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Abstract 

It has been well-recognized that non-uniform solar irradiation of photovoltaic (PV) 

panels causes electrical mismatching of cells and may result in reduced output 

power and cell thermal breakdown. Bypass diodes are commonly used, but 

challenges exist into obtaining the maximum power point tracking in these partially 

shaded PV panels for each weather condition. This is due to that there are multiple 

peak power points present in their Power-Voltage characteristic curves which 

makes difficult to locate the global maximum power point. The work presented in 

this thesis studies in detail the converter topologies and control methods which can 

be used in the PV power generation systems to overcome effectively the 

shortcomings caused by partial shading. 

The proposed topology is an integrated bi-directional Ćuk converter and PV-panel 

module.  The particular example investigated includes two PV panels connected 

across two terminals of the Ćuk converter. The features of this system in power 

harness are studied under partial shading conditions, its superior performance in 

power generation is demonstrated through simulation and practical tests. The 

generated power is 30% higher than that from a two PV panel system using only 

bypass diodes.  

To develop the control schemes for the above system a detailed study was 

performed leading to the derivation of the transfer function model describing the 

dynamic responses of voltages across the two PV panels corresponding to the 

variations of converter switch duty ratio. Experimental verification of this confirms 

that the model is sufficiently accurate for the application of controller design and 

tests. 

A novel maximum power point tracking scheme is developed. This consists of a 

switching selection scheme and a model based on an optimal control algorithm.  

The former determines which switch-diode pair in the bidirectional Ćuk converter to 

be active according to measured light levels on each PV panel and the ability to 
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predict the optimal voltage values across the individual PV panels under any 

practical irradiance and temperature levels. The performance of the controller is 

tested in simulation as well as in practice under various modes of partial shading, 

all giving desired results in achieving the maximum power generation. 

The final contribution lies in the design and construction of an experimental 

prototype consisting of an inner bidirectional Ćuk converter across two PV panels 

and a terminal boost converter, controlled by DSP-based microcontroller. This set-

up enables further development and verification of the control schemes for this 

integrated converter and PV-panel system. 

 

Keywords: Photovoltaic Systems, Partial Shading, Ćuk Converter, DC-DC Power 

Converters, Solar Power Generation, Maximum Power Point Tracking, Bypass 

Diode. 
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Chapter 1  

Introduction 

1.1 The Photovoltaic Energy 

Energy demand increases every day across the world and with it the need for 

practical and simple solutions to satisfy the modern market. Solar energy and the 

importance of improving its control and management is a major area in Electrical 

Engineering. PV market has increase exponentially (Figure 1.1) due to each years 

price reductions in installation materials opening new opportunities for energy 

production in grid connected and off-grid connected applications [1]. 

 

 

Figure 1.1 Evolution of PV capacity installed in Megawatts [1] 
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Photovoltaic cells have an average size of 15cmx15cm in each PV panel. Cells can 

be made from different materials are generally classified as wafer-based 

crystalline, (monocrystalline and polycrystalline silicon, compound semi-conductor) 

and thin film and organic. Currently 80% of all installations reported are based on 

crystalline silicon technology [1], [2]. 

Modern PV power generators are composed of many tens or hundreds of solar 

cells connected in series and/or parallel to form a PV module. Multiple modules are 

connected to form a PV panel capable of generating power at voltage and current 

levels comparable to the load requirement. Solar modules are typically rated from 

50 W to 300 W but sometimes with greater capacity for specialized for building 

integrated PV systems. A group of solar modules is called PV array, which can 

consist of a number of modules connected in series or parallel depending the 

output required [1], [3].  

The role that power electronic converters play in photovoltaic technology is crucial 

for the performance of the harvested energy from the sun through the panels. 

Because there are different voltage levels that a photovoltaic application can use 

and variable amounts of power that can be produced, a fixed output is needed to 

get the best performance of the plant such as a deep discharge lead-acid battery 

(e.g. NiCad, NiMH, LiO) for “Off-Grid” systems, or the alternating current and 

voltage levels of an “On-Grid” electricity network. The design of a photovoltaic 

system with the integration of all the features to overcome problems in the solar 

cells physics is critical in order to make photovoltaics a possible solution for the 

energy industry [4].  

Solar converters are usually controlled by algorithms called Maximum Power Point 

Trackers (MPPT), which ensure the optimal control and management of a 

photovoltaic plant. The amount and quality of power harnessed from the PV panels 

will depend on the performance of these trackers in all possible illumination 

scenarios. Since PV panel characteristics are nonlinear and vary with irradiation 

and temperature, the system needs a fast and adaptable response [5]. 
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Since the creation of PV modules, an inherent problem occurs when the irradiation 

over the modules are uneven, the issue is known as “Partial shading” [6]. When the 

partial shading is present over a string of solar panels, power generation declines 

due to internal resistors inherent to the physics of the solar cell. A commercial 

protection integrated to a solar panel is known as “Bypass Diode”, which is 

connected by the manufacturer in parallel by the terminals of the module and with 

this stop the solar module to consume the energy by the internal resistors 

integrated in the photovoltaic material. Figure 1.2 represents the daily production of 

a string with one panel under partial shading presented in Figure 1.3. The shade 

being casted over the solar module is from a building next to the installation. The 

production decreases a yearly average of 20% due to this case of partial shading 

and the lack of a good maximum power point tracker. Since the commercial value 

of a PV installation represents an average of $5.00dlls/watt and the average 

domestic installation is around 3kWp, the initial investment would be of 

15,000.00dlls, the yearly payback is being delay by 20% due to shading. 

 

 

Figure 1.2 Generation over a day affected with partial shading 

 

Partial shading is frequently found in PV installations, from domestic represented 

by a three, a chimney or a nearby building (Figure 1.3) to Solar Farms represented 

as dust, bird drops or the shadow casted by the front row of PV modules (Figure 

1.4). The partial shading problem could be mitigated with a good design of power 
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optimizer composed by a DC/DC converter and optimum MPPT algorithm in order 

to extract the maximum power available from the solar modules with shading 

problems. 

 

Figure 1.3 Real case partial shading 

 

 

Figure 1.4 Optimal situations in solar farm with 0.6% of daily partial shading  

1.2 Aim and Objectives of the Thesis 

The scope of the thesis is to design and control an optimal integrated PV-

Converter which includes PV panels connected in series presenting a mismatch in 

the solar irradiation over the modules solving the partial shading issue inherent to 

the PV modules. 

 

The key objectives of this work are: 



-  5  - 
 

1. A complete analysis of the PV modules as a renewable source and the 

understanding of the limitations of this energy solution 

2. A study of proposed solutions over the years for the partial shading issue 

within PV installations. 

3. The development of a computer model to simulate the partial shading effect. 

4. A thorough study of the Bidirectional Ćuk Converter as a solution for the 

partial shading. 

5. Develop of a control scheme to increase the power production from the 

Integrated PV-Converter module and compare it with bypass diode solution. 

6. Design and construct an experimental Integrated PV-Converter and 

implement the proposed control algorithm to provide validation of the 

research. 

1.3 Thesis Structure 

This thesis is divided into eight chapters and the outline is as follows: 

 

Chapter 1 presents a global overview of the potential of Photovoltaic energy 

productions nowadays. Photovoltaics playing an important role in the renewable 

power industry since the combination of decreasing prices and a higher demand of 

energy have given it an exponential growth. The aim of the thesis is also stated. 

 

Chapter 2 describes an overview of the features of the PV panels and 

mathematical models stated over the years are compared using simulation. The 

“Partial shading issue” is introduced by an inherent feature attributed to the physics 

of the solar cell, affecting directly the power production. An analysis of the I-V 

curve under partial shading and a survey of different solutions to avoid this problem 

are also performed. 

 

Chapter 3 discusses the Ćuk converter as a solution for an uneven irradiation upon 

a chain of PV modules. The feature of bidirectional solar converter integrated with 

two PV modules is developed by circuit analysis. The switch scheme is presented 
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depending on irradiation levels. Expansion possibility of for three PV panels and 

the switch scheme is discussed. 

 

Chapter 4 describes a thorough circuit analysis where a mathematical model in the 

Laplace “s” domain is obtained from state space equations and ac small signal 

analysis. Introduction of perturbations to the duty ratio are use to analyse the 

voltage step and frequency response in each PV panel. 

 

Chapter 5 describes an exhaustive list of tests performed to different connections 

in open loop to solve the partial shading in PV panels. A novel control algorithm is 

designed from analysis to increase the power produced by the PV panels under 

uneven irradiance conditions. Maximum power point trackers are explained and 

compared using closed loop simulations where the Vmpp model presents a better 

control than the P&O algorithm.   

 

Chapter 6 presents the hardware design and construction of an experimental PV 

system integrated with a bidirectional Ćuk converter. A systematic hardware design 

is presented including transducers, PWM drivers and converters. Control of the 

system is performed by a Digital Signal Processor (DSP) is described using high 

level programming with Matlab/Simulink. 

 

Chapter 7 presents the responses of the practical converter applying different duty 

ratios in open loop confirming the simulation of the Transfer Functions in Chapter 

4. Experimental validation of the proposed control algorithm in closed loop and 

Integrated PV-Converter system is also described 

 

Chapter 8 summarizes the research findings and provides recommendations for 

future development of the work. 
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Chapter 2  

Models for Photovoltaic Panels and Their Operations under Partial 

Shading 

Modelling of Photovoltaic cells is important for understanding and predicting of the 

behaviour of a PV panel under different weather and operating conditions. 

Furthermore, it facilitates the controller design for achieving the maximum power 

generation. Developing PV cell/panel models has been a well-researched topic, 

studied and improved over the years by researchers [7]–[14]. However, it remains 

an on-going work to develop models that offer sufficient accuracy and 

computational efficiency, particularly for panels and their associated systems under 

unusual operating conditions, such as partial shading. 

 

The issues of PV panels operating under un-equal irradiation conditions have been 

studied through advanced modelling and detailed investigations on various 

practical PV applications such as analysis of the multiple power peaks generated 

by partial shading [7], reverse characteristics of solar cells [8], modelling according 

to datasheet values [10], evaluating accuracy of PV models[12], mathematical 

model of PV fields under partial shading [13] and models that calculate the power 

losses due to partial shading conditions [15]–[20]. On-going research is aimed to 

find the most efficient and cost-saving PV and converter configurations and 

corresponding control schemes. 

 

This chapter will present two well-known equivalent circuit models for PV cells and 

their corresponding mathematical equations.  The aim of this study is to compare 

these models in terms of accuracy and computational cost. The better model will 
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be used to investigate the behaviour of the PV panels under shadowing conditions, 

and to design the power conditioners which will improve the efficiency in this 

condition. The chapter will then describe the causes and consequences of the PV 

panels operating under partial shading. A comprehensive review on the current 

published systems and approaches to overcome this problem will be given. Their 

advantages and drawbacks will be highlighted. 

 

2.1 Mathematic Models for PV Panels  

2.1.1 Equivalent Circuit Representation and Single Diode Model  

According to its operating principle [21] proposed that a single PV cell can be 

modelled by an equivalent circuit as shown in  Figure 2.1. The main element in this 

circuit is a current source ��� whose magnitude is directly proportional to the sun 

irradiance. A diode is used to represent the p-n junction of the PV cell, and its 

forward current �� travels in the opposite direction to	���. A parallel resistance �		in 

the circuit represents the leakage current resulting from imperfections in the silicon 

material, while the series resistance	�� is due to the bulk resistance of the non-

depleted semiconductor regions in the diode and the connection between the cells 

and cables. 

 

Figure 2.1 Equivalent circuit of a solar cell 

 

In general for the ideal device, �� is very small and �		 is large, hence the losses of 

the circuit would be negligible. In a real scenario the design will try to keep  �� at a 

minimum and 	�	 at a maximum. In this research the circuit will be simulated using 
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the ideal component values [3]. There are different equivalent circuit models such 

as the “double diode” model [22], [23]. However this study will be based on the 

single diode model. 

2.1.2 Mathematical Expressions for Single-Diode Model 

The mathematical expressions corresponding to each element in the circuit in 

Figure 2.1 are derived. There are three current branches in the circuit; ���, ��, and 

��. The first is the photocurrent ���  and its dependence on the irradiance and cell 

temperature can be described by the following empirical equation: 

��� = ����� + ��	������ − ���� � �100� 
2-1 

where ����   is the short-circuit current generated at ��, which is the reference 

temperature in K°, the factor ki is the temperature coefficient of the short-circuit 

current, and � is the irradiance in mW/cm2. According to the mathematical model 

of the Shockley diode given by [2], [23]–[25], the diode current  �� is expressed as: 

�� = �� ���
� !"#$%&''� − 1( 

2-2 
where �� is the reverse saturation current (Amp), )	is the electron charge (1.602 x 

10*+,C), -. is the junction voltage (V), � is the Boltzmann’s constant (1.381 x 

10*/0J/K), ����� is the cell temperature (ºK), and 1 the diode ideality factor [2], [6], 

[26], [27].  

The third is leakage current �2  is given as	�2 =  !3456%
47 .  

Following the equivalent circuit representation in Figure 2.1 the equation 

expressing the output current, �� of the solar cell is given as 

�� = ��� − �� ��8 �"#$%&''( !345	6%); − 1( − <-. + �����= >	 
2-3 

This can be rewritten as. 
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�� <1 + ���=> = ��� − �� ��8 �"#$%&''( !345	6%); − 1( − -��= 

 2-4 

where �� depends on the magnitude of		��� which is due to light intensity, the 

magnitude of		��, and the temperature of the cell		�����. The parameters of the model 

are affected by the atmospheric conditions, which are explained further in this 

chapter.   

 

2.1.3 The Bishop Model 

Another equivalent circuit model proposed by J.W. Bishop [6] is shown in Figure 

2.2.  

 

Figure 2.2 Solar cell equivalent circuit by J.W. Bishop 

 

This also has a light and temperature dependent current source ��� and a parallel 

diode, but the shunt branch is different from that of the previous model. This 

consists of a fixed resistance �= plus a variable resistance whose value is 

dependent on the junction voltage	-. , which is expressed as M(Vj). The shunt 

current ��?@AB  is thus given by: 

��?@AB = -.�= C1 + D �1 −
-.-E��

*FG 
2-5 

where -. is the voltage across the junction (V),	�= is the fixed cell parallel or shunt 

resistance (Ω), -E� the junction breakdown voltage (V), a is the factor of ohmic 
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current involved in avalanche breakdown and m the avalanche breakdown 

exponent. This expression separates the device leakage current due to ohmic 

effect and that due to nonlinear overvoltage breakdown avalanche. The latter is 

dependent on -.  which may range from the high device breakdown voltage -E� to 

the much lower forward threshold level.  

Subsequently according to the equivalent circuit in Figure 2.2 the equation for cell 

current is expressed as  

�� = ��� − �� ��8 � ."#$%&''; − 1( − ��?@AB 
2-6 

This model makes it possible to describe the condition where some PV cells begin 

to breakdown in partial shading conditions. For example when shading occurs on 

one cell in a series PV string, the current through the whole string is higher than 

that generated by the shaded cell, hence -.  of the shaded one becomes negative 

simulating the cell breakdown condition as shown in Figure 2.13. 

 

2.1.4 Model Parameters 

There are a number of parameters in the model important to represent the cell 

characteristics which are explained below. 

• Photocurrent	(IIJ) 
This current has been defined in Equation 2-1. Literature on the wavelength 

distribution [3] suggests how much energy from the sun can be absorbed by a 

solar cell. As pointed out in Figure 2.3, the band gap of silicon is about 1.08eV, or 

2.63x10-19J, and only those photons whose energy is of that magnitude or larger 

(i.e. with wavelengths less than 1150 nm) can create electron-hole pairs. Solar 

radiation contains a broad range of wavelengths. Any energy above the critical 

wavelength has not high enough energy to liberate electrons. Furthermore, the Air 

Mass of 1.5 standard spectrums for temperate latitudes is presented, taking into 

account the sun at an assumed angle of elevation of 42°. Defined as the AM1.5, 
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the atmospheric thickness should attenuate to a standard level of 1000K/M/  [3], 

[23]. 

 

 

Figure 2.3 Example for silicon Photon Energy (eV) vs. Wavelength (µm) [3] 

 

The radiant power (K/M/) versus the wavelength in Figure 2.4 shows the solar 

spectrum at an air mass ratio of 1.5. The energy available for silicon is only 49.6% 

of the total energy. Analysis of the relationships between these factors leads to the 

conclusion that a cell with lower band gap will produce more current at less 

voltage, and vice versa. Moreover, the selection of a solar cell with the ideal band 

gap between 1.2 eV and 1.8 eV should be considered for optimal energy 

generation. 
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Figure 2.4 Radiation power vs. Wavelength [3] 

 

• Reverse Saturation Current (IN) 

The temperature of the solar cell directly affects the reverse saturation current. At 

higher temperature, the concentration of the intrinsic charge carriers will rise giving 

a higher carrier recombination. Therefore, increase of temperature will raise the 

reverse saturation current. The current �� [21] can be expressed by the following 

equation: 

�� =	 ��� �������� �
0 exp	8)RS�1 � 1�� −

1
������; 

2-7 
where ��� is the reverse saturation current at	�� , and  RS is the band gap. 

 

• Cell Temperature (�JTUU) 
The solar cell needs to be exposed directly to the Sun and therefore will have a 

different temperature from the ambient. An empirical proposed model [21] of the 

temperature in a solar cell provides the equation: 



-  14  - 
 

����� = 0.899 ∗ �ZFE + 0.25 ∗ � − 1.3 ∗ �̂ + 30.42 

2-8 
where �ZFE is the ambient temperature in Kelvin, and �̂ is the wind speed in m/s. 

 

• Shunt and Series Resistances 

Both of these resistances are present in the equation  2-4 of the single diode model 

and equation 2-6 of Bishop model. The effects of these parasitic resistances on the 

photovoltaic material are intrinsic in the semiconductor and the physical wiring of 

the cells. The parallel resistor or shunt resistance Rp is caused by the leakage 

current due to poor insulation of the material and Rs is due to ohmic losses in the 

semiconductor itself as well as the wires that connect the cells [3]. Under the 

standard test condition (STC) of irradiation equals 100mw/cm2 and temperature of 

25°C, Rp is very large to above 5x105 Ω and Rs is as small as 5x10-5 Ω. Their 

effects to the PV output power are negligible. However when operating under non 

STC, both these resistances changes and influence the cell performance. These 

are investigated below.  

A PV panel having 34 cells connected in series delivers the maximum power of 49 

watts under full irradiance of 1000W/m2 at 25˚C. The internal resistances are  

Rp=5x105Ω and Rs=5x10-5Ω. When the parallel resistance Rp is reduced from 

5x105Ω to 34Ω, a significant reduction in output current occurs as shown in 

Figure 2.5a. Consequently the output power is reduced from 49 watts to 40 

watts, namely 9 watts are consumed by the PV panel itself. Another impedance 

variation is introduced as illustrated in Figure 2.5b, this time the series resistance 

Rs increases from 5x10-5Ω to 1x10-3Ω, causing the I-V curve slope around knee 

region steeper. Again this has led to a significant output power reduction 

from 49 watts to 39 watts. As presented in by Sera et al. in [10], practical values of 

these resistance at summer with temperature of 50°C can be Rp=1,194Ω and 

Rs=0.51x10-3Ω, while in winter temperature of 0° the internal resistance 

perform with values of Rp=1,535Ω and Rs=0.36x10-3Ω. According 
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manufacturer it has a temperature coefficient of 0.5%/°C of power 

degradation. 

a)  

b)  

Figure 2.5 Effects of Rp and Rs over the I-V Curve 

 

• PV Panel Configurations 
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Multiple solar cells are connected in series and parallel to form a PV array or a 

panel. The number of cells in a series string determines the voltage value a panel 

can generate and that connected in parallel provides the current which can be 

extracted from the panel (Figure 2.6) In a series configuration of Ns cells the 

voltage level is determined as Ns x 0.6 volts, assuming the threshold voltage of 

each solar cell that is connected in the string is 0.6 V. On the other hand, the 

parallel connection of Np such strings deliver the current level equal to	 =̀ × ��.  

a)  

b)  

Figure 2.6  a) Solar cells in series b) Solar cells in parallel 

 

Thus the model in equation  2-4 can be extended to represent a PV array with NS 

cells connected in series and NP cells in parallel, therefore we have  

�� �1 + ��$��?$� = =̀��� − =̀�� ��8 �"#$%&''(
 bc5345d	6%); − 1( −

-�
�̀e

��?$  

2-9 
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where the total series resistance RIg is given by RIg = hi
hj × RI and total parallel 

resistance RIkg can be calculated by RIkg = hj
hi × Rl [21]. 

Similarly for Bishop model (equation 2-6) we have equation for a PV panel of 

multiple cells given by 

�� �1 + ��$��?$� = =̀��� − =̀�� ��8 � ."#$%&''; − 1( − -.��?$ C1 + D �1 −
-.-E��

*FG 
2-10 

2.2 Numerical Methods for Photovoltaic Cell Simulation  

Various computer programs have been developed to simulate photovoltaic cells 

including those using computer software packages such as PSPICE [10], [12], 

[28]–[30], PSIM [12], [31], [32], and Matlab [7], [33], This research is based on the 

Matlab environment, since it is considered one of the most convenient tools for 

solving equations. 

 

2.2.1 The Newtown-Raphson Iterative method 

Computer programs for simulating PV cells should be able to produce their I-V 

characteristic curves under any irradiance and temperature conditions accurately 

and efficiently. As already shown, model equation 2-4 expresses photovoltaic cell 

output current		��. Clearly this is a non-linear equation due to the use of the 

exponential function for diode current. Also �� is not expressed explicitly as a 

function of terminal voltage	-B . Assuming -B is initially given; the evaluation of �� 
should therefore be solved by an iterative process. For this the Newton-Raphson 

method was selected, for its simplicity and speed of convergence [10], [22], [24], 

[25], [34]–[36].  

 

The algorithm is implemented by, firstly, expressing equation  2-4 for the PV cell 

current as 
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ƒ(	��) = �� <1 + ���=> − ��� + �� ��
8 �"#$%&''n !345	6%o; − 1( + -��=	 

2-11 
and its derivative ƒ′(	��) are formulated as 

ƒ '(	��) = 1 + 45
47 + �45

"#$%&'' �� ��
8 q
rsd%&''n !345	6%o; − 1( 

2-12 
 

According to the Newton-Raphson algorithm, the current IC corresponding to any 

valid terminal voltage value can be obtained iteratively by  

	��(t + 1) = 	��(t) − ƒn	��(t)oƒun	6%(A)o  

2-13 
 

The method starts with an initial estimate of the root IJ(0) and produces successive 

approximated roots		IJ(1), 	IJ(2), IJ(n), IJ(n + 1), … using equation 2-13. This 

algorithm relies on the initial estimated root value being sufficiently close to the 

solution; the next value generated from the previous one would be closer to the 

solution and the algorithm terminates when successive estimates are close enough 

according to a defined accuracy. In practice this process takes from 2 to 4 cycles to 

yield an acceptable accuracy in the estimated 	�� for each voltage value. The 

method has been shown to be reliable when the starting value is set close enough 

to the final solution. In addition to avoid falling into non-convergent iteration, a 

maximum number of loops can be set to terminate the iteration. Figure 2.7 shows 

the I-V and P-V characteristic curves produced by the above described simulation 

method for a single PV cell with parameters given in Table 2-1. 
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Parameter Value 

Ambient Temperature (Celsius) 20 

Solar insolation (mW/cm2) 1000 

Cell short circuit current (Amps) 3.3 

Open Circuit Voltage (Volts) 0.6 

Number of Series Cells 1 

Number of Parallel Cells 1 

Table 2-1 Single solar cell parameters 

 

The main drawback of this method is the high computational cost. For each chosen 

output voltage, the iterative method required for estimating its corresponding 

current value is tedious and inefficient. The situation is exacerbated when dealing 

with a PV plant consisting of multiple PV panels, and each is under different light 

and temperature levels. The fact that this algorithm requires at least 2 to 4 

iterations to define one operating point of one PV panel may make the simulation 

process too long to be practical. 
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Figure 2.7 I-V and P-V Characteristic curve obtained by iterative process 

 

2.2.2 Bishop’s proposed model 

With the model equation 2-3, Bishop proposed a method which avoids iteration. 

Instead of starting from the PV cell/panel terminal voltage, -B. The method 

recognises that the cell junction voltage -. = -B + �� × �� and it determines directly 

the diode leakage and shunt currents, and hence the cell terminal current ��, 
without any iteration process. This simplifies the computational process and hence 

shortens the computing time. -.   can be set corresponding to any specific set of sun 
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radiation and temperature values. For simulating a complete I-V characteristic 

curve of a PV cell the procedure below is followed: 

1. Set -.  in equation 2-5 initially as the value of -E�, 
2. Calculate the value of ��?@AB using equation 2-5,  

3. Calculate diode current ��� and	�� , using 2-1 and 2-2, 

4.  Calculate the total output current �� using equation 2-6, 

5. Evaluate value of terminal voltage -B = -. − �� × �� 
6. Increase	-.   by a small value Δ-., and  repeat the procedure from 2 above 

7. Stop until -. is above the threshold level and estimated �� is near 0 Amp.  

Using the above described procedure the I-V characteristic curve for a typical 

PV cell is computed as shown in Figure 2.8. The cell parameters are given in 

Table 2-1. 

 

Figure 2.8 I-V characteristic curve with Bishop’s equations 
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Figure 2.9 shows I-V and P-V characteristic curves of the same cell when the 

starting value for	-. = 0-, and the endpoint is when	�� = 01. Comparing these 

curves in Figure 2.9 with those in Figure 2.7, there are little differences in shape 

and values, the peak power values differ only a negligible 0.001 Watts.  

 

 

Figure 2.9 I-V and P-V Characteristic curve obtained by Bishop Model 
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2.3 PV Panels under Partial Shading Conditions 

2.3.1 Effects of Light and Temperature to PV panel output power 

The level of Light Irradiance “�” in mW/cm2 or “y” in percentage of irradiation 

(representing in laboratory conditions 100%= 367mW/cm2), plays the main role in 

photovoltaic power output and it can be considered linearly related to the short 

circuit current 	���. The average power produced by a PV panel depends greatly on 

the average intensity of sunlight available throughout the day. Both the voltage and 

current at the maximum power operational point decrease when at lower irradiance 

levels as shown in Figure 2.10. 

 

 

Figure 2.10 PV curve simulation with different sunlight proportion 

 

The temperature of the PV panel also affects the power harnessed from it. Figure 

2.11 shows the example of a PV panel simulation at the same irradiance level; 

from low to high temperatures the short circuit current varies only slightly whereas 

the open circuit voltage decreases markedly at higher temperatures, as does the 

power available from the panel. 
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Figure 2.11 PV curve simulation with different temperature 

 

2.3.2 Causes and Consequences of Partial Shading 

It is well known that PV cells connected in a series chain should match well in their 

features. This is due to that operating points of cells are set by the load across the 

string, and a series string forces all cells passing the same current. Slight 

difference in cell characteristics leads to cells operating at different voltage points. 

This variation of operating points introduces losses, reducing panel performance. 

The level of solar irradiation striking on a PV panel may not be equal across the 

panel surface due to disturbance caused by clouds, physical objects such as, 

trees, leaves, birds, or dust. Shadows on a section of a panel causes mismatch 

characteristics of the PV cells and a disproportionate reduction of the power that 

the panel can actually harvest. Figure 2.12 displays the problem of a single solar 

cell being shaded in a PV chain (shown on the right-hand-side) compared to that 

with uniform light condition (on the left-hand-side). 
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Figure 2.12 Comparison of string of cells in full sun and in partial shading 

 

Since the current produced by a solar cell is proportional to the irradiation captured 

by it, the generated power from the right-hand-side string could be at a lower level 

than that at the left-hand-side one.  

The shadow causes a significant mismatching than inherent cell/panel 

characteristic differences. The load current flowing through the string may exceed 

the short-circuit current of shaded cells, forcing them becoming reverse biased. 

The power dissipated in these cells then increases and may lead to panel 

‘hotspots’. This can be illustrated by the following example. 

A PV module with 36 cells, and 35 of them are under uniform irradiation of 

1000W/m2, operating at P1, but one is shaded with irradiance reduced to 400W/m2. 

If the current through all cells follows the short circuit current of the shaded cell, 

shown in Figure 2.12, the total voltage	-B of the fully irradiated cells and the shaded 

cell is 

-B = -2z(�) + {35 ∗ -|(�)}	, 
where -|(�) and -2z(�) are respectively the voltage of fully irradiated cells and that 

of the shaded one. 
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Figure 2.13 Example of a PV panel under partial shading 

 

Clearly the maximum panel power decreases significantly from P1 to P2, though 

only one cell out of 36 is inactive. On the other hand, the panel may operate at high 

current at point P3 in Figure 2.13. Increasing the current leads to the shaded cell 

having negative (reverse) voltage, so it becomes a load. The output power from the 

panel is now near zero, as it is consumed by the shaded cell. This dissipation of 

power can cause damages in the cell material, as well as the module 

encapsulation. Using the equivalent circuit model to analyse the situation, the 

equivalent diode in the shaded cell is in reverse bias, so the current must flow 

through the resistance Rp and Rs. The large value of Rp will transform it into the 

principal consumer of power produced in the string. The effect may lead to physical 

damage of this cell which is known as a “hotspot” [37], [38]. 

 

2.3.3 The use of Bypass Diode for Partial Shading 

To solve the problem of partial shading, bypass diodes are integrated in parallel to 

the modules, usually with 18-24 cells per diode. The bypass diode switches as 

soon as a small negative voltage of about −0.7- is applied, depending on the type 

of diode. This negative voltage occurs if the voltage of the shaded cell is equal to 

the sum of the voltage of the irradiated cells plus that of the bypass diode.  
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An example of 2 solar cells connected in series, each wired in parallel with a 

bypass diode and the system connected to the load is as shown in Figure 2.14, the 

first solar cell from the top can be considered as being irradiated by the light of the 

sun at 100%, whereas the second one is lit at a variable light levels generating a 

partial shading condition in the system. The I-V and P-V characteristic curves of 

two panel system with bypass diode are shown in Figure 2.15. The shaded string 

will produce the amount of power just in proportional to the light levels, causing a 

step down shape in the characteristic curve. 

 

 

Figure 2.14 Two solar cells + diode connected in series under partial shading 

 

The use of the bypass diode is the simplest but not the most efficient solution due 

to the loss of the capability of harvesting energy from the shaded PV Panel. When 

a shadow is cast over a panel, its associated bypass diode will conduct, therefore, 

bypassing the current flowing through it. This effectively protects the shaded panel, 

however, prevents it from generating any power.   
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Figure 2.15 I-V curve with bypass diodes under different irradiance level 

 

2.4 Analysis of a photovoltaic panel for experimental setup 

To study the practical effect of partial shading, developing new PV panel + 

converter system configurations and control schemes,practical solar laboratory has 

been set up in the School of Electronic and Electrical Engineering, at the University 

of Leeds.  

One of the most important equipment in this lab is the controllable artificial sunlight 

emulator. The main component of this, provided by “Showtec Sunstrip” [39] , 

consists of 4 light bars, each bar is fitted with ten MR16, 12V/75W halogen lamps. 

The power supply for these light bars is controlled by a 6 channel DMX Dimmer 

Pack which can adjust the load voltages linearly, emulating different sun irradiation 

levels. Three sunlight emulators are installed to light three identical PV modules 

called Sunsei SE-6000 PV modules [40] which can be connected either in series or 

parallel. A picture  of them with controllable solar simulators is shown in Figure 

2.16. 

In addition to having sunlight emulators, the temperature of the PV modules must 

be controllable, so a ventilation system is installed in the lab around the PV panels 

and light emulators. This enables adjusting the temperature of the PV modules in a 

wide range from 25°C to 70°C, simulating different combinations of light and 
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temperature levels. It also helps to dissipate the heat generated by the sunlight 

emulator due to the number of lamps concentrated in this installation.  

 

Figure 2.16 Solar Setup 

 

2.4.1 I-V Characteristic Curves of the PV panels 

To obtain the I-V curves the Sunsei PV panel mentioned above is connected in 

series to a variable resistor functioning as the load of the system as shown in 

Figure 2.17.  Various weather conditions are set; i.e. the light irradiations are 30%, 

60% and 100% for temperatures of 25C and 40C respectively. The load resistor is 

adjusted from �� � 0Ω which is the starting point of the I-V curve labelled as short 

circuit current “Isc“ and increased until the current given by the PV panel equals 

zero, hence reaching the point of “Open circuit voltage”. Two sets of I-V curves for 

two different temperature values( 25°C and 40°C)  each having three light levels as 

30%, 60% and 100% are shown in Figure 2.19. As expected, these curves show 

clearly that the short circuit current increases as irradiation level becomes higher. 

Also for the same light levels when temperature is higher the open circuit voltage 

reduces, hence the power generated is lower. 
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Figure 2.17 PV connection to extract the I-V Curve 
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Figure 2.18 IV Curve from the PV installation 

 

2.4.2 Typical I-V and P-V characteristics of PV panels under partial 

shading 

As been discussed in Section 2.3.2 under the partial shading conditions, the I-V 

and P-V curves for “n” serially connected PV panels could be divided into “n” 

number of local maximum power points. As shown in Figure 2.19, this is the P-V 

curve for two panel unit which shows the local and a global maximum power point. 

Measurement of the P-V curves for three PV panel wired in series under uneven 

light levels has been carried out.   
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Figure 2.19 Local and Global MPP 

 

2.4.3 Three PV panels under partial shading conditions with Bypass 

Diode 

The three PV modules are the ones given previously and are chained in series, 

they all equipped with a bypass diode. Three sunlight emulators were used. The 

specific light levels set for the test were such that the intensity on PV1 varies in 

steps of 30% while that on PV2 is irradiated at 30% while PV3 is maintained 100%, 

these different cases are listed in Table 2-2. Note in this test the 100% light level 

corresponds to 505 mW/cm2 solar irradiation power. This is necessary to reduce 

the heat generated from the three fully operating emulators which generate 

considerable heat causing significant ambient temperature increase.  

Case G1 G2 G3 

1 100% 30% 100% 

2 70% 30% 100% 

3 40% 30% 100% 

4 20% 30% 100% 

Table 2-2 Different irradiance cases 
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The P-V characteristic curves for all these lighting conditions are grouped in a set 

of four and are plotted in the diagram shown in Figure 2.20. As can be seen nearly 

all curves have three local peak power points, except the ones giving the highest 

output power for the conditions that two of the three light levels are the same. The 

challenges for these operating conditions are to control the output load such that 

the maximum power generation can be obtained which are the aims of this work.  

 

 

Figure 2.20 Bypass diode + three PV panels under uneven irradiance 

 

2.5 Integrated Converter PV Unit for Partial Shading 

Solutions for overcoming partial shading issues have been investigated by many 

researchers in recent years [41]–[44]. The use of converters avoids the creation of 

multiple local power points which are created by the Bypass Diode [30]. The 

electrical architectures used to harness the power from the solar modules may vary 

depending on the end user. Since PV installations can be present in a standard 

house or a “Photovoltaic Farm”, these plants are divided by Centralized and 
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Distributed [45]. The evolution to a balanced segmentation of these two markets 

has been present since 2012 (Figure 2.21). Distributed installation changed in a 

faster rate with several countries deciding to discontinue the support for utility-scale 

PV in Europe; nevertheless the Photovoltaic installations maintain the exponential 

growth over the past years [1].  

 

 

Figure 2.21 Evolution of Grid connected PV Market Segmentation [1] 

 

The Power Conversion architectures have evolved from a Central configuration to 

a Multi-string configuration over the years, these can be listed as:  

 

 

• Central Inverters 

The Central inverters indicated in Figure 2.22(a) use one converter with multiple 

outputs and different voltage values and load regulation levels by each bus line. PV 

modules are distributed in string connections, each one generating enough voltage 

to evade further amplification. The principal advantage of this configuration is the 

concentration of all the process in one inverter. Nevertheless, intrinsic drawbacks 

are presented such as the need of high voltage DC cables to wire the solar 
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modules and the inverter, power losses to common MPPT techniques and module 

mismatch, representing a limitation of adaptation to new technologies [42].  

 

• String Inverters 

The string inverters presented in Figure 2.22(b) are just a simplified version of the 

central inverters dividing each string and inverter into one phase connection. This 

configuration, as well as the Central, needs enough level of voltage to avoid 

amplification. The major advantage over the central inverter is that now each string 

has an individual MPPT. However, the maximum power point is oriented for all the 

string and not to the individual PV panel [41]. 

 

• Multi-String Inverters & Module Integrated Inverters 

Multi-string inverter Figure 2.22(c) is a further derivation of the String Inverter 

where uses multiple converters away from the load in such configuration that 

voltage and current levels can be combined to satisfy the load requirements. 

Although the combinations can be rated for high voltage solutions, the strings can 

implement low power algorithms to find the maximum power point. Each string is 

connected to a dc/ac converter and further connected to an inverter. Since each 

string is independent of each other, individual controls are applied to the strings. 

Further enlargements can be achieved since new dc/dc strings are just connected 

to the existing inverter. By the other hand, the module oriented configuration gives 

the case where a PV panel is directly connected to an inverter, eliminating any high 

voltage DC wiring. Although, this as a simple solution, the main challenge for the 

designer is to develop an inverter capable to amplify low voltages to an 

appropriated level for the grid and maintain a high efficiency [41]. 
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Figure 2.22 Overview of PV Inverters (a) Central Inverter, (b)String Inverter, 
(c)Multi-string Inverter, (d)Module Integrated Inverters 

 

In recent years, a new configuration presented by Walker et al. in [44] introduces 

the Bypass dc-dc Module Integrated Converter configuration where bidirectional 

converters are connected as in Figure 2.23. The converter wiring configuration is 

referred as “bypass” in each pair of PV panels, allowing achieve the individual 

maximum power point and monitoring. The bypass configuration acts as power 

optimizer of each PV module since is directly connected with the DC/DC converter, 

contrary to the case where PV strings are connected in series to the central 

inverter. The bypass configuration aids the solar module to achieve a global 

maximum power point avoiding the lower local power points produced in a PV 

installation by partial shading conditions. Since Central inverters are already deeply 

introduced in the market, the bypass converter can be helpful in PV installations 

that wish to improve the power production. 

 A thorough analysis and explanation of this configuration will be given in the 

following chapters since this report will be concentrated in the “bypass” 

configuration of power conversion. 
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Figure 2.23 Bypass dc-dc Module Integrated Converter 

 

2.6 Summary 

This chapter presents the modelling of photovoltaic cell and panels. A comparison 

of two different models has been done with the purpose to optimize computerized 

simulation of photovoltaic systems. Bishop’s PV model is chosen to compute each 

point of current and voltage of the IV characteristic curve. Analysis of the 

photovoltaic model shows the direct dependency of atmospheric conditions.  

The chapter also described the operating condition of uneven light level on a PV 

system consisting of multiple panels/modules connected in series. The bypass 

diode is used as a simple solution of the partial shading. However, the 

disadvantages of this approach lie in the appearance of multiple power peaks in 

the P-V curve, creating the necessity of exploring other solutions for the “partial 

shading” issue.  

The chapter reviewed the current development in PV + converter topologies for 

overcoming partial shading problems. In addition experimental tests and results on 

PV modules under partial shading conditions have been presented.
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Chapter 3  

Analysis of the Bidirectional Ćuk Converter as a PV Converter 

 

The well-known DC-DC converters such as buck and boost converters are power 

electronic circuits composed of only a few components and have been used in 

photovoltaic generation systems. Many other converter topologies have been 

proposed over the past decades [37], [43], [46]–[55] ,even though most of them are 

the combinations of the two basic circuits; the buck converter [50], [56] which 

converts the input voltage to a lower output voltage and the boost converter [35], 

[57], capable of  achieving an output voltage  higher than the input. 

An example of these combinations is the buck-boost converter which combines the 

features of both topologies [35], [50], [57]–[59] of stepping down (for K < 0.5) and 

stepping up (for K > 0.5) of the input voltage. However, there are drawbacks in 

their designs which can be mentioned as follows.The buck converter presents a 

pulsating input current, while the boost converter has a pulsating output current 

which is responsible for a high output voltage ripple. Therefore the buck-boost 

topology, being a combination of these two, has pulsating current at both input and 

output ends [48], [60]. 

The Ćuk converter, first introduced by Slobodan Ćuk[48], was developed to serve 

as an improved solution to the above. Having the advantages of the basic boost 

and buck converters such as the flexibility in step-up/step-down the voltage, but 

without the shortcomings of producing high current ripples, this topology has been 

adapted by many researchers [5], [28], [29], [35], [37], [42], [43], [47], [61]–[90]. 

This chapter presents a thorough investigation of the Ćuk converter and its 

dynamical behaviour. Moreover, the integration of this converter with photovoltaic 
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panels makes it essential for it to work with the fluctuating voltage or current levels 

imposed on a PV installation by atmospheric conditions and shading effects. The 

topology is thus analysed as a photovoltaic converter. 

3.1 Ćuk Converter Circuit 

 

Figure 3.1 Basic Ćuk Converter 

 

The basic circuit of a Ćuk converter [48], [91], as shown in Figure 3.1, was 

developed to give a simple structure but offers the optimal harmonic performance 

at both input and output terminals. It is composed mainly of two Inductors 

denoted	�+, �/, a switch S, a diode D and the energy transfer capacitor.	�A It is, in 

fact, the combination of a boost converter as the input and a buck converter as the 

output connected in cascade, avoiding the pulsating currents mentioned before. 

Additionally, filtering capacitors can be added in shunt at the input and output 

terminals to reduce voltage ripples due to switching.  

Capacitor	�A is the main element in this circuit for storing and transferring energy 

from the input source to the output load. From the circuit diagram it is clear that at 

the steady state, since mean voltages across both input and output inductors are 

zero,		-�A = -� + -� namely -�A	is greater than both input and output voltages. Also 

the polarities between input and output terminals are reversed.  
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3.2 Operation Principle  

3.2.1 Circuit Analysis  

 

 

Figure 3.2 Switching On-State and Off-State of the Ćuk converter 

 

The circuit configurations for both the on and off states of the switch are shown in 

Figure 3.2. In the on-state, the input voltage is applied directly across the 

inductor	�+ which is being charged, also the converter input current 	��� increases. 

On the other hand the capacitor voltage	-�A, having the polarity as shown in the 

diagram, its positive end is connected to the negative of the input voltage source 

hence reverse biases the diode and can only form the circuit with the output 

terminal. Since -�A	is greater than the load output voltage	-�, �t discharges its 

stored energy (charged during switching on-state) to the load and 	�/ through the 

switch. Inductor current, also the load current, ��� increases. The waveforms of ���  , 

���and the voltage across them during switching on-state are shown in Figure 

3.3(a). 
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On the other hand, at off-state, the capacitor	�� is switched over to the input source 

-� side through 	�+ and forward biased diode, so it is charged through the diode by 

energy from both input source and that stored in	�+. Since		-�A > -�, the capacitor 

charging current, also the input current,	��� decreases as displayed in Figure 3.3(a). 

Meanwhile at the output side inductor 	�/ discharges its stored energy (during 

switching on-state) to the load, so current ��� also decreases as shown in Figure 

3.3(a). Note the waveforms shown in Figure 3.3(b) are the current through and 

voltage across 	�� with the assumption that the currents 	���  and ��� are ripple free. 

 

 

Figure 3.3 Ćuk converter waveforms at On/Off State a) inductor currents and 

voltages, b) ��	current and voltage, Switch voltage and current. 

 

At the steady state, denoting switching period as TS and switch duty ratio k, the 

charges delivered cycle to the capacitor �� during switching off-state is equal 

to	��+(1 − �)��. However, during the on-state the charges in capacitor �� is drained 
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by ��/���. Since in a lossless converter the net flow of charge into the capacitor 

must be zero, and hence the relationship between the inductor currents is: 

��+(1 − �)�� + (−��/)��� = 0	
3-1	

So 

���/��+� = ������ =
1 − �
�  

3-2 

So, for an ideal converter the power relationship will be	�� = -���+ = −-���/ = ��, 

so we have the voltage ratio given by 

�-�-�� =
�

1 − �	 
3-3 

An alternative way to derive the same relationship is through voltage analysis. In 

the steady state, the mean voltage across either inductor must be zero. Since �� is 

large the voltage -��  can be assumed constant, so we have the average voltage 

across the inductor 	�+ over one complete cycle given as:  

-���� + (-� − -��)(1 − �)�� = 0	
This leads to  

-�� = 1
1 − � -� 

Similarly that for 	�/ is  

n-�� − -�o��� + (−-�)(1 − �)�� = 0 

So we have 

-�� = 1
�-� 

Equating the above two equations gives the same voltage relationship as Eq 3-3 
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3.2.2 Analysis of Components Selection in a Photovoltaic Converter 

Considering for the moment only steady state operation, selection of component 

values can be based on considerations of the magnitudes of the ripples in the 

inductor currents, in the voltage across the energy transfer capacitor	��, and that in 

the voltage ripples at the source and load ends. The latter are determined by the 

additional filter capacitors fitted at the both terminals. The rated values of the input 

and output voltages, currents and the switching frequency are assumed to be 

known for a determinate application, and hence it is possible to calculate the 

maximum acceptable ripple in any current or voltage.  

 

Output Filter: 

For the output inductor	�/ [35], at switch off-state we have 

	�/ = 	-�	(1 − �)∆��/	�  

3-4 

where ∆��/ is the peak-to-peak variation in the current flowing through the output 

inductor and � is the switching frequency. This equation contains only the change 

in inductor current during the on state caused by the mean values of the transfer 

capacitor voltage and the load voltage. Both of these voltages have fluctuations 

which are assumed to be small compared to their mean values, and hence are 

neglected in the above equation. 

Now consider the load voltage fluctuation, which is caused by the fluctuation of the 

inductor current flows through the output filter capacitor. Between the on and off 

states, the filter capacitor is charged and discharged, and the changes of 

charge	∆)�, cause the fluctuation of the output voltage (see Figure 3.3). The 

voltage ripple is expressed as [35], 

∆�� = ∆)��/  

3-5 
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Figure 3.4 explains the charge change obtained by integrating the area under the 

output current curve, which is approximated as triangular. 

 

Figure 3.4 Output current and voltage waveforms for the Ćuk Converter 

 

The capacitor accumulates charge 	∆)� during charging state shown by the shaded 

area in Figure 3.4 equals that when the capacitor discharges and can be 

approximated as 	

∆)� = 1
2
��2
∆��/2 = ��∆��/8 	

Substituting ∆��/	by equation 3-4, we have output ripple voltage expressed as  

∆�� = -�(1 − �)��8�/	�/� 	
Thus the capacitance value can be expressed as  

�/ = -�(1 − �)8	∆���/�/	
3-6 

where ∆��/ and ∆�� are the desired output current and voltage ripples, respectively. 

Since the circuit is input-output symmetrical, the above analysis is applicable to 

input current and voltage inductor and capacitor.  
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From the above it is clear that the voltage ripples at both input and output ends can 

be minimised by selecting the corner frequency of the second order L-C low-pass 

filter which is expressed as  

�� = 1
2��	�/�/ 

This is much lower than the switching frequency � and is independent of the input 

and output power, so long as the converter operates in continuous-conduction 

mode. 

Energy Transfer Capacitor Cn: 

Assuming the mean input current ��+ is constant, and at switching on-state, -�+ = 0 

so capacitor �A can be written as: 

�A = ��+	�∆��A	� 

3-7 

Here ∆��A	is the peak to peak fluctuation in the voltage across the capacitor	�A 

which has to be sufficiently large, so that the ripple voltage can be small. 

In the particular application of the converter described in this work, it is not being 

used to feed power to a constant voltage bus, but is used to divert variable 

amounts of power between two PV panels of nominally identical features which are 

equally likely to be shaded. Hence the converter used for this power flow control 

would naturally be made completely symmetrical. This property allows a number of 

simplifying assumptions to be made in order to choose the component values of 

the converter, which are listed below: 

. 

• The ratings of Input voltage and output voltage are in the same range,   

• The inductance values and current ratings of the input and output inductors 

are the same, 

• The capacitance values of the input/output filter capacitors and voltage 

ratings  are the same, 
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• For the calculation of the ripple a duty cycle near 50% is assumed, and 

finally  

• The converter is lossless; so switches are considered ideal. 

3.3 Bidirectional Ćuk Converter with photovoltaic application 

The Ćuk converter has been used in photovoltaic applications such as Isolated 

topology to improve transmission efficiency[62], using control techniques to 

improve reliability in PV applications [64], simulation and Implementation of 

advance MPPT techniques [73], [75],  due to its advantages previously mentioned.  

This converter is now used as a possible solution to the PV partial shading 

conditions in order to achieve the maximum power generation. Figure 3.5 shows 

the proposed circuit diagram to use a bidirectional Ćuk converter for the power 

control of two PV panels; i.e. the basic converter-PV integrated module. 

Configuration of the system for this basic unit to obtain maximum power generation 

is given in 3.6. 

 

3.3.1 Bidirectional Ćuk Converter  

For the basic Ćuk converter circuit described above, when another switch and 

diode are connected in parallel on either side of the capacitor 	�� and in reverse 

polarity to the original pair shown in Figure 3.1, the result is a bidirectional Ćuk 

converter. Such a circuit allows power transfer from either left to right or vice versa. 

Thus when an input source voltage is connected on the left hand terminals, switch-

diode pair S1 and D2 are active, enabling power flow from left input to right output 

with voltage relationship as given by equation 3-3 

On the other hand, if the input source is on the right-hand side, the active 

switch/diode pair is S2 and D1 as before. In general a power source is defined as a 

device which can produce power and has a non-zero open circuit voltage, while a 

load cannot generate voltage by itself but has a defined voltage and current 

relationship [92]. 
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3.3.2 Application of a bidirectional Ćuk converter with two PV panels 

 

 

Figure 3.5 Interconnection of two PV Panels with the Bidirectional Ćuk Converter 

 

When the Bidirectional Ćuk Converter above is applied to control a PV power 

generator consisting of two panels, its connection to them is as shown in Figure 

3.5(a). i.e. one PV panel is wired on the left-hand side terminals, and the other is 

on the right-hand side. It will be assumed that the two PV panels have nominally 

identical features and are equally likely to be shaded. To form a complete system 

capable of extracting all the available power generated by both panels, a load 

resistor or a terminal converter may be required. This could be either step-up or 

step-down, dc-dc or dc-ac converter depending on the load. As shown in Figure 

3.6, in this work a dc-dc step-up converter is used. The input terminals of this 

converter are connected to the positive node of PV1 and the negative node of PV2.  
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Figure 3.6 Integrated Photovoltaic Converter connected to a DC Bus 

 

If there is no mismatching in the operating conditions of the two panels, the 

interconnection of PV1 and PV2 will behave as if they were a serially connected PV 

panels and the current will flow equally through the two photovoltaic panels. The bi-

directional converter between them is idle, and its switch drivers are turned off.  

However, with mismatching between two PV panels operating conditions, due to 

shading, power generated by two panels would be different, and the bi-directional 

converter needs to be controlled actively. Note the power difference due to 

mismatching of PV panel characteristics is not considered. 

Sun 

Irradiation 

G1 G2 Active 

components 

Duty ratio 

No Mismatch Same Same --- --- 

Mismatch High Low S1-D2 K1 

Mismatch Low High S2-D1 K2 

Table 3-1 Switch/Diode Bidirectional behaviour 
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3.4 Operations under Uneven Solar irradiation  

3.4.1 Case when Irradiation over PV1 is greater than PV2  

When irradiation on PV1 is higher than that on PV2, the power available from the 

former is naturally higher [2], [59]. The set of switch and diode pair S1 and D2 

should be activated by the controller as shown in Table 3-1. This provides an 

additional  path for the current from PV1 to flow without being consumed by the 

shaded panel which may become a load hence causing hotspot effect in the 

system [68].  

As shown in Figure 3.7, the effect of activating S1 and D2 is that PV1 becomes the 

voltage source of the bidirectional Ćuk converter. The converter output current is 

superimposed to the current from PV2 and supplied to the output load. The key to 

this action is the sign inversion between the input and output currents of the 

converter. This means that positive current diverted from one of the terminals of 

PV1 is added to the positive terminal current of PV2. 

 

 

Figure 3.7 Switch Stage of the Ćuk Converter with G1 > G2 



-  50  - 
 

 

3.4.2 Case when irradiation over PV2 is greater than PV1 

This situation is opposite to the previous case and is caused mainly by the 

irradiation on Pv2 being higher than that on Pv1; the power that can be extracted 

from the former is naturally higher. The switch and diode pair, S2 and D1, will be 

made active as shown in Table 3-1; the effect is that Pv2 now becomes the power 

source for the converter. The current flow in the circuit under this condition is as 

shown in Figure 3.8.  

 

Figure 3.8 Switch Stage of the Ćuk Converter with G2 > G1 
 

3.4.3 Power Flow Analysis  

In continuous conduction mode, the total power, �$ harvested by the system at 

steady state can be expressed as 

�$ = -$�$ 

3-8 

Assuming both panels are physically identical with the same current/voltage 

ratings, the inductors currents are assumed to be continuous and capacitor 
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voltages be constant and ripple free, Eq. 3-8 can be re-written in terms of voltages 

across Pv1 and Pv2 and total current as 

�$ = (-	 + + -	 /)�$ 

3-9 

where -	 + and -	 / are the terminal voltages of the photovoltaic panels Pv1 and 

Pv2 respectively in volts, -$	is the total output voltage (volts) and �$ is the total 

output current in amperes and also the current flowing through both panels. 

 

However if Pv2 is now shaded and Pv1 is assumed generating higher power with 

current  	�	 + , hence taken as the input source, switch pair S1-D2 is active, the total 

current �$ can be calculated by: 

�$ = �	 + − ��+ 
3-10  

or 

�$ = �	 / + ��/	 
3-11 

Where ��+ and ��/ respectively are the currents flowing through inductors 	�+ and	�/. 
Furthermore, for a Bidirectional Ćuk converter, from equation 3-3, the voltage 

relation with the duty ratio can be formulated by 

-	 / = �+1 − �+ -	 + 
3-12 

On the other hand If Pv1 is shaded, hence becoming the output end and Pv2 is the 

input source, S2 –D1 is active, the relationship is given as:  
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-	 + = �/1 − �/ -	 /	
3-13	

The inductor current relation with the duty cycle can be adapted from equation 3-2, 

hence we have 

��/��+ =
1 − �1
�1 = �2

1 − �2 

3-14 

Therefore, replacing equation 3-14 in 3-11 gives 

��+ = (�$ − �	 /) � �1
1 − �1� 

3-15 

and equation 3-15 in 3-10 

�$ = �	 +(1 − �1) + �	 /�1 

3-16 

In addition, the system overall power can be expressed by substituting equations 

3-12 and 3-16 in 3-9 

�$ = 8-	 + + -	 + � �1
1 − �1�; ��	 +(1 − �1) + �	 /�1� 

3-17 

hence, 

�$ = -	 +�	 + + -	 + � �1
1 − �1� �	 / 

3-18    

With the analysis of equation 3-18, it can be concluded that by varying the K1 

value, the power produced by the shaded panel PV2 will also vary. 

• If K1=0: PV2 is effectively shorted by a bypass diode and is not producing 

power; therefore, the total output power is exclusively produced by PV1. 
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• If 0<K1<1: The power produced by PV2 will vary adding the power to the 

system output  

3.5 Integrated-converters with three PV Panels 

In the case of having the third PV panel connected in series to the system, the 

second Bidirectional Ćuk Converter is needed and wired across the second and 

third PV panels, the configuration of the circuit is shown in Figure 3.9. Such a case 

follows a new set of rules for the activation of specific switches depending on 

differences of solar irradiation levels on each of the three panels.  

 

 

Figure 3.9 Configuration for three Solar Panel System 

 

As stated before in the two panel case when the levels of solar light on three 

panels are the same, the current generated on each panel should ideally be the 

same; hence both converters are idle. However when the light levels are different 

one or both bidirectional converters would be active.  In each converter circuit, the 

pair of switch and diode set being active depends on the levels of solar irradiance 
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on the two PV panels connected on the converter’s two terminals. Considering all 

light pattern combinations possibly, we can list 4 different scenarios where the two 

pairs of switch and diode are active (Table 3-2). Correct determination of which of 

the two panels for a converter should act as its input or output can harness the 

maximum power generated from this PV system.  

The operation modes for the two converters are determined based on the following 

analysis. Assuming switch pair �+∙+ − �/∙+ in converter 1 is active, the current 

flowing through �+∙+ is 

�	�+ − �$ > 0 

3-19 

This implies that current generated by PV 1 is higher than that flowing through the 

three serially linked panels, hence expressing in power and voltage terms we have 

�=�+-=�+ >	
�=�+ + �=�/ + �=�0-=�+ + -=�/ + -=�0 

3-20 

Re-arranging the inequality formula 3-20 gives 

-=�+ + -=�/ + -=�0-=�+ > �=�+ + �=�/ + �=�0�=�+  

3-21 

Observing I-V characteristic curves of a PV panel, it is evident that the changes of 

voltage corresponding to the changes of the maximum power points due to light 

level variations are not significant [5]. Thus it is adequate to assume that the three 

panels have the same average voltage, so formula 3-21 can be written as  

3�=�+ > �=�+ + �=�/ + �=�0 
As mentioned before, power is assumed to be directly proportional to solar 

irradiance, G, so we write  

3y+ > y+ + y/ + y0 
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y/ + y02 < y+ 
3-22 

Formula 3-22 expresses the relationship of three solar irradiances respectively to 

three different panels when �+∙+ − �/∙+ are active. The same analysis can be 

applied to the situation when switch and diode pair,	�/∙+ − �+∙+, is active, in this 

case the current flowing through �+∙+, is in reverse direction to the previous 

condition so it follows that  

�	�+ − �$ < 0 

3-23 

hence 

y/ + y02 > y+ 
3-24 

While converter #1 analysis above is based upon the current flowing from/to	�+∙+, 
converter #2 is now analyzed according to the current flowing from/to inductor	�/∙/. 
The switch pair  �+∙/ − �/∙/ is activated if the light conditions  

��3��
/ > y0 occurs. On 

the other hand, switch pair �+∙/ − �/∙/ will be activated when	��3��/ < y0. With these 

four light conditions and four operating modes a set of switch combinations are 

assembled as shown in Table 3-2. 
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Table 3-2 Three Panel Case switching configuration 

 

3.6 Converter components design 

The converter design should be based on parameters of the power source and 

load. In this case, the PV panels given in subsection 2.2 are taken as the sources 

of the system. Such PV Panels can generate an average voltage of up to 20 volts 

and current of 3.3 amps under optimal lighting and temperature conditions. A 

maximum ripple of 5% is chosen as acceptable for current and voltage.  

Current ripple can be calculated to be ∆� = 165M1 and duty cycle is considered to 

be 50% with a switching frequency of 20 kHz. With equation 3-4 the value of 

inductor		�/ can be expressed as 

	�/ = 	-�	(1 − �)∆��/	� = 	 20����� ∗ 0.5
165M1 ∗ 20��� = 3.03M� 

Applying the same principle for voltage ripple on the converter capacitors, �+ and 

	�/  are obtained for ∆� = 1- as: 
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�+*/ =	 ��(1 − �)8∆�� = 3.31 ∗ 0.5
8 ∗ 1- ∗ 20	��� = 	10.3�� 

Thus, �A is obtained by 

�A =	 ��(1 − �)� ∗ ∆- = 3.31 ∗ 0.5
20	��� ∗ 1- = 	82.5��		 

Although capacitance values are important for this implementation and higher 

value of the capacitor would incur a slowing down of the step response, the system 

itself does not operate in a time critical application, and hence flexibility in choosing 

capacitors can be allowed. 

3.7 Discontinuous Conduction Mode (DCM)  

Since the Ćuk Bidirectional Converter works with both input and output connected 

to solar modules, is important avoid the discontinuous conduction mode knowing 

when the converter follows from CCM to DCM. 

There are two scenarios where the converter can go into the DCM [90] :  

• If both PV panels are equally irradiated and the converter is forced to work 

normally, the power that is transferred from one circuit end to another is a 

small fraction of the converter ratings; the average inductor current will then 

become lower than half peak to peak inductor current forcing the converter 

to work in Discontinuous Diode Conduction Mode (DDCM). 

• If the case when one of the PV panels is fully irradiated while the other is 

without irradiation happens, the converter has to shuffle a large amount of 

current which may lead to full discharging of energy stored in the transfer 

capacitor Cn, consequently the capacitor voltage goes to zero before the 

completion of On time which results in Discontinuous Capacitor Voltage 

Mode (DVCM). 

Both parameters are taken into consideration designing the activation algorithm in 

subchapter 5.2.1.2 to avoid DCM in the Ćuk Bidirectional Converter integrated with 

PV panels. 
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3.8 Summaries 

This chapter presented a module integrated PV-converter unit using the Ćuk 

Bidirectional Converter. The circuit and operation principle of the basic Ćuk 

converter were described, and its output to input voltage and current relationships 

were derived. The main advantage of the Ćuk converter compared to other DC-DC 

converter topologies is that it gives low current ripples in both input and output 

ends [48].  The Bidirectional Ćuk Converter topology is considered to be a solution 

for the control of PV power generators when the panels in the installation are under 

different solar irradiance. The module integrated PV converter unit is formed by 

wiring two PV panels respectively to the converter’s two terminals. Principles of 

power flow control in such a unit were described. Multiple of Such units can be 

connected in series for generating higher voltage output. Configuration of a system 

having three solar panels and two Bidirectional Ćuk Converters was shown and 

explained. 

A switching scheme was necessary for the control of power flow in the three solar 

panel system. The aim of such a scheme is to find the maximum power point 

based upon the irradiance on each panel. For this, selection rules dependent on 

the relative levels of panel irradiances were developed and summarised.
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Chapter 4  

Ćuk Converter Transfer Functions Using State-Space Averaging 

 

As described in the previous chapter, one of the objectives in this work is to obtain 

the optimal control of the integrated converter-PV module for maximum power 

generation under uneven lighting conditions.  To design the control scheme and 

evaluate its performance it is necessary to study the dynamic behaviour of the Ćuk 

converter and its integration with the PV panels. This requires developing 

mathematical models expressing the relationships between the converter input and 

output variables. This chapter presents the development of transfer functions for 

system comprised of a Ćuk bi-directional converter with two PV panels. This is 

through, firstly, deriving the state-space equations for different converter operating 

states in a continuous-conduction mode. State-variable averaging technique over 

the switching period and small signal perturbations are then applied in order to lead 

to transfer function derivation using procedure previously stated by Slobodan Ćuk 

et al. in [50], [56], [60], [91]. Moreover, a thorough analysis to the transfer functions 

is performed by step and frequency response when the solar modules are under 

the effects of partial shading. Transfer functions step responses are contrasted 

with a Simulink model. 

 

4.1 State-Space Equations for Ćuk Converter 

The analysis below considers the operation when S1 and D2 are active, and their 

states are according to the duty ratio set by the PWM signal represented in Figure 

4.1. As a rule, the number of state variables is equal to the number of energy 
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storage components in the circuit. In this case they are the voltages across the 

capacitors	�A, �+ and	�/, the latter two are also the terminal voltages of 

-	�+	and	-	�/, the current flowing through the inductors �+ and	�/, thus forming a 

state vector    = ���+	; ��/	; -	�+	; -	�/	; -���.  
 

 

Figure 4.1 Switch State Analysis 

 

• Switching on State: 

 When switch S1 is turned on as shown in Figure 4.1(a), the state equations for all 

the state variables are given below: 

The rate of change of current through inductor L1 is expressed as 

¢��+(�)¢� = -	�+�+ , 
that for L2 is given as 
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¢��/(�)¢� = 	-���/ −
-	�/�/ . 

The rate of change of PV1 input voltage is given as 

¢-	�+(�)¢� = �	�+�+ − �$�+ −
��+�+ , 

, and the variation rate of Vpv2 is 

¢-	�/(�)¢� = ��/�/ −
�$�/ +

�	�/�/ . 
 Then rate of change of Vcn is 

¢-��(�)¢� = − ��/�A  

4-1 

Writing the above equation using state vector form we have 

 £ = ¤�A  + ¥�$ + ¦§�	�+ + ¦¨�	�/ 
    4-2 

where   =
©ª
ªª
« ��+��/-	�+-	�/-�� ¬

­­
­®
,  ¤�A =

©ª
ªª
ªª
ª«

0 0 1 �+e 0 0
0 0 0 −1 �/e 1 �/e

−1 �+e 0 0 0 0
0 1 �/e 0 0 0
0 −1 �Ae 0 0 0 ¬­

­­
­­
­®

, ¥ =
©ª
ªª
ª«

00
−1 �+e
−1 �/e
0 ¬­

­­
­®
, 

¦+ =
©ª
ªª
« 00
−1 �+e
00 ¬­

­­
®
  and  	¦/ =

©ª
ªª
« 0001 �/e
0 ¬­
­­
®
 . 

 

If the switching frequency is sufficiently high, the elements in   are changing 

linearly with time. Hence, the rate of change of the state variables can be 

approximated as 
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 £ �  (¯u) −  (¯+)��A 	, 

4-3 

where ¯+	denotes the time to turn on S1 while ¯′ is the end of turn on time, 

and	��A = τu − τ+, substituting this into equation 4-2, we have 

x(τu) = (± + ¤²³��A)x(τ+) + (¥ig + ¦§�	�+ + ¦¨�	�/)��A, 
4-4 

where I is the unity matrix. 

• Switching off State: 

When the switch is turned off (Figure 4.1b), the mathematical representations of 

the components are: 

 

¢��+(�)¢� = -	�+�+ − -���+  

¢��/(�)¢� = 	−-	�/�/  

¢-	�+(�)¢� = �	�+�+ − �$�+ −
��+�+  

¢-	�/(�)¢� = ��/�/ −
�$�/ +

�	�/�/  

¢-��(�)¢� = − ��+�A  

4-5 

Similarly using state variable representation we write the above state-space 

equations as 

µ£ = ¤²¶¶  + ¥�$ + ¦§�	�+ + ¦¨�	�/, 
       4-6 
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where   ¤�|| =

©ª
ªª
ªª
ª«

0 0 1 �+e 0 −1 �+e
0 0 0 −1 �/e 0

−1 �+e 0 0 0 0
0 1 �/e 0 0 0

1 �Ae 0 0 0 0 ¬­
­­
­­
­®

. 

 

If the switching period is sufficiently short, the elements in   are changing linearly 

with time. Hence, we have 

 £ �  (¯/) −  (¯u)��|| , 

4-7 

where ¯/ denotes the end of turn off time	��|| = ¯/ − ¯u. Substituting this into 

equation 4-6, we have 

 (¯/) = n± + ¤²¶¶��||o (¯u) + (¥�$ + ¦§�	�+ +¦¨�	�/)��|| 

4-8 

Eliminating  (¯′) by substituting Equation 4-4 into Equation 4-8 gives 

 (¯/) = n± + ¤²¶¶��||o(± + ¤²³��A) (¯+)+ n± + ¤²¶¶��||o(¥�$ + ¦§�	�+ + ¦¨�	�/)��A+ (¥�$ + ¦§�	�+ + ¦¨�	�/)��|| 

4-9 

When the switching frequency is sufficiently high, 	��A��|| , ��A/ and ��||/ are 

significantly smaller than any products of two passive L and C components. Hence, 

equation 4-9 can be re-written as 

 (¯/) = n± + ¤�||(1 − �)�� + ¤�A���o (¯+) + (¥�$ + ¦+�	�+ + ¦/�	�/)�� 
4-10 
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where (1 − �)�� = ��|| , ��� = ��A and	�� = ��A + ��||, and  

Therefore, the averaged state-space model for the converter is given by  

 £"� �  (¯/) −  (¯+)��  

or 

µ£ ·¸ = ¤¹  + ¥�$ + ¦§�	�+ + ¦¨�	�/ 
4-11 

where ¤º = ¤»�� + ¤»¼¼(1 − �) 

  hence,  ¤$ =

©ª
ªª
ªª
ªª
« 0 0 1 �+e 0 − (+*#)

��
0 0 0 −1 �/e � �/e

−1 �+e 0 0 0 0
0 1 �/e 0 0 0

(+*#)
�� −� �Ae 0 0 0 ¬­

­­
­­
­­
®

 

 

4.2 Introducing Small ac Perturbation Signals 

By introducing small ac perturbation signals, denoted by the symbol “^” in the 

above averaged state-space variables, we have: 

  = ½ +  ¾	
� = � + �¿	

�	�+ = �	�+ + À£Á	�+	
�	�/ = �	�/ + À£Á	�/	
�$ = �$ + À£Á$ 

4-12 

 

Then, after derivations (see Appendix A) equation 4-11 can be expressed as 
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 ¾£ = ¤ÂÃ ¾ + ¥À£Á$ + ¦§À£Á	�+ + ¦¨À£Á	�/ + Ä�¿	
4-13	

where ¤ÅÆ =

©ª
ªª
ªª
ªª
« 0 0 1 �+e 0 − (+*Ç)

��
0 0 0 −1 �/e � �/e

−1 �+e 0 0 0 0
0 1 �/e 0 0 0

(+*Ç)
�� −� �Ae 0 0 0 ¬­

­­
­­
­­
®

 and Ä =

©ª
ªª
ªª
« ÈÉ�3 ÈÉ��� ÈÉ�3 ÈÉ�

��006ÈÉ�*6ÈÉ�
�� ¬­

­­
­­
®
 

Under a specific weather conditions, À£Á	�+ and À£Á	�/vary according to its respective I-

V characteristics and its normal operating range, thus they are expressed as  

Ê£ÁË¸§ =	− Ì̧Ë¸§
ÍË¸§  and  Ê£ÁË¸¨ =	− Ì̧Ë¸¨

ÍË¸¨		,  
4-14   

where �	 + and �	 / are the slopes ¢-/¢� of the I – V characteristic at their 

respective steady state points and are always varying.  

Eliminating the terms with À£Á	 + and À£Á	 / by substituting Equation 4-14 into Equation 

4-13, we obtain  

 ¾£ = ¤∗�F ¾ + ¥À£Á$ + Ä�¿ 
4-15 

where ¤∗�F =

©ª
ªª
ªª
ªª
« 0 0 1 �+e 0 − (+*Ç)

��
0 0 0 −1 �/e � �/e

−1 �+e 0 − +
4ÈÉ��� 0 0

0 1 �/e 0 − +
4ÈÉ��� 0

(+*Ç)
�� −� �Ae 0 0 0 ¬­

­­
­­
­­
®
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and Ä =

©ª
ªª
ªª
«  ÈÉ�3 ÈÉ�

�� ÈÉ�3 ÈÉ�
��00 ÈÉ�

4ÈÉ��� −  ÈÉ�
4ÈÉ���¬

­­
­­
­®
  

The small-signal equation for the voltage across PV1 is given as 

�¾	�+ = Î+ 	Ì , 
4-16 

where Î§ = �0 0 1 0 0�. Therefore, the small-signal equation for the voltage 

across PV2 is given as 

�¾	�/ = Î¨ ¾	, 
4-17 

where Î¨ = �0 0 0 1 0�. 
 

4.3 Transformation of ac Equations to Transfer Functions  

The above analysis assumes that the Ćuk converter works as a bypass DC/DC 

module for two PV panels hence it is taken as the first stage power conversion 

device. This is used to connect to the load and/or to a DC-bus [44].  Its power 

rating is higher than the inner Ćuk converter, so it has a slower dynamic and its 

controller sampling period is generally longer. Since it is assumed to be in steady 

state, the terminal current ripple À£Á$ is supposed as near zero. Taking the duty ratio 

as the control variable and the voltage across PV1 as the controlled variable, the 

transfer function between them is: 

 

y#+(�) = �¾��1(�)
�¿(�) = Î1(�± − ¤∗�M)−1Ä			 = − Ï3�3 + Ï2�2 + Ï1� + Ï0Ð5�5 + Ð4�4 + Ð3�3 + Ð2�2 + Ð1� + Ð0 -�	

4-18 
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where 

ÐÑ = (��)/�A	
ÐÒ = ��A�/ � 1

�	�+ +
1

�	�/�	
Ð0 = �A� �2� + �

�	�+�	�/�	
Ð/ = �(�A + ��/ + �(1 − �)/) � 1

�	�+ +
1

�	�/�	
Ð+ = �A + (�/ + (1 − �)/) �� + �

�	�+�	�/�	

ÐÓ = (1 − �)/
�	�+ + �/

�	�/ 
and  

Ï0 = ��A�	
Ï/ = �A��	�/ + ��(1 − �)<

(1 − �)
�	�+ − �

�	�/>	

Ï+ = �A + �� + �(1 − �)�	�/ <(1 − �)�	�+ − �
�	�/>	

ÏÓ = (1 − �)/
�	�+ + �/

�	�/ 
 

With the voltage across PV2 as the controlled variable, the transfer function 

between this and the duty ratio �¿ is: 

y#/(�) = �¾��2(�)
�¿(�) = Î¨(�± − ¤∗ÅÆ)−1J = 			 Õ3�3 + Õ2�2 + Õ1� + Õ0Ð5�5 + Ð4�4 + Ð3�3 + Ð2�2 + Ð1� + Ð0 -� 

4-19 
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where 

Õ0 = ��A�	
Õ/ = �A��	�+ + ��� <

�
�	�/ −

(1 − �)
�	�+ >	

Õ+ = �A + �(1 − �) + ��
�	�+ <

�
�	�/ −

(1 − �)
�	�+ >	

ÕÓ = (1 − �)/
�	�+ + �/

�	�/ 

4.4 Verification of Analysis and Simulation Verification of the Two 

Transfer functions 

Note that the above two transfer functions are derived for the condition when S1 

and D2 are in operation. Both are nonlinear functions of duty ratio K, dependent on 

their terminal voltage VT, and they necessarily have the same denominator. The 

two numerators are also in the same form except that K in one is replaced by 1-K 

in the other. Under the condition that the operating points of two panels are the 

same, so that RPV1=RPV2, and K=0.5 the two transfer functions are identical. This is 

expected from the symmetry of the Ćuk converter circuit. In practice, this is the 

case when the irradiations on both PV panels are the same, and the Ćuk converter 

is switching but inactive. However when the light levels on the two panels are 

different the two transfer functions would not be the same since K is not 0.5; also, 

more importantly, the panel’s internal resistances RPV1 and RPV2 may be very 

different.  

 

To verify this point an example system of two PV panels with the bidirectional Ćuk 

converter configured as that described in Section 3.5 is simulated, and Rpv1 and 

Rpv2 values at operating points around their MPPs are calculated. These are listed 

in the table in Appendix B. The step response of a Simulink model of the integrated 

converter is compared with transfer function step responses 
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The transfer function simulation assumes that PV1 is at 100% solar irradiance and 

PV2 being partially shaded with 50%. The table shows that we have �	�/ > �	�+ at 

all operating points listed. Figure 4.2 shows the I-V characteristic curves of these 

two PV panels under the given uneven light levels. It would be expected that the 

slope resistance would be greater at low light levels, and that this would also give 

less damping of the responses. This is found to be correct. In particular, when 

K=0.475 near their MPP points, RPV1= 6.32 Ω while RPV2 = 12.25Ω. When K=0.55, 

the difference between them is even more significant with RPV1=4.69Ω and 

RPV2=90.79Ω. Consequently the two transfer functions present qualitatively 

different features. Observing y#+(�) in Equation 4-18, β0 and β3 are always 

positive, but β1 and β2 may change their polarity according to the RPV1 and RPV2 

values. For the stated operating condition �	�/ > �	�+ they are positive. Thus all β 

factors are positive, y#+(�) has, at least, no right-hand-size zeros. On the other 

hand, y#/(�) in Equation 4-19 shows a different feature to y#+(�) because the 

formulas for Õ+ and	Õ/, the two counterpart parameters to β1 and β2, show that 

these may become negative as the other terms in their expressions are 

comparatively small. Consequently, depending on the PV panel operating points, 

zeros for y#/(�) may move to the right-hand-side of the s-plane and hence may 

present a non-minimum phase characteristic. As the system has structural 

symmetry, the situation simply reverses with the opposite irradiation unbalance. 
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Figure 4.2 I-V characteristic from Pv1 at 100% and Pv2 at 50% 

 

To verify the validity of the transfer functions developed, step response and 

frequency response tests of the two transfer functions were performed using the 

PV modules given in the table in Appendix B with the Ćuk converter parameters 

chosen in Section 3.5. Figure 4.3 and Figure 4.4 show the incremental step 

responses of VPV1 and VPV2 respectively with the duty ratio K varying from 0.475 to 

0.575 in perturbation steps of k=0.025. As expected, the two sets of step 

responses are complementary and show similar features when K is around 0.5 

(from 0.475 to 0.5). However, the response curves for K = 0.525 to 0.575 are 

different in that VPV1 remains only slightly under-damped while VPV2 is becoming 

progressively more oscillatory. This is due to the changes of zeros in transfer 

functions Gk1 and Gk2 affected mainly by RPV2 and RPV1 as well as the value of K. 

As shown in Figure 4.2, RPV2 increases rapidly from 12.25Ω to 90.79Ω, while RPV1 

changes just from 6.32 Ω to 4.68 Ω. 
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Figure 4.3 Step Response of VPV1 with different K values with G1=100% 
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Figure 4.4 Step Response of VPV2 with different K values with G2=50% 
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Figure 4.5 Bode plot of Vpv1 for different K 

 

Figure 4.6 Bode plot of Vpv2 for different K 
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The frequency responses of these two transfer function are shown by using the 

Bode plots of Vpv1 and Vpv2 as shown in Figure 4.5 and Figure 4.6. For	y#+(�), in 

Figure 4.5 it shows that the transfer function has a fixed gain and minimum phase 

shift at low frequencies. The cut-off frequency is around ωo = 5 x103 .5rad/s and 

gain falls with a slope of around -30dB/decade and the phase shift towards -180°. 

For	y#/(�), however, the level of transient overshoot increases as K increases 

while the oscillation frequency remains almost unchanged. This is shown in the 

Bode plot of Figure 4.6; the overshoot at the cut–off frequency around ωo = 5 x 103 

rad/s can be as high as 50% when K=0.575, showing reduction of damping with 

increasing K. 

To confirm clearly the features shown in step-response and Bode plots, the pole-

zero plots of 	y#+(�) are presented in Figure 4.7. As can be seen a pair of complex 

conjugate poles P1, P2 and a pair of complex conjugate zeros Z1, Z2 are both 

moving right towards the jω-axis as K increases and they are almost overlapping 

each other throughout. Hence they are nearly cancelling each other and only make 

a small contribution to the response. However, this contribution is at high 

frequency, small amplitude and very weakly damped for K = 0.55. This can be 

seen as fine scale, small and persistent oscillations in the time responses. The 

remaining poles P3, P4 are only accompanied by the single zero Z3 so their 

contribution to the response retains small amplitude which is slightly damped and 

at a lower frequency. These poles and zeros give the dominant characteristics of 

Gk1 at K=0.45 and K=0.55. 

Similar plots of Gk2 pole-zero locations for K = 0.45 and 0.55 are shown in Figure 

4.8 respectively. Clearly when K is 0.45, all 5 poles (one real and two complex 

conjugate pairs) and three zeros are on the left-hand side of s-plane, so the 

transfer function is both stable and minimum phase. It is slightly under-damped 

behaviour is due to the two complex conjugate poles P1 and P2, which have higher 

ω values. The other two complex conjugate poles, P3 and P4, have a lower ω 

values and are close to the pair of complex conjugate zeros, Z1 and Z2, so they 

nearly cancel each other.  However for K=0.55, P3, P4 and Z1, Z2 are almost at the 

same location in s-plane, but P1 and P2 move very close to jω-axis; hence the 
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response is strong and heavily under-damped. Note pole P5 and zero Z3 in both 

cases are far to the left on the σ-axis, so its effect decays very fast. This behaviour 

is clearly shown in the step responses, in Figure 4.4. 

Transfer functions with the change of the duty ratio and PV panels internal 

impedances are presented as follows: 

• When K=0.450: 

y�1 = − 	2.804*+/�0 +	2.317*Ö�/ +	9.457*Ñ�	 + 	0.064359.531*/Ó�Ñ + 2.218*+Ñ�Ò + 1.738*++�0 + 6.938*Ö�/ + 10.92*Ñ	� + 0.06435 ∗ 32.8 

 

• When K=0.550: 

y�1 = − 	2.804*+/s0 +	2.477*,s/ +	8.868*Ñs	 + 	0.04704	9.531*/ÓsÑ +	2.134*+ÑsÒ +	6.492*+/s0 +	6.673*Ös/ +	8.901*Ñs	 + 	0.04704			 ∗ 32.8 
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Figure 4.7 Transfer function Gk1 and its pole-zero location plots for different K 
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• When K=0.450 

y�2 = 2.804*+/s0 +	4.227*Ös/ +	7.638*Ñs	 + 	0.064359.531*/ÓsÑ +	2.218*+ÑsÒ +	1.738*++s0 +	6.938*Ös/ + 	0.0001092	s + 	0.06435	 ∗ 32.8 

 

• When K=0.550 

y�2 = 2.804*+/�0 +	5.996*Ö�/ +	4.579*Ñ�	 + 	0.047049.531*/Ó�Ñ +	2.134*+Ñ�Ò +	6.492*+/�0 +	6.673*Ö�/ +	8.901*Ñ�	 + 	0.04704 ∗ 32.8 
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   Figure 4.8 Transfer function Gk2 and its pole-zero location plots for different K 
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Figure 4.9 shows the responses of terminal voltage VT, which is the sum of VPV1 

and VPV2. Its steady state value after each k¿ change is almost the same, though the 

transient response resembles that of VPV2 in response to each k¿ = 0.025 step 

change, and the advance towards a non-minimum phase characteristics are clearly 

shown. This is because the operating points for PV1 and PV2, in the narrow range 

of K=0.475 to 0.55, vary in opposite directions as shown in Figure 4.2. Hence, as K 

changes from 0.475 to 0.55, VPV1 decreases from 18 V down to 13.8 V, while VPV2 

increases from around 14.8 V to near 19 V. As expected their sum approximates to 

the steady state value. 

 

  

Figure 4.9 Step Response of VT with different K values 

 

Simulation study of this system using MATLAB/SIMULINK under the same step 

changes of k has been performed, and the responses for both VPv1 and VPv2 are 

shown in Figure 4.10. Here it can be seen the same complementary feature of Vpv1 

and VPV2, and that their sum VT is maintained almost constant after each k¿ 
perturbation. The oscillatory features of VPV2 and VPV1 at K=0.575 are also shown, 

though VPV2 is not as underdamped as that in Figure 4.4, VPV1 is more oscillatory 

than that shown in Figure 4.3. These differences are rooted in the simplification of 

transfer functions 	y#+ and		y#/. In particular the values of resistances RPV1 and 

RPV2 are only approximated at each operating point, rather than being the 

continuous variable	¢-/¢�. 
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Figure 4.10 MATLAB/SIMULINK simulation of PV-Ćuk Converter system step 
response of VPv1 and step response of VPv2 
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4.5 Summary & conclusions 

In this chapter presented the derivation of transfer functions of the solar modules 

PV1 and PV2 voltages to the change of duty ratio for a system consisting of a bi-

directional Ćuk converter with two PV panels in the case where there is a higher 

level of irradiation over PV1 in relation with PV2. Step and frequency response tests 

of the transfer functions were performed. The results show that the voltages across 

two panels are complementary under uneven irradiation conditions. Due to the 

nonlinear resistance of the PV panel, the dynamics of the PV panel receiving less 

light is under-damped and become more oscillatory as duty increases beyond 

0.550. They also show minimum phase characteristics as far as the operation point 

in the PV panels is near the MPP region. The transfer function step responses are 

compared with that produced by the MATLAB/SIMULINK simulation. The 

similarities and causes of discrepancies were stated. 
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Chapter 5  

Controlling an Integrated Ćuk Converter  

The Bidirectional Ćuk Converter is presented as a solution to the “partial shading 

issue” of the solar modules. This chapter investigates the control schemes for an 

integrated Ćuk-Converter and PV-panel module. This involves testing the 

configuration in open loop conditions and comparing the measured results with the 

chained PV modules with their respective bypass diodes. This will give the 

information on the ranges where the power reduction is lowest and highest. 

Furthermore, a PV model MPPT is developed and contrasted with the very well 

known Perturb & Observe algorithm [5] implemented by simulation in closed loop 

system. The software platform is MATLAB Simulink, using the “SimPowerSystem” 

Toolbox. Simulation of photovoltaic panels is done with an S-Function script 

developed in an M-File listed under Appendix C.  

 

5.1 Open Loop Test 

Before developing the closed-loop control scheme for the configuration of 

Integrated Ćuk-Converter and PV modules, open loop tests for this configuration, 

supplying firstly an R-load and then a DC Bus with an R-load are performed. These 

tests are also performed on the configuration of two serially connected solar 

modules with their respective bypass diodes.  Comparison of the test results are 

given. These tests are performed in MATLAB/Simulink environment. Photovoltaic 

panels used in the tests are rated with an Isc of 3 amperes, 20 volts in Voc and the 

maximum power value under standard test condition of 1000 W/m2, 25ºC is 50 

watts.  
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5.1.1 Resistive load 

5.1.1.1 Solar Modules with Bypass Diodes 

This open loop test of PV panels with bypass diodes involves wiring the two PV 

panels in parallel with their respective diodes and connecting a load at their 

terminals as shown in Figure 5.1. The load resistor is set to 20Ω holding the 

operation point in the P-V Curve at 100 watts in total when both PV panels are 

being irradiated at 100% of light levels. Moreover, changes of the irradiation of the 

PV2 are made by dimming the lights from 100% to 10% in constant step of 10%. 

 

 

Figure 5.1 PV Panels with bypass diodes and load 

 

The measurements listed in Table 5-1 show the light levels on PV1 and PV2, the 

voltage across their respective terminals and terminal current, voltage and power 

produced by the two panels. It can be seen that when both panels are under equal 

light levels the total output voltage is the sum of each of them equalling to 33.54V 

while the output current is 2.99A and total power 100.28 Watts. However, as light 

levels become different, i.e. that for PV1 is still 100% but that for PV2 is reduced 

from 100% down to 40%, the total output current and power drop steadily for each 

step reduction of light, from 2.99A down to 1.28A and 100.28W down to 44.07W. 

The voltage for each panel does not differ much; the maximum difference is only 
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about 2V; hence the terminal voltage is still maintained at 34.43V. This indicates 

that PV2 bypass diode is not turned on. Thus the power reduction is due to the 

increase of PV2 internal resistance caused by partial shading.  However when light 

level is down to G=30%, PV2 bypass diode switches on; hence the voltage across 

PV2 is measured as -0.7V. The terminal voltage drops down to 16.8V and the 

output power is also down to low 24W due to that PV2 is not generating power 

anymore. It is possible to adjust the load resistance in order to increase output 

power since the irradiation on PV1 is still at 100%. 

 

G1(%) G2(%) Vpv1(V) Vpv2(V) VT(V) IT(A) PT(W) 

100 100 17.32 16.21 33.54 2.99 100.28 

100 90 17.04 16.07 33.11 2.95 97.67 

100 80 16.94 15.68 32.62 2.79 91.01 

100 70 17.26 15.54 32.83 2.32 76.17 

100 60 17.80 15.84 33.66 1.96 65.97 

100 50 18.21 16.43 34.65 1.54 53.36 

100 40 18.23 16.20 34.43 1.28 44.07 

100 30 17.50 -0.70 16.81 1.43 24.04 

100 20 16.98 -0.77 16.22 1.22 19.79 

100 10 16.52 -0.81  15.73 1.03 16.20 

Table 5-1 Bypass Diode Power Chart 

 

5.1.1.2 Bidirectional Ćuk Converter + PV + Resistive Load 

In this test, a Bidirectional Ćuk Converter is wired to two PV panels connected in 

series and supplying also the same load resistor at the terminal as above. The 

circuit diagram is as shown in Figure 5.2. Similar to the previous test the light level 

on PV1 is held at 100% throughout while that on PV2 performs step down changes 

at 10% each time. 
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This pattern of light level mismatch where PV1 has a higher irradiation level than 

PV2 leads to switches S1 and D2 being active as discussed in Chapter 3. For open 

loop test, for each step reduction of light level the duty ratio for S1 is manually 

tuned in order to obtain the corresponding maximum power point.  

The measured results for this test are shown in Table 5-2. 

 

 

Figure 5.2 Bidirectional Ćuk Converter with resistive load  

 

When PV1 and PV2 are under the same irradiation levels, switches S1 and S2 are 

deactivated by grounding S1 and S2’s respective gate-drive terminals to prevent 

any spurious firing.  The total voltage is measured at 32.74V, and the output power 

is 98.55W. At the moment when G2 decreases, S1 starts working, thus dictating 

PV1 as the input of the converter and PV2 the output. With each step down of the 

irradiation level on PV2, a reduction of current and consequently the output power 

is recorded as shown in Table 5-2. The voltage changes for both panels are 

negligible, due to at each measurement the panels are operating at the voltage 

levels corresponding to their respective maximum power point. 
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G1(%) G2(%) Vpv1(V) Vpv2(V) VT(V) IT(A) PT(W) 

100 100 16.43 16.31 32.74 3.01 98.55 

100 90 15.50 16.23 31.73 2.85 90.43 

100 80 16.58 16.15 32.73 2.67 87.39 

100 70 16.43 16.11 32.54 2.54 82.65 

100 60 16.40 16.11 32.51 2.27 73.80 

100 50 16.38 16.11 32.49 2.05 66.60 

100 40 16.54 16.09 32.63 1.86 60.69 

100 30 16.64 15.92 32.56 1.53 49.82 

100 20 16.50 14.98 31.48 1.45 45.65 

100 10 15.91 15.58 31.49 1.2 37.79 

Table 5-2 PV Integrated Ćuk Converter Power Chart 

 

5.1.1.3 Comparison 

Table 5-3 contrasts the results showing the measured power values generated by 

the panel using bypass diodes in 5.1.1.1 and that using the integrated Ćuk 

converter in 5.1.1.2. under the same light levels. Their differences and percentage 

gains are also given in the last two columns. It can be seen that when there is no 

light level mismatch, both configurations produce similar levels of output power, 

due to that neither the bypass diode nor the converter is active. Moreover, when 

light mismatch occurs, the Ćuk converter starts to work, and there is a drop in the 

power produced due to the converter losses, but the bypass diode is in reverse 

bias and there are no losses of passive components. The significant power change 

occurs when the irradiation in the second solar module reaches 70%. As is shown 

in the Table, the integrated Ćuk converter and PV module configuration produces 

significantly more power than that with bypass diodes and this power gain 

increases at each step reduction of PV2 light level, reaching the maximum more 

than 50%. This trend of steady and significant gain of output power demonstrates 
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the benefit of using the integrated Ćuk converter and PV-panel module scheme 

under uneven light level operation conditions. 

 

Bypass 

Diode P(W) 

Integrated 

Converter P(W) 

Gain ∆P(W) Gain (%) 

100.28 98.55 -1.74 -1.71% 

97.67 90.43 -7.24 -6.71% 

91.01 87.39 -3.62 -3.48% 

76.17 82.65 6.49 7.04% 

65.97 73.80 7.82 8.75% 

53.36 66.60 13.24 16.53% 

44.07 60.69 16.62 22.89% 

24.04 49.82 25.78 53.42% 

19.79 45.65 25.86 59.65% 

16.20 37.79 21.59 50.35% 

Table 5-3 Comparison of power produced 

 

Figure 5.3 shows a plot of power differences under different light ratios G2/G1. It is 

clear from the plot the lower the light level mismatching, the lower the power gain 

for the integrated converter and PV module structure. In fact, it may cause negative 

power gain due to converter losses. However, as the mismatching is incremented, 

the power gain ∆P rises rapidly. Such improvement in the power generated by the 

PV panels can be appreciated when the difference of lighting is greater than 30% 

or when the lighting ratio G2/G1 is lower than 0.7. In addition, it is observed the 

amount of power gain in each light mismatching case is much higher than the 

power losses caused by the Ćuk converter when light differences are low. 
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Figure 5.3 Gain ∆P Power chart 

 

5.1.2 DC Bus connected to the system 

This test compares the power generated by the above two PV system 

configurations under the condition that they are now, respectively, supplying power 

to a constant DC bus through a terminal boost converter which is used as a power 

conditioner. The configuration of this test system is as shown in Figure 5.4. A 40Ω 

resistor load is connected on the DC-bus. The details of the terminal boost 

converter are given in Appendix D, and the DC-Bus voltage is maintained at 60 

volts by a stabilised DC power supply, hence the current demanded by the load is 

always 1.5A. The Boost converter should enable its output voltage reaching that of 

the level of DC Bus. In the event that the solar modules do not generate enough 

power hence the output current is low, the DC power supply will then feed to the 

load the remaining current needed.  
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Figure 5.4 Boost converter and DC Bus 

 

5.1.2.1 Solar modules with bypass diode and Boost converter 

The open loop system of two PV panels connecting to a DC bus with a load, shown 

in Figure 5.5, is firstly tested to search for the maximum power points at any given 

irradiation levels. The light levels and their variation steps are set the same as that 

described in Section 5.1.1.  For each test, the duty ratio for the Boost converter 

PWM control signal is carefully tuned manually until the maximum power extraction 

is obtained from both panels. 

 

 

Figure 5.5 Integrated bypass diode with DC Bus 

 

Table 5-4 presents a listing of measured results in the order as that given in Table 

5-1. The patterns of output voltage, current and power variations for each light 
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condition are similar to the previous case when the same PV system is supplying a 

resistive load alone as shown in Table 5-1. However it can be noted that when G2 

is higher than 30%, and the bypass diode D2 is still reverse biased, the voltages 

are similar, but power losses are higher compared to that in Table 5-1 hence the 

total output power is lower for each light level. This is due to the losses caused by 

the boost converter. 

The improvement in produced power is seen significant when irradiation level G2 

drops down to 30%, hence D2 conducts. Under this condition, the output power is 

33.15 W, about 10 W higher than the same configuration listed in Table 5-1. This 

increment occurs because the boost converter enables flexible adjustment of duty 

ratio so that PV1 operates at its maximum power point. This situation extends to 

when G2 falls further down to 10%. 

 

G1(%) G2(%) Vpv1(V) Vpv2(V) VT(V) IT(A) PT(W) 

100 100 17.89 17.30 35.19 2.66 93.61 

100 90 17.64 16.89 34.53 2.62 90.47 

100 80 17.68 15.42 33.10 2.42 80.10 

100 70 17.83 14.46 32.29 2.15 69.42 

100 60 18.02 14.08 32.10 1.74 55.85 

100 50 18.21 13.74 31.95 1.41 45.05 

100 40 18.31 13.54 31.85 1.24 39.49 

100 30 17.59 -0.93 16.66 1.99 33.15 

100 20 17.64 -1.01 16.65 1.92 31.81 

100 10 17.65 -1.08 16.57 1.87 30.99 

Table 5-4 Power chart of Integrated bypass diode with DC bus 
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5.1.2.2 1 Bidirectional Ćuk Converter + PV + Boost Converter + DC Bus 

The same open loop test was carried out for Integrated Bidirectional Ćuk Converter 

and  PV-panel Module as shown in Figure 5.6. Using the same light levels and 

switching scheme previously described in chapter 3, with the difference that now 

there are 2 switches needed to be tuned manually, the switches S1 from the Ćuk 

converter and ST at the terminal boost converter. The test starts with the two solar 

panels irradiated at 100%. At this stage, switch S1 is connected to ground since 

there is no light mismatching. Furthermore, the duty ratio applied to switch ST of the 

boost converter is tuned manually until the maximum power point is obtained. 

Subsequently, the light level G2 is dimmed by 10% per step and switch S1 starts to 

be tuned until the integrated converter delivers the maximum power. After this 

adjustment, the switch ST is also tuned to reach the overall maximum power point. 

This process is applied to all the lighting steps until G2 reaches 10%. 

 

 

Figure 5.6 Simulink setup of 2 PV Panels with Ćuk Converter with a Boost 

Converter at the output, a resistive load and DC Bus 

 

Table 5-5 lists the measurements readings taken from a test when light level over 

the solar module PV2 is reduced down from 100% to 10%, and corresponding 

manual adjustment of the two converter duty ratios is performed. At the first glance, 

the data shows the voltages of the two PV panels are held almost at constant 
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levels by the Ćuk converter, but the output current reduces steadily as G2 drops 

and so does the total generated power. 

 

G1(%) G2(%) Vpv1(V) Vpv2(V) VT(V) IT(A) PT(W) 

100 100 16.62 16.22 32.84 2.73 89.65 

100 90 16.56 16.20 32.76 2.67 87.47 

100 80 16.46 16.18 32.64 2.53 82.58 

100 70 16.44 16.02 32.46 2.29 74.33 

100 60 16.64 16.00 32.64 2.13 69.52 

100 50 16.30 15.94 32.24 1.92 61.90 

100 40 16.34 15.94 32.28 1.80 58.10 

100 30 16.43 15.96 32.39 1.48 47.94 

100 20 16.50 15.99 32.49 1.28 41.59 

100 10 16.57 15.83 32.40 1.10 35.64 

Table 5-5 Power chart of integrated converter with DC Bus 

 

5.1.2.3 Comparison  

The results of the two topologies under the same test conditions are contrasted as 

shown in Table 5-6. Clearly the integrated Ćuk bi-directional converter topology 

shows the same pattern of power gain as that presented in subsection 5.1.1.3 

when the irradiation level G2 is below 90%. However the slightly lower total power 

of this scheme occurs when G2 is 100% and 90%, which attributes to converter 

losses. 
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Bypass  

Diode P(W) 

Integrated 

Converter P(W) 

Gain ∆P(W) Gain (%) 

93.61 89.65 -3.96 -4.42 

90.47 87.47 -3.00 -3.43 

80.10 82.58 2.48 3.00 

69.42 74.33 4.91 6.61 

55.85 69.52 13.67 19.66 

45.05 61.90 16.85 27.22 

39.49 58.10 18.61 32.03 

33.15 47.94 14.79 30.85 

35.81 41.59 5.78 13.90 

30.99 35.64 4.65 13.05 

Table 5-6 Power Gain Chart bypass diode and integrated converter 

 

Figure 5.7 shows a plot of power gain variation of the Integrated Ćuk Converter 

structure over the conventional bypass diode topology. As can be seen clearly, 

negative power gain only happens when light mismatching is insignificant, shown 

in the right hand side of the plot when G2/G1 is nearly 1. As G2 reduces steadily, 

hence G2/G1 becomes smaller, power gain increases rapidly. The maximum 

power gain is 18.61 Watts, obtained when G2/G1 is about 0.45.  This shows that 

the integrated Ćuk converter structure can deliver power as much as 32% higher 

than that of a bypass diode configuration.  
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Figure 5.7 Power gain using the Integrated Converter 

 

 

The above presented open loop test results and comparisons lead to the 

conclusion that the integrated bi-directional Ćuk converter photovoltaic modules 

enable higher power generation hence giving higher efficiency than just the bypass 

diode-based solution. Moreover, an additional feature within the switching scheme 

of the Bidirectional Ćuk converter is present by analyzing the open loop system 

measurements. When the irradiation relation y//y+ (or	y+/y/ , depending on which 

one is higher) is greater than 0.7, light mismatching is insignificant, the PWM 

signals for S1 and S2 must be set to zero. Consequently diodes D1 and D2 will 

function temporally as bypass diodes within the Bidirectional Ćuk Converter. 

However, when irradiation ratio is lower than 0.7, the Ćuk Converter should be 

enabled working, hence can be controlled to achieve the maximum power 

generation. 

 

5.1.3 A comparison of bypass diode and integrated converter with 

three solar modules  

The same test as above is now performed on PV system having three solar 

modules connected in series. Figure 5.8 presents the Simulink circuit model used 

with bypass diodes connected in parallel with each panel wired in series. 
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Figure 5.8 Three Panels with Bypass Diode 

 

Now the system operates under three different levels of irradiation labelled G1, G2 

and G3, corresponding to the light irradiated on the PV panels PV1, PV2 and PV3 

respectively, emulating different shading levels over the panels.  

The same measurements as that in the previous tests are taken and listed in Table 

5-7. The PV system with bypass diodes shows the same behaviours as that of the 

previous tests under similar operating conditions. As shown in Table 5-7 when a 

PV panel’s light level is higher than 40% (rows 1, 4, 5), its corresponding bypass 

diode is reverse biased and the output voltage is lower than the ones with higher 

light levels. However if the irradiation level odd one panel is about 40% or lower 

(rows 2 and 3) it is corresponding diode may conduct causing it to stop generating 

any power, hence a significant output power reduction occurs. 
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G1(%) G2(%) G3(%) Vpv1(V) Vpv2(V) Vpv3(V) VT(V) IT(A) PT(W) 

100 80 100 17.60 14.94 17.60 50.14 2.78 139.39 

100 80 40 17.75 15.61 -0.80 32.56 2.43 79.12 

100 20 50 18.89 -0.80 14.83 32.92 1.55 51.03 

60 40 100 17.49 13.62 19.12 50.23 1.27 63.79 

70 100 50 17.52 18.85 14.03 50.40 1.54 77.62 

Table 5-7 Three Panel with Bypass Diode 

 

 

When using integrated converters, the topology expands by incorporating an 

additional bidirectional Ćuk Converter as shown in Figure 5.9, hence new rules of 

switching mode scheme for this topology was presented in Table 3-2. The 

proportion of light irradiated upon each PV panel is organized such in a way to 

include all different levels of shading. 

 

 

Figure 5.9 Three PV panels with two Integrated Bidirectional Ćuk Converters 

 

The test was carried out by manually tuning the PWM signals for each of the two 

inner converters and one outer boost converter. Using the same protocol with the 

“two PV panel case”, each of the three solar panels achieves an individual 
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maximum power point which is listed under Table 5-8. It is of importance to note 

from the results that the terminal voltage is maintained relatively constant in all 

different irradiation levels whereas the current is independent of each panel; this is 

due to the small region where the maximum power point is found, in this particular 

case from 13 to 17 volts under an irradiation of 20% to 100% (see Figure 2.10). 

 

G1(%) G2(%) G3(%) Vpv1(V) Vpv2(V) Vpv3(V) VT(V) IT(A) PT(W) 

100 80 100 16.52 15.38 16.52 48.42 2.72 131.70 

100 80 40 17.07 15.94 14.13 47.14 2.14 100.88 

100 20 50 17.20 13.90 14.40 45.50 1.67 75.99 

60 40 100 14.70 14.92 17.14 46.76 1.94 90.71 

70 100 50 15.49 16.82 14.94 47.25 2.16 102.06 

Table 5-8 Three PV panels with Bidirectional Ćuk Converter 

 

Contrasting the measured values in tables Table 5-7 and Table 5-8, the power 

values and differences in both systems under the five different light level 

combinations are listed in Table 5-9. It can be seen that, as expected, the 

integrated converter structure gives negative power gains due to converter losses 

when the differences on irradiance levels on each panel are insignificantly small. 

As the shadowing level increases, the configuration with bypass diodes generates 

much lower power comparing to its counterpart. The maximum power gain for the 

latter can be seen as high as nearly 49%. 
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Bypass  

Diode P(W) 

2 Integrated 

Converter P(W) 

Gain ∆P(W) Gain (%) 

139.39 131.70 -7.69 -5.51% 

79.12 100.88 21.76 27.50% 

51.03 75.99 24.96 48.91% 

63.79 90.71 26.92 42.20% 

77.62 102.06 24.44 31.49% 

Table 5-9 Contrast of two methods with three PV Panels 

 

Reaching the same conclusion as that from the previous test comparisons, it is 

clear that an integrated bi-directional Ćuk converter with PV-panel module provides 

outstanding power gain over the common “bypass diode” solution. However, the 

circuit structure, the switching and control scheme are complicated, and the level of 

complexity increases with the numbers of PV modules and converters. 

 

5.2 Closed loop Control of Integrated Converter PV modules  

Having shown the advantages offered by the integrated Ćuk converter with PV 

module system in open loop condition, closed loop control schemes should be  

developed to enable such a system achieving the maximum power generation 

under all shading conditions automatically and rapidly. The development has been 

carried out on the PV system shown in Figure 5.6 where two PV panels are 

connected in series, and one bidirectional Ćuk converter is wired between them. A 

terminal boost converter is also used as the power conditioner interfacing the PV 

system with the DC bus supplying a resistive load. 

The algorithms considered are the well-known Perturb & Observe method [93] and 

the On-line Model based Maximum Power Point Tracker proposed in the next 

subsection. These two methods all require on-line measurements of Voltage, 

Current, Irradiation and Temperature of all solar panels. Each of the measured 
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signals needs to be processed in order to determine the correct control actions and 

calculate duty ratio values for the converters. Since this system consists of two 

converters, the inner Ćuk converter and the outer boost converter, the sampling 

rate in each of the converters is different due to their respective time response. The 

sampling rate for those signals responsible for determining the duty ratio of the 

inner converter must be faster than those for the outer converter. Thus in this 

system for every ten operations of data sampling and control signal calculation for 

Ćuk converter the same operation for the boost converter only happens once.  This 

allows the Ćuk Converter locating the individual PV module’s maximum power 

point before adjusting the Boost converter duty ratio for controlling the total system. 

 

• Maximum power point tracking algorithm  

Over the years, many authors have proposed different maximum power point 

trackers in order to harness the maximum power from the PV Panels. The authors 

in  [5] have done an exhaustive survey on strategies available, going from 

elemental algorithms such as Perturb and Observe [93] to complex algorithms like 

Neural Networks and Fuzzy Logic [92]. Salas  [94] classified in three categories the 

MPPT algorithms, which are: 

a) Indirect control for MPPT 

b) Direct control for MPPT 

c) Artificial intelligence algorithms 

Indirect control methods bases in parameters already collected before the 

evaluation, having a lookup table and configure the system to substitute these 

values on the algorithm. The major disadvantage of this method is the amount of 

data and the memory that takes in order to compute the MPP. Parallel to this 

method is the direct control, which bases the search of the MPP depending on 

online measurements such as voltage, current, temperature, irradiance. Artificial 

Intelligence algorithms are vastly used in MPPT research, in particular neural 

network algorithms are used to calculate the optimal operating point for the system. 
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Regardless of this, the high complexity and tuning time of the parameters make the 

method less accessible for practical uses. 

Section 2.3.2 explains when the “partial shading” occurs; the P-V Curve could be 

divided into “n” number of local maximum power points, ”n” being the number of PV 

panels with an irradiance difference connected with bypass diodes. The aim of 

having an MPPT besides to find the operative point where the power harnessed is 

the optimal is also to avoid falling in local MPP and find the Global MPP as it 

shows Figure 2.19. 

Curve fitting method is firstly introduced by Veerachary [76] to create a PV model 

with specs measured from the solar modules. However, the temperature of the 

material is not considered. Since the temperature factor is such an important 

atmospheric component for calculate the I-V curve, the terms ∆� and Ï are 

introduced into the equation, where Ï is the temperature coefficient in which the 

Vmpp shifts per /℃ and ∆� is the difference between the sampled temperature 

value and the base temperature value for the curve fit in Celsius.  

From the I-V curves under different irradiance, the Vmpp values of the same 

temperature are obtained from PV panels in the laboratory mentioned in Chapter 2, 

and plotted against Irradiance and then a logarithmic linearization of the result is 

given by a first degree polynomial in equation 5-1. Final Vmpp equation with 

temperature values is presented in equation 5-2. 

-MÚÚ = 0.7658 ∗ ln(y) + 11.318 − Ï ∗ (∆�) 
5-1 
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Figure 5.10 First order linearization 

 

-MÚÚ = 0.7658 ∗ ln(y) + 11.318 − 0.06 ∗ (����� − 25) 
5-2 

In order to verify the MPPT online model a Simulink block under MATLAB 

environment.  The representation of the equation is given in Figure 5.11a. Since 

the model is directly dependant from Irradiation and Temperature, this will be the 

two inputs of the system having as output the value of voltage where the maximum 

power point is located. The value given by the model represents only one PV 

panel. Under Simulink environment, this model can be manipulated to reproduce 

the value of “n” number of panels interconnected in series. 

Simulation is carried out under different temperature levels and light irradiation. 

Results in Figure 5.11b represent the value of Vmpp that can be compared with I-V 

curves maximum power point presented in Figure 2.18. The effects of increased 

temperature over the solar cells were the voltage decrease is present in the 

results. This particular model is only valid for the experimental panel and under 

those light conditions previously mentioned, but the model can be tuned for any PV 

panel with the same process. 
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a)      

b)  

Figure 5.11 Vmpp model simulation 

 

5.2.1 A comparison of two MPPT implemented in closed loop  

5.2.1.1 Perturb and Observe in closed loop system 

This algorithm is simple. At each sample instant, it measures the PV system 

generated power at its terminals and compares the measured value with the 
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previous one. If it is smaller, the algorithm will either increase or decrease the duty 

ratio by a constant amount set by the user. On the other hand, if the current power 

is greater than the last sampled value, the algorithm carries on tuning the duty ratio 

in the same way as the last. This process is continued until the measured power is 

less than the last one. Details of the P&O algorithm and simulation program used 

are listed in Appendix E.  

When using the P&O algorithm to control the PV system in Figure 5.6, the light 

levels are set to let irradiation over module PV2 being 50% while that over module 

PV1 at 100%. The results obtained are shown in Figure 5.12 where five plots are 

given; the terminal voltage, current and power together with the duty ratios for inner 

and outer converters. As can be seen from these plots, at each sample instant, the 

duty ratio for the outer boost converter is changed by a constant ±0.001, causing 

the corresponding variations of voltage, current and power.  The continuous tuning 

of duty ratio according to terminal power value has led to the measured parameters 

of this PV system matching to the ones under the same light pattern of G1 =100% 

and G2=50% listed in Table 5-5 at time t=0.25sec.  

Adjustment of duty ratio value for inner converter switch S1 is also shown in Figure 

5.12. Clearly for each variation of switch ST duty ratio the P&O algorithm tunes that 

for S1 many times. Since ST has a great impact in searching for global optimal 

power point. Without this delay, the duty ratio in the inner and outer converter 

would be under a false MPP value. Therefore, the P&O will never reach the 

individual MPP in each of the modules and the global maximum power point. 
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Figure 5.12 Response of P&O during an irradiation mismatch 

 

Using the P&O algorithm, the integrated converter is also able to handle sudden 

changes of irradiance over the solar modules. The follow test is done to show this 

effect. By setting the light levels for both PV panels at 100,% initially and letting the 

P&O finding the MPP by controlling the Boost converter, there is a change made to 
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the light level over PV2 going from 100% to 70% at the time of 0.6 sec. Figure 5.12 

shows the responses against time of the individual voltage in PV1 and PV2, the 

terminal voltage VT, terminal current IT, the terminal power PT and the switch ST 

change controlled by the P&O. 

It can be seen at the start of this test the duty ratio value for ST is set to 0.5, this 

setting enables the P&O searching for the MPP faster. The simulation curves show 

noisy responses initially while the duty ratio is changed by adding a constant 0.001 

at each sample instant. When the duty ratio reaches its peak value where the 

converter is not delivering more energy, the algorithm starts subtracting the 

constant until the power settles around 88 watts. At time t=0.3 seconds, the PV 

panels are delivering the maximum power corresponding to when both panels are 

fully irradiated at G1=G2=100%. At t=0.6 seconds there is a step down in 

irradiation G2. Correspondingly the ongoing algorithm is adjusting the duty ratio 

searching for the new MPP. Though the measured values show noisy responses 

(see the graphs in Figure 5.13) in this process, the system approaches a steady 

state at around the time t=1.1 seconds. Power harnessed by the P&O at this time 

is similar to the ones obtained by the open loop test given in Table 5-5. 
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Figure 5.13 Simulation with automatic response 



-  107  - 
 

5.2.1.2 Real-Time Model for MPPT 

A new algorithm designed by analysis is presented in order to improve the power 

generated from the PV panels in a Bidirectional Ćuk Converter connected as a 

bypass DC/DC module integrated. Although, this algorithm is not part of the MPPT 

algorithms, it is complementary switch scheme to reach a global maximum power 

point. Firstly, the irradiation on each panel is measured and compared as 

described in Figure 5.14. Secondly, is compared with the factor 

Gshaded/Gunshaded<0.7 that comes from the irradiation relation mentioned previously. 

Thirdly, the decision is made of which switch will be working depending upon the 

irradiation difference. The algorithm is used to control the switches S1 and S2. 

 

Figure 5.14 Improved switch scheme flowchart and Simulink Models 
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The maximum power point tracker based in online model as mentioned previously 

relies on measurements of irradiation and temperature over the PV module.  Figure 

5.15 shows how those signals are fed into the model equations, and a predicted 

voltage is obtained as the output labelled Vmppx, where x is the PV panel number. 

In this case, the closed loop control scheme is constructed by the model generated 

reference signal Vmpp of each solar module and the measured voltage values 

from the module output. Signals are then subtracted to create a measured error 

which are connected by using a P+I controller tuned by Ziegler-Nichols method 

[95], [96]. The output of the controller is the duty ratio for S1 or S2 and ST. 

 

 

Figure 5.15 Block diagram of the integrated converter in close loop 

 

Converter Proportional 

Gain (Kp) 

Integral 

Gain (Ki) 

Inner 0.001 4.6 

Outer 0.0015 2.952 

Table 5-10 P+I controller values 

 

In order to test the dynamic responses of the integrated converter and PV system 

and the switch scheme, different levels of irradiation are introduced against time. 

The changes of irradiation in the solar modules over PV1 and PV2 activates S1 or 

S2 depending on which irradiation, G1 or G2, is higher whereas ST is active all 



-  109  - 
 

times. Graphic responses of the experiment are provided in Figure 5.16. Measured 

voltage is represented by a continuous line whereas predicted voltage by the 

MPPT is drawn by a dashed line. 

 

Simulation starts with G1=G2=100% since there is no mismatching in irradiation, 

the only active switch at this time is ST. Terminal voltage holds around 33.6 volts 

and each PV panel at 16.8 volts, which is the values corresponding to the 

individual maximum power point voltage. From the time of 0.04 to 0.06 seconds 

there is a change in G1 that goes from 100% to 50% shaped as a ramp, emulating 

the change of irradiation over time on the module. At point “a)” in the middle of this 

stage, the difference of irradiation of G1 relative with G2 triggers the switch scheme 

of the Ćuk converter, activating the switch and diode S2-D1, showing a sudden 

improvement in the power harnessed at the terminal. When time reaches 0.06 

seconds, the irradiation values hold in G1=50% and G2=100% for the next 0.02 

seconds. The voltage drop in Vmpp1 is followed by the measured voltage in PV1 

thanks to the change of the duty ratio in the Ćuk converter. Voltage drop also 

affects the VmppT since the voltage reference is the sum of Vmpp1 and Vmpp2. 

Control at the terminal converter helps to follow this reference voltage. A shadow is 

then emulated over PV2 when irradiation goes from 100% to 50% matching G1 at 

the time of 0.1 seconds. While this transition, irradiation relation G1/G2 surpasses 

the 0.7 value set in the switch scheme and the Ćuk converter switch S2 is 

deactivated, which for the terminal power represents a small decay of the power 

delivered by the system. Irradiation from 0.1 to 0.12 seconds is kept as constant 

with G1=G2=50%. Again only switch ST is the one activated. After 0.12 seconds, the 

irradiation in G1 goes from 50% up to 100% for the rest of the experiment. At this 

time, the lower irradiation is held by G2 giving now the relation of G2/G1. Now, when 

this light relation is lower than 0.7, (which occurs in point “b)”, between 0.12 and 

0.14 seconds) the pair of elements S1-D2 in the Ćuk converter are activated, 

improving the power delivered at the terminal of the bi-directional converter by 

following the individual MPP on each PV panel. Once reach the time of 0.16 

seconds, G2 starts to rise from 50% until 100%, eliminating the mismatch and 
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deactivating the elements S1-D2. From the time 0.18 seconds onwards, only the 

boost converter is active, and the global MPP is achieved. 

 

Figure 5.16 Results Ćuk Converter with online model. 
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5.3 Summary 

The chapter presents comparisons of different cases where a bypass diode and 

the bidirectional Ćuk converter integrated with photovoltaic panels interconnecting 

with a load. A thorough analysis of open loop tests is then carried out to study the 

effect of different levels of irradiation over the PV panels and the power harness 

from them in each case. In each comparison, the integration of the Bidirectional 

Ćuk Converter has a clear advantage over the bypass diode when there is an 

irradiance difference between the solar modules. From the analysis, a new switch 

scheme is formulated where the converter is deactivated unless there is sufficient 

light difference over the panels. 

A maximum power point tracker model was presented by Veerachary [76] in order 

to find the voltage region where the MPP is located. The temperature “variable” is 

then introduced to the PV model to have a more accurate value of the Vmpp. The 

Vmpp response is validated under atmospheric conditions present in the laboratory 

by Simulink model. The online model computer processing is as fast as the sample 

rate of the application, a clear advantage over other PV models where need 

learning process.  

Closed loop system is achieved by sensing each voltage, current, irradiance and 

temperature response from the system. Two maximum power point trackers 

algorithms are introduced in the simulations. The “Perturb & Observe” response 

over a change of irradiance is then compared with the response of the online 

model MPPT based on temperature and irradiance. The improved switch scheme 

is then implemented depending on the irradiation of each panel.  

Both algorithms compared in the chapter are able to find the global maximum 

power point. In the case where one PV is irradiated at 70% while the other PV is at 

100%, both algorithms have a steady state generation around 80 watts, which 

matches the open loop results and represents a degradation of the system by 15% 

due to the shadow compared with the bypass diode case in open loop with a 

degradation of 22%.  
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The difference of the techniques lays in the complexity and the number of sensors 

the computation depends on. Since both techniques are online based, the constant 

measurement of the output is needed. 
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Chapter 6  

Experimental Photovoltaic System Integrated with the 

Bidirectional Ćuk Converter 

 

The direct impact of atmospheric conditions on the photovoltaic panels makes the 

system susceptible to sudden changes. In order to control and manage the power 

harvested from the renewable source, various electronic instrumentation are 

provided. Sensors such as voltage, current, light irradiance and temperature are 

required to feed data back to the microprocessor and activate the algorithm to 

reach the maximum power point of the system. 

The present chapter covers the instrumentation and system design of an integrated 

photovoltaic converter forming a closed loop system which will maintain the 

maximum power output under varying light and temperature conditions. The 

system block diagram is presented in Figure 6.1. 
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Figure 6.1 Photovoltaic converter with module integrated converter and sensors 

 

6.1 Bidirectional Ćuk Converter 

Here a bidirectional Ćuk converter is designed for research purposes only, i.e it is a 

demonstrator and not rated for commercial operation. In Chapters 3 and 4 the Ćuk 

converter as a solar converter was analysed theoretically. Using a set component 

values calculated in subchapter 3.5 is presented in Table 6-1, these corresponding 

to inductance and capacitances in the converter.  

Component Value 

Inductance L1 and L2 3.03M� 

Capacitor C1 and C2 10.3Ý� 

Capacitor Cn 82.5Ý� 

Table 6-1 Ćuk converter components values 
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As a precaution, a safety margin was calculated, and an inductor of 5Amp current 

rating was selected; however the largest commercially available inductor of this 

rating is only 1mH. Due to the high inductance needed which was not currently 

available, a compromise within the design had to be made. Dealing with the 

problem will lead to three possible solutions:  

1) Increasing the switching frequency,  

2) Connecting inductors in series,  

3) The ripple is compromised. 

Due to the relationship of the frequency with the inductor size, an increase of the 

switching frequency will reduce significantly the inductance value. This solution will 

be associated with higher switching loss. The second solution will consider 

connecting in series three inductors, considerably increasing the price and size of 

the converter. A viable solution is found in a compromise between the second and 

third solutions, whereby connecting in series two 1mH inductors compromises the 

ripple, increasing it to 11% at 250mA. 

Since the Bidirectional Ćuk converter is a symmetrical topology, the inductors will 

be the same in both sides of the converter with a total of four inductors of 5A/1mH 

from the maker EPCOS. 

Capacitors C1 and C2 are chosen by availability within a tolerable range. The next 

capacitance value available corresponds to 22µF, whereas for the capacitor Cn a 

capacitor of 82µF will be enough for research purposes. Since each photovoltaic 

panel, Voc can produce 20 volts, and there will be two connected in series, each 

capacitor should be able to handle 40 volts. The next available rated value is 160 

volts which will fit with the circuit characteristics. Higher capacitance values could 

have been used in the converter in order to mitigate the ripple, but a delay in the 

step response of the system could be produced. Due to the nature of the system, 

time is not a critical factor in the process and should not have a great impact within 

the overall performance. 
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Since the PV module maximum current is 2.2A and maximum voltage 20 V, the 

switching and diode components need to have high current and voltage handling 

capabilities at the frequency of 20 kHz. At a duty cycle of 50% the on/off time is 

25µSec, though, the converter will be designed to work within the range of 40% to 

60% duty ratio.  

The switching components S1 and S2 are realised by the MOSFET “STB24NF10” 

[97]. The minimum duty cycle expected is 40% which corresponds to 20µs. the 

“STB24NF10” is designed to handle currents up to 26A and a drain voltage source 

of 100V with the gate in the “off” state. According to the datasheet, the “on delay” is 

60ns, and the rise time 15ns, these being in a switching circuit of 50V/12Amp; 

since the converter will be working at lower current and voltage levels, the speed is 

more than enough. The diodes D1 and D2 are chosen as “DPG10I300PA” [98] from 

manufacturer XYS Semiconductors. This diode was selected for the high current 

capability of up to 20A and the fast recovery time.  

The final product is presented in Figure 6.2, and the PCB design can be consulted 

in Appendix F. 

 

 

Figure 6.2 Bidirectional Ćuk Converter 
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6.1.1 Efficiency  

The converter integrity needed to be tested, so a thorough efficiency test was 

executed in order to evaluate the performance of the system. The converter is 

connected at the input to a variable voltage source and at the output to a constant 

load of 22 Ω. A PWM signal is then connected to the MOSFET “S1” whereas the 

switch “S2” is grounded. 

When active, at a duty ratio of 50% or less, the converter will perform as a step 

down whereas above 50% it will act as a step up converter. The test was 

conducted varying the voltage from 4 volts to 20 volts with a duty ratio ranging from 

20% up to 70%.  

Figure 6.3 presents measured data from the test; these can be found in Appendix 

G. The graphic shows that when the voltage and duty ratio are near the design 

values, the converter presents a higher efficiency, and since the operational duty 

ratio will vary from 40% to 60% we can conclude that the Bidirectional Ćuk 

Converter is efficient enough for the purposes of this investigation. 

 

 

Figure 6.3 Efficiency graph of the Ćuk Converter 
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6.2 Photovoltaic System Interface 

A description is now given of the electronic instruments and software interface 

which were designed to provide information to the microprocessor and hence allow 

it to maintain maximum power point operation. The converter is controlled by a 

PWM signal produced by the microprocessor. 

 

6.2.1 Hardware 

6.2.1.1 Light Irradiance and Temperature Sensor 

Commonly, an ambient light sensor made of semiconductor material will have an  

I-V curve with exponential shape. Since light irradiance is assumed to be linear at 

the PV Setup discussed in subchapter 2.6, a linear output is more convenient. The 

light sensor chosen is the “Ambient Light Sensor SFH 5711” [99] by OSRAM. Due 

to the particular built-in characteristic of the logarithmic output current 

(Linearization of the exponential output from the semiconductor material) and the 

SMD encapsulation, this is a practical choice for experimentation. Size is an 

important factor due to the obstruction that a sensor can generate in the solar 

module. A load resistor of 43kΩ across the sensor output is installed to scale the 

current signal into 0v - 2v output that will represent 0% to 100% sun irradiance. 

 

The temperature sensor uses the component “TC1047” from the manufacturer 

Microchip [100]. The TC1047 is a linear voltage output sensor whose output signal 

is proportional to the temperature in the chip. Temperature measured is 

represented by a voltage signal with a scale of 10mV/ºC, starting from 500mV as 

0ºC. PCB connections are represented in Appendix H and Figure 6.4 shows the 

miniature sensors. 
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Figure 6.4 Irradiance and Temperature Sensor 

 

At the installation, three sensors of temperature and irradiance are distributed over 

the solar module (Figure 6.5), and their measurements are averaged. 

 

 

Figure 6.5 Solar Module with Temperature and Irradiance Sensors 

 



-  120  - 
 

6.2.1.2 Voltage & Current Transducers 

a) Voltage Transducer 

The voltage signal is produced by the transducer LV 25-P (see Figure 6.6) from the 

manufacturer LEM [101]. For voltage measurements, a proportional current must 

flow in the resistor Rin which is selected by the equation 6-1, considering that 

-�� = 20����� for each panel and nominal current for the primary side of the 

transducer is	��AMD  = 10M1.  

��A = -�A��A =
20�����
10M1 = 2�Ω 

6-1 

The first immediate resistor value available is	2.2�Ω, which will make the new ��A = 9.16M1. The ��� depends on the output current �� which is calculated by 

�� = ��A × �c = 9.16M1	 × 2.5 = 23M1			, 
where �c is the conversion ratio from the datasheet specifications, giving an output 

voltage ratio of 10:1, hence  

��� = -��� = 2�����23M1 = 87Ω 

 

Figure 6.6 Voltage transducer block diagram 

 

The electronic circuit is mounted inside an insulated box (Figure 6.7) to prevent 

damage to the equipment. Electrical plugs are installed to have a quick access to 
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the transducer terminals. PCB schematics for the voltage transducer are in 

Appendix I. 

 

 

Figure 6.7 Voltage transducer circuit mounted 

 

b) Current Transducer 

The current transducer chosen is LA 25-NP [102] from the manufacturer LEM. Due 

to the advantages of power isolation from the control signal by using the Hall Effect 

[103], current overload capability and simplicity, the current transducer is good 

enough for research purposes. The Transducer has many configurations to work at  

different current levels, and in this particular case uses a turns ratio of 5/1000. The 

scale needed by the transducer is 0.5V per 1 amp from the PV modules. 

The output resistor ��� connected in series with the output signal (see Figure 6.8) 

sets the gain of the nominal output current. To calculate the output resistor, the 

datasheet gives: 

Þ��Ú��	-���Dß� = ��� ∗ ��#	��át�	
0.5� = ��� ∗ 25M15 = 100Ω 
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Figure 6.8 Connection diagram of current transducer LA 25-NP  

 

The PCB board design is shown in Appendix J. The final prototype of the current 

transducer presented in Figure 6.9 were then housed in an aluminium box and 

connected to electrical receptacles for easy access by the user.  

 

 

Figure 6.9 Current transducers boxed 

 

Each transducer control box output signal in Figure 6.10 is wired directly to a DB9 

receptacle for fast interfacing with the microprocessor. 
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Figure 6.10 Transducers control box 

 

6.2.1.3 Microcontroller eZdspTM F28335 

The eZdspTM F28335 is a developer kit manufactured by Spectrum Digital [104] 

which allows the user to develop and execute applications in real time. This board 

is supplied with the Digital Signal Controller TMS320F28335 from Texas 

Instruments. Elements included within the card are: 

• TMS320F28335 Digital Signal Controller 

• 32-bit floating point unit 

• 512K bytes on-chip Flash memory 

• 256K bytes off-chip SRAM memory 

• 12 bit ADC with 16 channels 

• 30 MHz input clock 

• Multiple Expansion Connectors such as analogue and I/O 

• Up to 18 PWM Outputs and 6 high resolution PWM output 
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Code Composer Studio v3.3 programming software is also supplied. The 

hardware/software allows the ability to couple with MATLAB Simulink, Real-Time 

Workshop and an embedded target for TI C2000 DSP to undertake rapid 

prototyping [105], allowing not only fast connection, but also the use of the same 

Simulink model of the complex algorithms and compiling them into the DSP.  

The number of inputs and outputs of the photovoltaic system is the main reason for 

choosing this microcontroller. The system I/O can be listed by the inputs signals as 

the transducers and output signals as the PWM’s which will control the converters. 

The list of I/O hence follows: 

 

1) Input signal of Voltage measurement from PV1, PV2, PV3 and Vt 

2) Input signal of Current measurement from PV1, PV2, PV3 and It 

3) Input signal of Temperature sensor from T1, T2, T3 

4) Input signal of Light irradiance sensor from G1, G2, G3 

5) Output signal of PWM for S1-1,S2-1,S1-2,S2-2 and ST 

 

Fast interconnection with the transducers control box and the microcontroller is 

made by DB9 receptacles. Due to the high cost and sensitivity of the DSP card, a 

box made from acrylic was fabricated to contain and isolate it (see Figure 6.11). 

The PWM output signal is also installed with a DB9 receptacle. 
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Figure 6.11 eZdspTM F28335 board with interface box 

 

The DSP is integrated with an analogue to digital converter with a resolution of 12 

bits which translates to 4095 values within the range of 0-3volts as the input control 

signal, each of these steps representing ≈ 0.733 mV. 16 channels are available in 

the microprocessor, and up to 14 are used in this investigation.  

 

The Bidirectional Ćuk Converter is controlled by the PWM signal calculated by the 

MPPT algorithm mentioned previously in subchapter 5.2. The Integrated PV 

system is expandable to interact with up to three PV panels, two Bidirectional Ćuk 

Converters and a Terminal Boost converter as in Figure 3.6 and Figure 3.9.  
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6.2.1.4 PWM Driver 

In order to control the output voltage from the PV Panels, the MOSFETs installed 

in the converter needs to be driven by the PWM signal evaluated by the 

microcontroller. According to its specifications, the DSP F28335 has up to 18 PWM 

channels with amplitude of 3.3 volts whereas the MOSFET gate requires a 

minimum signal of 10 volts. In order to step-up the PWM control signal from the 

DSP and isolate it from the power electronics, a PWM driver is designed and is 

presented in Figure 6.12. 

 

 

Figure 6.12 PWM driver Block diagram 

 

The approach used in this project is to isolate the signals with Optocouplers 

HCNW-4503 by AVAGO Technologies. Moreover, they are connected to an 

independent DC source of 15 volts in order to increase the amplitude of the PWM 

output signal. The DC source uses the NKE0515SC manufactured by Murata. 

Furthermore, the signal is fed to a PWM driver chip TD351IN from 

STMicroelectronics, and from there to the MOSFET gate. PCB board schematics 

with five PWM drivers are presented in Appendix K. Resistance and capacitance 

values have been selected using the datasheet. The final prototype (see Figure 

6.13) must be connected to the DSP interface box and the converters. 
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Figure 6.13 PWM Driver  

 

6.2.2 Software 

The evaluation board eZdspTM F28335 is supplied with a copy of the Code 

Composer Studio v3.3 and a list of libraries which can be found in the Texas 

Instruments website [104]. The board interfaces with the user by C++ language, 

using this to activate different features in the DSP. A thorough understanding of 

C++ programming is needed to use the board. MATLAB software provides the 

opportunity to use the Simulink friendly interface using a high-level programming 

language and allowing rapid prototyping to be achieved as shown in  [105], [106]. 

The MATLAB version used in this report is 2009b combined with compiler 

Microsoft Visual C++ 2008 [107] and Simulink target support toolbox. 

 

6.2.2.1 Matlab Simulink Embedded Encoder and Code Composer Studio 

The Simulink environment offers support for the Texas Instruments C2000 

microcontroller family which includes the DSP F28335. With the “target support 

toolbox” and “embedded encoder”, Simulink can activate the Analogue to Digital 

Converter and the PWM integrated in the DSP. The Simulink system in Figure 6.14 

uses as input the ADC (left side), whose signal needs to be filtered and conditioned 
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for processing any given user algorithm. Once the signal processing is completed, 

a PWM signal is created by the ePWM box as the system output in the right side of 

the figure. 

  

Figure 6.14 Simulink model with F28335 board support 

 

The measured signal need conditioning by a gain scaling before its use by signal 

processing algorithms such as the MPPT for the inner and outer DC/DC 

converters. 

 

6.2.2.2 Signal Conditioning 

ADC activation is made under commands taken from the reference guide [108] of 

the DSP. 

• ADC 
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The conversion sampling time is set equal to the switching frequency of the 

converter in Figure 6.15, so the instantaneous power will be updated at every 

switching time of the converter [109]. Conversion is set to produce simultaneous 

pairs of data on channel A and channel B of the DSP. Transducer signals are 

connected as indicated respectively in Table Table 6-2. 

ADC Channel Signal acquired 

ADCINA0 & ADCINB0 VPV1 & IPV1 

ADCINA1 & ADCINB1 T1 & Irr1 

ADCINA2 & ADCINB2 VPV2 & IPV2 

ADCINA3 & ADCINB3 T2 & Irr2 

ADCINA4 & ADCINB4 VPV3 & IPV3 

ADCINA5 & ADCINB5 T3 & Irr3 

ADCINA6 & ADCINB6 VPVT & IPVT 

Table 6-2 ADC acquisition signal channels 

 

 

Figure 6.15 ADC conversion configuration 
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• Scaling 

Scaling factors are set by the relationships of values from the transducer, the 

voltage and the resolution of the ADC. The digital value of the input analogue 

voltage is derived by: 

 

Digital value = 0, when input ≤ 0 V; 

Digital value = 4095 × 	âãläå	æãçUNè	éNUåçèT	*æêëìíî	0 , when 0 V < input < 3 V; 

Digital value = 4095, when input ≥ 3 V. 

 

Thus, the scaling factor for each conversion of the transducers are calculated and 

listed in Table 6-3. 

Transducer Signal Scaling factor Real Value 

VPV1,VPV2,VPV3 0.007326007326    0-30V 

VPVT 0.021978021978     0-60V 

IPV1,IPV2,IPV3,IPVT 0.001465201465    0-6A 

T1,T2,T3 0.073260073260     0-100ºC 

Irr1,Irr2,Irr3 0.074074074074      0-100% 

 Table 6-3 ADC Scaling factor 

 

• PWM 

The enhanced PWM module integrated to the DSP F28335 has the capability to 

control up to 18 channels[110] or use these as 6 channels of High Resolution PWM 

[111]. The enhanced PWM (ePWM) is a module that can involve two PWM outputs 

labelled ePWMA and ePWMB. Within the microprocessor, there is a time base 

sub- module called ePWM event manager, entangled to each ePWM module. This 

sub- module is used to set the frequency of the 16-bit counter. Furthermore, the 
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input signal is being compared with the internal register CMPB in order to generate 

the PWM signal as in Figure 6.16. 

 

Figure 6.16 ePWM Generation 

 

With respect to the generation of the PWM signal for the Ćuk Converter and Boost 

converter, the Simulink block configuration is set out in Figure 6.17.  

 

Figure 6.17 ePWM block configuration 
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6.3 Summary 

In this chapter a variety of instrumentation designs was presented, to serve the 

purpose of sensing atmospheric conditions emulated in the laboratory                    

and their effect on the solar modules in terms of instantaneous voltage and current.  

 

 

Figure 6.18  Hardware Final implementation 
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Chapter 7  

Integrated PV Converter Implementation  

It has been the overall aim of this work to study and develop a Bidirectional Ćuk 

converter integrated PV-panel module in both open and closed loops to harness 

the maximum power. In this chapter, the control techniques proposed so far in 

Chapter 5 of this thesis will be verified experimentally using instrumentation 

designed and presented in the previous chapter. 

The chapter presents the responses of the practical converter applying different 

duty ratios in open loop confirming the simulation of the Transfer Functions in 

Chapter 4. Moreover, the close loop control of integrated converter PV panel 

system is performed in the laboratory. Dynamic responses of this system are 

investigated through introduction of different shading levels over the solar modules.  

The follow experiments are performed with solar modules analysed previously in 

subsection 2.4 upon practical solar modules.  

7.1 Open loop Test 

7.1.1 Experimental results versus Transfer Function Model 

The Bidirectional Ćuk converter prototype is tested to validate the ac small signal 

model derived in Chapter 4. Circuit shown in Figure 7.1 represents the converter 

connections where VT is emulated by a constant DC source at 30 Volts in parallel 

with a load resistor of 25Ω. 
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Figure 7.1 Integrated converter with PV 

 

In the experiment, a mismatch in irradiation levels over the two PV panels is made 

where the level over PV1 is at 30% that on PV2 is at 100%. Duty ratio feeding to the 

converter is then changed from K=0.40 to K=0.60 in constant increments of 

k=0.05. The active switch pair is S2 - D1 since the solar module PV2 is irradiated 

with more light relatively to PV1. The voltages of both PV panels across the 

terminals of Ćuk converter are presented in Figure 7.2 and Figure 7.2a. It can be 

seen that step changes take place at every 0.4 seconds, their features vary from 

damped (when the duty ratio is 0.40, 0.45 and 0.50) to under-damped (after the 

duty ratio has been changed from 0.50 to 0.60), presenting a clear overshoot. 

Moreover, Figure 7.3 presents the terminal voltage VT, which holds the same level 

throughout with only minor disturbances. This is in contrary to the terminal current 

IT changing at each step, giving different power values. Through graphical 

representation, the global maximum power point is found when the duty ratio is at 

0.50 with 30 watts delivered into the load. 
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Figure 7.2 Response to Duty ratio of PV1 and PV2 
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Figure 7.2a Zoom of Response against time when K=0.60 

 

 

Figure 7.3 Transfer Function terminal response 

 

Comparing to the simulation results shown in Figure 4.3 to Figure 4.4, the voltage 

step changes give similar pattern and step size. However, the transient variations 

in the simulation show less damping than that of the practical results. These 

differences may be due to that the components used in the simulation are 

assumed ideal and no parasitic impedance is considered. In addition the model 
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has been developed under a series of approximations which may not conform to 

the practical conditions, for example it assumed that when switching frequency is 

high, the values of ��A��||, ��A/ and ��||/ would be smaller than L and C 

components, hence are negligible. Nevertheless the experimental results confirm 

well with that from the averaged model particularly for static responses, hence 

allowing further exploration of the model for converter controller design and 

analysis. 

7.2 Closed-Loop Tests 

Similar to the simulation studies of the closed-loop system presented in Chapter 5, 

implementation and verification of experimental closed-loop system are presented 

in this sub-section. 

The system to be tested includes one bidirectional Ćuk converter, one terminal 

boost converter, two identical solar panels, PV1 and PV2, a DC Bus of 60V and a 

load of 25Ω connected as described in Figure 5.6. 

 

7.2.1 Step responses under equal light level G1=G2=100% 

The experiment represents a real scenario where there is no partial shading over 

the PV panels and studies the responses of terminal voltage and power of the 

integrated converter and PV-panel module. The control scheme used is the Online 

model based MPPT presented in Chapter 5. This sets the reference voltage of the 

control loop as the sum of the voltage values of both PV panels at the maximum 

power point when the light levels are G1=G2=100%. By comparing the measured 

voltage values, it generates the error signals for the P+I controller. 

Figure 7.4 represents the responses of voltage and current for each panel, and 

Figure 7.5 shows the voltage, current and power variations at the system terminals.  

Since irradiations on both panels are, for this test, the same, the bidirectional Ćuk 

converter switches are inactive according to the control scheme. As shown in 

Figure 7.4 and Figure 7.5, during the first 0.5 seconds the lights over the panels 
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are turned off, so there is little power generated by the solar panels and the load 

power is mainly supplied by DC source. Note during this period the system is under 

open loop operation; hence the voltage value is around 20 volts for each panel and 

the current is zero. Then the light levels are gradually increased from 0% to 100%. 

When irradiation over both PV panels reaches 100%, according to the measured 

temperature and irradiation values from sensors for each PV panel, the control 

algorithm calculates the voltage values corresponding to the maximum power point 

to adjust the duty ratio for the terminal boost converter. As can be seen in Figure 

7.4 and Figure 7.5, all variables reach steady states after about 1 second. The total 

generated power measured at the terminals of the solar system is, approximately, 

PT ≈ 54.37watts with a terminal voltage of VT ≈ 32.16 volts and a terminal current of 

IT≈1.68amps. Verification of the individual MPPT is done with equation 5-2 of the 

solar model which follows,  

Vmpp = 0.7658 ∗ ln(1000) + 11.318 − 0.06 ∗ (33 − 25) = 16.13volts 
per solar module, giving a predicted terminal voltage of 32.26 volts. The signals 

presented in Figure 7.6 are gate pulses for switches ST, S1 and S2. ST is operating 

at the duty ratio 48.2% while the other two switches are not operating, so their gate 

signals are at logical ground level.  

 



-  139  - 
 

 

Figure 7.4 PV1 and PV2 step response, no shading 

 

 

Figure 7.5 Terminal step response, no shading 
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Figure 7.6 Switching signals for converter switches under equal light level 

 

7.2.2 Step responses under partial shading over PV1  

This experiment analyses the dynamic response when PV1 is under a severe 

shading condition in which the light dims gradually from 100% to 30% while the 

light over PV2 remains always at 100%. Figure 7.7 and Figure 7.8 represent the 

responses in each PV panel while Figure 7.9 shows the gate signals for ST and S2. 

Within the first two seconds after the start of the experiment, PV1 and PV2 are fully 

irradiated at 100% supplying a total of 53 watts. During this time only ST is 

functioning while S1 and S2 are idle. After two seconds a shade is introduced over 

PV1, the light level is lowered down gradually from 100% to 30%. During the 

transition period from 2 to 3 seconds, when the difference between the light levels 

over the two PV panels becomes sufficiently high the switching control scheme 

described in Chapter 5 is activated. This sends the signals from light sensors 

installed over the solar panels to the DSP, which determines to control S2 in Ćuk 

Converter. The duty ratio for S2, evaluated according to the model predicted Vmpp2, 

is 52.2% and switching signals are as shown in Figure 7.9. The generated power 

shown in Figure 7.8 presents a spike initially due to the delayed activation of the 

control scheme. As stated previously, if a shadow is present over a solar panel, 
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correspondingly its current changes linearly with the amount of irradiation. In 

Figure 7.7, the steady state current value IPV1 after the shading occurs is about 

200mA whereas the current produced by IPV2 is 2 amps, showing the 

independence between the two panels due to the use of Ćuk converter. After about 

4 seconds of the change of light level, the measured terminal power generated by 

the system settles to about 32 watts at terminal current of about 1.02amps and a 

terminal voltage at about 31.6volts. The generated power is higher with the Ćuk  

converter activated than just with a bypass diode, showing the clear advantage of 

this scheme.  

 

 

Figure 7.7 Responses of PV1 and PV2 with 30% Partial shading on PV1 
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Figure 7.8 Terminal responses with PV model for a 30% Partial shading on PV1 

 

 

Figure 7.9 Switching signals for converter switches under a shading condition 

 

Same experimental protocol is used to perform a comparison with Perturb & 

Observe algorithm in closed loop finding the global maximum power point at the 

terminal in Figure 7.10.  
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Figure 7.10 Terminal responses with P&O for a 30% Partial shading on PV1 

 

The perturb & observe algorithm as previously mentioned , at each sample instant 

the duty ratio for the outer boost converter is changed by a constant ±0.01, 

causing the corresponding inherent characteristic variations of voltage, current and 

power in Figure 7.10. Both algorithms achieve maximum power point, difference 

lays in the noise presented with the P&O technique. 

 

7.2.3 System responses for different shading conditions 

In this experiment, the integrated converter and PV-panel module and the 

proposed control scheme are tested by constantly varying the irradiation levels G1 

and G2. The variation patterns include five different scenarios as listed in Table 7-1 

and illustrated graphically in Figure 7.11. The experiment is designed to cover the 

possible operating conditions where ratios of light intensity Gshaded/Gunshaded < 0.7, 

and demonstrate that the control scheme can activate the correct switch for each 

scenario. It is also aimed to show the system responses during the transitions 

between the changes of the light pattern. Figure 7.12 represents the voltage and 
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current measurement from individual solar panels PV1 and PV2 while Figure 7.13 

gives plots of terminal voltage, current and power. 

 

Scenario G1(%) G2(%) Switch 

activation 

A 100 100 ST 

B 50 100 ST, S2 

C 50 30 ST, S1 

D 50 50 ST 

E 100 100 ST 

Table 7-1 Dynamic Irradiation and switch activation 

 

 

Figure 7.11 Irradiation changes over time 

 

The experiment recordings start with the scenario “A” where measurements are in 

steady state values while irradiations G1 and G2 are equal to 100%, producing a 

terminal power of PT ≈ 55.5watts at 32 volts as presented in sub-section 7.2.1. 

Since no shading exists between the panels, the inner Ćuk converter is off and the 

power produced is directly from the panels connected in series.  

A sudden change of the irradiation over PV1 takes place in scenario “B” where 

irradiation G1 is gradually dimmed from 100% to 50% while G2 is not affected and 

held at 100%. As the light intensity over PV1 decays to the level such that the 

irradiation difference is large enough to activate switch pair S2-D1 within the Ćuk 
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converter, the individual maximum power point trackers for the converters start to 

search for the optimal operation points. The voltage and current changes on both 

PV panels are shown in Figure 7.12. An instant gain in the terminal power is 

presented as a spike with a magnitude of ≈7 watts while the light is in transition, 

this due to the Ćuk converter activation. It settles to a steady state value of 

43.7watts with an IT≈1.375amps and a VT≈31.7volts.  

Moreover, in scenario “C” a severe shade is introduced over the PV2 going from 

100% to 30% while G1 holds at 50%. During the light changing transition, the inner 

converter switch S2 is deactivated by grounding the gate signal. Moments later, 

when the irradiation difference is large enough to activate S1 (Figure 7.14), voltage 

values in each PV panel experience a change due to the controller action. Since 

the solar module PV2 is now the one with lower irradiation relative to that on PV1, 

the current produced from it is also the lowest. Steady state is achieved at the 

second half of this scenario producing a terminal power of PT≈7.3watts, with 

terminal current IT≈0.238mps and a terminal voltage of VT≈30.64volts.   

Scenario “D” starts with an increment of irradiation in PV2, going from 30% to 50%, 

the current from PV2 increases correspondingly. When the light levels are equal 

over both panels (G1=G2), both switches S1 and S2 at the inner Ćuk converter are 

off, leaving the solar modules in series and the terminal converter switch ST to find 

the global maximum power point of PT≈25watts with IT≈0.792amps and VT≈31.55 

volts.  

The final scenario “E” starts with both light levels G1 and G2 increasing from 50% to 

100% simultaneously. As shown in Figure 7.12 and Figure 7.13 the currents 

through individual and terminal converter all increase, leading to the power 

increase to the maximum power point as that produced in scenario “A”. 
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Figure 7.12 PV1 and PV2 measurements to dynamic response 

 

 

 

Figure 7.13 Terminal measurements to dynamic response 
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Figure 7.14 PWM switch signal when G2/G1<0.7 

 

 

7.3 Summary 

The chapter presents a series of experimental results obtained in the laboratory 

with the prototype design presented in Chapter 6 of this thesis.  

Transfer functions step response discussed in chapter 4 are verified by 

experimentation under similar conditions where PV panels connected to the 

converter presents a mismatch of irradiance. While different duty ratios are applied 

to the converter, voltage step response is recorded with an oscilloscope against 

time.  

The dynamic responses of the system in closed loop are tested by changing 

irradiation levels over the PV panels. Online model-based MPPT is capable of 

searching for voltage values which achieve the global maximum power points with 

irradiation and temperature measurements from each solar module sensor. Control 

strategy concluded in previous simulations is verified by the experimental results. A 

clear improvement in the power harnessed from the PV panels is shown in cases 

where considerable light differences are presented. 
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Chapter 8  

Conclusions and Recommendations 

This research project has been set up to investigate converter topology and 

compare MPPT control strategies for photovoltaic power generation systems 

working under uneven irradiation conditions. The specific aim has been to enable 

the serially connected PV panels to operate at their optimal power points according 

to their respective light levels. The project has led to a successful development and 

practical implementation of an integrated converter and PV-panel module where a 

bidirectional Ćuk converter is connected across two serially chained PV panels, 

and a terminal boost converter is used as a whole system power conditioner. A 

novel model based control scheme has been developed for this system which has 

the feature to predict the optimal power point voltages for individual PV panel in the 

system leading to effective and efficient operation in harnessing power under any 

light level patterns over the solar panels, either even or partially shaded. The test 

results of the scheme have shown that it can respond to dynamic atmospheric 

condition changes to locate the global maximum power points quickly and 

accurately. A summary of the detailed contributions from this work is presented 

below. 

• A detailed analysis of an integrated bi-directional Ćuk converter and PV 

panel module has been given leading to a mathematic model developed for 

such a system. This is through deriving State Space equations of a 

bidirectional Ćuk converter in bypass connection with two PV panels. Using 

ac small signal analysis to these equations it has led to the derivation of  

transfer functions representing the dynamic responses of voltages across 

PV1 and PV2 in response to variations of converter switch duty ratio. 

Analysis of this transfer function model through Bode and Root locus plots 
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has been performed to reveal its stability margins under different duty ratio 

variation ranges. Step response test of the model has been carried out, and 

results are compared with that from experimental prototype in the 

laboratory. The exercise confirmed that the model is largely accurate and 

hence plausible for being used to controller design and tuning  

• A comprehensive study of the power harness from two photovoltaic panels 

connected in series under partial shading while interface either with bypass 

diodes or a bidirectional Ćuk converter is performed. The comparisons of 

the two solutions under different irradiation levels lead to the creation of a 

control scheme which minimizes power losses inherent to the system. The 

control scheme is then verified by simulations where power delivered 

increases up to 32% under severe shading conditions in comparison of two 

PV panels connected in parallel with bypass diodes. 

• A novel maximum power point tracking algorithm has been developed. This 

combines a switching scheme and model based optimal control scheme.  

The former determines which switch pair in the bidirectional Ćuk converter 

to be active according to measured light levels on each PV panel and the 

latter has the ability to predict the optimal voltage values across the 

individual PV panels under any practical irradiance and temperature levels. 

This algorithm has been studied through simulations and compared with the 

widely used Perturb & Observe algorithm in simulation. Experimental 

verification of the new control algorithm has been performed and also 

contrasted with the P&O method. Though both are capable of finding the 

MPPs in any given lighting conditions, the newly proposed model based 

scheme can locate the optimal power points for individual PV panels as well 

as the complete system faster and more accurate than the P&O algorithm. A 

serious shortcoming of P&O method is identified which is caused by its 

inherent continuous adjustment of the duty ratio. This is that the system 

parameters contaminates with high level noise which may make it 

misallocating the optimal power points, hence inefficient and giving high 

electromagnetic interferences. 
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• An experimental prototype of an integrated bi-directional Ćuk converter and 

two PV panel system has been designed, constructed and tested by the 

author. A terminal boost converter is also built in the practical set-up 

functioning as the whole system power conditioner. These MOSFET-based 

converters are equipped with sensors and transducers for voltage/current 

measurements. The system is controlled by a TMS320F28335DSP-based 

microcontroller (eZdspTM F28335), which can access input signals from 14 

sensors suitable for similar systems containing up to three chained PV 

panels.  Open and closed loop tests of this prototype has shown that it can 

function as desired in obtaining the maximum power generation 

corresponding to the measured weather conditions. A dynamic response 

test has been designed to subject the system to a series of scenarios where 

the combination pattern of irradiance level over each of the two PV panels is 

changed systematically. As expected, the system can activate the inner Ćuk 

converter switch-diode pair correctly and promptly hence improving the 

power harness from the PV panels under partial shading.  

• The price of the DC/DC converter represents an investment of $500dlls and 

the commercial equivalent is from the brand SolarEdge, model OP600-96V 

which is listed with a retail price of $170.00. Considering SolarEdge 

converter as a mass production instrument, the price of the bi-directional 

Ćuk converter could be improved in order to compete the nowadays offer. 

To date, one conference paper has been presented based on the work described 

in Chapter 5. A journal paper detailing the mathematical model and experimental 

verification is being prepared. In addition, a second journal paper is being 

assembled including experimental results presented in Chapter 7. 
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8.1 Recommendations for Future Work 

There are multiple directions in which this research can be refined and expanded. 

The follows are a list of recommended areas that the research can be carried out. 

 

• The mathematical model presented in this report could be used to develop 

other control techniques which once completed can be directly applied by 

Simulink to the prototype. 

• Since the MPP duty ratio is located in a narrow space from 40% to 60% in 

this application, A high resolution PWM signal could be used as 

improvement of this research 

• Further analysis and practical implementation could be done using the 

experimental prototype to study cases where three or more PV panels are 

connected to bidirectional converters. 

• Although this thesis is concentrated in the Ćuk converter topology, other 

bidirectional topologies can fulfil the role of this. A full study that involves all 

the bidirectional topologies integrated to PV panels can be done. The 

efficiency of different integrated converter topologies with PV panels should 

be studied and compared.   

• Having an experimental prototype completed and working, one can use a 

high level programming interface software such as Simulink to develop 

different maximum power point trackers. Automatic algorithms such as 

Fuzzy logic and Neural networks model based control schemes could be 

explored.   

With the continuation of these recommendations for the future research, it is 

hoped to achieve significant contributions to the field and lead to publications with 

high impact. 
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Appendix A 

 

AC Small Signal Analysis Derivation 

 

�+ ¢{��+ + À£Á�+}¢� = -	�+ + �¾	�+ − {(1 − �) + �¿}(-�A + �¾�A) 
�+ ¢��+¢�ôõöõ÷Ó

+ �+ ¢À£Á�+¢� = -	�+øÓ + �¾	�+ − ù-�A(1 − �)ôõõöõõ÷Ó + -�A�¿ + �¾�A(1 − �) + �¾�A�¿øÓ ú		
⟹ �+ ¢À£Á�+¢� = �¾	�+ − -�A�¿ − �¾�A(1 − �) 
 

�/ ¢{��/ + À£Á�/}¢� = n� − �¿o(-�A + �¾�A) − (-	�/ + �¾	�/)	
�/ ¢��/¢�ôõöõ÷Ó

+ �/ ¢À£Á�/¢� = -�A�ôö÷Ó + �¾�A� + -�A�¿ + �¾�A�¿øÓ − -	�/øÓ − �¾	�/	
⟹ �/ ¢À£Á�/¢� = �¾�A� + -�A�¿ − �¾	�/	
 

�+ ¢�¾	�+¢� = À£Á	�+ − À£Á$ − À£Á�+	
⟹ �+ ¢�¾	�+¢� = − �¾	�+�	�+ − À£Á$ − À£Á�+ 
 

�/ ¢�¾	�/¢� = À£Á	�/ + À£Á�/ − À£Á$	
⟹ �/ ¢�¾	�/¢� = − �¾	�/�	�/ + À£Á�/ − À£Á$ 
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�A ¢�-�A + �¾�A�¢� = n��+ + À£Á�+o{(1 − �) − �¿} − n� + �¿on��/ + À£Á�/o 
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⟹ �A ¢�¾�A¢� = −��+�¿ + À£Á�+(1 − �) − À£Á�/� − ��/�¿ 
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Appendix B 

 

Duty Ratio Vpv1 Ipv1 Rpv1 Ppv1 Vpv2 Ipv2 Rpv2 Ppv2 Ptotal 

0.450 18.04 2.42 7.46 43.62 14.76 1.44 10.25 21.25 64.88 

MPP   0.475 17.22 2.72 6.33 46.87 15.58 1.27 12.25 19.82 66.69 

0.500 16.40 2.95 5.56 48.36 16.40 1.11 14.73 18.25 66.62 

0.525 15.58 3.07 5.07 47.88 17.22 0.77 22.40 13.24 61.12 

0.550 14.76 3.15 4.69 46.49 18.04 0.20 90.79 3.58 50.08 

0.575 13.94 3.17 4.40 44.13 18.86 0.00 - 0.00 44.13 

0.600 13.12 3.22 4.07 42.27 19.68 0.00 - 0.00 42.27 

 

Table: Voltage, Current and Impedances of two PV panels under an uneven light 

condition G1 =100%, G2=50% 

  



-  155  - 
 

Appendix C 

S-Function File 
sfun1.m 
function [sys,x0,str,ts] = sfun1(t,x,u,flag) 

  

%*******Main Body for S-function****** 

switch flag,    % Determine the tasks to be done for specific flag    

             

        % Initialising is done to define the structure information 

case 0                       

[sys,x0,str,ts] = mdlInitializeSizes;   

  

case 2      % Value is updated for the next sample 

sys = mdlUpdate(t,x,u); 

  

case 3           % Determining the output value        

sys = mdlOutputs(t,x,u); 

  

case {1,4,9}    % Continuous states are not used 

            % Variable sample sizes are not used 

            % Emergency termination is not used 

     sys = [];                

  

otherwise    

error (['Unhandled flag = ', num2str(flag)]); %Error handling 

end; 

  

%*****end of main body***************** 

%*****mdlInitializeSizes subroutine***** 

  

function [sys,x0,str,ts]= mdlInitializeSizes; 

%Call simsizes for a size structure, define it before converting it  

%to the array sys. 

  

sizes = simsizes;  

sizes.NumContStates = 0;     

sizes.NumDiscStates = 1;     

sizes.NumOutputs =1;         

sizes.NumInputs = 5;         

sizes.DirFeedthrough =1;     

sizes.NumSampleTimes = 1;    

  

sys = simsizes(sizes);       

x0 = 0;                      

str = [];                    

ts = [1e-5 0];                 

%*****end of initialization stage******* 

%*****mdlUpdate subroutine***** 

  

function sys = mdlUpdate(t,x,u) 

    %next sample is updated through another subroutine 

  

sys = compute(u(1),u(2),u(3),u(4),u(5)); 

  

%*****end of sampling update***** 

%****mdlOutputs subroutine******* 
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function sys = mdlOutputs(t,x,u) 

    %the current discrete state is made available in output 

  

sys = x; 

%*****end of sampling update***** 

  

%******compute subroutine********** 

function I=compute(H,Tamb,ns,np,V) 

  

if (V<0) 

    V=0; 

end 

  

%****(Enter your own code)********* 

  

  

A      = 1.72;             % A         = Ideality factor of silicon 

                           %              material used in cell   

q      = 1.602e-19;        % q         = electron charge in Coulomb 

k      = 1.380658e-23;     % k         = Boltzmann constant 

Eg     = 1.00;             % Eg        = Energy bandgap of one cell in eV 

Ior    = 19.9693e-6;       % Irr or I  = reverse saturation I at ref T in A 

Iscr   = 3.3;              % Iscr      = cell short circuit I at ref T in A 

ki     = 0.0017;           % ki        = short circuit current temperature  

                           %             coefficient at Iscr in A/Celsius    

Rs     = 5e-5;             % Rs        = typical series resistance of one  

                           %             cell in ohms  ) literature  

Rp     = 5e5;              % Rp        = typical paralel resistance of one  

                           %             cell in ohms ) 

Tr     = 301.18;           % Tr        = reference temperature in K 

%****************Computation of Parameters of PV array********************* 

Ta      = Tamb + 273;        % Calculate cell temperature in K 

Tc      = Ta+0.2*H/100 ;   % Calculate cell temperature in K 

                           % If NOCT is given then Tc=Ta+(NOCT-20)/0.8*G 

Rsht    = (np/ns)*Rp;      % Calculate total parallel resistance 

Rst     = (ns/np)*Rs;      % Calculate total series resistance                     

Is      = Ior * (Tc/ Tr)^3.* exp(q*Eg/(k*A)*((1/Tr) - 1/Tc));  % Calculate  

                                                           %leakage current 

Isc     = (Iscr + ki * ( Tc - Tr)) * H/100;% Calculate photovoltaic current  

%************************************************************************** 

%************************************Bishop View*************************** 

%********The following are values inherent to the leakage current term Ish** 

a      =0.10;              % a        = Fraction of ohmic current involved 

                           %            in avalanche breakdown 

em     =3.7;               % em       = Avalanche Breakdown Exponent 

Vbr    =-4.0;              % Vbr      = Junction Breakdown Voltage 

  

%************************************************************************** 

%************************************************************************** 

%With this method there is no need to solve iteratively (no for loopes) 

%since Vj in vector form so we can get values for V+I*Rs 

%we make Vj in vector form so we can get values for I and V   

  

  

%Vj=Vbr:0.1:0.7*ns; 

Ishunt=V/Rsht.*(1+a*(1-(V/Vbr)).^(-em)); 

I=(np*Isc-(np*Is*(exp((q*V)/(ns*A*k*Tc))-1))-Ishunt)/(1+Rst/Rsht); 

%V=Vj-(I*Rst); 

if (I<0) 

    I=0; 

end 
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Appendix D 

The Boost Converter will also be operating at 20 kHz and uses the same MOSFET 

and diode in the Ćuk converter. Assuming that the inductor Lbus charges and 

discharges linearly, its current ripple is given by [35], [59]: 

∆IìüäI = −Vg(Výþ� − Vg)
fL0Výþ�  

∆IìüäI = VgSg
fLüäI 

It is desired to keep the inductor’s current ripple relatively low. It is known that the 

average current ILbus is around 3.3 A. At full light conditions, solar modules operate 

at 16.2 volts, and thus the terminal voltage will be around 32.4V: 

∆IìüäI = VgSg
fLüäI =

32.4 ∙ 0.5
20	kHz ∙ 1	mH = 0.81 

%∆IìüäI = ∆IìüäIIìüäI × 100 =
0.81
3.3 × 100 = 25% 

Although this is a relatively high, this will not affect the boost operation and will be 

enough for research purposes. It decided to have the value of 1mH due to the high 

cost. The electrolytic capacitors chosen for the input and output have 82 µF. 

∆VëNäå = 1
CNäå	 IëNäå	dt

gNã
Ó

= 1
CNäå	 INäå	dt

gNã
Ó

= INäåk
fCNäå 

Since the Bus voltage is 60V, and the input voltage will be around 32V, ST ≈0.47.  

∆-��@B = ��@B����@B =
1.65 ∙ 0.45

20	��� ∙ 82Ý� = 0.453 

%∆-��@B = ∆-��@B-��@B × 100 =
0.453
60 × 100 = 0.754% 

 



-  158  - 
 

Appendix E 
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S-function File 

PO.m 

 
function [sys,x0,str,ts] = PO(t,x,u,flag) 

  
%*******Main Body for S-function****** 
switch flag,    % Determine the tasks to be done for specific flag    

             
        % Initialising is done to define the structure information 
case 0                       
[sys,x0,str,ts] = mdlInitializeSizes;   

  
case 2      % Value is updated for the next sample 
sys = mdlUpdate(t,x,u); 

  
case 3           % Determining the output value        
sys = mdlOutputs(t,x,u); 

  
case {1,4,9}    % Continuous states are not used 
            % Variable sample sizes are not used 
            % Emergency termination is not used 
     sys = [];                

  
otherwise    
error (['Unhandled flag = ', num2str(flag)]); %Error handling 
end; 

  
%*****end of main body***************** 
%*****mdlInitializeSizes subroutine***** 

  
function [sys,x0,str,ts]= mdlInitializeSizes; 
%Call simsizes for a size structure, define it before converting it  
%to the array sys. 

  
sizes = simsizes;  
sizes.NumContStates = 0;     
sizes.NumDiscStates = 1;     
sizes.NumOutputs =1;         
sizes.NumInputs = 6;         
sizes.DirFeedthrough =1;     
sizes.NumSampleTimes = 1;    

  
sys = simsizes(sizes);       
x0 = 0;                      
str = [];                    
ts = [1e-4 0];                 
%*****end of initialization stage******* 
%*****mdlUpdate subroutine***** 

  
function sys = mdlUpdate(t,x,u) 
    %next sample is updated through another subroutine 

  
sys = compute(u(1),u(2),u(3),u(4),u(5),u(6)); 

  
%*****end of sampling update***** 
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%****mdlOutputs subroutine******* 

  
function sys = mdlOutputs(t,x,u) 
    %the current discrete state is made available in output 

  
sys = x; 
%*****end of sampling update***** 

  
%******compute subroutine********** 
function d=compute(ipv,ipv_1,vpv,vpv_1,c,D) 

  
Pn=ipv*vpv; %PV output power 
Pn_1=ipv_1*vpv_1;  
dp=Pn-Pn_1; %power difference 
if (dp<0) 
if (vpv>vpv_1) 
d=D+c; 
else  
d=D-c; 
end 
else if (dp>0)  
if (vpv>vpv_1) 
d=D-c; 
else  
d=D+c; 
end 
else 
d=D; 
end   
end 
%*****end of computation********** 

 

 

Subsystem MPPT P&O 
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Appendix F 

Bidirectional Ćuk Converter PCB diagram 
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Appendix G 

Efficiency test of the Ćuk Converter at different voltage levels 

 

-�A = 4	- 

k (%) Vout (V) Iin (A) Iout (A) Vout/ Vin Pin (W) Pout (W) Pout/ Pin 

20 0.5 0.01 0.02 0.125 0.04 0.010 0.250 

30 1.2 0.02 0.03 0.300 0.08 0.036 0.450 

40 2.0 0.05 0.06 0.500 0.20 0.120 0.600 

50 3.3 0.11 0.10 0.825 0.44 0.330 0.750 

60 5.1 0.24 0.15 1.275 0.96 0.765 0.797 

70 7.7 0.55 0.22 1.925 2.20 1.694 0.770 

 

-�A = 6	- 

k (%) Vout (V) Iin (A) Iout (A) Vout/ Vin Pin (W) Pout (W) Pout/ Pin 

20 1.0 0.01 0.03 0.167 0.06 0.030 0.500 

30 2.0 0.03 0.06 0.333 0.18 0.120 0.667 

40 3.4 0.08 0.10 0.567 0.48 0.340 0.708 

50 5.3 0.17 0.15 0.883 1.02 0.795 0.779 

60 8.0 0.38 0.23 1.333 2.28 1.840 0.807 

70 11.9 0.84 0.35 1.983 5.04 4.165 0.826 

 

-�A = 8	- 

k (%) Vout (V) Iin (A) Iout (A) Vout/ Vin Pin (W) Pout (W) Pout/ Pin 

20 1.5 0.02 0.04 0.188 0.16 0.06 0.375 

30 2.9 0.05 0.08 0.363 0.40 0.232 0.580 

40 4.7 0.10 0.14 0.588 0.80 0.658 0.823 

50 7.3 0.24 0.21 0.913 1.92 1.533 0.798 

60 10.8 0.51 0.32 1.350 4.08 3.456 0.847 

70 16.1 1.15 0.47 2.013 9.20 7.567 0.823 

 

-�A = 10	- 
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k (%) Vout (V) Iin (A) Iout (A) Vout/ Vin Pin (W) Pout (W) Pout/ Pin 

20 2.0 0.02 0.06 0.200 0.20 0.120 0.600 

30 3.7 0.06 0.11 0.370 0.60 0.407 0.678 

40 6.0 0.13 0.17 0.600 1.30 1.020 0.785 

50 9.2 0.29 0.27 0.920 2.90 2.484 0.857 

60 13.9 0.66 0.40 1.390 6.60 5.560 0.842 

70 20.3 1.45 0.59 2.030 14.50 11.977 0.826 

 

-�A = 12	- 

k (%) Vout (V) Iin (A) Iout (A) Vout/ Vin Pin (W) Pout (W) Pout/ Pin 

20 2.5 0.03 0.07 0.208 0.36 0.175 0.486 

30 4.5 0.07 0.13 0.375 0.84 0.585 0.696 

40 7.3 0.16 0.21 0.608 1.92 1.533 0.798 

50 11.2 0.36 0.34 0.933 4.32 3.808 0.881 

60 16.7 0.80 0.49 1.392 9.60 8.183 0.852 

70 24.4 1.76 0.71 2.033 21.12 17.324 0.820 

 

-�A = 14	- 

k (%) Vout (V) Iin (A) Iout (A) Vout/ Vin Pin (W) Pout (W) Pout/ Pin 

20 3.0 0.03 0.09 0.214 0.42 0.270 0.643 

30 5.5 0.08 0.16 0.393 1.12 0.880 0.786 

40 8.7 0.19 0.25 0.621 2.66 2.175 0.818 

50 13.2 0.43 0.39 0.943 6.02 5.148 0.855 

60 19.9 0.97 0.58 1.421 13.58 11.542 0.850 

70 28.6 2.06 0.84 2.043 28.84 24.024 0.833 

 

-�A = 16	- 

k (%) Vout (V) Iin (A) Iout (A) Vout/ Vin Pin (W) Pout (W) Pout/ Pin 

20 3.6 0.04 0.10 0.225 0.64 0.36 0.563 

30 6.3 0.10 0.18 0.394 1.60 1.134 0.709 

40 10.0 0.22 0.29 0.625 3.52 2.900 0.824 

50 15.2 0.49 0.44 0.950 7.84 6.688 0.853 

60 22.6 1.09 0.66 1.413 17.44 14.916 0.855 

70 32.9 2.38 0.96 2.056 38.08 31.584 0.829 

 



-  164  - 
 

-�A = 18	- 

k (%) Vout (V) Iin (A) Iout (A) Vout/ Vin Pin (W) Pout (W) Pout/ Pin 

20 4.0 0.04 0.13 0.222 0.72 0.52 0.722 

30 7.3 0.11 0.22 0.406 1.98 1.606 0.811 

40 11.3 0.25 0.35 0.628 4.50 3.955 0.879 

50 17.4 0.57 0.59 0.967 10.26 10.266 1.001 

60 25.3 1.22 0.85 1.406 21.96 21.505 0.979 

70 36.7 2.67 1.24 2.039 48.06 45.508 0.947 

 

-�A = 20	- 

k (%) Vout (V) Iin (A) Iout (A) Vout/ Vin Pin (W) Pout (W) Pout/ Pin 

20 4.6 0.05 0.15 0.230 1.00 0.690 0.690 

30 8.2 0.13 0.25 0.410 2.60 2.050 0.788 

40 12.9 0.29 0.42 0.645 5.80 5.418 0.934 

50 19.3 0.64 0.66 0.965 12.80 12.738 0.995 

60 28.8 1.42 1.02 1.440 28.40 29.376 1.000 

70 40.9 2.97 1.39 2.045 59.40 56.851 0.957 
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Appendix H 

Irradiance and temperature sensor PCB board design 
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Appendix J 
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