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2.  Abstract 

 

Influenza virus infection is a global health problem, causing both seasonal epidemics and 

episodic pandemics of influenza A which are associated with significant mortality and 

morbidity.  The development of influenza vaccines stimulating protection against both 

antigenically drifted seasonal virus as well as new pandemic antigenically shifted virus 

would be a major advance.  A vaccine that stimulates cellular immunity to conserved viral 

antigens is a potential area of interest, and could generate heterosubtypic immunity.  I 

have been the lead clinician for both phase I and II studies of thenovel viral vectored 

vaccine MVA-NP+M1 (modified vaccinia virus Ankarra, expressing nucleoprotein and 

matrix protein 1), designed to induce cellular immunity to influenza A virus.  In this role I 

have been involved in the design, ethical and regulatory approval of phase I studies of 

safety and immunogenicity of MVA-NP+M1, as well as recruiting and vaccinating 

volunteers.  The phase I studies showed that the vaccine was safe and immunogenic in 

both young and elderly volunteers.  In addition to my clinical role in the phase I studies, I 

performed laboratory based immunological assays of immunogenicity (ELISPOT testing) in 

both phase I and II studies.  For the phase II study, I lead the safety challenge study as well 

as collecting, analysing and writing up the data from the quarantine challenge study.  This 

phase II study showed that MVA-NP+M1 is partially protective against influenza challenge 

in healthy volunteers, that the challenge model to assess protection is safe and that 

further challenge studies are warranted.  I have also initiated two separate clinical studies 

on influenza, one comparing early clinical features of influenza with those of malaria, both 

from volunteer challenge studies, while the other study was of the clinical assessment of 

severity of influenza during a busy winter influenza season, with particular reference to 

those patients requiring critical care.  For both studies I conceived the idea, organised the 

data collection and analysed the data. These data are of use in pandemic settings in 

allowing the assessment of patients with influenza and in determining the appropriate 

setting for their care.   
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NNT Number needed to treat 
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NP Nucleoprotein 

NPV Negative predictive value 
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PBMC Peripheral blood mononuclear cell 
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PPV Positive predictive value 
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5. Commentary 

 

5.1  Overview of morbidity and mortality due to influenza 

infection 

 

5.1.2 Mortality and morbidity prior to the emergence of the 2009 H1N1 

pandemic 

 

Influenza A virus was discovered in the early 1930s in the aftermath of the first influenza 

pandemic of the twentieth century (1).  Influenza disease had been known for many years 

prior to the discovery of the causative virus and the mortality and morbidity has been well 

established over time.  Whilst attention is drawn to the effect of pandemic influenza, such 

as the 1919 Spanish flu in which an estimated 40 – 50 million deaths occurred (2), the year 

on year mortality and morbidity associated with seasonal and local epidemic influenza 

infection is a substantial burden on health care systems.  A retrospective cohort study 

from the USA showed that in a non-epidemic influenza season (1970-1971) the rates of 

pneumonia and influenza related death and hospitalization were 6 / 100,000 and 58 / 

100,000 respectively (3).  In the epidemic years studied, the rates of hospitalizations, 

influenza and pneumonia mortality as well as all-cause mortality were significantly higher, 

with 11-13 excess deaths / 100,000 population, with a 140% increase in the hospitalisation 

rate, and an increase in the case fatality rate from 9.5% to 12-13%.  This pattern of excess 

deaths occurring in influenza seasons has been shown in other studies.  A retrospective 

mathematical modelling study of excess deaths attributable to influenza in England and 

Wales, between the 1999/2000 and the 2009/2010, showed up that in seasons of low 

activity there were just over 7000 influenza related deaths, whilst in the 1999/2000 

influenza season (a period of high activity) there were just under 25,000 deaths related to 

influenza infection (4).  A modelling study using data from the USA, on influenza seasons 

from 1972 – 1992, showed that on average there were an excess of 21,300 deaths per 

season (5). 

In addition to the excess mortality, influenza leads to increased healthcare utilization and 

economic loss through time of work and reduced productivity.  In a cohort study in 

Michigan, depending on age and the prevalent circulating influenza strain, between 110 – 
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1023 bed or restricted activity days / 1000 people / year occurred (6).  In a UK study of a 

single company, there was a mean of 2.8 days away from work due to an influenza like 

illness (ILI) (7), with reduced productivity noted for those who continued to work despite 

being symptomatic from their ILI, despite high levels of use of medications for 

symptomatic relief.  An estimate of the economic cost of influenza infections in the USA is 

that direct medical costs of seasonal influenza were $10.4 billion, with total economic 

costs being $87.1 billion (8).  At the more severe end of the spectrum, hospitalization is 

also seen to increase due to influenza infection.  A study from the Netherlands showed 

that during the influenza seasons of 1996 – 2000, hospitalizations for respiratory 

complications , cardiovascular disease and pneumonia and influenza were significantly 

increased, and that this was more marked in the elderly and those with co-morbidity (9). In 

the study by Molinari, over 330,000 patients were hospitalized, for 3.1 million days (8).   

Whilst influenza infection can affect people of any age, the burden of severe disease is 

carried predominately by the elderly, the very young and those with co-morbid conditions.  

A three year survey of respiratory hospitalizations in Houston, showed that both during 

epidemic and non-epidemic influenza seasons, children under four years old and adults 

over 65 accounted for the majority of hospital admissions due to influenza related 

respiratory disease (10).  In terms of mortality, older adults account for the greatest 

proportion of  influenza related deaths, with a modelling study of mortality across the USA 

related to influenza between 1972 and 1985, estimating that influenza associated 

pneumonia mortality was up to 104 times higher in those over 64 years old, compared to 

the younger age group (11).  Using national surveillance data in the United States, one 

study has shown that the mortality associated with influenza infection was mostly in those 

aged over 65, and was in large part due to death from cardio-respiratory disease as 

opposed to influenza and pneumonia (12).  In a study of nursing home residents, both 

those with and without co-morbid conditions had high rates of antibiotic use for 

respiratory disease, hospitalization and death, with 3.4 – 3.8% of deaths attributable to 

influenza (13).  A cohort study from Tennessee of patients with chronic lung conditions, 

showed that in both young children and adults over 65 years old, hospitalizations were 

significantly increased with influenza infection, with influenza accounting for up to 3% of 

all deaths in this group (14).  The same group have also looked at the association between 

invasive pneumococcal disease (which affects the elderly and those with chronic lung 

conditions to a greater extent) and influenza infection (15).  This study showed that the 

peak of pneumococcal disease was associated with both current influenza infection and 
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prior influenza infection, with the peak of influenza associated pneumococcal infection 

occurring up to four weeks post influenza infection.    The effect on elderly patients is not 

limited to mortality or hospital admission.  One study showed that frail elderly patients in 

residential care homes where there were outbreaks of influenza, had significant 

impairment of functional status up to four months post infection (16).   

In addition to the elderly, those with certain co-morbid conditions are at higher risk of 

mortality and morbidity associated with influenza.  Chronic respiratory conditions, such as 

chronic obstructive pulmonary disease (COPD) and asthma have been shown to be 

associated with higher rates of hospital admission, especially in low income groups (17).  In 

addition to those with chronic respiratory disease, other co-morbid conditions can be 

exacerbated by influenza infection (9).  This finding was substantiated by a study that 

showed influenza vaccination reduced the rates of hospital admission for cardiac disease, 

stroke, pneumonia or influenza, as well as all-cause mortality in two consecutive influenza 

seasons, in elderly patients (18).  Other at risk groups, who tend to have a younger age 

profile than those commonly thought to be at risk, that have been shown to have poorer 

outcomes following influenza infection include those with HIV infection and pneumonia 

(19), and pregnant women (20). 

 

5.1.3. Mortality and morbidity since the 2009 H1N1 influenza pandemic 

 

The first influenza pandemic of the 21st century began in North America in 2009 (21, 22).  

An increase in influenza cases, together with a marked change in the age distribution of 

severe cases, with a striking increase in young adults suffering from severe disease was 

noted.  A swine origin influenza A virus was found to be the causative virus, and studies 

using sera of a variety of age groups found that those born before 1920 had higher levels 

of neutralising antibody, suggesting that the swine origin 2009 H1N1 virus was 

antigenically similar to the 1918 H1N1 virus (23).  The spread of the virus, together with 

the shift in those affected signalled the arrival of the pandemic.  During the first wave of 

cases in early 2009, the demographic characteristics of severe cases continued to show 

that children and young adults, including pregnant women, were prominently represented 

compared to severe cases of seasonal influenza infection(24).  In the UK, the initial wave of 

cases again showed a predilection for younger age groups, but with no mortality noted in 

the first reported cases (25).  Whilst the first wave in the UK may have had little impact 
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with regard to mortality, the first major influenza season, in the southern hemisphere, 

after the pandemic was declared, had a major impact on health care services and a 

noticeable mortality (26).  The critical care services in Australia and New Zealand noted 

several features that were to become common in the subsequent waves of the pandemic, 

notably the effect of obesity on outcome, the young age of severe cases and the effect of 

pregnancy on the course of infection (26, 27).  During the first waves of influenza infection 

after the emergence of pandemic H1N1, the majority of illness and infection was related to 

the pandemic strain, with a cross sectional serological study in UK estimating that up to 

42% of children under 15 years of age may have been infected during the initial period of 

the pandemic (28).  In subsequent influenza seasons, whilst pandemic H1N1 continued to 

be a major circulating strain, influenza B virus co-circulated widely (29) and was 

responsible for severe illness (30).  In addition to influenza B virus, one group showed 

three separate influenza A virus co-circulated, and that of the three circulating influenza A 

viruses (pandemic H1N1, H3N2 and seasonal H1N1), there is little difference in clinical 

presentation (31).  Moreover a group from Hong Kong showed that pre-pandemic strains, 

including influenza B, all caused severe illness and mortality (32).   

The first full influenza season in the UK after the pandemic in 2010/2011, was a period of 

high influenza activity, both of pandemic H1N1 and influenza B (29).  Whilst the first wave 

of  pandemic cases were restricted to certain geographical areas (London and the West 

Midlands in particular) during the 2010/2011 season the whole of the country experienced 

high levels of influenza activity, with critical care admissions for influenza related illness 

being fourfold higher than the preceding season (29).  The majority of the severe cases 

continued to be in young adults, as was the majority of reported mortality directly from 

influenza.  A study from the Netherlands, comparing the impact of seasonal and pandemic 

influenza, found that due to the lower rates of illness in the elderly with pandemic 

influenza, observed total mortality was lower during the pandemic, with only young 

children showing an increased mortality compared to seasonal infection (33).  Even 

allowing for the likely lower mortality in older patients, a modelling study using attack and 

mortality rates from 12 different countries estimated that there had been 201,200 

respiratory deaths in the first 12 months of pandemic H1N1 transmission, with another 

83,300 cardiovascular deaths also attributable to the pandemic (34). 
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5.2  Immunity to influenza 

 

5.2.1 Humoral and mucosal immunity 

 

Given the extent of the morbidity and mortality associated with both seasonal and 

pandemic influenza infection, protection from influenza infection (and potentially a 

reduction in severity in those who are infected) is an area of great interest.  Early studies 

of vaccination with inactivated virus showed that induction of antibodies could be 

protective, but that this protection was not cross specific between influenza A and B (35, 

36).  A later study found that the specificity of anti-influenza antibodies was critical to 

protection (37), and that this may be the reason for the lack of cross protection after 

infection or vaccination with one specific sub type.   The two surface glycoproteins of 

influenza viruses, haemagglutinin and neuraminidase, both generate an antibody 

response.  The response to the haemagglutinin, measured by haemagglutination inhibition 

(HI) assay, is considered to be the major protective response against influenza infection.  In 

a human volunteer challenge study, the levels of HI antibody were correlated with 

protection from infection (38), with the protective dose for 50% (PD50) being a titre 

between 1:18-1:36.  This study, together with others that showed similar results (39), have 

guided the use of HI titres to determine influenza vaccine efficacy (40), with a titre of 1:40 

being labelled as seroprotective.   A mismatch between vaccine strains and the circulating 

influenza viruses can lead to a poor serological response (41), particularly in the elderly 

and may be related to reduced clinical efficacy.  Of note is an experimental study that 

showed CD4 T-cells could help antibody production against haemagglutinin, even when 

the T-cell was specific for a different internal influenza antigen (matrix protein) (42).  A 

recent study using a microneutralisation assay to study cross reactive haemagglutinin 

antibodies to the 2009 pandemic H1N1 virus (43), showed that in children, recent 

vaccination with seasonal influenza vaccine (either live attenuated or inactivated) did not 

increase antibody to pandemic H1N1.  In young adults in the year before the pandemic, 

only 6% before and 7% after seasonal influenza vaccination, had protective antibody titres 

against pandemic H1N1 (43).  Interestingly, older adults had higher levels of cross 

protective antibody, as did those who were vaccinated with the monovalent swine flu 

vaccine in 1976 (43). 
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Whilst the levels of HI antibody are important in preventing infection, other serological 

responses may play a part in either preventing or ameliorating the clinical course of 

infection.  Serum levels of anti-neuraminidase antibodies reduced both viral shedding from 

the upper respiratory tract, as well as decreasing the severity of clinical illness in 

experimentally infected volunteers (44).  In addition to serum antibody, the role of nasal 

antibodies and cytokines, has been studied, both free(45) and epithelial cell bound(46).  

The study by Clements et al (45), showed that a variety of both serum and nasal antibodies 

had effects on viral replication and illness severity, with anti-neuraminidase antibody 

having the broadest range of effects.  However, the challenge virus was homologus to the 

vaccine and therefore little can be said about cross protective effects of different 

antibodies.  Nasal cytokine production, in response to virus challenge has also been shown 

to have an effect on symptoms and viral shedding (47, 48).   Whilst these data show that 

cytokines and chemokines have an effect on symptoms and viral shedding, they do not 

prevent viral infection and may contribute adversely to symptoms and clinical illness. 

 

5.2.2 Vaccine induced immunity and its clinical efficacy 

 

Currently influenza vaccination is recommended for those aged 65 and over, as well as 

patients with chronic health conditions that put them at increased risk of severe illness 

from influenza.  However the efficacy of vaccination is a much debated area, with one 

meta-analysis and review estimating that vaccine efficacy for preventing laboratory 

confirmed influenza is 63%, but that this decreases markedly in the elderly and that 

protection against clinical influenza is lower at 22%(49).  A more recent and strict meta-

analysis, looking only at laboratory confirmed influenza gave a median vaccine efficacy for 

trivalent influenza vaccine (TIV) of 62%, whilst live attenuated influenza vaccine  (LAIV) had 

a median vaccine efficacy of 78% (50).  However none of the trials of TIV in the later meta-

analysis included adults aged 65 or more, who are obviously one of the main target groups 

for influenza vaccination.  One placebo controlled trial looking specifically at TIV 

effectiveness against both clinical and serologically confirmed influenza in patients over 60 

years of age (51), found a 50% reduction in serological and a 47% reduction in clinical 

influenza respectively.  The relative efficacy of LAIV and TIV has been addressed in two 

separate randomised trials (52, 53) which suggest that LAIV has greater efficacy at 

preventing culture confirmed influenza in children (52), whilst TIV appeared to have 
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greater efficacy at preventing PCR and culture confirmed influenza in young adults (53).  As 

LAIV appears to have a priming effect on T-cell immunity against influenza in children but 

not in adults (54), this may be one of the contributing factors to this difference in efficacy. 

Several cohort studies and clinical trials that did not report laboratory confirmed influenza 

as a primary outcome have shown effectiveness of influenza vaccine in reducing a variety 

of clinical outcomes.  Two studies using the UK general practice research database (55, 56), 

have looked at the effect of influenza vaccination on all cause, as well as respiratory and 

cardiac mortality.  In the prospective cohort study described by Armstrong et al (55), 

mortality was higher in non-vaccinated patients during periods of high influenza activity, 

whilst for vaccinated patients mortality rates did not significantly increase at these times.  

This was true for all cause and respiratory mortality (55).  The retrospective cohort study 

that was conducted by the same group (56) found that seasonal influenza vaccination was 

21% effective in reducing hospital admission for respiratory illness over the nine year 

period of the study, with a 12 % reduction in all-cause mortality.  The effectiveness of the 

vaccine seemed to be related to the severity of the influenza season, with higher efficacy 

seen during the most severe influenza seasons (56).  Other clinical outcomes that have 

been assessed in cohort studies have included the effect of influenza vaccine on 

pneumonia mortality and outcomes during four consecutive influenza seasons (57).  

Current (that season’s vaccine) vaccination was associated with reduced in hospital 

mortality, which was consistent after correction those with unknown vaccination status.  It 

also found that this effect was consistent in both younger and older patients, as well as 

those with severe community acquire pneumonia (CAP) (57).  Interestingly, the 

effectiveness of vaccination was greatest in those seasons when vaccine strains were most 

closely matched to the circulating strains.  In addition to this potential effect on outcomes 

in patients with CAP, another study focused on the potential effect on vascular outcomes 

in older patients who received influenza vaccination (18).  The findings from this large 

cohort study (over 280,000 subjects across two influenza seasons) were that vaccination 

against influenza, in a population with a range of co-morbid conditions, reduced not only 

the rate of cardiac or cerebrovascular hospital admissions, but also reduced all-cause 

mortality, with a number needed to treat (NNT) to prevent death or hospitalisation of 61 

in the 1998-1999 influenza season, and an NNT of 68 in the 1999-2000 season (18). 
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5.2.3 Cellular and heterosubtypic immunity to influenza A 

 

Whilst antibody mediated immunity to surface glycoproteins may generate protective 

immunity, the nature of antigenic variation in these molecules, both in terms of seasonal 

antigenic drift and emergence of antigenically shifted pandemic virus, means that cross 

specific immunity (heterosubtypic) is unlikely to be successful.  A study conducted early in 

the emergence of the 2009 pandemic showed that B cell /  antibody  epitopes were poorly 

cross reactive between pandemic H1N1 and the previously circulating H1N1 strains (58).  

This study did show that there were a much greater number of conserved epitopes 

recognised by T lymphocytes, and that this was split between both CD8 and CD4 T-cells 

(58).  The nature of the T-cell response and the potential for it to be induced by 

vaccination are the main areas that will be covered in the majority of this thesis.   

The effect of cellular immunity in curtailing influenza infection is most clearly shown in 

challenge studies conducted on volunteers with no detectable humoral immunity to 

influenza.  A key study in this regard is the paper from McMichael’s group in 1983 (59).  

Whilst this study confirms the importance of HI titres in preventing infection (no volunteer 

with a titre of >1:20 shed virus), the results showed that in the presence of influenza virus, 

T-cells could recognise and lyse infected cells (as measured by a chromium release assay) 

clearing viral infection, even in those without pre-existing antibody being present.  This 

study also provided evidence that cross sub type immunity might be related to cellular 

immunity, as volunteers who were born after 1956 were exposed to virus that was not 

circulating during their lifetime, still cleared the infection in the absence of any humoral 

response (59).  The potential for T-cells to recognise epitopes that are present in different 

sub types of influenza A has been further investigated, with the nature of the cross 

recognition being elucidated.  Using enzyme linked immuno spot (ELISPOT) techniques, T-

cells (both CD4 and CD8) from British volunteers were shown to recognise epitopes from 

both seasonal H3N2 influenza A and avian H5N1 which causes sporadic severe disease in 

South East Asia and is considered to have pandemic potential (60).  The targets for cross 

recognition were explored using the whole proteome of both H3N2 and H5N1 viruses, with 

the matrix protein 1 (M1) and nucleoprotein (NP) being the major targets recognised in 

both viruses (60).  A subsequent study showed that cytotoxic T-cells generated by 

exposure to seasonal influenza viruses (both H1N1 and H3N2), could recognise and lyse 

cells infected with pandemic H1N1 (61).  Using HLA tetramer staining techniques, this 

group also showed that an epitope from M1 that was present in seasonal influenza was 
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also present in pandemic H1N1 and was recognised by cytotoxic cells that had not been 

previously exposed to pandemic H1N1 virus (61).  Interestingly, a separate study looking at 

CD8 T-cell responses to epitopes that aren’t conserved across all influenza A sub types 

(62), found that an epitope of the NP that was present in the 1918 H1N1, and recognised 

by CD8 T-cells, was also present in the 2009 pandemic H1N1.   

The nature of a potentially protective T-cell response to influenza, especially with regard to 

antigen selection, is important in influencing vaccine strategies that could stimulate T-cell 

immunity.  HLA restriction of the T-cell response was shown in several studies (63-66), 

both to CD8 (63, 64) and CD4 cells (65).  These studies showed that T lymphocytes capable 

of lysing influenza infected cells recognised viral molecules on the surface of the infected 

cell.  The nature of the epitopes presented in this manner was further elucidated in a 

series of studies by McMichael.  In one of the earlier studies, T-cells were identified as the 

cytotoxic cell, and were shown to be able to recognise subtypes of influenza A but not 

influenza B (66).  Further studies clarified the nature of the antigen presented to the T-

cells, with evidence that both NP (67-69) and matrix protein (42, 63, 70, 71) and 

polymerase PB2 (71) contribute peptide molecules that are presented to HLA restricted 

cytotoxic T-cells.  An earlier study had shown that a variety of viral proteins were 

presented at the cell surface and recognised by T-cells (72), and that some of these T-cells 

were able to recognise cells infected with any influenza A sub type. 

The finding that these internal proteins are presented to cytotoxic cells and are conserved 

between subtypes of influenza A, together with the finding that NP and M1 are the 

dominant epitopes conserved between sub types (60, 61), suggests that these proteins 

may be suitable vaccine antigens to stimulate T-cell mediated immunity.  T-cell immunity 

could be relevant in heterosubtypic immunity as was shown in the pivotal McMichael 

paper from 1983 (59).  Further circumstantial evidence for the contribution of non-

humoral immunity to heterosubtypic immunity is from a historical review of cases 

occurring during the H2N2 pandemic of 1957 (73).  This study found that adults who had 

previously been exposed and infected with H1N1 virus prior to the emergence of the H2N2 

pandemic, had lower attack rates from the pandemic H2N2 virus than children who had 

had no previous exposure to either virus, or adults who had not been previously infected 

with H1N1.  Given that both the haemagglutinin and neuraminidase proteins shifted from 

H1N1 to H2N2 in this time period, it is unlikely that cross reactive protective antibodies to 

HA or NP were responsible for the majority of the effect detected, perhaps suggesting that 

cell mediated immunity played a significant role.  T-cell cytotoxic capability has been 
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shown to be “boosted” by exposure to natural influenza infection (74) with a half-life of 

the cytotoxic cell of two to three years and  noticeable waning of T-cell cytotoxic 

capability, indicating that there is the potential for vaccination to increase this element of 

influenza immunity.   

Some earlier studies have shown that live attenuated influenza vaccine can prime T-cell 

responses in children without detectable pre-existing T-cell responses, but do not boost 

those responses in adults (54).   Inactivated current TIV, in particular the split virion type, 

can stimulate modest T-cell responses (75), although the protective effect of this effect is 

likely to be moderate.  One study has shown that there is a small amount of M1 and NP in 

trivalent vaccine and that in HLA-A2 positive individuals this can stimulate cellular 

responses and cytotoxicity in vitro (76).   In older vaccine recipients, the effect appears to 

be lower than younger patients (77), but by assessing cellular responses, particularly 

granzyme B responses (78, 79) it may be possible to assess those elderly patients at 

increased risk despite vaccination.  A study looking at the relationship between T-cell 

subsets and HI titres after vaccination with trivalent inactivated influenza vaccine, showed 

that higher levels of CD8+ CD28null T-cells, were associated with poor vaccine responses, as 

defined by reduced antibody titres to vaccine strains (80).  Children vaccinated with the 

2009 pandemic H1N1 monovalent vaccine have been shown to have a small but 

measurable increase in T-cell responses to internal antigens when subsequently vaccinated 

with TIV (81). 

One of the major problems in assessing the effectiveness of T-cell immune protection (not 

just in influenza) is the lack of good correlates of protective immunity.  Two recent studies, 

one a human volunteer challenge study (82), the other a longitudinal cohort study (83), 

have shed new light on the nature of cellular immune protective correlates against 

influenza.  The challenge study described the effect of pre-existing T-cell responses on viral 

shedding and the clinical course of volunteers nasally inoculated with either H3N2 or pre 

pandemic H1N1 virus.  Pre-existing responses were predominately CD4 in nature, with NP 

and M1 being major targeted proteins.  Cytotoxic CD4 T-cell responses against influenza 

peptides appeared to be correlated with reduced viral shedding and lower symptom 

scores, but there was little contribution of CD8 T-cells directed against influenza derived 

peptides, despite evidence of both CD4 and CD8 T-cells exhibiting cytotoxicity via the 

perforin-granzyme pathway (82).  As CD8 cells were found in lower numbers pre-challenge 

in this study, it might be that at baseline levels they play less of a role in limiting influenza 

infection, but the cohort study described by Sridhar and colleagues (83) conducted during 
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the 2009 pandemic indicated that anti influenza CD8 cells of a specific phenotype 

(CD8+IFN-γ+IL-2-) were associated with reduced incidence of influenza like illness, reduction 

in viral shedding and lower symptoms scores.  Further specific study of the protective 

nature of these CD8 cells showed they recognised conserved epitopes of PB1, M1 and NP, 

and had cytotoxic and lung homing capabilities (83).  Thus it appears that cytotoxic CD4 

and CD8 T-cell responses may both contribute to antiviral responses against influenza. 

 

5.3 Viral vectored vaccines to stimulate cellular immunity 

 

As cellular immunity appears to have a potential bearing on influenza infection, and could 

offer heterotypic protection, development of a vaccine that boosts this component of the 

immune response is an attractive option.  Viral vectored vaccines have been developed 

and shown to be potent at stimulating immune responses to a variety of antigens and this 

section of thesis will consider the development of these vectors. 

Whilst many infections can be targeted with antibody producing vaccines, intra-cellular 

organisms such as tuberculosis or those with complex infective life cycles such as malaria 

may not be as susceptible to humoral mediated immune clearance.  By identifying 

epitopes that are recognised by T-cells, and inducing cellular responses to these targets, 

intra-cellular pathogens, and some cancers, may be susceptible to immune clearance 

mediated via T-cells. 

One of the most studied viral vectors capable of inducing cellular immune responses is the 

modified vaccinia virus Ankara (MVA) (84-86).  This virus was originally used as a smallpox 

vaccine in Germany and Turkey and was safely given to over 120,000 people (84).  It is 

unable to proliferate in human cells, and has its genome shortened by approximately 9% 

compared to reference strains of vaccinia virus (84).  However, despite not being able to 

replicate in humans, viral DNA is processed and viral protein assembly occurs, being 

incomplete only at a late stage of assembly (85, 86).  Crucially it is also able to express DNA 

that has been cloned and inserted into its genome (85).  It is therefore able to express 

sequences of DNA that code for antigens of interest, which can then be processed and 

presented at the cell surface for immune recognition.  MVA, when used as a smallpox 

vaccine, was administered by intradermal, subcutaneous and intramuscular routes, and 

was given to a wide age range (84, 86), without major adverse effects.  It also appears to 
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induce interferon production, potentially assisting the immune response to the inserted 

antigen (86).     

Clinical studies of MVA, expressing a variety of target antigens have taken place in many 

patient groups and geographical settings.  MVA has predominately been used to boost T-

cell responses that have been primed by another route, the “heterologous prime boost” 

approach (87).  Table 1 lists some of the clinical studies in which MVA has been used in this 

method.  Of importance is the study by Vuloa et al (88).  This study looked at the 

immunogenicity of different combinations of vectors in a heterologous prime boost 

strategy for the malaria antigen, multi epitope thrombospondin related adhesion protein 

(ME-TRAP).  The vectors used were plasmid DNA, MVA and attenuated fowlpox 9 (FP9) 

virus.  The greatest immunogenicity (both in terms of the magnitude of the T-cell ELISPOT 

response and its longevity), were observed when MVA was the vector used to boost a 

prime from the other vectors (88). Importantly, however, this approach had not previously 

been employed as a vaccine strategy, in humans, against influenza A virus and the papers 

which form this thesis form the first published reports of this strategy. 
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Disease MVA antigen Priming method References 

Malaria ME-TRAP, CS, 

AMA1, MSP1 

DNA, Adenovirus, 

fowlpox virus 

(88-93) 

Tuberculosis 85A BCG, latent TB 

infection 

(94-97) 

HIV nef, gag / multi 

epitope 

HIV infection (98, 99) 

Influenza NP+M1 Past infection, 

Adenovirus 

(100-103) 

Melanoma Human tyrosinase, 

multi epitope  

Melanoma (104, 105) 

Renal cell cancer 5T4 Renal cancer (106) 

 

Table 1 – Clinical studies of MVA as a vaccine vector.  Abbreviations: AMA1, Apical 

Membrane Antigen 1; BCG, Bacillus Calmette-Guerin; CS, Circumsporozoite protein; ME- 

TRAP, Multi Epitope Thrombospondin Related Adhesion Protein; MSP 1, Merozoite Surface 

Protein 1; NP+M1, Nucleoprotein and Matrix protein 1. 

The safety profile of MVA as a vector (as opposed to its use as a smallpox vaccine), has 

been assessed in all of these studies, which have included children and infants (90, 97), 

elderly patients (101, 106), HIV-1 seropositive individuals (98, 99), as well as African 

volunteers (89, 97).  In a detailed report on the safety of both MVA and fowlpox vectors 

(91), local reactions (to intradermal administration of vaccine), were the most common 

adverse event, with systemic adverse events generally being mild and short lived.  By 

comparing different routes of administration (intradermal and intramuscular), and 

different doses, the first of the papers forming the basis of this thesis (100) gives further 

insight into the side effect profile of MVA vectors.  As might be expected, administration as 

an intradermal injection led to greater erythema, itch and swelling, whilst systemic 

symptoms were related to the vaccine dose, with the high dose group suffering more 

severe adverse events, in particular fever and malaise (100).  It is also of note that adverse 

events, when using the same dose and route of MVA-NP+M1, were similar in both young 

and older volunteers (101, 102).    
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The potential for the use of MVA based vaccines to induce T-cell based heterosubtypic 

immunity is the basis for papers 1 – 4 in this thesis (100-102, 107).  The aim of the research 

was to investigate if by boosting pre-existing T-cell responses, which are conserved across 

multiple influenza A sub types, clinical disease could be reduced.  The phase I vaccine 

studies (100, 101) concentrated on demonstrating safety and immunogenicity of the 

candidate vaccine, MVA-NP+M1.  The first trial was in younger adult volunteers and 

showed that the vaccine was safe via both intramuscular and intradermal routes, and was 

able to boost pre-existing T-cell responses, in both CD8 and CD4 cells (100).  Given the 

findings of the studies looking at correlates of cellular immunity (82, 83) the ability to 

generate both a CD4 and CD8 response would seem to be of benefit.  The second trial 

assessed the immunogenicity and safety in an older group of volunteers, who by virtue of 

their age would be at greater risk from influenza infection (101).  In this group there 

continued to be a significant increase in both CD4 and CD8 T-cells recognising the vaccine 

antigens, and a similar level of functionality of these cells was seen as in the study of 

younger volunteers (100).  The safety data in this elderly group of volunteers was the same 

as observed in the younger volunteers vaccinated with the same dose.  A previous study 

had found that a high IFN-γ:IL-10 ratio was associated with protection from influenza in 

the elderly (78), and the increase in IFN-γ secretion seen after vaccination with MVA-

NP+M1 was not associated with an increase in IL-10 levels, which may contribute to 

increased protection in the elderly (101). 

The next clinical trial of MVA-NP+M1 involved a human challenge study (102), together 

with further immunological studies of vaccinated volunteers (107).  The timeline for the 

challenge study is shown in Figure 1. 

 

 

Day 0 
Vaccination 

Of volunteers 
 
 

Day 28 
Enter 

Quarantine 

Day 30 
Challenge 

Day 37 
Release from 
Quarantine 

Screening Post 
Vaccination 

Follow-Up 

Clinical and Virological Monitoring 
* indicates blood sample 

66* (+/- 7 
days) 

    21*  
37* 

 31* 32*, 33* & 
34*   

   28*  

Post 
Challenge 
Follow-Up 

120*(+/- 
7 days) 

 

210*(+/- 
7 days) 

 

   30*  
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Figure 1 – Timeline of the influenza challenge study in reference 65. 

In this clinical trial, the trend across all clinically observed measures was of MVA-NP+M1 

being beneficial, in addition to showing that the challenge model after vaccination was a 

safe mode of assessing efficacy when using a novel T-cell stimulating vaccine.  The 

immunological studies showed that vaccinated volunteers had higher levels of anti viral T-

cell cytolytic activity and T-cell activation after influenza challenge (107), which might 

contribute to enhanced viral clearance and attenuation of symptom, however in this 

clinical study no immunological outcome was of use in predicting protection from 

influenza disease or viral shedding.  These same immunological correlates had in an earlier 

study been shown to be a better correlate of protection from influenza than HI titres (78).  

The research in papers 1 – 3 also adds to the safety data around the use of MVA as a viral 

vector and extends the safe use of this vector to an older cohort.  The challenge study 

performed as part of paper 3 (102) also showed that this method of testing a novel T-cell 

stimulating vaccine was safe, and potentially useful in exploring vaccine effectiveness. 

 

5.4  Human challenge studies of influenza infection 

 

The use of human volunteers as a model in infection research has many advantages.  By 

studying the human response to infection, no extrapolation from animal studies is needed, 

and the effect of vaccines, drug treatments and the natural history of the infection can be 

ascertained.  Safety concerns are of paramount importance, particularly when potentially 

fatal infections such as malaria are given to volunteers.  A group of UK and American 

researchers have put forward the view that human microbial challenge is the “ultimate 

animal model” (108).  Within influenza research, the use of challenge studies has allowed 

assessment of the natural time course and severity of infection (109), which, as the point 

in time of naturally acquiring influenza is not often known, is of great use.  This review of 

influenza challenge studies has confirmed the relationship between the amount of virus 

shed and clinical symptoms, whilst also showing that asymptomatic viral shedding does 

occur.  It has also highlighted that viral shedding peaks early after inoculation and that this 

may limit the ability to contain the spread of infection (109).  Other influenza challenge 

studies have helped to elucidate the mechanisms of cellular immunity to influenza (59, 

82), the efficacy of neuraminidase inhibitors in limiting symptom duration (48, 110), the 
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local and systemic cytokine and chemokine responses to infection and their association 

with symptoms (47, 48), the role of mucosal antibody in protection from infection (45), 

gene expression profiles that may differentiate viral from bacterial infection (111) and the 

efficacy of vaccines (102).  Perhaps one of the major factors limiting the generalizability of 

influenza challenge studies is the route via which volunteers are inoculated.  In the 

majority of studies nasal instillation of virus is used, as this allows rapid and reliable 

infection to occur (109).  However this may not mimic the natural acquisition of influenza 

from aerosol transmission, and further challenge studies have been planned to look at the 

efficacy of protective equipment in preventing infection via the aerosol route (112). 

 

5.5  Clinical assessment of influenza illness 

5.5.1. Severity assessment of influenza infection 

 

Influenza infection can present in a variety of ways, and the spectrum of severity, can run 

from a symptomatic infection (28, 109) through to fatal severe illness (32, 113).  During 

periods of high influenza activity critical care services are under extreme pressure (26, 29) 

and effective early triage of those patients who require intensive care support would be 

advantageous.  Conversely identifying those patients at low risk for severe disease may 

allow that group to be managed in the community freeing up capacity in secondary care 

for the more severely ill (114).  Paper 5 of this thesis (30) relates to the assessment of  

severity of influenza infection , and to the development of a proposed triage tool, during 

an influenza season with a large number of cases managed in secondary care at Sheffield 

Teaching Hospitals NHS Foundation Trust.  Figure 2 shows the time frame of the cases over 

the winter of 2010 / 2011.  
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Figure 2 – Time course of influenza cases at Sheffield Teaching Hospitals Winter 2010 / 

2011. 

 

Whilst there is an extensive literature on severity assessment in community acquired 

pneumonia (CAP), with validated assessment tools such as the pneumonia severity index 

(PSI) (115), CURB-65 (116) and SMART-COP (117), these may not be as readily applicable to 

influenza infection.  A study from Canada looked at the use of pneumonia assessment 

tools for predicting outcome in influenza infected patients (118).  In this study, over three 

influenza seasons (all before the emergence of pandemic H1N1), patients admitted to 

hospital who had a positive sample for influenza had eight separate severity scores 

calculated (both pneumonia specific and sepsis scores), and rates of death and intensive 

care admissions were recorded.  Whilst the PSI predicted mortality with reasonable 

accuracy, it was less effective in predicting intensive care admission and the study did not 

assess the utility of the scoring systems in guiding outpatient treatment (118).  Another 

issue with this study is that since the emergence of pandemic H1N1, the average age of 

patients requiring intensive care with influenza infection is much younger than the average 

age in the Canadian study which was 76 years of age (118).  A study from South Korea , in 

the early stages of the 2009 H1N1 pandemic found that in univariate analysis both PSI and 
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CURB-65 scores predicted mortality, with PSI remaining predictive in multivariate analysis 

(119).  However one of the issues with the PSI is that it is a reasonably complex tool to use, 

requiring multiple steps before assigning a patient to a PSI level, and another study in CAP 

patients advocated using CURB-65 due to its ease of use and that the performance 

characteristics were not substantially different from PSI (120).  

Generic severity assessment scores, such as the modified early warning score (MEWS) 

(121) may be of use in prognostic assessment of infection.  A study comparing early 

warning scores, sepsis scoring and CURB-65 in CAP, found that the disease specific CURB-

65 score outperformed the more generic scoring systems (122), in predicting mortality.  In 

common with many of the studies in this area, mortality as opposed to critical care 

admission was the end point for this study and therefore it may be that it has less utility in 

predicting the need for critical care, which in influenza epidemic conditions may well be a 

more relevant measure. 

Another caveat of studies of influenza severity assessment, as highlighted above, is that 

those conducted before the emergence of pandemic H1N1 may underestimate the 

severity in younger patients, and pregnant women.  In one of the largest pre 2009 

pandemic observational studies looking at risk factors for death and poor outcome from 

influenza infection, carried out over two years in Hong Kong, the average age of admitted 

patients was 70 (32), as compared with 23 years of age in the first wave of pandemic cases 

in the UK (123).  In addition to older age as a predictor of mortality, major co-morbidity, 

need for ventilatory support, male sex and being a nursing home resident were associated 

with death (32), whilst treatment with oseltamivir appeared to be beneficial in reducing 

risk of death.  Again, this study looked at death as its primary outcome and may not 

therefore be relevant when applied to decisions regarding critical care requirement.  

Another study from Taiwan of patients with confirmed influenza pneumonia (124), found 

that the strongest predictor of mortality was the degree of hypoxia, as measured by the 

ratio of the arterial partial pressure of oxygen to inspired oxygen concentration.  As this 

study was in confirmed influenza pneumonia, with an overall mortality rate of 44.7%, the 

generalizability to non-pneumonic influenza infection in a triage setting may be limited.  As 

both of these studies were carried out before the emergence of pandemic H1N1, and the 

description during the pandemic and early post pandemic period of novel risk factors such 

as obesity, it is unclear if those risks also pertained to other influenza virus infections. 
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Many studies were performed to look at the risk factors for poor outcome during the 

initial period of the 2009 pandemic. A UK based study investigated risk factors for death or 

need for critical care support during the first wave of the 2009 pandemic (123).  In keeping 

with pre pandemic findings, the presence of respiratory co-morbidity was associated with 

poor outcome.  One of the new factors that appeared to influence outcome in several of 

the studies of pandemic H1N1 was obesity (26, 123, 125), whilst pregnancy, which had 

been noted as a risk factors prior to the pandemic became a much more widely noted risk 

factor (20, 26, 27, 126).  A study from early in the pandemic from Mexico reported factors 

that were associated with lower risk and the ability to be treated as an outpatient (127).  

Although mostly looking at factors associated with death, a lower respiratory rate, absence 

of cyanosis and not being confined to bed were associated with the ability to be treated as 

an outpatient (127), but these vague descriptive factors do not lend themselves to being 

implemented as algorithms or protocols to decide who could be treated as an outpatient.  

The other reports from the pandemic concentrated on risk factors for mortality or poor 

outcome and Table 2 shows the risk factors identified by these studies, associated with 

poor outcome. 

Factors associated with poor 

outcome 

Reference 

Pregnancy (24, 26, 27, 126) 

Obesity (26, 113, 123, 128) 

Older age (24, 26, 129) 

Hypoxia / raised respiratory rate (24, 26, 127, 130, 131) 

Co-morbidities (24, 26, 123, 127-129) 

Hypotension / shock  (130, 131) 

Confusion /altered mental state (129, 130) 

Delayed receipt of anti-viral treatment (24, 126, 128, 132, 133) 

Radiologically confirmed pneumonia (24, 123, 129) 

 

Table 2 – Factors associated with poor outcome during the initial phase of the 2009 H1N1 

pandemic. 
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As these studies were carried out during the first waves of the 2009 pandemic, it is not 

surprising that they report outcomes only of patients infected with pandemic H1N1. How 

this can be extrapolated to influenza seasons where there is co-circulation of other 

influenza viruses is still unclear.  One study looked at the clinical presentation and 30 day 

outcome of both pre and post pandemic strains of H1N1 as well as H3N2 virus (31).  This 

study showed that pneumonia and acute otitis media were more common, in adults, with 

pandemic H1N1 than either H3N2 or pre pandemic seasonal H1N1 (31).  However this 

study did not collect data on risk factors for complications or poor outcome, and did not 

look at outcomes with influenza B virus infection.  What the study described in paper 5 

(30) adds to the literature is detail on the factors associated with the need for critical care 

during both pandemic H1N1 and influenza B infection, in the early post pandemic period.  

It also addresses potential factors associated with admission for less than 24 hours, which 

may allow early discharge or community based treatment with anti-viral medication. In 

one retrospective Chinese study, outpatient use of oseltamivir reduced the risk of 

progression to severe disease and pneumonia (134), and it may therefore be appropriate 

that those in lower risk groups for complications are not admitted to hospital, but do still 

receive antiviral treatment to reduce the risk of complications.  The classification into 

groups that are suitable for outpatient therapy and those that may require critical care, in 

a simple manner, is one of the major uses of severity assessment in CAP.  Paper 5 proposes 

a two-step assessment process, firstly to assess whether the patient is suitable for 

outpatient treatment, and then if not appropriate for outpatient management, an 

assessment of the need for critical care is carried out.  This contrasts with the other 

published studies which concentrate on risk assessment for poor outcomes only.  

 

5.5.2  Distinguishing influenza and malaria clinically 

 

At the beginning of the 2009 pandemic in the UK, a national telephone triage service was 

implemented to assist in the allocation of anti-viral medication (135), which used the HPA 

case definition for pandemic influenza (136).  Soon after this there were reports of 

misdiagnosis of other severe illness as “swine flu” after use of the telephone triage system 

(137-139).  Subsequently reports from the UK and Korea questioned the utility of case 

definitions in pandemic influenza (140, 141), particularly with regard to the sensitivity to 
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predict influenza, and a meta-analysis of decision rules for influenza infection found that 

none of the commonly used rules or tools had good clinical utility (142).   

Three of the cases reported in the UK as misdiagnosed swine flu, actually had Plasmodium 

falciparum malaria (137, 138).  This may have been related to the original case definition, 

which did not require information on possible malaria exposure or travel to a malaria 

endemic country to be collected (136), although later versions of the case definition did 

exclude those who had recently been to a malarial area from telephone triage.  In reviews 

of febrile illness in travellers returning from malarial endemic areas, malaria was the most 

common diagnosis (143-145), but a significant minority of patients in these reviews had 

influenza infection.  There are reports of patients with influenza mimicking malaria (146) 

and at least one case report of a patient presenting with an influenza like illness who had a 

final diagnosis of malaria (147).  As was shown in some of the case reviews of pandemic 

H1N1 infection, atypical features, notably diarrhoea and vomiting can be present (21, 30, 

123, 125, 127) and may add to the diagnostic uncertainty in these cases.  In this context, 

the data from paper 6 in this thesis (148), is of use in guiding assessment of patients, 

during periods of influenza activity, who are at risk of malaria.  As may be expected, upper 

respiratory symptoms were more common in the influenza group, whilst all other 

symptoms were not able to distinguish clinically between influenza and malaria infection.  

It would therefore seem sensible that in the absence of respiratory symptoms, patients 

should be evaluated for other causes of their presumed influenza illness, if they have a 

relevant travel or exposure history.        
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6. Future areas of study 

 

Research into influenza vaccines and the potential to generate heterosubtypic immunity is 

an ongoing area of active research.  Co-administration of the novel vaccine MVA-NP+M1 

together with seasonal influenza vaccine has recently been studied (149), as a strategy to 

boost the humoral response to TIV and shows promise in potentially achieving both 

humoral and cellular immune responses against influenza A viruses.  This approach, of 

using both poxvirus and protein based vaccine to achieve greater cellular and humoral 

immune responses, has been previously demonstrated in a murine model of hepatitis B 

vaccination (150).  This combination vaccination strategy may abrogate the reduced 

efficacy seen when there is a mismatch between the circulating virus and that included in 

the seasonal trivalent vaccine (41).  Another development with MVA-NP+M1 is its use in 

combination with a novel adenovirus expressing the same antigens (103).  This may be of 

use in vaccinees who have little in the way of pre-existing T-cell responses to influenza, 

who would require a prime boost strategy, with adenovirus priming followed by boosting 

with MVA-NP+M1.  The extension of studies of MVA-NP+M1 into other at risk groups for 

influenza, such as those with chronic respiratory conditions is another area that would be 

of interest.  Other vaccines and vaccine antigens are in development and the hope is that a 

potent, heterosubtypic vaccine can be developed that can be of use in both seasonal and 

pandemic influenza prevention.  As there are further cases of zoonotic transmission of 

avian influenza viruses, such as H9N2 (151) and H5N1 (152), the need for a pre pandemic 

vaccine that could at least reduce the impact of a potentially severe pandemic is 

particularly pressing. 

One remaining area of data that is currently being analysed and prepared for submission 

for publication, from the influenza challenge study described in paper 3 of this thesis (102), 

consists of transcriptomic profiling of both vaccinated and non-vaccinated volunteers.  

Early analysis of this data suggests that it may provide clues as to the reasons why some 

patients have more severe symptoms than others who shed similar levels of virus after 

challenge, and therefore help in quantifying symptoms in influenza challenge studies in a 

more objective manner.  Other potential uses of transcriptomic profiling include 

differentiating between viral and bacterial illness (111), thereby potentially allowing better 

targeting of antibiotics and antivirals, and potentially in prognostication as the immune 
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inflammatory response to pandemic H1N1  has been shown to be a major determinant of 

outcome (153, 154). 

Another aspect of the research described within this thesis is the search for correlates of 

cellular immunity to influenza infection.  The most recent studies on this are conflicting on 

the relative roles of CD4 and CD8 T-cells (82, 83), as well as the overall role of T-cell 

responses after vaccination (54, 78) and future research should aim to clarify this area.  

The role of other aspects of the cellular immune response, such as natural killer cells is also 

under investigation (155).  The reduced vaccine efficacy seen in the elderly is being 

studied, and the role of immunosenescence and in particular chronic infection with 

cytomegalovirus is a potentially fascinating area (156, 157).   

With regard to the clinical assessment of influenza illness and severity assessment, data 

from the 2009 pandemic continues to be analysed together with the identification of 

factors associated with complicated disease and the generation of assessment algorithms 

(158).  A recent paper from the USA found that outcomes were similar in patients who had 

confirmed influenza B virus infection, compared with influenza A infection (159), and this 

may help in simplifying assessment tools.  How relevant this data is as we move further 

away from the pandemic and into the situation where the 2009 H1N1 virus becomes the 

main seasonal circulating influenza A strain is a point of conjecture.  Further development 

of prognostic tools to allow the community based treatment of patients with influenza 

would be useful, such as that described in paper 5 (30) of this thesis.   
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8. Published papers 
 

8.1 Paper 1 - Potent CD8+ T-Cell Immunogenicity in Humans of a 

Novel Heterosubtypic Influenza A Vaccine, MVA-NP+M1 
Tamara K. Berthoud, Matthew Hamill, Patrick J. Lillie, Lenias Hwenda, Katharine A. Collins, Katie J. Ewer, 

Anita Milicic, Hazel C. Poyntz, Teresa Lambe, Helen A. Fletcher, Adrian V. S. Hill and Sarah C. Gilbert. 

 

Background.  Influenza A viruses cause occasional pandemics and frequent epidemics.  

Licensed influenza vaccines that induce high antibody titres to the highly polymorphic viral 

surface antigen haemagluttinin must be reformulated and re-administered annually.  A 

vaccine providing protective immunity to the highly conserved internal antigens could 

provide longer lasting protection against multiple influenza subtypes. 

 

Methods.  We prepared a Modified Vaccinia virus Ankarra (MVA) vector encoding 

nucleoprotein and matrix protein 1 (MVA-NP+M1) and conducted a phase I clinical trial in 

healthy adults. 

 

Results.  The vaccine was generally safe and well tolerated, with significantly fewer local 

side effects after intramuscular rather than intradermal administration.  Systemic side 

effects increased at the higher dose in both frequency and severity, with 5 out of 8 

volunteers experiencing severe nausea / vomiting, malaise or rigors.  Ex-vivo T-cell 

responses to NP and M1 measured by IFN-γ ELISPOT were significantly increased after 

vaccination (pre vaccination median of spot forming units/million peripheral blood 

mononuclear cells, post vaccination peak response median 339, 443 and 1443 in low dose 

intradermal, low dose intramuscular and high dose intramuscular groups, respectively) and 

the majority of the antigen specific T-cells were CD8+. 

 

Conclusions.  We conclude that the vaccine was both safe and remarkably immunogenic, 

leading to frequencies of responding T-cells that appear to be much higher than those 

induced by any other influenza vaccination approach.  Further studies will be required to 

find the optimum dose and to assess whether the increased T cell response to conserved 

influenza proteins results in protection from influenza disease.  
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Licensed influenza vaccines, whether inactivated or live attenuated, are designed to induce 

humoral immunity to haemagglutinin (HA).  Seasonal influenza vaccines are a mixture of 

A/H1N1, A/H3N2, and B antigens.  Vaccine effectiveness is 70%-90% when the circulating 

virus is well matched to the vaccine, but may fall below 50% when the circulating strain 

has drifted significantly from the vaccine strain (1), particularly in people over 60 years of 

age (2).  Annual revaccination is required to maintain immunity against seasonal influenza 

viruses.   

 

Fears of an H5N1 pandemic resulted in the generation and testing of H5-specific vaccines, 

which may require the use of an adjuvant or multiple doses to achieve a protective level of 

immunity following vaccination (3).  H5N1 viruses have continued to mutate in avian 

populations, and in clinical trials of unadjuvanted H5 vaccine, serological cross-reactivity to 

variant H5 viruses even within the same clade was only 20%-30% (4), although use of an 

adjuvant may improve this.  Since swine origin H1N1 began to circulate in humans in April 

2009, vaccine manufacturers have produced pandemic-specific vaccines, and the first 

doses became available in October 2009, 6 months after the virus was first identified.   

 

Clearly, a vaccine that could provide heterosubtypic protection against all influenza A 

viruses would be of great benefit, and if effective and widely used, could prevent another 

pandemic from occurring.  The efficacy of influenza vaccines designed to induce subtype 

cross-reactive T cells to internal influenza antigens such as nucleoprotein (NP), which is 

highly conserved between all influenza A subtypes, has been demonstrated in many 

species of animal model (5-8) and this approach has the potential to replace or 

supplement seasonal and pandemic-specific vaccination in humans.  Influenza challenge 

studies in humans with low neutralising antibody titres to the challenge virus (measured 

by HA inhibition assay) have demonstrated a negative correlation between T cell response 

to viral antigens and influenza disease and viral shedding (9).  Protection is thought to be 

mediated chiefly by CD8+ T cells, but protective immunity is short lived (10), although re-

exposure to influenza virus within a few years of the first infection may result in a 

subclinical infection and boosting of the T cell response.  Lee et al (11) reported that 

memory T cells recognising influenza antigens were detected in over 90% of those tested, 
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and showed cross-recognition of at least one H5N1 internal protein.  The magnitude of the 

responses varied considerably, and is presumably related to the time elapsed since the 

most recent exposure to influenza virus.  However, low-level memory T cell responses to 

influenza antigens have the potential to be boosted to protective levels, by further 

exposure to the virus or by vaccination.  Live attenuated influenza vaccines have been 

shown to induce modest T cell responses in children, but did not significantly boost T cell 

responses to influenza in adults with T cell responses induced by natural exposure (12). 

 

 

Modified vaccinia virus Ankara (MVA) is a highly attenuated virus that has been shown to 

boost T cell responses to recombinant antigens encoded by the virus in many clinical 

studies aimed at developing new vaccines for malaria, human immunodeficiency virus 

(HIV) and tuberculosis (TB).  MVA has an excellent safety profile, and has been tested in 

children (13), as well as HIV-positive (14) and latently TB-infected individuals (15).  MVA 

has been used to boost both CD4+ and CD8+ responses primed by prior DNA, fowlpox (16), 

adenovirus (17), or Bacille Calmette-Guerin immunisation (18) or HIV infection (14).  Since 

adults have been primed by prior exposure to influenza, MVA expressing conserved 

internal antigens of influenza such as NP and matrix protein 1 (M1) could be used to boost 

cross-reactive T cell responses, providing broad immunity to all subtypes of influenza A.  

An illustration of the conservation of the vaccine antigens is given in Table 1, showing the 

identity and divergence of the amino acid sequences of NP and M1 in the vaccine MVA-

NP+M1 and human isolates of H3N2, H1N1, H5N1 and swine origin H1N1.  The identity and 

divergence of HA are given for comparison. The high degree of identity with H3N2 is not 

surprising since the vaccine antigens are derived from the H3N2 virus A/Panama/2007/99, 

but both antigens are more than 90% identical with homologues from seasonal H1N1, 

swine origin H1N1 and H5N1 viruses, whereas identity drops as low as 43%  between the 

HA proteins of the same 4 viruses.  We now report on the safety and immunogenicity of  

MVA-NP+M1, a vaccine designed to boost pre-existing T cell responses to conserved 

influenza antigens, in a phase I clinical study in healthy adult volunteers. 
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Table 1. Sequence Identity (Top) and Divergence (Bottom) Between Antigens in MVA-

NP1M1 and Other Influenza A Viruses 

A : Nucleoprotein   

 Vaccine H3N2 H1N1 H5N1 SO H1N1 

Vaccine X 98.0 91.8 91.4 90.2 

H3N2 2.0 X 91.4 90.8 89.8 

H1N1 8.7 9.2 X 92.0 90.0 

H5N1 9.2 9.9 8.5 X 93.6 

SO H1N1 10.5 11.0 10.8 6.7 X 

 

B : Matrix Protein 1 

 Vaccine H3N2 H1N1 H5N1 SO H1N1 

Vaccine X 99.2 94.9 92.9 92.1 

H3N2 0.8 X 95.7 92.9 92.1 

H1N1 5.3 4.5 X 93.3 93.7 

H5N1 7.5 7.5 7.1 X 96.0 

SO H1N1 8.4 8.4 6.6 4.1 X 

 

C : Haemagglutinin 

 Vaccine H3N2 H1N1 H5N1 SO H1N1 

Vaccine X N/A N/A N/A N/A 

H3N2 N/A X 42.6 44.0 42.8 

H1N1 N/A 100.0 X 79.3 63.1 

H5N1 N/A 97.3 24.2 X 63.8 

SO H1N1 N/A 100.0 50.4 49.1 X 

 

NOTE. Calculated using DNAStar MegAlign 8.0 after Jotun Hein alignment. Percent identity 5 (Matches x 100)/Length of 

aligned region (with gaps); divergence is calculated by comparing sequence pairs in relation to the reconstructed 

phylogeny. Viruses are H3N2: A/Pennsylvania/PIT08/2008 (NP: CY035057, M1: CY035055, HA: CY035054), H1N1: 

A/Washington/AF06/2007 (NP: CY037330, M1: CY037328, HA: CY037327), H5N1:  A/Beijing/01/2003 (NP: EF587278, M1: 

EF587280, HA: EF587277), SO H1N1: A/Canada-NS/ RV1535/2009 (NP: FJ998216, M1: FJ998210, HA: FJ998207). 
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MATERIALS AND METHODS 

 

Sequence Alignments. Sequences were obtained from the National Centre for 

Biotechnology Information GenBank and aligned using Lasergene DNAStar 8.0 MegAlign, 

Jotun Hein method. 

 

Vaccine Design and Manufacture. The vaccine antigen expressed from MVA consists of the 

complete NP and M1 from A/Panama/2007/99 joined by a 7 amino acid linker sequence, 

and is expressed from the Vaccinia P7.5 promoter inserted at the thymidine kinase locus of 

MVA.  Generation of the recombinant virus and subsequent Good Manufacturing Practice 

(GMP) manufacture used primary chick embryo fibroblast (CEF) cells.  GMP manufacture 

and release testing of the vaccine were carried out by Impfstoffwerk (Dessau-Tornau, 

Germany). 

 

Study Population. Twenty-eight subjects were recruited for immunisation studies under a 

protocol approved by the United Kingdom’s Medicines and Healthcare products 

Regulatory Agency and Gene Therapy Advisory Committee and were enrolled only after 

obtaining written informed consent (www.clinicaltrials.gov, identifier: NCT00942071).  

Inclusion criteria required volunteers to be aged 18-50 years, resident in the Oxford area, 

and seronegative for HIV antibodies, hepatitis B surface antigen and hepatitis C antibodies.  

Women who were pregnant or lactating, and volunteers who had previously received an 

MVA (but not vaccinia) vaccine, or who had a history of egg allergy or anaphylaxis 

following vaccination, were excluded.  No information about prior seasonal influenza 

vaccination was recorded, but volunteers did not fall into the target population for 

vaccination within the UK and were unlikely to have received vaccination. 

 

Vaccination and Follow-up Regime. Following receipt of information about the study, 

volunteers attended a screening visit to assess their suitability for the study.  Each group 

was completed and vaccine safety assessed before enrolling the next group.  All eligible 

volunteers were enrolled into the next available group.  A single vaccination was 

administered at a subsequent visit, with the dose and route of vaccination varying 

http://www.clinicaltrials.gov/
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between the study groups.  Group 1 received 5 x 107 pfu intradermally (dose volume 385 

microlitres), group 2 received the same dose intramuscularly, and group 3 received 2.5 x 

108 pfu intramuscularly (dose volume 1920 microlitres).  Blood was drawn to assess the T 

cell response to NP and M1 on the day of vaccination and 1,3,8,12,24 and 52 weeks after 

vaccination.  Volunteers also attended a follow-up visit 2 days after vaccination; adverse 

events were elicited by open questions at that visit and all visits up to week 12 and were 

also recorded on a diary card by the volunteer for the first week after vaccination.  Mild 

events were defined as awareness of a symptom that was easily tolerated, moderate as 

discomfort enough to cause interference with usual activity, and severe as incapacitating, 

inability to perform usual activities, requiring absenteeism or bed rest.  Information about 

influenza-like illness was also recorded, with no volunteer reporting symptoms within the 

first 3 weeks following vaccination, and very few reports of coryzal illness at later time 

points.  Vaccinations were carried out from August to November 2008 (group 1), February 

to March 2009 (group 2) and March to May 2009 (group 3).  Circulating seasonal influenza 

A strains during this period were H3N2 – A/Brisbane/10/2007 and H1N1 – 

A/Brisbane/59/2007. 

 

Ex Vivo IFN-γ ELISPOT.  Ex vivo interferon-gamma enzyme-linked immunosorbent spot 

(IFN-γ ELISPOT) assays were performed using cryopreserved peripheral blood mononuclear 

cells (PBMCs).  PBMCs were cryopreserved in fetal calf serum (FCS) (Biosera Ltd) with 10% 

dimethyl sulfoxide (Sigma) at -80°C in a Mr Frosty container, then transferred and stored in 

liquid nitrogen.  PBMCs were thawed quickly in warm R10 (R10: RPMI 1640 with 10% FCS, 

100IU/ml penicillin, 0.1mg/ml streptomycin (all Sigma) and 2mM L-glutamine (GIBCO / 

Invitrogen), washed and re-suspended in R10 with 2µl/ml of 25U/ml Benzonase nuclease 

(Novagen) and left to rest overnight at 37°C.  The following day the cells were washed and 

counted for use in the assays.  The ex vivo IFN-γ ELISPOT was carried out as previously 

described (19).  Fifteen- to 20-mer peptides overlapping by 10 amino acid residues, 

spanning the whole of the NP+M1 insert, were used to stimulate PBMCs at a concentration 

of 10µg/ml.  The peptides were split into 8 pools of 10 peptides; pools 1-6 contained 

peptides from the NP sequence, and pools 6-8 contained peptides from the M1 sequence.  

Fifty microliters of PBMC’s (2 x 105 cells) and 50 µl of the peptides were added in 

triplicate.  R10 was used as a negative control, and phytohaemagluttinin (PHA) at a final 

concentration of 10µg/ml was used as a positive control.  Following an 18 to 20 hour 

incubation at 37°C, the ELISPOT plates were dried and read with an AID ELISPOT reader 
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(AID Diagnostika).  The results are expressed as spot-forming units (SFUs) per million 

PBMCs, calculated by subtracting the mean R10 negative control response from the mean 

peptide pool response.  To determine the ELISPOT response to the vaccine insert, the 

response to each peptide pool was summed following background subtraction.  Plates 

were excluded if a response of over 100 SFU/ million PBMCs was seen in the R10 wells or 

under 1000 SFU in the PHA wells. 

 

Intracellular Cytokine Staining. One to 2 million cryopreserved PBMCs were stimulated 

with a single pool of all NP+M1 peptides at a final concentration of 4 µg/ml and 1 µg/ml of 

co-stimulatory antibodies αCD28 and αCD49d (BD Pharmingen).  Cells were incubated for 

18 hours at 37°C.  After the first 2 hours of incubation, 10 µg/ml brefeldin A and monensin 

(eBiosciences) was added.  PBMCs were stained with: CD3 Alexa Fluor 700 (eBioscience-

UCHT1), CD8-APC-AF780 (eBioscience-RPAT8), CD4-QD655 (Invitrogen-S3.5), IFN-γ FITC 

(eBioscience-4S.B.3), CD14 Pacific Blue (Invitrogen-TuK4), CD19 Pacific Blue (Invitrogen-

SJ25-C1), and VIVIV Pacific Blue (Invitrogen).  Over 300,000 gated lymphocyte events were 

acquired on a Becton Dickinson LSRII flow cytometer using FACSDiva software (BD 

Biosciences) and analysed using Flow Jo, Version 8.3 (Tree Star Inc).  Unstained cells and 

single stained anti-human compensation beads (BD Biosciences) were used as controls to 

automatically calculate compensation.  All antibodies were titrated for optimal staining. 

 

Statistical Analysis. Fishers exact test was used to detect significant differences in adverse 

events between the 3 vaccine groups.  If such a difference existed, groups 1 and 2 were 

compared and the difference in proportions presented, and similarly for groups 2and 3.  

Non-parametric tests were used to determine differences in the ELISPOT data; Wilcoxon 

signed rank test was performed to test for differences in the ELISPOT responses between 

time points within a vaccine group, and Mann-Whitney U test was performed to detect 

differences in ELISPOT responses between different vaccine groups. 
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RESULTS 

 

MVA-NP+M1 is Safe in Healthy Volunteers. Volunteers were given a single dose 5 x 107 pfu 

intradermally (group 1, 12 subjects), 5 x 107 pfu intramuscularly (group 2, 8 subjects) or 2.5 

x 108 pfu intramuscularly (group 3, 8 subjects).  Adverse events are presented in Figure 1.  

Volunteers receiving the vaccine via the intramuscular route, at either dose, experienced 

significantly less erythema, itch, swelling and warmth at the injection site than those 

vaccinated intradermally, regardless of the vaccine dose.  All local adverse events were 

grade 1 severity apart from 1 volunteer in group 1 and 2 volunteers in group 2, who each 

experienced one grade 2 adverse event.  No significant differences in systemic adverse 

events were reported by the volunteers receiving the low-dose vaccine by either route (no 

grade 3 adverse events in either group), but there was a significant increase in malaise, 

nausea/vomiting and rigors in the group receiving the high-dose vaccination with 5 

volunteers experiencing 1 or more severe adverse events (Figure 1B). 

 

Figure 1. Local and systemic adverse events recorded after vaccination. Black: group 1 (n = 12). White: group 2 (n = 

8). Striped: group 3 (n = 8). (A) Local adverse events. Significantly less (P < .05, Fisher's exact test) erythema, itch, 

swelling, and warmth at the injection site were detected in those receiving intramuscular vaccine than those 

vaccinated intradermally, regardless of the vaccine dose. Significantly less scaling was recorded in the low-dose 

compared with the high-dose intramuscular group. (B) Systemic adverse events. No significant differences in systemic 

adverse events were reported by the volunteers receiving the low-dose vaccine by either route, but there was a 

significant increase in malaise, nausea/vomiting, and rigors in the group receiving the high dose (P < .05, Fisher's exact 

test). Severe adverse events only occurred in the high-dose group, with 2 volunteers reporting severe pain at the 

injection site, 1 reporting malaise, 1 vomiting, 2 rigors, and 1 sweating. All severe adverse events resolved within 

48 hours of vaccination, apart from 1 volunteer reporting severe pain at the injection site on the 3 days following 

vaccination. The majority of mild and moderate adverse events also took place within 48 hours of vaccination, 

although mild erythema at the injection site lasted for up to 49 days for those receiving intradermal  vaccination. 
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MVA-NP+M1 Vaccination Boosts IFN-γ Secreting Antigen-Specific Tcells.  

Ex vivo IFN-γ ELISPOT responses to the whole NP and M1 vaccine insert were measured in 

cryopreserved PBMCs at baseline (week 0) and at 1, 3, 8, 12, 26, and 52 weeks after 

immunization (Figure 2A-C).  All volunteers had measurable responses to NP and M1 prior 

to vaccination (median 123 SFU / million PBMC).  A significant increase in the number of 

SFUs detected following vaccination was seen in all 3 groups as measured by Wilcoxon 

signed rank test at weeks 1 and 3.  Responses were also significantly above pre-vaccination 

level at weeks 8 and 12 for group 1, and weeks 8, 12 and 24 for group 3.  The route of 

immunization did not appear to affect the magnitude of the immune response at low dose 

(no significant difference between groups 1 and 2) whereas the increase in dose from 5 x 

107 pfu (group 2) to 2.5 x 108 pfu (group 3) resulted in significant increase in immune 

response at weeks 1, 3, 8, 12 and 24.   

 

 

 

Figure 2. Ex vivo IFN-g ELISPOT responses to the vaccine insert. Median with individual ex vivo IFN-γ ELISPOT 

responses from vaccinated volunteers at baseline (week 0), and weeks 1, 3, 8, 12, 24, and 52 weeks after immunization. 

(A) group 1; (B) group 2; (C) group 3. Wilcoxon signed rank test was used to determine significant differences in the 

post- and prevaccination time points. (A) week 1, P = .0059; week 3, P = .0098; week 8, P =.0078; week 12, P = .0049. 

(B) week 1, P = .0313; week 3, P = .0313. (C) week 1, P = .0078; week 3, P = .0078; week 8, P = .0078; week 12, P = 

.0078;week 24, P = .023. Significant differences were detected between groups 2 (B) and 3 (C) at all postvaccination 

time points apart from week 52 (Mann- Whitney U test: week 1, P = .006; week 3, P = .04; week 8, P = .01; week 

12, P = .02; week 24, P = .012). 
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Vaccination Boosts Both CD4+ and CD8+ Antigen-Specific T cells. Intracellular cytokine 

staining (ICS) analysis was carried out to determine whether the IFN-γ detected in the ex 

vivo ELISPOT was produced by CD3+ CD4+ or CD3+ CD8+ T cells.  ICS was carried out at 

week 0, week 1 and week 8 on cryopreserved PBMCs from all volunteers in group 3.  The 

CD4+ and CD8+ T cell responses following background subtraction are shown in figure 3.  A 

significant increase in IFN-γ production from CD8+ T cells was detected following 

vaccination at week 1 and week 8.  The percentage of antigen-specific CD8+ cells 

producing IFN-γ was higher than the corresponding of CD4+ T cells both before and after 

vaccination.  Interlukin-2 and tumor necrosis factor alpha (IL-2 and TNF-α) production and 

CD107a expression were also analyzed in the CD4+ and CD8+ populations, revealing 

quadruple, triple, double and single functional cells in both populations (Figure 4).  

CD107a, a marker of degranulation and cytotoxicity, was present both with and without 

IFN-γ. 

 

  

Figure 3. CD3+CD4+ and CD3+CD8+ IFN-γ responses to vaccine insert as measured by intracellular cytokine staining. 

Intracellular IFN-γ responses after background subtraction in (A) CD3+CD8+ and (B) CD3+CD4+ cell populations 

stimulated with 1 pool of peptides spanning the complete NP+M1 vaccine insert. Volunteers in group 3 were tested at 

weeks 0, 1, and 8. Median % IFN-γ within CD3+CD8+ cells at week 1 = .4% and week 8 =.33%; median % IFN-γ cells 

within CD3+CD4+ population at week 1 = .098% and week 8 = .039% 
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Figure 4. IFN-γ, IL-2, TNF-α, and CD107a multifunctional cells detected by ICS in CD3+CD8+ and CD3+CD4+ 

populations. Mean percentage of quadruple (black), triple (dark gray), double (light gray), and single (white) 

functional cells detected within the CD8+ (A) and CD4+(B) populations. Within the CD8+ population, the most 

frequently detected triple positive cells were CD107a+IFN-γ+TNF-α+; the most frequently detected double 

positive cells were CD107a+TNF-α+; and CD107a+ cells were the most frequently detected single positive cells. Within 

the CD4+ cells, the most frequently detected triple positive cells were CD107a+IFN-γ+IL-2+; the most frequently 

detected double positive cells were IFN-γ+IL-2+; and TNF-α+ cells were the most frequently detected single positive 

cells. At all time points the frequency of antigen-specific cytokine positive cells was greater in the CD8+ population 

(week 0, CD8+ = 1.92% and CD4+ = .12%; week 1, CD8+ = 2.43% and CD4+ = .58%; week 8, CD8+ = 3.96% 

and CD4+ = 1.19%). 

 

DISCUSSION 

 

We report here the first clinical study of a novel influenza vaccine designed to boost cross-

reactive immune responses to all influenza A subtypes.  Many studies have reported 

intradermal vaccination with MVA, and the side effect profile seen with MVA-NP+M1 is 

comparable (20).  The same dose administered by the intramuscular route resulted in 

significantly fewer local, but not systemic, adverse events.  At the higher dose of 2.5 x 108 

pfu administered as an intramuscular injection, there was an increase in both the 

frequency and severity of systemic adverse events compared with the lower dose of 5 x 

107 pfu.  For further studies with this vaccine the dose will be reduced to 1.5 x 108 pfu.  The 

magnitude of the immune response to vaccination determined by ex vivo IFN-γ ELISPOT 

did not differ with the route of administration, but increased at the higher dose. 
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ICS analysis for IFN-γ production by CD3+ CD4+ and CD3+ CD8+ cells was also carried out in 

the high-dose intramuscular group and showed that more antigen-specific CD3+ CD8+ T 

cells than CD3+ CD4+ T cells were present after vaccination.  IL-2, TNF-α and CD107a were 

also produced by antigen-specific cells.  Further studies are required to determine which T 

cell phenotypes, whether lytic or cytokine producing, are capable of prevention of disease 

following exposure to influenza virus. 

A vaccine that boosts cross-reactive T cell responses to conserved internal antigens of 

influenza has the potential to modify or prevent disease and virus shedding in vaccinees, 

thus reducing morbidity and transmission whether the virus is one that continually 

circulates in humans or is a different subtype with the potential to cause a pandemic.  

Vaccines based on HA protein must be produced not only for each virus subtype, but for 

the continually evolving sequences within each subtype.  MVA-vectored vaccines can be 

produced at a large scale for human vaccination and are safe for use.  MVA-NP+M1 could 

be used alone, or in combination with an anti-HA antibody producing component, to 

provide broad protection against all influenza A viruses, thereby improving vaccine efficacy 

over that currently achieved, particularly in seasons when the circulating virus has drifted 

from the vaccine strain, and to provide protection when a global pandemic occurs, 

regardless of the virus subtype. 

Currently the magnitude of the T cell response to NP and M1 required to prevent influenza 

disease in humans is not known.  However, the magnitude of the induced T cell responses 

measured here are noteworthy.  A median response of 1443 SFU / million PBMCs at the 

peak time point substantially exceeds the T cell responses induced in any of the large 

numbers of phase I and II trials of potent vectored vaccines in HIV, malaria and cancer 

(21,22).  In the STEP trial of an adenovirus vectored vaccine against HIV-1, the geometric 

mean T cell response at peak was around 300 SFU / million PBMCs to the vaccine antigens.  

The much higher immunogenicity identified here likely results from the level of T cell 

response prior to vaccination attributable to natural influenza virus exposure, combined 

with the remarkable boosting ability of MVA-vectored vaccines.  A similar potent boosting 

of pre-existing T cell responses and induction of poly-functional T cell responses is 

observed with an MVA vector encoding a TB antigen (23).  In contrast, a trial of the cold-

adapted influenza virus vaccine, FluMist, found that although it could induce modest T cell 

responses in children, it did not significantly boost T cell responses in adults with T cell 

responses induced by natural exposure (12). 
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A further notable finding is the greater CD8+ than CD4+ T cell response after vaccination.  In 

the only other previous example of vaccine-induced T cell response exceeding 1000 SFU / 

million PBMCs to an antigenic insert, the response was predominately of CD4+ T cells (24).  

This reflects the proportions of CD4+ and CD8+ T cells detected prior to vaccination in each 

case and adds growing evidence that MVA vectors can boost both CD4+ and CD8+ T cells 

effectively in humans. 

Further planned studies will address the ability of this MVA vaccine to boost pre-existing T 

cell responses to the conserved influenza antigens NP and M1 in an extended age range, as 

well as the efficacy of the vaccine in preventing influenza disease and virus shedding via 

influenza virus challenge studies. 
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ABSTRACT 

Background.  Current influenza vaccines have reduced immunogenicity and are of 

uncertain efficacy in older adults.  We assessed the safety and immunogenicity of MVA-

NP+M1, a viral vectored influenza vaccine designed to boost memory T-cell responses, in a 

group of older adults. 

 

Methods.  Thirty volunteers (aged 50–85) received a single intramuscular injection of MVA-

NP+M1 at a dose of 1.5 x 108 plaque forming units (pfu). Safety and immunogenicity were 

assessed over a period of one year. The frequency of T cells specific for nucleoprotein (NP) 

and matrix protein 1 (M1) was determined by interferon-gamma (IFN-γ) ELISPOT, and their 

phenotypic and functional properties were characterized by polychromatic flow 

cytometry. In a subset of M1-specific CD8+ T cells, T cell receptor (TCR) gene expression 

was evaluated using an unbiased molecular approach. 

 

Results.  Vaccination with MVA-NP+M1 was well tolerated. ELISPOT responses were 

boosted significantly above baseline following vaccination. Increases were detected in 

both CD4+ and CD8+ T cell subsets. Clonality studies indicated that MVA- NP+M1 

expanded pre-existing memory CD8+ T cells, which displayed a predominant 

CD27+CD45RO+CD57-CCR7- phenotype both before and after vaccination. 
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Conclusions.  MVA-NP+M1 is safe and immunogenic in older adults. Unlike seasonal 

influenza vaccination, the immune responses generated by MVA-NP+M1 are similar 

between younger and older individuals. A T cell inducing vaccine such as MVA-NP+M1 may 

therefore provide a way to circumvent the immunosenescence that impairs routine 

influenza vaccination. 

 

 

INTRODUCTION 

 

Winter epidemics of influenza in the UK have caused 7,000– 25,000 deaths in the past 

decade (1999–2010) (1). In addition, influenza infection exerts pressure on healthcare 

systems and results in substantial economic losses. The burden of disease in developed 

countries disproportionately affects the elderly, with approximately 90% of influenza-

associated excess deaths occurring among people aged 65 years and older (2). Indeed, in 

those over the age of 75 years, 25–81% of all deaths in the UK in the last decade have 

been attributed to influenza virus infection (1).  Government-funded vaccination 

programmes for influenza exist in many countries and include elderly individuals in 

their target populations (3]) Unfortunately, the rates of seroprotection and 

seroconversion following vaccination are significantly lower in the elderly (4). A recent 

systematic review found vaccine efficacy was 59% in adults aged under 65 years, but no 

trials assessing protection from laboratory-confirmed influenza have been conducted in 

subjects aged over 65 years (5). 

In the elderly, immunosenescence can negatively impact the ability of the immune 

system to mount an effective immune response to new pathogens and vaccines. 

Characteristics of immunosenescence  include:  (i)  a  decrease  in  B  cell  function, which 

is thought to result from defective T cell help; (ii) thymic involution and an associated 

reduction in naive T cell output; (iii) expansion of selected memory T cell clones driven by 

persistent viral infections such as CMV (reported to affect up to 90% of elderly individuals) 

(6) and; (iv) increases  in  anergic  CD28  T cells and regulatory T cells (7). Accordingly,  

there  is  an  urgent need  for  an  effective  influenza  vaccine  targeted  to  the  

requirements of the ageing immune system.  

In addition to seasonal epidemics, influenza can cause pandemics, typically following a 

viral antigenic shift. Therefore, new vaccine candidates should ideally induce an element 
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of cross-strain (heterosubtypic) immunity (8). One approach is to generate high 

frequencies  of  CD8+  T cells  directed  against  conserved influenza antigens (9). Viral-

vectored vaccines elicit potent T cell responses and therefore represent a promising 

strategy in this regard. Modified vaccinia virus Ankara (MVA) is a highly attenuated 

strain of vaccinia virus in which viral replication is blocked at a late stage of virion 

assembly (10). Recombinant MVAs are therefore efficient single-round expression 

vectors, and have been used to prime or boost T cell responses to a diverse range of 

pathogen-specific and tumour-derived antigens. Previously, we have shown that a 

recombinant MVA expressing the nucleoprotein (NP) and matrix protein 1 (M1) 

sequences from a H3N2 strain of influenza A (termed MVA-NP+M1), was safe and 

immunogenic in young adults, significantly boosted T cell responses to NP and M1 [11] 

and has a protective effect against influenza challenge (12). Such an approach may help 

to circumvent the limitations of immunosenescence, by boosting pre-existing memory T 

cell responses rather than by attempting de novo priming from the na ı̈ve lymphocyte 

pool. We have now extended the Phase I trial into older adults, and demonstrate here 

that MVA-NP+M1 is safe and highly immunogenic in this population. 

 

METHODS 

Study Design. This was a Phase I open-label, non-randomized vaccine trial. The study 

was conducted at the Centre for Clinical Vaccinology and Tropical Medicine, University 

of Oxford, Oxford, UK. The clinical trial protocol and supporting CONSORT checklist are 

available as Supplementary Information; see Protocol S1 and Checklist S1. The trial 

protocol was approved within the UK by the Medicines and Healthcare products 

Regulatory Agency and the Gene Therapy Advisory Committee. The stated objectives of 

the trial were to assess the safety and the cellular immune response of a new influenza 

vaccine, MVA-NP+M1, when administered to healthy volunteers. The trial was registered 

at www.clinicaltrials. gov (identifier: NCT00942071). 

 

Participants. Thirty subjects were enrolled in three stratified age groups: 50– 59 years, 

60–69 years and 70+ years (10 volunteers per group). Younger volunteers from our 

previous two clinical trials were used for comparative purposes (11,12). All volunteers 

were healthy adults, resident in the Oxford area, with negative pre-vaccination tests for 
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HIV antibodies, hepatitis B surface antigen and hepatitis C antibodies (see Supplementary 

Information: Protocol S1 for the full list of inclusion and exclusion criteria). Written 

informed consent was obtained in all cases. The planned sample size was 10 in each age 

group. This sample size should allow determination of the magnitude of the outcome 

measures, especially of serious and severe adverse events, rather than aiming to obtain 

statistical significance. 

 

MVA-NP+M1 Vaccine. The vaccine was described previously and consists of MVA 

expressing the NP and M1 antigens from influenza A as a single fusion protein (11). 

 

Procedures. Volunteers were vaccinated on the day of enrolment with a single 

intramuscular injection of MVA-NP+M1 at a dose of 1.5 x 10
8 pfu into the deltoid region 

of the arm. Blood was taken prior to the vaccination (week 0), and volunteers were 

observed for a period of 1 hour following the vaccination. Volunteers were given a 

digital thermometer, tape measure and symptom diary card to record their daily 

temperature, injection site reactions and solicited adverse events for 7 days. Two days 

after vaccination, volunteers were reviewed in clinic and assessed for potential adverse 

events. Volunteers were reassessed and blood samples were taken at subsequent visits, 

which occurred at 1, 3, 8, 12, 24, and 52 weeks post-vaccination. 

 

Interferon-gamma ELISPOT. Ex vivo interferon-gamma enzyme-linked immunosorbent 

spot (IFN-γ ELISPOT) assays were performed using fresh peripheral blood mononuclear 

cells (PBMC) as described previously (13). Cells were washed and resuspended in RPMI 

1640 containing 10% fetal calf serum, 100 IU/ml penicillin, 100 mg/ml streptomycin (all 

Sigma), and 2 mM L-glutamine (Life Technologies) (R10 medium). Peptides of 15–20 

amino acids in length, overlapping by 10 amino acids and spanning the whole of the 

NP+M1 insert, were used to stimulate PBMC at a final concentration of 10 mg/ml in 8 

pools of 10 peptides. R10 medium alone was used as a negative control, and a mixture 

of phytohaemagglutinin (PHA; 10 mg/ml) and staphylococcal enterotoxin B (SEB; 1 

mg/ml) was used as a positive control. Each condition was assayed in triplicate using 2 x 

105 PBMC in a final volume of 100µl per well.  ELISPOT plates were incubated for 18-20 
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hours at 37°C.  Developed and dried ELISPOT plates were analysed with an AID ELISPOT 

reader (AID Diagnostika).  Results are expressed as spot-forming units (SFU) per million 

PBMC, calculated by subtracting the mean R10 negative control response from the mean 

peptide pool response and summing the net response for the 8 peptide pools.  Plates were 

excluded if responses were greater than 100 SFU / million PBMC in the R10 wells, or less 

than 1,000 SFU / million PBMC in the PHA/SEB wells. 

 

Intracellular Cytokine Staining. Intracellular cytokine staining (ICS) was performed using 

two different T cell staining panels at week 0, week 1 and week 3. The first panel detected 

Th1-type cytokine (IFN-γ, IL-2 and TNF-α) production and CD107a mobilization. The 

second panel detected CD107a mobilization, granzyme B expression, and the production 

of IL-10 and IL-17. Reagent details are provided in Table S1. 

Fresh PBMC (1–2  x 10
6

) were stimulated for 18 hours at 37°C with either a single pool 

comprising of all the NP+M1 peptides at a final concentration of 4 mg/ml, SEB (1 mg/ml) or 

medium alone. The costimulatory monoclonal antibodies (mAbs) αCD28 and αCD49d (1 

mg/ml each; BD Pharmingen) were added to panel 1, and αCD107a-PE-Cy5 (10 ml; 

eBioscience) was added to both panels. After 2 hours, brefeldin A and monensin (both 

eBioscience) were added. The cells were then washed, stained with the reagents listed in 

Table S1 according to standard procedures and acquired using an LSR II flow cytometer 

(BD Biosciences). Data were analysed using FlowJo version 9.4 (Tree Star, Inc.). 

Unstained cells and compensation beads  (BD Biosciences)  stained  singly  with  the 

individual mAbs in each panel were used as controls to calculate compensation. All mAbs 

were titrated for optimal staining. Between 13,000 and 700,000 live, CD14-CD19- 

lymphocyte events were collected and analysed per condition. 

 

TCR Clonotyping. Cryopreserved PBMC were thawed and labelled with PE- conjugated 

GILGFVFTL/HLA A*0201 tetramer as described previously (14), then washed and surface 

stained with the directly conjugated mAbs listed in Table S1. Dead cells were excluded 

using LIVE/DEAD© Fixable Violet (Life Technologies), together with CD14+  and CD19+  

events, in a single ‘‘dump’’ channel. Viable CD3+CD8+tetramer+ cells (918–5,000 per 

population) were sorted at 98% purity using a customized FACSAria II flow cytometer (BD 

Biosciences) and clonotypic analysis was conducted using a template-switch anchored RT-
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PCR as described previously (14,15).  The IMGT nomenclature was used to assign TRB 

gene usage (16). 

 

Statistical Analysis. Statistical analysis was carried out using GraphPad Prism software 

version 5.04. The non-parametric Mann-Whitney U-test was employed to test for 

significant differences between groups of volunteers, and the non-parametric Wilcoxon 

signed rank test was used to test for significant differences between time points within 

the same group of volunteers. 

 

RESULTS 

Thirty volunteers were enrolled between April 06, 2010 and November 30, 2011 (Figure 1 

and Table 1). 

 

 

Figure 1. CONSORT flow diagram of the trial. 
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Table 1. Demographic Chacteristics of Volunteers Vaccinated in Each Cohort 

 

Group Age Range 

(years) 

Mean Age 

(years) 

Females 

50-59 50-59 55.2 50% 

60-69 60-66 63.3 70% 

70+ 72-85 79.0 50% 

 

Vaccination was well tolerated and no serious vaccine-related clinical or laboratory adverse 

events were observed.  The frequency  of  local  and  systemic  adverse reactions is shown 

in Figure 2. All vaccine-related adverse events were either mild or moderate in severity. 

 

 

Figure 2. Frequency of local and systemic adverse events that were possibly, probably or definitely  

related  to  vaccination.  (A) Volunteers aged 50+ (n = 30). (B) Volunteers aged 18–45 (n = 15). For both 

age groups pain was the most frequently recorded local adverse event followed by erythema. A similar 

pattern of systemic adverse events was observed in both age groups with the majority of solicited 

adverse events occurring in 20–60% of individuals. For volunteers aged 18–45, 85% of adverse events 

were mild; for volunteers aged 50+, 87% of adverse events were mild. 
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Figure 3a shows the T cell responses to the NP+M1 vaccine insert as measured by IFN-γ 

ELISPOT. All assays were conducted on fresh PBMCs as soon as they became available. As 

expected, T cell responses to NP and M1 were detected prior to vaccination with a 

median response of 188 SFU/million PBMC. These responses increased to a median of 

1,603 SFU/million PBMC one week after vaccination, representing an 8.5-fold increase. 

When the data were stratified for age (group 1 = 50–59 years, group 2 = 60–69 years, 

group 3 = 70+ years), differences between the groups became apparent. In particular, T 

cell responses to NP and M1 remained significantly above baseline until week 52 for group 

1, week 12 for group 2 and week 3 for group 3 (Figure 3b). 

 

 

Figure 3. Ex vivo IFN-γ ELISpot responses to the vaccine insert. (A) Median and individual ex vivo IFN-γ 
ELISpot responses from vaccinated volunteers at baseline (week 0), and weeks 1, 3, 8, 12, 24, and 52. Significant 
differences between the pre- and post-vaccination time points were detected using the Wilcoxon signed rank test: 
week 1 (p = 0.0001), week 3 (p = 0.0001), week 8 (p = 0.0001), and week 12 (p = 0.001). (B) Median ex vivo IFN-γ 
ELISpot responses to the NP+M1 insert stratified according to age: black bars = group 1 (50–59 years), white bars = 
group 2 (60–69 years), and grey bars = group 3 (70+ years). Error bars indicate interquartile ranges. Significant 
differences between the pre- and post-vaccination time points were detected using the Wilcoxon signed rank 
test as follows. Group 1: week 1 (p = 0.002), week 3 (p = 0.002), week 8 (p = 0.002), week 12(p = 0.039), week 24 (p = 
0.002), and week 52 (p = 0.0039). Group 2: week 1 (p = 0.002), week 3 (p = 0.002), week 8 (p = 0.002), and week 
12 (p = 0.0371). Group 3: week 1 (p = 0.0039) and week 3 (p = 0.0195). Significant differences were also detected 
between groups using the Mann- Whitney U-test, with responses in group 1 being higher than those in group 3 at 
week 3 (p = 0.043) and week 8 (p = 0.023). (C) Median and individual ex vivo IFN-γ ELISpot responses at week 1 and 
week 3 stratified according to age, and including a vaccinated cohort of younger (18–45 years) volunteers. 
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We previously vaccinated 15 healthy volunteers aged 18–45 years with MVA-NP+M1 

using the same dose (1.5  x 108 pfu) and route of administration  (12). No significant  

differences  in the ELISpot responses were detected between the younger volunteers (18–

45 years) and the older volunteers (50+ years) either before or after vaccination (Figure 

3c), although there was a trend towards higher responses in groups 1 and 2, and lower 

responses in group 3. 

Flow cytometry was used to determine antigen-specific cytokine production   (IFN-γ,   TNF-

α,   IL-2,   IL-10   and   IL-17),   T   cell degranulation (CD107a mobilization) and granzyme B 

expression. MVA-NP+M1 was shown to boost both CD4+ and CD8+ T cell responses, and  

significant  increases  in  IFN-γ, IL-2  and TNF-α production were observed in both 

populations at week 1 and week 3 post-vaccination (Figure 4). A significant increase in 

CD107a mobilization was only detected for CD8+   T cells at week 3 (p=0.004). 

 

Figure 4. IFN-γ, IL-2, TNF and CD107a responses to the vaccine insert measured by flow cytometry. 
Production of IFN-γ (A), IL-2 (B) and TNF (C), and mobilization of CD107a (D), after background subtraction in 
CD3+CD4+ (black circles) and CD3+CD8+ (white circles) cell populations stimulated with a single pool of 
peptides spanning the complete NP+M1 vaccine insert. Volunteers in group 3 were tested at weeks 0, 1, and 
3. Significant differences between pre- and post-vaccination time points were detected using the Wilcoxon 
signed rank test as follows: IFN-γ CD4+, week 1 (p = 0.0001) and week 3 (p = 0.0001); IFN-γ CD8+, week 1 (p = 
0.001) and week 3 (p = 0.0005); IL-2 CD4+, week 1 (p = 0.001) and week 3(p = 0.0001); IL-2 CD8+, week 1 (p = 0.006) 
and week 3 (p = 0.03); TNF CD4+, week 1 (p = 0.002) and week 3 (p = 0.0003); TNF CD8+, week 1 (p = 0.0003) and week 3 
(p = .?002); CD107a CD8+, week 3 (p = 0.004) 
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No increase in the antigen-specific production of IL-10, IL-17 or granzyme B were detected 

in either the CD4+ or CD8+ T cell populations following vaccination (data not shown). 

However, as reported previously (17) the production of granzyme B from unstimulated 

CD8+ T cells was significantly elevated at week 1 in the oldest age group (median = 57.8% 

of CD8+ T cells) compared to group 1 (median = 27.1%,  p = 0.002)  and  group  2  (medi- 

an = 29.3%, p = 0.0115). Non-specific granzyme B production by CD8+ T cells was also 

significantly elevated in group 3 compared to  group  1  at  week  3  (group  3 = 45,9%,  

group  1 = 25.2%, p = 0.0113). 

Figure 5 shows the frequency of polyfunctional CD4+ and CD8+ T cells detected by flow 

cytometry using panel 1. The percentage of T cells with quadruple, triple and double 

functional outputs detected in the CD4+ and CD8+ populations increased significantly at 

week 1 and week 3 post-vaccination in group 1 (50–59 years). However, in groups 2 and 

3, only the triple and double functional cells in the CD4+ T cell population increased at 

the same time points. In group 3, a significant increase in quadruple and triple 

functional cells in the CD8+ T cell population was detected at week 3 post-vaccination. 

The respective P values for these comparisons (Wilcoxon signed rank test) are shown in 

Table S2. 

 

Figure 5. Functional profile of T cell responses to the vaccine insert measured by flow  cytometry.  

Mobilization  of  CD107a  and production of IFN-c, IL-2 and TNF after background subtraction in CD3+CD4+ (A) and 

CD3+CD8+ (B) cell populations stimulated with a single pool of peptides spanning the complete NP+M1 vaccine 

insert. Median percentages of quadruple (black), triple (dark grey), double (light grey) and single (white) functional 

cells are shown. 
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In further analyses, we examined the clonotypic composition of CD8+ T cells specific for 

the HLA A*0201-restricted GILGFVFTL epitope (M1, residues 58–66) using a template- 

switch anchored RT-PCR to amplify all expressed TRB gene products. A profound type IV 

bias was observed in these antigen- specific CD8+ T cell populations, comprising strict 

TRBV19 usage combined with a central XRSX motif in the CDR3 loop (Figure 6) (18), 

consistent with previous reports (19,20). To determine the origins of these MVA-NP+M1 

vaccine-expanded clonotypes, we conducted similar studies in a separate cohort of 

volunteers. These volunteers were aged 20–50 and had been vaccinated with either 5 x 

10
7 pfu intradermally or 2.5 x 10

8 pfu intramuscularly (11). Paired samples from day 0 

(pre-vaccination) and day 7 (post- vaccination) were available for three volunteers. In all 

cases, the dominant clonotypes were identical at both time points, indicating the 

expansion of pre-existing M1-specific memory CD8+ T cells (Figure 7). However, the post-

vaccination repertoires were more polyclonal due to the presence of less frequent 

clonotypes in greater numbers. This could reflect either de novo recruitment from the 

na ı̈ve pool or the expansion of clonotypes from the memory pool with pre-vaccination 

frequencies below the limit of detection.  Notably, all sorted M1-specific CD8+ T cell 

populations displayed a predominant CD27+CD45RO+CD57-CCR7- memory phe- 

notype (Figure 6 and data not shown). This phenotypic homogeneity is consistent  

with the  functional  homogeneity observed within the CD8+ compartment before and 

after vaccination. 
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Figure 6. Phenotypic  and  clonotypic  properties  of  M1-specific  CD8+  T  cells  elicited  by  MVA-NP+M1.  (A)  

Phenotype  of  vaccine-elicited CD8+ T cells specific for the HLA A*0201-restricted M1-derived epitope GILGFVFTL 

(residues 58–66). Antigen-specific CD3+CD8+tetramer+ cells are shown as coloured dots superimposed on bivariate 

plots showing the phenotypic distribution of the total CD8+ T cell population (grey density plots). Response sizes 

were 1.48% (left panels) and 0.75% (right panels) with respect to the total CD8+ T cell population. (B) TRBV and TRBJ 

usage, CDR3 amino acid sequence and relative frequency of the GILGFVFTL-specific CD8+ T cell clonotypes 
contained within the antigen-specific populations depicted in (A). Public clonotypes within the present dataset are 
colour-coded. Representative analyses are shown for volunteers in group 3 (70+ years). 
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Figure  7.  Patterns  of  clonotype  usage  in  M1-specific  CD8+  T  cell  populations  before  and  after  
vaccination  with  MVA-NP+M1.  TRBV and TRBJ usage, CDR3 amino acid sequence and relative frequency are 
shown for GILGFVFTL-specific CD8+ T cell clonotypes on day 0 (pre- vaccination) and day 7 (post-vaccination). 
Public clonotypes within the present dataset are colour-coded. Non-public clonotypes present at both time points within 
an individual are highlighted in bold type. 
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DISCUSSION 

Here, we report the ability of MVA-NP+M1 to boost influenza- specific T cell responses in 

older adults. Recombinant MVA vaccines are establishing a good reputation for safety, 

although the majority of these data relate to younger individuals aged between 18–45 

years. Our results with MVA-NP+M1 add to the experience from cancer trials with MVA-

5T4 that recombinant MVA is safe in older adults (21). Indeed, no severe or serious 

adverse reactions were detected in our volunteers. 

We also report that MVA-NP+M1 is highly immunogenic in volunteers over the age of 50 

years. In one quantitative review (4) of trivalent inactivated influenza vaccines, rates of 

seroprotection and seroconversion among those over 60 years old were four times lower 

for H1 and B antigens, and twice as low for H3 antigens. In addition, although not powered 

to detect declining efficacy with age, an age stratification suggested a far lower efficacy 

rate for those over 70 years (4). Indeed, other studies have suggested that vaccine efficacy 

appears to be as low as 30–40% in this age group (22). On an individual level, declines in 

immunological function are unlikely to occur in a linear fashion (chronological age being 

only a surrogate indicator of biological age) (23). However, on a population level, declines 

in vaccine responsiveness are likely to be observed as average age increases. Indeed, in the 

oldest age group (70+ years), we observed a reduction in immunogenicity as detected by 

ex vivo IFN-γ ELISpot compared to the youngest age group (50–59 years), with significantly 

lower responses at 3 and 8 weeks post-vaccination. However, when the 3 age groups were 

compared to a younger cohort of volunteers (18–45 years) who received the same dose of 

the MVA-NP+M1 vaccine, no significant differences were detected. 

The functional characteristics of the cellular responses produced by vaccination are 

potentially as important as magnitude (24). Subsets of CD4+ and CD8+ T-cells following 

vaccination with MVA-NP+M1 are capable of secreting both TNF and IL-2, in addition to 

IFN-γ. Increases in the number of such polyfunctional T-cells have been associated with 

protective immunity in some models of infection (25).  We show here that MVA-NP+M1 

vaccination can also induce polyfunctional CD4+ and CD8+ responses in older adults, as 

determined by flow cytometric assessment of CD107a mobilization and the production of 

IFN-γ TNF-α and IL-2. 

MVA-NP+M1 is designed to expand T cells that are already present in the memory pool 

rather than prime na ı̈ve T cells de novo.  Direct evidence for this mode of action comes 

from our comparison herein of M1-specific TCR sequences before and after vaccination. 
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This provides a biological rationale for the use of MVA-NP+M1 in elderly individuals due 

to the impairment of thymic output with age. The absolute number of NP- and M1- 

specific T cells required for host defence against influenza is not known. However, the 

median ex vivo IFN-γ ELISPOT response observed in the older volunteers peaked one 

week after vaccination at 1,603 SFU/million PBMC, which represents an 8.5-fold increase 

compared to the pre-vaccination response. 

No vaccine-induced expression of granzyme B, IL-10 or IL-17 was detected in our cohort 

of older volunteers. However, we did detect significantly higher non-specific levels of 

granzyme B expression in group 3 (70+ years) compared to group 1 (50–59 years) at  

weeks  1 and  3  post-vaccination. It  has been  shown previously that baseline granzyme 

B expression in CD8+ T cells is higher in ageing volunteers and that these cells are 

associated with a decreased ability to respond to stimulation with whole influenza virus 

(17). Degranulation and extracellular release of granzyme B can also cause inflammation 

and extracellular granzyme B has been implicated in increasing the risk of serious 

illness in the elderly, including the risk of influenza induced cardiovascular 

complications [26,27]. 

A high IFN-γ : IL-10 ratio may be associated with protection from influenza (28). The 

median frequency of NP- and M1- specific T cells that secreted IL-10 was low (below 

0.006%) and did not increase after vaccination, whereas there was a significant increase in 

the number IFN-γ-secreting T cells following vaccination. 

The memory phenotype of vaccine-induced CD8+ T cell populations, at least for a 

subset of M1-specific cells, was remarkably similar to that observed pre-vaccination. 

Indeed, a marginal decrease in CD27 expression consistent with progressive differentiation 

post-vaccination was the only detectable change between the time points studied within 

individual volunteers (data not shown). Thus, minimal differentiation-associated 

functional variations would be expected. Interestingly, despite vaccine- mediated 

expansion of pre-existing memory clonotypes, the observed CD27+CD45RO+CD57-CCR7-    

phenotype   indicates a lack of terminal differentiation and senescence (29). This is 

encouraging from the perspective that durable T cell immunity may be feasible using 

this approach of boosting existing T cell memory with an MVA-vectored vaccine. 

MVA-vectored vaccines have the advantage that they can be produced on the large 

scale required for widespread human vaccination. The low level of polymorphism in NP 
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and M1 across influenza A strains means that a vaccine such as MVA-NP+M1 could 

provide T cell mediated protection against all influenza A subtypes. 

In summary, we have shown that the novel influenza vaccine candidate MVA-NP+M1 is 

safe and highly immunogenic in adults over 50 years old.  Both CD4+ and CD8+ memory T 

cell responses are boosted, and have the capacity to secrete multiple cytokines.  Indeed, 

despite the apparent reduction in immune responsiveness observed in the oldest 

volunteers in this study, there was still a significant induction of IFN-γ secreting cells and a 

significant increase in the proportion of CD4+ and CD8+ T cells capable of triple cytokine 

production after vaccination.  These enhanced T cell responses could provide 

heterosubtypic T cell based immunity against influenza in the elderly. 
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8.3  Paper 3 - Preliminary Assessment of the Efficacy of a T-Cell-

Based Influenza Vaccine, MVA-NP+M1 in Humans 
Patrick J. Lillie, Tamara K. Berthoud, Timothy J. Powell, Teresa Lambe, Caitlin Mullarkey, Alexandra J. 

Spencer, Matthew Hamill, Yanchun Peng, Marie-Eve Blais, Christopher J. A. Duncan, Susanne H. Sheehy, 

Tom Havelock, Saul N. Faust, Rob Lambkin Williams, Anthony Gilbert, John Oxford, Tao Dong, Adrian V. S. 

Hill, Sarah C. Gilbert 

 

Background.  The novel influenza vaccine MVA-NP+M1 is designed to boost cross-

reactive T-cell responses to internal antigens of the influenza A virus that are 

conserved across all subtypes, providing protection against both influenza disease 

and virus shedding against all influenza A viruses. Following a phase 1 clinical study 

that demonstrated vaccine safety and immunogenicity, a phase 2a vaccination and 

influenza challenge study has been conducted in healthy adult volunteers. 

 

Methods. Volunteers with no measurable serum antibodies to influenza 

A/Wisconsin/67/2005 received either a single vaccination with MVA-NP+M1 or no 

vaccination. T-cell responses to the vaccine antigens were measured at enrollment 

and again prior to virus challenge. All volunteers underwent intranasal administration of 

influenza A/Wisconsin/67/2005 while in a quarantine unit and were monitored for 

symptoms of influenza disease and virus shedding. 

 

Results. Volunteers had a significantly increased T-cell response to the vaccine antigens 

following a single dose of the vaccine, with an increase in cytolytic effector molecules. 

Intranasal influenza challenge was undertaken without safety issues. Two of 11 

vaccinees and 5 of 11 control subjects developed laboratory-confirmed influenza 

(symptoms plus virus shedding). Symptoms of influenza were less pronounced in 

the vaccinees and there was a significant reduction in the number of days of virus 

shedding in those vaccinees who developed influenza (mean, 1.09 days in controls, 

0.45 days in vaccinees, P = .036). 

Conclusions. This study provides the first demonstration of clinical efficacy of a T-cell–

based influenza vaccine and indicates that further clinical development should be 

undertaken. 
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A recent meta-analysis of influenza vaccine efficacy and effectiveness (1) concluded 

that protection against virologically confirmed influenza is at best moderate, and in 

some seasons is greatly reduced or completely absent. Even in the most favorable 

situation when the vaccine is exceptionally well matched to the circulating virus, as 

was the case for pandemic H1N1 vaccines, median effectiveness in adults <65 years 

was 69%. The size of the influenza vaccine market was US$2.8 billion in 2008–2009 in 

7 major markets (United States, Japan, France, Germany, Italy, Spain, and United 

Kingdom) (2). An increasingly greater proportion of the population is vaccinated, 

with vaccination for all individuals aged >6 months recommended in some countries, 

but vaccines with considerably improved and more consistent effectiveness are 

required in order to bring about a greater reduction in influenza-related morbidity 

and mortality. 

Trivalent inactivated vaccines are used as influenza vaccines in most circumstances, 

with live attenuated influenza vaccines sometimes used in children. Although 

cytotoxic T-cell–mediated immunity against influenza is an important component of 

naturally acquired immunity(3,4), the trivalent inactivated vaccine does not 

stimulate this response, and live attenuated influenza vaccine has been found to 

prime a T-cell–mediated response in young children but not to boost it in adults 

who have already acquired T-cell responses to influenza antigens following natural 

exposure to the virus(5). Because the main targets of T-cell recognition are internal 

antigens of the influenza virus that are well conserved between influenza A virus 

subtypes, ( 6 ) T-cell–mediated immunity should provide much broader protection 

than antibodies specific for the highly polymorphic external glycoproteins of the virus. 

We have previously reported on the use of a novel influenza vaccine, to boost these 

cross-reactive T-cell responses in adult volunteers, in a phase I study that 

demonstrated the safety and immunogenicity of the vaccine (7 ) . MVA-NP+M1 is a 

modified vaccinia virus Ankara (MVA) vector (replication-deficient) expressing the 

conserved internal influenza antigens nucleoprotein (NP) and matrix protein 1 (M1).  

T-cell responses to these antigens are known to be induced by influenza infection 

( 6 ) . We now describe a phase 2a vaccination and influenza challenge study, the 

first study to test the efficacy of an influenza vaccine designed to boost T-cell 

responses without inducing antihemagglutinin antibodies. The study confirmed 

vaccine safety and immunogenicity and provides preliminary evidence of vaccine 
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efficacy, with a 60% reduction of laboratory-confirmed influenza in vaccinated 

subjects. 

 

MATERIALS AND METHODS 

Vaccine Design and Manufacture. MVA-NP+M1 design and manufacture are described in 

(7). 

 

Study Population. Volunteers were recruited and enrolled following written informed 

consent under a protocol approved by the UK Medicines and Healthcare Products 

Regulatory Agency and the Oxfordshire NHS Research Ethics Committee. Recruitment 

took place at the Centre for Clinical Vaccinology and Tropical Medicine, Oxford and 

the Welcome Trust Clinical Research Facility, Southampton. Volunteers were aged 

18–45 years and were initially screened by haemagglutination inhibition (HI) assay 

against the virus to be used in the challenge phase of the study to ensure 

susceptibility to challenge. Those with a titre ≤1:10 were eligible for further 

screening. Enrolled volunteers were seronegative for human immunodeficiency 

virus (HIV), hepatitis B virus, and hepatitis C virus and had not received seasonal 

influenza vaccination for at least 1 year prior to enrollment. Results of routine 

hematological and biochemical tests on enrolled volunteers were all within normal 

limits. 

 

Vaccination and Follow-up Regimen. Following receipt of study information, volunteers 

attended a screening visit to assess their suitability for the study. Two volunteers 

were screened, vaccinated, and underwent influenza challenge ahead of the main 

cohort. Subsequent eligible volunteers were enrolled first into the vaccination group 

and subsequently into the control challenge group. The volunteers taking part in 

the main efficacy cohort were screened for enrollment between 3 August 2009 and 9 

September 2009. Influenza transmission rates during this period were low in the 

areas in which volunteers were recruited, and no volunteer had experienced an 

influenza-like illness prior to screening. Vaccinated volunteers received a single 

intramuscular injection of 1.5 × 108 plaque-forming units (PFUs) of MVA-NP+M1 (dose 

volume, 1154 μL) 28 days prior to entry to the quarantine unit. Volunteers were 
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reviewed on day 2 after vaccination to assess adverse events and on day 21 for 

exploratory immunology blood sampling. 

Ex Vivo Interferon γ Enzyme-Linked Immunosorbent Spot Assay. The ex vivo interferon γ (IFN-

γ) enzyme-linked immunosorbent spot assay (ELISpot) was performed as previously 

described [7]. Fifteen- to 20-mer peptides overlapping by 10 amino  acid  residues,  

spanning  the  whole  of  the  NP + M1 insert in pools of 10 peptides, were used to 

stimulate peripheral blood mononuclear cells (PBMCs) at a concentration of 10 

μg/mL.  Fifty  microliters  of  PBMCs  (2 × 105 cells)  and 50 μL of the peptides was 

tested in triplicate. R10 was used as a negative control, and phytohemagglutinin at a 

final concentration of 10 μg/mL was used as a positive control. Following an 18–20-

hour incubation at 37°C, the ELISpot plates were developed, dried, and read with 

an AID ELISpot reader (AID Diagnostika). The results are expressed as spot-forming 

units (SFUs) per million PBMCs after background subtraction. 

Flow cytometry, quarantine, and challenge procedures are described in the 

Supplementary Data. 

 

RESULTS 

Vaccine Safety and Immunogenicity. A total of 15 volunteers (11 for the main study, 2 for 

a pilot challenge study, and 2  volunteers  who were vaccinated  but then excluded 

from the influenza challenge for either increase in HI titre to the challenge virus or 

evidence of recent mild respiratory tract infection) were administered 1.5 × 108 PFU 

MVA-NP+M1 intramuscularly. The study timeline is shown in Supplementary Figure 1A. 

Supplementary Figure 1B shows the numbers of volunteers recruited for the 

vaccine and control groups, with demographic information given in Supplementary 

Table 1. The safety profile was comparable to other MVA- vectored vaccines, with 

the majority of adverse events being mild in severity. No severe systemic adverse events 

were reported. 

T-cell responses to the influenza antigens NP and M1 were measured in all 

volunteers at screening and again on day of vaccination and 21 days later in the 

vaccinees and in all volunteers on the day prior to challenge, as well as 8 occasions 

after influenza challenge (Figure 1). As previously observed ( 7 ) , there was a clearly 

detectable response in all volunteers at the time of screening, with a median 
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response of 258 SFUs per million PBMCs in the group who went on to receive the 

vaccine and 300 SFUs per million PBMCs in the controls. The level of response was 

stable prior to vaccination, significantly boosted to 980 SFUs per million PBMCs 21 

days after vaccination (P < .001 vs day 0) and then declined to 627 SFUs per million 

PBMCs 8 days later (the day prior to influenza challenge, P < .05 vs day 0). The 

response in the control group remained stable prior to influenza challenge, with a 

median of 215 SFUs per million PBMCs measured on the day prior to influenza 

challenge (day 29). Although there was no significant difference in the responses 

between the 2 groups at screening, responses to NP and M1 at day 29 were 

significantly higher in the vaccinees compared to controls (P < .05) (Figure 1). 

The response to all influenza antigens in addition to those included in the vaccine 

was also measured on day 29 using overlapping peptides for each  antigen  

(Supplementary Figure 2). The only statistically significant difference between 

responses in vaccinees and controls was the magnitude of the response to the 

vaccine antigens, with the response to NP predominating in most vaccinees. 

 

 

Figure  1.  Ex  vivo  interferon  γ  enzyme-linked  

immunosorbent  spot assay responses to 

nucleoprotein (NP) and matrix protein 1  (M1).  

The graph represents the summed response to 

NP and M1 antigens in vaccinees (circles) and 

controls (squares) at the relevant time points; 

lines represent the median per group and open  

symbols  represent  subjects who developed 

laboratory-confirmed influenza. Control subjects 

were not assayed at day 0 or day 21. 

Vaccination took place on day 0 and influenza 

challenge on day 30. Data were analyzed with 

a Kruskal-Wallis 1-way analysis of variance with 

selected pairs of data analyzed with a Dunn 

positive test. No significant difference between 

the median response in the vaccinated and 

control group was observed at time of 

screening (day 0 for vaccinees, day 29  for  

controls).  A significant increase in the response 

was observed in vaccinees between days 0 

and 21 and days 0 and 29 (P < .001, P < .05, 

respectively). A significant difference between 

vaccinees and controls was observed at day 29 (P 

< .05). Abbreviations: PBMC, peripheral blood 

mononuclear cell; SFU, spot-forming units 



90 | P a g e  
 
 

 

T-Cell Phenotype of the Immunodominant Response to M158–66 in Vaccinated and Control 

Volunteers.  Six of the vaccinees and 7 of the controls were positive for human 

leukocyte antigen A*0201 and therefore likely to have pre-existing T-cell responses to 

the known A2-restricted immunodominant epitope M158–66. A tetramer for this 

epitope was used to measure phenotypic markers in PBMCs from these 

volunteers. A significant difference between vaccinated and control donors on the 

day prior to influenza challenge was observed in the expression of the cytotoxic 

markers perforin (D48 epitope (8) and granzyme A (Figure 2), indicating that the 

antigen-specific CD8+ T cells in the vaccinees were more highly activated than T cells 

from the control donors. 
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Influenza Challenge Outcome. The safety of the influenza challenge protocol in healthy 

volunteers is well established, but as this was the first study to our knowledge in 

which T-cell responses to influenza antigens were boosted by vaccination prior to 

influenza challenge of human volunteers by intranasal administration, we conducted 

a pilot safety study of 2 vaccinated volunteers to make an initial assessment of 

the safety of the protocol prior to the main study. These 2 volunteers underwent 

the same screening, vaccination, quarantine, and challenge protocol as for the main 

study, including twice-daily symptom questionnaires and once-daily physician-

directed examination to assess their response to influenza challenge following MVA-

NP+M1 vaccination. The majority of symptoms recorded were mild, with some 

Figure 2. Responses to M158–66 in human 
leukocyte antigen A2–positive volunteers. 
Whole blood drawn  1  day  prior  to  virus  
challenge  was labeled for tetramer 
(A*0201/GILGFVFTL) followed by perforin or 
granzyme A staining. Values shown are the 
percentage  of  CD8+  T  cells  or  Tet+ cells; 
individuals are shown as a single point 
with lines representing the median per 
group. Open symbols represent samples 
from volunteers who subsequently 
developed laboratory-confirmed influenza.  
For each marker the data were analyzed 
with an unpaired t test; P values are 
shown for statistically significant differences  
between  vaccinees  and  controls. 

 



92 | P a g e  
 
 

evidence of upper respiratory tract infection. Rhinorrhea was the commonest 

symptom, but no cough or other symptoms of lower respiratory tract infection or 

severe illness were observed. Following safety review, permission was granted to 

proceed with influenza challenge for the main study of 11 vaccinees and 11 control 

subjects. 

The primary outcome of the challenge study was the number of subjects in each 

group diagnosed with laboratory-confirmed influenza, defined as mild  or  

moderate/severe  symptoms  of influenza infection plus laboratory detection of 

influenza virus in any of the daily nasal washes conducted following influenza 

challenge (Table 1). In total, 2 vaccinees and 5 controls developed laboratory-

confirmed influenza. Of these, 1 vaccinee and 4 controls experienced moderate to 

severe symptoms in addition to virus shedding. Comparing the vaccinated and 

control groups as a whole, symptoms were fewer in vaccinees at all time points 

following influenza challenge (Figure 3A), with symptoms peaking on the second and 

third days. Vaccinees as a group experienced a significant reduction in the number 

of days of virus shedding in the presence of laboratory-confirmed influenza (5 of 55 

days in vaccinees and 12 of 55 days in controls; P = .036). 
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Laboratory-confirmed influenza is defined as mild or moderate to severe symptoms of influenza infection plus 

shedding of influenza virus on at least 1 day after challenge. Standardized nasal washes and virus assays were 

performed each day for 5 days on each subject, with no missing data points, but only positive results are 

shown in the table. The severity of the symptoms is defined by the symptom + examination score, with mild 

flu having a score of 4–28, moderate to severe is ≥29. HI titers were all <10 at screening and on entry to the 

quarantine unit. The figures given above are HI titers at study day 66 (26 days after influenza challenge) with 

the exception of volunteer 093 (study day 120, 90 days after influenza challenge). 

Abbreviations: HI, hemagglutination titer; TCID50, median tissue culture infective dose 
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Investigation of Immune Responses Associated With Protective Outcome. T cell responses to all 

influenza antigens in PBMCs on the day prior to influenza challenge by IFN-γ ELISpot 

assay were measured (Supplementary Figure 2). Following influenza challenge, there 

was no correlation between the total symptom score for each subject and the T-

cell response to the vaccine antigens NP and M1, to all internal antigens (NP, M1, 

M2, NS1, NS2, PB1, PB2, PA) or to all influenza antigens (internal plus HA, NA) on the 

day prior to challenge. ELISpot assays were repeated on days 1, 2, 3, 4, and 7 after 

challenge (study days 31–37), measuring responses to NP and M1 only. There were 

Figure 3. Total of symptom scores at  each  

time  point  following  challenge (A) or total 

grade 2 and 3 symptom and examination 

scores (B ) for vaccinees (circles) and controls 

(squares), with the group mean indicated by 

a line. Open symbols denote subjects who 

developed laboratory- confirmed influenza 

after challenge. 
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minor fluctuations in the number of PBMCs secreting IFN-γ in response to NP and 

M1 between days 29 and 34, with a pronounced increase on day 37 in those 

volunteers who developed laboratory-confirmed influenza (Figure 1). There was a 

significant positive correlation (P = .0008) between the total symptom score for each 

volunteer and the fold increase in ELISpot response from day 29 to day 37 

(Supplementary Figure 3) when both control subjects and vaccinees are assessed. 

Blood samples were also taken for ELISpot assay at follow-up visits on days 66, 120, 

and 210. The median response to NP and M1 declined between day 37 and day 66, 

marginally increased at day 120 (not significant) and decreased at day 210 in both 

vaccinated and control groups (Figure 1). 

 

HI Titres After Challenge. HI titres to the challenge virus were repeated 36 days following 

influenza challenge (Table 1). There was no correlation between symptoms and virus 

shedding and rise in HI titre. 

 

DISCUSSION 
 

In this phase 2a study, we have demonstrated the safety of MVA-NP+M1 at a dose 

of 1.5 × 108 PFU given as a single intramuscular injection. The majority of adverse 

events were mild in severity, with no serious systemic adverse events and no rigors 

experienced by any of the 15 subjects who were vaccinated, indicating a satisfactory 

safety profile at this dose. This dose is now being tested in an additional phase I 

study of subjects aged >50 years. 

In the phase I study, the T-cell response was measured by ex vivo IFN-γ ELISpot 

assay at the peak of response 7 days after vaccination, and at 21 days. Median 

responses were 2793 and 2088 SFUs per million PBMCs at 7 and 21 days in the 

high-dose (2.5 × 108 PFU) group when fresh PBMCs were used in the assay. In the 

phase 2a study reported here, employing an intermediate dose of MVA-NP+M1 and  

using fresh PBMCs, the median response of the vaccinees 21 days after vaccination 

was 980, falling to 627 on the day prior to influenza challenge. Although it is not 

unexpected that the response measured by this assay is reduced when the vaccine 
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dose is reduced, the small numbers of volunteers in both studies do not allow an 

accurate determination of the magnitude of this reduction. 

Following influenza virus challenge, only 5 of 11 control subjects developed 

laboratory-confirmed influenza, defined as symptoms of influenza disease plus virus 

shedding. This figure is lower than expected for challenge studies of this type, 

although it has previously been shown that approximately one-third of individuals 

undergoing influenza challenge are protected despite not having detectable 

antibodies against the challenge virus (3)and it is a known feature of this challenge 

model that not all control subjects will develop influenza. In this study only 2 

vaccinated volunteers developed laboratory-confirmed influenza, the total number of 

symptoms recorded was lower in the vaccinated group at all time points following 

challenge, the number of grade 2 and 3 symptoms recorded was lower, and virus 

shedding was significantly reduced, supporting a protective effect of the vaccine 

against both disease severity and virus shedding. 

It was notable that there was no consistent rise in HI titre following influenza 

challenge, even among volunteers who developed laboratory-confirmed influenza. 

Having demonstrated a significant increase in the number of T cells producing IFN-γ 

in response to NP and M1 following vaccination, and with fewer vaccinated volunteers 

developing influenza than control subjects, we attempted to confirm the association 

of vaccine-induced T-cell responses with this protective outcome. In a large study 

of 2172 children in the Philippines and Thailand, it was found that the majority of 

infants and young children with >100 SFUs per million PBMCs in an IFN-γ ELISpot 

assay utilizing whole influenza virus as antigen were protected against clinical 

influenza ( 9 ) . In our own small-scale study of adults, who would have had multiple 

prior exposures to influenza prior to vaccination resulting in memory populations of 

influenza-specific T and B cells, we were not able to define a correlate of protection 

based on responses detected in PBMCs using the IFN-γ ELISpot assay prior to 

challenge. Following influenza challenge, only minor fluctuations in the IFN-γ 

ELISpot were detected for a period of 4 days, increasing by the seventh day in 

subjects who developed influenza disease, whereas virus shedding was detected on 

the second and third day. This suggests that changes in responses measured in 

circulating PBMCs are occurring only after respiratory tract symptoms, and cannot 

be used to predict protection or susceptibility. However an anamnestic mucosal T-
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cell response predictive of protection cannot be excluded. For future studies, a 

systems biology approach should be taken to understanding multifactorial 

mechanisms of protection that may be missed when only a small number of 

measures of immune system status are used. 

This study provides evidence that intranasal challenge with influenza virus appears 

safe in individuals with elevated T-cell responses after MVA-NP+N1 immunization. 

The absence of any lower respiratory symptoms or signs, together with normal 

oxygen saturations and spirometry after influenza challenge, makes 

immunopathology highly unlikely. This supports previous work in several nonhuman 

species (particularly mice and ferrets (10) and pigs ( 1 1 ) ,  indicating the apparent 

safety of intranasal influenza virus challenge after immunization with T-cell–inducing 

vaccines. 

This first efficacy study of a vaccine designed to boost T-cell responses to conserved 

influenza antigens has demonstrated the safety of this vaccination approach. 

Vaccinees were exposed to influenza virus at a time when anti-influenza T-cell 

responses had been increased by vaccination with no ill effects and no evidence of 

lower respiratory tract infection or inflammation. It also elucidated the efficacy of the 

vaccine in boosting the T-cell response to the vaccine antigens and in reducing 

laboratory-confirmed influenza in the vaccinees compared with control subjects. 

This reduction  equates  to 60% vaccine efficacy, which is a similar level to that shown 

for inactivated influenza vaccines when the circulating virus and the strain used in 

the vaccine are well matched (12), although further studies using a larger sample 

size will be required to reach a more precise and robust estimate of vaccine efficacy. 

The majority of studies on T-cell–mediated protection against influenza have been 

conducted in the mouse model.  A small number of studies in other species have 

indicated that T-cell responses to conserved influenza antigens can protect against 

disease and virus shedding (13-16) but this is the first clinical efficacy study of a 

vaccine designed to protect in this way. The results of this first clinical study are 

encouraging and provide initial evidence that this approach will be successful. 

Further studies are indicated to characterize safety and efficacy in larger numbers of 

individuals and to assess vaccine immunogenicity in both older and younger age 

groups. 
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SUPPLEMENTARY TEXT 

 

Vaccine Safety. The safety profile was comparable to other MVA vectored vaccines, with 

the majority of adverse events being mild in severity.  No severe systemic adverse events 

were reported. One volunteer reported severe local pain and swelling that limited arm 

movement, which resolved within 24 hours.  The median duration of systemic adverse 

events was 1 day (range 1-6) with local events lasting a median of 2 days (range 1-7). 

 

Flow cytometry. Lymphocytes were stained with the following antibodies: anti-CD28-FITC, 

anti-CD57-FITC, anti-CD45RA-FITC, anti-CD38-PE-Cy7, anti-CD45RO-PECy7, anti-CD8-PerCP 

(Biolegend), anti-CD4-QD655 (Invitrogen), anti-CD4-Pacific Blue (eBioscience), anti-CD14-

Pacific Blue (Invitrogen),  anti-CD19-Pacific Blue (Invitrogen), anti-CD27-APCH7, anti-HLA-

DR-APC, anti-CD25-APC, anti-CCR5-APC, anti-CD8-APC-AF750 (eBioscience) and anti-CD3-

AlexaFluor700 (eBioscience). Intracellular staining was performed using Perm Buffer II 

(Becton Dickinson) as per manufacturer’s instruction with the following antibodies: anti-

Perforin-FITC (D48, Genprobe), anti-Granzyme A-FITC, anti-Granzyme B-FITC or Ki67-FITC. 

All antibodies were from Becton Dickinson unless stated otherwise. Samples and 

appropriate controls were collected on a Cyan Cytometer (Dako) and were analysed using 

FlowJo (Treestar).  Absolute numbers of CD4+, CD8+ and CD3+ cells were measured with 

BD Trucount according to manufacturer’s instructions (Becton Dickinson). 

 

Quarantine and challenge. In total, 12 vaccinees and 12 control subjects entered the 

quarantine facility together (study day 28), for further assessment prior to intranasal 

influenza challenge. One vaccinee was found to be displaying symptoms of recent mild 

upper respiratory tract infection, was isolated from the remainder of the volunteers for 

further assessment and subsequently excluded prior to influenza challenge. One control 

had an apparent rise in HI titre to the challenge virus, and was also excluded.  Vaccinated 

and control volunteers underwent clinical examination, spirometry, safety blood tests and 

electrocardiography on entry to the quarantine facility. Two days after entry to quarantine 

(to allow time for observation of any symptoms of respiratory virus infections) vaccinated 

and control volunteers were challenged with intranasal administration of H3N2 influenza 

(A/Wisconsin/67/2005) at a dose of 1ml of 105.25 TCID50/ml. All volunteers were 
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inoculated during the same two hour period.  After challenge, volunteers were followed up 

in the quarantine unit, using Retroscreen protocols as previously described (160).  Self-

reported symptoms were collected twice daily and a physical examination by a physician 

blinded to vaccination status was carried out daily.  Nasal lavage fluid (standardised 

volume) for quantification of viral shedding was obtained daily.  Symptoms were recorded 

using a standardised scoring system with a modified Jackson score of ≥4 indicating mild 

influenza disease, and a score of ≥29 indicating moderate to severe influenza disease.  

Symptoms directly elicited were headache, muscle/joint pains, nasal symptoms, cough, 

fever, sore throat, malaise, nausea and any other symptoms.  Symptoms were scored 

individually and then summed together with clinical examination findings to give an overall 

score.  Exploratory immunology samples were obtained on the day prior to challenge and 

then on days 1 to 4 and day 7 post challenge.  Safety blood tests and further spirometry 

and electrocardiography were performed on all volunteers whilst in quarantine.  A five day 

course of oseltamivir was commenced from day 5 post challenge for all volunteers with 

medication provided to complete the course after discharge. Volunteers were released 

from quarantine on the 7th day post challenge after a negative rapid antigen test for 

influenza on nasal washings was obtained. After discharge, all volunteers were followed up 

on days 66, 120 and 210 post vaccination for further exploratory immunology and safety 

blood tests. 

 

TCID50 assay for virus shedding. Nasal wash samples were titrated on MDCK cells and 

the end point identified by cytopathic changes, by laboratory staff blinded to vaccination 

status. 

Table S1 demographics. Volunteers 5 and 26 (shaded grey) took part in the pilot safety 

challenge study. The remainder of the volunteers took part in the main challenge study. 

For these, the mean (and range) age of volunteers was 28.7 (19 – 45) years for vaccinees 

and 30.0 (21 – 43) years for controls, (difference of medians non-significant Mann-Whitney 

p= 0.60). Mean Body Mass Index was 22.4 (19.5 – 26.9) and 23.7 (19.6 – 28.9) kg/m2 for 

vaccinees and controls (difference of medians non-significant Mann-Whitney p= 0.26). It is 

unlikely that any of the volunteers had previously received smallpox vaccination and prior 

receipt of an MVA-vectored vaccine was an exclusion criterion. 
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A vaccinees 

Volunteer Age Gender BMI 
5 42 M 24.0  

26 42 M 19.4 

19 20 M 23.3 

32 35 F 23.6 

37 22 F 19.6 

39 23 M 19.5 

41 32 F 26.8 

58 21 M 23.2 

64 19 F 18.9 

70 45 F 24.3 

76 43 M 26.9 

79 21 F 20.6 

80 35 F 20.0 

 

 

B controls 

Volunteer Age Gender BMI 
72 43 F 23.6 

81 43 F 28.9 

84 35 M 21.9 

86 18 F 24.0 

87 21 F 19.6 

93 24 M 20.8 

95 37 M 24.4 

96 23 F 24.5 

100 32 M 23.1 

108 28 M 29.1 

109 26 F 21.1 
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FIGURE LEGENDS 

Figure S1 A Study timeline. Large boxes indicate major stages in the study, small boxes 

indicate blood sampling points. 

Figure S1 B Recruitment Flow Chart  

Figure S2 Ex vivo IFN-γ ELISpot responses to all influenza antigens. Summed CD4+ and CD8+ 

T cell responses to all influenza antigens measured by interferon-γ ELISpot assay using 

overlapping peptides to each antigen (20mers overlapping by 10), measured on study day 

29, one day prior to influenza challenge, reported as spot forming units per million PBMC. 

The summed responses to external antigens are not significantly different between 

vaccinees and controls (Two-sample Wilcoxon rank-sum [Mann-Whitney] test P=0.0818) 

whereas summed responses to internal antigens are significantly different between the 

two groups if vaccine antigens are included (P=0.0003) but not when the vaccine antigens 

are excluded (P=0.818).  For external influenza antigens, responses to H1, H3 and swine 

origin HI pandemic virus were tested. 

Figure S3: Increase in T cell response following influenza challenge. A significant correlation 

between fold increase in ELISpot response (summed response to NP and M1) from day 29 

to day 37, and the total symptom score was observed (Spearman r value = 0.6623, p= 

0.0008 two-tailed) when vaccinees (circles) and control (squares) subjects were analysed 

together. Open symbols represent volunteers who subsequently developed laboratory 

confirmed influenza, closed symbols volunteers who did not. 
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Figure S1 
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Figure S2 
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Figure S3 
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8.4  Paper 4 - Examination of Influenza Specific T- Cell 

Responses after Influenza Virus Challenge in Individuals 

Vaccinated with MVA-NP+M1 Vaccine 
Timothy J. Powell, Yanchun Peng, Tamara K. Berthoud, Marie-Eve Blais, Patrick J. Lillie, 

Adrian V. S. Hill, Sarah L. Rowland-Jones, Andrew J. McMichael, Sarah C. Gilbert, Tao Dong 

 

ABSTRACT 

Current influenza vaccines stimulate neutralising antibody to the haemagglutinin antigen 

but as there is antigenic drift in HA it is difficult to prepare a vaccine in advance against an 

emergent strain. A potential strategy is to induce CD8+ and CD4+ T cells that recognize 

epitopes within internal proteins that are less subject to antigenic drift. Augmenting 

humoral responses to HA with T cell responses to more conserved antigens may result in a 

more broadly protective vaccine. In this study, we evaluate the quality of influenza specific 

T cell responses in a clinical trial using MVA-NP+M1 vaccination followed by influenza virus 

challenge. In vaccinated volunteers, the expression of Granzyme A, Perforin and CD57 on 

influenza HLA A*02 M158–66  antigen specific cells was higher than non-vaccinated 

volunteers before and after challenge despite a similar frequency of antigen specific cells. 

BCL2 expression was lower in vaccinated volunteers. These data indicate that antigen 

specific T cells are a useful additional measure for use in human vaccination or 

immunization studies. 

 

INTRODUCTION 

Protection against influenza virus requires antibody secretion by B cells and cytotoxic and 

soluble mechanisms mediated by T cells (1). The antibody response can be stimulated by 

vaccination and the existence of an influenza specific haemagglutination-inhibition 

antibody titre of 1:40 or more is associated with protection (2). Influenza virus undergoes 

antigenic shift and drift, generating novel influenza viruses to which people may not have 

immunity (3). One way of overcoming this lack of immunity could be to stimulate pre-

existing cross-reactive CD4+  and CD8+  T cell responses which have been shown in 

humans to react with H1N1 2009 virus (4) and H5N1 (5,6). This heterosubtypic immunity is 

associated with protection during human experimental influenza infection (7). CD8+ T cell 

responses to one conserved A*02 matrix protein 1 M158–66  epitope can be protective in A2 
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transgenic mouse models (8) and are commonly found in healthy donors with this 

common HLA type (9). Therefore it is convenient to analyse M158–66  specific CD8+ T cells in 

vaccine studies. The phenotype or activation state of T cells is important for protection 

against influenza such that na¨ıve cells are less able to protect than activated or memory 

cells against a lethal influenza infection (10,11). Activated influenza specific T cells have 

been shown to be associated  with  protection  against  influenza  in  human  studies 

(12,13,14,15) but no study of surface or intracellular phenotype was done. 

We sought to characterize the antigen specific immune response to influenza following 

vaccination with a viral-vectored nucleoprotein + matrix protein 1 (NP+M1) influenza 

vaccine and subsequent influenza challenge and determine whether there was any change 

in the phenotype and functional potential of antigen specific CD8+ T cells. We found that 

following vaccination with modified vaccinia Ankara (MVA)-NP+M1, antigen specific M158–66  

CD8+ T cells  showed  a  more  enhanced  activation  profile showing higher levels of 

perforin, granzyme A and CD57. There was also a reduction in BCL2  expression. These 

antigen specific cells expanded in response to challenge with live influenza virus. The 

vaccine-stimulated cells were altered in terms of their surface and intracellular phenotype. 

Examination of the phenotype of antigen specific T cells may be a useful adjunct for 

human immunization studies. 

 

MATERIALS AND METHODS 

Ethical Permissions and Human Studies. Volunteers were recruited using an approved 

Medicines and Healthcare products Regulatory Agency and the Oxfordshire Research 

Ethics committee protocol, and enrolled only after obtaining written informed consent 

(www.clinicaltrials.gov identifier: NCT00993083, approved 19 May 2009). Volunteers 

aged 18–45 were recruited at the Centre for Clinical Vaccinology and Tropical Medicine, 

Oxford and the Welcome Trust Clinical Research Facility, Southampton beginning on 8th 

June 2009. Volunteers were initially screened by haemagglutination-inhibition assay 

against the virus to be used in the influenza challenge phase of the study. Those with a 

titre ≤1:10 were eligible for further screening. Volunteers  were  seronegative  for  HIV,  

Hepatitis  B  virus  and Hepatitis C virus and had not received seasonal influenza 

vaccination for at least one year prior to enrolment. Routine haematological and 

biochemical tests on enrolled volunteers were all within normal limits (16). 

http://www.clinicaltrials.gov/
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Vaccine, Vaccinations and Virus Challenge. The CONSORT flow chart for the trial is shown in 

Figure 1. Beginning 27 July 2009, an MVA vaccine (17)  expressing influenza (H3N2 

A/Panama/2007/99) NP+M1 was administered, 1.5 x 10
8 plaque-forming units (PFUs), to 

11 human volunteers 1 month before challenge with influenza (H3N2 A/Wisconsin/67/ 

2005). Control subjects were challenged with H3N2 virus only. The viral challenge study 

was conducted by Retroscreen Virology Ltd  (16). Symptoms and virus   shedding were 

monitored.  Differences  between  IFN-γ  ELISPOT  analysis  pre  and  post challenge are 

given in (16). To examine the acute response after virus infection, blood was taken one 

day before (21) and days 4 and 7 after challenge, transported to Oxford and then flow 

cytometry performed on whole blood. 

Flow Cytometry Analysis of Whole Blood Samples.  Whole blood was aliquoted into tubes 

and then labelled with six different antibody panels all with tetramer-PE: HLA-A*0201 

complexed with M158–66  peptide GILGFVFTL, produced in house using standard methods 

[18] and incubated for 15 mins at 37uC. Red blood cells were lysed using RBC lysis media 

(Becton Dickinson, Oxford UK) for 15 mins at room temperature then washed 26 with FACS 

buffer PBS (Difco, Poole) with 1% v/v BSA (Sigma, Poole UK) followed by incubation with 

CD8-PerCP and CD4-Pac Blue (eBiosciences,  Hatfield UK) plus different panels of ab:  

CD28-FITC. HLA-DR-APC, CD38-PE-Cy7 and CD27-APCH7 (eBiosciences) or CD57-FITC and 

CD25-APC or CD45RA-FITC,  CD45RO-PECy7  and  CCR5-APC.  Cells allocated to the 

Intracellular panels were permeabilised with Perm2 (BD) for 15 mins and washed 26 in 

FACS buffer. Cells were then labeled with CD8-PerCP (Biolegend) and CD4-Pac Blue 

followed by: Perforin-FITC (D48, Genprobe, Manchester, UK) or GranzymeA-FITC or 

GranzymeB-FITC or Ki67-FITC. Cells were then washed twice and fixed in BD cellfix. All abs 

were from Becton Dickinson (Oxford, UK) unless otherwise stated. Similar staining 

protocols were also done using the CMV lower matrix protein pp65495–503 NLVPMVATV 

tetramer (19). Cell events were collected on a 9 colour Cyan Cytometer (Dako, Ely, UK) and 

data files analysed using FlowJo (Tree Star Inc, Ashland, OR, USA). Data were analysed 

using a forward side scatter gate followed by CD8 gating then tetramer gating within the 

CD8+ population. These cells were then analysed for percentage expression of a particular 

marker using unstained and CD8+ tet- populations to determine where to place the gates. 

Single colour samples were run for compensation and fluorescence minus one (FMO) 

samples were also run to check positive and negative populations as well as channel 

spillover. To monitor overall changes of white blood cell numbers, whole blood samples 
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were analysed using the BD Trucount system measuring CD4, CD8 and CD3 positive  

lymphocytes  according  to  manufacturers instructions. 

 

 

Figure 1. CONSORT flow diagram of the clinical trial. 
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ELISPOT Analysis of PBMC. PBMC were separated on density gradients and incubated with 

peptide pools from each gene of the H3N2 virus along with peptide pools from other 

subtypes of haemagglutinin (HA) and neuraminidase (NA) as described previously (16).  

Peptide pools were similar to those described previously (20). Swine origin (SO) HA and NA 

were overlapping 18–20 mers from the full sequence of A/Cal/04/2009 H1N1 influenza 

virus. 

Statistical Analyses. Groups of data were analysed by repeated measures ANOVA using 

pairing of samples using the statistical package R (R Foundation). Changes 

between vaccinated and control were considered along with time and interaction 

between both. Any analyses showing  p values <0.05 were considered significant. Data 

from repeated measures ANOVA are shown in Table S1. 

 

RESULTS AND DISCUSSION 

Initially we analysed the percentage and absolute numbers of tetramer positive CD8 T 

cells for each HLA-A*02 volunteer by FACS  on  the  day  before  and  up  to  day  7  post  

challenge.  Surprisingly we found that the percentage of M158–66 specific cells, shown in 

Figure 2A, was not different between vaccinated and control donors. A representative 

flow cytometry profile from one vaccinated and one control donor is shown in Figure 

2B, which shows cells gated on CD8 and the percentage of tetramer positive cells within 

that gate. The absolute number of M158–66  antigen specific CD8+ T cells was also 

calculated using CD8 counts from the Trucount and these were not significantly different 

between groups (data not shown). Overall T cell responses to overlapping peptides 

spanning the entire H3N2 proteome (5) were tested and no significant differences were 

observed between vaccinated and control groups to most proteins, despite raised 

responses to NP in the vaccinated group before infection (Figure S1) (16,17). There is 

an overall trend of elevation of T cell responses in both groups 7 days after the 

challenge, which could mainly be CD4 dependent responses as described by Wilkinson et 

al., (21). 

Since the number or proportion of antigen specific cells was not different between the 

groups we then examined the cell surface and intracellular phenotype of the M158–66  

CD8+  T cells. We examined the expression of CD27, CD28, CD38 and HLA-DR on the 

surface of the cells that are markers associated with activation and differentiation 
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( 1 9 ) .  We found that the expression of CD27, CD28, CD38 and HLA-DR were not 

different between vaccinated and control donors by repeated measures ANOVA (Figure 

3A). The levels of CD57, which is a marker associated with either senescence or 

activation were different by repeated measures ANOVA (p = **0.00705) and CD57 was 

enhanced on cells  from  vaccinated volunteers. Double CD27+ CD28+ positive cells were 

not different between the groups and a representative flow cytometry profile is shown 

in Figure 3B. 

Further to the cell surface molecules we examined the intracellular molecules, 

granzyme A, granzyme B and perforin on M158–66 specific cells; which are all associated 

with better levels of cytolytic activity. Significant changes in perforin expression were 

only detected using the more sensitive mab D48 that detects newly synthesized perforin 

( 2 2 )  and we found that the perforin levels were higher in vaccinated volunteers by 

repeated measures ANOVA (p = **0.0027) (Figure 3C). We found that granzyme A was 

elevated in vaccinated volunteers (repeated measures ANOVA p = **0.0025). Granzyme B 

was not different (Figure 3C). These data imply that the vaccinated donors possess antigen 

specific cells that have developed the potential to be more cytolytic and this would 

then potentially correlate with faster virus clearance. In donors vaccinated followed by 

influenza challenge, levels of B Cell lymphoma-2 (BCL2) protein were reduced (repeated 

measures ANOVA p = ***0.00314) as shown in Figure 3C. These changes may indicate 

more differentiated cells or cells that are more likely to apoptose. Figure 3D shows a flow 

cytometry profile from one vaccinated  and  one  control  donor  showing  increased  

perforin (D48 clone) in tetramer positive cells from a vaccinated donor at day four. 

Shown in Figure 4A is the phenotype data that we obtained from the vaccinated/control 

volunteers and then influenza infected volunteers examining different surface and 

intracellular markers. Overall there are a number of proteins that show trends of 

difference that are similar to the statistically different changes shown in earlier figures, 

illustrating an overall picture that the M158–66 specific CD8+ T cells are more responsive 

from the vaccinated volunteers than those from the control volunteers. Analysis of total 

CD4+ or CD8+   T  cell  populations  could  be  useful  but  because  of  the unknown 

specificity of these cells we considered that it was better to measure either influenza or 

CMV antigen specific cells. 



113 | P a g e  
 
 

 

 

We also examined the phenotype of CMV specific cells in two vaccinated volunteers that 

were positive for the CMV tetramer and found that these did not change during the 

influenza infection (Figure 4B). This indicated that there was no bystander activation of 

CMV specific T cells during the challenge and that it is unlikely that the adjuvant effects of 

MVA are causing these changes in phenotype of M158–66 specific cells. 

Figure 2. Frequency of tetramer 

positive cells is similar between 

vaccinated and control volunteers. 

Data shows percentage of CD8 cells 

within a CD8 gate with vaccinated as 

closed squares and control open 

circles. B) Representative FACS profile 

of one vaccinated and one control 

donor at day 21, one day before 

challenge with influenza virus. 
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Figure 3. Surface and intracellular activation markers are enhanced on tetramer labeled 

cells from vaccinated donors compared to control. A) Time course between day 21 and 7 and 

expression of noted markers on M158–66 tetramer labeled cells. B) Representative flow cytometry 

plot of M158–66 tetramer positive cells labeled for CD27 and CD28 on day 21 showing similar profiles. 

C) Graphs plot the percentage of tetramer+ cells or MFI of tetramer+ cells with the noted markers. 

D) Representative flow cytometry plot of two donors showing control (open plot) and vaccinated 

volunteer (filled histogram) labeled with anti-D48 Pfp on day 4. Groups were compared using repeated 

measures ANOVA. 
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This phase IIa study of a novel influenza vaccine was designed to test whether stimulating 

NP+M1 T cell responses were able to protect vaccinees against influenza (16), but here 

we particularly concentrate on changes in surface phenotype of the antigen specific cells 

after vaccination and influenza challenge. The phenotype of the influenza specific T cells 

was altered and these changes or enhancements of T cell phenotype have been found in 

other studies to be associated with protection against influenza (11).  Miller et al., 

found that antigen specific T cells were stimulated in a study of yellow fever and vaccinia 

vaccination and that vaccinated donors had enhanced activation profiles (23) .  In other 

studies enhancement of perforin expression has been demonstrated on IFN-c secreting 

cells after influenza vaccination ( 2 4 ) .  We also find that perforin level is increased on 

antigen specific cells identified using tetramers after vaccination, which gives more 

insight into the response of antigen specific T cells after vaccination and challenge in 

humans. 

 

 

 

Figure 4. Analysis of markers that are not different between vaccinated and control volunteers and analysis of 

CMV specific T cells after influenza challenge. A) Cells were labeled for flow cytometry and percentage positive calculated 

using FlowJo. All donors are shown in the figures and indicate positivity for various markers after vaccination and or challenge 

with influenza virus. All groups were compared using repeated measures ANOVA. B) Analysis of phenotypic markers on CMV 

tetramer positive CD8 T cells showing different marker expression on these antigen specific cells. 
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The M1 specific CD8+ T cells have been shown to be protective in A2 transgenic mice (8), 

and HLA A2 positive donors commonly have detectable M158–66 specific CD8 T cells (9). 

Terajima et al., and Tu et al., (25,26) show the presence of influenza specific T cells in 

human samples that have the potential to protect against novel strains of influenza. 

McMichael has shown association between cytotoxic activity of T cells and reduced virus 

shedding in humans (7). Hikono et al., have shown that certain activated memory T cells 

can protect against subsequent influenza challenge (11) and that activation phenotypes 

may be more important than absolute numbers of memory cells. Murine antigen specific 

CD8+ T cells of a single specificity can be protective against influenza challenge after 

adoptive transfer (10) or by priming with a known peptide ( 8 ) .  In humans, protection 

against influenza is likely to involve different specificities of CD4+ and CD8+ T cells since it 

is likely that most adults will have previously been exposed to influenza. These studies 

could be extended in future to examine different specificities and HLA alleles. Another 

observation is that there are differences in T cell phenotype when the ELISPOT 

responses are similar. Despite the usefulness of the ELISPOT assay and its widespread 

use in trials of this type, it only gives one view of the T cell response and we recommend a 

more detailed T cell phenotype analysis to provide a more complete description of the 

effects of vaccination.  

In conclusion, we have found that vaccination with an MVA construct containing 

NP+M1 in healthy volunteers led to more activated antigen specific CD8+ T cells and 

these cells have the potential to be more active in clearing virus because of higher 

levels of perforin and granzyme proteins. The approach of using tetramers in 

combination with phenotypic markers may also be a useful method to assess the 

immunogenicity of different vaccines. 
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SUPPORTING INFORMATION - Figure S1 ELISPOT responses using peptides from 

individual genes indicate rise in NP response after vaccination & infection and rise of H3 

HA response after challenge. IFN-γ ELISPOT assays were done using standard 

methods using overlapping peptides from H3N2 and other strains of influenza viruses. 
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Table S1 Summary of repeated measures ANOVA p values of marker 

analysis on M158–66 specific CD8 T cells after vaccination and/or challenge 

Markera Vaccineb Timec Interactiond 

CD57 0.00704 0.085 0.333 

CD28 0.166 1.33e-05 0.0947 

CD38 0.252 0.00015 0.632 

Pfp D48 0.00275 0.00870 0.126 

GrzA 0.00250 0.000201 0.00879 

GrzB 0.0971 5.13e-05 0.0343 

BCL2 0.00313 1.34e-05 0.113 

Ki67 0.230 0.0039 0.265 

CD27/28 0.618 0.0001 0.592 

CD27 0.942 0.0249 0.0868 

HLA-DR 0.833 0.106 0.824 

Pfp dG9 0.254 0.0143 0.233 

CCR5 0.970 5.88e-5 0.918 

CD45RA 0.0943 0.0122 0.228 

CD45RO 0.389 0.00176 0.0288 

aAnalysis of markers examined on antigen specific T cells after vaccination with an NP+M1 

vaccine or control donors followed by challenge with intranasal influenza vaccine.   

bp value with respect to variation caused by vaccine. 

cP values with respect to variation attributable to time. 

dp of both time and vaccine together. 
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8.5  Paper 5 - Severity Assessment of Influenza Virus Infection 

in Secondary Care 
Patrick J Lillie, Rohit Bazaz, Laura Dexter, Charles Biju, Lucy Peart, Leon Lewis, Mohammad Raza, 

Paul Whiting, Anne Tunbridge 

 

We read the comprehensive review on pH1N1 severity assessment by Singanayagam and 

colleagues with interest (1). They highlight the limitations of severity assessment tools 

and factors associated with severe disease with pH1N1 infection, as had previously been 

shown for influenza prior to pH1N1 (2). The majority of evidence recently has 

concentrated on pH1N1 infection only, most of which was collected during the first 

wave of cases in 2009/2010 in both the UK (3) and elsewhere (4-8). It is not clear how 

applicable this is in the setting of pH1N1 becoming the predominate seasonal influenza 

virus, particularly with co-circulation of influenza B virus, as was the case in the UK in the 

winter of 2010-2011 (9). Here we describe factors associated with admission to critical 

care in adult patients attending our hospitals with confirmed influenza, of any type, 

during the winter of 2010-2011. We also propose an admission and severity 

assessment pro forma which we intend to use prospectively in the forthcoming 

influenza season. 

Cases of influenza infection in adults were retrospectively identified from the virology 

laboratory records; demographic details and requirement for critical care were available 

for all adult patients admitted into our hospital trust. More in-depth assessment was 

made of a smaller cohort from retrieved notes. Data were analysed using Graphpad 

Prism and SPSS version 19. 

Over the winter season of 2010-2011 the virology department of Sheffield Teaching 

Hospitals Foundation NHS Trust identified 418 separate samples as being PCR positive for 

influenza virus from the 1st November 2010 to the 31st January 2011. Cases peaked over 

the Christmas period with 217 confirmed influenza infections in the 2 weeks from the 20th 

December. Of the total isolates, 312 were influenza A (all typed as pH1N1) and 106 

were influenza B. Demographic data and requirement for critical care were available on 

all these cases. There was no significant difference in the median age between the 

influenza A and B groups (47 years and 50 years respectively p = 0.198) or in the need for 

critical care (28/312 influenza A and 4/ 106 influenza B, p = 0.093). 
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Case notes for 131 patients were retrieved for further evaluation. The most common 

presenting features were current fever or history of fever (87.6%) and cough (92.4%). 

Gastrointestinal symptoms were common, with 28.2% of cases presenting with 

vomiting and 19.8% with diarrhoea. 38 patients had no risk factors for severe influenza 

infection. Of the 131 patients, 27 patients required critical care, of whom 9 died. Table 1 

shows the variables associated with critical care admission on uni and multi-variate 

analysis. 

 Critical care 

case (n=27) 

Non critical care 

case (n=104) 

P value - 

univariate 

P value – 

multivariate 

Age 49 (37-65) 34.5 (25-53) 0.0033 >0.05 

Oxygen 

saturations >92% 

on air 

4 (16%) 84 (80.8%) <0.0001 <0.0001 

Respiratory rate 28 (22-38) 20 (17-24) <0.0001 0.035 

Existing 

respiratory illness 

14 (51.9%) 26 (25%) 0.0099 >0.05 

Smoker 14 (51.9%) 26 (35.6%) 0.0185 >0.05 

Obesity 6 (22.2%) 6 (5.8%) 0.0171 >0.05 

Pulse 112 (98.5-

131.5) 

100 (88-114) 0.006 0.036 

Confusion 12 (44.4%) 7 (6.7%) <0.0001 >0.05 

CXR abnormal 24 (92.3%) 24 (24.7%) <0.0001 >0.05 

Urea (mmol/L) 8.6 (3.6-17.1) 3.5 (2.4-4.6) <0.0001 >0.05 

Albumin (g/L) 30 (26-33) 37 (34-41) <0.0001 0.001 

CRP (mg/L) 167.3 (59-

247.5) 

51.3 (22.7-

120.3) 

0.0123 >0.05 

 

Table 1: Features predicting need for critical care. Values are medians (interquartile 

range), or absolute numbers (%).  CXR – chest x-ray, CRP – C Reactive Protein.  Fishers 

exact test or Mann-Whtiney U test as applicable. 
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A total of 802 bed days were used, with a median length of stay of 3 days (range 1 - 70). 

Empiric treatment with neuraminidase inhibitors, as compared to no treatment or 

treatment initiated after receipt of a positive PCR result, was associated with a reduction 

in median length of stay from 3 to two days (p = 0.0107). 

Thirty-two of the 131 patients were discharged within 24 hours, and potentially may have 

been suitable for management in the community with antivirals. Compared to those 

admitted for over 24 hours none of these 32 patients were aged over 65 (median age 28.5 

years in 24 h group, 45 years in>24 h group, p = 0.0033), none were confused (19/99 in the 

>24 h group, p = 0.0038), all had oxygen saturations on room  air  of  >92%  (40/97  in  the  

>24  h  group, p < 0.0001) and they had lower respiratory rates (median respiratory rate 18 

in the 24 h group, 20 in the >24 h group p = 0.0014). Using the data from both the critical 

care and short stay groups, we have drafted an assessment pro forma for use in the 

coming influenza season, to assist our admission units in deciding on appropriate disposal 

of patients. The pro forma when applied retrospectively to this cohort of 131 patients had 

good predictive ability for need for admission, with very good predictive ability of the need 

for critical care (Figure 1). 

As the northern hemisphere prepares for the next influenza season, variations in the 

type of influenza circulating and the proportion of people susceptible differ between 

areas. Use of assessment tools such as ours may improve use of critical care services, 

which can come under great pressure in times of influenza activity (5). Conversely, early 

identification of patients who could be managed in the community, with appropriate 

antiviral treatment (10) may release resources in secondary care to manage more severe 

cases. 

In summary, simple clinical variables and investigations allow patients with influenza 

infection to be assessed rapidly and appropriately, and empiric treatment may shorten 

duration of admission. 
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Figure 1 Assessment pro forma with performance characteristics. 
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SUMMARY   

During the H1N1 influenza pandemic (pH1N1/09) diagnostic algorithms were 

developed to guide antiviral provision. However febrile illnesses are notoriously difficult to 

distinguish clinically. Recent evidence highlights the importance of incorporating travel 

history into diagnostic algorithms to prevent the catastrophic misdiagnosis of life-

threatening infections such as malaria. 

We applied retrospectively the UK pH1N1/09 case definition to a unique cohort of healthy 

adult volunteers exposed to Plasmodium falciparum malaria or influenza to assess the 

predictive value of this case definition, and to explore the distinguishing clinical features 

of early phase infection with these pathogens under experimental conditions. 

For influenza exposure the positive predictive value of the pH1N1/09 case definition was 

only 0.38 (95% CI: 0.06-0.60), with a negative predictive value of 0.27 (95% CI: 0.02-0.51). 

Interestingly, 8/11 symptomatic malaria-infected adults would have been inappropriately 

classified with influenza by the pH1N1/09 case definition, while 5/8 symptomatic 

influenza-exposed volunteers would have been classified without influenza (P = 0.18 

Fisher’s exact). Cough (P = 0.005) and nasal symptoms (P = 0.001) were the only clinical 

features that distinguished influenza-exposed from malaria-exposed volunteers.  An open 

mind regarding the clinical cause of undifferentiated febrile illness, particularly in the 

absence of upper respiratory tract symptoms, remains important even during influenza 

pandemic settings. These data support incorporating travel history into pandemic 

algorithms. 
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INTRODUCTION 

 

With the advent of the first pandemic of influenza of the 21st century, there was 

significant concern about the potential impact on healthcare infrastructure of managing 

pandemic H1N1 (pH1N1) infections in traditional settings. In July 2009, due to sustained 

community transmission of pH1N1 (with 80,000-100,000 symptomatic cases/week in 

England (1), control efforts shifted to mass treatment strategies, and the UK National 

Pandemic Flu Service began to offer treatment of symptomatic individuals identified by 

telephone or internet-based triage in England (2). However the initial pandemic 

influenza triage algorithm omitted questions about travel to a malaria endemic area 

(3). As a result, at least 3 cases of malaria infection in travellers that were misdiagnosed 

with influenza were reported (4,5). While in a pandemic setting such triage may be 

essential for efficient recognition and management of cases, the UK case definition has 

been subsequently shown to be poorly predictive (2).  

In the course of separate candidate vaccine efficacy trials carried out by our unit 

(www.clinicaltrials.gov NCT00890760/NCT00993083), we independently exposed cohorts 

of unimmunised healthy control volunteers to pathogenic strains of either Plasmodium 

falciparum (P. falciparum) malaria or influenza A under controlled experimental 

conditions, and followed them closely in the early phases of infection until clinical 

diagnosis. These control volunteers were enrolled to ensure the reliability of the respective 

experimental infections and therefore did not receive any immunisations. Although these 

studies were conducted separately, assessment of clinical symptoms was conducted 

according to uniform criteria. These data afford us a unique opportunity to perform a 

retrospective comparison of the early clinical features that may be of use in differentiating 

clinically between an often uncomplicated illness in influenza and a potentially life-

threatening infection in malaria, and to assess whether the clinical features included in 

the UK pandemic case definition alone were sufficiently discriminatory. 

 

 

 

 

METHODS 
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Controlled human malaria infection (CHMI).  Recruitment occurred at the Centre for 

Clinical Vaccinology and Tropical Medicine, Oxford, with the challenge procedure 

performed, using five infectious bites from P. falciparum 3D7-strain infected mosquitoes, 

at Imperial College, London. We recruited healthy malaria näıve adults aged 18-50 years 

old from the Oxford area. Enrolled control volunteers (n = 12) were seronegative for 

HIV, Hepatitis B virus and Hepatitis C virus and were used to assess the infectibility of 

the challenge inoculum. Routine haematological and biochemical tests on enrolled control 

volunteers were all within normal limits. These control volunteers underwent full 

clinical examination and safety blood tests the day prior to sporozoite challenge. All 

volunteers remained outpatients throughout the challenge procedure. Volunteers 

attended twice daily for clinical assessment as previously described (6). Self-reported 

solicited and unsolicited symptoms and routine observations (BP, pulse, temperature) 

were collected twice daily from day 6.5 post-challenge and guided physical examination 

carried out as indicated by symptoms. Thick blood films were examined twice daily for 

malaria parasites by blinded microscopists together with a concurrent highly sensitive 

quantitative polymerase chain reaction (qPCR) assay for P. falciparum. Treatment with a 

standard oral dose of artemether/lumefantrine for 3 days was administered on the 

detection of a single parasite by microscopy, or on the occurrence of significant 

symptoms + sequential positive qPCR (if blood films were negative). Volunteers were 

followed up daily until two consecutive negative malaria films were observed, and 

returned for full clinical assessment including safety blood tests on days 35, 90 and 140 

post-challenge. 

 

Controlled human influenza infection.  Recruitment occurred at the Centre for Clinical 

Vaccinology and Tropical Medicine, Oxford and the Welcome Trust Clinical Research 

Facility, Southampton. Volunteers aged 18-45 years were initially screened by 

haemagglutination inhibition (HI) assay against the virus to be used in the challenge 

phase of the study to ensure susceptibility to challenge. Those with a titre ≤1:10 were 

eligible for further detailed screening. Enrolled volunteers (n = 12) were seronegative 

for HIV, Hepatitis B virus and Hepatitis C virus and had not received seasonal influenza 

vaccination for at least one year prior to enrolment. Routine haematological and 

biochemical tests on enrolled control volunteers were all within normal limits. Control 

volunteers underwent clinical examination, spirometry, safety blood tests and 
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electrocardiography on entry to the quarantine facility. Two days after entry to 

quarantine (to allow time for observation of any symptoms of respiratory virus 

infections) control volunteers were challenged with intra-nasal administration of H3N2 

influenza (A/Wisconsin/67/ 2005) at a dose of 1 ml of 10
5.25 

TCID50/ml. All volunteers 

were inoculated during the same 2- h period. After challenge, volunteers were followed 

up in the quarantine facility as previously described (7). Self-reported symptoms were 

collected twice daily and a physical examination by a blinded physician was carried out 

daily. Nasal lavage fluid for quantification of viral shedding was obtained daily. 

Symptoms and physician elicited clinical signs were recorded using a standardised 

modified Jackson scoring system (8) (which assigns severity of symptoms such as cough, 

rhinorrhoea etc., on a scale of 0-3,  where  no  symptoms = 0; just noticeable = 1; 

bothersome but can still do activities = 2; and bothersome and cannot do daily activities 

= 3) with a score of >4 indicating influenza disease. Safety blood tests and further 

spirometry and electrocardiography were performed on all volunteers whilst in 

quarantine. A five-day course of oseltamivir was commenced from day 5 post-challenge 

for all volunteers with medication provided to complete the course after discharge. 

Volunteers were released from quarantine on the 7th day post-challenge after a 

negative rapid antigen test for influenza on nasal washings was obtained. After 

discharge all volunteers were followed up on days 35, 91 and 181 post-challenge for 

safety blood tests. 

 

Ethics.  Clinical trial protocols (www.clinicaltrials.gov identifiers: NCT00890760 and 

NCT00993083) were approved by the UK Medicines and Healthcare Products Regulatory 

Agency and the Oxfordshire NHS Research Ethics Committee. All volunteers provided 

signed informed consent prior to any study procedure, and all studies were conducted 

according to the principles of Good Clinical Practice and the Declaration of Helsinki. 

 

Case definition.  We examined the UK 2009 pandemic H1N1 influenza A case 

definition (pH1N1/09) which was used from 2nd July 2009 to determine provision of 

antiviral therapy in the absence of assessment by health professional.  

 

This was as follows: 

http://www.clinicaltrials.gov/
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 Fever >38 oC or history of fever,  

and two or more of the following: 

 Cough, sore throat, headache, rhinorrhoea, limb or joint pain (2,9).  

Statistical  analysis.  We calculated the ability of the UK pH1N1/09 case definition to 

distinguish influenza-exposed unvaccinated volunteers from malaria-exposed 

unvaccinated volunteers by calculating positive and negative predictive values. We 

also analysed the significance of differences between proportions of early symptoms in 

the group of malaria-exposed and influenza-exposed volunteers, and repeated this 

analysis for those individuals with laboratory-confirmed influenza. Continuous variables 

were assessed for normality  and  significance  of  differences  between central 

tendencies (mean or median) assessed by appropriate parametric or non-parametric 

tests (Student’s t test or Manne Whitney U test  respectively).  All statistical analysis was 

performed using Prism 5.0 (GraphPad), with two-tailed tests and an alpha value of 

<0.05 considered statistically significant. 

 

RESULTS 

 

Participants. 1 out of 12 influenza unvaccinated control volunteers developed an 

asymptomatic rise in HI titre and this volunteer was excluded prior to challenge; 

therefore 11 unvaccinated controls were exposed to influenza infection. 11/12  malaria 

unvaccinated control volunteers were included in the analysis. No serious adverse events 

occurred in volunteers in either challenge. Demographic details of these participants 

are summarised in Table 1.  All malaria volunteers were diagnosed on the basis of positive 

blood film microscopy (geometric mean parasitaemia 4030p/ml by qPCR) for P. 

falciparum a mean of 11.8 days post-challenge (Ewer K. et al., manuscript submitted). 

5/8 symptomatic influenza volunteers developed laboratory-confirmed influenza 

infection, defined as positive viral culture for challenge virus on nasal lavage fluid a 

mean of 2.3 days post-challenge (Lillie P.J. et al., Clinical Infectious Disease in press). 
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Demographics Malaria Influenza P value 

Number of 

volunteers 

11 8 - 

Median age (IQR) 28.6 (22.5-35.4) 28 (23-37) 0.51 

Male / Female 6 / 5 3 / 5 0.65 

 

Table 1 - Demographic details of symptomatic controlled experimental infection 

volunteers.   

 

Clinical  features.  Clinical features of the exposed volunteers in the influenza and malaria 

cohorts are summarised in Table 2. Only the incidence of cough (P = 0.005 Fisher’s exact) 

and rhinorrhoea  (P  = 0.001  Fisher’s exact)  were  significantly different between the 

groups. In line with this increase in upper  respiratory  tract  symptoms  in  influenza-

exposed volunteers, there was also a trend towards an increased frequency  of  sore  

throat  (P  = 0.06  Fisher’s  exact). Restricting  analysis  to  the  5/8  symptomatic  influenza-

exposed volunteers with viral culture-confirmed infection, the significant increase in 

cough (P = 0.003 Fisher’s exact) and rhinorrhoea (P = 0.001 Fisher’s exact) remained, 

whilst the trend  for  sore  throat  became  significant (P = 0.02 Fisher’s exact). 

Physiological parameters did not distinguish the malaria and influenza cohorts. There 

were no significant differences in the peak mean heart rate (malaria 92.2 beats per 

minute [95% CI: 82.6-101.8], influenza 82.7 [95% CI: 69.5-96.0], P = 0.19 t test) or 

temperature (malaria 37.2 °C [95% CI: 36.6-37.7], influenza 37.3 [95% CI: 36.9-37.7], P = 

0.72, t test) between the groups, and there were no volunteers with clinically 

significant hypotension in either group. 

 

Laboratory features.  Laboratory analysis was performed at different time-points post-

challenge for influenza and malaria-infected volunteers, prohibiting direct 

comparisons. However, grade 1 thrombocytopaenia and leucopaenia occurred with 

greater frequency in malaria-exposed volunteers. The diagnosis of malaria was confirmed 

by thick film microscopy in 12/12 volunteers, all of whom were also positive for P. 

falciparum by qPCR. The diagnosis of influenza was confirmed by viral culture in 5/8 

symptomatic volunteers following challenge. There were no significant abnormalities in 

ECG, laboratory or spirometry parameters post-challenge in the influenza cohort. 
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Symptom Malaria 

infected 
(n = 11) 

Influenza 
exposed

a 

(n = 8) 

P 

value
b 

 

Influenza 
infected

a 

(n = 5) 

P 
value

b  

Cough 0 5 0.005 4 0.003 

Diarrhoea 2 0 0.49 0 1.0 

Headache 10 6 0.55 4 1.0 

Fever 8 2 0.18 2 0.55 

Malaise 3 3 1.0 2 1.0 

Myalgia/ 

Arthralgia 

10 5 0.72 3 0.21 

Nasal  

Symptoms 

1 7 0.001 5 0.001 

Nausea/ 

Vomiting 

3 2 1.0 1 1.0 

Sore throat 0 3 0.058 3 0.018 

Met case 

definition 

8 3 0.18 3 1.0 

 

Table 2 - Clinical features of symptomatic individuals following pathogen exposure.  a  

8/11 influenza-exposed volunteers became symptomatic, 5/8 of whom developed viral 

culture-confirmed influenza infection.b  Analysis by two-tailed Fisher’s exact test versus 

malaria-infected volunteers. 

 

DISCUSSION 

 

The pH1N1/09 case definition was poorly predictive of influenza infection in this 

cohort of unimmunised healthy volunteers challenged with P. falciparum malaria or 

influenza A, in keeping with recent data on its performance in clinical practice (2) as well 

as similar case definitions in other settings (10). In our studies volunteers were treated as 

soon as significant symptoms or positive blood film developed, therefore only clinical 

features in the early phase of illness were addressed, and it remains possible that the 

power to distinguish between these infections clinically might be improved with a longer 

duration of illness. In addition the use of a non-pandemic challenge strain of influenza in this 

study may reduce generalisability of findings to pH1N1, which has higher pathogenicity in 
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younger individuals (11) presumably related to reduced pre-existing immunity (12); yet 

all volunteers in our study had no detectable pre-existing immunity to the challenge 

strain, so in this context they might be considered more representative of a pandemic 

exposed population. Moreover, the pre-assessment probability of infection has a major 

impact on the PPV and NPV, so during a pandemic setting (where the prevalence of 

influenza would be significantly greater than malaria) the case definition would be 

expected to perform significantly better. However in agreement with our data several 

instances of misclassification of P. falciparum (4,5) and other serious illnesses (9) have 

been reported in the context of protocol-based case-definitions during the peak of 

community transmission during the pandemic, highlighting the limitations of such protocol 

or algorithm-based diagnosis (5). Telephone consultation is an important component of 

infectious disease practice (13), and telephone or internet-based triage has considerable 

practical advantages in pandemic settings, however the poor predictive capacity of the 

pandemic case- definition demonstrated here supports the revisions to the case definition 

to incorporate travel history (3).  

Only upper respiratory tract symptoms reliably distinguished malaria from influenza in 

our study. Whilst the nasal route of inoculation may have theoretically influenced the 

incidence of rhinorrhoea by delivering a higher multiplicity infection to the nasal mucosa, 

a recent influenza clinical case series identified cough as a presenting symptom in 92% 

of individuals with naturally-acquired proven influenza infection (14), suggesting that in 

the absence of upper respiratory symptoms, particularly cough (15), a presumptive 

diagnosis of influenza should be reconsidered. 

Phase IIa controlled experimental infection studies play an important role in improving 

our understanding of the clinical features of infectious diseases (16,17). However for 

ethical reasons sample sizes for such studies are relatively small, thus our statistical 

power to assess differences in clinical features between malaria and influenza in the 

analysis presented here may have been reduced. In addition, influenza challenge 

protocols rarely result in 100% attack rates, (7)  as  reflected   in   the   8/11  volunteers 

developing symptoms and the 5/8 symptomatic volunteers with laboratory-confirmed 

influenza following nasal challenge, which further impacted sample size. Nevertheless, 

several lines of evidence support the conclusion based on these data that clinical 

features alone poorly distinguish between these infections. Firstly there are no 

reliable clinical diagnostic criteria for influenza (15). Secondly both infections are 

frequently confused in febrile returning travellers, where influenza is a frequent diagnosis 
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in travellers to malaria-endemic regions (18-21),  as well as in individuals in malaria-

endemic regions where a significant burden of undiagnosed influenza appears to exist in 

holoendemic transmission  settings (22). Therefore keeping an open mind regarding the 

clinical cause of undifferentiated febrile illness, particularly in the absence of upper 

respiratory tract symptoms, remains important even during influenza pandemic settings. 
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Appendix 2 – Co-Author permissions 
 

Dear Dr Spencer 

I am currently in the process of applying for a PhD by publication at the University of Sheffield (on 

influenza virus vaccines and clinical features).  As a co-author on the paper(s) listed below I would be 

very grateful if you would allow me to include the below listed papers in this submission.  If you 

agree to this, could you please sign the bottom of this document and either return to me by email 

(patricklillie@doctors.org.uk) or by post to; Dr Patrick Lillie, Department of Acute Medicine, Kings 

Mill Hospital, Mansfield Road, Sutton in Ashfield, Nottinghamshire, NG17 4JL.  Thank you for your 

response, please contact me if there are any questions. 

Regards 

Patrick Lillie 

List of co-authored papers 

A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP+M1 in 

adults aged over 50 years.  PLoS One 2012; 7: e48322 

Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans.  

Clin Infect Dis 2012; 55: 19-25 

 

I agree to the inclusion of the above listed published research articles in Dr Patrick Lillie’s 

PhD by publication thesis, to be submitted to the University of Sheffield. 

Name…Alexandra Spencer………………….. 

Signed… …. 

Date……14/10/2013……………………………. 
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Dear Prof Hill 

I am currently in the process of applying for a PhD by publication at the University of Sheffield (on 

influenza virus vaccines and clinical features).  As a co-author on the paper(s) listed below I would be 

very grateful if you would allow me to include the below listed papers in this submission.  If you 

agree to this, could you please sign the bottom of this document and either return to me by email 

(patricklillie@doctors.org.uk) or by post to; Dr Patrick Lillie, Department of Acute Medicine, Kings 

Mill Hospital, Mansfield Road, Sutton in Ashfield, Nottinghamshire, NG17 4JL.  Thank you for your 

response, please contact me if there are any questions. 

Regards 

Patrick Lillie 

List of co-authored papers 

Examination of influenza specific T cell responses after influenza virus challenge in individuals 

vaccinated with MVA-NP+M1 vaccine.  PLoS One 2013; 8: e62778 

A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP+M1 in 

adults aged over 50 years.  PLoS One 2012; 7: e48322 

Distinguishing malaria and influenza: early clinical features in controlled human experimental 

infection studies.  Travel Med Infect Dis 2012; 10: 192-196 

Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans.  

Clin Infect Dis 2012; 55: 19-25 

Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-

NP+M1.  Clin Infect Dis 2011; 52: 1-7 

 

I agree to the inclusion of the above listed published research articles in Dr Patrick Lillie’s 

PhD by publication thesis, to be submitted to the University of Sheffield. 

Name   Adrian V. S. Hill 

Signed… 

Date…… 6 November 2013 
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Dear Dr McLaren 

I am currently in the process of applying for a PhD by publication at the University of 

Sheffield (on influenza virus vaccines and clinical features).  As a co-author on the paper(s) 

listed below I would be very grateful if you would allow me to include the below listed 

papers in this submission.  If you agree to this, could you please sign the bottom of this 

document and either return to me by email (patricklillie@doctors.org.uk) or by post to; Dr 

Patrick Lillie, Department of Acute Medicine, Kings Mill Hospital, Mansfield Road, Sutton in 

Ashfield, Nottinghamshire, NG17 4JL.  Thank you for your response, please contact me if 

there are any questions. 

Regards 

Patrick Lillie 

List of co-authored papers 

A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-

NP+M1 in adults aged over 50 years.  PLoS One 2012; 7: e48322 

 

I agree to the inclusion of the above listed published research articles in Dr Patrick 

Lillie’s PhD by publication thesis, to be submitted to the University of Sheffield. 

Name…James McLaren…………………………….. 

Signed… ……………………………. 

Date…14.10.2013………………………………. 
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Dear Dr Blais 

I am currently in the process of applying for a PhD by publication at the University of 

Sheffield (on influenza virus vaccines and clinical features).  As a co-author on the paper(s) 

listed below I would be very grateful if you would allow me to include the below listed 

papers in this submission.  If you agree to this, could you please sign the bottom of this 

document and either return to me by email (patricklillie@doctors.org.uk) or by post to; Dr 

Patrick Lillie, Department of Acute Medicine, Kings Mill Hospital, Mansfield Road, Sutton in 

Ashfield, Nottinghamshire, NG17 4JL.  Thank you for your response, please contact me if 

there are any questions. 

Regards 

Patrick Lillie 

List of co-authored papers 

Examination of influenza specific T cell responses after influenza virus challenge in 

individuals vaccinated with MVA-NP+M1 vaccine.  PLoS One 2013; 8: e62778 

Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in 

humans.  Clin Infect Dis 2012; 55: 19-25 

 

I agree to the inclusion of the above listed published research articles in Dr Patrick 

Lillie’s PhD by publication thesis, to be submitted to the University of Sheffield. 

Name…Marie-Eve Blais…………….. 

Signed… …. 

Date……December 10th 2013……………. 
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Dear Dr Hamill 

I am currently in the process of applying for a PhD by publication at the University of 

Sheffield (on influenza virus vaccines and clinical features).  As a co-author on the paper(s) 

listed below I would be very grateful if you would allow me to include the below listed 

papers in this submission.  If you agree to this, could you please sign the bottom of this 

document and either return to me by email (patricklillie@doctors.org.uk) or by post to; Dr 

Patrick Lillie, Department of Acute Medicine, Kings Mill Hospital, Mansfield Road, Sutton in 

Ashfield, Nottinghamshire, NG17 4JL.  Thank you for your response, please contact me if 

there are any questions. 

Regards 

Patrick Lillie 

List of co-authored papers 

Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in 

humans.  Clin Infect Dis 2012; 55: 19-25 

Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A 

vaccine, MVA-NP+M1.  Clin Infect Dis 2011; 52: 1-7 

 

I agree to the inclusion of the above listed published research articles in Dr Patrick 

Lillie’s PhD by publication thesis, to be submitted to the University of Sheffield. 

Name…Matthew Hamill…………………………….. 

 

Signed… ……………………………. 

 

Date………15th Oct 2013…………………………. 
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Dear Prof McMichael 

I am currently in the process of applying for a PhD by publication at the University of 

Sheffield (on influenza virus vaccines and clinical features).  As a co-author on the paper(s) 

listed below I would be very grateful if you would allow me to include the below listed 

papers in this submission.  If you agree to this, could you please sign the bottom of this 

document and either return to me by email (patricklillie@doctors.org.uk) or by post to; Dr 

Patrick Lillie, Department of Acute Medicine, Kings Mill Hospital, Mansfield Road, Sutton in 

Ashfield, Nottinghamshire, NG17 4JL.  Thank you for your response, please contact me if 

there are any questions. 

Regards 

Patrick Lillie 

List of co-authored papers 

Examination of influenza specific T cell responses after influenza virus challenge in 

individuals vaccinated with MVA-NP+M1 vaccine.  PLoS One 2013; 8: e62778 

 

I agree to the inclusion of the above listed published research articles in Dr Patrick 

Lillie’s PhD by publication thesis, to be submitted to the University of Sheffield. 

Name……Professor Andrew McMichael 

Signed……  

Date…………December 10 2013 
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Dear Dr Lambkin-Williams 

I am currently in the process of applying for a PhD by publication at the University of 

Sheffield (on influenza virus vaccines and clinical features).  As a co-author on the paper(s) 

listed below I would be very grateful if you would allow me to include the below listed 

papers in this submission.  If you agree to this, could you please sign the bottom of this 

document and either return to me by email (patricklillie@doctors.org.uk) or by post to; Dr 

Patrick Lillie, Department of Acute Medicine, Kings Mill Hospital, Mansfield Road, Sutton in 

Ashfield, Nottinghamshire, NG17 4JL.  Thank you for your response, please contact me if 

there are any questions. 

Regards 

Patrick Lillie 

List of co-authored papers 

Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in 

humans.  Clin Infect Dis 2012; 55: 19-25 

 

I agree to the inclusion of the above listed published research articles in Dr Patrick 

Lillie’s PhD by publication thesis, to be submitted to the University of Sheffield. 

Name…Rob Lambkin-Williams………………………….. 

Signed  

Date……………1/11/2013……………………. 
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Dear Dr Lambe 

I am currently in the process of applying for a PhD by publication at the University of 

Sheffield (on influenza virus vaccines and clinical features).  As a co-author on the paper(s) 

listed below I would be very grateful if you would allow me to include the below listed 

papers in this submission.  If you agree to this, could you please sign the bottom of this 

document and either return to me by email (patricklillie@doctors.org.uk) or by post to; Dr 

Patrick Lillie, Department of Acute Medicine, Kings Mill Hospital, Mansfield Road, Sutton in 

Ashfield, Nottinghamshire, NG17 4JL.  Thank you for your response, please contact me if 

there are any questions. 

Regards 

Patrick Lillie 

List of co-authored papers 

A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-

NP+M1 in adults aged over 50 years.  PLoS One 2012; 7: e48322 

Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in 

humans.  Clin Infect Dis 2012; 55: 19-25 

Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A 

vaccine, MVA-NP+M1.  Clin Infect Dis 2011; 52: 1-7 

 

I agree to the inclusion of the above listed published research articles in Dr Patrick 

Lillie’s PhD by publication thesis, to be submitted to the University of Sheffield. 

Name…Teresa Lambe…………………………….. 

Signed………… ……………………. 

Date…………14.10.13………………………. 
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