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Abstract
The basic formulae of hyperspherical trigonometry in multi-dimensional Euclidean space

are developed using multi-dimensional vector products, and their conversion to identities

for elliptic functions is shown. The basic addition formulae for functions on the 3-sphere

embedded in four-dimensional space are shown to lead to addition formulae for elliptic

functions, associated with algebraic curves, which have two distinct moduli. Application

of these formulae to the cases of a multi-dimensional Euler top and Double Elliptic

Systems are given, providing a connection between the two.

A generalisation of the Lattice Potential Kadomtsev-Petviashvili (LPKP) equation is

presented, using the method of Direct Linearisation based on an elliptic Cauchy kernel.

This yields a (3 + 1)-dimensional lattice system with one of the lattice shifts singled out.

The integrability of the lattice system is considered, presenting a Lax representation and

soliton solutions. An associated continuous system is also derived, yielding a (3 + 1)-

dimensional generalisation of the potential KP equation associated with an elliptic curve.
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Chapter 1

Introduction

At first glance, hyperspherical trigonometry, elliptic functions and integrable systems may

not appear to be all that closely connected. This chapter provides an introduction to

the topics of study relevant for this thesis, giving an overview of previous results, and

discusses how the various strands may be related. We begin with spherical trigonometry,

and discuss how this relates to elliptic functions. We then move on to discuss integrability,

in particular multi-dimensional integrable systems, and how they relate.

1.1 Spherical Trigonometry

Spherical trigonometry, a branch of geometry dealing with the goniometry, i.e. the

measure of the angles, of triangles confined to a 2-sphere, is an area of mathematics

that has existed since the ancient Greeks, with its foundations laid by Menelaus and

Hipparchus. It is of vital importance for many calculations in astronomy, navigation and

cartography. Further advances were made in the Islamic world, in order to help calculate

their Holy Days based on the phases of the moon. These advances resulted in giving us

the basis of spherical trigonometry in its modern form. However, it was not until the

17th century, in the western world, that spherical trigonometry was first considered as
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a separate mathematical discipline, independent of astronomy. One of the protagonists

of this era, John Napier, in his work of 1614, treated spherical trigonometry alongside

his work introducing logarithms [102]. Other protagonists include Delambre [42], Euler

[48], Cagnoli [33] and l’Huillier [87]. A neat treatise of the subject was later given by

Todhunter, and refined by Leatham [133].

Definition 1.1.1 (m-Sphere) [57] An m-sphere is an m-dimensional hyper-surface,

every point of which is equidistant from a fixed point, called the centre of the sphere.

The straight line which connects any point on the surface to its centre is called a radius.

A 2-sphere is often just called a sphere, whilst for m > 2, an m-sphere may be called an

(m+ 1)-dimensional hypersphere.

Somewhat confusingly, this now universally accepted definition is at odds as to how a

sphere was originally defined. Todhunter defines a sphere as ‘a solid bounded by a surface

every point of which is equally distant from a fixed point’ [133], whereas the solid is now

defined to be a ‘ball’. Perhaps more confusingly, in geometry, the m in m-sphere refers to

the number of co-ordinates in the underlying space, and not the dimension of the surface

itself as in Definition 1.1.1 [39]. We, however, adopt the topological convention given in

Definition 1.1.1.

For simplicity, in this section, we consider a 2-sphere of unit radius, that is with radius

equal to 1, embedded in three-dimensional Euclidean space, R3, with its centre taken to

be the origin.

Definition 1.1.2 (Great Circle) [133] The section of surface of a sphere mapped by a

plane passing through its centre is called a great circle. (See figure 1.1).

Definition 1.1.3 (Spherical Triangle) [133] A spherical triangle is a triangle formed

on a sphere bounded by three great circles, restricted such that each side is less than a



Chapter 1. Introduction 3

Centre Radius

2-Sphere

Great Circle
Plane passing through centre of sphere

Figure 1.1: A great circle on a 2-sphere

semicircle, and hence, each angle is less than π. The three arcs of great circles that form

the the spherical triangle are called the sides of the spherical triangle, and the angles

between the intersection of these arcs, the spherical angles.

For simplicity, in this chapter, we denote the three vertices of a spherical triangle by A, B

and C, also applying the same label to the spherical angles at each vertex. We label the

sides of the spherical triangle by a, b and c, corresponding to the side opposite the vertex

labeled by the same uppercase label. We label this spherical triangle 4ABC. Note that

by restricting ourselves to the consideration of the unit sphere, we can identify the side

lengths with the corresponding angles at the centre of the sphere. (See figure 1.2).

Proposition 1.1.4 (Cosine Rule) [133] The cosine of one of the spherical angles of a

spherical triangle in terms of the sines and cosines of the triangle’s sides is given by:

cosA =
cos a− cos b cos c

sin b sin c
. (1.1)

Proof

[133] First, we consider the case sides b and c are less than π/2. Consider the spherical
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C

B

A

a

A

b

B

c

C

Figure 1.2: The spherical triangle4ABC

triangle ABC, shown in 1.3. Let the tangent at A to the arc AC intersect the line in the

direction OC at E, and similarly, let the tangent at A to the arc AB intersect the line in

the direction of OB at D. Upon joining ED, the angle EAD is the angle of the spherical

triangle at A, and the angle EOD measures the side a. Using the cosine rule for planar

Euclidean triangles, for triangles ADE and ODE, we have:

DE2 = AD2 + AE2 − 2AD · AE cosA, (1.2a)

DE2 = OD2 +OE2 − 2OD ·OE cos a, (1.2b)
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O
B

D

A

EC

Figure 1.3: Cosine Rule

respectively. As for triangles OAD and OAE, as they are right-angled, we also have

OD2 = OA2 + AD2, (1.3a)

OE2 = OA2 + AE2. (1.3b)

(1.3c)

Subtracting these formulae, we have

0 = 2OA2 + 2AD · AE cosA− 2OD ·OE cos a, (1.4)

or equivalently,

cos a =
OA

OE
· OA
OD

+
AE

OE
· AD
OD

cosA, (1.5)

from which the result follows. �

Proposition 1.1.5 (Sine Rule) [133] This expresses the relationship between two sides

of a spherical triangle and the angles opposite them:

sinA

sin a
=

sinB

sin b
=

sinC

sin c
. (1.6)

Proof

[133] Taking as a starting point,

sin2A = 1− cos2A, (1.7)
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and substituting in the formula for the Cosine rule, (1.1), we have

sin2A = 1−
(

cos a− cos b cos c

sin b sin c

)2

, (1.8a)

=
(1− cos2 b) (1− cos2 c)− (cos a− cos b cos c)2

sin2 b sin2 c
, (1.8b)

=
1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c

sin2 b sin2 c
, (1.8c)

and hence,

sinA =

√
1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c

sin b sin c
, (1.9)

whereby we have taken the positive square root because 0 < A < π. The Sine Rule then

follows by symmetry. �

Definition 1.1.6 [133] The axis of a great circle is the line through the centre of the

sphere, perpendicular to the plane forming said great circle. The points where this axis

meets the surface of the sphere are called its poles.

Definition 1.1.7 (Polar Triangle) [133] Let the points A, B and C form a spherical

triangle, with the points A′, B′ and C ′, the poles of the arcs BC, CA and AB,

respectively, which lie on the same sides of them as the opposite angles A, B and C.

Then, the spherical triangle formed by the points A′, B′ and C ′ is the polar triangle to

triangle ABC. Note that, although there are six poles, and in principle eight triangles

formed by them, there is only one triangle in which the poles A′, B′ and C ′ lie toward the

same parts with the corresponding angles A, B and C, and it is this which is the polar

triangle.

Proposition 1.1.8 (Polar Cosine Rule) [133] This expresses the cosine of one of the

sides of a spherical triangle in terms of the sines and cosines of the triangle’s spherical

angles:

cos a =
cosB cosC + cosA

sinB sinC
(1.10)



Chapter 1. Introduction 7

Proof

[133] From the cosine rule (1.1), we have

cosA =
cos a− cos b cos c

sin b sin c
, (1.11a)

cosB =
cos b− cos a cos c

sin a sin c
, (1.11b)

cosC =
cos c− cos a cos b

sin a sin b
. (1.11c)

Therefore, we have

cosA+ cosB cosC =
cos a− cos b cos c

sin b sin c
+

(
cos b− cos a cos c

sin a sin c

)(
cos c− cos a cos b

sin a sin b

)
,

(1.12)

=
cos a

sin2 a sin b sin c

(
1− cos2 a− cos2 c− cos2 b+ 2 cos a cos b cos c

)
,

(1.13)

which, using the sine rule (1.6) reduces to

cosA+ cosB cosC = cos a sinB sinC, (1.14)

and so the result follows. �

Definition 1.1.9 [133] A lune is a portion of a sphere contained between two great

semicircles.

Proposition 1.1.10 (Area of a Lune) [133] The area of a lune of a unit sphere is given

by

Area of Lune = 2A, (1.15)

where the angle A is the lune’s circular measure.
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A

B

C D E

Figure 1.4: A sphere showing two lunes, ACBDA and ADBEA

Proof

[133] Let ACBDA and ADBEA be two lunes with equal angles at A, as in figure 1.4.

These lunes may be placed atop each other, and so, have equal area. Therefore, the area

of a lune is proportional to its angle,

Area of Lune = κA, (1.16)

for some constant of proportionality κ. As the entire sphere is a lune with area 4π, and

angle A = 2π, it follows that

Area of Lune = 2A, (1.17)

as required. �

Definition 1.1.11 (Spherical Excess) [133] The expression

A+B + C − π (1.18)

is called the Spherical Excess of a spherical triangle with spherical angles A, B and C.
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The formula to calculate the area of a spherical triangle was first shown by Girard in 1626.

Theorem 1.1.12 (Girard’s Theorem) [133] The area of a spherical triangle, with

spherical angles A, B and C, is given by its Spherical Excess,

Area of spherical triangle = A+B + C − π. (1.19)

Proof

[133] Let triangle ABC be a spherical triangle. Label the points opposite A, B and C,

H

G

O

D

A E

B

F

C

Figure 1.5: Girard’s Theorem

D, E and F , respectively, such that the arcs AD, BE and CF form semicircles. (See

figure 1.5).The triangle ABC now forms part of three lunes; ABDCA, BCEAB and

CAFBC.

Now, note that the triangles AFB and CDE have equal solid angle, and hence, side

lengths. This means that their areas must in fact be equal, and so the area of the lune

CAFBC is equal to the sum of the areas of triangles ABC and CDE. We therefore
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have,

ABC +BGDC = luneABDCA = 2A, (1.20a)

ABC + AHEC = luneBCEAB = 2B, (1.20b)

ABC + CDE = luneCAFBC = 2C, (1.20c)

and so, summing these together gives

2ABC + Area of a hemisphere = 2(A+B + C). (1.21)

As the area of a hemisphere of radius one is 2π, the result follows. �

1.2 Elliptic Functions

There has long existed a connection between spherical trigonometry and elliptic functions,

dating back to almost the foundation of elliptic function theory itself. Elliptic functions

were first devised by Legendre [86] as the inverse of elliptic integrals, with the theory built

upon by Abel [1, 2, 3] who revealed their double periodicity. The theory was improved

upon through the work of Jacobi [64] with the introduction of what came to be known as

the Jacobi elliptic functions. A more complete study of the area was later undertaken by

Weierstrass [135], who by the introduction of the Weierstrass ℘-function linked together

the previous work. Other key protagonists include Liouville, Gauss, Euler and Frobenius.

Complete treatises of the subject area are provided by Greenhill [54] and Cayley [36],

as well as by Whittaker and Watson [136] and Akheizer [14]. The connection between

spherical trigonometry and elliptic functions arises through the Jacobi elliptic functions

and is owing to Legendre [86] and Lagrange [84]. A neat proof of this connection, which

is looked at in more detail in Chapter 2, was provided by Irwin [62].
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Definition 1.2.1 (Analytic Function) [136] A function f : D → C defined on some open

domain D in the complex plane is said to be analytic or holomorphic if the limit

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0) (1.22)

exists for all z0 ∈ D, i.e. f is complex differentiable in the domain D.

Definition 1.2.2 (Pole) [136] Let D be an open subset of the complex plane C with z0 ∈

D, and f : D \ {z0} → C an analytic function over its domain. If there exists another

analytic function g : D → C and a positive integer µ such that

f(z) =
g(z)

(z − z0)µ
(1.23)

holds for all z ∈ D \ {z0}, then z0 is a pole of f . The smallest such µ is the order of the

pole.

Definition 1.2.3 (Meromorphic Function) [136] A function f : D → C is

meromorphic if it is analytic for all of D except a finite number of poles.

Definition 1.2.4 (Doubly Periodic) [14] A function f : D → C is said to be doubly

periodic if for 2ω, 2ω′ ∈ C with ω/ω′ 6∈ R,

f (z + 2mω + 2m′ω′) = f (z) , (1.24)

for all z ∈ D and all m,m′ ∈ Z.

Definition 1.2.5 (Elliptic Function) [14] An elliptic function is a doubly periodic

function which is meromorphic on C.

The elliptic functions are closely connected to a family of complex algebraic curves called

elliptic curves. These are curves which in appropriate coordinates for w, z ∈ C can be

cast in the form

w2 = R(z), (1.25)

whereR is a polynomial of degree three or four in z [14].
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Definition 1.2.6 (Weierstrass ℘-function) [136] The Weierstrass ℘-function is given by

the sum

℘(z; 2ω, 2ω′) =
1

z2
+

∑
m2+m′2 6=0

(
1

(z + 2mω + 2m′ω′)2
− 1

(2mω + 2m′ω′)2

)
, (1.26)

for all m,m′ ∈ Z and z 6= 2mω + 2m′ω′.

It may be shown that

(℘′ (z))
2

= 4 (℘ (z))3 − g2℘ (z)− g3, (1.27)

with

g2 = 60
∑

m2+m′2 6=0

1

(2mω + 2m′ω′)4
, (1.28)

and

g3 = 140
∑

m2+m′2 6=0

1

(2mω + 2m′ω′)6
, (1.29)

and hence the pair (℘′, ℘) parameterises an elliptic curve.

Definition 1.2.7 (Jacobi Elliptic functions) [14] The Jacobi elliptic function sn(u; k) is

defined by the inversion of the elliptic integral

u(x; k) =

∫ x=sn(u;k)

0

dt√
(1− t2) (1− k2t2)

, (1.30)

where k, the elliptic modulus, is constant. The functions cn(u; k) and dn(u; k) are then

defined through the identities

sn2(u; k) + cn2(u; k) = 1, (1.31a)

k2sn2(u; k) + dn2(u; k) = 1, (1.31b)

If we now let e, e′ and e′′ be the roots of the equation 4t3 − g2t− g3 = 0, then the Jacobi

elliptic functions are related to the Weierstrass ℘-function [14] via

℘(z) = e′′ +
e− e′

sn2
(√

e− e′′z;
√

e′−e′′
e−e′′

) . (1.32)
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There are a number of various other elliptic functions including, amongst others, the theta

functions, as well as a number of other closely related functions, such as the Weierstrass

ζ- and σ-functions [136].

There also exist connections between spherical trigonometry and integrable systems. A

recent paper by Suris and Petrera [122] defined a mapping associated with the cosine

rule for spherical triangles to define a mapping, which they showed to be integrable in

the sense of multi-dimensional consistency [104, 103, 10, 11, 26]. However, it is an

earlier connection that is of particular interest here, namely the connection between the

tetrahedron equation and spherical trigonometry.

In chapter 2, we establish formulae for hyperspherical trigonometry, analogous to

those of spherical trigonometry, with particular attention focused on the hyperspherical

tetrahedral case. We also establish a link between these four-dimensional hyperspherical

trigonometric formulae and elliptic functions.

1.3 Multi-dimensional Integrability

1.3.1 The d-Simplex Equations

It is well known that the Yang-Baxter (or triangle) equation [138, 19] and associated

R-matrices form the basic algebraic structure underlying most integrable systems in two-

dimensions [49]. The Yang-Baxter equation originally arose as a factorisability condition

of a scattering matrix of three particles on a line, as well as a generalised star-triangle

equation for Boltzmann weights in two-dimensional statistical mechanical models [141].

A brief history of the Yang-Baxter equation may be found in [117].

In their study of the tetrahedron equation, Bazhanov and Stroganov suggested the notion

of d-simplex equations as the higher generalisations of the Yang-Baxter equation [25].
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The d-simplex equations may be thought of as generalisations of the commutability

conditions of transfer matrices in statistical mechanics, with the objects involved

dependent on pairs of matrix indices [91]. The 3-simplex, or tetrahedron, equation was

discovered by A. B. Zamolodchikov as the factorisability condition for the scattering of

four straight strings into three-string amplitudes in a plane [142], building on work on

the three-string case in [144]. It is also the condition for the commutativity of layer-to-

layer transfer matrices in a three-dimensional lattice spin model [66, 91]. A first non-

trivial solution was provided for the static case by Zamolodchikov [142]. Zamolodchikov

later found a further solution as a feat of intuition [143], which is given in terms of

spherical trigonometry. Zamolodchikov’s solution was later verified by Baxter, with the

solution dependent on the spherical excess [21, 20]. Further insights have been studied

by Sergeev, Bazhanov, Korepanov, Kashaev, Mangazeev and Stroganov amongst others

[126, 127, 22, 23, 24, 60, 61, 72, 73, 75, 76, 77, 92], but no complete solution has yet been

found. Solutions are also given in [129, 71, 74] using advanced algebraic and categorical

methods.

Nijhoff and Maillet showed that the hierarchy of simplex equations leads to the notion

of classical integrability for discrete systems on multi-dimensional lattices [90, 89],

with, in particular, the tetrahedron equation governing three-dimensional integrable lattice

models.

As the Yang-Baxter equation may be solved in terms of the sum of planar angles or

arc length, it is natural to conjecture that perhaps the tetrahedron equations, the three-

dimensional analogues to the Yang-Baxter equation, may be solved in terms of the sum

of the areas of spherical triangles. The extension of this would then be that perhaps that

solutions to the d-simplex equations would be related to higher dimensional spherical

volumes.
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1.3.2 Spherical Volumes

Calculating the volume of spherical simplices is an old and difficult problem. The

volume of Euclidean simplices on the other hand is relatively straightforward to calculate.

For simplices in Euclidean space, the volume is obtained from the determinant of the

vectors emanating from one vertex to the other vertices, with the result first discovered

for Euclidean tetrahedra by Tartaglia in 1494. For the case of spherical simplices

calculating the volume is not so simple. As part of his magnus opus “Theorie der

Vielfachen Kontinuität” [125], Schläfli derived a differential formula for the volume of

such simplices. This theorem may be proven either geometrically or by using Schläfli’s

Differential Volume Formula.

Theorem 1.3.1 (Schläfli’s Differential Volume Formula) [125] Let an (m − 1)-

dimensional spherical simplex S, for m ≥ 2, have vertices v1, . . . , vm, and dihedral

angles ϕjk = ∠(Sj, Sk), with 0 ≤ j < k ≤ m, formed by the faces Sj and Sk of S, with

apex Sjk := Sj ∩ Sk. Then the differential of the volume function, Vm, on the set of all

simplices in Sm is given by

dVm(S) =
1

m− 1

m+1∑
j,k=1:j<k

Vm−2(Sjk)dϕjk, V0(Sjk) := 1. (1.33)

A more combinatorial proof to Schläfli’s was later provided by Peschl [118]. However,

solving this differential relation is far from an easy matter, except in the n = m case,

where it provides an alternative proof to Girard’s Theorem.

Proof
An alternative proof of Theorem 1.1.12

For spherical triangles, m = 2, and so, Schläfli’s Differential Volume formula becomes

dA =
3∑
i=1

dαi, (1.34)
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where A is the area of the spherical triangle with spherical angles αi, i = 1, 2, 3

Integrating this gives

A = α1 + α2 + α3 + c, (1.35)

where c = −π is the integration constant determined by considering, say, the area of a

spherical triangle with planar angles α1 = α2 = α3 = π
2

and comparing this to the known

area of 1/8 of a sphere. �

For the case of spherical tetrahedra, we takem = 3, leading Schläfli’s Differential formula

to become

dV =
1

2

4∑
j,k=1:j<k

θjkdϕjk, (1.36)

where θjk is the length of the side of the spherical tetrahedron opposite the corresponding

dihedral angle ϕjk.

Schl’̈afli then used this differential relation to provide a formula for the simpler case of

the volume of a spherical orthoscheme, tetrahedra with a particular property.

Definition 1.3.2 (Orthoscheme) [134] An Orthoscheme is a m-dimensional simplex,

defined by a series of m mutually orthogonal edges. This ensures that all of the faces

of an orthoscheme are right angled triangles. A three-dimensional orthoscheme is called

a Birectangular Tetrahedron.

nk

nl

nj

ϕij

ni

ϕjk

ϕkl

Figure 1.6: A Birectangular Tetrahedron
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Proposition 1.3.3 [5] The volume of a spherical birectangular tetrahedron, T , with

dihedral angles ϕij , ϕjk and ϕkl, as shown in figure 1.6 is given by

V3(T ) =
1

4

∞∑
µ=1

(
D (ϕij, ϕjk, ϕkl)− sin

(
ϕij − π

2

)
sin
(
ϕkl − π

2

)
D (ϕij, ϕjk, ϕkl) + sin

(
ϕij − π

2

)
sin
(
ϕkl − π

2

))µ

· cos
(

2µ
(
ϕij −

π

2

))
− cos (2µϕjk) + cos

(
2µ
(
ϕkl −

π

2

))
µ2,

(1.37)

where

D (ϕij, ϕjk, ϕkl) =

√
cos2

(
ϕij −

π

2

)
cos2

(
ϕkl −

π

2

)
− cos2 ϕjk. (1.38)

As all tetrahedra may be expressed as the sum of orthoschemes, it is then possible to

use this result to calculate the volume of all spherical tetrahedra. However, in practice

determining the new dihedral angles of the orthoschemes is often difficult, and a closed

form for the volume may not always be achievable.

Definition 1.3.4 (Symmetric Tetrahedron) [44] A Symmetric Tetrahedron is a

tetrahedron with equal dihedral angles at opposite edges.

Derevin, Mednykh and Pashkevich derived from Schläfli’s formula a result for the

volumes of symmetric spherical tetrahedra [44].

Proposition 1.3.5 [44] The volume of a symmetric spherical tetrahedron, with dihedral

angles ϕij , ϕik and ϕjk, is given by

V3(T ) = −
∫ ∞
v

(
arcsinh

cosϕij√
v2 − 1

+ arcsinh
cosϕik√
v2 − 1

+ arcsinh
cosϕjk√
v2 − 1

− arcsinh
1√

v2 − 1

)
dv
v
,

(1.39)

where v is defined by

v =
1− cos2 ϕij − cos2 ϕik − cos2 ϕjk − 2 cosϕij cosϕik cosϕjk√

f(π − ϕij, ϕik, ϕjk)f(ϕij, π − ϕik, ϕjk)f(ϕij, ϕik, π − ϕjk)f(π − ϕij, π − ϕik, π − ϕjk)
,

(1.40)

with

f(A,B,C) = 1 + cosA+ cosB + cosC. (1.41)
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The general case was finally solved by Cho and Kim [37] in terms of the dilogarithm

function, and later refined into a more symmetric form by Murakami with Yano in terms

of the dihedral angles [100], and with Ushijima in terms of edge lengths [99].

Definition 1.3.6 (Dilogarithm) [4] The dilogarithm function, Li2(z), is given by

Li2(z) =

 −
∫ z
0

log(1−t)
t

dt, z ∈ C \ [1,∞) ,∑∞
t=1

zt

t2
, |z| < 1.

(1.42)

Proposition 1.3.7 [100, 99] Let a spherical tetrahedron, T have dihedral angles ϕij , and

edge lengths θij , i, j = 1, 2, 3, 4, i < j. Define

aij = exp(iϕij), (1.43)

and similarly,

bij = exp(iθij). (1.44)

Then, the volume of T in terms of the dihedral angles is given by

V3(T ) = Re(L(aij, aik, ail, akl, ajl, ajk; z0)) + π

(
arg(−q2) +

1

2

4∑
i,j=1:i<j

ϕij

)

− 3

2
π2,

(
mod 2π2

)
,

(1.45)

where

L(aij, aik, ail, akl, ajl, ajk; z0) =
1

2
(Li2(z) + Li2(a−1ij (a−1ik a

−1
kl a

−1
jl z)

+ Li2(a−1ij a
−1
ik a

−1
kl a

−1
jk z)− Li2(a−1ik a

−1
ik a

−1
jl a

−1
jk z)

− Li2(−a−1ij a−1ik a
−1
ik z)− Li2(−a−1ij a−1jl a

−1
jk z)

− Li2(−a−1ik a
−1
kl a

−1
jk z)− Li2(−a−1ik a

−1
kl a

−1
jl z)

+
3∑
j=1

log aj log aj+3

)
,

(1.46)

and

z0 =
−q1 +

√
q21 − 4q0q2

2q2
, (1.47)
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with

q0 = aijakl + aikajl + aikajk + aijaikajk + aijaikajl

+ aikaikakl + ajkajlajk + aijaikaikaklajlajk, (1.48a)

q1 = −
(
aij − a−1ij

) (
akl − a−1kl

)
−
(
aik − a−1ik

) (
ajl − a−1jl

)
−
(
aik − a−1ik

) (
ajk − a−1jk

)
, (1.48b)

q2 = a−1ij a
−1
kl + a−1ik a

−1
jl + a−1ik a

−1
jk + a−1ij a

−1
ik a

−1
jk + a−1ij a

−1
ik a

−1
jl + a−1ik a

−1
ik a

−1
kl

+ a−1kl a
−1
jl a

−1
jk + a−1ij a

−1
ik a

−1
ik a

−1
kl a

−1
jl a

−1
jk . (1.48c)

Similarly, in terms of edge lengths, the volume of T is given by

V3(T ) = Re
(
L̃ (bkl, bjl, bjk, bil, bik, bij; z̃0)

)
− π arg(−q̃2)

−
6∑
j=1

lj
∂ Re

(
L̃ (bkl, bjl, bjk, bil, bik, bij; z̃)

)
∂lj

∣∣∣∣∣
z=z̃0

− 1

2
π2,

(
mod2π2

)
,

(1.49)

where z̃0 and q̃2 are obtained by substituting −b−1ij for aij , i, j = 1, 2, 3, 4, i < j in the

definitions of z0 and q2 respectively.

Another interesting result was discovered by Zehrt [145] as part of his thesis, where he

developed reduction formulae which reduce the problem of calculating volumes in even

dimensional spherical and hyperbolic space, to the determination of odd dimensional

volumes.

It is hoped that these volume formulae may prove useful in solving the d-simplex

equations in future, although at the current time it is not clear as to whether the addition

of volumes could be linear, like the addition of angles in a plane.

1.3.3 The Kadomtsev-Petviashvili Equation

The Kadomtsev-Petviashvili, or KP, equation is a partial differential equation, derived in

1970 to describe non-linear wave motion, as a (2 + 1)-dimensional generalisation of the
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KdV equation [69]. For u = u(x, y; t), it takes the potential form(
ut −

1

4
uxxx −

3

2
u2x

)
x

=
3

4
uyy, (1.50)

with the KdV equation recovered under the dimensional reduction uy → 0, u becoming

independent of y. It is believed that the KP hierarchy is connected to the tetrahedron

equation in the same manner that the Yang-Baxter structure defines many of the algebraic

properties of the KdV hierarchy.

The KP equation is integrable in that it possesses a Lax representation, namely a Lax pair.

Definition 1.3.8 (Lax Representation) [105] A Lax representation is an underlying

overdetermined system of linear partial differential in the continuous case, or difference

in the discrete case, equations whose consistency condition leads to a non-linear partial

differential, or difference, system respectively. The system arising from the consistency

condition is then said to be integrable. A Lax representation of two linear equations is

called a Lax pair.

The Lax pair for the potential KP equation is given by

ϕy = ϕxx + 2uxϕ, (1.51a)

ϕt = ϕxy + uxϕx +
1

2
(3uy − uxx)ϕ. (1.51b)

In order to see how the potential KP equation follows from this Lax pair, consider the

compatibility condition

ϕyt − ϕty =ϕxxt + 2uxtϕ+ 2uxϕt − ϕxyy − uxyϕx − uxϕxy

− 3

2
uyyϕ+

1

2
uxxyϕ−

3

2
uyϕy +

1

2
uxxϕy.

(1.52)

Elimating all t and y derivatives of ϕ using the Lax pair, (1.51), this compatibility

condition reduces to

ϕyt − ϕty = 2

((
ut −

1

4
uxxx −

3

2
u2x

)
x

− 3

4
uyy

)
ϕ = 0, (1.53)
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and the potential KP equation hence follows.

This Lax pair is a source of many of the system’s integrability characteristics, and forms

the starting point for many methods of finding solutions.

An analogous integrable lattice system, the Lattice Potential KP, or LPKP, equation, first

produced by Nijhoff, Capel, Wiersma and Quispel [108], is given by

(p− ũ)
(
q − r + ˜̇u− ̂̃u)+ (q − û)

(
r − p+ ̂̃u− ̂̇u)

+ (r − u̇)
(
p− q + ̂̇u− ˙̃u

)
= 0, (1.54)

whereby the system resides on a three-dimensional lattice, with shifts in u = u(n,m, l)

defined by

ũ = u(n+ 1,m, l), (1.55a)

û = u(n,m+ 1, l), (1.55b)

u̇ = u(n,m, l + 1), (1.55c)

and corresponding lattice parameters p, q and r, respectively. Note that, the actual

potential KP equation may be recovered through a direct series of continuum limits to

(1.50). An alternative discretisation, following the same notation,

(q − r) ũ̂̇u+ (r − p) û ˙̃u+ (p− q) u̇˜̂u = 0, (1.56)

was discovered by Hirota in [56]. Further features were discovered by Miwa [97], who

provided a transformation linking the equation to the KP hierarchy, but its continuum

limit does not lead directly to it.

Note that the equation (1.54) takes the form

f(ũ, û, u̇, ̂̃u, ˜̇u, ̂̇u; p, q, r) = 0, (1.57)

and so, only involves six vertices of an elementary hexahedron, in a hexagonal

configuration.
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u

û

u̇

ũ

˜̇u

̂̃u

̂̇u ̂̇̃
u

p
q

r

Figure 1.7: The KP Lattice

Integrability is understood in terms of multi-dimensional consistency: The system can be

embedded in a consistent way in a multi-dimensional lattice with dimension greater than

three, with the equation imposed on the sub-lattices of the three-dimensional facets of a

four-dimensional hypercube. The system also possesses a Lax triplet [110], given by

ϕ̃ = (p− ũ)ϕ+ ψ, (1.58a)

ϕ̂ = (q − û)ϕ+ ψ, (1.58b)

ϕ̇ = (r − u̇)ϕ+ ψ, (1.58c)

where ψ is any function independent of the particular discrete direction. The LPKP

system follows as a result of the compatibility conditions of these equations. For example,

consider the compatibility between ϕ̂ and ϕ̃,

̂̃ϕ− ˜̂ϕ =
(
p− ̂̃u) ϕ̂− (q − ̂̃u) ϕ̃,

=
((
p− ̂̃u) (q − û)−

(
q − ̂̃u) (p− ũ)

)
ϕ+ (p− q)ψ = 0.

(1.59)
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Similarly, from the other compatibility, we have

˙̂ϕ− ̂̇ϕ =
((
q − ̂̇u) (r − u̇)−

(
r − ̂̇u) (q − û)

)
ϕ+ (q − r)ψ, (1.60a)

˜̇ϕ− ˙̃ϕ =
((
r − ̂̇u) (p− ũ)−

(
p− ˜̇u) (r − u̇)

)
ϕ+ (r − p)ψ. (1.60b)

(1.60c)

Now, by considering the overall compatibility, through the combination(̂̃ϕ− ˜̂ϕ)+
(

˙̂ϕ− ̂̇ϕ)+
(˜̇ϕ− ˙̃ϕ

)
= 0, (1.61)

the LPKP equation follows.

We establish an elliptic extension of the KP equation, in the lattice setting in Chapter 4,

and in the continuous setting in Chapter 5.

1.3.4 Classification of Integrable Discrete Equations of Octahedron

Type

As a generalisation of their classification of discrete integrable quad equations [10, 11],

Adler, Bobenko and Suris applied the property of multi-dimensional consistency to

obtain a classification of integrable three-dimensional equations of Discrete Hirota KP

or Octahedron type [9].

Definition 1.3.9 (Octahedron Type) An equation is of Octahedron Type if using our

earlier notation for lattice shifts, it can take the form

F
(
û, ũ, u̇, ̂̃u, ̂̇u, ˜̇u) = 0 (1.62)

Definition 1.3.10 (4D Consistency) An equation, F of Octahedron type is 4D

Consistent if it may be imposed in a consistent way on all cubic faces of a four-

dimensional hypercube.
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Under the assumptions:

• F is locally analytic in some domain, and F = 0 can be solved with respect to any

variable,

• F is irreducible, i.e. the solution of F = 0 in terms of any variable depends on all

other variables,

this classification results in the following equations:

̂̃uu̇− ˙̃uû+ ûũ = 0, (χ1)(
ũ− ̂̃u)(û− ̂̇u)(u̇− ˙̃u

)
(̂̃u− û)(̂̇u− u̇)( ˙̃u− ũ

) = −1, (χ2)

(
˙̃u− ̂̃u) ũ+

(̂̃u− ̂̇u) û+
(̂̇u− ˙̃u

)
u̇ = 0, (χ3)

˙̃u− ̂̃u
ũ

+
̂̃u− ̂̇u
û

+
̂̇u− ˙̃u

u̇
= 0, (χ4)

˙̃u− ̂̇u
u̇

= ̂̃u(1

û
− 1

ũ

)
. (χ5)

All these equations had previously been derived through the process of direct linearisation

[113, 35, 106, 107, 108].

1.4 From The Kadomtsev-Petviashvili Equation to the

Calogero-Moser and Ruijsenaars-Schneider Models

The Calogero-Moser model [34, 98] is a one-dimensional many-body system with long

range interactions. The equations of motion for the system in the elliptic case are given

by

ẍi = g
N∑

j=1:j 6=i

℘′(xi − xj), i = 1, . . . , N, (1.64)
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where ℘(x) is the Weierstrass elliptic ℘-function, with half-periods ω and ω′. The system

possess three degenerate cases:

• The Rational Case ℘(x)→ x−2 as 2ω →∞, 2ω′ → i∞.

• The Trigonometric Case ℘(x)→ (sinx)−2 − 1/3 as 2ω = π/2, 2ω′ → i∞.

• The Hyperbolic Case ℘(x)→ (sinhx)−2 + 1/3 as 2ω →∞, 2ω′ → iπ/2.

A connection between the dynamics of the poles of special solutions of integrable

nonlinear evolution equations and integrable systems of particles on the line was observed

in [38] and [13]. This observation was then exploited by Krichever [78] in finding a

connection between the pole solutions of the continuum KP equation and the Calogero-

Moser system. Based upon this result, Nijhoff and Pang [109] showed that the pole

solutions of a semi-discretised version of the KP equation is connected with a time-

discretised version of the Calogero-Moser model, where the semi-discretised KP equation

is given by

(p− q − û− ũ) ξ = (p− q + û− ũ)
(
u+ ̂̃u− û− ũ) , (1.65)

where ·̃ and ·̂ are shifts in the time and space directions, respectively, associated with

lattice parameters p and q, and ξ is a continuous variable. This identification gives the

equations of motion for the elliptic discrete-time Calogero-Moser model to be

ζ(xi−x̃i)+ζ(xi−xi˜ )+
N∑

j=1:j 6=i

(
ζ(xi − x̃j) + ζ(xi − xj˜ )− 2ζ(xi − xj)

)
, i ∈ N,

(1.66)

where ζ(·) is the Weierstrass zeta-function.

The Ruijsenaars-Schneider model is a relativistic variant of the Calogero-Moser model

introduced in [123]. It was discovered by considering the Poincaré Poisson algebra

associated with sine-Gordon solitons. The equations of motion are given by

q̈i =
∑
j 6=i

q̇iq̇jv(qi − qj), i ∈ N, (1.67)
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with “potential”

v(x) =
℘′(x)

℘(λ)− ℘(x)
. (1.68)

Nijhoff, Ragnisco and Kuznetsov [114] showed that the discrete-time Ruijsenaars-

Schneider model follows from a reduction of the fully discrete KP equation, with

three discrete variables, analogous to the reduction of the semi-discrete KP, used in the

Calogero-Moser case. The equations of motion are then contained in the system

p

p˜
N∏

j=1:i 6=j

σ(qi − qj + λ)

σ(qi − qj − λ)
=

N∏
j=1

σ(qi − q̃j)σ(qi − qj˜ + λ)

σ(qi − qj˜ )σ(qi − q̃j − λ)
, i ∈ N, (1.69)

where σ(·) is the Weierstrass sigma function.

More recently, the Lagrange formalisms of the Calogero-Moser and Ruijsenaars-

Schneider models, in both continuous and discrete cases, have been established as

examples of a Lagrange 1-form structure [139, 140] in the sense of the connection

established between Lagrangian multi-forms and multi-dimensional consistency [88].

In the conclusion, Chapter 6, we speculate that similar reductions of the elliptic extension

of the KP equation that we establish may result in the Double Elliptic (or DELL) model, a

generalisation of the Calogero-Moser and Ruijsenaars-Schneider models, elliptic in both

potential and momentum.

1.5 Overview

In this introduction, we have referred to numerous established, and some conjectured,

connections between various areas. These connections are summarised in figure 1.8,

with the established connections represented by solid arrows, and the conjectured ones

by dashed lines.



Chapter 1. Introduction 27

Euler Tops

Spherical

Trigonometry

Tetrahedron

Equations

Elliptic

Functions

DELL

Model

Ell-KP system

KP system

Particle

Models

Figure 1.8: Overview of the Relevant Areas

1.6 Outline

The outline of this thesis is as follows.

In Chapter 2, we begin by reviewing multi-dimensional vector products as a higher

dimensional analogue of the standard vector cross-products. We then review the basic

formulae of spherical trigonometry given in this introductory chapter, re-deriving these

formulae in terms of vector products, before deriving analogous formulae for the four-

dimensional hyperspherical case by utilising the multi-dimensional vector products,

following a similar method. We extend this method to produce analogous formulae for the

general n-dimensional case. The derivation of the link between spherical trigonometry

and the Jacobi elliptic functions is reviewed, and we generalise this to provide a

link between four-dimensional hyperspherical trigonometry and elliptic functions. The

chapter concludes with an introduction to the generalised Jacobi elliptic functions, as

studied in depth by Pawellek [116], to which we derive a connection with the four-

dimensional hyperspherical trigonometry.

Chapter 3 contains two examples of models where the connection between the generalised
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Jacobi elliptic functions and four-dimensional hyperspherical trigonometry is exploited.

The first example is that of a four-dimensional Euler top. We review a reformulation of

the mechanics of the Euler top in terms of Nambu mechanics by Minic and Tze [94],

and extend this to a four-dimensional generalisation, which we then solve in terms of the

generalised Jacobi functions, making a connection with the hyperspherical trigonometry.

The second example is the two-particle Double Elliptic (DELL) model, for which we

show that the generalised Jacobi elliptic functions are the natural parameterisation for the

Hamiltonian of the system.

Chapters 4 and 5 are concerned with an elliptic extension of the Kadomtsev-Petviashvili

(KP) equation, the results of which have been published and are available in [68]. In

chapter 4, we present a generalisation of the lattice potential Kadomtsev-Petviashvili

(LPKP) equation using the method of direct linearisation based on an elliptic Cauchy

kernel. This yields a (3 + 1)-dimensional system with one of the lattice shifts singled out.

The integrability of the lattice system is considered, presenting a Lax representation and

soliton solutions.

Chapter 5 contains the continuous analogue to the system derived in chapter 4, an elliptic

generalisation of the continuous KP system, following the same direct linearisation

method. The integrability of this system is also considered, with a Lax representation

presented. The chapter concludes with a comparison between this continuous system

and a similar elliptic generalisation of the KP equation found by Date, Jimbo and Miwa

[41]. We also show that the Lax representation that they provide for their system does not

correspond to the system that they give.

The thesis concludes with a recap of the new results, together with an outlook on the

future.
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Chapter 2

Hyperspherical Trigonometry and

Corresponding Elliptic Functions

2.1 Introduction

Spherical trigonometry has a long history as a part of mathematics, as introduced in

Chapter 1. However, for obvious reasons the trigonometry of hyperspheres in higher

dimensions was not studied so intently. McMahon produced a number of formulae

as generalisations of some of those from spherical trigonometry [93]. However, these

formulae are not in a particularly accessible form, and so cannot be easily applied

elsewhere. More recently, Sato considered the relationship between the dihedral angles of

spherical simplices and those of their polars [124]. There also exists a significant amount

of work looking into the ‘Law of Sines’, generalisations of the sine rule from the spherical

case [46]. Various formulae have also arisen in the the work of Derevnin, Mednykh and

Pashkevich in their work on spherical volumes [44, 43]. Recently, it has been shown by

Petrera and Suris the the cosine rule for spherical triangles and tetrahedra define integrable

systems [122]. Apart from McMahon’s work and the work on the Law of Sines, it is only

ever the four-dimensional hyperspherical case that is considered.
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As discussed earlier, it is well known that elliptic functions are related to spherical

trigonometry through their addition formulae [86, 84]. These functions are commonly

defined through the inversion of integrals, and they consequently obey differential

equations associated with certain algebraic curves. A great deal of research took place

in this area in the 19th century, comprising works by many of the great mathematicians,

including Euler [48], Jacobi [64], Legendre [86] and Frobenius [52]. As for higher-

dimensional hyperspherical trigonometry no such connection is known. It may be

expected that this link would be through higher genus elliptic curves, for example Abelian

functions[18]. However, this is not in fact the case. We show that instead the link is

through the ‘Generalised Jacobi Functions’ explicitly defined by Pawellek [116], and

building upon Jacobi’s work in this area [65], as an elliptic covering, dependent on two

distinct moduli.

In this chapter, we develop a complete set of formulae for hyperspherical trigonometry

and explore their link with elliptic functions. We establish a novel connection between

the generalised Jacobi elliptic functions and the formulae of hyperspherical trigonometry

in the four-dimensional case. We show that through this connection the basic addition

formulae of hyperspherical trigonometry lead to addition formulae for these generalised

Jacobi elliptic functions. We also derive corresponding angle addition formulae, as well

as four- and five-part formulae, for the four-dimensional hyperspherical case.

The outline of this chapter is as follows. In section 2.2, we review multi-dimensional

vector products as a higher-dimensional analogue of the standard cross-product of vectors,

which we need to obtain the formulae of hyperspherical trigonometry. In section 2.3 we

provide a summary of the well-known formulae of spherical trigonometry. We deduce

analogous formulae for the four-dimensional hyperspherical case, and using the same

principles, do the same for the general m-dimensional case. In section 2.4 we review the

link between spherical trigonometry and the Jacobi elliptic functions, and generalise this

to the link between four-dimensional hyperspherical trigonometry and elliptic functions.
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Section 2.5 is a brief introduction to the generalised Jacobi functions [116], complete

with a link between the formulae of hyperspherical trigonometry and these functions.

We conclude the chapter with angle addition, and four- and five-part formulae in four-

dimensional hyperspherical trigonometry.

2.2 Multi-dimensional Vector Products

The formulae involved in spherical trigonometry are dependent on the cross product

between vectors. The vector product a × b in three-dimensional Euclidean space is a

binary operation defined by

(a× b)i = det(a,b, ei), (i = 1, 2, 3), (2.1)

with e1, e2, e3 the standard unit vectors in the orthogonal basis. This product has the

properties:

• Anti-commutative: a× b = −b× a.

• Vector Triple Product: (a× b)× c = (a · c)b− (b · c)a = −

∣∣∣∣∣∣ a b

a · c b · c

∣∣∣∣∣∣ ,
from which it follows (a× b)× c− (a× c)× b = a× (b× c).

• Area of a Parallelogram: The modulus of the vector product, |a× b|, is equivalent

to the area of the parallelogram defined by these vectors, |a×b| = sin θ, with θ the

obtuse angle between them (0 ≤ θ ≤ π).

For higher-dimensional spherical trigonometry an m-ary operation between m vectors is

required. A natural vector product in four dimensions will therefore be a ternary vector

product, a × b × c, of three vectors in four-dimensional Euclidean space, defined in a

similar manner, by

(a× b× c) · d = det(a,b, c,d), (2.2)
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for all vectors d ∈ E4. More generally, this could be extended to an (m− 1)-dimensional

vector product as an m-ary operation of m− 1 vectors in m-dimensional Euclidean space

[53, 6], defined by the expression

(a1 × a2 × · · · × am−1) · am = det(a1, a2, . . . , am−1, am). (2.3)

It clearly follows from this definition that the multi-dimensional vector products are anti-

symmetric with respect to the interchangement of their constituent vectors. Furthermore,

these multi-dimensional vector products are perpendicular to any one of their constituent

vectors.

In fact, this construction of the multi-dimensional vector product follows directly from the

wedge product of the exterior algebra of a vector space V , denoted Λ(V ). This algebra is

a direct sum of spaces Λk(V ) spanned by forms of degree k [137, 32].

Definition 2.2.1 [67] The kth exterior power Λk(V ) of a finite-dimensional vector space

V is the dual space of the vector space of alternating multi-linear forms of degree k on

V . Elements of Λk(V ) are called k-forms.

Given vectors v1, . . . ,vk ∈ V the exterior (or wedge) product v1 ∧ · · · ∧ vk ∈ Λk(V ) is

the linear map to a field F which on an alternating multi-linear form M takes the value

(v1 ∧ · · · ∧ vk)(M) = M(v1, . . . ,vk). (2.4)

The wedge product between a k-form and an l-form gives a (k+l)-form [137]. Therefore,

taking the wedge product between (m− 1) 1-forms, i.e. vectors, v1, . . . ,vm−1 ∈ V ,

w = v1 ∧ · · · ∧ vm−1, (2.5)

gives an (m− 1)-form. The dimension of all such w is the dimension of Λm−1(V ),

dimΛm−1(V ) = m = dim(V ), (2.6)
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and as such, by duality we can identify w as a vector in V as they have the same

dimension. This means that in fact there is a natural pairing, an inner product between

v ∈ V and w ∈ Λm−1(V ), given again by the wedge product, w∧v ∈ Λm(V ). The result

of this product has dimension one, i.e. is a number, and so this is in fact the dot product.

If we let v,v1, . . . ,vn be column vectors in Rm, then

M(v,v1, . . . ,vm) = det(v,v1, . . . ,vm) (2.7)

is actually an alternating multi-linear form of degree m [67]. Therefore, we have

(v1 ∧ · · · ∧ vk)(M) = det(v,v1, . . . ,vm), (2.8)

which is equivalent to (2.3). As such, the identities for the multi-dimensional vector

product which follow may also be derived in terms of wedge products [137].

The following nested product identity involving five vectors holds for the triple vector

product in R4,

(a× b× c)× d× e = −

∣∣∣∣∣∣∣∣∣
a b c

(a · d) (b · d) (c · d)

(a · e) (b · e) (c · e)

∣∣∣∣∣∣∣∣∣ . (2.9)

This follows from the more general higher-dimensional analogue.

Proposition 2.2.2 (Nested Vector Product Identity) [6] For (2m − 1) vectors, ai ∈

Rm+1, i = 1, . . . , 2m− 1,

(a1 × a2 × · · · × am)× am+1 × · · · × a2m−1 =

−

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 . . . am

(a1 · am+1) (a2 · am+1) . . . (am · am+1)
...

... . . . ...

(a1 · a2m−1) (a2 · a2m−1) . . . (am · a2m−1)

∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.10)
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Proof

Consider the determinantal expression

det(a1, . . . , am+1) =
∑
i1

· · ·
∑
im+1

εi1...im+1(a1)i1 . . . (am+1)im+1 , (2.11)

where εi1...im+1 is the (m+ 1)-dimensional Levi-Civita symbol. From this it follows that

[(a1 × a2 × · · · × am)× am+1 × · · · × a2m−1]jm

=
∑
i1

· · ·
∑
im+1

∑
j1

· · ·
∑
jm

εj1i1...imεj1...jm+1

· (a1)i1 . . . (am)im(am+1)j2 . . . (a2m−1)jm .

(2.12)

Noting that the Levi-Civita symbol satisfies the following product rule

∑
j1

εj1i1...imεj1...jm+1 =

∣∣∣∣∣∣∣∣∣
δi1j2 . . . δi1jm+1

...
...

δimj2 . . . δimjm+1

∣∣∣∣∣∣∣∣∣ , (2.13)

the result follows. �

Vectorial addition identities for these multi-dimensional vector products follow from the

Plücker relations in projective geometry. The Plücker relations are identities involving

minors of non-square matrices which are the Plücker coordinates of corresponding

Grassmannians.

Proposition 2.2.3 (Plücker Relations) [130] For (2m− 2) vectors a1, a2, . . . , a2m−2 ∈

Rm−1,

(a1, am+1, . . . , a2m−2)(a2, . . . , am)− (a2, am+1, . . . , a2m−2)(a1, a3, . . . , am)

+ · · ·+ (−1)m−1(am, am+1, . . . , a2m−2)(a1, . . . , am−1) = 0,
(2.14)

where (a1, . . . ,am) represents the determinant of the matrix whose ith column is the

vector ai.
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Proof

[130] Consider m vectors, a1, a2, . . . , am in Rm−1. As these m vectors are in (m − 1)-

dimensional space they must be linearly dependent, and hence,∣∣∣∣∣∣ (a1) (a2) · · · (am)

a1 a2 · · · am

∣∣∣∣∣∣ = 0, (2.15)

where (ai) represents the column vector of the components of ai, i ∈ {1, 2, . . . ,m}. This

implies

a1(a2, . . . , am)− a2(a1, a3, . . . , am) + · · ·+ (−1)m−1am(a1, . . . , am−1) = 0, (2.16)

which in turn gives

(a1, am+1, . . . , a2m−2)(a2, . . . , am)− (a2, am+1, . . . , a2m−2)(a1, a3, . . . , am)

+ · · ·+ (−1)m−1(am, am+1, . . . , a2m−2)(a1, . . . , am−1) = 0,

(2.17)

for some arbitrary am+1, . . . , a2m−2 ∈ Rm−1, as required. �

Corollary 2.2.4 For vectors a1, . . . , a2m−2 ∈ Rm−1,

(a1 × · · · × am)× am+1 × · · · × a2m−1

+ am × (a1 × · · · × am−1 × am+1)× am+2 × · · · × a2m−1 + . . .

+ am × · · · × a2m−2 × (a1 × · · · × am−1 × a2m−1)

= a1 × · · · × am−1 × (am × · · · × a2m−1).

(2.18)

Proof

From the Plücker relations, (2.14), set a2m−2 = am = ei and sum over i. This implies

(a1 × am+1 × · · · × a2m−3) · (a2 × · · · × am−1)

− (a2 × am+1 × · · · × a2m−3) · (a1 × a3 · · · × am−1)

+ · · ·+ (−1)m(am−1 × am+1 × · · · × a2m−3) · (a1 × · · · × am−2) = 0,

(2.19)
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which, using (a1 × a2 × . . . am−2) · am−1 = −(a2 × · · · × am−1) · a1, implies

a1 × am+1 × · · · × a2m−4 × (a2 × · · · × am−1)

− a2 × am+1 × · · · × a2m−4 × (a1 × a3 × · · · × am−1)

+ · · ·+ (−1)mam−1 × am+1 × · · · × a2m−4 × (a1 × · · · × am−2) = 0.

(2.20)

Summing over (m− 2) copies, the result follows. �

Corollary 2.2.5 More specifically, for a,b, c,d, e ∈ R4,

(a×b×c)×d×e+(a×b×d)×e×c+(a×b×e)×c×d = a×b×(c×d×e). (2.21)

This identity will be particularly important in proving the various hyperspherical identities

in the four-dimensional case.

2.3 Hyperspherical Trigonometry

In this section we review the formulae for spherical trigonometry as given in chapter 1,

as a preparation for developing similar formulae in higher dimensions. We take a novel

approach, exploiting the higher-dimensional vector product introduced in section 2.2. We

first do this for the four-dimensional hyperspherical case, before extending this to the

general m-dimensional case, providing a complete new set of formulae.

2.3.1 Spherical Trigonometry

We review the derivation of the basic formulae of spherical trigonometry, re-deriving

the formulae in terms of vector products. Consider again a big spherical triangle on the

surface of a 2-sphere of unit radius embedded in three-dimensional Euclidean space,with
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the centre of the sphere to be the origin in R3 and denote the position vectors of the three

vertices of the spherical triangle by n1,n2 and n3, with the angles, θij , between them,

corresponding to the edges, being defined by

ni · nj ≡ cos θij, (2.22)

for i, j = 1, 2, 3. Introduce the vectors

uij ≡
ni × nj
|ni × nj|

, (2.23)

and define the spherical angles, αj , between them by

uij · ujk ≡ − cosαj. (2.24)

nk

nj

ni

θjk

αi

θik

αj

θij

αk

Figure 2.1: A spherical triangle

We may now define a polar triangle in terms of vectors.
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Definition 2.3.1 (Polar Triangle) The spherical triangle defined by the vectors uij , uki,

ujk is called the polar of the spherical triangle defined by the vectors ni, nj , nk.

By considering various relations for the scalar and vector products between the polar

vectors uij , we can define a number of important relations between the angles of a

spherical triangle.

Proposition 2.3.2 (Cosine Rule)

cosαj =
cos θik − cos θij cos θjk

sin θij sin θjk
, (2.25)

for all i, j, k = 1, 2, 3.

Proof

Consider the scalar product,

uij · ujk =
(ni × nj) · (nj × nk)
|ni × nj| |nj × nk|

,

=
(ni · nj)(nj · nk)− (ni · nk)(nj · nj)

sin θij sin θjk
,

=
cos θij cos θjk − cos θik

sin θij sin θjk
.

(2.26)

Hence, comparing with (2.24), the cosine rule follows. �

Definition 2.3.3 The generalised sine function of three variables, sin(θij, θjk, θik),is

defined by

sin(θij, θjk, θik) =
√

1− cos2 θij − cos2 θjk − cos2 θik + 2 cos θjk cos θij cos θik,

=

∣∣∣∣∣∣∣∣∣
1 cos θij cos θik

cos θij 1 cos θjk

cos θik cos θjk 1

∣∣∣∣∣∣∣∣∣

1
2

,
(2.27)
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with (0 ≤ θij, θik, θjk ≤ π). Note that the restrictions for a spherical triangle, that each

side is less than a semi-circle and each angle less than π, ensure that the generalised sine

function is always real and positive.

This sine function is equivalent to the volume of a parallelepiped with edges ni, nj and

nk, given by

Volume = |ni · (nj × nk)| = sin(θij, θik, θjk). (2.28)

Proposition 2.3.4 (Sine Rule)

sinαi
sin θjk

=
sinαj
sin θik

=
sinαk
sin θij

=
sin(θij, θjk, θik)

sin θij sin θjk sin θik
= k, (2.29)

where k is a constant.

Proof

Consider the ratio
|uij × ujk|
|ni × nk|

=
sinαj
sin θik

. (2.30)

Now, note the vector product

uij × ujk =
(ni × nj)× (nj × nk)
|ni × nj||nj × nk|

=
(ni · (nj × nk)) nj

sin θij sin θjk
. (2.31)

This implies

|uij × ujk| =
∣∣∣∣ni · (nj × nk)

sin θij sin θjk

∣∣∣∣ =
sin(θij, θik, θjk)

sin θij sin θjk
, (2.32)

and hence, the sine rule follows. �

Proposition 2.3.5 (Polar Cosine Rule)

cos θjk =
cosαj cosαk + cosαi

sinαj sinαk
, (2.33)

for all i, j, k = 1, 2, 3.
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Proof

Consider the product
(uij × ujk) · (ujk × uik)
|uij × ujk||ujk × uik|

. (2.34)

This product can be calculated in two ways. First,

(uij × ujk) · (ujk × uik)
|uij × ujk||ujk × uik|

=
(uij · ujk)(ujk · uik)− (ujk · ujk)(uij · uik)

sinαj sinαk
,

=
− cosαj cosαk − cosαi

sinαj sinαk
,

(2.35)

and second, using (2.31),

(uij × ujk) · (ujk × uik)
|uij × ujk||ujk × uik|

=
1

sinαj sinαk

(
ni · (nj × nk)
sin θij sin θjk

nj
)
·
(

ni · (nk × nj)
sin θik sin θjk

nk
)
,

= − sin2(θij, θik, θjk)

sinαj sinαk sin θij sin2 θjk sin θik
cos θjk.

(2.36)

Reducing this using the sine rule and equating with the previous result gives the polar

cosine rule. �

Note that, by now considering

k2 =
sin2 αi
sin2 θjk

=
sin2 αi

1− cos2 θjk
, (2.37)

and substituting in the polar cosine rule,

k2 =
sin2 αi

1−
(

cosαi+cosαj cosαk

sinαj sinαk

)2 ,
=

sin2 αi sin
2 αj sin2 αk

1− cos2 αi − cos2 αj − cos2 αk − 2 cosαi cosαj cosαk
,

(2.38)

the constant k may also be written in terms of the spherical angles, so that the sine rule

now becomes
sinαi
sin θjk

=
sinαj
sin θik

=
sinαk
sin θij

=
sinαi sinαj sinαk√

1− cos2 αi − cos2 αj − cos2 αk − 2 cosαi cosαj cosαk
.

(2.39)
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We will use both forms of the sine rule later when discussing the link between spherical

trigonometry and the Jacobi elliptic functions.

2.3.2 Hyperspherical Trigonometry in Four-Dimensional Euclidean

Space

θik

α
(ijk)
k

nj

φik

nl
θkl θjk

nk

ni

θijθil

α
(ijk)
i

Figure 2.2: A hyperspherical tetrahedron

We now extend these principles to the four-dimensional hyperspherical case. Consider a

3-sphere embedded in four-dimensional Euclidean space, R4. In this case, we have four

unit vectors, ni, i = 1, . . . , 4 pointing to the four vertices of a hyperspherical tetrahedron.
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The angles between these unit vectors, θij , are defined, in the same way as for the spherical

case, by

ni · nj ≡ cos θij, (2.40)

whereas now we must also define orthogonal vectors uijk to each hyperplane [i, j, k]

(defined by ni, nj , nk). This is done using the ternary cross product,

uijk ≡
ni × nj × nk
|ni × nj × nk|

. (2.41)

The four vectors u123, u124, u134, u234 define the polar of the hyperspherical tetrahedron,

between which we define dihedral angles φjk by

uijk · ujkl ≡ − cosφjk. (2.42)

We also have

|ni × nj × nk| = sin(θij, θjk, θik), (2.43)

together with

|uijk × ujkl × ukli| = sin(φjk, φik, φkl). (2.44)

The four faces of the hyperspherical tetrahedron are spherical triangles, with the various

sine and cosine rules for the spherical case still holding true for these. For ease of notation,

we now label the angles in the faces of the spherical triangles α(ijk)
i to indicate which

triangle is being considered.

In addition to the previous spherical relations, there are now various relations involving

the dihedral angles, φij , which connect together the various faces of the hyperspherical

tetrahedron. By taking various relations between the scalar and vector products for the

vectors uijk, we can again derive a number of relations.
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Proposition 2.3.6 (Cosine Rule)

cosφjk =

−

∣∣∣∣∣∣∣∣∣
cos θij cos θik cos θil

1 cos θjk cos θjl

cos θjk 1 cos θkl

∣∣∣∣∣∣∣∣∣
sin(θij, θik, θjk) sin(θjk, θjl, θkl)

. (2.45)

for all i, j, k, l = 1, 2, 3, 4.

Proof

From the computation

(ni × nj × nk) · (nj × nk × nl) = −(nj × nk × (nj × nk × nl)) · ni,

=

∣∣∣∣∣∣∣∣∣
ni · nj ni · nk ni · nl
nj · nj nj · nk nj · nl
nk · nj nk · nk nk · nl

∣∣∣∣∣∣∣∣∣ ,
(2.46)

we find that for the following inner product (for all i, j, k, l = 1, 2, 3, 4) we have

uijk · ujkl =
(ni × nj × nk) · (nj × nk × nl)
|ni × nj × nk| |nj × nk × nl|

,

=

∣∣∣∣∣∣∣∣∣
ni · nj ni · nk ni · nl
nj · nj nj · nk nj · nl
nk · nj nk · nk nk · nl

∣∣∣∣∣∣∣∣∣
sin(θij, θik, θjk) sin(θjk, θjl, θkl)

.

(2.47)

Hence, the cosine rule follows. �

We now need to extend the definition of the triple sine function to the four-dimensional

case, to give a further generalisation of the sine function dependent on six variables.

Definition 2.3.7 The generalised sine function of six variables,

sin(θij, θik, θil, θjk, θjl, θkl), is the four-dimensional analogue of the triple sine function,
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and is given by

sin(θij, θik, θil, θjk, θjl, θkl) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 cos θij cos θik cos θil

cos θij 1 cos θjk cos θjl

cos θik cos θjk 1 cos θkl

cos θil cos θjl cos θkl 1

∣∣∣∣∣∣∣∣∣∣∣∣

1
2

, (2.48)

with 0 ≤ θij, θik, θil, θjk, θjl, θkl ≤ π. Note that the restrictions on being a spherical

tetrahedron ensure that the generalised sine function is always real and positive.

This sine function is equivalent to the volume of a four-dimensional parallelotope with

edges ni, nj , nk and nl, given by

Volume = |ni · (nj × nk × nl)| = sin(θij, θik, θil, θjk, θjl, θkl). (2.49)

Proposition 2.3.8 (Sine Rule)

sin(φij, φik, φil)

sin(θjk, θjl, θkl)
=

sin(φij, φjk, φjl)

sin(θik, θil, θkl)
=

sin(φik, φjk, φkl)

sin(θij, θil, θjl)
=

sin(φil, φjl, φkl)

sin(θij, θik, θjk)
,

=
sin2(θij, θik, θil, θjk, θjl, θkl)

sin(θij, θik, θjk) sin(θij, θil, θjl) sin(θik, θil, θkl) sin(θjk, θjl, θkl)
= kH ,

(2.50)

where kH is constant.

Proof

Consider the triple product

uijk × ujkl × ukli =
(ni × nj × nk)× (nj × nk × nl)× (nk × nl × ni)
|ni × nj × nk||nj × nk × nl||nk × nl × ni|

,

=
(ni · (nj × nk × nl))2

sin(θij, θik, θjk) sin(θjk, θjl, θkl) sin(θkl, θki, θli)
nk.

(2.51)

This implies its modulus is

|uijk × ujkl × ukli| =
(ni · (nj × nk × nl))2

sin(θij, θik, θjk) sin(θjk, θjl, θkl) sin(θkl, θki, θli)
,

=
sin2(θij, θik, θil, θjk, θjl, θkl)

sin(θij, θik, θjk) sin(θjk, θjl, θkl) sin(θkl, θki, θli)
.

(2.52)



Chapter 2. Hyperspherical Trigonometry and Corresponding Elliptic Functions 45

From this we have that the ratio

|uijk × ujkl × ukli|
|ni × nj × nl|

=
sin(φik, φjk, φkl)

sin(θij, θil, θjl)
(2.53)

is symmetric under the interchange of the labels i, j, k, l. Thus, it follows that

sin(φik, φjk, φkl)

sin(θij, θil, θjl)

=
sin2(θij, θik, θil, θjk, θjl, θkl)

sin(θij, θik, θjk) sin(θjk, θjl, θkl) sin(θkl, θki, θli) sin(θij, θil, θjl)
,

(2.54)

and hence, the hyperspherical sine rule follows. �

There also exists a simpler sine relationship between the standard sine functions of the

central angles and the sine of the dihedral angles.

Proposition 2.3.9

sinφkl =
sin(θij, θik, θil, θjk, θjl, θkl)

sin(θik, θil, θkl) sin(θjk, θjl, θkl)
sin θkl. (2.55)

In order to prove this proposition, we require a determinantal identity, attributed to

Desnanot for the n ≤ 6 case [45], and to Jacobi in the general case [64]. The Desnanot-

Jacobi identity is also sometimes known as the Lewis Carroll formula of Dodgson

Condensation [31].

Theorem 2.3.10 (Desnanot-Jacobi Identity) [115] Let M be a n × n square matrix,

and denote by Mp
i the matrix obtained by removing both the i-th row and p-th column.

Similarly, let Mp,q
i,j denote the matrix obtained by deleting the i-th and j-th rows, and the

p-th and q-th columns, respectively, with 1 ≤ i, j, p, q ≤ n. Then,

det (M) det
(
M1,n

1,n

)
= det

(
M1

1

)
det (Mn

n )− det (Mn
1 ) det

(
M1

n

)
. (2.56)
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Diagrammatically, this is represented as∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ .
(2.57)

Proof
Proof of Proposition 2.3.9

Apply the Desnanot-Jacobi determinant identity to sin4(θij, θik, θil, θjk, θjl, θkl),∣∣∣∣∣∣∣∣∣∣∣∣

1 cos θij cos θik cos θjk

cos θij 1 cos θjk cos θjl

cos θik cos θjk 1 cos θkl

cos θil cos θjl cos θkl 1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ 1 cos θkl

cos θkl 1

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
1 cos θjk cos θjl

cos θjk 1 cos θkl

cos θjl cos θkl 1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 cos θik cos θjk

cos θik 1 cos θkl

cos θil cos θkl 1

∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣
cos θij cos θjk cos θjl

cos θik 1 cos θkl

cos θil cos θkl 1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
cos θij cos θik cos θjk

cos θjk 1 cos θkl

cos θjl cos θkl 1

∣∣∣∣∣∣∣∣∣ .

(2.58)

The result follows directly. �

From this proposition, it hence follows that the hyperspherical sine rule may be rewritten

as
sinφij
sin θij

sinφkl
sin θkl

=
sinφik
sin θik

sinφjl
sin θjl

=
sinφil
sin θil

sinφjk
sin θjk

= kH . (2.59)

The constant kH may also be neatly expressed in terms of cosines [44]. For this we need

the polar cosine rule.
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Proposition 2.3.11 (Polar Cosine Rule)

cos θkl =

∣∣∣∣∣∣∣∣∣
− cosφjk cosφik − cosφij

1 − cosφkl cosφjl

− cosφkl 1 − cosφil

∣∣∣∣∣∣∣∣∣
sin(φik, φjk, φkl) sin(φil, φjl, φkl)

. (2.60)

for all i, j, k, l = 1, 2, 3, 4.

Proof

Consider the product

(uijk × ujkl × ukli) · (ujkl × ukli × ulij)
|uijk × ujkl × ukli||ujkl × ukli × ulij|

=

∣∣∣∣∣∣∣∣∣
uijk · ujkl uijk · ukli uijk · ulij
ujkl · ujkl ujkl · ukli ujkl · ulij
ukli · ujkl ukli · ukli ukli · ulij

∣∣∣∣∣∣∣∣∣
sin(φik, φjk, φkl) sin(φil, φjl, φkl)

,

=

∣∣∣∣∣∣∣∣∣
− cosφjk cosφik − cosφij

1 − cosφkl cosφjl

− cosφkl 1 − cosφil

∣∣∣∣∣∣∣∣∣
sin(φik, φjk, φkl) sin(φil, φjl, φkl)

.

(2.61)

On the other hand, using (2.51), we have

uijk × ujkl × ukli =
(ni · (nj × nk × nl))2

sin(θij, θik, θjk) sin(θjk, θjl, θkl) sin(θkl, θki, θli)
nk. (2.62)

Reducing this using the sine rule and equating the two results gives the hyperspherical

polar cosine rule. �
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Proposition 2.3.12
cosφij cosφkl − cosφik cosφjl
cos θij cos θkl − cos θik cos θjl

=
cosφik cosφjl − cosφil cosφjk
cos θik cos θjl − cos θil cos θjk

,

=
cosφil cosφjk − cosφij cosφkl
cos θil cos θjk − cos θij cos θkl

,

= kH .

(2.63)

Proof

Consider the numerator

cosφij cosφkl − cosφik cosφjl, (2.64)

and rewrite this in terms of the central angles using the cosine rule, (2.45), to obtain

cosφij cosφkl − cosφik cosφjl =∣∣∣∣∣∣∣∣∣
cos θik cos θjk cos θkl

1 cos θij cos θil

cos θij 1 cos θjl

∣∣∣∣∣∣∣∣∣
sin(θij, θik, θjk) sin(θij, θil, θjl)

∣∣∣∣∣∣∣∣∣
cos θik cos θil cos θij

1 cos θkl cos θjk

cos θkl 1 cos θjl

∣∣∣∣∣∣∣∣∣
sin(θik, θil, θkl) sin(θjk, θjl, θkl)

−

∣∣∣∣∣∣∣∣∣
cos θij cos θjk cos θjl

1 cos θik cos θil

cos θik 1 cos θkl

∣∣∣∣∣∣∣∣∣
sin(θij, θik, θjk) sin(θik, θil, θjk)

∣∣∣∣∣∣∣∣∣
cos θij cos θil cos θik

1 cos θjl cos θjk

cos θjl 1 cos θkl

∣∣∣∣∣∣∣∣∣
sin(θij, θil, θjl) sin(θjk, θjl, θkl)

.

(2.65)

Multiplying this out and factorising, this reduces to

cosφij cosφkl − cosφik cosφjl = (cos θij cos θkl − cos θik cos θjl)kH , (2.66)

from which the result follows. �

Furthermore, in four dimensions there are also relations involving the spherical angles

α
(j··)
j at a common vertex, nj , of the tetrahedron involving the different spherical triangles.

Proposition 2.3.13 (Vertex Cosine Rule)

cosφjk =
cosα

(ijk)
j cosα

(jkl)
j − cosα

(ijl)
j

sinα
(ijk)
j sinα

(jkl)
j

. (2.67)
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Proof

Expanding out the cosine rule (2.45) and applying the sine rule (2.50) to the denominator

gives

cosφjk =(cos θij cos θjl + cos θik cos θkl − cos θij cos θjk cos θkl

− cos θik cos θjk cos θjl − cos θil + cos θil cos2 θjk)

/sinα
(ijk)
j sinα

(jkl)
j sin θij sin2 θjk sin θjl.

(2.68)

This can be factorised as

cosφjk =

(
cos θik−cos θij cos θjk

sin θij sin θjk

)(
cos θkl−cos θjk cos θjl

sin θjk sin θjl

)
−
(

cos θil−cos θij cos θjl
sin θij sin θjl

)
sinα

(ijk)
j sinα

(jkl)
j

. (2.69)

Applying (2.25) the result follows. �

This set of relations implies, in turn, corresponding vertex polar cosine relations,

expressing the spherical angles at a vertex in terms of the dihedral angles as follows:

cosα
(ijl)
j =

cosφjk + cosφij cosφjl
sinφij sinφjl

, (2.70)

together with a corresponding sine rule of the form

sinφjk

sinα
(ijl)
j

=
sinφjl

sinα
(ijk)
j

=
sinφij

sinα
(jkl)
j

=
sin(α

(ijk)
j , α

(ijl)
j , α

(jkl)
j )

sinα
(ijk)
j sinα

(ijl)
j sinα

(jkl)
j

, (2.71)

for distinct i, j, k, l ∈ {1, 2, 3, 4}. Note the similarities between these formulae and those

of the spherical case.

We also have another new formula which again follows from the Desnanot-Jacobi

identity, which proves particularly useful when providing the link between hyperspherical

trigonometry and elliptic functions given later.

Proposition 2.3.14

sin2(θij, θik, θil, θjk, θjl, θkl) cosα
(jkl)
l sin θjl sin θkl

sin2(θjk, θjl, θkl)

= sin(θij, θil, θjl) sin(θik, θil, θkl)× (cosφjl cosφkl − cosφil) .

(2.72)
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Proof

Consider the Desnanot-Jacobi determinantal identity applied to

sin4(θij, θik, θil, θjk, θjl, θkl). This yields

∣∣∣∣∣∣ cos θjk cos θjl

cos θkl 1

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

1 cos θij cos θik cos θil

cos θij 1 cos θjk cos θjl

cos θik cos θjk 1 cos θkl

cos θil cos θjl cos θkl 1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 cos θjk cos θjl

cos θjk 1 cos θkl

cos θjl cos θkl 1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 cos θik cos θil

cos θij cos θjk cos θjl

cos θil cos θkl 1

∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣
cos θij cos θik cos θil

1 cos θjk cos θjl

cos θjl cos θkl 1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
cos θij cos θjk cos θjl

cos θik 1 cos θkl

cos θil cos θkl 1

∣∣∣∣∣∣∣∣∣ ,

(2.73)

from which, the result follows. �

2.3.3 m-Dimensional Hyperspherical Trigonometry

We now generalise this work to provide a both new and complete set of formulae

for m-dimensional hyperspherical trigonometry. Consider an (m − 1)-dimensional

hyperspherical simplex on the surface of an m-dimensional hypersphere, an (m − 1)-

sphere. Let the m vectors, n1,n2, . . . ,nm be the position vectors of the m vertices of this

simplex, such that the edges of this simplex are given by θ[1]ijik , with

nij · nik ≡ cos θ
[1]
ijik
, (2.74)

for ij, ik ∈ {1, 2, . . . ,m}. Now define orthogonal vectors ui1i2...im−1 using the (m−1)-ary

vector product,

ui1i2...im−1 ≡
ni1 × ni2 × · · · × nim−1

|ni1 × ni2 × · · · × nim−1|
. (2.75)



Chapter 2. Hyperspherical Trigonometry and Corresponding Elliptic Functions 51

Define the angles between these orthogonal vectors by

ui1i2...im−1 · ui2i3...im ≡ − cos θ
[m−1](i1...im)
i2...im−1

. (2.76)

Note that the superscript (i1 . . . im) denotes the simplex that is being considered. In the

m-dimensional case this superscript may be omitted. We also have

|ni1 × ni2 × · · · × nim−1| = sin
(

Θ
[1]
i1···m−1

)
, (2.77)

where sin
(

Θ
[1]
i1···m−1

)
is the generalised sine function of m(m− 1)/2 variables,

sin
(

Θ
[1]
i1···m−1

)
= sin

({
θ
[1]
ijik

∣∣∣∣ij < ik, ij, ik = 1, . . . ,m− 1

})
, (2.78)

together with

|ui1...im−1 × ui2...im × ui3...imi1 × · · · × uim−1imi1...im−3| = sin
(

Θ
[m−1]
i1...im

)
, (2.79)

where similarly, sin
(

Θ
[m−1]
i1...im

)
is the multiple sine of all of the angles between each pair

of orthogonal vectors. There follow a number of identities, similar to those for the lower-

dimensional cases.

Proposition 2.3.15 (Cosine Rule)

cos θ
[m−1]
i2...im−1

= −

∣∣∣∣∣∣∣∣∣
cos θ

[1]
i1i2

. . . cos θ
[1]
i1im

... . . . ...

cos θ
[1]
im−1i2

. . . cos θ
[1]
im−1im

∣∣∣∣∣∣∣∣∣
sin
(

Θ
[1]
i1...im−1

)
sin
(

Θ
[1]
i2...im

) . (2.80)

Proof

Consider the scalar product

ui1...im−1 · ui2...im =
(ni1 × · · · × nim−1) · (ni2 × · · · × nim)

|ni1 × · · · × nim−1||ni2 × · · · × nim|
,

=

∣∣∣∣∣∣∣∣∣
cos θ

[1]
i1i2

. . . cos θ
[1]
i1im

... . . . ...

cos θ
[1]
im−1i2

. . . cos θ
[1]
im−1im

∣∣∣∣∣∣∣∣∣
sin
(

Θ
[1]
i1...im−1

)
sin
(

Θ
[1]
i2...im

) .

(2.81)
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Hence the cosine rule follows. �

Proposition 2.3.16 (Sine Rule)

sin
(

Θ
[1](im−1)
i1...im

)
sin
(

Θ
[m−1]
imi1...im−2

) ==
sinm−2

(
Θ

[1]
i1...im

)
sin
(

Θ
[m−1]
i1...im−1

)
. . . sin

(
Θ

[m−1]
im−1imi1...im−3

) = k, (2.82)

where k is constant, and

sin
(

Θ
[1](im−1)
i1...im

)
= sin

({
θ
[1]
j1...jm−1

∣∣∣∣im−1 = jk for some k ∈ {1, . . . ,m− 1}
})

. (2.83)

Proof

Consider the ratio

|ui1...im−1 × ui2...im × · · · × uim−1imi1...im−3|
|uimi1...im−2|

=
sin
(

Θ
[1](im−1)
i1...im

)
sin
(

Θ
[m−1]
imi1...im−2

) . (2.84)

However, using the nested multi-dimensional vector product identity, (2.10),

(ui1...im−1 × ui2...im × · · · × uim−1imi1...im−3)

=
(ni1 × · · · × nim−1)× · · · × (nim−1 × nim × nim−1 · · · × nim−3)

|ni1 × · · · × nim−1 | . . . |nim−1 × nim × nim−1 · · · × nim−3|
,

=
(ni1 · (ni2 × · · · × nim))m−2nim−1

sin
(

Θ
[m−1]
i1...im−1

)
. . . sin

(
Θ

[m−1]
im−1imi1...im−3

) .
(2.85)

Hence,

|ui1...im−1 × ui2...im × · · · × uim−1imi1...im−3|

=
(ni1 · (ni2 × · · · × nim))m−2

sin(Θ
[m−1]
i1...im−1

) . . . sin
(

Θ
[m−1]
im−1imi1...im−3

) ,
=

sinm−2
(

Θ
[1]
i1...im

)
sin
(

Θ
[m−1]
i1...im−1

)
. . . sin

(
Θ

[m−1]
im−1imi1...im−3

) ,
(2.86)

and so the sine rule follows. �



Chapter 2. Hyperspherical Trigonometry and Corresponding Elliptic Functions 53

Proposition 2.3.17 (Polar Cosine Rule)

cos θ
[1]
im−1im

= det(X), (2.87)

where

(X)jk =


− 1;

− cos θ
[m−1]
i1...ij−1ij+1...ik−2ik...im

;

(−1)j+k+1 cos θ
[m−1]
i1...ij−1ij+1...ik−2ik...im

;

j = k − 1,

j 6= k − 1, m odd,

j 6= k − 1, m even.

(2.88)

Proof

Consider the product

(ui1...im−1 × ui2...im × ui3...imi1 × · · · × uim−1imi1...im−3) · (ui2...im × · · · × uimi1...im−2)

= det(X),

(2.89)

where X is as defined previously. Alternatively, recalling (2.85) this product may be

written as

(ui1...im−1 × ui2...im × ui3...imi1 × · · · × uim−1imi1...im−3) · (ui2...im × · · · × uimi1...im−2),

=

 (ni1 · (ni2 × · · · × nim))m−2nim−1

sin
(

Θ
[m−1]
i1...im−1

)
. . . sin

(
Θ

[m−1]
im−1imi1...im−3

)


·

(ni2 · (ni3 × · · · × nim × nim+1))
m−2nim

sin
(

Θ
[m−1]
i2...im

)
. . . sin

(
Θ

[m−1]
imi1...im−2

)
 ,

=
sin2m−4(Θ

[1]
i1...im

) cos θ
[1]
im−1im

sin(Θ
[m−1]
i1...im−1

) sin2
(

Θ
[m−1]
i2...im

)
. . . sin2

(
Θ

[m−1]
im−1imi1...im−3

)
sin
(

Θ
[m−1]
imi1...im−2

)
(2.90)

from which, simplifying using the sine rule, the polar cosine rule then follows. �

Note that the facets of the (m−1)-dimensional simplex are (m−2)-dimensional simplices

with the various cosine and sine rules still holding true in these facets. The same applies
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to these (m − 2)-dimensional facets, and so on, forming a complete hierarchy of cosine

and sine rules between the angles for the j-dimensional facets, and those for the (j − 1)-

dimensional facets. So, in terms of the cosine rule we have

cos θ
[j]
i2...ij−1

=

−

∣∣∣∣∣∣ cos θ
[j−1](i1...ij−1)
i2...ij−1

cos θ
[j−1](i1...ij−2ij)
i2...ij−1

1 cos θ
[j−1](i2...ij)
i2...ij−1

∣∣∣∣∣∣
sin θ

[j−1](i1...ij−1)
i2...ij−1

sin θ
[j−1](i2...ij)
i2...ij−1

. (2.91)

This can be extended so that the angles of any facet can be expressed in terms of those for

facets of any other dimensional to give a cosine rule of the form

cos θ
[j]
i2...ij−1

=

−

∣∣∣∣∣∣∣∣∣∣∣∣

cos θ
[k](i1...ikik+1)
i2...ik

cos θ
[k](i1...ikik+2)
i2...ik

. . . cos θ
[k](i1...ikij)
i2...ik

cos θ
[k](i2...ikik+1)
i2...ik+1ik+1

cos θ
[k](i2...ik+2)
i2...ik

. . . cos θ
[k](i2...ik+1ij)
i2...ik

...
... . . . ...

cos θ
[k](ij−1i2...ik+1)
i2...ik

cos θ
[k](ij−1i2...ikik+2)
i2...ik

. . . cos θ
[k](ij−1i2...ikij)
i2...ik

∣∣∣∣∣∣∣∣∣∣∣∣
sin
(

Θ
[k](i1...ik)
i2...ik

)
sin
(

Θ
[k](i2...ik+1)
i2...ik

) .

(2.92)

From these cosine rules, there arise corresponding sine rules. Specifically, note that

sin θ
[j]
i2...ij

= kj−1 sin θ
[j−1]
i2...ij−1

, (2.93)

where

kj−1 =
sin
(
θ
[j−1](i1...ij)
i2...ij−1

, θ
[j−1](i2...ij+1)
i2...ij−1

, θ
[j−1](i1...ij−1ij+1)
i2...ij−1

)
sin
(
θ
[j−1](i1...ij)
i2...ij−1

)
sin
(
θ
[j−1](i2...ij+1)
i2...ij−1

)
sin
(
θ
[j−1](i1...ij−1ij+1)
i2...ij−1

) , (2.94)

with kj−1 being constant. Hence, from this, it follows that a full hierarchy of intertwined

sine rules exists between the angles of any two facets pf different dimensions.
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2.4 Hyperspherical Trigonometry and Elliptic Functions

2.4.1 Link between Spherical Trigonometry and the Jacobi Elliptic

Functions

There exists a well-known link between the formulae of spherical trigonometry and the

Jacobi elliptic functions through their addition formulae [86, 84]. Here, we correct

a derivation given by Irwin [62], taking as a starting point the sine rule for spherical

trigonometry,
sinαi
sin θjk

=
sinαj
sin θik

=
sinαk
sin θij

= k, (2.95)

where

k =
sin(θij, θik, θjk)

sin θij sin θik sin θjk
, (2.96)

and considering the expression

W = k2 sin2 θij sin2 θik sin2 θjk − sin2(θij, θik, θjk). (2.97)

It follows that the derivative of W with respect to one of the angles, θij , is

∂W

∂θij
= −2 sin θij(cos θij − cos θik cos θjk − k2 cos θij sin2 θik sin2 θjk),

= 2 sin θij sin θik sin θjk cosαi cosαj.

(2.98)

If the radial angles θij , θik and θjk are all varied in such a way as to keep k constant, then

since this is equivalent to the condition W = 0, this implies

cosαi cosαjdθij + cosαi cosαkdθik + cosαj cosαkdθjk = 0, (2.99)

which is of course equivalent to

dθij
cosαk

+
dθjk

cosαi
+

dθik
cosαj

= 0. (2.100)

However, the sine rule gives

cosαi = ±
√

1− k2 sin2 θjk, etc., (2.101)
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and so, as the signs of θij , θik and θjk can be chosen arbitrarily, without loss of generality

they can all be chosen to be positive, giving

dθij√
1− k2 sin2 θij

+
dθik√

1− k2 sin2 θik
+

dθjk√
1− k2 sin2 θjk

= 0 (2.102)

Writing θij = am(ak), with

ak =

∫ am(ak)

0

dt√
1− k2 sin2 t

, (2.103)

and similarly, θik = am(aj) and θjk = am(ai), the integral of the differential relation,

(2.102), implies that

ai + aj + ak = γ, (2.104)

with γ fixed by the triangle considered, together with

sin θij = sin(am(ak)) = sn(ak),

sin θik = sin(am(aj)) = sn(aj),

sin θjk = sin(am(ai)) = sn(ai).

(2.105)

Therefore, having introduced uniformising variables ai, i = 1, 2, 3, associated with the

three spherical angles θjk, the various spherical trigonometric functions can be identified

with the Jacobi elliptic functions by using the identifications

sin(θjk) = sn(ai; k) ⇐⇒ sinαi ≡ k sn(ai; k), (2.106)

in which k is the modulus of the elliptic function given by (2.96). These identifications,

through the usual relations between the three Jacobi elliptic functions sn, cn and dn,

cn2(u; k) + sn2(u; k) = 1, dn2(u; k) + k2sn2(u; k) = 1, (2.107)

lead to

cos θjk = cn(ai; k), and cosαi = dn(ai; k), (2.108)
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for i, j, k cyclic. Addition formulae follow readily from the various spherical

trigonometric relations. In particular, the cosine and polar cosine rules yield the relations

cn(ai) = cn(aj)cn(ak) + sn(aj)sn(ak)dn(ai),

dn(ai) = −dn(aj)dn(ak) + k2sn(aj)sn(ak)cn(ai),
(2.109)

respectively. Solving these relations as functions of ai gives

cn(ai) =
dn(aj)dn(ak)sn(aj)sn(ak)− cn(aj)cn(ak)

1− k2sn2(aj)sn2(ak)
, (2.110)

dn(ai) =
dn(aj)dn(ak)− k2cn(aj)cn(ak)sn(aj)sn(ak)

1− k2sn2(aj)sn2(ak)
, (2.111)

the addition formulae for the Jacobi elliptic functions with

cn(ai) = −cn(aj + ak),

dn(ai) = dn(aj + ak).
(2.112)

The Jacobi elliptic functions are periodic with half periods K(k) and K ′(k), meaning that

cn(aj + 2µK + 2νiK ′; k) = (−1)µ+νcn(aj; k),

dn(aj + 2µK + 2νiK ′; k) = (−1)νdn(aj; k),
(2.113)

for all aj ,and all integers µ, ν, and so we must restrict γ such that ai + aj + ak = 2K.

Irwin incorrectly sets this equal to zero. Note the similarity here between this and the

spherical excess. This condition is in fact that the fixing of k also fixes the area of the

spherical triangle, under changes of the angles. The addition formula for sn follows as

a consequence. From these addition formulae a number of intertwined addition relations

follow

cn(aj)sn(ai + aj) = sn(ai)dn(aj) + dn(ai)sn(aj)cn(ai + aj), (2.114)

dn(ai)sn(ai + aj) = cn(ai)sn(aj) + sn(ai)cn(aj)dn(ai + aj), (2.115)

sn(ai)cn(ai + aj) + sn(aj)dn(ai + aj) = cn(ai)dn(aj)sn(ai + aj). (2.116)

Denoting

w1(aj) =
ρ

sn(aj)
, w2(aj) =

ρ cn(aj)

sn(aj)
, w3(aj) =

ρ dn(aj)

sn(aj)
, (2.117)
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these addition formulae may be rewritten as

wi(aj)wj(ai) + wj(ak)wk(aj) + wk(ai)wi(ak) = 0, i, j, k = 1, 2, 3, (2.118)

with a1+a2+a3 = 2K. Note that this relation is the functional Yang-Baxter relation[21].

By identifying uniformising variables with the facial angles as opposed to the radial ones,

we can derive a similar relationship. This follows from (2.39) by letting

W =
1

k2
sin2 αi sin

2 αj sin2 αk

− (1− cos2 αi − cos2 αj − cos2 αk − 2 cosαi cosαj cosαk). (2.119)

Applying Irwin’s method and varying αi, αj and αk as to keep k constant, it follows that

dαi√
1− 1

k2
sin2 αi

+
dαj√

1− 1
k2

sin2 αi

+
dαk√

1− 1
k2

sin2 αi

= 0. (2.120)

Writing αi = am(bi), with

bi =

∫ am(bi)

0

dt√
1− 1

k2
sin2 t

, (2.121)

and similarly, αj = am(bj) and αk = am(bk), the integral of (2.120) implies

bi + bj + bk = γ. (2.122)

Therefore, having introduced spherical angles bi, i = 1, 2, 3, this time associated with the

three spherical angles αi, the various spherical trigonometric functions can be identified

with the Jacobi elliptic functions via the identifications

sinαi = sn

(
bi;

1

k

)
⇐⇒ sin θjk =

1

k
sn

(
bi;

1

k

)
, (2.123)

in which 1/k is the modulus of the elliptic function. These identifications lead to

cosαi = cn

(
bi;

1

k

)
, and cos θjk = dn

(
bi;

1

k

)
. (2.124)
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In this case, the Jacobi elliptic function addition formulae are satisfied providing we have

cn(bi) = cn(bj + bk),

dn(bi) = −dn(bj + bk),
(2.125)

and therefore, this time the periodicity ensures γ = 2K + 2iK ′,

bi + bj + bk = 2K + 2iK ′. (2.126)

Note that making the identification in this way results in a slightly different restriction,

dependent on both K and also K ′.

2.4.2 Link between Hyperspherical Trigonometry and Elliptic

Functions

We now look to provide a novel link between the four-dimensional hyperspherical case

and elliptic functions by producing a generalisation of Irwin’s procedure as before. We

first consider a general unrestricted hyperspherical tetrahedron before focusing on the

specialised restricted case of a symmetric hyperspherical tetrahedron in order to provide

clarity.

General Hyperspherical Tetrahedron

We take as a starting point the hyperspherical sine rule relation,

sin(φik, φjk, φkl)

sin(θij, θil, θjl)

=
sin2(θij, θik, θil, θjk, θjl, θkl)

sin(θij, θik, θjk) sin(θij, θil, θjl) sin(θik, θil, θkl) sin(θjk, θjl, θkl)
= k,

(2.127)

from which we introduce

W = sin4(θij, θik, θil, θjk, θjl, θkl)

− k2 sin2(θij, θik, θjk) sin2(θij, θil, θjl) sin2(θik, θil, θkl) sin2(θjk, θjl, θkl).
(2.128)
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Taking W ’s derivative with respect to θij gives

∂W

∂θij
= −2 sin(θij, θik, θil, θjk, θjl, θkl) sin(θik, θil, θkl) sin(θjk, θjl, θkl)

× sin(θij, θil, θjl) sin(θij, θik, θjk) sinφij

× (cosφil cosφjl + cosφik cosφjk) ,

(2.129)

which we have simplified using the various spherical and hyperspherical identities from

earlier. If we vary the length of the six sides such that k remains constant, then since this

is equivalent to W = 0, setting dW = 0 implies∑
perm

sinφij (cosφil cosφjl + cosφik cosφjk) dθij = 0, (2.130)

where perm denotes all six index pairs, ij, ik, il, jk, jl and kl. Note the similarity

between this and the spherical case, again perhaps suggesting some sort of connection

with elliptic functions. This, however, cannot be simplified along the same lines as the

spherical case, and so we now focus on the specialised symmetric hyperspherical case in

order to provide clarity.

Symmetric Hyperspherical Tetrahedron

We now consider this relationship in terms of the more specific case of a symmetric

tetrahedron to, for the first time, produce a clear link between the functions of

hyperspherical trigonometry and elliptic functions. Recall from Definition 1.3.4, that a

Symmetric Tetrahedron is a tetrahedron in which the opposite dihedral angles are equal,

i.e.

φij = φkl, φik = φjl, φil = φjk. (2.131)

Restricting the spherical tetrahedron to be a symmetric one, the differential relationship

(2.130) reduces to ∑
perm

sinφij cosφik cosφjkdθij = 0, (2.132)
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or equivalently, ∑
perm

sinφij
cosφij

dθij = 0. (2.133)

The restrictions on the tetrahedron being symmetric also simplify the hyperspherical sine

rule, (2.50), reducing it to

sin2 φij = kH sin2 θij. (2.134)

Substituting this into (2.133), this becomes∑
perm

√
kH sin θij√

1− kH sin2 θij
dθij = 0, (2.135)

a sum of elliptic integrals of the form∫ √
kHu√

(1− kHu2) (1− u2)
du. (2.136)

Hence, we have shown that for the case of a symmetric hyperspherical tetrahedron, the

hyperspherical trigonometric functions may be associated with elliptic functions. We now

investigate this association further for the general case.

2.5 Hyperspherical Trigonometry and the Generalised

Jacobi Functions

In this section we review the generalised Jacobi functions as introduced by Pawellek[116],

and provide a novel link between these functions and the formulae of hyperspherical

trigonometry.

2.5.1 Generalised Jacobi Functions

In [116], Pawellek introduced the generalised Jacobi functions s(u; k1, k2), c(u; k1, k2),

d1(u; k1, k2) and d2(u; k1, k2). These functions are defined on algebraic curves with two
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distinct moduli, and are based upon Jacobi’s elliptic functions [65]. After assuming

without loss of generality that 1 > k1 > k2 > 0 as moduli parameters, they are defined as

the inversion of the hyperelliptic integrals

u(x; k1, k2) =

∫ x=s(u)

0

dt√
(1− t2)(1− k21t2)(1− k22t2)

, (2.137)

u(x; k1, k2) =

∫ 1

x=c(u)

dt√
(1− t2)(k′21 + k21t

2)(k′22 + k22t
2)
, (2.138)

u(x; k1, k2) = k1

∫ 1

x=d1(u)

dt√
(1− t2)(t2 − k′21 )(k21 − k22 + k22t

2)
, (2.139)

u(x; k1, k2) = k2

∫ 1

x=d2(u)

dt√
(1− t2)(t2 − k′22 )(k22 − k21 + k21t

2)
, (2.140)

respectively, with k′i =
√

1− k2i . These generalised Jacobi functions are associated with

an algebraic curve of the form

C : y2 = (1− x2)(1− k21x2)(1− k22x2), (2.141)

which can be modelled as a Riemann surface of genus 2, but is, in fact, a double cover of

an elliptic curve E ,

E : w2 = z(1− z)(1− k21z)(1− k22z), (2.142)

via the cover map C π→ E ,

(w, z) = π(y, x) = (xy, x2). (2.143)

The functions satisfy a number of identities,

c2(u) = 1− s2(u), d21(u) = 1− k21s2(u), d22(u) = 1− k22s2(u),

d2i (u)− k2i c2(u) = 1− k2i , i = 1, 2; k21d
2
2(u)− k22d21(u) = k21 − k22,

(2.144)

and are related to the Jacobi elliptic functions by

s(u; k1, k2) =
sn(k′2u;κ)√

k′22 + k22sn
2(k′2u;κ)

, c(u; k1, k2) =
k′2cn(k′2u;κ)√

1− k22cn2(k′2u;κ)
, (2.145)

d1(u; k1, k2) =

√
k21 − k22dn(k′2u;κ)√
k21 − k22dn2(k′2u;κ)

, d2(u; k1, k2) =

√
k21 − k22√

k21 − k22dn2(k′2u;κ)
,

(2.146)



Chapter 2. Hyperspherical Trigonometry and Corresponding Elliptic Functions 63

with

κ =
k21 − k22
1− k22

. (2.147)

Note that although these generalised Jacobi functions may be written in terms of the

Jacobi elliptic functions, they are not in fact elliptic functions themselves. Rather, they

are two-valued functions on the complex plane, with square-root branch points. The first

derivatives of these functions are given by

s′(u) = c(u)d1(u)d2(u), c′(u) = −s(u)d1(u)d2(u), (2.148)

d′1(u) = −k21s(u)c(u)d2(u), d′2(u) = −k22s(u)c(u)d1(u). (2.149)

These generalised Jacobi functions with moduli k1 and k2 satisfy the following addition

formulae:

s(u± v) =
s(u)d2(u)c(v)d1(v)± s(v)d2(v)c(u)d1(u)√

∆±
, (2.150a)

c(u± v) =
c(u)d2(u)c(v)d2(v)∓ k′22 s(u)d1(u)s(v)d1(v)√

∆±
, (2.150b)

d1(u± v) =
d1(u)d2(u)d1(v)d2(v)∓ κ2k′22 s(u)c(u)s(v)c(v)√

∆±
, (2.150c)

d2(u± v) =
d22(u)d22(v)− κ2k′42 s2(u)s2(v)√

∆±
, (2.150d)

(2.150e)

where

∆± =
[
d22(u)d22(v)− κ2k′42 s2(u)s2(v)

]2
+ k22 [s(u)d2(u)c(v)d1(v)± s(v)d2(v)c(u)d1(u)] . (2.151)

These formulae follow from the addition formula for the standard Jacobi elliptic functions

[116].
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2.5.2 Hyperspherical Trigonometry and the Generalised Jacobi

Functions

We are also able to show a new connection between the generalised Jacobi functions

and hyperspherical trigonometry. As the generalised Jacobi functions are dependent on

two moduli, then so must the hyperspherical trigonometry be. It is the interplay of these

moduli that govern the connection. Recall that for a hyperspherical tetrahedron we have

sinα
(ijk)
i = k1 sin θjk, (2.152)

and

sinφil = k2 sinα
(ijk)
i , (2.153)

for distinct i, j, k, l, where

k1 =
sin(θij, θik, θjk)

sin θij sin θik sin θjk
, (2.154)

and

k2 =
sin(α

(ijk)
i , α

(ijl)
i , α

(ikl)
i )

sinα
(ijk)
i sinα

(ijl)
i sinα

(ikl)
i

, (2.155)

respectively. Separately, these each have the same link to the Jacobi elliptic functions as

the functions of a spherical triangle. They imply that

sinφil = k1k2 sin θjk. (2.156)

Introducing uniformising variables ajk, j, k = 1, 2, 3, 4 with k > j, associated with the

six θjk, such that

ajk =

∫ θjk

0

dt√
(1− k21 sin2 t)(1− k21k22 sin2 t)

, (2.157)

with θjk = am(ajk), the various hyperspherical trigonometric functions can be identified

with Pawellek’s generalised Jacobi functions via the identifications

s(ajk) ≡ sin θjk ⇐⇒ k1s(ajk) = sinα
(ijk)
i ⇐⇒ k1k2s(ajk) = sinφil, (2.158)
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in which, k1 and k1k2 are the two moduli of the functions, and are as given earlier. From

these and the identities listed previously it follows that

c(ajk) = cos θjk, d1(ajk) = cosα
(ijk)
i , d2(ajk) = cosφil. (2.159)

Note that under these identifications the identities (2.144) for the generalised Jacobi

functions are still obeyed.

The modulus k1 governs the relations between the spherical trigonometry of each of the

faces, and the elliptic functions. The second modulus, k1k2, acts as an overall modulus

for the spherical tetrahedron. Note its dependence on the first modulus, k1. These moduli

remain constant, so that if one of the vertices of the spherical tetrahedron were moved, the

others must be adjusted to compensate. These movements result in a change to the faces

of the tetrahedron, but not to k1, the facial modulus.

2.6 Four- and Five-Parts Formulae

In this section, we consider the expansion of one of the radial vectors, ni, in terms of the

other radial vectors. We compare this with the expansion in terms of an orthogonal frame,

obtained by Gram-Schmidt orthonormalisation to obtain for the first time the four-parts

formula for the hyperspherical case. We follow a similar procedure for the orthogonal

vectors, uijk, to obtain the novel five-parts formula. We believe these expansions may be

of particular use in considering Sergeev’s model for the tetrahedron equation[126]. This

will require further investigation in future.

2.6.1 Spherical Case

We write a general position vector on the surface of a sphere in terms of its basis vectors,

and derive the four and five parts formulae.
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Given two vectors in three dimensions, we can express any other vector on the sphere in

terms of these by

ni = Anj +Bnk + Cnj × nk, (2.160)

with  A

B

 =

 1 cos θjk

cos θjk 1

−1 cos θij

cos θik


=

1

sin2 θjk

 sin θik sin θjk cosαk

sin θij sin θjk cosαj

 ,

(2.161)

and

C =
ni · (nj × nk)

sin2 θjk
=

sinαi sin θik sin θij
sin2 θjk

, (2.162)

giving

ni =
sin θik cosαk

sin θjk
nj +

sin θij cosαj
sin θjk

nk +
sinαi sin θik sin θij

sin2 θjk
nj × nk. (2.163)

Using the spherical sine rule this reduces to

ni =
sinαj cosαk

sinαi
nj +

sinαk cosαj
sinαi

nk +
sinαi sin sinαk

sinαi
nj × nk. (2.164)

Using the Gram-Schmidt Process ni may be written in terms of an orthonormal basis,

ni = A′nj +B′n′k + C ′nj × n′k, (2.165)

where nj is as is before, and n′k is given by

n′k =
nk − (nj · nk)nj
|nk − (nj · nk)nj|

=
nk − (nj · nk)nj

sin θjk
. (2.166)

This implies

C ′ = (sin θjk)C, B′ = (sin θjk)B, A′ = A+ cot θjkB
′, (2.167)

from which it follows that

ni =
sin θik cosαk + cos θjk sin θij cosαj

sin θjk
nj

+ sin θij cosαjn
′
k + sin θij sinαjnj × n′k.

(2.168)
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Equating the two expression we have for ni gives the four-parts formula

cot θij sin θjk = cotαk sinαj + cos θjk cosαj. (2.169)

Similarly, for

uij = Puik +Qukj +Ruik × ukj (2.170)

it follows that

uij =
sinαj
sinαk

cos θjkuik +
sinαi
sinαk

cos θikukj −
sin θik sin θkj

sin θij
uik × ukj, (2.171)

or alternatively, using the spherical sine rule,

uij =
sin θik cos θjk

sin θij
uik +

sin θjk cos θik
sin θij

ukj −
sin θik sin θkj

sin θij
uik × ukj. (2.172)

Similarly, using the Gram-Schmidt Process,

uij =
sinαj cos θjk − cosαk sinαi cos θik

sinαk
uik

+ sinαi cos θiku
′
kj + sin θkj sinαjuij × u′kj.

(2.173)

Equating the two expression we have for uij gives the five-parts formula

cot θjk sinαj = cosαi sinαk + cos θik sinαi cosαk. (2.174)

2.6.2 Four-dimensional Hyperspherical Case

Following a similar process to the spherical case, in four-dimensional Euclidean space,

for the vectors ni,nj,nk,nl ∈ E4 of a hyperspherical tetrahedron we have the expansions

ni =
sin(θik, θil, θkl) cosφkl

sin(θjk, θjl, θkl)
nj +

sin(θij, θil, θjl) cosφjl
sin(θjk, θjl, θkl)

nk

sin(θij, θik, θjk) cosφjk
sin(θjk, θjl, θkl)

nl+

+

√
sin(θij, θik, θjk) sin(θij, θil, θjl) sin(θik, θil, θkl) sin(φij, φik, φil)

(sin(θjk, θjl, θkl))
2 nj × nk × nl,

(2.175)
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as well as

ni = cos θij nj + sin θij cosα
(ijk)
j n′k + sin θij sinα

(ijk)
j cosφjk n′l

+ sin θij sinα
(ijk)
j sinφjk nj × n′k × n′l ,

(2.176)

in a (Gram-Schmidt) orthonormal basis nj,n
′
k,n

′
l. Comparing the results provides the

following set of equations:

sin(θjk, θjl, θkl)

sin(θij, θik, θjk)
cosφjk

= cos θil

(
1− tan θil cot θik cosφij

sinα
(ijl)
i

sinα
(ijk)
i

− tan θil cot θij cosα
(ijl)
i

(
1− tanα

(ijl)
i cotα

(ijk)
i cosφij

))
,

(2.177a)

sin(θik, θil, θkl)

sin(θij, θik, θjk)
cosφik =

sin θil cosα
(ijl)
i

sin θij

(
1− tanα

(ijl)
i cotα

(ijk)
i cosφij

)
, (2.177b)

which form the hyperspherical analogue of the four-parts formula.

Similarly, for the expansions of the polar vectors uijk,uijl,uikl,ujkl we have

uijk =
sin(θij, θil, θjl)

sin(θij, θik, θjk)
cos θkluijl −

sin(θjk, θjl, θkl)

sin(θij, θik, θjk)
cos θilujlk

+
sin(θik, θil, θkl)

sin(θij, θik, θjk)
cos θjlulki

+
sin(θij, θil, θjl) sin(θjk, θjl, θkl) sin(θik, θil, θkl)

sin(θij, θik, θil, θjk, θjl, θkl)
uijl × ujlk × ukli,

(2.178)

and in terms of an orthonormal basis,

uijk =

(
sin(θij, θil, θjl) cos θkl

sin(θij, θik, θjk)
−
(

cosφjk − cosφjl cosφij
sinφjl

)
cosφjl

+
cos θjl cosφil sinφjl sin(φij, φjk, φjl)

sin(φil, φjl, φkl)

)
uijl

+
cosφjk − cosφij cosφjl

sinφjl
u′jlk +

cos θjl sin(φij, φjk, φjl)

sinφij
u′lki

+ sin(θij, θik, θil, θjk, θjl, θkl)uijl × u′jlk × u′kli.

(2.179)
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Comparing the results provides

cosφjk cosφjl sin(θij, θik, θjk) = cosφij sinφjl sin(θij, θik, θjk)

+ cos θkl sinφjl sin(θij, θil, θjl)

+ cos2 φjl cosφij sin(θij, θik, θjk)

+ cos θjl cosφil sin
2 φjl sin(θik, θil, θkl),

(2.180)

the hyperspherical analogue of the five-parts formula.

2.7 Angle Addition Formulas

We derive the cosine addition formulae by collapsing a spherical triangle. We then extend

this to see what happens when we collapse a hyperspherical tetrahedron. Recall that

the generalised sine function of three variables gives the volume of a three-dimensional

parallelepiped defined by vectors ni,nj and nk embedded in four-dimensional Euclidean

space,

sin(θij, θik, θjk) =

∣∣∣∣∣∣∣∣∣
1 cos θij cos θik

cos θij 1 cos θjk

cos θik cos θjk 1

∣∣∣∣∣∣∣∣∣

1
2

. (2.181)

When the three vectors ni,nj and nk become coplanar, the volume of the parallelepiped

collapses to zero, and hence, so does the generalised sine function. When this occurs

sin2(θij, θik, θjk) = 0. (2.182)

By expanding this out and completing the square in terms of cos θij , this reduces to

(cos θij − cos θik cos θjk)
2 = sin2 θik sin2 θjk. (2.183)

Solving this gives

cos θij = cos θik cos θjk ± sin θik sin θjk. (2.184)
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This occurs when θij = θik ∓ θjk, hence giving us the standard addition formula for

cosine,

cos(A±B) = cosA cosB ∓ sinA sinB. (2.185)

Similarly, the generalised sine function of six variables gives the volume of a four-

dimensional parallelotope defined by vectors ni,nj,nk and nl embedded in five-

dimensional Euclidean space,

sin(θij, θik, θil, θjk, θjl, θkl) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 cos θij cos θik cos θil

cos θij 1 cos θjk cos θjl

cos θik cos θjk 1 cos θkl

cos θil cos θjl cos θkl 1

∣∣∣∣∣∣∣∣∣∣∣∣

1
2

. (2.186)

When the four vectors ni,nj,nk and nl become linearly dependent, the volume of the 4-

parallelepiped collapses to zero, and hence, so does the generalised sine function. When

this occurs, recalling the hyperspherical sine rule,

sin2(θij, θik, θil, θjk, θjl, θkl) = 0 ⇐⇒ kH = 0. (2.187)

This gives

sin(φij, φik, φil) = 0

sin(φij, φjk, φjl) = 0

sin(φik, φjk, φkl) = 0

sin(φil, φjl, φkl) = 0

, (2.188)

which, in turn from the spherical case implies that the three dihedral angles around any

vertex obey the cosine rule.

Both spherical trigonometry and elliptic functions already have many established real

world applications. In the next chapter, we will present two applications where

hyperspherical trigonometry and its connection with the generalised Jacobi functions may

be exploited. These examples in fact turn out to be closely related.
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Chapter 3

A Higher-Dimensional Euler Top and

the DELL Model

3.1 Introduction

As an example of where the hyperspherical formulae and their connection with the

generalised Jacobi functions, derived in the previous chapter, may be used, we consider

a multi-dimensional generalisation of the Euler top in relation to Nambu mechanics. We

provide a link between this example and the double elliptic model.

3.2 Nambu Mechanics

In 1973 Nambu introduced a generalisation of Hamiltonian mechanics involving multiple

Hamiltonians [101]. In his formulation, an m-tuple of “canonical” variables replaces a

pair of canonically conjugated co-ordinates, and an m-ary operation, the Nambu bracket,

replaces the binary Poisson bracket. This formulation has come to be known as Nambu

mechanics. Takhtajan later axiomised Nambu mechanics [132].
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Definition 3.2.1 (Nambu-Poisson Manifold) [132] A smooth manifold X is called a

Nambu-Poisson manifold of order m on its function ring A = C∞(X) if there exists

a map {, . . . , } : A⊗m 7→ A, a generalised Nambu bracket of order m, with the following

properties:

• “Skew”-symmetry

{A1, A2, . . . , Am} = (−1)ε(p){Ap(1), Ap(2), . . . , Ap(m)}, (3.1)

where p(i) is the permutation of indices and ε(p) is the parity of the permutation.

• Derivation (the Leibniz rule)

{A1A2, A3, . . . , Am+1} = A1{A2, A3, . . . , Am+1}+ {A1, A3, . . . , Am+1}A2.

(3.2)

• Fundamental identity (analogue of Jacobi identity)

{{A1, . . . , Am} , Am+1, . . . , A2m−1}

+ {Am, {A1, . . . , Am−1, Am+1} , Am+2, . . . , A2m−1}

+ · · ·+ {Am, . . . , A2m−2, {A1, . . . , Am−1, A2m−1}}

= {A1, . . . , Am−1, {Am, . . . , A2m−1}} .

(3.3)

Explicitly, note that for m equals two, the Poisson bracket is recovered, and for Nambu

brackets of order three, this is a ternary relationship, defined by

• Skew-symmetry

{A1, A2, A3} = (−1)ε(p){Ap(1), Ap(2), Ap(3)}, (3.4)

where p(i) is the permutation of indices and ε(p) is the parity of the permutation.

• Derivation (the Leibniz rule)

{A1A2, A3, A4} = A1{A2, A3, A4}+ {A1, A3, A4}A2. (3.5)
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• Fundamental identity (analogue of Jacobi identity)

{{A1, A2, A3} , A4, A5}+ {A3, {A1, A2, A4} , A5}+ {A3, A4, {A1, A2, A5}}

= {A1, A2, {A3, A4, A5}} .

(3.6)

The dynamics on a Nambu-Poisson manifold are determined by m − 1 Hamiltonians

H1, . . . , Hm−1 and are described by the generalised Nambu-Hamiltonian equations of

motion
df

dt
= {H1, . . . , Hm−1, f} , f ∈ A. (3.7)

We restrict ourselves to Nambu’s original example of phase space X = Rm with

coordinates x1, . . . , xm and “canonical” Nambu bracket given by

{H1, . . . , Hm−1, f} =
∑

i2,...,im

εi1...im∂xi1H1 . . . ∂xim−1
H1∂ximf, (3.8)

where εi1...im is the m-dimensional Levi Civita symbol [101].

Takhtajan [132] also extended the canonical formalism of Hamiltonian mechanics based

on the Poincaré-Cartan integral invariant and the principle of least action [16] to Nambu

mechanics. Let X̃ = Rm+1 with coordinates x1, . . . , xm+1 be the extended phase space

to a Nambu-Poisson manifold X = Rm.

Definition 3.2.2 [132] The following (m− 1)-form ω(m−1) on X̃ ,

ω(m−1) = x1dx2 ∧ · · · ∧ dxm −H1dH2 ∧ · · · ∧ dHm−1 ∧ dxm+1, (3.9)

is called the generalised Poincaré-Cartan form for Nambu mechanics.

Definition 3.2.3 The integral of the generalised Poincaré-Cartan form over (m − 1)-

chains in the extended phase space X̃ ,

S(Cm−1) =

∫
Cm−1

ω(m−1), (3.10)

is called the actional function for Nambu mechanics. Admissible variations are those

which do not change projections of the boundary ∂Cm−1 on the x2x3 . . . xm-hyperplane.



Chapter 3. A Higher-Dimensional Euler Top and the DELL Model 74

The equations of motion in terms of the canonical Nambu bracket then follow from the

principle of least action [132], δS = 0:

df

dt
= {H1, . . . , Hm−1, f} , f ∈ A. (3.11)

We will now consider the Euler top in terms of this formulation as considered in [94].

3.2.1 The Euler Top

The Euler top describes a solid body, attached to a fixed point, rotating in the absence

of any external torque [17, 40]. It was first considered by Euler in 1765 [47], when he

considered the object’s equations of motion in the frame rotating with the body. Full

details on the tops variational formulation and Hamiltonian description in terms of the

so(3) Lie-Poisson bracket may be found in [58]. However, it is an alternative formulation

that interests us here. In their paper on Nambu quantum mechanics [94], Minic and Tze

reformulated the mechanics of this top in terms of a Nambu system of order three, which

they then solved in terms of the Jacobi elliptic functions.

The Euler top admits two conserved quantities, the total energy,

H1 =
1

2

3∑
i=1

1

Ii
M2

i , (3.12)

and the square of the angular momentum,

H2 =
1

2

3∑
i=1

M2
i , (3.13)

where Ii denote the principal moments of inertia, and Mi the components of the angular

momentum. Minic and Tze take both of these conserved quantities to be Hamiltonians

for the the system, with the action of the top given by the actional function for Nambu

mechanics

S(C2) =

∫
C2

M1dM2 ∧ dM3 −H1dH2 ∧ dt, (3.14)
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the integral of the generalised Poincaré-Cartan form for Nambu mechanics over

permissible two-chains. The equations of motion,

dMi

dt
= {H1, H2,Mi}, i = 1, 2, 3, (3.15)

then follow from δS = 0, where we take {H1, H2,Mi} to be the canonical Nambu 3-

bracket, a ternary bracket given by

{H1, H2,Mi} = εjkl∂Mj
H1∂Mk

H2∂Ml
Mi. (3.16)

Without loss of generality, taking I3 > I2 > I1, this gives the equations of motions for

the Euler top to be

dM1

dt
=

(
1

I3
− 1

I2

)
M2M3, (3.17a)

dM2

dt
=

(
1

I1
− 1

I3

)
M1M3, (3.17b)

dM3

dt
=

(
1

I2
− 1

I1

)
M1M2, (3.17c)

which for initial time t0 have solutions of the form

M1(t) = A1sn(K(t− t0); k), (3.18a)

M2(t) = A2cn(K(t− t0); k), (3.18b)

M3(t) = A3dn(K(t− t0); k), (3.18c)

with K a constant, and with

A2
1 =

−K2k2I21I2I3
(I2 − I1) (I3 − I1)

, (3.19a)

A2
2 =

K2k2I1I
2
2I3

(I3 − I2) (I2 − I1)
, (3.19b)

A2
3 =

K2I1I2I
3
3

(I3 − I2) (I3 − I1)
, (3.19c)

and where the modulus k of the Jacobi elliptic functions is given by

k =
I2 − I1
I3 − I2

2H1I3 −H2

H2 − 2I1H1

. (3.20)

Using Irwin’s connection [62], these solutions may be reparameterised in terms of

spherical trigonometry. Note that in this case θij = αk for all i, j, k = 1, 2, 3.
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3.3 Multidimensional Euler Top

We consider a higher dimensional analogue of the Euler top, formulating the top’s

mechanics in terms of a Nambu system of order four, and then solving this system in

terms of the generalised Jacobi functions. Consider a four-dimensional spinning top given

by the actional function for Nambu mechanics as defined in Definition 3.2.3,

S(C3) =

∫
C3

M1dM2 ∧ dM3 ∧ dM4 −H1dH2 ∧ dH3 ∧ dt, (3.21)

where H1, H2 and H3 are Hamiltonians, given by

H1 =
1

2

4∑
i=1

M2
i , (3.22)

H2 =
1

2

4∑
i=1

αiM
2
i , (3.23)

and

H3 =
1

2

4∑
i=1

βiM
2
i , (3.24)

with αi and βi constants, and Mi the co-ordinates in the phase space X = R4. The top’s

equations of motion are given by the Nambu-Poisson brackets

dMi

dt
= {H1, H2, H3,Mi}, (3.25)

whereby we use the canonical Nambu-Poisson bracket of order four,

{H1, H2, H3,Mi} = εjklm∂Mj
H1∂Mk

H2∂Ml
H3∂MmMi. (3.26)

This gives the intertwined differential system of four variables

Ṁ1 = (α2β3 − α3β2 + α3β4 − α4β3 + α4β2 − α2β4)M2M3M4, (3.27a)

Ṁ2 = (α1β4 − α4β1 + α3β1 − α1β3 + α4β3 − α3β4)M1M3M4, (3.27b)

Ṁ3 = (α1β2 − α2β1 + α2β4 − α4β2 + α4β1 − α1β4)M1M2M4, (3.27c)

Ṁ4 = (α1β3 − α3β1 + α2β1 − α1β2 + α3β2 − α2β3)M1M2M3. (3.27d)
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We now see that this system is in fact the four-dimensional case of Fairlie’s system in

[50], which Ivanov showed to be an so(4) Nahm top [63]. The system was later shown to

be related to the generalised Kovalelskaya system [27] by Petrera and Suris [121].

These equations of motion can be integrated in closed form in terms of the generalised

Jacobi elliptic functions s, c, d1 and d2, giving

M1(t) = A1s(K(t− t0); k1, k2), (3.28a)

M2(t) = A2c(K(t− t0); k1, k2), (3.28b)

M3(t) = A3d1(K(t− t0); k1, k2), (3.28c)

M4(t) = A4d2(K(t− t0); k1, k2), (3.28d)

with t0 the initial time, and Ai, K constants satisfying

A1K

A2A3A4

= α2β3 − α3β2 + α3β4 − α4β3 + α4β2 − α2β4, (3.29a)

− A2K

A1A3A4

= α1β4 − α4β1 + α3β1 − α1β3 + α4β3 − α3β4, (3.29b)

− k21A3K

A1A2A4

= α1β2 − α2β1 + α2β4 − α4β2 + α4β1 − α1β4, (3.29c)

− k22A4K

A1A2A3

= α1β3 − α3β1 + α2β1 − α1β2 + α3β2 − α2β3. (3.29d)

Hence, the motion of the top may be entirely parameterised in terms of the generalised

Jacobi elliptic functions, and therefore, through the link with hyperspherical trigonometry

derived in section 2.5.2, the angles of hyperspherical tetrahedra. Note again that this

identification ensures that θij = αk = φkl, for all i, j, k, l = 1, 2, 3, 4.

We will now consider another example that utilises the connection between

hyperspherical trigonometry and the generalised Jacobi elliptic functions.

3.3.1 Double Elliptic Systems

The so-called DELL, or double-elliptic, model is a conjectured generalisation of the

Calogero-Moser and Ruijsenaars-Schneider models (integrable many-body systems),
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which is elliptic in both the momentum and position variables. So far, only the two-

particle model (reducing to one degree of freedom) has been explicitly constructed [28],

derived by considering the dual elliptic Calogero-Moser model, and imposing an elliptic

position dependence. A possible Hamiltonian for the three-particle model was later

suggested in terms of Riemann theta functions [30, 15], supported by numerical evidence

in [95], although this has yet to be proven to define the DELL model.

This two-particle model has one co-ordinate variable q, and one momentum variable p. In

general, the notion of duality between two arbitrary Hamiltonians, h(p, q) and H(P,Q),

may be described by the relationship

h(p, q) = f(Q), (3.30a)

H(P,Q) = F (q), (3.30b)

such that there exists an anti-symplectic map

dP ∧ dQ = −dp ∧ dq. (3.31)

Assuming the two Hamiltonians can be written in the form

h(p, q) = h0(p) + g2h1(p, q), (3.32a)

H(P,Q) = H0(P ) + g2H1(P,Q), (3.32b)

then the duality conditions, (3.30), may be expressed

h0(Q) = h(p, q), (3.33a)

H0(Q) = H(P,Q), (3.33b)

∂h(p, q)

∂p
H ′0(q) = h′0(Q)

∂H(P,Q)

∂P
. (3.33c)

In the elliptic Calogero-Moser case, the Hamiltonian is given by

h(p, q) =
p2

2
+

g2

sn(q; k)
, (3.34)
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and hence, in this case,

h0(p) =
p2

2
. (3.35)

A Hamiltonian H(P,Q) = H0(q) dual in the momentum, such that H0(q) = cn(q; k) is

chosen, and as a result the duality conditions, (3.30), now become

Q2

2
=
p2

2
+

g2

sn(q; k)
, (3.36a)

cn(q; k) = H(P,Q), (3.36b)

pcn′(q; k) = Q
∂H(P,Q)

∂P
. (3.36c)

The pair (p, q) can then be eliminated from the triplet, yielding the differential equation(
∂H(P,Q)

∂P

)2

=

(
1− 2g2

Q2
−H2

)(
k′2 + k2H2

)
. (3.37)

This differential equation may then be solved in terms of the Jacobi elliptic functions,

yielding the solution for the Hamiltonian of the dual elliptic Calogero-Moser system to

be

H(P,Q) = cn(q; k) = α(Q)cn

(
P
√
k′2 + k2α2(Q);

kα(Q)√
k′2 + k2α2(Q)

)
, (3.38)

with

α2(Q) = α2
rat(Q) = 1− 2g2

Q2
. (3.39)

The DELL Hamiltonian then follows by enforcing an elliptic positional dependence,

α2(Q) = α2
ell(Q; k̃) = 1− 2g2

sn2(Q; k̃)
. (3.40)

Note that the elliptic curves for q and Q may not necessarily be the same, and so k̃ 6= k in

general. Therefore, the DELL Hamiltonian is given explicitly by

H(P,Q) = cn(q; k) = αell(Q; k̃)cn

P√k′2 + k2α2
ell(Q; k̃);

kαell(Q; k̃)√
k′2 + k2α2

ell(Q; k̃)

 .

(3.41)
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We observe that the generalised Jacobi elliptic functions in fact provide a more natural

parameterisation for this Hamiltonian. Using the identity

cn(k′2u;κ) =
c(u; k1, k2)

d2(u; k1, k2)
, κ2 =

k21 − k22
k′22

, (3.42)

given by Pawellek, it follows that the Hamiltonian takes the much neater form

H(P,Q) = αell(Q; k̃)
c(P ; k1, k2)

d2(P ; k1, k2)
, (3.43)

with

k1 = k, (3.44a)

k2 = k

√
2g2

sn(Q; k̃)
. (3.44b)

This system’s equations of motion then follow from Hamilton’s equations

Ṗ = −∂H
∂Q

= −α′ell
(
Q; k̃

) c (P ; k1, k2)

d2 (P ; k1, k2)
, (3.45a)

Q̇ =
∂H

∂P
= −k′22αell

(
Q; k̃

) s (P ; k1, k2) d1 (P ; k1, k2)

d22 (P ; k1, k2)
, (3.45b)

where

α′ell

(
Q; k̃

)
=

dαell

(
Q; k̃

)
dQ

= 4g2sn
(
Q; k̃

)
cn
(
Q; k̃

)
dn
(
Q; k̃

)
. (3.46)

Therefore, following the reparameterisation, it makes sense to take a closer look at the

model in terms of the generalised Jacobi elliptic functions.

In a later paper [29], the following system of four quadrics in C6 was chosen to provide a

phase space for this two-body double elliptic system:

Q1 : x21 − x22 = 1,

Q2 : x31 − x23 = k̃2,

Q3 : 2g2x21 + x24 + x25 = 1,

Q4 : 2g2x21 + x24 + k−2x26 = k−2,

(3.47)
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where g is a coupling constant, and xi, i = 1, 2, 3, 4 are affine coordinates. The first pair

of equations provides the embedding of an elliptic curve, while the second pair provides

a second elliptic curve which is locally fibred over the first. Note that when g = 0, the

system simply becomes a pair of elliptic curves embedded in C3 × C3. The Poisson

brackets are given by

{xi, xj} = εijk1...k4
∂Q1

∂xk1

∂Q2

∂xk2

∂Q3

∂xk3

∂Q4

∂xk4
, (3.48)

with the polynomials Qi themselves yielding the Casamirs of the algebra. The relevant

Poisson brackets [29] for this system of quadrics are then

{x1, x2} = {x1, x3} = {x2, x3} = 0, (3.49a)

ẋ1 = {x1, x5} = −x2x3x4x6, (3.49b)

ẋ2 = {x2, x5} = −x1x3x4x6, (3.49c)

ẋ3 = {x3, x5} = −x1x2x4x6, (3.49d)

ẋ4 = {x4, x5} = −g2x1x2x3x6, (3.49e)

ẋ5 = {x5, x5} = 0, (3.49f)

ẋ6 = {x6, x5} = 0. (3.49g)

Again, the authors present the solutions to this system in terms of the Jacobi elliptic
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functions, as

x1 =
1

sn(Q; k̃)
, (3.50a)

x2 =
cn(Q; k̃)

sn(Q; k̃)
, (3.50b)

x3 =
dn(Q; k̃)

sn(Q; k̃)
, (3.50c)

x4 = αell(Q; k̃)sn

P√k′2 + k2α2
ell(Q; k̃);

kαell(Q; k̃)√
k′2 + k2α2

ell(Q; k̃)

 , (3.50d)

x5 = αell(Q; k̃)cn

P√k′2 + k2α2
ell(Q; k̃);

kαell(Q; k̃)√
k′2 + k2α2

ell(Q; k̃)

 , (3.50e)

x6 =

√
k′2 + k2α2

ell(Q; k̃)sn

P√k′2 + k2α2
ell(Q; k̃);

kαell(Q; k̃)√
k′2 + k2α2

ell(Q; k̃)

 , (3.50f)

However, these equations of motion are more naturally solved in terms of the generalised

Jacobi elliptic functions, with solutions

x1 = A1s(K(t− t0)|k1, k2), (3.51a)

x2 = A2c(K(t− t0)|k1, k2), (3.51b)

x3 = A3d1(K(t− t0)|k1, k2), (3.51c)

x4 = A4d2(K(t− t0)|k1, k2), (3.51d)

x5 = E, the energy, (3.51e)

x6 = K, constant, (3.51f)
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with

k1 =
1

k̃
, (3.52a)

k2 = k̃
√
−2g2, (3.52b)

A2
1 =

k1k2√
−2g2

, (3.52c)

A2
2 =

−k1k2√
−2g2

, (3.52d)

A2
3 =

−k2
k1
√
−2g2

, (3.52e)

A2
4 =
−k1

√
−2g2

k2
, (3.52f)

respectively. Note that K is related to the energy, E, through the final two quadrics

k2(1− E2) = 1−K2. (3.53)

This connection through the quadrics supports the assertation that the generalised Jacobi

elliptic functions are the natural parameterisation for the two-particle DELL system. Note

also, the similarity between the equations of motion derived from the quadrics and those

for the earlier four-dimensional Euler top example (3.27). By equating Mj for the four-

dimensional Euler top with xj , for j = 1, 2, 3, 4, these models are in fact the same up to

scaling.

In the next chapter, we will derive another elliptic integrable system, an elliptic extension

of the KP equation. As discussed in Chapter 1, the Calogero-Moser and Ruijsenaars-

Schneider systems can be derived through reductions of the fully-discrete and semi-

discrete KP equations, respectively. We speculate in the conclusion, Chapter 6, that

perhaps the DELL model may be related to a reduction of this elliptic extension of the KP

equation.
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Chapter 4

The Discrete Elliptic

Kadomtsev-Petviashvili Equation

4.1 Introduction

To our knowledge, to date, there exist only four truly elliptic integrable lattice systems of

partial difference equations, in the sense that they are naturally associated with an elliptic

curve. These are:

• The lattice Landau-Lifshitz equations [111], resulting from a discretisation of the

Sklyanin Lax pair [128].

• Adler’s lattice Krichever-Novikov system [7], resulting from the permutability

condition of the Bäcklund transformations of the Krichever-Novikov equation [80].

• Adler and Yamilov’s system, arising from the consideration of Darboux chains [12].

• The elliptic KdV system, resulting from a discrete linearisation scheme with an

elliptic Cauchy kernel [112].
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Apart from these, there is also a 5-point scalar equation arising from the permutability

of the Bäcklund transformations for the Landau-Lifshitz equation [8], although it is not

clear as to whether this constitutes a true discretisation of the Landau-Lifshitz equation

by itself.

In this chapter, we present an elliptic extension of the lattice potential Kadomtsev-

Petviashvili (LPKP) equation (1.54). This is, to our knowledge, the first elliptic lattice

system to reside in higher dimensions. We will show that the system is naturally a (3+1)-

dimensional system, as opposed to the (2 + 1)-dimensional system that may be expected.

This is contrary to expectation as there is nothing to suggest generalising to the elliptic

case would entail a move to higher dimensions.

The elliptic lattice KP system, which we will refer to as Ell-dKP, is derived through a

direct linearisation scheme following a similar method to that used in [112] , employing an

infinite matrix structure based on an elliptic Cauchy kernel. This systematic approach for

the derivation of integrable lattice equations arose in the series of papers [113, 35, 106].

This scheme proves to be a powerful tool with the ability to provide, amongst others, a

Lax representation, Bäcklund and Miura transformations and hierarchies of commuting

flows. It relies upon two key objects:

• Linear dynamics (either discrete or continuous) residing in the plane wave factors,

denoted ρk.

• A Cauchy kernel, Ω(k, k′), through which the connection with the non-linear

equations arises.

The resulting integrable lattice system comprises a set of simultaneous equations

involving several components. As a result of the multicomponent form, there are various

ways of expressing the system. One way is given by the following system of discrete
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equations:

(p− ũ)
(
q − r + ˜̇u− ˜̂u)+ (q − û)

(
r − p+ ̂̃u− ̂̇u)

+ (r − u̇)
(
p− q + ˙̂u− ˙̃u

)
= g

(˜̂s′ (s̃− ŝ) + ̂̇s′ (ŝ− ṡ) + ˙̃s
′
(ṡ− s̃)

)
, (4.1a)

(p+ u̇) ˙̃s− (q + u̇) ̂̇s+ ̂̇w − ˜̇w
ṡ

+
(q + ũ) ̂̃s− (r + ũ) ˜̇s+ ˜̇w − ˜̂w

s̃

+
(r + û) ˙̂s− (p+ û) ̂̃s+ ̂̃w − ̂̇w

ŝ
= 0, (4.1b)(

p− ˙̃u
)
ṡ′ −

(
r − ˙̃u

)
s̃′ + ẇ′ − w̃′

˙̃s
′ +

(
r − ̂̇u) ŝ′ − (q − ̂̇u) ṡ′ + ŵ′ − ẇ′̂̇s′

+

(
q − ˜̂u) s̃′ − (p− ̂̃u) ŝ′ + w̃′ − ŵ′̂̃s′ = 0, (4.1c)(

p+ u− w̃

s̃

)(
p− ũ+

w

s

)
= p2 +

(
Ũ1,0 − Ũ0,1

)
− (U1,0 − U0,1) +

w̃

s̃
(ũ− ũ)−

(
1

s̃s′
+ 3e+ gs̃′s

)
, (4.1d)(

q + u− ŵ

ŝ

)(
q − û+

w

s

)
= q2 +

(
Û1,0 − Û0,1

)
− (U1,0 − U0,1) +

ŵ

s̃
(û− û)−

(
1

ŝs′
+ 3e+ gŝ′s

)
, (4.1e)(

r + u− ẇ

ṡ

)(
r − u̇+

w

s

)
= r2 +

(
U̇1,0 − U̇0,1

)
− (U1,0 − U0,1) +

ẇ

ṡ
(u̇− u̇)−

(
1

ṡs′
+ 3e+ gṡ′s

)
, (4.1f)

s′w = w′s. (4.1g)

Here, e and g are fixed parameters, effectively the moduli of an elliptic curve

Γ : y2 = 1/x+ 3e+ gx. (4.2)

In terms of notation to describe the lattice system, for simplicity we let u = u(n,m, l, N)

denote the dependent variable for lattice points labeled by the quadruplet (n,m, l, N) ∈

Z4. The variables p, q and r are the continuous lattice parameters, associated with the grid

size in the lattice directions, given by the independent variables n, m and l, respectively.
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The fourth variable N is singled out in that it has an associated lattice parameter, P ,

which, in order to simplify closing the system, we will later set to P = 0 effectively

resulting in a (4.1) being a 3+1-dimensional system. For shifts in these lattice directions,

we use the notation

ũ = u(n+ 1,m, l, N), û = u(n,m+ 1, l, N), u̇ = u(n,m, l + 1, N), (4.3)

together with

ŭ = u(n,m, l, N + 1). (4.4)

Note that, combined shifts may be represented by multiple diacritics and therefore we

have the following

̂̃u = u(n+ 1,m+ 1, l, N), ˙̃u = u(n+ 1,m, l + 1, N),

˙̂u = u(n,m+ 1, l + 1, N), ̂̆u = u(n,m+ 1, l, N + 1),

˘̃u = u(n+ 1,m, l, N + 1), ˙̆u = u(n,m, l + 1, N + 1),̂̇̃
u = u(n+ 1,m+ 1, l + 1, N), ̂̆̇u = u(n,m+ 1, l + 1, N + 1),̂̆̃
u = u(n+ 1,m+ 1, l, N + 1),

˘̇
ũ = u(n+ 1,m, l + 1, N + 1),

(4.5)

completing the notation for the vertices of an elementary lattice octachoron. Backward

shifts are represented by undershifts, i.e.,

u = u(n,m, l, N − 1), (4.6)

with repeated undershifts representing repeated backward shifts in the corresponding

lattice direction. Upon setting P = 0, for clarity we use use the notation · for the lattice

shift, replacing ·̆.

Integrability of the system is understood in terms of the existence of a Lax representation

and soliton solutions, both of which we derive later.

The equations (4.1) are a system of seven interconnected equations for dependent

variables u, s, s′, w, w′, U0,1 and U1,0, but the latter two are understood to be eliminated

by pairwise combinations of (4.1d, 4.1e, 4.1f). (We prefer to leave U0,1 and U1,0 in the
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system to make clear the dependence on the modulus e, although we do include another

presentation later in (4.71).) This system is a natural higher-dimensional extension of the

lattice potential KP equation [51]. In fact, by setting g = 0 in equation (4.1a), the elliptic

curve degenerates into a rational curve, and equation (1.54) is recovered. The elliptic

KdV equation [112] may also be recovered through a dimensional reduction. We look in

more detail at these reductions in section 4.6.

In this chapter, we will provide a derivation of the lattice elliptic KP system, and establish

some of its properties.

4.2 Elliptic Matrix Structure

The starting point for the elliptic analogue to the lattice potential KP equation is the

algebra of centred infinite elliptic matrices,A. This is an associative algebra, with identity

1, which is quasigraded, with grading given by two types of raising operator, Λ of degree

one, and L of degree two, such that

Λ2 = L + 3e1 + gL−1, LΛ = ΛL, (4.7)

where e, g ∈ C are the moduli of the elliptic curve given by this relation [112].

This algebra of centred elliptic matrices was first introduced in [112], with some of

the constituents reminiscent of universal Grassman manifolds [131]. We use the term

quasigraded as the structure of this algebra is reminiscent of quasigraded Lie algebras,

see for example [59] and Krichever-Novikov algebras [81, 82, 83]. Non-elliptic infinite

matrices are built from the action of one index raising operator Λ and its conjugate,

together with the projector O. The projector O is the projection matrix on the central

entry, with (O ·A)i,j = δi,0A0,j and (A ·O)i,j = δ0,jAi,0 for any A ∈ A. In the non-

elliptic case, matrices may be given by

A =
∑
i,j

aijΛ
iO tΛj. (4.8)
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The infinite elliptic matrices are built from the action of two index raising operators Λ and

L and their conjugates and projector O. We adopt the following convention of labeling

the entries of these elliptic matrices, A ∈ A, with A = (Ai,j) for i, j ∈ Z, and central

entry A0,0 as follows:

A2i,2j =
(
LiA tLj

)
0,0
, (4.9a)

A2i+1,2j =
(
LiΛA tLj

)
0,0
, (4.9b)

A2i,2j+1 =
(
LiA tΛ tLj

)
0,0
, (4.9c)

A2i+1,2j+1 =
(
LiΛA tΛ tLj

)
0,0
. (4.9d)

As such, these infinite elliptic matrices may be given by

A =
∑
i,j

a2i,2jL
iO tLj + a2i+1,2jL

iΛO tLj

+ a2i,2j+1L
iO tΛ tLj + a2i+1,2j+1L

iΛO tΛ tLj,

(4.10)

Subject to (4.7). In order to be able to multiply these infinite elliptic matrices, we impose

O tLiLjO = δijO, (4.11a)

O tΛ tLiLjΛO = δijO, (4.11b)

O tΛ tLiLjO = 0, (4.11c)

O tLiLjΛO = 0. (4.11d)

In order to make these infinite elliptic matrices more explicit, we consider their action on

infinite column vectors in a basis of monomials whose entries are given by

(cκ)α =

 Kα/2, α is even,

kK(α+1)/2, α is odd,
(4.12)

whereby k, K are the eigenvalues of Λ and L respectively

Λcκ = kcκ, Lcκ = Kcκ (4.13)
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and we have introduced the variable κ as a uniformising variable for the curve Γ, (4.2).

The corresponding row vector is given by the transpose

(
tcκ′
)
α

=

 (K ′)α/2 , α is even,

k′ (K ′)(α+1)/2 , α is odd,
(4.14)

with k′ and K ′ the eigenvalues of tΛ and tΛ respectively,

tcκ′
tΛ = k′cκ′ ,

tcκ′
tL = K ′cκ′ , (4.15)

If we now introduce the Weierstrass ℘-function with half-periods ω and ω′,

℘ (κ) = ℘ (κ; 2ω, 2ω′) , (4.16)

this now allows the raising operators to be realised in terms of the Weierstrass ℘-function

in the form

L↔ ℘ (κ)− e, 2ΛL↔ ℘′ (κ) , (4.17)

whereby e = ℘ (ω). A realisation of the left, and right, index raising operators,

respectively, then follows:

Λ↔ ζ (κ+ ω)− ζ (κ)− ζ (ω) =
1

2

℘′ (κ)

℘ (κ)− e
, L↔ ℘ (κ)− e, (4.18a)

tΛ↔ ζ (κ′ + ω)− ζ (κ′)− ζ (ω) =
1

2

℘′ (κ′)

℘ (κ′)− e
, tL↔ ℘ (κ′)− e, (4.18b)

where ζ is the Weierstrass ζ-function. Defining −w′′ as the sum of the half-periods

ω′′ := −ω − ω′, (4.19)

together with

e := ℘ (ω) , e′ := ℘ (ω′) , e′′ := ℘ (ω′′) , (4.20)

ensures that e, e′ and e′′are the branch points for the Weierstrass curve

y2 = 4 (x− e) (x− e′) (x− e′′) , (4.21)
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which can be rewritten in terms of the pairs of eigenvalues (k,K) and (k′, K ′) using the

parameterisation

K = ℘ (κ)− e, 2kK = ℘′ (κ) , (4.22a)

K ′ = ℘ (κ′)− e, 2k′K ′ = ℘′ (κ′) , (4.22b)

as

k2 = K + 3e+
g

K
, k′2 = K ′ + 3e+

g

K ′
(4.23)

with g = (e− e′) (e− e′′). For the sake of the construction of the integrable system, we

introduce the Cauchy kernel type object

Ω↔ Ω (k, k′) =
k − k′

K −K ′
=

1− g/ (KK ′)

k + k′
= tcκ′Ωcκ. (4.24)

with

k =
1

2

℘ (κ)

℘ (κ)− e
, K = ℘ (κ)− e, (4.25a)

k′ =
1

2

℘ (κ′)

℘ (κ′)− e
, K ′ = ℘ (κ′)− e. (4.25b)

Results for the Cauchy kernel (4.24) follow from the following addition formulae for the

Weierstrass functions [136]:

(ζ (κ+ ω)− ζ (κ)− ζ (ω))2 = ℘ (κ+ ω) + ℘ (κ) + e, (4.26a)

(℘ (κ+ ω)− e) (℘ (κ)− e) = (e− e′) (e− e′′) = g. (4.26b)

Definition 4.2.1 Ω is the formal Cauchy Kernel for the system if it obeys the following

identities:

ΩΛ + tΛΩ = O − g tL−1OL−1 =: Ô1, (4.27a)

ΩL− tLΩ = OΛ− tΛO, (4.27b)

where O is the projection matrix on the central element defined earlier.
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Proposition 4.2.2 Definition 4.2.1 is consistent with the representation given in (4.24).

Proof

Consider the operators applied to the infinite component vectors cκ and tcκ′ in the

following manner:

• First,

tcκ′
(
ΩΛ + tΛΩ

)
cκ = tcκ′Ω (Λcκ) +

(
tcκ′ tΛ

)
Ωcκ, (4.28)

which using (4.13), becomes

tcκ′
(
ΩΛ + tΛΩ

)
cκ = tcκ′ (k + k′) Ωcκ. (4.29)

By using the definition of the Cauchy Kernel (4.27), and (4.13), the result follows

from
tcκ′
(
ΩΛ + tΛΩ

)
cκ = tcκ′

(
O − g 1

K ′
O

1

K

)
cκ. (4.30)

• Second, applying (4.13) and again using the definition of the Cauchy Kernel (4.27),

consider

tcκ′
(
ΩL− tLΩ

)
cκ = tcκ′ (K −K ′) cκ,

= tcκ′ (k − k′) cκ.
(4.31)

By now, applying (4.13),

tcκ′
(
ΩL + tΛO

)
cκ = tcκ′

(
OΛ− tΛO

)
cκ, (4.32)

the result follows.

�
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4.3 System Dynamics

The dynamics of the system are encoded by C ∈ A, given by the formal integral

C =

∫∫
D

dµ (λ, λ′) ρλcλ tcλ′σλ′ , (4.33)

over an arbitrary domain , D, on the space of variables λ, λ′. ρκ and σ′κ, the plane wave

factors, are discrete exponential functions, initially given by

ρκ(n,N) = (p+ k)n(P −K)Nρκ(0, 0), (4.34a)

σκ′(n,N) = (p− k′)−n(P −K ′)−Nσκ′(0, 0), (4.34b)

respectively. We will later redefine the plane wave factors to incorporate the other two

lattice directions. However, for now we use the simplified versions, (4.34). The factors

cκ and tcκ′ are the infinite component vectors defined earlier, in (4.12). The integration

measure, dµ (λ, λ′), is in principle arbitrary, but we assume that basic operations, such as

differentiation, and shifts, with respect to the parameters, commute with the integrations.

Lattice shifts of these plane wave factors result in

ρ̃κ = ρκ(n+ 1, N) = (p+ k)ρκ, σ̃κ′ = σκ′(n+ 1, N) = (p− k′)−1σκ′ , (4.35a)

ρ̆κ = ρκ(n,N + 1) = (P −K)ρκ, σ̆κ′ = σκ′(n,N + 1) = (P −K ′)−1σκ′ , (4.35b)

which, for C imply

C̃
(
p− tΛ

)
= (p+ Λ)C, (4.36a)

C̆
(
P − tL

)
= (P −L)C. (4.36b)

The main object from which the nonlinear equations are obtained is the infinite matrix

U ∈ A, defined by

U ≡ (1−UΩ)C. (4.37)
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with components Ui,j , together with infinite component vectors, uκ, defined through the

equations,

uκ + ρκUΩcκ = ρκcκ, (4.38a)

tuκ′ +
tcκ′Ω

tUσκ′ = tcκ′σκ′ . (4.38b)

Proposition 4.3.1 The infinite matrix U may then be expressed as

U =

∫∫
D

dµ (λ, λ′) uλ
tcλ′σλ′ . (4.39)

Proof

Consider U −C,

U −C =

∫∫
D

dµ (λ, λ′)
(
uλ

tcλ′σλ′ − ρλcλ tcλ′σλ′
)
, (4.40a)

=

∫∫
D

dµ (λ, λ′) (uλ − ρλcλ)
(

tcλ′σλ′
)
. (4.40b)

Now, from (4.38a), we have

uκ − ρκcκ = −ρκUΩcκ, (4.41)

and so U −C becomes

U −C = −UΩ

∫∫
D

dµ (λ, λ′) ρλcλ
tcλ′σλ′ , (4.42a)

= −UΩC (4.42b)

as required. �
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For this infinite matrix U , discrete Riccati type shift relations follow from (4.36) for C,

giving

Ũ
(
p− tΛ

)
= (p+ Λ)U − Ũ

(
O − g tL−1OL−1

)
U , (4.43a)

Û
(
q − tΛ

)
= (q + Λ)U − Û

(
O − g tL−1OL−1

)
U , (4.43b)

U̇
(
r − tΛ

)
= (r + Λ)U − U̇

(
O − g tL−1OL−1

)
U , (4.43c)

Ŭ
(
P − tL

)
= (P −L)U + Ŭ

(
OΛ− tΛO

)
U , (4.43d)

respectively. In particular, from (4.43d), it follows that

U
(
P − tL

)−1
= (P −L)−1 Ŭ −U

(
P − tL

)−1 (
OΛ− tΛO

)
(P −L)−1 Ŭ .

(4.44)

For what follows in this and the next chapter, we will use only the case P = 0, for which

we use the notation Ŭ = U , and hence, we obtain the relations

U tL−1 = L−1U + U tL−1
(
OΛ− tΛO

)
L−1U , (4.45)

if and only if

U tL = LU −U
(
OΛ− tΛO

)
U . (4.46)

Using these shift relations we are now able to derive a system of relations in terms of U ’s

matrix entries. We will then close this system. Without setting P = 0 it would become

difficult to achieve this closure.

4.4 Elliptic Lattice Structure

Having obtained the basic relations in the previous section (4.45, 4.43) in terms of the

elliptic matrix U , closed-form equations can now be derived in terms of a well-chosen set
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of entries. To do this we single out the following entries:

u = U0,0, s = U−2,0, s′ = U0,−2,

h = U−2,−2, v = 1− U−1,0, v′ = 1− U0,−1,

w = 1 + U−2,1, w′ = 1 + U1,−2,

(4.47)

Firstly, we can derive a number of relations involving bar-shifted variables. Starting with

(4.45), which involves only the · shifts we can simply read off

s′v = sv′. (4.48)

Other bar-shifted relations may be arrived at by applying powers, a, b, c, d ∈ {0, 1}, of

the operators Λ and L to the left hand side of (4.45), and of their transposes to the right,

LaΛb
(
U tL−1

)
tLc tΛd

= LaΛb
(
L−1U + U tL−1

(
OΛ− tΛO

)
L−1U

)
tLc tΛd.

(4.49)

Firstly, applying Λ to the left implies

ΛU tL−1 = ΛL−1U + ΛU tL−1
(
OΛ− tΛO

)
L−1U,

⇒ w′ − 1 = 1− v + (w′ − 1) (1− v)− U1,−1s,

⇒ U1,−1 =
1− vw′

s
.

(4.50)

Similarly, applying tΛ to the right implies

U−1,1 =
1− vw′

s′
. (4.51)

By applying L to the left we get,

U−4,0 = sU−2,−1 + vh, (4.52)

and similarly, applying tL to the right,

U0,−4 = s′U−1,−2 + v′h, (4.53)
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respectively. A number of other relations follow from (4.46) in a similar manner.

Applying firstly L to the left gives

U−2,2 = uw − su1,0, (4.54)

and secondly, tL to the right

U2,−2 = uw′ − s′u0,1, (4.55)

respectively, whilst applying both together yields

sw′ = s′w. (4.56)

Therefore, from equations (4.48, 4.51, 4.50, 4.56), it follows that

s

s′
=
v

v′
=
w

w′
=
U−1,1
U1,−1

. (4.57)

From (4.46) we also have

U0,2 = U2,0 − uU1,0 + U0,1u. (4.58)

For the other lattice shift directions, we take as a starting point equation (4.43a), from

which the following equations are derived:

p (ũ− u) + ũu = Ũ0,1 + U1,0 + gs̃′s, (4.59a)

p− gh =
(p− ũ) s′ + w′ − ṽ′

s̃′
, (4.59b)

p+ gh̃ =
(p+ u) s̃+ v − w̃

s
, (4.59c)

U−1,−2 + Ũ−2,−1 = p
(
h̃− h

)
− gh̃h+ s̃s′, (4.59d)

p (v − ṽ) = uṽ + Ũ−1,1 + gs
(
Ũ−1,−2 + U−2,−1

)
+ 3es+ gvh, (4.59e)

p (v′ − ṽ′) = ũv′ + U1,−1 + gs̃′
(
U−2,−1 + Ũ−1,−2

)
+ 3es̃′ + gv′h, (4.59f)

p (w̃ − w) = ũw̃ − s̃
(
Ũ1,0 + U0,1

)
+ U−1,1 + 3es̃+ gh̃w, (4.59g)

p (w̃′ − w′) = uw′ − s′
(
Ũ1,0 + U0,1

)
+ Ũ1,−1 + 3es′ + ghw̃′. (4.59h)
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These involve only the ·̃ shifts, but similar relations are obtained in an obvious way by

replacing p with q and r, and the ·̃ shifts with ·̂ and ·̇ shifts, respectively. By combining

the various relations, and eliminating the variables h, v, v′, U−1,−2 and U−2,−1, the closed-

form system of partial difference equations given earlier in (4.1) can be found.

In particular, by considering (4.59a) with its analogous equations in the other lattice

directions

p (ũ− u) + ũu = Ũ0,1 + U1,0 + gs̃′s, (4.60a)

q (û− u) + ûu = Û0,1 + U1,0 + gŝ′s, (4.60b)

r (u̇− u) + u̇u = Ũ0,1 + U1,0 + gṡ′s, (4.60c)

we can combine them to eliminate both U0,1 and U1,0, by considering the combination

̂(4.60a)− ˙(4.60a) + ˙(4.60b)− (̃4.60b) + (̃4.60c)− (̂4.60c), giving (4.1a),

(p− ũ)
(
q − r + ˜̇u− ˜̂u)+ (q − û)

(
r − p+ ̂̃u− ̂̇u)

+ (r − u̇)
(
p− q + ˙̂u− ˙̃u

)
= g

(˜̂s′ (s̃− ŝ) + ̂̇s′ (ŝ− ṡ) + ˙̃s
′
(ṡ− s̃)

)
. (4.61)

For the next equations in the system, from (4.59b) and (4.59c), we take as a starting point

the equations

p− gh =
(p− ũ) s′ + w′ − ṽ′

s̃′
, (4.62a)

q − gh =
(q − û) s′ + w′ − v̂′

ŝ′
, (4.62b)

r − gh =
(r − u̇) s′ + w′ − v̇′

ṡ′
, (4.62c)

p+ gh̃ =
(p+ u) s̃+ v − w̃

s
, (4.62d)

q + gĥ =
(q + u) ŝ+ v − ŵ

s
, (4.62e)

r + gḣ =
(r + u) ṡ+ v − ẇ

s
, (4.62f)

and eliminate h, v and v′ variables. We can do this in two different ways. First, we
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consider the combinations ̂(4.62a)− (̃4.62b) and (4.62d)− (4.62e), to eliminate v,

p− q + g
(
h̃− ĥ

)
=

(
p− ̂̃u) ŝ′ + ŵ′ −

(
q − ̂̃u) s̃′ − w̃′̂̃s , (4.63a)

p− q + g
(
h̃− ĥ

)
=

(p+ u) s̃− w̃ − (q + u) ŝ+ ŵ

s
, (4.63b)

which we then equate in order to eliminate h, yielding

((p+ u) s̃− (q + u) ŝ) ̂̃s′ − ((p− ̂̃u) ŝ′ − (q − ̂̃u) s̃′) s
= (w̃′ − ŵ′) s− (w̃ − ŵ) ̂̃s′. (4.64)

Repeating this elimination process for the other pairs of equations gives

((q + u) ŝ− (r + u) ṡ) ̂̇s′ − ((q − ̂̇u) ṡ′ − (r − ̂̇u) ŝ′) s
= (ŵ′ − ẇ′) s− (ŵ − ẇ) ̂̇s′, (4.65a)

((r + u) ṡ− (p+ u) s̃) ˜̇s′ − ((r − ˜̇u) s̃′ − (p− ˜̇u) ṡ′) s
= (ẇ′ − w̃′) s− (ẇ − w̃) ˜̇s′. (4.65b)

Similarly, considering the combination (4.62a)− (4.62b)− ̂(4.62d) + (̃4.62e) gives(
(p− ũ)

s′w̃

w̃′
+
(
q + ũ

)̂̃s) ŝ−((p+ û
)̂̃s+ (q − û)

s′ŵ

ŵ′

)
s̃

= w′

(
ŵ

ŵ′
s̃− w̃

w̃′
ŝ

)
+ ̂̃w (s̃− ŝ) . (4.66)

Versions with the other pairs of lattice parameters and lattice shifts also follow in a similar

manner. Second, the v and h variables may be eliminated by considering using only the

triplet of equations (4.62a, 4.62b, 4.62c). This elimination is achieved by considering the

combination ̂(4.62a)− ˙(4.62a) + ˙(4.62b)− (̃4.62b) + (̃4.62c)− (̂4.62c),(
p− ̂̃u) ŝ′ − (q − ˜̂u) s̃′ + ŵ′ − w̃′̂̃s′ −

(
p− ˙̃u

)
ṡ′ −

(
r − ˜̇u) s̃′ + ẇ′ − w̃′

˙̃s
′

+

(
q − ˙̂u

)
ṡ′ −

(
r − ̂̇u) ŝ′ + ẇ′ − ŵ′̂̇s′ = 0 (4.67)
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Similarly, from the the triplet of equations (4.62d, 4.62e, 4.62f), we get

(p+ û) ̂̃s− (r + û) ̂̇s+ ̂̇w − ̂̃w
ŝ

− (q + ũ) ˜̂s− (r + ũ) ˜̇s+ ˜̇w − ˜̂w
s̃

+
(q + u̇) ˙̂s− (p+ u̇) ˙̃s+ ˙̃s− ˙̂s

ṡ
= 0, (4.68)

A relationship involving the elliptic curve is also needed. This relationship may be derived

by considering the product (
p+ u− w̃

s̃

)(
p− ũ− w

s

)
, (4.69)

and substituting in (4.59a, 4.59g), leading to (4.1d),(
p+ u− w̃

s̃

)(
p− ũ− w

s

)
= p2 −

(
1

s̃s′
+ 3e+ gs̃′s

)
+
w̃

s̃
(ũ− ũ) +

(
Ũ1,0 − Ũ0,1

)
− (U1,0 − U0,1) , (4.70)

with similar relations existing for the ·̂ and ·̇ lattice directions. As referred to earlier, this

representation of the system was chosen, despite containing the extra variables U0,1 and

U1,0, as it clearly demonstrates the dependence on the elliptic moduli. However, both of

these may both be eliminated, giving(
p+ û−

̂̃ŵ̃s
)(

p− ̂̃u− ŵ

ŝ

)
−

(
p+ u̇−

˙̃w
˙̃s

)(
p− ˙̃u− ẇ

ṡ

)

+

(
q + u̇−

˙̂w
˙̂s

)(
q − ˙̂u− ẇ

ṡ

)
−

(
q + ũ−

˜̂w˜̂s
)(

q − ˜̂u− w̃

s̃

)

+

(
r + ũ−

˜̇w˜̇s
)(

r − ˜̇u− w̃

s̃

)
−

(
r + û−

̂̇ŵ̇s
)(

p− ̂̇u− ŵ

ŝ

)

=

(
1
˙̃sṡ′

+ 3e+ g ˙̃s
′
ṡ

)
−

(
1̂̃sŝ′ + 3e+ ĝ̃s′ŝ)+

(
1˜̂ss̃′ + 3e+ g˜̂s′s̃)

−
(

1
˙̂sṡ′

+ 3e+ g ˙̂s
′
ṡ

)
+

(
1̂̇sŝ′ + 3e+ ĝ̇s′ŝ)− ( 1˜̇ss̃′ + 3e+ g˜̇s′s̃)

+
ŵ

ŝ

(̂̃u− ̂̃u)− ẇ

ṡ

(
˙̃u− ˙̃u

)
+
ẇ

ṡ

(
˙̂u− ˙̂u

)
− w̃

s̃

(˜̂u− ˜̂u)+
w̃

s̃

(˜̇u− ˜̇u)− ŵ

ŝ

(̂̇u− ̂̇u) . (4.71)
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A similar ‘primed’ version of this equation also exists,(
p+ u− w̃′

s̃′

)(
p− ũ− w′

s′

)
= p2 −

(
1

s̃s′
+ 3e+ gs̃′s

)
+
w′

s′

(
ũ− ũ

)
+
(
Ũ1,0 − Ũ0,1

)
−
(
U1,0 − U0,1

)
, (4.72)

which, upon eliminating U0,1 and U1,0, leads to(
p+ û−

̂̃w′̂̃s′
)(

p− ̂̃u− ŵ′

ŝ′

)
−

(
p+ u̇−

˙̃w
′

˙̃s
′

)(
p− ˙̃u− ẇ′

ṡ′

)

+

(
q + u̇−

˙̂w
′

˙̂s
′

)(
q − ˙̂u− ẇ′

ṡ′

)
−

(
q + ũ−

˜̂w′˜̂s′
)(

q − ˜̂u− w̃′

s̃′

)

+

(
r + ũ−

˜̇w′˜̇s′
)(

r − ˜̇u− w̃′

s̃′

)
−

(
r + û−

̂̇w′̂̇s′
)(

p− ̂̇u− ŵ′

ŝ′

)

=

(
1
˙̃sṡ′

+ 3e+ g ˙̃s
′
ṡ

)
−

(
1̂̃sŝ′ + 3e+ ĝ̃s′ŝ)+

(
1˜̂ss̃′ + 3e+ g˜̂s′s̃)

−
(

1
˙̂sṡ′

+ 3e+ g ˙̂s
′
ṡ

)
+

(
1̂̇sŝ′ + 3e+ ĝ̇s′ŝ)− ( 1˜̇ss̃′ + 3e+ g˜̇s′s̃)

+
ŵ′

ŝ′

(̂̃u− ̂̃u)− ẇ′

ṡ′

(
˙̃u− ˙̃u

)
+
ẇ′

ṡ′

(
˙̂u− ˙̂u

)
− w̃′

s̃′

(˜̂u− ˜̂u)+
w̃′

s̃′

(˜̇u− ˜̇u)− ŵ′

ŝ′

(̂̇u− ̂̇u) . (4.73)

The system is completed by an equation relating the primed versions of s and w, with

their bar-shifted versions

s′w = w′s, (4.74)

derived earlier. This results in a closed-form elliptic lattice system that can be expressed

only in terms of the variables u, s, s′ and w.

A dual system, similar to (4.1), in terms of the variables h, v, s and s′ can also be derived,

shadowing the system. This system is given by the following set of equations:
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(
p− gh̃

)(
r − q + g˜̇h− g˜̂h)+

(
q − gĥ

)(
p− r + g

̂̃
h− ĝ̇h)

+
(
r − gḣ

)(
q − p+ g

˙̂
h− g ˙̃

h
)

= g
(˜̂s (s̃′ − ŝ′) + ̂̇s (ŝ′ − ṡ′) + ˙̃s (ṡ′ − s̃′)

)
,

(4.75a)(
p− gḣ

)
˙̃s
′
−
(
q − gḣ

)̂̇s′ − ̂̇v′ + ˜̇v′
ṡ′

+

(
q − gh̃

)̂̃s′ − (r + gh̃
)˜̇s′ − ˜̇v′ + ˜̂v′

s̃′

+

(
r − gĥ

)
˙̂s
′
−
(
p− gĥ

)̂̃s′ − ̂̃w′ + ̂̇w′
ŝ′

= 0, (4.75b)(
p+ g

˙̃
h
)
ṡ−

(
r + g

˙̃
h
)
s̃− v̇ + ṽ

˙̃s
+

(
r + ĝ̇h) ŝ− (q + ĝ̇h) ṡ− v̂ + v̇̂̇s

+

(
q + g

˜̂
h

)
s̃−

(
p+ g

̂̃
h

)
ŝ− ṽ + v̂

̂̃s = 0, (4.75c)(
p− gh+

ṽ

s̃

)(
p+ gh̃− v

s

)
= p2 + g

(
Ũ−2,−1 − Ũ−1,−2

)
− g

(
U−2,−1 − U−1,−2

)
+
gv

s
(h− h)−

(
1

s̃′s
+ 3e+ gs̃s′

)
, (4.75d)(

q − gh+
v̂

ŝ

)(
q + gĥ+

v

s

)
= q2 + g

(
Û−2,−1 − Û−1,−2

)
− g

(
U−2,−1 − U−1,−2

)
+
gv

s
(h− h)−

(
1

ŝ′s
+ 3e+ gŝs′

)
, (4.75e)(

r − gh+
v̇

ṡ

)(
r + gḣ− v

s

)
= r2 + g

(
U̇−2,−1 − U̇−1,−2

)
− g

(
U−2,−1 − U−1,−2

)
+
gv

s
(h− h)−

(
1

ṡ′s
+ 3e+ gṡs′

)
, (4.75f)

s′v = v′s, (4.75g)

This system can be seen as the result of applying an automorphism of the curve. In fact,

consider a shift in the parameter κ by a half period ω,

κ 7→ κ+ ω. (4.76)



Chapter 4. The Discrete Elliptic Kadomtsev-Petviashvili Equation 103

As a result, from (4.25), using the periodicity of ℘(·), k maps to

k 7→ 1

2

℘′(κ+ ω)

℘(κ+ ω)− e
= ζ(κ)− ζ(κ+ ω) + ζ(ω). (4.77)

Using the identity

℘(a+ b) =
1

4

(
℘′(a)− ℘′(b)
℘(a)− ℘(b)

)2

− ℘(a)− ℘(b), (4.78)

together with (4.26a), this returns

k 7→ −k (4.79)

Similarly, again using (4.78),

K 7→℘(κ+ ω)− e, (4.80a)

7→k2 −K − 2e, (4.80b)

which using the elliptic curve Γ, (4.2), may be rewritten as

K 7→ g

K
. (4.81)

Similarly, the pair

(k′, K ′) 7→
(
−k′, g

K ′

)
. (4.82)

Applying these mappings to the Cauchy kernel, (4.24), hence gives

Ω 7→ KK ′

g
Ω↔ 1

g
tLΩL, (4.83)

and so from this automorphism the system (4.75) follows.

We will now consider some of the properties of the system (4.1).

4.5 Lax Representation

To obtain a Lax representation, we make use of the infinite component vectors, uκ,

introduced in (4.38a), which can be rewritten as

uκ ≡ (1−UΩ) ρκcκ. (4.84)
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For these vectors the following set of shift relations can be derived:

Proposition 4.5.1

ũκ = (p+ Λ)uκ − Ũ
(
O − g tL−1OL−1

)
uκ, (4.85a)

ûκ = (q + Λ)uκ − Û
(
O − g tL−1OL−1

)
uκ, (4.85b)

u̇κ = (r + Λ)uκ − U̇
(
O − g tL−1OL−1

)
uκ, (4.85c)

uκ = −Luκ + U
(
OΛ− tΛO

)
uκ, (4.85d)

uκ = −L−1uκ + U tL−1
(
OΛ− tΛO

)
L−1uκ. (4.85e)

Proof

Start with the definition of uκ, (4.84), and consider ũκ,

ũκ =
(
1− ŨΩ

)
ρ̃κcκ. (4.86)

Recalling, from (4.35a, 4.13),

ρ̃κ = (p+ k) ρκ, (4.87a)

Λcκ = kcκ, (4.87b)

this implies

ũκ =
(
1− ŨΩ

)
(p+ k) ρκcκ, (4.88a)

=
(
1− ŨΩ

)
(p+ Λ) ρκcκ, (4.88b)

= (p+ Λ)uκ +
(

(p+ Λ)UΩ− ŨΩ (p+ Λ)
)
. (4.88c)

Using the relation (4.43a),

(p+ Λ)U = Ũ
(
p− tΛ

)
+ ŨÔ1U (4.89)

this reduces to

ũκ = (p+ Λ)uκ − Ũ
(
ΩΛ + tΛΩ− Ô1UΩ

)
ρκcκ, (4.90)
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whereby the result follows, recalling (4.27a),

Ô1 = ΩΛ + tΛΩ. (4.91)

The proof for the ·̂ and ·̇ shift directions is almost identical, except with the shift directions

replaced and the lattice parameters by q and r respectively. For uκ, we use

ρκ = −Kρκ, (4.92a)

Lcκ = Kcκ. (4.92b)

This gives

uκ =
(
1−UΩ

)
ρκcκ, (4.93a)

=
(
1−UΩ

)
(−K) ρκcκ, (4.93b)

= −Luκ +
(
LUΩ−UΩL

)
ρκcκ, (4.93c)

(4.93d)

Recalling the relation (4.46),

LU = U tL + U
(
OΛ− tΛO

)
U (4.94)

this reduces to

uκ = −Luκ −U
(
ΩL− tLΩ−

(
OΛ− tΛO

)
UΩ

)
ρκcκ. (4.95)

Using the definition (4.27b), the result is obtained. �

Setting (uκ)i = ϕi, and introducing the 2-component vector ϕ = (ϕ0, ϕ1)
T , we can

derive the following Lax triplet:

ϕ̃ = A0ϕ + A1ϕ + Jϕ, (4.96a)

ϕ̂ = B0ϕ +B1ϕ + Jϕ, (4.96b)

ϕ̇ = C0ϕ + C1ϕ + Jϕ, (4.96c)
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where

A0 =

 p− ũ 1

3e− U0,1 − Ũ1,0 p+ u

 , (4.97a)

A1 = g

 −s̃′w s̃′s

−w̃′w w̃′s

 , (4.97b)

J =

 0 0

−1 0

 , (4.97c)

with Bi and Ci, i = 0, 1, equivalent to Ai, but with p and ·̃ shifts, replaced by q and r and

·̂ and ·̇ shifts, respectively. Note that the system possesses a Lax triplet rather than a Lax

pair. This is analogous to the Lax representation for the LPKP system in [108], which

can then be reduced to a Lax pair. This reduction is not possible in this case. The system

(4.96) is subject to a number of pairwise compatibility relations, for example, between

the ·̃ and ·̂ directions resulting in the condition(
Â0J + JB0 − B̃0J − JA0

)
ϕ +

(
Â0B0 + Â1J + JB1 − B̃0A0 − B̃1J − JA1

)
ϕ

+
(
Â0B1 + Â1B0 − B̃0A1 − B̃1A0

)
ϕ +

(
Â1B1 − B̃1A1

)
ϕ = 0.

(4.98)
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This compatibility condition results in the following system of eight equations:

p
(̂̃u− û)− q (̂̃u− ũ)+ Ũ1,0 − Û1,0 + ĝ̃s′ (s̃− ŝ) + ̂̃u (û− ũ) = 0, (4.99a)

(q − û)

(
3e− Û0,1 −

̂̃
U1,0

)
+
(
p+ û

)(
3e− U0,1 − Û1,0

)
− (p− ũ)

(
3e− Ũ0,1 −

˜̂
U1,0

)
−
(
q + ũ

)(
3e− U0,1 − Ũ1,0

)
= g

(̂̃w′ (ŝ− s̃) + w
(
s̃
′ − ŝ′

))
, (4.99b)

p (u− ũ)− q (u− û) + Ũ0,1 − Û0,1 + gs (s̃′ − ŝ′) + u (û− ũ) = 0, (4.99c)

g
(
ŝ′w

(
p− ̂̃u)+ ŵ′w + ̂̃s′ŵ (q − û)− ̂̃s′ŝ(3e− U0,1 − Û1,0

)
−s̃′w

(
q − ̂̃u)− w̃′w − ̂̃s′ŵ (p− ũ) + ̂̃s′ŝ(3e− U0,1 − Ũ1,0

))
= 0, (4.99d)

g
(
ŝ′s
(
p− ˜̂u)+ ŵ′s− ̂̃s′ŵ + ̂̃s′ŝ (q + u)

−s̃′s
(
q − ˜̂u)− w̃′s+ ̂̃s′w̃ − ̂̃s′s̃ (p+ u)

)
= 0, (4.99e)

g

(
−ŝ′w

(
3e− Û0,1 −

̂̃
U0,1

)
− ŵ′w

(
(p+ û

)
+ ŝ ̂̃w′ (3e− U0,1 − Û0,1

)
− ˜̂w′ŵ ((q − û) + s̃′w

(
3e− Ũ0,1 −

̂̃
U0,1

)
+ w̃′w

(
(q + ũ

)
−s̃ ̂̃w′ (3e− U0,1 − Ũ0,1

)
+ ˜̂w′w̃ ((p− ũ)

)
= 0, (4.99f)

g

(
ŝ′s

(
3e− Û0,1 −

̂̃
U0,1

)
+ ŵ′s

(
p+ û

)
− ̂̃w′ŵ + ̂̃w′ŝ (q + u)

−s̃′s
(

3e− Ũ0,1 −
˜̂
U0,1

)
− w̃′s

(
q + ũ

)
+ ̂̃w′w̃ − ̂̃w′s̃ (p+ u)

)
= 0, (4.99g)

s′w = w′s. (4.99h)

Similar compatibility conditions also exist between the ·̃ and ·̇ shifts, and the ·̂ and ·̇

shifts. It may be verified using MAPLE that the system (4.1) then follows from these

compatibility conditions.
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4.6 Dimensional Reduction and Degeneration

In this section, we explain how the lattice Potential KP equation and the Elliptic KdV

system may be recovered under particular limits of the system (4.1).

4.6.1 Degeneration of the Elliptic Curve

Taking the limit g → 0 causes the elliptic curve to degenerate, and from (4.1a) we recover

the lattice potential KP equation[51],

(p− ũ)
(
q − r + ˜̇u− ˜̂u)+ (q − û)

(
r − p+ ̂̃u− ̂̇u)+

(r − u̇)
(
p− q + ˙̂u− ˙̃u

)
= 0,

(4.100)

which first appeared in [108]. In contrast to the bilinear lattice KP of [56], this has a

continuum limit directly to the potential KP equation.

4.6.2 Dimensional Reduction

As for the discrete elliptic KdV system, given in [112], this class of systems requires

that the infinite matrix C, and hence also the infinite matrix U , are symmetric under

transposition,
tC = C ⇒ tU = U , (4.101)

i.e. Ui,j = Uj,i. This restriction ensures that the primed, and bar shifted, variables become

equal to their unprimed, and unbarred, equivalents, respectively,

s′ = s, v′ = v w′ = w,

u→ u, s→ s w → w,
(4.102)

and results in a dimensional reduction,

r → 0, u̇ = u, (4.103)
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from which the elliptic lattice KdV system is recovered from (4.1). Applying this

dimensional reduction to (4.1a) gives(
p+ q + u− ̂̃u) (p− q + ũ− û) = p2 − q2 + g (s̃− ŝ)

(̂̃s− s) . (4.104)

For the next two equations in the elliptic KdV system we consider the alternative

presentation (4.64, 4.66) for simplicity, as opposed to the presentation (4.1b, 4.1c). From

equation (4.64) under the dimensional reduction it follows

((p+ u) s̃− (q + u) ŝ) ̂̃s− ((p− ̂̃u) ŝ− (q − ̂̃u) s̃) s =
(̂̃s− s) (w̃ − ŵ) . (4.105)

Similarly, from equation (4.66), it follows(
(p− ũ) + (q + ũ) ˜̂s) ŝ− ((p+ û) ̂̃s+ (q − û) s

)
s̃ = (ŝ− s̃)

(̂̃w − w) . (4.106)

From equations (4.1d, 4.1e) it follows that(
p+ u− w̃

s̃

)(
p− ũ+

w

s

)
= p2 −

(
1

ss̃
+ 3e+ gss̃

)
, (4.107a)(

q + u− ŵ

ŝ

)(
q − û+

w

s

)
= q2 −

(
1

sŝ
+ 3e+ gsŝ

)
, (4.107b)

respectively. Equations (4.104, 4.105, 4.106, 4.107a, 4.107b) entirely comprise the

elliptic KdV system.

4.7 Soliton Type Solutions

As a concrete application of the infinite matrix scheme used to derive the lattice system,

it is relatively straightforward to construct soliton type solutions. Introducing the N by

N ′ matrix M , defined by

M = Ω(ki, k
′
j)r

ts, (4.108)

with entries

Mij =
1− g/KiK

′
j

ki + k′j
ρiσj, (i = 1, . . . ,N ; j = 1, . . . ,N ′), (4.109)
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where the parameters of the solutions (ki, Ki) and (k′j, K
′
j) are points on the elliptic curve

Γ, as in (4.2), and the vectors r, ts are given by

r =


ρ1
...

ρN

 , (4.110a)

ts =
(
σ1, · · · σN ′

)
. (4.110b)

In order to obtain the soliton type solutions we take the infinite matrix C to be a finite

rank, N ′ by N matrix of the form

C =
N ′∑
i=1

N∑
j=1

ρicκicκ
tcκjσj. (4.111)

We also define diagonal matrices

k = diag(k1, k2, . . . , kN ), K = diag(K1, K2, . . . , KN ), (4.112a)

k′ = diag(k′1, k
′
2, . . . , k

′
N ′), K′ = diag(K ′1, K

′
2, . . . , K

′
N ′). (4.112b)

This leads to the following explicit solutions:

u = ts(1 + CM)−1Cr, (4.113a)

s = tsK ′−1(1 + CM)−1Cr, (4.113b)

s′ = ts(1 + CM)−1CK−1r, (4.113c)

h = tsK ′−1(1 + CM)−1CK−1r, (4.113d)

v = 1− tsK ′−1k′(1 + CM)−1Cr, (4.113e)

v′ = 1− ts(1 + CM)−1CkK−1r, (4.113f)

w = 1 + tsK ′−1(1 + CM)−1Ckr, (4.113g)

w′ = 1 + tsk′(1 + CM)−1CK−1r. (4.113h)

These solutions can be regarded as soliton type solutions in that upon the degeneration

of the elliptic curve, they reduce to the Hirota-type solitons for the bilinear lattice KP
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of [56]. Note that, although the dynamics themselves, i.e. the evolution of the system

through its independent variables, residing in the plane wave factors, ρi and σj , do not

explicitly involve the elliptic curve, the soliton solutions are essentially dependent on the

variables on the curve.

4.8 Conclusion

We have derived from a direct linearisation scheme a 3 + 1 dimensional lattice system,

naturally associated with an elliptic curve, as an extension of the lattice potential KP

equation. We have also shown this system to be integrable through the existence of a

Lax representation and soliton solutions. To our knowledge, this is the first lattice system

associated with an elliptic curve that has been proposed in higher dimensions. In the next

chapter, we will derive the system’s continuous analogue.
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Chapter 5

The Continuous Elliptic

Kadomtsev-Petviashvili Equation

5.1 Introduction

Many discrete integrable lattice systems possess analogous compatible continuous

systems, with these systems forming continuous symmetries for the lattice systems,

whilst in turn these lattice systems constitute discrete symmetries for the corresponding

continuous flows. In particular, the potential Kadomtsev-Petviashvili Equation,(
ut −

1

4
uxxx −

3

2
u2x

)
x

= uyy, (5.1)

forms the continuous analogue to the lattice potential Kadomtsev-Petviashvili equation

(4.1a). This elliptic lattice KP system is no different, in that it also possesses an analogous

compatible continuous system. In this chapter, we provide some of the simplest of these

continuous flows associated with the lattice system, and discuss some of the continuous

system’s properties. The system is an elliptic extension of the continuous (potential) KP

equation. The only example of such a KP-type system in the continuous setting was

given by Date, Jimbo and Miwa [41]. We discuss the difference between our system
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and the system given in [41] in section 5.5. There are various elliptic integrable systems

of continuous type (including the Krichever-Novikov equation [80], the Landau-Lifshitz

equation [85], Krichever’s elliptic Toda [79] and various others) in 1 + 1-dimensions.

An analogous continuous system to the elliptic lattice KP system (4.1), associated with

the same elliptic curve (4.2), is given by(
ut −

1

4
uxxx −

3

2
(ux)

2 +
3

2
gsxs

′
x

)
x

=
3

4
uyy +

3

2
g
(
s′xsy − s′ysx

)
, (5.2a)

(ss′)t =
1

4
(sxxxs

′ + s′xxxs) +
3

2
ux (ss′)x − 3usxs

′
x +

3

4

(
s′sy − ss′y − sxs′x

)
x

+
3

2

(
us′sy − uss′y + w′ys− wys′

)
+

3

2
(wxs

′
x + w′xsx) , (5.2b)

(ss′)y = 2sw′x − 2s′wx + 2u (sxs
′ − s′xs) + sxxs

′ − s′xxs, (5.2c)(
u+

w

s

)
x

+
(
u− w

s

)2
+
w

s
(u− u) =

(
1

s′s
+ 3e+ gss′

)
+ U1,0 − U1,0, (5.2d)(

u+
w′

s′

)
x

+

(
u− w′

s′

)2

+
w′

s′
(u− u) =

(
1

s′s
+ 3e+ gss′

)
+ U0,1 − U0,1, (5.2e)

s′w = w′s. (5.2f)

In fact, this can be obtained from a continuum limit of the lattice system. Note that this

system is dependent on three continuous variables, x, y and t, and one discrete variable,

U 7→ U . As in the previous discrete case in Chapter 4, the elimination of the variables

U1,0 and U0,1 disguises the dependence on the elliptic modulus e. This may be achieved

by differentiating both equations (5.2d) and (5.2e) with respect to x, and substituting in

equations (5.41a) and (5.41b) below, respectively. Again the degeneration of the elliptic

curve results in the potential KP equation (5.1), whilst the elliptic potential KdV equation

[112] is recovered through a dimensional reduction.
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5.2 Continuous Elliptic System

For the continuous case, we identify corresponding continuous flows to the the discrete

flows discussed in chapter 4, and so the dynamics of the system are again encoded by the

same parameter family of elements, C ∈ A, given by the formal integral

C =

∫∫
D

dµ (λ, λ′) ρλcλ tcλ′σλ′ , (5.3)

but with the plane wave factors, ρk and σk′ , now continuous exponential functions, given

by

ρk = exp

(∑
j∈Z

kjxj

)
, (5.4a)

σk′ = exp

(
−
∑
j∈Z

(−k′)j xj

)
. (5.4b)

The integral is again over an arbitrary domain in C2, D, on the space of variables λ, λ′,

with factors ck and tck′ , the infinite component vectors defined earlier in (4.12). Again,

the integration measure, dµ (λ, λ′), is in principle arbitrary, but we assume that basic

operations, such as differentiation, and shifts, with respect to the parameters, commute

with the integrations.

The dynamics of C themselves follow from the derivatives of these plane wave factors

with respect to the variables xi. The derivative of ρk with respect to xi is given by

∂

∂xi
(ρk) =

∂

∂xi

(
exp

(∑
j∈Z

kjxj

))
,

=

(
∂

∂xi

(∑
j∈Z

kjxj

))(
exp

(∑
j∈Z

kjxj

))
,

= kiρk.

(5.5)

Similarly, for the derivative of σ(k′), we have

∂

∂xi
(σk′) = − (−k′)i σk′ . (5.6)
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From these derivatives of ρk and σk′ , the derivative of C with respect to xi then follows.

This is given by

∂C

∂xi
=

∂

∂xi

∫∫
D

dµ (λ, λ′) ρλσλ′cλ tcλ′ ,

=

∫∫
D

dµ (λ, λ′)

(
∂ρλ
∂xi

cλ tcλ′σλ′ + ρλcλ tcλ′
∂σλ′

∂xi

)
,

=

∫∫
D

dµ (λ, λ′)
(
λiρλcλ tcλ′σλ′ − (−λ′)i ρλcλ tcλ′σλ′

)
,

=

∫∫
D

dµ (λ, λ′) ρλ
(
λicλ

)
tcλ′σλ′

−
∫∫
D

dµ (λ, λ′) ρλcλ
(

tcλ′ (−λ)i
)
σλ′ ,

=

∫∫
D

dµ (λ, λ′) ρλΛ
icλ tcλ′σλ′

−
∫∫
D

dµ (λ, λ′) ρλcλ tcλ′
(
− tΛ

)i
σλ′ ,

= Λi

∫∫
D

dµ (λ, λ′) ρλcλ tcλ′σλ′

−

∫∫
D

dµ (λ, λ′) ρλcλ tcλ′σλ′

(− tΛ
)i
,

= ΛiC −C
(
− tΛ

)i
.

(5.7)

Introducing, as before, the infinite matrix U which is related to C via the relationship

U = C −UΩC, (5.8)

it can be shown that
∂U

∂xi
=
∂C

∂xi
− ∂U

∂xi
ΩC −UΩ

∂C

∂xi
, (5.9)

and hence,
∂U

∂xi
= (1−UΩ)

∂C

∂xi
(1 + ΩC)−1 . (5.10)
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Indeed, from the relationship between U and C, (5.8), we have

C = U + UΩC,

= U (1 + ΩC)
(5.11)

or alternatively,

U = C −UΩC,

= (1−UΩ)C,

⇒ C = (1−UΩ)−1U ,

(5.12)

and hence,

(1 + ΩC)−1 = U−1 (1−UΩ)U ,

= 1−ΩU .
(5.13)

It therefore follows that the derivative of U with respect to the variables xi is given by

∂U

∂xi
= (1−UΩ)

∂C

∂xi
(1−ΩU) . (5.14)

In order to eliminate C entirely from the derivative ∂U/∂xi, two further identities

involving the Cauchy kernel, Ω, are required. The first is a generalisation of (4.24).

Proposition 5.2.1 The following relationship between the raising operator, Λ, and the

Cauchy Kernel, Ω, holds for all j ∈ N:

ΩΛj −
(
− tΛΩ

)j
=

j−1∑
i=0

(
− tΛ

)i
ÔΛj−1−i =: Ôj. (5.15)

Proof

Consider the operator acting on c(k) to the right, and its transpose to the left,

tc(k′)
(
ΩΛj −

(
− tΛΩ

)j) c(k) = tc(k′)ΩO
(
kj − (−k′)j

)
c(k), (5.16)

using (4.13). Using the general formula

an − bn = (a− b)
n−1∑
i=0

an−1−ibi, (5.17)
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for all a, b ∈ R, n ∈ N, we have

tc(k′)
(
ΩΛj −

(
− tΛΩ

)j) c(k) =

j−1∑
i=0

tc(k′) (k + k′) ΩO (−k′)i kj−1−ic(k).

(5.18)

Now, by applying the definition of the Cauchy Kernel, (4.24), we have

tc(k′)
(
ΩΛj −

(
− tΛΩ

)j) c(k) =

j−1∑
i=0

tc(k′)
(

1− g

KK ′

)
O (−k′)i kj−1−ic(k),

(5.19)

from which the result follows, using the action of the raising operators on the monomial

basis, (4.13). �

Proposition 5.2.2 For all i, j ∈ N0, we have

ÔjΛ
i +
(
− tΛ

)j
Ôi = Ôi+j. (5.20)

Proof

Substituting in the definition of Ôj , (5.15), we have

ÔjΛ
i +
(
− tΛ

)j
Ôi =

(
j−1∑
k=0

(
− tΛ

)k
ÔΛj−1−k

)
Λi +

(
− tΛ

)j ( i−1∑
k=0

(
− tΛ

)k
ÔΛi−1−k

)
,

=

j−1∑
k=0

(
− tΛ

)k
ÔΛi+j−1−k +

i−1∑
k=0

(
− tΛ

)j+k
ÔΛi−1−k.

(5.21)

Relabelling the summation index for the second sum, by letting k′ = k + j, we have

ÔjΛ
i +
(
− tΛ

)j
Ôi =

j−1∑
k=0

(
− tΛ

)k
ÔΛi+j−1−k +

i+j−1∑
k′=0

(
− tΛ

)k′
ÔΛi+j−1−k′ ,

=

i+j−1∑
k=0

(
− tΛ

)k
ÔΛi+j−1−k,

= Ôi+j,

(5.22)
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as required. �

It now follows, using our earlier calculations for ∂C/∂xi and ∂U/∂xi, (5.14,5.7), that

∂U

∂xi
= (1−UΩ)

∂C

∂xi
(1−ΩU) ,

= (1−UΩ)
(
ΛiC −C

(
−tΛ

)i)
(1−ΩU) .

(5.23)

Again, using the definition of U , (5.8), this becomes

∂U

∂xi
= ΛiU −U

(
− tΛ

)i
+ U

(
ΩΛi −

(
− tΛ

)i
Ω
)
U . (5.24)

From this it follows that

∂

∂xi+j
U = Λi+jU −U

(
− tΛ

)i+j −UÔi+jU

=
(
Λj −UÔj

)
ΛiU −U

(
−tΛ

)j ((−tΛ)i + ÔiU
)
,

(5.25)

which upon substituting ΛiU and U (−tΛ)
j using (5.24) implies

∂

∂xi+j
U =

(
Λj −UÔj

)( ∂

∂xi
U

)
+

(
∂

∂xj
U

)((
− tΛ

)i
+ ÔiU

)
. (5.26)

Denoting x = x1, y = x2 and t = x3, it follows that

Ux = ΛU + U tΛ−UÔ1U . (5.27)

Taking this as a starting point, we can simply read off

ux = U1,0 + U0,1 − u2 + gss′. (5.28)

Further x-derivatives for the other variables given earlier follow by applying various

powers of the operators Λ and L, and their transposes. Applying L−1 to the left hand

side gives

L−1U = L−1ΛU + L−1U tΛ−L−1UÔU ,

⇒ sx = w − v − s (u− gh) ,
(5.29)
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or tL−1 to the right gives the s′x derivative,

U tL−1 = ΛU tL−1 + U tΛ tL−1 −UÔU tL−1,

⇒ s′x = w′ − v′ − s′ (u− gh) .
(5.30)

Applying both L−1 to the left, and tL−1 to the right, gives

L−1U tL−1 = L−1ΛU tL−1 + U tΛ tL−1 −L−1UÔU tL−1,

⇒ hx = U−1,−2 + U−2,−1 − ss′ + gh2.
(5.31)

Applying L−1Λ to the left, gives

L−1ΛU = L−1Λ2U + L−1ΛU tΛ−L−1ΛUÔU , (5.32)

which when using equation (4.7) for the curve, becomes

−vx = 3es+ gU−4,0 + U−1, 1 + uv + gU−1,−2s, (5.33)

whereby U−4,0 may be eliminated, using (4.52), giving

−vx = v (u+ gh) + U−1,1 + gs
(
U−1,−2 + U−2,−1

)
+ 3es. (5.34)

Similarly, by applying tΛ tL−1 to (5.27) we can derive a formula for v′x,

−v′x = v′
(
u+ gh

)
+ U1,−1 + gs′

(
U−1,−2 + U−2,−1

)
+ 3es′. (5.35)

The derivative wx follows by applying L−1 to the left and tΛ−1 to the right of tΛ,

giving

wx = w (u+ gh) + U−1,1 − s
(
U0,1 + U1,0

)
+ 3es, (5.36)

whilst, in a similar manner, it can be shown that

w′x = w′ (u+ gh) + U1,−1 − s′
(
U0,1 + U1,0

)
+ 3es′. (5.37)

We can continue to use this formula to derive the other x-derivatives, but this results in

the introduction of a lot of new variables, which we would then need to eliminate. We
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instead follow a different procedure. Taking as a starting point (5.26), we discover upon

substitution from (5.24) that(
∂

∂xi+j
+

∂2

∂xj∂xi

)
U =

(
Λj −UÔj

) ∂U
∂xi

+
∂U

∂xj

((
− tΛ

)i
+ÔiU

)
+

∂

∂x+j

(
∂U

∂xi

)
,

=
(
Λj −UÔj

) ∂U
∂xi

+
∂U

∂xj

((
− tΛ

)i
+ ÔiU

)
+

∂

∂x+j

(
ΛiU −U

(
− tΛ

)i −UÔiU
)
,

=
(
Λj −UÔj

) ∂U
∂xi

+
(
Λi −UÔi

) ∂U
∂xj

.

(5.38)

Similarly, we also have(
∂

∂xi+j
− ∂2

∂xj∂xi

)
U =

∂U

∂xi

((
− tΛ

)j
+ ÔjU

)
+
∂U

∂xj

((
− tΛ

)i
+ ÔiU

)
. (5.39)

Hence, when setting i = j = 1 we have(
∂

∂x2
+

∂2

∂x21

)
U = 2

(
Λ−UÔ1

) ∂U
∂x1

, (5.40a)(
∂

∂x2
− ∂2

∂x21

)
U = 2

∂U

∂x1

(
− tΛ + Ô1U

)
, (5.40b)

from which we can read off directly formulae for (U1,0)x and (U0,1)x derivatives,

uy + uxx = 2 (U1,0)x − 2uux + 2gs′sx, (5.41a)

uy − uxx = −2 (U0,1)x + 2uux − 2gss′x, (5.41b)

respectively. As for the y-derivatives, summing (5.40a) and (5.40b) gives

U y =
(
ΛU −U tΛ

)
x

+ UxÔ1U −UÔ1Ux, (5.42)

from which we can read off similar formulae in the same manner that we did for the
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x-derivatives:

uy = (U1,0 − U0,1)x + g (s′sx − ss′x) , (5.43a)

hy = (U−1,−2 − U−2,−1)x + g (ss′x − s′sx) , (5.43b)

sy = − (v + w)x + sx (u+ gh)− s (u+ gh)x , (5.43c)

s′y = (v′ + w′)x + s′ (u+ gh)x − s
′
x (u+ gh) , (5.43d)

vy = (U−1,1)x − (vux + uvx) + g
(
s (U−1,−2)x − U−1,−2sx

)
, (5.43e)

v′y = − (U1,−1)x + (uv′x + v′ux) + g
(
(U−2,−1) s

′
x − s′ (U−2,−1)x

)
, (5.43f)

wy = (U−1,1 − U−2,2)x +
(
U0,1sx − s (U0,1)x

)
+ g (hwx − hx (w − 1)) , (5.43g)

w′y = (U2,−2 − U1,−1)x +
(
U0,1s

′
x − s′ (U0,1)x

)
+ g ((w′ − 1)hx − hw′x) . (5.43h)

As for the t-derivatives, from (5.26), setting i = 1 and j = 2, we have(
∂

∂x3
+

∂2

∂xi∂xj

)
=
(
Λ2 −UÔ2

) ∂U
∂x1

+
(
Λ−UÔ1

) ∂U
∂x2

,

=
(
Λ2 −UÔ1Λ + U tΛÔ1

) ∂U
∂x1

+
(
Λ−UÔ1

) ∂U
∂x2

,

=

((
Λ−UÔ1

)2
+
(
Λ−UÔ1

)
UÔ1

+U tΛÔ1

) ∂U
∂x1

+
(
Λ−UÔ1

) ∂U
∂x2

,

=
(
Λ−UÔ1

)((
Λ−UÔ1

) ∂U
∂x1

+
∂U

∂x2

)
+
∂U

∂x1
Ô1

∂U

∂x1
,

(5.44)

from which, using (5.40a), we get(
∂

∂x3
+

∂2

∂x1∂x2

)
U =

1

2

(
Λ−UÔ1

)(
3
∂U

∂x2
+
∂2U

∂x21

)
U +

∂U

∂x1
Ô1

∂U

∂x1
. (5.45)
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Similarly, we can show that(
∂

∂x3
− ∂2

∂x1∂x2

)
U

=
1

2

((
3
∂U

∂x2
− ∂2U

∂x21

)
U

)(
− tΛ + Ô1U

)
+
∂U

∂x1
Ô1

∂U

∂x1
.

(5.46)

These equations imply, in particular,

st = −3

2
vy −

1

2
vxx −

3

2
suy −

1

2
suxx

+
1

2
gh (3sy + sxx) + sxux − ghxsx − sxy, (5.47a)

s′t =
3

2
w′y +

1

2
w′xx −

3

2
us′y −

1

2
us′xx

+
1

2
gs′ (3hy + hxx) + s′xux − ghxs′x − s′xy, (5.47b)

st = −3

2
wy +

1

2
wxx +

3

2
usy −

1

2
usxx

+
1

2
gs (−3hy + hxx) + sxux − ghxsx + sxy, (5.47c)

s′t =
3

2
v′y +

1

2
v′xx +

3

2
s′uy −

1

2
s′uxx

+
1

2
gh
(
−3s′y + s′xx

)
+ s′xux − ghxs′x + s′xy. (5.47d)

For the other t-derivatives, it is neater to follow another method. Differentiating (5.45)

with respect to x1 implies

∂2U

∂x1∂x3
=− ∂3U

∂x21∂x2
+

1

2

(
3
∂U

∂x2
+
∂2U

∂x21

)
∂ΛU

∂x1

− 1

2

∂U

∂x1
Ô1

(
3
∂

∂x2
+

∂2

∂x21

)
U − 1

2
UÔ1

(
3
∂U

∂x2
+
∂2U

∂x21

)
∂U

∂x1

+
∂2U

∂x21
Ô1

∂U

∂x1
+
∂U

∂x1
Ô1

∂2U

∂x21
.

(5.48)

Substituting in ∂ΛU
∂x1

, from (5.40a), gives

∂2U

∂x1∂x3
=− ∂3U

∂x21∂x2
+

1

4

(
3
∂

∂x2
+

∂2

∂x21

)(
∂

∂x2
+

∂2

∂x21

)
U

+
1

2

(
3
∂

∂x2
+

∂2

∂x21

)(
UÔ1

∂U

∂x1

)
− 1

2

∂U

∂x1
Ô1

(
3
∂

∂x2
+

∂2

∂x21

)
U

− 1

2
UÔ1

(
3
∂U

∂x2
+
∂2U

∂x21

)
∂U

∂x1
+
∂2U

∂x21
Ô1

∂U

∂x1
+
∂U

∂x1
Ô1

∂2U

∂x21
,

(5.49)
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which reduces to(
U t −

1

4
Uxxx −

3

2
UxÔ1Ux

)
x

=
3

4
U yy +

3

2

(
U yÔ1Ux −UxÔ1U y

)
. (5.50)

From this, we can simply read off the remaining t-derivatives:(
ut −

1

4
uxxx −

3

2
(ux)

2 +
3

2
gsxs

′
x

)
x

=
3

4
uyy +

3

2
g
(
s′xsy − s′ysx

)
, (5.51a)(

ht −
1

4
hxxx −

3

2
sxs
′
x +

3

2
g (hx)

2

)
x

=
3

4
hyy +

3

2

(
s′xsy − s′ysx

)
, (5.51b)(

st −
1

4
sxxx −

3

2
sxux +

3

2
ghxsx

)
x

=
3

4
syy +

3

2

(
sy (u+ gh)x − sx (u+ gh)y

)
, (5.51c)(

s′t −
1

4
s′xxx −

3

2
s′xux +

3

2
ghxs

′
x

)
x

=
3

4
s′yy +

3

2

(
s′x (u+ gh)y − s

′
y (u+ gh)x

)
, (5.51d)(

vt −
1

4
vxxx −

3

2
vxux +

3

2
g (U−1,−2)x sx

)
x

=
3

4
vyy +

3

2
(vyux − vxuy) +

3

2
g
(

(U−1,−2)x sy − (U−1,−2)y sx

)
, (5.51e)(

v′t −
1

4
v′xxx −

3

2
v′xux −

3

2
g (U−2,−1)x s

′
x

)
x

=
3

4
v′yy +

3

2

(
uyv

′
x − uxv′y

)
+

3

2
g
(

(U−2,−1)y sx − (U−2,−1)x sy

)
, (5.51f)(

wt −
1

4
wxxx −

3

2
sx (U0,1)x +

3

2
ghxwx

)
x

=
3

4
wyy + +

3

2

(
sy (U0,1)x − sx (U0,1)y

)
+

3

2
g (hxwy − hywx) , (5.51g)(

w′t −
1

4
w′xxx −

3

2
s′x (U1,0)x +

3

2
ghxw

′
x

)
x

=
3

4
w′yy + +

3

2

(
s′x (U1,0)y − sy (U1,0)x

)
+

3

2
g
(
hyw

′
x − hxw′y

)
. (5.51h)

The equations involving the t-derivatives of u, s, s′ and h, (5.51a, 5.51c, 5.51d, 5.51b)

provide a closed system of equations in terms of these variables. However, this is simply

a covering system, in the sense that it is not dependent upon the elliptic curve. We instead

provide a closed system in terms of the u, s, s′ and w, which does have a dependence
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on the curve. This system is found by eliminating all other variables. Again this system

also includes (5.51a), as it is already written in the required parameters. As for the rest

of the system, we take as a starting point the four equations for sx, sy, s′x and s′y, (5.29,

5.43c, 5.30, 5.43d), from which we eliminate the variables v, v′ and h. In order to do

so, we differentiate the sx, and s′x, equations with respect to x, and solve for vx, and v′x,

respectively, giving

vx = wx − sxx− sux − usx + gshx + ghsx, (5.52a)

v′x = w′x − s′xx− s′ux − us′x + gs′hx + ghs′x. (5.52b)

Substituting these terms into the sy and s′y formulae to completely eliminate all v and v′

terms gives

sy = −2wx + sxx + 2usx − 2gshx, (5.53a)

s′y = −2w′x − s′xx − 2us′x + 2gs′hx, (5.53b)

after which, eliminating hx, implies

(ss′)y = 2sw′x − 2s′wx + 2u (sxs
′ − ss′x) + sxxs

′ − ss′xx. (5.54)

Similarly, using the formulae (5.47c, 5.47b) for st and s′t, we can eliminate h using (5.53a,

5.53b). If we rearrange (5.47c, 5.47b) to give

3gshy = 2sxy − 2st − 3wy + wxx + 3usy − usxx

+ gshxx + 2sxux − 2ghxsx, (5.55a)

3gs′hy = 2s′xy + 2s′t − 3w′y − w′xx + 3us′y + us′xx

− gs′hxx − 2s′xux + 2ghxs
′
x, (5.55b)

and multiply (5.55a) by s′, and (5.55a) by s, respectively, these may be equated to give

(ss′)t = sxys
′ − ss′xy +

1

2
(wxxs

′ + sw′xx) +
3

2

(
sw′y − wys′

)
+

3

2
u
(
sys
′′ − ss′y

)
− 1

2
u (sxxs

′ + ss′xx) + ux (ss′)x +
1

2
g (s′ (shx)x + s′ (s′hx)x)−

3

2
ghx (ss′)x . (5.56)
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Eliminating h and its derivatives, again using (5.53a, 5.53b), we get

(ss′)t =
1

4
(sxxxs

′ + s′xxxs) +
3

2
ux (ss′)x − 3usxs

′
x +

3

4

(
s′sy − ss′y − sxs′x

)
x

+
3

2

(
s′sy − ss′y + w′ys− wys′

)
+

3

2
(wxs

′
x + w′xsx) . (5.57)

As for relations involving the curve, we consider
(
u+ w

s

)
x

using (5.28, 5.29, 5.36), the

equations we have for their individual x-derivatives,(
u+

w

s

)
x

= ux +
wx
s
− wsx

s2
,

=

(
1

s′s
+ 3e+ gss′

)
−
(
u− w

s

)2
+
w

s
(u− u) + U1,0 − U1,0,

(5.58)

from which, differentiating, and substituting in (U1,0)x from (5.41a), gives(
1

2

(
u+

w

s

)
x

+
(
u− w

s

)2)
x

+

(
1

2

(
u+

w

s

)
x

+
(
u− w

s

)2)
x

+
1

2
(u− u)y

=

(
1

ss′
+ 3e+ gss′

)
x

− g (s′sx − s′sx) . (5.59)

This completes the derivation of the closed system of equations (5.2). As in the discrete

case, there also exists an analogous continuous system of equations in terms of h, s, s′,

v and v′ shadowing the system (5.2). This shadow system is derived in a similar method,

except this time it is the variables u, w, w′, U0,1 and U1,0 that are eliminated. The system

is as follows:
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(
ht −

1

4
uxxx −

3

2
sxs
′
x +

3

2
gh2x

)
x

=
3

4
hyy +

3

2
g
(
s′xsy − s′ysx

)
, (5.60a)

(ss′)t =
1

4
(sxxxs

′ + s′xxxs)−
3

2
ghx (ss′)x + 3ghsxs

′
x +

3

4

(
ss′y − s′sy − sxs′x

)
x

+
3

2
gh
(
s′sy − ss′y + v′ys− vys′

)
− 3

2
(vxs

′
x + v′xsx) , (5.60b)

(ss′)y = 2sv′x − 2s′vx + 2gh (sxs
′ − s′xs) + s′xxs− sxxs′, (5.60c)(

gh+
v

s

)
x
−
(
gh+

v

s

)(
gh+

v

s

)
+
v

s
(gh+ gh)

= −
(

1

s′s
+ 3e+ gss′

)
+ g

(
U−2,−1 − U−2,−1

)
, (5.60d)(

gh+
v′

s′

)
x

−
(
gh− v′

s′

)(
gh+

v′

s′

)
+
v′

s′
(
gh+ gh

)
= −

(
1

ss′
+ 3e+ gss′

)
+ g

(
U−1,−2 − U−1,−2

)
, (5.60e)

s′v = v′s. (5.60f)

This system is again the result of the automorphism (4.76), with the resultant system

(5.60) being analogous to its discrete counterpart (4.75).

We will now consider some of the properties of the system (5.2). The system (5.2) is

integrable by construction, and in fact admits soliton solutions of the same from as in

Chapter 4, but with ρand σ replaced by their continuous analogues.

5.3 Lax Representation

The integrability of of the system (5.2) can be shown by the fact that it admits a Lax triplet.

Again, in order to obtain a Lax representation for the system, the infinite component

vectors introduced earlier in (4.84), that is

uk ≡ (1−UΩ) ρkck. (5.61)

are considered.
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Proposition 5.3.1 The derivatives of uk with respect to the variables xi are given by

∂

∂xj
uk =

(
Λ−UÔj

)
uk. (5.62)

Proof

From definition (5.61), we have

∂

∂xj
uk = −∂U

∂xj
Ωρkck + (1−UΩ)

∂ρk
∂xj

ck. (5.63)

Recalling (5.5, 4.13, 5.24),

∂ρk
∂xj

= kjρk, (5.64a)

Λick = kick, (5.64b)

∂U

∂xj
= ΛjU −U

(
− tΛ

)j
+ U

(
ΩΛj −

(
− tΛ

)j
Ω
)
U , (5.64c)

we have
∂

∂xj
uk =

(
Λj −U

(
ΩΛj −

(
− tΛ

)j
Ω
))

uk. (5.65)

Now applying the definition (5.15),

Ôj = ΩΛj −
(
− tΛ

)j
Ω, (5.66)

the result follows. �

Now as a result, we have

∂

∂xi+j
uk =

(
Λi+j −UÔi+j

)
uk, (5.67)

where, recalling (5.20), we also have

Ôi+j = ÔjΛ
i +
(
− tΛ

)j
Ôi, (5.68)

which may be rewritten as

∂

∂xi+j
uk =

((
Λj −UÔj

)(
Λi −UÔi

)
+
(
ΛjU −U

(
− tΛ

)j −UÔjU
)
Ôi

)
uk.

(5.69)
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Recalling (5.24), we obtain

∂

∂xj
U = ΛjU −U

(
− tΛ

)j −UÔjU , (5.70)

and using (5.62, 5.69), this reduces to

∂

∂xi+j
uk =

((
Λj −UÔj

) ∂uk
∂xi

+
∂U

∂xj
Ôi

)
uk,

=
∂2uk
∂xj∂xi

+
∂U

∂xi
Ôjuk +

∂U

∂xj
Ôiuk.

(5.71)

Setting ϕ = (ϕ0, ϕ1)
t = (u0,u1)

t, as in Chapter 4, this gives the Lax triplet to be

ϕy = ϕxx + Aϕ +Bϕ, (5.72a)

ϕx = Jϕ + Cϕ +Dϕ, (5.72b)

ϕt = ϕxy + Eϕ + Fϕx +Gϕ, (5.72c)
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where

J =

 0 0

1 0

 , (5.73a)

A =

 2ux 0

2 (U1,0)x 0

 , (5.73b)

B =

 −2gs′xw 2gs′xs

−2gw′xw 2gw′xs

 , (5.73c)

C =

 −u 1

3e− U1,0 − U0,1 u

 , (5.73d)

D =

 gws′ −gss′

gww′ −gsw′

 , (5.73e)

E =

 uy − (U0,1)x −
u(s′y+v′x)

s′
ux +

s′y+v
′
x

s′

(U1,0)y − (U1,1)x −
u((U1,−1)x−w

′
y)

s′
(U1,0)x +

v′y−((U1,−1)x
s′

 , (5.73f)

F =

 −s′y−v′x
s′

0
(U1,−1)x−w

′
y

s′
0

 , (5.73g)

G =

 −gs′xU1,−1 −gs′xv

−gw′xU−1,1 −gw′xv

 . (5.73h)

Equations for the system follow from the compatibility conditions between each pair

(ϕx,ϕt), (ϕx,ϕy) and (ϕy,ϕt). For compatibility between (5.72b, 5.72a), we consider

the difference

ϕyx −ϕxy =ϕxxx + Aϕx + (Ax − Cy)ϕ +Bϕ
x

+ (Bx −Dy)ϕ

− Jϕy − Cϕy −Dϕ
y
.

(5.74)
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Using the formulae (5.72b, 5.72b) all derivatives of ϕ on the right hand side of (5.74)

may be eliminated to leave a result in terms of only ϕ and its shifts, given by

ϕyx −ϕxy =
(
Cxx + Ax − Cy − JB − CA+ 2CxC + AC + 2DxJ +BJ

)
ϕ

+ (Dxx +Bx −Dy − CB −DA+ 2CxD + AD + 2DxC +BC)ϕ

+ (2DxD +BD −DB)ϕ.

(5.75)

Note that this has no ϕ terms as a result of J being nilpotent. In order to achieve

compatibility, each of these coefficients must equate to zero giving a series of equations.

The coefficient of ϕ yields

2DxD +BD −DB = 2g2

 s′

w′

 ∂

∂x

( w −s
) s′

w′

( w −s
)
, (5.76)

and hence,
∂

∂x
(ws′ − sw′) = 0, (5.77)

the derivative of (5.2f) with respect to x. From the coefficient of ϕ, we recover

uxx + uy + 2uux − 2 (U1,0)x + 2gs′xs = 0, (5.78a)

uxx − uy + 2uux − 2
(
U0,1

)
x
− 2gs′xs = 0, (5.78b)(

(U1,0)xx + (U1,0)y + 2U1,0ux + 2gw′xs− 6eux − 2 (U2,0)x

)
−
((
U0,1

)
xx
−
(
U0,1

)
y

+ 2U0,1ux − 2gs′xw − 6eux − 2
(
U0,2

)
x

)
+ 2

(
U2,0 − U0,2 + uU0,1 − uU1,0

)
= 0, (5.78c)

whereby the first two equations are (5.41a) and (5.41b), respectively, and the third is a

combination of the first with Λ applied to the left, and the second with tΛ applied to the
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right, together with (4.58). Finally, the coefficient of ϕ yields

g
(
s
(
s′xx + s′y + 2us′x − 2w′x − 2gs′hx

)
−s′ (sxx − sy + 2usx − 2wx − 2gshx)) = 0, (5.79a)

g
(
s′
(
wxx − wy + 2sxU0,1 − 2gwhx − 6esx − 2 (U−2,2)x

)
− w

(
s′xx + s′y + 2us′x − 2w′x − 2gs′hx

)
+2s′

(
U−2,2 − wu+ sU1,0

)
x

)
= 0, (5.79b)

g
(
w′
(
wxx − wy + 2sxU0,1 − 2gwhx − 6esx − 2 (U−2,2)x

)
− w

(
w′xx + w′y + 2s′xU0,1 − 2gw′hx − 6es′x − 2 (U2,−2)x

)
+ 2w′

(
U−2,2 − uw + sU1,0

)
x
− 2w

(
U2,−2 − uw′ + s′U0,1

)
x

)
= 0, (5.79c)

g
(
s
(
w′xx + w′y + 2s′xU0,1 − 2gw′hx − 6es′x − 2 (U2,−2)x

)
− w′ (sxx − sy + 2usx − 2wx − 2gshx)

+ 2s
(
U2,−2 − uw′ + s′U0,1

)
x

)
= 0. (5.79d)

Note that these four equations all follow from combinations of (5.40a, 5.40b), together

with (4.54, 4.55).
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Similarly, compatibility between (5.72a, 5.72c) results in

(Exx + At + AE − Axy − Ey − FAx − AxA− EA−Bx

+ (2Fx − Ax)
(
JD + Cx + C2 +DJ

)
+ (2Ex + Fxx + AF − Ay − Fy − FA)C

+ (2Gx +BF − FB −By) J)ϕ

+ (Gxx + AG+Bt +BE −Bxy −Gy

− FBx − EB −GA− AxB −BxA

+ (2Fx − Ax) (CD +Dx +DC)

+ (2Ex + Fxx + AF − Ay − Fy − FA)D

+ (2Gx +BF − FB −By)C

−Bx

(
JD + Cx + C2 +DJ

))
ϕ

+
(
BG−BxB −GB −Bx

(
CD +Dx +DC

)
+ (2Gx +BF − FB −By)D)ϕ = 0.

(5.80)



Chapter 5. The Continuous Elliptic Kadomtsev-Petviashvili Equation 133

Likewise, the compatibility between (5.72b, 5.72c) gives(
−JAx + JE − JAC − JFC

+
(
2Ax + Fx + E − CA− CF − JB

+3Cxx + AC + FC + 3CxC) J)ϕ

+
(
Axx + Ex − Ct − JBx − JG− CAx − CE + Cxxx

+ ACx + FCx + 3C2
x − JAD − JFD

+
(
2Ax + Fx + E − CA− CF − JB + 3Cxx

+AC + FC + 3CxC +BJ + 3DxJ)C

+ (2Bx +G− CB −DA−DF + 3Dxx + AD

+FD + 3CxD +BC + 3DxC) J)ϕ

+ (Bxx +Gx −Dt − CBx − CG−DAx −DE +Dxx

+ ADx + FDx + 3CxDx +BCx + 3DxCx

+
(
2Ax + Fx + E − CA− CF − JB + 3Cxx

+AC + FC + 3CxC +BJ + 3DxJ)D

+ (2Bx +G− CB −DA−DF + 3Dxx + AD

+FD + 3CxD +BC + 3DxC)C

+ (BD + 3DxD −DB)CJ
)
ϕ

+
(
BDx + 3D2

x −DBx −DG

+ (2Bx +G− CB −DA−DF + 3Dxx + AD

+FD + 3CxD +BC + 3DxC)D

+ (BD + 3DxD −DB)C
)
ϕ

+
(
(BD + 3DxD −DB)D

)
ϕ.

(5.81)

The remainder of the system may be extracted from the equations that follow from these

compatibility conditions.
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5.4 Dimensional Reduction and Degeneration

As in the lattice case, the Potential KP equation and the Elliptic KdV system may be

recovered as particular limits of the system (5.2), which we now describe.

5.4.1 Degeneration of the Elliptic Curve

Taking the limit g → 0 causes the elliptic curve to degenerate, and from (5.2a) we recover

the lattice potential KP equation, (5.1),(
ut −

1

4
uxxx −

3

2
(ux)

2

)
x

=
3

4
uyy. (5.82)

5.4.2 Dimensional Reduction

By taking particular symmetries, the continuous elliptic KdV system[112], may also

be recovered. The KdV class of systems requires that the matrix C, and hence U is

symmetric under transpositions,

tC = C ⇒ tU = U , (5.83)

i.e. Ui,j = Uj,i. This restriction ensures that the primed variables are equal to their

unprimed equivalents,

s′ = s, v′ = v w′ = w, (5.84)

as do the barred variables,

u = u, s = s w = w. (5.85)

This then results in a dimensional reduction to the elliptic KdV system.

Equation (5.2f) then becomes trivial, whilst (5.2c) then ensures that sy = 0, and hence

uy = wy = 0, removing all y-dependence from the system, resulting in the dimensional
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reduction required to give the Elliptic KdV system. This causes the system to reduce to(
ut −

1

4
uxxx −

3

2
(ux)

2 +
3

2
gs2x

)
x

= 0 (5.86)

st =
1

4
sxxx +

3

2
sx

(
ux −

usx
s
− 1

2

sxx
s

+
wx
s

)
(5.87)((

u+
w

s

)
x

+
(
u− w

s

)2)
x

=

(
1

s2
+ 3e+ gs2

)
x

(5.88)

which, upon integration of (5.86) and (5.88), is the elliptic KdV system of [112] up to

constants of integration.

5.5 Date, Jimbo and Miwa’s elliptic KP system

The system (5.2) is reminiscent of, but different from, an elliptic generalisation of the KP

equation given by Date, Jimbo and Miwa in [41]. Their system is given by

u− u = vx, (5.89a)

3

4
uyy =

(
ut −

1

4
uxxx −

3

2
u2x + 3c2ev−v

)
x

, (5.89b)

vt =
3

2
vxvy −

1

2
vxxx −

1

2
v3x −

3

2

(
a2 + b2

)
vx +

3

2
(uy + uy) +

3

2
vx (ux + ux) , (5.89c)

where u and v together with their shifts are variables, and a, b and c are parameters related

by c = (a2 − b2)/4. They provide a Lax triplet for the system given by

ϕy = −ϕxx + αϕ+ 2βϕ, (5.90a)

ϕt = ϕxxx + γϕx + δϕ+ εϕ, (5.90b)

ϕxx + vxϕx + µϕ = βϕ+ cϕ, (5.90c)
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with coefficients

α = −2ux +
1

2

(
a2 + b2

)
, (5.91a)

β = cev−v, (5.91b)

γ = 3ux, (5.91c)

δ =
3

2
(uxx− uy) , (5.91d)

ε = 3vxβ, (5.91e)

µ =
1

2

(
vx − vy + 3ux − a2 − b2

)
. (5.91f)

However, this Lax triplet they provide does not correspond to the system that they give.

Proof

Considering the compatibility between ϕyt and ϕty, and eliminating all derivatives of

higher order than one using (5.90c), gives the condition(
αt − δxx − αxxx − γαx +

2cβε

β
− δy − 2cε− 12cβx

)
ϕ

+

(
2βε

β
− 2ε− 6βx

)
ϕy

+

(
αε− εxx + 2βt + 2βδ − 2βεµ

β
− εy − 2βxxx − 2γβx − 4βγx − 2βδ

−6βαx −
2αβε

β
+ αε+ 6αβx + 2µε+ 12µβx

)
ϕ.

(5.92)

Equations (5.89a) and (5.89b) follow from the coefficients of ϕy and ϕ, respectively.

However, the coefficient of ϕ gives

vt − vt =− 1

2
(vxxx − vxxx) +

3

2

(
vxvy − vxvy

)
+

3

2

(
(uy − uy)−

(
uy − uy

))
+

3

2
(vx − vx)

(
a2 + b2

)
− 3

2
(uxvx − uxvx)

+
1

2
v3x −

3

2
v2x + v3x +

3

2
vxvx −

3

2
v2xvx,

(5.93)

and not (5.89c) as required. �

Our understanding is that the difference between the system given in [41] and (5.2) is
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in the choice of Cauchy kernel. Whereas our system has a Cauchy kernel related to the

elliptic KdV system, given by

Ω(k, k′) =
k − k′

K −K ′
=

1− g/ (KK ′)

k + k′
, (5.94)

the system given in [41] has a Cauchy kernel related to the Landau-Lifshitz equation,

given by

Ω(k, k′) =
K −K ′

k + k′
=

k − k′

1− g/ (KK ′)
. (5.95)

These Cauchy kernels are related, but it is not yet obvious how this relation manifests

itself into a relation at the level of the equations. This will be the subject of further

investigation.
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Chapter 6

Conclusion

6.1 Discussion

There are a number of results to this thesis. Following an introductory chapter, which

outlines the background areas and results relevant to spherical trigonometry, multi-

dimensional integrability in terms of the d-simplex equations, spherical volumes and the

KP equation, and particle models as the reductions of the KP equation, the first new results

are found in Chapter 2.

The nested structure of hyperspherical trigonometry is generalised to any dimension using

higher-dimensional vector products. This results in relations between the various angles

and sides governing hyperspherical simplices, as generalisations of the main formulae

of spherical trigonometry discussed in Section 1.1. Whilst some of the formulae in

the four-dimensional case are already known, next to nothing had been done in the

higher-dimensional cases. The inter-relations between the formulae, however, become

increasingly complicated. The chapter also contains a novel connection between the

formulae governing four-dimensional hyperspherical geometry and elliptic functions.

This connection is via the generalised Jacobi functions, defined through Abelian integrals
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associated with a double cover of an elliptic curve. These generalised Jacobi functions are

expressible in terms of the usual Jacobi elliptic functions, but with two different moduli

k1 and k2 [116]. This connection is analogous to the connection between the formulae of

spherical trigonometry and the Jacobi elliptic functions discussed in Section 1.1. As such

these functions may be of interest for the study of certain elliptic integrable models where

solutions in terms of elliptic functions with different moduli appear, for example the Q4

lattice equation of the ABS classification [10], and the Dell model [96, 29, 95, 30, 15].

In fact, in Chapter 3, we show that these generalised Jacobi functions provide a more

natural parameterisation for the Hamiltonian of the two-particle Dell model. A higher-

dimensional Euler top is derived, and also solved in terms of these generalised Jacobi

functions. This higher-dimensional Euler top is shown to be equivalent to the two-particle

Dell model.

Chapter 4 provides the derivation, from a direct linearisation scheme, of a (3 + 1)-

dimensional lattice system, naturally associated with an elliptic curve, as an extension

of the lattice potential KP equation. We show this system to be integrable through the

existence of a Lax representation and soliton solutions. To our knowledge, this is the

first integrable lattice system proposed in higher dimensions. An analogous continuous

system with three continuous variables and one discrete variable is derived in Chapter5.

This continuous system is reminiscent of, but different from, an elliptic generalisation of

the KP equation given in [41]. Our understanding is that the difference is in the choice

of Cauchy kernel. Whereas our system has a Cauchy kernel related to the elliptic KdV

system, we believe that the system in [41] has a Cauchy kernel related to the Landau-

Lifshitz equation.
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6.2 Future Work

Having derived the formulae between the variables determining hyperspherical simplices,

our attention turns to the d-simplex equations. As discussed in Section 1.3.1, the

tetrahedron equation has solutions in terms of spherical trigonometry. As the d-simplex

equations are higher-dimensional generalisations of the tetrahedron equation, it is natural

to think that their solutions may be in terms of higher-dimensional generalisations

of spherical trigonometry, i.e. hyperspherical trigonometry. Further investigation is

needed to see if this really is the case, and if it is, whether it is the volume of these

spherical simplices that plays the key role. The recently established connection between

volume forms for hyperspherical tetrahedra and dilogarithms, or Lobachevsky functions,

discussed in Section 1.3.2, seems to suggest that there are connections with Lagrangians

of certain integrable systems.

The link between addition formulae and hyperspherical geometry suggests that discrete

integrable models, such as a discretisation of the two particle Dell model, may be derived

exploiting this connection. This is a link that has been previously exploited in the spherical

case by Petrera and Suris [122] in producing an integrable map, in the sense of multi-

dimensional consistency, based upon the cosine and polar cosine rules. They have shown

this map to be related to the Kahan-Hirota-Kimura discretisation of the Euler top [70, 55].

This discretisation of quadratic vector fields was first discovered, although unpublished,

by Kahan [70], and later rediscovered independently by Hirota and Kimura [55]. The

discretisation was later generalised to a large number of integrable quadratic vector fields

by Hone and Petrera [119], and Petrera, Pfadler and Suris [120]. It is more possible that

a discretisation of the two particle Dell model may more likely lead to an n-particle Dell

model, than in the continuous case.

Alternatively, it may be possible to derive the discrete many-particle Dell model as

a reduction of the elliptic KP system derived in Chapters 4 and 5. As discussed in
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Section 1.4, the discrete Calogero-Moser model follows from pole solutions of the semi-

discretised KP equation, and the discrete Ruijsenaars-Schneider model as a reduction of

the fully discrete KP equation. As an elliptic generalisation of the KP equation, it is

expected that an elliptic model, potentially the Dell model, will follow from a reduction

of the elliptic KP system.

Lastly, how the Cauchy kernels used in elliptic KP system and in [41] relate remains to be

understood. Whereas our system has a Cauchy kernel related to the elliptic KdV system,

the system in [41] has a Cauchy kernel related to the Landau-Lifshitz equation. These

Cauchy kernels are related, but it is not yet obvious how this relation manifests itself into

a relation at the level of the equations comprising the two systems.
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[3] N.H. Abel, Precis dune théorie des fonctions elliptiques, Journal für die reine und

angewandte Mathematik 4(4) (1829), 236–277, 309–348.

[4] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, Dover Publications, New York 9th

ed. (1972).

[5] N. Abromisov and A. Mednykh, Volumes of polytopes in spaces of constant

curvature, arXiv: 1302.4919 (2013).
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