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ABSTRACT

Inflammation is a fundamental mechanism for the body to induce repair and
healing in tissues, and exacerbated inflammatory responses are associated with
a wide variety of diseases and disorders. Categorising the various cells, proteins,
and precise mechanisms involved in initiating and driving inflammation poses
significant challenges, due to the complex interplay that occurs between them.
In this thesis, I will introduce a deadly parasitic disease called Visceral Leish-

maniasis (VL) as a case study in using computational modelling techniques to
elucidate the mechanisms underpinning inflammation. During VL infection, in-
flammatory aggregations of immune system cells form, these are called granulo-
mas. Granulomas function to contain and subsequently remove infection. Whilst
immunological studies have provided insights into the structure and function of
granulomas, there remains a breadth of questions which laboratory techniques
are currently incapable of answering. As such, the challenges facing biologists
from a scientific perspective will be addressed, I will then argue after a thorough
review of the relevant literature, that agent-based computational modelling is a
logical choice for research into granuloma formation, and that such models can
help answer some outstanding questions in the field.
The thesis presents the process of designing and developing the first spatially

resolved model of liver localised granuloma formation during VL. The develop-
ment and use of modelling and simulation to study granulomas has involved
close collaboration with immunologists at all stages through conceptualisation,
modelling, implementation, and also results interpretation. I describe the use of
established statistical techniques to instill confidence in both the model, and the
results it can produce through simulation.
Through iterative hypothesis generation and testing, the research undertaken

has allowed for several predictions to be made, some of which have biological
significance and which were later validated experimentally. Specifically, transcrip-
tomic data analysis revealed that both infected and uninfected Kupffer cells are
equally capable of responding to infection in a similar manner, something which
wasn’t previously evident in the literature. Using this transcriptomic data, I in-
vestigated through simulation, several experimental scenarios and elucidated a
novel mechanism of immune system regulation in the liver microenvironment.
Using an experimental model of Leishmania donovani infection, I demonstrated
that such an immune regulatory mechanism can be overcome with the expansion
of early promoter cells called Natural Killer T cells.
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Part I

I N T R O D U C T I O N





1 RESEARCH CONTEXT AND MOTIVATION

In 2007 the World Health Organization (WHO) published a report on the global
impact of Leishmaniasis, a disease that can affect humans [World Health Organi-
zation, 2007a]. The report highlighted that nearly 350 million people are at risk
of contracting the disease. There are three main types of Leishmaniasis, often
transmitted through the bite of infected female sandflies [World Health Organi-
zation, 2014]. Cutaneous leishmaniasis (figure 1(a)) is the most common of the
diseases, causing ulcers and lesions. Mucocutaneous leishmaniasis (figure 1(b))
is a more extreme case of the disease that can causes “partial or total destruction
of the mucous membranes of the nose, mouth and throat cavities and surrounding
tissues” [World Health Organization, 2014, Page 1.]. Finally, Visceral leishmani-
asis (VL) (figure 1(c)) is a deadly form of the disease that causes inflammation
of the spleen and liver, and is ultimately fatal if left untreated. In recognition of
the 2007 report, the WHO approved a resolution to provide member states with
guidance on how they should tackle this global health problem [World Health
Organization, 2007b]. Recommendations include increasing awareness through
public-health initiatives, and to promote both the prevention and control of the
disease. Development of vaccines is also a goal of the WHO resolution.
Focusing on VL, researchers at the Centre for Immunology and Infection (CII)

at the University of York have been developing therapeutic vaccines to reduce the
numbers of deaths caused by the disease. Recent findings estimate that VL has an
annual global incidence of approximately 58k, though true estimates are expected
to be in the region of 202-389k [Alvar et al., 2012]. Several factors contribute to
the variability in disease estimates; for example due to socio-economic factors in
many countries, there is limited or no access to health care. This leads to either
misdiagnosis due to poor medical care, or the disease carries on unreported if
those infected have no avenue by which to seek aid [Desjeux, 2004]. The disease
is present in 98 recorded countries [Alvar et al., 2012] and many of these are still
considered underdeveloped [Desjeux, 2001]. Understanding the immune system
response to VL is fundamental to the study of the disease and its pathogenesis.
In this thesis I explore the use of Agent-based Modelling and Simulation

(ABMS) to compliment the biological research at the CII, as part of wider compu-
tational immunology research conducted in the York Computational Immunology
Lab. Whilst significant content is devoted to biological research, and explaining
the biological context underpinning that research, the core Computer Science
contributions I provide are in the areas of simulation engineering, simulation use,
and Agent-based Modelling (ABM).
This first chapter introduces the motivation for research, outlining the im-

munological domain that provides inspiration for the design and development of
a computational model of liver inflammation. The challenges facing the field will
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4 research context and motivation

(a) (b) (c)

Figure 1: The Leishmaniases. The three forms of Leishmaniasis. (a) Cutaneous, (b) Mu-
cocutaneous, and (c) Visceral.

be addressed, and several research questions defined. Finally, I summarise the
research contributions of this thesis.

1.1 vl-induced granulomas

Granulomas are multi-cellular inflammatory aggregations of immune system cells
that form in a number of infectious diseases, including: VL, Mycobacterium
tuberculosis (Mtb) and Sarcoidosis. Granulomas form around an initial infected
cell focus, which is typically a macrophage (a type of phagocyte). Granuloma
function has long been purported to contain and subsequently remove infection,
though the efficacy of the granulomatous response at removing infection has
recently been debated, with a review into the tuberculosis granuloma implicating
them in the perpetuation and exacerbation of infection [Ramakrishnan, 2012].
Granulomas can be grouped into two categories: ineffective and effective [Murray,
2001]. Effective, or hypertrophied, granulomas are enlarged and exhibit properties
that facilitate parasite or bacterial clearance. Ineffective granulomas can exhibit
all of the characteristics and common structural traits associated with an effective
granuloma, but for unknown reasons, provide inadequate or no response in terms
of parasite/bacterial clearance.
In VL, hepatic (liver) granulomas are formed subsequent to infection with

Leishmania donovani or Leishmania infantum parasites, and Kupffer cells
(KCs) are the characteristic infected phagocyte that initiates the inflammatory
response (section 3.2). The accepted canon is that granulomas are associated
with asymptomatic VL in dogs and humans [Pearson and Sousa, 1996; Sanchez
et al., 2004], and also function to convey protection in a mouse model of VL
called experimental VL (EVL). In EVL, granulomas have been shown to be het-
erogeneous in their structure, cellular composition and function [McElrath et al.,
1988; Murray, 2001], though there is still uncertainty regarding the precise mech-
anisms underlying these heterogeneous responses, and early granuloma assembly
in general.
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1.2 motivation for research

Despite the advent of new technologies, acquiring the experimental data required
to further understand the complexities of cells in the hepatic microenvironment
is challenging. Liver function is impaired rapidly ex vivo, due to the lack of
blood perfusion which provides vital nutrients to liver cells. Liver sinusoids (small
blood vessels) collapse without blood perfusion, leading to the obfuscation of the
true structure of the hepatic microenvironment and its cellular contents (see sec-
tion 3.1). Ex vivo studies also provide only static experimental observations that
can merely allude to properties of cells in the sinusoids, such as gene expression,
parasite burden, or cell morphology.
Aside from the plethora of more established wet laboratory tools and tech-

niques used by biologists, novel experimental approaches, devised in the last
couple of decades, have helped to build a more integrated picture of the com-
plex cell responses and interplay relating to granulomas. Technology such as
two-photon intravital microscopy [Piston, 1999; Oheim et al., 2006; Benninger
and Piston, 2013] can be utilised to provide dynamic, real-time observations of
immune system responses in tissues in vivo. Two-photon intravital microscopy
is particularly useful for the study of the liver microenvironment, overcoming
some of the limitations previously described relating to blood perfusion and the
processing of tissues ex vivo. As such, two-photon imaging has been used to
study and characterise the dynamics between T cells and macrophages during
development of mycobacterial (Mycobacterium bovis) granulomas [Egen et al.,
2008, 2011], and in VL has helped elucidate that KCs are the only type of APC
capable of presenting antigen to CD8+ effector T cells [Beattie et al., 2010a].
However, two-photon microscopy also has several limitations due to the nature
of the technology which is based on laser excitation. Prolonged exposure to the
laser causes tissue to become progressively damaged, and means that imaging
studies can only be performed for several hours at best. The duration can be
increased moderately, however this has several trade-offs including imaging reso-
lution and not least the prolonged exposure of the mouse, albeit under anesthesia,
to a procedure that is surgically invasive.
Where animal testing and experimentation is concerned, there has been a long-

standing drive for that experimentation to be performed within the strictest
ethical bounds. The 3Rs, Replacement, Reduction and Refinement are the pil-
lars of the framework for ethical scientific experiments involving animals. The
3Rs were first introduced by Russel and Burch [1959], and are now promoted
by organisations such as the NC3Rs [Accessed 29th July 2013]. Refinement is
a broad topic relating to both animal welfare and capitalising on data and de-
liverables from experiments that are unavoidable. Reduction aims to reduce the
numbers of animals required to acquire a set of experimental results, or in an-
other sense, getting more data from those experiments with the same number
of animals. Finally, Replacement is the drive to ultimately avoid using animals
altogether, or replace the use of animals classed as ‘protected’, which includes all
living vertebrates. There are many experimental techniques which can fulfil the
role of replacement, such as in vitro methods that use human or animal material
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that is cultured, or material that has been harvested through natural deaths or
as a by-product of meat and food processing. Computer modelling is also an ex-
ample of replacement, and has the potential to both reduce and replace certain
aspects of animal testing in the future, which will ultimately refine any animal
testing that must invariably be done.
Increasing computing power and methodological advances in modelling and

simulation have facilitated growth in the field of computational approaches to
systems biology [Germain et al., 2011]. Despite this, the computational study of
VL and VL-induced granulomas is in its infancy. Computational modelling has
proved useful for understanding inflammation in a variety of other contexts [Pog-
son et al., 2006; An and Christley, 2012; Pothen et al., 2013], and Agent-based
Modelling (ABM) in particular lends itself to the study of tissue and cellular level
inflammation (see section 2.1.3.2). ABM is a computational modelling approach
that allows for intuitive mapping of entities, such as biological cells, to computa-
tional analogs called agents (see section 2.1.3), and is a useful tool for examining
how low-level interactions and component behaviours can manifest themselves as
higher-level observable phenomena.
At time of writing, the literature is devoid of a detailed ABM of VL-induced

granuloma formation, though several exist for tuberculosis granulomas. Tubercu-
losis granuloma models are predominantly focused on the microenvironment of
the lung (see section 2.1.4), and therefore are not particularly suited to providing
any fundamental insight into VL-induced granulomas that develop in the liver.
Given the difficulties and limitations of current experimental techniques, and the
ethical and financial drive to promote the 3Rs in all aspects of research, the cre-
ation of a computational model is timely in this context. Creating an ABM of
hepatic inflammation would allow us to investigate the dynamics of cellular in-
teractions in the liver, and allow several hypothesis to be tested and experiments
repeated for each, both contributing to the 3Rs drive by acting as a “plausibility
filter for putative hypotheses” [An and Christley, 2012, p. 324], and providing
alternative insight into the underlying processes which are currently challeng-
ing to study experimentally. Not only would the field benefit from having the
first detailed ABM of VL-induced hepatic inflammation, but the process of de-
veloping a computational model in conjunction with experimental collaborators
can be evaluated, giving further insight into how to better engineer and utilise
computational models in a fast-moving, ever changing research landscape.

1.3 research hypothesis and strands

Given the panoply of challenges facing researchers from both a technological and
ethical perspective, and the breadth of outstanding questions in the field of VL-
induced granulomas (see chapter 3), there is a strong case for the development of
a computational ABM of VL-induced granuloma formation. This would also go
some way towards evaluating whether such models can indeed contribute to the
3Rs drive, and ultimately benefit animal welfare if they are more widely adopted
in the future. Therefore, this thesis will address the following hypothesis:
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A spatio-temporal agent-based model can be used to simulate heteroge-
neous inflammatory responses in the liver microenvironment, and provide
new insight into the underlying mechanisms responsible for inflammation.

To investigate my core research hypothesis, I must answer several underlying
research questions:

1. Can a spatio-temporal agent-based simulation, incorporating the key cellu-
lar players and interaction dynamics into biologically plausible simulation
environments, produce a heterogeneous population of granulomas?

2. What role does the structure of the hepatic microenvironment play in gran-
uloma heterogeneity?

3. Does KC spatial location and mediators of cellular recruitment, account for
the varying size and distribution of granulomas observed in vivo?

1.4 thesis contributions

Based on the research questions listed in section 1.3, the thesis will make the
following contributions to the field:

1. The first agent-based model of early hepatic granuloma initiation.

In designing and developing an ABM of granuloma initiation (chapters 4 and 5),
CoSMoS [Andrews et al., 2010] principles will be adopted in order to carefully
separate the biological domain from the proposed modelling abstraction of that
domain, and the subsequent implementation. By adopting an agile approach to
design and development, involving experimental collaborators in the entire pro-
cess, coupled with the use of statistical techniques to establish confidence in the
simulation, a novel ABM will be a product of this research.

2. A determination on the role of environmental structure on the for-
mation of granulomas.

Statistically accurate simulation environments will be generated (chapter 5) and
used in simulations to determine the extent to which structure influences the
formation of granulomas (chapter 6).

3. Informed predictions relating to the role of cells and cellular influ-
ences on granuloma heterogeneity.

Based on iterative in silico experimental design, the simulation will be explored
using different experimental hypotheses relating to various mechanisms that are
not easily testable with current laboratory techniques. Specifically: functional cell
heterogeneity, recruitment and retention dynamics in the liver microenvironment,



8 research context and motivation

and the role of KC spatial location (chapters 6 and 7).

1.5 thesis structure

The thesis is comprised of 4 Parts and a total of 8 chapters excluding the appendix.
Part i includes this introductory chapter, and will discuss the use of modelling and
simulation to further understand biological processes (chapter 2), with particular
emphasis on inflammation.
Part ii will outline the design of the model and development of the simulator in

phases dictated by the CoSMoS framework (section 2.2.1), including: the domain,
a literature review relating to the biological domain of interest (chapter 3); the
domain model, a scoping study based on the domain that acts as a specification
for the modelling and simulation endeavour (chapter 4); and finally, the platform
model, an implementation-specific analog of the domain model (chapter 5).
Part iii is comprised of two chapters: the first presents the results from a sta-

tistical exploration of the simulation output, and addresses questions relating
to structure and KC retentive mechanisms (chapter 6); the second chapter is a
body of results relating to the function of attractive mediators, acquired through
iterative hypothesis generation and prediction, which includes wet-lab experimen-
tation and validation (chapter 7). Finally, Part iv critiques the body of research
presented in this thesis, highlighting the contributions to the field and potential
future work.



2 BIOLOGICAL INSIGHT THROUGH COMPUTA-
TION

The purpose of this chapter is to introduce the current approaches in methodol-
ogy for modelling of complex biological systems, with a focus on how models are
engineered into software products. This chapter begins with a review of compu-
tational modelling, with a focus on modelling of inflammation, and I will justify
why I focus predominantly on agent-based models and granuloma associated dis-
eases. I will then discuss practices and approaches for modelling complex systems.
Finally, gaps in the literature will be identified and these help justify the research
proposed in this thesis.

2.1 computational modelling in biology

Systems biology emerged as a means to process and interpret the ever increasing
deluge of biological data in a holistic context. Systems biology marries hypothesis-
driven research and novel experimental approaches with the high-throughput
data acquisition that advances in tools, technologies, and methodologies has pro-
vided [Ideker et al., 2001]. Whilst the profile of systems biology has increased,
with attempts to advocate systems-level understanding as a means to further our
knowledge of biological processes [Kitano, 2002], new tools and technologies are
constantly evolving and revealing even more new questions than they are helping
to answer. The field is still arguably in its infancy, and indeed has spawned sub-
disciplines such as the application of systems biology to immunology, utilising ge-
nomic and proteomic data analysis and acquisition, bioinformatics and computer
modelling and simulation to compliment and enhance the existing work-flow of
biological research [Germain et al., 2011].

2.1.1 Graphical Modelling and Simulation

There are a variety of bespoke graphical notation tools and simulation environ-
ments for use in creating biological models. These include: BioUML, a visual
modelling and simulation tool for systems biology [Kolpakov and Puzanov, 2006];
Molecular Interaction Maps (MIMs), graphical notation for modelling biochemi-
cal networks; and a proposed amendment to MIM notation by both Kitano and
Kohn (Kohn 1999 as cited in Kitano [2003]; Kohn et al. [2006]. These software
tools have varying degrees of usability, which is defined here as the extent to
which a tool can be used without any prior experience or training. In order to
improve the usability of modelling software, tools with visual interaction aim to
make model creation accessible to both biologists and programmers [Germain

9
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et al., 2011]. Examples of such tools include Cellware - a tool for modelling cellu-
lar processes [Dhar et al., 2004] and COmplex PAthway SImulator (COPASI), a
simulator for biochemical reaction networks [Hoops et al., 2006]. Other modelling
environments exist such as Reactive Animation (RA), which brings together reac-
tive systems design and front-end animation tools [Efroni et al., 2005a]. Reactive
systems are those that function by responding to various inputs, outputs and
system behaviours in parallel, with information from the environment influenc-
ing the system heavily [Cohen and Harel, 2007]. Design and specification of these
reactive systems is achieved primarily with statecharts [Harel and Gery, 1996],
and a proprietary tool called Rhapsody can then be used to create executable
models [Harel and Kugler, 2004]. Graphical user interfaces are employed to facili-
tate interaction and manipulation of these executed models [Efroni et al., 2005a].
RA merges the visual formalism of Statecharts with engaging, data generated,
visual representations of the biological system [Efroni et al., 2005b].

There has also been some effort to create a universal format for storing models
for many of the previously described tools. The Systems Biology Markup Lan-
guage (SBML) [Hucka, 2003] is one such format. It aims to improve interoperabil-
ity, allowing models to be utilised by multiple researchers across a wide variety
of simulation platforms. Should software used to create a model become unsup-
ported, the model can be opened and maintained using one of over 230 software
tools known to be capable of interpreting SBML models [Bergmann et al., 2011].
Portability means that users can take advantage of application specific features of
specific tools, for example a tool with a graphical editor might be used to create
a model, then another tool more suited to analysis may be used to process and
interpret the acquired data [Finney et al., 2006]. A constraint to SBML is that
its specification encodes entities and reactions, reactions or processes are more
commonly associated with mathematical models and expressions, and therefore
it is difficult to encapsulate agent-based models, which are based on objects with
states and interaction rules, into structure SBML definitions. Therefore SBML is
context specific and more suited to particular types of models.
The tools described in this section have a variety of uses; however, none of

them are clear choices for the creation of a spatio-temporal model to understand
emergent phenomena.

2.1.2 Mathematical Modelling of Biological Systems

Ordinary differential equations (ODEs) are often used to model and describe a
variety of biological systems. ODE models are scalable to allow the study of po-
tentially large populations of cells and the subsequent population-level dynamics
that arise. The core benefit of using ODE models is that often relatively few
equations with small numbers of parameters are sufficient to describe a given
system [Bauer et al., 2009], keeping models relatively simple and computation-
ally tractable. These models assume that each model element or population is
homogeneous in function and exists in a uniform space. In the context of biolog-
ical cells, ODEs thereby ignore inherent differences in individual cell behaviour
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and functionality over a given period of time, details that are of relevance from
a biological perspective.
Partial differential equations (PDEs) can be used to incorporate spatial and

temporal dynamics into mathematical equation based models. Some have pre-
viously argued that this invariably increases the complexity and therefore the
computational requirements of those models, diminishing some of the original
benefit of the approach [Bauer et al., 2009]. However, as with any model, the con-
text, complexity, and implementation platform all play a role in the determining
the resource requirements of a given model, and therefore it is possible to have
extremely fast, computationally efficient implementations of ODEs and PDEs for
a wide variety of purposes.
Differential equations have been used to model systems in a variety of inflam-

mation related contexts. Equation based models include a model of infection
induced acute inflammatory response [Reynolds et al., 2006], and the effect of
pro and anti-inflammatory cytokines on the function of phagocytes during My-
cobacterium tuberculosis (Mtb) infection [Marino et al., 2010]. Mathematical
modelling in the biosciences is an extensive field, and in the context of acute in-
flammatory responses is already well reviewed [Vodovotz et al., 2004]. Referring
back to several themes highlighted in the original research questions (section 1.3),
environment and spatial location are two properties that form the focus of this
research. Considering that approaches such as agent-based modelling exist (sec-
tion 2.1.3), which is inherently based on capturing heterogeneous populations
of entities interacting in a spatial environment, ODEs and PDEs are not as im-
mediately suitable for examining the relationship between environment and the
spatial location of individuals, and the influence both have on population-level
behaviours.

2.1.3 Agent-Based Modelling

ABM is a computational approach for simulating a system by modelling its con-
stituent components as autonomous entities called agents. In agent-based models
of biological systems, agents can encapsulate entities, such as cells or molecules, at
a variety of different biological scales. Simulated environments can be constructed
and populated with agents. The powerful utility of ABM comes from the ability
to investigate causality and emergence, and to determine how macro-level phe-
nomena can manifest themselves as a result of low-level stochastic interactions
between agents [Bonabeau, 2002]. Conditional rules determine how agents transi-
tion between pre-defined states, and how they move and interact with and upon
their environment. Also, heterogeneous populations of agents can be instantiated
to determine how functional differences between agents play a role in the system.
ABM allows for a great degree of flexibility with regards to both the quantities

of agents and rules governing interactions, thus models can be modified to find the
required degree of abstraction and to incorporate new theories and hypotheses
about a given system, grounded in evidence-based assumptions. Where little or
no evidence exists, reasonable assumptions can be made or inferred about agent
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behaviour, provided the assumptions are plausible and that they are explicitly
defined and documented. Through simulation and subsequent experimental val-
idation of hypotheses, model assumptions can be refined or updated to reflect
current understanding of the system, furthering the predictive capacity of the
model.
Agent-based modelling and simulation, which has history in modelling cooper-

ation and decision making in political and social science [Axelrod, 1985], did not
gain more widespread adoption until the 1990s, predominantly due to its compu-
tational intensive nature at the time; though this limitation is not as significant
in recent times. Aided by the advent of agent-based modelling software such as
NetLogo and Swarm (reviewed in section 2.1.3.1), ABM has been adopted in
fields as diverse as ecology [Grimm and Railsback, 2013], economics [Phan and
Varenne, 2010], and biology [Forrest and Beauchemin, 2007].

Having introduced ABM, the next section will outline various agent-based mod-
elling platforms that can be used to implement models into executable simula-
tions, and the advantages and disadvantages inherent with some of those tools. I
will then review agent-based modelling in the particular context of inflammation
(see section 2.1.3.2) and elaborate on ABMs and computational models that are
more relevant to granulomatous inflammation (see section 2.1.4), which is the
focus of the domain of interest in this thesis (expanded on in chapter 3).

2.1.3.1 Agent-Based Modelling Platforms

The list of agent-based modelling platforms is extensive and as such this sec-
tion will not discuss the list in its entirety. At the time of writing, Nikolai and
Madey [2009] provide the most comprehensive categorisation of ABM software
by: programming language, licence type, user support and documentation, and
required operating system. An alternative review focuses on a more detailed com-
parison in terms of execution speed, input-output functionality, scheduling, and
required programming expertise between the following ABM platforms: Swarm,
Java Swarm, Repast, MASON and NetLogo [Railsback et al., 2005].
Dedicated agent-based modelling platforms are not a requirement for creating

an ABM; scientific toolkits such as MATLAB R may also be used. Alternatively,
modellers may write their own bespoke model in a computer language of their
choosing. The advantage of many dedicated agent-based modelling platforms is
that they generally provide a suite of pre-written software libraries, with specific
functionality to implement the ABM into an executable form. These libraries may
include functionality for simulation scheduling, visualisation, or code for utilis-
ing high performance grid computing facilities. The disadvantage of pre-written
software tools is that the user is invariably trusting the authors of said tool in
ensuring that the platform has been engineered rigorously and is suitably free
from errors. Several ABM platforms have strong user communities, providing
valuable feedback and bug reports to developers for future releases, such as NetL-
ogo (proprietary-free-to-use) or MASON (open-source). These tools will now be
described along with some other established ABM platforms, each having been
referenced in various journal publications relating to computational models.
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NetLogo is a free-to-use multi-agent modelling environment written in Java
[Wilensky, 1999], which utilises an agent-centric modified version of the Logo
programming language. The high-level programming language Netlogo uses is
accessible to veteran programmers and novices alike, though it lacks some of the
data structures and control logic of more established programming languages. The
low barriers to entry of NetLogo make it a very popular tool for both education
and research [Tisue and Wilensky, 2004], and it is the most mature platform in
terms of abundance of documentation and user tutorials. There is debate as to
the merit of NetLogo for scientific research [Railsback et al., 2005], as much of its
history and functionality is grounded in pedagogy and in making ABM accessible
for non-programmers. ABMs utilising NetLogo have established themselves in
scientific journals, and some of the biological ABMs reviewed in section 2.1.3.2
make use of the platform.
Multi-Agent Simulator Of Neighborhoods (MASON ) is an open-source discrete-

event multi-agent toolkit developed in the Java programming language, with an
emphasis on execution speed [Luke et al., 2004]. The MASON toolkit was de-
signed to efficiently handle large numbers of agents, very useful for simulating
large scale social science and insect systems [Balan et al., 2003], though support
for substantial numbers of agents is a desirable feature of any agent-based sim-
ulation toolkit. MASON has libraries to handle scheduling, check-pointing and
2D/3D visualisation, as well as being platform independent and capable of pro-
ducing identical simulation results across all major computing platforms using
random number seeding. Demonstrated uses of MASON cover a diverse range
of application areas including modelling of climate change [Hailegiorgis et al.,
2010] and ant foraging [Panait and Luke, 2004]. In the context of immunology,
MASON has been used to develop simulations of population dynamics of cells
in Experimental Autoimmune Encephalomyelitis (EAE) [Read et al., 2011], a
murine model of Multiple Sclerosis, and also in the development of a simulation
of lymphoid organogenesis and the development of Peyer’s patches in the small
intestines of mice [Alden et al., 2012]. Both case studies benefited from the exist-
ing libraries provided by MASON by allowing the authors to dedicate more time
towards establishing confidence in their simulations.
Repast Simphony [North et al., 2013] is the latest incarnation of the Repast

family of ABM modelling libraries. Repast Simphony builds upon Repast 3, with
a suite of open-source, freely available, extensible simulation libraries written in
Java, C#.NET and a bespoke Python varient called Not Quite Python (NQPy).
Repast Simphony code is extensible due to its code archictecture, giving users the
ability to extend, modify or replace a wide variety of its functionality. The model
development process normally involves first integrating Repast Simphony with
the Eclipse Integrated Development Environment (IDE), and users can then write
program code, develop flowcharts for program logic, and view simulation output
and visualisation all from within the IDE. Similar to MASON, Repast Simphony
is built with object-oriented design as the core paradigm of how user models are
developed and also integrated with existing simulation libararies. Repast models
can also be extended to work on High Performance Computing facilities [Collier
and North, 2012].
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Swarm [Minar et al., 1996; SDG, 2013] is a framework where models are de-
veloped as a collection of swarms, which themselves can be collections of various
heirarchical objects. Swarm decouples the model from output and visualisation
by enforcing the use of observer swarms to be constructed to interrogate the
state of a model object. Swarm was first implemented in the Objective-C pro-
gramming language, though Java/Swarm was later developed to allow users to
develop Swarm models in the Java programming language.
Flexible Large-Scale Agent Modelling Environment (FLAME) is an ABM sim-

ulation platform built upon the principle of communicating X-machines [Coakley
et al., 2006], similar to finite state machines but with the additional capacity to
cater for state memory. The key benefit of modelling with X-machines is that
they provide a formal means of describing a model, which can help with the val-
idation and verification of simulation software. FLAME also boasts the capacity
to work on both desktop machines and using massively parallel grid computing
facilities. FLAME has been used predominantly in the context of both biological
[Adra et al., 2010; Holcombe et al., 2012; Sun et al., 2007] and economic mod-
elling [Deissenberg et al., 2008]. FLAME GPU [Richmond and Romano, 2008]
extended the FLAME framework to exploit the parallel architecture of modern
Graphics Processing Units (GPUs). Agent-oriented simulations are then devel-
oped using the FLAME framework and run as Compute Unified Device Architec-
ture (CUDA) code, providing a significant performance boost over the original
FLAME implementation when comparing two identical agent-based simulations
[Richmond et al., 2009].
What is clear from the literature and my concise review, is that no ABM

platform is considered the exemplar, it is user knowledge, implementation specific
requirements, and also user preference that dictate the most suitable platform
for a given modelling purpose.

2.1.3.2 Inflammation Associated Agent-Based Modelling

Inflammation is a fundamental immune system response, with the over-arching
purpose of tissue repair, which results from a wide range of diseases and injury
associated damage. Inflammation is such a complex response to understand and
study because of the immune system’s decentralisation, and the inherent ability
for it to naturally balance pro and anti inflammatory responses. Problems occur
when diseases or injury interferes with the immune systems capability to self-
regulate inflammation, leading to exacerbated inflammatory responses that are
associated with disorders such as cancer, obesity, and diabetes. The role of gran-
ulomatous inflammation in the context of VL is further elaborated in chapter 3.
The agent-based modelling paradigm represents a powerful utility for the study

of inflammation in a variety of contexts, since inflammation often manifests itself
as some form of tissue-scale observable phenomena, and agents and environments
can be designed to represent cells and biological tissues where these phenomena
occur. Figure 2 summarises some of the intuitive analogues that agents have
compared with features of biological cells. There are several proponents of ABM
for inflammation, and the large body of inflammation related modelling literature



2.1 computational modelling in biology 15

is already well reviewed (see Mi et al. [2010]; An [2006, 2010]; An and Christley
[2012]), though I will discuss some of the more recent examples in the literature.
Brown et al. [2011] created an ABM to study the responses of macrophages

when introducing particulate matter into the lung. Their model was capable of
reproducing a variety of the emergent phenomena, such as fibrosis and localised
tissue damage, which they subsequently validated using histological analysis of
mice lungs subsequent to smoke exposure. Whilst interesting, the authors specif-
ically state that they have not made any attempts to calibrate their simulation.
Much of their simulated data is based on averaging an arbitrary number of sim-
ulation runs, and many cell populations also have arbitrary baseline values. The
authors are not alone in this respect, others have interpreted their simulation
data without properly understanding how stochasticity affects simulations. Stud-
ies by both Pothen et al. [2013], testing the plausibility of a novel inflammatory
‘twitch’ hypothesis, and Li et al. [2008], predicting individual treatment outcomes
using an ABM of vocal fold inflammation, also lacked the rigour that comes from
using statistical analyses to mitigate the effects of stochasticity in simulations.

Figure 2: Suitability of agent-based models for studying tissue-scale phenomena; as pub-
lished in Moore et al. [2013]

The Epitheliome project has contributed a large body of literature on the
dynamics of wound healing in epithelial tissues. Walker et al. [2004b] created a
proof-of-concept ABM to investigate the growth of epithelial tissue in simulated
culture, demonstrating different tissue growth characteristics. Their model has
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been subject to various extentions, firstly extending their POC to predict the
effects of calcium concentration on wound closure [Walker et al., 2004a], and also
integrating ordinary differential equation (ODE) reaction diffusion models of the
epidermal growth factor receptor (EGFR) signalling pathway into their existing
ABM, forming a hybrid multi-scale model [Walker et al., 2008]. Their approach
demonstrates how stochastic simulations can be used to predict how low-level
cellular heterogeneity can influence emergent system-level cell behaviour.
Stern et al. [2012] developed an ABM to study the restoration of epithelial

barriers, simulating wound healing. Their model was later extended to study how
host-pathogen interactions in the gut affect wound healing [Stern et al., 2013]. The
authors predicted that impairment and delay of wound healing could be causes
of a phenomenon known as an anastomotic leak, the leakage of fluids through
epithelial barriers that leads to sepsis and morbidity after surgery. Their study is
an example of how ABMs are powerful for hypothesis driven research, with several
biologically plausible hypotheses examined and results interpreted in the context
of the underlying biology. Where the study lacks is that there appears to be no
calibration and validation of the simulation based on the model extensions. The
authors state that the anastomotic leak study is based on a ‘previously validated
ABM’; however, as discussed by Greaves et al. [2013], extending simulations can
lead to dramatic changes in simulation behaviour and data output. Therefore,
careful consideration and a principled engineering approach must be adopted
when extending simulations of complex systems.

Another example of ABM being used to study wound healing is in the context
of non-healing diabetic foot ulcers (DFU) [Mi et al., 2007]. Whilst an interest-
ing first step, and the first published ABM of DFU, the study does not appear
to demonstrate that wound healing actually manifests itself at the tissue-level,
and instead they present correlates of wound healing such as: increased levels
of collagen, cytokines, and a tissue damage surrogate metric. From a predictive
standpoint, the ABM provides several ‘non-intuitive’ findings that the authors
believe could explain some of the dynamics of wounding healing in DFU.
The utility of ABMs is not restricted to studying tissue level phenomena. Agent-

based modelling and simulation has been used to good effect in the study of single
cells and various intracellular signalling pathways. The NF-κB signalling pathway,
considered central for the regulation of immune response and inflammation, has
been the focus of several agent-based modelling studies. Pogson et al. [2006, 2008]
published their ABM investigations into the NF-κB pathway looking at Toll-
interleukin receptor (TIR) mediated pathway activation. Their studies show how
the NF-κB pathway affects inhibitor complexes responsible for regulating itself
via IκB mediated negative feedback. They predicted key roles for several pathway
components, namely IκB-action interactions in controlling the negative feedback
loop, which they later validated experimentally. The authors state that ABM
overcame several limitations of previous ODE models in this context, primarily
the tendency of concentrations modelled with ODEs to reach an equilibrium,
giving rise to non-biologically plausible results. Their results demonstrate the
power of ABM for studying an intracellular level processes. Similarly, Dong et al.
[2010] implemented an ABM of a single cell, and the propagation of extracellular
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signals (LPS) as a signalling cascade inside the cellular membrane and towards
a nucleus. Their model implements a simplified version of the NF-κB signalling
pathway, which acts as hub for downstream inflammatory responses within a cell.
Their efforts whilst interesting, seem to oversimplify the NF-κB pathway, which
is extremely complex, and their calibration and validation of model results was
limited to a parameter sweep, of which they do not explain their method, nor do
the authors describe any robustness or sensitivity analysis.
I have described several computational models developed to elucidate features

of inflammation in a wide variety of contexts. Later in chapter 3, I will elaborate
on the complexities of granulomatous inflammation, which was briefly discussed
in the introduction to this thesis (chapter 1). The following section will critique
the literature of equation based, mathematical, and agent-based models that
specifically address granulomatous inflammation, which presents during a variety
of diseases.

2.1.4 Computational Insights into Granulomas

Most granuloma modelling literature is in the context of Mtb, though there are
precedents in the fields of other granuloma inducing diseases including sarcoidosis
and VL. Several predictions about the immune system factors contributing to
both the formation of Mtb granulomas, and their efficacy in controlling infection,
have been studied using agent-based, mathematical, and multi-scale modelling
approaches.

2.1.4.1 Mycobacterium Tuberculosis Granuloma Modelling

Segovia-Juarez et al. [2004] published an ABM of granuloma formation using
a two-dimensional discrete lattice environment representing lung tissue. Their
ABM includes agents representing macrophages and lymphocytes, with abstrac-
tions for various cytokines and chemokines, and was designed to elucidate the
influential processes and functions responsible for granuloma formation in Mtb.
Their initial model was later extended to determine the efficacy of granulomas at
controlling infection and the role TNF-α plays in this process [Ray et al., 2009].
The same laboratory published further research detailing a mathematical model
that was coupled with their previously published ABM to create a multi-scale
model that predicted the main factors controlling availability of TNF-α within
granulomas [Fallahi-Sichani et al., 2010, 2011]. The study suggested that TNF
levels and bacterial burden are intrinsically linked, making TNF dynamics criti-
cal in determining a range of possible infection outcomes pertinent to bacterial
growth and level of inflammation. Their multi-scale model was later refined to
incorporate the dynamics of NF-κB [Fallahi-Sichani et al., 2012], a transcription
factor ubiquitous in cells and a key component in cellular response to infection.
Whilst the study of Mtb granulomas using computational modelling has been

fairly prolific in comparison to any other granuloma modelling efforts, the valida-
tion of many of the predictions has proved elusive, primarily due to the current
technical difficulties inhibiting detailed measurement of granulomas in vivo/in
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situ ; this is partly the reason for using computational modelling in the first place.
The published works provide detailed examples of the integration of highly de-
tailed mathematical and agent-based models across multiple scales, though this
high level of detail makes the predictions heavily reliant on the assumptions
and parameterisation of the models, despite their use of sensitivity analysis to
calibrate simulation parameters. Another issue when drawing on such work for
inspiration for modelling liver granulomas, is that the two-dimensional lattice ap-
proach adopted, whilst it may be acceptable for modelling the lung, is insufficient
to represent the liver microenvironment for a variety of reasons that I outline in
section 2.1.5.

2.1.4.2 Sarcoidosis Granuloma Modelling

Aguda et al. [2011] described an ordinary differential equation (ODE) based
model of the dynamics of sarcoidosis using an immune network model of cel-
lular players and cytokine mediators, with interactions and transitions having
a corresponding ODE representation. Interpreting the formation of granulomas
was achieved by monitoring steady states in their simulation, categorised by a
sustained increases of proinflammatory cytokines, antigenic exposure and expan-
sion of key cell populations in the model. Their model predicts that the immune
response to sarcoidosis is biphasic in nature, depending on the level of antigenic
challenge during infection, and that sufficient exposure of antigen can lead to
the promotion of a Th1 (protective-type) response. Whilst interesting, the proxy
measures used for measuring a granuloma are insufficient to truly understand the
interplay between individual cells in their system. No environment was modelled
explicitly, and as such, the dynamics of both the formation and maintenance
of granulomas from a spatial perspective could not be dissected with such an
equation based model.

2.1.4.3 Visceral Leishmaniasis Granuloma Modelling

Modelling of granulomas in VL is still in its infancy. Flügge et al. [2009] modelled
the spatial aspect of hepatic granulomas, investigating whether heterogeneity in
KC function might affect recruitment of innate liver cells. The limited scope of
the model made it difficult for the authors to draw any useful biological conclu-
sions, and it served primarily as a proof of concept for potential future work. An
alternative, more complex, stochastic petri-net was used to predict the dynamics
of various cells and cytokines across the full time course of L. donovani infection
[Albergante, 2010; Albergante et al., 2010, 2013]. The authors predict a key role
for KC produced autocrine IL-10 as a regulator of effector mechanisms within a
granuloma. The complexity of this model allows it to be used as a tool for gener-
ating hypotheses and prediction as to the interplay between cells and cytokines,
and how that ultimately relates to parasite clearance. However, the stochastic
petri-net approach is incapable of modelling interactions within a spatially de-
fined environment, thus, the role of the liver micro-environment and interactions
at the cellular level were not investigated in these studies.



2.1 computational modelling in biology 19

2.1.4.4 Summary of Granuloma Modelling

This section has highlighted the relevant literature relating to computational mod-
els of granulomas. Previous efforts have adopted a variety of techniques including
equation-based models, agent-based models, stochastic petri-nets and hybrid ap-
proaches. Whilst many of these models have proven interesting and indeed have
their own strengths, there are several issues with why they are insufficient to be
emulated when creating a model of granuloma formation in the liver.
Firstly, the equation based and stochastic petri-net approaches ignore the inher-

ent structure of the tissues within which the granulomas form, and the interplay
between individual cells and forming granulomas. Secondly, the models that do
introduce a spatial environment often use the standard two-dimensional grid en-
vironment approach. As I will discuss in sections 2.1.5 and 3.1, the structure
and function of the liver are intricately linked; therefore, such an approach is
not ideal for studying liver granulomas spatio-temporally. The next section will
review the various attempts to model the liver and its microenvironment for use
in simulation.

2.1.5 Computational Liver Representations

Tissue function is often inherently linked to its structure, particularly in the case
of the liver (see section 3.1). In order to further understand the physiological
relationship between cells and their environment, and any signalling mechanisms
within, any computational representation of a particular tissue needs to be a
plausible abstraction of that environment.
Accurately modelling the liver lobule micro-environment has been a challenge

in a variety of areas. Wambaugh and Shah [2010] generated connected graphs rep-
resenting the sinusoidal network (liver micro-environment) in order to investigate
blood-flow, chemical metabolism and cell responses. The graph representations
facilitated the computationally efficient solving of blood flow. Virtual liver lobules
were constructed by amalgamating individual sinusoidal sections, representative
of plates of liver lobule, but whilst qualitatively similar to observed liver lob-
ule morphology, the authors acknowledge that their networks are not generated
based on statistical data.
Statistical data describing the overall size of lobules, average non-branched

sinusoid length, and branching angles between sinusoids was first published by
Höhme et al. [2010], who used a combination of confocal microscopy and a novel
image processing and volume analysis method chain, to perform statistical anal-
ysis of 26 individual mouse liver lobules. The authors then constructed a single
statistically representative computational liver lobule, used as the basis for a
model to investigate lobule regeneration after damage. Their initial models failed
to accurately capture how regeneration manifests itself through proliferation and
movement of hepatocytes alone. After testing multiple hypotheses, the authors
determined that if their model included a rule forcing hepatocyte daughter cells
to align to the nearest sinusoid, the proliferation of hepatocytes was then able to
promote lobule regeneration, this process was dubbed “hepatocyte-sinusoid align-
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ment” (HSA). The authors validated HSA experimentally, and their research is an
exemplar in how computational models of complex systems can provide valuable
insight into predicting otherwise unknown biological mechanisms. With respect
to replicating the liver microenvironment, the methods employed by Höhme et al.
[2010] are advanced and not trivial to replicate; therefore, a significant amount
of time and resources would be required to repeat such a study and incorporate
these environments into other models.
Bhattacharya et al. [2012] described a multi-scale model coupling a cellular level

ABM of liver sinusoids to an ODE-based model of hepatocyte toxicity pathways.
Whilst a novel step in its particular context, the model falls short in terms of
accurately modelling the liver micro-environment. Only a small section of sinusoid
was modeled, and the scales of individual cells in their model appear not to be
calibrated to any biological data, particularly that of KCs. Similarly, in an early
conceptual investigation into inflammatory cell recruitment, Flügge et al. [2009]
only modelled a single Y-shaped branch of sinusoid. Though in fairness, sinusoidal
structure was not the key focus for both of these studies.
In another study, Heiland et al. [2012] used the liver lobule as a case study for

demonstrating the visualisation advantages of a modelling application called Com-
puCell3D (CC3D), which utilises the ‘Visualization Toolkit’ (VTK) [Schroeder
et al., 2003]. The authors introduced 3D renderings of lobules with both sinu-
soids and hepatocytes modelled. Whilst interesting, the paper does not give any
concrete details as to how the authors managed to mimic liver morphology, and
whether or not their sinusoidal structures were algorithmically generated, and if
so what algorithm was used.
Of the spatial representations of hepatic lobules discussed, that of Höhme et al.

[2010] appears to be the most accomplished, as the structures acquired by the
authors are those from real mice. However, the acquisition process requires ex-
pert knowledge and the need to follow a strict protocol to ensure that mice livers
maintain their structure for imaging after harvesting. Also, their image process-
ing tool chain is not openly accessible; therefore, their work would have to be
replicated to turn lobule images into computational network representations. An
alternative approach would be to generate artificial sinusoidal and lobule struc-
tures utilising the statistics published by Höhme et al. [2010], providing a means
to create multiple structures whilst reducing the number of animals required for
such an activity. This aspect of the research detailed in this thesis will be outlined
in section 5.2.

2.1.6 Summary of Identified Literature Gaps

I have outlined some of the literature relating to computational modelling of in-
flammation, with a focus on agent-based models due to their capacity for spatially
constrained models, including a review of various implementation platforms that
can be used to develop those models. Subsequently, I highlighted previous efforts
in the modelling of granulomas and granulomatous inflammation. This section
summarises the gaps identified during my literature review, and makes clear the
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motivation for the research detailed in this thesis. Based on the literature review,
the following are the identified gaps in the literature, these gaps justify why the
thesis contributions listed in section 1.4 are novel:

1.
As outlined in the review, there is currently only one existing ABM that
deals with the spatial formation of granulomas in the context of VL [Flügge
et al., 2009], and that model was merely a proof of concept. The develop-
ment of an ABM allowing the study of cellular migration and recruitment
would provide the field with a valuable tool for more comprehensively study-
ing potential mechanisms underpinning granuloma heterogeneity.

2.
The majority of the ABMs reviewed in section 2.1.3.2 model environments
as 2D lattice grids. Quite often, the tissue environments they represent are
significantly more complex, and little to no reflection is made regarding how
the simulated tissue environments are influencing their simulation results.
To this end, an ABM that incorporates biologically plausible, statistically
accurate simulation environments, would allow the role of structure to be
investigated and understood in the context of the liver.

3.
There is a clear need for better adoption of techniques to increase con-
fidence in simulations and their results. Modellers must be confident that
their models are engineered accurately and calibrated to available data, and
both modellers and experimental collaborators must be confident that the
models they use provide plausible abstractions of the underlying biology.
Confidence can be garnered through clear documentation of design deci-
sions and assumptions, understanding of stochasticity in simulation, and
the robustness and sensitivity of a simulation to parameter perturbation.
Therefore, the proposed granuloma model must be clearly documented to
highlight design decisions and available data, as well as be calibrated and
results interpreted using state of the art statistical techniques.

With the gaps in the literature defined, it is important to understand the
methods that are available to adequately model and implement complex systems
of this type. The following sections will investigate the process of engineering
software for complex systems (section 2.2), and introduce the CoSMoS framework
which can guide the development and use of complex systems simulations for
research (section 2.2.1).

2.2 engineering software for complex systems

There exists no widely accepted method of developing software for modelling
complex systems. There have been various conceptualisations of the process, in-
cluding Kitano [2002]’s cycle of research and experimentation, or Sargent [2007]’s
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“Real world and simulation world relationships” (see figure 4). This section will
introduce the CoSMoS framework for developing complex systems simulations,
and discuss a variety of the commonly used modelling tools and approaches in
the field of computational biology.

2.2.1 The CoSMoS Framework

The Complex Systems Modelling and Simulation (CoSMoS) framework [An-
drews et al., 2010; Bown et al., 2012] is designed to guide the principled devel-
opment and validation of complex systems simulations, with applications of the
CoSMoS framework including a biological simulation of auxin transport in plants
[Garnett et al., 2010], experimental autoimmune encephalomyelitis [Read, 2011]
and Peyer’s Patch organogenesis [Alden, 2012; Alden et al., 2012], illustrating a
variety of biological problem domains suitable for the CoSMoS framework.

Adhering to CoSMoS provides flexibility in the development process. Mod-
els and software simulations can be developed iteratively, with both modeller
and experimentalist (domain expert) working cooperatively to ensure a mutual
understanding regarding the scope of the project and the research context. Col-
laborators, modeller and domain expert, are required to justify any abstractions
made during the development process. Collaboration also extends to the analysis
and interpretation of data gathered from simulations, as a modeller may not nec-
essarily understand how their results are relevant and what contributions those
results can make when interpreting them in the context of the domain interest.

2.2.1.1 Phases of the CoSMoS Framework

The CoSMoS framework is split into three phases, Discovery, Development and
Exploration. The Discovery phase is concerned with identifying the domain of
interest i.e. the biological question(s) to be addressed, then creating a domain
model that represents, explicitly, both the domain experts’ and the modellers’
understanding of the system. Understanding of the domain of interest will not be
absolute, or there would be no purpose for studying that domain, hence there will
invariably be assumptions made about the domain, these must be made explicit.
The domain model omits any simulation implementation details.
Development is the realisation of the domain model into a repeatable simu-

lation platform. A platform model is created that serves as an engineering con-
struct for the simulation platform (the implementation of the platform model
in software executable on a chosen hardware platform). The platform model is
derived from the domain model and as such it must incorporate its various as-
sumptions and abstractions made. However, CoSMoS advocates that there is a
strict separation between the domain and platform models, with the omission of
any implementation specific concerns at the domain modelling stage. This sepa-
ration ensures that system interactions or behaviours that may lead to a particu-
lar observable phenomena, are not explicitly coded into the simulation. Instead,
a domain model will conceptualise how particular phenomena might manifest
themselves from low-level interactions, and the platform model implements those
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low-level interactions, and crucially, system-level phenomena ‘emerge’ from the
simulation without being directly implemented.
Exploration utilises the simulation platform to answer the original questions

posed of the domain [Andrews et al., 2010, 2011]. This phase records the results of
running experiments with the simulation platform, creating the results model
which interprets those results in the context of the original research questions
or hypotheses. The iterative nature of the CoSMoS process dictates that the
interpretation of the results model be compared to the original domain model,
assessing the suitability of the simulation as a representation of the real domain.
Ultimately, the goal is to utilise a suitable simulation platform and the subse-
quent results model to drive experimentation in the real domain.

Figure 3: The CoSMoS framework. This diagram illustrates the phases of the CoSMoS
framework. Information gathered about the domain is used to construct a
domain model. This domain model forms the basis of the platform model. The
platform model contains the required information to design and implement
the domain model in silico. The simulation platform is the realisation of the
platform model onto comprises of hardware and/or software. The results model
is a record of observations acquired from experimentation with the simulation.
A results model is used to interpret the simulation output in the context of
the domain model and the research context. The research context encompasses
the overriding goals of the research, such as research questions or hypotheses
relating to the domain. Figure after Andrews et al. [2010]

Adhering to the CoSMoS framework ensures the separation of the domain
of interest from the platform specification required to implement that domain
in simulation. Whilst there are currently no tangible documents or deliverables
advocated by CoSMoS, each stage of the framework is separate and followed
in a specific order: domain -> domain model -> platform model -> simulation
model and finally results model, though CoSMoS is iterative, and if newly gleaned
insights can improve, or if they call into question, any features of the model then
CoSMoS allows you to revisit earlier stages in the process and make the relevant
changes before repeating the process.
The benefit of following the CoSMoS project structure also extends to the

reuse, adaptability and extension of complex systems simulations. Li et al. [2013]
demonstrated how an existing software simulation modelling the formation of
vascular structures could be adapted to investigate tumour growth. The authors
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outline how their original domain model, along with the aspects of its software
implementation, could be reused for an alternate purpose. Whilst development
time can be reduced by adopting such an activity of model re-purposing, it must
be done with careful consideration of the original model assumptions, and how
these might need adapting for the alternate purpose, and also the requirements
for calibration of the new model Li et al. [2013]. Similar care is required when
engaging in model extension. A CoSMoS project on the modelling of experimen-
tal auto-immune encephalomyelitis (EAE) [Read, 2011], a murine auto-immune
disease, was extended by [Greaves et al., 2013] to investigate the role of a cellu-
lar pathway, CD200, involved in the regulation of T cell priming. As no widely
accepted method for extending complex systems simulations exists, the original
CoSMoS domain and platform models provided a basis by which to begin design-
ing and implementing additions to the model.

2.2.1.2 CoSMoS is Agile

In situations where a software project requirements may be subject to a degree
of change, traditional linear approaches to software development, such as the
waterfall method, may not always be suitable. Academic projects are inherently
unstable, due to a range of factors such as funding arrangements (PhD funding
or grant limitations), fast turnover of human resource (short term contracts)
and project time constraints. Those constraints have detrimental effects on the
feasibility of long term software maintenance [Pitt-Francis et al., 2008]. As well
as computer code, software refers to the relevant documentation and operational
data that goes alongside the computer program.
CoSMoS advocates an agile approach to software development, though not any

specific agile method. Agile is a type of software process model that focuses on
iteration and flexibility, with an emphasis on customer and stakeholder engage-
ment throughout the development of software. Customer, developer, and stake-
holders work together to agree on software requirements, which are continually
refined based on rapid prototype development and stakeholder feedback [Nerur
et al., 2005]. This iterative and incremental development focuses on team engage-
ment to bring multiple perspectives and problem solving capabilities to a project
[Cockburn and Highsmith, 2001; Nerur et al., 2005; Sommerville, 2009].
There exist many agile methods (see Larman and Basili [2003]; Dyba and

Dingsoyr [2008] for more comprehensive reviews), including: Dynamic Software
Development Method (DSDM) [Stapleton, 2003], Feature-Driven Development
[Palmer and Felsing, 2002], Scrum [Schwaber and Beedle, 2001], and Extreme
Programming (XP) [Beck, 1999]. Each method has its own advantages and dis-
advantages, some better suited to different problem areas than others. Though a
development team must inevitably adapt whichever variant suits them based on
their own requirements.
The research outlined later in this thesis was developed by taking inspiration

from the Scrum agile variant [Schwaber, 1997; Schwaber and Beedle, 2001], and
I comment on the use of Scrum during this project later in the thesis (see sec-
tion 8.5). The Scrum process is centered around three components; the product
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backlog, the sprint backlog, and the working software increment. The prod-
uct backlog contains a list of software features agreed upon by the stakeholders
and the development team. The Scrum Master then has the task of prioritising
items from the product backlog to be included in the sprint backlog. A sprint
is a time-boxed unit of work devoted to the implementation or modification of
a software feature. The sprint backlog is the ordered list of features assigned to
the next sprint. After each sprint, a working software increment is created, and
feedback from that increment feeds back to inform both the product and spring
backlogs subsequent to discussions with the stakeholders.

2.2.2 Validating Models for Scientific Research

Grounding models and simulation in the real domain is the challenge of any
modeller and domain expert. Demonstrating the validity of results and justifying
these to the scientific community should be one of the primary concerns of any-
one involved in computational modelling. Verification and validation (V&V) is
a multifaceted problem for traditional software systems let alone software simu-
lations of complex systems, which have their own unique developmental caveats.
This section discusses V&V techniques in the context of traditional software sys-
tems, highlighting the challenges facing the application of these techniques during
complex systems simulation development V&V.
In software engineering, verification and validation (V&V) is the practice of

ensuring a given piece of software adheres to its specification (verification) and
provides the expected functionality expected of it by the end user (validation)
[Sommerville, 2009]. Methods of V&V can be either static or dynamic. Static
methods can include activities such as source code analysis and formal verifica-
tion of algorithms. Dynamic methods involve active system testing, for example,
controlling input and monitoring for expected outputs. Static techniques can be
performed at any stage of the software engineering process whereas dynamic tech-
niques require an implementation of the program capable of being executed. It
is impractical to validate and verify systems exhaustively, due to both the time
and monetary constraints that V&V invariably places on a project. This makes it
imperative that there be careful planning of any V&V activities before any devel-
opment work has been undertaken, or as early in the process as possible. Sargent
[2007] illustrated how the process of V&V can intergrate with the development
of simulations for complex systems (figure 4). Sargent’s depiction is very much
similar in message to Kitano’s ‘Yin and Yang’ description of hypothesis driven
research, with computation as a complementary approach to the traditional cycle
of research and experimentation [Kitano, 2002].
Nance and Sargent [2002] reviewed the history of verification and validation

in the context of simulations, highlighting the chronology from V&V as two
indistinguishable terms, to the current and clear distinction between both. Polack
[2010] summarises that many of the techniques used by Sargent [2007] to verify
and validate simulations derived from systems and software engineering methods.
This in itself presents a problem in that validation techniques which make use
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Figure 3: Real World and Simulation World Relationships with Verification and Validation 
 

The simulation model data and results are the data and 
results from experiments conducted (experimenting) on 
the simulation model. The conceptual model is developed 
by modeling the system for the objectives of the simula-
tion  study  using  the  understanding  of  the  system con-
tained in the system theories. The simulation model is ob-
tained by implementing the model on the specified 
computer system, which includes programming the con-
ceptual model whose specifications are contained in the 
simulation model specification.  Inferences about the sys-
tem are made from data obtained by conducting computer 
experiments (experimenting) on the simulation model. 
Conceptual model validation is defined as determining 
that the theories and assumptions underlying the concep-
tual model are consistent with those in the system theories 
and that the model representation of the system is “rea-

sonable” for the intended purpose of the simulation 
model. Specification verification is defined as assuring 
that the software design and the specification for pro-
gramming and implementing the conceptual model on the 
specified computer system is satisfactory. Implementation 
verification is defined as assuring that the simulation 
model has been implemented according to the simulation 
model specification. Operational validation is defined as 
determining that the model’s output behavior has suffi-
cient accuracy for the model’s intended purpose over the 
domain of the model’s intended applicability.   

This paradigm shows processes for both developing 
valid system theories and valid simulation models. Both 
are accomplished through iterative processes. To develop 
valid system theories, which are usually for a specific 
purpose, the system is first observed and then abstraction 
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Figure 4: Real world and simulation world relationships with verification and validation
- from Sargent [2007]. This figure illustrates how verification and validation
can integrate with the process of modelling complex systems, by separation of
the real world from the simulation world. One can formulate hypotheses and
abstract from the real domain to establish system theories used to create a
conceptual model, needed to define a simulation model specification. This is
then implemented as a simulation that can then be used to run experiments
and in some cases provide further insight into the system theories used earlier
in the process.
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of activities such as traceability analysis, cannot be truly suitable if the complex
system that they are modelling is not fully understood - which in respect to
biology, it never truly is [Polack et al., 2010; Andrews et al., 2008]. Instead, Polack
[2010] suggests the use of validity arguments, inspired by argumentation which
is used to demonstrate how evidence can satisfy requirements for safety [Weaver
et al., 2005] (Argumentation is discussed in section 5.6.7). In the context of
simulation engineering; particularly with agent based simulations, it is necessary
to argue that the simulation is adequate in fulfilling its specification, as quite
often simulations are made because certain aspects of the system are unknown.

2.2.2.1 Calibration and Sensitivity Analysis

The process of calibrating a simulation needs to involve the domain experts in or-
der to ground the simulation in the biological domain. This has been highlighted
recently by Read et al. [2011] who stress that sensitivity analysis is important
to ensure that simulation results are robust to parameter alteration within the
confines of biologically plausible parameter values, a practice also advocated by
others that have used statistical techniques to validate their agent based models
[Dancik et al., 2010; Marino et al., 2008; Alden et al., 2013]. It must be stressed
that despite undertaking activities such as calibration and using this evidence in
argumentation, it is never possible to provide absolute V&V for complex systems
simulations. Calibration is discussed later in section 5.6.1, and statistical analysis
of simulation output in section 6.1.

2.2.2.2 Argument-Driven Validation for Simulation Science

Argumentation is a term to describe how one validates assumptions based on
a principled process of both reasoning and deduction, to arrive at a final con-
clusion. Argument-Driven Validation (ADV) applies this method to demonstrate
the validity of approaches related to the design, engineering and interpretation
of complex systems simulations [Ghetiu et al., 2009, 2010]. Validity is argued by
explicitly detailing the design and development of a simulation, outlining the var-
ious assumptions made and any reasoned or deduced knowledge to substantiate
any claims made. Subsequently, one argues that the engineered simulation ade-
quately represents the underlying system and that the results are representative
of observables from that system.
ADV makes use of an established graphical notation approach to document

arguments, called Goal-Structured Notation. The use of diagrammatic notation
and syntax used in argumentation allows arguments to be presented formally, thus
more amenable to critical analysis [Polack, 2008]. The ability for arguments to be
updated throughout the development process means that they can be improved
if required.
GSN was originally developed for the purposes of argumentation for safety-

critical systems, such as those used in the aerospace industries [Kelly, 1998]. Goal-
structured arguments are tree like structures, beginning with a top-level claim,
with strategies stemming from that initial claim, designed to comprehensively
argue the validity of the top claim. Each strategy itself can have sub-claims, and
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those in turn are backed up by solutions/evidence. GSN notation allows the
context of any component to be noted, and also any justifications made. The
graphical shapes used to represent the core components of GSN are depicted in
figure 5.

Figure 5: Goal Structure Notation, from [Ghetiu et al., 2010, Fig 1.].

There have been several applications of validity arguments applied in the com-
plex systems modelling domain. Polack et al. [2011] used argumentation in par-
allel with developing a model of prostate cancer, capturing the behaviour of
differentiating and dividing prostate cells. Their study covered argumentation of
both the validity of the underlying cancer biology context, and the engineering
of the software simulation of that biological domain. The authors posited that
arguments are not static, and as well as having utility throughout the entire
process from model to simulation, they can change through iterative updates,
and quite often highlight gaps in understanding, or future avenues of research.
Alden [2012] demonstrated further use of ADV within a biological context, devel-
oping claims to argue the validity of a simulation of Peyer’s Patch development
in the gut. That study built upon the previously described work by Ghetiu et al.
[2009, 2010]; Polack et al. [2011], providing a further case study of how to incor-
porate various modelling assumptions and justifications into GSN constructed
arguments.
Despite the limited use of argumentation in the complex systems modelling

domain, yet the clear advantages that it brings from a validation perspective,
argumentation appears a powerful technique to use throughout the process of en-
gineering and utilising a simulation model. GSN structured goals, allowing one to
both structure and document arguments that link evidence to assumption, help
to instill confidence in that simulation model and facilitate transparent commu-
nication of the model and how it is built. Argumentation applied to the research
outlined in this thesis is detailed in section 5.6.7.

2.2.3 Unified Modeling Language

Modelling and engineering complex systems simulations is a challenging task,
and it is argued that the use of established software engineering practices can
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help with the verification and validation of complex systems simulations [Polack
et al., 2009]. This can be achieved in part by using visual modelling tools such
as the Unified Modeling Language (UML); a multi-purpose, visual language for
specifying components and interactions of a wide variety of object-oriented (OO)
software systems [OMG R, 2010].
Diagrammatic system representations are constructed using a collection of up

to fourteen different types of diagrams (as of UML version 2.3), grouped into
three core categories: structure, behaviour, and interaction diagrams [OMG R,
2012], though interaction diagrams may be subsumed as a subset of behavioural
diagrams. Collectively, UML diagrams can be used to visualise a system from
both a high level (system-wide) and a low level (individual-entity) perspective.
There are several proponents of UML and the object-oriented paradigm for

agent-based modelling and simulation [Read et al., 2009a,b; Alden et al., 2012,
2013], with the most prolific work by Bersini [2006, 2012], who has also demon-
strated how UML can be used to depict equation based models in biology [Bersini
et al., 2012]. Those who have adopted UML throughout the development of com-
putational models argue that its core benefits are: the established nature of the
technique in the software engineering domain, the accessible nature of the tech-
nique for non-experts, and the natural parallels that it has with systems capable
of being modelled in an object-oriented fashion. However, adopters of UML do
not have a consensus about how to proceed with UML diagrams once constructed.
Some argue that automatic code generation is the logical way forward for the de-
velopment of simulation software when modelling with UML [Bersini, 2006, 2012],
and that the trend towards platform-independent model development is a benefi-
cial one. Automatic code generation is made possible with tools that leverage the
utility of techniques such as UML, or other abstract modelling techniques, and
can interpret these high-level diagrammatic abstractions and generate program-
ming code from them. James Rumbaugh, one of the original authors of UML, has
expressed misgivings about the use of UML for automatic code generation, claim-
ing that...“It never was meant to be a programming language. Use it to get the
strategy right and write the final program in a suitable programming language”
[Biancuzzi and Warden, 2009, pp. 343]. I echo Rumbaugh’s sentiments, and ar-
gue that the trend towards automatic code generation is not advantageous in a
modelling context either, because as I discussed in section 2.2.1, directly linking
the conceptualisation of a model with UML (the domain), to the implementation,
or computer code of that model (the platform), can run the risk programming in
the “answer”, or directly implementing system behaviours which should manifest
themselves through emergence.
I have introduced the topic of UML, and will now discuss in more detail, some

of the various diagrams that UML provides, and explain how they might be used
in the context of biological systems modelling.

2.2.3.1 UML for Models of Biology

When modelling a biological complex system, Class Diagrams (structural) may
be used to specify various objects, such as cells, and how they may have a rela-
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tionship, as well as defining any plurality of those objects. However, as Read et al.
[2009b] highlight, Class diagrams can be difficult to interpet when there is a high
degree of connectivity between entities, and they are also only static represen-
tations of system entities. Activity Diagrams (behavioural) allow a modeller to
depict conditional flow and concurrency in a system, and can also be used to form
a more dynamic, system-wide, perspective to further detail how objects interact
in a given event-driven scenario. State Diagrams (behavioural) on the other hand
are suited to describing how individual entities function in pre-defined states, and
how interactions or events may satisfy conditions, called gates, that govern tran-
sitions between those states. Each diagram in the suite of UML diagrams has its
own unique and potential use, though not all are suitable for biological systems
modelling. There is no right or wrong use for UML for modelling complex sys-
tems, diagram choices are often down to preference, and ultimately their use is
justified if the diagram communicates the intended meaning.
Several authors both advocate and utilise UML for biological modelling, for ex-

ample in the development of various models of the immune system [Bersini, 2006;
Read et al., 2009a,b; Flügge et al., 2009; Alden et al., 2012; Patel et al., 2012].
UML was created for designing software systems and not for modelling biologi-
cal systems, and therefore has no dedicated features to incorporate some of the
core dynamics inherent in many complex systems, such as feedback mechanisms
[Read et al., 2009a] or the ability to adequately represent an entity in multiple
concurrent states. These limitations can be overcome with modifications to stan-
dard UML diagrams. Proponents of using UML to graphically model biological
systems have argued its utility for model reuse [Bersini, 2012] and to facilitate
communication between modeller and domain experts - those who ultimately
validate the model [Read et al., 2009a,b].

UML and the OO paradigm are not only useful for specifying entities, relation-
ships and functions of biological systems, but for allowing scalability in modelling
endeavours [Webb and White, 2005]. Diagrammatic notations allow easier reuse
and expansion of existing models, which can help ensure that researchers other
than the original authors are capable of understanding how those software mod-
els work, facilitating scientific reproducibility. Particularly with the drive for ever
more complex models, visual formalisms and anything that aids extensibility is
ultimately beneficial.
There have been attempts to extend UML specifically for agent-oriented soft-

ware engineering purposes, such as Agent UML (AUML) [Bauer et al., 2001].
AUML introduced some interesting additions such as Protocol Diagrams, de-
signed to be a form of hybrid between UML Sequence and State Diagrams. The
utility of Protocol Diagrams is that they can more clearly relay agent roles and
constrain the types of communication that occurs between agents. It can be ar-
gued that there is no need for this type of hybrid diagram, as they could quite
easily become very overwhelmingly complex with all but a simple model, and
state and sequence diagrams separately can express states and interaction quite
adequately. AUML style features were subsequently incorporated into UML ver-
sion 2.0 by the Object Management Group (OMG R), the organisation responsible
for standardising UML, causing proponents of AUML to re-evaluate its further
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development and instead demonstrate how agent systems could be developed
with the updated UML standard [Bauer and Odell, 2005].

Despite the plethora of UML diagrams, and different contexts in which they can
be used, all adopters of UML for computational modelling use the technique as
a some means of communicating their model, and to document their models and
constituent components, and for that purpose, the literature seems to indicate
that it can be very effective, despite the lack of widespread adoption in a variety
of fields [Bersini, 2012]. The research detailed later in this thesis focuses primarily
on using and in some cases extending the standard notation that UML provides,
harnessing its power as a communicative medium, rather than the abstract syntax
and semantics.

2.3 on documenting agent-based models

There have been some published efforts to provide a standard means of document-
ing all of the relevant design details relating to agent-based simulations. Grimm
et al. [2006] introduced the Overview, Design and Details protocol (ODD) as a
method of capturing the relevant elements related to individual and agent-based
models in the field of ecology. Elements include purpose, state variables and
scales, process overview and scheduling, design concepts, initialization, in-
put and submodels [Grimm et al., 2006, p. 117-119]. The authors argue that
compartmentalising model information into these sub-categories makes it easier
to write model descriptions, thus making them more understandable and also
forcing the modeller to consider the relevant elements during their own mod-
elling endeavour. Whilst the concept is interesting, and may be of use to those
wishing to write up their papers for journals, the format may not always be the
most appropriate choice for modellers. I would argue that whilst such a formulaic
description of a model could prove useful, there may be cause for overlap between
the relevant sub-categories, for example one may wish to describe design concepts
alongside conceptualising entities and states, and ODD’s categories force a sepa-
ration between such elements. Within the economic modelling domain there are
similar issues with describing models, and this inspired a set of ODD-like guide-
lines, but tailored specifically to economic ABMs [Wolf et al., 2013]. The fact
that different disciplines have their own nuances makes a standardised protocol
for documenting models difficult, and not always applicable.
A more recent extension argued against the common criticisms of the ODD

protocol, advocating ODD for the documentation of any complex systems sim-
ulation [Grimm et al., 2010]. Alongside the limitations I described above, the
authors describe some of the common issues of contention regarding ODD. For
example, some feel that ODD is often overkill for simple models, or that there is
often redundancy with having certain elements repeated in multiple ODD cate-
gories, though the authors argue that the ODD structure is flexible and can be
made more concise, and that with careful consideration of their description, mod-
ellers can avoid repetition and redundancy in their model descriptions [Grimm
et al., 2010, p. 2766].
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Whilst there has been noticeable uptake of the ODD protocol, with 54 pub-
lished model descriptions (predominantly within ecology, with minimal uptake
in fields including epidemiology and the social sciences) [Grimm et al., 2010, p.
2761] I feel that such a protocol has benefits, but may not always be suitable
for models of biological systems, with little evidence of ODD being used in the
biosciences. To this end, the model described later in this thesis (see part ii) will
be described according to no particular template, though the design and imple-
mentation will be separated into two over-arching chapters corresponding to the
domain model and platform model components of the CoSMoS process.

2.4 summary

In this chapter, I began by reviewing a variety of methods for developing compu-
tational models, with a core focus on agent-based models due to their ability to
be used for spatio-temporal modelling of individual entities. The literature relat-
ing to previous computational efforts in modelling inflammation were discussed,
with a focus on granulomatous inflammation and efforts to create computational
liver representations for the purposes of modelling.
Having identified a set of literature gaps in the computational modelling field

relating to granulomas, I commented on a framework called CoSMoS, which can
be adopted as an approach to developing complex systems simulations. I then
discussed how complex systems models can be used and trusted as scientific tools
for research. Lastly, I reviewed UML as a graphical notation tool that has several
benefits for the documentation and communications of conceptual models, with
the capability of being used as a software specification to some extent, should
the modeller wish.
Next, chapter 3 introduce a more detailed description of the biological field of

interest in this thesis (the domain). The domain highlights the gaps in understand-
ing in the VL granuloma literature, and will form the basis for the conceptual
domain model in chapter 4.
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3 HEPATIC GRANULOMAS - THE BIOLOGICAL
DOMAIN

This chapter will provide a comprehensive description of the biological domain,
and the events believed to be responsible for granuloma initiation and subse-
quent formation and maturation. This domain chapter collates all of the relevant
biological literature and information pertinent to the study, and provides an in-
formation template to facilitate formulating the more focused, scoped version of
the domain which comprises the domain model (see chapter 4). A clear separa-
tion between the biological domain and the abstraction of that domain ensures
transparency regarding what is and is not included in the model.
The chapter will begin by introducing the liver, as it is necessary to understand

the structure of the liver microenvironment and how that influences liver function.
Secondly, the role that liver resident macrophages and patrolling lymphocytes
play in the formation of granulomas will be discussed, with an outline of the key
signalling proteins and mechanisms pertinent to VL and hepatic granulomas. The
literature outlined in this chapter pertains to experiments conducted on mice and
not humans. I conducted the experiment to illustrate granuloma heterogeneity
in figure 7 as detailed in section 8.4.1 using the protocol in Appendix 9.3.1.
Where not otherwise cited, biological information, in this section and through-

out the thesis, was gathered from Janeway’s Immunobiology 7th Edition [Mur-
phy et al., 2008] and personal communication with Professor Paul Kaye and Dr
Lynette Beattie, both resident at the University of York at time of writing. The
reader is directed to the glossary for clarification of any terminology.

3.1 the liver organ and micro-environment

The liver is the largest vital organ and is comprised of five key systems/collective
components: Hepatic Lobules, Stroma, Hepatic Vascular System, Hepatic Sinu-
soidal Cells and the Biliary System [Saxena et al., 1999; Ishibashi et al., 2009].
Lobules are the structural and functional sub-units of the liver, and are ide-

alised as being columnar (hexagonal) in shape, though individual lobule struc-
tures can vary wildly from those typically illustrated throughout the literature
(figure 6). Lobules consist of roughly hexagonal plates of hepatocytes that are sur-
rounded by portal triads - vascular arrangements that consist primarily of a bile
duct, a portal vein and a hepatic artery. Hepatocytes comprise the vast majority
of liver mass, over 80%, and are responsible for much of the metabolic proper-
ties attributed to the liver (Arias et al. 2001, as cited in Kim and Rajagopalan
[2010]). Lobules are divided into three zones: centrilobular/centrivenous (CV),
located around central veins; the midzonal area (MZ), and the periportal (PP)
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zone. These areas were categorised to represent several properties, including vary-
ing degrees of oxygenation with higher concentrations in the PP region carried by
fresh blood, and an oxygen gradient towards the CV region [Jungermann, 1988;
Jungermann and Katz, 1989; Arteel et al., 1995].

The Biliary System functions to transport hepatocyte produced waste to the
gall bladder and small intestine, with vessels called bile canaliculi facilitating this
waste transport, and stroma represents the collection of connective tissue present
in the liver.
The Hepatic Vascular System is the network of veins and arteries of the liver.

Blood flow originates from portal veins and hepatic arteries at the lobule periph-
ery, and drains towards the central hepatic vein, providing vital nutrients and
oxygen for liver cell survival. There are also hepatic arteries which provide highly
oxygenated blood to the liver, and it is through channels, called liver sinusoids,
that blood perfuses through, carrying platelets and red and white blood cells.
Hepatic Sinusoidal Cells (HSCs), the collective term for the various liver cells

found within a liver lobule, are found lining the walls of the sinusoids. Types of
HSCs include: Endothelial cells, Kupffer cells and Stellate cells. Kupffer cells in
particular have a core role in response to a multitude of infections, and their func-
tion is intricately tied to the structure of the liver and formation of granulomas.
Other non-HSCs are also known to be present in the liver, including neutrophils,
which have a role in resolving bacterial infection and mediating inflammatory re-
sponses [Holub et al., 2009], before subsequently being ingested by Kupffer cells
after providing their initial innate response to foreign pathogens.
Having provided a short review of the composition of the liver, I will now

establish the various cells involved in driving inflammatory responses within the
liver, with a focus on Kupffer cell responses as these are particularly pertinent
to granuloma formation.

3.2 kupffer cells and granuloma formation

Kupffer cells (KCs) play a pivotal role in the pathogenesis of VL and the for-
mation of granulomas [Murray, 2001]. KCs are macrophages found distributed
throughout the liver sinusoids [Naito et al., 2004], and they function as a surveil-
lance network to rapidly filter any debris or pathogenic material from the blood.
Within 2 hours of injecting mice with L. donovani parasites (amastigotes), the
majority of parasites are removed from the blood stream by various phagocytes,
and approximately 20% of KCs can be observed as being infected [Beattie et al.,
2013]. However, after parasitisation of KCs, the precise mechanisms involved in
the subsequent inflammatory response are not fully understood.

3.2.1 KC-Parasite Interactions

The dynamics of the KC-parasite interaction may have a role in determining the
outcome of infection in EVL. Several characteristics of KCs have roles in manag-
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Figure 6: The Structure of the Liver Lobule. The liver is comprised of small functional
sub-units called Lobules, and each lobule has a microenvironment with chan-
nels called sinusoids that contain hepatocytes and various hepatic sinusoidal
cells (HSCs). The relevant scales are given in brackets. Adapted from [Cun-
ningham and Van Horn, 2003, after Ross et al. 1995].
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ing parasite burden, such as a natural resistance gene Slc11a1 (also known as
Nramp1 or Lsh), which was identified as a key factor in the control of Leishmania
amastigote parasite growth [Crocker et al., 1984].
In terms of parasite removal, KCs have an impaired ability to produce re-

active oxygen intermediates (ROI), such as hydrogen peroxide, which can act
as a mechanism for the cell to become increasingly microbicidal [Lepay et al.,
1985a,b]. The production of Nitric Oxide can also kill internalised parasites. In-
ternal compartments called phagosomes play host to parasites, which can later
fuse with other compartments called acidic lysosomes, forming phagolysosomes.
Zilberstein [1991] (as cited in [Hommel, 1999]) showed that Leishmania has the
ability to adapt to the change in the environmental pH, and that is just one of
several mechanisms evolved by the parasites for surviving once phagocytosed. In-
tracellular Leishmania can also influence how their host cell behaves as part of
the immune response. For example, Leishmania parasites have also been shown
to have an influence on the presentation of antigen to CD4+ T cells by APCs,
inhibiting sustained TCR signalling and IFN-γ production [Meier et al., 2003].

3.2.2 KC Role in Granuloma Heterogeneity

Recruitment and migration of the various granulocytes, lymphocytes and mono-
cytes, to the area of infected KCs helps initiate and physically form granulo-
mas, though current understanding has yet to explain why only a fraction of the
infected KC population develop fully formed, mature granulomas. This hetero-
geneity is exemplified in figure 7, a fluorescently labelled section of liver lobule
harvested from a mouse at day 18 post-infection and imaged using confocal mi-
croscopy. The image shows: F4/80 expressing cells (green) - typical of mature
KCs [Hume et al., 1984], amastigotes (tomato-red), cell nuclei stained with the
fluorescent marker DAPI (blue), and finally tissue is stained with anti-glutamine
synthetase to identify the central vein of the lobule (white - protocol in Ap-
pendix 9.3.1). Multiple infected KCs are visible, some immature granulomas with
minimal cell infiltrate, others with large fused cores and greater mononuclear cell
infiltrate, typical of medium to large sized mature/maturing granulomas [Murray,
2001].
Several studies have characterised the location, spatial distribution and func-

tion of KCs, and have provided mounting evidence that properties such as size,
phenotype and age maturation, are heterogeneous in the KC population [Sleyster
and Knook, 1982; Bouwens et al., 1986; Mochida et al., 1989; Naito et al., 2004],
which may explain the resultant heterogeneous granuloma response. KCs, re-
garded for many years as a homogenous population, are now known to have two
sub-populations, one motile and bone marrow derived and the other sessile and
radiation resistant. Klein et al. [2007] determined that only motile KCs appeared
to be responsible for immuno-inflammatory responses, which suggests that KC
heterogeneity extends to cellular function.
Beattie et al. [2010a] sought to determine the origins of KCs found at the core

of hepatic granulomas, demonstrating that blood borne monocytes are not found
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inside mature granulomas. The authors postulated that only those KC already
present inside the sinusoidal network are redistributed toward areas exhibiting
inflammation. Further in situ analysis of KCs revealed visible change in KC form
post-infection with L. donovani, with quantifiable membrane activity [Beattie
et al., 2013]. These physiological changes may not necessarily transfer to down-
stream anti-leishmanial function; however, this can not be ruled out as a factor.
Indeed Mackaness 1970 (as cited in [Mosser and Edwards, 2008]) gives credence
to the fact that physiological changes may lead to increased anti-microbial prop-
erties of macrophages. There is undoubtedly complex interplay between KC host
and pathogen in the context of Leishmania [Kaye and Scott, 2011].

Figure 7: Confocal Microscopy of Hepatic Granulomas. Kupffer cells (F4/80), parasites
(tdtomato), cell nuclei (DAPI), central vein (anti-glutamine synthetase - white).
Image acquired from experiment detailed in Appendix 9.3.

3.2.3 Kupffer Cell Spatial Distribution

Kupffer cells are found distributed in different ratios throughout the PP, MZ, and
CV zones of the liver lobule. Kupffer cell ratios have been reported as being in
the order of 4:3:2 [Sleyster and Knook, 1982]. Similar quantitation reported mean
distributions of 43%, 28%, 29%, and noted that only 64% of total KCs were la-
belled when latex beads were administered to mice in order to observe phagocytic
uptake [Bouwens et al., 1986]. The results demonstrated that centrilobular KCs
display impaired phagocytic capacity which can not be overcome with excess la-
tex particle infiltrate. Centrilobular KCs were also reported as appearing smaller
in size than their peri-portal counterparts. The varied KC localisation, size and
phagocytic uptake might be a result of the dynamics of liver oxygenation and
hypoxic gradients in the liver sinusoids, though the exact reasons are undefined.
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3.3 nkt and t cell responses

T cells comprise the majority of cells within VL-induced granulomas, and they
are capable of movement and interaction within both EVL and mycbacterial
Calmette-Guérin (BCG) granulomas [Beattie et al., 2010a; Egen et al., 2011]. T
cell subsets have identified roles in parasite clearance [Stern et al., 1988], and
CD4+ in particular are capable of producing interferon-γ, a KC stimulatory cy-
tokine, during VL. Another T cell subset known as regulatory T cells (Tregs)
are often associated with dampening immune responses; however, their role in
VL-induced inflammation is poorly defined. Recent evidence suggests that CD4+

T cells expressing both IFN-γ and IL-10 (a known property of regulatory type
T cells) are present in the liver. Whether those regulatory CD4+ T cells are ac-
tually present within granulomas is not yet known. The dampening function of
Tregs is facilitated by the expression of cytotoxic T lymphocyte-associated anti-
gen 4 (CTLA-4). When an antibody is introduced that is capable of blocking
CTLA-4, the maturation of granulomas and subsequent anti-parasitic response
is boosted, providing some evidence that T cells with a regulatory function are
present within EVL granulomas [Zubairi et al., 2004].
Natural Killer T (NKT) cells are a subset of T cells that share properties with

both T cells and Natural Killer (NK) cells [Kronenberg and Gapin, 2002], and are
considered to be a bridge between innate and adaptive immunity, having been
shown to rapidly activate NK cells upon activation [Carnaud et al., 1999]. Pos-
sessing the ability to produce immunostimulatory and effector cytokines, NKT
cells are considered as key drivers of immunity [Juno et al., 2012; Mattarollo
et al., 2012; Mussai et al., 2012; Pilones et al., 2012]. Heterogeneity which exists
in the population also ultimately influences the overall response to both infection
and autoimmunity [Godfrey et al., 2000]. Existing in various forms, one class of
NKT cell has an invariant T cell receptor (TCR) and the other is more vari-
able, similar to conventional T cells [Seino and Taniguchi, 2005]. The function
of these invariant NKT (iNKT) cells makes them pertinent to infection with L.
donovani. Recent evidence suggests that iNKT cells are an early driving force
in the production of a favorable cytokine microenvironment that is conducive to
optimal granuloma formation [Robert-Gangneux et al., 2012].
Whilst NKT cells are capable of driving adverse inflammatory responses, in-

cluding chronic liver injury [Wehr et al., 2013], they represent a potent therapeu-
tic, and their protective capacity has been demonstrated in a variety of disease
contexts. After activation with α-galactosylceramide (α-GalCer), NKT cells are
capable of reducing bacterial loads in a mouse model of Mtb [Chackerian et al.,
2002]. Vα14 NKT cells have also been shown to confer protection [Gonzalez-
Aseguinolaza et al., 2000].

The intravascular patrolling behaviour of NKT cells in the hepatic microen-
vironment is well documented [Geissmann et al., 2005; Lee et al., 2010]. NKT
cells crawl through the liver sinusoids seemingly at random, and are capable of
reversing direction spontaneously. NKT cells patrol at a speed of approximately
10-20µm/min, and their movement can be arrested subsequent to T cell receptor
activation [Geissmann et al., 2005]. NKT cells can also demonstrate dramatically
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altered behaviour during host infection, such as having their movement arrested
subsequent to interaction with KCs after KC ingestion of the pathogen Borrelia
burgdorferi [Lee et al., 2010].
The literature regarding NKT cells during EVL is conflicted, with some sug-

gesting that they may play an important role in the later stages of EVL [Stanley
et al., 2008]. Conversely, it has been shown that in Leishmania major, CD4+Vα
iNKT cells play an important role in the early stages of infection [Ishikawa et al.,
2000]. With such dichotomy in current understanding of NKT cell function dur-
ing EVL and the leishmaniases, they are an intriguing focus for understanding
EVL.

3.4 the role of cytokines and signalling

Cytokines are molecules that facilitate or provide cell signalling functions. In
order to ascertain the importance of particular cytokines, researchers often use
knock-out studies, whereby mice or animals can be made deficient in a particular
cytokine (denoted by −/−).
The presence of both tumour necrosis factor (TNF) and lymphotoxin (LT)α

are key for managing hepatic parasite burden, which was shown when TNF−/−

and LTα−/− C57BL/6 mice failed to adequately develop mature granulomas to
manage infection [Engwerda et al., 2004]. Others have demonstrated that 129/Sv
mice fail to present any inflammatory response at all to L. donovani in TNF−/−

mice [Murray et al., 2000]. In either case, both TNF and LTα are essential for
the control of L. donovani.
Knock-out studies involving the IL-13 cytokine revealed it as necessary for

the maturation of hepatic granulomas and control of parasite burden, with IL-
13−/− mice showing inhibited type 1 protective immune responses associated
with cell-mediated immunity, and an increase in a type 2 response characterised
by increased IL-4 and IL-10 levels [McFarlane et al., 2011]. Type 2 responses are
generally not associated with favourable conditions for the removal of intracellu-
lar parasites, hence a type 1 response would be favoured in the context of VL.
However, Stäger et al. [2003] also demonstrated a role for IL-4 and IL-4Rα sig-
nalling in optimal granuloma formation and management of L. donovani parasite
burdens, both are generally associated with type 2 immune responses.
CXC chemokines regulate the infiltration of NKT cells into sites of infection

and inflammation [Sato et al., 2005; Wehr et al., 2013]. Kupffer cells can produce
these chemokines, including CCL1, CCL2 and CXCL10. During L. donovani
infection, expression of CXCL10 is sustained when signal regulatory protein alpha
(SIRPα) binds to CD47 on the surface of iNKT cells. This regulates increased IFN-
γ cytokine production by hepatic iNKT cells [Beattie et al., 2010b], functioning
as an amplification pathway to further regulate CXCL10 production [Svensson
et al., 2005]. These responses are transient however, only occuring subsequent
to KC-NKT cell interactions. The dynamics underpinning initial recruitment of
NKT cells by infected KCs remain poorly understood.
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These studies illustrate the complex interplay between cytokines and immune
responses, and the implications of cell interactions and both cytokine and chemokine
production for optimal host immunity to L. donovani.

3.5 importance of a balanced immune response

Without a balanced inflammatory response [Stanley and Engwerda, 2007], hepatic
tissue may become damaged; as evidenced with delayed and exacerbated immune
responses in the liver [Murray et al., 2000]. B cells, a component of the adaptive
immune system, are involved in dampening the inflammatory response in VL, by
controlling the influx of neutrophils and thus preventing adverse liver pathology
[Moore et al., 2012]. B cell function is just one of many possible mechanisms of
curbing overt liver pathology, alongside the previously described potential role of
regulatory T cells. Natural killer (NK) cells also function in a immunoregulatory
manner in EVL [Maroof et al., 2008], though whether the absence of NK cells
modifies liver pathology is still an open question.

3.6 summary

In this chapter I have provided an overview of the liver microenvironment, and dis-
cussed current understanding relating to the function of liver resident macrophages
called Kupffer cells in initiating an inflammatory response subsequent to pathogenic
infection. The formation of liver granulomas, in response to infection, was dis-
cussed, along with mechanisms and properties that may be responsible for het-
erogeneity in the granulomatous response, such as: KC-parasite interactions, KC
spatial distribution, and various cellular responses with known roles in the forma-
tion of VL-induced granulomas. The next chapter (see chapter 4), will elaborate
on the core system entities and mechanisms that I hypothesise play the most
important role in manifesting a heterogenous granulomatous response, and I will
conceptualise a model of early granuloma initiation.



4 A DOMAIN MODEL OF GRANULOMA INITIA-
TION IN VL

Having defined in chapter 3 the biological context that forms the domain of in-
terest, it is then necessary to formulate a domain model to adequately scope that
domain. As previously described in section 2.2.1, formulating a domain model is
a key stage of the CoSMoS Process. When modelling, it would be intractable to
include all of the components and mechanics outlined in the relevant literature.
Highly granular computational models quite often heavily rely on assumptions,
which are invariably made when constructing any model, only those assumptions
are compounded with the added complexity of including all known and relevant
biological components across the various scales. All cells and cytokines with iden-
tified roles in VL are not necessarily required to investigate the core dynamics of
early cellular migration and recruitment into newly forming granulomas. The pur-
pose of this chapter is to outline the scope of the modelling endeavour, detailing
the cellular components and mechanics that I hypothesise are primarily respon-
sible for the early stage initiation of granulomas, and to provide justification for
the various levels of abstraction chosen.
N.B. Several assumptions are detailed in this chapter, though the reasoning

behind these and the sources for evidence relating to those assumptions will be
discussed in chapter 5. I believe it is more intuitive to show the mapping be-
tween domain assumption and platform implementation. Also, assumptions are
included when constructing validity arguments, outlined in section 5.6.7, provid-
ing a means to both document and argue the validity of the simulation.

4.1 defining the scope of the model

The first method employed, which takes a systems level perspective to determine
exactly what to model, was to condense the domain knowledge into an expected
behaviours diagram as described by Read et al. [2009a]. The expected behaviours
diagram (figure 8) allows the deconstruction of the problem into several parts:
observable phenomena, expected behaviours, biological components, and inter-
actions/relationships. Observable phenomena are the measurable system level
behaviours that manifest themselves. Expected behaviours are the hypothesised
events leading to the observable phenomena. Finally, a range of biological com-
ponents may play a role in the system, each having their own relationships and
interaction with each other.
The key observable phenomena in early granuloma initiation are as follows:

1. Infection with L. donovani parasites leads to parasitised KCs, generally
within minutes of infection in EVL

43
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2. Aggregations of immune cells are visible around a proportion of infected
Kupffer cells as early as day 4 post infection

3. Both immature and mature granulomas are observable between 4 days and
8 weeks, with varying degrees of structural composition and parasite killing
functional ability

Having defined the observable phenomena it is necessary to hypothesise and
define the expected behaviours that may be responsible for those observable
phenomena:

1. The parasitisation of KCs occurs because they are the predominant liver
resident macrophages responsible for filtering the contents of the blood in
the liver, and their effective phagocytic activity is well reported [Naito et al.,
2004; Beattie et al., 2010a], having been shown to internalise pathogens
within hours of infection [Lee et al., 2010].

2. Early aggregations of promoter cells including NKT cells, around infected
KC foci, is observable within days of infection [Moore et al., 2013], and
these NKT cell aggregations amplify the activation of KCs and subsequent
mediators of mononuclear cell recruitment to sites of infection [Svensson
et al., 2005; Beattie et al., 2010b].

3. Granuloma formation is an expected behaviour after the initial amplifi-
cation stage, when other mononuclear cells provide an adaptive immune
response due to subsequent interactions. Imaging has revealed heterogene-
ity in the granulomatous response, with a spectrum of small, medium, and
large granulomas, with both parasite free and heavily infected foci observ-
able at a variety of time-points (see section 3.2.3) [Murray, 2001; Moore
et al., 2013; Beattie et al., 2010a]).

The varying sizes of cellular aggregations, and parasite burdens of KCs, is
direct evidence that there is heterogeneity in granuloma structure and function,
though the precise mechanisms that lead to fully functional granulomas are as
yet unknown [Murray, 2001].

My hypothesis is that the amplification pathway previously described as a
result of KC-NKT interactions, as well as both KC functional differences and
spatial location, are all influencing factors in the determining the extent of
granuloma formation and function - downstream of the amplification stage.

It is difficult to say with absolute certainty whether an inflammatory focus that
appears parasite free was previously infected, or if uninfected sites are capable
of forming cellular aggregates purely because of the inflammatory environment.
The previously highlighted roles for KC-NKT cell interactions based on infection-
induced upregulation of SIRPα by KCs, provide evidence that aggregations are
associated solely with infection, though this is not a certainty.
The above expected behaviours make it clear that a model incorporating en-

tities at the cellular scale is required to examine my hypotheses. I previously
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highlighted the benefits that agent-based models hold for the study of inflamma-
tion (section 2.1.3.2), and those benefits are particularly relevant for the study
of granulomatous inflammation. Whilst granulomas are surely the product of
complex interplay between many molecular and cellular components across the
various biological scales (figure 15a), this research focuses on the cellular inter-
actions and subsequent aggregations which precede the second of the observable
phenomena; the formation of aggregates a within days of infection.
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Figure 8: Expected Behaviours Diagram. This diagram outlines the observable phenom-
ena from the domain of interest, and hypothesising as to how those observable
phenomena manifest themselves based on interactions between known biolog-
ical components. The diagram is influenced loosely by UML class diagram
notation, though associations illustrated with arrows are not structural rela-
tionships, and in some cases are functions calls.

4.1.1 Infection Dynamics and Time-Scale

Whilst the dynamics of parasite survival are undoubtedly interesting and perhaps
relevant for this study, there is a knowledge gap and lack of data pertaining to
parasites and their influence on KCs. Also, as parasites are rapidly phagocytosed
by KCs in experimental models [Beattie et al., 2013], I assume the dynamics of
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initial infection do not heavily influence downstream events (domain expert as-
sumption). Therefore, I ignore the parasitisation of KCs and instead abstract the
influence of parasites into functional differences between KCs, namely uninfected
and infected cells.
Fully formed granulomas are comprised of a wide variety of mononuclear cells,

many of those are only recruited during the granuloma maturation stages of in-
fection [Moore et al., 2013]. For this research, the assumption is that the observed
heterogeneity and system dynamics can be explained by examining early initi-
ation and amplification of KCs, prior to the recruitment of other mononuclear
cells. For the domain model I chose to capture events within 48 hours of infection
as this represents the amplification stage of KC infection.

4.2 defining model entities and interactions

As detailed previously in section 2.2.3, UML has been used effectively to docu-
ment the interactions, relationships and states of biological components such as
cells in a variety of contexts. It is important to reiterate that UML diagrams are
not designed for specifying models of biological systems, but for specifying soft-
ware systems. Therefore, the purpose of the diagrammatic notation in this case,
particularly when formulating the domain model, is to facilitate communication
between modeller and domain expert. The large suite of UML diagrams can be
used not only in the documentation or specification of models to describe the
domain, but later in using those models to engineer software for simulation.

4.2.1 Model Entities

I hypothesize that two core system dynamics are capable of manifesting cellular
aggregations at the population level, namely dynamics of cellular attraction and
cellular retention. Figure 9 encapsulates the mechanisms by which KCs might
attract or encounter NKT cells, namely chemokine mediated attraction, or a ran-
dom encounter as a result of a patrolling NKT cell. NKT cells are then retained
through various cytokine, chemokine, and receptor mediated mechanisms. To
document exactly which entities, mediators, and relationships would form the
domain model, a UML Class Diagram was then constructed (figure 10), detailing
three cell types: infected KCs, uninfected KCs, and NKT cells, whilst high-
lighting the relationships between those cells that are believed responsible for
realising those cellular attraction and retention dynamics.
Uninfected and infected KCs have the same CD1d receptor which interacts

with the T cell receptor (TCR) expressed by NKT cells. CD1d-TCR interactions
will only occur when the CD1d is loaded with ‘antigen’. This could be a parasite
antigen in which case there might be a difference in the functionality of the
interaction between infected and uninfected cells. CD1d antigens can also be self-
antigens induced by stress, so this could occur on all KCs in the environment
in which case there would be no discriminating functionality. For these reasons,
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I assume that these interactions are implicit, with no discriminating function in
this regard between infected and uninfected cells.
Both infected and uninfected KCs are capable of upregulating SIRP1α sub-

sequent to infection; however, the mechanism by which uninfected cells induce
upregulation has been shown to be in trans G-protein signalling [Beattie et al.,
2010b]. IFN-γ is also then capable of further engaging infected KCs to increase
expression of SIRP1α, and to produce more CXC-chemokines. Whilst both KC
populations are capable of producing CXC-chemokines which facilitate cellular
migration, due to the amplification mechanism, it is only the infected KCs that
can utilise this mechanism to further retain those NKT cells.

IFN-γ
- random walk
- chemokine mediated attraction

- Cytokine/Chemokine/Receptor 
mediated retention

+ve 
feedback

Infected Kupffer Cell Natural Killer T Cell

Figure 9: Domain Model Dynamics Summary. A cartoon to summarise the core inter-
actions that the modelling endeavour needs to capture. KCs (green) attract,
retain, and are stimulated by NKT cells (purple).
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Figure 10: Domain Model Entities. These are the components that form the domain
model. Not all are necessarily modelled explicitly when it comes to formulat-
ing and implementing a platform model. The diagram is influenced loosely by
UML class diagram notation, though associations illustrated with arrows are
not structural relationships, and in some cases are functions calls. Diamond
arrows denote composition. Red dashed lines are used to simply to highlight
how certain components and interactions implement a specific mechanism.
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4.2.1.1 Kupffer Cell States

It is important to note that in the biological system, cells are not clearly defined
as being in particular states. Whilst biologists can identify and differentiate cells
into sub-populations, each capable of performing different actions, the tools and
techniques used to identify them do not binarily dictate what their function will
be. There is known heterogeneity in cell type and function, and it is us who
impose cell types and states in an effort to better understand the heterogeneity.
As a modeller, it is necessary to abstract cell functions into states in this context,
since when it comes to forming a platform model and implementation, different
cell functions must be logically independent.
State Diagrams were used to document the states of cells, and what conditions,

environmental or internal, are required to be met in order for the cell to transition
between states. Boxes denote states, and dashed lines denote when a cell can be
in multiple states concurrently. Arrows determine transitions between states, and
‘gates’ provide conditions for state-transition. Figure 11 depicts the infected KC
states and transitions, with the two core states described as aware and engaged.
The domain model represents infected KCs subsequent to infection as this occurs
rapidly (see section 3.2).

infected kc states The state diagram for infected KCs is depicted in fig-
ure 11. I assume based on domain expert opinion that KCs sense and remain
in an aware state until they encounter NKT cells, which produce IFN-γ, thus
becoming stimulated. A threshold of stimulation is required for KCs to reach
an engaged (activated) state. Subject to sustained interaction with NKT cells,
KCs then begin to upregulate the production of chemo-attractants and retentive
mediators. The evidence for the assumptions relating to infected KC states is
listed in table 1.

uninfected kc states The State Diagram for uninfected KCs is depicted
in figure 12. I assume based on domain expert opinion that these cells are not
receiving sustained CD1d-TCR signalling that is a consequence of the upregula-
tion of SIRP1α upregulation; the lack of SIRPα enhanced response equates to
no retention of NKT cells, though I assume they do produce chemo-attractant.
The production of chemo-attractant by uninfected KCs was originally a design
assumption (later validated in Beattie et al. [2013]) so that the model can deter-
mine the dynamics of competition between all KCs to recruit NKT cells, whether
it be infected KCs competing to become activated, or uninfected KCs performing
some other role, perhaps to limit inflammation. The evidence for the assumptions
relating to infected KC states is listed in table 2.
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Figure 11: State Diagram (Domain) - Infected KC. UML state diagram notation is ex-
tended with the use of dashed lines to denote states the cell can be in con-
currently. Conditions, gates, that must be satisfied before a state transition
are denoted using squared brackets [].
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Infected Kupffer Cell (Domain)

State Associated transition Evidence

Stimulated [encounter NKT cell] Svensson et al. 2005

Beattie et al. 2010b

Sense environment Domain expert assumption

Express SIRPα Beattie et al. 2010b

Producing basal level of chemo-attractant [not interacting] Domain expert assumption

Up-regulate production of chemo-attractants [interacting] Svensson et al. 2005

Domain expert assumption

Up-regulate production of retentive mediators [interacting] Beattie et al. 2010b

Domain expert assumption

Engaged [threshold of environmental IFN-γ reached] Domain expert assumption

Table 1: Evidence for states and transitions in figure 11.
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Figure 12: State Diagram (Domain) - Uninfected KC.

Uninfected Kupffer Cell (Domain)

State Associated transition Evidence

Producing basal level of chemo-attractant Domain expert assumption

Sense environment Domain expert assumption

Table 2: Evidence for states and transitions in figure 12.

4.2.1.2 NKT Cell States

NKT cell active ability can include producing or not producing stimulatory cy-
tokine, such as IFN-γ, and these can be classed as states. Since NKT cells perform
a random walk in the sinusoids [Geissmann et al., 2005], yet are also capable of
chemo-attractant induced taxis, these are also distinct states of movement. To
capture behaviour such as NKT cells stimulating and being immobile, or not stim-
ulating and performing a random walk, states are grouped into two concurrent
types. The state-transition diagram depicted in figure 13 captures those states
for NKT cells, which are grouped into action and movement states.
NKT cells begin by entering the lobule from the periphery, where they perform

a random walk until they sense chemokine signals, which induces a chemotactic
state. Once the cells encounter an infected KC, with its upregulating of SIRP1α
and expression of CD1+ antigen, it can then begin to aggregate around that KC
until it probabilistically leaves, dictated by KC retentive mediators. Concurrently,
the cell is initially in an inactive action state until it encounters an infected KC,
at which time it begins to produce IFN-γ until it leaves the infected focus. NKT
cells are then considered to be in a state of anergy after stimulation, a state
reportedly induced by TCR-mediated signalling [Iyoda et al., 2010].
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circulate in
blood random walk chemotax

produce
(IFN-γ)

[encounter KC - CD47 
binds to SIRP1α on KC with 

TCR signalling]

aggregate

inactive

[SIRPα-
CD47 / CD1d-

TCR 
signalling]
(KC-NKT)

NKT Cell - Domain

[enter liver]

[probabilistic, retentive chemokine mediated cell avolation][exit liver]

[sense chemokine]

recover / anergy

[insufficient cell binding / chemokine 
mediated retention]

[period of anergy]

[probabilistic, retentive chemokine mediated cell avolation]

movement

actions

Figure 13: State Diagram (Domain) - NKT cell. The diamond denotes a choice depen-
dent on a condition. UML state diagram notation is extended with the use of
dashed lines to denote states the cell can be in concurrently. Conditions, gates,
that must be satisfied before a state transition are denoted using squared
brackets [].

NKT Cell (Domain)

State Associated transition Evidence

Inactive Domain expert assumption

Produce IFN-γ [encounter KC - CD47 binds to SIRPα on KC] Svensson et al. 2005

Recover / anergy [probabilistic, retentive chemokine mediated cell avolation] Iyoda et al. 2010

Circulate in blood [exit liver] Domain expert assumption

Random walk [enter liver] Geissmann et al. 2005

[insufficient cell binding / chemokine mediated retention] Domain expert assumption

Chemotax [sense chemokine] Domain expert assumption

Aggregate [SIRPα-CD47 / CD1d-TCR signalling] Beattie et al. 2010a,b

Table 3: Evidence for states and transitions in figure 13.
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4.2.2 Model Interactions

The proposed model interactions and events were captured using UML Activity
Diagrams. Activity Diagrams provide a means to document system events and
the flow between them. Similar to the notation previously described for State
Diagrams, arrows represent ordered flow, with black bars depicting occurrences
where concurrent activities can converge or split, with conditional flow denoted
by gates. Figure 14 details events that are capable of manifesting how NKT cells
randomly patrol their environment until they either encounter a KC, or until
they are influenced by some chemotactic gradient. The diagram incorporates an
assumption that NKT cells will only aggregate around infected KCs, which are
capable of interacting via the CD47-SIRPα pathway [Svensson et al., 2005]. Once
an interaction occurs, infected KCs must then reach a threshold of activation be-
fore they can begin upregulating both the production of retentive mediators and
chemo-attractants. Retentive mediators then influence the sustained retention of
NKT cells at the infected focus. Uninfected KCs only function by producing a
basal level of chemo-attractant in their environment, which can influence NKT
cells to chemotax, but those NKT cells will subsequently not interact.

Liver

CD47(NKT)-
SIRP1α(KC) 

interactions occur

Infected kupffer cell

NKT senses 
concentration of 

chemokine

NKT cell taxis along 
chemokine gradient

Uninfected KC encountered, NKT cell 
moves away

Uninfected kupffer cell NKT cell

NKT cell enters 
lobule from periphery

Produce basal level 
of chemoattractants

NKT cell encounters 
KC

NKT cell randomly 
patrols sinusoids

KC exists at this 
location

KC exists at this location

Infected KC encountered, 
NKT cell begins aggregating

express SIRP1α

KC upregulates 
production of 

chemoattractants

KC upregulates 
production of 

retentive mediators

Retentive mediators 
determine sustained 
KC-NKT interaction

Interaction no longer sustained, NKT moves awayInteraction sustained

Infected KC and interacting 
with NKT cells

not interacting with 
NKT cells

NKT cell exits to 
periphery

NKT cell encounters 
portal/central/hepatic 

vein

blood transports NKT 
cell to liver

Threshold of KC activation 
reached

Threshold of KC activation 
not reached

NKT cell anergic
period of anergy expired

Figure 14: Activity Diagram (Domain): Infected KCs, Uninfected KCs and NKT cells
interact.
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4.3 summary

I began this chapter by discussing the need to adequately scope the knowledge
of the biological domain into a domain model. The domain model outlined, rep-
resents a system-level perspective of various components and mechanics that I
hypothesized could account for three observable phenomena relating to early gran-
uloma initiation (section 4.1). Expected behaviours were constructed as assump-
tions regarding how and why observable phenomena manifest themselves, and
an expected behaviours diagram constructed to illustrate the mapping between
phenomena and behaviour. I posited that Kupffer cells, both uninfected and in-
fected, along with NKT cells, were a sufficient set of cellular entities to model
early granuloma initiation, based on a previously experimentally validated NKT
cell mediated axis of KC activation. UML was used as a graphical modelling tool
to convey how I perceived the cellular entities to function and interact, based on
attributing them with states and state-transition capabilities.
In the following chapter, I will present a platform model of early granuloma

initiation (chapter 5). The platform model is in essence a mapping of the domain
model into an implementation specific format. Converting the various entities,
mechanisms, and importantly assumptions of a domain model into computer
code is not a trivial task, and the platform model clearly sets out how I tackled
this problem.





5 A PLATFORM MODEL OF GRANULOMA INI-
TIATION

Whilst the previous chapter outlined the scope of the modelling endeavour, detail-
ing the components and interactions believed to be responsible for manifesting a
range of observable phenomena in the biological domain of interest, the domain
model is not a specification for a software system, nor does it describe the neces-
sary logic required to encode the domain knowledge into an executable form. The
platform model is the implementation specific translation of the domain model,
forming a specification of how to encode the model and assumptions into a soft-
ware system. Whilst the emphasis in the domain model was around emergent
phenomena, for example the formation of cellular aggregations, it is important
to maintain a clear separation with the platform model to ensure that the concept
of a cellular aggregation is not hard-coded into the simulation, it should emerge
as a result of the components modelled and their interactions.
Sections 5.1 to 5.3, detail how the domain model theory and assumptions are

conceptualised into a platform model, containing algorithms and logic required
to turn the model into a computer simulation. Sections 5.4 and 5.5 conceptualise
the simulator design. Section 5.6 details simulation calibration, and how various
biological data are input into the simulation to parameterise the various cells
and mechanisms outlined in the earlier sections of the platform model. Finally,
in section 5.6.7 I detail my argumentation efforts, demonstrating that my simu-
lation adequately represents the underlying biological system conceptualised in
the domain model.
Declaration: the algorithm in section 5.2 was developed in collaboration with

Dr. Paul Andrews at the University of York.

5.1 deciding on a modelling paradigm

Figures 15(a),(b) illustrate how a tissue-level ABM incorporating interactions
between individual cells, has an intuitive mapping for studying VL induced gran-
ulomas. Modelling at the tissue level makes it possible to determine the role of
sinusoidal structure, assuming an accurate and statistically representative repre-
sentation of the sinusoidal micro-environment is modelled. A tissue level ABM
would also provide the opportunity to determine the importance of KC location,
and the implications that this has for the role of the individual in forming granu-
lomas. Lastly, given ABMs allow us to interrogate the status of individual agents,
it is possible to analyse the behaviour of patrolling NKT cells with respect to
their environment, allowing the dynamics of their recruitment to be dissected.
Given that the ODE/PDE mathematical approach is more suited to population
based models, and not suited to the study of individuals and the key require-
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ments of a spatio-temporal model in this case, the ABM paradigm was chosen
for the research detailed in this thesis. The next section will detail how spatial
simulation environments were generated.

Organ
(liver)

Tissue
(sinusoids)

Cellular

Molecular

(a) Modelling Scales

central vein

Infected KC

Promoter cells

liver sinusoids

Modelling and analysis of individual cell 
behaviour w.r.t environment

Study the role of sinusoidal 
structure

Ascertain the importance 
of cell location

(b) ABM for Liver Study

Figure 15: Modelling Scale. Conceptualising the scale for a spatio-temporal model of
granuloma initiation. Sub-figure (a) illustrates various biological scales. Con-
ceptually, KC and NKT cell interactions occur at the tissue and cellular levels.
Sub-figure (b) published in [Moore et al., 2013]

5.2 generating in silico lobule representations

Environment is an integral component of any agent-based model. For the pur-
poses of this research, the objective was to generate realistic liver lobule sections
that adopted a similar, computationally efficient connected graph approach as
that used by Wambaugh and Shah [2010], whilst incorporating the statistical
data reported by Höhme et al. [2010]. By generating multiple structures, it is
then possible to analyse if there is variance in simulation results between differ-
ent statistically representative structures, providing a means to determine the
influence that sinusoidal structure has on the system.
In section 2.1.6 I argued that a 2D spatial grid approach to modelling the liver

sinusoids was too simplistic for modelling certain tissues. This is certainly the case
in respect to the intricacies of the liver microenvironment (figure 16(a)). Whilst
a 2D grid approach is not appropriate, as it leads to implausible free movement
of NKT cells (figure 16(c)), a 2D connected graph/network approach I argue is
appropriate. Nodes and edges within a 2D network can be constructed to repre-
sent the channels and branches within the liver sinusoids, thus allowing restricted
movement of patrolling cells as in the liver microenvironment (figure 16(d)). Con-
structed 2D networks could also be used as skeletons with which to construct 3D
spatial representations of the same tissue. However, for the current model, investi-
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gating the 3D spatial aspect of granulomas is not part of the underlying research
hypotheses. Therefore, a connected graph approach was used to represent the
sinusoids, allowing the creation of structures that are both computationally effi-
cient and visibly similar abstractions of observed liver morphology.

Amastigote

NKT cell

Kupffer cellHepatocyte

22 µm

Liver Morphology Domain Abstraction

Platform Implementation

Infected KC node Node Edge

2D Grid Representation

(a) (b)

(c) (d)

Figure 16: From liver morphology to platform implementation. (a) In situ analysis of
liver sinusoids (red) and Kupffer cells (green) in (mT/mG x lysMcre)F1 mice.
(b) the domain abstraction of the sinusoids and two core cell types involved in
early granuloma formation. (c) a 2D grid representation with biologically im-
plausible free movement of NKT cells. (d) the engineered platform implemen-
tation using a 2D network that restricts cell movement as in the underlying
liver microenvironment.
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I approached Höhme et al. [2010] who kindly provided us with data represent-
ing 26 liver lobules amalgamated into a single statistically representative lobule
structure comprised of nodes and edges. Whilst it would have been interesting
to utilise this structure for my simulation, there were key properties of the struc-
ture, such as distorted sinusoids at the peripheries, that made it difficult to use
their structure as presented. Rather than developing a strategy to remove those
artifacts, I chose to instead proceed with the artificial generation of structures
based on statistical data; this approach was also more appropriate, and needed
for investigating variance between multiple sinusoidal structures in the system.
Figure 17 illustrates and describes the generation of the sinusoid structures. I

assume that the sinusoid network exists in a 2D space (this is considered as a slice
through a 3D lobule). I also assume that the lobule structure is roughly hexagonal
with a single central vein in the centre and six portal triad areas placed at roughly
regular intervals around the central vein. The flow of blood borne cells is assumed
to be from portal triads to the central vein, so in the algorithmic description
below the central vein is termed a drain node, and the portal triad regions are
populated by entry nodes. Algorithm 3 (see Appendix 9.1.5) describes how the
nodes and segments of the sinusoid network are generated, whilst algorithm 4
(see Appendix 9.1.5) describes how the overall sinusoid network (the lobule) is
generated using algorithm 3. The statistical data published by Höhme et al. [2010].
that were augmented with algorithm 4 are as follows:

• Average length between central vein and portal triad = 284µm;
• Average length of a non-branched sinusoid = 43.1µm;
• Average angle between branching sinusoids = 32.5◦.

Examples of the various structure networks generated can be seen later in
figure 43. Having established a process to create simulation environments, it is
necessary to define the implementation of cells that will populate those environ-
ments, this will be discussed in the next section.
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Figure 17: Structure generation algorithm. (a), Candidate node, µ, generated based on
position of current node, δ. (b), Position of candidate node, µ, biased towards
attracting node, α. (c), Segment created between candidate node, µ, and cur-
rent node, δ. (d), New segment intersects with existing branch in sinusoid
network so current node, δ, connected via a segment to the closest exist-
ing node. Sinusoid network construction algorithm stages: (e), Drain node
(black) placed in the centre of a 2D space with six surrounding entry nodes
(green) forming an irregular hexagon layout. (f), Sinusoids (red) grown from
entry nodes to drain nodes. (g), Additional entry nodes created around orig-
inal entry nodes, conceptually forming a portal triad. (h), Sinusoids grown
from additional entry nodes. (i), Additional sinusoid branches added between
existing sinusoids.
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5.3 implementing cells and mechanisms

The domain model presented in chapter 4 outlined the scope of which cells and cell
behaviours would be incorporated into the simulation. This was achieved by using
UML to document both the overall activity of the system (Activity Diagram), and
the states and transitions of individual cell types (State Diagrams).
The purpose of this section is to present the platform specific version of the

earlier domain model, translating domain model assumptions and UML diagrams
into modified versions incorporating logic and a consideration of the implementa-
tion platform chosen. The platform model is required to implement biologically
plausible instantiations of the various cells and mechanisms I wish to model. As-
sumptions are documented in tables which list assumptions from both a domain
and platform perspective, with justifications given for each. Domain assumptions
may not translate directly across to the platform, this may be for example due
to technological limitations, or lack of domain knowledge to justify a direct im-
plementation.

5.3.1 Model Interactions - Platform

Previously in section 4.2.2 I utilised a UML activity diagram to outline the se-
quence of events that would lead to NKT cells encountering and interacting with
KCs. The activity diagram detailing these events for the platform model is de-
picted in figure 18, incorporating conditional gates that link cell actions to the
network environment. Aside from conditions that now link cells to the tree-node
network environment, the primary difference between the original domain model
(figure 14) is that cell interaction mechanisms are abstracted. Instead, interac-
tions are assumed when NKT cells and infected KCs are co-located on a network
node. Subsequently, the duration of interactions is modelled as a dynamic, prob-
abilistic retention function (see section 5.3.4.3). The functions of both NKT cells
and infected KCs whilst interacting are detailed in sections 5.3.2 and 5.3.3.

5.3.2 Kupffer Cells

Detailed technical information for KC implementation is detailed in Appendix 9.1.3.1.
Infected KCs are initialised as infected cells. The state diagram depicted in fig-
ure 19 illustrates the platform translation of an infected KC, the figure also
lists all the relevant assumptions made for both infected and uninfected KCs
required for implementation. Infected KCs are infected from time zero of the
simulation, and they are in an aware state whilst concurrently interrogating the
level of stimulatory IFN-γ at their node location, and initially diffusing a basal
level of chemo-attractant (figure 21(a)). Chemo-attractant is diffused a minimum
network distance and at a minimum concentration (see section 5.3.4.2). Proba-
bilistic interactions with NKT cells, denoted by δ(NKT), put the infected KC
into a state of being stimulated, and if the level of IFN-γ at the node is above
a specified threshold (ifnThreshold), the cell will become engaged. Subsequent



5.3 implementing cells and mechanisms 63

NKT cell interactions then allow the engaged infected KC to increment the func-
tions that govern probabilistic retention and the production of chemo-attractant
(figure 21(b)). Assumption 1 details that infected KCs are considered infected at
the initiation of the simulation, for reasons described in section 4.1.1. My domain
experts wish to investigate the effects of uninfected KCs responding differently to
infection, and these functional differences are realised by providing each popula-
tion with a different capacity to attract and retain cells. Therefore, Assumptions
2 and 3 specifiy that infected cells can both attract and retain cells, whereas
uninfected KCs can only recruit - as a result of lacking sustained CD1d-TCR (see
chapter 4). Since I model the environment as a network, I can abstract cell-cell in-
teractions, including the SIRPα-CD47 mechanism, and instead just assume they
occur when an NKT cell and an infected KC are co-located on the same node.
The cognate SIRPα-CD47 interactions can then be modelled as a probabilistic
retention function (see section 5.3.4.3).
Uninfected KCs serve only to introduce competition for infected KCs (fig-

ure 20), and their aware state functions only to produce a basal level of attraction
as described for infected KCs.
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node ]

Uninfected kupffer cell NKT cell

NKT cell reset, 
enters at entry node
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[ KC exists on NKT node ]
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escape KC influence
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Figure 18: Activity Diagram (Platform). This diagram details the events that lead to in-
teractions between infected KCs, uninfected KCs, NKT cells and the network
environment.
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Figure 19: State Diagram (Platform) - Infected KC. UML state diagram notation is
extended with the use of dashed lines to denote states the cell can be in con-
currently. Conditions, gates, that must be satisfied before a state transition
are denoted using squared brackets []. The δ symbol denotes a probabilistic
event; in this instance an encounter with NKT cells.
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Figure 20: State Diagram (Platform) - Uninfected KC.
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Figure 21: Cell Interaction With Environment Nodes. (a), Infected KCs in the aware
state will interrogate their nodes IFN-γ level until they reach a threshold,
then they will become engaged. (b), when in the engaged state and co-
located with NKT cells, infected KCs will increase the levels of attraction
and retention.
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5.3.2.1 Kupffer Cell Spatial Distribution

To ascertain whether or not the reported abundance of KCs in the periportal zone
could have a significant effect on early recruitment of NKT cells, two distribution
algorithms were created for the simulation.
Prior to a simulation one of two algorithms is used to distribute Kupffer cells

(each a minimum distance apart to avoid overlap) throughout the sinusoid net-
work. The first, algorithm 1 (see Appendix 9.1.5), was designed to distribute KCs
according to Bouwens et al. [1986]. Figure 22(b) illustrates uninfected KCs placed
in percentages of 43%:28%:29%, and infected cells in percentages of 65%:25%:10%
in the PP:MZ:CV zones respectively. The second algorithm distributes KCs ran-
domly throughout the sinusoids, figure 22(a) illustrates this method, with both
infected and uninfected KCs randomly placed throughout all zones of the lobule
area, producing a more even distribution.
Both KC distribution algorithms ensure that KCs are placed a minimum dis-

tance apart, and the mechanics of this are outlined in figure 23 and algorithm 2
(see Appendix 9.1.5), this is to avoid the potential for large swathes of sinusoid
not being allocated any KCs, which can occur due to random node sampling, and
which would not be particularly biologically plausible.

(a) (b)

Figure 22: A comparison between KC distribution algorithms. Infected KCs (green), un-
infected KCs (blue), sinusoids(Maroon), chemokine (orange), concentric cir-
cles separating the three lobular zones (sky blue). (a), Even KC distribution
across all nodes. (b), A periportal skew of both infected and uninfected KCs.
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(a) (b) (c)

(d) (e)

Node (discrete section of sinusoid)

Node no longer viable for KC placementNode containing a KC

Node within a minimum distance from KC placement

Figure 23: Distribution algorithm 2. Upon initialisation of a simulation, KCs are placed a
minimum distance µ apart, ensuring even distribution in the required ratios
of KCs throughout the periportal, midzonal and centrilobular zones of the
computational representation of the sinusoids outlined in section 5.2 and
figure 17. Grey nodes represent discrete sections of sinusoid, and white nodes
represent nodes which are deemed no longer viable as a location on which to
initialise a KC. (a), A candidate node α is chosen from a set of viable nodes S.
(b), The tree is recursed up to distance µ, and all recursed nodes are added
to set T. (c), The set difference is calculated to remove proximal nodes from
the set of viable nodes, S\T. (d),(e), the algorithm is repeated everytime a
new candidate node β is chosen.

5.3.3 NKT Cells

Detailed technical information for implementation is detailed in Appendix 9.1.3.2.
The simulation is required to capture several domain model behaviours high-
lighted for NKT cells. The state diagram for the platform model is depicted in
figure 24 along with the relevant NKT cell assumptions. NKT cells are the only
agents that were given movement rules, and are capable of traversing the gener-
ated sinusoidal structures from node to node, across edges of their current node
(see figure 25).
Assumption 1 relates to directed movement (chemotaxis) of NKT cells when

presented with multiple chemokine signals (see section 5.3.4.2 and figure 28).
There is no data to suggest that NKT cells are capable of avoiding interactions
with infected KCs. If this interaction was probabilistic, it would involve adding a
further probability parameter to the simulation, one which is not traceable back
to any measurable quantity. Assumption 2 was created to ensure that there is
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always an interaction between NKT cells and infected KCs, and a probabilistic
calculation is made subsequent to that interaction to determine the duration of
the interaction. Assumption 3 was created as there are no available data per-
taining to the dynamics of the NKT cells population in liver lobules over time.
The NKT cell population per lobule section was calculated and remains constant
throughout the simulation; though NKT cells that leave the simulation enter as
new entities. Assumption 4 was created to ensure that NKT cells do not contin-
uously traffic from one KC to the next, interacting with each. Also, without some
kind of recovery mechanism, the NKT cell would perpetually be attracted back,
via chemokine signalling, to the previously stimulated KC. This assumption is jus-
tified since invariant NKT cells do display anergic behaviour after TCR-mediated
activation coupled with co-stimulation [Iyoda et al., 2010]. Assumption 5, that
NKT cells respond immediately to chemokine signals, is also to avoid introducing
any further probabilistic calculations that have no measurable biological founda-
tions. Lastly, Assumption 6 relates to the NKT cell random walk behaviour
reported in the literature [Geissmann et al., 2005; Lee et al., 2010].

5.3.4 Modelling Chemokines

For the platform model of chemokines, the environment plays an integral role
in how those chemokines influence the simulation. Nodes of the simulated sinu-
soidal network are capable of holding a value that can be attributed to either
of the two types of chemokine, chemo-attractant and chemo-retention. Values
are based on the calculation of a chemokine growth function (section 5.3.4.1).
Chemo-attraction values can be stored on any node of the network, since chemo-
attractant is capable of diffusing away from KCs (see section 5.3.4.2). Chemo-
retention is an umbrella term used as an abstraction for all of the cytokine,
chemokine and receptor mediated retention mechanisms discussed in the domain.
Chemo-retention is only ever attributed to nodes that contain an infected KC
(see section 5.3.4.3). Table 4 documents the full list of assumptions defined for
chemokines prior to implementation. There are several parameter names used
in this section that are shortened for brevity, table 5 highlights the mapping
between any conceptual parameters and the actual simulator input parameters
used to implement them (see tables 7 and 8 for simulation inputs parameters).

5.3.4.1 Modelling Chemokine as a Growth Function

A logistic S-shaped curve function was chosen as the means to calculate the value
of a given chemokine at a given point in simulation. The S-shaped curves exhibit
three separate phases; a low valued initial stage, an exponential-like accelerated
growth phase, then finally saturation while approaching a climax. S-shaped curves
have been used to describe growth in complex systems ranging from economics to
biology and can be representative of cumulative growth [Kucharavy and De Guio,
2007].
The growth function was required to be not centered on zero in order to return

a small value of chemokine initially, and the sigmoid represented by equation (1)
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MoveState[ co-located with uninfected KC ]

/move

[ co-located with 
uninfected KC ]

[ δ(leave) ]

Platform Justification

A1 NKT cells respond to 
chemo-attractant

NKT cells under chemotaxis, when presented 
with two or more attraction gradients, will 

choose a direction based on attractive 
chemokine strength.

A2 NKT cells interact with KCs NKT cells will interact with the first infected KC 
they encounter whilst in chemotaxis.

A3
The NKT cell population of the lobule section 

remains constant; cells exiting the environment 
will enter as new cells via an entry point.

See section 5.6.3.1.

A4 NKT cells are capable of 
becoming anergic

NKT cells are refractive to stimulation and take 
a period of time to recover after stimulating and 

leaving a KC.
(Iyoda et al., 2010). Assumption traced in 

section 5.6.5.2.

A5 NKT cells will respond immediately to a 
chemokine signal.

To facilitate implementation, no experimental 
data available. Chemokine implementation 

outlined in section 5.3.4.1.

A6
NKT cells can walk the 
sinusoids and switch 

direction probabilistically

NKT cells perform a random walk of the tree-
node structure, and a probability governs their 

ability to turn in the sinusoids at random.
(Geissmann et al., 2005). Implementation 

part of NKT cell properties in section 5.6.4.1.

Domain

To facilitate implementation, no experimental 
data available Implementation discussed in 

section 5.3.3.

Figure 24: State Diagram (Platform) - NKT cell. UML state diagram notation is ex-
tended with the use of dashed lines to denote states the cell can be in con-
currently. Conditions, gates, that must be satisfied before a state transition
are denoted using squared brackets []. The δ symbol denotes a probabilistic
event, in this instance the probability for the cell to leave a location.

Domain Platform Justification

A1
Attractive chemokines flow

in the same direction as

blood would.

Attraction diffuses

downstream of infected KCs

towards the central vein.

Chemotaxis in 3D

environments is poorly

understood (see section 5.3.4.2)

(Haessler et al. 2011)

A2

Strength of attractive

chemokine is a function of

distance from source,

calculated using a simplified

Fick’s Law of diffusion

See section 5.3.4.2.

A3
Chemokine growth is

calculated using a sigmoid

function.

See section 5.3.4.1.

Table 4: Chemokine Assumptions. Assumptions made for chemokines in both the domain
and platform models.
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Figure 25: NKT cell movement within the edge-node sinusoid network. (a), NKT cells
can move between nodes at each iteration t. (b), NKT cells can continue
moving in their original direction, or (c) - probabilistically reverse direction.
(d), when presented with a branch in the network, NKT cells can travel to
any of the available nodes.
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Conceptual Parameter Simulation Parameter (input)

δmin p_chemoDist

δmax p_maxDist

δleave p_leaveProb

δ N/A runtime parameter

λ N/A runtime parameter

sourceλ N/A runtime parameter

d N/A runtime parameter

φ N/A runtime parameter

Table 5: Parameter Mapping. Mapping between concise conceptual parameters (see sec-
tions 5.3.4.1 to 5.3.4.3) and the actual simulator input parameters implemented
(see tables 7 and 8).

can accomplish this. To avoid any inconsistances with floating point number
calculations as this number approaches 1.0, a value can be parameterised as
a maximum threshold. In equation (1), e is Euler’s number and the function
represents a specialised case of a standard logistic curve. The variable t represents
a unit of time/simulation iteration. A standard logistic S-shaped curve is an
odd function and has symmetry when rotated 180 degrees around the origin.
Therefore, in order to capture the three aforementioned phases of the curve, it is
necessary to modify the exponent. Low integer values are sufficient to translate
the function and a value of 6 is used in equation (1). Figure 26 illustrates how
different values for the constant c produce varying growth curve shapes between
units of time ranging from 0 to 172800, 172800 iterations represents 48 hours of
simulated time.

f(t) =
1

1+ e(−ct)+6
(1)

As an example, if I describe the growth of interferon, multiple NKT cells can
produce chemokine, though the specific concentration they produce is abstracted
away. Each NKT cell increments the value of t for each iteration that it is inter-
acting with a KC. Therefore multiple NKT cells localised around a KC will in-
crease the per iteration stimulation received and therefore cumulative chemokine
produced. The presence of NKT cells also dictates when and by how many incre-
ments to the t value that KCs should make to produce attractive and retentive
chemokines. To implement chemokine decay, the t time is merely decremented
for every iteration that a KC is not receiving stimulation.
Several parameters: p_chemoIFN, p_chemoAttract and p_chemoRetain

are used to define how many units of stimulation (increments) are required for
the respective chemokines to reach the threshold maximum value. At runtime,
the code in listing 15 is used to calculate the constant c required to reach a given
threshold value in a stipulated number of iterations/increments.

5.3.4.2 Modelling Chemokine Mediated Attraction

As previously described, a network tree structure was chosen to represent the
sinusoidal environment. The consequence of this, is that each node must con-



72 a platform model of granuloma initiation

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
t (increments)

0.0

0.2

0.4

0.6

0.8

1.0

f(t
)

0

5

10

15

20

25

30

35

40

45

Va
lue

 o
f c

on
sta

nt
 c 

in 
sim

ula
te

d 
ho

ur
s.

Figure 26: Chemokine growth function. For a given constant c, representing the num-
ber of hours required to reach maximum chemokine level (see colour bar),
curves illustrate the growth of chemokine determined by equation (1) at each
simulation iteration t (0 to 172800 iterations), assuming single increments of
t.

tain not just cells, but also cell produced cytokines and chemokines. Since I
previously assumed that KC-NKT interactions only occur when those cells are
localised together on a node, it is relatively trivial, computationally, to repre-
sent NKT produced stimulatory cytokine and also the KC produced retentive
cytokine values as floating point numbers due to the finite number of infected
cells in the simulation. I make the reasonable assumption that chemo-attractant
only diffuses downstream of infected KCs, towards the central vein of the lobule.
In reality, the dispersion of chemo-attractants in the liver lobule has yet to be
characterised in this experimental setting, though I do know that the expression
of chemo-attractants is observable in areas of lymphocyte infiltration [Zeremski
et al., 2008].
Attractive diffusion distance is determined by various factors which are illus-

trated in figure 27. Diffusion is a function of distance and is recalculated every
simulation iteration with equation (2) (see also figure 27) - the function is floored
to the nearest integer, and that is used as the updated diffusion distance.

δ = |sourceλ ∗ (δmax− δmin)| (2)

where:

δ = calculated diffusion distance

sourceλ = the level of attractive chemokine(0 6 sourceλ 6 1.0.)

δmin = minimum diffusion limit (nodes)

δmax = maximum diffusion limit (nodes)
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The level of chemokine diffused to subsequent nodes is a function of the dis-
tance from source governed by equation (3) (see also figure 28).

λ =
sourceλ

d
(3)

where:

λ = level of attractive chemokine at a given node

sourceλ = the level of attractive chemokine at source KC

d = distance from source (in nodes)

Two different assumptions for how attractive chemokine influences NKT cells
was implemented. The first assumes that diffused attractive chemokine merely
determines which direction an NKT cell in chemotaxis should travel, and where
there are one or more competing chemokine signals, the cell calculates its next
move probabilistically. The second implementation assumes that strength of chemokine
plays a role in chemotaxis, and where there are multiple competing signals, an
NKT cell will traffic via the strongest of those signals (figure 28).

5.3.4.3 Modelling Chemokine Mediated Retention

Retention is modelled as a function, which is dynamic based on the local concen-
tration of retentive chemokine at an infected KC node. The relative quantity of
retentive chemokine produced by KCs mediates the sustained retention of NKT
cells at infected foci dynamically, in line with NKT cell-derived stimulatory IFN-
γ. Thus, the probability of an NKT cell leaving an infected KC is governed by
equation (4). To avoid the unwanted artifact of NKT cells becoming fixed as the
value of δnktleave tends to 0, the simulation utilises a lower bound threshold for
retention, parameterised using the input p_minLeaveProb.

δnktleave = δleave− (φ ∗ δleave) (4)

where:

nktleave = value of retention at the infected node

δleave = maximum parameterised retention probability

φ = value of retention at infected node
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Figure 27: Conceptualising Chemokine Diffusion. (a), The current chemokine diffusion
distance is a function of the level of attractive chemokine at a source KC
(sourceλ), with minimum and maximum limits of δmin and δmax respec-
tively. (b), Chemokine diffuses downstream through the network, towards
the central vein.
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Figure 28: Chemokine Strength Decision. NKT cells when faced with 2 or more com-
peting chemokine signals, will traffic via the strongest of those signals, cal-
culated as a function of the distance from the each respective source. The
example illustrated demonstrates that although node a has a stronger level
of chemokine, the level at node x is lower than the chemokine diffused by the
more proximal node b.
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5.4 the agent based modelling platform

The previous sections of this chapter outlined the platform model, detailing the
various cells, algorithms, and functions required to implement the original do-
main model. The platform model acts as a system specification for the software
development process to turn my model into computer code. In order to begin
development, I must decide upon a platform to utilise to develop an agent-based
model.
As discussed previously in section 2.1.3.1, where I outlined the various agent-

based modelling platforms, there is a vast array to choose from and none par-
ticularly stand out as there are advantages and disadvantages to each. The only
requirements for this research were that the platform had to be: freely available,
open-source, capable of running across multiple platforms, and compatible with
the object-oriented paradigm to facilitate future extensibility.
MASON [Luke et al., 2004] was chosen as it fulfills all of the previously outlined

requirements. MASON utilises the object-oriented Java programming language,
and there is a wealth of existing libraries and documentation that could facilitate
model implementation. MASON also has many useful simulation libraries, though
the only requisites needed in this research context were libraries to handle the
scheduling of agents and simulation visualisation. Java classes were then written
specifically for each cell agent. The core simulation logic does not require any
additional library functionality provided by MASON.
The simulation update cycle and how MASON’s scheduling libraries are used

are detailed in Appendix 9.1.1, and visualisation library use in Appendix 9.1.1.1.
The discrete-event, or clock based, aspects of MASON are used using the schedul-
ing library, and events in the simulation are driven by rules and conditions de-
clared within the agent classes.

5.5 simulator architecture

A top-down modular approach was taken to design the simulator. Individual
package modules were conceived for the various simulator components. Packages
are particularly useful for any future extensions of the simulator. Cell logic, visu-
alisation and simulation output are all decoupled. The UML Class Diagrams in
Appendix 9.1.4 outline the various packages, which include:

simulation Main package containing the simulation objects, environment, and
cytokine and visualisation managers (figure 63)

structure The structure entity that defines a edge-node network (figure 64)

networks A file-only package containing the XML structures

cells Encapsulates the various cell types (figure 65)

csv The logging package for outputting simulation data (figure 66)

enums Various enumerations to handle states (figure 67)



76 a platform model of granuloma initiation

cytokines Defines cytokines/chemokines as a property that can be assigned to
nodes (figure 68)

views Classes to create a 3D visual representation of the simulation envi-
ronment and cellular components (figure 69)

The heirarchy of simulation objects is depicted in figure 29. The Environment
class in the Simulation package encompasses all elements of the simulation. The
environment object contains a single structure comprised of nodes and edges. The
environment object receives updated state information from both cell agents and
the Cytokine Manager, this data is then used to update the structure object.
After individual cells have acted, the Cytokine Manager handles all the relevant
calculations of cytokine and chemokine values. Implementation details for the
Cytokine Manager are detailed in Appendix 9.1.3.3.

Structure
Data container (cells, edge-

node environment)

Cytokine Manager
- Access data held in the 
Structure container and 
calculate all cytokine/

chemokine values

Environment/Simulation Layer
- MASON simulation object

- Encapsulates all simulation data 
structures and elements

Cell Agents
- Individual movement

- Individual interactions
- Individual state changes

Figure 29: Simulation Architecture. The heirarchy of simulation components, showing
the top level simulation/environment layer, which manages all cells, cytokines,
and the underlying network environment.

5.5.1 Model - View - Controller

The simulator was designed to accommodate some form of visualisation. The
Model-View-Controller (MVC) [Reenskaug, 1979, 2003] design pattern was cho-
sen to separate simulation logic from visualisation and any potential in-simulation
control mechanisms. MASON is also built around MVC and therefore this deci-
sion is in fitting with the underlying framework. Separation of simulation logic
from visualisation allows the invocation of the simulation from the command line
without visualisation or alternatively for a graphical user interface to be used.

3D field portrayals are used to store visual objects in a continuous environ-
ment, which is then displayed using a simple portrayal. The MASON portrayal
package provides many useful functions for accessing and modifying individual or
multiple visualisation objects. The simulator has been designed so that each cell
type has a corresponding Java3D object which is added to its own 3D portrayal.
Portrayals for each cell type allow individual cell populations to be toggled on
or off when using MASON’s visualisation inspectors. However, the views have
no direct interaction with the underlying model. The use of portrayals allows
the simulator to be extended in future to allow for user input from a graphical
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user interface (GUI), facilitating the control of the underlying model from a GUI.
Sample simulator visualisation can be seen in figure 30.

(a) (b)

Figure 30: Simulator Visualisation. Sinusoids (Maroon), Infected KC (green), Uninfected
KC (pink), NKT cell (blue), Chemokine (white). (a), t(0) of a representative
simulation. (b), t(24hrs) of a representative simulation showing the increased
diffusion of chemokine throughout the lobule section.
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5.6 model validation

Earlier in this chapter, sections 5.3.1 to 5.3.3 established platform representations
of the cells being modelled, and detailing their mechanistic behaviours. The em-
phasis now turns to the validation of the model. Due to the inherent abstraction
required to model particular biological functions, such as cell attraction and re-
tention dynamics, parameters are created which have, or may not have, biological
values or equivalents. It is important to firstly calibrate a model with known bi-
ological values, but to also understand how the model is influenced by those
parameters that have unknown or no biological equivalents.
The calibration process is discussed first (see section 5.6.1), then I discuss a

process of arguing the validity of my simulation in representing the underlying
biology (see section 5.6.7). The use of statistical analyses to both determine
and understand the influence that all simulation parameters exert on simulation
output will be discussed as part of the CoSMoS results model in chapter 6 (see
section 6.1.3 for latin-hypercube sensitivity analysis, and section 6.1.2 for aleatory
analysis to mitigate uncertainty in the simulation output).

5.6.1 Calibration

The process of calibration was required to correctly parameterise the simulation,
and has two stages. The first stage is to take biological values relevant to the
behaviour of KCs and NKT cells in the hepatic microenvironment, and directly
input them into the simulation; such as, numbers of particular cells, or percent-
ages of infected cells. Where there is biological data that cannot be directly
input into the simulation, those values may need surrogates for implementation;
an example of this surrogacy is the implementation of variable NKT cell speed
(section 5.6.3.2). The second stage of calibration is to ascertain values for simula-
tion parameters that have either unknown biological values, or those that have no
biological equivalent, but that are required for a functioning simulation - such as
constants for mathematical functions or probabilistic calculations. The table in
table 6 lists all the biological values incorporated into the simulation. This section
will describe how those values have been implemented and how they specifically
influence the execution of the simulation.
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Biological Parameters Value Source

NKT cell velocity in the sinusoids 10-20µm/minute (Geissmann et al., 2005). Calculation in 5.6.3.2, implementation in Appendix 9.1.3.2.

NKT cell numbers in a section of mouse liver lobule ∼49 (∼1:3 ratio with KCs) Derived from (Lee et al., 2010) as discussed in section 5.6.3.1.

Kupffer cell numbers per gram 14-20 x 10 6/g (Bouwens et al., 1986)

Infected KCs at 2 hours ∼23% (Beattie et al. 2013) data

KCs per lobule section ∼146 See Appendix 9.2 data

Non-branched segment length 43.1 ± 2.25 µm (Höhme et al., 2010) supplementary materials.

Mean branching angles of sinusoids 32.5◦ ± 11.2◦ (Höhme et al., 2010) supplementary materials.

KC spatial distribution

Percentages:

Periportal (PP) - 43

Midzonal (MZ) - 28

Centrilobular (CV) - 29

Ratios: 4(PP), 3(MZ), 2(CV)

(Bouwens et al., 1986; Sleyster and Knook, 1982) implemented in section 5.3.2.1.

Table 6: Table of biological parameters used for calibration.
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5.6.2 Kupffer Cell Parameters

This subsection details the calibration of all KC related simulation parameters.

5.6.2.1 Number of KCs and Infection Percentages

To ascertain the representative number of KCs per liver lobule section, and the
average infection rates in the experimental mouse model, two experiments were
performed by my collaborators to quantify these values. Table 20 in Appendix 9.2
outlines data acquired from two groups of 3 mice, with 10 fields of view per
mouse, to determine the number of uninfected motile and sessile KCs present, and
additionally the number of infected motile and sessile KCs. Whilst two groups of
3 mice, 6 mice total, may seem insufficient to adequately capture the biological
variation that exists, a balance must be struck between the acquisition of data
to parameterise the simulation, and the sacrifice of mice. Part of the benefit of
computational modelling is to replace certain aspects of animal testing, therefore
whilst the values for KC numbers and infection percentages could be classed as
preliminary, we can and do explore, through sensitivity analyses, the effects of
different values for these parameters (see section 6.1.3).
From these data I calculated an average percentage infected rate across both

experiments as approximately 23%. The average combined total of motile and
sessile KCs per image section is 140.8 and each image section has the dimensions
of 142.0*142.0*11.9µm2; given my safe assumption that KCs can only be one deep
given a depth of 11.9 µm, I ignore depth and calculate the total area across all
image sections as 201649µm2. The density of KCs across the imaged areas is then
calculated as the average number of KCs divided by the total area, 140.8/201649
= 0.00069844. To normalise these data for biologically measured lobule sections,
the area of a hexagonal lobule was calculated as 209550.435µm2 from data by
Höhme et al. [2010]; thus multiplying the lobule area by the calculated KC den-
sity, I arrive at approximately 146 KCs per lobule section. To parameterise the
simulation with the calculated values, the number of uninfected KCs in the sim-
ulation is input using the parameter numUninfected and the number of infected
KCs, 23% of the total, with the parameter numGoodKCs.

5.6.2.2 KC Distribution

Sections 3.2.3 and 5.3.2 previously outlined the KC distribution ratios, and these
are input using parameters p_ratioCV, p_ratioMZ and p_ratioPP.

5.6.2.3 KC Activation Threshold

Section 5.3.4 described how growth functions are implemented for the simula-
tion to calculate cytokine/chemokine values. As the sigmoid function used never
reaches the theoretical maximum of 1.0, a threshold value is needed to act as a
practical maximum for the simulator to use. A default value was chosen as 0.999
and this is input using the p_ifnThreshold parameter.
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5.6.3 NKT Cell Parameters

This subsection details the calibration of all NKT cell related simulation param-
eters.

5.6.3.1 Number of NKT cells

An approximate ratio of KCs to NKT cells was calculated as 3:1, based on imag-
ing data published by Lee et al. [2010]. Therefore, given the previously calculated
KC numbers as 146 per lobule section, the number of NKT cells is calculated as
49 per section. The value is input into the simulation using the p_numNKTs
parameter.

5.6.3.2 NKT cell velocity

NKT cell velocity is reported in the range of 10-20µm/min [Geissmann et al.,
2005; Lee et al., 2010], and because of this range the model needs to be able to
account for the varying speeds of the cells. A detailed analysis of NKT cell speed
could not be undertaken in the scope of this research due to limitations with
setting up the strain of mouse required to distinguish NKT cells visually from
other mononuclear cells (see also section 8.4.2).
Parameterising NKT cell velocity requires several more parameters to be de-

fined. In the engineered sinusoid lobule environments, 10-20µm translates directly
to 10-20 nodes/min. The simulation was designed with each simulation iteration
representing 1 second. If an NKT cell were capable of moving every iteration,
the distance covered would be 60 nodes/min. Therefore, for a maximum speed
of 20 nodes/min, the NKT would need to move every 3 simulation iterations.
Similarly, for a minimum speed of 10 nodes/min, the NKT would need to move
every 6 iterations. To implement this, two simulation parameters are defined,
p_moveMin and p_moveMax, with values of 3 and 6 respectively. Each NKT
cell has a move attribute with a default value of 0. When the move method is
invoked (Appendix 9.1.3.2) the instance variable move value is 0, and a new time
before the next movement (in iterations) is calculated randomly between the val-
ues p_moveMin and p_moveMax. The calculation ensures that NKT cell speed
is maintained within the pre-defined boundaries and also ensures that NKT cell
speed is dynamic, allowing for experimentally reported biological variation.

5.6.4 Unknown and Implementation Specific Parameters

The simulation contains 17 separate parameters, several of which were detailed
in sections 5.6.2 and 5.6.3 which outlined how known experimental data was used
to determine numerical values for elements of the simulation. However, there are
several parameters for which it is currently not possible, or practical, to acquire
data for the purposes of simulator parameterisation. Those parameters are as
follows:
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p_turnProb, p_anergicItns, p_escapeItns, p_leaveProb, p_chemoIFN,
p_chemoDist, p_maxDist, p_ifnThreshold, p_chemoAttract, p_chemoRetain.

All of the listed parameters are needed for the simulation to function, however
they are merely surrogates for some unknown biological quantity or mechanism,
and I am unaware of those quantities or mechanisms in the specific context of
Leishmania induced hepatic inflammation, or in all cases in any biological context.
The purpose of each parameter is outlined in tables 7 and 8, and later I employ
a Latin-Hypercube Sensitivity Analysis method [Marino et al., 2008; Read, 2011;
Alden et al., 2013] to ascertain how robust the simulation output measures were
to perturbations of these parameters (see section 6.1.3).

5.6.4.1 NKT cell properties

The seemingly random turning behaviour of NKT cells was previously described
in section 3.3. The parameter p_turnProb was used to set a probability that an
NKT cell will turn during each cycle of movement. If this value were to be set too
high, the NKT cell could find itself repeatedly switching direction and becoming
effectively immobile.
The p_escapeItns and p_anergicItns parameters perform a similar function.

If I assume that in a simulation without these parameter, an NKT cell has pro-
vided stimulation to KC, but the condition for it to then leave that location has
been met. Since the surrounding area will have attractive chemokine, if the NKT
cell were to move directly to a patrolling state, it would leave the KC location
and become immediately attracted back to the KC it just left. Therefore, there
needs to be some mechanism to allow the NKT cell to ignore chemokine for a
period of time, so that it may escape the immediate area. Similarly, as previously
described regarding NKT cell anergy, it is not known whether NKT cells can con-
tinue to repeatedly stimulate other cells, or if there is a ‘recharge’ period required.
I assume that NKT cells do become anergic, and therefore the p_anergicItns pa-
rameter defines the period of time post stimulation that an NKT cell will patrol
the sinusoids though ignore all KCs and chemokines.

5.6.4.2 Cytokine/Chemokine related properties

Parameters p_chemoIFN, p_chemoAttract and p_chemRetain are all times,
in simulation iterations, that it takes for a particular chemokine to reach a maxi-
mum concentration. There are so many compounding variables that would deter-
mine the growth of chemokines; number of stimulating promoter cells, duration
of stimulation from each cell, blood flow, diffusion of chemokine, etc. I can there-
fore have to choose a time, and use statistical methods to determine how different
times impact on the output measures.
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Parameter Value Units Description Source

NKT cell

p_turnProb 0.005 probability Probability that an NKT cell will reverse direction in the sinusoids. No biological equivalent; explored and chosen through parameter sensitivity analysis (section 6.1.3).

p_moveMin 3
Value given to link simulation iterations to NKT cell velocity. Calibrated to published NKT cell speeds from (Geissmann et al., 2005). See sections 5.6.3.2 and Appendix 9.1.3.2.

p_moveMax 6

p_anergicItns 3600 iterations Time in iterations for an NKT cell to remain unable to stimulate a KC.

No biological equivalent; explored and chosen through parameter sensitivity analysis (section 6.1.3).
p_escapeItns 600 iterations Time in iterations for an NKT cell to,escape the influence,of KC produced,chemo-attractant.

p_leaveProb 0.000265306 probability The probability of an interacting NKT cell leaving the location of an infected KC.

p_minLeaveProb 0.00005 probability To guard against the probabilistic tipping point whereby retention causes cells to never leave.

p_chemoIFN 172800 iterations Interaction time required to reach maximum attractive chemokine concentration.

Kupffer cell p_chemoDist 20 distance(nodes) Starting diffusion distance for attractive chemokine. No biological equivalent; explored and chosen through parameter sensitivity analysis. See section 5.3.4.2.

p_ratioCV 0.1 percentage Ratio of infected cells in the CV region of the lobule section
Bouwens et al., 1986. Sleyster et al., 1982. Data and implementation in section 5.3.2.1.p_ratioMZ 0.25 percentage Ratio of infected cells in the MZ region of the lobule section

p_ratioPP 0.65 percentage Ratio of infected cells in the PP region of the lobule section

p_maxDist 200 distance(nodes) Maximum diffusion distance for attractive chemokine. Calibrated to twice reported max (Weber et al., 2013), see also section 5.3.4.2.

p_ifnThreshold 0.999 threshold Threshold value of IFN-γ required to activate a KC. Chemokine function f(x)→1, therefore a threshold is required. No biological equivalent, explained in section 5.3.2.

Table 7: Cell Specific Parameters.

Parameter Value Units Description Source

Simulation
p_numInfectedKCs 33 cells Number of infected KCs in a π*(284µm)^2 sectional area of sinusoid.

Data in Appendix 9.2.
p_numUninfected 113 cells Number of uninfected KCs in a π*(284µm)^2 sectional area of sinusoid.

p_numNKTs 49 cells Number of NKT cells in a π*(284µm)^2 sectional area of sinusoid. See section 5.6.3.1 (Lee et al., 2010). Also domain expert assumption.

Chemokine
p_chemoAttract 43200 iterations Stimulation time required to reach maximum attractive chemokine concentration.

No biological equivalent; explored and chosen through parameter sensitivity analysis. Retention discussed in assumption tracing 5.6.5.1.p_chemoRetain 172800 iterations Interaction time required to reach maximum retentive chemokine concentration.

p_chemoIFN 172800 iterations Interaction time required to reach activate infected KCs.

Table 8: Simulation Specific Parameters.
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5.6.5 Exemplar Assumption Tracing

The implementation of a modelling platform that I have detailed in this chapter
and Appendix 9.1 is just one possible implementation of the underlying domain
model. Some of the underlying assumptions made during the development of
both the domain and platform models ultimately influence some of the design
decisions taken when engineering the modelling platform. In this section I will
detail two exemplar design decisions that were heavily influenced by the limita-
tions in underlying knowledge from the original domain, and hence assumptions
made in the domain model.

5.6.5.1 Probabilistic Retention

The mechanisms underpinning cell to cell interactions between NKT cells and
KCs are poorly understood. Whilst much of the motivation for this research
outlined the CD47 - SIRP-α pathway for stimulation of KCs by NKT cells, the
specific pathways involved in cell to cell binding are unknown. Without specific
knowledge of those mechanism, assumptions must be made to determine how
cells will bind and unbind.
I made the assumption that some form of cell to cell interaction will always

occur when an NKT cell is in direct contact with a KC (see assumption 2 fig-
ure 24). The duration of this encounter is then deemed to be a function of the
retentive capabilities of KCs. This is a direct hypothesis based on the known
CD47-SIRP-α interaction pathway [Svensson et al., 2005]. As NKT cells first en-
counter KCs, the interactions with KCs will be fleeting. However, as the KCs
become ever more stimulated, and eventually engaged, the functional capacity to
sustain interactions with NKT cells will be improved.
From an implementation perspective, the functionality I have described is

deemed probabilistic retention. To implement probabilistic retention I required
a default initial probability for a given NKT cell to leave a KC location. This
is the highest possible probability for any given simulation. Equation (4) in sec-
tion 5.3.4.3 then modifies this probability based on the current level of retentive
chemokine at the current KC node. This ensures that when the value of reten-
tive chemokine increases, the probability for an NKT cell to leave will decrease
(listing 1). Thus, dynamic interaction behaviour between NKT cells and KCs
is implemented, a direct influence of the limited knowledge of the cell to cell
interactions between NKT cells and KCs. A range of possible initial retention
probabilities are explored through sensitivity analysis (see section 6.1.3).

5.6.5.2 NKT Cell Anergy

The anergic properties of NKT cells have been highlighted in the literature [Iyoda
et al., 2010], as discussed in section 4.2.1.2, though the underlying mechanisms
responsible for cell anergy are unknown. As there is no known mechanism for
this anergy, an assumption was required in order for me to implement this func-
tionality. Without some form of anergic functionality, NKT cells engaged in the
stimulation of a KC would never leave that KC. Should the cells probabilistically
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leave the site of a KC, they would instantly be attracted back to that KC if the
only two ActionStates were inactive and producing (see figure 24). Therefore,
there needed to be a method for NKT cells to ‘ignore’ that attractive signal if
they have recently ceased stimulating a KC.
I made the assumption that these cells will remain anergic for a given period of

time after stimulation. As this time has no specific biological grounds, I explore
through statistical analysis (see section 6.1.3) the influence that different param-
eterised anergic times have on simulation output measures. Fundamentally, any
real mechanism in all intents and purposes would result in an anergic period of
time. This anergic time assumption was detailed in assumption 4 (outlined in
section 5.3.3).
From an implementation perspective, subsequent to the probabilistic calcula-

tion for NKT cells to leave the site of a KC, the NKT cell ActionState is updated
to recovering. As detailed in Appendix 9.1.3.2, each state causes cells objects
to call state specific methods. When in the recovering state NKT cells will call
the recover() method, which simply decrements an instance variable which is
initialised with the value parameterised for NKT cell anergy. Once the instance
variable has decremented to zero, the cell state is then return to inactive and
the cell can begin functioning as normal.
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Listing 1: Anergic Implementation

1 /**

* Produce Cytokine to stimulate Node/KC

3 */

private void produce()

5 {

/* Decide the probability based on current retention level */

7 double probability = leaveProb - (leaveProb*env.getRetain(node));

if (Double.compare(probability,minLeaveProb) <= 0) {

9 probability = minLeaveProb; /* mindful of a minimum retention prob */

}

11 /* Now compare with random number to decide leave/noleave*/

int comp = Double.compare(env.random.nextDouble(), probability);

13 if (comp < 0) { /* leave cluster */

if (env.structure.getNode(node).getKC() instanceof KCUn)

15 anergicTime = escapeItns;

else anergicTime = anergicItns;

17 action_state = ActionState.recovering;

move_state = MoveState.patrolling; /* force out of aggregation */

19 move();

}

21 else {

env.incrementIFN(node);

23 }

}

25

/**
27 * Recover - decerement anergy - after stimulating KC.

*/

29 private void recover()

{

31 anergicTime -= 1; // recovering

if (anergicTime <= 0)

33 {

anergicTime = 0;

35 action_state = ActionState.inactive; // recovered

}

37 } �
5.6.6 Validity Testing With Requirements-Based Testing and Trace Analysis

There is inherent complexity that arises when attempting to validate and test
a software simulation that manifests behaviour that is emergent. The stochastic
processes underlying the simulation model described in this thesis mean that
no simulation will produce identical simulation results - unless the same seed is
provided to the simulation’s random number generator. This makes conventional
software testing methods either difficult or infeasible to perform.
As a result, the predominant testing method employed to validate the simulator

has been face-validity, requirements-based testing, code walkthroughs, animation
and and parameter sensitivity analysis (see section 6.1.3).
An example of requirements testing of the simulation is in the analysis of

NKT cell behaviour. Given the difficulty in automating such tests, animation
and trace analysis of live simulation output was used to validate these kinds of
tests. A sample structured requirements test is as follows:

• An NKT cell will patrol the sinusoids upon initialisation of the simulation.
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• Subsequent to encountering chemokine in the sinusoids the NKT cell will
transition from MoveState patrolling to chemotaxing (ActionState in-
active), the NKT cell will then chemotax for a distance of 20 nodes (the
basal distance that KC chemokine is diffused).

• After this chemotax, the NKT cell will encounter the KC and transition
from MoveState chemotaxing to aggregating.

• As ActionStates are updated subsequent to movement, the simulation will
take one iteration to update the ActionState from inactive to producing.

• After a period of time the NKT cell will probabilistically leave the KC
and move from MoveState aggregating to patrolling and ActionState
producing to recovering

Listing listing 2 shows sample from the trace output with annotations. Sit
downs with domain experts helped to ensure that the output observed had face
validity with how they expected the system to operate given the underlying
assumptions of the model. The trace output was analysed in combination with
the simulator visualisation to allow myself and the domain experts to study
processes such as cell movement and chemokine diffusion. All of these activities
helped facilitate the validation of the simulator.

Listing 2: NKT Requirements Test

1 Iteration: 281

Node ID: 4564

3 MoveState: patrolling

ActionState:inactive

5

Iteration: 282

7 Node ID: 4564

MoveState: chemotaxing

9 ActionState:inactive

11 ... <- Chemotaxing NKT cells move every iteration;

20 nodes travelled in 20 iterations (minimum chemokine distance)

13

Iteration: 302

15 Node ID: 8231

MoveState: chemotaxing

17 ActionState:inactive

19 Iteration: 303

Node ID: 8231

21 MoveState: aggregating

ActionState:inactive

23

Iteration: 304

25 Node ID: 8231

MoveState: aggregating

27 ActionState:producing

29 ... <- cell fulfils probabilistic leave condition

31 Iteration: 1753 <- approx 29 minutes of simulated time

Node ID: 8231

33 MoveState: patrolling

ActionState:recovering
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35

... �
5.6.7 Argumentation

A discussed previously in section 2.2.2.2, argument-driven validation (ADV) can
be used to establish an additional level of confidence in simulations used for
scientific purposes [Ghetiu et al., 2010]. The use of arguments, described using
the visual notation depicted in figure 5 (originally from [Ghetiu et al., 2010, Fig
1.]), can help to validate my model and provide a visual link between evidence
base and assumption. The core goal is to argue that my engineered simulation is
an adequate representation of the underlying biology.
I begin by presenting my top-level claim, that my engineered model is an

adequate representation of the biology (Claim 1, figure 31). The model is con-
structed utilising a variety of abstractions, and yet is expected to be able to
replicate measurable biological responses, therefore, one must argue that despite
those abstractions, my model is capable of producing results that are represen-
tative of the biological system, and thus allowing us to formulate reasoned pre-
dictions. Arguing the adequacy of my abstractions, and the experimental data
used to justify or infer them, is the top-level strategy to support claim 1, and
that strategy is tackled in for main parts. Firstly, sub-claim 1.1 relates to justify-
ing the accuracy/validity of the underlying biological data (see figures 32 to 34).
Secondly, sub-claim 1.2 will justify that the platform model implementation is
representative of the biological system (see figure 35).
Sub-claim 1.1 argues that my simulation utilises data which is both accurate

and relevant to my modelling study. This argument requires multiple strategies,
and is split across four figures (see figures 32 to 34). Strategy 1.1a formulates
an argument with data pertaining to NKT cells (figure 32). Strategy 1.1b argues
the validity of data relating KCs (figure 33). Finally, Strategy 1.1c defends the
accuracy of statistical data I have regarding sinusoid environments (figure 34).
Sub-claim 1.2 (figure 35) argues that the platform model adequately repre-

sents the underlying biological system that the domain model represents. Two
strategies compose claim 1.2, one which relates to the attractive and retentive
mechanisms implemented in the model, and the other that argues the simulated
environment is representative of the liver sinusoids.
Argumentation with respect to simulation results and their validation is estab-

lished in section 7.4.
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CLAIM 1:
Model is an adequate representation 

of the biology

CLAIM 1.1:
Underlying biological data is 

adequate/accurate

CLAIM 1.2:
The abstraction (platform model) is an 

adequate representation of the 
biological system

STRATEGY 1:
Argue over scientific content, the adequacy of the 

abstraction and experimental results

Definition: 'Adequate'
The model allows us to make 
reasoned predictions, with the 

potential for biological validation 

Purpose:
- To recreate observed in vivo / ex 

vivo responses
- To utilise as a tool to understand 

the heterogeneous responses 
observed in the biological system

Figure 31: Argument Based Validation. This high level claim posits that the model is
an adequate representation of the underlying biology. A strategy is defined
to argue the top level claim, with the strategy itself being composed of sev-
eral sub-claims. Black diamonds highlight where a claim is too large to be
contained in the current figure, and is given it’s own figure. For claim 1.1.1
see figures 32 to 34.
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CLAIM 1.1a:
Underlying biological data is 

adequate/accurate

STRATEGY 1.1a
Argue that the number and function of 
NKT cells is representative of the 
underlying biological system

Ratio of 1:3 with 
Kupffer cells - 
domain expert 
interpretation of 
data from Lee et 
al, 2010.

Assumptions

1.Little is known regarding cell entry 
rates into the sinusoids. As such, NKT 
cell numbers are kept constant, with a 
new cell replacing exiting cells at a 
different entry location.

2. We do not have the confocal or 
intravital imaging to perform extensive 
NKT cell quantification, and assume a 
ratio based on representative data 
from Lee et al. 2010.

CLAIM 1.1a.1
NKT cell numbers is representative of the 
number observed biologically

CLAIM 1.1a.3
NKT cells are responsible for a key pathway 
for Kupffer cell activation

CLAIM 1.1a.2
The velocity of NKT cells in the sinusoids has 
been measured biologically

Velocity ranging from 
10-20μm per minute, 
with potential to 
reverse direction in 
sinusoids, from 
Geissman et al, 
2005.

Assumptions

1.Size of cells is not 
modelled as they exist in an 
abstracted space since data 
is not available on the 
dynamics of sinusoidal 
distention during 
inflammation.

2. The ability to randomely 
reverse direction 
implemented 
probabilistically, using a 
calibrated parameter value.

Context:

1. The distance between 2 
network nodes in the 
simulation is 1μm

2. Cell velocity is dynamic 
within the biologically 
observed range

NKT cell 
derived IFN-γ 
absolute 
requirement 
for CXCL10 
expression by 
KCs, from 
Svensson et 
al, 2005

Assumptions

1. NKT cell produced IFN-γ increases 
the level of IFN-γ at a given node 
containing a KC. The KC then queries 
the node for the current level of IFN-γ, 
so interactions occur through the 
environment rather than directly.

2.Simulation models the effects of 
upregulation of CXCL10 as abstract 
mechanisms retention.

Figure 32: Argument Based Validation: Claim 1.1a. Part a to sub-claim 1.1 argues that the biological data pertaining to the number and function of NKT cells
is suitable and adequate for the modelling endeavour.
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STRATEGY 1.1b
Argue that the number, distribution 
and function of Kupffer cells is 
representative of the underlying 
biological system

CLAIM 1.1b:
Underlying biological data is 

adequate/accurate

CLAIM 1.1b.1
Number of KCs is representative of 
the number observed biologically

Assumptions

1. Calculating the density of KCs in an 
area of lobule assumes a 
homogenous distribution of KCs 
throughout the liver.

2. Model assumes infection 
percentages based on that seen in an 
experimental model utilising set doses 
of parasites used for infection.

Imaging analysis 
to quantify KC 
numbers, see 
Appendix 9.2.

Parasite dose 
administered in 
experimental model 
yields approximately 
20-23% of total KCs 
becoming infected, 
from Beattie et al, 
2013.

CLAIM 1.1b.3
Uninfected KCs function differently to 
infected KCs in terms of the capacity 
to retain NKT cells

L. donovani infection 
induces expression of 
SIRPα, required for 
engaging CD47 
expressed by NKT 
cells and regulating 
the amplification 
pathway, from Beattie 
et al, 2010.

Assumptions

1. We assume that uninfected KCs 
can not retain NKT cells since they 
lack SIRPα signalling.

CLAIM 1.1b.2
The distribution of KCs in the liver 
lobule zones is well defined.

KC ratio of 4:3:2 
in periportal, 
midzonal, 
centrilobular 
zones respectivel, 
from Sleyster and 
Knook, 1982.

KC ratio of 43%,
28%,29% in 
periportal, 
midzonal, 
centrilobular zones 
respectively, from 
Bouwens et al, 
1986.

Assumptions

1. The distribution of infected KCs in 
the lobule is less defined. Domain 
expert knowledge used to 
parameterise infected KC distribution 
percentage as 65% Periportal, 25% 
midzonal, 10% centrilobular.

Figure 33: Argument Based Validation: Claim 1.1b. Part b to sub-claim 1.1 argues that the biological data pertaining to the number, distribution and function
of Kupffer cells is suitable and adequate for the modelling endeavour.
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STRATEGY 1.1c
Argue that there is sufficient statistical 
data pertaining to liver sinusoids

CLAIM 1.1c:
Underlying biological data is 

adequate/accurate

CLAIM 1.1c.1
Liver lobule statistics are well defined.

Radius of sinusoids, 
non-branched segment 
legnth, mean branching 
angles, vessel volume, 
all measured statistically 
from experimental 
images acquired from 26 
different lobules, in 
Höhme et al, 2010.

Figure 34: Argument Based Validation: Claim 1.1c. Part d to sub-claim 1.1 argues that
the biological data pertaining to the statistics of the liver sinusoids is suitable
and adequate for the modelling endeavour.
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CLAIM 1.2:
The abstraction (platform model) 
is an adequate representation of 

the biological system

STRATEGY 1.2.1
Argue that the simulation suitably 
represents cell attractive and retentive 
mechanisms.

STRATEGY 1.2.2
Argue that the simulation 
environments generated capture the 
characteristics of the liver 
microenvironment

CLAIM 1.2.2.1:
The simulated environment is 

statistically accurate

Sinusoid generation 
algorithm utilises 

statistical data from 
Höhme et al, 2010

CLAIM 1.2.2.2:
A lobule section, represented with a 

2D network, is sufficient to understand 
the manifestation of system 

phenomena

Domain expert 
insight

Assumptions:

1. Interactions that occur in the 
simulation occur on nodes of the 
simulated network, which represent a 
section of sinusoid.

2. We are concerned with the 
formation of aggregations through cell 
recruitment, less so with the 3 
dimensional structure of the forming/
formed aggregations, therefore 2D 
environments are suitable for 
understanding this.

3. The networks could be modified to 
represent 3D networks in future, but 
this is argued as not necessary to 
satisfy the top level claim.

CLAIM 1.2.1.1:
Modelling a single chemokine is 

sufficient to represent the net 
effect of various NKT cell 

retention mediators.

Domain expert 
insight

CLAIM 1.2.1.2:
Chemkoine based attraction 

diffusinb downstream is 
biologically plausible

Assumptions:

1.No quantitative data exists relating to 
the dynamics of chemo-attractant 
dispersion in the sinusoids

Assumptions:

1.No quantitative data exists relating to 
the precise cellular mechanisms 
involved in NKT cell retention.

Figure 35: Argument Based Validation: Claim 1.2. Sub-claim 1.2 argues that the platform model adequately captures the biological domain outlined in the
domain model. Incomplete or unavailable data to substantiate a claim is denoted using a blank diamond.
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5.7 model verification

A detailed description of the model implementation is described in Appendix 9.1.
Some of the functions and processes as currently implemented are difficult to test
formally. Therefore, a mixture of both static and dynamic testing was used to
help verify the simulation model.

5.7.1 Static Testing

The predominant method of static testing used to verify the implementation
of the model was structured walk-throughs. The behaviour of individual cells,
and the logic used to implement those behaviours was described to the domain
experts. This activity allowed me as a developed to evaluate the program code,
and the domain experts to interrogate the model and ensure that it adheres to
their interpretation of both the domain and platform models.

5.7.2 Dynamic Testing

Dynamic testing is important for understanding how the simulation will operate
based on a set of given conditions. This allows one to check that the implemen-
tation of the computer code performs the desired function [Sargent, 1998]. I now
describe two examples of dynamic testing performed on the simulator.

5.7.2.1 Example: NKT Cell Speed

To test specific components of the simulator, analysis of output data was per-
formed, to test that certain behaviours were implemented correctly, and that the
outputs corresponded to certain input parameters. An example of this is with the
validation of NKT cell speed. A method and parameter files were created to test
NKT cell speed in the sinusoids. As described in section 5.6.3.2 this should be
within the range of 10-20 nodes per minute (60 iterations). The parameters that
govern cell movement are used in the move method for NKT cells (listing 13).
The simulation does not allow extreme values outside of a moveMin value of 3
and a moveMax value of 6, as this range is the only possible range to manifest
the calibrated range for NKT cell speed.

upper To parameterise a maximum speed of 20 nodes/m the simulation is pa-
rameterised with moveMin and moveMax both equal to 3 (Test 1, ta-
ble 11). When moveMin = moveMax the number of iterations until the
cell moves will always be moveMin iterations i.e. 3. If the cell moves every
3 iterations the average speed will always be 20 nodes/m (table 10).

lower Oppositely, for a maximum speed of 10 nodes/m the simulation is param-
eterised with moveMin and moveMax both equal to 6 (Test 2, table 11).
When moveMin = moveMax the number of iterations until the cell moves
will still always be moveMin iterations i.e. 6. If the cell moves every 3
iterations the average speed will always be 10 nodes/m (table 10).
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Test numUninfected numGoodKCs numNKTs turnProb ... moveMin moveMax ...

1 0 0 1 0.005 ... 3 3 ...

2 0 0 1 0.005 ... 6 6 ...

3 0 0 1 0.005 ... 3 6 ...

Table 9: NKT Speed Test CSV File.

Test Parameter Values Speed

moveMin moveMax expected range calculated average

3 3 20 nodes per min 20

6 6 10 nodes per min 10

3 6 10-20 nodes per min 146nodes616 per min

Table 10: Sample NKT Speed Test Results.

5.7.2.2 Example: Chemokine Diffusion

Another example of model testing is the testing of chemokine diffusion dynamics.
Chemokine diffusion plays an integral role in influencing NKT cell movement
throughout the environment, and it is important to ensure that the area of in-
fluence of chemokine fits the constraints defined by the minimum and maximum
diffusion distance parameters.
Chemokine diffusion was tested on both the algorithmically generated struc-

tures, and also on simple test structures such as that in figure 36. Simulation
parameter files were created to explore different extremes for chemokine diffu-
sion minimum and maximum distances. A sample of the values explored a during
testing are shown in table 12. Extreme values were also tested, such as negative
values which raise errors and inform the user that such occurrences are invalid.
Maximum diffusion distance is unlimited, as the chemokine will diffuse to the
drain node in any case where the value is positively extreme. In situations where
the maximum diffusion distance exceeds the minimum diffusion distance this also
raises an informative error for the user.
As figure 36(a) illustrates for sample test 1 (table 11, minimum diffusion starts

at 2 nodes, and by simulations end after having been activated and allowed to
reach maximum attractive value at the source KC, the chemokine has diffused
the parameterised maximum 6 nodes (figure 36(b)). Similarly, for one of the
algorithmically generated structures, sample test 2 shows similar behaviour in a
more realistic simulation setting, where several cause chemokine to engulf large
swathes of the sinusoids and drain to the central node (figure 36(c,d)), as to be
expected with a parameterised maximum distance of 500 - a value greater than
the distance between any edge and the centre.

Test numUninfected numGoodKCs numNKTs turnProb ... chemoDist maxDist ...

1 0 1 8 0.005 ... 2 6 ...

2 113 33 46 0.005 ... 20 500 ...

n ... ... ... ... ... ... ... ...

Table 11: Chemokine Diffusion Test CSV File.
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(a) (b)

(c) (d)

Figure 36: Chemokine Diffusion Test. Chemokine diffusion, illustrated by nodes high-
lighted in teal, at (a) t(0) and (b) t(24) hours of simulated time on the
simple test structure. (c) t(0) and (d) t(24) hours of simulation time on a
sample algorithmically generated structure.
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Test Parameter Values

minimum maximum structure diffusion

0 1 simple test within constraints

0 2 simple test within constraints

... ... ... ...

2 6 simple test within constraints

... ... ... ...

0 500 algorithmically generated within constraints

20 500 algorithmically generated within constraints

Table 12: Sample Chemokine Diffusion Test Results.
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5.8 summary

In this chapter, I justified the use of the agent-based modelling paradigm to
fulfill the domain model presented in chapter 4. I presented an algorithm for
generating artificial liver microenvironments, and described how I implement
the domain model conceptualisation of cells and mechanisms of interactions into
logic for coding. The MASON agent-based modelling platform was chosen as a
development platform, and I describe the software development process adopted,
and describe the simulator architecture. Finally, the process of model validation
and verification, through a variety of activities such as parameter calibration and
argumentation, code walk-throughs, trace analysis, and a mixture of static and
dynamic testing was outlined.
The next chapter comprises the first part of my CoSMoS results model, pre-

senting results from statistical analyses of simulation output, and an initial round
of experimentation to answer research questions relating to the role of liver struc-
ture in the formation of cellular aggregations.
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6 RESULTS MODEL

The output from the simulation platform constitutes what CoSMoS defines as the
results model. The results model comprises a wide variety of products including
but not limited to: all of the simulation output data, both processed and unpro-
cessed; any detail inferred through observation and statistical analysis; also any
interpretations of the simulation output with respect to the underlying domain.
The results model should ideally provide valuable insight into the domain to
identify novel avenues for future experimentation and research, or perhaps even
provide evidence to answer outstanding questions about the underlying domain.
This chapter comprises only part of the CoSMoS results model, setting up

the foundation for interpreting simulation results and exploring issues of simu-
lation environment and probabilistic retention mechanisms. The main body of
simulation results is contained in chapter 7.
I will begin by introducing the core simulation output metrics, and present

results from various statistical analyses aimed at understanding how stochasticity
(section 6.1.2) and parameter perturbation (section 6.1.3) influence simulation
output, these sections follow on from the model validation and parameterisation
section discussed in the previous chapter (section 5.6). I will then introduce the
first round of experimentation, with results to quantify how structure influences
simulation output (section 6.2), followed by a factorial analysis of KC retention
of NKT cells (section 6.3).

6.1 statistical analysis of simulation output

Statistical analysis is required to understand how the simulation adequately cap-
tures the underlying biology, and how simulation parameters might be influencing
the data. Many established statistical tests make assumptions about the underly-
ing structure of the data (such as assuming normality). Non-parametric statistical
methods can be used to provide a statistical metric that is robust, as the meth-
ods often make few or no assumptions about the underlying data [Whitley et al.,
2002]. This section outlines two statistical techniques used in the field to under-
stand both a simulations robustness to parameter perturbation (section 6.1.3),
and to elucidate how stochasticity, inherent in agent-based simulations, influences
simulation output (section 6.1.2).

6.1.1 Defining Simulation Output Metrics

In order to utilise a simulation and gather any data, it is important to create
simulation output metrics that allow a user to both interrogate and interpret the

101
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various states that a simulation can manifest. Chapter 4 highlighted several high-
level observable phenomena in from the underlying biological system of interest
(see section 4.1). The act of modelling cells as agents means that the simulation
is capable of outputting a variety of metrics relating to individual cell behaviours.
The metrics I have devised revolve around the observable phenomenon I defined
in the domain model - the heterogeneity in the formation of cellular aggregations
in the liver. Since I hypothesise that this heterogeneity can be explained by
early interactions between NKT and Kupffer cells, the metrics focus on the size
of cellular aggregations in the simulation and the cumulative stimulation time
received by KCs from NKT cells. Lastly, the dynamics of NKT cell migration in
the sinusoids is captured by a metric for NKT cell time spent in the sinusoids
and not interacting with KCs. The simulation metrics are summarised as follows:

percentage inflammatory foci For a given simulation, this metric describes
the percentage of infected KCs in a simulation that have a significant in-
flammatory focus, qualified at 4, 6 or 8 cells.

nkt hours The stimulation time received by individual Kupffer cells is cumu-
lative and measured in NKT hours. Let us assume a single NKT cell stim-
ulates a KC for an hour of simulated time, 3600 simulation iterations. In
this case, the KC will be receiving 1 hour of stimulation per hour (1 NKT
hour). Now let us assume that another KC has 3 NKT cells stimulating it,
that KC is receiving 3 hours worth of stimulation per hour (3 NKT hours).
This metric is illustrated in figure 37.

nkt cell wander/patrol time This metric measures the time spent by NKT
cells patrolling the sinusoids and not interacting with KCs.

   - Node with KC
 - Diffused chemokine

- Empty node

- KC
- NKT cell

1 NKT-hour h-1

3 NKT-hour h-1

Figure 37: Cumulative Stimulation Time Metric - NKT Hours.
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6.1.2 Aleatory Analysis

Simulations make use of seeds to initialise a random number generator that can
be used to determine the outcomes of probabilistic events. In terms of simulation
reproducibility it is important to keep a record of these seeds should one wish to
replicate a set of simulation results, or should one wish to determine the outcome
of different simulation scenarios whilst controlling for the stochastic processes
underlying those experiments.
Aleatory uncertainty analysis is a technique that can be used to mitigate the

effects of stochasticity on simulation output measures. Stochastic simulations will
produce varying results when run with the identical initial parameters, and this
stochasticity must be quantified and mitigated. Therefore, to calculate the min-
imum number of replicate simulation runs needed to generate results that cover
a representative spectrum of possible system behaviours, statistical techniques
need be used, such as those described by Alden et al. [2013]; Read et al. [2011].
Let us consider 20 sample subsets, and for each subset I run the simulation n

times where n ∈ {10,50,100,300,500}, though a different set of sample sizes may
be required. Median values are calculated for each simulation output measure
across the runs, then subsequently a median calculated across the 20 subsets. By
comparing 20 subsets of 10 runs against 20 subset of 50 and so forth, using a
non-parametric statistical test (Vargha and Delaney [2000] A-Test), statistical
significance can be determined between each subset.
Figure 38(a) illustrates the comparison between simulation output measures

for each sample of 10 runs. Simulation results demonstrate that given an exper-
iment performed with 10 simulation runs, a repeat simulation experiment (dif-
ferent subset) would produce large variation in all output measures. Therefore,
any conclusions or predictions made from a simulation experiment with only 10
replicates are invalid. Figure 38(a)-(e) illustrates the same aleatory analysis for
samples sizes 50, 100, 300 and 500.
From the summary figure 38(f) I can conclude that 300 simulation runs per

parameter combination are enough to have acceptable uncertainty (small vari-
ance between identical sample subsets). Whilst statistically 300 simulation runs
captures enough of the stochasticity to produce a set of representative results, a
larger set of runs will further converge the A-test effect score on 0.5 (no difference
between subsets and capturing all of the stochasticity). A balance must be struck
between increasing the sample size and also maintaining tractable simulated-
experiment execution times. Testing concluded that 500 simulation runs did not
significantly increase execution times, and yet further converged the A-test scores
for 2 out of our 3 measures. Therefore, 500 simulation runs were chosen for all of
the simulated-experiments presented in this thesis.
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A B

C D

E F

(a) (b)

(c) (d)

(e) (f)

Figure 38: Aleatory Analysis Determines a Minimum of 300 Simulation Runs per Exper-
iment. A-test (Vargha and Delaney [2000]) scores for three simulation output
measures across sample sizes of 10 (a), 50 (b), 100 (c), 300 (d) and 500 (e),
illustrating that greater than 300 simulation runs are needed to capture the
variation in output results and mitigate uncertainty, summarised in (f).
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6.1.3 Latin-HyperCube Sensitivity Analysis

The computer simulation I have constructed contains multiple parameters with
unknown values, or those with no specific biological equivalent, each responsible
for different model components. Invariably, these parameters have an influence on
the various responses observed by analysing the simulation output measures. In
order to quantify simulation responses that result from specific variation in both
single and multiple parameter values, a global parameter analysis is required.
Statistical approaches such as Latin hypercube sampling (LHS), proposed by
McKay et al. [1979], can be used to generate sets of parameter values within
pre-defined value ranges, that allow one to determine the global sensitivity of a
computer simulation to multivariate parameter perturbations [Marino et al., 2008;
Read, 2011; Alden, 2012] (figure 39). Parameters that have compound effects on
simulation output measures can then be identified, and if so required, the effect
of those parameters could be mitigated.
Latin hypercube sampling techniques are available in a variety of computer

programs and statistical tools, and this functionality is also present in a toolkit
called Spartan - Simulation Parameter Analysis R Toolkit Application [Alden
et al., 2013]. Spartan is an R package with functionality to perform various anal-
yses to quantify uncertainty and sensitivity in simulations, including but not
limited to LHS sensitivity analysis and aleatory analysis (see section 6.1.2)).
An LHS analysis was performed for all of the unknown simulation parameters.

Figures 40 to 42 provide various Partial Rank Correlation Coeffcients (PRCCo-
effs) that highlight any relationships when analysing multiple data points from
the simulation experiments using different sets of values for unknown parameters,
sampled using LHS.
Analysing the influence of multiple parameter combinations on the formation

of cellular aggregations reveals that only two parameters have statistically signifi-
cant correlations, namely leaveProb (figure 40(a)) and escapeItns (figure 40(b)),
both are negatively correlated. Whilst the parameters governing the production
of stimulatory cytokine (chemoIFN ) and stimulation required to reach maxi-
mal retention (chemoRetain) are both statistically insignificant when correlated
with aggregation size, there is evidently a relationship in both cases (chemoIFN
PRCCoeff=-0.15 figure 40(c), chemoRetain PRCCoeff=-0.17 figure 40(f)).
Parameters which most influence stimulation time received by KCs (NKThours)

are leaveProb and escapeItns, both with strong negative correlations (figure 41(a)
and figure 41(b) respectively). Several other parameters also approach signifi-
cance: chemoDist (positive correlation figure 41(g)) and anergicItns (negative
correlation figure 41(j)).
The NKT cell patrol or wandertime metric, as expected, sees positive correla-

tion with both leaveProb and escapeItns. Similar to NKThours several param-
eters approach significance: chemoDist (negative correlation figure 42(g)) and
anergicItns (positive correlation figure 42(j)).
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Figure 39: Latin-Hypercube Sampling of Parameter Ranges. Figure from [Read, 2011,
Figure. 6.23].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 40: LHS Analysis - Clusters/Aggregations.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 41: LHS Analysis - KC Stimulation Time.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 42: LHS Analysis - NKT Cell Patrol Time.



110 results model

6.2 variance between multiple structures

This section addresses research questions 2 and 3, and forms the basis of thesis
contribution 2, the determination of the role of the sinusoidal microenvironment
in influencing inflammation. This section will also address the role of KC spatial
location, by modifying the distribution of KCs throughout the liver lobule.

6.2.1 The Role of Sinusoid Structure

The objective of this simulation experiment was to quantify any differences in
simulation results across multiple, computationally generated liver lobule mor-
phologies. Firstly, 10 statistically and visually similar lobule sections (structures)
were generated (figure 43). The structures were then used as environments for
the baseline simulation, with 500 simulation runs performed on each (as per
section 6.1.2).
Figure 44 illustrates simulation data when comparing the size of NKT cell clus-

ters at infected KC locations versus the distances from the CV of those inflamma-
tory foci. The pearson product-moment correlation coefficient was calculated to
determine any linear relationship between the two variables across each structure
(figure 44(a)-(j)), and data showed a modest relationship between distance from
CV and cluster size (significant with N>1000, true N=16500). Variance between
structures was then calculated by first collating, for each structure, the distribu-
tion of median distances for each cluster size (figure 44(k)), then comparing them
with the Kolmogorov-Smirnov (KS) test of distribution equality (non-parametric).
Results show that there is no statistically significant difference when comparing
results across any structure, with the exception of a comparison between struc-
tures 8 and 6 (table 13). The Vargha-Delaney A-test [Vargha and Delaney, 2000]
was then used to quantify the effect size of the difference and results show a large
difference in effect size (table 14). Whilst the statistics demonstrate that there is
a significant effect between the comparison of structures 8 and 6, from a practical
perspective both have similar correlation coefficients; therefore, neither structure
has a significantly greater, or lesser, influence on the relationship between cluster
size and cluster distance from CV.
The data also showed that the larger spectrum of NKT clusters (inflammatory

foci) are found further away from the central vein, at the peripheries of the liver
lobule. Whilst there is a biologically measurable skewed distribution of KCs at
the periphery of the lobule [Bouwens et al., 1986; Sleyster and Knook, 1982],
large inflammatory foci predominantly at the peripheries may seem intuitive;
however, what the data show is that there are few if any outliers in the midzonal
or centrilobular regions that form large clusters. Alongside the predominantly
periportal distribution of KCs, the imposed directionality of NKT cells entering
the lobule sections from the peripheries demonstrates that larger clusters are
more likely to be found at the peripheries. From a high level perspective, the liver
microenvironment may have evolved to take advantage of this optimal means of
KC uptake of pathogen leading to KC activation by early promoter cells.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 43: Compared Structures. Statistically and visually similar structures were gen-
erated to determine variance in simulation results between each (Structures
1-10 (a)-(j)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 44: Cluster Size vs. Distance to CV. For 10 structures I compare the distribution
of NKT cell cluster sizes (x-axis) versus the distance of those cluster sizes
from the central vein (CV)(y-axis). Box and whisker plots depict the median
and upper and lower quartiles. Structures 1-10 ((a)-(j)), data shows that
larger cluster sizes are found further from the central vein (with Pearson
correlation coefficients, N=16500 per structure experiment). (k), Comparison
of median distances for each cluster size, see also table 13 for Kolmogorov-
Smirnov statistics.
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1 2 3 4 5 6 7 8 9 10

1 1

2 0.135863964 1

3 0.307935289 0.588614411 1

4 0.307935289 0.588614411 0.889899861 1

5 0.307935289 0.889899861 0.998320005 0.998320005 1

6 0.051467307 0.889899861 0.307935289 0.135863964 0.588614411 1

7 0.307935289 0.588614411 0.998320005 0.998320005 0.998320005 0.307935289 1

8 0.307935289 0.016786481 0.051467307 0.307935289 0.051467307 0.001140698 0.135863964 1

9 0.307935289 0.588614411 0.998320005 0.889899861 0.889899861 0.307935289 0.889899861 0.051467307 1

10 0.889899861 0.307935289 0.588614411 0.588614411 0.307935289 0.135863964 0.588614411 0.588614411 0.307935289 1

Table 13: Structures Kolmogorov-Smirnov Test Summaries (Validated KC Distribution).
Kolmogorov-Smirnov statistics summary when comparing median distances vs
NKT cell cluster size for biologically measured KC distributions (see figure 44).

1 2 3 4 5 6 7 8 9 10

1 0.5

2 0.653333333 0.5

3 0.591111111 0.42 0.5

4 0.564444444 0.357777778 0.44 0.5

5 0.597777778 0.42 0.495555556 0.562222222 0.5

6 0.715555556 0.551111111 0.624444444 0.7 0.615555556 0.5

7 0.595555556 0.4 0.486666667 0.548888889 0.488888889 0.353333333 0.5

8 0.455555556 0.197777778 0.295555556 0.362222222 0.291111111 0.124444444 0.275555556 0.5

9 0.613333333 0.424444444 0.495555556 0.548888889 0.484444444 0.375555556 0.5 0.666666667 0.5

10 0.451111111 0.306666667 0.382222222 0.417777778 0.366666667 0.233333333 0.368888889 0.562222222 0.353333333 0.5

Table 14: Structures A-Test Summaries (Validated KC Distribution). Structures A-Test
Summaries for biologically measured KC distributions. Vargha-Delaney A-Test
[Vargha and Delaney, 2000] effect sizes for simulation results. Effect sizes
qualified at: no difference (0.446a60.56), small difference (0.566a60.64 or
0.366a60.44), medium difference (0.646a60.71 or 0.296a60.36), large dif-
ference (a>0.71 or a60.29). Only sample comparisons that were significantly
different when compared with the KS-test (table 13) are relevant, and those
data are highlighted where they have a large effect size.
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6.2.2 Altering the Distribution of KCs

After quantifying the role of sinusoid structure and determining the distributions
of infected foci distances from the CV using the distribution of KCs published
in the literature, I performed a simulation experiment to determine if a more
even distribution of KCs throughout the lobule section would produce a similar
pattern of foci distances. I hypothesised that:

An even distribution of KCs throughout the sinusoids will promote a more
evenly distributed population of significant inflammatory foci.

Using the same structures as the previous simulation experiment (figure 43),
pearson product-moment correlation coefficients were calculated. Across all struc-
tures coeffcient values were increased in comparison to the biologically validated
KC distribution experiment (figure 45(a)-(j)). These simulation results show
that there is a greater relationship between cluster size and mean distances of
inflammatory foci from the central vein; this result was not intuitive. The ex-
pected result according to my hypothesis would have been for a decreased value
for the correlation coefficient since the KCs are now evenly distributed between
the three lobule regions. However, as in the previous simulation experiment, new
cells entering the environment do so from the peripheries, making it more likely
that they encounter peripheral KCs before they have the opportunity to navigate
towards centrilobular KCs.
The distribution of medians distances across all structures was compared using

the KS-test between the biologically validated KC distribution and the evenly
distributed KC experiment (figures 44 and 45(k)). Results yield no significant
differences between same structures with different KC distributions (table 17),
despite there being a slight visible decrease in median distances for cluster sizes
of 1-3 (figure 45(k)). For what I would consider as more significant inflammatory
foci sizes of greater than 4 cells, the lack of significance is more pronounced when
comparing the two simulation experiments (table 18).
As previously, I also compared each structure against the others using the KS-

test, and I observed no significant differences for any pairing (table 15). A-test
effect sizes are shown in table 16; however, as there were no significant differences
in simulation results across structures, these effect sizes are redundant.
From these data I can conclude that an even spatial distribution of KCs does

not promote a more evenly distributed population of significant inflammatory
foci. I can also reaffirm that the biggest influencing factor on the formation of
inflammatory foci is the imposed influx of cells from the peripheries.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 45: Cluster Size vs. Distance to CV (Even KC Distribution). For 10 structures
I compare the distribution of NKT cell cluster sizes (x-axis) versus the dis-
tance of those cluster sizes from the central vein (CV)(y-axis) with evenly
distributed Kupffer cells. Box and whisker plots depict the median and up-
per and lower quartiles. Structures 1-10 ((a)-(j)), data shows that larger
cluster sizes are found further from the central vein (with Pearson correlation
coefficients, N=16500 per structure experiment). (k), Comparison of median
distances for each cluster size, see also table 15 for Kolmogorov-Smirnov statis-
tics.
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1 2 3 4 5 6 7 8 9 10

1 1

2 0.889899861 1

3 0.889899861 0.588614411 1

4 0.889899861 0.889899861 0.889899861 1

5 0.889899861 0.998320005 0.889899861 0.998320005 1

6 0.588614411 0.889899861 0.889899861 0.998320005 0.998320005 1

7 0.889899861 0.588614411 0.889899861 0.889899861 0.889899861 0.889899861 1

8 0.889899861 0.307935289 0.889899861 0.588614411 0.307935289 0.307935289 0.889899861 1

9 0.998320005 0.998320005 0.889899861 0.998320005 0.998320005 0.998320005 0.588614411 0.307935289 1

10 0.998320005 0.588614411 0.889899861 0.889899861 0.889899861 0.588614411 0.889899861 0.889899861 0.889899861 1

Table 15: Structures Kolmogorov-Smirnov Test Summaries (Even KC Distribution).
Kolmogorov-Smirnov statistics summary when comparing median distances
vs NKT cell cluster size for evenly distributed KCs (see figure 45).

1 2 3 4 5 6 7 8 9 10

1 0.5

2 0.615555556 0.5

3 0.54 0.395555556 0.5

4 0.551111111 0.42 0.524444444 0.5

5 0.571111111 0.455555556 0.575555556 0.535555556 0.5

6 0.584444444 0.457777778 0.566666667 0.54 0.495555556 0.5

7 0.524444444 0.391111111 0.48 0.464444444 0.44 0.451111111 0.5

8 0.475555556 0.34 0.424444444 0.411111111 0.362222222 0.375555556 0.442222222 0.5

9 0.566666667 0.448888889 0.531111111 0.52 0.477777778 0.477777778 0.553333333 0.611111111 0.5

10 0.482222222 0.355555556 0.451111111 0.428888889 0.393333333 0.384444444 0.457777778 0.504444444 0.411111111 0.5

Table 16: Structures A-Test Summaries (Even KC Distribution). Structures A-Test Sum-
maries for evenly distributed KCs. Vargha-Delaney A-Test [Vargha and De-
laney, 2000] effect sizes for simulation results. Effect sizes qualified at: no differ-
ence (0.446a60.56), small difference (0.566a60.64 or 0.366a60.44), medium
difference (0.646a60.71 or 0.296a60.36), large difference (a>0.71 or a60.29).
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Structure KS Test

1 0.1359

2 0.3079

3 0.3079

4 0.3079

5 0.3079

6 0.1359

7 0.1359

8 0.3079

9 0.3079

10 0.1359

Table 17: Comparison of KC distributions by structure. KS-test comparison of biologi-
cally validated and even KC distributions by structure.

Structure KS Test

1 0.9852

2 0.9852

3 0.7358

4 0.7358

5 0.9852

6 0.3744

7 0.3744

8 0.3744

9 0.9852

10 0.7358

Table 18: Comparison of KC distributions by structure (>4 cells). KS-test comparison of
biologically validated and even KC distributions by structure for inflammatory
foci greater than 4 cells.
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6.2.3 Summary

In summary, these data have answered two pertinent questions regarding the
original research purpose. Firstly, I predict that variance in liver lobule morphol-
ogy does not influence the formation of inflammatory foci in terms of the whole
population of infected KCs, and secondly, the distribution of KCs throughout
the lobule does not alter the spatial location of larger cluster sizes. I predict that
though large foci could potentially form anywhere in the real system, were they
to be quantified statistically, inflammatory foci are more likely to form at lobule
peripheries, simply as a product of new cells entering from that region. This sim-
ulation experiment has also revealed that running each experiment on a single
structure is sufficient to provide a representative set of simulation results.



6.3 altering kc retention of nkts 119

6.3 altering kc retention of nkts

Since I model cell-mediated retention probabilistically, it is important to further
understand how the parameters that influence the dynamics of KC retention of
NKT cells can affect simulation output measures. Intuitively, if retention is too
high NKT cells would never leave the location of the first KC they encounter.
Equally, if retention is too low NKT cells would have fleeting interactions with
KCs and never sustain interactions sufficient to activate them. I do not know
what the distribution of NKT cell aggregations sizes would be at both extremes,
nor in what quantities.
Simulation values involving NKT cell retention, i.e. NKT cell leave probabil-

ity (δLeave), are calculated for every iteration an NKT cell interacts with a KC
(1-second simulated time); therefore, across a simulation spanning 48 hours of
simulated time, δLeave percentages of between 0-100 would lead to NKT cells
satisfying their leave condition seconds after an initial KC interaction, and thus
NKT cells would never be retained by KCs for any meaningful period of time.
Indeed, the sensitivity analysis in section 6.1.3 demonstrated that parameter val-
ues greater than ∼0.0005 for leaveProb (initial δLeave value), result in a median
cluster size of no greater than 1 when excluding zero-inflated data (most KCs do
not sustain aggregations).
For this simulation experiment a more focused factorial analysis was used to

gather data, using two-at-a-time analysis to explore a range of values for both
the initial (modifiable) and minimum δLeave probabilities. Figure 46 depicts the
response landscapes for percentage inflammatory foci formed when modifying
both initial and minimum δLeave values. Data show the majority of infected
KCs do not form a significant inflammatory focus, and of the remaining KCs the
maximum percentage foci formed is ∼16.5%, ∼11.8% and ∼8.5% (figure 46(a)-(c)
qualified at 4,6,8 cells), corresponding to ∼5, ∼3 and ∼2 cells out of 33 per simu-
lation respectively. These are small percentages but these data themselves help
explain the observed heterogeneity in inflammatory foci in vivo, as multiple large
inflammatory foci are the exception and not the norm (quantified experimentally
in section 7.3).
Percentages of foci >4 NKT cells are highest when both initial and minimum

values are low (figure 46(a)), this is mirrored in the observed mean total KC stim-
ulation time per run (figure 47(a)). However, percentage foci >6 (figure 46(b))
and >8 NKT cells (figure 46(c)) are extremely low under the same conditions.
This is explained by the complete cessation of NKT cell motility at such low
δLeave probabilities (high retention). The KC population nearly receives the
maximum possible stimulation time (49 NKT cells stimulating them for 48 hours
= 2352 cumulative hours), since NKT cells spend all their time stimulating and
not patrolling the sinusoids (figure 47(b)).
In summary, these data demonstrate that the formation of inflammatory foci

when there are a finite number of NKT cells (the principal components of those
foci), is a complex balance between KCs being able to optimally retain NKT cells
whilst not totally arresting population wide NKT cell motility. The issue of finite
NKT cells numbers is addressed in section 7.3.1.
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(c)

(a)

(b)

Figure 46: Probabilistic Retention Experiment. Two-at-a-time analysis to quantify the
effects of minimum and starting retention probabilities on percentage foci
formed when qualified at 4 - (a), 6 - (b), and 8 - (c) cells. 3D plots in each
sub-figure are rotated to show multiple perspectives and reveal more detail
of each surface profile.
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(a) (b)

Figure 47: Probabilistic Retention Experiment Continued. Two-at-a-time analysis to
quantify the effects of minimum and starting retention probabilities on (a) -
mean total KC stimulation time per run and (b) - median NKT wander time
per run.
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6.4 summary

This chapter has described various simulation experiments which comprise the
first part of a results model presented in thesis. I first detailed the simulation
output metrics, I then employed aleatory analysis to determine the number of
simulation runs required to generate. Secondly, I presented results of a latin-
hypercube sensitivity analysis designed to determine the robustness of the simu-
lation to parameter perturbation. Having established the means to interpret the
simulation results, I then sought about answering several of my initial research
questions. I explored the use of multiple sinusoids structures during simulation,
and various distributions of KCs throughout the environment, and determined
that variations in sinusoid structure and KC distribution are not sufficient to sig-
nificantly modify neither the size or spatial distribution of aggregations (around
infected KCs) throughout the network. Thirdly, seeing as the model utilises a
probabilistic function to handle cell retention, I then performed a factorial anal-
ysis of the parameters that influence retention. These results highlight a delicate
balance between KCs being able to optimally retain NKT cells whilst also pre-
serving a degree of motility of NKT cells, allowing other cells to also receive a
degree of activation and stimulation.
All of the results presented in this chapter were required for us to understand

the dynamics of certain features that the abstracted model imposes on the system,
namely: environment, probabilistic retention, and spatial distribution of KCs.
Whilst these results are interesting and novel in this area, they are descriptive.
Chapter 7 will demonstrate an iterative process of experimentation that was
performed once I had established an understanding of the simulation platform
using the results from this chapter.



7 USING SIMULATION TO EXPLORE MECH-
ANISMS UNDERPINNING CELL RECRUIT-
MENT IN THE LIVER MICROENVIRONMENT

Having implemented and calibrated a simulator (section 5.6.1 and chapter 6),
it could then be used for novel computational experimentation. This chapter
represents the body of that computational research, whilst also outlining some in
vivo experiments used to validate the computational results. Where the simulator
required modification, I explain how it remains fit-for-purpose at each stage of
update.
Granulomas are associated with sub-clinical infection in humans, though much

of the evidence is circumstantial. The literature relating to how granulomas confer
protection in mouse models is well documented, with evidence suggesting they
provide enhanced parasite removal [Murray, 2001], and therefore granulomas are
traditionally regarded as being a host defence mechanism in VL. An exaggerated
inflammatory response could lead to adverse tissue pathology and subsequent
damage; therefore, a balance between the promoting a parasite clearing response
whilst maintaining healthy tissue must be reached. This raises several questions;
namely:

• What mechanisms might be more important in driving the granulomatous
response?

• How can we perturb those mechanisms to dampen or promote that re-
sponse?

To answer these questions I used the model and assumptions outlined previ-
ously in the domain model (chapter 4). Through a process of iterative hypothesis
generation and predictive modelling, certain assumptions were modified based
on newly acquired data, and subsequently a novel prediction was made regarding
hepatic stimulation in trans. This chapter will detail the results from three ex-
perimental scenarios. Firstly I introduce a baseline model (Scenario A figure 48),
where infected KCs can attract and retain NKT cells and uninfected cells call
only attract. Secondly, the baseline model is extended to include an abstraction
for parasite-induced activation of KCs, where infection induces upregulation of
attractive mediators (Scenario B figure 52). Lastly, scenario B is extended to in-
clude upregulation of attractive mediators by uninfected KCs, through bystander
activation in trans (Scenario C figure 53). Bystander activation in trans is the
process by which the signals endogenous to the environment cause a response
from cells within that environment.

123
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7.1 scenario a - exploring a baseline model

One of the original research hypotheses outlined in section 1.3 asks the question
whether or not mediators of cellular recruitment can account for the varying size
and distribution of granulomas observed in vivo. Little is known with regards to
how production and area of influence of T cell-chemo-attractants affect cellular
recruitment into inflammatory foci. In this section, I explore a range of factors
that govern KC produced chemo-attractant in silico, and which could potentially
play a role in the in vivo system.

7.1.1 Greater Area of Attractive Influence Promotes Inflammatory Foci

For the simulation experiment exploring the area of attractive influence, I work
under the assumptions governed in experimental scenario A (figure 48). I assume
that in terms of attraction, both uninfected and infected KCs function identically
prior to activation of infected KCs; i.e. they both diffuse an attractive influence
a minimum distance, and at the same concentration level, and that subsequently,
only infected KCs can modify their attraction level and distance after activa-
tion and subsequent interactions - based on the KC-NKT amplification pathway
highlighted earlier (chapter 4).

(a)

attraction

attraction

infected

uninfected

SIRPα-CD47 mediated
activation/NKT retention

upregulated attraction 
capabilities

no retention capabilities

Figure 48: Baseline Model Scenario. (a) The baseline model.
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To determine any interaction effects that might exist between parameters, I
explore the area of influence using a range of maximum diffusion distances, whilst
concurrently modifying one of the following:

• the total cumulative time required to activate KCs

• the total cumulative stimulation time KCs require reach maximal attractive
chemokine production.

I posited the following hypothesis:

An increase in maximum diffusion distance of chemokine will lead to a
greater percentage of inflammatory foci.

Two-at-a-time (TAT) analysis was first performed modifying both diffusion dis-
tance and the cumulative stimulation time required to activate KCs. Simulation
data show that quicker activation of KCs does lead to increased percentages of
significant inflammatory foci across all simulation runs, with a significant focus
qualified at 4, 6 and 8 NKT cells at a KC location (figure 49(a)). The median
stimulation time received by the KC population also increases with quicker acti-
vation times (figure 49(c)).

When performing TAT analysis modifying the maximum diffusion distance and
the cumulative stimulation time required by KCs to reach maximal attraction
level, the results were mirrored, i.e. increases in both percentage inflammatory
foci and median stimulation time received by the KC population are observed
(figure 49(b),(d)). This sort of experiment is not possible in vivo as there are
many different known and unknown attractive mediators, and no current way of
targeting their production and/or area of influence. Hence, this experiment has
provided novel insight into how modifying these mechanisms might play a role
in the formation of inflammatory foci.
After determining that quicker activation of KCs leads to greater formation

of inflammatory foci, I revisited the simulation to determine the effect of pre-
activation of KCs. I hypothesised that:

Pre-activation of KCs will lead to greater percentage of inflammatory foci

The function of KCs in the simulator was modified to change the logic dictating
that KCs require a threshold of activation. A command line argument was used
to enable this preactivation to be toggled. After implementation of this feature,
all statistical analyses outlined in (chapter 6) where repeated to ensure the model
was still fit-for-purpose.

Pre-activation did not significantly alter the percentages of inflammatory foci.
The abundance of activated KCs leads to an environment where no individual
KC can really have the opportunity to outperform others by having a ‘head-start’
after having being activated via NKT cell stimulation. This experiment was novel
and could not have been performed experimentally, as it is currently not possible
to instantaneously ‘switch on’ KC functions in vivo.
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A B

C D

(a) (b)

(c) (d)

Figure 49: Attractive Chemokine Dynamics. Two-at-a-time (TAT) parameter analysis
to quantify the percentage of inflammatory foci formed when modifying
chemokine diffusion distance simultaneously with either (a) stimulation time
required to activate KCs, or (b) stimulation time required for KCs to reach
maximal attractive chemokine production. TAT analysis for the aforemen-
tioned parameter combinations, (c) and (d) respectively, to quantify the
median, total stimulation time received by infected KCs.
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7.1.2 Increasing Chemokine Attractive Area Has Diminishing Returns

A recent study to analyse chemokine gradients in vivo reported that functional
chemokine gradients occur up to a distance of approximately 100µm [Weber
et al., 2013]. My simulated data in section 7.1.1 predict diminishing returns
when increasing maximum diffusion past a certain distance. Significant differ-
ences (P=60.001) are observed when comparing distributions from each parame-
ter increase with the previous value (e.g. 20µm-30µm: P=0.001216, 30µm-40µm:
P=0.000019). When increasing diffusion distance from 120µm-130µm, the per-
centage foci increase subsequently becomes non significant (P=0.312 figure 50).
These data demonstrate that there is a tipping point, and that there is no

functional benefit to having a greater attractive influence past ∼120µm, similar
to the distance reported by Weber et al. [2013]. The structure of the microenvi-
ronment, and the competition between cells essentially negates the greater area
of influence.
Another finding of my results that is not clearly evident, since data is aggre-

gated over multiple simulation runs, is that individual infected KCs, who perform
very well initially (in terms of receiving a high degree of stimulation), often don’t
benefit in the long term. The diffusion of attraction throughout the network re-
sults in their attractive influence encompassing other KCs, many of which may
be underperforming. This leads to what I would describe as indirect KC altruism,
and often their downstream counterparts can go on to outperform them by the
simulations end. Some of these findings may have broader implications for liver
disease aetiology.

***
ns

Figure 50: Diminishing Returns For Chemo-Attraction Distance. Effect on percentage
inflammatory foci qualified at 4, 6 and 8 cells, when modifying maximum
chemokine diffusion distance.
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7.1.3 Implications For Manipulating Inflammatory Responses

From simulation data reported in sections 7.1.1 and 7.1.2 I predict that if it
were possible to exclusively target the ability of infected KCs to expedite their
up-regulation of chemo-attractants, and importantly, increase their area of influ-
ence (up to a tipping point), there would be an increased level of inflammation.
Conversely, targeting these mechanisms in an inhibitory manner could abate the
formation of inflammatory foci. Depending on the disease context, this could
either be host-protective or host-detrimental. The direct manipulation of individ-
ual KC function could be a potential avenue for future research, though careful
consideration would need to be made as to whether or not this is biologically
achievable with any efficacy.

7.2 scenarios b and c - parasite-induced activa-
tion of infected kcs with/without bystander
activation of uninfected kcs in trans

Scenario A (figure 48) described in section 7.1 was developed on the assumption
that only infected KCs received a signal to enhance chemo-attractant chemokine
production during infection. However, this notion was developed from experimen-
tal data generated in the conventional manner of comparing chemokine produc-
tion from infected vs. uninfected mice [Svensson et al., 2005]. However, when I
examined chemokine gene expression in KCs from infected mice, but sorted to
contain or not contain parasites [Beattie et al., 2013], I found that both uninfected
and infected KCs are equally capable of up-regulating the production of T cell
chemo-attractants including CXCL9/10 (figure 51). The mechanisms responsible
for the uninfected KC chemokine production are unknown, though a number
of mediators could be responsible, such as complement activation, platelets, or
trans signalling - signalling perhaps caused by stress or other mediators due to
the inflammatory environment.
I revised model scenario A (figure 48) to account for two additional experi-

mental assumptions. Scenario B (figure 52) was constructed to determine the
dynamics of parasite-induced activation of infected KCs only, and scenario C
(figure 53) to investigate a model including both parasite-induced activation of in-
fected KCs with the addition of uninfected KC up-regulation of chemo-attractants
through bystander activation in trans. Scenario B was implemented using a time-
dependent switch, with a factor analysis of both parasite-induced activation time
(figure 54(e)), and parasite-induced activation with bystander activation time
(figure 54(f)).

I explore three core simulation parameters that I hypothesise are most influ-
ential in driving hepatic inflammation: cumulative stimulation time required to
activate infected KCs, cumulative stimulation time for KCs to reach maximal pro-
duction of chemo-attraction, and maximum attraction diffusion distance. These
parameters are compared across the three experimental scenarios, with 12 hours
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(as this is the last time-point of the data figure 51) of both parasite-induced
activation (scenario B) and bystander activation in trans (scenario C).

Figure 51: Chemokine Gene Expression. Fold change in chemokine gene expression in
inflamed and infected KCs at 2 and 12 hours post-infection.
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(b)

attraction

parasite induced activation 
and improved attraction 

capability

infected

uninfected
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Figure 52: Parasite Induced Activation of Infected KCs. (b) Infected KCs have enhanced
attraction capabilities and parasite induced activation.

(c)

infected

uninfected

bystander activation in trans. 
and improved attraction 

capability

parasite induced activation 
and improved attraction 

capability

as scenario A

Figure 53: Parasite Induced Activation of Infected KCs With Bystander Activation. (c)
As in scenario (b) but with bystander activation for uninfected KCs to en-
hance their production of chemo-attractant.
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7.2.1 Response Landscapes for Parasite Induced Activation With/Without By-
stander Activation In Trans

Two-at-a-time factorial analysis was used to determine the interaction effects
on percentage inflammatory foci formed and KC cumulative stimulation time
received when varying parameters governing:

• Cumulative time to activate KCs and maximum diffusion distance of chemokine
(figure 54(a))

• Cumulative stimulation time required for KCs to reach maximum levels of
chemoattraction and maximum diffusion distance of chemokine (figure 54(b))

Results demonstrate that quicker activation of KCs and greater chemokine
diffusion distances lead to the greater proportions of inflammatory foci being
formed (figure 54(a)), and stimulation time received by KCs (figure 54(c)). Sim-
ilarly, quicker cumulative stimulation time required for KCs to reach maximal
levels of chemoattraction and greater diffusion distances also lead to greater lev-
els of inflammatory foci (figure 54(b)) and KC cumulative stimulation time (fig-
ure 54(d)).
I also chose to vary parasite induced activation time and bystander activa-

tion times concurrently with maximum chemokine diffusion distance. The re-
sponse curves from my TAT analysis are in-line with previous data (section 7.1.1)
showing that increasing diffusion distance leads to greater percentage inflamma-
tory foci formed (figure 54(e)-(f)). However, if parasite induced activation and
bystander activation persist, both have a negative effect on inflammatory foci
formed as cells become uncompetitive because too many of them become acti-
vated (figure 54(e)-(f)).
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(a) (b)

(c) (d)

(e) (f)

Figure 54: Dynamics of Parasite Induced Activation With/Without Bystander Activa-
tion In Trans. Two-at-a-time (TAT) parameter analysis modifying chemokine
diffusion distance with ((a),(c)) Cumulative time to activate KCs, ((b),(d))
Cumulative time for KCs to reach maximal chemo-attraction, (e) Parasite
induced activation time and (f) Bystander activation time.
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7.2.2 12 Hours of Parasite Induced Activation With/Without Bystander Acti-
vation In Trans

The experiments in section 7.2.1 explored a range of parasite induced activa-
tion and bystander activation durations. Data shown previously in figure 51 only
highlights that such mechanisms appear present at up to 12 hours post-infection.
Focusing on that duration of both mechanisms, I statistically compare the data
distributions observed across all three experimental scenarios previously concep-
tualised in figures 48, 52 and 53.
When modifying both the time to activate KCs and the time to reach maximal

chemo-attractant production, results show that both scenarios B and C demon-
strate a significant increase in percentage inflammatory foci over the baseline
(figure 55(a)-(b), scenario A vs. scenarios B/C P60.0001 for both).

Inflammatory foci sizes between B and C are technically statistically differ-
ent when exploring times for activation (figure 55(a), P=0.0491) and chemo-
attractant production (figure 55(b), P=0.0175), though in terms of effect, the
difference is close to none for KC activation time (A-test score = 0.51), and small
effect for chemo-attraction production time (A-test score = 0.39).
Whilst scenarios B and C have comparable levels of inflammatory foci, B results

in a significantly greater level of stimulation time received by KCs (figure 55(c)-
(d), scenario B vs. scenario C P60.0001 for both), with the A-test effect size
of these differences being medium (figure 55(c) A-test score = 0.64) and small
(figure 55(d) A-test score = 0.61).

Analysis of nearest neighbor data also shows that both scenarios B and C
have a significant difference in the formation of small cluster sizes (size<4) over
the baseline model (figure 56: A vs. B, P=0.000549 N=1770; A vs. C, P= 0.0
N=1770). In terms of small clusters, scenario C is approaching significance over
scenario B (B vs. C, P=0.137 N=1080).
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Figure 55: Dynamics of 12 Hours of Parasite Induced Activation With/Without By-
stander Activation In Trans. Quantifying (a) the percentage of inflamma-
tory foci formed and (c) mean, total stimulation time received by infected
KCs, when varying the cumulative stimulation time required to activate in-
fected KCs when comparing scenario A (baseline model), scenario B (model
including parasite-induced activation of infected KCs) and scenario C (model
including both parasite-induced activation of infected KCs and bystander ac-
tivation in trans of uninfected KCs). For the same experimental scenarios, (b)
Percentage inflammatory foci formed and (d) mean, total stimulation time
received by infected KCs, when varying the cumulative stimulation time re-
quired for KCs to reach maximal attractive chemokine production.
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Figure 56: Nearest Neighbour Analysis. KC nearest neighbor network analysis. Clusters
qualified at <4 small, 4-6 medium, >6 large.

7.2.3 Section Summary

Similar to the diffusion of attractive mediators and preactivation of KCs, the
exploration of parasite-induced activation and bystander activation is not possible
with current experimental techniques as these experiments inherently require
some ability to directly target cell function at any point during an experiment.
These experiments were thus ideal for experimentation through simulation.

Results from sections 7.2.1 and 7.2.1 together demonstrate that compared to
only parasite-induced activation, the addition of both parasite-induced activa-
tion and also uninfected KC bystander activation in trans gives a less effective
inflammatory response, with a lower median percentage foci and stimulation time
received by infected KCs. This is due to the lobule sections being saturated with
attraction from both uninfected and infected KCs in scenario C, and the compet-
itiveness of infected KCs (which form the aggregations) in terms of recruitment,
is diminished. These data highlight a potential mechanism of immune regula-
tion, whereby the bystander activation of uninfected KCs creates a competitive
environment in terms of attractive capability, thus making it more difficult for
infected KCs to recruit NKT cells and have exacerbated inflammatory responses.
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7.3 il-15 mediated immunotherapy promotes in-
flammation

Given that my simulation, with its relevant modelling abstractions and assump-
tions, has NKT cells as the only promoter cell, I was interested to see if there
is competition between infected KCs to attract the 49 baseline number of NKT
cells, and whether NKT cells are a limiting factor in the formation of inflamma-
tory foci. This section will detail the in silico experiment used to determine the
relationship between availability of NKT cells and inflammatory aggregations,
and the subsequent experimental validation of that relationship in vivo.

7.3.1 Increasing Availability of NKT Cells Promotes Inflammatory Aggrega-
tions In Silico

I first hypothesised the following:

An increase in NKT cells will results in an increased percentage of in-
flammatory foci and not the same percentage of foci but with greater levels
of cell infiltrate.

This hypothesis is conceptualised in figure 58(a). Simulation results showed
that increasing NKT cell numbers above the calibrated value does lead to signifi-
cant increases in inflammatory foci, regardless of whether those foci are qualified
at 4, 6 or even 8 cells (figure 58(b)).
Nearest neighbor analysis was then performed in order to predict whether

increasing NKT cell numbers would cause extremely large clusters, or more dis-
tributed clustering throughout the infected KC population (illustrated in fig-
ure 58(c)). All KCs, in experiments with: baseline 49 NKT cells, 2-fold NKT
cells, and 4-fold NKT cells, were compared to nearest neighbors within a net-
work distance of 120µm. Zero-inflated data was ignored, as I was only interested
in KCs that form aggregations of 1 or more, and focus sizes grouped into small
(1-3 NKT cells), medium (4-6 NKT cells) and large (>6 NKT cells). Data show
that the median neighbor size, and range, increases for focus sizes when increas-
ing NKT cell numbers 2 and 4-fold (figure 58(c), table 19). These results were
compelling evidence that increasing NKT cell numbers in vivo could increase the
total percentage of hepatic inflammatory foci, as opposed to only increasing the
size of foci and not the quantity.

7.3.2 Increasing Availability of NKT Cells Promotes Inflammation In Vivo

Given the simulation results in section 7.3.1, I hypothesised that:

An expansion of the NKT cell population in vivo will lead to an increased
level of inflammatory foci.
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To test whether my in silico prediction that increased NKT cell number would
lead to an increase in inflammatory foci in vivo, the experimental scheme in
figure 57 was devised.
To induce increased NKT cell proliferation and survival [Matsuda et al., 2002],

mice were treated with 1mg recombinant IL-15 (rIL-15)(BioLegend) intravenously
then infected 3 days later with L. donovani. Four days post-infection, mice liv-
ers were extracted, weighed then placed into 2% paraformaldehyde (PFA) in
phosphate-buffered saline (PBS) for 2 hours, then 30% sucrose in PBS overnight.
Tissues were then embedded in Optimal Cutting Temperature (OCT)(Sakura)
and stored at -70◦C until use. 10µm cryosections were fixed and labeled with
Alexa647 or Alexa488 conjugated F480 (eBioscience) and DAPI (Invitrogen) to
visualise Kupffer cells and cell nuclei respectively. Images were captured as 0.8-
1µm optical slices using a LSM510 confocal microscope (Zeiss). Blinded slides
were imaged to score the percentage of infected foci having formed a distinct
inflammatory focus (greater than 15 cells), with imaging fields selected via td-
Tomato expression.

IL-15

L. donovani

3 days 4 days

Harvest livers

Cell counts by 
FACS

Imaging 
analysis

Figure 57: Experimental Procedure. Experimental scheme to determine whether NKT
cell expansion leads to increased levels of inflammatory foci in the liver.

In uninfected mice, IL-15 treatment resulted in increases NKT cells (including
CD1d restricted NKT cells), NK cells, and T cells (figure 58(d)-(f) and fig-
ure 59(a)-(c)). In infected mice, all cell types were already increased in number
and the effect of IL-15 pre-treatment was limited to an increase in the number
of NKT cells (figure 58(d)). Similarly, IL-15 pre-treatment had no effect on the
relative frequency of NK cells and T cells (figure 60(b)-(c)), but resulted in an
increase in the relative frequency of NKT cells (figure 60(a), from 15.0% ± 0.1
N=10 to 17.36% ± 0.8 N=10 per liver; P=0.0043).
I scored distinct inflammatory foci as accumulations of 15 or more cells around

an infected KC, not discriminating between NKT cells or other mononuclear cells.
There was significant heterogeneity in size within the clusters that qualified, even
at the early time point examined (day 4, figure 58(h)-(i)). I found that the fre-
quency of infected KCs that formed a distinct inflammatory focus was increased
∼1.5 fold in mice pre-treated with IL-15 and which had a higher number of NKT
cells in the liver at the time of infection (figure 58(g); P=0.0038). Thus, treat-
ment of mice with rIL-15, even under conditions where the increase in NKT cell
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number is relatively modest, leads to a significant enhancement of inflammatory
foci. Dendritic cell-derived IL-15 has been shown in the literature to be capable of
mediating the inflammatory response in the liver [Ohteki et al., 2006], my study
demonstrates that host pre-treatment with rIL-15 also mediates inflammation,
and there is strong evidence that NKT cells, particularly tetramer+ NKT cells
(figure 59(d)) are responsible for this [Robert-Gangneux et al., 2012; Wehr et al.,
2013].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 58: Expansion of NKT Cells Promotes Inflammation. (a) Predicting outcome of
modifying NKT cell availability. (b) Increasing NKT cells in silico leads to
greater percentages of KCs that form a significant inflammatory focus, when
qualified at 4, 6 and 8 cells. (c) KC nearest neighbor network analysis. Abso-
lute cell numbers for (d) - NKT, (e) - NKs and (f) - T cells for naïve, IL-15
treated naive (IL-15), infected (INF) and IL-15 pre-treated infected (INF+IL-
15) mice. Results are depicted as mean ± SEM of two independent experi-
ments, 5 mice per group per experiment. *P60.05, **P60.01, ***P60.001
paired Students t-test. (g) Percentage of infected KCs having formed a sig-
nificant inflammatory focus for infected and IL-15 pre-treated infected mice.
Heterogeneity of inflammatory foci at d4 in both (h) infected and (i) IL-15
pre-treated + infected mice (F4/80 - green, parasite - red, DAPI - blue).
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Cluster Size Scenarios P-value N

small A, B 0.0 1770

A, C 0.0 1770

B, C 0.0 2292

medium A, B 0.00003 82

A, C 0.0 82

B, C 0.0 364

large A, B 0.0006 140

A, C 0.0 140

B, C 0.0 684

Table 19: Statistics for figure 58C.

(a) (b)

(c) (d)

Figure 59: IL-15 Promotes NKT Cell Expansion. (a) Absolute cell numbers for NKT,
(b) NK and (c) T cells, and (d) CD1d tetramer+ NKT cells for naïve, IL-15
treated naïve (IL-15), infected (INF) and IL-15 pre-treated infected (INF+IL-
15) mice. Results are depicted as mean ± SEM of 5 mice per group. *P60.05,
**P60.01 paired Students t-test.
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Figure 60: Relative Frequency of Mononuclear Cells Post IL-15 Treatment. (a) Relative
frequency of NKT, (b) NK and (c) T cells for naïve, IL-15 treated naïve (IL-
15), infected (INF) and IL-15 pre-treated infected (INF+IL-15) mice. Results
are depicted as mean ± SEM of 5 mice per group. *P60.05, **P60.01 paired
Students t-test.
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7.4 results argumentation

Section 5.6.7 detailed several argumentation efforts to argue that my simulation
was built with accurate data and as a reasonable abstraction of the underlying
biological system. This section will detail arguing the validity of the simulation
results presented in this section.
From the simulation metrics described in section 6.1.1, I only have the capacity

to experimentally measure the percentage of inflammatory foci in vivo, and by
extension the size of those inflammatory foci. However, a caveat is that the in
vivo inflammatory foci do not exclusively contain NKT cells, therefore a direct
comparison to the simulation results cannot be made. I therefore utilise argumen-
tation to claim that the simulated NKT cell only clusters are at least plausible
representations of the inflammatory foci observed in vivo.
Figure 61 depicts ADV claim 2, which states that the simulation results, whilst

not directly comparable to those in vivo, are plausible with respect to what
I observe experimentally. This is done by arguing that heterogeneous cellular
aggregations are both observed in vivo and also manifested in the in silico
simulations, highlighting where the evidence for this exists within this thesis.
Such an argument will need to be constructed in future to validate the simulation
against the remaining simulation output measures, such validation is highlighted
as potential future work in section 8.4.
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CLAIM 2:
Simulated NKT cell aggregations 
are a plausible representation of 

those observed histologically

STRATEGY 2.1:
Argue that heterogeneous 
numbers and sizes of NKT cell 
clusters manifest themselves in 
the simulation.

CLAIM 2.1.1:
The simulation manifests a 

heterogeneous population of 
NKT cell cluster sizes

Simulated results in 
chapters 6 and 7. Results across 

multiple simulated environments in  
Figure 46 demonstrating cluster 

sizes ranging from 1-20.

CLAIM 2.2.1
A heterogeneous inflammatory 
response is observed during VL 
and is reported in the literature

Heterogeneity of 
inflammatory foci at 
day 4 post infection 

imaged in Figure 
61H-I.

Experimental results from 
flow cytometry in Figures 

61D, 62D and 63A.
and

Svensson et al. 2005
Beattie et al. 2010b

CLAIM 2.2.2
NKT cells are present in the liver 

in significant numbers during 
early infection and are known to 

interact with infected KCs at 
such an early stage

STRATEGY 2.2
Argue that heterogeneous 
numbers and sizes of 
inflammatory foci are observed in 
vivo.

STRATEGY 2.3:
Argue fact that aggregation sizes 
are not directly comparable

CLAIM 2.3.1:
The simulation is a 

reasonable approximation of 
the real system given that we 

only model two cell types

Depending on the cut-off for an 
inflammatory focus, under 

baseline conditions the 
simulation manifests ~4-8 

inflammatory foci (NKT cells 
only) - Figure 61B.

A mean of 10% 
inflammatory foci when 

qualified at 15 
mononuclear cells - 

includes NKT cells, T 
cells + other - Figure 

61G.

Confocal microscopy 
at day 18 reveals 

small, medium and 
large granulomas, 

see figure 6.

Assumptions

1. There is no universally accepted 
number of cells that qualifies a 
granuloma as small, medium or 
large. Domain expert knowledge is 
used to quantify this.

Murray, 
2001.

Figure 61: Argument Based Validation: Claim 2. Claim 2 argues that simulated NKT cell
aggregations are a plausible representation of those observed histologically.
Incomplete or unavailable data to substantiate a claim is denoted using a
blank diamond.
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7.5 summary

Transcriptional profiling elucidated a previously unidentified similarity between
the capacity of both inflamed and infected KCs to produce a variety of inducible
chemokines, including known chemo-attractants. Given the established canon
that essential promoter cells are responsible for activation of macrophages such
as KCs, and the results of the transcriptomic data, I explored through simulation
several hypotheses relating to the dynamics of cellular migration, retention and
attraction in the constrained hepatic microenvironment.
I first sought to quantify the influence of attractive chemokine area of influence.

My results predicted that chemokine diffusion does play an important role in me-
diating the formation of inflammatory foci, though there are diminishing returns
as a result of increased competition when lobules are flooded with an NKT cell
attractive influence. Subsequently, I predicted a somewhat intuitive, yet previ-
ously unreported mechanism by which the production of attractive mediators by
inflamed KCs dampens the overall inflammatory response in the liver microenvi-
ronment. I then demonstrated that any regulatory effect that might exist, could
be overcome both in silico and in vivo (in an experimental model of Leishmania
infection) with the expansion of the NKT cell population. Whilst it could be
argued that this increase is intuitive, since in my simulation I was increasing a
major functional contributor, the relationship between availability of NKT cells
and percentage foci had not been quantified prior to my study. Further research
is required to precisely identify and categorise the mechanisms responsible for
inflamed KC bystander activation, and to modulate any such mechanisms effect.
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8 CONCLUSION

8.1 research summary

As a whole, this thesis has formed a case study in the use of agent-based modelling
to validate my research hypothesis, and answer the research questions stated in
chapter 1.
My introductory chapter gave an overview of granulomas as a form of inflamma-

tion, highlighting Visceral Leishmaniasis (VL) as disease of interest. The limita-
tions of current laboratory experimental techniques was highlighted, and I argued
that this provided motivation for the development of computational approaches
towards understanding the fundamental mechanisms underpinning inflammation
in VL, which may have broader implications for inflammation in general (chap-
ter 1).
Two literature review chapters were presented in this thesis. The first, chapter 2,

outlined various modelling techniques that could be used to model biological pro-
cesses, and I placed an emphasis on the agent-based modelling paradigm, which
I argued as the most appropriate technique for spatial and temporal modelling
of tissue-scale phenomena (section 2.1.3). In section 2.1.4 I covered the body of
computational modelling literature relevant to granulomatous inflammation, and
section 2.1.5 detailed previous studies that aimed to create computational repre-
sentations of the liver microenvironment, where granulomas manifest in VL. My
literature review highlighted several gaps in the literature (section 2.1.6), further
motivating the research reported in this thesis. This chapter concluded with a
discussion relating to the best practice for designing and developing models of
complex systems (section 2.2), introducing CoSMoS as a framework that ensures
the development process is performed in a principled manner.
The second literature review, chapter 3, presented the biological domain of

interest, mainly liver granuloma formation in the context of VL. I described
the composition of the liver (section 3.1), whose microenvironment plays host to
Kupffer cells, which I describe as being central to uptake of Leishmania parasites
and the subsequent formation of granulomas (section 3.2). Promoter responses
from T and NKT cells were reviewed (section 3.3), and the known cytokine and
signalling mechanisms pertinent to VL infection discussed (section 3.4).
This chapter will discuss the remaining thesis chapters, which were designed

to answer the underlying research questions stated in section 1.3, and which con-
tribute to the core research hypothesis. I will reiterate each research question and
discuss the chapters that answered them, stating the relevant novel contributions.
The limitations with the current body of research will then be discussed, and I
will suggest future avenues of investigation.

147
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8.2 research questions - an evaluation

My first underlying research question was as follows:

Question: Can a spatio-temporal agent-based simulation, incorporating the
key cellular players and interaction dynamics into biologically plausible sim-
ulation environments, produce a heterogeneous population of granulomas?

The research detailed in chapters 4 and 5 forms one of the primary contribu-
tions of this thesis, that being the development of a novel agent-based model
of granuloma initiation in a spatially constrained representation of the liver mi-
croenvironment. The design and development of this model, and its presentation
in this thesis, followed the format of the various CoSMoS framework stages de-
scribed in section 2.2.1. The first stage of the modelling process was to describe
the domain I wished to study, which formed the second literature review chapter
(chapter 3).

The CoSMoS framework [Andrews et al., 2010] (described in section 2.2.1) pro-
vides no explicit instruction or recommendation as to how one should document
the design and development of complex systems models, chapters 4 and 5 demon-
strate a means of performing such activities. Chapter 4 represented a scoping
study of the biological domain, which began by detailing several high-level ob-
servable phenomena from the domain. Using several diagrams from UML (see
section 2.2.3), I then constructed a domain model. Variants of Class, State and
Platform diagrams from UML allowed us to capture the relevant cells, cellular
mechanisms, and interactions that I hypothesised as responsible at an individual
level, for the observed population level responses, such as heterogeneous granu-
loma formation. The contribution of Chapter 4 represents a method of document-
ing a scoped model of an underlying biological domain utilising UML to graph-
ically represent the proposed entities and interactions of that model. Chapter 5
worked through the development of a computational, agent-based model of my
conceptual domain model. The construction of a computational representation of
the liver microenvironment was detailed, followed by a systematic description of
how the modelled cells, Kupffer and NKT cells, and the interactions between cells
and environment were described in a logical form that could then be implemented
as computer code. Subsequent to a process of calibration, and argumentation to
establish confidence in the simulation as being representative of the underlying
domain, I demonstrated that it was indeed possible to manifest heterogeneous
populations of granulomas in silico chapter 6.
Having established baseline behaviours for my engineered simulation, I pro-

ceeded to answer the second underlying research question:

Question: What role does the structure of the hepatic microenvironment
play in granuloma heterogeneity?

Section section 6.2 in my first results chapter, demonstrated that variance in
inflammatory aggregations remained stable across multiple structures generated
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using a novel algorithm. I then investigated whether or not different spatial dis-
tributions of KCs throughout the sinusoid structure, could alter the spatial dis-
tribution of aggregations. My results demonstrated that changes in KC spatial
distribution do not significantly alter the spatial distribution of subsequent aggre-
gations, and I concluded that the imposed entry of new cells into the environment,
solely from the peripheries, is the biggest influencing factor in the formation of
aggregations, which are predominantly found at the peripheries. The very fact
that quantitative studies have shown that KCs are found in greater abundance at
the peripheries [Sleyster and Knook, 1982; Bouwens et al., 1986], may mean that
organisms have adapted to maximise contact with both cells and pathogens that
enter at those locations. These results also begin to answer my final underlying
research question:

Question: Do KC spatial location and mediators of cellular recruitment,
account for the varying size and distribution of granulomas observed in vivo?

I have described my results relating to structure and KC spatial location. To
investigate the dynamics of cellular recruitment, chapter 7 investigated how mech-
anisms of attraction and retention could be modified to perturb the distribution
of cell aggregations, and also the stimulation time received by KCs, both of which
I believe are relevant for long term development of granulomas. The contribution
of my results were two fold. Firstly, I demonstrated in silico that competition
from uninfected KCs, via attractive mediators, serves to dampen the overall in-
flammatory response provided by infected KCs, thus elucidating a potentially
novel means of immune regulation in the liver. Secondly, based on a prediction
made using my in silico data I demonstrated that the extent of inflammation
in a murine model of VL could be increased with an expansion of the NKT cell
population; this had not been demonstrated previously in this field.
Given that I have answered my underlying research questions, I now reiterate

the core research hypothesis:

Core question: A spatio-temporal agent-based model can be used to simulate
heterogeneous inflammatory responses in the liver microenvironment, and
provide new insight into the underlying mechanisms responsible for inflam-
mation

Computational and systems modelling approaches, though relatively estab-
lished, are still not widely accepted in the field of biology [Macilwain, 2011], and
a paper discussing the various social perspectives of interdisciplinary systems bi-
ology highlights many conflicting viewpoints from both computer scientists and
biologists, with both groups having proponents and opponents of computational
and mathematical approaches in the biosciences [Calvert and Fujimura, 2011].
Some opponents argue that inherent biological variability does not lend itself to
imposing mathematical laws or descriptions about that biology [Calvert and Fu-
jimura, 2011, p.160], or that there is often a disconnect when computer scientists
and engineers drive systems biology, as they lack the in depth knowledge of the
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field [Calvert and Fujimura, 2011, p.160]. Others take a far more critical view,
and believe that many seemingly integrative systems approaches are actually just
‘reductionism in the guise of entireness’ [Huang, 2000]. I argue that this thesis
has demonstrated that computational modelling can be of use within the field of
biology.
Through the process of defining a set of biological cells and mechanisms be-

lieved pertinent to VL-induced granulomas, and through the principled conceptu-
alisation and implementation of a model of that underlying biology, I constructed
a spatio-temporal agent-based model of liver inflammation. Iterative hypothesis
generation and experimentation, working as an interdisciplinary team, allowed
us to investigate the role of environment, cell location, and cell attraction and
retentive mediators in driving inflammation. Subsequent efforts at preliminary
experimental validation have provided new insight into mice infected with VL,
and assuming that my prediction of a novel immune regulatory mechanism holds
true, I have demonstrated a means of overcoming that regulation by expanding
a promoter cell population.
Although the focus of this thesis has revolved around the study of Leishma-

nia granulomas, the body of work presented is also more widely applicable to
scientists outside of this field. My research demonstrates how relatively mini-
malist models can still prove useful for hypothesis driven research, abstracting
away from the underlying complexity and yet still capable of capturing key holis-
tic, observable behaviours. There is a propensity for many modellers to adopt
the ‘kitchen-sink’ approach, creating highly granular models that incorporate a
raft of components and interactions. This approach has several disadvantages.
Firstly, models can become intractable and be far more complex than they need
be. Complexity can lead to erroneous models, and error can exhibit itself in many
ways, such as incorrect assumptions, or problems with the implementation of a
component and/or interactions; the more complex a model, the harder it is to
demonstrate its validity. Also, communicating the purpose of your model, and
arguing that your model functions as intended (verification), becomes more diffi-
cult as its complexity increases. I believe I have struck a balance in this respect,
and assert that my model in it’s current state can be used to further investigate
VL as a biological domain, with future validation and modification adding greater
predictive power to the model.

8.3 limitations of the research

Whilst I have explored dynamics relating to NKT cell recruitment and reten-
tion by Kupffer cells, I reiterate that my research has only been concerned with
early stage granuloma formation, within the first 48 hours of simulated infection.
Whilst my assumptions are based on current understanding in the field [Moore
et al., 2013] and my simulated results are plausible, my model only determines
conditions that give either maximum levels of cellular aggregation, or maximum
levels of stimulation received by KCs. I cannot categorically state that a large
aggregations of early promoter NKT cells, whose KC focus has received a high-
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level of stimulation, will develop into a fully formed granuloma. There may be
an intermediary step between the early initiation of granulomas and the later
recruitment of additional mononuclear cells which make up the structure of a
mature granuloma.
A limitation of the current simulation is that the structures I utilise are all

based upon idealised hexagonal sections of liver lobule. As I explain in Ap-
pendix 9.3, mice liver lobules vary in a variety of degrees from this hexagonal
structure. Future work in this regard is described in section 8.4.3.3.
In the context of the underlying biology, extremely large cluster sizes (>15)

observed in simulation may not be plausible, though this will only be addressed
with further imaging studies of NKT cell clustering in vivo. My model doesn’t
account for distention of the sinusoids, nor do I restrict cell numbers at infected
nodes as I cannot quantify these restrictions in the real system. Therefore, I
must make these types of assumptions, and in any case the data showed that
these clusters only exist in very small percentages in my simulations (chapter 7).
Future work will look too investigate these issues further.

8.4 future work

This section will outline the future work which aims to further validate my model.

8.4.1 Quantifying Granuloma Location Experimentally

In an attempt to quantify granuloma location in vivo, and identify centrilobular
regions as a point of reference to measure the distance of granulomas from, I used
immunofluorescence staining with anti-glutamine synthetase (AGS) antibody to
identify glutamine synthetase, an enzyme present constitutively in centrilobularly
located hepatocytes [Dane et al., 2009]. The method and protocol used to extract
liver sections and stain them are described in the appendix (see Appendix 9.3).
Data proved inconclusive for a variety of reasons explained in Appendix 9.3. This
experiment proved inconclusive, even after investing a significant period of time -
primarily on the confocal microscopy. However, new technologies such as the Axio
Scan Z1 slide scanner (Zeiss), are now allowing researchers to load a significant
number of slides, drastically improving the imaging time. This mass, automated
scanning, would make it simpler for a researcher to quickly identify usable im-
ages with easily identifiable lobule structures, facilitating the quantification of
granuloma location within them.

8.4.2 Validating Simulated NKT Cell Behaviour

To properly validate the migration behaviour of NKT cells in my simulation, I will
require the use of 3D plus time imaging techniques such as 2-photon intravital
microscopy in order to capture the in vivo behaviour of these cells, tracking
NKT cell movement over time. Such techniques require a particular strain of
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mice, with fluorescent markers that allow NKT cells to be identified and tracked
independent of other mononuclear cells. This is possible with the CXCR6gfp+

mice, which have been used in other studies [Geissmann et al., 2005; Wehr et al.,
2013]; however, requires a significant investment in both financial and human
resource as well as time, hence why this contribution is not available in this
thesis.

8.4.3 Model Extensions and Refinements

8.4.3.1 Simulated Cells and Time Period

The abstraction that my simulation represents only attempts to capture events up
to the first 48 hours subsequent to infection. To assess the functional contribution
of the various lymphocytes, in addition to NKT cells, and other mononuclear cells,
further iterations of the model might benefit from their inclusion. However, those
cell populations are only believed to play a role in granuloma maturation after
the initial amplification stage [Moore et al., 2013]. Careful consideration of the
cascading effects of additional cells, and their influence on the environment, must
be made prior to their implementation within my model.

8.4.3.2 KC Cytokine Production and Parasite Dynamics

A recent computational study highlighted a key role for the KC produced (au-
tocrine) IL-10 cytokine in regulating KC ability to control parasite burden within
granulomas [Albergante et al., 2013]. My model doesn’t simulate any parasite dy-
namics, though implementing those dynamics would be possible given the modu-
lar nature of the simulator. This type of extension would allow us to further inves-
tigate various aspects of KC activation and subsequent cytokine and chemokine
production, which ultimately has an influence on the microenvironment and both
lymphocyte and myeloid cell populations. The model by Albergante et al. [2013]
represents a population level view of the same system explored in this thesis, I
approached the system from an individual level perspective. There may be the
potential for a great level of insight to be gleaned from utilising both models to
investigate future hypotheses relating to hepatic inflammation, with population
level findings being validated by my individual level simulation, and vice versa.

8.4.3.3 Lobule Variation and Interconnectivity

Future iterations of the model and structure generation algorithm will perturb
the location of the vertices of the generated sinusoid sections. Lobule section
morphology varies from the idealised hexagons in the literature, therefore mod-
ifying those vertices will allow us to generate ever more realistic lobule sections
that account for that heterogeneity. Lobule sections may also be combined in
future, to investigate inter-migration of cells between lobule sections, and how
that influences inflammatory responses.
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8.4.3.4 Potential For Multi-Scale Modelling

My simulation captures events at the cellular level. Many of the processes dic-
tating cell behaviour, and the factors influencing cells and the environment, are
abstractions. Extensions to the model could include modelling at multiple scales,
for example including an intra-cellular model of Kupffer cells, allowing the model
to incorporate the influence that parasites have on KC function, and the dynamics
of parasite survival and the implications this has on downstream infection.
There is also potential for the model to be extended to include dynamics at

the organ-level. For example, the simulation currently has a fixed population of
NKT cells in the micro-environment. Little is known at the micro-level about
the influx rates of cells into lobules. Data can be acquired on cell numbers at the
organ-level, and population-level models of the dynamics of cell quantities and
infiltration into the liver could be used as exogenous input for my simulation.
Ultimately, a balance between models at different scales will be beneficial to
investigate all pertinent aspects of hepatic inflammation in the context of VL.
Lastly, Cell objects, and the View objects that represent them when utilis-

ing visualisation, use a three dimensional Cartesian coordinate system, therefore
should there be any benefit to moving towards a spatially continuous 3D rep-
resentation of the environment, this could be achieved through modification of
the structure package, though this would have implications for how cells will
then interact. This extension may be of interest should future research be more
focused on how cellular interactions and forces in three dimensions influences
inflammatory foci, as in some tumor modelling.

8.5 an agile approach to creating a model of in-
flammation

8.5.1 On Scrum

In the context of the research presented in this thesis, the developer was a lone
individual taking on the roles of stakeholder, developer, and scrum master. In
order to adhere to the letter of scrum, a project and developer team consisting
of several individuals is more sensible; however, the principles that scrum advo-
cates are more than valuable to a lone developer. Scrum provides a means of
prioritising software features to be agreed by stakeholders, managing progress,
and incremental development. These values are ultimately as beneficial to an
individual as they are to a team.
Within this CoSMoS software project, I have no customers, only stakehold-

ers, and indeed my research has been undertaken with immunologists very much
involved in every stage of the development process. Requirements evolved over
time, which were then scheduled for implementation in subsequent software iter-
ations. Agile methods were invaluable when experimental data emerged from the
laboratory unexpectedly. Domain experts appreciated the flexibility of discussing
model changes in order to add or remove functionality to reflect new understand-
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ing acquired from the laboratory or the literature. I feel that by adopting an
agile development methodology researchers can increase productivity and stake-
holder engagement, which will ultimately improve the quality of the final software
product.

8.5.2 On Documentation

Agile methods generally promote a ‘lean’ approach to software documentation;
one of the core values of The-Agile-Manifesto [2001] is ‘working software over
comprehensive documentation’. That isn’t to say that one should not document
a project, but what the methodology deems more important is intricate knowl-
edge of the operation of software through close team cooperation during its’
development. Knowledge of the software product can then be communicated to
new team members by those who have intricate knowledge of its creation. Pitt-
Francis et al. [2008] echo these values, and use practices from the XP variant of
agile, such as pair-programming (two-developers working in unison), to integrate
new team members into a project. However, academic projects may go through
periods of inactivity, for example someone might be employed to build upon the
research of a previous PhD student or post-doc. If the original developers are
not members of that particular institute anymore, the new developer can only
rely on whatever software documentation exists to use, maintain and extend the
software.
In the context of the software developed for this thesis, there were no provisions

for long term staffing resources on the project. In order to ensure the future
viability of any research stemming from the project, some level of documentation
was required. Chapters 4 and 5 represent that documentation, and although there
were significant resource overheads in updating that documentation throughout
the project, those chapters provide a means for future developers to understand
the principles underlying my simulation software.

8.6 summary

This chapter has summarised the research contributions in this thesis, and ex-
plained how a computational model, developed in a principled manner (chapters 4
and 5), and the subsequent simulated experiments performed to answer my un-
derlying research questions (chapters 6 and 7), have evidenced the validity of my
core research hypothesis (stated in chapter 1). I feel that my model and results
represent a novel leap in spatio-temporal modelling of Leishmania induced liver
inflammation, and should also prove of interest to those studying and modelling
inflammatory responses in other tissues. The future work outlined in section 8.4
is achievable, and will serve to further highlight the contribution to the field that
this thesis represents.
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9 APPENDIX MATERIAL

9.1 model implementation

9.1.1 Initialisation and Update Cycle

The Main class in the Simulation package handles the command line arguments
used to provide parameterisation information for the simulation. One of the core
functions of this class is to instantiate the main simulation object. To make use of
various functionalities provided by MASON, including scheduling, the simulation
class needs to make use of the Steppable class in the sim.engine package. Class
EVLCore provides an interface that extends the Steppable class. Both EVLSim
and EVLSimWithUI implement the EVLCore interface. My main simulation
object is represented in the Environment class, which extends the MASON Sim-
State class, which contains an EVLSim simulation object that is steppable, and
handles all simulation updates. The simulation has an update cycle which is
time-stepped, with each iteration representing one second of simulated time. The
MASON class Schedule within the sim.engine package has pre-written libraries
for dealing with simulation scheduling (see also Appendix 9.1.3 for how this re-
lates to cells and cytokine management). Listing 3 details the overriden start
method contained in the Environment class.

Listing 3: Simulation Scheduling

@Override

2 public void start() {

super.start();

4 duration = System.currentTimeMillis();

setEVLParameters();

6 setup();

schedule.scheduleRepeating(Schedule.EPOCH,1,evl);

8 } �
9.1.1.1 With Visualisation

The model with visualisation adopts the Model-View-Controller design pattern.
The model is represented within the Environment class. When visualisation is
employed, the EVLSimWithUI controller class constructor sets up a number
of Portrayal objects, which are a type of MASON object that deals with the
display of 2D and 3D view objects. The constructor is also provided with the
Environment object so that the EVLSimWithUI, which extends the GUIState
class can receive model updates and relay them to the GUI.

157
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Listing 4: Visualisation Controller Constructor

EVLStartWithUI(SimState state) {

2 super(state);

Environment env = (Environment) state;

4

KupfferP = new ContinuousPortrayal3D();

6 KupfferP.setField(env.view.KupfferField);

NKTP = new ContinuousPortrayal3D();

8 NKTP.setField(env.view.NKTField);

sinusoidP = new ContinuousPortrayal3D();

10 sinusoidP.setField(env.view.SinusoidMap);

sinusoidP.setDirtyField(true);

12 chemoP = new ContinuousPortrayal3D();

chemoP.setField(env.view.ChemoMap);

14

// Build the box

16 wireFrameP = new WireFrameBoxPortrayal3D(-EXTRA_SPACE,

-EXTRA_SPACE,

18 -EXTRA_SPACE,

Environment.XMAX + 2*EXTRA_SPACE,

20 Environment.YMAX + 2*EXTRA_SPACE,

Environment.ZMAX);

22 } �
9.1.2 Structure Creation

The algorithm, created in collaboration with Dr. Paul Andrews, used to generate
representative sinusoid structures are detailed in algorithms 3 and 4. Structure
files are represented using the XML file format (listing 5). Each file contains a
Structure, which is comprised of Node and Edge elements. Nodes have several
attributes; a unique identifier, a type (regular node n, edge node e, drain node d)
and individual cartesian coordinate values. The structures generated all have a
zero value for the z coordinate component. Edge attributes include a unique iden-
tifier, two node identifiers (the nodes which make up this edge), and an identifier
which states the direction of flow for this edge (towards the drain node/central
vein).

Listing 5: XML Structure File

<Structure>

2 <Nodes>

<Node id="0" type="n" x="0.662198" y="0.111683" z="0.000000"/>

4 ...

</Nodes>

6 <Edges>

<Edge id="0" nodeA="6789" nodeB="8410" flow="8410"/>

8 ...

</Edges>

10 </Structure> �
A Structure package was written to represent the network of nodes and edges

contained within a structure file. The package contains class representations for
the structure, its nodes and edges (figure 64). An XML DocumentBuilder is
constructed to read the structure parameter file, and the specific structure file
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provided via command line argument to the simulation. A single structure object
is a component of the overall simulation Environment object.

Listing 6: Structure Creation

private void createStructure(int NORMALISE, Parameters params)

2 {

try

4 {

/* Using factory get an instance of document builder */

6 System.out.println(" Loading "+params.structureFile);

DocumentBuilder db = dbf.newDocumentBuilder();

8 File in = new File(params.directory+"/src/networks/"+params.structureFile);

10 /* Parse using builder to get DOM representation of the XML file */

dom = db.parse(in);

12

System.out.println("Creating nodes");

14 setNodes(dom, NORMALISE, params);

16 System.out.println("Creating edges");

setEdges(dom);

18

}catch(ParserConfigurationException pce) {

20 pce.printStackTrace();

}

22 catch(SAXException se) {

se.printStackTrace();

24 }catch(IOException ioe) {

ioe.printStackTrace();

26 }

28 } �
9.1.3 Initialising and Scheduling Cells and the Cytokine Manager

Subsequent to the program and structure initialisation, the cytokine manager
and cells are initialised before adding the simulation object to the scheduler
(listing 7). Firstly, the cytokine manager is instantiated, followed by a conditional
statement which reads from the command line parameters to determine which
KC distribution algorithm has been selected, then creates the population of KCs
(placement is performed using algorithms 1 and 2). Secondly, the population
of NKT cells are instantiated. Lastly, the schedule() method adds the cytokine
manager and cells to the scheduler.
The MASON scheduler provides a threadsafe means of queuing and scheduling

events to occur. All objects within the simulation are initialised using the Sched-
ule.EPOCH field from the Schedule class, which schedules them to be stepped
at the first possible time.

Listing 7: Simulation Setup

@Override

2 public void start() {

super.start();

4 duration = System.currentTimeMillis();

setEVLParameters();

6 setup();
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schedule.scheduleRepeating(Schedule.EPOCH,1,evl);

8 }

10 private void setEVLParameters() {

EVLSim.iterations = params.simIterations;

12 EVLSim.logIterations = params.logEveryIterations;

}

14

private void setup() {

16 cytokineManager = new CytokineManager(params);

if (params.distribute.equals("bouwens")) createKCsBouwens();

18 else createKCsEvenly();

createNKTs();

20 for (Kupffer k : kupffers) {

Initialise.kupfferParameters(this,k);

22 }

for (NKT nkt : nkts) Initialise.nktParams(this,nkt);

24 schedule();

} �
Cell states defined in the various state diagrams in the platform model are im-

plemented by attributing specific cell objects, objects of class NKT and Kupffer,
with an enum type. Transitions between states are governed by various condi-
tional statements within the relevant class.

9.1.3.1 KC Cells

The instance variable kState is an object of enum type KupfferState (figure 67).
Only the aware and engaged constant values are used, although additional values
have been declared to facilitate the addition of further functionality.
The Kupffer class contains most of the core functionality for KCs, however,

two child classes have been created to differentiate additional functions between
infected and uninfected KCs. Kupffer class functions are then overridden as re-
quired. Within the step function, a switch statement is used to determine the
current cell functionality conditional on its current state (listing 8).

Listing 8: Infected KC Step Function

1 @Override

public void step( SimState state ) {

3 env = (Environment)state;

5 switch (kState)

{

7 case aware:

aware();

9 break;

case engaged:

11 engaged();

break;

13 ...

}

15 } �
The transition between states, in this case the aware and engaged state is

achieved with a conditional statement within the aware() method. As the state
diagram for infected KCs dictates (figure 19), the aware to engaged transition
will occur if the current node IFN-γ level is greater than a threshold. This is
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implemented using a conditional statement that compares the double value of
the current nodes IFN-γ with the ifnThreshold value parameterised when KCs
are initialised.

Listing 9: Infected Aware Method

1 @Override

protected void aware() {

3 /* Check if the IFN threshold has been reached on the node

* If so, become engaged. */

5 if (Double.compare(env.getIFN(node),ifnThreshold) >= 0) {

kState = KupfferState.engaged;

7 }

} �
The engaged functionality for KCs is implemented in the increment() method

(listing 10).

Listing 10: KC Increment Method

/**
2 * Increment attraction and if there multiple cells co-localised

* then increment retention.

4 */

private void increment() {

6 /* Increment attractive chemokine function only if we’re after

* the chemoSwitch limit. Until then, all attraction increments are

8 * dealth with by the cytokine manager */

if (env.evl.iteration > env.params.chemoSwitchIteration) env.incrementAttract(node, env.

cellsAtNode());

10 /* Cells at the node is a count of NKT cells only

* only increment if there are cells

12 * - Retention dealt with normally*/

if(env.cellsAtNode(node) >= 1)

14 env.incrementRetain(node, env.cellsAtNode(node));

} �
9.1.3.2 NKT Cells

The more complex array of states, in comparison to KCs, of NKT cells requires
two types of enum to implement the cell states. NKT cell objects have instance
variables for theirMoveState (governing movement states) and theirActionState
(governing action states). Switch statements within the NKT cell step() method
are used to determine which functions the NKT cell performs depending on its
current state (listing 11). ActionState function is determined first, followed by
MoveState function, though these are evaluated sequentially within the same
simulation iteration.
Transitions between states are also implemented using a variety of conditional

statements. An example is when NKT cells begin the simulation, they are in
the inactive ActionState and the patrolling MoveState. The sense() method is
invoked whilst patrolling, and this method provides functionality for the cell to
query the network environment (listing 12).

Listing 11: NKT Step Method

1 @Override
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public void step ( SimState state ) {

3 env = (Environment) state;

5 switch(action_state)

{

7 case inactive:

break;

9 case producing:

produce();

11 break;

case recovering:

13 recover();

break;

15 }

switch(move_state)

17 {

case patrolling:

19 sense();

break;

21 case chemotaxing:

chemotax();

23 break;

case aggregating:

25 action_state = ActionState.producing;

break;

27 }

} �
First, the sense method checks to see if the NKT is currently recovering after

aggregating, if this is the case then the only function of the NKT cell is to move
around the network. If that condition is not satisfied, the NKT cell will then
determine if it is on a network node with diffused chemokine and, assuming there
is no KC on that node (which results in NKT cell aggregation), the NKT cell
will transition into the chemotaxing MoveState. As the platform model doesn’t
implement interactions with uninfected KC, the method also ensures that KCs
do not aggregate if a co-located KC is of type KCUn (the child class of Kupffer
representing an uninfected KC).

Listing 12: NKT Sense Method

private void sense()

2 {

if (action_state == ActionState.recovering) move();

4 else {

if (env.getNode(node).getChemotaxNodes().size() > 0 && env.structure.getNode(node).getKC()

== null) move_state = MoveState.chemotaxing;

6 else if (env.structure.getNode(node).getKC() != null)

{

8 if (env.structure.getNode(node).getKC() instanceof KCUn) forceOut();

else bind_to_kc();

10 }

else move();

12 }

} �
The movement code for NKT cells is detailed in listing 13. As reported in

section 5.6.3.2, the move() method is first used to determine when cells should
move subject to a probabilistic calculation of speed within pre-defined bounds.
When the cell satisfies the move condition, a three stage movement method is
invoked.
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move_stage_a There are 3 possible scenarios for NKT cell movement. Either
a) the cell is on an edge node, where there is only one possible edge to
move along, b) there are more than one edges connected to the current
node (a branch point or a segment of sinusoid), or c) the NKT cell will
probabilistically reverse direction and traverse the previous edge and re-
turn to the previous node. Method move_stage_a has several conditional
statements to satisfy these scenarios, and conditional on the outcome of
those statements a relevant option is passed to move_stage_b with the
edge on which the cell will move.

move_stage_b This method receives an edge and an integer option. This
method extracts the required edge information for the next move and relays
them to move_stage_c to finalise the move with the environment. The par-
ent cell class for NKT cells contains instance variables which store the last
edge and node, and these are used to set the current NKT cell information
if the NKT cell is probabilistically reversing in the network.

move_stage_c This method utilises the accessor/mutator methods in the en-
vironment class to finalise the move.

Listing 13: NKT Cell Movement Code

1 private void move() {

move -= 1;

3 if (move == 0) {

/* Recalculate the next cell velocity based on the parameter bounds */

5 int diff = moveMax - moveMin;

if (diff == 0) {

7 move = moveMin;

}

9 else {

move = env.random.nextInt(moveMax - moveMin) + moveMin;

11 }

lastEdge = move_stage_a();

13 distance += 1; /* TEST DISTANCE CODE */

if (env.getNode(node).isDrain() == true)

15 {

/* If the cell has moved to a drain, reenter elsewhere */

17 node = env.reenter();

}

19 }

}

21

/**
23 * Method to move an NKT cell to a new node

* @return Returns the NKT cells last edge after this movement cycle

25 */

private Edge move_stage_a( ) {

27 ArrayList<Edge> last = new ArrayList<Edge>();

last.add(lastEdge);

29 ArrayList<Edge> nedges = new ArrayList<Edge>(env.getNode(node).getEdges());

nedges.removeAll(last);

31 ArrayList<Edge> edges = new ArrayList<Edge>(nedges);

Edge e = new Edge();

33 if (edges.size() > 1) {

/* There are two or more edges to choose from */

35 int size = edges.size();

int item = env.random.nextInt(size);
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37 e = edges.get(item);

return move_stage_b(e, 2);

39 }

else if (env.random.nextDouble() < turnProb && lastEdge != null) {

41 /* Probabilistic change in direction */

/* Option 0 to ensure the lastEdge is switched */

43 return move_stage_b(e, 0);

}

45 else {

/* There is only one edge to choose from */

47 try {

return move_stage_b(edges.get(0), 1);

49 }

catch (Exception except){

51 return null;

}

53 }

}

55 /**

* Sets the NKT Cells new node id based on the fetching the

57 * other connected node.

* @param e The relevant edge to move along

59 * @param option Option to ensure the lastEdge is set correctly

* @return Returns the current edge

61 */

private Edge move_stage_b(Edge e, int option) {

63 int a_id,b_id;

65 if (option == 0)

{

67 a_id = lastEdge.getNodeA().id;

b_id= lastEdge.getNodeB().id;

69 }

else

71 {

a_id = e.getNodeA().id;

73 b_id = e.getNodeB().id;

}

75 if (node == a_id) { move_stage_c(b_id, a_id); }

else if (node == b_id) { move_stage_c(a_id,b_id); }

77

if (option == 0) { return lastEdge; }

79 else { return e; }

}

81

/**
83 * Set the new node details for this Cell.

* @param a The id of the relevant nodeA

85 * @param b The id of the relevant nodeB

*/

87 private void move_stage_c(int nodeA, int nodeB)

{

89 node = env.getNode(nodeA).id;

location = env.getNode(node).getLocation();

91 lastNode = env.getNode(nodeB).id;

env.removeCellFromNode(nodeB, nktid);

93 /* add and remove cell to the "cells" arraylist of the node */

env.addCellToNode(nodeA, nktid);

95 }

97 /**

* Set the probability to turn in the sinusoids for this cell.

99 * @param turnProb

*/

101 public void setTurnProb(double turnProb) {

this.turnProb = turnProb;
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103 } �
9.1.3.3 Cytokine Manager

The CytokineManager class is used to handle all chemokine functionality, both
attractive and retentive chemokine. The constructor takes values for various
chemokine constants from the simulation input parameters object (listing 14).
As detailed in section 5.3.4, chemokines are modelled as a sigmoid function, and
the method in listing 15 is used to calculate the constant c for equation (1).

Listing 14: CytokineManager Constructor

1 public CytokineManager(Parameters params) {

chemoIFNConstant = calculateConstant(params.chemoIFN);

3 chemoAttractConstant = calculateConstant(params.chemoAttract);

chemoRetainConstant = calculateConstant(params.chemoRetain);

5 linearDiffusionTick = calculateLinearDiffusionTick(params.chemoDist,params.maxDist);

} �
Listing 15: Calculate constant

double calculateConstant(double thresholdValue, int increments) {

2 return Math.abs((Math.log((1/thresholdValue)-1)-6)/increments);

} �
The CytokineManager step function involves multiple procedures. Firstly, for

each KC the updateComponents method (updateComponentsUninfected for
uninfected KCs) updates the level of IFN-γ, attractive chemokine and retentive
chemokine at the respective nodes. The individual cells increment the variable of
the sigmoid function representing time (see section 5.3.4.1), and the updateCom-
ponents method evaluates the specific cytokine or chemokine value based on the
sigmoid function (using the sigmoid method).
Once source cytokine and chemokine levels have been calculated, the diffusion

algorithm for attraction is initiated. Firstly, each node has an ArrayList which
stores the id of any KC that has chemokine diffusing up to that node’s location.
That ArrayList is cleared and is ready to be updated. Secondly, for each KC
the current level of attractive chemokine is extracted from that KC’s current
node. The method calculateLinearDiffusionTick is then used to evaluate how
many nodes the current level of chemokine will diffuse (see section 5.3.4.2). A
conditional statement is then used to ensure that this distance (in nodes) is less
than the maximum parameterised diffusion distance. Lastly, the walk_nodes_kc
function is invoked and recursively sets the chemotax nodes for every node that
will now be influenced by the current KC’s chemokine.

Listing 16: CytokineManager Step Function

1 @Override

public void step(SimState state) {

3 env = (Environment)state;

/* Update all the chemokines components at infected KC nodes */

5 for (Kupffer k : env.getKupffers()) {

if (k instanceof KCInf) {
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7 updateComponents(k.getNode());

}

9 else {

updateComponentsUninfected(k.getNode()); /* Actually update uninfected attract

*/

11 }

}

13

/* Diffuse every iteration - this may need optimised at a later date for performance

*/

15 if (EVLSim.iteration % 1 == 0) {

/* Remove all attractive chemokine nodes */

17 for (Node n : env.structure.getNodes()) {

if (n.getKC()==null) {

19 env.delChemotaxNodes(n.id);

}

21 }

23 /* Recalculate all attractive chemokine and diffuse */

for (Kupffer k : env.getKupffers()) {

25 int chemoDist;

double currentLevel = env.getAttract(k.getNode());

27 /* Now calculate how many extra ticks to add to minimum diffusion distance */

int ticks = (int)(Math.round(currentLevel/linearDiffusionTick));

29 chemoDist = Environment.params.chemoDist + ticks;

if (chemoDist > Environment.params.maxDist) chemoDist = Environment.params.

maxDist;

31

/* Perform the diffusion */

33 simulation.Functions.walk_nodes_kc(k.getNode(),

k.getNode(),

35 0,

chemoDist,

37 env,

k.getNode());

39 }

}

41 } �
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9.1.4 UML Class Diagrams

Figure 62: Simulator Packages
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Figure 63: Package: Simulation
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Figure 64: Package: Structure
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Figure 65: Package: Cells
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Figure 66: Package: CSV

Figure 67: Package: Enums
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Figure 68: Package: Cytokines
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Figure 69: Package: Views
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9.1.5 Algorithms

Input : A set A of candidate nodes
Input : Number of infected KCs numInfected
Input : Number of uninfected KCs numUninfected
viableCentrilobular← []

viableMidzonal← []

viablePeriportal← []

for node in A do
if distanceFromCentralVein(node) < 100 then

viableCentilobular.append(node)
else if distanceFromCentralVein(node) < 200 then

viableMidzonal.append(node)
else

else viablePeriportal.append(node)
end

end
forCV ← (int)Math.round(numInfected ∗ ratioCV)
forMZ← (int)Math.round(numInfected ∗ ratioMZ)
forPP← numInfected− forCV − forMZ for i in forCV do

/* Place KC on a random viable node */
removeNode← placedKC(viableCentrilobular)

end
for i in forMZ do

/* Place KC on a random viable node */ removeNode← placedKC(viableMidzonal)

end
for i in forPP do

/* Place KC on a random viable node */
removeNode← placedKC(viablePeriportal)

end
Algorithm 1 : KC placement algorithm.

Input : A set S of viable nodes
Input : A candidate node α
Input : Network tree N
Input : Minimum separation distance µ
T ← []

Recurse N up to distance µ from node α
Add currentNode to T

Calculate set difference removing proximal nodes
Return to placement algorithm to generate a new candidate node

Algorithm 2 : KC placement algorithm (2).
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1. Generate a potential node (µ) 1 µm from the current node (δ):
if If we are within range of an attracting node (α) then

µ is generated in the direction of α (see figure 17b).
else

µ is generated based on our current direction with a small random adjustment (see
figure 17a).

end
2. Create a new segment between δ and another node:
if The line between δ and µ intersects another sinusoid segment in the sinusoid
network then

Connect δ to the existing node closest to µ (see figure 17d).
else

Connect δ and µ (see figure 17c).
end
Repeat Steps 1 and 2 until an intersection is detected.

Algorithm 3 : Sinusoid branch generation

A drain node (representing the central vein) is placed in the centre of the 2D space,
surrounded by six entry nodes (representing the locations of portal triads) in an irregular
hexagon formation (see figure 17a). The exact location of the entry nodes is determined
stochastically.
for each of the six entry nodes do

grow a sinusoid branch (algorithm 3)) from the entry node towards the attracting
drain node (see figure 17f).

end
An additional set of entry nodes is created for each original entry node and aligned with
the original node. These additional nodes represent additional sources of blood supply
coming out of the portal triad (see figure 17g).
while mean sinusoid length of the entire structure reaches 43.1µm. do

Additional sinusoids are created to connect existing sinusoids (see figure 17i).
Select the longest sinusoid in the structure.
Select a node in the longest sinusoid and grow a sinusoid (see algorithm 1) to either
the left or right at an angle drawn from a normal distribution with a mean of 32.5◦.

end
Algorithm 4 : Sinusoid branch generation

9.2 appendix data

The data in table 20 was acquired by our collaborators Amy Sawtell and Lynette
Beattie, then processed to include the infection rates. I later analysed the data
to produce the number of KCs per image section, required to parameterise the
number of KCs in our simulated environment.
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Experiment	  1

Motile Sessile Infected	  M Infected	  S Motile Sessile Infected	  M Infected	  S Motile Sessile Infected	  M Infected	  S
8 4 3 1 3 4 0 1 9 2 2 0
12 0 2 0 9 1 3 0 14 5 2 2
15 1 3 0 0 3 0 1 22 6 7 1
12 1 4 0 10 3 1 1 24 8 5 4
5 10 0 2 10 2 1 2 16 3 8 0
3 4 1 1 8 3 3 0 6 3 3 1
3 4 1 0 1 11 0 2 10 4 2 2
11 1 2 0 15 2 5 0 15 0 4 0
9 5 0 2 6 4 1 2 18 13 4 3
4 11 0 1 0 14 0 2 30 2 7 1

Totals 82 41 16 7 62 47 14 11 164 46 44 14
Percentage	  M/S 19.5 17.1 22.6 23.4 26.8 30.4
Total	  infected 23.0 25.0 58.0
Total	  infected	  % 18.7 22.9 27.6
Average	  infected	  % 23.1
Motile	  KCs	  per	  image	  section 102.7
Sessile	  KCs	  per	  image	  section 44.7

Experiment	  2

Motile Sessile Infected	  M Infected	  S Motile Sessile Infected	  M Infected	  S Motile Sessile Infected	  M Infected	  S
4 6 1 0 9 3 1 1 0 18 0 4
5 9 3 3 6 5 1 1 3 11 1 1
1 8 0 1 7 2 2 0 3 20 1 3
3 8 0 2 9 4 1 1 2 10 0 3
3 10 0 1 7 1 3 0 2 17 0 5
2 6 0 1 5 4 1 3 0 20 0 4
2 13 1 3 2 14 1 6 2 14 0 2
4 10 1 3 8 9 3 2 5 16 0 4
3 7 1 2 6 11 2 4 0 14 0 4
2 1 0 2 10 3 1 0 0 14 0 3

Totals 29 78 7 18 69 56 16 18 17 154 2 33
Percentage	  M/S 24.1 23.1 23.2 32.1 11.8 21.4
Total	  infected 25.0 34.0 35.0
Total	  infected	  % 23.4 27.2 20.5
Average	  infected	  % 23.7
Motile	  KCs	  per	  image	  section 38.3
Sessile	  KCs	  per	  image	  section 96.0

2	  hour	  infection
Mouse	  1 Mouse	  2 Mouse	  3

2	  hour	  infection
Mouse	  1 Mouse	  2 Mouse	  3

Table 20: Quantifying KC Numbers and Infection Rates.
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9.3 quantifying granuloma location in vivo

To quantify granuloma location in vivo, and to ascertain whether granulomas
are more likely to form in the peripheries, I first needed to define the point of
reference within the liver lobule. The obvious choice was the central vein of the
lobule; however, there are challenges in accurate identification of central veins
from mouse liver sections, which visually, are far removed from the idealised
hexagonal structures illustrated in the literature. Without access to an expert
histologist, I experimented to ascertain whether or not antibody staining of liver
sections could clearly distinguish central veins from the likes of portal veins.
Mice were infected intravenously with 3x107 Leishmania donovani amastig-

otes from the tandom Tomato fluorescent protein expressing Ethiopian strain
(tdTom.LV9). After 18 days, livers were extracted, weighed and placed into 2%
PFA in PBS for 2 hours, then 30% surcrose in PBS overnight. Tissues were
then embedded in Optimal Cutting Temperature (OCT)(Sakura) and stored at
-70◦C until use. 20µm cryosections were fixed and labelled (see protocol in Ap-
pendix 9.3.1) anti-glutamine synthetase to identify centrilobular hepatocytes, and
DAPI (Invitrogen) to visualise cell nuclei. Images were captured as 1µm optical
slices using a LSM510 confocal microscope (Zeiss).
Whilst images such as figure 7 were acquired, which clearly identify a lobule

section with Kupffer cells (green), leishmania parasites (red), cell nuclei (blue)
and the AGS antibody stained central vein (white), other images proved harder
to definitively categorise. The primary reason for this was the inconsistency in
mice liver lobule structure. Often, central veins (assuming AGS identifies them
correctly), can be found near side by side, distorting any imposed hexagonal struc-
ture, and thus making them difficult to use as a reference point for quantifying
granuloma location.
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9.3.1 AGS Staining Protocol

Immunofluorescent Labelling Protocol - Anti-glutamine Synthetase

• After cutting, allow slides to air dry for >30min - preferably overnight

• Encircle sections with ‘Immedge pen’ and allow to dry

• Wash slides x 3 in PBS - 5 min per wash

• Block slides in 5% serum, 30 minutes rest

– Make up 1900 µl PBS to 100 µl Donkey serum

– Vortex serum

– Apply to slides

– Wait 30 minutes

• Add primary antibody (anti-glutamine synthetase) at predeterminded dilution, diluted
in 5% serum in PBS - 1 hour rest

– Take 1 µl AGS and dilute into 999 µl Donkey serum

– Take 200 µl from (a) and dilute into 800 µl Donkey serum

– Take 100 µl from (b) and dilute in 100 µl Donkey serum

• Wash slides x3 in PBS - 5 min per wash

• Add secondary antibody (Donkey anti rabbit)

– Take 1 µl of Donkey anti-rabbit and dilute in 499 µl PBS

– Apply to slides

– Wait 40 minutes

• Wash slides x3 in PBS - 5 min per wash

• Incubate sections in 1 µg/ml DAPI for 5min rest

• Wash slides x3 PBS

• Mount slides in Pro-long gold (molecular probes) and seal coverslips with nail polish the
following day

• Store slides at 4◦C in the dark



10 GLOSSARY AND DEFINITIONS

ABM - Agent-based Modelling
APC - Antigen presenting cell
DAPI - 4’,6-diamidino-2-phenylindole
Ex vivo - Latin for “out of the living”
EVL - Experimental Visceral Leishmaniasis
FACS - Fluorescence-activated cell sorting
IFN-γ - Interferon gamma
In silico - Performed using computer simulation
In situ - Latin for “in position”
In vivo - Latin for “within the living”
In vitro - Latin for “in glass”
KC - Kupffer Cell
LHS - Latin Hypercube Sampling
NKT - Natural Killer T cell
OCT - Optimal Cutting Temperature (Sakura)
ROI - Reactive oxygyon intermediates
PFA - Paraformaldehyde
PBS - Phosphate-buffered saline
rIL-15 - Recombinant Interleukin-15
SIRPα - Signal-regulatory protein alpha
TCR - T cell receptor
UML - Unified Modeling Language
VL - Visceral Leishmaniasis
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