al. (2003) stated that the reaction of slag and fly ash with calcium 

hydroxide to form extra calcium silicate hydrate (C-S-H) gel would result in a 

more homogenous mortar microstructure, with a finer pore size and lower 

overall porosity. The  low corrosion activity of PFA and GGBS samples may also 

be related to the greater resistivity of concrete/mortar compared with cement 

replacement materials as reported by Mangat and Molloy (1991). 

The beneficial effect of PFA and GGBS replacement on both chloride 

penetration and reinforcement corrosion was also reported by Page et al. (1986) 

and Thomas and Matthews (2004). Xu et al. (2013) reported that the partial 

replacements of cement by PFA and GGBS increase chloride binding and 

reduced the release of bound chloride when subjected to sulfate attack, 

decreasing the amount of aggressively free chloride in pore solution. 

 

 

Figure 5.34. Variations of corrosion current densities for steel rebars in CEMI-PFA 

and CEMI-GGBS mortars stored in SC5 at 5 and 20°C. 
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Figure 5.35. Variations of corrosion current densities for steel rebars in CEMI-PFA 

and CEMI-GGBS mortars stored in SC20 at 5 and 20°C. 

 

5.9 Visual assessment of steel rebar  

At the end of the corrosion experiments and the LPR measurements, the 

specimens were broken open and the state of the reinforcing rods were visually 
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indicated by porosity, permeability and diffusion measurements (Sections 5.3 

and 5.5).   

Good agreement was found between the measurements obtained by LPR 

(Section 5.8) and visual assessment of steel rebars, in which the higher 

corrosion measured, the more corroded areas observed on the surface of steel 

rebars.  
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Figure 5.36. Surface of steel bars in mortar specimens stored 900 days in SC5 at 

5°C. 
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Figure 5.37. Surface of steel bars in mortar specimens stored 900 days in SC5 

at 20°C. 
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Figure 5.38. Surface of steel bars in mortar specimens stored 900 days in SC20 

at 5°C 
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Figure 5.39. Surface of steel bars in mortar specimens stored 900 days in SC20 

at 20°C  

 

5.10 Summary  

The main findings of these investigations into chloride induced corrosion risk of 

steel rebars embedded in cement mortars made with CEMI, CEMI blended 

with10%LF, CEMI blended with 50%PFA and CEMI blended with 70%GGBS 

mortar specimens subjected to combined action of sulfate and chloride in terms 

of thaumasite form of sulfate attack at 5 and 20°C are presented in this 

section.   

Most of existing research reported in the literature is on the investigation of 

corrosion risk of steel reinforcement in concrete/mortar exposed to chloride 

and sulfate exposure at temperature where ettringite and gypsum are the main 

deterioration sulfate products. Field investigations revealed an increase in 

corrosion risk of steel reinforcement in concrete suffered from thaumasite 

sulfate attack. In most of these areas, de-icing salt is considered to be the main 

source of chloride. Due to the runoff and the subsequent potential variations in 

chloride concentrations, it was of great interest to investigate the effect of 

chloride level and the potential sulfate attack on corrosion risk of steel 

reinforcement in media conductive to thaumasite sulfate attack. 

In addition, the use of mineral admixtures such as PFA and GGBS are 

reportedly effective in preventing TSA at 5°C; however, the presence of chloride 



Chapter 5: Corrosion behaviour of rebars in cement mortars subjected to sulfate and chloride 
                      exposure. 
 

168 
 

alongside sulfate at low temperature was found to have a negative effect on 

performance of concrete made with these components. Accordingly, the change 

in corrosion activity of steel rebars embedded in mortar specimens made with 

different binders subjected to sulfate and chloride at 5 and 20°C was evaluated 

by means of liner polarization (LPR) and visual assessment of steel bars.  

Carbonation depth, permeability, porosity, chloride diffusion and 

microstructure investigations were also carried out. 

The experimental results obtained from this study indicate that the presence of 

low chloride concentration contaminated with magnesium sulfate solutions and 

the consequence thaumasite sulfate attack have a negative impact on corrosion 

resistance of steel reinforcement in mortar. The following findings can be drawn 

from the results: 

 Corrosion specimens showed similar visual observations to those of 

50mm cubes (Chapter 4), in which performance of limestone cement 

mortars stored in combined sulfate and chloride solutions depends on 

temperature and chloride concentration. Limestone cements mortars 

stored in solution with 0.5% chloride at 5°C showed deterioration due to 

thaumasite formation. At 20°C, however, specimens show no such 

visible damage.  

 The higher the extent of damage due to thaumasite formation, the lower 

the corrosion resistance of steel rebars in mortar, as indicated by visual 

observation and LPR measurements. 

 The presence of 0.5% chloride in magnesium sulfate solution at 5°C led 

to higher corrosion rate of steel rebars in limestone cement mortars 

compared with those exposed to composite sulfate and 2.0% chloride 

solutions, as indicated by LPR measurements and visual assessment of 

steel bars. 

 At 5°C, the higher the limestone replacement, the higher the 

deterioration of cement mortars and consequently the higher the 

corrosion rate of steel rebars.  

 10 % replacement by limestone filler led to increase of chloride diffusion, 

as indicated by diffusion measurement. 
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 At 20°C, limestone cement mortars stored in composite sulfate and 2.0% 

chloride solution led to higher corrosion rate than those in sulfate and 

0.5% chloride solution.  

 Thaumasite affected areas offered open paths available for rapid chloride 

increase, as indicated by LPR measurements and visual assessment. 

 Reduction in chloride binding capacity of thaumasite affected areas may 

also contribute in increase corrosion risk, by releasing free chloride in 

pore solution, as indicated by LPR measurements and XRD analysis 

(Chapter 4). 

 Replacement of CEMI by 50% PFA or 70%GGBS enhanced mortar 

performance such that specimens subjected to composite sulfate and 

chloride for 900 days in conditions conducive to thaumasite formation, 

suffered no visually observed damage.  

 Reduction of pH value due to replacement by GGBS and PFA (As 

indicated by pH measurements of test solution given in chapter 4) 

seemed have no negative effect on the corrosion resistance. However, it 

seemed that the pH was high enough to protect steel from corrosion, as 

indicated by presence of portlandite peaks in XRD patterns for interface 

samples.  

 Replacement by 50% PFA had no positive impact on chloride diffusion in 

the early exposure period (as indicated by diffusion measurements), but 

could reduce it at longer exposure, as indicated by LPR measurements 

and visual assessment of steel bars. 

 The high chloride binding capacity of fly ash probably led to reduction in 

the amount of free chloride available in mortar pore solutions and 

consequently reduced the corrosion risk as indicated by XRD analysis 

and corrosion assessment.  

 Replacement by 70% GGBS caused significant reduction in chloride 

penetration. 

 Replacement by 50%PFA or 70% GGBS enhanced corrosion resistance of 

steel rebars in all investigated conditions, probably due to refinement of 

mortar pore structure, as indicated by obtained results of porosity, 

permeability, LPR, XRD and visual assessment. 
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 The results revealed that replacement of up to 50% CEMI with PFA 

improves the performance of concrete exposed to aggressive environment 

and in condition conducive to thaumasite formation. 

  

 Higher carbonation, feature of mortars made with PFA or GGBS, seems 

to enhance the resistance to sulfate attack and corrosion risk, as 

indicated by carbonation and LPR measurements.    

 LPR is a fast and reliable technique for evaluating corrosion of steel 

rebars in concrete/mortar. 

 It appears that 70% GGBS and 50% PFA replacement for CEMI refine 

the pore structure and reduce the chance of potential corrosion of 

reinforcing steel.   
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6. TSA and related corrosion risk in the presence 

of chloride: Overall Discussions 

 

 

 

The discussion addresses the objectives of this current study: 

 To investigate the role of chloride and its concentration on thaumasite 

sulfate attack and its sensitivity to chloride concentrations. 

 To investigate the mechanism for any effect played by chloride. 

 To investigate the impact of TF on chloride binding capacity. 

 To investigate the implications of TSA in the presence of chloride on 

rebar corrosion risk. 

  To study the effect of chloride on performance of fly ash and slag 

cements in environment prone to thaumasite formation. 

 

6.1 TSA in presence of chloride: 

As mentioned in chapter 2, the availability of sulfate, calcium, carbonate and 

silicate in the presence of water in conditions at low temperature promotes the 

formation of thaumasite (Crammond, 2003). Previous studies have shown 

conflicting results regarding the effect of chloride on this process, on the one 

hand mitigation of attack, but on the others enhancement of the attack.  

Open system with 10% limestone replacement and relatively high water to 

cement ratio at 5°C was selected to be investigated as it showed the greatest 

extent of attack by thaumasite (Sections 4.2 and 4.3). The effect of chloride 

concentrations on extent of TSA in the different systems incorporating 10 % 

limestone filler is shown in Figure 6.1 and 6.2 visually and by mass loss, 

respectively. By both measures, the presence of 0.5% chloride in magnesium 

sulfate solution accelerates TSA, while the attack is mitigated at higher chloride 

concentrations (1.0 and 2.0%) present in sulfate solutions. 

Based on the results presented in Chapter 4, in which ion diffusion and CH 

leaching, pH of test solutions and precipitation-dissolution of some solid 
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phases are sensitive to the concentration of chloride in sulfate solution, the 

impact of chloride on TSA is schematically proposed in Figure 6.3 to 6.5 and is 

discussed below: 

6.1.1 Diffusion of sulfate, chloride, magnesium ions, CH leaching and pH 

change:  

The chemical analysis and pH measurement presented in Chapter 4 indicate 

that for all the solution at early stage of exposure, leaching of CH from the 

specimen surfaces leads to an increase in OH and Ca and then the pH. Besides 

the diffusion of OH and Ca from inside the mortar to the solution, the process 

also involves diffusion of SO4, Mg and Cl from the solution to the mortar.  

As Figure 4.107 indicates that the leaching of CH and the consequential OH 

and Ca ions flow into solutions are sensitive to chloride concentration in 

solutions, later on the damage in the mortar outer layer caused by sulfate 

attack. 

The effect of low pH of magnesium sulfate solution on sulfate attack is well 

known process (Gollop and Taylor, 1992). The consequence of penetration by 

Mg and SO4 and their interactions with cement paste results in a reduction in 

the pH of pore solution. When chloride ions present besides magnesium and 

sulfate ions in test solution, chloride penetrates faster, leading to increase CH 

leaching and then the pH of pore solution. The amount of CH leaching and the 

consequential rise in the pH would depend on chloride concentration, in which 

the higher the chloride concentration in solution, the higher the CH leaching 

and then the higher to pH.  

As Figure 4.107 shows, the presence of 0.5% chloride leads to a slight increase 

in leaching of Ca from CH and pH rise (Figure 4.115). When 2.0% chloride 

present in solution, however, the penetration of more chloride ions, leads to a 

rapid increase in the pH, due to higher CH leaching. Saikia et al. (2006) 

attribute this increase in the pH when chloride present to the release of Na+ 

and OH- as a result of the rapid reaction between sodium chloride and calcium 

hydroxide according to equation 6.1. 

2NaCl + Ca(OH)2          CaCl2 +2Na+ + 2OH-                 (6.1) 
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Besides, these concentration gradients, dissolution- precipitation processes will 

occur due to the disturbance to the initial thermodynamic equilibrium between 

the pore solution and the mortar outer layer. 

6.1.2 Friedel’s salt formation  

The exposure of cement mortars to magnesium sulfate is known to have 

destructive effect on the specimens due to the low pH (Liu et al., 2013). When 

chloride present in addition to sulfate and magnesium ions in solution, the 

interaction becomes more complicated and appears to depend on chloride 

concentration. Figure 4.24 and 4.25 indicate that penetration of chloride into 

the mortar is more rapid than for sulfate. The rapid diffusion of chloride and its 

interaction with cement paste leads to precipitation of non expansive Friedel’s 

salt (Ekolu et al., 2006). The interactions between sodium chloride and cement 

paste is given in quotations 6.2 and 6.3 below (Saikia et al., 2006): 

2NaCl + Ca(OH)2          CaCl2 +2Na+ + 2OH-                              (6.2) 

3CaO.Al2O3.10H2O + CaCl2          3CaO.Al2O3.CaCl2.10H2O        (6.3) 

Thus, the higher the chloride concentration, the higher the amount of Friedel’s 

salt formed as shown in Section 4.5.1. 

Since, the maintained pH at early exposure period shows dependency on 

chloride concentration (See Section 6.1.1); this would affect the stability of 

Friedel’s salt. Goñi and Guerrero (2003) point out that Friedel’s salt becomes 

unstable at low pH, which is a value attained when insoluble brucite 

precipitates at the surface as the XRD results in Figure 4.21 shows. It was also 

reported by Xu et al. (2013) that Friedel’s salt may be transformed to ettringite 

in presence of sulfate. This agrees with the finding of this study, in which the 

XRD results in Figure 4.21 showed Friedel’s salt was not present in the 

degraded mortar surface stored in SC5.  

The initial rise in pH shown in Figure 4.115 of the SC20 solution appeared from 

the XRD and SEM, Sections 4.5.1 and 4.6 to benefit the stability of formed 

Friedel’s salt. Therefore, as suggested by Zhang et al. (2013), it is possible that 

at 2.0% chloride concentration, the amount of Friedel’s salt produced could 

present a physical barrier impeding ingress of chemical specie and it may also 

result in limiting the availability of aluminates phases free to engage in 

degrading sulfate bearing products. 
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6.1.3 Gypsum formation 

In presence of magnesium sulfate and due to the increase in portlandite 

dissolution as the temperature decreases, rapid reactions with sulfate and 

magnesium ions are expected to form gypsum and brucite, both in which as 

Figure 4.21 shows were found in the degraded materials. The relevant reaction 

is shown in equation 6.4 (Gaze and Crammond, 2000). 

Ca (OH)2+MgSO4            Mg(OH)4 +CaSO4.2H2O                          (6.4) 

 

In such conditions (high sulfate concentration), gypsum is reported to form by 

Bonen and Cohen (1992), Gollop and Taylor (1996) and Santhanam et al. 

(2001) to be a dominate sulfate product. Since, from Figure 4.21 gypsum was 

observed in all degraded materials; it is believed to play a role in the 

deterioration of the surface layer of mortar at early stage of exposure.  For its 

stability, the pore solution would need relatively high Ca and SO4 ions 

concentrations and low pH (Zhou et al., 2006). As Figure 4.21 indicates the 

formation of brucite would offer such a low pH value. 

The formation of gypsum would cause damage of the external layer of mortar 

(Mehta, 1983, Irassar et al., 2003). This observation seems to agree with the 

early type of deterioration reported in the visual appearance of all attacked 

mortars. Enhancement of sulfate ingress and acceleration of sample 

degradation is also believed by Bellmann et al.(2006) to be related to micro-

cracking caused by gypsum formation when such high sulfate concentration is 

involved.  

According to visual assessment shown in Section 4.2, this process seems to 

occur more rapidly in mortar outer layer when 0.5% chloride is present in 

sulfate solution than in sulfate only solutions. There are two possible scenarios 

for the enhanced precipitation of gypsum observed in Figure 4.21 and related 

damage when 0.5% chloride present in solution. The first one is the availability 

of relatively high Ca concentration in mortar pore solution, due to the relatively 

high initial leaching of lime as discussed in Section 6.1.1. The high 

concentrations of sulfate and calcium ions available in mortar pore solution at 

low pH would promote gypsum formation (Zhou et al., 2006).  The second 

scenario is the possible physical impact of microstructure changes by both 

rapid decomposition of Friedel’s salt and precipitation of gypsum. The absence 

of Friedel’s salt and the deposition of gypsum in the attacked surface layer of 

SC5 mortar and the presence of Friedel’s salt and absence of gypsum in the 
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sound core indicated by XRD analysis in Figure 4.25 may support such a 

process. The rapid propagation of microcracks noted in SC5 mortars result also 

in exposing further lime to aggressive solution where SC5 mortars showed 

visual microcracks followed by increase in pH of test solution.  

The visual appearance and XRD analysis suggest that presence of 2.0% 

chloride in solution, however, protects the outer layer of mortars from 

destructive process of the early gypsum deposition as the conditions for its 

formation was not attained. As mentioned above, low pH (Zhou et al., 2006) 

and high sulfate and calcium ions (Bellmann et al., 2006) are required for 

gypsum to form. In the current study, such chemical conditions were not 

reached in SC20 mortar pore solution as Figure 4.98 and Figure 4.115 indicate. 

In addition, the solubility test in Figure 4.121 indicates that gypsum is highly 

soluble when 2.0% chloride present in solution. The mitigation effect of such 

high chloride concentration on sulfate attack is reported by Sotiriadis et al. 

(2013), Zuquan et al. (2007) and Al-Amoudi et al., (1995) to be related to the 

high solubility of sulfate products in presence of chloride. 

 

6.1.4 C-S-H decalcification 

C-S-H can be susceptible to decalcification when high alkalinity of surrounding 

environment is lost due to the depletion of CH (Bonen and Cohen, 1992). In 

presence of magnesium sulfate, the consequence of precipitation of brucite 

described in Section 6.1.5 would cause such a reduction in pH so that 

ultimately C-S-H would become vulnerable to sulfate attack as Hartshorn et 

al.(2002),  Gaze and Crammond (2000) and Bonen and Cohen (1992) explain. 

The breakdown of C-S-H gel by magnesium and sulfate ions and the 

consequence attack is also reported by Hobbs (2003) and  Irassar et al. (2003). 

Liu et al. (2013) reported that if the pH of pore solution in hydrated cement 

phases is lower than 11.4, the decomposition of C-S-H will occur and leads to 

generate silicon and gypsum formation according to the following equation: 

 

C-S-H+2H2O+SO4
2-       Ca-depleted C-S-H (or amorphous silica) + CaSO4.2H2O 

(6.5) 

Thus, the high pH of SC20 solution, shown in Figure 4.115, protected the CSH 

from attack as visual observation (Section 4.2) and microstructural analysis 

(Section 4.6) shows.  
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6.1.5 CaCO3 solubility  

Limestone filler as cement replacement acts as an internal source of carbonate 

ions in mortar pore solution. The solubility of calcium carbonate was 

demonstrated in Figure 4.121 to be sensitive to chloride concentrations. The 

presence of 0.5% chloride in sulfate solutions at both temperatures leads to 

great increase in solubility and would provide relatively high quantities of 

carbonate ions in mortar pore solutions. This increase is expected to be even 

greater in mortar made with cement replaced by 10% limestone filler.  

An investigation by Duan and Li (2008) showed that calcite solubility increased 

as chloride concentration increased up to a certain amount and then 

decreased. In this study, in which sulfate was also present, the calcite has 

higher solubility in combined sulfate and 0.5% chloride solution than solution 

containing combined sulfate and 2.0% chloride, as Figure 4.121 shows.  

 

6.1.6 Thaumasite formation 

All the results including visual assessment, pH, and chemical analysis of test 

solutions, SEM/EDX, XRD and IR provide supportive evidence for the 

sensitivity of the degradation of attack due to TSA to chloride concentrations. 

Based on the above discussion and proposed interactions given in Figures 6.4 

and 6.5, the possible scenario of the role of chloride on thaumasite related 

attack can be summarised below:  

Due to the very slow kinetics of thaumasite formation (Schmidt et al., 2009), 

usually it would be preceded by formation of conventional sulfate product 

(Barcelo et al., 2014). Thus, exposure to relatively high magnesium sulfate 

solution similar to that used in this study would lead to often initial stage 

attack by gypsum deposition as Bellmann et al.(2006) suggest. A study by   

Gaze (1997) suggested that some gypsum is required before thaumasite can 

form. In the current study, the precipitation of gypsum at early stage of 

exposure indicated by XRD finding in Figure 4.21 is believed to contribute to 

the later degradation due to thaumasite formation; either by providing more 

sulfates ions in the pore solution for additional thaumasite formation, as 

mentioned by Schmidt et al. (2008) and Irassar et al. (2005) or due to the 

degradation caused by gypsum deposition or both. This would cause opening 

up of the microstructure of cement mortars at the early stages of attack, which 

appears to be a prerequisite for thaumasite formation, as reported by 
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Ramezanianpour and Hooton (2013). The importance of such physical attack 

on the outer layer of the specimens but due to the formation of ettringite on 

thaumasite formation when sodium sulfate is used as exposure solution, as 

reported by Schmidt et al. (2009).  

The presence of chloride in sulfate solutions results in Friedel’s salt which 

appears to play a role in early attack, depending on its amount and stability. 

Figure 4.1 suggests that the presence of 0.5% chloride in solution accelerates 

the early attack, possibly due to both Friedel’s salt decomposition and gypsum 

precipitation shown in Figure 4.21, which is affected by a maintained pH below 

11. According to Figure 4.21, Friedel’s salt is not stable at such low pH and 

gypsum formation is favoured. However, the relatively high early Friedel’s salt 

produced and its relatively high stability at the pH when 2.0% chloride is 

present in solution seems to benefit against sulfate attack. Such a Friedel’s salt 

could present a physical barrier that delays access of chemical specie as 

suggested by Zhang et al. (2013). This would reduce the chances of gypsum 

formation as noted by Schmidt et al. (2008) and Bellmann et al. (2006) as 

relatively low sulfate and calcium ions concentrations available in mortar pore 

solution as Figure 4.98 and 4.99 indicate. This may also result in limiting the 

availability of aluminates phases free to engage in degrading sulfate bearing 

products (Tosun-Felekoğlu, 2012, Irassar et al., 2005). It was reported by 

Irassar et al. (2005) in a study conducted to investigate the effect of C3A content 

of cement on thaumasite formation, that cement with zero C3A, such as SRPC 

and containing limestone filler showed no thaumasite formation which was also 

supported by Zhou et al. (2006). The formation of gypsum shown by Figure 

4.24 in core specimens in sulfate only solution and instead Friedel’s salt seen 

in Figure 4.25 in composite sulfate and chloride specimens may reflect the 

operator of such a pore blocking effect of Friedel’s salt formation.  

The silicon and calcium ions generated in pore solution from the decomposition 

of C–S–H are required for thaumasite to form (Thaumasite Expert Group,1999,  

E.F. Irassar et al, 2005, Hobbs, 2003, Grammond, 2003). The attack of C-S-H 

seen in Figure 4.50 appears to be enhanced when 0.5% chloride is present in 

sulfate solution, as indicated by massive change in its microstructure and the 

transformation of C-S-H later towards thaumasite. However, the stability of C-

S-H when 2.0% chlorides present in sulfate solution is most likely due to the 

maintained high alkalinity at early exposure time as Figure 4.66 and 4.35 

shows. 
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An increase in limestone replacement was found to increase the extent of 

thaumasite attack, which is attributed to the increase of carbonate ions in pore 

solution as carbonate content increases. The effect of limestone filler 

replacement on thaumasite formation is well documented by Torres et al. 

(2003), Torres et al. (2006) and Kakali et al.,(2003) and further confirmed in the 

current study. 

However, the presence of chloride appears to play a similar role but depends on 

its level in solution, as indicated by solubility test and extent of damage. The 

solubility of calcium carbonate was found to be sensitive to chloride 

concentrations in sulfate solution as Figure 4.121 shows. The presence of 0.5% 

chloride in sulfate solutions leads to relatively large increase in its solubility, 

which may provide relatively high quantities of carbonate ions in mortar pore 

solutions, needed for thaumasite formation as reported by Torres et al. (2006). 

The availability of carbonate ions in pore solution would reduce as the chloride 

concentration increases, as indicated by the solubility test.  

Besides the role of pH on stability and dissolution- precipitation of some 

important phases as mentioned above, pH has a significant role in thaumasite 

formation. It is suggested by Collett et al. (2004) and Crammond (2003) that 

high pH (More than 10.5) is needed for thaumasite formation. Accordingly, 

such an increase in the pH as observed in the current study (Figure 4.115) 

would also encourage thaumasite formation. Chloride can increase the pH of 

pore solution due to its chemical binding with cement paste and the 

consequent release of hydroxyl ions.  

The acceleration effect of 0.5% chloride on precipitation of thaumasite which is 

the main deterioration product, can be attributed to: (1) Friedel’s salt 

decomposition and gypsum formation (2) Availability of appropriate alkaline 

solution (3) Availability of significant concentration of carbonates CO3 due to 

high solubility of calcium carbonate (4) Availability of high sulfate and calcium 

ions (5) Availability of silicate and calcium ions, from the decomposition of the 

C-S-H. However, the mitigation effect when 1.0 and 2.0% chloride are present 

in sulfate solution is greatly related to the maintained high pH and stability of 

Friedel’s salt at early exposure stage. 
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Figure 6.1. Evaluation of damage degree as indicated by visual appearance of 

mortar specimens. [0= No visible damage, 1= minor cracking to corners and edges, 

2= moderate damage at corners and edges, 3= severe attack at corners, 4= cracking 

and spalling, 5= swelling of surfaces, and 6=extensive cracking and swelling]. 

 

 

 

 

Figure 6.2. Effect of chloride level on initial pH change and later severity of TSA of 

CEMI-LF stored 630 days in solutions at 5°C.  
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Figure 6.3. Scheme for sulfate interaction between limestone cement components 

and magnesium sulfate solution at 5°C (A modified schematic proposed by Bonen 

and Cohen (1992). 
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Figure 6.4. Scheme for sulfate and chloride interaction between limestone cement 

components and composite sulfate and 0.5% chloride solution at 5°C. 

 

 



Chapter 6: Overall discussions 
 

181 
 

 

Sulfate plus 2.0% 

chloride solution 

(ph >12) 

Surface layer  Inner layer  

                    OH OH 

Cl   OH   Na 

Friedel’s salt 

OH 

Ca  OH   

SO4       Ca 

Ettringite 

Na 

Cl 

Al 

 

Portlandite 

Cl  

Cl  

Mg C-S-H 

 SO4  

Na                                                            

Cl Calcite 

                  Ca                                   C3A 

Figure 6.5. Scheme for sulfate and chloride interaction between limestone cement 

components and composite sulfate and 2.0% chloride at 5°C. 

 

 

6.2 The effect of TSA on chloride binding capacity of 

cement and related corrosion risk   

As mentioned in Chapter 2, chlorides react chemically with tricalcium 

aluminate (C3A) or its hydrates to form calcium chloro-aluminate, 

C3A·CaCl2·10H2O, known as Friedel's salt, and can also physically bind due to 

its adsorption on the surface of C–S–H. The high ability of cement matrix to 

bind chloride is known to benefit in reducing corrosion risk of concrete steel 

reinforcement. As soon as the bound chlorides are released to form free 

chloride ions in the pore solution of concrete, they would present a corrosion 

risk similar to the aggressive free chloride ions (Glass and Buenfeld, 2000). 

According to Figure 6.6, the relative peak intensity of Friedel’s salt, evaluated 

by XRD analysis in Figure 4.21, in the surface layer of mortars made with 

CEMI blended with 10% limestone filler is decreased as the extent of 

thaumasite attack increases, as assessed by mass loss in Section 4.3. The 

observation of Friedel’s salt in the sound core in Figure 4.25, but not in the 

degraded surface layer indicates its instability in presence of thaumasite.  
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The C-S-H gel of cement matrix as indicated by microstructural analysis shown 

in Figure 4.21 is also affected by thaumasite sulfate attack in which the 

specimen’s surface matrix has converted into thaumasite, leading to porous, 

cracked and permeable matrix as indicated by corrosion results in Section 5.8.  

This would also result in an increase of Cl-/OH- ratio hence increasing the risk 

of corrosion as reported by Beaudoin et al. (1990) and Kayyali and Haque 

(1988). The increase of Cl-/OH- ratio in pore solution in mortars affected by 

thaumasite formation should contribute to increased corrosion risk observed in 

this study, Sections 5.8 and 5.9.  

The degradation of concrete/mortar cover due to thaumasite formation aids 

chloride ingress and a negative impact on corrosion resistance as Figure 5.32 

indicates. This can be attributed to; low resistance to chloride diffusion due to 

the damage infected in the matrix that open cracks and flaws as suggested by 

Wimpenny and Slater (2003) and Slater et al. (2003); and due to increase in 

free chloride as discussed above. 

 

 

Figure 6.6. Severity of TSA (By mass loss) and relative peak hight of Friedel's salt 

(FS) in surface materials for CEMI-LF mortars stored 630 days at 5°C. (Scale of 

relative peak intensity for FS: 1= low or absence; 2=moderate; and 3= high). 
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6.3 The use of fly ash and slag as cement replacement 

to prevent TSA in presence of chloride: 

Effectiveness of fly ash and slag cements against sulfate attack is frequently 

reported (Kandasamy and Shehata, 2014, Veiga and Gastaldini, 2012, Atahan 

and Dikme, 2011) to be related to the consumption of portlandite, as 

portlandite is not stable in presence of sulfate ions. Bellmann and Stark (2008) 

reported that in the absence of calcium hydroxide, the C-S-H has a much lower 

calcium/silicon ratio and a higher resistance against the formation of 

thaumasite.  

In this study, open systems, in which relatively high water to binder ratio of 0.6 

was used to accelerate the interaction, containing 50% PFA or 70% GGBS 

offered good resistance to TSA up to 630 days in salt solutions. However, 

microstructural investigations using XRD and SEM revealed that with time 

these systems could be subject to conventional form of sulfate attack, namely 

gypsum as all conducive conditions, including low pH, availability of Ca and 

high concentration of sulfate ions in pore solution, are available for its 

promotion.  

The decalcification of C-S-H appears to be main source of calcium ions in pore 

solution. Due to the consumption of CH and under exposure to magnesium 

sulfate solution, the C-S-H gel produced in pozzolanic reaction of slag and fly 

ash would be subjected to attack by sulfate and magnesium ions to form M-S-H 

and gypsum as SEM images show in Figure 4.95 and as confirmed by EDX 

analysis in Figure 4.96 and 4.97. 

The delay in the attack is probably attributed to low porosity and permeability 

(Section 5.3), due to pozzolanic reaction and the consequential portlandite 

consumption as Figure 4.27 and 4.28 indicate.   

Superior performance against sulfate attack was observed where cement 

mortars incorporated 50% fly ash, in that no visual damage was observed in 

any samples after 630 days in any test solutions at both temperatures as 

Figure 4.9 shows. However, as Figure 4.27 indicates the deposition of gypsum 

in the surface layer of mortar revealed vulnerability eventually to conventional 

sulfate attack. This was confirmed in 20mm cubes shown in Figure 4.5 and the 

process may progress to thaumasite sulfate attack as microstructural analysis 

given in Figure 4.77 shows small traces of thaumasite were also formed in fly 
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ash mortars at 5°C. A long term laboratory investigation by Abubaker et al. 

(2014) reported the susceptibility of fly ash concrete to TSA.  

The presence of chloride has different effect on performance of fly ash and slag 

mortars as visually observed in Figure 4.8 and indicated by XRD analysis 

shown in Figure 4.27 and 4.29. The presence of 0.5% or 2.0% chloride in 

sulfate solution leads to a further improvement in the performance of PFA 

mortar samples against sulfate attack. This may be attributed to the high 

aluminate contents in its composition that provides high capacity for chloride 

binding. This binding in form of Friedel’s salt probably blocks pores and 

reduces the chance for the destructive interactions between aluminates and 

sulfate ions as discussed in Section 6.1.2.  

CEMI blended with 70% slag specimens also performed well against sulfate 

attack, they did not show any visual damage within 630 days of exposure to 

any test solutions at both temperatures. However, microstructure analysis 

revealed that GGBS specimens would be subjected to conventional form of 

sulfate attack, as this was also confirmed in Figure 4.95 using 20mm 

specimens.  

Gollop and Taylor (1996) report that the C-S-H gel of slag is subjected to attack 

by magnesium ions when specimens exposed to magnesium sulfate solution. 

The consequence are this is to increase the concentration of calcium ions in 

mortar pore solution, which with sulfate ions at low pH would promote gypsum 

formation. As chemical analysis of test solution in Section 4.7 shows, the 

greater reduction in magnesium and sulfate concentrations and the following 

calcium release observed in sulfate solution of slag specimens compared to fly 

ash, indicate the higher vulnerability of C-S-H of slag cement to attack than for 

fly ash C-S-H and this may also explain why slag cement showed earlier 

damage compared to fly ash mortar, even in the presence of chloride.   

The decalcification of calcium silicate hydrate gel of slag was much more 

extensive than in fly ash as indicated by increase of calcium concentration at 

early stage of immersion in sulfate solution in Figure 6.7 and later attack by 

gypsum. The consequent decomposition of C-S-H by Mg would release calcium 

ions to the pore solution.   

However, the microstructure analysis shown in Figure 4.29 of the outer layer of 

specimens in sulfate only and composite sulfate and 0.5% chloride solution at 

5°C also showed clearly gypsum deposition. The extent of attack of 20mm 
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mortar due to gypsum precipitation was more severe in presence of 0.5% 

chloride than for only sulfate solution. This may also reflect the further 

enhancement of C-S-H gel attack of slag cement when 0.5% chloride is present 

in solution, which provided more calcium available for gypsum precipitation. 

Once more, the relatively high solubility of gypsum when 2.0% chloride is 

present in solution seen in Figure 4.121 probably controlled the gypsum 

formation in the mortar outer layer placed in solution with 2.0% chloride, as 

discussed above. 

As explained above, the presence of 0.5% chloride in sulfate solution negatively 

affected the performance of 20 mm mortars incorporating 70% slag. 

Microstructural analysis in Figure 4.95 of damaged surface shows this was 

related to intensive precipitation of prismatic gypsum crystals around the 

aggregate and within cement matrix. The decalcification of C–S–H gel by 

magnesium in regions close to this gypsum is the most probable source of the 

calcium required. This process appears to have occurred more rapidly when 

0.5% chloride is present in solution, which showed early visual deterioration 

due to gypsum deposition. Attack due to growth of gypsum crystals in presence 

of such high sulfate concentration was also reported by Bellmann et al. (2006). 

High slag replacement level produced secondary C-S-H gel with lower calcium/ 

silica ratio which was capable of bind more alumina in its structure which 

resulted in reduced ettringite formation, as explained by Gollop and Taylor 

(1996). In presence of chloride, this would also cause a reduction in the 

amount of formed Friedel’s salt, which may explain why slag exhibited a lower 

amount of Friedel’s slat, as shown in Figure 4.29.  

   

 

Figure 6.7. Calcium concentration in different solutions after 7 days exposure at 

5°C. 
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7. Conclusions and recommendations 

 

 

 

7.1 Overall Conclusions 

Most available research reported in the literature concerns the investigation of 

the effect of chloride on sulfate attack at 20°C, in which ettringite would be the 

main deterioration product. Furthermore, an extensive literature search 

identified very few available laboratory studies into the effect of chloride on 

sulfate attack at low temperatures and under conditions conducive to 

thaumasite formation. In addition the existing studies appear to give 

contradictory results with Sotiriadis et al. (2012 and 2013) indicating 

mitigation of attack, whereas Torres (2004) enhancement of attack. 

Concerning the corrosion risk of concrete reinforcement, field investigations led 

by Wimpenny and Slater, (2003) to propose that this may increase during 

thaumasite sulfate attack. However, due to the sensitivity of TSA to chloride 

concentration, the role of chloride concentration on damage of concrete cover 

due to thaumasite formation and the consequence attack on corrosion risk 

needs also to be taken into consideration.   

Although the use of PFA and GGBS as cement replacement are reportedly 

effective in delaying or preventing TSA at 5°C, the presence of chloride 

alongside sulfate at low temperature was found by Sotiriadis et al. (2013) to 

have a negative effect on the performance of concrete made with these 

components. 

Accordingly, the role of chloride on performance of CEMI, CEMI blended 

with10%LF, CEMI blended with 50%PFA and CEMI blended with 70%GGBS 

mortar specimens subjected for 630 days to combined action of sulfate (0.6% 

SO4
2- as magnesium sulfate) and chlorides (0.5, 1.0 and 2.0% Cl- as NaCl) in 

terms of thaumasite form of sulfate attack at 5 and 20°C were evaluated.  

The experimental results obtained from the current study indicate the 

complexity of the chemical interactions of chloride at various concentrations. 

The major findings can be drawn from the obtained results are: 



Chapter 7: Conclusions and recommendations 
 

187 
 

 The impact of chloride on sulfate attack depends on the exposure 

temperature as it mitigates classical form of sulfate attack at 20°C, but it 

can enhance the thaumasite form of sulfate attack at 5°C (See Figure 4.8), 

which is in agreement with the findings of Torres (2004). 

 Chloride acts as a catalyst in thaumasite formation.  This is confirmed by 

the absence or low peak of Cl in the SEM-EDX (Figure 4.53) analyses of 

thaumasite, which supports the finding by Torres (2004).  

 The extent of thaumasite sulfate attack (TSA) depends on temperature, 

carbonate content and chloride concentration, as Figure 4.8 illustrates.  

 At low temperature (5°C) and as can be seen in Figure 4.8, the presence of 

low (0.5%) chloride combined in a DS4 (BRE Ground aggressivity Class) 

sulfate in ground water can lead to severe damage due to thaumasite 

formation. The extent of damage decreases as the chloride concentration 

increases. This is probably due to the complexity of the chemical interactions 

at various concentrations.  

 The extent of damage increases as the carbonate content increases, which is 

probably because the greater availability of carbonate facilitates more 

thaumasite formation.  

 At ambient temperature (20°C) and as shown in Figure 4.72, the presence of 

low (0.5%) chloride in sulfate solution can also lead to attack due to 

thaumasite formation in limestone cement mortars, but with lower damage 

extent compared to that at 5°C.  

 The solubility of calcite is found to be sensitive to chloride concentration 

(Figure 4.121). Calcite solubility is increased at low (0.5%) chloride 

concentration leading to greater availability of carbonate ions in the pore 

solution which results in rapid thaumasite formation. At higher chloride 

concentration, calcite solubility is reduced, favouring the formation of 

Friedel’s salt (Figure 4.63) which may further reduce chemical 

ingress/interaction through a physical barrier effect as reported by Liu et 

al.(2013). 

 Early gypsum precipitation (Figure 4.1) under low chloride (0.5%Cl-) 

conditions is believed to contribute to the rapid thaumasite formation; either 

by acting as a prerequisite for thaumasite formation, as mentioned by 

Schmidt et al. (2008) and Irassar et al. (2005) and/or by causing opening up 
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of the cement microstructure at the early stages of the attack, which would 

increase the access for reactive ions, as reported by Ramezanianpour and 

Hooton (2013).  

 The mitigation effect when high chloride (1.0% and 2.0% chloride) levels 

combined with high sulfate DS4 solution on TSA can be attributed to; 1) 

Initial leaching of calcium hydroxide which would raise the alkalinity (Figure 

4.115) of pore solution and make the cement hydration products more 

stable, 2) High gypsum solubility (Figure 4.121), which would cease the 

negative effect of gypsum formation, 3) Low calcite solubility (Figure 4.121) 

which would reduce the availability of carbonate ions in pore solution, 4) 

Formation and stability of Friedel’s salt (Figure 4.63) which may further 

reduce chemical ingress/interaction through a physical barrier effect. 

 The presence of low (0.5%) chloride concentration combined in a DS4 (BRE 

Ground aggressivity Class) sulfate in ground water can also lead to reduction 

in service life of concrete structures due to the damage to the concrete 

covering the steel reinforcement by thaumasite formation (Figure 5.1). This 

would provide increased access for chloride penetration (Wimpenny and 

Slater, 2003) and a commensurate increase in chloride ions in pore solution, 

both leading to increased corrosion risk as Figure 5.32 shows.  

 The use of slag and fly ash as cement replacements probably delays sulfate 

attack (Figure 4.9), because of the consumption of calcium hydroxide (Figure 

4.27 and Figure 4.29) and pore refinement Figure 5.9. However, concrete 

made with these cements and exposed to aggressive conditions of DS4 as 

magnesium sulfate at low temperature would be subjective to conventional 

form of sulfate attack (Figure 4.83), namely gypsum, rather than TSA, 

probably due to: 1) Low alkalinity of pore solution (Figure 4.117), 2) The 

availability of high sulfate ions, 3) The availability of high calcium ions in the 

pore solution, as a result of C-S-H decalcification 4) The absence of enough 

carbonate ions in the pore solution.   

 In conditions conducive to thaumasite formation, the use of slag and fly ash 

as cement replacement enhances the physical properties of concrete/mortar 

against chloride penetration Figure 5.9. Consequently corrosion resistance of 

concrete reinforcement is increased (Figure 5.36). This enhancement can be 

attributed to: 1) pore refinement due to pozzolanic reaction; 2) reduction in 
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chloride diffusion; and 3) increase in chloride binding capacity, particularly 

in fly ash cement.  

 The presence of chloride combined in a DS4 magnesium sulfate in ground 

water can lead to further enhancement of sulfate resistance of fly ash 

concrete, probably due to the positive effect of high chloride binding capacity 

(Figure 4.27) of fly ash cement. However, the presence of chloride enhances 

lime leaching (Figure 6.7) of GGBS cement, providing more calcium ions 

required for gypsum precipitation (Figure 4.95). At high chloride 

concentration (2.0%) and due to high gypsum solubility (Figure 4.121), no 

gypsum can be formed. 

 

 

7.2 Implications of Results for Research and 

Engineering 

This research has provided new data on the role of chloride on thaumasite form 

of sulfate attack. From the engineering point of view, the key findings and 

implications of this research are as follows: 

 Besides increased levels of sulfate ions present in the ground due to the 

oxidation of pyrite (TEG, 1999) which is proposed (Zhou, 2006) as a 

primary cause of the deterioration observed in field studies (as found in 

the M5 motorway bridge foundations), chloride (mainly due to using de-

icing salts during winter times) could also have a serious implication on 

observed deterioration.  

 Current specifications (BRE Special Digest 1: 2005), however, do not 

sufficiently take into consideration the possible adverse effects of 

chloride ions in groundwater on concrete structures in cold conditions. 

Since, both chloride and sulfate may be present in ground water at 

various concentrations depending on de-icing salt run-off, updated 

standards with regard to the effect of chloride on sulfate attack at low 

temperature and in conditions conducive to thaumasite formation 

should be considered.  

 The low/non chloride binding capacity of thaumasite means that where 

TSA has occurred, the reinforcement corrosion is increasingly vulnerable 

to damage. An additional implication of a poor binding capacity of 
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thaumasite is that physically adsorbed chloride on C-S-H would be 

released into the pore solution (because C-S-H can be transformed to 

thaumasite), which would also lead to increased corrosion risk.  

 Due to the reduction of chloride binding capacity of thaumasite–affected 

concrete and its poor resistance to chloride penetration, the current 

experimental study supports the recommendation by TEG (1999) that 

the thickness of TSA affected concrete should be discounted from any 

consideration of future durability.  

 

7.3 Recommendations for Future Work  

According to the results obtained in this research, the following are suggested 

for further study: 

 The assessment of TSA on corrosion resistance was evaluated in this study 

by a combination of individual assessments by LPR measurements and 

observation of visual damage. However, monitoring of concrete/mortar 

deterioration due to thaumasite formation with time by means of 

electrochemical impedance spectroscopy (EIS) would benefit the 

determination of the extent of damage due to thaumasite formation on 

corrosion resistance of concrete reinforcement. Since, several different 

parameters involved and due to the time limitation, such an application 

could not be applied in the current study.  

 It is important to investigate concrete/mortars with different water to binder 

ratio in order to generate conclusion about the role of chloride of sulfate 

attack at low temperature. In the current study, water to binder ration of 0.6 

was selected to accelerate chemical diffusion and interaction, thus allowing 

identification of any potential reactions within a shorter time frame.  

 It would be also of great interest to study the role of chloride on performance 

of SRPC cement in conditions conducive to thaumasite formation, since, it 

has zero C3A.  

 Besides experimental data obtained by this study, thermodynamic modelling 

would help in understanding the role of chloride on sulfate attack in 

conditions conducive to thaumasite formation at low temperature.  

 It would be beneficial if chemical analysis with regards to various ions 

concentration could be done on extracted pore solutions of concrete/mortar 
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exposed to combined action of sulfate and chloride in environment prone to 

thaumasite with time formation, which would further help in understanding 

the role of chloride ions on TSA. Such an application requires special 

squeezing equipment which was not accessible.    

 Different concentration of chlorides (from 0.1 to 1% Cl) and sulfate solutions 

should be studied to identify the optimum chloride concentration for 

thaumasite formation.  

 According to BRE (Special Digest 1: 2005), sulfate can be present in ground 

conditions in different concentrations. This may lead to different interactions 

with chloride on TSA. Due to the possible availability of SD4 sulfate in 

aggressive ground conditions and due to the time restriction, SD4 was the 

only composition selected in this study.      
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Appendix  

  

 

 

Table A. 1. Concentrations of SO4, Cl, Mg and Ca in test solutions of combined 

CEMI and CEMI-LF specimens at 5°C. 

Test 
solutions 

Tem. 
Exposure 

period 

Ion Concentration (mg/l)  
(At the end of exposure periods) 

(°C) (Months) Cl SO4 Mg Ca 

S 

5 

3 

61.5 4995.4 1372 49.1 

S5 3315.2 5194.4 1070 22.9 

S10 6607.0 4997.1 722 18.1 

S20 15590.2 5045.2 928.7 13.5 

 Solution renewal after 3 months 

S 
 
6 
 

75.31 4815.9 1415 94.6 

S5 3184.3 4435.9 1246 19.8 

S10 8229.5 5335.5 1335 22.3 

S20 16888.3 5466.6 1447 27.9 

 Solution renewal after 6 months 

S 

9 

74.0 4530.8 1349 92.9 

S5 3232.9 4200.3 1420 35.7 

S10 4034.2 4980.3 1484 15.2 

S20 15844.7 5087.3 1566 31.1 

 Solution renewal after 9 months 

S 
 

12 
 

35.1 4548.5 1304 129 

S5 3942.2 4406.4 1119 170 

S10 4055.5 4840.3 1387 30.3 

S20 15943.3 5027.1 1462 40.2 

 Solution renewal after 12 months 

S 

18 

49.6 3536.4 890.2 224 

S5 4246.8 3243.1 353.7 802 

S10 7930.2 4985.7 1623 38.8 

S20 14194.2 5017.4 1583 49.4 
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Table A. 2. Concentrations of SO4, Cl, Mg and Ca in test solutions of combined 

CEMI and CEMI-LF specimens at 20°C. 

Test 
solutions 

Tem. 
Exposure 

period 
Ion Concentration (mg/l) 

(At the end of exposure periods) 

(°C) (Months) Cl SO4 Mg Ca 

S 

20 

3 

65.0 5248.8 1432.4 40.3 

S5 3017.6 5036.8 1012.5 27.1 

S10 6607.0 4997.1 722.0 18.1 

S20 15890.3 5245.5 966.2 18.7 

 Solution renewal after 3 months 

S 

6 

63.0 5305.4 1487.2 96.2 

S5 3982.3 5699.4 1524.6 42.0 

S10 8551.5 5617.3 1378.5 21.5 

S20 17787.8 5846.2 1507.3 39.5 

 Solution renewal after 6 months 

S 

9 

78.1 5150.6 1627.1 122.1 

S5 4034.9 5481.0 1638.4 50.0 

S10 8661.1 5531.1 1622.9 33.5 

S20 16609.5 4994.6 1496.8 33.1 

 Solution renewal after 9 months 

S 

12 

31.4 5101.6 1466.6 109.7 

S5 3878.9 5028.4 1463.1 56.2 

S10 8073.1 5727.6 1573.8 33.1 

S20 16702.4 5321.3 1508.1 28.2 

 

 

Table A. 3. Concentrations of SO4, Cl, Mg and Ca in test solutions after 180 days 

exposure of 20mm mortars at 5°C. 

Test 

solutions 

Tem. 
Binder 

Ion Concentration (mg/l) 

(°C) Cl SO4 Mg Ca 

S 

5 

CEMI 

42.4 867.6 1.0 796.1 

S5 4629.5 1354.2 0 1409.9 

S10 9375.6 1237.5 0 2163.4 

S20 15982.8 2818.1 0 1441.8 

S 

CEMI-LF 

21.9 778.6 0.9 878.7 

S5 5366.3 905.2 0 1803.1 

S10 9367.7 1110.6 0.9 1842.1 

S20 15960.6 2361 0 1493.4 

S 
CEMI-PFA 

25.4 3113.6 713.7 505.2 

S5 3459.9 4623.5 1603.1 61.7 

S20 16618.3 5128.1 1526.8 60.0 

S 
CEMI-GGBS 

17.6 2705.5 554.9 601.9 

S5 3977.7 2835.1 294.1 841.1 

S20 16186.1 4461.7 589.9 821.3 
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Table A. 4. Concentrations of SO4, Cl, Mg and Ca in test solutions after 180 days 

exposure of 20mm mortars at 20°C. 

Test 

solutions 

Tem. 
Binder 

Ion Concentration (mg/l) 

(°C) Cl SO4 Mg Ca 

S 

20 

CEMI 

33.5 4197.0 24.8 29.3 

S5 3386.0 4941.0 3167.3 29.3 

S10 8051.0 5310.0 6532.0 44 

S20 16460.5 4650.6 13418.6 60.8 

S 

CEMI-LF 

20.2 4522.0 1729.4 55.7 

S5 3688.7 5160.6 1593.8 51.1 

S10 8655.8 5433.6 1544.5 40.6 

S20 17461.8 5638.5 1235.5 46.0 

S 
CEMI-PFA 

27.5 4872.1 1855.3 62.3 

S5 4540.7 5354.6 1815.5 43.6 

S20 17999.7 5555.5 1792.3 78.6 

S 
CEMI-GGBS 

36.3 3050.4 608.5 635.8 

S5 4472.7 3807.8 544.7 853 

S20 16603.4 4795.7 527.2 940.6 
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Figure A 1. Photos of phenolphthalein treated mortars. 

 

 

 

Non-carbonated part 

Steel bar location 

Carbonated 

layer 

Steel bar location 

Steel bar location 

Steel bar location 



Appendix 
 

204 
 

 

 

 

 

Figure A 2. Polarisation curves after 720 days of storage in SC5 at 5°C. 
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Figure A 3. Polarisation curves after 720 days of storage in SC5 at 20°C. 
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Figure A 4. Polarisation curves after 720 days of storage in SC20 at 5°C. 
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Figure A 5. Polarisation curves after 720 days of storage in SC20 at 20°C. 
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Figure A 6. Polarisation curves after 900 days of storage in SC5 at 5°C. 
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Figure A 7. Polarisation curves after 900 days of storage in SC5 at 20°C. 
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Figure A 8. Polarisation curves after 900 days of storage in SC20 at 5°C. 
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Figure A 9. Polarisation curves after 900 days of storage in SC20 at 20°C. 

 

 

 

 


