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Abstract 

The objective of this Ph.D project was to study the role of transition metal 
ions in oxidative hair colouring. Model systems corresponding to real-life hair 
colouring conditions were designed to examine copper(II) and iron(III) catalysed 
decomposition of alkaline hydrogen peroxide and hydroxyl radical formation.  

In a chelant-free system, copper(II) ions were more active in decomposing 
alkaline hydrogen peroxide compared to iron(III) ions. For copper(II) ions, the 
initial rate of decomposition of hydrogen peroxide and hydroxyl radical formation 
increased with an increase in initial concentration of copper(II) ions. Adding 
chelants to the reaction solution altered the catalytic activity of metal ions. EDTA 
and EDDS chelants with iron(III) generated more hydroxyl radical and 
decomposed higher amounts of hydrogen peroxide than the corresponding 
complexes of these chelants with copper(II) ions. Most studied chelants 
supressed catalytic activity of copper(II) ions except HEDP chelant which rapidly 
decomposed hydrogen peroxide. The results highlight that different metal-chelant 
systems have different level of catalytic activity in the decomposition of hydrogen 
peroxide. 

Adding large excess of calcium ions to the reaction solution influenced the 
binding of copper(II) ions. Unlike other chelants, only EDDS showed selective 
binding of copper(II) ions in the presence of calcium and suppressed the 
decomposition of hydrogen peroxide. Similar results were obtained for copper 
treated hair fibres, where EDDS again showed strong preference and selectivity 
for copper(II). This suggests that EDDS is the best chelant to control free radical 
mediated protein hair damage during oxidative hair colouring. The selectivity of 
EDDS chelant was explained using speciation plots. 

Catalytic activity of copper(II) ions was also examined in the presence of 
aromatic dye precursors. PPD/MAP combination suppressed decomposition of 
alkaline hydrogen peroxide which suggests that oxidative hair dyeing is likely to 
induce less protein damage to hair as compared to the bleaching systems. It is 
believed that some unknown intermediates are formed which chelate copper 
catalysts changing their chemical activity. 

Among the chelants examined in the current study, HEDP is an exception as 
its mixture with copper(II) ions led to rapid decomposition of alkaline hydrogen 
peroxide and showed a very unusual kinetic profile. A mechanistic study showed 
that the decomposition reaction proceeds via formation of an active catalyst that 
degrades the chelant and eventually seeds formation of catalytically-inactive 
basic copper phosphate/carbonate nanoparticles. The nanoparticles prevent any 
further catalytic reaction as freshly added Cu2+ ions quickly adsorb on their 
surface and do not form active catalyst. 

In a separate study, human hair samples were analysed to quantify the 
amount of calcium carbonate present in the bubble shaped structures lying over 
the hair shaft. SEM Images were analysed to estimate the amount of material 
present while quantitative gas IR analysis showed that the amount of calcium 
carbonate increased with increasing bubble count level. Calcium carbonate found 
by IR analysis was less than the values estimated by image analysis which 
suggested that calcium carbonate may not be the only material present in the 
bubble and some other unknown material may also be present. 
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1 Introduction 

1.1 Human hair fibre 

Human hair is a natural proteinaceous fibre mainly composed of α-keratin.1-4 

The exact amino acid content of α-keratin varies among different racial origins.5 

Hair consists of a long polymeric structure where peptide chains are held together 

by various chemical interactions such as covalent bonds (disulfide linkage), 

hydrogen bonds, ionic and hydrophobic interactions (Figure 1-1). Among them, 

disulfide linkage is particularly important for shaping the mechanical properties of 

the hair fibre.6-10 Apart from proteins, hair also contains lipids, especially in its 

outermost layer which defines its hydrophobic properties.11, 12 

          

Figure 1-1：Structure of human hair fibre demonstrating cuticle, cortex and 
medulla. The scheme also shows the main chemical interactions between 
keratin fibres in human hair.8, 9, 13 
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The morphological structure of human hair fibre includes three major layers, 

the outermost layer is cuticle; the middle region is called cortex and the innermost 

region is medulla (Figure 1-1). These three layers differ slightly in their chemical 

composition.  

The cuticle coats the fibre as “a tile on a roof”. Being the outermost layer, the 

cuticle plays an important role in controlling adsorption and diffusion of various 

active ingredients during bleaching, dyeing and fibre strengthening treatments 

(hair conditioning). It is also responsible for the shine, tactile properties, surface 

friction and wettability. The cuticle itself is made of various sub-layers. The outer 

hydrophobic covalently bonded layer is composed of an ester of 18-methyl-

eicosanoic acid.12, 14 

The cortex accounts for the major portion of the fibre and is largely 

responsible for its mechanical properties. It contains proteins that are termed 

keratinous or nonkeratinous according to their cystine content; nonkeratinous 

proteins contain less cystine. The consequently lower amount of disulfide 

crosslinks leaves nonkeratinous proteins more labile and less resistant to 

chemical attack than the cystine rich keratinous components of the fibre.13 

In daily life, hair is subjected to various grooming treatments such as 

cleansing, conditioning, colouring and styling. The structure and chemical 

composition of hair plays an important role in these cosmetic treatments.15, 16 The 

presence of lipids at the outermost layer and the extent of disulfide crosslinking 

offer resistance to the chemical treatments. Hence, different hair fibres may 

require different formulations for the same cosmetic treatment. 

1.1.1 Metal contents of human hair fibre 

Human hair fibre may contain alkali, alkaline earth and transition metal ions.17 

Commonly observed metals are calcium, magnesium, iron, copper, zinc and 

lead.18-21 There is a variety of both soft and hard chelating groups in the hair fibre. 

For instance, hair is rich in sulfur containing components, it is believed that metal 

ions are bonded through metal-sulfur interaction. Hydroxyl groups of serine and 

nitrogen groups may also provide metal binding sites. A recent EPR study also 

proposed nitrogen and oxygen binding sites for copper in hair fibre.22 The 

carboxylate anions of dicarboxylic acids (aspartic acid and glutamic acid) can 
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also chelate metal ions. This fact is supported by the observation that hair 

absorbs more alkaline earth metals at neutral pH due to deprotonation of 

carboxylate.18, 23 Oxidative hair treatment oxidises cystine to cysteic acid which 

can further enhance metal uptake by providing new binding sites.24-26 Melanin 

pigment present in the hair fibre can also bind metal ions such as calcium, 

magnesium, iron and copper.27-29 

Metal uptake in the hair fibre varies for different gender, age and is influenced 

by demographics and pollution. Inhabitant living in industrial zones may have high 

metal build up. Daily grooming which involves cleansing and styling contributes 

to the hair metal uptake.30 Tap water contains a significant level of metal ions 

which get adsorbed on the fibre surface during washing. Calcium soap deposits 

have also been observed on the hair surface.31 The presence of these metals 

changes the physicochemical characteristics of the hair fibre resulting in stiffness, 

difficulty in dry and wet combing and styling, less shine and large volume.25, 32 

This alters the response and behaviour of the hair fibre to different chemical 

treatments such as bleaching, permanent dyeing and straightening.  

A quantitative analysis of American-Caucasian hair fibre by Procter & 

Gamble (P&G) found 10-20 ppm of iron and 100-200 ppm of copper. A large 

amount of calcium (1000–2000 ppm) and 150-300 ppm of magnesium ions was 

also observed.33 These metal ions were extracted by fibre digestion and 

quantified by chromatographic and spectroscopic methods.34-37 

1.2 Oxidative hair treatment 

Hair bleaching and permanent dyeing are chemical processes aimed at 

changing the hair colour.38 The bleaching process is defined as “the lightening of 

natural hair colour”. The objective is to give hair a lighter look and prepare it for 

the subsequent dyeing steps. It is commonly used by both elderly people to 

conceal their grey hair and youth to achieve a new fashionable colour shade. The 

history of hair bleaching goes back to early Romans who first used plant ash to 

change their hair colour shade. The chemistry came to play a vital role with the 

application of hydrogen peroxide by the late 19th century. At an international 

exhibition in 1867, British chemist E. H. Thiellay demonstrated the benefits of 
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hydrogen peroxide for oxidative hair bleaching. His product was called Eau de 

fontaine de Jouvence doree (Golden water from the fountain of youth).39 

Natural hair colour is due to small granules of polymeric pigment known as 

melanin.39-41 Melanin is the main target site and component to be removed or 

degraded during the process of hair bleaching. Two types of melanin are found 

in human hair fibre, eumelanin and pheomelanin (Figure 1-2). Eumelanin 

provides brown to black colour shades while pheomelanin is responsible for 

yellow, blond and red colour shades. Hair colour is determined by the amount of 

melanin present, the ratio of the two types of melanin and their grain size. The 

melanin particles scatter light in addition to some absorption by the chromophores 

in the melanin structure, thus giving colour to the fibre. Melanin is relatively stable 

under acidic conditions and does not degrade or depolymerise, however, it can 

be depolymerised and bleached under alkaline conditions using an oxidising 

agent.41-47 
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(A) 

  

(B) 

Figure 1-2: Proposed chemical structure of (a) eumelanin and (b) 
pheomelanin.47 

1.2.1 Chemistry of hair bleaching 

Hair bleaching involves oxidative degradation of melanin polymer (Figure 
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derivatives that are removed on rinse off.38, 39 A model study has revealed that 

dihydroxyindol (DHI) and dihydroxyindol carboxylic acid dimer degrades at high 

pH via a repeated attack of nucleophilic peroxide anion. It involves breaking 

carbon–carbon bonds through various intermediates, eventually forming pyrrole 

acids (Figure 1-4).45 

 

Figure 1-3: TEM images of melanin grains before and after oxidative 
bleaching.48 

 

Figure 1-4: Proposed mechanism for the oxidative degradation of 
dihydroxyindol dimer.45 
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Apart from alkaline hydrogen peroxide, other oxidizing agents such as 

potassium permanganate, persulfates, peracetic acid and sodium hypochlorite 

have also been investigated for their ability to bleach melanin. Similarly, other 

alkalizing agents such as sodium hydroxide, sodium carbonate, 

monoethanolamine have also been studied. However, hydrogen peroxide & 

ammonia mixture is the best combination.49 Ammonia has a special role in 

disintegrating melanin particles. The studies revealed that hair bleaching is not 

merely due to alkaline pH, but the ability of ammonia to partially solubilise the 

melanin paticles.40 

1.2.2 Properties of bleached hair and the role of transition metal 

ions in bleaching 

In addition to bleaching melanin, oxidative treatment with alkaline hydrogen 

peroxide can induce various other chemical modifications in the hair fibre which 

can change its physicochemical and biological properties.50, 51 Bleaching can also 

lead to oxidation of protein components of the hair fibre. Oxidation of cystine 

cleaves disulfide linkage generating cysteic acid (Figure 1-5). This alters the 

electrostatic properties of fibre and creates anionic sites which can subsequently 

lead to higher metal uptake. As the disulfide bond contributes to the tensile 

properties of the fibre, its cleavage leaves hair fragile and damaged.52 This is why 

bleached hair fibres present low tensile strength, high porosity and poor sensorial 

profile.53, 54 This also alters the cosmetic attributes of the fibre and makes its 

manageability and styling difficult.55-58 

Cystine 

           Cysteic acid 

Figure 1-5: Cystine and its oxidation product cysteic acid. 
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As described earlier, hair contains a significant amount of iron and copper 

metal ions. These transition metals can catalyse decomposition of hydrogen 

peroxide during oxidative hair colouring through a Fenton-like reaction. During a 

preliminary experiment, bleaching hair fibres with alkaline hydrogen peroxide 

produced significant bubbles (Figure 1-6).  This reaction may involve formation 

of highly reactive intermediates such as hydroxyl radicals or higher oxidation state 

metal intermediates. Free radical-mediated oxidation of proteins and lipids is well-

known.59, 60 Previous studies have reported a positive correlation of copper 

content in the hair and cysteine oxidation to form cysteic acid.61-63 This metal-

mediated free radical chemistry inside the hair fibre may cause significant 

damage to the hair fibre. This thesis reports our investigation of the role of iron 

and copper metal ions in oxidative hair colouring.  

 

Figure 1-6: Hydrogen peroxide decomposition in the presence of metal 
loaded human hair fibres.63 

1.3 Metal catalysed decomposition of hydrogen peroxide 

1.3.1 Fenton chemistry 

Metal catalysed decomposition of hydrogen peroxide has a long story 

extending over more than 100 years.64, 65 H.J.H Fenton made exciting 

observations in 1876 when he was still an undergraduate student at Cambridge. 

He published his observations in Chemical News. A full paper was published later 

in 1894 where he described66  
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“When tartaric acid in aqueous solution interacts with certain oxidizing agent 

in the presence of a trace of ferrous salt, a solution is obtained which gives a 

beautiful violet colour on the addition of a caustic alkali”.  

Fenton mentioned two important points in his findings essential for the 

reaction: (1) the presence of an oxidizing agent e.g. hydrogen peroxide or 

chlorine water, and (2) a small amount of a heavy metal such as iron(II) in its 

reduced form 64-68. He isolated the product and determined its empirical formula. 

The product was dihydroxymaleic acid (Figure 1-7). The violet colour that Fenton 

observed is actually due to Fe complex of dihydroxymaleic acid. 

 

Figure 1-7: Oxidation of tartaric acid in a Fenton reaction.64 

50 years later, Haber studied the iron catalysed decomposition of hydrogen 

peroxide and proposed the reaction mechanism. He proposed the formation of 

hydroxyl radical.65, 69 There is a debate among researchers about the reaction 

mechanism and the formation of hydroxyl radical. Despite the controversy about 

its mechanism, the Fenton reaction has played an important role in organic 

synthesis, environmental processes and mechanistic studies. 

1.3.1.1 Mechanism of Fenton Reaction 

The metal catalysed decomposition of hydrogen peroxide has been the 

subject of numerous investigations. The chemistry of this reaction revolves 

around the transition metal in its lower oxidation state (reduced form such as Fe2+) 

which is oxidised to a higher oxidation state (oxidised form such as Fe3+) using 

an oxidizing agent, and then is reduced back to the original lower oxidation state. 

The important outcome of the reaction is the formation of new oxidizing species 
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which is far more powerful and reactive than the parent oxidizing agent.65 The 

identification of this new oxidizing species was the point of interest for a series of 

investigations carried out over the years. 

The earliest proposed mechanism for the decomposition of hydrogen 

peroxide in the presence of ferrous ion (Fe2+) is a chain reaction which describes 

the generation of hydroxyl radical. The hydroxyl radical is the new oxidant formed 

and is far more powerful than hydrogen peroxide.65 It is a highly reactive and short 

lived species which may undergo a reaction with hydrogen peroxide yielding 

superoxide. The Fe2+ is oxidised to Fe3+ which in turn is reduced back to Fe2+ by 

superoxide to enter in a new cycle (Figure 1-8). 

 

Figure 1-8: Iron(II) catalysed decomposition in a Fenton reaction.70 

The ferric ion (Fe3+) decomposes hydrogen peroxide following a similar 

mechanism converting Fe3+ to Fe2+ generating superoxide. The Fe2+ and 

superoxide then enter the cycle for the decomposition of hydrogen peroxide. 

 

Figure 1-9: Iron(III) catalysed decomposition in a Fenton reaction. 

The activity of a metal in a Fenton reaction is related to its redox potential. 

The ability of the metal to cycle depends upon the ease of its switch over between 

the two oxidation states. The metal redox potential needs to be in a narrow 

window range which corresponds to O2/O2
•- and H2O2/•OH conversions.70, 71 

The formation of hydroxyl radical in the Fenton reaction has been an issue of 

debate over the years. Due to its high reactivity and short half-life, the detection 
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and analysis of hydroxyl radical by any direct method is extremely difficult. 

Various indirect methods were used to confirm the formation of hydroxyl radical.72 

More or less at the same time as Haber proposed hydroxyl radical formation, 

the idea of formation of an iron-oxo intermediate or a complex in high oxidation 

state was also proposed.73 In the excess of hydrogen peroxide, the oxygen 

evolution was explained by the formation of ferryl ion Fe(IV)=O (Figure 1-10).74-

76 Interestingly, the chemical reactivity of hydroxyl radical and ferryl ion is 

assumed to be very similar. This makes it extremely difficult to distinguish 

between the intermediates formed in the Fenton reaction. 

 

Figure 1-10: Formation of ferryl ion intermediate in a Fenton reaction. 

The recent studies have demonstrated that the Fenton reaction may proceed 

through various pathways (Figure 1-11).77, 78 The pathway in a given reaction 

depends on many factors such as: nature of the metal, nature of the ligand and 

solvent, the concentrations of the reactants, the nature and concentration of any 

substrate, the ratio of metal to hydrogen peroxide and pH of the reaction mixture. 

All these factors play a vital role in defining the mechanism of the Fenton 

reaction.65, 79 The hydroxyl radical might be formed under the given reaction 

conditions, whereas ferryl ion may be the dominant intermediate under different 

conditions. The important point is that regardless of whether hydroxyl radical or 

iron-oxo complex is formed; the intermediate species is a powerful oxidant which 

has an important role in organic, medicinal chemistry and biochemistry.80 In the 

rest of the thesis, hydroxyl radical is discussed as the main reactive intermediate 

involved, though the reaction may also involve formation of other reactive species 

with similar reactivity. 

Fe2+ + H2O2
+ H2OFeO2+

+ H2O2FeO2+ Fe2+ + H2O + O2
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Figure 1-11: Possible mechanistic pathways of the Fenton reaction.77 

1.3.2 Copper catalysed decomposition of hydrogen peroxide 

Besides iron, several other transition metals in their low oxidation state can 

participate in a similar hydrogen peroxide decomposition mechanism.81 Such 

reactions are generally known as Fenton like reactions. The kinetic data reveal 

that at ambient temperature, Cu2+ or Cu+ have high catalytic activity in the 

decomposition of hydrogen peroxide.65, 67 The copper catalysed decomposition 

of hydrogen peroxide has also important implications for various biological 

systems. 

Copper(II) catalyses the decomposition of hydrogen peroxide by following a 

mechanism similar to Fenton reaction (Figure 1-12).82-85 It forms a complex with 

hydrogen peroxide which on decomposition gives Cu+ and superoxide. The 

reduced Cu+ decomposes hydrogen peroxide yielding hydroxyl radical and 

leading to oxidation of Cu+ back to Cu2+ which completes the cycle. Similarly, 

superoxide enters the cycle of hydrogen peroxide decomposition generating 
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hydroxyl radical. The superoxide also reduces Cu2+ to Cu+ to continue the metal 

recycling.86, 87 

 

Figure 1-12: Copper(II) catalysed decomposition of hydrogen peroxide in a 

Fenton-like reaction.86, 87 

1.3.3 Introducing chelants in a Fenton reaction 

The Fenton reaction involves complex mechanistic pathways and introducing 

a ligand or other organic species may further complicate the reaction mechanism. 

Iron(II) or iron(III) systems with various ligands have been discussed extensively 

in the literature.88-92 The ligands are employed with the aim to chelate metal in 

order to stabilise hydrogen peroxide. Metal complexation greatly influences the 

catalytic activity of central metal ions. The composition of the reaction solution, 

the nature of the donor atoms present in the chelant, steric hindrance and finally 

the stability of the metal-chelant complex under the experimental conditions alters 

the catalytic activity of metal ions. 

 

Figure 1-13: Hydrogen peroxide decomposition in a metal-ligand (Ln) system. 

Generally a ligand is added to deactivate the metal ions; however some 

metal-ligand complexes may have high catalytic activity in the decomposition 

reaction. For example, Fe2+/Fe3+ complexes with ethylenediaminetetraacetic acid 

(EDTA) and diethylenetriamine pentaacetic acid (DTPA) may act as pro-oxidants 

“increasing the activity for the formation of reactive oxygen species” as well as 

antioxidants “decreasing the formation of reactive oxygen species” solution 

depending upon the reaction conditions.92 Koppenol also described that Fe2+-

LnM - H2O2

n+

LnM(n+1)+ + OH + OH
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EDTA system might be 100 times more active than the corresponding Fe2+ aqua 

complex.82 

In summary, different metal-ligand systems might have different catalytic 

activity in decomposing hydrogen peroxide depending upon the nature of the 

reaction system. The activity of iron(III) and copper(II) complexes with various 

chelants is discussed in chapter 3 of this thesis. 

1.4 Aims and objectives 

The aim of the current project is to investigate the catalytic activity of copper 

and iron metal ions in the decomposition of hydrogen peroxide under the alkaline 

conditions corresponding to oxidative hair colouring (pH 8-10). As mentioned 

earlier, transition metal ions in the hair fibre may catalyse the decomposition of 

hydrogen peroxide through a Fenton cycle. Previous investigations of the Fenton 

chemistry and hydroxyl radical formation have generally been carried out at acidic 

pH. Very little is known about the role of transition metals and their complexes in 

the decomposition of alkaline hydrogen peroxide. Also, most of the published 

work on the metal-catalysed decomposition of H2O2 used metal/ligand 

concentrations, reaction conditions and the ligands which do not match the hair 

bleaching and dyeing system. The identification and quantification of the hydroxyl 

radical formation under realistic conditions have hardly been investigated. This 

provided the motivation for the current project which focuses on the investigation 

of the catalytic reactivity of these transition metals in the decomposition of 

hydrogen peroxide and hydroxyl radical formation at high pH.  

 

Figure 1-14: The hydroxyl radical formation in metal catalysed 
decomposition of hydrogen peroxide. 

To achieve this goal, an analytical methodology for the analysis of hydroxyl 

radical needed to be developed. A colorimetric probe was used to monitor 

Mn+ + H2O2 Mn+1 + OH + OH

Hair damaging species
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hydroxyl radical formation in iron and copper catalysed decomposition of 

hydrogen peroxide which is discussed in chapter 2. 

Various chelants were potential candidates for the current studies. The 

objective was to study the activity of various metal-ligand combinations in 

decomposition of alkaline hydrogen peroxide and generation of hydroxyl radicals. 

In this work, various chelants were screened for their efficacy and performance 

in preventing decomposition of alkaline hydrogen peroxide and suppressing 

hydroxyl radical formation. The criteria for choosing chelants for this study were 

based on their commercial availability and regulatory concerns for their usage in 

cosmetics. The chelants short listed for the current studies were 

ethylenediaminetetraacetic tetrasodium salt (EDTA), N-(hydroxyethyl)-

ethylenediaminetriacetic trisodium salt (HEDTA), pentasodium 

diethylenetriaminepentaacetate (DTPA), ethylenediamine-N,N'-disuccinic acid 

(EDDS), 1-hydroxyethane 1,1-diphosphonic acid (HEDP) and diethylenetriamine 

penta(methylene phosphonic acid) (DTPMP). The results of our study of 

hydrogen peroxide decomposition and hydroxyl radical formation with copper and 

iron in the presence of these chelants are discussed in chapters 3, 4 & 5 of this 

thesis. 

Apart from hair bleaching, oxidative hair dyeing using aromatic diamines and 

aminophenols may also be influenced by the presence of transition metal ions. 

Oxidative polymerisation of these dye precursors generates coloured species 

inside the hair fibre imparting new colour shades. Here, we report the results of 

our study on the effect of copper(II) ions in the decomposition of hydrogen 

peroxide in the presence of oxidative dye precursors e.g. p-phenylenediamine 

and p-aminophenol. The aromatic species may act as antioxidants and suppress 

the oxidation reaction; however, hardly any such study has been reported 

previously describing the influence of these oxidation dyes in catalysing or 

suppressing Fenton chemistry. This topic is discussed in chapter 6. 

Chapter 7 discusses a quantitative analysis of calcium carbonate present in 

human hair fibres. As described earlier, human hair fibres contain high amounts 

of calcium. Oxidation (bleaching) and thermal treatments (daily grooming & blow 

drying) of hair fibre leaves hair fragile. Microscopic images of treated hair fibres 

show some bubbles lying over the hair shaft, however, the exact nature of the 
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bubble material was not known. In the current study, experiments were carried 

out to define the nature of the unknown bubble material.  
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Chapter 2: Monitoring hydroxyl radical 

formation in a Fenton-like reaction 
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2 Monitoring hydroxyl radical formation in a Fenton-

like reaction 

The role of hydroxyl radical (.OH) in biology has been the focus of extensive 

research recently.80, 93 It may cause oxidative stress, oxidation of lipid & protein 

and damage to natural fibres during chemical treatments.94  Due to its high 

reactivity, detection and quantification of hydroxyl radical has been a challenge 

for scientists. The complex mechanism of Fenton-like reaction adds further 

complications to the detection and quantification of hydroxyl radicals. An absolute 

quantification is almost impossible. Various indirect methods have been utilised 

and reported in the literature.72 The selectivity & sensitivity of the analytical 

method is an important aspect to be considered in choosing a particular method. 

This chapter describes our efforts to develop an experimental strategy to monitor 

hydroxyl radical formation in an alkaline pH media corresponding to hair 

bleaching and colouring. A colorimetric probe is discussed to monitor hydroxyl 

radical formation.  

2.1 Hydroxyl radical 

Hydroxyl radical is a highly reactive and short-lived species. An estimated 

value for its half-life is 10-9 s.95, 96 It is a strong oxidising agent (Eo .OH/H2O = 

2.73V) and can react with almost any molecule with rate constants approaching 

108 – 1010 M-1 s-1.82  It exhibits highly non-selective and indiscriminate behaviour 

in its reactivity. 

Hydroxyl radicals can be generated via different pathways. One of them is 

Fenton and Fenton-like reactions where redox metal ions decompose hydrogen 

peroxide generating radical species. In the lab, it can be generated by photolysis 

of 1-hydroxy-2(1H)-pyridinethione.97, 98 Other sources can be radiolysis of water99 

and UV-induced photolysis of hydrogen peroxide generating hydroxyl radicals 

(Figure 2-1).59, 100, 101 
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Figure 2-1: Photolysis of water and hydrogen peroxide generating hydroxyl 
radicals. 

2.2 Monitoring hydroxyl radical formation 

Quantification of hydroxyl radicals in a given system is important for defining 

mechanistic details about its formation and reactivity. Due to its high reactivity, it 

is extremely difficult to measure hydroxyl radical formation directly. Certain 

chemical and biological systems offer an even more difficult scenario due to the 

presence of natural anti-oxidants and radical scavengers. These species may 

interfere with the radical chemistry and make hydroxyl radical measurements 

more complicated.  

Over the years, various methodological and technical improvements have 

been reported in the literature to monitor hydroxyl radical formation. Most of the 

previously reported studies rely on indirect methods employing a hydroxyl radical 

capturing probe that can be subsequently analysed by various chromatographic 

or spectroscopic techniques. 

2.2.1 Electron spin resonance spectroscopy (ESR) 

Electron spin resonance spectroscopy (ESR) is often employed to investigate 

free radical intermediates.  ESR is a sensitive technique; however, a direct 

analysis of hydroxyl radical formation is impossible. It is due to its high mobility 

and reactivity especially in a liquid solution. The hydroxyl radical reacts with itself 

or other molecules very quickly and hence, its concentration never gets to a 

detectable level for an ESR analysis.102, 103 An indirect approach is usually 

employed where a substance is added to the reaction system to trap highly 

reactive and short lived radicals. This is commonly known as spin trapping.104-107 

Spin trap molecules react with short lived free-radicals to form relatively 

stable radical adducts which are stable enough to be detected and analysed by 

an ESR spectrometer. Common spin traps are nitrone and nitroso compounds 

HOH H + OH
hν

HOOH 2OH
hν
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that give nitroxide adducts following a free radical reaction. Two examples are 

alpha-phenyl N-tertiary-butyl nitrone (PBN) and 5,5-dimethyl-pyrroline-N-oxide 

(DMPO) (Figure 2-2). The spectra of spin adducts are characterized by the 

hyperfine interaction with nitrogen and with the β-hydrogen. The magnitude of the 

hyperfine coupling is dependent on the nature of the radical species. The spectral 

interpretation of the trapped radical is not straightforward and requires careful 

analysis and comparison with the spectra of reference compounds. These spin 

trapping experiments have also been carried out using flow-cell system where 

spectra are obtained for the radical adducts as soon as they are formed inside 

the spectrometer cavity.108, 109 Despite high sensitivity and wide applications, spin 

trapping is prone to artefacts, particularly under alkaline pH conditions. Moreover, 

spin adducts are not stable under alkaline conditions of hair bleaching & dyeing. 

 

Figure 2-2: DMPO spin trap for ESR study of hydroxyl radical formation. 

2.2.2 Aromatic probes 

Various aromatic molecules have been used to monitor hydroxyl radical 

formation in biological and Fenton-like systems. They undergo hydroxylation 

yielding hydroxylated derivatives.72 These derivatives can be analysed by 

different spectroscopic or separation techniques.  

A simple example is phenol which gives dihydroxy benzenes and 

benzoquinone species on hydroxylation (Figure 2-3). In early experiments of the 

current study, phenol was used to monitor hydroxyl radical formation in a chelant 

free iron(II)-catalysed decomposition of alkaline hydrogen peroxide. The reaction 

was monitored by obtaining proton NMR spectra of the reaction solution at 

different time intervals. Despite repeated efforts, the dihydroxybenzene 

derivatives could not be observed. However, TLC separation of the same reaction 
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solution demonstrated the presence of oxidation products. It seems that the 

concentration of oxidised derivatives was low and could not be detected by NMR. 

 

Figure 2-3: Hydroxylation of phenol with hydroxyl radical. 

Another example of an aromatic probe is salicylic acid (Figure 2-4). Its 

hydroxylation gives three derivatives, 1,2-dihydroxybenzene (catechol), 2,5-

dihydroxybenzoic acid (2,5-DHBA) and 2,3-dihydroxybenzoic acid (2,3-DHBA). 

These three derivatives can be separated and quantified using HPLC, GC or 

capillary electrophoresis techniques.110 Though salicylic acid has been utilised 

extensively in biological systems, it suffers from some problems. Formation of 

three derivatives makes quantitative analysis difficult. 

 

Figure 2-4: Hydroxylation of salicylic acid in monitoring hydroxyl radical 
formation. 

Terephthalic acid (TPA) has also been utilised in various biological and 

Fenton-like systems (Figure 2-5). The hydroxylated terephthalic acid (H-TPA) is 
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fluorescent and hence can be monitored using fluorescence 

spectrophotometry.111-114  The hydroxylation gives a single derivative which 

makes quantitative analysis easy. Although fluorescence spectroscopy is a 

sensitive technique, it also suffers from some drawbacks where fluorescence 

quenching may influence quantitative analysis and reproducibility. 

 

Figure 2-5: Hydroxylation of terephthalic acid. 

Beside above mentioned probes and techniques, various other probes have 

been utilised to quantify hydroxyl radical formation. Reviews have summarised 

various analytical methods to quantify hydroxyl radical formation in chemical and 

biochemical processes.72, 115 For example, oxidation of dimethylsulfoxide (DMSO) 

to give methanesulfinic acid can be monitored using UV-visible 

spectrophotometer116, 117 and a chemiluminescence technique that uses luminol 

(3-aminophthalhydrazide) probe reports on a series of oxygen containing radical 

species.118-120 

2.2.3 Colorimetric probe 

Early experiments to quantify hydroxyl radical formation employing phenol 

and terephthalic acid probes using proton NMR could not detect hydroxylated 

derivatives. This was probably due to low concentration levels of the hydroxylated 

derivatives formed in the reaction solution. Under these circumstances, a 

sensitive analytical technique was required to quantify micro or even nano-molar 

concentration levels of the hydroxylated probe. Colorimetric analysis is a 

sensitive technique and easy to generate quantitative data. Its high sensitivity 

and simplicity in monitoring the chemical reaction can be exploited to quantify 

hydroxyl radical formation in a Fenton-like reaction using a suitable water soluble 

probe. R. C. Hider synthesised a colorimetric probe, N,N’-(5-nitro-1,3-

phenylene)bisglutaramide (NPGA) to monitor hydroxyl radical formation which 

yields a coloured derivative on oxidation (Figure 2-6).121 
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Figure 2-6: Chemical structure of                                                                  N, 
N’-(5-nitro-1,3-phenylene)bisglutaramide (NPGA) molecule. 

The probe molecule contains an aromatic centre with side chain substituents. 

In a Fenton reaction, NPGA undergoes hydroxylation at its ortho or para position 

to give hydroxy NPGA (H-NPGA). The hydroxylated derivative is a nitrophenol 

which dissociates to a nitrophenolate ion under the alkaline conditions. The probe 

absorbs in the UV region with λmax 292 nm while its hydroxylation causes a red 

shift and the nitrophenolate absorbs at 400 – 450 nm in the visible region. 

In the NPGA molecule, the position of the side chain substituents and nitro 

group directs the attack of hydroxyl group at specific positions. Tri-substitutions 

at 1, 3 and 5 positions help to avoid multiple hydroxy derivatives and subsequent 

oxidation step observed for other phenolic probes. Position of the nitro group 

offers resonance stability to the phenolate anion which results in an increased 

spectral sensitivity and extinction coefficient (Figure 2-7). 
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Figure 2-7: Hydroxyl radical analysis using NPGA colorimetric probe. 

2.2.3.1 Synthesis of NPGA probe 

The NPGA probe was synthesised following the literature procedure (Figure 

2-8).121 The synthesis involves two steps. In the first step, one of the nitro groups 

in 3,5-dinitroaniline was reduced  to 3,5-diaminonitrobenzene using the Zinin 

reduction method. Zinin reduction employs sulfide, disulfide or polysulfide to 

reduce nitroarenes to aromatic amines. The reaction was first reported by Zinin 

in 1842 and has been utilised for the synthesis of aromatic amines.122 The exact 

mechanism of Zinin reduction is not known, however, it is believed to form nitroso 

species which is further reduced to hydroxylamine and amine. An advantage of 

Zinin reduction is the selective reduction of a single nitro group in a dinitro or 

trinitro system as was the case here in the synthesis of 3,5-diaminonitrobenzene. 

Due to mild reduction conditions, functional groups other than nitro groups are 

less likely to undergo reduction reaction. 
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In the second step, glutaric anhydride was used to add hydrophilic 

substituents. R. C. Hider initially synthesised the acetylated version, however this 

was found to be water insoluble and hence was not suitable for practical 

applications. The choice of glutaric acid was to make sure that the final NPGA 

probe is water soluble in a typical Fenton-like reaction.  

 

Figure 2-8: Synthesis of NPGA probe.121 

2.2.3.2 Electronic spectra of NPGA probe under alkaline pH 

conditions 

As the current study mainly deals with the alkaline conditions, it is important 

for the chosen probe to be stable under the alkaline reaction conditions. To 

examine stability of the NPGA probe, its electronic spectra were recorded at 

various pH levels using different buffer compositions. The results (Figure 2-9) 

show that NPGA probe did not show any change in its electronic spectra and was 

stable under alkaline conditions. 
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Figure 2-9: Electronic spectra of NPGA probe at various pH levels. NPGA 
(0.02 mM) was dissolved in various buffer systems. pH 4.0 and 6.0 were 20 
mM phosphate buffer solutions while pH 8.0, 9.0 & 10.0 were 20 mM 
ammonia/ammonium chloride buffer systems. Spectra were recorded 
against buffer blank. 

2.2.3.3 Hydroxylation of NPGA probe in a Fenton-like reaction 

To examine the hydroxylation of NPGA probe in a Fenton-like reaction, the 

NPGA probe was added to a copper(II) sulfate catalysed decomposition of 

hydrogen peroxide. The reaction was carried out at pH 10 using 20 mM 

ammonia/ammonium chloride buffer in a chelant free system. The electronic 

spectra were recorded immediately after adding hydrogen peroxide using a UV-

visible spectrophotometer. The blank solution had the same composition except 

for hydrogen peroxide. The results (Figure 2-10) showed an absorption band 

forming immediately on mixing with hydrogen peroxide in 400-450 nm region. The 

absorption level increased with the reaction time.  
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Figure 2-10: Hydroxylation of NPGA probe in a Fenton-like reaction. 
Reaction solution contained copper(II) sulfate (0.4 mM), NPGA probe (1.0 
mM) in a chelant-free system at pH 10.0 using ammonia/ammonium chloride 
buffer (20 mM). Hydrogen peroxide (0.98 M) was added and spectra were 
recorded over time against reagent blank. 

 

Figure 2-11: Hydroxylation of NPGA probe in iron(III) chloride-EDTA system. 
Reaction solution contained iron(III) chloride (0.18 mM), EDTA (1.3 mM), 
NPGA probe (1.0 mM) at pH 10.0 using ammonia/ammonium chloride buffer 
(20 mM). Hydrogen peroxide (0.98 M) was added and spectra were recorded 
over a period of 120 minutes against reagent blank. 

The presence of an organic substrate in a Fenton-like reaction system may 

interfere with the probe and complicate monitoring hydroxyl radical. To examine 
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NPGA probe in a metal-chelant system, another experiment was carried out with 

added EDTA chelant. Iron(III) chloride was mixed with EDTA chelant and 

hydrogen peroxide in a buffer solution (pH 10). UV-visible spectra of the reaction 

solution were recorded immediately against reagent blank. The electronic 

spectrum showed absorption band for the hydroxylated NPGA derivatives (Figure 

2-11).  

These experiments demonstrate the performance of NPGA in capturing 

hydroxyl radical and monitoring its formation in a Fenton-like reaction. The 

presence of chelants does not interfere with the absorption bands. 

2.2.3.4 LC-MS separation of H-NPGA/NPGA 

Hydroxyl radicals can oxidise and degrade almost any chemical compound. 

NPGA and its hydroxylated derivatives (H-NPGA) are also prone to such 

degradation. Hence, it is important to study their stability in a strongly oxidising 

alkaline media. For this reason, hydroxylation of the NPGA probe in a Fenton-like 

reaction and formation of its hydroxylated H-NPGA derivative were analysed 

using reverse phase liquid chromatography coupled with mass spectrometer (LC-

MS). A separation method and experimental conditions were developed and 

optimised using reverse phase HPLC. A sample analysed after 90 minutes of the 

hydroxylation reaction showed two well resolved peaks in the chromatogram 

(Figure 2-12). The H-NPGA molecule eluted first at 17th minute while the other 

peak at 49th minute was the unreacted NPGA probe. The assignment of peaks 

was confirmed by MS-ESI spectrometry (Figure 10-1 & Figure 10-2). On 

hydroxylation, the NPGA probe would form two hydroxylated derivatives (ortho & 

para substituted). However, LC-MS experiments could not resolve these two 

derivatives. R. C. Hider approximated the ratio of ortho to para isomers as 6:1.121 

Further optimisation of experimental conditions is required to improve 

hydroxylation yield and separation of two isomers. The same reaction solution 

was analysed again after overnight mixing which also showed two peaks (Figure 

2-13).  

These experiments offer evidence for NPGA hydroxylation and formation of 

the hydroxylated derivatives in-situ in a metal catalysed decomposition of alkaline 
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hydrogen peroxide. They also demonstrate the stability of NPGA probe under the 

experimental conditions. 

 

Figure 2-12: Analysing NPGA hydroxylation in a copper(II) catalysed Fenton-
like reaction using HPLC after 90 minutes mixing of the reaction. Reaction 
solution contained 1 mM NPGA probe mixed with 0.18 mM copper (II) sulfate 
in 20 mM ammonia/ammonium chloride buffer with 0.98 M hydrogen 
peroxide.  

 

Figure 2-13: Analysing NPGA hydroxylation in a copper(II) catalysed Fenton-
like reaction using HPLC after 24 hours of the reaction. Reaction solution 
contained 1 mM NPGA probe mixed with 0.18 mM copper(II) sulfate in 20 
mM ammonia/ammonium chloride buffer with 0.98 M hydrogen peroxide. 
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Further isolation of H-NPGA derivatives was carried out using preparative 

TLC (Rf: 0.35, solvent: dichloromethane and methanol (4:1)). However, the 

isolated material was insufficient to carry out further characterisation. 

2.2.3.5 pKa of H-NPGA 

Hydroxylated derivative, H-NPGA, is a nitrophenol which undergoes 

dissociation to a nitro-phenolate ion under alkaline conditions. This anion is 

responsible for the absorption in the visible region. As the current study deals 

with the alkaline pH, a pKa value for the hydroxylated derivative should be 

determined. H-NPGA is required to be completely dissociated under alkaline 

conditions. To determine the pKa values, isolated H-NPGA was titrated against 

standard sodium hydroxide solution. The volume of the titrant was plotted against 

the pH and a titration curve was produced (Figure 2-14). The curve was fitted 

using CurTiPot software.123 Three pKa values obtained were 5.21, 5.69 and 6.19 

which were in good agreement with the estimated figures. The results suggest 

that under the alkaline hair colouring conditions (pH 8-10), the H-NPGA would be 

fully deprotonated to give phenolate ion which is required for its 

spectrophotometric analysis. 

 

Figure 2-14: Titration curve for the determination of pKa of H-NPGA. 

2.2.4 Conclusion 

NPGA colorimetric probe was used to monitor hydroxyl radical formation in a 

Fenton-like reaction. Its hydroxylated derivatives (H-NPGA) were analysed by 
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LC-MS. Both NPGA and H-NPGA were stable at alkaline pH and in the oxidizing 

conditions. UV-visible spectrophotometric analysis suggests that the absorbance 

of H-NPGA at 430 nm could be used to monitor hydroxyl radical formation. 

It is important to mention that an absolute quantification of hydroxyl radicals 

is very difficult. Various methods and probes reported in the literature provide 

only a relative quantification of radical species in a given model system. NPGA 

probe does not react with the hydroxyl radicals stoichiometrically. The hydroxyl 

radicals may also react with other species present in the reaction mixture. 

Therefore, NPGA hydroxylation under the Fenton reaction conditions would only 

provide a relative concentration of hydroxyl radical. 

Despite the concerns about the selectivity of hydroxyl radical and qualitative 

nature of the hydroxylation reaction, the NPGA colorimetric probe can provide a 

valuable comparison of the hydroxyl radical formation in different chemical 

models. The important feature of using NPGA is the high sensitivity of UV-visible 

spectroscopy and its simplicity for monitoring the chemical reaction. Previous 

studies have employed NPGA probe to monitor hydroxyl radicals in biological 

systems and cellulose bleaching in textile systems.121, 124, 125 With these reasons 

in mind, the NPGA probe was chosen for the current study to monitor hydroxyl 

radical formation in different metal-ligand catalysed Fenton-like reaction & hair 

colouring systems.  
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3 Decomposition of alkaline hydrogen peroxide 

catalysed by metal-chelant complexes 

Chelants are often used to bind metal ions with the objective to stabilise 

hydrogen peroxide. Over the years, various chelants have been studied to control 

the catalytic activity of iron and copper ions in the decomposition of hydrogen 

peroxide. Two main classes of chelants commonly employed are 

polyaminocarboxylates e.g. ethylenediaminetetraacetic acid (EDTA) and 

phosphonates, e.g. diethylenetriamine penta(methylene phosphonic acid) 

(DTPMP).  The main criteria for choosing a particular chelant in hair colouring 

formulation are based on the regulatory concerns, commercial availability, 

binding strength with the metal and stability of the metal-chelant complex under 

the reaction conditions. This chapter describes the catalytic activity of copper(II) 

and iron(III) mixed with various chelants in the alkaline medium using 

ammonia/ammonium chloride buffer system. Metal-chelant speciation plots were 

developed using Medusa software.126 The following chelants were used in the 

current study 

 

   Ethylenediaminetetraacetic acid tetrasodium salt (EDTA. 4Na) 
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N-(Hydroxyethyl)-ethylenediaminetriacetic acid trisodium salt (HEDTA. 3Na) 

 

Pentasodium diethylenetriaminepentaacetate (DTPA. 5Na) 

 

Ethylenediamine-N,N'-disuccinic acid trisodium salt (EDDS. 3Na) 

 

1-Hydroxyethylidene 1,1-diphosphonic acid (HEDP) 
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Diethylenetriamine penta(methylene phosphonic acid) (DTPMP) 

Figure 3-1: Chemical structure of some common polyaminocarboxylate and 
phosphonate ligands. 

3.1 Objective 

The aim of this chapter is to describe the catalytic activity of iron(III) and 

copper(II) metal ions in a Fenton-like reaction under the alkaline conditions. 

Various chelants are added to the metal systems to explore the activity of these 

metal-chelant complexes in the decomposition of alkaline hydrogen peroxide. 

The chapter discusses the influence of the chelant on the metal speciation in the 

reaction solution and rate of decomposition of alkaline hydrogen peroxide. We 

also describe screening of various chelants for their performance in suppressing 

hydrogen peroxide decomposition and hydroxyl radical formation. 

3.2 Metal-ligand complexes 

Copper and iron both belong to d-block metals in the periodic table with 

[Ar]3d104s1 and [Ar]3d64s2 electronic configuration, respectively. They exhibit a 

range of oxidation states. Copper mostly occurs as Cu2+ though Cu+ and Cu3+ 

also exist. Iron has two common oxidation states, Fe2+ and Fe3+ while compounds 

with further higher oxidation states are also present. A characteristic feature of 

transition metal ions is the formation metal-ligand complexes e.g. [Cu(H2O)6]2+ 

and [Fe(H2O)6]3+. A complex is a combination of a Lewis acid (central metal atom) 

and Lewis bases (the ligand). The central metal atom (Cu2+ and Fe3+ in the above 

examples) and electron rich ligand (H2O) are bonded via a coordinative bond. 

The ligand can be a monoatomic species (monodentate e.g. F-) or as large as a 
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polymer (multi-dentate). The ligands attached directly to the metal atom define 

the primary coordination sphere and the numbers of ligands attached give the 

coordination number of the complex. A ligand employing multiple donors to attach 

to the central metal ion is called a chelant. A good example is EDTA chelant 

complex with Fe3+ or Cu2+ metal ions (Figure 3-2). 

  

   

Figure 3-2: A simple representation of octahedral metal aqua complex and 
metal EDTA complex. 

3.2.1 Crystal field theory 

The bonding between a central metal ion and a ligand can be explained by 

crystal field theory where ligand lone pair is described as a point negative charge. 

The ligand lone electrons repel d-electrons of the metal and this repulsion results 

in the splitting of the d orbitals. The splitting pattern accounts for the electrons of 

the metal and explains the stability and spectroscopic and magnetic properties of 

complex.127-130 

An octahedral [Fe(H2O)6]3+ is a d5 complex. The dz
2 and dx

2-dy
2 orbitals (eg) 

have electrons pointing along the axes and hence they are repelled more strongly 

by negative charges of the ligands than the electrons in the other three d-orbitals, 

dxy, dyx and dzy (t2g) which point between the ligands. This results in a splitting 

where triply degenerating orbitals t2g lie lower than the doubly degenerating eg 

orbitals (Figure 3-3). This splitting is called crystal field splitting parameter (∆oct). 
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Figure 3-3: Energy diagram of the d orbitals in an octahedral crystal field. 

In the above octahedral model, because there are three t2g and two eg, the t2g 

orbitals lie 2/5∆o lower than the average energy level while eg orbitals lie 3/5∆o 

above the average energy. The occupation of the lower energy t2g level by 

electrons causes a stabilization of the complex, whereas occupation of the eg 

level causes a rise in energy. The net energy of t2g eg is called crystal field 

stabilisation energy (CFSE) which can be written as 

CFSE = (-2/5x + 3/5y) ∆o 

For Fe3+ with d5 system, the electronic configuration and energy diagram can 

be presented as  

 

The pattern of electron filling may depend upon the ligands attached and 

require considering strong columbic repulsion known as pairing energy. A ∆o 

more than pairing energy will give strong field case with a low spin configuration 

where more electron reside in the lower t2g state with paired electron spin which 

eventually imparts a diamagnetic behaviour. On other hand, when pairing energy 

is more than ∆o, a weak field complex with more unpaired electrons is preferred 

known as high spin complex presenting paramagnetic behaviour. In the above 

energy eg
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example of [Fe(H2O)6]3+, water ligand leads to a high spin complex while the same 

d5 system of Fe3+ with CN- ligand gives a low spin complex due to a different ∆o. 

The electronic configuration for a typical high and low spin systems are shown 

here 

 

Complex [Cu(H2O)6]2+ of d9 system, does not show regular octahedral 

geometry. This is explained by Jahn-Teller (J-T) effect which describes that when 

orbitals in the same level are occupied by different numbers of electrons, this will 

lead to distortion of the molecular structure. In other words, if the ground state 

electronic configuration is degenerate, the molecule will distort to remove 

degeneracy. Cu(II) with its d9 configuration is degenerate and has J-T distortion. 

In an octahedral system, this distortion may involve elongation of two axial bonds 

or the compression of the four bonds that lie in the line of a plane. An alternative 

can be compression along the axis and elongation in the plane. The d-orbitals 

aligned with the two more distant donor atoms along the z-axis experience less 

repulsion and so drop in energy (dxz, dyz, and dz2), while those closer to the in-

plane donor atoms (dxy, dx2-y2) rise in energy. This explains additional stability of 

Cu2+ complexes and its distorted geometry. 
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Figure 3-4: Jahn-teller distortion in d9 system of Cu2+ complex.    

3.2.2 Consequences of metal-ligand binding 

Metal-ligand interaction may bring significant consequences for the new 

complex. This may bring structural changes and alter physical & chemical 

properties of the individual components. Changing the central metal ion or the 

ligand may lead to easily observable features such as colour of the complex 

solution. It can also greatly influence the fate and catalytic activity of transition 

metal ions in decomposing hydrogen peroxide via a Fenton-like reaction. Various 

multi-dentate ligands called chelants have been studied in a Fenton-like reaction. 

One common example of such molecules is EDTA. 
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3.2.3 Stability of metal-ligand complex 

The stability of metal-ligand complex can be assessed by the equilibrium 

constant. A simple chemical reaction for a metal-aqua complex can be seen in 

equation below. 

 

 

As water is in large excess, this equation can be simplified to  

 

A common example is addition of ammonia to a hexaaquacopper(II) complex 

which immediately gives a blue coloured solution. Here, ammonia is replacing 

four molecules which can be called a ligand-exchange process. The reaction 

proceeds step by step and can be written as  

 

The stability constant values for each are found in the literature.132 

 

 

 

 

[Cu(H2O)6]2+ + NH3 [Cu(NH3) (H2O)5]2+ + H2O

NH3 [Cu(NH3)2 (H2O)4]2+ + H2O[Cu(NH3) (H2O)5]2+ +

NH3 [Cu(NH3)3 (H2O)3]2+ + H2O[Cu(NH3)2 (H2O)4]2+ +

NH3 [Cu(NH3)4 (H2O)2]2+ + H2O[Cu(NH3)3 (H2O)3]2+ +

K1

K2

K3

K4
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Complex Ion K (mol-1 dm3) Log K 

[Cu(NH3)(H2O)5]2+ K1 = 1.78 x 104 4.25 

[Cu(NH3)2(H2O)4]2+ K2 = 4.07 x 103 3.61 

[Cu(NH3)3(H2O)3]2+ K3 = 9.55 x 102 2.98 

[Cu(NH3)4(H2O)2]2+ K4 = 1.74 x 102 2.24 

Table 3-1: Stability constants for each individual copper-ammonia complex.  

Overall reaction scheme and equilibrium constant can be written as  

 

 

Here β is called the stepwise stability constant and its value for the copper-

ammonia reaction is 13.1 suggesting a greater tendency for ammonia to replace 

water molecules forming a relatively more stable copper-ammonia complex. 

Various factors influence metal-ligand stability. They include size and charge 

density (size to charge ratio) of the central metal ion, size of the ligand and 

geometry of the complex. Polydentate ligands make a more stable complex 

compared to corresponding monodentate ligands (chelate effect). These factors 

will come into discussion in the current study to explain the formation of various 

copper and iron complexes and their activity in decomposing hydrogen peroxide. 

[Cu(H2O)6]2+ + 4NH3 [Cu(NH3)4 (H2O)2]2+ + H2O

[Cu(NH3)4 (H2O)2]2+

[Cu(H2O)6]2+ [NH3]4
=

β

β

β =       K1x K2 x K3 x K4

β =       log K1+ log K2 + log K3 + log K4
log
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3.2.4 HSAB concept 

Metal ion interaction with a ligand (Lewis acid – Lewis base interaction) can 

be split into two classes of metals i.e. class a and class b. This was first defined 

by analysing stability constants of a metal for halides.  

Class a binds I- < Br- < Cl- < F-  and  Class b binds F- < Cl- < Br- < I- 

The stability values decrease for Al3+ from F- to I- and increase for Hg2+ which 

was used to assign Al3+ to class a while Hg2+ lies in class b. The relationship was 

further generalised by Pearson by classifying Lewis acids and ligands (Lewis 

bases) as ‘hard’ or ‘soft’. The theory of hard and soft acids and bases (HSAB) is 

used to rationalize observed patterns in complex stability. Class a members are 

called “hard” while class b members are known as “soft” acids or bases.127, 128 

The concept describes the polarisabilities of the metal ions. Hard acids are 

generally small monocations with high charge density and low polarizability. 

These metal ions show preference for similar low polarisable donor species which 

are called hard bases. Opposite to this, soft acids are bigger in size with low 

charge density and high polarizability. They prefer to bind with donors who are 

also highly polarisable, e.g., soft bases. These correlations suggest that hard 

acids form complexes predominantly by columbic interaction while for soft acids 

covalent bonding is more important. 

 

Figure 3-5: List of hard and soft acids and bases according to HSAB concept. 

Hard Acids

H+, Li+, Na+, K+, 

Mg2+, Ca2+, Cr2+, 

Cr3+, Al3+

Borderline Acids

Fe2+, Co2+, Ni2+, 

Cu2+, Zn2+, Pb2+

Soft Acids

Cu+, Ag+, Au+, Ti+, 

Hg+, Pd2+, Cd2+, 

Pt2+, Hg2+

Hard Bases

F-, OH-, H2O, NH3, 

CO3
2-, SO4

2-, PO4
3-

Borderline Bases

NO2
-, SO3

2-, Br-,

Soft Bases

H-, R-, CN-, I-
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3.2.5 Metal speciation 

A solution containing metal ions and different ligands may contain various 

metal-ligand complexes. Their formation may depend upon solution composition, 

pH of the reaction solution and strength of metal-ligand interactions. The chemical 

speciation of a metal describes its distribution in the solution. It gives the 

concentrations of different chemical forms of the metal which together make up 

the total concentration of metal in the reaction solution. Metal speciation can be 

determined using various analytical techniques. It can also be modelled using 

known stability constants of the possible metal-ligand complexes in a model 

system. 

There are two major reference databases for the stability constants of the 

metal-ligand complex. The first is the IUPAC-published “Critical evaluation of 

metal complexes in aqueous solutions” and the second database is the “Critical 

stability constants of metal complexes database, National Institute of Standards 

& Technology (NIST)”. In the current study, chemical speciation for Fe3+ and Cu2+, 

in the presence of different chelants was modelled using the NIST database. 

Procter & Gamble generously provided the database and Medusa software to 

model the speciation plots.126  

The speciation of iron(III) and copper(II) in a chelant-free system with 20 mM 

ammonia shows that metal oxide is the dominant species in the reaction mixture 

(Figure 3-6 & Figure 3-7). At high pH both copper and iron form insoluble 

hydroxides which the database calls “oxides”. Throughout the thesis, the term 

“oxide” is used to imply formation of metal hydroxide under alkaline conditions. 

The formation of metal oxide creates a heterogeneous system which may 

influence the decomposition of hydrogen peroxide. Despite high stability of the 

copper-ammonia complexes, they do not form to an appreciable extent in a 20 

mM ammonia buffer. 
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Figure 3-6: Iron(III) speciation in a chelant-free system using 0.18 mM 
concentration of iron(III) chloride in 20 mM ammonia/ammonium chloride 
buffer solution. 

 

Figure 3-7: Copper(II) speciation in a chelant-free system using 0.18 mM 
concentration of copper(II) sulfate in 20 mM ammonia/ammonium chloride 
buffer solution. 

Addition of hexadentate EDTA chelant (1.3 mM) changes the metal 

speciation (Figure 3-8 & Figure 3-9). Iron is complexed with EDTA chelant and 

Fe-EDTA complex is the dominant species in the solution. At pH 8–9, 

Fe(EDTA)(OH)2- complex is formed while at even higher pH, metal oxide is the 

main species. These changes in speciation may lead to a variation in activity of 
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Fe3+-EDTA system in the alkaline media. The Cu2+-EDTA complex is stable over 

a wide range of pH and no metal oxide is formed under the reaction conditions. 

These plots demonstrate that different metals differ in their tendency to bind the 

same chelant. 

According to HSAB concept, Fe3+ ion is harder than Cu2+ and hydroxyl anion 

(OH-) is harder than EDTA chelant. Hence, Fe3+ ions prefer to bind hydroxyl anion 

to give iron hydroxide at pH 10. Similarly EDTA chelant and other 

aminocarboxylates being softer than hydroxyl anion form stronger complexes 

with Cu2+ than with Fe3+. This explains why copper(II) systems with most ligands 

stay soluble in the reaction solution at higher pH than Fe(III) which forms iron 

hydroxide precipitates. 

 

Figure 3-8: Iron(III) speciation in Fe3+-EDTA system using 0.18 mM 
concentration of iron(III) chloride and 1.3 mM tetrasodium EDTA in 20 mM 
ammonia/ammonium chloride buffer solution. 
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Figure 3-9: Copper(II) speciation in Cu2+-EDTA system using 0.18 mM 
concentration of copper(II) sulfate and 1.3 mM tetrasodium EDTA in 20 mM 
ammonia/ammonium chloride buffer solution. 

The Fe3+ speciation follows the similar trends with HEDTA, DTPA and EDDS 

chelants at 1.3 mM concentration level where metal oxide is formed under 

alkaline conditions (Figure 10-3 to Figure 10-5). As discussed earlier, iron(III) 

does not bind strongly with aminocarboxylate chelants, it may require significantly 

higher concentration of the chelant to prevent formation of iron hydroxide. 

Copper(II) exhibits stronger affinity for aminocarboxylates and its complex with 

HEDTA is stable at high pH while in Cu2+-EDDS system, metal speciation exhibits 

changes from pH 8.0 to 10.0 (Figure 10-9 & Figure 10-10). 

For HEDP and DTPMP phosphonate chelants, speciation plots for Fe3+ show 

that metal oxide is the major species present at alkaline pH for both chelants 

(Figure 10-6 & Figure 10-7). Copper(II) ions with these phosphonate chelants 

offer a different scenario. In the Cu2+-DTPMP system, the metal-ligand complex 

is stable and is the dominant species under alkaline conditions while for the Cu2+-

HEDP system, copper(II) speciation changes under the alkaline pH conditions 

and metal oxide is formed (Figure 10-12 & Figure 10-13). 

These speciation plots highlight that Fe3+ and Cu2+ have different binding 

strengths for the same chelant. Most of chelants are unable to chelate Fe3+ ions 

at high pH. An important feature of the metal speciation under the alkaline 

conditions is the formation of metal oxide which changes the nature of the 
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reaction solution making it heterogeneous. These metal oxide particles have the 

tendency to aggregate and form bigger particles which may ultimately cause 

precipitation. This may greatly change the kinetics of a decomposition reaction. 

Insoluble metal hydroxides may be active in hydrogen peroxide decomposition; 

however, their activity may depend upon diffusion/mass transfer due to the 

heterogeneous nature of the system. It is also clear from the speciation plots that 

changing the pH of the reaction solution changes the metal speciation which may 

influence the decomposition of hydrogen peroxide. 

3.3 Catalytic activity of metal-chelant complexes 

A series of experiments were carried out to study the catalytic activity of 

iron(III) and copper(II) complexes with EDTA, HEDTA, DTPA, EDDS, HEDP and 

DTPMP ligands in decomposing alkaline hydrogen peroxide. The hydroxyl radical 

formation was monitored using NPGA colorimetric probe while the gasometric 

method was employed to determine the overall decomposition of hydrogen 

peroxide.  
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3.4 Catalytic activity of iron(III) systems 

3.4.1 Iron(III) chelant-free system 

The first experiment in the current studies was carried out for iron(III) in a 

chelant-free system. 

 

Figure 3-10: Iron(III) catalysed decomposition of alkaline hydrogen peroxide 
in a chelant-free system at pH 10. The reaction solution contained 0.18 mM 
iron(III) chloride and 0.98 M hydrogen peroxide at pH 10 using 20 mM 
ammonia/ammonium chloride buffer. 

The result shows a steady increase in the decomposition of hydrogen 

peroxide (Figure 3-10). The metal speciation shows that iron(III) oxide is the only 

species under the reaction conditions which is insoluble at high pH.  
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Figure 3-11: Hydroxyl radical formation in Fe(III) chelant-free system at pH 
10. The reaction solution contained 0.18 mM iron(III) chloride and 0.98 M 
hydrogen peroxide at pH 10 using 20 mM ammonia/ammonium chloride 
buffer. 

The result for the hydroxyl radical formation shows significant scatter (Figure 

3-11). It is due to the aggregation and precipitation of the metal oxide particles 

with particles interfering with the passage of incident light from the 

spectrophotometer and thus producing scatter. Due to this interference, the 

iron(III) chelant-free system was not studied further at other pH levels. 

3.4.2 Catalytic activity of iron(III) chelant systems 

3.4.2.1 Decomposition of hydrogen peroxide in Iron(III)–EDTA 

system 

The Fe3+-EDTA system showed high catalytic activity in the decomposition of 

alkaline hydrogen peroxide. The results show that the catalytic activity of the Fe3+-

EDTA complex decreased with increasing the pH of the reaction solution (Figure 

3-12).  
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Figure 3-12: Decomposition of hydrogen peroxide by Fe(III)-EDTA system at 
alkaline pH. The reaction contained 0.18 mM FeCl3 and 1.3 mM EDTA.4Na 
and 0.98 M hydrogen peroxide in 20 mM ammonia/ammonium chloride 
buffer solution. 

At pH 8, the reaction exhibited a high initial rate of decomposition which later 

on changed and reaction almost stopped. The speciation plot (Figure 3-8) shows 

the presence of Fe(EDTA)(OH)2- complex at pH 8.0 as the main species present 

in the reaction conditions. Reaction solution turned purple coloured immediately 

on adding hydrogen peroxide. The formation of this coloured complex has been 

the subject of numerous previous investigations.133, 134 The spectroscopic 

characterisation suggests that the coloured species is a peroxy complex 

Fe(EDTA)O2
3-. Previous studies have characterised this complex and concluded 

that it accelerates the decomposition reaction.88, 134 This explains the high rate of 

decomposition of hydrogen peroxide observed at pH 8. Previously published 

studies discussed the degradation of the EDTA chelant at this stage.88, 134 It is 

believed that once the chelant was fully degraded, decomposition reaction 

stopped due to deactivation of the catalyst on forming iron hydroxide. This is 

further discussed later in section 3.5. 

An increase to pH 9.0 and 10.0 changes the metal speciation and iron oxide 

is now the dominant species present in the reaction solution. Insoluble iron 

hydroxide particles have the tendency to aggregate and grow in size. This 

eventually leads to precipitation of brown coloured iron hydroxide which changes 

the nature of the reaction solution to a heterogeneous system. As long as the 
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particles stay suspended in the reaction matrix, they have the ability to 

decompose hydrogen peroxide. The kinetics of such catalysis may depend upon 

the particle size of the metal oxide, the presence of other organic substrates e.g. 

chelant, pH and ionic strength of the reaction solution. Finally, complete 

precipitation of iron(III) hydroxide would almost stop the decomposition reaction. 

This explains variation in the activity of Fe3+-EDTA system on changing the pH of 

the reaction solution. 

3.4.2.2 Catalytic activity of iron(III) complexes with other 

polyaminocarboxylate chelants 

The different complexes exhibited different catalytic behaviour in the H2O2 

decomposition reaction and the pH of the reaction solution greatly influenced their 

activity due to changes in metal speciation. 

 

Figure 3-13: Decomposition of hydrogen peroxide in Fe3+-chelant systems at 
pH 8. The reaction solution contained 0.18 mM FeCl3, 1.3 mM of chelant and 
0.98 M hydrogen peroxide in 20 mM ammonia/ammonium chloride buffer pH 
8.0. 
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Figure 3-14: Decomposition of hydrogen peroxide in Fe3+-chelant systems at 
pH 9.0. The reaction solution contained 0.18 mM FeCl3, 1.3 mM of chelant 
and 0.98 M hydrogen peroxide in 20 mM ammonia/ammonium chloride 
buffer pH 9. 

 

Figure 3-15: Decomposition of hydrogen peroxide in Fe3+-ligand systems at 
pH 10. The reaction solution contained 0.18 mM FeCl3, 1.3 mM of chelant 
and 0.98 M hydrogen peroxide in 20 mM ammonia/ammonium chloride 
buffer pH 10. 

At pH 8 and 10, the Fe3+-EDDS system showed high catalytic activity. As 

EDDS chelant does not chelate Fe3+ ions under the alkaline conditions and iron 

oxide is the only species present in the reaction solution, brown precipitates were 
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observed in the reaction solution overnight. These particles decompose hydrogen 

peroxide in a heterogeneous system. The Fe3+-HEDTA system is a similar case 

where metal oxide is the dominant species present in the reaction solution. The 

results show that the catalytic activity of the complex varied very little from pH 9 

to 10. Although, both EDDS and EDTA systems contain iron oxide particles, they 

exhibited slightly different activity in the decomposition reaction. It seems that the 

presence of chelant may influence the surface induced activity of insoluble 

particles. Different chelants may adsorb on the surface of insoluble particles and 

modify their chemical properties. 

The Fe3+-DTPA system exhibited a similar trend. At pH 8, a major fraction of 

metal is effectively chelated (Figure 10-5) which showed low decomposition of 

hydrogen peroxide. The decomposition reaction accelerated on raising the pH of 

the reaction solution due to the formation of Fe(DTPA)(OH)3- complex. At pH 10, 

iron(III) oxide and Fe(DTPA)(OH)3- are the main species present under the 

reaction conditions which increased the decomposition of hydrogen peroxide  as 

previously observed in Fe3+-EDTA system. 

3.4.2.3 Catalytic activity of iron(III) phosphonate complexes 

The Fe3+ complexes with phosphonate chelants (HEDP and DTPMP) showed 

low activity in decomposing hydrogen peroxide under the alkaline conditions 

(Figure 3-13 to Figure 3-15). Interestingly, the speciation models for Fe3+ with 

HEDP and DTPMP chelants show that neither chelant complexes metal ions and 

iron(III) oxide is the only species present under the reaction conditions (Figure 

10-6 & Figure 10-7). As discussed earlier, the chelant adsorption on the metal 

oxide particle may vary depending upon the chelant and pH of the reaction 

solution. This chelant adsorption may thus decrease the catalytic activity of the 

iron(III) oxide particles leading to low decomposition of hydrogen peroxide. 

3.4.2.4 Hydroxyl radical formation in iron(III) – chelant systems 

Hydroxyl radical formation in the Fe3+-EDTA system is also influenced by the 

pH of the reaction solution due to changes in metal speciation as was observed 

earlier for overall hydrogen peroxide decomposition. 
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Figure 3-16: Hydroxyl radical formation in Fe3+-EDTA systems at alkaline pH. 
The reaction solution contained 0.18 mM FeCl3, 1.3 mM EDTA, 1.0 mM 
NPGA probe and 0.98 M hydrogen peroxide in 20 mM ammonia/ammonium 
chloride buffer. 

At pH 8, relatively low concentration of hydroxyl radical was detected despite 

a high overall decomposition observed in the gasometric analysis. Also, the 

hydrogen peroxide decomposition shows a change in kinetics after a brief initial 

reaction time.  However, no such change in reaction kinetics was observed in 

hydroxyl radical formation. As discussed earlier, the purple coloured peroxy 

complex is likely to be responsible for the high level of peroxide decomposition. 

There might be different mechanisms for the decomposition of hydrogen 

peroxide, they may involve either free radical or higher oxidation state iron 

intermediates (or both), and hence a correlation between hydrogen peroxide 

decomposition and hydroxyl radical formation may not always be observed. At pH 

level 9 & 10, iron hydroxide particles are present which decomposed alkaline 

hydrogen peroxide and generated hydroxyl radicals. 

In Fe3+-EDDS system, the reaction initially exhibited rapid formation of 

hydroxyl radicals which suddenly stopped and no further increase in H-NPGA 

absorption was observed (Figure 3-18 & Figure 3-19). EDDS does not chelate 

the metal ions at pH 9 & 10 and metal oxide is the only species present in the 

reaction solution. The brown precipitates of iron oxide were observed in the 

quartz cell which confirmed the precipitation of metal oxide and deactivation of 

the metal ion catalyst. 
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For other aminocarboxylate chelants, HEDTA and DTPA, initial rate of 

hydroxyl radical formation changed with the change in pH of the reaction solution, 

however, the overall amount of radical formed was almost the same. 

 

Figure 3-17: Hydroxyl radical formation in Fe3+-ligand systems at pH 8. The 
reaction solution contained 0.18 mM FeCl3, 1.3 mM chelant, 1.0 mM NPGA 
probe and 0.98 M hydrogen peroxide in 20 mM ammonia/ammonium 
chloride buffer. 

 

Figure 3-18: Hydroxyl radical formation in Fe3+- chelant systems at pH 9. The 
reaction solution contained 0.18 mM FeCl3, 1.3 mM chelant, 1.0 mM NPGA 
probe and 0.98 M hydrogen peroxide in 20 mM ammonia/ammonium 
chloride buffer. 
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Figure 3-19: Hydroxyl radical formation in various Fe3+- chelant systems at 
pH 10. The reaction solution contained 0.18 mM FeCl3, 1.3 mM chelant, 1.0 
mM NPGA probe and 0.98 M hydrogen peroxide in 20 mM 
ammonia/ammonium chloride buffer. 

Iron(III) with phosphonate chelants (HEDP & DTPMP) generated a low level 

of hydroxyl radicals. A similar trend was observed earlier for the overall 

decomposition of hydrogen peroxide. Although the phosphonate chelants do not 

complex the iron(III) ions at high pH, they are superior in suppressing the hydroxyl 

radical formation as compared to the aminocarboxylate-based chelants. 

3.5 Conclusion 

In summary, most of chelants studied here do not complex iron(III) metal  ions 

at high pH conditions. Phosphonate chelants were superior in suppressing 

hydrogen peroxide decomposition and hydroxyl radical formation. 

Aminocarboxylate chelants e.g EDTA, accelerated the decomposition reaction 

and rapidly decomposed alkaline hydrogen peroxide. This highlights an important 

feature of the current study that metal-chelant systems behave differently under 

alkaline pH conditions and hence a comprehensive study is required to screen 

their catalytic activity and effectiveness in stabilising alkaline hydrogen peroxide. 

Iron-EDTA system is a typical example of a Fenton-like reaction which has 

been studied extensively.134 At pH 8, it promoted hydrogen peroxide 

decomposition. At alkaline pH level, iron-EDTA speciation shows the presence of 
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Fe(EDTA)(OH)2- where hydroxyl group is coordinated with the central metal ion. 

The formation of peroxy complex involves a ligand exchange, the –OOH replaces 
–OH (Scheme 3-1). This substitution depends upon the concentration of hydrogen 

peroxide utilised and pH of the reaction solution.133 An increase in pH increases 

the dissociation of hydrogen peroxide to give the –OOH anion and thus 

contributes to the formation of peroxy complex. Similar peroxy complexes with 

other chelants such as HEDTA, 1,2-cyclohexanediaminetetracetic acid (CDTA) 

and nitrilotriacetic acid (NTA) have also been cited in the literature.134  

 

Scheme 3-1: Schematic diagram of the formation of peroxy complex in 
iron(III) EDTA/EDDS systems under alkaline pH conditions.135  

Hydroxyl radicals formed during the decomposition reaction may attack the 

EDTA molecule. This may cleave a carbon-nitrogen linkage or removal of an 

acidic group initiating EDTA degradation. As chelant is in excess, another 

molecule of EDTA binds to the metal ions and the cycle goes on until the complete 

degradation of the chelant.135 The complete degradation of peroxy complex 

changes the purple colour of the reaction solution to light yellow. The 

decomposition reaction almost stops at this point because of the precipitation of 

iron hydroxide. This explains high amounts of hydrogen peroxide decomposition 

in Fe3+-EDTA at pH 8 in the current study. 

At even higher pH iron(III) hydroxide is the main species present in the 

reaction solution which eventually leads to precipitation of iron hydroxide This 

precipitation explains the change in kinetic curve for the hydroxyl radical 
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generation in EDTA & EDDS systems at pH 9 and 10. Similarly the large scatter 

observed for hydroxyl radical formation in iron(III) chelant-free system is due to 

precipitation. 

3.6 Catalytic activity of copper(II) systems 

3.6.1 Catalytic activity of copper(II) in a chelant-free system 

Copper(II) ions showed high catalytic activity in the decomposition of 

hydrogen peroxide. The speciation plots suggest that copper(II) oxide is the main 

species under the alkaline reaction conditions (Figure 3-7) which decomposed 

alkaline hydrogen peroxide. The activity of copper(II) hydroxide increased from 

pH 8 to 10 (Figure 3-20). 

 

Figure 3-20: Decomposition of hydrogen peroxide by copper(II) chelant -free 
system. The reaction solution contained 0.18 mM copper(II) sulfate in 20 mM 
ammonia/ammonium chloride buffer solution. 

Further experiments were carried out by increasing the initial concentration 

of copper(II) ions. The objective was to observe a relationship between initial 

concentration of copper(II) ions and amount of hydrogen peroxide decomposed 

and hydroxyl radicals formed. The results suggest an increase in copper(II) ions 

concentration increases the decomposition of hydrogen peroxide (Figure 3-21) 
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Figure 3-21: Effect of increasing initial copper(II) sulfate concentration in a 
chelant-free system on the decomposition of hydrogen peroxide at pH 10 
using 20 mM ammonia/ammonium chloride buffer solution. The reaction 
solution contained copper(II) sulfate (0.18- 0.8 mM) and 0.98 M hydrogen 
peroxide. 

A similar trend was observed for the hydroxyl radical formation (Figure 3-22). 

The reactions demonstrated a rapid initial increase in absorption for H-NPGA 

probe which subsequently slowed down and a steady increase in hydroxyl radical 

formation was observed. Fenton-reaction requires a switchover between Cu2+ 

and Cu+ oxidation states. It is possible that initially the reaction proceeds rapidly 

until Cu2+ is reduced to Cu+ before slowing down as the oxidation of Cu+ to Cu2+ 

becomes rate-determining. Interestingly, plotting initial concentration of copper(II) 

ions against initial amount of hydroxyl radicals formed showed a linear 

relationship. A deviation was observed at longer reaction times and at a higher 

concentration level of copper(II) ions (1 mM) where a brown precipitate was 

observed in the quartz cell. 
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Figure 3-22: Effect of increasing copper(II) sulfate concentration on the 
hydroxyl radical formation at pH 10. Each reaction solution contained 
copper(II) sulfate (0.18-1.0 mM), 1 mM NPGA probe and 0.98 M hydrogen 
peroxide in 20 mM ammonia/ammonium chloride buffer solution of pH 10. 

 

Figure 3-23: Linear relationship between concentration of Cu2+ ions and 
hydroxyl radical formation under alkaline reaction conditions. 

In summary for the copper chelant-free system, copper(II) ions decomposed 

alkaline hydrogen peroxide rapidly. Copper(II) and iron(III) ions show different 

catalytic activity under the alkaline conditions in a chelant-free system. Iron 

precipitates quickly even at low concentration leading to deactivation of the 
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catalyst while copper(II) ions stay in solution. Copper(II) ions also eventually 

precipitate at a higher concentration level e.g. a system with 1.0 mM 

concentration precipitated quickly. It seems Cu(II) ions are active in the 

decomposition reaction until their concentration reaches a threshold level where 

precipitation occurs. 

3.6.2 Catalytic activity of copper(II) chelant systems 

Further work was carried out to investigate the catalytic activity of copper(II) 

ions mixed with various chelants in the decomposition of hydrogen peroxide. 

3.6.2.1 Cu(II)-polyaminocarboxylate chelant systems 

Copper(II) complexes with EDTA and HEDTA chelants showed low catalytic 

activity in decomposing alkaline hydrogen peroxide (Figure 3-24) and it varied 

slightly with the pH which is due to changes in copper speciation. The speciation 

plots for these copper-chelant systems (Figure 3-9 and Figure 10-9) show that 

copper(II) ions are complexed by the chelants  at all reaction conditions studied. 

These complexes decompose hydrogen peroxide slowly. The DTPA chelant 

similarly showed low activity with copper(II) ions. These three chelants exhibited 

almost identical behaviour at all pH levels and hence are preferred in stabilising 

hydrogen peroxide on industrial scale. 
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Figure 3-24: Decomposition of hydrogen peroxide in Cu2+- chelant systems 
at pH 8. Each reaction solution contained 0.18 mM copper(II) sulfate, 1.3 mM 
chelant and 0.98 M hydrogen peroxide in 20 mM ammonia/ammonium 
chloride buffer. 

 

Figure 3-25: Decomposition of hydrogen peroxide in Cu2+- chelant systems 
at pH 9. Reaction solution contained 0.18 mM copper(II) sulfate, 1.3 mM 
chelant and 0.98 M hydrogen peroxide in 20 mM ammonia/ammonium 
chloride buffer. 
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Figure 3-26: Decomposition of hydrogen peroxide in Cu2+- chelant systems 
at pH 10. Each reaction solution contained 0.18 mM copper(II) sulfate, 1.3 
mM chelant and 0.98 M hydrogen peroxide in 20 mM ammonia/ammonium 
chloride buffer. 

Interestingly, Cu2+-EDDS system exhibited relatively high activity among 

other aminocarboxylate chelants. The results show that its activity increased on 

increasing the pH of the reaction solution (pH 8 to 10). At pH 8 & 9, copper 

speciation shows that Cu(EDDS)2- complex is the dominant species present in 

the reaction solution (Figure 10-10) which suppressed the decomposition 

reaction. The metal speciation changes at pH 10 and apart from the [Cu(EDDS)]2- 

complex, the reaction mixture contains a [Cu(OH)EDDS]3- complex with a 

hydroxyl group coordinated to the central metal atom which resulted in 

accelerating the hydrogen peroxide decomposition. 

3.6.2.2 Catalytic activity of Cu(II)-phosphonate chelants 

 The DTPMP chelant effectively chelates the copper(II) ions and the different 

complexes are present in the alkaline reaction solution (Figure 10-13). The results 

for the overall decomposition show that Cu2+-DTPMP complex has low activity in 

the decomposition reaction (Figure 3-24 to Figure 3-26). At pH 10, 

Cu(OH)DTPMP9- is the predominant species. Although for aminocarboxylate 

chelants, coordination of hydroxyl group have been observed to accelerate the 

decomposition reaction, the Cu(OH)DTPMP9- did not influence the decomposition 
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reaction. This again suggests that complexes of different chelants exhibit different 

catalytic activity. 

The Cu2+-HEDP system showed a very different behaviour in the 

decomposition kinetics with the highest level of hydrogen peroxide decomposition 

observed. The copper speciation in the presence of HEDP chelant varies 

significantly with the pH (Figure 10-12). Different Cu-HEDP complexes are 

present at pH 8 & 9 while copper(II) oxide is the main species at pH 10. This 

explains variation in catalytic activity of the Cu-HEDP system at different pH 

levels (Figure 3-27). 

 

Figure 3-27: Decomposition of alkaline hydrogen peroxide in Cu(II) HEDP 
system. Each reaction solution contained 0.18 mM copper(II) sulfate, 1.3 mM 
HEDP chelant and 0.98 M hydrogen peroxide in 20 mM 
ammonia/ammonium chloride buffer. 

At pH 10, the Cu2+-HEDP system decomposed almost 14% H2O2 in the first 

16-18 minutes. This is the highest decomposition rate observed among all chelant 

systems studied. After the rapid initial decomposition, an abrupt change in the 

decomposition curve was observed and reaction almost stopped. No such 

change in the decomposition curve has been observed for other chelants 

discussed earlier with both copper(II) or iron(III) metal ions. This stimulated us to 

carry out a further investigation to understand the activity of Cu2+-HEDP system. 

The topic is discussed later in chapter 5. 
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The activity of Cu2+-HEDP complex decreased at pH levels of 8 & 9 and no 

abrupt change in its kinetic behaviour was observed. This is due to changes in 

copper speciation. At pH 9, the complex Cu(HEDP)(OH)3- is contributing to the 

copper speciation which is possibly responsible for decomposition of hydrogen 

peroxide. At pH 8, copper(II) ions are effectively complexed by the chelant which 

results in the least activity among other pH levels. These results again suggest 

that the catalytic activity is greatly influenced by the pH of the reaction solution. 

The changes in pH of the reaction solution change the metal speciation and thus 

change the catalytic activity in the decomposition reaction. 

3.6.3 Hydroxyl radical formation in copper(II) – chelant systems 

The hydroxyl radical formation in copper(II) chelant systems showed almost 

the same trend as was observed in the decomposition of hydrogen peroxide. A 

low level of hydroxyl radical was detected in most of the systems suggesting the 

low catalytic activity in the reaction except Cu2+-HEDP (Figure 3-28). Some trends 

were negative which is probably due to a drift in spectrophotometer during the 

data acquisition. However, the results clearly suggest the low catalytic activity of 

Cu2+-chelant systems in the generation of hydroxyl radical. 

The Cu2+-HEDP chelant system is an exception and the hydroxyl radical 

formation increased on increasing the pH of the reaction solution. At pH 10, a 

change in absorption curve was observed which corresponds to the similar 

observation for the overall decomposition. 
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Figure 3-28: Hydroxyl radical formation in Cu(II) – chelant systems at pH 8. 
Each reaction solution contained 0.18 mM copper(II) sulfate, 1.3 mM chelant, 
1.0 mM NPGA probe and 0.98 M hydrogen peroxide in 20 mM 
ammonia/ammonium chloride pH 8.0. 

 

Figure 3-29: Hydroxyl radical formation in Cu(II) – chelant systems at pH 9. 
Each reaction solution contained 0.18 mM copper(II) sulfate, 1.3 mM chelant, 
1.0 mM NPGA probe and 0.98 M hydrogen peroxide in 20 mM 
ammonia/ammonium chloride pH 9. 
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Figure 3-30: Hydroxyl radical formation in Cu(II) – chelant systems at pH 10. 
Each reaction solution contained 0.18 mM copper(II) sulfate, 1.3 mM chelant, 
1.0 mM NPGA probe and 0.98 M hydrogen peroxide in 20 mM 
ammonia/ammonium chloride pH 10. 

3.7 Iron(III) vs copper(II) and aminocarboxylate vs 

phosphonate chelants: Comparison of catalytic 

activity 

In a chelant-free system, copper(II) ions are more active in decomposing 

alkaline hydrogen peroxide compared to iron(III) ions. Both metals ions form 

metal oxides which aggregate and eventually precipitate in the reaction solution. 

Iron(III) oxide is observed to have higher tendency for precipitation. This is clearly 

demonstrated in the colorimetric analysis for hydroxyl radical formation at pH 10 

where the precipitation resulted in large scatter in the data. For copper(II) ions, 

the initial rate of decomposition and hydroxyl radical formation is high and it 

increases with an increase in initial concentration of copper(II) ions.  

Aminocarboxylate chelants such as EDTA and EDDS combined with iron(III) 

ions generated more hydroxyl radical and decomposed higher amounts of 

hydrogen peroxide than the corresponding complexes with copper(II) ions. 

Usually chelants are added to minimise hydrogen peroxide decomposition, 

however, in some case (depending upon pH of the reaction solution), addition of 
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the chelant may form a pro-oxidant system which actually accelerates hydrogen 

peroxide decomposition. On the other hand, most aminocarboxylate and 

phosphonate chelants are effective in chelating copper(II) ions and suppressing 

hydrogen peroxide decomposition except HEDP chelant.  

The DTPMP was the best chelant for suppressing both copper(II) and iron(III) 

catalysed hydrogen peroxide decomposition. 

3.8 Conclusion 

Copper(II) ions can decompose hydrogen peroxide and generate hydroxyl 

radicals under the alkaline hair colouring conditions. Commonly employed 

chelants such as EDTA and EDDS are effective in suppressing copper(II) activity 

and slow down hydrogen peroxide decomposition. Copper-HEDP is an exception 

where rapid hydrogen peroxide decomposition is observed and a significant 

amount of peroxide is decomposed. The same chelants complexed with iron(III) 

ions accelerate the decomposition of alkaline hydrogen peroxide while iron(III) in 

a chelant-free system leads to iron oxide/hydroxide precipitation. Iron oxide 

particles are capable of catalysing hydrogen peroxide decomposition. These 

results guide us in choosing the right chelant combination in hair colouring 

formulation for an improved and superior colouring application. 

Beside copper and iron, hair contains a large amount of calcium and 

magnesium metal ions. These alkaline earth metal ions compete with transition 

metal ions for the added chelant which may greatly influence the catalytic activity 

of the transition metal ions in the decomposition reaction. This new dimension is 

studied and discussed in the next chapter. 
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Chapter 4: Decomposition of alkaline 

hydrogen peroxide in a binary metal system 

4 Binary metal systems 

The previous chapter discussed copper(II) and iron(III) catalysed 

decomposition of hydrogen peroxide at high pH. The results reveal that copper(II) 

ions decompose hydrogen peroxide under alkaline conditions while iron(III) ions 

precipitate quickly leading to catalyst deactivation. Also, copper is the most 

abundant transition metal in human hair. This suggests that copper is the main 

metal responsible for the decomposition of alkaline hydrogen peroxide and 

hydroxyl radical formation. Chelants e.g. EDTA, EDDS and DTPMP suppressed 

the catalytic activity of copper(II) ions in solution model systems. These 

experiments were comprised of relatively a simple model system containing a 

single metal and only one chelant. However, a real-life system for hair permanent 

colouring is much more complex. 

Beside copper and iron, human hair fibre contains different other metals e.g. 

calcium, magnesium, sodium and potassium.18 A recent quantitative study 

reports 1000–2000 ppm of calcium and 150-300 ppm of magnesium ions in 

natural non-chemically treated American-Caucasian hair fibres.24 These values 

are even higher for chemically treated hair fibres where 5000-6000 ppm of 

calcium and 500-800 ppm of magnesium are present.24, 25 Calcium is the most 

abundant metal in hair fibre. The presence of large amounts of calcium ions in a 

hair colouring system complicates the situation, calcium and copper ions may 

compete for the chelant. This may influence the metal ion speciation and the 

activity of transition metal ions in the decomposition of hydrogen peroxide. 

Therefore it is important to study a two metal model system (binary metal system) 

where copper or iron ions are present along with a large excess of calcium. This 

chapter discusses a two metal system containing copper–calcium and iron–

calcium mixture under alkaline conditions. The first set of experiments was 

performed in a chelant-free solution while further experiments were carried out 

by adding EDTA, EDDS or DTPMP chelants. These three chelants were chosen 

due to their performance observed in the previous chapter.  
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A further, more realistic model was designed using human hair fibres as a 

source of metal ions. Their metal content was determined prior to employing them 

in the current study. 

4.1 Objectives 

The aim here is to study the catalytic activity of transition metal ions in a 

Fenton-like reaction in the presence of a large excess of calcium ions. The target 

was to investigate the selectivity of various chelants in chelating metal ions and 

subsequent influence on the decomposition of hydrogen peroxide. 

Further experiments are carried out using human hair fibres as a source of 

metal ions. The objective is to evaluate the performance of selected chelants in 

suppressing free radical formation in the presence of metal treated hair fibres.  

4.2 Changes in speciation plots in the presence of calcium 

Copper speciation plots were simulated by adding a relatively large excess 

of calcium ions (125 mM). The concentration of ammonia in the reaction solution 

was also increased to 400 mM to make it more comparable to a real-life hair 

colouring application. The increase in ammonia concentration greatly influenced 

the copper speciation in a chelant-free system and copper-ammonia [Cu(NH3)4]2+ 

complex was observed (Figure 4-1). The iron(III) system with added calcium ions 

expectedly showed iron(III) oxide as the main species present in the reaction 

solution (Figure 10-15). 
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Figure 4-1: Copper speciation in the presence of calcium in a chelant-free 
system. 

Addition of EDTA chelant to the copper-calcium system demonstrated an 

interesting scenario. The speciation plots suggest that at high pH level, 

[Cu(NH3)4]2+ complex is the predominant species in the reaction solution and the 

chelant does not seem to complex copper(II) ions (Figure 4-2). The EDTA 

speciation shows that most of EDTA is associated with Ca-EDTA complex and 

no copper-EDTA complex is present at pH 10 (Figure 4-3). However, the 

speciation plot in the absence of calcium ions did not show any copper-ammonia 

complex and only copper-EDTA complex was present in the reaction solution 

(Figure 4-4). These plots demonstrate the impact of calcium in the reaction 

system on copper speciation where calcium ions are competing for the EDTA 

chelant. These changes in copper speciation suggest a high rate of 

decomposition of hydrogen peroxide for copper-calcium EDTA system. 
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Figure 4-2: Copper speciation in the presence calcium ions and EDTA 
chelant in a 400 mM ammonia buffer. 

 

Figure 4-3: EDTA speciation in copper-calcium system in a 400 mM 
ammonia buffer. 
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Figure 4-4: Copper(II) speciation in the presence of EDTA in a 400 mM 
ammonia buffer. 

A different scenario was observed for the EDDS chelant system. Despite the 

presence of the large excess of calcium ions, EDDS chelant showed preference 

for copper(II) ions and copper-EDDS complex [Cu(EDDS)]2- was present in the 

reaction solution along with a small fraction of [Cu(NH3)4]2+ complex (Figure 4-5 

& Figure 4-6). Here, EDDS chelant behaves differently compared to the EDTA 

system which suggests a different catalytic activity for copper-EDTA and copper-

EDDS systems in the presence of calcium ions.  
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Figure 4-5: Copper ion speciation in EDDS system in the presence of large 
excess of calcium ions. 

 

Figure 4-6: EDDS speciation in copper-calcium binary system. 

A similar scenario was observed for copper speciation in the presence of 

DTPMP chelants (Figure 10-17 & Figure 10-18) where copper-DTPMP complex 

was present in the reaction solution. 
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4.3 Decomposition of hydrogen peroxide in the binary 

system 

4.3.1 Copper(II) – calcium binary system 

The first binary combination studied was copper-calcium in a chelant-free 

solution at pH 10. The results showed a very rapid decomposition for alkaline 

hydrogen peroxide (Figure 4-7). All of the hydrogen peroxide was decomposed 

within the first 2-5 minutes. In the previous chapter, the same amount of copper(II) 

ions in the absence of calcium using 20 mM ammonia/ammonium chloride buffer 

showed a relatively slow rate of decomposition. An increase in ammonia 

concentration in the reaction solution facilitates the formation of [Cu(NH3)4]2+ 

complex which in turn activates the copper(II) ions accelerating the 

decomposition reaction. As calcium is a harder acid than copper(II), only copper(II) 

ions bind with ammonia to form a copper-ammonia complex.  

A control experiment in the absence of calcium ions also showed a high rate 

of hydrogen peroxide decomposition (Figure 4-8).  

 

Figure 4-7: Decomposition of alkaline hydrogen peroxide in copper-calcium 
binary system at pH 10 using 400 mM ammonia/ammonium chloride buffer 
solution. Each reaction solution contained 0.18 mM copper(II) sulfate, 125 
mM calcium nitrate, 1.3 mM chelant and 0.98 M hydrogen peroxide.  
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Figure 4-8: Control experiment at high ammonium concentration in the 
absence of calcium. Decomposition of alkaline hydrogen peroxide in 
copper(II) systems in the absence of calcium ions at pH 10 with 400 mM 
ammonia/ammonium chloride buffer solution. Each reaction solution 
contained 0.18 mM copper(II) sulfate, 1.3 mM chelant and 0.98 M hydrogen 
peroxide. 

Further experiments were carried out by adding chelants to the copper-

calcium system. The results show that EDDS is the only chelant that suppressed 

the decomposition reaction. Addition of EDTA and DTPMP chelants had almost 

no influence on the rate of the reaction (Figure 4-7). Interestingly, a control 

experiment in the absence of calcium ions showed an opposite effect where 

addition of EDTA and DTPMP chelants suppressed the decomposition of alkaline 

hydrogen peroxide (Figure 4-8). These results clearly demonstrate the effect of 

calcium ions competing for the chelant at high pH of the reaction solution. EDDS 

chelant selectively binds to copper(II) ions in the presence of calcium ions. This 

phenomenon is explained by the speciation plots as discussed earlier. The 

selectivity of EDDS chelant is further examined in the next sections. 

The speciation plots for EDTA showed that calcium ions are strongly 

competing for the EDTA chelant and copper(II) ions bind with ammonia. EDTA is 

a hard base compared to ammonia as nitrogen-based bases are softer than 

oxygen based ones due to lower electronegativity and higher polarisability. As 

calcium is harder than copper(II), calcium binds EDTA stronger than copper(II) 

ions and copper(II) ions bind ammonia stronger than calcium ions. This leads to 
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the formation of [Cu(NH3)4]2+ complex that catalyse hydrogen peroxide 

decomposition and explains the high rate of the decomposition reaction. 

Although the DTPMP chelant forms copper-chelant complexes at high pH 

along with the presence of a small fraction of a copper-ammonia complex (Figure 

10-17), the system showed high activity in the decomposition reaction. A control 

experiment in the absence of calcium showed suppression in the rate of hydrogen 

peroxide decomposition and only small amount of hydrogen peroxide was 

decomposed. Here again, the presence of calcium demonstrated its influence on 

the decomposition reaction. This can be explained by the precipitation of calcium-

DTPMP complex. On addition of DTPMP chelant to the copper-calcium solution, 

a white precipitate was observed immediately. A control experiment in the 

absence of copper(II) ions also showed the same precipitation. It is possible that 

the surface of insoluble calcium-DTPMP complex acts as a heterogeneous 

catalyst for hydrogen peroxide decomposition. 

 

Figure 4-9: Hydroxyl radical formation in Cu-Ca binary systems. Each 
reaction contained 0.18 mM copper(II) sulfate, 125 mM calcium nitrate, 1.3 
mM chelant, 1.0 mM NPGA probe and 0.98 M hydrogen peroxide.  

The hydroxyl radical formation in the binary systems also showed a similar 

pattern of catalytic activity (Figure 4-9). The chelant-free system produced a high 

level of hydroxyl radical immediately on mixing with the hydrogen peroxide. EDDS 

chelant suppressed hydroxyl radical formation both in the presence and absence 
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of calcium ions. This is consistent with the results of overall hydrogen peroxide 

decomposition and again shows that EDDS is the only chelant that is able to 

suppress the catalytic activity of copper(II) ions in the presence of calcium.  

In the EDTA system, high hydroxyl radical flux was observed in the presence 

of calcium ions. The control experiment in the absence of calcium showed that 

EDTA was able to suppress hydroxyl radical formation. This matches the results 

for overall H2O2 decomposition and demonstrates the effect of calcium ions. The 

DTPMP system could not be studied due to the precipitation of calcium-DTPMP 

complex in the quartz cell. 

In summary, the above experiments and speciation plots provide an 

interesting insight about the selectivity and superior performance of EDDS 

chelant in chelating copper(II) ions in preference to calcium ions. EDDS is the 

only chelant able to suppress free radical chemistry under the alkaline hair 

colouring conditions. The selectivity of chelants is further examined in the next 

sections. 

4.3.2 Iron(III) – calcium binary system 

Similarly, iron-calcium binary system was studied. Ferric ions in a chelant-

free system exhibited high catalytic activity in the decomposition reaction (Figure 

4-10). The speciation plot for the chelant-free system describes the presence of 

insoluble iron hydroxide present in the reaction responsible for the hydrogen 

peroxide decomposition. Activity of metal oxide/hydroxide particles has already 

been discussed in the previous chapter describing the surface catalysed 

decomposition of hydrogen peroxide by suspended particles. 
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Figure 4-10: Decomposition of alkaline hydrogen peroxide in iron(III) - 
calcium binary system. Each reaction contained 0.18 mM iron(III) chloride, 
125 mM calcium nitrate, 1.3 mM each chelant and 0.98 M hydrogen 
peroxide. 

Introducing EDDS and DTPMP chelants changed the kinetics of 

decomposition of hydrogen peroxide. Although speciation plots for both EDDS 

and DTPMP chelants show that they do not complex iron ions at high pH, they 

were effective in stabilising hydrogen peroxide. As discussed earlier, iron(III) is a 

hard acid which binds hydroxyl anion (OH-) under the alkaline conditions in 

preference to softer ammonia, EDDS and DTPMP. Hence ammonia or chelants 

do not form strong complexes with iron(III) ions. Similar behaviour was observed 

in the earlier solution model system. It is believed that low catalytic activity of iron 

hydroxide in the presence of chelant is due to the chelant adsorption on the metal 

hydroxide particles. 

4.3.3 Conclusion 

These experiments describe the catalytic activity of transition metal ions in a 

model system containing relatively large amounts of calcium ions. Among the 

chelants studied here, EDDS displayed preference for binding copper(II) ions and 

hence was the best chelant to prevent the decomposition of hydrogen peroxide 

and hydroxyl radical formation. These experiments highlight the advantage of 

using the EDDS chelant under the alkaline hair colouring conditions. Further work 
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is carried out later in the chapter to explain EDDS binding copper ions 

preferentially. 

4.4 Decomposition of hydrogen peroxide using hair fibers 

as a source of metal ions 

The work described in this section was carried out using human hair fibres 

as a source of metal ions. The objective was to examine the activity of deposits 

of transition metals on the hair fibres in decomposition of alkaline hydrogen 

peroxide and generation of hydroxyl radicals. This is the next step in designing a 

real-life hair colouring model with the aim to further enhance our understanding 

of the activity of these metal ions and the effect of various chelants on the 

decomposition of hydrogen peroxide.  

4.4.1 Metal dosage and analysis of hair metal content 

Virgin human hair fibres were treated with copper(II) sulfate solution in a P&G 

lab in USA.136 The metal treatment involved soaking virgin natural Caucasian hair 

fibres in a standard aqueous solution of copper(II) sulfate (1000 ppm). The 

different level of metal uptake was obtained by varying treatment time. Hair fibres 

were dried in air at room temperature. Metal composition of hair fibres was 

determined by digesting small samples of hair fibres in concentrated nitric acid. 

The metal content was subsequently analysed using inductively coupled plasma–

atomic emission spectroscopy (ICP-AES). The hair samples contain large 

amounts of calcium and magnesium along with copper, zinc, iron and manganese 

(Table 4-1). The large amount of alkaline earth metal ions along with copper and 

iron presents a real-life picture of the level of metals present in human hair. 
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Metal contents in hair fibre samples (ppm) 

Treatment 

Level 

Mg Ca Mn Fe Cu 

Level 1 720 6577 8 15 40 

Level 2 742 6756 8 14 58 

Level 3 735 6726 8 14 68 

Level 4 736 6807 8 15 81 

Table 4-1: Metal content in hair fibres after copper treatment. A “level” 
defines different amounts of metal concentration present on the hair fibre. 

4.4.2 Decomposition of hydrogen peroxide by copper treated 

hair fibres in a chelant-free system 

The copper treated hair fibres were used as source of metal ions to 

decompose hydrogen peroxide. The decomposition reaction was monitored by 

the gasometric method. The results (Figure 4-11) demonstrate that copper 

deposits in the hair fibre decompose alkaline hydrogen peroxide. Increase in 

copper contents on the fibre increased the rate of reaction and overall level of 

hydrogen peroxide decomposed. The same set of hair fibres was analysed for 

hydroxyl radical formation using the NPGA colorimetric probe. Copper deposits 

generated hydroxyl radicals under the alkaline conditions. The rate of hydroxyl 

radical formation also increased with the increase in copper level (Figure 4-12). 

This proposes a direct relationship between metal content of the hair fibre and 

the free radical formation which is consistent with our earlier results in the solution 

model. 
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Figure 4-11: Decomposition of alkaline hydrogen peroxide in a chelant-free 
model system using human hair fibres as a metal source. The reaction 
solution contained 100 mg of hair fibres and 0.98 M hydrogen peroxide at pH 
10 using 400 mM ammonia/ammonium chloride buffer solution. 

 

Figure 4-12: Hydroxyl radical formation in copper treated hair fibres in a 
chelant-free system. The reaction solution contained 50 mg hair fibres, 1.0 
mM NPGA and 0.98 M hydrogen peroxide at pH 10 using 400 mM 
ammonia/ammonium chloride buffer solution. The reaction solution was 
diluted by 10 times and analysed by UV-visible spectrophotometer. 
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Comparison of these results with the previous data on copper–calcium binary 

solution systems shows that less hydroxyl radical is detected in the hair 

experiments as compared to the model solutions containing a similar amount of 

copper. This discrepancy can be explained by the low penetration of NPGA probe 

inside the hair fibre and hence lower efficiency of radical capture. Alternatively, 

copper ions adsorbed inside the hair shaft may have limited accessibility and may 

not leach into the bulk solution. Recent studies reports that calcium is mainly 

present in the outer layer of cuticles while copper is abundant in the cortex of hair 

fibre.24 The location of metal ions may influence their diffusion into the reaction 

solution. As a result, the actual amount of accessible copper ions might be less 

than the total copper present on the hair fibre. In any case, our results suggest 

that the NPGA colorimetric probe can be successfully employed to monitor 

hydroxyl radical formation in the hair fibre. 

4.4.3 Decomposition of hydrogen peroxide by copper treated 

hair fibres in the presence of a chelant 

The same set of hair samples was analysed in the presence of EDTA, EDDS 

and DTPMP chelants in the reaction solution. The chelant concentration (13.95 

mM) used here corresponded to an approximate amount of chelant used in a 

typical hair colouring formulation. The speciation plots were developed using the 

amount of metals determined by the ICP-OES technique (Table 4-1). The results 

for oxygen evolution demonstrate that chelants greatly influenced the overall 

decomposition of hydrogen peroxide. 

EDDS chelant stabilised alkaline hydrogen peroxide and only a small amount 

of hydrogen peroxide was decomposed (Figure 4-13). An increase in copper 

concentration showed very little effect on the overall decomposition which is 

probably due to a relatively large concentration of chelant employed where 

copper is complexed with the chelant. Earlier results for calcium-copper binary 

system in the solution model system showed the same results where EDDS 

slowed down the rate of decomposition reaction. The speciation plot shows 

EDDS preference for copper(II) ions despite the presence of large excess of 

calcium and magnesium ions present in the reaction solution (Figure 10-20). 
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Figure 4-13: Decomposition of alkaline hydrogen peroxide by copper treated 
hair fibres in the presence of EDDS chelant at pH 10 using 400 mM 
ammonia/ammonium chloride buffer solution. The reaction solution 
contained 100 mg of hair fibres, 13.95 mM EDDS chelant and 0.98 M 
hydrogen peroxide. 

 

Figure 4-14: Hydroxyl radical formation by copper treated hair fibres in the 
presence of EDDS chelant at pH 10 using 400  mM ammonia/ammonium 
chloride buffer solution. Each reaction solution contained 50 mg of hair fibres, 
1 mM NPGA, 13.95 mM EDDS and 0.98 M hydrogen peroxide. The reaction 
solution was diluted by 10 times and analysed by UV-visible 
spectrophotometer. 
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As discussed earlier, virgin non-chemically treated human hair contains small 

amount of copper bound to melanin and protein residues which may not be 

accessible to EDDS chelant and may be active in decomposition reaction. This 

amount of copper might be similar in all copper-treated hair samples and hence 

leads to almost same rate of decomposition. 

A similar trend was observed for hydroxyl radical formation for the same hair 

samples (Figure 4-14). Absorption intensity observed was very low compared to 

the chelant-free system highlighting a significant decrease in hydroxyl radical 

formation in the presence of EDDS chelant. 

Although the speciation plots suggested the presence of copper-ammonia 

complex in the reaction solution, EDTA chelant suppressed the decomposition 

reaction. The rate of hydrogen peroxide decomposition in this case was slower 

than that in the EDDS chelant system; however, it generated more hydroxyl 

radicals (Figure 4-15 & 

Figure 4-16). This difference might be due to metal distribution inside hair 

cortex. Also, calcium in the hair is not free but is complexed with some protein 

residues e.g. carboxylic acid. Therefore, the speciation may depend not only on 

the Cu/Ca competition for EDTA but also on the competitive binding of calcium 

and copper to the chelating groups in the hair fibre. 
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Figure 4-15: Decomposition of alkaline hydrogen peroxide by copper treated 
hair fibres in the presence of EDTA chelant at pH 10 using 400 mM 
ammonia/ammonium chloride buffer solution. Each reaction solution 
contained 100 mg of hair fibres, 13.95 mM EDDS and 0.98 M hydrogen 
peroxide. 

 

Figure 4-16: Hydroxyl radical formation in hair-EDTA system at pH 10 using 
400 mM ammonia/ammonium chloride buffer solution. The reaction solution 
contained 50 mg of hair fibres, 1 mM NPGA probe, 13.95 mM EDTA and 
0.98 M hydrogen peroxide. The reaction solution was diluted by 10 times and 
analysed by UV-visible spectrophotometer. 
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DTPMP chelant was also studied under the same experimental conditions 

and it also suppressed the decomposition reaction (Figure 4-17). The speciation 

model shows that copper-DTPMP complex is the main species present in the 

reaction which is consistent with the earlier solution model system (Figure 10-22). 

 

Figure 4-17: Decomposition of alkaline hydrogen peroxide by copper treated 
hair fibres in the presence of DTPMP chelant at pH 10 using 400 mM 
ammonia/ammonium chloride buffer solution. The reaction solution 
contained 100 mg of hair fibres, 13.95 mM DTPMP and 0.98 M hydrogen 
peroxide. 
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Figure 4-18: Hydroxyl radical formation in hair-DTPMP system at pH 10 
using 400 mM ammonia/ammonium chloride buffer solution. The reaction 
solution contained 50 mg of hair fibres, 1 mM NPGA probe, 13.95 mM 
DTPMP and 0.98 M hydrogen peroxide. The reaction solution was diluted by 
10 times and analysed by UV-visible spectrophotometer. 

The above experiments demonstrate the performance of each chelant in 

suppressing hydrogen peroxide decomposition and free radical chemistry under 

the alkaline pH conditions.  

Due to the complex nature of the reaction solution, the effectiveness of a 

chelant depends on its penetration inside hair fibre and leaching of transition 

metal ions into the reaction solution. Although relatively large amount of hydrogen 

peroxide decomposed in the presence of EDDS, this reaction mixture generated 

very small amount of hydroxyl radicals. This highlights its performance in 

suppressing free radical chemistry under the alkaline hair colouring conditions 

and suggests that it can be used to control free radical induced-protein damage 

to hair fibre. 

4.4.4 Effect of changing metal-chelant ratio: EDDS vs EDTA 

In the above experiments, the amount of chelant was almost 10 times higher 

than the amount of copper present in the hair fibre. The actual metal-chelant ratio 

might be different due to the slow rate of diffusion across the hair. Further 

experiments were carried out with the same set of hair samples and different 
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metal-chelant ratios. The objective was to assess the EDDS and EDTA 

performance at low concentration. The chelant concentration was decreased 

from 13.95 mM to 0.94 mM concentration level. 

 

Figure 4-19: Decomposition of alkaline hydrogen peroxide by copper treated 
hair fibres in the presence of EDDS chelant at pH 10 using 400 mM 
ammonia/ammonium chloride buffer solution. The reaction solution 
contained 100 mg of hair fibres, 0.94 mM EDDS and 0.98 M hydrogen 
peroxide. 

A decrease in concentration of both chelants resulted in an increase in 

hydrogen peroxide decomposition due to a change in metal-chelant ratio (Figure 

4-19). As described earlier, hair experiments offer a complex system with copper 

and calcium ions bound to different functional groups in the hair. Some may be 

bound weakly and can leach into solution. However, other fraction of metal ions 

may stay complexed by the hair functionalities. The speciation of metal ions in 

this complex system depends on the competitive binding of different metals by 

the chelants and the binding sites in the hair. 
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Figure 4-20: Decomposition of alkaline hydrogen peroxide by copper treated 
hair fibres in the presence of EDTA chelant at pH 10 using 400 mM 
ammonia/ammonium chloride buffer solution. The reaction solution 
contained 100 mg of hair fibres, 0.94 mM EDTA and 0.98 M hydrogen 
peroxide. 

Although both EDDS and EDTA decomposed almost same amount of 

hydrogen peroxide, they showed a significant difference in the amount of hydroxyl 

radical generated in the reaction solution (Figure 4-21). At lower chelant 

concentration, hydroxyl radical flux in the EDTA system was still significantly 

higher than that observed for the EDDS reaction solution. EDDS chelant 

suppressed the hydroxyl radical formation. This highlights mechanistic 

differences involved in the two chelant systems. The Cu-EDTA complex seems 

to decompose hydrogen peroxide via a radical mechanism while the EDDS 

complex decomposes via a non-radical mechanism. 
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Figure 4-21: Hydroxyl radical formation by copper treated hair fibres using 
low concentration of EDDS ligand at pH 10 using 400 mM 
ammonia/ammonium chloride buffer solution. 

These experiments show the advantage of EDDS chelant compared to EDTA 

in controlling copper induced free radical chemistry at high pH level. The 

speciation model showed that even at lower concentration, EDDS chelant had 

high selectivity for copper ions (Figure 10-23 & Figure 10-24). This is an important 

result suggesting that despite the presence of a large excess of alkaline earth 

metal ions, EDDS chelant has a strong preference for copper ions and is superior 

in suppressing copper catalysed free radical chemistry under the alkaline 

conditions. 

4.4.5 Selective binding of copper(II) ions by EDDS 

The above experiments showed selective interaction between EDDS chelant 

and copper(II) ions at high pH. The selectivity can be explained by the geometry 

of the metal-chelant complex. Both EDTA and EDDS chelate copper ion forming 

an octahedral complex and the stability constants for Cu-EDDS and Cu-EDTA 

complexes are also similar. However, the two chelants have significantly different 

stability constants for calcium (Table 4-2). 
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Chelant log K 
 Cu Ca 

EDDS 18.4 4.58 
EDTA 18.78 10.65 

Table 4-2: Stability constant for EDTA & EDDS chelants for calcium and 
copper(II) ions.132, 137  

This difference in stability constant and higher affinity of EDDS for copper 

can be explained by molecular modelling  which suggests that the selectivity is 

driven by the ionic radius of the central metal atom (Figure 4-22).138 The calcium 

ion is larger (1.0 Å) than the copper(II) ion (0.73 Å).139 EDTA chelates both 

copper(II) and calcium ions with all its carboxylate groups which fits around the 

central metal ions comfortably. However, EDDS is not flexible enough and does 

not fit around the calcium ion due to its bigger ionic radius while it fits very well 

around the copper ion. Therefore, the geometrical strain in the EDDS-calcium 

complex leads to the low stability constant. This explains the selectivity and 

preferential behaviour of EDDS chelant for copper(II) ions. 

 

Figure 4-22: Molecular mechanics modelling for copper and calcium ions 
with EDTA and EDDS chelants.138 
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4.5 Conclusion 

The NPGA colorimetric probe was successfully used to monitor hydroxyl 

radical formation in the presence of hair fibres. The transition metal ions present 

on hair shaft or inside hair fibre decompose alkaline hydrogen peroxide via a 

Fenton-like reaction generating hydroxyl radical. Among various chelants 

studied, EDDS showed strong preference and selectivity for copper(II) in the 

presence of large excess of calcium and magnesium ions both in a solution model 

as well as in the presence of hair fibres. This resulted in suppressing the hydroxyl 

radical formation suggesting that EDDS is superior compared to chelants e.g. 

EDTA and DTPMP. The low level of hydroxyl radical formation in the EDDS 

system can be exploited to minimise free radical induced protein hair damage 

during permanent hair colouring. 
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Chapter 5: Formation of copper(II) 

nanoparticles in Cu2+-HEDP system 
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5 Copper(II)-HEDP system 

In the first phase of current project, the catalytic activity of various metal 

chelant mixtures in the decomposition of alkaline hydrogen peroxide was studied 

(Chapters 3, 4). One of the systems studied was Cu2+-etidronic acid (HEDP) in 

20 mM ammonia/ammonium chloride buffer at pH 10. The H2O2 decomposition 

reaction showed unusual behaviour in the Cu2+– HEDP chelant system in alkaline 

solutions. It was found that copper-HEDP catalysed reaction exhibited self-

accelerated, rapid initial hydrogen peroxide decomposition that terminated 

abruptly long before its completion. A similar profile was observed for the hydroxyl 

radical formation in this system (Figure 3-30). The HEDP chelant is often 

employed in stabilising hydrogen peroxide at industrial scale and has been used 

in oxidative hair colouring formulations to prevent its decomposition.39 The 

unusual kinetics of the decomposition stimulated our efforts to investigate the 

reaction mechanism for the decomposition of alkaline hydrogen peroxide. A 

series of experiments were carried out to understand the change in reaction 

kinetics. 

 (HEDP chelant) 

 

Figure 5-1: Decomposition of alkaline hydrogen peroxide in copper-etidronic 
acid (HEDP) system. 

5.1 Objective 

The focus of this chapter is to uncover the roots of the self-inhibiting 

behaviour in the autocatalytic Cu2+-HEDP system at high pH. The aim is to study 

the nature of the decomposition mechanism. This would broaden the scope of 
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our understanding of the general mechanistic approach to copper based Fenton-

like reactions. 

5.2 Decomposition of alkaline hydrogen peroxide in Cu2+-

HEDP system 

In a typical reaction, copper(II) sulfate (0.18 mM), HEDP chelant (1.3 mM) 

and hydrogen peroxide (0.98 M) were mixed with 20 mM pH 10 

ammonia/ammonium chloride buffer. The profile for oxygen evolution during the 

decomposition reaction showed a sigmoid trend typical of an auto-catalytic 

reaction. However, only a small amount of oxygen evolved and no further oxygen 

evolution was observed after 16-18 min of the reaction (Figure 5-2). A substantial 

quantity of hydrogen peroxide was still present at the end of decomposition, as 

shown by the addition of catalase which led to further peroxide decomposition 

and oxygen evolution. Changing the pH of the reaction solution greatly influenced 

the decomposition kinetics where the decomposition reaction at pH 8 & 9 did not 

show the high rate of decomposition and did not terminate abruptly. 

 

Figure 5-2: Decomposition of alkaline hydrogen peroxide in Cu(II) HEDP 
system. The reaction solution contained 0.18 mM copper(II) sulfate, 1.3 mM 
HEDP chelant and 0.98 M hydrogen peroxide in 20 mM 
ammonia/ammonium chloride buffer. 

The copper speciation in the presence of HEDP chelant varies significantly 

with the changes in pH of the reaction solution (Figure 5-3). Different Cu-HEDP 
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complexes are present at pH 8 & 9 while copper(II) hydroxide is the main species 

at pH 10. This explains variation in catalytic activity of the Cu-HEDP system at 

different pH levels shown in Figure 5-2. 

 

Figure 5-3: Copper(II) speciation in Cu2+-HEDP system. 

5.3 Influence of changing the reaction conditions 

A series of experiments were conducted by varying the concentration of Cu2+ 

ions and HEDP chelant or changing the composition of buffer solution to examine 

the impact of these changes on the kinetics of the decomposition reaction. 

5.3.1 Attempt to restart the decomposition reaction 

A reaction was carried out using Cu(II) sulfate (0.18 mM), HEDP (1.3 mM) 

and hydrogen peroxide (0.98 M) in 20 mM ammonia buffer solution at pH 10. The 

reaction followed the same kinetics and stopped after rapid initial decomposition 

of the hydrogen peroxide. After 30 minutes, fresh Cu2+ (0.18 mM) ions were 

added to the reaction solution. The objective was to see if this addition can restart 

the decomposition reaction. The result shows that adding fresh Cu2+ ions did not 

induce any further H2O2 decomposition (Figure 5-4). 
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In a separate experiment, fresh HEDP (1.3 mM) was added after 45 minutes 

of the start of the decomposition reaction. Adding fresh chelant also did not restart 

the decomposition reaction (Figure 5-4).  

 

Figure 5-4: Effect of adding fresh metal ions and chelant in a stopped 
decomposition reaction containing 0.18 mM Cu2+ ions and 1.3 mM HEDP 
chelant. (A) Bench mark reaction (B) more 1.3 mM HEDP chelant added at 
the 30th minute in an ongoing decomposition reaction (C) 0.18 mM Cu2+ ions 
more added at the 30th minute. 

It seems that once the decomposition stopped, the reaction intermediates 

undergo some irreversible changes which deactivate the freshly-added copper 

ions and/or inhibit the decomposition of hydrogen peroxide.  

5.3.2 Increasing the initial concentration of the reaction 

components 

Further experiments were carried out by increasing the initial concentration 

of Cu2+ ions while keeping the chelant concentration constant at 1.3 mM. The 

result (Figure 5-5) shows that increasing the initial concentration of metal ions 

increased the initial rate of decomposition reaction. This is consistent with our 

previous results where the rate of decomposition directly depends upon the initial 

concentration of metal ions (Section 3.6.1). However, the overall amount of 

hydrogen peroxide decomposed was almost same despite the increase in Cu2+ 

ions concentration. 

0

5

10

15

0 25 50 75 100 125

%
 H

y
d

ro
g

e
n

 p
e

ro
x

id
e

 d
e

c
o

m
p

o
s
it

io
n

Reaction Time (Min)

A

B

C

More Copper added

More HEDP ligand 
added at 30th min



 

 

101 
 

 

Figure 5-5: Effect of increasing copper ion concentration in Cu-HEDP 
catalysed decomposition of alkaline hydrogen peroxide containing different 
levels of copper(II) sulfate and HEDP chelant dissolved in 20 mM pH 10 
ammonia/ammonium chloride buffer. 

Changes in the concentration of base strongly influenced the reaction 

kinetics. Reaction proceeded rapidly to completion at high ammonia 

concentration (Figure 5-6).  This matches with the earlier experiments with Cu2+ 

ions at high ammonia concentration levels (Figure 4-8). This was expected due 

to changes in copper speciation which suggests that high ammonia levels lead to 

the formation of copper-ammonia complex responsible for the rapid 

decomposition of hydrogen peroxide (Figure 10-14). 
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Figure 5-6: Copper-HEDP catalysed decomposition of alkaline hydrogen 
peroxide at different ammonia levels. Reaction solution contained 0.18 mM 
of copper(II) sulfate, 1.3 mM of HEDP chelant dissolved in 
ammonia/ammonium chloride buffer pH 10 and mixed with 0.98 M of 
hydrogen peroxide. Hydrogen peroxide decomposition was monitored over 
time. (A) 400 mM ammonia/ammonium chloride buffer (B) 100 mM 
ammonium/ammonium chloride buffer (C) 20 mM ammonia/ammonium 
chloride buffer. 

The abrupt termination of the catalytic decomposition could be caused by 

either degradation of the catalyst, or formation of a self-poisoning species. As 

addition of either fresh metal ions or chelant did not restart peroxide 

decomposition, the catalyst degradation alone cannot be responsible for the 

premature reaction end, and some sort of self-inhibiting products must be formed. 

In order to determine the structure of these reaction products, we analysed the 

composition of the reaction mixture at the end of hydrogen peroxide 

decomposition. 

5.4 Analysis of the decomposition reaction: HEDP chelant 

degradation 

The first experiment carried out was to monitor the changes in the pH of the 

reaction solution during hydrogen peroxide decomposition. The results (Figure 

5-7) showed that pH of the reaction mixture changed from 10.0 to 9.18 upon 

mixing the reagents. This is consistent with the value calculated by taking into 

account pKa of hydrogen peroxide and HEDP chelant. The pH of the reaction 

solution however continued to drop during the course of decomposition and was 
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only stable when the oxygen evolution stopped. Overall, the pH dropped from 

9.18 to 8.92. No further pH drop was observed afterwards. This small change of 

pH, however, cannot account for the abrupt end of the reaction.  

 

Figure 5-7: pH drop in Cu2+-HEDP decomposition system. Reaction solution 
contained 0.18 mM Cu2+ ions and 1.3 mM HEDP chelant at pH 10 with 20 
mM ammonia/ammonium chloride buffer. Hydrogen peroxide (0.98 M) was 
added to trigger the decomposition reaction. pH of the reaction solution 
monitored using a pH meter. The standard mean error for pH was 0.01 pH 
unit. 

A similar experiment was carried out by adjusting the initial pH of the reaction 

mixture to 9.55 by adding a few drops of ammonia. The pH dropped during the 

decomposition reaction to 9.33 (Figure 10-25), but the reaction profile was 

essentially identical to that of the original reaction and decomposition of hydrogen 

peroxide stopped abruptly after 16-18 min. 

The pH drop during the reaction is unexpected as the decomposition of 

slightly acidic hydrogen peroxide should lead to the increased pH. The observed 

pH change can be explained by oxidation of either ammonia or HEDP chelant to 

form acidic products. Ammonia in the strongly oxidising Fenton-like system would 

be expected to produce nitric acid. However, nitrate analysis by ion exchange 

chromatography gave negative result. Other possibility can be the oxidation of 

HEDP chelant to form phosphate and carbonate ions. Degradation of organic 

substrates in a Fenton-like reaction has been reported in literature.140, 141 For 

instance, aminocarboxylate ligands such as EDTA and ethylenediamine-N,N'-
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disuccinic acid (EDDS) are prone to complete degradation via a radical mediated 

mechanism.134, 142 Organic phosphates and phosphonates have also been 

reported to undergo degradation.143, 144 Here, the Cu2+-HEDP system also 

produced a significant level of hydroxyl radicals which may degrade HEDP 

chelant. Oxidation of phosphonate chelant may form phosphate and carbonate 

ions in the reaction solution. To confirm the chelant degradation, phosphate 

content in the reaction solution was monitored during the hydrogen peroxide 

decomposition reaction. 

The molybdenum blue colorimetric method was used to measure the amount 

of phosphate in the reaction solution. This method has been utilised to quantify 

phosphate contents in water samples145-147 and has been recommended by the 

US and European water agencies to measure phosphate.148 It was employed 

here as an indirect approach to determine phosphate concentration in the 

reaction solution. The phosphate analysis of the reaction mixture showed 

immediate release of phosphate ions on mixing with hydrogen peroxide. This 

suggests an immediate start of chelant degradation. The phosphate release 

profile (Figure 5-8) closely mirrored that for the oxygen evolution and phosphate 

concentration increased over time until hydrogen peroxide decomposition 

stopped. To explain the pH drop quantitatively, complete ligand degradation at 

the end of reaction must be assumed. This is consistent with the 1H and 13P NMR 

results which showed no HEDP signals for the reaction product. 
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Figure 5-8: Monitoring phosphate concentration in Cu2+-HEDP system of 
hydrogen peroxide decomposition at pH 10 using 20 mM 
ammonia/ammonium chloride buffer. The decomposition reaction solution 
contained 0.18 mM Cu(II) sulfate, 1.3 mM HEDP chelant and 0.98 M 
hydrogen peroxide. 

In summary so far, Cu2+-HEDP catalysed decomposition of hydrogen 

peroxide depends upon the pH of the reaction solution. Once stopped, the 

decomposition reaction could not be triggered again. Hydrogen peroxide 

decomposition is accompanied by HEDP degradation to give carbonate and 

phosphate. Complete degradation of HEDP coincides with the abrupt end of the 

peroxide decomposition. 

5.5 Formation of copper based nanoparticles 

Interestingly, the reaction solution became brown coloured at the end of the 

reaction. The UV-Vis analysis of the reaction mixture at the end of decomposition 

revealed a broad featureless spectrum (Figure 5-9 A). This absorption is typical 

of inorganic nanoparticles. For instance, ligand-protected copper(II) oxide 

nanoparticles show similar UV spectra and hence similar colour.149, 150 TEM 

images confirmed the formation of small nanoparticles with average diameter 

3.0±1.0 nm (Figure 5-9 B). The nanoparticles were purified by dialysis against 

water. Interestingly, the nanoparticles showed remarkable stability as no 

aggregation was observed upon storage in solution for 4 weeks at room 

temperature. The experiments using a higher concentration level of ammonia did 
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not show any brown coloured solution or the absorption band in the UV-visible 

analyses suggesting that no such nanoparticles are formed in those systems. 

 

A 

 

B 

Figure 5-9: (A) UV-Vis spectra of Cu2+-HEDP reaction solution recorded over 
time showing absorption band for copper nanoparticles. Reaction solution 
contained 0.18 mM copper(II) sulfate, 1.3 mM HEDP and 0.98 M hydrogen 
peroxide (B) TEM image and size distribution of copper nanoparticles in Cu-
HEDP reaction mixture. 

5.5.1 Chemical composition of nanoparticles 

To establish the chemical composition of nanoparticles, they were isolated, 

purified by dialysis and characterized. Their elemental composition was 

determined by combustion analysis and ICP-OES techniques.  
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The elemental composition of nanoparticles showed the presence of carbon 

(1.53%) along with hydrogen (1.25%). ICP-OES results gave copper (53.5%) and 

phosphorus (5.35%) content (Table 5-1). The C/H ratio is inconsistent with HEDP 

chelant. The 1H and 31P NMR spectra of acid-degraded nanoparticles also did not 

show any signals of HEDP chelant (Figure 10-26). As we observed formation of 

inorganic phosphate in the reaction mixture at the end of decomposition, we 

propose that the presence of C and P can be due to carbonate and phosphate 

ions. 

Element %W/W 

Carbon 1.535 

Hydrogen 1.25 

Nitrogen - 

Copper 53.5 

Phosphorus 5.35 

Table 5-1: Elemental composition of purified nanoparticles isolated from 
Cu2+-HEDP decomposition reaction. 

To confirm the presence of phosphate in nanoparticles, a molybdenum blue 

colorimetric method was employed. The results for the acid-degraded 

nanoparticles indeed confirmed the presence of phosphate at significant level 

(13±1) % which agrees with the amount of phosphorus found in ICP-OES results. 

The amount of carbonate present in nanoparticles was determined using a 

quantitative IR method. Nanoparticles were mixed with phosphoric acid and the 

gas evolved was collected and the amount of CO2 was determined. A series of 

control experiments using pre-dried sodium carbonate were carried out to 

optimise experimental conditions. The IR spectrum of gas evolved on dissolving 

these nanoparticles in a strong acid confirmed the presence of carbon dioxide 

gas (Figure 5-10). A quantitative analysis gave (7.7±0.2) % of carbonate content 

in the nanoparticles which matches with the amount of carbon found in the 

elemental analysis. 
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Figure 5-10: FT-IR spectrum of carbon dioxide from isolated nanoparticles. 

The data from elemental analysis, ICP-OES, phosphate and carbonate 

analysis were modelled together to obtain the composition of nanoparticles. The 

results suggest that the nanoparticles are a mixture of basic copper phosphate 

and carbonate. The nanoparticles also contained ca. 6% of strongly adsorbed 

water that cannot be removed by keeping the nanoparticles under vacuum (Table 

5-2). 

Compound W/W % 

Cu2(OH)2CO3 34 

Cu3(OH)3PO4 60 

H2O 6.0 

Table 5-2: Chemical composition of Cu(II) nanoparticles isolated from Cu2+-
HEDP catalysed decomposition of alkaline hydrogen peroxide. 

5.5.2 Oxidation state of copper in the nanoparticles 

The oxidation state of copper in the nanoparticles can conceivably be 0, +1, 

+2 or +3. Formation of copper metal in the strongly oxidising medium is highly 

unlikely, and is inconsistent with the results of elemental analysis. In order to 

confirm the oxidation state of copper in the nanoparticles, they were dissolved in 
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concentrated hydrochloric acid under inert atmosphere. UV-Vis spectra of the 

resultant solution showed quantitative formation of Cu(II) chloride (CuCl42-). As 

UV spectra clearly differentiate Cu(I) and Cu(II) chlorides (Figure 10-27), this 

experiment makes it possible to rule out Cu(I) as the nanoparticle constituent. 

Formation of Cu(III) species in Fenton-like reaction would be a tantalising 

possibility, and some Cu(III) compounds have UV-Vis spectra similar to that 

recorded for the nanoparticles.151 However, most Cu(III) compounds are very 

unstable152 and while Cu(III) could be an intermediate in the reaction, it is highly 

unlikely to form very stable nanoparticles as the reaction product. In addition, 

Cu(III) nanoparticles are inconsistent with the elemental analysis. All these 

arguments are consistent with the nanoparticle composition given in Table 5-2. 

 Formation of basic copper(II) phosphate/carbonate is in reasonable 

agreement with the copper speciation plots calculated for the experimental 

conditions (Figure 10-28) and literature binding constants.153 The accuracy of the 

data for copper phosphate is uncertain, and in any case the binding constants 

will be strongly affected by the nanoscopic size of the particles. Nonetheless, 

speciation plots clearly suggest formation of basic copper phosphate under 

reaction conditions. 

Variation of reaction conditions also leads to results consistent with the 

speciation plots. Adding phosphate and carbonate to an ongoing hydrogen 

peroxide decomposition reaction mixture does not change the overall reaction 

profile (Figure 10-30). Carrying out the reaction in a 20 mM phosphate buffer 

slows the reaction down but also does not change the decomposition profile 

(Figure 10-31). 

On the basis of the above observations, we can explain the course of the 

reaction (Scheme 5-1). The reaction involves formation of a highly reactive 

intermediate, probably an HEDP-containing oxo- or peroxy bridged copper 

complex. Formation of di, tri- and multinuclear copper-oxo bridged species has 

been proposed and observed previously.85, 154, 155 In particular, several 

multinuclear copper-HEDP complexes have been reported in the literature100, 156 

These layered materials, prepared by a hydrothermal method, have phosphate 

and oxo bridges as revealed from the XRD data. 
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Scheme 5-1: Proposed pathway for the formation of copper nanoparticles in 
Cu(II)-HEDP catalysed decomposition of alkaline hydrogen peroxide. 

 Formation of an active complex in our system explains the sigmoid profile 

of the reaction kinetics. The reactive intermediates lead not only to hydrogen 

peroxide decomposition, but also HEDP degradation. Monomeric and dimeric 

copper oxygen complexes have been reported to possess high catalytic activity 

for oxidizing organic molecules with hydrogen peroxide.157-162 Once all HEDP 

ligand has been degraded, the HEDP-free copper intermediates act as seeds to 

nucleate formation of basic copper phosphate/carbonate nanoparticles which 

have no catalytic activity. Nanoparticle formation is irreversible; hence addition of 

more HEDP chelant at the end of reaction does not result in further decomposition 

of hydrogen peroxide. In order to test the proposed pathway, additional 

experiments were carried out. 

5.6 Role of hydrogen peroxide  

Upon inspection of speciation plots (Figure 10-28 & Figure 10-29), one 

should notice that Cu(II) oxide is the predominant species formed under reaction 

conditions. Copper(II)-based nanoparticles would therefore be expected to form 

even in the absence of hydrogen peroxide. However no nanoparticle formation 

was observed in the absence of hydrogen peroxide under these conditions, even 

in the presence of HEDP and/or phosphate/carbonate ions. The formation of 

copper(II) oxide is presumably limited by kinetic factors. We therefore 

hypothesise that the role of hydrogen peroxide in the nanoparticle formation is to 

generate an active catalyst, probably an oxo- or peroxy-bridged complex which 

upon oxidation of the stabilising chelant (HEDP) acts as a seed for the 

nanoparticle formation thus overcoming the kinetic barrier to nucleation. This 

unusual role of hydrogen peroxide in nanoparticle nucleation is consistent with 

the proposed mechanism and experimental observations. 
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 By carefully varying the reaction conditions, we were able to form copper 

phosphate/carbonate nanoparticles in the absence of hydrogen peroxide with the 

properties nearly identical to those of the nanoparticles formed in peroxide 

decomposition reaction (Table 10-1); however this required much higher 

temperature and long reaction time (Figure 5-11). Nonetheless, this experiment 

further supports the proposed composition of the nanoparticles. 

 

Figure 5-11: TEM image  and UV-Vis spectra of fabricated nanoparticles 
without using hydrogen peroxide (A) 12.5 µmol of copper(II) sulfate with 50 
µmol of (NH4)2CO3 in 25 mL of 20 mM phosphate buffer pH 10. (B) 
Fabricated nanoparticles after 10 days kept at lab bench. 

5.7 Self-inhibiting behaviour of Cu(II) nanoparticles 

As the copper phosphate/carbonate nanoparticles are the main product of 

the reaction, they must possess self-inhibiting properties observed in the overall 

process of hydrogen peroxide decomposition. This can be understood if we 

assume that nanoparticle surface provides seeds for further nanoparticle growth 

upon addition of extra Cu(II) at the end of reaction. Any added Cu(II) ions get 
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immediately adsorbed on the nanoparticle surface. Therefore, no reactive 

intermediates are formed and the hydrogen peroxide decomposition is not 

observed. 

 In order to test this hypothesis, we carried out a series of control 

experiments. Variable amounts of fresh Cu(II) sulfate were added to the 

nanoparticle solution at the end of hydrogen peroxide decomposition and the 

reaction mixtures were examined using UV-Vis spectroscopy. Instant and almost 

linear increase in the absorption was consistent with the nanoparticle growth 

(Figure 5-12). The nanoparticle solution remained stable and no precipitation was 

observed until Cu(II) concentration reached 0.8 mM, at which point a brown 

precipitate was found. Thus, the experimentally observed inability of freshly 

added Cu(II) to restart the hydrogen peroxide decomposition can be attributed to 

the rapid adsorption of Cu(II) on the nanoparticle surface leading to the growth of 

catalytically inactive particles and thus self-poisoning. 

 

Figure 5-12: Fresh addition of Cu(II) sulfate to the nanoparticle solution in pH 
10 ammonia/ammonium chloride buffer leads to an increased UV-Vis 
absorption. A reaction was carried out using 0.18 mM copper(II) sulfate, 1.3 
mM HEDP chelant and 0.98 M hydrogen peroxide in 25 mL of buffer solution. 
Amount of Cu2+ added was 0.18 mM which gives total Cu2+ present in the 
solution as: (A) 0.72 mM; (B) 0.54 mM; (C) 0.36 mM; (D) 0.18 mM. 

The observed effect of changing the metal to ligand ratio on the kinetic profile 

of the decomposition reaction (Figure 5-5) can now be explained in terms of the 

proposed reaction pathway. Increased Cu(II) concentration leads to a faster 

hydrogen peroxide decomposition (presumably due to the higher concentration 

of the active catalyst) and also to a faster nanoparticle formation (due to faster 

nucleation/growth). Increased concentration of HEDP stabilizes the initial 
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complex and hence slows down the formation of the active catalyst and 

decreases the rate of hydrogen peroxide decomposition. 

5.8 Defeating the self-inhibiting effect 

In the proposed reaction mechanism, the nanoparticle nucleation only occurs 

after complete degradation of HEDP which presumably is involved in the structure 

of the active catalyst. This conclusion makes it possible to rationally design 

reaction conditions that would not exhibit self-poisoning effect. Continuous 

addition of HEDP chelant to an ongoing hydrogen peroxide decomposition 

reaction should prevent the active catalyst from nucleating the nanoparticles. In 

a control experiment, we added HEDP in three batches at different reaction times 

before the nanoparticle formation was observed. As HEDP decomposition gives 

acidic products and hence leads to pH drop, we re-adjusted the pH with NaOH 

half way through the reaction to maintain the reaction conditions unchanged. This 

simple procedure indeed prevented the nanoparticle formation and induced 

continuous decomposition of hydrogen peroxide with no sign of self-inhibition 

(Figure 5-13). This experiment strongly suggests that the trigger for nanoparticle 

nucleation is complete oxidation of HEDP which is consistent with the proposed 

mechanism. 

 

Figure 5-13: Adding fresh HEDP chelant to an ongoing Cu2+-HEDP catalysed 
hydrogen peroxide decomposition reaction just before it stops. Pre-
neutralised HEDP (32.5 µmol each time in 25 ml reaction solution) ligand 
was added at different time intervals. pH of the reaction solution was 
maintained by adding a few drops of 2 M sodium hydroxide. 
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5.9 The nature of the active catalyst  

The proposed reaction mechanism involves formation of a highly active 

copper based catalyst. A series of experiments were carried out to define the 

exact nature of the catalysts. Unfortunately, our attempts were unsuccessful. 

EPR spectra of reaction solutions crash-frozen at different time intervals showed 

complex pattern due to the presence of several Cu(II) species (consistent with 

the speciation predictions) but neither the lineshape nor the intensity changed up 

until the end of hydrogen peroxide decomposition, at which point EPR signal 

abruptly disappeared which is consistent with the nanoparticle formation (Figure 

5-14). Mass spectroscopic (ESI) investigation also did not show any new Cu(II) 

complexes. 

 

Figure 5-14: EPR spectra of copper-HEDP reaction solution. Reaction 
solution contained Cu2+ (0.18 mM), HEDP (1.3 mM) in 20 mM pH 10 
ammonia/ammonium chloride buffer with hydrogen peroxide (0.98 M), total 
reaction volume 25 mL. Aliquots (1.6 mL) were mixed with glycerol (0.4 mL) 
in a quartz EPR tube, and spectra were recorded at 120 K at the following 
times after the start of the reaction: (A) 2 min; (B) 8 min; (C) 15 min. 

UV-Vis spectra analysis at low concentration of copper and chelant showed 

some small changes in the line-shape consistent with the changes in the copper 

speciation during the course of hydrogen peroxide decomposition (Figure 5-15). 

Taken together, these data suggest that the concentration of the active catalyst 

is very low throughout the reaction, and complete degradation of HEDP ligand 

triggers very fast nucleation and growth of the nanoparticles. 
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Figure 5-15: UV-Vis spectra of Cu-HEDP reaction with hydrogen peroxide. 
Reaction solution contained 0.05 mM copper(II) sulfate, 0.05 mM HEDP 
ligand in 20 mM pH 10 ammonia/ammonium chloride buffer pH 10. Hydrogen 
peroxide 0.1 mM was added and spectra were recorded immediately against 
reagent blank. Reaction was carried out in UV-vis cell. Spectra obtained 
every 2 minutes over 120 minutes show changes in the reaction solution. 

Despite the failure to characterise the active catalyst, it is clear that the HEDP 

chelant is essential for its generation. No nanoparticle formation was observed 

when the reactions were repeated in the presence of other ligands [EDTA, EDDS, 

DTPMP, DTPA], phosphate ion, and in the absence of any chelant. One can 

hypothesise that strongly coordinating hexa- and octadentate chelants do not 

favour formation of bridged copper dimers/oligomers which are likely to be the 

active species in the hydrogen peroxide decomposition reaction. 

The reaction in a chelant-free system in an ammonia buffer showed 

immediate nanoparticle formation upon addition of hydrogen peroxide as 

evidenced by the UV spectra; however these materials were unstable and quickly 

precipitated from solution (Figure 5-16). Carrying out the reaction in a ligand-free 

20 mM phosphate buffer also resulted in the immediate formation of somewhat 

more stable nanoparticles which showed very little catalytic activity (Figure 5-16). 

The presence of phosphate thus seems critical for the formation of stable 

nanoparticles. 
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Figure 5-16: (A) Formation of nanoparticles in a chelant-free system. The 
reaction solution contained 0.18 mM copper(II) sulfate dissolved in 20 mM 
ammonia/ammonium chloride buffer pH 10 with 0.98 M hydrogen peroxide 
TEM images showed large aggregates of nanoparticles. (B) Formation of 
copper based nanoparticles in Cu(II) chelant-free system in a 20 mM 
phosphate buffer pH 10 solution. TEM image of the reaction solution shows 
the presence of nanoparticles. 

5.10  Conclusion 

The Cu2+-HEDP system decomposes hydrogen peroxide at alkaline pH 

rapidly, however, the reaction stops abruptly. The decomposition of hydrogen 

peroxide proceeds via formation of an active catalyst that degrades the chelant 

and eventually seeds formation of catalytically-inactive basic copper 

phosphate/carbonate nanoparticles. The nanoparticles prevent any further 

catalytic reaction as freshly added Cu2+ ions quickly adsorb on their surface and 

do not form active catalyst.  

This is a rather unusual scenario for the Fenton-like chemistry; however it is 

perhaps not so uncommon in other areas. For instance, many Pd-catalysed 

cross-coupling reactions proceed via formation of an active catalyst. There is 

evidence that at least in some cases multinuclear clusters possess high catalytic 

activity. At the end of the reaction, the active catalyst nucleates formation of 

bigger particles which eventually precipitate to form Pd black which is usually 

catalytically inactive. The lability of the active catalyst in this type of reaction is 

essential for the high catalytic activity; yet it facilitates eventual nucleation to form 

inactive larger particles. We believe Cu-HEDP catalyzed degradation of hydrogen 

peroxide follows the same principles. 
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6 Permanent hair colouring 

Hair dyeing is chemical processing of human hair fibres to provide complete 

cover-up of the grey fibres with a variety of shades for an adequate long-lasting 

effect.  It’s history dates back to early Roman era when people started using 

various vegetable, mineral and animal derived substances to change their hair 

colour.15, 163 Modern hair colouration is mainly divided into two groups, oxidative 

and non-oxidative hair colouring. This classification is based on the type of 

colourant used, their chemistry and their affinity for the hair fibre.164, 165 

Non-oxidative coloration is further divided into two groups, temporary and 

semi-permanent colorants. Temporary colorants offer instant colour shades and 

do not involve any chemical processing. They are popular among youth to colour 

their hair for a particular event and then wash off with a single shampoo 

application. Semi-permanent colorants also do not involve any chemical 

processing. The product usually contains nitro-aromatic molecules sometimes 

mixed with inorganic pigments under neutral or slightly alkaline pH conditions. 

They last for 5-6 shampoo washings and thus require a reapplication. A 

characteristic point of semi-permanent coloration is zero or minimum hair damage 

to hair fibre as it does not involve any harsh chemical processing.164, 166, 167 

Oxidative colouring is also divided into three groups, permanent, demi-

permanent and auto-oxidation dyeing. In demi-permanent dyeing, melanin is 

bleached to a lesser extent. This product utilises a small amount of 

monoethanolamine as an alkaliser to get a pH level of 7-8. As demi-permanent 

dyeing does not involve high level of melanin bleaching and it may offer superior 

hair quality. However, it gives very few colour shades and exhibits poor colour 

retention. Auto-oxidation colouring is popular among male consumers and 

develops colour with time using atmospheric oxygen. Few examples are reported 

in the literature using 1,2,4-trihydroxybenzene molecules.164, 168  

Permanent dyeing accounts for the major share of hair colour market. It is 

popular among consumers due to its superior grey hair coverage, wide range of 

colour shades available and better wash and light fastness properties offering a 

long lasting colour. Permanent dyeing involves a diffusion controlled process 

where active ingredients penetrate the hair first and then react to form a new 
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chromophore inside hair fibre. Dyeing application comprises two components, a 

colour gel or cream and an oxidising developer lotion. Colour cream contains dye 

precursors which are organic aromatic molecules formulated at high alkaline pH 

of 9-10. Ammonia is the common choice of an alkaliser. Developer lotion contains 

an oxidising agent such as hydrogen peroxide stabilised at acidic pH. Two 

components are mixed together just before the application. High ammonia 

content in the colouring cream ensures alkaline pH (9.0 – 10.0) of the final mixture 

which activates hydrogen peroxide to oxidise dye precursors. Beside oxidation of 

dye precursors, hydrogen peroxide bleaches naturally occurring melanin pigment 

inside hair fibre and its decomposition products are subsequently removed during 

rinse off.  

A range of dye precursors is available which are utilised to develop various 

colour shades.169 They are aromatic molecules generally classified as primaries 

and couplers in hair colour industry. Primary precursors are aromatic diamines or 

aminophenols with amino (-NH2) or hydroxy (-OH) group in the ortho or para 

positions of the aromatic ring. These groups and their positions on benzene ring 

are important in determining the reactivity and rate of reaction for these 

molecules. The nature of these groups may also influence the colour shade 

development.164, 170, 171 The couplers are also aromatic diamines or amino phenols 

with a similar structure though with substitution at the meta position. They don’t 

develop significant colour themselves, however, when mixed with primary 

precursors, they develop intense colour shades. Hydrogen peroxide oxidises the 

primary to a highly electrophilic intermediate which then couples with the coupler. 

Some examples of primaries and couplers are presented below (Figure 6-1 &  

Figure 6-2). 
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Primary molecules 

     

         

Figure 6-1: Some examples of primary dye precursors. 

Couplers 

       

      

    

Figure 6-2: Some examples of coupler dye precursors. 
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6.1 Objective 

Previous chapters have described the role of transition metal ions in 

decomposing alkaline hydrogen peroxide in the presence of various chelants. 

The chelants influence the metal activity by changing metal speciation. In 

oxidative dyeing where aromatic dye precursors are also present, these metal 

ions may influence colour development. Published literature reported this as 

“green hair problem” associated with copper deposits on the hair fibre.172 

However, the potential involvement of these transition metal ions in the oxidative 

permanent colouring of hair has not been explored before. 

This chapter investigates the role of added aromatic dye precursors in a 

copper catalysed decomposition of alkaline hydrogen peroxide. The dye 

precursors themselves or their oxidation products may alter catalytic activity of 

copper ions in decomposing hydrogen peroxide and generating hydroxyl radicals. 

This may lead to a new dimension in controlling free radical chemistry in oxidative 

hair colouring and minimising hair damage. Hydrogen peroxide decomposition 

was monitored using gasometric assembly while a modified approach was 

adapted to monitor formation of hydroxyl radicals using NPGA colorimetric probe. 

6.2 Basic mechanism of permanent hair colouring 

Small molecules of dye precursors can diffuse into the hair fibre. Alkaline 

media with ammonia facilitates their diffusion by opening cuticle pores of the hair 

fibre. Primaries are oxidised inside the hair to give reactive intermediates which 

then react with the couplers. This reaction yields a new chromophore imparting a 

new colour shade to the fibre. The new chromophore is bigger in size than the 

starting precursors and thus cannot diffuse out of the fibre easily (Figure 6-3). 

The desired colour shade is achieved by mixing 5-10 dye precursors in a suitable 

delivery system e.g. emulsion or gel. 
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Figure 6-3: Schematic presentation of oxidative hair colouring demonstrating 
penetration of dye precursors and melanin bleaching. 

6.2.1 Oxidative coupling: coupling of p-phenylenediamine 

(PPD) and m-aminophenol (MAP) 

The mechanism of oxidative hair dyeing has been reviewed previously.173-175 

The first step is the oxidation of primary to give a reactive intermediate. A 

common primary employed is p-phenylenediamine. Under alkaline conditions in 

the presence of hydrogen peroxide, p-phenylenediamine is oxidised to give 

quinone diimine (QDI+) (Figure 6-4). This electrophilic intermediate reacts with 

the coupler such as m-aminophenol at its most nucleophilic carbon position to 

give binuclear leuco dye which in turn is further oxidised to form indophenol. In 

some cases, depending upon the primary used, this binuclear dye reacts with 

another QDI+ molecule to give a trinuclear dye. In case of p-phenylenediamine 

(PPD) and m-aminophenol (MAP), chain polymerisation continues and forms 

polynuclear dark reddish brown colorant (Figure 6-5). 



 

 

123 
 

  

Figure 6-4: Oxidation of p-phenylenediamine primary. 

 

Figure 6-5: Possible mechanism of oxidative coupling of p-
phenylenediamine and m-aminophenol. 

These binuclear and trinuclear (trimer) molecules are formed inside the hair 

fibre and are trapped there because of their large size ensuring that the dye 

colour achieved is permanent and cannot be washed out easily. 
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6.3 Decomposition of alkaline hydrogen peroxide in a 

copper-dye precursor system 

In order to study the role of these organic dye precursors in a Fenton-like 

reaction, a series of experiments were carried out by adding dye precursors in 

the hydrogen peroxide decomposition solution under alkaline pH conditions using 

ammonia/ammonium chloride buffer. A first set of experiments was carried out by 

employing a single aromatic molecule system such as phenol. Similarly, other 

dye primaries and couplers were also examined under similar experimental 

conditions.  

 

Figure 6-6: Decomposition of alkaline hydrogen peroxide in the presence of 
copper(II) sulfate and dye precursors at pH 10 using 400 mM 
ammonia/ammonium chloride buffer. Reaction solution contained 0.02 mM 
copper(II) sulfate with 1 mM dye precursor each and 0.98 M hydrogen 
peroxide. 

Control experiment containing copper(II) ions without added dye precursors 

decomposed hydrogen peroxide rapidly. However, the addition of dye precursors 

suppressed the decomposition of alkaline hydrogen peroxide significantly (Figure 

6-6). Even simple phenol had influence over decomposition kinetics. PPD 

addition demonstrated a higher effect suppressing hydrogen peroxide 

decomposition. The reaction solution turned coloured on introducing hydrogen 
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peroxide. PPD is a commonly employed primary in hair colouring that undergoes 

oxidation producing coloured intermediate species which subsequently 

undergoes self-coupling reaction to generate multi-nuclear dark black coloured 

material (Figure 6-7). Different dye precursors exhibited different activity in the 

decomposition reaction which could be due to their different rates of oxidation. 

 

Figure 6-7: Oxidative self-coupling of p-phenylenediamine. 

Further experiments were carried out by adding meta-substituted coupler 

along with a primary in an equal molar ratio in the reaction solution. MAP coupler 

was mixed with copper(II) sulfate and PPD in an alkaline buffer solution (pH 10). 

The results reveal that in-situ coupling of PPD and MAP has pronounced impact 

in suppressing decomposition of alkaline hydrogen peroxide (Figure 6-8). Even 

at relatively higher level of copper(II) ions (0.18 mM) in 400 mM 

ammonia/ammonium chloride buffer where copper(II) ions in a dye-free system 

decomposed alkaline hydrogen peroxide rapidly, PPD-MAP system slowed down 

the decomposition reaction. Also, this PPD-MAP system exhibited greater 

suppression compared to single PPD self-coupling system (Figure 6-6) which 

suggests that different couplers may lead to different kinetics in the 

decomposition reaction.  
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Figure 6-8: Copper catalysed decomposition of alkaline hydrogen peroxide 
in the presence of PPD primary and MAP coupler at pH 10 using 400 mM 
ammonia buffer with different concentration levels of copper(II) ions. 
Reaction solution contained 1 mM of each dye precursor and 0.98 M 
hydrogen peroxide. 

The above experiments show that the presence of aromatic dye precursors 

suppressed the decomposition of alkaline hydrogen peroxide. Addition of a meta-

substituted coupler e.g. MAP alongside PPD has a very profound influence on 

the decomposition reaction. In a copper-PPD reaction solution, addition of a 

coupler and hydrogen peroxide immediately forms a coloured solution. 

Interestingly, most of the systems exhibited a self-accelerating behaviour in 

hydrogen peroxide decomposition when the colour of the reaction solution had 

faded. 

Phenols and nitrophenols demonstrate anti-oxidant activity by capturing free 

radical species and disrupting free radical chain mechanism. Here, Fenton-like 

reaction in the presence of dye precursors may also form hydroxyl radicals. It is 

possible that these dye precursors and their oxidation products interfere and 

break free radical chain mechanism of Fenton reaction which hence influences 

the overall hydrogen peroxide decomposition. 

An alternative explanation would consider chelation of copper ions by dye 

precursors which were used as starting materials. Oxidation of these dye 

precursors forms multinuclear larger molecules which may also chelate copper 
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ions. This metal-dye complexation might be responsible for the suppression of 

hydrogen peroxide decomposition.  

These hypotheses required further experimentation to define the mechanism 

of the dye induced suppression of hydrogen peroxide decomposition. It was 

important to identify the species responsible for suppressing the catalytic activity 

of copper(II) ions in decomposing alkaline hydrogen peroxide. We have therefore 

carried out experiments quantifying hydroxyl radical formation using NPGA probe 

while different metal-dye systems were examined to study metal-dye interaction. 

6.4 Monitoring hydroxyl radical formation in oxidative 

colouring 

Earlier studies with added aminocarboxylate or phosphonate chelants altered 

copper activity in hydrogen peroxide decomposition and hydroxyl radical 

formation. Some systems e.g. Fe(III)-EDTA (pH 8.0) and Cu(II)-HEDP (pH 10.0) 

rapidly decomposed hydrogen peroxide and produced hydroxyl radicals while 

others e.g. Cu(II)-EDDS suppressed the decomposition reaction and formation of 

radical species. So, different metal chelant systems behave differently under 

different experimental conditions. We reasoned that the same might be true for 

the copper-dye precursor systems. Hence, it was important to monitor hydroxyl 

radical formation in the presence of these dye precursors. 

In the previous chapters, NPGA colorimetric probe was employed to monitor 

hydroxyl radical formation in a metal or metal-chelant system under various 

reaction conditions. For those experiments, monitoring hydroxylated NPGA (H-

NPGA) in-situ was relatively easy as no other coloured species was present in 

the system. However, copper-dye precursor system generates deeply coloured 

solution immediately on adding hydrogen peroxide. These intensely coloured 

species may interfere in quantitative H-NPGA analysis. Therefore a slightly 

modified experimental set-up was adapted here while using the same NPGA 

probe to monitor hydroxyl radical formation. The experimental design was to 

remove or decolourise dark coloured dye species and selectively monitor H-

NPGA using UV-visible spectrophotomer. Oxidative hair dyes can be reduced 

using a reducing agent such as ascorbic acid. H-NPGA is a nitrophenolate and 
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is stable to mild reducing agents whereas indo dyes can be reduced easily. 

Interestingly, some products are available in the market to remove colour stains 

from the consumer skin following an oxidative colour application.39 Such 

formulations usually employ ascorbic acid, sodium sulfite or thioglycolic acid.  

In early experiments, reducing agents such as sodium sulfite, ascorbic acid 

and sodium dithionite were tested to reduce dye; however, they were not able to 

decolourise deeply coloured solution completely. Sodium borohydride was also 

used, however, its poor stability in aqueous solution was a concern and gas 

evolution was strongly interfering with UV-visible analysis. 

6.4.1 Reducing oxidative dyes using thioglycolic acid 

Adding thioglycolic acid immediately decolourised the deeply coloured dye 

solution. Reaction solution contained copper(II) sulfate, NPGA probe, dye 

precursors and hydrogen peroxide in ammonia/ammonium chloride buffer 

solution (400 mM, pH 10).  The experiment was conducted following a stepwise 

scheme (Scheme 6-1). Addition of thioglycolic acid (TGA, 5%, 0.7 M) (pKa 3.76) 

caused a pH change which was dropped to acidic (pH 3.50). To analyse H-NPGA, 

pH was adjusted back to alkaline using ammonia solution to make sure the 

nitrophenolate is completely deprotonated.  

  Thioglycolic acid (TGA), pKa=3.76 OH
HS

O
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Scheme 6-1: Stepwise schematic methodology to reduce PPD-MAP 
oxidative dye using thioglycolic acid under alkaline oxidative permanent 
colouring conditions. 

 

 

PPD/MAP + Cu2+ + H2O2  
pH 10.0

Catalase to destroy remaining H2O2

Add 5% TGA, Stirring for 30 min

30 mins

(15 min stir)

Adjust pH to 8.0 - 8.5 using ammonia (35%) dropwise
make sure dilution factor is adjusted for 

reagent blank and reaction solution

Record spectra at UV-Visible Spectrophotometer
against reagent blank
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Figure 6-9: Reducing PPD-MAP dye using TGA reduction method. Reaction 
solution contained 0.02 mM copper(II) sulfate, 1 mM PPD and 1 mM MAP 
mixed in 400 mM ammonia buffer. 0.98 M hydrogen peroxide was added to 
start the reaction. TGA (5%, 0.7 M) was added to reduce dye precursors and 
pH was adjusted back again using a few drops of ammonia. (A) PPD-MAP 
dye solution spectrum after 15 times dilution before adding TGA, (B) On 
adding TGA without any dilution, (C) pH adjusted back to alkaline 8.0, (D) 
After stirring for 60 minutes at alkaline pH. 

The results (Figure 6-9) show that the TGA method effectively reduced PPD-

MAP dye. Adjusting pH back to alkaline did not lead to the coloured solution 

demonstrating the irreversible reduction and efficacy of TGA as a reducing agent 

under experimental conditions 

An important concern was the stability of NPGA colorimetric probe under the 

reducing conditions. To examine its stability, a control experiment was carried out 

in the absence of dye precursors with added NPGA following TGA reduction 

method (Scheme 6-1). The spectra below (Figure 6-10) demonstrate that on 

adding TGA there is an immediate change in absorption spectrum of the reaction 

solution for H-NPGA. This change in electronic spectrum was pH dependent and 

subsequent addition of ammonia reproduced the H-NPGA spectrum which was 

stable for over the period of at least 90 minutes. As observed from UV-visible 

data, the addition of thioglycolic acid under the experimental conditions did not 

reduce H-NPGA derivative and the probe was stable suggesting that H-NPGA 

can be analysed selectively using the TGA reduction method. 
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Figure 6-10: Examining the stability of NPGA and its hydroxylated derivative 
in-situ using TGA reduction method. The reaction solution contained 0.18 
mM Cu(II) sulfate, 1 mM NPGA with 0.98 M hydrogen peroxide in 400 mM 
ammonia/ammonium chloride buffer. (A) Hydroxylated derivative H-NPGA, 
(B) H-NPGA spectrum immediately after adding TGA at acidic pH, (C) H-
NPGA spectrum after stirring with TGA for 30 min at acidic pH, (D) H-NPGA 
spectrum after adjusting pH back to alkaline, (E) 30 minutes under alkaline 
pH conditions, (F) 90 minutes under alkaline pH conditions. 

6.4.2 Hydroxyl radical formation in copper- PPD/MAP system 

Following the method described in the previous section, hydroxyl radical 

formation was monitored in a PPD-MAP reaction mixture at different copper 

concentration levels (Scheme 6-1).   
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Figure 6-11: Hydroxyl radical formation in various PPD only and PPD-MAP 
systems at different copper(II) levels using TGA reduction method. Apart 
from the copper and dye precursors, reaction solutions contained 0.98 M 
hydrogen peroxide in 400 mM ammonia buffer at pH 10. 

 

Figure 6-12: Hydroxyl radical formation in 0.02 mM copper(II) sulfate in a 
chelant-free/dye-free system monitored over the course of reaction time 
using NPGA colorimetric probe. The reaction solution had pH 10 using 400 
mM ammonia/ammonium chloride buffer. Hydrogen peroxide (0.98 M) was 
added to trigger the decomposition reaction.176 

The results demonstrate low level of hydroxyl radical being formed in the 

presence of PPD-MAP dye precursors (Figure 6-11). It should be recalled here 

that NPGA probes does not offer absolute quantification of hydroxyl radical 

formation in a given reaction solution. Especially in the presence of multinuclear 

dye molecules, it is possible that the system might have higher hydroxyl radical 
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formation and NPGA probe might have been unable to compete with the dye 

precursors for the reaction with the hydroxyl radical. However, in a model 

experimental system, our data suggest that the presence of dye molecules 

suppressed hydroxyl radical formation.  

Copper(II) ions are highly active in a chelant-free/dye-free system under 

similar experimental conditions. Dye-free systems generated significant level of 

hydroxyl radicals (Figure 6-12).176 Comparison of these results with those 

obtained in the presence of dye precursors suggest that the oxidative dye 

precursors clearly slowed down the decomposition reaction and hydroxyl radical 

formation. 

6.5 Decomposition of alkaline hydrogen peroxide on 

adding pre-made oxidative dye  

To investigate the role of oxidative intermediates/products in suppressing 

hydrogen peroxide decomposition, pre-made dye solution was added to an 

ongoing copper catalysed decomposition reaction. Dye precursors were mixed in 

ammonia/ammonium chloride buffer (pH 10, 400 mM) and hydrogen peroxide 

was added to initiate the oxidation reaction. No metal ions were added to this 

reaction solution.  The reaction solution turned dark coloured immediately on 

adding hydrogen peroxide which was stirred for 30 min. This coloured dye 

solution was then added to a separately ongoing copper(II) catalysed 

decomposition reaction and impact of this dye addition was monitored on the 

hydrogen peroxide decomposition. 
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Figure 6-13: Impact of adding a pre-made dye solution to an ongoing 
copper(II) catalysed decomposition of alkaline hydrogen peroxide. Reaction 
solution contained copper(II) sulfate (0.02 mM) at pH 10 using 400 mM 
ammonia/ammonium chloride buffer. 1 mL of the dye solution was added to 
25 mL reaction solution at 10th minute to give approximately 1 mM 
concentration of the dye. (A) Dye-free system (B) Pre-made PPD dye 
solution, (C) Pre-made PPD-MAP dye solution 

The results (Figure 6-13) show that addition of the dye prepared by self-

coupling of PPD only slightly slowed hydrogen peroxide decomposition while 

addition of PPD-MAP dye solution abruptly stopped the decomposition reaction. 

However, at very long reaction times the reaction gradually accelerated and 

eventually all hydrogen peroxide was decomposed (Figure 6-14). At this point the 

dark coloured reaction solution was completely decolourised thus suggesting that 

the increase in decomposition rate is largely due to the degradation of the inhibitor 

(e.g., a dye present in the MAP-PPD mixture). 
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Figure 6-14: Hydrogen peroxide decomposition in copper catalysed system 
with added PPD-MAP pre-made dye at 10th min. Reaction solution contained 
0.02 mM copper(II) sulfate at pH 10 using 400 mM ammonia/ammonium 
chloride buffer. 

Similar experiments were carried out with other dye precursor combinations. 

Their addition also demonstrated an immediate impact on the decomposition 

kinetics (Figure 6-15). However, none exhibited such profound influence as 

observed in the PPD-MAP system. 

 

Figure 6-15: Hydrogen peroxide decomposition in copper catalysed system 
with added pre-oxidised dye combination at 10th minute. (A) 0.02 mM 
copper(II) sulfate in a chelant/dye free system, (B) 0.02 mM copper(II) sulfate, 
1 mM PPD-AHT dye, (C) 0.02 mM copper(II) sulfate, 1 mM PAP-MAP dye, 
(D) 0.02 mM copper(II) sulfate, 1 mM DTS-MAP dye. Reaction was carried 
out at pH 10 using 400 mM ammonia buffer. 
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In summary, all dye precursors–coupler mixtures slow down the 

decomposition of alkaline hydrogen peroxide. PPD-MAP system showed the 

most profound effect and almost stopped the decomposition reaction. The 

experiments with the pre-made PPD-MAP dye suggest that starting material is 

not responsible in suppressing the decomposition reaction and some 

intermediates or oxidation products may be involved. 

6.6 Hydrogen peroxide decomposition on adding PPD-

MAP trinuclear dye  

The oxidation of PPD and MAP gives a mixture of binuclear, trinuclear and 

multinuclear dye species. The results of the previous section suggest that dye 

precursors taken individually do not have strong effect on suppressing the 

hydrogen peroxide decomposition and postulate a potential involvement of a 

multinuclear dye. To examine its role in the decomposition reaction, a PPD-MAP 

trimer was synthesised, isolated and subsequently added to a copper catalysed 

decomposition of alkaline hydrogen peroxide (Figure 6-16). The trimer was 

dissolved in ammonia/ammonium chloride buffer and mixed with copper(II) 

sulfate. Hydrogen peroxide was added to the reaction solution and its 

decomposition was monitored.  

 

Figure 6-16: PPD-MAP oxidative trimer synthesised.  
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Figure 6-17: Impact of adding PPD-MAP trimer on copper catalysed 
decomposition of alkaline hydrogen peroxide. Reactions contained (A) 0.02 
mM copper(II) sulfate in a chelant/dye-free system (B) 0.02 mM copper(II) 
sulfate, 0.25 mM PPD-MAP trimer. The reaction solution had pH 10.0 using 
400 mM ammonia buffer. 

Addition of PPD-MAP trimer did not change the kinetics of hydrogen peroxide 

decomposition (Figure 6-17). Control experiment with copper(II) ions in a dye-

free system also showed rapid evolution of oxygen gas in the gasometric setup 

and all hydrogen peroxide was decomposed. This suggests that the PPD-MAP 

trimer is not responsible for suppressing hydrogen peroxide decomposition. PPD 

and MAP individually slow down the decomposition; however the effect is much 

weaker than that of the PPD-MAP dye (Figure 6-6). This excludes the trimer and 

starting dye precursors from being responsible for suppressing the copper activity 

in decomposing hydrogen peroxide. It seems that some other unknown species 

is involved in suppressing the copper(II) ions activity. 

6.7 EPR study of copper-dye precursor mixture in the 

presence of alkaline hydrogen peroxide 

PPD-MAP oxidative coupling involves formation of various intermediate 

species. As discussed earlier (Section 6.2.1), the first step is the oxidation of 

primary to give quinone imine which then undergoes electrophilic addition to the 

coupler. The coupling reaction generates leuco intermediates that further oxidise 

to give the dyes. So, in a reaction where various intermediate species are formed 
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in-situ, it is difficult to identify the species responsible for suppressing the 

decomposition reaction. 

To further look into this matter, low temperature EPR experiments were 

carried out. EPR features of copper(II) ions strongly depend on the coordination 

environment. The spectra for the reaction solution containing copper(II) ions in 

the absence of PPD/MAP did not change much on adding MAP or PPD 

individually, however, it changes dramatically upon formation of the PPD-MAP 

dye in situ using hydrogen peroxide (Figure 6-18).  

The broad almost featureless spectrum suggests either formation of 

polynuclear copper complexes or a mixture of several complexes. Due to high 

concentration level of ammonia used, the spectra in the absence of MAP/PPD 

are those of the copper-ammonia complex. The changes in spectra with PPD-

MAP dye suggest that oxidative dye formed has strong affinity for Cu2+ ions. It 

seems that some unknown compound is formed during PPD coupling (other than 

the trimer) which interacts with the copper ions. A change in the copper 

environment leads to the loss of catalytic activity in decomposing alkaline 

hydrogen peroxide. 
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Figure 6-18: EPR spectra of copper(II) ions in a ligand-free system and along 
with PPD, MAP and PPD-MAP dye formed in-situ. Reaction solution 
contained 0.02mM copper(II) sulfate mixed with 0.98 M hydrogen peroxide 
in 400 mM ammonia/ammonium chloride buffer pH 10. The reaction mixture 
was stirred for 30 min and then mixed with glycerol (10%) and frozen in liquid 
nitrogen. The spectra were recorded at 120 K. (A) Cu2+ ions with hydrogen 
peroxide only in the absence of dye precursors (B) Cu2+ with PPD-MAP dye 
formed in situ using hydrogen peroxide (C) Cu2+ with PPD only without using 
hydrogen peroxide (D) Cu2+ with MAP only without hydrogen peroxide. 

Metal coordination with aminocarboxylate and phosphonate chelants has 

been discussed in previous chapters. Metal-ligand binding may change the metal 

speciation leading to an altered catalytic activity of metal ions in a Fenton-like 

reaction. Dye precursors studied above also contain amino and hydroxyl 

substituents on the benzene ring. Their oxidation forms bigger multinuclear dye 

molecules with amine and imine groups which actually may have higher affinity 

for binding copper ions. 

Syntheses of some polyphenol, poly-aniline and poly-phenylenediamine 

polymers and their chelating properties have been reported in the literature 

(Figure 6-19).177-180 Similar chemistry may be involved here in the copper-PPD-

MAP system where large polymeric dye molecules chelate active copper(II) 
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changing its chemical activity. However, it should be remembered that different 

dye combinations would exhibit different capacity for binding copper(II) ions as 

observed earlier for different metal-ligand systems. This variation in copper 

binding capacity will influence the catalytic activity of copper(II) ions in a Fenton-

like reaction. 

 

Figure 6-19: Metal binding with poly-phenylenediamine.179 

6.8 Conclusion 

Copper(II) ions are active in decomposing alkaline hydrogen peroxide in an 

oxidative permanent hair dyeing mixture via a Fenton-like reaction. However, the 

presence of aromatic primaries and couplers such PPD/MAP suppress hydrogen 

peroxide decomposition. It is believed that their oxidation reaction forms some 

unknown compounds which chelate copper catalysts changing their chemical 

activity. EPR study confirms a change in copper environment during the 

decomposition reaction. Unfortunately, it was difficult to identify the nature of 

these compounds at this stage.  

These results have important implications for oxidative hair dyeing. The 

previous chapters discussed activity of copper(II) ions rapidly decomposing 

alkaline hydrogen peroxide. Addition of chelants such as EDTA and EDDS were 

required to stabilise hydrogen peroxide and control free radical chemistry. These 

systems correspond to a real-life hair bleaching systems. Here in the permanent 

hair dyeing systems, it seems that the presence of dye precursors themselves 

stabilises the alkaline hydrogen peroxide. This means that due to a higher flux of 

hydroxyl radical, bleaching systems (which lack inhibiting dye precursors) could 

lead to more protein loss from the hair fibre than the oxidative dyeing systems. 
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This agrees with the hair protein loss data for the hair bleaching and dyeing 

systems where P&G observed lower protein damage in oxidative colouring 

compared to the bleaching system.181 
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Chapter 7: Calcium carbonate content in 

human hair fibre 
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7 Calcium carbonate content in human hair fibre 

Human hair may contain alkali, alkaline earth and transition metal ions.18 

Redox metals such as copper and iron may participate in a Fenton-like reaction 

causing hair damage as discussed in chapters 3 & 4. Most abundant metals 

present in hair fibre are calcium and magnesium.17, 24, 35, 182 The main source of 

these metal ions is regular hair cleansing with tap water and subsequent usage 

of various grooming and styling products. Metal ions bind with carboxylate and 

sulfonate residues of the protein fibre. Calcium and magnesium being hard can 

bind with carboxylate while copper being relatively softer may go for aromatic 

heterocycles e.g. melanin and sulfonate. As described earlier, the metal uptake 

may change the physiochemical characteristics and health of hair fibre perceived 

by the final consumer.25 

In recent work at P&G, scanning electron microscope (SEM) images of 

human hair fibres revealed deposits of calcium salts over the hair shaft (Figure 

7-1). They appear as small bubbles (less than 100 µm) in the images. The bubble 

size increases with repeated cleansing treatments which is potentially due to 

more exposure to hard water.183 However, no attempt has been made to 

determine the nature of these bubbles. They have been described to induce 

physical cracks along the hair shaft causing significant damage to hair fibre. 

Establishing the chemistry of the unknown material in a bubble is important. It 

may lead to develop technology preventing the bubble formation or removing 

them from hair to minimise hair damage and improve hair health. 
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Figure 7-1: SEM image of human hair fibre showing bubbles at hair shaft. 

 

Figure 7-2:  Cross section of human hair fibre showing material deposits 
underneath cuticles.  
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7.1 Hypothesis for “calcium carbonate” and objectives 

Consumer living in high water hardness area exhibited more bubbles. Images 

of hair cross section showed the presence of some unknown disc shaped material 

underneath the cuticles layer. SEM-EDX results show the presence of calcium 

material. However, the exact nature of calcium could not be established. We 

hypothesised that the bubbles consist of insoluble calcium carbonate deposited 

over time with repeated hair washing. In an early study, fibres containing large 

number of bubbles were treated with an acid formulations (pH, 4.0-4.5) containing 

citric acid. SEM images after the acid treatment shows the removal of bubbles.183 

This early result supported the presence of calcium carbonate.  

This chapter describes an attempt to define the nature of the unknown bubble 

material. A quantitative analysis is carried out to determine the amount of calcium 

carbonate present in human hair fibre. As these bubbles are very small in size, a 

sensitive analytical methodology is required for accurate measurement. A new 

image analysis method was employed to estimate amount of material present in 

bubbles. 

7.2 Image analysis: Estimating amount of the bubble 

material 

Digital image analysis is a process of obtaining valuable information from an 

image. It generally involves a computer assisted approach where customised 

software collects empirical data which is subsequently processed to generate 

quantitative information. This technique is becoming increasingly popular among 

scientists finding application in wide range of scientific disciplines.184, 185 Recent 

examples have been observed with biological, archaeological and ecosystem 

monitoring using digital images.186-188 Hair care industry has also been using this 

technique to examine surface properties of human hair fibre. Hair growth and hair 

fall has been examined using digital image processing.189-191 Hair health192, 

shine193 and customer perception about their hair health194 has also been studied 

using image analysis. Atomic force microscopy (AFM) and scanning electron 

imaging has been employed to quantify surface hair damage and evaluating the 

efficacy of various hair care formulations.195-197 Following similar approach here, 
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SEM images of human hair fibre are used to estimate the amount of calcium 

carbonate present in hair fibres. 

SEM images of hair cross section for different hair switches were taken at 

P&G. Google image program “Picasa” version 3.0 was used to analyse image 

data to calculate the volume and mass of a bubble present in a hair fibre. Further 

details are discussed in experimental section 9.9.1.  

 

Figure 7-3: Cross-sectional SEM image of a human hair showing bubble 

underneath the cuticles. 

Cross sectional hair SEM images (Figure 7-3) show the bubbles are a disc 

shaped material lying underneath the cuticle layer. The volume of a single bubble 

was calculated assuming a spherical disc cap shape using the following equation.  

Volume of disc cap = 1/6 π h (3a2 + h2) 

 

Here a is radius and h is the height. 

Ten SEM images were processed and the data are presented in Table 7-1. 

The data exhibit significant variation in volume of individual bubbles suggesting 

a wide range of bubble sizes. 
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Samples ID volume of individual bubble (µm3) 

B1 91.24 

B2 108.79 

B3 23.85 

B4 31.23 

B5 30.57 

JM-1 17.09 

JM-2 38.99 

JM-3 27.78 

JM-4 39.43 

JM-5 17.10 

Average 42.61 ± 31  

Table 7-1: Average volume of an individual bubble calculated using SEM 
data. 

Further in the study, the sample size was increased by obtaining more SEM 

images for five sets of hair switches. Each switch contained fifty hair fibres. The 

image data characterised hair switches with different levels of bubbles and 

defined “hair bubble count” which is the number of hair fibres containing bubbles 

out of fifty fibres analysed under SEM. Number of bubbles in a given hair fibre 

were counted using SEM images from each switch. The data are presented in 

Table 7-2. 

 

 

 

 

 

Sample Bubble count level Total number of bubbles 

Control Non-chemically treated fibres  
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Table 7-2: Ponytail fibre characterisation by SEM imaging. Number of fibres 
with bubbles observed in a ponytail fibre switches (n represents the number 
of fibres). 

The volume of individual bubbles, total number of bubbles and bubble count 

level were employed to calculate the total volume of all bubbles present in the 

fibre using the following equation. The results are presented in Table 7-3. 

 

Here  

  

Samples Average estimated bubble 

material (%) 

Ponytail 53  

Ponytail 59 0.030%  ± 0.01 

Ponytail 50 0.084% ± 0.02 

Ponytail 104 0.075% ± 0.02 

Ponytail 69 0.109% ± 0.01 

Table 7-3: Estimated level of bubble material present in human hair fibre 
using image analysis method with SEM data assuming spherical cap bubble 
shape. 

SEM images show an increase in the number of bubbles with increasing 

bubble count level. This is potentially due to hair ageing factor where repeated 

hair cleansing induce more bubble formation. The above results show that overall 

Total volume of bubble 

material in a hair switch
=

Average volume of 

bubbles
X

total of number of 

bubbles in a fibre  
X

bubble count 

factor

Bubble count factor    = 
Number of fibres containing bubbles

Total No. of fibres analysed under SEM

Ponytail 53 Zero  

Ponytail 59 19 80 (n=14) 

Ponytail 50 33 55 (n=8) 

Ponytail 104 41 51 (n=7) 

Ponytail 69 46 199 (n=19) 
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these hair samples contain very small amount of the bubble material (sub-ppm 

level) and it makes only a small fraction of the total mass of a fibre. Here, image 

analysis offered a reasonable approximation for the amount of material present 

in the bubbles.  

The volume of an individual bubble was calculated from only one set of hair 

fibres. Early observations under SEM show that bubble size increases with more 

exposure to hard water. In that case, using a single bubble volume value was not 

a realistic approach to estimate total volume of all bubbles. A large number of 

cross-sectional images would have been required to verify this which was not 

feasible.  

The results also suggest that a sensitive analytical technique is required to 

accurately determine small (sub-ppm) level bubble material in these hair 

samples. As the bubble material is hypothesised to be calcium carbonate, a 

sensitive technique for carbonate detection in heterogeneous solid samples was 

sought. 

7.3 Quantitative chemical analysis of calcium carbonate in 

human hair fibres 

Quantitative analysis for carbonate content can be carried out using various 

techniques. The choice of an analytical methodology depends upon method 

sensitivity and its detection limit. A titrimetric method can be used to determine 

calcium carbonate in eggshell while the amount of carbonate in soil samples has 

been determined using a gas the volumetric method measuring volume of carbon 

dioxide gas evolved upon treatment with acid.198, 199 However, more sensitive 

techniques are required to analyse sub-ppm levels of carbonate. Separation 

techniques such as ion chromatography and capillary electrophoresis have been 

employed to analyse inorganic anions in biological and soil samples.200-202 

Infrared203, 204 and Raman spectroscopic205 methods have also been reported to 

determine carbonate directly.  Attempts were also made at P&G Cincinnati to 

measure carbonate level in hair fibre directly, however, it did not work out 

successfully. 
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An indirect method is measuring carbon dioxide gas evolved via thermal 

decomposition of carbonate or with strong acid treatment. Carbon dioxide gas 

then can be quantified in situ or with suitable sampling method using infrared 

spectroscopic204, 206, 207 or gas chromatographic techniques.208, 209 Environmental 

studies to monitor greenhouse gases such as carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O) have extensively utilised infrared spectroscopy.210  

Previously in chapter 5, a quantitative gas IR method has been used to quantify 

carbonate content in copper based nanoparticles. A similar FT-IR approach was 

adapted here to quantify calcium carbonate in human hair fibres. 

7.3.1 Infrared spectroscopy of carbon dioxide 

A hetero-atomic molecule held together with a chemical bond, forms an 

electric dipole that oscillates with a specific frequency. If this non-symmetrical 

bond is irradiated with light, the electrical component of the electromagnetic 

radiation can transfer its energy to the bond provided that mechanical frequency 

of bond matches the frequency of electromagnetic radiation (Figure 7-4). This 

interaction causes energy absorption which provides valuable information about 

the molecule. In the absence of a change in dipole moment which is the case in 

non-polar bonds such as O=O in oxygen, no interaction of electromagnetic 

radiation with the molecule takes place and thus no absorption is observed. The 

radiations from the infrared region (10000 – 100 cm-1 and more precisely mid-

infrared region ranging 4000-400 cm-1) possess low energy, which causes 

vibrational and rotational excitation. 

 

Figure 7-4: Interaction of electromagnetic radiation with a molecule.211 

A non-linear molecule with N numbers of atoms has 3N degrees of freedom 

of which three are translational and another three are rotational. The remaining 

3N - 6 describes its vibrational motion. Vibrational motion may be stretching or 
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bending. A stretching vibration is a rhythmical movement along the bond axis 

changing the inter-atomic distance while a bending vibration involves a change 

in bond angle.  However, in a linear molecule of carbon dioxide, rotation of atoms 

along the bond axis does not involve displacement of atoms. It thus loses one of 

its rotational degree of freedom. That’s why the total number of degrees of 

freedom for linear carbon dioxide molecule is 3N – 5. This gives carbon dioxide 

four fundamental vibrational modes ((3 x 3) – 5 = 4). There are two stretching 

vibrations while the other two are bending. In an asymmetrical vibration, one 

carbon-oxygen bond stretches out of phase while the other contracts producing 

a change in dipole moment inducing absorption around 2350 cm-1. As both 

oxygen atoms share the same carbon centre, it causes a strong mechanical 

coupling displaying a significant shift in absorption frequency from the carbon-

oxygen (C=O) bond of ketones (which absorbs around 1715 cm-1). The 

symmetrical stretching does not produce any change in dipole moment and 

hence no absorption can be observed. Two bending vibrations are equivalent and 

thus have same frequency absorbing around 665 cm-1. 212-215 

 

Figure 7-5: Fundamental vibrations in a carbon dioxide molecule.213 

7.3.2 FT-IR method to quantify carbon dioxide gas 

Air contains 394 ppm (0.039% v/v) carbon dioxide and it absorbs strongly in 

the mid-IR region.216 A quantitative measurement of carbon dioxide below its 

atmospheric level requires minimising background interference. A series of 
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control experiments were carried to develop an optimised control reaction setup 

to minimise this background interference. An experimental setup connecting the 

reaction vessel and gas IR cell was designed. Hair fibres in a sealed reaction 

vessel were treated with concentrated inorganic acid and the evolved carbon 

dioxide was quantified. Phosphoric acid was a preferred choice over other acids 

due to its low volatility and lack of oxidising power.  

7.3.3 Method sensitivity 

An IR spectrum of air was obtained against an evacuated IR cell background 

which showed the absorption level for atmospheric carbon dioxide (Figure 7-6). 

Similarly, control experiments with a system containing phosphoric acid without 

hair fibres demonstrated the absorption scale for residual carbon dioxide present 

in the experimental setup (Figure 7-7). The ratio between these two absorption 

levels gave the minimum detection limit under these experimental conditions. The 

calculations are summarized below in Table 7-4.  

 

Figure 7-6: FT-IR spectrum of air. 
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Figure 7-7: Control experiment using phosphoric acid and stirring bar without 
hair fibres or carbonate showing low level of absorption for carbon dioxide. 

Calculating the CO2 detection limit for IR method   

Carbon dioxide absorption level (AU) in air observed 

by recording IR spectrum of air 

0.0635 

Maximum absorption level (AU) for CO2 in a control 

experiment 

0.001 

S/N ratio 0.0635/0.001 = 63.5 

Amount of CO2 in air (ppm) 394 

Mininum detectable CO2 concentration (ppm) 394/63.5 = 6.20 

Table 7-4: Calculating CO2 detection limit using IR method.  

Previous studies using gas phase IR have described minimum detection limit 

for carbonate and carbon dioxide. This limit varies greatly depending upon 

experimental conditions such as IR cell path length, sample size and sample 

preparation.217 An experimental setup employing multiple gas extraction traps 

may go to sub-ppb level for carbon dioxide for more precise and accurate 

quantifications.218, 219 So, it is difficult to compare our detection limit in a simple 

set-up with the previously reported values. 
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7.3.4 Determining the amount of carbonate in hair fibres 

A standard curve was first developed to quantify carbon dioxide in an 

unknown sample. Details are further discussed in experimental section 9.9.7.1. 

Next, IR spectra of hair samples containing bubbles were recorded under 

identical experimental conditions. The results (Figure 7-8) show an increase in 

absorption intensity for carbon dioxide with increasing bubble count level. Zero 

bubble count level showed absorption level comparable to the control 

experiment. Pulverised hair powder showed significantly higher absorption which 

might be due to greater surface area and accessibility of carbonate in powder 

specimen. 

For quantitative measurements, absorption intensity at 2360 cm-1 was used 

to calculate the level of carbonate. The results are given in Table 7-5.  

 

Figure 7-8: IR spectra for various samples of human hair fibres showing the 
absorption band for carbon dioxide produced. 

 

 

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

1500 1750 2000 2250 2500 2750 3000

A
b

s
o

rp
ti

o
n

 (
A

U
)

Wave No. (cm-1)

Ponytail 69

Ponytail 104

Ponytail 50

Ponytail 59

Ponytail 53

Control



 

 

155 
 

Sample 
Avg. 

Absorption 
for CO2 

Amount of Calcium 
Carbonate (ppm) 

Carbonate 
content (%) 

Control 0.0005 24.7 ± 8.62 0.0025 ± 0.0009 

Ponytail 
53 0.0015 78.5 0.0079 ± 0.000 

Ponytail 
59 0.0025 134.2 ± 9.16 0.0134 ± 0.0009 

Ponytail 
50 0.0037 196.2 ± 37 0.0196 ± 0.004 

Ponytail 
104 0.0072 384.2 ± 81.2 0.0384 ± 0.007 

Ponytail 
69 0.0095 520.0 ± 46.5 0.052 ± 0.006 

Pulverised 
hair 

powder 
(Ponytail 

50) 

0.0098 1270.1 ± 320 0.127 ± 0.026 

Table 7-5: Carbonate levels (%) in various human hair samples with different 
bubble count level. Each ponytail sample analysed contained 350 mg hair 
fibre while for pulverised hair powder (ponytail 50), 100 mg hair fibres were 
used. 

7.4 Defining the nature of bubble material 

Comparing image analysis estimation and IR quantification for calcium 

carbonate helps to define the nature of unknown material present in the bubbles. 

The estimated level of unknown material from image analysis is 2-3 times higher 

than the actual level of calcium carbonate found from IR method (Figure 7-9). 

Although image analysis is only an approximation, the comparison with IR data 

still suggests that bubble material may not be solely calcium carbonate. It seems 

that some other unknown material may also be present along with calcium 

carbonate in the bubbles. 
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Figure 7-9: Comparing amount of calcium carbonate determined by image 
analysis and gas IR method. 

Calcium level in hair varies significantly and it depends upon demographics, 

gender and hair condition. A recent report discussed a comprehensive study 

where hair fibre from various countries across the globe were analysed for their 

metal contents.220 It reports an average of 5000 ppm of calcium from over 300 

hair samples analysed. Assuming these values, it seems that total level of 

calcium carbonate found from IR method is only ca. 0.025% of total calcium 

present in hair fibre. This means that most of calcium present in the hair fibre is 

not calcium carbonate. 

Previous reports in the literature have discussed the bubble formation as a 

result of harsh thermal treatments such as flat ironing and blow drawing. These 

thermal treatments can cause significant hair damage due to localised 

overheating specially in wet hair where temperature may rise very quickly due to 

steam inside hair fibre.221-223 This may cause significant decrease in fibre tensile 

strength at various points along the hair shaft.  It is possible that these damaged 

spots accelerate deposition of calcium based inorganic materials which grow over 

time with repeated exposure to hard water.  

Daily hair cleansing formulations such as shampoos, shower gels and soaps 

contain different surfactants. Long chain fatty acids and alcohols are common 
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examples used.171, 224, 225 It is possible that repeated washing cause deposition of 

calcium salts of these long chain organic acids on hair fibre. During the current 

study, attempts were made to induce and grow these bubbles by immersing non-

chemically treated hair fibres in calcium sulfate and sodium carbonate solution. 

However, no bubble formation or increase in bubble numbers was observed. This 

also suggests that bubble formation mechanism may involve some other factors. 

Outermost layer of hair cuticles is lipophilic composed of lipids.13, 226 It is possible 

that these lipid-based components add to calcium deposits and play a role in the 

bubble formation. Recent results from work at P&G also suggest the presence of 

long chain organic materials.181 Further work is required to investigate these 

factors and determine the exact nature of these bubbles.  

7.5 Conclusion 

Two analytical methodologies were employed to quantify the amount of 

calcium carbonate in hair. Image analysis of hair offered a good approximation 

where digital data were utilised to estimate the amount of calcium carbonate.  

Quantitative chemical analysis was carried out to quantify calcium carbonate 

content in human hair fibre using a gas infrared spectroscopic method. The level 

of calcium carbonate increased with increasing bubble count level as observed 

in SEM analysis. The amount of calcium carbonate from IR method was 2-3 times 

less than the image analysis estimation. This suggests that calcium carbonate 

may not be the only material present in the bubble. The low level of calcium 

carbonate found in the hair also suggests that the bulk of calcium present in the 

hair is not in the form of calcium carbonate. Following these results, further work 

has been carried out at P&G, preliminary data also suggest the presence of 

calcium salt of fatty acids which may be residues of soap or other grooming 

treatments.181 
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8 General Conclusion and future work 

Copper(II) and Iron(III) ions decompose alkaline hydrogen peroxide via a 

Fenton-like reaction. The NPGA probe has been successfully used to monitor 

hydroxyl radical formation in both model solution and real hair colouring systems. 

Copper(II) ions are more active in decomposing alkaline hydrogen peroxide 

compared to iron(III) ions in a chelant-free system. Both metal ions form insoluble 

metal hydroxides which eventually precipitate in the reaction solution leading to 

the deactivation of the metal ions. The initial rate of decomposition of hydrogen 

peroxide and hydroxyl radical formation increases with an increase in initial 

concentration of copper(II) ions which suggests that higher amounts of copper 

ions in oxidative colouring may lead to higher amounts of hydroxyl radicals 

formed and hence more oxidative hair damage. 

Adding chelants to copper(II) or iron(III) reaction solution greatly influenced 

the catalytic activity of these metal ions.  

Most of the aminocarboxylate and phosphonate chelants studied here are 

effective in chelating copper(II) ions and suppressing the decomposition of 

alkaline hydrogen peroxide decomposition except HEDP chelant which 

decomposed a large amount of alkaline hydrogen peroxide. The current study 

highlights different behaviour of the different metal-chelant systems under 

alkaline pH conditions. 

The presence of large excess of a calcium salt can influence the speciation 

plots. Adding a chelant to a binary metal system triggers a competition where 

metal ions compete to bind the chelant. Among the chelants studied here, EDDS 

displayed preference for binding copper(II) ions and hence was the best chelant 

to prevent or minimise the decomposition of hydrogen peroxide and hydroxyl 

radical formation. Our results demonstrate the advantage of using EDDS chelant 

under the alkaline hair colouring conditions.  

In order to validate the results obtained with the model systems, hair fibres 

treated with copper were used as source of metal ions to decompose alkaline 

hydrogen peroxide. An increase in the rate of hydrogen peroxide decomposition 

and hydroxyl radical formation with increasing level of copper in the hair fibre 
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agrees with the earlier solution model systems. Just like in solution models, 

EDDS chelant showed strong preference and selectivity for binding copper(II) 

ions adsorbed on the hair fibres. This led to suppression of the hydroxyl radical 

formation suggesting that EDDS is a better Cu(II) chelant in real systems than 

other compounds such as EDTA and DTPMP. Hence, it can be utilised to 

minimise free radical induced protein hair damage during oxidative hair colouring. 

The selectivity of EDDS chelant for copper(II) ions was explained using speciation 

plots. These results guide in choosing the right chelant combination in hair 

colouring formulation for an improved colouring application. 

Catalytic activity of copper(II) ions in decomposition of alkaline hydrogen 

peroxide was also examined in an oxidative permanent hair colouring system. 

The presence of aromatic primaries and couplers suppressed decomposition of 

alkaline hydrogen peroxide. PPD/MAP combination had a profound impact on the 

course of the reaction suppressing the decomposition. Their oxidation forms 

some unknown intermediates which chelate copper catalysts changing their 

chemical activity. Unfortunately, the nature of this intermediate could not be 

elucidated and requires further work. In the current study of PPD/MAP oxidation, 

only one product was synthesised and isolated, but the reaction involves 

formation of dimer and polynuclear species. These other species should be 

isolated and examined for their role in suppressing the decomposition reaction. 

Similarly, different other dyes could be synthesised and examined to draw a 

general conclusion about their catalytic activity in a Fenton-like reaction. 

Among the chelants examined in the current study, HEDP is an exception as 

Cu2+-HEDP system rapidly decomposed alkaline hydrogen peroxide and the 

reaction stopped abruptly. It is believed that the decomposition proceeds via 

formation of an unknown active catalyst that degrades the chelant and eventually 

seeds formation of catalytically-inactive basic copper phosphate/carbonate 

nanoparticles. Various unsuccessful attempts were made to identify the nature of 

this catalyst. The copper based catalyst is likely to be short-lived and its steady 

state concentration is likely to be low. It may require a more sensitive analytical 

approach to detect it. One method for studying highly reactive, short-lived species 

is continuous-flow. This approach has been employed in mechanistic studies of 

the Fenton reaction. A similar setup might be useful to explain the reaction 

mechanism and identify active catalyst in the future. 
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In the current project, human hair samples were analysed to quantify the 

amount of calcium carbonate present in hair. Microscopic analysis of hair fibres 

previously revealed the presence of bubble-like features which were assumed to 

be composed of calcium carbonate. Our results show that the amount of calcium 

carbonate measured by the IR method was 2-3 times less than the estimated 

values by image analysis. This means that calcium carbonate may not be the 

only material present in the bubbles and some other unknown material may also 

be present along with calcium carbonate in the bubbles. Identifying the exact 

nature of bubble material is important in order to define new strategies to remove 

these bubbles. Recent studies have highlighted the negative impact of such 

bubbles or deposits on the cosmetic features of hair fibre such as shine, difficulty 

in daily grooming and styling.227 Removing or minimising these bubbles may 

improve quality of hair fibre, its health and hence consumer perception. Apart 

from calcium carbonate, the bubbles may contain salts of long chain fatty acids 

or alcohols which are commonly used in personal care formulations. Ideally a 

direct technique should be used to determine the bubble composition in the 

future. One approach could be using IR or Raman imaging techniques. 
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9 Experimental procedures 

9.1 Materials and chemicals 

All chemicals were purchased from Sigma – Aldrich and used as received 

without further purification. Hydrogen peroxide (30%) was purchased from Fisher 

Scientific. Dialysis tubes for the purification of nanoparticles were bought from 

Medicell International Ltd dialysis membrane [14.3 mm diameter, 30 kD 

molecular weight cut off (MWCO)]. 

9.2 Instrumentation 

• The pH measurements were recorded using Jenway-3505 pH 

meter. 

• The UV-Visible spectra were recorded on Hitachi U-3000 

spectrophotometer using quartz cell with 1cm path length.  

• All NMR spectra were recorded on Bruker ECX 400 MHz and ECS 

400 MHz machines. 

• Mass spectrometry was performed on Bruker Micro-TOF with ESI 

mode at MS Excellence Centre, Department of Chemistry, 

University of York. 

• The EPR spectra were recorded on Bruker EMX machine. 

• Elemental analyses were carried out at Department of Chemistry, 

University of York. 

• FT-IR spectra were recorded at Thermo Nicolet Avatar-370 FT-

IR spectrophotometer. 

• ICP-OES analysis of samples was conducted at analytical 

services lab, University of Manchester. 

• TEM analysis was carried out at Centre of Cytometry and Imaging, 

School of Biology, University of York. 

• Thin layer chromatography was carried out using aluminium 

sheets with silica gel 60 F254. 
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9.3 Experimental procedures for chapter 2 

9.3.1 Synthesis of N,N’-(5-nitro-1,3-phenylene)bisglutaramide 

(NPGA) probe 

The synthesis of N,N’-(5-nitro-1,3-phenylene)bisglutaramide (NPGA) 

was carried out as reported in the literature.121 

9.3.1.1 Step A: Synthesis of 3,5-diaminonitrobenzene 

3,5-Dinitroaniline (25 mmol, 4.6 g) was dissolved in ethanol (50 mL) with 

stirring. Ammonium chloride (93 mmol, 5 g in 15 mL warm water) was added 

slowly. Sodium sulfide (64 mmol, 15.4 g in 15 mL warm water) was added drop 

wise to the stirred reaction mixture. The temperature was maintained at 65-70 0C 

during the addition. Water (100 mL) was added to the solution. The reaction 

mixture was filtered to remove unreacted material. The filtrate was allowed to cool 

at room temperature, leading to the formation of red needle like crystals. The 

crystals obtained were dried. The product was recrystalised from water and dried 

(Yield: 72%), M.P 143.6 0C (Lit121, 143.0 0C), 1H NMR (400 mHz, DMSO): δ(ppm), 

5.42 (NH2-Ar,s, 4H), 6.12 (Ar, t, 1H, J=1.8Hz), 6.6 (Ar, d, 2H, J=1.8Hz). (Lit: 1H 

NMR (400 mHz, DMSO): δ, 5.4 (NH2 - Ar, s, 4H), 6.2 (Ar, t, 1H), 6.8 (Ar, m, 2H).  

9.3.1.2 Step B: Synthesis of NPGA  

3,5-Diaminonitrobenzene (0.25 g, 1.62 mmol) was dissolved in dry 

acetonitrile. Glutaric anhydride (0.77 g, 6.75 mmol) was added to the reaction 

mixture. The reaction mixture was refluxed under nitrogen for 2 hours. The 

chemical conversion was monitored by TLC. After 2 hours of reflux, the mixture 

was allowed to cool at room temperature; yellow crystalline sold was filtered and 

dried. The product was recrystalised from water (Yield: 73%) M.P 196.0 oC (Lit121, 

195.0 oC), H1 NMR(400 mHz, DMSO): δ, 1.81 (q, 4H, J=7.3Hz), 2.28 (t, 4H, 

J=7.3Hz), 2.39 (t, 4H, J=7.3Hz), 8.21-824 (Ar,m 3H), 10.4 (NHCO,s 2H). (Lit: H1 

NMR(400 mHz, DMSO): δ, 1.8 (q, 4H), 2.3 (t, 8H), 8.3 (Ar, m, 3H), 10.3 (NHCO, 

s, 2H). 13C NMR(400 mHz, DMSO), δ (ppm), 20.6(C1), 33.2(C4), 35.5(C2), 

108.14(C7, C11), 140.5(C8, C10), 148.2(C6), 171.48(C5), 174.4(C1). 
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Figure 9-1: Synthesis of NPGA probe. 

9.3.2 Monitoring hydroxyl radical formation with NPGA 

A 3 mL reaction solution was carried out containing Cu2+ or Fe3+ metal ions 

(0.18 mM) and NPGA (1.0 mM) mixed in 20 mM ammonium 

hydroxide/ammonium chloride buffer solution. Hydrogen peroxide (0.98 M) was 

added to the reaction mixture in the UV-visible spectrophotometric cell and mixed 

quickly. The UV-visible spectra in the range of 200 – 600 nm were recorded 

immediately against the blank. The blank was prepared of the same composition 

except hydrogen peroxide.  

Same procedure was used on adding the chelant (1.3 mM). Same approach 

was employed to monitor hydroxyl radical formation at different concentration 

levels of metal ions, different buffer composition and pH levels. 

9.3.3 LC-MS separation of H-NPGA/NPGA 

NPGA probe and its hydroxylated derivative were analysed using reverse 

phase HPLC. The column used was Dinoex (Manufacturer), Acclaim Polar 

Advantage II, C-18 polar with 3 micron packing and 2.1 x 150 mm dimensions. 

The solvent system contained acetonitrile mixed with 10mM ammonium formate 

buffer pH 7. Peaks obtained were identified by mass spectrometer. 
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Reaction solution contained copper(II) sulfate (0.18 mM) with NPGA probe 

(1 mM). Hydrogen peroxide (0.98 M) was added to start the hydroxylation 

reaction. At the 90th minute, reaction was quenched by adding a drop of catalse 

(10 times diluted solution). A sample of 10 microlitre was injected to the machine 

and separation was carried out. 

Further isolation of H-NPGA derivatives was carried out using preparative 

TLC (Rf: 0.35). The elution solvent used was dichloromethane and methanol (4:1) 

and a few drops of acetic acid. 

9.4 Experimental procedures for chapters 3 & 4 

9.4.1 Determination of hydrogen peroxide 

Hydrogen peroxide concentration in the stock solutions was determined by 

iodometric titration method.228 

9.4.2 Monitoring decomposition of hydrogen peroxide  

The decomposition of hydrogen peroxide in a Fenton-like reaction was 

determined by measuring the volume of oxygen gas evolved. The reaction was 

carried out in a thermostated closed reactor at 20 0C. The experimental set up 

has reaction vessel connected directly to a burette filled with water (Figure 9-2). 

The burette in turn was connected to a levelling funnel. The levelling funnel was 

adjusted accordingly to ensure that the pressure inside the burette was always 

constant (Atmospheric pressure). The decomposition of hydrogen peroxide 

generates oxygen gas which replaces water in the burette. The change in water 

level was recorded periodically as a measure of oxygen gas produced. 
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Figure 9-2: Experimental setup to monitor decomposition of hydrogen 
peroxide. 

9.4.3 Decomposition of hydrogen peroxide in a chelant-free 

system 

In a typical chelant-free reaction, copper(II) sulfate or iron(III) chloride (0.18 

mM) was dissolved in 20 mM pH 10 ammonia/ammonium chloride buffer. 

Hydrogen peroxide (0.98 M) was injected in the closed reaction vessel and 

oxygen evolution was monitored over time. The volume of oxygen gas evolved 

was used to calculate hydrogen peroxide decomposition. 

9.4.4 Decomposition of hydrogen peroxide in the presence of a 

chelant 

The same setup was used by adding given chelant (1.3 mM) to monitor 

hydrogen peroxide decomposition in the presence of a chelant. The volume of 

the reaction varied from 10 – 500 mL depending upon the reactivity of the 

metal/chelant complex. 

9.4.5 Decomposition of hydrogen peroxide in the presence of 

copper treated hair fibres 

Decomposition of alkaline hydrogen peroxide in the presence of copper 

treated human hair fibres was also determined using the same gasometric setup. 

Leveling funnel

Measuring Burette

Reaction vessel at 20 0C



 

 

168 
 

The reaction solution (25 mL) contained 100 mg of hair fibres at pH 10 using 400 

mM ammonia/ammonium chloride buffer solution. Hair fibres were cut to small 

pieces. Hydrogen peroxide (0.98 M) was added to the reaction solution and its 

decomposition was monitored. 

Similar approach was used by adding chelant (1.3 mM) to the reaction 

solution and other experiments by changing the composition of the reaction 

solution. 

9.4.6 Hydrogen peroxide decomposition in binary metal system 

In copper-calcium binary metal system, copper(II) sulfate (0.18 mM) was 

mixed with calcium nitrate (125 mM) in 400 mM ammonia/ammonium chloride 

buffer solution. Hydrogen peroxide (0.98 M) was added to the reaction solution 

and its decomposition was monitored by measuring volume of oxygen gas 

evolved. Same setup was used on adding chelant (1.3 mM) to the reaction 

solution. 

9.5 Monitoring hydroxyl radical formation in binary metal 

system 

Hydroxyl radical formation was monitored using NPGA probe as described in 

section 9.3.2. In binary metal system, two metal ions Cu2+ (0.18 mM) and Ca2+ 

(125 mM) were mixed in the quartz cell. Hydrogen peroxide (0.98 M) was added 

to the mixture in the cell and UV-vis spectra were recorded immediately against 

blank. Total volume of the reaction solution was 3 mL. Same setup was used on 

adding chelant (1.3 mM) to the reaction solution. 

9.6 Monitoring hydroxyl radical formation in the presence 

of copper treated hair fibres 

To monitor hydroxyl radical formation in metal-treated hair fibre systems, a 3 

mL reaction was carried out by mixing NPGA (1 mM) and hydrogen peroxide 

(0.98 M) and metal-treated hair fibres (50 mg) in ammonia buffer solution at pH 

10 (0.4 M). The reaction aliquots (0.25 mL) were taken at regular intervals and 
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diluted 10-fold with ammonia buffer. The spectra were recorded immediately 

using UV-visible spectrophotometer against reagent blank. The same procedure 

was employed in the presence of chelants. 

9.7 Experimental procedures for chapter 5 

9.7.1 Decomposition of hydrogen peroxide in Cu2+-HEDP 

systems 

Decomposition of hydrogen peroxide was determined using gasometric 

setup as described in section 9.4.2. Same experimental setup was used for series 

of experiments using different pH levels, composition of buffer solution and 

concentrations of copper and HEDP chelant. 

9.7.2 Isolation & purification of nanoparticles 

Copper sulfate (1.3 mM) and HEDP chelant (1.3 mM) were dissolved in 20 

mM pH 10 ammonia/ammonium chloride buffer. Hydrogen peroxide (0.98 M) was 

added to the reaction vessel (total reaction volume 1L). Addition of hydrogen 

peroxide immediate triggered the decomposition reaction. The reaction solution 

was stirred and temperature was maintained at 20 oC. After several minutes, 

yellow coloured solution was obtained and no further oxygen evolution was 

observed. A small amount of catalase (0.05 mL of aqueous suspension from 

Sigma, 20-50 mg/mL) was added to decompose remaining hydrogen peroxide 

and reaction solution was stirred for 30 minutes. Once all hydrogen peroxide was 

decomposed, reaction solution was concentrated under vacuum to obtain 

concentrated nanoparticle solution (200 mL). The nanoparticles solution was 

purified through dialysis for 24 hours using Medicell International Ltd dialysis 

membrane [14.3 mm diameter, 30 kD molecular weight cut off (MWCO)].  

After the dialysis, the solvent was evaporated under vacuum and a solid 

residue of nanoparticles was obtained for further experiments. 

9.7.3 Determination of copper and phosphorus 

Copper and phosphorus contents in nanoparticles residue were determined 

using atomic absorption spectroscopy (AAS) and inductively coupled plasma-
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atomic emission spectroscopy. ICP-AES analysis was carried out at analytical 

services, University of Manchester. 

Nanoparticles (5 mg) were dissolved in 5 M nitric acid (100 mL). A series of 

copper dilutions (5 – 50 ppm) were prepared in 5 M nitric acid using a standard 

copper solution from Sigma-Aldrich. These dilutions were analysed using AAS. A 

standard curve was obtained and concentration of copper in nanoparticle solution 

was determined. The same sample was then submitted for the quantification of 

copper and phosphorus to analytical services lab at University of Manchester. 

9.7.4 Determination of phosphate contents using molybdenum 

blue method 

Phosphate content in reaction solution and isolated nanoparticles was 

determined by molybdenum blue colorimetric method. All glassware was pre-

rinsed with 2.5 M sulfuric acid to remove phosphate contamination. The colouring 

reagent was composed of 

a) Sulfuric acid 2.5 M 

b) Potassium antimonyl tartrate (0.27% solution) 

c) Ammonium molybdate (4% solution) 

d) Ascorbic acid (0.1 M) 

The components B (5 mL), C (15 mL) and D (30 mL) were added to A (Sulfuric 

acid, 50 mL)) step by step to form coloring reagent. The solution was thoroughly 

mixed on each addition. 

A standard 1000 ppm phosphate solution was purchased from Sigma-Aldrich. 

A series of phosphate dilutions (0.25, 0.5, 0.75 & 1.0 ppm concentration levels) 

were prepared using deionised water. To each standard solution, 8 mL of the 

colouring agent was added and volume was made up to 100 mL with deionised 

water. The solution was left for 10 minutes to develop colour. After 10 minutes, 

spectra were recorded against reagent blank using UV-Vis spectrophotometer 

and absorption value at 880 nm was used to develop a standard curve. 
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9.7.5 Analysing phosphate contents in the reaction solution 

Copper(II) sulfate (0.18 mM) and HEDP chelant (1.3 mM) were dissolved in 

20 mM ammonia/ammonium chloride buffer pH 10. Hydrogen peroxide (0.98 M, 

total reaction volume 25 mL) was injected to start the decomposition reaction. 

Sample aliquots (0.2 mL) were taken at regular time intervals and mixed with 

phosphate colouring reagent (8 mL). The volume of solution was made to 100 

mL using deionised water. The solution was left for 10 minutes to develop colour. 

After 10 minutes, the spectrum was recorded using UV-Vis spectrophotometer 

against reagent blank.  

9.7.6 Analysing phosphate in nanoparticles 

Solid residue of nanoparticles (1.9 mg) was directly dissolved in colouring 

reagent (8 mL). The mixture was stirred to make sure all the solid material was 

dissolved and subsequently volume was made up to 100 mL using deionised 

water. The spectrum was recorded against reagent blank. The % phosphate 

present in the sample was calculated. 

9.7.7 Determination of carbonate content in nanoparticles 

Amount of carbonate in isolated nanoparticles was determined by IR 

spectroscopic method quantifying carbon dioxide evolution from nanoparticles. 

The experimental design involved mixing the nanoparticles with strong 

concentrated acid to generate carbon dioxide in a closed reaction vessel which 

was directly connected to gas IR cell of 10 cm path length. 

For quantitative determination, a standard curve for carbon dioxide was 

obtained using a pre-dried anhydrous sodium carbonate mixed with silica. This 

mixture was mixed with phosphoric acid (85%). The absorption intensity for 

carbon dioxide at 2360 cm-1 from different levels of sodium carbonate employed 

was used to obtain a standard curve. Similarly, nanoparticles (15.7 mg) were 

dissolved in concentrated phosphoric acid (0.5 mL) and gas evolved was 

analysed. 
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9.7.8 Determining the oxidation state of copper in 

nanoparticles 

Nanoparticles (2.0 mg) were dissolved in degassed concentrated 

hydrochloric acid (3 mL) under insert conditions. Experimental setup was 

degased at Schlenk line. Solution was further diluted 8 times using degassed 

hydrochloric acid under inert conditions. UV-vis spectrum was obtained 

immediately against hydrochloric acid blank. Control experiments containing 

copper(I) chloride and copper(II) chloride were carried out under same inert 

conditions. 

9.7.9 EPR study of copper-HEDP catalysed decomposition of 

hydrogen peroxide  

Decomposition reaction solution was carried out containing copper(II) sulfate 

(0.18 mM), HEDP (1.3 mM) in 20 mM pH 10 ammonia/ammonium chloride buffer 

with hydrogen peroxide (0.98 M) total reaction volume 25 mL. Aliquots (1.6 mL) 

were mixed with glycerol (0.4 mL) in a quartz EPR tube. The samples were frozen 

under liquid nitrogen and their spectra were recorded using Bruker EMX 

machine 120 K at different time intervals. 

9.7.10 Identifying the active catalyst in copper-HEDP 

catalysed decomposition of hydrogen peroxide 

Copper(II) sulfate (0.05 mM) was mixed with HEDP chelant (0.05 mM) in 20 

mM pH 10 ammonia/ammonium chloride buffer pH 10 in UV-vis quartz cell. 

Hydrogen peroxide (0.1 mM) was added and spectra were recorded immediately 

against reagent blank. Spectra obtained every 2 minutes over 120 minutes show 

changes in the reaction solution. 
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9.8 Experimental procedures for chapter 6 

9.8.1 Hydrogen peroxide decomposition the presence of dye 

primary/coupler or a combination of both 

Reaction was carried out containing copper(II) sulfate at different 

concentration levels (0.02 mM to 0.18 mM) in ammonia/ammonium chloride 

buffer. Dye primary or coupler (1mM) or combination both (1 mM each) were 

added. Reaction setup was completely sealed and closed to prevent any oxygen 

leakage. Solution was stirred for couple of minutes before adding hydrogen 

peroxide (0.98 M). Addition of hydrogen peroxide triggered the decomposition 

reaction and evolution of oxygen gas was monitored with the determined time 

interval to calculate hydrogen peroxide decomposition. 

9.8.2 Hydrogen peroxide decomposition on adding pre-

oxidised dye mixture 

Equal molar mixture of (25 mM) dye primary and coupler (e.g. PPD & MAP) 

were mixed together in ammonia/ammonium chloride buffer (25 mL) of pH 10 

(400 mM) in a metal-free solution. Hydrogen peroxide (0.98 M) was added and 

reaction was stirred for 30 minutes. Addition of hydrogen peroxide 

instantaneously gave coloured solution. 

In a separate vessel, a reaction (25 mL) was carried out using copper(II) 

sulfate (0.02 mM) and hydrogen peroxide (0.98 M). Hydrogen peroxide 

decomposition was monitored using gasometric setup. At a given time during the 

reaction, coloured solution made above paragraph (1 mL) was added to this 

reaction solution and change in oxygen evolution was monitored to determined 

hydrogen peroxide decomposition. 

9.8.3 Reducing PPD-MAP oxidative dye using thioglycolic acid 

Dye primary PPD and coupler MAP (1 mM each) were mixed in 

ammonia/ammonium chloride buffer pH 10 (400 mM) in a round bottle for 

gasometric setup. Copper(II) sulfate (0.02 – 0.18 mM) was added to the reaction 

solution and stirred. Hydrogen peroxide (0.98 M) was added to the reaction 
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solution and subsequently stirred for 30 minutes. After 30 minutes, catalyse was 

added to destroy remaining hydrogen peroxide. Reaction solution was stirred for 

15 minutes. After 15 minutes, thioglycolic acid (0.7 M, 5%) was added and 

reaction solution was stirred for 30 minutes. Reaction solution was subsequently 

alkalised to pH 8.0-9.0 by adding measured amount of ammonia (1 mL of 35% 

standard solution, 0.724 M ammonia).  

A reagent blank was prepared containing same composition except dye 

precursors. Blank was prepared fresh and used immediately. Electronic spectrum 

was obtained at UV-visible spectrophotometer against reagent blank. 

9.8.4 Monitoring hydroxyl radical formation in the presence of 

dye precursors 

Dye primary PPD, coupler MAP and NPGA colorimetric probe (1 mM each) 

were mixed in ammonia/ammonium chloride buffer pH 10 (400 mM) in a round 

bottle of the gasometric setup. Copper(II) sulfate (0.02 – 0.18 mM) was added to 

the reaction solution and stirred. Hydrogen peroxide (0.98 M) was added to the 

reaction solution and subsequently stirred for 30 minutes. After 30 minutes, 

catalyse was added to destroy remaining hydrogen peroxide. Reaction solution 

was stirred for 15 minutes. After 15 minutes, thioglycolic acid (0.7 M, 5%) was 

added and reaction solution was stirred for 30 minutes. Reaction solution was 

subsequently alkalised to pH 8.0-9.0 by adding measured amount of ammonia (1 

mL of 35% standard solution, 0.724 M ammonia). 

A reagent blank was prepared containing same composition except NPGA 

probe. Blank was prepared fresh and used immediately. Electronic spectrum was 

obtained at UV-visible spectrophotometer against reagent blank. 

9.8.5 Synthesis of PPD-MAP tri-nuclear dye  

PPD (216.28 mg, 2.0 mmoles) and MAP (218.25 mg, 2.0 mmoles) were 

dissolved in ammonia/ammonium chloride buffer pH 10 (100mL). Copper(II) 

sulfate (0.5 mg) was added to the reaction mixture. Hydrogen peroxide (0.01 

moles) was added and reaction was stirred for 30 minutes. After 30 minutes, 

catalase (0.1 mL of 3.4 protein/mL stock solution) was added to destroy 

remaining hydrogen peroxide. Reaction was left for 2 hours in ice bath and later 
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on was centrifuged. A solid residue was obtained, which was dried under vacuum 

overnight. TLC for the crude residue showed three spots. Two of them were very 

faint while third was intense brown black. Product was purified by prep-TLC plates 

using chloroform, ethyl acetate and ethanol (7:2:1). Brown black spot was erased 

and extracted using methanol and characterised by NMR and MS. The results 

show that isolated material is PPD-MAP tri-nuclear dye. H1 NMR (400 mHz, 

CD3OD): δ= 6.95 – 6.89 (m, 2H, H1, H4), 6.80 – 6.65 (m, 6H, H2, H3, H7, H8, 

H9, H10), 6.02 (s, 1H, H5), 5.64 (s, 1H, H6). MS ESI [M+H+]: 320.1501 Calc: 

320.1506 m/z. 
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9.8.6 Monitoring decomposition of hydrogen peroxide on 

adding PPD-MAP trinuclear dye 

PPD-MAP trimer was dissolved in 1 mL ammonia/ammonium chloride buffer 

pH 10 400mM using sonicator. Despite sonicating for 15-20 minutes, it still 

contained some insoluble components demonstrating the low solubility of trimer. 

Reaction solution (25 mL) contained copper(II) sulfate (0.02 mM) in a ligand-

free system. PPD-MAP trimer solution (0.5 mL) was added (this gives approx 

0.25mM trimer) to the reaction solution (25 mL). Solution was stirred for 15 

minutes to make sure trimer is completely dissolved. Hydrogen peroxide (0.98 M) 

was added and its decomposition was monitored using gasometric setup. 

9.9 Experimental procedures for chapter 7 

All infrared spectra reported here were obtained in absorption mode using 

Thermo Nicolet Avatar-370 FT-IR spectrophotometer. A total of 16 scans were 

recorded for each analysis at 2 cm-1 spectral resolution. A gas IR cell with 200 

mL internal volume and sodium chloride windows was used throughout the study. 

Anhydrous sodium carbonate and phosphoric acid (85%) was purchased from 

Sigma-Aldrich, UK. 
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9.9.1 Image analysis 

SEM images for the hair fibres were taken by P & G in Cincinnati, USA. Each 

image was processed individually using Google image program Picasa version 

3.0. Picasa is accessible and can be downloaded free of cost from 

www.google.com. The image pixel data were converted into measurements of 

height, width and diameter which were subsequently used to determine volume 

or area of the given object present in the image. 

9.9.2 Calculating mass of human hair fibre from its SEM image 

The dimensions of each fibre in the image were estimated using an SEM 

scale bar. Assuming the fibre is a cylindrical object; its volume was calculated 

using the following equation 

Volume of single hair fibre = π r2 h, 

where r is radius and h is height from the SEM image.  

 

Figure 9-3: Cross-sectional SEM image of a human hair showing bubble 

underneath the cuticles. 

Human hair density at 65% relative humidity reported in the literature229 is 

1.32 g/cm3
. So, the mass of the fibre was calculated as 

Mass = density x volume 
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This analysis was repeated for fifty images from all switches of various bubble 

count levels. 

9.9.3 Calculating volume of a single bubble from SEM images 

SEM cross sectional images were obtained showing cross section of a single 

bubble. The imaging also showed the diameter and length of each bubble. These 

values were used to calculate volume of single bubble using the following 

equation. An average of 10 images was taken.  

Volume of disc cap = 1/6 π h (3a2 + h2) 

where a is radius and h is the height. 

9.9.4 Characterising various hair switches and counting the 

number of bubbles per hair fibre 

Various hair switches were obtained using human hair from local consumers 

around Cincinnati, USA. Each switch contained two grams of hair fibres. SEM 

images of approximately fifty fibres were obtained for different hair switches 

chosen randomly. The image data characterised hair switches with different 

levels of bubbles and defined “hair bubble count” which is the number of hair 

fibres containing bubbles out of fifty fibres analysed under SEM.  

9.9.5 Initial control experiments and designing new 

experimental setup 

A series of control experiments were carried out to optimise the Schlenk line 

evacuation time and pressure drop from IR cell. Initially carbon dioxide was 

collected and handled using syringes. However, they suffered with leakage and 

thus poor reproducibility was observed. To address this problem, a new reaction 

setup was designed where reaction vessel was connected directly to IR cell as 

show in Figure 9-4. The setup was evacuated for multiple times and flushed with 

nitrogen gas repeatedly in a cycle to make sure no residual air is present inside 

the reaction setup. It was followed by a two hour evacuation on a Schlenk line. 
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Figure 9-4: Schematic diagram of experimental setup for IR analysis of 
carbon dioxide. 

The spectra were recorded immediately after evacuation of the cell. A delay 

of more than 10 minutes in recording the spectra resulted in increased 

interference from atmospheric carbon dioxide. Reaction vessel was always 

rinsed off with dilute hydrochloric acid followed by deionised water and dried in 

oven. 

9.9.6 Recording IR spectra of atmospheric carbon dioxide 

The above experimental setup was evacuated on a Schlenk line following the 

procedure described in the previous section. Empty evacuated cell was used to 

record the background spectra. IR cell taps were opened to release the pressure 

and the spectrum was obtained. Five spectra were collected and averaged. 

9.9.7 Control experiment without using hair fibres 

Reaction vessel containing teflon stirring bar was evacuated at schlenk line 

for two hours. The middle tap between the IR cell and reaction vessel in the 

experimental setup was closed and 10 mL of concentrated phosphoric acid was 

added to the reaction flask using syringe. Reaction vessel was immediately filled 

with nitrogen gas. Phosphoric acid was stirred for five minutes. After 5 minutes, 

reaction setup was placed in an IR spectrophotometer chamber. Empty 

evacuated cell was used to obtain the background spectrum. The middle tap was 

opened and gas from reaction vessel was drawn into IR cell due to negative 

pressure inside the IR cell. The tap was opened only for 10-15 seconds and 

Gas IR cell
Reaction vessel

To Schlenk line
H3PO4 inlet

Middle tap to disconnet 
reaction veseel from IR cell
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closed afterwards. The spectrum was recorded immediately. The experiment was 

repeated to obtain five spectra. 

9.9.7.1 Developing a standard curve 

Pre-dried sodium carbonate was mixed with silica gel (10% solid to solid 

mixture). The mixture was grounded using mortar and pestle to make sure the 

two solid components are uniformly mixed. This solid to solid mixture was 

standardised to determine actual amount of sodium carbonate by titration with 

methyl orange as indicator.  

Accurately weighed amount of above mixture was taken in a reaction vessel. 

The setup was evacuated for two hours and phosphoric acid (10 mL) was added 

to the mixture. The reaction was stirred for five minutes and absorption spectrum 

for carbon dioxide was obtained against evacuated IR cell background. The 

experiment was carried out for five different concentrations. The absorption 

intensity of carbon dioxide at 2360 cm-1 was plotted against amount of sodium 

carbonate to develop a standard curve which demonstrated a linear correlation 

following Beer-Lambert law. 
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Figure 9-5: IR spectra for carbon dioxide from various concentration levels 
of sodium carbonate to develop a standard curve. 

9.9.8 IR analysis of human hair fibres for calcium carbonate 

Hair fibres (250 mg) were cut into small pieces and placed in the reaction 

vessel using the reaction setup described above. It was evacuated on a Schlenk 

line for two hours. On disconnecting the reaction vessel from IR cell, phosphoric 

acid (10 mL) was added to the reaction vessel. Ten millilitres of acid was enough 

to submerge all hair fibres. Reaction was stirred for five minutes. After recording 

the background spectrum for empty evacuated cell blank, middle tap was opened 

and spectrum of carbon dioxide evolved was recorded. At least a duplicate 

analysis was carried out for each switch of hair fibres. An average for carbon 

dioxide absorption intensity was obtained which was utilised to calculate the 

amount of calcium carbonate present in hair using standard curve. Standard 

deviation and standard error of mean were also calculated. 

9.9.9 IR analysis of pulverised human hair fibres for calcium 

carbonate 

Human hair fibres were pulverised under nitrogen environment. The ground 

hair powder (100 mg) was taken in the IR reaction vessel. The whole setup was 

evacuated using Schlenk line for two hours. On closing the middle tap to 

disconnect IR cell from the reaction vessel, phosphoric acid (10 mL) was added 
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to the reaction vessel. Reaction mixture was stirred for five minutes and spectrum 

of carbon dioxide evolved was obtained against empty evacuated cell blank. 
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10 Appendices 

10.1 Appendix I 

 

Figure 10-1: MS spectrum for H-NPGA in LC-MS analysis confirming the 
formation of H-NPGA derivative at 90th minute of hydroxylation. MS-ESI m/z 
[M-H]+ Found 396.1060 (Calculated for C16H18N3O9: 396.1049) 
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Figure 10-2: MS spectrum demonstrating presence of starting NPGA probe. 
MS-ESI m/z [M-H]+ Found 380.1101 (Calculated for C16H18N3O8: 380.1099). 
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10.2 Appendix II 

 

Figure 10-3: Iron(III) speciation in Fe3+-HEDTA system. 

 

Figure 10-4: Iron(III) speciation in Fe3+-EDDS system. 
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Figure 10-5: Iron(III) speciation in Fe3+-DTPA system. 

 

Figure 10-6: Iron(III) speciation in Fe3+-HEDP system. 
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Figure 10-7: Iron(III) speciation in Fe3+-DTPMP system. 

 

Figure 10-8: Iron(III) speciation in Fe3+-EDDS/DTPMP mixed ligand system. 
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Figure 10-9: Copper(II) speciation in Cu2+-HEDTA system. 

 

Figure 10-10: Copper(II) speciation in Cu2+-EDDS system. 
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Figure 10-11: Copper(II) speciation in Cu2+-DTPA system. 

 

Figure 10-12: Copper(II) speciation in Cu2+-HEDP system. 
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Figure 10-13: Copper(II) speciation in Cu2+-DTPMP system. 

 

Figure 10-14: Copper(II) ions speciation at high ammonia level (400 mM) in 
the absence of calcium ions.  
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Figure 10-15: Iron(III) speciation in the presence of calcium in a chelant-free 
system. 

 

Figure 10-16: Copper speciation in EDDS system at higher ammonia 
concentration level (400 mM). 

2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n

pH

Fe3+

FeOH2+

Fe2O3(cr)

[Fe3+]
TOT

 =    0.18 mM

[Ca2+]
TOT

 =  125.00 mM

[NH
3
]
TOT

 =  400.00 mM

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n

pH

Cu2+

Cu(OH)4
2−

CuNH3(OH)3−

CuEDDS2−

CuHEDDS−

CuH2EDDS

Cu(OH)EDDS3−

[Cu2+]TOT =    0.18 mM

[EDDS4−]
TOT

 =    1.30 mM

[NH
3
]
TOT

 =  400.00 mM



 

 

192 
 

 

Figure 10-17: Copper ion speciation in DTPMP system in the presence of 

large excess of calcium ions. 

 

Figure 10-18: DTPMP speciation in copper-calcium binary system. 
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Figure 10-19: Copper speciation in DTPMP chelant system in the absence 
of calcium ions at higher ammonia level. 

 

Figure 10-20: Copper speciation in Hair-EDDS chelant system using copper 
treated hair fibres. 
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Figure 10-21: Copper speciation in Hair-EDTA chelant system using copper 
treated hair fibres. 

 

Figure 10-22: Copper speciation in Hair-DTPMP chelant system using 
copper treated hair fibres. 
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Figure 10-23: Copper speciation in hair-EDDS system using a low 

concentration of EDDS ligand. 

 

Figure 10-24: Copper speciation in hair-EDTA system using low 

concentration of EDTA ligand. 
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10.3 Appendix III 

 

Figure 10-25: pH drop in Cu2+-HEDP decomposition system. Reaction 
solution contained 0.18 mM Cu2+ ions and 1.3 mM HEDP chelant at pH 10 
with 20 mM ammonia/ammonium chloride buffer. Hydrogen peroxide (0.98 
M) was added to trigger the decomposition reaction. (A) Bench mark reaction 
solution (B) initial pH of the reaction solution adjusted to 9.55 using few drops 
of dilute ammonia solution. 
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Figure 10-26: Monitoring HEDP degradation: 1H NMR of isolated 
nanoparticles. (A) HEDP ligand in D2O (B) Cu/HEDP with glycerol (internal 
standard) in D2O, 0.18 mM Cu2+, 1.3 mM HEDP ligand dissolved in 20 mM 
pH 10 ammonia/ammonium chloride buffer (total reaction volume 25 mL). 
Solution was evaporated to remove buffer and solid residue was dissolved 
in D2O with a few drops of concentrated nitric acid and glycerol. The proton 
NMR at 400 mHz showed a broadened (due to Cu2+) peak for HEDP ligand 
(C) 5 mg nanoparticles dissolved in 0.4 mL of concentrated nitric acid and 
subsequently dissolved in D2O. Glycerol (0.1 g) was added and 1H NMR was 
obtained at 400 mHz machine. The spectrum did not show signal for HEDP 
ligand. 
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Figure 10-27: Colorimetric experiment to examine the oxidation state of 
copper in copper based nanoparticles. 

 

Figure 10-28: Changes in copper speciation in 20 mM ammonia 
ammonia/ammonium chloride buffer and subsequent changes after 
complete degradation of HEDP ligand. 
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Figure 10-29: Changes in copper speciation in 20 mM ammonia 
ammonia/ammonium chloride buffer in the presence of HEDP chelant and 
phosphate & carbonate anions. 

 

Figure 10-30: Hydrogen peroxide decomposition in Cu2+-HEDP system with 
phosphate and carbonates added at the 6th minute to an ongoing 
decomposition reaction. (A) 0.18 mM of Cu(II)SO4, 1.3 mM of HEDP chelant 
dissolved in 20 mM pH 10 ammonia/ammonium chloride buffer with of 
hydrogen peroxide (0.98 M). Hydrogen peroxide decomposition was 
monitored over time. (B) To an ongoing reaction of A, 0.5 mL of 0.25 M 
phosphate buffer (disodium hydrogen phosphate-tri sodium phosphate) 
solution pH 10 was added at the 6th minute. (C) To another ongoing reaction 
A, 0.5 mL of 0.25 M ammonium carbonate was added at 6th minute using a 
syringe and hydrogen peroxide decomposition was monitored. 
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Figure 10-31: Copper-HEDP catalysed hydrogen peroxide decomposition 
using different buffer composition. (A) 0.18 mM of copper(II) sulfate, 1.3 mM 
of HEDP chelant dissolved in 20 mM pH 10 ammonia/ammonium chloride 
buffer and mixed with 0.98 M hydrogen peroxide. Hydrogen peroxide 
decomposition was monitored over time. (B) 0.18 mM of copper(II) sulfate, 
1.3 mM of HEDP chelant dissolved in 20 mM pH 10 20 mM phosphate buffer 
with 0.98 M hydrogen peroxide. (C) 0.18 M of copper(II) sulfate in a chelant-
free system dissolved in 20 mM pH 10 phosphate buffer with 0.98 M 
hydrogen peroxide. 
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Table 10-1: Fabricating nanoparticles without using hydrogen peroxide 
under different conditions of reactions. Reaction E showed formation of 
nanoparticles. 

  



 

 

202 
 

10.4 Abbreviations 

EDTA   Ethylenediaminetetraacetic acid 

HEDTA  N-(Hydroxyethyl)-ethylenediaminetriacetic acid  

DTPA   Diethylenetriaminepentaacetatic acid 

EDDS    Ethylenediamine-N,N'-disuccinic acid 

HEDP    1-Hydroxyethylidene 1,1-diphosphonic acid 

DTPMP   Diethylenetriamine penta(methylene phosphonic acid) 

PPD   p-Phenylenediamine 

MAP   m-Aminophenol 

AHT   4-Amino-2-hydroxy toluene 

DTS   2,5-Toluenediamine sulfate 

DMSO   Dimethylsulfoxide 

DCM      Dichloromethane  

EPR      Electron paramagnetic resonance  

ESI       Electron spray ionization 

g       Gram 

MW       Molecular weight  

MWCO     Molecular weight cut off  

MS       Mass spectrometry  

m/z       Charge to mass ratio 

mL       Millilitre  

mg       Milligram  

min       Minute  

NMR      Nuclear magnetic resonance 

nm       Nanometre 

ppm       Parts per million 

TEM       Transmission electron microscopy 

UV-Vis.     Ultraviolet visible 
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