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Abstract 

Escherichia coli K12 serves as an important model for studying systems that are important 

to bacteria in their own right as well as those that are conserved in ‘higher' organisms, 

which are more difficult and costly to study. Like many model organisms, the genome of 

K12 has been sequenced, producing a catalogue of protein-coding and stable-RNA genes 

that enabled study using ‘omic’ approaches. This has led to a rapid expansion of our 

knowledge of patterns of gene expression and their dependency on growth conditions, cell 

physiology and individual genes. However, the underlying networks of gene regulation are 

less well understood, but are known to involve the control of steps in RNA processing and 

degradation as well as transcription and translation. With this in mind, this thesis describes 

the development of an approach based on RNA sequencing that produces nucleotide-

resolution transcriptome maps that distinguish sites that correspond to RNA processing 

and steps in degradation from those of transcription initiation, while incorporating all 

classes of RNA. Comparison with results obtained previously validated the approach, which 

has been applied already to the study of other bacterial species. Within the E. coli map, 

many new features were identified, such as previously undetected small RNAs and 

processing at a site associated with the production of specialised ribosomes, which may 

ensure the translation of leaderless mRNAs, which were also mapped. The approach also 

showed the benefit of incorporating steps that can differentiate the 5’ status of transcripts 

in assigning sites of transcription initiation. RNA sequencing was also used to map sites of 

cleavage by RNase E, an essential endoribonuclease that is central to both the processing 

and degradation of RNA in bacteria and plant plastids. This aspect of the thesis has 

advanced from pilot studies to the point where the ‘code’ that determines one form of 

substrate recognition by RNase E is beginning to emerge. As a result of this success, 

equivalent data has been collected for other ribonucleases involved in RNA processing and 

degradation. Continuing analysis of the primary and secondary transcriptomes, consisting 

of native, unprocessed transcripts and of transcripts that have been modified from their 

native form via processing and/or degradation respectively, with the tools presented here 

promises to broaden and deepen our understanding of an important model organism. 

  



v 
 

Table of Contents 

 

Intellectual Property and Publication Statements ................................................................... ii 

Acknowledgements ................................................................................................................. iii 

Abstract ................................................................................................................................... iv 

Table of Contents ..................................................................................................................... v 

List of Figures .......................................................................................................................... ix 

List of Tables ........................................................................................................................... xi 

Abbreviations ......................................................................................................................... xii 

Chapter 1 .................................................................................................................................. 1 

1 Introduction to RNA transcription and degradation ......................................................... 1 

1.1 Overview .................................................................................................................... 1 

1.2 Transcription initiation ............................................................................................... 2 

1.2.1 Sigma factors ...................................................................................................... 2 

1.2.2 Consensus sequences involved in transcription initiation ................................. 3 

1.2.3 Role of transcription factors .............................................................................. 3 

1.3 RNA degradation ........................................................................................................ 4 

1.3.1 Introduction ....................................................................................................... 4 

1.3.2 Ribonucleases .................................................................................................... 5 

1.3.3 RNase E .............................................................................................................. 8 

1.3.3.1 Regulation and role in RNA degradation .................................................... 8 

1.3.3.2 Structure of RNase E ................................................................................... 9 

1.3.3.3 5’ monophosphate sensing by RNase E .................................................... 11 

1.3.3.4 Stimulation of RNase E activity via RppH mediated ‘decapping’ ............. 12 

1.3.3.5 Direct entry by RNase E ............................................................................ 13 

1.3.4 RNA stability ..................................................................................................... 13 

1.4 Previous RNA sequencing approach ........................................................................ 14 

1.5 Broad objective and specific aims ............................................................................ 16 

 



vi 
 

Chapter 2 ................................................................................................................................ 17 

2 Materials and Methods ................................................................................................... 17 

2.1 Bacterial strains and media ...................................................................................... 17 

2.2 Gel electrophoresis .................................................................................................. 18 

2.2.1 Agarose gel electrophoresis ............................................................................. 18 

2.2.2 Polyacrylamide gel electrophoresis ................................................................. 18 

2.2.3 SDS gel electrophoresis .................................................................................... 18 

2.3 Radio-labelled probe generation ............................................................................. 19 

2.4 DNA methods ........................................................................................................... 19 

2.4.1 DNA purification and restriction digest ........................................................... 19 

2.4.2 DNA quantification ........................................................................................... 19 

2.4.3 DNA gel extraction ........................................................................................... 20 

2.4.4 Polymerase chain reaction (PCR) ..................................................................... 20 

2.4.5 Cloning and sequencing of fragments produced by PCR ................................. 21 

2.5 RNA methods ........................................................................................................... 21 

2.5.1 Total RNA extraction ........................................................................................ 21 

2.5.2 Total RNA enrichment ...................................................................................... 22 

2.5.3 Northern blotting ............................................................................................. 23 

2.5.4 Global RNA sequencing .................................................................................... 23 

2.5.5 Differential RNA sequencing ............................................................................ 24 

2.5.6 RNA synthesis by in vitro transcription. ........................................................... 24 

2.5.7 Discontinuous cleavage assays ........................................................................ 25 

2.5.8 Enzymatic modifications of RNA ...................................................................... 26 

2.5.9 RNA-ligase mediated, reverse-transcription PCR assay ................................... 27 

Chapter 3 ................................................................................................................................ 28 

3 Enzyme characterization and workflow set up ............................................................... 28 

3.1 Introduction ............................................................................................................. 28 

3.2 Results ...................................................................................................................... 29 

3.2.1 Removal of 23S and 16S rRNA from total RNA ................................................ 29 



vii 
 

3.2.2 Characterisation of TAP ................................................................................... 30 

3.2.3 Characterisation of the RNase E T170V substitution ....................................... 33 

3.2.3.1 Determination of the enzyme stock concentration ................................. 33 

3.2.3.2 Assessment of enzyme stock activity ....................................................... 33 

3.2.4 Determination of conditions for the incubation of total RNA with RNase E and 

T170V ........................................................................................................................ 36 

3.3 Discussion ................................................................................................................. 38 

Chapter 4 ................................................................................................................................ 39 

4 Mapping of sites of RNase E cleavage within the transcriptional landscape of 

Escherichia coli as determined using a combination of global and differential RNA-seq . 39 

4.1 Introduction ............................................................................................................. 39 

4.2 Results ...................................................................................................................... 41 

4.2.1 Identification of transcription start sites ......................................................... 41 

4.2.2 Leaderless mRNAs and ribosome processing .................................................. 49 

4.2.3 The maturation of stable RNAs ........................................................................ 51 

4.2.4 The degradation and processing of mRNA ...................................................... 55 

4.2.5 Identification of potential sRNAs ..................................................................... 56 

4.2.6 Mapping of sites of cleavage by T170V in vitro ............................................... 58 

4.3 Discussion ................................................................................................................. 61 

Chapter 5 ................................................................................................................................ 64 

5 Confirmation of features within the transcriptional landscape of E. coli. ...................... 64 

5.1 Introduction ............................................................................................................. 64 

5.2 Results ...................................................................................................................... 66 

5.2.1 Leaderless mRNA ............................................................................................. 66 

5.2.2 Specialized ribosome-like processing of 16S rRNA .......................................... 69 

5.2.3 Confirmation of sRNAs by northern blotting ................................................... 71 

5.2.4 Confirmation of novel cleavage sites present in vivo reconstituted following 

incubation of total mRNA with T170V in vitro. ......................................................... 72 

5.3 Discussion ................................................................................................................. 76 

 



viii 
 

Chapter 6 ................................................................................................................................ 78 

6 Further work and concluding remarks ............................................................................ 78 

Supplement ............................................................................................................................ 84 

References ............................................................................................................................. 85 



ix 
 

List of Figures 

Figure 1.1 - Endonucleolytic RNA degradation model. ............................................................ 5 

Figure 1.2 – Schematic representation of the primary structure of RNase E and components 

of the degradosome. ..................................................................................................... 10 

Figure 1.3 – Schematic representation of the RNA degradosome in E. coli. ......................... 10 

Figure 1.4 - The binding pocket for 5’-monophosphorylated ends in RNase E. .................... 12 

Figure 1.5 - The sequencing approach of Sharma et al. (2010) and our sequencing approach.

 ....................................................................................................................................... 15 

Figure 3.1 - Removal of large ribosomal RNA species from E. coli total RNA samples. ......... 30 

Figure 3.2 - Preparation of 5’ triphosphorylated cspA mRNA. .............................................. 31 

Figure 3.3 – Characterisation of TAP and TEX treatments. .................................................... 32 

Figure 3.4 – Assay of the specificity of TEX towards 5’ phosphorylated ends. ...................... 32 

Figure 3.5 - Determination of NTH-RNase E and T170V mutant stock concentration. ......... 33 

Figure 3.6 - Characterisation of the RNase E T170V mutant. ................................................ 34 

Figure 3.7 - Preparation of 5’-triphosphorylated RNAI RNA. ................................................. 35 

Figure 3.8 – Cleavage of cspA and RNAI mRNA by the N-terminal half of RNase E. .............. 35 

Figure 3.9 - Cleavage of total RNA by the N-terminal half of RNase E and the T170V mutant.

 ....................................................................................................................................... 37 

Figure 3.10 - TEX treatment of E. coli total RNA samples. ..................................................... 37 

Figure 4.1 – RNA-seq pipeline used in this study. .................................................................. 42 

Figure 4.2 - M-A scatterplots of values from the differential RNA-seq analysis. ................... 43 

Figure 4.3 - Example of sequencing visualization in the UCSC Microbial Genome Browser. 44 

Figure 4.4 - Examples of different classes of transcription start site. .................................... 46 

Figure 4.5- Weblogo generated following manual alignment of tRNA TSSs identified by the 

approach here presented. ............................................................................................. 49 

Figure 4.6 – pgpA and rhlB leaderless mRNAs. ...................................................................... 50 

Figure 4.7 - 16S rRNA MazF equivalent cleavage site. ........................................................... 51 

Figure 4.8 - Processing of the rrnE operon. ........................................................................... 53 

Figure 4.9 - Detection of known cleavage sites. .................................................................... 55 

Figure 4.10 - Venn diagram presenting sRNAs identified in our study, previously identified 

sRNAs and REP sequences. ............................................................................................ 57 

Figure 4.11 - Previously identified sRNAs supported by our sequencing approach. ............. 57 

Figure 4.12 - Novel candidate sRNAs identified by our sequencing approach. ..................... 58 



x 
 

Figure 4.13 - Scatterplot analysis of RNA-seq data following total mRNA incubation with 

T170V ............................................................................................................................ 60 

Figure 4.14 – in vivo cleavage sites reconstituted in vitro following incubation with T170V.

 ....................................................................................................................................... 60 

Figure 5.1 - Gel electrophoresis analysis of the products of RLM-RT-PCR ............................ 67 

Figure 5.2 – Restriction enzyme digest of the rhlB RLM-RT-PCR products. ........................... 68 

Figure 5.3 - TSSs identified for rhlB following RLM-RT-PCR and cloning. .............................. 69 

Figure 5.4 – RLM-RT-PCR analysis of cleavage at the -43 site of 16S rRNA. .......................... 70 

Figure 5.5 - Restriction assay of the 16S 3' end cleavage product. ....................................... 71 

Figure 5.6 – sRNA detection with radiolabelled probes. ....................................................... 72 

Figure 5.7 – Assay of RNase E direct entry candidates identified via in vitro reconstitution.74 

Figure 5.8 – In vitro RNase E cleavage assays of tRNA precursors. ....................................... 75 

Figure 6.1 - MazF leaderless mRNA stress transcriptome model. ......................................... 82 

  



xi 
 

List of Tables 

Table 1.1 - Sigma factors in E. coli. ........................................................................................... 3 

Table 1.2 - List of exo and endo-ribonucleases in E. coli. ........................................................ 7 

Table 2.1 - Strains. .................................................................................................................. 17 

Table 2.2 - Oligonucleotides used in this study. .................................................................... 21 

Table 4.1 - Overlap of TSSs identified with TSSs recorded in RegulonDB. ............................. 45 

Table 4.2- Table showing the upstream region of the sites of enrichment for tRNA and rRNA 

TSS. ................................................................................................................................ 48 

Table 4.3 - Leaderless mRNAs. ............................................................................................... 50 

Table 4.4 - Processing of tRNA genes in E. coli. ..................................................................... 54 

Table S.1 - Transcriptional start sites identified for E. coli..................................................... 84 

Table S.2 – sRNAs detected. .................................................................................................. 84 

Table S.3 - rhlB mRNA TSS sequencing results. ...................................................................... 84 

 

  



xii 
 

Abbreviations 

ATP adenosine triphosphate 

bp base pair 

BSA bovine serum albumin 

cm centimetre 

cDNA complementary deoxyribonucleic acid 

CTH C-terminal half 

Ci curie 

°C degree Celsius 

DNA deoxyribonucleic acid 

dRNA-seq differential RNA-sequencing 

DTT dithiothreitol 

EDTA ethylenediaminetetraacetic acid 

FRT-seq flowcell reverse transcription sequencing 

GEO Gene Expression Omnibus 

gRNA-seq  global RNA-sequencing 

h hour 

kb kilobase 

kDa kilodalton 

LB Luria-Bertani 

Mbp mega base pair 

mRNA messenger ribonucleic acid 

µCi microcurie 

µg microgram 

µl microlitre 

mA milliampere 

mCi millicurie 

ml millilitre 

mM millimolar 

mmol millimole 

min minute 

M molar 

MEME Multiple Em for Motif Elucidation 

nm nanometre 

nM nanomolar 

NTH N-terminal half 

nt nucleotide 

OD optical density 

PAGE polyacrylamide gel electrophoresis 

PCR polymerase chain reaction 

PNK polynucleotide kinase 

psi pound per square inch 

REP repetitive extragenic palindromic 

RT reverse transcription 

rpm revolutions per minute 



xiii 
 

RNA ribonucleic acid 

rNTP ribonucleotide triphosphate 

rRNA ribosomal ribonucleic acid 

RBS ribosome binding site 

RBD RNA binding domain 

RLM-RT-PCR RNA ligase-mediated reverse transcription PCR  

sec second 

SD Shine-Dalgarno 

sRNA small ribonucleic acid 

SDS sodium dodecyl sulphate 

g standard gravity 

TEX TerminatorTM 5’ phosphate-dependent exonuclease  

TAP tobacco acid pyrophosphatase 

TA toxin anti-toxin 

TSS transcription start site 

TF transcription factor 

tRNA transfer ribonucleic acid 

tmRNA transfer-messenger ribonucleic acid 

Tris tris(hydroxymethyl)aminomethane 

TBE Tris-borate-EDTA 

TE Tris-EDTA 

TB tuberculosis 

UV ultraviolet 

U unit 

UCSC University of California, Santa Cruz  

V volt 

Vh volt hour 

v/v volume/volume 

w/v weight/volume 
 



1 
 

Chapter 1 

1 Introduction to RNA transcription and degradation 

1.1 Overview 

The Central “Dogma” of molecular biology, which is an explanation of the flow of genetic 

information (Crick, 1958; Crick, 1970), is often described as "DNA makes RNA makes 

protein" (Nirenberg, 2004). This particular description, which emphasises the role of 

transcription and translation, is an over simplification. It not only fails to include the flow of 

information from RNA to DNA through reverse transcription (Ahlquist, 2002), but also fails 

to describe the essential role of RNA processing in, for example, producing the RNA 

components of the translational machinery (Deutscher, 2009) and the critical role of mRNA 

degradation, which ensures that translation has to follow programming at the level of 

transcription (Dreyfus, 2009). 

Over the last decade, the study of gene regulation has made extensive use of microarrays 

to provide information on transcript levels on a genome-wide scale (Schena et al., 1995; 

Bier and Kleinjung, 2001; Goldsmith and Dhanasekaran, 2004). Such transcriptome data 

when available for different growth conditions, stages of development (for organisms that 

change morphology), and altered genetic backgrounds has allowed the identification of co-

expressed genes, which in turn has enhanced the identification of co-regulation (De Smet 

and Marchal, 2010; Storms et al., 2010). For example, numerous algorithms are available to 

identify sequences that are enriched upstream of co-regulated genes, and represent 

candidates for the binding of a shared transcription factor. Information on such cis-

regulatory sites is being collated in databases for organisms ranging from E. coli 

(RegulonDB) to humans (ENCODE) (The_Encode_Project_Consortium, 2004; Salgado et al., 

2006). With the obvious exception of splicing in eukaryotes, microarrays have provided 

scant information on the steps that control gene expression at the level of RNA processing 

and degradation. There are several main reasons for this, including insufficient resolution 

and sensitivity to detect processing and degradation intermediates and the inability to 

distinguish the pathways by which particular species are generated. However, these 

limitations no longer exist with the advent of RNA sequencing. 

This chapter provides an introduction to the control of gene expression in E. coli, with a 

particular emphasis on those processes that register an effect at the level of the RNA. It 
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starts by providing an overview of transcription initiation and its control, then moves on to 

describe RNA degradation and the various components involved in this process, placing 

specific attention on RNase E. It finally presents the sequencing approach that inspired the 

work presented in this thesis alongside the objectives and aims. The direct control of 

translation is covered, but only in relation to antisense RNA regulators. An overview of RNA 

sequencing is also provided. 

1.2 Transcription initiation 

As indicated above, gene expression is tightly regulated at several levels in all living 

organisms. One of these levels of regulation is the process of transcription. E. coli codes for 

a single RNA polymerase that is composed of four sub-units (β, β’ and two α subunits; 

α2ββ’). In order to recognise specific promoter sequences, a sigma factor (σ) must be 

associated with this α2ββ RNA polymerase core to yield a holoenzyme (Eσ) which can 

initiate transcription (Browning and Busby, 2004). 

 Sigma factors 1.2.1

E. coli has 7 sigma factors (Table 1.1) that are grouped into two main families, based on 

their evolutionary relatedness and their gene targets (Wösten, 1998; Buck et al., 2000; 

Browning and Busby, 2004; Sharma and Chatterji, 2010). These sigma factors work in 

conjunction within the cell and compete to bind RNA polymerase, with which they bind 

with a range of affinities. The first family belong to the E. coli σ70–type sigma factors (the 

number denotes mass in kDa), which are evolutionarily conserved in all bacteria and 

regulate most of the housekeeping genes throughout the bacterial life cycle (Gruber and 

Gross, 2003) as well as most genes during bacterial exponential growth (Buck et al., 2000; 

Browning and Busby, 2004; Sharma and Chatterji, 2010). In addition, extra cytoplasmic 

function (ECF) sigma factors, which are responsible for switching on the expression of 

genes involved in environment stress responses also belong to this family (Helmann, 2002; 

Brooks and Buchanan, 2008; Ho and Ellermeier, 2012). The second family corresponds to 

the σ54–type sigma factors, which share no homology with σ70 and in addition to the core 

α2ββ’ complex require ATP and enhancers to form a holoenzyme (Gruber and Gross, 2003). 

The latter group is involved mainly in the regulation of genes related to nitrogen 

metabolism (Buck et al., 2000). Whilst there are multiple representatives of the σ70 family 

per organism, the presence of more than one σ54 is rare (Wösten, 1998; Buck et al., 2000; 

Sharma and Chatterji, 2010). Also, worth mentioning is that an additional level of 
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regulation is achieved by sigma factor antagonists known as anti-sigma factors (Hughes and 

Mathee, 1998). 

Name Consensus sequence Binding affinity 

  −35 Spacer −10 Kd (nM) 

σ70-family 

σ70, (σD) TTGACA 16–18 TATAAT 0.26 

σ38, (σS) N/D N/D CTATACT 4.26 

σ32, (σH) CTTGAAA 11–16 CCCATNT 1.24 

σ28, (σF) TAAA N/D GCCGATAA 0.74 

σ24, (σE)* GAACTT 16–17 TCTRA 2.43 

σ19, (σFECI)* N/D N/D N/D 2.43 

σ54-family 

  −24 Spacer −12 

 σ54, (σN) TGGCAC N/D TTGCW 0.3 

Table 1.1 - Sigma factors in E. coli. Table presenting the sigma factors of E. coli alongside 
the consensus sequences they recognize relative to the site of transcription initiation, the 
spacer length between the consensus sequences and the binding affinity of each sigma 
factor to RNA polymerase. ECFs are indicated with an *. N = any base, R = A or G and W = A 
or T N/D=Not determined. This table was adapted from two publications (Wösten, 1998; 
Sharma and Chatterji, 2010).  

 Consensus sequences involved in transcription initiation 1.2.2

Sigma factors are essential for basal transcription initiation; thus, knowledge of the specific 

sequences, known as consensus sequences, that each of them recognise when assembled 

into a holo-RNA polymerase is essential if the regulation of gene expression is to be 

understood and modelled. Consensus sequences have been determined for sigma factors 

in E. coli. For example, the consensus sequences for σ70 are TATAAT, centred at position -10 

(relative to site of transcription initiation) and TTGACA at position -35 (Hook-Barnard et al., 

2006) whilst the consensus sequences for σ54 are TGGCA, centred at position -24 and TTGC 

at position -12. The particular sequence bound by a sigma factor has a major impact on the 

rate of transcription initiation. Indeed, the better the match between a promoter sequence 

and the consensus sequence for the sites recognised by a sigma factor, the stronger the 

promoter (Ishihama, 1990; Kobayashi et al., 1990). 

 Role of transcription factors 1.2.3

In addition, the rate of transcription initiation can be further regulated by a set of proteins 

referred to by bacteriologists as transcription factors (TFs). In general TFs, bind to specific 
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sites in the vicinity of promoters and make contacts with RNA polymerase, thereby altering 

its ability to initiate transcription. Activators promote the binding of RNA polymerase and, 

as a result, the initiation of transcription. On the other hand, repressors prevent the 

binding or progression of RNA polymerase, thus inhibiting transcription. Overall, in E. coli 

there are over 270 genes that have been suggested to code TFs (Madan Babu and 

Teichmann, 2003). Only about half have been characterized experimentally, and of these 

TFs the consensus sequences (or knowledge of the contribution of individual nucleotide 

positions to binding) of only 172 are currently logged in RegulonDB (Salgado et al., 2006).  

1.3 RNA degradation 

 Introduction 1.3.1

Another level of gene regulation occurs when RNA is processed and degraded, which is the 

main area of research in the McDowall laboratory and of central importance for the 

development of the project here presented. The degradation of RNA provides the 

counterbalance to transcription and enables the translational machinery to follow closely 

programs of transcription. Furthermore, there is a close interplay between translation and 

mRNA decay as the translational machinery is known to protect mRNA from decay (Iost and 

Dreyfus, 1995; Joyce and Dreyfus, 1998; Dreyfus, 2009). This means that the effects of 

translation will affect mRNA decay and register at the RNA level. 

 

In E. coli, which is the major model system for studying post-transcriptional control in 

bacteria, RNA is degraded by the combined action of endonucleases and 3’ to 5’ 

exonucleases, which function in concert with helicases, poly(A) polymerase, an RNA 5’ 

pyrophosphohydrolase (or ‘decapping’ enzyme) and protein regulators (Carpousis et al., 

2009). Endonucleolytic cleavage is thought to accelerate the degradation of E. coli mRNA 

(or at least segments) by allowing 3’ exonuclease access either prior to the termination of 

transcription or transcriptional terminator structures at the 3’. The generally accepted 

model for RNA degradation is presented in Figure 1.1. 



5 
 

 

Figure 1.1 - Endonucleolytic RNA degradation model. (A) Polyribosomal RNA is cleaved at 
AU rich areas by RNase E (Mcdowall et al., 1994; Mcdowall and Cohen, 1996). (B) The 
resulting RNA fragments are digested into single nucleotides by the combined action of 
exonucleolytic enzymes such as PNPase, RNase R and helicase RhlB (Carpousis et al., 2009). 
Oligoribonuclease is a 3’ to 5’ processive RNase and degrades partially degraded RNAs to 
monoribonucleotides. The RNA degradosome, a multi-component complex in E. coli, is 
composed of RNase E, PNPase, RhlB and enolase (Taghbalout and Rothfield, 2008; 
Carpousis et al., 2009); enzymes that form part of the degradosome are highlighted in 
brown and marked with an asterisk. Taken from (Carpousis et al., 2009). 

 Ribonucleases 1.3.2

As mentioned above, RNA in E. coli is degraded and matured by the concerted action of 

endoribonucleases and 3’ to 5’ exoribonucleases. In E. coli, there is no evidence for a 5’ to 

3’ exoribonuclease, although one does exist in B. subtilis and other bacteria (Even et al., 

2005; Madhugiri and Evguenieva-Hackenberg, 2009; Bugrysheva and Scott, 2010). 

Endoribonucleases cleave within the RNA strand, similar to the cleavage of DNA by 

restriction enzymes, but without the same stringent sequence specificity. Much work has 

focused on RNase E as its inactivation leads to the stabilisation of most transcripts in E. coli, 

as well as blocking processing of tRNA (Ow and Kushner, 2002) and rRNA (Apirion and 

Lassar, 1978; Ono and Kuwano, 1979). Other important endoribonucleases are RNase III, 

RNase P, RNase G and MazF. On the other hand, exoribonucleases digest the RNA strand 

from the 3’ to the 5’ end of the transcript and remove one nucleotide at a time. The main 
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representatives of this group with regard to the degradation of mRNA are RNase II, RNase R 

and PNPase. Exonuclease RNase Z is also worth mentioning, as it is responsible for the 

processing of the 3’ end of tRNAs. For a full list of exo- and endo-ribonucleases, along with 

their role in RNA processing and degradation, refer to Table 1.2. Exoribonucleases can 

either be distributive (will dissociate from the RNA strand after each individual nucleotide is 

removed) or processive (remain associated with the substrate until the phosphodiester 

bond upstream of the last removable nucleotide has been cleaved). PNPase is a 

phosphorolytic enzyme that produces nucleotide diphosphates, while RNase II and RNase R 

are hydrolytic and produce nucleotide monophosphates (Carpousis et al., 2009). The fact 

that PNPase activity generates nucleotide diphosphates and RNase II and RNase R generate 

nucleotide monophosphates is important for energy conservation and the generation of 

ATP. Ribonuclease activity is not the only function that aids in the degradation of RNA; 

indeed, polyadenylation, catalysed by poly(A) polymerase, causes the 3’ terminus of RNA to 

become more susceptible to 3’ exonucleolytic attack with as little as 5 adenosine residues 

added (Blum et al., 1999). Furthermore, PNPase is also known to function in reverse in 

order to add heterooligomeric tails which could promote 3’ to 5’ exonucleolytic attack 

(Mohanty and Kushner, 2000).
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Enzyme 
Exo or Endo-
ribonuclease 

Role in RNA metabolism  
Sigma 

factor* 
Reference 

PNPase Exo 3’ tRNA processing and mRNA decay 70  (Soreq and Littauer, 1977; Littauer and Soreq, 1982) 

RNase R Exo rRNA maturation, mRNA degradation  ND  (Cheng et al., 1998) 

RNase PH Exo 3' tRNA processing ND  (Deutscher et al., 1988; Mian, 1997; Zhou and Deutscher, 1997) 

RNase II Exo 3' tRNA processing 70  (Gupta et al., 1977) 

RNase D Exo 3' tRNA processing 70  (Cudny et al., 1981; Mian, 1997) 

RNase T Exo 3' tRNA processing and 5S rRNA 3' maturation 24  (Deutscher and Marlor, 1985) 

Oligo-RNase Exo Processive 3' to 5' RNase 70  (Niyogi and Datta, 1975; Zhang et al., 1998) 

RNase III Endo 5S, 16S and 23S rRNA precursor formation  70  (Robertson et al., 1967; Conrad et al., 2002) 

RNase P Endo 5' tRNA processing 70  (Pace and Brown, 1995) 

RNase Z Endo tRNA processing 70  (Callahan et al., 2000; Ezraty et al., 2005) 

MazF Endo mRNA processing and degradation 70 
 (Christensen et al., 2003; Zhang et al., 2003; Munoz-Gomez et al., 
2004) 

RNase E Endo 5S, 16 S and 23S rRNA maturation and mRNA decay 70  (Ghora and Apirion, 1978; Ono and Kuwano, 1979) 

RNase G Endo 16S rRNA 5' maturation and mRNA decay  N/D  (Mcdowall et al., 1993; Wachi et al., 1999; Tock et al., 2000) 

RNase I Endo 23S RNA and total mRNA degradation  N/D 
 (Cannistraro and Kennell, 1989; Meador and Kennell, 1990; 
Cannistraro and Kennell, 1991; Subbarayan and Deutscher, 2001) 

RNase LS Endo Bacteriophage T4 and cellular mRNA degradation 70/32  (Otsuka et al., 2003; Otsuka and Yonesaki, 2005) 

RNase HI Endo RNA degradation in RNA-DNA hybrids 24  (Mian, 1997) 

RNase HII Endo RNA degradation in RNA-DNA hybrids 24   (Mian, 1997) 

Table 1.2 - List of exo and endo-ribonucleases in E. coli. This table presents all of the known E. coli ribonucleases along with their role in RNA metabolism 

and the sigma factors that regulate their transcription. Note that 70 is responsible for mediating the transcription of most ribonucleases. Adapted from 
(Condon, 2007) and (Gutgsell and Jain, 2010). *Data from RegulonDB if present. RNases which are part of toxin-antitoxin systems are not included with the  
exception of MazF (N/D= not determined).
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 RNase E 1.3.3

In E. coli, the rapid degradation of mRNA is known to be highly dependent on RNase E. This 

endoribonuclease is required for the normal, rapid degradation of many, if not most 

transcripts (for recent reviews, see (Deutscher, 2006; Carpousis et al., 2009)) , including 

RNAI, the antisense RNA regulator of ColEI-type plasmid replication (Tomcsanyi and 

Apirion, 1985; Lin-Chao and Cohen, 1991). It also has a role in the processing of precursors 

of ribosomal RNA (Ghora and Apirion, 1978; Misra and Apirion, 1979; Li et al., 1999b) and 

transfer RNA (Li and Deutscher, 2002; Ow and Kushner, 2002) as well as several other small, 

non-protein-coding RNAs (Lundberg and Altman, 1995; Lin-Chao et al., 1999). Concordant 

with its central role in RNA processing and degradation, RNase E is essential for E. coli 

viability (Apirion and Lassar, 1978; Ono and Kuwano, 1979). It is known that the inactivation 

of rne leads to the accumulation of a large rRNA precursor (unprocessed 17 S rRNA) (Li et 

al., 1999a)and the 9S precursor of 5S rRNA (Ghora and Apirion, 1978). RNase E is assisted in 

the processing of 16S rRNA by a paralogue called RNase G (Li et al., 1999b; Wachi et al., 

1999); which is also required for the normal degradation of several functional transcripts 

(Wachi, 2001; Lee et al., 2002; Jourdan and Mcdowall, 2008). 

1.3.3.1 Regulation and role in RNA degradation 

RNase E plays a central role in the widely accepted RNA degradation model (Figure 1.1). 

Despite this model being widely acknowledged, inactivation of rne in E. coli does not 

abolish mRNA degradation but only slows it down (Ono and Kuwano, 1979; Lee et al., 

2002). This suggests that, despite being essential for cell viability, the role of RNase E in 

mRNA processing and degradation might be fulfilled by other enzymes; for example, its 

paralogue RNase G. RNase E shares with RNase G a high N-terminal catalytic domain 

sequence similarity and the ability to process 16S rRNA, as well as high specificity for 5’-

monophosphorylated RNA, due to both enzymes having a 5’-monophosphate sensing 

pocket (Mcdowall and Cohen, 1996). Furthermore, the activity of RNase E is tightly 

regulated in the cell by a variety of mechanisms. RNase E can auto regulate the level of its 

own transcript by controlling the decay of its mRNA and adjusts its synthesis according to 

the levels of its substrates (Mudd and Higgins, 1993; Jain and Belasco, 1995; Sousa et al., 

2001) In addition, RNase E can be inhibited by direct binding of the inhibitor proteins RraA 

and RraB (Gao et al., 2006; Gorna et al., 2010). Antisense RNAs are capable of blocking or 

enhancing translation and mRNA degradation. This means, RNase E activity can be affected 

by sRNAs, which can act passively or actively on specific mRNA targets. In the first case, 
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translation is silenced or sites are made available for RNase E cleavage by the direct binding 

of sRNAs to the mRNA (Lease et al., 1998; Morita et al., 2006; Darfeuille et al., 2007; Maki 

et al., 2008; Pfeiffer et al., 2009). In the second case, sRNAs generate complexes with the 

chaperone Hfq in order to recruit specific mRNAs to RNase E and thus stimulate their 

degradation (Massé et al., 2003; Morita et al., 2005; Pfeiffer et al., 2009; Vogel and Luisi, 

2011). An example of the latter is the MicC-Hfq RNase E mediated degradation of ompD 

(Pfeiffer et al., 2009). Other components of the degradosome are also regulated, for 

example PNPase activity is known to be modulated by citrate (Nurmohamed et al., 2011). 

Models that do not depend on endonucleolytic cleavage of the RNA strand by enzymes 

such as RNase E as the initial step of degradation should be further explored. Indeed, the 

existence of RppH, a 5’ pyrophosphatase, suggests that there might be a complementary 

pathway for RNA degradation in which RppH converts triphosphate groups at the 5’ end of 

nascent transcripts (which protect RNA from degradation), into 5’-monophosphate groups. 

This would render the RNA susceptible to 5’-monophosphate dependent ribonucleases, 

including RNase E (Deana et al., 2008). 

1.3.3.2 Structure of RNase E 

RNase E is an enzyme of two halves (Figure 1.2). The N-terminal half (NTH) provides the 

endonucleolytic activity (Mcdowall and Cohen, 1996; Callaghan et al., 2005; Caruthers et 

al., 2006), while the C- terminal half (CTH) provides contacts that allow the formation 

(Vanzo et al., 1998; Callaghan et al., 2004; Carpousis et al., 2009) and cellular localisation 

(Khemici et al., 2008) of the degradosome complex. RNase G is related in sequence to only 

the NTH of RNase E (Mcdowall et al., 1993). The NTH of RNase E forms a tetramer 

(Callaghan et al., 2003), which is a dimer of the dimeric unit that forms the active sites 

(Callaghan et al., 2005). The CTH of RNase E contains ancillary RNA-binding sites 

(Taraseviciene et al., 1995; Mcdowall and Cohen, 1996; Kaberdin et al., 2000) and segments 

that facilitate interaction with the inner membrane (Miczak et al., 1991; Liou et al., 2001; 

Khemici et al., 2008) and with RhlB, enolase and PNPase which come together to form an 

RNA processing and degradation complex called the RNA degradosome (Figure 1.3) (for 

reviews, see (Carpousis et al., 2001; Carpousis, 2002; Marcaida et al., 2006; Carpousis et al., 

2009). E. coli strains that have the CTH of RNase E have a competitive growth advantage 

over those where this region has been deleted. The CTH also aids in the degradation of 

highly structured RNAs, which accumulate in CTH deletion strains.(Mackie, 2013b). 

Furthermore, the CTH of RNase E plays a vital role in processing and degradation in vivo as 
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strains that contain RNase E where the 5’-monophosphate sensing pocket has been 

inactivated or deletion of RppH together with truncation of the CTH are not viable 

(Anupama et al., 2011). Nevertheless, only the NTH of E. coli RNase E is required for cell 

viability (Apirion and Lassar, 1978; Ono and Kuwano, 1979). 

 

Figure 1.2 – Schematic representation of the primary structure of RNase E and 
components of the degradosome. The catalytic region of RNase E (NTH) spans residues 1-
529. Residues 530-1061 correspond to the C- terminal half of the enzyme, which has 
several functional segments that enable RNase E to engage in protein-protein interactions 
(Carpousis et al., 2009) including with RhlB (residues 698-762). The segments labelled as A, 
B, C and D are regions that are known to: i) localize the degradosome to the cellular 
membrane, ii) form a coil-coil motif and an arginine rich RNA binding domain (RBD) iii) bind 
enolase and iv) bind PNPase, respectively.(Carpousis et al., 2009). Regions of the CTH 
involved in intermolecular interactions are labelled dark blue whilst highly structured 
regions are presented in orange. Adapted from (Carpousis et al., 2009). 

 

Figure 1.3 – Schematic representation of the RNA degradosome in E. coli. This figure 
represents the degradosome; PNPase (blue) has been cross-sectioned to illustrate the 
active site. It can be seen that the RNA is presented to PNPase in an unwound conformation 
as RhlB (green) unwinds the RNA’s stem loop (red) which would otherwise provide the RNA 
with ribonucleolytic protection. Both PNPase and RhlB are associated with RNase E (dark 
blue). Enolase and other components of the degradosome were removed for simplicity. 
Adapted from (Bandyra and Luisi, 2013). 
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1.3.3.3 5’ monophosphate sensing by RNase E 

The ability of RNase E to sense RNA 5’ end structures in vivo (Bouvet and Belasco, 1992) 

results in a repertoire of transcripts incorporating secondary structures to their 5’ end in 

order to grant them increased stability. Indeed, two mechanisms, which provide RNA 

transcripts with increased protection against RNA degradation, have been identified. Firstly, 

the concealment of the 5’ ends by either adding a 5’ stem-loop or circularizing the RNA. The 

presence of a 5’ stem-loop has been shown to give ompA mRNA (Emory et al., 1992) great 

stability. This transcript has a half-life of 15-20 min and has been shown to be amongst the 

most stable mRNAs in E. coli (Von Gabain et al., 1983); this feature is also shared with RNAI 

(Bouvet and Belasco, 1992). RNA circularization has also been shown to stabilize rpsT mRNA 

(Mackie, 2000; Baker and Mackie, 2003). Secondly, the 5’-triphosphate group or ‘cap’ 

incorporated during transcription has also been shown to stabilize transcripts. Initial 

observations showed that RNase E cleavage rates for rpsT mRNA and the 9S precursor of 5S 

rRNA in vitro were significantly greater when the 5′ end possessed a 5’-monophosphate 

group in contrast to when they had a 5’-triphosphate group (Mackie, 1998).  

Following the studies described above, the X-ray crystal structure of the N-terminal half of 

RNase E complexed with oligonucleotide substrates lacking any 5’ end protective features 

(corresponding to the segment cleaved at the 5’ end of RNAI) was solved. This structure 

revealed a binding pocket for 5′ ends that terminate in a 5’-monophosphate group and 

have at least 3-5 unpaired nucleotides (Figure 1.4). Transcripts which have a 5’-

monophosphate group are contacted by a semi-circular ring of hydrogen bonding donors 

created by the side chain and peptide amide of Thr170 and the guanidino group of Arg169; 

the terminal base is contacted via a hydrophobic interaction with the side chain of Val128 

(Callaghan et al., 2005). The interaction of Arg169 is consolidated by a hydrogen bond to 

the peptide backbone of Gly124 in the neighbouring strand of the sensor. As there is 

insufficient room in the pocket to accommodate a 5’ end that has a triphosphate group or 

is base-paired, the pocket can only bind a 5’-monophosphorylated, single stranded end. 

Residues in this pocket have been mutated in both E. coli RNase E and RNase G (Jourdan et 

al., 2009; Kime et al., 2010). The RNase E mutant, T170V, shows a notable reduction in its 

ability to cleave 5’-monophosphorylated oligonucleotide substrates, but still retains its 

basal activity for the cleavage of 5’-hydroxylated oligonucleotide substrates (Kime et al., 

2010). 
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Figure 1.4 - The binding pocket for 5’-monophosphorylated ends in RNase E. This figure 
shows the interactions that take place between the 5’-monophosphate group in the RNA 
and RNase E. The monophosphate group is held in place by three hydrogen bonds 
(represented as dotted lines). An additional hydrogen bond is formed between R169 and 
G124 within RNase E in order to support the interaction between R169 and the 5’-
monophosphate group. Another important interaction that stabilizes this complex is that of 
V128 and the aromatic ring in the RNA terminal base; an interaction that is modified in the 
T170V mutant, making it insensitive to the presence of 5’-monophosphorylated ends. 
Adapted from (Callaghan et al., 2005). 

1.3.3.4 Stimulation of RNase E activity via RppH mediated ‘decapping’ 

Structural studies aided in the elucidation of the preference of RNase E for 5’-

monophosphorylated substrates (Tock et al., 2000; Callaghan et al., 2005). Nevertheless, 

the mechanism by which 5′ stem-loops provided protection against RNase E-mediated 

degradation in vivo (Bouvet and Belasco, 1992; Baker and Mackie, 2003) was still unclear as 

primary transcripts are synthesised with a 5′ triphosphate group. This was recently 

elucidated with the discovery, in E. coli, of an RNA pyrophosphohydrolase (RppH). RppH 

converts the primary 5′ triphosphate group to a 5’-monophosphate group (Celesnik et al., 

2007; Deana et al., 2008). 

Upon inactivation of RppH in vivo, the half-lives of a range of mRNAs were studied and 

were found to increase considerably; up to fourfold for rpsT. This observation confirmed 

the importance of RppH in the generation of 5’-monophosphate single stranded ends under 
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physiological conditions (Deana et al., 2008). Nevertheless, when assessed on a genome-

wide scale, the majority of transcripts in E. coli seemed to be largely unaffected by 

inactivation of RppH (Deana et al., 2008). Thus 5’ ‘decapping’ does not appear to be 

essential for rapid mRNA degradation. This observation is possibly due to RNase E not 

requiring an interaction with 5’-monophosphate ends to in order to make initial cuts in the 

RNA (see section 1.3.3.5). 

1.3.3.5 Direct entry by RNase E 

Consistent with the idea that RNase E can cleave independently of the 5’ end it has been 

found recently that the NTH of both wild-type RNase E and the T170V mutant can rapidly 

cleave cspA mRNA in vitro without requiring a 5’-monophosphorylated end (Kime et al., 

2010). Moreover, using a well-characterised oligonucleotide substrate, a minimum 

requirement for cleavage was determined in which the presentation of multiple single-

stranded segments allows their simultaneous interaction with RNase E and enhanced 

cleavage (Kime et al., 2010). In addition, RNase E has been shown to process a tRNA 

precursor in vitro by binding single stranded regions that are adjacent but not contiguous to 

the site that is cleaved (Kime et al., 2014). Single-stranded segments are abundant in RNA, 

thus direct entry could represent a major mechanism by which mRNA degradation and 

processing is initiated by RNase E in E. coli and other RNase E homologue containing 

organisms. Furthermore, the above observations suggest that direct entry might be the 

preferred mechanism of 5‘-triphosphorylated RNA cleavage, a mechanism which is 

enhanced by the ability of RNase E which is a tetramer to bind multiple single stranded 

regions. 

 RNA stability 1.3.4

RNA can be categorized into two groups based upon its turnover rate; “stable” RNA, such as 

tRNA and rRNA, which have half-lives in the order of tens of minutes (Curnow et al., 1993) 

and “unstable” RNA, such as the majority of mRNA. The half-life of total mRNA has been 

estimated to be 6.8 min, with some mRNAs having a half-life of under 40 sec (Selinger et al., 

2003). In the case of the latter, it is likely that translation is limited to the passage of only a 

single ribosome per transcript. It has been reported that there is some correlation between 

half-lives and the function encoded by the transcript, e.g. transcripts encoding enzymes of 

central metabolism tend to have longer half-lives than those encoding products of 

unknown function (Selinger et al., 2003); these short half-lives make it difficult to 
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characterize and study such mRNAs. These findings reiterate the fact that mRNA decay is a 

crucial step in regulating the expression of specific genes and of the need for high 

throughput methods to better understand the global code required for the degradation of 

mRNA. 

1.4 Previous RNA sequencing approach 

Microarrays have been extensively used in order to study the expression of thousands of 

genes in parallel in a variety of organisms (Bier and Kleinjung, 2001). They have also been 

implemented to elucidate the response and regulation of the transcriptome to 

environmental stresses. They have provided a methodology reaching further than that 

which was achievable by previous technologies such as nuclease mapping (Weaver and 

Weissmann, 1979) and primer extension (Shelness and Williams, 1985). Despite the density 

of probes increasing in recent years to give a coverage of up to 3 Mbp (approximately every 

10 bp), this approach is still incapable of providing nucleotide resolution maps of primary or 

secondary transcriptomes (Goldsmith and Dhanasekaran, 2004). At present, the only way to 

achieve single-nucleotide resolution maps is through global RNA sequencing (gRNA-seq); 

often referred to as transcriptome shotgun sequencing (Mamanova and Turner, 2011). 

Recently, the primary transcriptome of the major human pathogen Helicobacter pylori has 

been sequenced with an RNA-seq approach described in Figure 1.5 (Sharma et al., 2010). 

This approach was a genome-wide RNA-ligase mediated, reverse transcription PCR. The 

method depleted the transcriptome of 5’-monophosphorylated RNA by treating total RNA 

with Terminator™ 5’ phosphate-dependent exonuclease (TEX). The remaining 5’-

triphosphorylated RNA was treated with a pyrophosphatase in order to generate 5’-

monophosphorylated ends and these were then cloned, sequenced and mapped onto the 

genome to identify transcription start sites. This technology had two major limitations. 

Firstly, it removed the secondary transcriptome and any information regarding processing; 

secondly, it used the Roche-454 sequencing technology that provides a lower number of 

reads than the Illumina technology.  

Whilst the work of Sharma et al. (2010) inspired the work here presented, modifications 

were made in order to adapt and enhance the capability of this approach. These 

modifications were made in order to increase the sequencing depth and secondly, detect 

and map the secondary transcriptome of E. coli (Figure 1.5). 
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Figure 1.5 - The sequencing approach of Sharma et al. (2010) and our sequencing 
approach. The sequencing approach undertaken by Sharma et al. (2012) is highlighted grey. 
Total RNA was extracted from H. pylori and separated into two aliquots; a control and a 
sample which was depleted of 5’-monophosphate ends (processing sites) with TEX. The 5’-
triphosphorylated RNA in both samples was then treated with a pyrophosphatase in order 
to generate 5’-monophosphorylated ends and then ligated to a 5’ adaptor. This was 
followed by the generation of cDNA libraries and sequencing, performed using a Roche 454 
platform (Sharma et al., 2010). The sample treated with TEX was enriched for TSSs and the 
control sample contained both processing sites and TSSs. Our sequencing approach made 
use of dRNA-seq (highlighted green) and gRNA-seq (highlighted blue). The dRNA-seq was 
performed in a similar way to Sharma et al. (2010) with three main differences. Firstly TAP 
was used to treat the non-control sample, instead of TEX. This enriched TSSs and, unlike 
TEX, did not remove products of processing and degradation. Secondly, RNA was 
fragmented prior to 3’ end adaptor ligation in order to allow the sequencing of both long 
and short transcripts. The third difference was that Illumina sequencing was used instead of 
Roche 454 sequencing, as it is more adequate for the sequencing of shorter transcripts. In 
addition to these differences, our approach also included gRNA-seq (Mamanova et al., 
2010) in which we fragmented and sequenced every transcript present in the cells. 
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1.5 Broad objective and specific aims 

The broad objective of this thesis was to develop approaches that would provide, for the 

first time, a transcriptome-wide view of steps in RNA processing and decay, with focus on 

the role of direct-entry cleavage by RNase E. The specific aims were to (i) confirm that 

treatment with TAP could be used to provide efficient discrimination of the 5’ 

phosphorylation status of transcripts (Chapter 3), (ii) confirm that the T170V substitution of 

RNase E reduces the efficiency of 5’-monophosphate-dependent cleavage, without 

affecting the efficiency of 5’-monophosphate-independent cleavage (Chapter 3), (iii) 

prepare samples of total RNA digested with T170V and perform RNA–sequencing to 

identify sites of cleavage in vitro (Chapter 3 and Chapter 4), (iv) in parallel with (iii), analyse 

the transcriptional landscape of E. coli using FRT RNA-seq, an improved global approach, in 

conjunction with a differential RNA-seq approach that retains products and intermediates 

of RNA processing and decay (Chapter 4), (v) identify sites of direct entry cleavage that 

occur in vivo as well as in vitro (Chapter 4), and (vi) validate experimentally any novel 

features identified within the transcriptional landscape of E. coli (Chapter 5). Overall, the 

specific aims were met, but further experiments by others were required to confirm that 

cleavages produced by T170V were indeed independent of 5’-monophosphate sensing.
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Chapter 2  

2 Materials and Methods 

2.1 Bacterial strains and media 

Strains and plasmids used are listed in Table 2.1. E. coli cells were grown at various 

temperatures, which are indicated as appropriate. Cells were grown in Luria Bertani 

medium: 1% (w/v) tryptone, 0.5% (w/v) NaCl, and 0.5% (w/v) yeast extract (Sigma Aldrich). 

When needed, selective growth conditions were achieved by adding carbenicillin or 

kanamycin to a final concentration of 50 µg/ml. All media were autoclaved for 20 min at 

121 psi prior to use. Heat-sensitive components such as antibiotics were sterilized by 

filtration through 0.2 µm disposable filters (Sarstedt GmbH) and added after heat 

sterilization of the other components. Plates were prepared by adding 1.5% (w/v) of agar 

(Sigma Aldrich) to liquid medium prior to autoclaving. Aeration of 50 ml liquid cultures was 

achieved by continuous shaking at 220 rpm in 250 ml Erlenmeyer flasks. Strains were 

stored at –80°C as glycerol stocks: 50% (v/v) glycerol and 50% (v/v) overnight culture. 

Strains Description Source 

BW25113 

 
F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, rph-

1, Δ(rhaD-rhaB)568, hsdR514 
 

Keio collection 
(Baba et al., 

2006) 

JW2753  
 
As BW25113, but ΔchpA781::kan 

 

Keio collection 
(Baba et al., 

2006) 

N3433 Hfr(PO1), lacZ43 (FS), λ-, relA1, spoT1, thiE1 (Browning and 
Busby, 2004) 

N3431 As N3433, but rne-3071(ts) (Browning and 
Busby, 2004) 

JM109 endA1, recA1, gyrA96, thi, hsdR17 (rk
–, mk

+), relA1, 
supE44, Δ(lac-proAB), [F´ traD36, proAB, 

laqIqZΔM15] 

Promega 
(Sharma and 

Chatterji, 2010) 

Table 2.1 - Strains. This table lists all strains used in this thesis alongside a description and 
indication of their source. 
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2.2 Gel electrophoresis 

 Agarose gel electrophoresis 2.2.1

DNA was separated according to its size using agarose gel electrophoresis. Protocols were 

based on (Sambrook, 2001). The agarose concentration (w/v) varied depending on the size 

range of the fragments that were analysed and is stated within the corresponding figure 

legends. Agarose (Melford) was dissolved in 1 x TBE: 89 mM Tris-HCl (pH 8.3), 89 mM boric 

acid, and 2 mM EDTA. Samples were loaded in 1 x DNA loading dye: 10 mM EDTA (pH 8), 

10% (v/v) glycerol, 0.06% (w/v) Bromophenol Blue (Ambion). DNA markers (Fermentas) 

were used as size standards. Electrophoresis was performed at 10Vcm-1 of gel for 60 min. 

Gels were stained by soaking for 30 min in 1 x TBE containing 1 µg/ml ethidium bromide 

and imaged with the use of a GeneGenius UV transilluminator (Syngene) set at an 

excitation wavelength of 302 nm. 

 Polyacrylamide gel electrophoresis 2.2.2

Polyacrylamide gel electrophoresis was used to separate both RNA and DNA samples by 

size. In order to separate RNA, denaturing polyacrylamide gels composed of 19:1 

polyacrylamide: bis-acrylamide in 7 M urea and 1 x TBE were used. The concentrations of 

acrylamide are stated in the corresponding figure legends. DNA was similarly separated, 

except urea was omitted from the gels. For RNA gels, markers and 2 x denaturing loading 

dye from Ambion were used, while for DNA gels, the marker and loading dyes were those 

used for agarose gel electrophoresis. Gels were typically run for ~2200 Vh. 

 SDS gel electrophoresis  2.2.3

SDS-PAGE was performed as previously described (Laemmli, 1970). Gels contained a 

stacking and a running layer of 4 % (w/v) and 18 % (w/v) acrylamide: bis-acrylamide (29:1, 

Severn Biotech), respectively. Gels were run in 1 x electrophoresis buffer: 0.1 % SDS (w/v), 

25 mM Tris base, 192 mM glycine (Sigma Aldrich) at 25 mA for 1-2 h. Gels were stained by 

soaking in Coomassie stain: Coomassie Brilliant Blue R-250 (150 mg l-1) in 25 % (v/v) 

ethanol, 10 % (v/v) acetic acid (Sigma Aldrich). Gels were destained by soaking in destain 

solution: 40 % (v/v) methanol, 10 % (v/v) acetic acid (Sigma Aldrich). Imaging was 

performed in a GeneGenius UV transilluminator (Syngene) with lower white light settings. 

Samples were denatured in 2 x Laemmli buffer: (4% SDS, 20% glycerol, 10% 2-
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mercaptoethanol, 0.004% bromophenol blue and 0.125 M Tris HCl, pH approx. 6.8) (Sigma 

Aldrich) for 5 min at 99 °C prior to loading. 

2.3 Radio-labelled probe generation 

Specific transcripts were probed using complementary oligonucleotides (see Table 2.2) 

labelled at their 5’ ends with 32P using T4 polynucleotide kinase (Thermo Scientific) and γ-

32P-ATP (3000 Ci mmol-1 10 mCi mL-1, 250 µCi, Perkin Elmer). The labelling reaction was 

carried at 37°C for 30 min and stopped by the addition of EDTA, both as described by the 

vendor of the enzyme (Thermo Scientific). The radioactively labelled probes were ethanol 

precipitated, and resuspended in 20 µl of RNase-free water. 

2.4 DNA methods 

 DNA purification and restriction digest 2.4.1

Genomic DNA used as a template for PCR was obtained as a by-product of the RNA 

isolation procedure (see Section 2.5.1). Following the addition of ethanol to precipitate the 

nucleic acid, the chromosomal DNA, which formed a stringy mass, was removed using the 

end of a sterile tip, washed with 70% (v/v) ethanol, pelleted by brief centrifugation (16,000 

x g for 30 s), and resuspended in TE buffer (pH 8.0) (Sigma). Restriction enzymes, used on 

PCR products, were obtained from New England BioLabs. DNA restrictions were carried out 

as per the supplier’s protocol. 

 DNA quantification 2.4.2

DNA samples with a relatively high concentration (> 5 µg/ml) were quantitated by 

spectrophotometry by measuring the absorbance at 260 nm with a Geneflow Perl 

nanophotometer. At this wavelength, an absorbance of 1 corresponds to approximately 50 

µg/ml of double-stranded DNA. For a low DNA concentration (< 5 µg/ml), the amount was 

estimated by running a sample on an agarose gel and comparing the intensity of the 

ethidium-bromide stained bands with those of marker bands of similar size and known 

concentration. 
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 DNA gel extraction 2.4.3

Following electrophoresis (see Section 2.2.1) DNA fragments were extracted from slabs 

excised from agarose gels using the QIAquick® Gel Extraction Kit, as per the manufacturer’s 

instructions (Qiagen). 

 Polymerase chain reaction (PCR) 2.4.4

PCRs were carried out as described in Sambrook et al., (1989). In general, annealing 

temperatures 5°C below the estimated Tm of the primers were used. An extension time of 1 

min was allowed for every 1 kb to be amplified. Cycles were repeated 35 times for all 

reactions unless otherwise stated. When a downstream reaction was to follow PCR, 

products were purified using the PCR purification kit (Quiagen). All primers used are 

presented in Table 2.2. 

Table 2.2 - Oligonucleotides used in this study. 

Name Sequence (5’ to 3’) 

Used for RLM-RT-PCR 

16S GATCCAACCGCAGGTTCC 

ftsT GGCTTCTCAACAGGTGGTGT 

pgpA TGCCACGGATTACTCATCTTC 

rhlB TGGGCGTACAGTTATGAAACC 

RLM1 CGAAGACAACAAAGAAGTTCAACTC 

RLM2 CATGAGGATTACCCATGTCG 

ymfK GGCCTGTACCCATGATATGAC 

Used for PCR and in vitro transcription 

5SF ATCCTAATACGACTCACTATAGGGTGGCGGATTGAGAGAAGATT 

5SR ATGCCTGGCAGTTCCCTACT 

9S F ATCCTAATACGACTCACTATAGGGAAGCTGTTTTGGCGGATGAG 

9S R ACGAAAGGCCCAGTCTTT 

argXF CGCGTAATACGACTCACTATAGGGAGGGGTGGGAAGTCCGTATTA 

argXR AGGGTGACGAAATGCACAGAA 

cspA F ATCCTAATACGACTCACTATAGGGTTTGACGTACAGACC 

cspA R2 AAAATCCCCGCCAAATGGCAGGG 

dnaKF ATCCTAATACGACTCACTATAGGGAAGACAAAGCCCTATCGAA 

dnaKR CTTTGTCACCCTGGTTACGG 

fumAF ATCCTAATACGACTCACTATAGGGCCGGACGGATGGATTCTTAT 

fumAR AAAAAAACCGCCCCGAAG 

glyWF TGCGTAATACGACTCACTATAGGGACTCATCGCGCCAGGTAAGTA 

glyWR AGGTGGTTTCACGACACTGCT 
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Table 2.2 (continued) 

manXF ATCCTAATACGACTCACTATAGGGCCTCTGTTAACGTCGGTGGT 

manXR ACCAGGGTACACGCGATTAG 

pheUF ATATTAATACGACTCACTATAGGGCGAGATGTGCAGATTACGGTTT 

pheUR GCACGACATTTCACGTCAGTT 

RNAI F ATCCTAATACGACTCACTATAGGGACAGTATTTG 

RNAI R AACAAAAAAACCACCGCTACC 

Used to generate 32P labelled oligoprobes 

ecr0174(u+) CCACGGCATATCTGACCTTATAAAGCCAAC 

ecr3777(d+) ACCTTTTCGGCTGTCTCTTCTCTCGTACTG 

ecr2775(u+) CTCAAGGGGAGAAAACTTAGGGCCTCTATG 

ecr4051(u+) CTGTATGTAGGGTACAGCACGATGAATCTG 

ecr1743(d+) GTATTACCGTAGTAATGCAAGCGCGTCTCAG 

AgrB ACTTTCCAGCCCTGAGTTGGTGGCTCTG 

Table 2.2 - Oligonucleotides used in this study. This table presents the name, orientation 
and 5’ to 3’ sequence of all primers and oligonucleotides used in this study and groups 
them based on what they were used for. 

 Cloning and sequencing of fragments produced by PCR 2.4.5

PCR products purified as described above (Section 2.4.4) were ligated into the pGEM-T® 

Easy vector as per the vendor’s instructions (Promega) and then the ligation mix was 

introduced by transformation into JM109 cells purchased in a competent state (Promega). 

The transformation mixture was spread on the surface of selective Luria Bertani agar 

(Sigma) that contained 50 µg/ml carbenicillin. Following transformations, colonies were 

picked and grown overnight in 10 ml Luria Bertani media containing 50 µg/ml carbenicillin. 

Plasmid DNA was extracted from these overnight cultures using the Wizard® Mini-prep 

DNA Purification system as per manufacturer’s instructions (Promega). Inserts of purified 

plasmids were sequenced by GATC-biotech (Germany) using universal primers SP6 and T7.  

2.5 RNA methods  

 Total RNA extraction  2.5.1

RNA was isolated from various E. coli strains (Section 2.1) following a protocol outlined 

previously (Kime et al., 2008a). Briefly, E. coli culture pellets corresponding to 5-8 OD600 

units were resuspended in 1 ml resuspension buffer; 10 mM Tris-HCl (pH 8.0), 1 mM EDTA. 

Cells were then lysed by adding 1 ml lysis buffer; 20 mM Tris-HCl (pH 8.0), 40 mM EDTA, 

300 mM NaCl, and 0.5% (w/v) SDS, which was preheated to 100°C. This mix was then 
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incubated in a boiling water bath for 30 s or until it turned translucent in appearance. After 

cooling in ice, an equal volume of acid phenol saturated with 100 mM citrate buffer (pH 

4.3) was added. This mix was briefly centrifuged (14,000 x g for 3 min) and the aqueous 

phase was retained. Total nucleic acid in the aqueous phase was precipitated by adding 2.5 

volumes of absolute ethanol. Precipitation was achieved by centrifugation at 7,000 x g for 

15 min at 4 °C. The pellet was thoroughly resuspended in 200 µl molecular biology-grade TE 

buffer (pH 8.0) (Sigma) containing 150 mM NaCl and re-precipitated by adding 500 µl 

absolute ethanol. Stringy chromosomal DNA was removed using a sterile tip and the 

remaining nucleic acid, largely RNA, pelleted by centrifugation at 14,000 x g for 20 min at 4 

°C. The RNA pellet was then resuspended in 400 µl resuspension buffer containing 150 mM 

NaCl and extracted further with an equal volume of acidic phenol (pH 4.3), an equal volume 

of acidic phenol: chloroform: isoamyl alcohol (25:24:1), and chloroform: isoamyl alcohol 

(49:1). RNA was reprecipitated by adding 2.5 volumes of absolute ethanol, pelleted by 

centrifugation at 14,000 g for 15 min at 4°C and washed twice in 70% (v/v) ethanol; a 5 min 

centrifugation at 14,000 x g at 4 °C was performed after each wash. The resulting pellet 

was air-dried and resuspended in 100 µl molecular biology-grade water (Sigma). 

In order to achieve DNA-free RNA, the harvested RNA was treated with RNase-free DNase I 

(Promega). 1 U DNase I was used to treat 100 µg of nucleic acid in 400 µl of 40 mM Tris-HCl 

(pH 8.0), 10 mM MgSO4, and 1 mM CaCl2 for 1 h at 37 °C. RNA was then extracted with an 

equal volume of acidic phenol: chloroform: isoamyl alcohol (25:24:1), NaCl was added to a 

final concentration of 150 mM, and the RNA precipitated by adding 2.5 volumes of absolute 

ethanol. The RNA was harvested by centrifugation at 14,000 x g for 15 min at 4 °C. Pellets 

were washed twice as above and resuspended in either water or TE buffer (pH 8.0) of 

molecular biology grade (Sigma).  

 Total RNA enrichment 2.5.2

Total RNA was enriched for mRNA by removing 16S and 23S rRNA using the 

MICROBExpress rRNA removal kit as per the manufacturer’s instructions (Ambion). The 

average yield from 10 µg of total RNA was 3 to 4 µg of enriched RNA. Successful removal of 

excess 16S and 23S rRNA was assessed by analysing 1 µg samples by gel electrophoresis 

using 2% (w/v) agarose gels. RNA samples were loaded using 2 x RNA loading dye; 95% 

(v/v) formamide, 0.025% (w/v) bromophenol blue, 0.025% (w/v), xylene cyanole and 

0.025% (w/v) SDS (Ambion). 
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 Northern blotting 2.5.3

RNA for northern blotting was isolated as described previously (see Section 2.5.1), with the 

exception that the mRNA was not enriched, from a second batch of cultures. E. coli K-12 

MG1655 (seq) was grown in Luria-Bertani (Amresco) as well as M9 minimal media (Sigma) 

supplemented with glucose (0.4%,w/v) at 37°C with shaking (100 rpm) until an OD600 of 

~0.5 at which point RNA was isolated as described previously (Kime et al., 2008b). For each 

sample, an aliquot of 5 µg was mixed with an equal volume of 2 x RNA-loading dye (New 

England BioLabs), denatured by incubation at 90°C for 90 sec, chilled on ice, and analysed 

along with other samples by denaturing electrophoreses using a 6% sequencing-type gel 

(acrylamide: bis-acrylamide [29:1], 1 x TBE, 7 M urea). Fractionated RNA was electro-

transferred to a Hybond-N+ membrane (Amersham) using 20 x saline-sodium citrate (SSC) 

buffer at 11 V for 1 h, and subsequently fixed to the membrane by UV-crosslinking. The 

membrane was pre-hybridized with 3 ml of ULTRAhyb-Oligo Hybridization Buffer (Ambion) 

at 42oC for 30 min. 

Radiolabelled probe, which had been denatured by incubation at 90°C for 90 sec and 

chilled on ice, was added to the hybridization tube. Hybridization was carried at 42°C 

overnight. The membrane was washed twice with 20 ml of preheated washing buffer (5 x 

SSC containing 0.5% [w/v] SDS) at 49°C for 30 min and exposed to Imaging Screen-K (Bio-

Rad). The image was captured by Molecular Imager FX (Bio-Rad), and further processed 

using Quantity One (Bio-Rad) and GeneSys (Syngene) software. 

 Global RNA sequencing 2.5.4

Global Transcriptome sequencing was performed by Dr. Lira Mamanova (Wellcome Trust, 

Sanger Institute, Cambridge, UK) using a published methodology (Mamanova et al., 2010). 

Sequencing was performed using an Illumina Genome Analyzer (HiSeq 2000). RNA 

sequences were processed in-house using Galaxy (Goecks et al., 2010) and mapped onto 

the E. coli reference genome (NCBI accession number U00096.2) using Bowtie 2.0 

(Langmead and Salzberg, 2012) with custom parameters: -l 28 for read, -l 20 for read2, and 

-y -a --best --strata. For every position in the genome, the number of times it was read 

irrespective of its position in the individual RNA fragments was determined using a 

combination of BEDtools (Quinlan and Hall, 2010) and bash scripts (this script was written 

and run by Vijaya Mahalingam Shanmugiah). These counts were then recorded in the 

format of a bedGraph (part of the UCSC format options) and visualized using the UCSC 
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genome browser (Schneider et al., 2006; Chan et al., 2012). The above sequencing data was 

submitted to the GEO repository (Edgar et al., 2002) and is stored under accession number 

GSE46232. 

 Differential RNA sequencing 2.5.5

Prior to differential RNA-seq, samples were enriched for mRNA using MICROBExpress-

Bacteria beads, as described previously (see Section 2.5.2). Differential RNA-seq was 

performed by Vertis Biotechnologie AG (Germany) as part of a service that included the 

construction of cDNA libraries before and after treatment with TAP, sequencing of libraries 

using an Illumina HiSeq platform (single end, 50-bp read length), and the alignment of 

sequences to the E. coli K12 sub-strain MG1655 genome (NCBI, accession number 

U00096.2). The 5’-sequencing adaptor was ligated to transcripts prior to fragmentation, 

thereby allowing the 5’ ends of both long and short transcripts to be detected. RNA was 

fragmented using a Bioruptor® Next Gen UCD-300 ™ sonication system (Diagenode), then 

tailed at the 3’ end using poly(A) polymerase (New England BioLabs), copied into cDNA 

using M-MLV reverse transcriptase (RNase H minus, AffinityScript, Agilent) and an oligo-dT 

primer, amplified by PCR and fractionated using gel electrophoresis. Fragments of 250 - 500 

bp were selected for Illumina sequencing. Reads were trimmed off the 5’ adapter and 

poly(A) sequences and mapped using the CLC Genomics Workbench and standard settings. 

For each library, the number of times each genome position was the first nucleotide in 

sequence reads (i.e. associated with a 5’ end in vivo) was counted using a combination of 

BEDtools (Quinlan and Hall, 2010) and bash scripts (this script was written and run by 

Vijaya Mahalingam Shanmugiah). The reads corresponding to minus and plus TAP 

treatment were then compared using M-A scatterplots. The counts were also recorded in 

bedGraph format (part of the UCSC format options) to allow visualisation using the UCSC 

genome browser (Schneider et al., 2006; Chan et al., 2012). This dRNA-seq data was also 

submitted to the GEO repository (Edgar et al., 2002) and stored under accession number 

GSE46232. 

 RNA synthesis by in vitro transcription. 2.5.6

Transcription reactions were carried out as 40 µl reactions containing 80 U RNaseOUT™ 

(Invitrogen), 5 mM DTT, 1 U yeast inorganic pyrophosphatase (Sigma), 100-150 nM 

template, 2.5 mM rNTP mix (GE Healthcare) and 100 U T7 RNA polymerase (Invitrogen) in 1 
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x T7 RNA polymerase buffer: 0.04 M Tris-HCl (pH 8.0), 8 mM MgCl2, 2 mM spermidine-

(HCl)3, 25 mM NaCl. 

Reactions were incubated at 37 °C for 3 h. Templates were generated via PCR. Following 

incubation, 2 U of DNase I (Promega) and 40 U RNAseOUT™ (Invitrogen) were added to the 

reaction which was incubated at 37 °C for a further 1 h. 

Following DNase I treatment, reactions were extracted with an equal volume of phenol: 

chloroform and then phenol: chloroform: isoamyl alcohol (25:25:1). The RNA was 

precipitated by adding 0.1 volumes of 3 M sodium acetate (pH 5.5) and 2.5 volumes of 

100% (v/v) ethanol. The RNA was then harvested by centrifugation at 16,000 x g for 10 min 

at 4°C. The pellets were washed twice with 500 µl ice-cold 70% (v/v) ethanol. Pellets were 

then air dried and re-suspended in 40 µl of molecular biology-grade water (Sigma). Samples 

were mixed with an equal amount of 2 x RNA loading dye (Ambion) and separated on a 

denaturing polyacrylamide gel (Section 2.2.2). RNA was visualized using a GeneGenius UV 

transilluminator (Syngene) set at an excitation wavelength of 302 nm after incubating the 

gels in 1 x TBE buffer containing 1 μg/ml ethidium bromide for 5 min. 

 Discontinuous cleavage assays 2.5.7

The discontinuous cleavage assay used here was adapted from a previously published 

method (Redko et al., 2003). The oligoribonucleotide substrates used during this thesis 

were 3’ fluorescein-labelled versions of BR13 (5’-GGGACAGUAUUUG-3’; (Mcdowall et al., 

1995)). Two versions were used; one with a 5’-monophosphate (PBR13-Fl) and the other 

with a 5’-hydroxyl group (HOBR13-Fl). These substrates were synthesized and purified by 

Dharmacon (USA). Reactions were carried out in 1 x reaction buffer (RB): 25 mM bis-Tris-

propane (pH 8. 3), 100 mM NaCl, 15 mM MgCl2, 0.1% (v/v) Triton X-100, and 1 mM DTT. 

Unless otherwise indicated, reactions with oligonucleotides contained substrate and 

enzyme at concentrations of 250 and 5 nM, respectively, as well as 0.32 U/μL of 

RNaseOUT™ (Invitrogen). Before starting the reaction, all components were pre-warmed at 

37°C for 15 min. Samples removed for analysis were quenched immediately by mixing with 

an equal volume of 2 x RNA loading dye: 95% (v/v) formamide, 0.025% (w/v) bromophenol 

blue, 0.025% (w/v), xylene cyanole, and 0.025% (w/v) SDS (Ambion). All reactions were 

incubated at 37°C. Samples were separated in denaturing polyacrylamide gels (Section 

2.2.2). Reaction products were detected using a Fuji FLA 5000 scanner (Fuji) set to 

fluorescein detection (excitation wavelength 473 nm, filter 523 ±35 nm). Substrate and 
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product were quantified using the AIDA Image Analyzer software package (Raytest 

Isotopenmessgeräte GmbH). Initial rates of reaction were calculated by establishing the 

slope representing the percentage of product produced over time during the initial, linear 

phase of the reaction. Rates were then calculated taking into account concentrations of 

enzyme and substrate in the reaction mix. 

Total RNA cleavage assays were performed in the same way as oligoribonucleotide 

cleavage assays; only substrate and enzyme concentrations were varied to 10 µg and 250 

nM, respectively. Furthermore when samples were taken, the reaction was quenched and 

the RNA extracted by increasing the volume to 400 µl with TE buffer (pH 8.0) (Sigma), 

adjusting the salt concentration to 150 mM NaCl and immediately extracting the RNA as 

described in Section 2.5.1. 

 Enzymatic modifications of RNA 2.5.8

RNA was subjected to a repertoire of enzyme treatments in order to modify the 5’ and 3’ 

end. TerminatorTM 5’ phosphate-dependent exonuclease (TEX) treatments were typically 

performed in 40 µl reactions containing 40 U RNaseOUTTM (Invitrogen) and 1 U TEX 

(Epicentre Biotechnologies) per 1 µg of RNA in 1 x TEX buffer A (Epicentre Biotechnologies). 

Reactions were incubated at 30°C for 1.5 h. Tobacco acid pyrophosphatase (TAP) 

treatments were performed in 40 µl reactions containing 3 U of TAP (Epicentre 

Biotechnologies) per 1 µg RNA in 1 x TAP buffer: 0.5 M sodium acetate (pH 6.0), 10 mM 

EDTA, 1% β-mercaptoethanol, and 0.1% Triton® X-100. Reactions were incubated at 37°C 

for 2.5 h. T4 polynucleotide kinase (PNK) treatments were performed in 30 µl reactions 

containing 40 U RNaseOUTTM (Invitrogen), 100 mM ATP and 13 U of PNK (New England 

BioLabs) per 1 µg RNA in 1 x PNK buffer: 70 mM Tris-HCl (pH 7.6), 10 mM MgCl2, and 5 mM 

dithiothreitol. Reactions were incubated at 37°C for 1.5 h. Poly(A) polymerase treatments 

were performed in 30 µl reactions containing 40 U RNaseOUTTM (Invitrogen), 1 mM ATP 

and 4 U of Poly(A) polymerase (New England BioLabs) per 1 µg of RNA in 1 x Poly(A) 

polymerase buffer: 50 mM Tris-HCl (pH 7.9), 250mM NaCl, and 10mM MgCl2. Reactions 

were incubated at 37 °C for 10 min.  

Following all treatments, volumes were adjusted to 400 µl, NaCl added to 150 mM NaCl 

and phenol: chlorophorm extracted as in Section 2.5.1. Samples were ethanol precipitated 

and resuspended in molecular biology grade water (Sigma). 
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 RNA-ligase mediated, reverse-transcription PCR assay 2.5.9

This method was performed as described previously (Kime et al., 2008a). Briefly, this 

method consists of three reactions: an RNA ligation, followed by a reverse transcription, 

and finally PCR. 

For the ligation reaction, 20 pmol of an RNA adapter was mixed with 1.2 µg of total RNA, 5 

U of T4 RNA ligase (New England BioLabs), 20 U of RNaseOUT™, 1 mM ATP in 10 µl RNA 

ligase buffer: 50 mM Tris-HCl (pH 7.8), 10 mM MgCl2, 10 mM DTT, and 1 mM ATP. The 

reaction was then incubated at 37°C for 1 h. The adapter used was a 54-mer, with 

sequence:           

5’-ACAUGAGGAUUACCCAUGUCGAAGACAACAAAGAAGUUCAACUCUUUAUGUAUU-3’ which 

was synthesized by Dharmacon (USA). For the reverse transcription reaction, 50 ng of 

random hexamers (Amersham Biosciences) were annealed to 600 ng of ligated RNA in a 

volume of 20 µl molecular biology grade water (Sigma). This mix was heated at 65°C for 5 

min and snap chilled on ice and added to a solution containing 250 mM Tris-HCl (pH 8.3), 

375 mM KCl, 15 mM MgCl2, 50 mM DTT, 4 µl of a 10 mM stock of dNTPs, 80 U of 

RNaseOUT™ (Invitrogen) and molecular biology-grade water (Sigma) to a final volume of 40 

µl. Following this, two 19 µl aliquots were processed further. 200 U (1 µl) of MMLV reverse 

transcriptase RNase H minus (Promega) was added to one, and 1 µl water to the other. 

These mixes when then incubated at 25°C for 15 min, 42°C for 1 h, and finally 70°C for 15 

min. At the end of the reaction, 80 µl of 10 ng/ml yeast tRNA (Ambion) was added. For the 

PCR reaction, the same conditions as in Section 2.4.4 were followed using RLM-2 (Table 

2.2), which is complementary to the 5’ adaptor and a gene-specific primer (Table 2.2). 
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Chapter 3 

3 Enzyme characterization and workflow set up 

3.1 Introduction 

RNA sequencing technologies have improved to a point where it is now possible to 

sequence entire bacterial genomes and transcriptomes in a single sequencing run (Cho et 

al., 2009; Sharma et al., 2010; Lin et al., 2013b; Wang et al., 2013; Al Rashdi et al., 2014; 

Benahmed et al., 2014; Hasman et al., 2014). Recently, by removing the products of 

processing and the intermediates of mRNA degradation (the ‘secondary’ transcriptome) 

using Terminator™ Exonuclease (TEX), a 5’-3’ enzyme that is specific for 5’-

monophosphorylated ends, it was possible to generate more than enough reads using 454 

sequencing (2 to 4.5 million) to map transcriptional start sites (TSSs) on a genome-wide 

scale (see Section 1.4). This involved a second enzymatic treatment with tobacco acid 

pyrophosphatase (TAP) to produce a 5’-monophosphate on the nascent ends to permit 

their cloning and subsequent sequencing. This differential RNA (dRNA)-seq approach, 

described initially for Helicobacter pylori (Sharma et al., 2010), is being used extensively to 

map TSSs in other prokaryotes including archaea (Butcher and Stintzi, 2013; Cortes et al., 

2013; Lin et al., 2013b; Pfeifer-Sancar et al., 2013; Rumbo-Feal et al., 2013). 

Since the initial description of dRNA-sequencing, Illumina sequencing has been replacing 

454 sequencing in the mapping of the transcriptional landscapes of bacteria. Illumina 

technology is less expensive and can generate 10 fold more reads than its 454 equivalent. 

Moreover, although Illumina reads are shorter, they are sufficiently long (30 to 50 bp) to 

allow unambiguous assignment to positions within bacterial chromosomes. This suggested 

that differential RNA sequencing could be performed without erasing the secondary 

transcriptome, provided that TAP could be shown to remove pyrophosphates from 5’ 

nascent ends efficiently. If it could, the subtraction of 5’ end fragments before treatment 

from those detected after treatment with TAP would identify those associated with 

nascent ends. There was also a concern that TEX might be less efficient at degrading RNA 

from S. coelicolor, another bacterial species of interest to the laboratory (Uguru et al., 

2005; Hong et al., 2007; Van Wezel and Mcdowall, 2011), as it has a high GC-content, which 

in turn can introduce more stable secondary structures into RNA. This chapter describes 

the development of the front end of a pipeline that allowed the nature of 5’ ends to be 
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differentiated using TAP rather than TEX. In addition, it describes biochemical confirmation 

that the T170V mutant of RNase E reduces the efficiency of cleavages dependent on, but 

not those independent of the presence of a 5’-monophosphate, and the preparation of 

samples of total RNA digested with T170V for analysis by RNA–sequencing. The work 

relates to the broad objective of developing an approach that provides, for the first time, a 

transcriptome-wide view of steps in RNA processing and decay, with a focus on the role of 

direct-entry cleavage by RNase E. As described (Chapter 1), the laboratory has produced 

biochemical evidence that suggests many of the cleavages produced by RNase E might be 

independent of interaction with a 5’-monophosphorylated end. Moreover, the T170V 

mutant has been used in prior studies of RNase E cleavage (Kime et al., 2010; Kime et al., 

2014). The threonine substitution for valine removes one of three hydrogen bond donors 

that can engage a 5’-monophosphorylated end (see Figure 1.4). A major role for direct 

entry would explain, at least in part, why the normal rapid degradation of only a proportion 

of the mRNAs in E. coli is highly dependent on 5’ pyrophosphate removal by RppH (Deana 

et al., 2008; Kime et al., 2010). 

3.2  Results 

  Removal of 23S and 16S rRNA from total RNA 3.2.1

To reduce the number of reads that would correspond to rRNA, a MICROBExpress kit 

(Ambion) was used to deplete rRNA from total RNA isolated from E. coli after it was treated 

with DNase I (Figure 3.1). MICROBExpress (Ambion) is a commercially available kit which 

removes 16S and 23S rRNA from a sample by using oligonucleotides that are 

complementary to these rRNAs and are immobilised on magnetic beads. RNA from an rppH 

deletion strain (JW2798Δkan) as well as a congenic wild-type strain (BW25113) were 

included to provide samples for the analysis of direct-entry cleavage (see below). The 

analyses confirmed that the DNase I treatment removed all visible signs of contaminating 

chromosomal DNA and the MICROBExpress kit removed the vast majority of 23S and 16S 

rRNA (>95%, as specified by the manufacturer) without causing any degradation of the 

samples. Interestingly, a band of small RNA and a much larger RNA species of unknown 

identity (marked sRNA and by a double asterisk respectively) were detected in the ΔrppH 

strain. The degradation or processing of these species appears to be dependent on 5’ 

pyrophosphate removal. 
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Figure 3.1 - Removal of large ribosomal RNA species from E. coli total RNA samples. Total 

RNA isolated from E. coli rppH (lane 1) and its congenic wild-type, BW25113, (lane 2) was 
treated with DNase I in order to remove chromosomal DNA (labelled *) and then enriched 
for mRNA with the MICROBExpress kit (Ambion). The marker lane (labelled M) contains a 
GeneRuler 100 bp Plus DNA Ladder (Fermentas). Numbers at the left hand side of the panel 
indicate the sizes (bp) of selected markers, whereas the labelling at the right hand side 
indicates the position of 23S, 16S, 5S rRNA, tRNA, and smaller RNA species (sRNA). A large 
species that is more abundant in the ΔrppH strain is indicated by double asterisks (labelled 
**). The amount loaded was 1 µg of total RNA or the equivalent amount of enriched RNA. 
RNA was extracted from exponential cell cultures (0.6 OD600 units) grown in LB media. 
Electrophoresis was performed using a 2% (w/v) agarose gel. 

 Characterisation of TAP 3.2.2

Having found a straightforward method for removing the bulk of the large rRNA in E. coli, 

the next step was to confirm that TAP removes 5’ pyrophosphates efficiently. This required 

the synthesis of 5’-triphosphorylated substrate. The template for T7 polymerase mediated 

in vitro transcription of cspA mRNA, which was the subject of previous studies (Hankins et 

al., 2007; Hankins et al., 2010; Kime et al., 2010), was generated by PCR, as described 

previously (Kime et al., 2010). The amplicon was of expected size (444 bp) and could be 

transcribed to produce a single RNA species of the expected size (423 nt) (Figure 3.2). 
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Figure 3.2 - Preparation of 5’ triphosphorylated cspA mRNA. A template for production of 
cspA mRNA in vitro was generated by PCR using primers cspA F and cspA R2 (Table 2.2) 
(panel A) and then transcribed in vitro using T7 RNA polymerase (for details, see Section 
2.5.6) (panel B). Amplicon and transcript sizes are indicated on the right. The source of 
markers in both panels was the GeneRuler 100 bp Plus DNA Ladder (Fermentas) which in 
panel B is denatured and was used to give a rough estimate of size. The PCR amplicon (~1.3 
µg) was analysed by agarose gel electrophoresis (panel A), whereas, the in vitro-transcribed 
RNA was analysed under denaturing conditions using a 7 M urea, 7% (w/v) polyacrylamide 
(19:1) gel (panel B) and both were stained using ethidium bromide.  

RNA generated by in vitro transcription is 5’-triphosphorylated (Golomb and Chamberlin, 

1974). Incubation with TAP and TEX individually did not produce a detectable change in the 

migration of the cspA transcript (Figure 3.3). This was the expected result as pyrophosphate 

removal does not change the length of a transcript significantly and TEX is reported to be 

specific for 5’-monophosphorylated substrates. Incubation with TEX following treatment 

with TAP resulted in the efficient degradation of the cspA transcript. Indeed, residual 

substrate was not detected. This indicated that the TAP treatment was efficient. Moreover, 

the TAP treatment on its own did not result in any decrease in the intensity of the major 

cspA species nor the appearance of additional bands. This result, which was obtained 

independently by other members of the laboratory, indicated that the preparation of TAP 

was free of RNase contamination. It was found, in our laboratory, that some commercial 

preparations of enzymes used to treat the 5’ end of RNA can be contaminated with RNases. 

Calf-intestinal (alkaline) phosphatase (CIP) was trialled in combination with T4 

polynucleotide kinase (PNK) to monophosphorylate the 5’ ends of nascent transcripts. 

However, a source of CIP that was not contaminated with RNase activity could not be 

found (data not shown). 
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Figure 3.3 – Characterisation of TAP and TEX treatments. cspA mRNA was incubated in the 
absence of enzyme as a negative control (labelled C) or with TAP, TEX, or TAP followed by 
TEX (labelled at top of panel). The reactions were performed as outlined in Section 2.5.8. 
Aliquots of RNA (~500 ng) of each treatment were analysed by denaturing, polyacrylamide 
gel electrophoresis. The 10% (w/v) polyacrylamide (19:1) gel and was stained using 
ethidium bromide. 

In parallel, the specificity of TEX for 5’-monophosphorylated ends was checked by co-

incubating 5’-triphosphorylated cspA with an RNA oligoribonucleotide, R1, that had been 

monophosphorylated at its 5’ end using T4 polynucleotide kinase (Figure 3.4). Only the 

oligonucleotide was degraded by TEX. This confirmed that the efficient degradation of cspA 

mRNA following TAP treatment was due to the generation of 5’-monophosphorylated ends. 

5’-hydroxylated R1 was not degraded by TEX (Lin, unpub. result). 

 

Figure 3.4 – Assay of the specificity of TEX towards 5’ phosphorylated ends. 3 µg of an 
equimass mix of a 5’-monophosphorylated RNA oligonucleotide (labelled R1) (5’-
CCUUUUCAAGACAUGCAACAAUGCACACAG-3’) and 5’-triphosphorylated cspA mRNA 
(labelled cspA) was incubated with 3 U TEX. Samples of the reaction were taken after 0, 30 
and 70 min and electrophoresed, along with a control which was incubated without TEX for 
70 min (labelled C), on a 13% denaturing polyacrylamide gel with staining using ethidium 
bromide. 
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 Characterisation of the RNase E T170V substitution 3.2.3

3.2.3.1 Determination of the enzyme stock concentration 

Prior to conducting enzymatic comparisons, the concentrations of laboratory stocks of 

preparations of NTH-RNase E and the T170V mutant were confirmed by comparing aliquots 

against a dilution series of BSA standards using SDS-PAGE (Figure 3.5). Both NTH-RNase E 

and T170V migrated with an apparent mass of ~ 65 kDa, as previously described (Callaghan 

et al., 2003; Callaghan et al., 2005; Chandran and Luisi, 2006). Previously, each of the two 

stocks had been adjusted to 2 µM (tetramer concentration) on the basis of 

spectrophotometric analysis (absorbance at 280 nm); this corresponds to 500 ng/ µl. In 

agreement, the intensity of the bands corresponding to 1 µl aliquots of RNase E were 

similar to the band of BSA corresponding to 500 ng. The results of this analysis were also 

consistent with the preparations being described as >95% pure. The preparations had been 

purified as described previously (Kime et al., 2008a). 

 

Figure 3.5 - Determination of NTH-RNase E and T170V mutant stock concentration. A 
serial dilution of BSA was prepared and aliquots containing amounts ranging from 20 to 
2000 ng were compared against 1 and 5 µl volumes of NTH-RNase E and T170V. The 
intensity produced by loading 1 µl aliquots of preparations of NTH-RNase E and the T170V 
mutant correlated to that of the 2000 ng BSA standard marker. Markers (labelled M) are 
the Benchmark pre-stained protein ladder (Invitrogen) and the size, in kDa, of selected 
markers are labelled on the left. The gel was 18% (w/v) acrylamide (19:1).  

3.2.3.2 Assessment of enzyme stock activity  

Next the activity of the stocks described above was confirmed using derivatives of the 

oligonucleotide substrate BR13 that were labelled with fluorescein at the 3’ end and had 

either a monophosphate or hydroxyl group at the 5’ end. These substrates have been used 

previously to characterise mutants in the 5’ sensor domain of RNase E and RNase G 
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(Jourdan and Mcdowall, 2008; Kime et al., 2008a). As reported previously, the 5’-

monophosphorylated substrate was cleaved less efficiently by the T170V mutant than wild-

type NTH-RNase E (Figure 3.6). The 5’-hydroxylated substrate was cleavage inefficiently by 

both enzymes. The differences in the initial rates were also in accordance with what had 

been reported previously (Jourdan and Mcdowall, 2008). T170V cleaved 5’-

monophosphorylated BR13 11-fold slower than NTH-RNase E (1 vs 11.7 nM/min, 

respectively). The initial rates for cleavage of 5’-hydroxylated substrate by T170V and NTH-

RNase E were similar to each other but slower than 5’ –monophosphorylated BR13 (0.4 and 

0.27 nM/min respectively). 

 

 

Figure 3.6 - Characterisation of the RNase E T170V mutant. A discontinuous cleavage assay 
containing derivatives of BR13 and either T170V or wild-type RNase E was electrophoresed 
on a 7M urea, 13% (w/v) polyacrylamide (19:1) gel. The concentrations of substrate and 
enzyme at the start of the reaction were 250 nM and 5 nm, respectively. For PBR13, time 
points were taken at 0, 2, 5, 10, 50, 120 and 180 min following addition of substrate to the 
reaction; time points for HOBR13 were taken at 0, 10, 50, 120, 180 and 330 min. All 
reactants were pre-warmed at 37 :C for 30 min (Kime et al., 2010) prior to starting the 
reactions. Substrate bands are labelled S whilst products are labelled P, indicated on the 
right. 

The activity of these enzyme stocks were also confirmed using cspA in vitro transcribed 

mRNA (Kime et al., 2010). Unlike the BR13 oligonucleotide substrate, cspA mRNA is cleaved 

efficiently in the absence of a 5’-monophosphate (Kime et al., 2010). To provide a control, 

RNAI, the antisense RNA regulator of ColE1 replication was included. It is well established 

that cleavage of this RNA requires interaction with a 5’-monophosphate (Jiang et al., 2000; 

Kime et al., 2010). As described above for cspA mRNA (Section 3.2.2), RNAI RNA was 

generated by in vitro transcription from templates produced by PCR. Both the amplicon 

and its transcriptional product migrated as expected for their predicted sizes, which were 

132 bp and 111 nt (Figure 3.7). Following in vitro transcription, cspA and RNAI transcripts 
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where incubated with NTH-RNase E and T170V (Figure 3.8). It was shown that, as reported 

recently (Kime et al., 2010), 5’-triphosphorylated cspA mRNA was cleaved efficiently by 

both NTH-RNase E and T170V. The site of cleavage is located close to the 3’ end (Hankins et 

al., 2007; Kime et al., 2010) producing a detectable upstream product (labelled p) that 

migrates slightly faster than the full-length substrate. As expected, RNAI was not cleaved by 

either NTH-RNase E or T170V. 

A 

 

B 

 

Figure 3.7 - Preparation of 5’-triphosphorylated RNAI RNA. The template for the in vitro 
synthesis of RNAI RNA was generated by PCR using primers RNAI F and RNAI R (Table 2.2) 
(panel A). The template was then transcribed in vitro using T7 RNA polymerase, (see 
Section 2.5.6) (panel B). Amplicon and transcript sizes are indicated on the right. The 
marker (lane M) in panel A was the GeneRuler 100 bp Plus DNA Ladder (Fermentas) and for 
panel B the marker was the RiboRuler™ low range RNA ladder (Fermentas). The sizes of the 
markers are indicated on the right of each panel. The PCR amplicon (~1.3 µg) was analysed 
by agarose gel electrophoresis, whereas, the in vitro-transcribed RNA was analysed under 
denaturing conditions using a 7 M urea, 7% (w/v) polyacrylamide (19:1) gel and both were 
stained using ethidium bromide. 

A 

 

B 

 

Figure 3.8 – Cleavage of cspA and RNAI mRNA by the N-terminal half of RNase E.  The 
concentrations of substrate and enzyme at the start of the reaction were 0.64 µM of cspA 
mRNA (panel A) or RNAI (panel B) and 25 nM of wild-type NTH-RNase E or the T170V 
mutant, respectively (see Section 2.5.7). Samples were taken at 0, 5, 15, 30 and 60 min 
following addition of substrate to the reaction. A control of each mRNA which was 
incubated in the absence of enzyme for 60 min was also electrophoresed (lanes labelled C). 
The samples were analysed under denaturing conditions using a 7 M urea, 7% (w/v) 
polyacrylamide (19:1) gel and were stained using ethidium bromide. 
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 Determination of conditions for the incubation of total RNA with RNase E 3.2.4

and T170V 

Following empirical testing, conditions were obtained that resulted in detectable cleavage 

of total RNA samples (Figure 3.9). Incubation of NTH-RNase E (300 nM) with total RNA (10 

µg/180 µl reaction) from wild-type E. coli (BW25113) or the congenic rppH strain 

(JW2798Δkan) for 15 min was sufficient to detect significant amounts of cleavage as 

evidenced by the appearance of discrete product bands and a reduction in the intensity of 

the large rRNA species, in particular 16S rRNA. Total RNA from the rppH strain was 

included to evaluate the overall contribution of 5’ pyrophosphate removal on cleavage by 

RNase E. Interestingly, cleavage in terms of level and pattern was broadly similar, although 

not identical, to that of the equivalent RNA from the wild-type strain. This result suggested 

that the absence of 5’-monophosphorylated ends that would normally be generated by 

RppH does not have a major effect on RNase E cleavage of total RNA, at least in vitro. 

However, absence of rppH did not prevent enriched mRNA being susceptible to TEX (Figure 

3.10). One explanation for this observation, which is discussed in Chapter 1 is that the 

majority of the RNAs in total RNA do not correspond to nascent transcripts and are in fact 

degradation intermediates. Regardless of the composition of visible species in total RNA, it 

appears that direct entry may be a major pathway of RNase E cleavage. For both RNA 

samples, incubation with T170V and NTH-RNase E produced similar levels and patterns of 

cleavage (Figure 3.9). The actual sites of cleavage were then mapped using an RNA 

sequencing approach that is described in Chapter 1. 
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Figure 3.9 - Cleavage of total RNA by the N-terminal half of RNase E and the T170V 
mutant. Total RNA was isolated from a ΔrppH mutant of E. coli and BW25113, a congenic 
wild-type strain. The amount of total RNA in each 180 µl of reaction was 10 µg. The 
concentration of enzyme at the start of the reaction was 300 nM. Samples were removed 
prior to the addition of enzyme (corresponding to lane 0) and after 15 and 120 min of 
incubation. The reaction conditions were as described (Section 2.5.7). The samples were 
extracted with phenol chloroform and precipitated with ethanol and 1 µg of each sample 
was then resuspended in loading buffer and analysed by agarose gel electrophoresis. 
Markers, labelled on the left of the panel, and gel electrophoresis are as Figure 3.1. The gel 
was 2% agarose (w/v). Numbers at the top of the panel indicate the time (min) at which 
samples were removed from each reaction. 

 

Figure 3.10 - TEX treatment of E. coli total RNA samples. Enriched mRNA (labelled 
Enriched) samples from E. coli strains BW25113 and its congenic ΔrppH mutant were 
treated with TEX (labelled TEX). Reaction conditions were as outlined in Section 2.5.8. The 
amount of RNA loaded was 1 µg of total RNA or the same amount of TEX treated RNA. The 
gel was 1.5% (w/v) agarose and stained with ethidium bromide. 
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3.3 Discussion 

The work described in this chapter successfully: i) showed that the majority of 23S and 16S 

rRNA could be removed using the MICROBExpress system, with the aim of enabling better 

coverage of non-ribosomal species by RNA sequencing (Figure 3.1); ii) demonstrated that 

tobacco acid pyrophosphohydrolase (TAP) provides an effective means of discriminating 

the phosphorylation status at the 5’ ends of transcripts (Figure 3.3 and Figure 3.4); iii) 

confirmed that the T170V mutant of RNase E is deficient in 5’-end sensing (Figure 3.6 and 

Figure 3.8); and iv) established the conditions for the cleavage of total RNA by NTH-RNase E 

in vitro (Figure 3.9). These results largely represent the preparatory work for RNA-

sequencing analysis that ultimately proved to be successful (Chapter 4). 

A finding that was initially unexpected was generated when preparing total RNA. In RNA 

prepared from the ΔrppH mutant there are small RNAs that migrate faster than tRNA that 

appear to accumulate (Figure 3.1). This RNA species could be sRNAs that are stabilized as a 

result of not being ‘decapped’ by RppH or mRNA transcripts with structured 5’ UTRs, which 

can only be degraded via interaction with the 5’-monophosphate sensing pocket of RNase 

E. 

Results of assaying the cleavage of total RNA also indicated that the majority of the 

cleavages produced by NTH-RNase were also produced by T170V. There was no substantial 

difference in the rate or pattern of cleavage (Figure 3.9). This result is consistent with the 

notion that direct-entry cleavage might, contrary to what has been suggested recently 

(Garrey et al., 2009), not be the exception. Our laboratory has proposed that the tetrameric 

structure of RNase E allows it to bind to substrates with high affinity provided it can contact 

simultaneously a single-stranded segment(s) in addition to the one in which cleavage 

occurs. The apparent widespread nature of direct entry, as found here (Figure 3.9), is 

consistent with such a simple requirement. 
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Chapter 4 

4 Mapping of sites of RNase E cleavage within the transcriptional 

landscape of Escherichia coli as determined using a combination of 

global and differential RNA-seq 

4.1 Introduction 

Since its discovery in 1885 by Theodor Escherich, a German paediatrician, (Escherich, 1885) 

Escherichia coli has become an important model system for studying molecular and 

bacterial biology and establishing biotechnological platforms. E. coli is perhaps best known 

for being the organism that hosts the majority of recombinant DNA work. The first 

complete DNA sequence of an E. coli genome, laboratory strain K-12 derivative MG1655 

(seq), was published in 1997 (Blattner et al., 1997). It consists of 4.6 Mbp and is currently 

annotated as encoding 4,284 protein-coding genes (Keseler et al., 2013) organised as 2,642 

operons (Salgado et al., 2006), seven rRNA operons, and 86 transfer RNA genes (Keseler et 

al., 2013). The genome also contains a significant number of transposable genetic 

elements, repeat elements, cryptic prophages, and the evolutionary remnants of 

bacteriophages (Blattner et al., 1997). 

The availability of the DNA sequence of MG1655 (seq) (Blattner et al., 1997), and now 

many other strains, permits the study of E. coli on a genome-wide scale. For example, there 

have been hundreds of studies on the control of gene expression at the RNA level using 

microarrays (Schena et al., 1995; Bier and Kleinjung, 2001; Goldsmith and Dhanasekaran, 

2004) and more recently global RNA sequencing approaches (Butcher and Stintzi, 2013; 

Cortes et al., 2013; Lin et al., 2013b; Pfeifer-Sancar et al., 2013; Rumbo-Feal et al., 2013) 

alongside studies at the protein level using 2D-gel electrophoresis, a method which was 

used to assemble a 2D PAGE database (Appel et al., 1996) and has now shifted to the use of 

mass spectrometry approaches (Arifuzzaman et al., 2006; Cho et al., 2009). High-

throughput approaches are also being developed to map macromolecular interactions 

(protein-protein and protein-nucleic acid) and the flux through major metabolic pathways 

(Rajagopala et al., 2014). This system level understanding provides an envelope in which to 

model the underlying regulation. E. coli offers an attractive model for systems biology, not 

only because of the relative ease with which it can be grown, but because much more is 

probably known about the mechanisms that regulate gene expression in E. coli than any 
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other organism. However, as is true for all model organisms, knowledge of the mechanism 

involved in mediating and regulating RNA degradation lags behind that of transcription and 

translation. 

As outlined in Chapter 1, with the advent of microarrays it was possible to begin to identify 

transcripts whose degradation was dependent on particular mRNA decay factors (e.g. 

ribonucleases) and growth conditions. However, microarray-based studies on their own do 

not identify the site of action of ribonucleases. This would have required further analysis 

using techniques such as RNA-ligase mediated reverse transcription PCR, which identify 

differences in the pattern of 5’ ends. A ‘game changer’ was the implementation of RNA 

sequencing. Although used initially to map transcriptional landscapes via the sequencing of 

fragments generated by shearing of RNA following its isolation, it was evident that RNA-seq 

could also be used to map 5’ end fragments by incorporating an RNA ligation step before 

the shearing of the RNA (Figure 1.5). In such a way, Cynthia Sharma and co-workers 

mapped the transcriptional starts sites of Helicobacter pylori, but after removing 

degradation and processing intermediates by treating with TEX (Sharma et al., 2010). RNA 

ligation to the 5’-triphosphorylated ends of nascent transcripts was facilitated by treating 

with TAP. TAP treatments were performed by Vertis Biotechnologie AG (Germany), using 

the same enzyme supplier as the one used for the enzyme characterizations in Chapter 3. 

As indicated in the Introduction (Section 1.4), this paper provided the inspiration for the 

work described in this chapter, which describes the development of an alternative 

approach that, while still providing nucleotide resolution and differentiating sites of 

transcription initiation, simplifies the identification of the sites of processing and 

degradation. Comparison with results obtained previously validated this approach, which 

has been applied already to the study of other bacterial species. Within the E. coli genetic 

map, many new features were identified, such as previously undetected small RNAs and 

processing at a site associated with the production of specialised ribosomes, which may 

ensure the translation of leaderless mRNAs, which were also mapped. The approach also 

showed the benefit of incorporating steps that can differentiate the 5’ status of transcripts 

in assigning sites of transcription initiation. RNA sequencing was also used to map sites of 

cleavage by RNase E (see Chapter 3). Finally, just as topographic maps are only of value 

with the inclusion of contour lines, a meaningful context for the analysis of sites of 

processing and degradation was provided by also determining the profile of global 

transcription. 
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4.2 Results 

 Identification of transcription start sites 4.2.1

Prior to analysing the data collected for the cleavage of total RNA by the T170V mutant of 

RNase E (see Section 3.2.4), sites of transcription initiation and RNA cleavage were 

identified and differentiated on a genome-wide scale using a published approach (Lin et al., 

2013b) that was trialled as part of this work. These sites were then mapped against a 

transcriptional landscape map of E. coli generated from the same RNA sample using FRT-

seq (flowcell reverse transcription), a global mapping approach that is strand specific and 

free of amplification prior to sequencing (Mamanova et al., 2010). The RNA sample for 

these differential and global approaches was isolated from a wild-type strain, MG1655 

(seq) (Blattner et al., 1997), grown exponentially in Luria-Bertani medium. For dRNA-seq, 

total RNA was enriched for mRNA and then one half of the sample was treated with 

tobacco acid pyrophosphatase (TAP). Treatment with this enzyme removes pyrophosphate 

from nascent 5’ ends leaving a monophosphate group (Breter and Rhoads, 1979) to which a 

sequencing adaptor can be ligated in a subsequent step (Figure 4.1). Samples treated with 

or without TAP were then sent for sequencing as part of a service that also included the 

construction of the cDNA libraries. It should be noted that the RNA was fragmented after 

the addition of the 5’ adaptor to improve the efficient cloning of 5’ ends from large 

transcripts. Sequencing of each of the two libraries produced 3 to 9 million reads, which 

were mapped against the E. coli genome. For each position in the genome, the number of 

times it corresponded with the first nucleotide in a sequence read was counted. A 

significant increase in the number of sequencing reads at any position following TAP 

treatment provides an identifier of a transcriptional start site (TSS). For further details of 

this differential approach, see Section 2.5.5. 
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Figure 4.1 – RNA-seq pipeline used in this study. This figure presents the dRNA-seq and 
gRNA-seq approaches used in this study. On the left the dRNA-seq approach is illustrated 
with one sample being treated with tobacco acid pyrophosphatase (TAP) and the other not. 
On the right the gRNA-seq approach is illustrated. For a more detailed description refer to 
Figure 1.5. 

Sites enriched following TAP treatment were identified by analysing M-A (ratio-intensity) 

scatterplots (Figure 4.2). Two populations of values were found, as described previously for 

Propionibacterium acnes (Lin et al., 2013b). The largest population corresponds to sites of 

processing and degradation and it centres on a value of M close to 0, while the smaller 

population corresponds to TSSs, which are associated with higher M values. Nucleotide 

positions with M values above what was judged to be the upper boundary of the 

population corresponding to processing and degradation sites were designated as possible 

TSSs. Positions within 8 nt of each other were assigned to the same TSS, as it is known that 
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many promoters initiate transcription from a cluster of nucleotide positions (Salgado et al., 

2006). These sites were then mapped against leading edges of transcription, which were 

determined independently via manual inspection of the global RNA (FRT)-seq data (see 

Section 0), which had been processed at Leeds by Vijaya Mahalingam Shanmugiah. The 

reads from the global RNA-seq were trimmed and mapped to the genome, and for every 

position in the genome, the number of times it was read, irrespective of its position in 

individual RNA fragments, was counted and recorded in the format that allowed 

visualisation using the UCSC genome browser (Schneider et al., 2006; Chan et al., 2012). 

The upper range of the gRNA-seq reads was limited to make it easier to decipher their 5’ 

and 3’ boundaries, the transcription units becoming block-like in appearance. The main 

gene(s) of interest in any view are generally depicted left to right, and for genes on the 

reverse strand, the RNA-seq data are given negative values and are shown in red instead of 

black (for example, see Figure 4.3). 

 

Figure 4.2 - M-A scatterplots of values from the differential RNA-seq analysis. The M 
values correspond to Log2 (plus/minus) and A values to (Log2 plus + Log2 minus)/2, where 
minus and plus refer to the number of reads before and after treatment with TAP. For 
further details, see Materials and Methods (Section 2.5.5). The red line represents the 
upper boundary of the population of values corresponding to site of processing and 
degradation. The upper boundaries were placed manually to enclose the majority of the 
lower population, while taking into consideration the spread of M values scattered around 
0. The boundary was described by the polynomial equation                   
          . 
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Figure 4.3 - Example of sequencing visualization in the UCSC Microbial Genome Browser. 
This figure presents a screenshot of the UCSC genome browser (Schneider et al., 2006; 
Chan et al., 2012). Tracks depict, from top to bottom, the number of times each nucleotide 
position was the first in sequence reads after and before treatment with TAP (dRNA-seq 
data), the number of times each position was sequenced following fragmentation of the 
transcriptome (gRNA-seq), the position of annotated genes (protein and RNA coding, as 
appropriate). The bottom three tracks, which are represented in red, depict the same 
results as their forward strand (black) equivalents for the reverse strand. The numbers at 
the left of the RNA-seq tracks indicate the sequencing reads, whilst the topmost numbers 
indicate genome position. The labels at the very bottom represent the candidate TSSs 
which are marked by short vertical lines that are labelled to indicate the strand of DNA to 
which they correspond (FWD or RVS), the class to which they belong (I, II or III) in 
parentheses, and the position of the first nucleotide in the site. 

A total of 709 sites that were associated with leading edges of transcription as well as being 

enriched following TAP treatment (Class I), 311 that were associated with leading edges, 

but not enriched (Class II) and 1554 that were enriched, but not associated with leading 

edges of transcription (Class III) were identified. Although, Class I sites were assigned with 

the most confidence, being based on two criteria, all three classes contained TSSs that have 

been identified previously by others and recorded in RegulonDB (Salgado et al., 2006; 

Mendoza-Vargas et al., 2009a) (Table 4.1). This information has been included in the 

annotation of E. coli sites (Table S.1). The majority of the 5’ ends identified by dRNA-seq do 

not correspond to TSSs, consistent with a major role of endoribonucleases in the 

degradation of mRNA (see Introduction, Table 1.2). Examples of each class of TSS are 

shown in Figure 4.4. The probable basis of the different classes, which has been described 

previously by us (Lin et al., 2013a), is outlined in Section 4.3. 
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The genes for which TSSs are presented in Figure 4.4 are: thrL which is the leader of the 

thrLABC operon that encodes four of the five enzymes involved in the threonine 

biosynthesis pathway (Gardner, 1982); talB which encodes transaldolase B (Sprenger et al., 

1995) and gapA which encodes glyceraldehyde 3-phosphate dehydrogenase A monomer 

(Charpentier and Branlant, 1994). As discussed later, enrichment in the absence of an 

obvious step increase in transcript abundance (Class III) and a step increase in transcript 

abundance in the absence of enrichment (Class II) are a result of promoters nested 

downstream of strong promoters and efficient 5’ pyrophosphate removal in vivo, 

respectively (Celesnik et al., 2007; Deana et al., 2008; Richards et al., 2011). All of the TSSs 

identified here have been annotated to indicate whether or not they have been identified 

previously using experimental approaches. 

TSS Class Number of TSSs 
identified 

Overlap with 
RegulonDB TSSs 

Percentage overlap 

Class I 709 298 42 

Class II 311 79 25.4 

Clas III 1554 197 12.7 

Total 2574 574 22.3 

Table 4.1 - Overlap of TSSs identified with TSSs recorded in RegulonDB. Number of class I, 
II, and III TSSs identified by our approach are presented along with and their percent 
overlap with RegulonDB TSSs which have experimental evidence to support them.  
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A 

 

B 

 

C 

 

Figure 4.4 - Examples of different classes of transcription start site. All of the TSSs shown 
in this figure have been previously identified via experimental approaches. Panels A, B and 
C show the TSSs of E. coli genes thrL (Gardner, 1982; Lynn et al., 1987), talB (Sprenger et 
al., 1995) and gapA (Charpentier and Branlant, 1994) which correspond to a class I, class II 
and class III TSSs, respectively. The panels are screenshots from the UCSC Microbial 
Genome Browser (Schneider et al., 2006). Labelling is as in Figure 4.3. 

Our dRNA-seq approach was validated by retrieving the sequences upstream of known TSSs 

for genes associated with the translational machinery. The vast majority of the sequences 

could be aligned, using MEME (Bailey et al., 2009), with the consensus sequences for the -

35 and -10 boxes of vegetative promoters (TTGACA and TATAAT), which are recognised by 

the housekeeping RNA polymerase (Harley and Reynolds, 1987; Lisser and Margalit, 1993) 

(Table 4.2). Indeed the consensus sequence for the promoters aligned here was identical to 

that described previously (Figure 4.5). It also revealed a GC-rich heptanucleotide region 

immediately downstream of the -10 box which would correspond to the GC rich region 

which flanks the -10 box (Dickson et al., 1975; Hsu et al., 1984). The analyses described 

gave confidence that the dRNA-seq approach could identify TSSs and prompted similar 

analysis of equivalent dRNA-seq data for P. acnes (Lin et al., 2013b) and S. coelicolor 

(unpubl. data). 
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Table 4.2- Table showing the upstream region of the sites of enrichment for tRNA and rRNA TSS.  

Suggested operon TSS position Enrichment Strand Sequence 

rrsH-ileV-alaV-rrlH-rrfH-aspU 225017 4.20 + TCATGGCCCTTACGACCAG   GGCTACACACGTGCTACAATGGCGCATACA 

aspV 236910 13.95 + GAAAAACCGTTGACGAAGG    TCGAGGCAATCCGTAATATTCGCCTCGTT 

Pseudo  344476 5.50 + ATGTGTTGGTTGACATTCA        TATGAAAAAAATCATAATTCCATCA 

argU 563921 10.50 + CAAAAGCCATTGACTCAGA      AGGGTTGACCGTATAATTCACGCGATT 

infA-serW 925908 9.86 - TGAATGTTTTCGGCACATT      TCTCCCCAGAGTGTTATAATTGCGGTC 

serX 1096903 18.50 - AAAAGTTTGTTGACCTCAG    GTCATGATTTCCCTAAATTAGCGCCCGTT 

glyW-cysT-leuZ 1990208 23.77 - AAAATATCGTTGACTCATC     GCGCCAGGTAAGTAGAATGCAACGCATC 

serU 2041590 4.49 - CAGGGACTGTTAAAATGCC     AAATTTCCTGGCATCATGGCAACCATCT 

asnT 2042562 31.50 + AATTTAGTGTTGACAGACA    AGGTACCGCTAAGTAATATTCGCCCCGTT 

asnW 2056138 19.53 - AAACAGGCTTTGACATTGT    GGGTGGGCATCGCTAATATTCGCCTCGTT 

snU 2057866 12.38 + AAATCGGGTTTGACAAAAG     ATTTTTCGCCGTTAAGATGTGCCTCAAC 

asnV 2060273 19.77 + TTTCACCCTTTGACATCAC    CATGCACTGCCATTAATATGCGCCCCGTT 

proL 2284227 18.86 + ATATCTTACTTGCAATCGG  TGTGGAAAACGGTAGTATTAGCAGCCACGAG 

alaW-alaX 2516279 19.25 - AATTTGCCGTTGACACATT    CGGGCGGAATTCATATGATGCCGCCCGTC 

valU-valX-valY-lysV 2518944 11.21 + GAAAATGCGTTGACTCATT     TTGAACTCTCCCTATAATGCGACTCCAC 

rrsG-gltW-rrlG-rrfG 2727935 5.92 - TCATGGCCCTTACGACCAG   GGCTACACACGTGCTACAATGGCGCATACA 

rrsG-gltW-rrlG-rrfG 2729661 6.63 - CAGCAAATACTGTCTGGTG    AATTGGTTCCGGGTAAAGTGATTCGCCTG 

ssrA 2753608 10.22 + CATTGAGGCTGGTCATGGC   GCTCATAAATCTGGTATACTTACCTTTACA 

serV-argV-argY-argZ-argQ 2816723 27.73 - AAAAATTGTTTGACTTATA     AGTCTCAGAAAGTAATATGTGCGCCACG 

glyU 2997092 15.57 - GCGTGGCACTTGCTAAGGA     GAGCGTAAGGTTTATAATGCCTTACGCA 

pheV 3108325 5.56 + TGCCTGACAATGCGTGCAATATCGGCAAAGTGATGATAGATTGTGCAGTCTG 

pheV 3108385 35.08 + GAAATTTGATTGACGAGAC    GAGGCGAATCAGGTTTAATGCGCCCCGTT 

MetCAT 3213618 13.50 + ATGGCTGGATTGCGACACG        GAGTTACTTTATAATCCGCTACCAT 

leuU 3320658 7.06 - ACATCGGTTTTGCTGTTTT    TTTCCGCAGTTGATACAATGCGATAAAAT 

rplM-rpsI 3376832 21.69 - AAAAAGGGGTCGATCTTTG    ACCCCGACTTCTCTATAATCCTGCGACCC 

rrsD-ileU-alaU-rrlD-rrfD-thrV-rrfF 3424407 5.27 - GTGAGCTCGATGAGTAGGG     CGGGACACGTGGTATCCTGTCTGAATAT 

rrsD-ileU-alaU-rrlD-rrfD-thrV-rrfF 3425540 4.33 - TCATGGCCCTTACGACCAG   GGCTACACACGTGCTACAATGGCGCATACA 

rpsL-rpsG-fusA-tufA 3469747 8.90 - ACCATGACGTTGACTCCTC       TGAACTGGCGTTTAAACTGGCTGCTT 

proK 3706721 3.44 - ATTAAGGGATTGACGAGGG    CGTATCTGCGCAGTAAGATGCGCCCCGCA 

selC 3834221 24.00 + TGGGGGATGTAGAAACTCA       AGGAAGTAGCTATAATGCGCCCCGCC 

rrsC-gltU-rrlC-rrfC-aspT-trpT 3941078 9.41 + TCATGGCCCTTACGACCAG   GGCTACACACGTGCTACAATGGCGCATACA 

rrsA-ileT-alaT-rrlA-rrfA 4033382 43.00 + AATAAATGCTTGACTCTGT     AGCGGGAAGGCGTATTATGCACACCCCG 

rrsA-ileT-alaT-rrlA-rrfA 4034801 10.43 + TCATGGCCCTTACGACCAG   GGCTACACACGTGCTACAATGGCGCATACA 

rrsB-gltT-rrlB-rrfB 4165929 9.81 + TCATGGCCCTTACGACCAG   GGCTACACACGTGCTACAATGGCGCATACA 

rrsB-gltT-rrlB-rrfB 4166279 8.20 + AAGCGTACTTTGTAGTGCT CACACAGATTGTCTGATAGAAAGTGAAAAGCA 

thrU-tyrU-glyT-thrT 4173404 16.07 + ATTTTTTAGTTGCATGAAC    TCGCATGTCTCCATAGAATGCGCGCTACT 

rrsE-gltV-rrlE-rrfE 4207417 11.58 + TCATGGCCCTTACGACCAG   GGCTACACACGTGCTACAATGGCGCATACA 
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Table 4.2 (continued) 

Suggested operon TSS position Enrichment Strand Sequence 

pheU 4360653 19.42 - GAAATTAGGTTGACGAGAT    GTGCAGATTACGGTTTAATGCGCCCCGTT 

glyV-glyX-glyY 4390333 11.50 + TTTGGGGGGTTGCAGAGGG     AAAGATTTCTCGTATAATGCGCCTCCCG 

Table 4.2- Table showing the upstream region of the sites of enrichment for tRNA and rRNA TSS. tRNA and rRNA genes which are in close 
proximity and or which gRNA-seq data showed were transcribed as a single unit are presented as “Suggested operons”. TSS loci are also 
presented alongside the strand and enrichment for each of these suggested operons. Sequences upstream of the +1 nucleotide (marked red) 
were aligned. Nucleotides present around the -10 region and matching the -10 (TATAAT) consensus sequence, as well as those in the -35 
region matching the -35 (TTGACA) consensus sequence, are highlighted in grey. 
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Figure 4.5- Weblogo generated following manual alignment of tRNA TSSs identified by 
the approach here presented. Conserved sequences in the promoters associated with 
genes encoding the translational machinery. This figure presents Weblogo represented 
(Crooks et al., 2004) changing the length of the spacer of individual promoters to maximise 
the alignment of the -35 box. The combined height of nucleotide symbols shows the level 
of sequence conservation at a particular position, while the height of individual symbols 
within a stack of nucleotides indicates the relative frequency at that position. The 
nucleotide positions are numbered relative to the average position of TSSs and no labelling 
is present where the spacer was introduced or no consensus was present. Strong 
conserved sequences can be observed at sites that would correspond to the -10 and-35 
boxes (TATAAT and TTGACA respectively). 

 Leaderless mRNAs and ribosome processing 4.2.2

Having access to nucleotide-resolution transcriptional maps annotated to show the 

positions of sites of transcription initiation and RNA processing and degradation allowed a 

genome-wide survey of aspects of gene expression and regulation. For example, it was 

found that in stark contrast to P. acnes (Lin et al., 2013b), E. coli MG1655 (seq) has only a 

few mRNAs that lack or have a short 5’ leader (<10 nt) and thereby cannot be translated via 

the canonical Shine-Dalgarno (SD) interaction (Shine and Dalgarno, 1974; Shine and 

Dalgarno, 1975). It increasingly appears that different species of bacteria differ 

substantially in the extent to which they use the SD interaction to initiate translation 

(Nakagawa et al., 2010). While a gene ontology analysis of the ‘leaderless’ P. acnes mRNAs 

failed to identify enrichment of a particular function(s) (Lin et al., 2013b), 3 of the 5 

leaderless E. coli mRNAs encoded repressors of prophage (Qin, Rac and e14). This extends 

the association between leaderless mRNA and repressors of mobile genetic elements in E. 

coli, which has been a major bacterial model for the study of ‘leaderless’ translation (Moll 

et al., 2002; Malys and Mccarthy, 2011). The two best-studied leaderless mRNAs in E. coli 

encode the cI repressor of bacteriophage lambda (Walz et al., 1976) and the TetR repressor 

of transposon Tn1721 (Baumeister et al., 1991). Neither lambda nor Tn1721 are present in 

the MG1655 (seq) strain of E. coli studied here. The two other E. coli mRNAs identified as 

being leaderless (Figure 4.6) encode housekeeping proteins, the RhlB helicase and 

phosphatidylglycerophosphatase A (PgpA). The former is a component of the RNA 
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degradosome, which as described earlier is central to both the processing and degradation 

of RNA (Carpousis et al., 2009), while the latter is involved in the biosynthesis of 

phospholipids (Lu et al., 2011). The start codon of rhlB has been confirmed by N-terminal 

sequencing of its product (Py et al., 1996). The leaderless mRNAs described above were 

identified by using the VLOOKUP function of Excel to identify TSSs that were associated 

with start codons no more than 10 nt downstream (Table 4.3). If the analysis was extended 

to start codons within a 20 nt leader, another 15 potential leaderless mRNAs would be 

identified. In all 15 of them, ribosome binding sites were not detected using the RBSfinder 

software (Suzek et al., 2001). However, leaders of between 10 and 20 nt could enable SD-

type interactions 

A 

 

B 

 

Figure 4.6 – pgpA and rhlB leaderless mRNAs. Panels A and B correspond to the pgpA and 
rhlB transcript respectively. Their TSSs are both class I and fall within 10 nt of the +1 site (in 
relation to translation) Labelling as in Figure 4.3. 

Gene  Start 

position 

Stop 

position 

Closest TSS Distance Function 

pgpA (+) 435812 436331 FWD(I)-435804 -8 Phosphatidylglycerophosphatase A 

ymfK (-) 1202156 1201481 RVS(I)-1202156 0 e14 prophage; repressor protein phage e14 

racR (-) 1418265 1417788 RVS(I)-1418265 0 Rac prophage; predicted DNA-binding 

transcriptional regulator 

dicA (+) 1645957 1646365 FWD(I)-1645954 -3 Qin prophage; predicted regulator for DicB 

rhlB (-) 3963653 3962387 RVS(I)-3963653 0 ATP-dependent RNA helicase 

Table 4.3 - Leaderless mRNAs. This table presents the 5 mRNAs which were identified as 
being leaderless. From left to right, columns represent the gene name and direction in 
brackets, start and end codons followed by the closest TSS detected and the relative 
distance between this TSS and the annotated start codon. The known function for each 
gene is also presented. 

Recently, it has been shown that leaderless E. coli mRNAs specifically generated by 5’ 

trimming under conditions of stress are translated by specialised ribosomes from which the 

last 43 nt of the 3’ end of 16S rRNA have been removed endonucleolytically (Vesper et al., 

2011). This region contains the anti-SD sequence and the binding site of S1 (Shine and 
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Dalgarno, 1974; Lauber et al., 2012), a ribosomal protein that augments the SD interaction 

(Sorensen et al., 1998). This work prompted me to look for evidence of 3’ processing of 16S 

rRNA in our RNA-seq data. Processing precisely 43 nt from the 3’ end of E. coli 16S rRNA 

was detected (Figure 4.7). It is possible that specialised ribosomes similar to those 

generated during stress could facilitate the translation of the handful of leaderless mRNA 

present in E. coli during exponential growth, and that by the virtue of being leaderless the 

mRNA might be pre-programmed to be translated efficiently during conditions of stress 

when increasing numbers of specialised ribosomes are produced. For example, the 

continued repression of phage genes would be required to prevent premature cell death. 

 

Figure 4.7 - 16S rRNA MazF equivalent cleavage site. This screenshot presents the 3’ end 
of the 16S rRNA from the rrnE operon. The site where MazF mediated cleavage normally 
occurs is indicated by the legend “-43 nt”. Labelling as in Figure 4.3. The only dRNA-seq 
track shown is “TAP plus” as there is no enrichment and “TAP minus” is identical to it. 

 The maturation of stable RNAs 4.2.3

The study of E. coli and to a lesser extent B. subtilis has revealed that mature ribosomal 

RNAs are produced via a series of nucleolytic steps involving several ribonucleases and that 

rRNA can be degraded in response to aberrant assembly of the ribosome or cellular stress 

(Deutscher, 2009). Remarkably, it was possible to detect for E. coli most of the known 

endonucleolytic processing sites, despite the transitory existence of the corresponding 

intermediates. All five of the known endonucleolytic steps that produce the mature 16S 

rRNA via the combined activities of RNases III, E and G and an as yet an unidentified 

nuclease, possibly RNase YbeY (Jacob et al., 2013), were detected (Young and Steitz, 1978; 

Li et al., 1999a; Wachi et al., 1999), as well as the RNase III cleavages involved in the 

maturation of 23S rRNA (Bram et al., 1980), and a tight cluster of cleavages that produce 

the 5’ end of 5S rRNA, at least one of which is produced by RNase E (Misra and Apirion, 

1979). Data shown is for the rrnE operon, but is representative of all seven E. coli operons 

(Figure 4.8). Several prominent sites internal to the rRNA and on the 3’ side of tRNA 

internal to rRNA operons were also detected. Sites at the precise 3’ ends of 23S and 5S RNA 
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were not detected as these are generated via 3’ exonucleolytic trimming by RNase T (Li et 

al., 1998). Cleavage at a large number of sites internal to the functional regions of the 

mature rRNAs was also observed for P. acnes (Lin et al., 2013b). These nucleolytic events 

may control the quality of rRNA (and ribosomes) (Jacob et al., 2013), prevent rRNA 

accumulating in excess over ribosomal proteins (Norris and Koch, 1972; Gausing, 1977) or 

mediate the rapid turnover of prematurely terminated transcripts, which may occur more 

frequently in rRNA operons (Condon et al., 1995), or a combination of these. Moreover, the 

high density of nucleolytic sites in E. coli where there is no known 5’ exoribonuclease, 

indicates the use of endoribonucleases on a scale perhaps not appreciated previously. 
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D 

 

E 

 

Figure 4.8 - Processing of the rrnE operon. This figure presents the rrnE operon (b4007, b4008, b4009 and b4010 which correspond to 16S rRNA, Glu tRNA, 
23S rRNA and 5S rRNA respectively). Panel A shows the whole rrnE operon; red boxes labelled B, C, D and E are regions that were resolved to a higher 
degree, thus the decrease in the scale for panel D, and correspond to the panels B, C, D and E, respectively. Cleavage sites for RNaseE, G and III are labelled 
E, G and III respectively whilst sites for which a ribonuclease is yet to be identified are labelled “?” Labelling as in Figure 4.3 with the exception that the scale 
in the “TAP plus” lane in Panel A is variable with the 0-2000 scale regions highlighted grey and the 0-25000 scale regions showing no highlighting. 



54 
 

E. coli has been a major model for studying the processing of tRNAs. This study has led to 

the establishment of the model in which the mature tRNA 5’ end is generated by the 

ubiquitous endonuclease RNase P, and the mature 3’ end via endonucleolytic cleavage a 

few nucleotides downstream the CCA motif followed by 3’ exonucleolytic trimming to this 

motif. The CCA motif is present in all of the 86 tRNA genes in E. coli. The maturation of the 

3’ end can be mediated by RNase BN (known as tRNase Z in other bacteria species), which 

has dual endo/3’ exonucleolytic activity (Dutta and Deutscher, 2010; Dutta et al., 2012), or 

by the combined action of RNase E and 3’ exonucleases, mainly RNases PH and T 

(Hartmann et al., 2009). Fully consistent with this model, in all cases where 5’ and 3’ 

processing sites could be detected for tRNAs, they were at the precise 5’ end and within a 

few nucleotides downstream of the 3’ end of E. coli tRNAs, respectively (Table 4.4). In 

contrast, the analysis of P. acnes found that most of the CCA-encoding tRNAs are cut within 

this motif between the Cs (Lin et al., 2013b). It is likely that, for P. acnes, the homologue of 

tRNA nucleotidyltransferase (SCO3896), which adds CCA to tRNAs not synthesised with this 

motif (Cudny and Deutscher, 1986), can recognise partial CCA ends and add only the 

residues that are missing. There is evidence that at least some tRNA 

nucleotidyltransferases, including the E. coli enzyme (Reuven et al., 1997), have the 

capability of repairing CCA (Betat et al., 2010). Such an activity in P. acnes would mean that 

cleavages within 3’ CCA triplets would not result in terminal inactivation of the tRNA.  

tRNA Strand 5' end 3' end 
3' cleavage 

site 

ArgACG - 2816571 2816494 CCAt↓at 

AspGTC + 236930 237007 CCA↓c↓ta 

AspGTC + 3944894 3944971 CCAccct↓a↓at 

CysGCA - 1990011 1989937 CCA↓c↓ttt↓ct 

GlnCTG - 695839 695764 CCAa↓ttt↓at 

GlyGCC - 1990141 1990065 CCAg↓tt 

HisGTG + 3980532 3980608 CCAtt↓at 

MetCAT - 695963 695886 CCAa↓at 

SerGCT - 2816667 2816574 CCAttt↓gc 

ThrGGT - 3421677 3421601 CCActt↓tt 

TyrGTA - 1286845 1286760 CCAta↓at 

TyrGTA + 4173494 4173579 CCA↓a↓tt 

Table 4.4 - Processing of tRNA genes in E. coli. tRNA genes for which 3’ processing was 
detected are presented alongside their respective start and end positions and their strand. 
Cleavage/s detected within the 10 nt downstream of the terminal CCA at the 3’ end of each 
tRNA are indicated with an arrow within the sequence where they occur. 
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 The degradation and processing of mRNA 4.2.4

With regard to mRNA, endonucleolytic sites involved in both the degradation and 

processing of E. coli mRNA were detected (Figure 4.9). This included RNase E sites that 

accelerate the turnover of eno (Kime et al., 2008a), rpsT (Coburn and Mackie, 1998) and 

ompA (Rasmussen et al., 2005) mRNAs by providing additional ends for 3’ exonucleolytic 

attack. Additionally RNase III sites were detected in the 5’ leader of adhE and pnp mRNA 

that facilitate translation (Aristarkhov et al., 1996) and an autoregulatory mechanism 

(Jarrige et al., 2001), respectively as well as RNase P sites that segment polycistronic 

mRNAs (Lee et al., 2008). In addition, previously uncharacterised cleavage sites within 

mRNAs that serve as models for understanding mRNA degradation, e.g. one internal to the 

coding region of rpsT mRNA and another that removes the 3’ stem-loop of ompA mRNA, 

were detected. Thus, our RNA-seq approach not only confirms, but extends knowledge of 

events controlling the activity and longevity of mRNA in E. coli.  

A 

 

B 

 

C 

 

Figure 4.9 - Detection of known cleavage sites. This figure presents the differential and 
global sequencing profiles for three characterized genes. Panel A presents eno where the 
RNase E site at position -27 is marked with an E. Panel B presents ompA, the RNase E 
cleavage site at -66 nt is labelled E and the promoter RVS(I)-1019410. Panel C presents rpsT 
where the two promoters are labelled RVS(I)-21211 and P2. A novel, previously unidentified 
cleavage site is labelled U whilst the RNase E cleavage sites occurring at positions +167 and 
+210 are labelled E1 and E2 respectively. All positions are in relation to the first nucleotide 
in the start codon. All labelling is as in Figure 4.3. As cleavage site reads are similar in TAP 
treated and TAP untreated samples only the track presenting the best peaks for both TSSs 
and cleavage sites are presented. 
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 Identification of potential sRNAs 4.2.5

Manual inspection of the global RNA-seq data identified 181 small RNAs (Table S.2) of 

which 87 appear to have been described previously (Figure 4.10). Within this group, the 

ubiquitous bacterial sRNAs, 6S RNA, tmRNA, the RNA component of RNase P, and Signal 

Recognition Particle RNA (Lee et al., 1978; Vioque et al., 1988; Struck et al., 1990; Felden et 

al., 1997; Schneider et al., 2006; Chan et al., 2012) were all readily identifiable (Figure 4.11). 

Of the remaining 89, many had 5’ ends associated with Class I or III promoters (TAP 

enrichment) indicating that this group was not dominated by quasi-stable processing or 

degradation intermediates. However, 69 were associated with REP (repetitive extragenic 

palindromic) sequences, which are found peppered throughout the genomes of bacteria. 

REP sequences have been shown to efficiently block the progression of 3’ to 5’ 

exonucleolytic attack (Stern et al., 1984; Newbury et al., 1987). Thus, small RNAs 

overlapping with a REP sequence were also filtered out. It is acknowledged that this may 

have excluded functional small RNAs that happen to utilise REP sequences to increase their 

stability. However, collaborators were concerned, perhaps overly, that others would simply 

interpret the presence of a REP as evidence for quasi-stable processing or degradation 

intermediates. Moreover, transcripts shorter than 70 nt were not included in our list of 

small RNAs. This was done to exclude 3’ transcriptional terminators, which like REP 

sequences, form stem-loop structures that are less susceptible to 3’ to 5’ exonucleolytic 

attack (Andrade et al., 2009). Another reason for eliminating transcripts shorter than 70 nt 

was to eliminate artefacts caused by the misalignment of short reads. Where sequences 

are duplicated in the genome (e.g. ribosomal RNA operons), the alignment algorithms 

assign reads to them on a random basis. This can produce features which look like 

‘chimneys’ of transcription in genome-wide transcription maps when a read from a highly 

transcribed region is assigned to a region that is not. After filtering out small RNAs that had 

been described previous or were associated with REP sequences, 20 small RNA remained. 

Examples of these novel small RNAs are shown in Figure 4.12.  
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Figure 4.10 - Venn diagram presenting sRNAs identified in our study, previously identified 
sRNAs and REP sequences. This Venn diagram presents the 181 sRNAs detected by our 
sequencing approach (labelled “sRNAs detected by our approach”). It also presents the 444 
sRNAs that have been previously described in the literature and have experimental 
evidence associated with them (labelled “Published sRNAs”). There is an overlap of 87 
sRNAs between our data and the published data. Regarding overlap with REP sequences 
(labelled “REP sequences”) our data contains 69 sRNAs with REP sequences whilst the 
published dataset contains only 4. 

A 
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Figure 4.11 - Previously identified sRNAs supported by our sequencing approach. This 
figure presents the ubiquitous bacterial sRNAs, 6S RNA (Panel A), the RNA component of 
RNase P (M1RNA) (Panel B), Signal Recognition Particle RNA (Panel C) and tmRNA (Panel D). 
Labelling is as in Figure 4.3.  
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Figure 4.12 - Novel candidate sRNAs identified by our sequencing approach. This figure 
presents four novel sRNA candidates (panels A to D). Labelling in parentheses indicates 
whether the sRNA is upstream (u) or downstream (d) of the nearest protein-coding gene 
and whether it is on the same (+) or opposite (-) strand. The prefix 'ecr' is used for discrete 
RNAs of unknown function. The remaining of the labeling is as in Figure 4.3. 

 Mapping of sites of cleavage by T170V in vitro 4.2.6

After the generation of reliable maps with regard to transcription and the positions of sites 

involved in RNA processing and degradation, the results of incubating enriched mRNA with 

the T170V mutant (Figure 3.9) were analysed next. Libraries were prepared from aliquots 

of RNA isolated from the ΔrppH strain that had been incubated with and without T170V for 

20 min. This was done as described for dRNA-seq with the exclusion of the TAP treatment. 

For each of the libraries, the genome positions of the 5’-monophosphorylated ends were 

mapped and an estimate of the relative abundance of the corresponding fragments was 

obtained by counting the numbers of reads starting at each of the positions. Positions not 

associated with reads before and after incubation with enzyme were not included in the 

scatterplot. Where reads were obtained under only one condition (i.e. before or after 

incubation with T170V), the read for the other was given a nominal value of 1 (the lowest 

limit of detection). In this way, ~567 thousand ends were mapped. 

The reads obtained before and after incubation with T170V were then compared using M 

(ratio)-A (intensity) scatterplots, where M = Log2 (reads after/reads before incubation with 

T170V), and A = (log2 reads before + log2 reads after incubation)/2 (Figure 4.13). This 
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revealed a cone-shaped population of points that were distributed around an average M 

value of -0.43. This population corresponds to 5’-monophosphorylated ends that were 

present in the starting material and were not cleaved significantly. Above this population, 

there was a large ‘cloud’ of points of which 15 had M values greater than 10, 185 had M 

values greater than 8, 2667 had M values greater than 5 and 13551 had M values greater 

than 3. As the 5’ ends associated with transcripts that are rapidly degraded following in 

vitro incubation with T170V show a decrease in reads, a noise envelope could not be 

determined. Thus a cut-off where M values greater than 5, which correspond to a fold 

increase of 32 (2 to the power 5), were considered as being significantly enriched following 

incubation with T170V in vitro was used. Thus, despite being deficient in 5’-

monophosphate sensing, T170V appears to be able to cleave at a large number of sites in 

the E. coli transcriptome. The proportion of the cleavages mediated by T170V that are likely 

to be of functional significance was then estimated, by analysing the extent of the overlap 

between sites cleaved in vitro and those identified in vivo. This was done using the 

VLOOKUP function of Excel. For in vitro sites with M values of 3, 5 and 8, the percentage 

overlap with in vivo was 61.4, 72.1 and 75.7 % respectively. Thus, while RNA binding 

proteins block access in vivo to sites that were available to RNase E in vitro, it appears, 

nevertheless, that direct entry by RNase E may mediate a substantial number of cleavages 

detected in vivo. Moreover, this is likely to be an underestimate as detection of cleavages 

in vitro requires that the substrate is present at sufficient levels in vivo, against a 

background of active processing and degradation, and because some of the downstream 

species of RNase E cleavage might be degraded so rapidly that they cannot be detected in 

vivo. Examples of some top candidates where in vivo cleavage sites are reconstituted 

following in vitro incubation with T170V are presented in Figure 4.14. 
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Figure 4.13 - Scatterplot analysis of RNA-seq data following total mRNA incubation with 
T170V. The values corresponding to the reads obtained before and after the incubation of 
enriched RNA with T170V for 20 min. The points coloured blue have M values ≥5. 
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Figure 4.14 – in vivo cleavage sites reconstituted in vitro following incubation with T170V.  
This figure presents four top examples of cleavage sites (labeled *) which are present in 
vivo (T170V minus) and are reconstituted when total mRNA in incubated with T170V in 
vitro (T170V plus). The examples presented are 5S rRNA, dnaK, fumA and manX (Panels A, 
B, C and D respectively). Scales are different in the T170V minus and T170V plus tracks. 
Labelling is as in Figure 4.3 
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4.3 Discussion 

This chapter describes the successful development of a pipeline that utilises RNA-seq to 

map the location of sites involved in RNA processing and decay (Figure 4.1) against the 

transcriptional landscape present under the same conditions and to investigate the 

contribution of direct entry cleavage by RNase E using the T170V mutant (Figure 4.13). The 

results of the latter suggested that one of the hallmark properties of RNase E, i.e. its ability 

to interact with 5’-monophosphorylated ends, is not required for efficient cleavage at a 

plethora of sites within the E. coli transcriptome (Figure 4.13). Consistent with this notion, a 

selection of 5’-triphosphorylated transcripts was found to be cleaved by the T170V mutant 

in vitro (see Chapter 5). 

Previous RNA-seq analyses of sites involved in bacterial gene regulation have had a 

different focus, concentrating instead on the identification of transcription start sites. As 

described in the Introduction (Section 1.4), TSSs in previous studies were identified by 

removing the 5’-monophosphorylated products of RNA processing and degradation and 

then treating the remaining RNA with TAP to allow the cloning of fragments corresponding 

to the 5’-triphosphorylated ends of nascent transcripts (Figure 1.5). The approach 

described here, which took advantage of the ability of Illumina Solexa sequencing to 

generate ~10 million reads per run, also identified TSSs, but by virtue of the increase in the 

number of the corresponding reads that followed treatment with TAP. Sites involved in 

RNA processing and degradation, which show no such increase, provided a clear baseline 

for identifying TSSs (Figure 4.2) as well as sites cut by T170V in vitro (Figure 4.13). In a 

recent study of the E. coli transcriptome that did not include a step to differentiate TSSs, 

sites of processing as determined here, some of which are well characterised and 

documented (e.g. RNase P maturation of the 5’ end of tRNA), were identified erroneously 

as TSSs (Cho et al., 2009). Moreover, the inclusion of a differential step is critical to identify 

transcription start sites that are positioned downstream of others that produce significant 

transcription. By widening the pipeline to include replicates and a statistical analysis that 

took into account the inherent noise in RNA-seq data, it was possible in a recent study of 

the transcriptional landscape of Propionibacterium acnes, a major contributor to wide-

spread human disease, to identify not only nested promoters upstream of coding regions, 

but sites that have been attributed to pervasive transcription (Cho et al., 2009; Georg et al., 

2009; Guell et al., 2009; Jacquier, 2009; Jager et al., 2009; Mendoza-Vargas et al., 2009b; 

Rasmussen et al., 2009; Toledo-Arana et al., 2009; Albrecht et al., 2010; Beaume et al., 
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2010; Dornenburg et al., 2010; Filiatrault et al., 2010; Marguerat and Bahler, 2010; Martin 

et al., 2010; Sharma et al., 2010; Wurtzel et al., 2010; Lasa et al., 2011; Mitschke et al., 

2011). The latter may be largely the consequence of the ability of RNA polymerases to 

initiate transcription from sub-optimal sequences (Lin et al., 2013b). 

As a result of the encouraging results described here, the use of TAP or another RNA 

pyrophosphatase as a means of distinguishing nascent 5’ ends is advisable. However, 

treatment with TEX may offer better discrimination of TSSs that correspond to transcripts 

that are efficiently ‘decapped’ by an RNA pyrophosphatase in vivo and as a consequence 

cannot be enriched significantly by TAP in vitro. In this scenario, TEX treatment would 

remove the majority of the species allowing those with nascent 5’ triphosphorylated ends 

to be detected. In this study, 311 leading edges of transcription for E. coli were detected, 

and although not associated with obvious enrichment (Class II sites), the majority had 5’ 

ends which were detectable by dRNA seq. Most of these TSSs were associated with 

extremely low A values (Figure 4.2). Furthermore, analysis of the corresponding 5’ ends did 

not identify terminal stem-loops, which are known to block RNA pyrophosphatases 

(Celesnik et al., 2007). Considered together, these results suggest that 5’ ends associated 

with leading edges of transcription were not identified by dRNA-seq as they could not 

compete with others during the PCR step. About 25% of the promoters recorded in 

RegulonDB (Salgado et al., 2006) that have been verified by transcript-specific mapping 

(e.g. nuclease protection or primer extension assays) and were associated in this study with 

obvious transcription extending downstream (data not shown) were assigned to Class II.  

In addition, background transcription could explain at least a proportion of the TSSs in Class 

III, which are associated with TAP enrichment, but not an obvious step increase in 

transcription. However, verification of background transcription initiation will require a 

number of biological replicates and statistical analysis, as applied recently to P. acnes (Lin, 

2013) as the sequencing runs for the analyses here presented were done once and not in 

duplicate. TSSs associated with alternative promoters nested downstream of ones that 

produce a substantial increase in transcription were also assigned to Class III. This 

represents about 15-20% of the promoters recorded in RegulonDB (Salgado et al., 2006) 

that have been verified by transcript-specific mapping (e.g. nuclease protection or primer 

extension assays) and were associated in this study with obvious transcription extending 

downstream (data not shown). 
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The mapping of TSSs could be further improved by analysing strains which are deficient in 

the RNA pyrophosphatase; this might not always be desirable given the resulting changes in 

gene expression and presumably cell physiology accompanying this deletion. The addition 

of a phosphorylation step would allow the identification of the cleavage sites of RNases 

that produce downstream products with a 5’-hydroxyl group. This is likely to be particularly 

relevant to studies of conditions suboptimal for growth under which such RNases, e.g. 

MazF (Vesper et al., 2011), are activated. It is advisable that RNA is fragmented after the 

addition of the 5’ sequencing adaptor as this step made it possible to detect the 5’ ends of 

large and small transcripts, and the use of the FRT methods of global RNA-seq, which does 

not require an amplification step prior to sequencing (Mamanova et al., 2010). The latter 

may be of more importance in the study of GC-rich organisms such as the streptomycetes 

as their transcriptomes tend to form more stable secondary structures, which can 

introduce strong bias in assays involving PCR (Mcdowell et al., 1998).  

In relation to the 20 novel sRNAs identified, it is not believed that this group represents 

metastable decay intermediates, as most are associated with TSSs in Class I. Furthermore, 

as the expression of several sRNAs has been shown to be regulated by growth (Vogel et al., 

2003) and the RNA-seq was performed on RNA extracted from cells grown exponentially, it 

is expected that not all sRNAs in the literature will be detected. As a result of this, the 

overlap between our data and the library of sRNAs previously identified under a vast array 

of conditions is not as prominent as expected. 

New features within the transcriptome of E. coli, despite it being one of the most studied 

organisms, such as the 20 small RNAs that had been un-described previously (Table S.2 and 

Figure 4.10) and ribosomal RNA processing (Figure 4.7) that might produce a subpopulation 

of ribosomes during exponential growth that ensure the translation of the mRNAs, 

identified here, that are leaderless in their nascent form (Table 4.3) are discussed at the 

end of the Chapter 5. 
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Chapter 5 

5 Confirmation of features within the transcriptional landscape of E. 

coli. 

5.1 Introduction 

Bacteria not only have to be able to respond rapidly to changes in nutrient availability, they 

have to be able to survive periods of nutrient deprivation and other conditions that are not 

conducive to growth. For example, Mycobacterium tuberculosis, which causes tuberculosis 

(TB), one of the deadliest diseases ever to afflict mankind (Cruz-Knight and Blake-Gumbs, 

2013), can produce latent TB infections in which the bacterial cell is thought to exist in a 

non-replicating dormant state, from which it may later reactivate and cause disease 

(Sutherland et al., 1976; Manabe and Bishai, 2000; Lillebaek et al., 2002). Although much 

surrounding latent infection by TB remains elusive, the molecular mechanisms by which 

bacteria are able to initiate and maintain a non-replicating dormant state, which is called 

persistence, is beginning to emerge (Zahrt and Deretic, 2001; Betts et al., 2002; Singh et al., 

2006). Major advances in our understanding of bacterial persistence has emerged from the 

study of E. coli. These advances include the description of persister cells, even during 

exponential growth, as a result of stochastic fluctuations in gene expression that lead to 

phenotypic heterogeneity among cells within a clonal population (Elowitz et al., 2002; 

Davidson and Surette, 2008; Nikolic et al., 2013). Furthermore, the key role that toxin-

antitoxin (TA) systems play in mediating the persistent state across prokaryotes is also 

being elucidated (Wagner and Unoson, 2012; Schuster and Bertram, 2013; Butt et al., 

2014). 

The hallmarks of TA systems are a stable toxin that can inhibit an important cellular 

process, and an antitoxin that must be constitutively present in the same cell (Buts et al., 

2005; Gerdes et al., 2005). Although initially discovered as a mechanism associated with 

certain plasmids, that ensures only cells that continue to carry the plasmids survive 

(Bernard and Couturier, 1991; Thisted et al., 1994a; Thisted et al., 1994b), TA systems are 

now known to be encoded widely in the chromosomes of bacteria, where they are 

reported primarily to down-regulate cellular processes in response to stress rather than 

induce cell death (Yamaguchi and Inouye, 2009). However, this may be an overly simplistic 

view. Recently it has been shown that MazF, an endoribonuclease that serves as the toxin 
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component of a stress-induced TA system in E. coli, while destroying the majority of cellular 

transcripts, ensures the continued translation of a subset by cleaving at a site immediately 

upstream or close to their AUG start codon, thereby generating leaderless mRNAs (Vesper 

et al., 2011). Moreover, these leaderless mRNAs are translated by ‘specialised’ ribosomes 

that are also generated by MazF, via removal of 43 nucleotides from the 3' terminus of 16S 

rRNA, which is within the decoding centre of 30S ribosomal subunits (Vesper et al., 2011). 

The mRNAs that continue to be translated by the modified translation machinery are not 

just associated with cell survival but also cell death. It is thought that the induction of MazF 

leads to the death of most of the population and the survival of a small sub-population that 

can then expand when conditions become conducive to growth (Amitai et al., 2009). 

The ability of E. coli to adapt its physiology is now increasingly associated with the 

production of small RNAs. For example, the long-term survival of E. coli during stationary 

phase is enhanced by 6S RNA, which binds specifically to RNA polymerase containing 

sigma70 (Wassarman and Storz, 2000). This interaction represses transcription of the many 

housekeeping genes, thereby reducing the energy burden on the cell during stationary 

phase. Furthermore, sRNAs have been shown to block or enhance translation and mRNA 

degradation (see Section 1.3.3.1) 

In the previous chapter, RNA-seq analysis of the transcriptome of E. coli cells that were 

growing exponentially in rich media identified five mRNA transcripts that, in their nascent 

form, appear to lack a 5' leader sequence long enough to mediate a Shine-Dalgarno (SD) 

interaction, which is key to canonical translation in this model organism. Moreover, the 

processing site at the 3' end of 16S ribosomal RNA, the same as that cleaved by MazF, was 

detected. This raised the possibility that in rapidly growing cultures a subset of specialised 

ribosomes, similar to those generated during stress, could facilitate translation of 

leaderless mRNA transcripts. The RNA-seq analysis also revealed over a hundred small 

RNAs that appear not to have been described previously. This suggested that regulation by 

small RNAs may have a more extensive role than is currently appreciated. In this chapter, 

the existence of leaderless mRNAs under non-stress conditions, MazF-like processing of 16S 

rRNA, which further work by others implicates RNase E, and novel sRNAs are investigated 

further using techniques complementary to RNA-seq. 
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5.2 Results 

 Leaderless mRNA 5.2.1

RNA ligase-mediated reverse transcription PCR (RLM-RT-PCR, (Kime et al., 2008a)) before 

and after treatment with TAP was used to confirm the position of the 5’-triphosphorylated 

ends of leaderless mRNAs identified in the previous chapter (Table 4.3). The mRNAs of four 

genes were selected for this analysis: rhlB, pgpA, ftsT (also known as dicA) and ymfK. The 

first two encode RhlB, which is a core component of the degradosome (Miczak et al., 1996; 

Py et al., 1996), and a non-essential phosphatidylglycerolphosphatase (Icho and Raetz, 

1983; Funk et al., 1992), respectively. The second two encode repressors of genes within 

the Qin and e14 prophages (Keseler et al., 2013), respectively. RLM-RT-PCR involves the 

ligation of an RNA adaptor to the 5’ ends of transcripts, which can only occur if the 5’ end is 

monophosphorylated (Kime et al., 2008a). This was followed by reverse transcription of the 

RNA using random hexamers, and then the amplification of specific 5’-end fragment(s) 

using a primer that is specific for the transcript of interest and another specific for the RNA 

adaptor. The amplicons were then sequenced to identify the positions corresponding to the 

5’ end of the transcripts. Two different primers complementary to the RNA adaptor were 

used (RLM1 and RLM2, see Table 2.2). It was determined empirically if one or the other 

could facilitate better amplification when combined with gene-specific primers. The pgpA 

transcript was analysed using RLM1 and was predicted to produce an amplicon of 125 bp 

should it have a 5’ end that matches the site identified by RNA-seq (Figure 4.6). The rhlB, 

ftsT and ymfK transcripts were amplified using RLM2 and were expected similarly to 

produce amplicons of 156, 300 and 335 bp, respectively. The PCR products of ftsT and ymfK 

were analysed by electrophoresis using agarose gels whilst those of pgpA and rhlB were 

analysed using polyacrylamide gels (Figure 5.1). To differentiate 5’ ends that might 

normally be ‘decapped’ efficiently in vivo, RNA from an ΔrppH mutant as well as the 

congenic wild-type strain (BW25113) were analysed. Assays minus the ligation step were 

included as negative controls. 

All of the reactions produced amplicons of the expected size. However, in the case of rhlB, 

a second amplicon of ~230 bp was identified (Figure 5.1, panel D), which initially suggested 

the production of a leadered as well as leaderless transcript. For all of the transcripts, the 

abundance of the amplicons increased substantially following treatment of RNA from the 

ΔrppH mutant with TAP. This is consistent with the corresponding 5’ ends being the 

products of transcription initiation. Similar results were obtained using RNA from the wild-
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type strain, with the exception that the abundance of the amplicons produced for the 

leaderless ymfK and rhlB transcript did not increase following TAP treatment. This 

suggested that the ymfK and rhlB transcripts might be more efficiently decapped by RppH 

than the other transcripts under these conditions. Had a quantitative PCR been used to 

analyse the ligation product (Vanguilder et al., 2008), it might have been possible to 

discriminate the effects of TAP treatment. This was deemed unnecessary as the results of 

the RLM-RT-PCR analysis of RNA from the ΔrppH mutant agreed broadly with those of RNA-

seq. 

A 

 

B 

 

C 

 

D 

 

Figure 5.1 - Gel electrophoresis analysis of the products of RLM-RT-PCR Panels A, B, C and 
D correspond to the ymfK, ftsT, pgpA and rhlB transcripts, respectively. RNA extracted from 
BW25113 and ΔrppH (labelled accordingly) were either treated with TAP (labelled T) or left 
untreated (labelled U) prior to RLM-RT-PCR. Reverse transcription reaction samples were 
then PCR amplified and are labelled RT+ whilst their negative controls, which were not 
reverse transcribed, are labelled RT-. The expected products are labelled ymfK, ftsT, pgpA, 
rhlB 2 respectively; their sizes are indicated in brackets. For rhlB an unexpected product is 
labelled rhlB 1. The source of markers (labelled M) were the GeneRuler 100 bp Plus DNA 
Ladder (Fermentas) for panels A and B and the 10 bp DNA Ladder (Invitrogen) for panels C 
and D. The samples were electrophoresed on a 2% agarose gel (panels A and B) and 10% 
acrylamide (panels C and D). 
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The finding that rhlB produced a second amplicon of ~230 bp (Figure 5.1, panel D) was 

followed up by repeating the RLM-RT-PCR analysis, purifying the PCR products (without 

separating on the basis of size) and cutting with the restriction enzyme MseI. This enzyme 

cuts 87 bp upstream from the 3’ side of the binding site of the rhlB-specific primer (Figure 

5.2). Following digestion with MseI, two products consistent with the migration of this 87 

bp 3’ side fragment (P2) and its 69 bp 5’ side counterpart (P3) were detected; together they 

add up to the 156 bp fragment corresponding to the leaderless transcript (Figure 4.6). A 

faint product of ~230 bp was also detected (rhlB1), consistent with transcription also 

starting ~70 bp upstream of the start codon. However, the analysis was complicated by the 

presence of a species of ~70 bp of unknown identity, but probably a primer dimer from the 

RLM-RT-PCR reaction. Therefore, the rhlB amplicons of 156 and ~230 bp were gel purified, 

cloned and sequenced (Table S.3). The analysis of two independent clones of the smaller 

transcript confirmed that the 5’ end of this amplicon corresponded exactly to the +1 

position of rhlB (relative to the start codon), while the analysis of three independent clones 

of the larger amplicon positioned the second TSS at +70. The TSSs identified in this analysis 

are indicated in relation to gRNA-seq and d-RNA seq data (Figure 5.3). 

 

Figure 5.2 – Restriction enzyme digest of the rhlB RLM-RT-PCR products. RLM-RT-PCR 
products for rhlB before and after cleavage with restriction enzyme MseI (labelled U and 
MseI respectively). RLM-RT-PCR products prior to incubation with MseI are labelled rhlB 1 
and rhlB 2. Following restriction digest, the products are labelled P1, P2 and P3; their sizes 
are indicated in brackets. 
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Figure 5.3 - TSSs identified for rhlB following RLM-RT-PCR and cloning. RLM-RT-PCR 
results together with sequencing and restriction mapping indicate that rhlB possesses two 
TSSs, one of which is leaderless and another one that has a leader sequence of 70 nt. The 
mapping of these TSSs onto the genome browser view for rhlB are presented here. 
Labelling is as in Figure 4.3. 

 Specialized ribosome-like processing of 16S rRNA 5.2.2

As described in the Introduction to this chapter, the generation of specialized ribosomes in 

which the 43 nt at the 3’ end of the 16S rRNA containing the anti-Shine-Dalgarno sequence 

is removed via endoribonucleolytic cleavage by MazF has been recently described (Vesper 

et al., 2011). Cleavage at this site was also identified by RNA sequencing (Section 4.2.2), 

which is specific for 5’-monophosphorylated ends, not the 5’-hydroxylated ends generated 

by MazF and other mRNases associated with TA systems (Vesper et al., 2011; Cook et al., 

2013). To allow the basis of cleavage at the +43 site (relative to the 3’ end of mature 16S 

rRNA) to be studied specifically, RLM-RT-PCR was employed (Figure 5.4). However, the 

protocol was modified to allow good coverage of short RNA fragments by reverse 

transcription. The template produced by random priming could not be amplified using a 

gene-specific primer that binds to a site within the 43-nt segment but it could when reverse 

transcription was primed from the very 3’ end by adding a poly(A) tail and then using 

d(T)10(V) as a primer. The expected size of the amplicon corresponding to cleavage at the 

+43 site was 87 bp. Longer and shorter amplicons were also detected: this was not 

unexpected as cleavage sites upstream and downstream of the +43 position were detected 

by RNA-seq. The analysis included RNA isolated from a congenic ΔmazF strain during 

stationary phase as well as exponential growth. RNA was also treated with TAP and 

polynucleotide kinase, the latter to allow detection of 5’-hydroxylated ends. 

For the sample isolated from the wild-type strain during exponential growth, an amplicon 

of 87 bp was detected, albeit of low abundance, without treatment with TAP or PNK. This is 

consistent with the RNA-seq data. In the PNK-treated sample, the abundance of this 

amplicon was substantially higher indicating that much of the cleavage at this site 
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generates downstream product with a 5’-hydroxyl group. In other words, the RNA-seq 

approach only detected a minority of the cleavage at this site. The abundance of the 87-bp 

amplicon was also higher in the TAP-treated sample, although not nearly to the same 

extent as the PNK-treated sample. This suggests that the +43 site might also be associated 

with some transcription initiation. Analysis of the RNA from the ΔmazF strain during 

exponential growth produced a similar pattern to that of the wild-type strain, but with one 

clear exception: the abundance of the amplicon was not higher in the PNK-treated sample. 

This suggests that MazF normally cleaves at the +43 site in cultures in which the bulk of the 

cells are growing exponentially. For RNA from the ΔmazF strain during stationary phase, 

the detection of the 87-bp amplicon was dependent on PNK treatment. This suggests that 

an RNase other than MazF can cleave at the +43 site during stationary phase. The identity 

of the 87 bp amplicon was confirmed by cutting the products of the RLM-RT-PCR 

(untreated mazFex) with BstEII, which was predicted to produce fragments of 62 and 25 bp 

(Figure 5.5). Fragments with mobility consistent with the sizes of these products were 

detected. The significantly higher abundance of the 25 bp fragment reflects that it is also 

common to amplicons longer than the 87 bp (Figure 5.5). 

 

Figure 5.4 – RLM-RT-PCR analysis of cleavage at the -43 site of 16S rRNA. This figure shows 
the products generated following RLM-RT-PCR to detect cleavage at the -43 site of 16S 

rRNA. RNA extracted from BW25113, mazF at exponential growth (mazFex) and mazF 

at stationary growth (mazFst) were untreated (labelled U) or treated with TAP (labelled T) 
or PNK (labelled P). The expected 86 bp product is labelled on the right of the panel. 
Reverse transcription samples were PCR amplified and are labelled RT+ whilst their 
negative controls are labelled RT-. The samples were electrophoresed on a 10% 
polyacrylamide gel. 
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Figure 5.5 - Restriction assay of the 16S 3' end cleavage product. The 87 bp RLM-RT-PCR 
product generated by the cleavage at the 3’ end of 16S rRNA before and after cleavage 
with restriction enzyme BstEII (labelled U and BstEII respectively). The RLM-RT-PCR product 
prior to incubation with BstEII is labelled S. Following restriction digest, the products are 
labelled P1 and P2. Sizes are indicated in brackets. The gel is 10% polyacrylamide. 

 Confirmation of sRNAs by northern blotting 5.2.3

To verify the presence of small RNAs not described previously, at least to our knowledge, 

six of these sRNAs were selected randomly and probed using northern blotting under 

stringent conditions. RNA used for northern blot was separate from that used for RNA seq 

analysis. Moreover, as the expression of several sRNAs has been shown to be regulated by 

growth (Vogel et al., 2003), we isolated RNA from cells growing exponentially in M9 glucose 

as well as LB. As a control, we included the analysis of AgrB sRNA, which is an RNA 

regulator of the SOS-related DinQ protein (Weel-Sneve et al., 2013). Positive results were 

obtained for five of sRNAs and the AgrB control (Figure 5.6). The actual abundance of all of 

the detected sRNAs, apart from the AgrB control, was dependent on the growth media. The 

small RNA that could not be detected by northern blotting is identified as ecr0770(d-). 

Overall, the vast majority of sRNAs tested by northern blotting was detected. The northern 

blotting experiments were done in conjunction with collaborators, Olatz Ruiz Larrabeiti and 
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Vladimir Kaberdin (University of the Basque Country, Faculty of Science and Technology, 

Spain). 

 

Figure 5.6 – sRNA detection with radiolabelled probes. Northern blot results obtained by 
our collaborators. 30 µg of total RNA was extracted from MG1655, grown in LB and M9 
minimal media, and was blotted onto 6 nitrocellulose strips, each containing 5 µg total 
RNA. Each strip was then hybridized with 5 different radio-labelled oligonucleotide probes. 
The first strip was hybridized with an oligoprobe for AgrB and acted as a positive control. 
Following the control, from left to right, probes to detect sRNAs ecr0174(u+), ecr3777(d+), 
ecr4051(u+) and ecr1743(d+) were used and are labeled accordingly (for probe sequences 
see Table S.2). Markers are presented on the right and labelled M. 

 Confirmation of novel cleavage sites present in vivo reconstituted 5.2.4

following incubation of total mRNA with T170V in vitro. 

Using the RNA-seq approach described in the previous chapter, it was shown that the 

T170V mutant of RNase E is able to cleave at many sites within the E. coli transcriptome 

(Section 4.2.6). To investigate further whether these sites are cleaved efficiently by RNase E 

in the absence of binding to a 5’-monophosphorylated end, transcripts for a selection of 

candidates were synthesized in vitro and incubated with T170V. The selection was based on 

manual inspection of the RNA-seq data using a genome browser. Three mRNAs were 

selected dnaK, fumA and manX, as they were of average abundance (400-1500 reads, 

gRNA-seq data) and T170V cleavage occurred at sites mapped as being involved in 

processing or degradation in vivo. 5S RNA was included as a curiosity, as it is widely known 

as a product, not a substrate, of RNase E cleavage (Deutscher, 2009). The tRNA precursors, 

argX-hisR-leuT-proM, glyW-cysT-leuZ and pheU, were also included as a recent study by 

others had indicated that their processing in vivo was not dependent on the 5’ sensor of 

RNase E (Garrey and Mackie, 2011). 
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Using conditions described previously (Section 2.5.7), cleavage of 5’-triphosphorylated 5S 

RNA and dnaK mRNA by T170V and NTH-RNase E was readily detected (Figure 5.7, panels A 

& B). Based on the RNA-seq data, product sizes should be 120/55 and 214/238 nt, 

respectively. 5S RNA produced a cleavage profile that is consistent with a single cleavage 

site with product sizes being close to those expected. dnaK mRNA also shows significant 

cleavage but the number of products generated shows that an additional site which is not 

available in vivo is made available in vitro. The efficiency of these cleavages, as determined 

from the half-lives of the substrates, was similar to that reported previously for cspA mRNA 

(see Figure 3.8). These results confirmed that at least some, if not many of the sites 

identified by RNA-seq sequencing are cleaved efficiently by RNase E in the absence of 

binding to a 5’-monophosphorylated end, i.e. direct entry may be a major route by which 

processing and degradation occurs. Cleavage of manX and fumA (Figure 5.7, panels C and 

D) was also detected; however, it was much less efficient. Possibly, the corresponding sites 

were not within the conformational context in vitro that allowed cleavage in vivo. In 

support of this notion, efficient cleavage of cspA mRNA can be reduced substantially by 

certain truncations from the 5’ end, but then restored by further truncation (Kime et al., 

2010). A limitation of the RNA-seq approach is that while sites of cleavage can be identified 

readily, the 5’ and 3’ boundaries of the corresponding substrate(s) is not always obvious.  
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Figure 5.7 – Assay of RNase E direct entry candidates identified via in vitro reconstitution. 
The four RNase E direct entry mRNA candidates were incubated with NTH-RNase E and 
T170V. The reactions contained 0.64 µM of 5S RNA (A), dnaK mRNA (B) fumA mRNA (C) or 
manX mRNA (D) and 25 nM of wild-type NTH-RNase E or the T170V mutant. Samples were 
taken after 0, 5, 15, 30 and 60 min. A control of each mRNA, incubated alongside the 
cleavage assays without enzyme for 60 min, was also present (labelled C in all cases). 
Substrates are labelled 5S, dnaK, fumA and manX; cleavage products for each substrate are 
labelled *, ** or *** depending on the number of cleavages occurring within each 
transcript. Substrates for 5S RNA, dnaK mRNA, fumA mRNA and manX mRNA were 
generated by PCR and in vitro transcription with primer combinations 5SF/5SR, 
dnaKF/dnaKR, fumAF/fumAR and manXF/manXR, respectively (Table 2.2). All samples were 
analysed under denaturing conditions using a 7 M urea, 7% (w/v) polyacrylamide (19:1) gel. 

Incubation of the argX-hisR-leuT-proM precursor with NTH-RNase E and T170V produced a 

complex pattern of cleavage products that were similar, although not identical (Figure 5.8, 

panel A). Reaction conditions were consistent with those previously used (Section 2.5.7). 

The result described here suggested that the majority of the cleavages within the argX-

hisR-leuT-proM precursor were independent of 5’-monophosphate sensing. Consistent with 

this notion, subsequent experiments showed that the pattern and rate of cleavage was not 

altered dramatically when the 5’ end was treated to produce a monophosphate group 

(Kime et al., 2014). 
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Similar results to those described above were obtained for the glyW-cysT-leuZ precursor 

(Figure 5.8, panel B). Although initial cleavage does not appear to be dependent on 5’ 

sensing, an intermediate (labelled 2 in panel B) accumulated when incubated with T170V, 

but not NTH-RNase E. This suggests that, normally, this intermediate would be 

subsequently cleaved via a 5’-monophosphate-dependent step. Similar intermediates 

accumulated with the argX-hisR-leuT-proM precursor (labelled 2 and 3 in panel A). The 

pheU transcript was cleaved by T170V (Figure 5.8, panel C), but not as efficiently as the 

other precursors. This indicates that not all initial cleavages are necessarily mediated 

efficiently by direct entry. 

A 

 

B 

 
C 

 

Figure 5.8 – In vitro RNase E cleavage assays of tRNA precursors. tRNA operons argX-hisR-
leuT-proM and glyW-cysT-leuZ alongside the pheU transcript were incubated with NTH-
RNase E and T170V. The reactions contained 0.64 µM substrate argX-hisR-leuT-proM RNA, 
glyW-cysT-leuZ RNA and pheU RNA (Panels A, B and C respectively) and 25 nM of wild-type 
NTH-RNase E or the T170V mutant. Samples were taken after 0, 5, 15, 30 and 60 min. A 
control of each mRNA, incubated alongside the cleavage assays without enzyme for 60 min, 
was also present (labelled C in all cases). Substrates are labelled according to the first gene 
of the operon i.e. argX, glyW and pheU; cleavage products for each substrate are labelled 
with numbers depending on the number of cleavages occurring within each transcript. 
Shorter transcripts which were a result of the in vitro transcription and not of the cleavage 
assay are indicated with an asterisk. Substrates for the argX, glyW and pheU precursors 
were generated via PCR and in vitro transcription with primer combinations argXF/argXR, 
glyWF/glyWR and pheUF/pheUR, respectively (Table 2.2). All samples were analysed under 
denaturing conditions using a 7 M urea, 7% (w/v) polyacrylamide (19:1) gel. 
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After undertaking the comparisons described above, it was confirmed that the cleavage 

products generated by the N-terminal half of RNase E are the same as those produced by 

the RNA degradosome under conditions in which PNPase was not active (Louise Kime, 

unpubl.result). Others have also found that N-terminal half of RNase E is sufficient to direct 

all of the cleavages produced by the degradosome (Mackie, 2013a). The analysis of 5’ 

sensing described here was based on the NTH-RNase E rather than the degradosome, as 

our laboratory and its collaborators have so far been unable to purify degradosome 

preparations that incorporate RNase E with mutations in its 5’ sensor. 

5.3 Discussion 

In this chapter, the existence of leaderless mRNAs as well as the processing of 16S rRNA 

implicated in generating ribosomes capable of translating such mRNAs as well as the 

presence of small RNAs that were not previously described was demonstrated using RLM-

RT-PCR (Figure 5.1 and Figure 5.4) and northern blotting (Figure 5.6). Results concluded 

that the RNA-seq approach described in the previous chapter provides reliable maps of the 

transcriptional landscape that can be further annotated. With regard to the latter, 

preliminary analysis of in vitro cleavage sites mapped for T170V (Figure 5.7) confirmed that 

many are likely to be sites of cleavage that are mediated by direct entry rather than 

residual 5’-sensing activity.  

In addition to confirming the existence of leaderless mRNAs and 16S rRNA processing that 

is implicated in generating specialised ribosomes capable of translating such mRNAs, the 

RLM-RT-PCR analysis suggests that MazF also has a role in producing specialised ribosomes 

during exponential growth (Figure 5.4). Whether this is true for all cells within the culture 

or only a sub-population, and whether the level of processing determined is biologically 

relevant remains to be determined. The sensitivity of RNA-seq is such that potentially rare 

events, including pervasive transcription, can be detected. An assessment of biological 

relevance will require the integration of genetic approaches. For example, by engineering 

5’-leadered segments into the mRNAs of certain repressors of prophage (Qin, Rac and e14) 

and assaying for the release of phage into the culture, it would be possible to determine 

whether normally their leaderless status provides a simple mechanism by which their 

translation, and thus repression of the lytic cycle, is maintained during conditions of stress 

when increasing numbers of specialised ribosomes are produced. A detailed assessment of 

a ΔrhlB might shed light on why the mRNA of a degradosome component is leaderless. One 

possibility is that it is required for the remodelling of ribosomes following processing by 
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MazF and perhaps other ribonucleases. If this notion is correct, it might be expected that 

extracts from ΔrhlB would be less efficient at translating leaderless mRNAs in vitro. A role 

of RNA helicases in ribosome biogenesis is known (Jain, 2008). 

It would also be interesting to determine whether the RppH 5’ pyrophosphohydrolase has a 

role in the translation of leaderless mRNAs. Recent work has shown that the 5’-

phosphorylation status of the mRNA of the cI repressor of bacteriophage lambda might 

influence the efficiency of translation in vivo as well as the binding of ribosomes in vitro 

with a 5’-monophosphate group stimulating binding of the ribosome and thus translation 

(Giliberti et al., 2012). As of yet, no one else seems to have realised that 5’ pyrophosphate 

removal might influence translation as well as cleavage by RNase E. If this is the case, it 

might be expected that more phages will be released into the cultures of ΔrppH mutants, 

as a result of the diminished repression of lytic genes. It would also be interesting to 

investigate if any proportion of the leaderless mRNAs generated by MazF during stationary 

phase have 5’-monophosphorylated ends. It might be that the 5’-hydroxylated, leaderless 

mRNAs generated by MazF are translated sufficiently to allow the expression of cell 

survival/death genes (Giliberti et al., 2012). On the other hand, it is not inconceivable they 

might be 5’ monophosphorylated by a kinase to enhance their translation. After all, the 

polynucleotide kinase used in recombinant DNA technology, is encoded by a bacteriophage 

that infects E. coli (Cameron et al., 1978; Uzan, 2009).  

Genetic approaches are now also required to assess the function of the growing number of 

sRNAs currently being identified in bacteria (Figure 4.10). However, while it is relatively 

straightforward to knock out the genes of sRNAs that do not overlap with other genes, it is 

difficult, and more often than not impossible, to predict how they might function. 
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Chapter 6 

6 Further work and concluding remarks 

By using two sequencing technologies (dRNA-seq and gRNA-seq), the generation of 

nucleotide resolution maps of both the primary and secondary transcriptomes of E. coli 

was achieved. From these maps, sites of transcriptional initiation, stable RNAs, small non-

coding RNAs, leaderless mRNAs, specialized ribosome generation and sites of processing 

and degradation were identified. From this repertoire of features, we detected a 

reasonable overlap with previously identified sites in addition to a large number of novel 

ones. From the data here presented a number of previously undiscovered leaderless 

mRNAs and the identification of sites involved in the formation of specialized ribosomes 

under conditions which both match and diverge from those known to produce such 

specialized machinery has been further established (Chapter 4). These features and the 

sequencing approach used were finally further validated experimentally (Chapter 5). 

There is great interest in the deciphering of the biochemical requirements for recognition 

and action by the repertoire of RNases and other members of the RNA degradation 

machinery present in E. coli and how they act synergistically together. We decided to 

characterise RNase E because, in addition to having many of its substrates being well 

characterised (examples presented in Chapter 3, Chapter 4 and Chapter 5), it is a central 

component of the degradosome (Miczak et al., 1996; Taghbalout and Rothfield, 2007) and 

is essential for cell viability (Apirion and Lassar, 1978; Ono and Kuwano, 1979); all features 

which made it a suitable candidate for characterisation. We initially wanted to characterise 

the contribution of the 5’ monophosphate sensing pocket towards stimulation of cleavage 

during RNase E mediated processing and decay. Total RNA extracted from the wild-type 

strain BW25113 was incubated in vitro either in the absence or presence of the 5’ 

monophosphate sensing deficient mutant NTH-RNase E T170V (Jourdan and Mcdowall, 

2008), which was followed by dRNA-seq analysis. By comparing these two samples, it was 

possible to detect cleavage via direct entry and the evidence indicates that it is widespread 

within the transcriptome (Chapter 4). Furthermore, cleavage sites that were detected in 

vivo and enriched following in vitro T170V incubation were then reconstituted in vitro 

(Chapter 4). These results, in conjunction with those obtained by further analysis of tRNA 

precursor cleavage (Chapter 5) strongly indicate that direct entry is a major pathway for 
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RNA degradation and processing in E. coli, contrary to what is currently understood 

(Mackie, 2013a). 

Indeed, following results presented in Chapter 4 and Chapter 5, a colleague in the 

laboratory, Louise Kime, took the lead in exploring substrate requirements for tRNA 

processing (Kime et al., 2014). She was drawn to study these substrates not only because 

their processing represents one of the main activities of RNase E (Li and Deutscher, 2002; 

Ow and Kushner, 2002) in E. coli and other bacteria (Li et al., 2005), but because the 

localised folding that produces tRNAs limits the formation of alternative secondary 

structures within the precursor (and derivatives) that can complicate the analysis of RNA: 

protein interactions. She focussed on the processing of the polycistronic argX-hisR-leuT-

proM precursor, as it has been the subject of in vivo studies by others (Li and Deutscher, 

2002; Ow and Kushner, 2002), including a recent study that concluded its processing was 

not dependent on the 5’ sensor of RNase E (Garrey and Mackie, 2011). The study confirmed 

that direct entry is central to the processing of tRNA in E. coli and provided the first 

biochemical evidence for natural transcripts that direct entry is indeed mediated by specific 

unpaired RNA regions that are adjacent to, but not contiguous with, segments cleaved by 

RNase E. In addition, the study showed that direct entry at a site on the 5’ side of the 

precursor triggers a series of 5’-monophosphate-dependent cleavages. Consistent with a 

major role for direct entry in tRNA processing, it was also shown by Justin Clarke in the 

group, contrary to a report by others (Garrey et al., 2009), that a 5’-monophosphate is not 

required to ‘activate’ the catalytic step, i.e. efficient cleavage does not have an absolute 

requirement for access to a 5’-monophosphorylated end (Kime et al., 2014). The dissection 

of the requirements for the cleavage of the argX-hisR-leuT-proM precursor made extensive 

use of the same T170V 5’ sensor mutant of NTH-RNase E described here. 

These results, together with the detection of cleavage sites in vivo and their reconstitution 

and enrichment following in vitro incubation of total mRNA with T170V (Chapter 4 and 

Chapter 5), prompted a more extensive study of RNA cleavage by T170V, which was also 

led by Louise Kime and Justin Clarke. To enrich further for sites of direct entry, the total 

RNA used as substrate for in vitro cleavage assays was treated enzymatically to remove 5’-

monophosphorylated ends. Furthermore, a group of processing and degradation sites that 

are highly dependent on RNase E in vivo were identified by making and comparing libraries 

of enriched mRNA isolated from an rnets strain and its congenic wild-type partner at a non-

permissive temperature (Clarke et al., "in preparation"). The pipeline for the follow-on 
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study was the one developed here. This study also confirmed that RNase E cleaves sites by 

direct entry within mRNA, tRNA, rRNA and sRNA transcripts. Thus, contrary to earlier 

expectations (Schoenberg, 2007), the recognition of substrates by direct entry (Joyce and 

Dreyfus, 1998; Leroy et al., 2002; Baker and Mackie, 2003; Bardey et al., 2005; Hammarlof 

and Hughes, 2008) pervades in RNA metabolism in Escherichia coli and likely in many other 

bacterial species that contain homologues of RNase E (Danchin, 2009; Kaberdin et al., 

2011). It will be interesting to investigate whether other RNases that are unrelated to 

RNase E, but have been found to prefer the 5′-monophosphorylated forms of some 

substrates, e.g. Bacillus subtilis RNase Y (Shahbabian et al., 2009), can also cleave a subset 

of transcripts by direct entry. As a result of the work initiated here, it has been concluded 

that the ability of RNase E to interact with 5’-monophosphorylated ends is not required for 

efficient cleavage at a plethora of sites within all classes of RNA within the E. coli 

transcriptome (Clarke et al., "in preparation"). 

Moving forward in the determination of the contribution of other enzymes towards RNA 

degradation and processing, using the methodology described herein, the research group 

has now produced a collection of dRNA-seq maps, which include additional in vitro enzyme 

incubations and the deletion or inactivation of other components of the RNA degradation 

machinery in E. coli, such as, RNase G, RNase III and PNPase. The future aim of having now 

obtained these maps will be to provide a genome wide characterisation of sites that are 

exclusive to each of these enzymes, enabling a better understanding of the biochemical 

requirements for recognition and cleavage. This will help elucidate the interactions that 

occur between the various components of the RNA degradation and processing machinery 

within the cell. 

An additional factor which has been shown to affect RNA processing is the repertoire of 

sRNAs within E. coli. Work presented here detected a vast quantity of novel sRNAs (Chapter 

4). This relates to RNA processing as previously identified sRNAs have been shown to play 

an important role in the regulation of gene expression and mRNA decay (see Section 1.3). 

As explained in Section 1.3, sRNA/RNase E interactions are usually mediated by Hfq. 

Nevertheless, it is uncertain whether RNA destabilisation is a result of the blockage of 

translation and lack of ribosome coverage or the directed action of RNase E on a transcript 

via Hfq. Thus performing dRNA-seq using Hfq deficient strains together with the ΔrppH 

strain could shed further light on which sRNAs are recruited by Hfq and which of these 

stimulate 5’ monophosphate dependent cleavage. Additionally, proteins such as RapZ, 
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which also recruits RNase E and interacts with adapter sRNAs and Hfq in order to direct 

cleavage (Gopel et al., 2013), can also be assessed via dRNA-seq. Nevertheless, the 

possibility remains that RppH is not the only 5’ pyrophosphohydrolase present in E. coli and 

another pyrophosphohydrolase could direct an alternative mechanism for decapping of 5’ 

triphosphorylated RNA. 

An additional serendipitous finding was the detection of MazF-like processing at the 3’ end 

of 16S rRNA, which removes the last 43 nt of this RNA along with the anti-SD sequence 

(Vesper et al., 2011) in order to generate specialized ribosomes which, in turn, transcribe 

leaderless mRNAs (Vesper et al., 2011). This was unexpected as the MazF toxin generates a 

5’-hydroxylated downstream product following cleavage and this ribonuclease is expressed 

only during stress conditions (Nirenberg, 2004; Vesper et al., 2011). These findings were 

unexpected for two reasons. Firstly, we did not knowingly subject the cells to any kind of 

stress. Secondly, if the fragment was generated following MazF cleavage, it would not be 

detected by our approach as we designed the approach to only detect 5’ monophosphate 

or 5’ triphosphate ends depending on how total RNA was treated following extraction. 

Further analysis by our laboratory has indicated that this MazF like processing of 16S rRNA 

could be RNase E dependent. Of further interest was the finding that RhlB has a leaderless 

transcript (Chapter 4); it is possible that the up-regulation of RhlB during stress conditions 

could result in the modification of the architecture of other leaderless and leadered mRNAs 

in order to facilitate ribosome access or their decay, respectively. With this in mind and the 

possibility of a yet unidentified 5’ kinase phosphorylating leaderless mRNAs to facilitate 

their translation by specialised ribosomes a modified mechanism to that previously 

reported (Vesper et al., 2011) is proposed (Figure 6.1); nevertheless, as is the case with 

other models (Lim et al., 2005; Woodall, 2006), it is possible that other factors have a direct 

or indirect input to this model. 
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Figure 6.1 - MazF leaderless mRNA stress transcriptome model. Diagram showing the 
proposed mechanism in which MazF acts, in concert with a group of enzymes, to shift the 
transcriptome of a cell from an exponential growth conformation to a stress response one. 
Following stress induction, the mazEF module is expressed. This results in the degradation 
of anti-toxin MazE by ChpAP (i). MazF is thus released and its activity leads to the 
degradation of the majority of transcripts (ii), furthermore, it removes the 5’ UTR of specific 
transcripts and renders them leaderless (iii); moreover it also removes the 3’ terminal 43 
nts of 16S rRNA which contain the anti-Shine-Dalgarno sequence (iv). These specialized 
ribosomes mediate the selective translation of the leaderless mRNA pool (vi). In addition to 
this, it is proposed that a 5’ kinase phosphorylates the 5’ hydroxylated leaderless mRNAs 
generated by mazF so that they can be readily translated (v) and that the leaderless rhlB 
transcript is responsible for the up regulation of RhlB which aids translation of leaderless 
mRNAs with have a 5’ structure (vii). Adapted from (Vesper et al., 2011). 

The work described here presents a novel approach for the sequencing and mapping of the 

primary and secondary transcriptomes of bacterial genomes. Additionally, this work 

presented a method that allows the number of individual transcript numbers per mRNA per 

cell to be roughly calculated by calibrating the number of reads for each mRNA against that 

of RNAs whose abundance is well characterized (Section 4.3). However, this method is semi 

quantitative and calibrates the transcriptome of a whole population of cells. Even during 

exponential growth in nutrient rich media, gene expression has stochastic fluctuations 

(Elowitz et al., 2002; Davidson and Surette, 2008; Nikolic et al., 2013). This means that it is 

impossible to determine if observations, such as 16S rRNA processing by MazF in 

exponentially growing cultures is a common feature of all cells or a result of a sub-

population expressing stress genes. Recently, the whole transcriptome of a single bacterial 

cell was sequenced (Kang et al., 2011), a feat that was previously restricted to eukaryotic 



83 
 

cells. This advance will further aid the investigation of stochastic gene expression and help 

determine whether features observed in a population are an artefact caused by a sub-

population or indeed a common feature across the whole population. 

An additional application for these technologies that is worth mentioning would be their 

use to better understand the interactions that take place between the host and the 

pathogen during infection. This has been recently suggested to be possible by 

simultaneously sequencing and studying the transcriptomes of both organisms; thus being 

able to assess the reaction of the host during infection and that of both host and pathogen 

to treatments at the transcript level (Westermann et al., 2012). This has now evolved 

beyond concept as the authors of the cited article have communicated that this approach 

has now been performed experimentally. Alongside this, a study dually assessing the 

transcriptome of the host and the pathogenic murine cytomegalovirus has also been 

recently published (Juranic Lisnic et al., 2013). 

In addition to E. coli, the combination of improved global and differential RNA-seq 

presented in this thesis was extended to the analysis of Propionibacterium acnes, a major 

contributor to wide-spread human disease, and Streptomyces coelicolor, a model system 

for understanding the control of the production of secondary metabolites, such as 

antibiotics, produced by the streptomycetes. 
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SSupplement 

Table S.1 - Transcriptional start sites identified for E. coli. This table presents all the values 
that fell above the upper envelope boundary (Figure 4.2). The first column represents the 
TSS id which was constructed based on the direction of the TSS, forward (FWD) or reverse 
(RVS), followed by the TSS class and the first nucleotide of the TSS. The second and third 
columns represent the left and right limits of the TSS respectively (nucleotide positions 
within 8 nt of each other were classed as belonging to the same TSS) (see Section 
4.2.1).The last column refers to whether or not the TSSs identified showed any overlap with 
experimentally verified TSSs in RegulonDB. See Excel file on attached CD. 

Table S.2 – sRNAs detected. This table presents the sRNAs identified by our approach. The 
columns, left to right, show the sRNA id, flanking genes, flanking genes orientation, sRNA 
left and right positions, sRNA length, elements overlapping the sRNA, databases associated 
with the sRNA and whether the sRNA has been identified by others or is novel. See Excel 
file on attached CD. 

Product 
size 

Sequence Distance between 
TSS and +1 (nt) 

Small 5’- CATGAGGATTACCCATGTCGAAGACAACAAGTTCAACTCTTTATGTATTATGAGC -3’  0 

Small 5’-CATGAGGATTACCCATGTCGAAGACAACAAAGAAGTTCAACTCTTTATGTATTATGAGC-3’ 0 

Large 5’- 
CATGAGGATTACCCATGTCGAAGACAAAGAAGTTCAACTCTTTATGTATTACTAAAGGTTGAC
TTTATTTCACCGGATACGCTTTCGTAAAGCAATAGTAAGCTGATATTCTACCACACTATGAGC-
3’ 

70 

Large 5’-
CATGAGGATTACCCATGTCGAAGACAACAAAGAAGTTCAACTCTTTATGTATTACTAAAGGTT
GACTTTATTTCACCGGATACGCTTTCGTAAAGCAATAGTAAGCTGATATTCTACCACACTATG -
3’ 

70 

Large 5’-
CATGAGGATTACCCatgtCGAAGACAAAGAAGTTCAACTCTTTATGTATTACTAAAGGTTGACTT
TATTTCACCGGATACGCTTTCGTAAAGCAATAGTAAGCTGATATTCTACCACACTATGAGC-3’ 

70 

Table S.3 - rhlB mRNA TSS sequencing results. Sequences of the small and large PCR 
products of rhlB. (Figure 5.1). The sequence for the adaptor ligated during the RLM-RT 
stage is highlighted blue and the +1 site is presented in red. The PCR product size and the 
distance between the +1 and the TSSs are also indicated. 
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