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Abstract 

Protein-protein interactions (PPIs) play a pivotal role in mediating a number of 

biological processes involved in the development of infected or diseased states. Since 

-helices constitute the most abundant motif at characterised protein interfaces, 

-helix mediated PPIs represent an attractive target for therapeutic intervention and 

their inhibition with -helix mimetics has emerged as a powerful strategy. 

Encouraging results have been obtained through the design of foldamers and 

proteomimetics and the current state-of-the-art is described in Chapter 1.  

The Wilson group is interested in the development of aromatic oligoamide -helix 

mimetics. The work presented in this thesis was therefore aimed at developing a better 

understanding of the conformational properties of this family of proteomimetics 

through screening against two key oncogenic targets, p53/hDM2 and Mcl-1/NOXA B, 

in order to identify key features required to reproduce the functional role of -helices 

and achieve effective inhibition.  

A 2-O-alkylated oligobenzamide scaffold was designed to determine the effect of 

non-covalent interactions on the conformational preference and molecular recognition 

properties of these oligomers. The conformational studies performed on regioisomeric 

2-O and 3-O-alkylated dimers are described in Chapter 2, whilst the biophysical 

assessment of trimers of both series for p53/hDM2 inhibition is reported in Chapter 3. 

These studies pointed to a complex interplay of interactions influencing the 

conformational and protein recognition properties of these mimetics and led to design 

of a new hybrid -helix mimetic scaffold. Chapter 4 describes the conformational 

studies and structure-activity relationship data obtained from biological assays of a 

35-membered library built using a robust solid-phase strategy. This scaffold allowed 

the identification of the first examples of enantioselective recognition of type III 

mimetics by different proteins and enantiodependent differentiation of mimetics by a 

protein partner, and represents a potential starting point to elaborate rule based 

approaches for the design of proteomimetics aimed at effective PPI inhibition. 
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Chapter 1  

Inhibition of -helix mediated PPIs 

using designed molecules 

This chapter will discuss the importance of -helix mediated protein-protein 

interactions (PPIs) in chemical biology and drug discovery. The current 

state-of-the-art on designed inhibitors will be reviewed with a focus on the key 

challenges faced in developing generic approaches for the development of effective 

inhibitors. 

The introduction of section 1.3 and section 1.3.2 contributed to the following review 

article: 

V. Azzarito, K. Long, N. S. Murphy, A. J. Wilson, Nat. Chem. 2013, 5, 161-173.1 

1.1 Introduction 

Protein-protein interactions (PPIs) play a key role in mediating a number of 

biological processes often involved in the development of infected or diseased states. 

Representative processes mediated by PPIs include HIV viral fusion,2 the apoptosis 

pathway involving Bcl-2 (B-cell lymphoma 2) family3  and misfunction of human 

tumour suppressor p53 due to overexpression of the protein hDM2 (Human Double 

Minute 2).4 The development of new molecular therapeutics for the inhibition of PPIs 

therefore represents one of the biggest challenges in chemical biology as it is unclear 

how to effectively and selectively target these interactions using small molecules. 

The design of small competitive inhibitors of PPIs is in fact limited by several 

factors5,6,7,8, including: 
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 the lack of natural ligands in providing direct links that allow generation 

of new molecules with effective mimicry; 

 the large interfacial area of the target proteins; 

 noncontiguous binding regions of protein partners.  

It is commonly accepted that in order to be a competitive inhibitor, a small 

molecule must cover 800-1100 Å2 of the protein surface, matching the projection of 

hydrophobic and charged domains on a flat or slightly convex surface (Figure 1.1).8, 9 

 

Figure 1.1 Schematic cartoon illustrating recognition and inhibition of PPIs. 

These limitating factors contributed to the historical belief that PPIs are 

'unligandable' using small molecules.  

Traditional drug-discovery approaches have succeeded in finding nanomolar 

inhibitors designed to specifically target PPIs.10,11,12,13 This approach has however the 

disadvantage of lacking generality for the generation of drug candidates. 

Despite these challenges, a crucial observation is that PPIs often are driven by 

interactions of a few residues, known as a 'hot-spots', which constitute the key binding 

region.14 This significantly simplifies the design of small molecules able to target 

PPIs, since critical portions of the target protein may be mimicked with relatively 

simple scaffolds. 

In this context, it has been shown that over 30% of protein secondary 

structures is -helical in nature, thus making it the most abundant motif and 

designating -helix mediated PPIs as a particularly attractive target in chemical 

biology.15 
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Typical -helix structures complete one turn every 3.6 amino acid residues 

and have a rise of 5.4 Å per turn due to backbone dihedral angles of  = - 41° and 

 = - 62° (Figure 1.2 a-b).15, 16 

 

Figure 1.2 Structural features of an -helix a -Helix key residues and rise per turn; b 

Dihedral angles definition in the peptide bond. 

The hydrogen-bonding network in an -helical central core stabilises the 

secondary structure placing amino acid side chains along its surface. Binding with the 

protein partner occurs through key side-chains generally located along one face of the 

helix, which correspond to residues at the i, i + 4(3), i + 7(8) and often i + 11 positions 

in the sequence (Figure 1.2 a).3, 4, 17 

In designing effective inhibitors of this family PPIs, it should be therefore 

possible to recapitulate the helical core using a rod-shaped object presenting side 

chains in a spatial orientation comparable to that of the native helix (Figure 1.3). 

 

Figure 1.3 Schematic cartoon illustrating the action of a mimetic rod-shaped scaffold as 

a competitive inhibitor of an -helix mediated PPI. 

Of the many approaches developed over the years, the design of 

proteomimetics (non-peptidic structures that mimic larger areas of the protein 

surface)18 and surface mimetics (molecules containing recognition domains capable 
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of binding 'hot-spots' on a protein surface over a sufficiently large surface area) 19 has 

been particularly encouraging. 

1.2 Protein-protein interactions as a therapeutic target 

Protein-protein interactions play a central role in a number of essential cellular 

processes and since it has been estimated that the human interactome includes around 

650,000 PPIs,20 their control and modulation could prove critical for therapeutic 

intervention.  

Among biological processes regulated by -helix mediated PPIs, the 

prevention and treatment of cancer has received significant attention. Cancer is a 

disease in which mutations occur in genes, which regulate cell growth. As a 

consequence, the transformation of a healthy cell into a cancer cell occurs.21 Changes 

in oncogenes, resulting in overexpression or gene products with different properties, 

promote the development of the malignant phenotype of cancer. Mutations in tumour 

suppressor genes, which are involved in the inhibition of cell division and survival, 

can also have consequences. Typically, a single change is insufficient to promote the 

development of cancer because the body uses safeguard mechanisms, like apoptosis 

(programmed cell death), in response to cellular anomalies.  

Because of the key role played in oncogenesis, considerable attention has been 

devoted to the p53/hDM24 and Bcl-2 family PPIs,3 which represent potential targets 

for chemotherapy and will be discussed in detail in the following sections. 

1.2.1 p53/hDM2 

p53 is a sequence-specific transcriptional activator and the major human 

tumour-suppressor protein. Its biological roles include apoptosis, inhibition of cell 

cycle progression and acceleration of DNA repair.22 In the absence of cellular stress, 

p53 resides in a biologically latent state. However, in response to a stress-related 

signal (e.g. DNA damage, uncontrolled activation of oncogenes etc.), this protein 

becomes activated and initiates a biological response which either allows DNA repair 

or starts apoptosis to eliminate the damaged cell from the replicative pool.4, 22 
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hDM2 plays a key role in regulating the function and the stability of p53. 

Structural studies on the hDM2 mouse homologue p53/mDM2 (Murine Double 

Minute 2) complex 23,4 revealed that mDM2 interacts with a 15 residue -helical 

region of p53, in an interface which is almost totally hydrophobic. Alanine-scanning 

mutational analysis identified three key binding residues, Phe19, Trp23 and Leu26, 

which are located at the i, i + 4, i + 7 positions of the helix respectively (Figure 1.4).24 

 

Figure 1.4 p53/hDM2 interaction (PDB ID: 1YCR) with the isolated helical segment of 

the p53 peptide showing the key binding residues. 

 When the cell is healthy, the p53/hDM2 PPI activates a negative feedback 

loop, which prevents the apoptotic activity of p53. The inactivation of p53 happens 

through two major mechanisms (Figure 1.5). Firstly, the binding to the N-terminal 

transactivation domain of p53 blocks critical interactions with other proteins 

necessary for regulation of gene expression, thus interfering with the transcriptional 

activity of p53. Secondly, hDM2 acts as a p53-specific E3 ubiquitin ligase and 

promotes its rapid degradation by the 26S proteasome, leaving its intracellular 

concentration low and tightly regulated. Furthermore, because the hDM2 gene 

contains two adjacent p53 binding sites, during its activity as a sequence-specific 

transcriptional activator, p53 can stimulate the expression of hDM2, which in turn 

results in its inactivation. 
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Figure 1.5 p53/hDM2 autoregulatory negative feedback loop: physical blockage of p53 

upon binding and promotion of its ubiquitination and proteasomal degradation; 

p53-regulated transcription of the hDM2 gene for hDM2 expression. 

In the presence of a tumour-related signal, however, hDM2 is overexpressed, 

and its elevated levels interfere with the activity of p53, downregulating its apoptotic 

activity against malignant cells. 

For this reason, this PPI is considered an important target in the treatment of 

cancer development23 and its inhibition with small molecules has been the object of 

extensive research in the past decade. 

1.2.2 The Bcl-2 family PPIs 

Proteins of the Bcl-2 family have a central role in the regulation of apoptosis.3 

They control the mitochondrial outer membrane permeabilisation (MOMP) and 

contain one or more characteristic domains named 'Bcl-2 homology' (BH) regions.25, 

26 To date, four BH-domains have been identified (BH1-4), which are known to be 

crucial for biological function. As shown in Table 1.1, proteins of the Bcl-2 family 

include anti-apoptotic members (e.g. Bcl-2, Bcl-xL (Bcl extralarge) and Mcl-1 

(induced myeloid leukemia cell differentiation protein)), which possess all four 

homology domains; multidomain pro-apoptotic members (e.g. Bak- Bcl-2 

homologous antagonist killer, Bax- Bcl-2-associated X protein), possessing sequence 

homology for the BH1, BH2 and BH3 regions, and, finally BH3-only pro-apoptotic 
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members (e.g. NOXA B), which are also referred to as effector proteins or death 

domains. 

Table 1.1 Bcl-2 family members 

Anti-apoptotic members 
Multidomain 

Pro-apoptotic members 

BH3-only 

Pro-apoptotic members 

Bcl-2 Bak NOXA B 

Bcl-xL Bax BIM 

Mcl-1  BID 

Bcl-w  BAD 

A1  PUMA 

  BMF 

 

Structural studies on several Bcl-2 family proteins showed a common overall 

fold in which the anti-apoptotic proteins have a hydrophobic groove acting as a 

binding site for -helical regions on pro-apoptotic proteins.12 For example, X-ray 

studies revealed that Bcl-xL interacts with Bak by binding 16 residues of its helical 

portion (PDB ID: 1BXL). Alanine-scanning mutational analysis further indicated that 

the key binding residues (Val574, Leu578, Ile581 and Ile585) are all hydrophobic and 

are located on the same face of the helix at the i, i + 4, i + 7 and i + 11 positions 

(Figure 1.6).3  

 

Figure 1.6 Crystal structures of the Bcl xL/Bak interaction (PDB ID: 1BXL) with the 

isolated helical segment of the Bak peptide showing the key binding residues.  

In a similar way, the BH3-only pro-apoptotic protein NOXA B binds Mcl-1 

through four key 'hot-spot' residues (Glu74, Leu78, Ile81 and Val85) at the i, i + 4, 

i + 7 and i + 11 positions of the helix (Figure 1.7; PDB ID: 2JM6).27 The charged 

Glu74 residues differentiates the interaction from the PPIs of Bcl-xL. Notably, unlike 

other BH3-only members such ah BIM (Bcl-2 interacting mediator of cell death) and 
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BID (BH3 interacting domain death agonist) which recognise different anti-apoptotic 

Bcl-2 family proteins, NOXA B only binds to Mcl-127, 28 (and to a lesser extent A1).26 

 

Figure 1.7 Crystal structures of the Mcl-1/NOXA B interaction (PDB ID: 2JM6) with 

the isolated helical segment of the NOXA B peptide showing the key binding residues. 

Under normal circumstances, activating BH3-only pro-apoptotic proteins bind 

to anti-apoptotic partners. This process allows for multidomain pro-apoptotic proteins 

to oligomerise in the MOM facilitating ion and cytochrome c efflux from 

mitochondria and thus initiating the caspase cascade responsible for cancer cells death 

(Figure 1.8 a). 

 

Figure 1.8 Regulation of apoptosis by the Bcl-2 family PPIs a Healthy conditions: 

BH3-only proteins bind to anti-apoptotic proteins allowing multidomain pro-apoptotic 

members to oligomerise and activate the caspase cascade necessary for the apoptosis of 

malignant cells; b Stressed conditions: anti-apoptotic proteins are overexpressed and 

sequester multidomain pro-apoptotic proteins thus causing the survival of cancer cells. 
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However, upon induction of stress-related signals, anti-apoptotic proteins are 

overexpressed and sequester Bak-like members, thus inhibiting their activity and 

misregulating the normal apoptotic process (Figure 1.8 b). 

Even though the complete mode-of-action is still unclear, the misregulation of 

the normal apoptotic loop mediated by Bcl-2 proteins is known to be a major cause of 

cancer cell survival and chemotherapy resistance. It is therefore clear that the design 

of small molecule mimetics of the BH3-only members is extremely attractive for the 

development of anticancer agents. 

1.3 -Helix mimetics: state of the art 

Foldamers are sequence-specific oligomers that adopt well-defined three 

dimensional conformations which reproduce the secondary structural features of 

proteins, peptides and oligonucleotides. According to Huc29 the efficacy of a class of 

foldamers to be used in the design of a specific secondary structure depends on the 

aptitude to fulfil four main criteria: 

 the predictability of folding, which is mainly associated with the design of 

structures that are forced to fold in the desired conformation; 

 the ease of synthesis and thus accessibility; this is one of the most 

important aspects to consider in generating a proteomimetic and it is the 

reason why amide bonds are used by many research groups; 

 the stability of a foldamer conformation since conformational changes may 

affect the predictability of the folded state; 

 the possibility for a foldamer to be tunable in order to access different 

sequences using the same design principles. 

Examples of foldamers that meet all the requirements to function as inhibitors 

of PPIs have been reported in the last few years.1 According to Ripka30 three different 

types of -helix mimetic foldamers can be considered.  

Type I mimetics reproduce the local topography of the helix by matching the 

peptide backbone (Figure 1.9 a-b).  
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Figure 1.9 Type I -helix mimetics a Top view of an -helix (left) with a cartoon 

representation (right) showing the three recognition faces in purple, dark cyan and violet; b 

Two examples of Type I mimetics: the side-chains are colour coded to identify the recognition 

face mimicked. 

/-Peptide foldamers (1, Figure 1.9 b) reported by the groups of Gellman31 

and Schepartz32 and stapled peptides (2, Figure 1.9 b) reported by Verdine and 

co-workers33 represent examples of type I helix mimetics. 

Proteomimetics are considered type III mimetics since they match the 

topography of the original helix motif by mimicking the spatial orientation of its key 

residues rather than recapitulating the helical conformation (Figure 1.10 a-b).18 The 

terphenyl scaffold (3, Figure 1.10 b) introduced by Hamilton’s group18 ten years ago 

is the first example of a proteomimetic structure in which the side chains reproduce 

the position of critical residues of an -helix secondary structure. These two families 

of mimetics will be reviewed in depth in sections 1.3.1 and 1.3.2. 

 

Figure 1.10 Type III -helix mimetics a Schematic representing an -helix: 'hot-spot' 

residues are represented in CPK format and colour coded; b Terphenyl template: the 

side-chains are colour coded to identify the residues mimicked. 
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Type II mimetics are small non-peptide molecules that bind to a peptide 

receptor but do not necessarily mimic the original helix structure and serve simply as 

functional mimetics. Identification of inhibitors in this class using conventional 

drug-discovery processes has proved difficult, mainly due to the different ꞌchemical 

spaceꞌ occupied by traditional drug molecules. Nonetheless, several examples of 

potent inhibitors of PPIs identified via high throughput screening (HTS) or 

fragment-base approaches have been reported in recent years. Hoffmann-La Roche 

first identified a family of tetra-substituted imidazoles (Nutlins) which displayed 

inhibitory activity against the p53/ hDM2 interaction. The most potent derivative, 

Nutlin-3 (4, Figure 1.11 a-b), showed an IC50 (half maximal inhibitory concentration) 

value of 90 nM in an ELISA (Enzyme-linked immunosorbent assay).10 Nutlin-3 has 

progressed to clinical trials, although its inability to target the related hDMX (human 

double minute X) interaction may prevent its use as an anticancer therapeutic. 

 

Figure 1.11 Small molecule inhibitors of PPIs identified via HTS  a Chemical structure of 

Nutlin-3; b X-Ray structure of the Nutlin/mDM2 complex (PDB ID: 1RV1) c Chemical 

structure of  benzodiazepinedione-1. 

In a similar approach, Johnson & Johnson pharmaceuticals34 identified a 

benzodiazepinedione family (5, Figure 1.11 c) able to disrupt the p53/mDM2 PPI with 

an IC50 value of 420 nM.11 
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Abbott Laboratories employed a fragment based SAR (structure-activity 

relationship) by NMR method in order to generate a library of potential inhibitors of 

the Bcl-xL/Bak PPI.12 Of all the compounds generated, the molecule ABT-737 

(6, Figure 1.12 a-b) exhibited high affinity for the Bcl-xL protein in a fluorescence 

polarisation assay (FPA) with a Ki (inhibition constant) value of 0.6 nM.13 The major 

limitation of ABT-737 is the lack of oral bioavailability. A structural study on the key 

sites along the backbone was therefore performed in order to optimise the 

pharmacokinetic/pharmacodynamic ratio of the drug and thus improve oral efficacy. 

The analysis resulted in the identification of ABT-263 (7, Figure 1.12 a) as a potent 

orally bioavailable mimetic, with retention of affinity for Bcl-2 family proteins 

(Ki < 1 nM) and similar selectivity pattern of ABT-737.35 Optimised derivatives of 

this inhibitor have recently been reported and shown to inhibit cell growth in cancer 

lines with IC50 values of 60-90 nM.36, 37 

 

Figure 1.12 Small molecule inhibitors of PPIs identified via structure-based screening  

a Chemical structures of ABT-737 and ABT-263; b X-Ray structure of the ABT-737/ Bcl-xL 

complex (PDB ID: 2YXJ); c Chemical structure of TW-37; d Chemical structure of MI-219. 

Wang and co-workers employed a structure based screening method to design 

a library of molecules that could target the elongated groove of antiapoptotic proteins 
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that bind the BH3 domain.38 Following this strategy, the benzenesulfonyl derivative 

TW-37 (8, Figure 1.12 c) was identified as an effective inhibitor of Bcl-2 family 

proteins, by impeding cell growth involved in breast, prostate, lymphoma and 

pancreatic cancer with Ki values in the low micromolar range.39,40 The group 

subsequently employed the same approach to target the p53/mDM2 PPI. The 

screening resulted in the design of a new family of spiro-oxindoles and MI-219 (9, 

Figure 1.12 c) was identified as the most potent compound of the series with a Ki value 

of 5 nM and a 10000-fold selectivity in targeting the mDM2 protein over mDMX 

(murine double minute X).41  

Despite the discovery of potent inhibitors, the use of traditional approaches to 

identify small mimetics is unfortunately limited by the number of structures present 

in screening libraries and by the capability of available computer algorithms. These 

approaches further present the disadvantage of lacking versatility so that the potential 

to learn general design rules is perhaps less likely. For these reasons, this family of 

mimetics will not be further discussed. 

1.3.1 Type I mimetics 

Type I mimetics are short fragments of peptide, which reproduce the local 

topography of the -helical motif found at a protein-protein interface. The use of 

peptides as therapeutics is highly desirable because of their ability to access mimicry 

of a complex set of functions which cannot be completely reached by a small 

molecule.42,43 Peptides are however affected by poor transport properties and they are 

intrinsically prone to proteolytic degradation, properties that have unfortunately 

limited their use.44 To overcome these limitations and improve pharmacokinetics 

properties, numerous approaches have focused on stabilising the helical backbone 

through the introduction of covalent or non-covalent constraints. These approaches 

can be grouped into two general categories: helical foldamers and constrained 

peptides. 

1.3.1.1 Foldamers adopting a helical conformation 

Foldamers containing -aminoacids (1) have been extensively exploited 

during the past decade, since they present improved proteolytic and conformational 
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stability and a more favorable pharmacodynamic profile than their natural 

counterparts.45 In spite of  the additional degree of freedom induced by the extra 

methylene group of -amino acids,46 structural studies have shown that suitably 

substituted or conformationally constrained β-peptides possess a higher propensity to 

adopt well defined folded states in solution, making it possible to observe a defined 

structure within relatively short sequences.31, 47  

 

Seebach48 first reported the synthesis and complete characterisation of a 

-peptide sequence. Circular dichroism (CD) and X-ray analysis showed that these 

peptides adopt the desired helical conformation due to the favourable H-bond network 

between the amide proton and the carbonyl moieties.  

Gellman and co-workers designed a series of β-peptides to mimic five key 

residues of the gB (glycoprotein B) heptad repeat involved in the development of 

human cytomegalovirus (HCMV, alternatively known as herpesvirus-5).49 

Assessment of a small library of compounds provided an inhibitor with an IC50 of 30 

M with notably improved activity to their -peptide analogues.  

Further interest has been devoted to 3 peptides. In this context Schepartz32 

reported a series of 314-helical -peptides able to bind the hDM2 protein and act as 

potent inhibitors of the p53/hDM2 PPI. The strategy is shown in Figure 1.13 and 

exploited introduction of non-natural side chains in a 3-peptide backbone in order to 

improve the affinity of the molecule for the target protein. 
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Figure 1.13 Side chains orientation in a 3-peptide and substitution of a key residue with 

a non-natural derivative. 

A FPA analysis in the presence of a fluorescently labelled p53 resulted in the 

identification of derivatives 10 and 11 as the best inhibitors of the series. The assay 

suggested that these molecules interact with hDM2 in a very similar way to the native 

helix, disrupting the protein-protein interaction with IC50 values of 15.9 nM and 

3.30 nM respectively, probably due to the improved ability of these side chains to fill 

the hydrophobic pocket of the protein compared to the tryptophan residue of the parent 

peptide. 

The Gellman group also investigated mixed /-peptides with the aim of 

targeting the Bcl-2 family of PPIs. 50,51,52,53,47 Microwave-assisted synthesis via 

sequential coupling reactions led to the identification of the chimeric peptide 12 as a 

potent inhibitor of the Bcl-xL/Bak interaction. 

 

A FP competition assay in the presence of a fluorophore-labelled Bak peptide 

gave an IC50 value of 52 nM. Conservative modification of the C-terminal segment 
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followed by truncation studies, provided peptide 13. This analogue showed 

comparable affinity for Bcl-xL (IC50 = 78 nM) with improved proteolytic stability. 

 

Similar approaches were subsequently employed to target the Bcl-xL/BIM PPI, 

leading to the identification of weak inhibitors.50 A crystal structure of the most potent 

BIM chimeric peptide bound to Bcl-xL (PDB ID: 3FDM; Figure 1.14 a)54 highlighted 

the importance of solvent-exposed residues in inducing the helical conformation 

(Figure 1.14 b). 

 

Figure 1.14 BIM chimeric / peptide a Chimeric mimetic (/ +)-peptide bound to 

Bcl-xL (PDB ID: 3FDM); b Top view of the chimeric mimetic (PDB ID : 3FDM) 

distinguishing the spatial orientation of interacting  (purple) and  (pink) residues and of 

solvent exposed -residues (light purple). 

However, the reduced activity of these derivatives suggested that more subtle 

matching of the -helix may be necessary to target certain PPIs and that the 

topographical mimicry of key side-chains along one face of a helical scaffold may not 

be sufficient to identify potent inhibitors. 

The Gellman group therefore employed a sequence-based approach for the 

design of a PUMA (p53 upregulated modulator of apoptosis) analogue, introducing 
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-residues at selected positions within the helix.55  The study of seven analogues 

containing an  repeat revealed that the position of the -residue has a 

significant effect on the activity and selectivity of these foldamers. A dual peptide 

inhibitor of Bcl-xL and Mcl-1  (Ki = 1 nM and 150 nM respectively) was identified.56 

The crystal structure of this PUMA-mimetic bound to Bcl-xL (PDB ID: 2YJ1; Figure 

1.15 a) revealed that in order to achieve tight binding, the helical backbone 

accommodated the extra methylene unit of the -residues through expansion of the 

helix radius. Furthermore, the heptad  repeat gave rise to a more regular 

helix where all the -amino acids were aligned along the solvent-exposed face, thus 

allowing maintenance of the i, i + 4, i + 7 and i + 11 interaction pattern of  regular 

-helices (Figure 1.15 b). 

 

Figure 1.15 PUMA chimeric ααβαααβ peptide a Chimeric mimetic ααβαααβ-peptide 

bound to Bcl-xL (PDB ID: 2YJ1); b Top view of the chimeric mimetic (PDB ID : 2YJ1) 

distinguishing the spatial orientation of interacting -residues(purple) and of solvent exposed 

-residues (light purple). 

Combining the success of the sequence-based approach and the use of  3 

peptides, the Gellman group developed a two-step sequence-based design of an 

/-peptide that prevents the formation of the six-helix bundle of the HIV membrane 

protein.57 Firstly, 3-residues were inserted into the -sequence of the C-terminal 

heptad repeat domain (CHR) of gp41 (glycoprotein 41) to form  repeats. 

Subsequently, selected β3-residues were replaced by cyclically constrained 

β-residues, to overcome the entropy penalty associated with the preorganisation 

required for more flexible analogues. This approach allowed the identification of a 
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potent peptide (Ki = 9 nM), with a ~380 fold improvement on the analogous acyclic 

α/β-peptide (Figure 1.16).57  

 

Figure 1.16 Top view of the six-helix bundle formed by the N-terminal heptad domain 

-peptides (red) and the / foldamers (blue) (PDB ID: 3G7A). 

1.3.1.2 Covalently constrained peptides 

Although peptides are attractive candidates for the disruption of 

protein-protein interactions, their susceptibility to proteolytic degradation and poor 

cell penetration properties often affect their efficacy as in vivo reagents. In order to 

overcome these issues, there has been a growing interest in the introduction of 

covalent linkages between residues close in space that can stabilise the secondary 

structure, as degradation usually requires the peptide to adopt unstrucrtured 

conformations. 

One of the most remarkable examples is the hydrocarbon stapling 

demonstrated by Verdine and co-workers.33 The strategy relies on the introduction of 

'-disubstituted non-natural amino acids containing olefin-bearing tethers which 

can undergo ruthenium catalyzed olefin metathesis58 in order to generate an 

all-hydrocarbon staple (Scheme 1.1). 

 

Scheme 1.1 Synthetic strategy for the synthesis of a stapled peptide. 
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This new hydrocarbon-stapled backbone approach provided a platform for a 

number of significant studies over the last decade. Following this route, Korsmeyer 

and co-workers generated a library of hydrocarbon-stapled peptides in order to mimic 

the BH3 domain of BID. 33 A FPA binding test revealed that one of these derivatives 

possessed a Kd (dissociation constant) value of 38.8 nM, which represented a six fold 

enhancement in binding affinity as compared to that of the unmodified BID BH3 

peptide (Kd = 269 nM). Furthermore, both in vitro and in vivo assay showed that this 

peptide can activate the apoptotic pathway to kill leukaemia cells and inhibit growth 

of human leukaemia xenografts and this approach has ultimately been patented.59  

The Walensky group further demonstrated the validity of such an approach 

and described a series of stapled peptides which act as effective inhibitors of the Mcl-1 

protein (PDB ID: 3MK8; Figure 1.17 a).60 Interestingly, this constrained peptide was 

not derived from the structure of one of the BH3-only pro-apoptotic partners of Mcl-1, 

but instead from a peptide derived from Mcl-1 itself. 

 

Figure 1.17 Crystal structures of stapled peptides bound to proteins a Mcl-1 and a 

hydrocarbon-stapled peptide (PDB ID: 3MK8); b hDM2 and a hydrocarbon-stapled peptide 

(PDB ID: 3V3B); c ER and a hydrocarbon-stapled peptide (PDB ID: 2YJA); d Top view of 

a stapled -helix (top) with a cartoon representation (bottom) of the three recognition faces, 

showing in grey the face affected by the introduction of the covalent constraint. 
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Dual stapled-peptides inhibitors of hDM2 and hDMX have also been 

identified and shown to bind these proteins with nanomolar affinity in a FP assay. 65 

The group of Verdine obtained a crystal structure of a stapled-p53 derivative bound 

to mDM2 (PDB ID: 3V3B; Figure 1.17 b),61 which revealed that the hydrocarbon 

staple itself can contribute to the binding in the protein cleft. Similar behaviour was 

also observed in a stapled peptide shown to bind to the oestrogen receptor  (ER) 

with a Kd of 674 nM in a Surface Plasmon Resonance (SPR) experiment 

(PDB ID: 2YJA; Figure 1.17 c).62 This analysis highlighted that the relationship 

between structure and properties for these mimetics needs to be carefully considered 

as the hydrocarbon staple can interfere with one of the helical recognition faces 

(Figure 1.17 d). 

Verdine and co-workers also reported a stapled mimetic of the co-activator 

peptide MAML 1 and showed its activity as a direct-acting agonist of the oncogenic 

transcription factor NOTCH 1.63 This work was particularly noteworthy, as the large 

interface of transcription factors and the absence of hydrophobic pockets make them 

extremely difficult targets. 

 Furthermore, Walensky and co-workers reported a hydrocarbon 

double-stapled peptide, which was shown to be resistant to protease both in vitro and 

in vivo and displayed enhanced inhibitory activity against gp41 assembly.64 

Finally, the Wilson group recently reported on a BID-like peptide containing 

an -alkenyl monosubstituted staple (15).65 The work showed that the removal of the 

extra methyl substituent did not affect the proteolytic stability and the helicity of this 

peptide, which retained inhibitory activity against the Bcl-xL/Bak PPI comparable to 

its disubstituted analogue (IC50 = 0.62 ± 0.02 M-monosubstituted vs 1.15 ± 0.04 

M-disubstituted in a FA-Fluorescence Anisotropy- competition assay). 
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The lactam link (16, Figure 1.18 a) is one of the most investigated approaches 

for constraining peptides and was first reported by Rosenblatt et al.66 who stabilised 

a parathoid hormone related protein (PTHrP) analogue resulting in a 5-10 times 

potency increase compared to the parent linear peptide. 

 

Figure 1.18 Lactam-bridged peptide a Generic structure of a peptide stapled with a Glu-Lys 

lactam bridge; b Crystal structure of gp41 in complex with a lactam-bridged peptide (PDB 

ID: 1GZL). 

Following earlier work from McDowell and co-workers, 67 the Kim group 

reported on the stabilisation of a 14-residue C-terminal peptide of gp41 via cross 

linking two glutamic acid residues at the i and i + 7 positions with an 

α,ω-diaminoalkane group. The introduction of this covalent constraint produced a 

potent inhibitor (IC50 = 35 μM, Kd = 1.2 μM) of the interaction with the hydrophobic 

pocket of  HIV-1 gp41 (PDB ID: 1GZL; Figure 1.18 b).2  

Several other groups have proved the strategy successful. Important examples 

are the stabilisation of the oestrogen-binding co-activator peptide, reported by 

Geistlinger and Guy,68 and a series of papers from Fairlie and co-workers.69 Following 

this strategy, this group successfully mimicked the helical epitopes of (i) a quorum 

sensing pheromone which abolished growth of the bacteria S. pneumonia at sub 

micromolar concentrations,  (ii) the F fusion protein of Respiratory Syncytial Virus 

showing picomolar inhibition of viral fusion, (iii) the RNA-binding viral protein 

HIV-1 Rev showing nanomolar affinity for the RNA segment Rev Responsive 

Element and (iv) the human hormone nociceptin, which induced intracellular ERK 

(extracellular signal-regulated kinases) phosphorylation at picomolar concentrations 

(the most potent agonist identified to date).69 
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An alternative method for constraining peptides is to stabilise the helical 

conformation via disulfide-linkers (17, Figure 1.19 a). 

 

Figure 1.19 Disulfide-bridged peptide a Generic structure of a peptide stapled with a 

Cys-Cys disulfide bridge; b Crystal structure of ER in complex with a disulfide-bridged 

peptide (PDB ID: 1PCG). 

A remarkable example is a disulfide bridged nonapeptide reported by Spatola 

and co-workers which was shown to inhibit the ER/co-activator interaction with an 

inhibition constant an order of magnitude higher than the lactam bridged analogue 

(Ki = 25 nM vs 220 nM).70 An X-ray crystal structure of the stapled peptide bound to 

ER (PDB ID: 1PCG; Figure 1.19 b) showed that the mimetic adopted a helical 

conformation. The result was particularly interesting as CD spectra indicated minimal 

helicity for this peptide in solution, suggesting that conformational changes were 

induced upon binding. 

Arora and co-workers devised an alternative strategy for constraining 

-helices using a hydrogen bond surrogate (HBS). The method employs ring-closing 

metathesis on olefin-bearing residues at the i and i + 4 positions, resulting in a covalent 

linkage in lieu of a native main-chain hydrogen bond (18).71 
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Such a strategy is attractive as it overcomes the limit of side-chain tethers, 

which block at least one face of the putative helix. Several examples in which this 

approach has been successfully applied have been reported. A highly helical 

HBS-peptide of the Bak BH3 -helix was shown to bind to Bcl-xL with a dissociation 

constant value of 69 nM.72 A HBS-helix derived from the C-peptide from gp41, also 

actively bound to the N-terminal hydrophobic pocket thus inhibiting the 

gp41-mediated cell fusion (IC50 value of 43 μM).73 Similarly, a HBS-helix of the 

C-terminal transactivation domain of HIF-1 (hypoxia-inducible factor 1 alpha) 

showed a Kd value of 420 nM for binding to p300 (E1A binding protein 300) CH1 

domain and down-regulated VEGF (vascular endothelial growth factor) 

transcription.74 A cell-permeable synthetic -helix was also shown to disrupt the 

interaction between the guanosine-triphosphate-binding protein Ras and the guanine 

nucleotide exchange factor SOS, downregulating Ras signalling in response to 

receptor tyrosine kinase activation.75  

Finally, Alleman and co-workers developed a photocontrolled approach based 

on the BH3 domain peptides of Bak and BID to target the anti-apoptotic protein Bcl-xL 

(Figure 1.20 a-b).76  

 

Figure 1.20 Photocontrolled -helices a Irradiation of peptides containing an azobenzene 

crosslinker introduced via i, i + 4 or i, i + 7 cysteine linkages undergo trans/cis isomerisation 

forming a stabilised helix; b Irradiation of peptides containing an azobenzene crosslinker 

introduced via i, i + 11 cysteine linkages undergo trans/cis isomerisation destabilising the 

helical structure. 
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The strategy was based on the introduction of an azobenzene crosslinker via 

cysteine residues at the i, i + 4, i + 7 or i + 11 positions, which undergoes cis/trans 

isomerisation on irradiation thus stabilising or destabilising the helical structure. Bak- 

and BID-based peptides in their helix-stabilised configurations displayed higher 

affinities for Bcl-xL than their destabilised counterparts, with examples of a 200-fold 

selectivity for binding to Bcl-xL over hDM2.76  

1.3.2 Type III mimetics 

The use of simple synthetic molecules that can mimic the helical secondary 

structure of proteins is a logical but challenging progression from using type I 

inhibitors of PPIs. Proteomimetics are considered type III mimetics since they match 

the topography of the original helix motif by mimicking the spatial orientation of its 

key residues.30 The potentially improved synthetic accessibility and enhanced drug-

like character of such ligands could have advantages with respect to type I mimetics. 

Furthermore, template scaffolds could overcome the inherent limitations of type II 

mimetics in that modular approaches should be transferable to different PPIs simply 

by matching side-chains to the helical target of interest. 

The earliest small molecules designed to mimic the residues of an -helix 

involved in PPIs were the trisubstituted indanes (19, Figure 1.21 a) reported by 

Horwell et al.77. 

As suggested by molecular modelling calculations, this relatively rigid 

scaffold allows the three substituents to reproduce the orientation in space of the 

-helix side chains at i - 1, i and i + 1 positions. Although the template does not cover 

a surface area large enough to properly represent an -helix mimetic, binding assays 

between NK1, NK2 and NK3 (neurokinin 1, 2 and 3) tachykinin receptors and some 

derivatives with large hydrophobic side chains like Phe-Phe and Trp-Phe showed 

micromolar inhibition, thus confirming that non-peptidic small molecules can 

successfully be used to disrupt PPIs.77 
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Figure 1.21 Original strategy for the design of type III mimetics a The indane template; 

b Representation of an -helix highlighting the alignment of the i, i + 4 and i + 7 residues 

along a single face; c Core structure of a 3,2',2"-terphenyl scaffold and X-ray crystal structure 

in space-filling format; the colour scheme shows the good matching between the projection 

of  the ortho side chains in the proteomimetic and the key residues of the helix. 

Following this pioneering work, Hamilton and co-workers identified the first 

true -helix mimetic.18  They reported the synthesis and conformational analysis of a 

series of trisubstituted 3,2',2"-terphenyl derivatives (3, Figure 1.21 c) in which the 

aryl core assumes a staggered conformation projecting the ortho substituents to mimic 

the position of the i, i + 3(4) and i + 7 residues of the helix (Figure 1.21 b-c). 

The first family of mimetics was designed to target the interaction between 

calmodulin (CaM) and the -helical domain of small muscle myosin light chain 

kinase (smMLCK).18 Competition assays using the plasma membrane helical peptide 

C20W which selectively binds to the C-terminal domain of CaM, showed that 

derivative 3a, which possesses side chains mimicking Trp800, Thr803 and Val807 

residues of smMLCK, acts as a potent inhibitor of this PPI ( IC50 = 9 nM). 
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Terphenyl derivatives with side chains that could mimic the key leucine and 

isoleucine residues were synthesised as structural mimetics of the -helical heptad 

sequence of the C-terminal domain of gp41. A series of assays showed that mimetic 

3b disrupted the PPI with IC50 values in the micromolar range.78 

 

Analogues of 3b were also tested against the Bcl-xL/Bak interaction.79 

Hydrophobic side chains were incorporated in the terphenyl mimetics in order to 

simulate the  key binding residues of the Bcl-xL helix and FP assays confirmed that 

these molecules can also effectively disrupt this PPI, yielding Kd values in the 

micromolar range, with derivative 3c being the strongest  inhibitor (Kd = 114 nM). 

Docking studies further supported the validity of the strategy by showing that the 

molecule indeed mimicked the central cylindrical core of the native Bcl-xL helix and 

interacted with the protein by hydrophobic contacts between the substituents and the 

protein pocket. The ability of these mimetics to work in intact cells was subsequently 

demonstrated through inhibition of the BH3-mediated interaction with Bcl-xL in 

human embryonic kidney 293 (HEK293) cells treated with the terphenyls.80 

A vital feature in the design of type III mimetics is the ability to selectively 

modulate different PPIs. Selective inhibition of the Bcl-xL/Bak interaction over the 

p53/hDM2 PPI was indeed achieved by a suitable exchange of a methyl-1-naphthyl 

3c for a methyl-2-naphthyl 3d side chain in the terphenyl sequence. 

Despite the potential for an iterative synthetic strategy, this -helix mimetic 

family suffers from a relatively high hydrophobicity.81 Considerable effort has 

therefore been focused on identification of scaffolds with more versatile syntheses 



Chapter 1: Inhibition of -helix mediated PPIs using designed molecules 

27 

 

and properties that are consistent with 'drug-like' molecules.82,83,84 For instance, 

Hamilton and co-workers replaced the benzyl core with pyridine (20, Figure 1.22 a) 

although this scaffold suffers from a challenging 15-step synthesis and biological 

properties have yet to be reported.85  

 

Figure 1.22 Proteomimetic scaffolds with hydrophilic backbones I a Terpyridine-based; 

b Terephthalamide-based; c 4,4’-Dicarboxamide-based. 

Further notable examples are the terephthalamide (21, Figure 1.22 b) and the 

4,4ꞌ-dicarboxamide (22, Figure 1.22 c) templates developed by Hamilton and 

co-workers, which present increased drug-like character thanks to their improved 

solubility and retain the advantage of a desirable synthetic route.86,87  

Notably, the inhibitory activity of the most potent compounds of the series 

against the Bcl-xL/Bak interaction was comparable to or lower than the terphenyl 

derivatives (Figure 1.22 b-c 21a, Ki = 0.78 M; 22a, Ki = 1.8 M). An interesting 

observation from these experiments is that mimicking an additional 'hot-spot' residue 

of the native -helix in the 4,4ꞌ-dicarboxamide scaffold does not always result in an 

improvement of potency. Although counterintuitive, this result has been confirmed by 

the biological data obtained for an oligobenzoylurea template developed to access 

longer mimetics and where every secondary aryl unit is replaced with a more 

hydrophilic acylurea isostere (23, Figure 1.23 a). 88,89  The potential of this scaffold to 

act as a template for PPI inhibitors was shown through inhibition of the Bcl-xL/Bak 

interaction, although these compounds displayed lower inhibitory potency than the 

terephthalamide and 4,4-dicarboxamide templates, with the most potent derivative 

(23a, Figure 1.23 a) having a Ki value of 2.4 M. 
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Figure 1.23 Proteomimetic scaffolds with hydrophilic backbones II a Oligourea; 

b Oxazole-pyridazine-piperazine; c 5-6-5-Imidazole-phenyl-thiazole. 

Rebek et al. developed a new oxazole-pyridazine-piperazine mimetic with 

hydrophobic side chains to reproduce the i, i + 4 and i + 7 residues of the helix (24, 

Figure 1.23 b).90 The incorporation of more hydrophilic components allowed access 

to a molecule with both a hydrophobic surface for recognition and a 'wet edge' rich in 

hydrogen bond donors and acceptors, which enhanced water solubility. Furthermore, 

the introduction of an oxazole ring helped to increase the rigidity of the -helix 

mimetic and thus decrease the loss of entropy upon binding. A small library of 

compounds yielded Bcl-xL/Bak inhibitors, although these were less potent than their 

terphenyl analogues. 

A 5-6-5 imidazole-phenyl-thiazole scaffold (25, Figure 1.23 c) has also been 

designed by Hamilton and co-workers in which the terminal positions of the original 

terphenyl were replaced with more hydrophilic five-membered heterocycles.91 

Derivative 25 was specifically designed to disrupt the PPI between Cdc42 (cell 

division cycle 42) and Dbs (Dbl’s big sister) which regulates cancer cell resistance to 

cytotoxic therapies and it showed an IC50 value of 67.0 M in a mant-GDP 

fluorescence assay.  

A desirable approach to the identification of potent inhibitors of helix 

mimetics would be to generate libraries of ligands. The design of helix mimetics that 

are amenable to library synthesis is therefore gaining attention. Among the synthesis 

of small molecule inhibitors of PPIs, in the last years a new appealing family has 

emerged: aromatic oligoamides. What makes this family so appealing is the 
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accessibility due to the formation of the amide bond and the predictable folding 

pattern, which is predominantly controlled by the conformation of the 

aryl-NHCO-aryl bond and by the interaction with ortho substituents.29 Rotations 

around the NHCO-aryl and CONH-aryl bonds are indeed restricted by a series of 

hydrogen-bonds and because of conjugation with the aromatic groups. 

As shown in Figure 1.24, the preferred anti or syn conformation of the 

NHCO-aryl bond can be easily biased by the presence of exo or endocyclic H-bond 

acceptors/donors. 

 

Figure 1.24 Preferred geometry of NHCO-aryl bond. 

Similar considerations can thus be made for the geometry of the CONH-aryl 

bond, as shown in Figure 1.25. 
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Figure 1.25 Preferred geometry of CONH-aryl bond. 

The extent of stabilisation of the folding pattern depends on the H-bonding 

ability of the two partners and on the repulsive interactions between adjacent groups, 

but in general, these interactions allow accurate prediction of the conformational 

preference of the oligoamide. 

Huc first reported the synthesis and structural analysis of a family of 

hydroxyl-substituted oligopyridine dicarboxamide helical foldamers (26, Figure 

1.26 a).92 X-Ray diffraction studies supported by NMR analysis showed that 

derivatives containing benzyloxy, hydroxy and hydroxylate moieties adopt robust 

helical patterns stabilised by intramolecular hydrogen bonds between the amide 

protons and the pyridine nitrogens, even in water, thus revealing a strong 

improvement in stability compared to short -and -peptides.  
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Figure 1.26 Proteomimetic scaffolds amenable to library assembly I a Oligopyridine 

dicarboxamides; b Trispyridylamide-based. 

Encouraged by this result, Hamilton and co-workers93 reported the design and 

synthesis of a trispyridylamide scaffold (27, Figure 1.26 b). Molecular modelling 

studies, confirmed using X-ray crystallography, showed that this template is almost 

completely planar. Conformational preference is induced by intramolecular 

hydrogen-bonds between the NH group of the amides and the ortho alkoxy 

functionalities, thus projecting the three side-chains on the same face of the molecule 

and in the same orientation of the i, i + (3)4 and i + 7 residues of an -helix. 

Furthermore, X-ray analysis on the tri-isopropyl substituted derivative revealed that 

the side-chains were tilted at 45°, presumably to optimize the interaction between the 

lone-pair on the oxygen atom and the amide-NH functionality. The study revealed 

also that the distances between the amide proton and either the pyridine nitrogen atom 

(2.1 Å) or the oxygen atom of the alkoxy side-chain (2.2 Å), are consistent with the 

formation of five membered rings within the structure.  

A significant number of derivatives were synthesised and their ability to 

disrupt the Bcl-xL/Bak PPI was assessed by FPA which allowed identification of two 

oligopyridines (27a, 27b) with Ki values of 2.3 and 1.6 M respectively.93 Subsequent 

studies revealed this scaffold to be suitable for modulation of islet amyloid 

polypeptide (IAPP) aggregation. 94 
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Although structural rigidity is a pre-requisite of a helix mimetic, a degree of 

flexibility can help to maximise interactions with the target protein through 

'induced-fit'. Several groups developed oligobenzamide mimetics based on 

Hamilton’s original pyridylcarboxamide scaffold in which the pyridyl ring has been 

replaced by a benzene ring, removing one of the pre-organizing hydrogen-bonding 

interactions. Structural studies on these derivatives95 suggested that the backbone 

curvature can be controlled to match that of target -helices by using combinations of 

pyridine and benzene rings in the scaffold. Fletcher and co-workers recently described 

a series of BH3 mimetics where the distribution of pyridine and benzene rings was 

selected to control the extent of intramolecular hydrogen bonding and therefore 

flexibility (28, Figure 1.27 a) resulting in nanomolar inhibitors that were also shown 

to possess activity in cell viability assays.96 In particular, derivative 28a (Figure 

1.27 a) was recently reported as an inhibitor of the Bcl-xL/Bak and Mcl-1/Bak PPIs, 

showing IC50 values of 395 ± 54 nM and 10.21 ± 0.83 M respectively in a FPA.97 

The mimetic also induced apoptosis in multiple cancer cell lines, as evidenced by a 

TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay.97 
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Figure 1.27 Proteomimetic scaffolds amenable to library assembly II a Mixed 

oligopyridyl-oligobenzamides; b 3-O-Alkylated oligobenzamides. 

The Wilson group also developed a 3-O-alkylated oligobenzamide scaffold 

(29, Figure 1.27 b),98, 99 which is attractive because it retained side-chain flexibility in 

order to maximise the interactions necessary to have good binding affinity. A library 

of compounds was designed to target the p53/hDM2 PPI and tested in a FA 

competition assay, which allowed identification of micromolar inhibitors of this 

interaction, with derivatives 29a and 29b showing IC50 values of 1.6 and 1.0 M 

respectively. The group also reported a microwave-assisted solid-phase strategy 

which offers a route to a large library of new molecules.100  

 

In parallel, Ahn’s 101 and Boger’s102 groups synthesised some analogous 

nitro-acid templates to test their ability to act as PPIs inhibitors (29c). In particular, 

Boger and co-workers prepared a > 8000 member library which was initially tested 
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against the p53/hDM2 PPI, although showing lower potency than their amino-acid 

counterparts. Subsequently, the same library was tested against the gp41 assembly, 

allowing the identification of micromolar inhibitors with effective activity in 

cell-fusion assays (IC50 = 5-8 M).103 

In an effort to improve the 'drug-like' character of this family of mimetics, the 

Wilson group recently reported on a 3-O-alkylated scaffold functionalised with a PEG 

(polyethylene glycol) chain (30, Figure 1.28 a).104 This derivative, carrying a 

'wet-edge', displayed improved solubility but retained micromolar activity against the 

p53/hDM2 interaction (IC50 = 7.54 ± 0.37 M). 

 

Figure 1.28 Proteomimetic scaffolds amenable to library assembly III 

a PEG-functionalised 3-O-alkylated oligobenzamide; b N-Alkylated oligobenzamides. 

The first solid-phase method for synthesis of an -helix mimetic was also 

described in 2010 by the Wilson group. The development of such a strategy 

represented an effective and elegant way to generate molecular diversity via 

accessible modular synthesis amenable to library assembly. N-Alkylated 

oligobenzamides (31, Figure 1.28 b) were obtained using this strategy and tested 

against the p53/hDM2 interaction with 31a being the strongest inhibitor 

(IC50 = 2.8 M). 105,106 

Oligobenzamides with side chains attached directly to the aromatic rings have 

been described by the Guy group (32, Figure 1.29).107 A library of 173 compounds 

targeting the p53/hDM2 interaction was developed through structure-based 
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computational design and synthesised using solution phase parallel chemistry. The 

most potent inhibitor in this series was compound 32a with Ki = 12 M. 

 

Figure 1.29 Proteomimetic scaffolds amenable to library assembly IV a 3-Alkylated 

oligobenzamides;  b Pyrrolopyrimidine-based. 

Mixed pyridyl/benzamide dimers with side chains directly attached to the 

aromatic rings were also investigated by Craik and co-workers as mimetics of an 

-helix found at the dimerisation interface of the Kaposi’s Sarcoma-Associated 

Herpesvirus Protease.108 Screening a library of 182 compounds in a fluorogenic 

activity assay identified compound 32b (Figure 1.29 a) as the most potent inhibitor 

(IC50 = 3.1 ± 0.2 M). 

Lim and co-workers developed a new pyrrolopyrimidine-based -helix 

mimetic (33, Figure 1.29 b).109 The scaffold possesses the advantages of being rigid 

and pre-organised whilst also presenting a 'wet-edge' for water solubility. The work 

is most noteworthy in that a solid-phase strategy was developed which allowed 

divergent synthesis of a library of 900 members. Assays against the p53/mDMX and 

p53/mDM2 PPIs conducted on 90 randomly chosen members of the library identified 

low micromolar inhibitors. The most potent compounds of the series were also shown 

to increase p53 levels and activity in cells which was indicative of cell-permeability 

and release of p53 from its complex with hDMX or hDM2.   

One limiting feature of the -helix mimetics described so far is that they mimic 

only one face of the -helix. Recent developments have been described by the 

Hamilton group who disclosed a variation on the terphenyl scaffold that mimics an 

additional residue in the i + 3 position by incorporating an indane ring in the central 
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position of the terphenyl (34, Figure 1.30 a).110 Ahn and co-workers further adapted 

the O-alkylated oligobenzamide scaffold by placing a second alkoxy group on the 

opposite side of the aromatic ring (35, Figure 1.30 c)111 thus reproducing the i, i + 2, 

i + 5 and i + 7 residues of an -helix (Figure 1.30 b), whilst the Hamilton group 

similarly appended an amide side chain.112  

 

Figure 1.30 Proteomimetics with multifacial mimicry properties a Diphenylindane-based; 

b Representation of an -helix highlighting the alignment of residues i, i + 2, i + 5 and i + 7; 

c Bis-benzamide template; d Pyridyl pyridone template. 

The Hamilton group also described a pyridyl-pyridone scaffold (36, Figure 

1.30 d) designed to target the ER/co-activator interaction.113 The scaffold mimics 

more than one helical recognition face by incorporating a leucine surrogate on the 

pyridone ring to reproduce the i + 3 residue of the native helix and hence reproduce 

the -helical LXXLL motif of the co-activator proteins. A small series of derivatives 

gave inhibition constants in the low micromolar range.   

Several other examples of potential -helix mimetics have been reported in 

the past years. Notable are the oligooxopiperazine scaffold (37, Figure 1.31 a) 

reported by the Arora group,114  the 1,4-dipiperazino benzene family (38, Figure 

1.31 b)  developed by Konig and co-workers83, the oligoquinoline template (39, Figure 

1.31 c) reported by Moreau and co-workers 115 and the 6/6/6/6 trans-fused polycyclic 

ethers family (40, Figure 1.31 d)  exploited by the Hirama group.82 No reports on 

inhibition of PPIs have been described to date for any of these scaffolds. 
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Figure 1.31 Example of Type III mimetics a Oligooxopiperazine scaffold; b 

1,4-dipiperazino benzene scaffold; c Oligoquinoline-based; d 6/6/6/6 trans-fused polycyclic 

ethers. 

1.4 Project aims 

As this chapter highlights, -helix mediated PPIs are an important target for 

therapeutic intervention. Considerable effort has been directed in the past decade 

towards the design of type I and type III -helix mimetics, which could overcome the 

limitations encountered by small molecule inhibitors generated through traditional 

drug-discovery approaches. In spite of the potential shown by these foldamers, the 

discovery of mimetics that can target PPIs in a predictable manner remains a major 

challenge. 

The Wilson group is interested in the development of aromatic oligoamide 

proteomimetics. Since conformational diversity plays a key role in modulating protein 

recognition, this project was aimed at developing a better understanding of the 

conformational properties of this family of mimetics, in order to identify key features 

required to reproduce the functional role of -helices and to achieve specificity and 

selectivity towards different PPIs. The 3-O-alkylated oligobenzamide scaffold, which 

was shown to act as an effective -helix mimetic and micromolar inhibitor of the 

p53/hDM2 PPI,98, 99 constituted the starting point for these studies. 

The present work aimed at investigating the effect that non-covalent 

interactions could have on the conformational preference of aromatic foldamers,116 

and at the generation of libraries of mimetics with diverse side-chains, backbone and 

polarities for SAR studies.  
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A new regioisomeric 2-O-alkylated oligobenzamide scaffold (Figure 1.32 a, 

Chapters 2 and 3) was initially designed with the hypothesis that minor variations in 

the backbone architecture and hydrogen bonding pattern could have an impact on the 

conformational preference of these oligomers and affect molecular recognition 

properties. 117,118  

 

Figure 1.32 Novel aromatic -helix mimetic foldamers showing mimicry of the 'hot spot' 

residues of an -helix (in CPK format and colour coded) a 2-O-Alkylated oligobenzamide 

scaffold; b Hybrid benzamide scaffold. 

A hybrid benzamide -helix mimetic was subsequently designed (Figure 

1.32 b, Chapter 4), where the structural rigidity of the oligobenzamide backbone was 

broken through substitution of the middle aryl-unit with an amino acid thus 

introducing irregularity and different H-bonded conformations. It was envisaged that 

this strategy would allow the generation of a mimetic with access to a wider 

conformational space and that the chiral nature of the scaffold would enable studies 

on the effect of stereocentres in molecular recognition. 

The combination of these results could represent a significant starting point to 

build a rule based approach for the design of effective foldamers targeted to PPI 

inhibition. 
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Chapter 2  

Conformational properties of 

2-O-alkylated benzamides 

This chapter will discuss the design, synthesis and conformational analyses of 

2-O-alkylated p-benzamide dimers. The study was performed to understand the role 

played by non-covalent interactions in defining conformational preferences and long 

range inter/intramolecular order for this class of aromatic foldamers. Comparison with 

the 3-O-alkylated family,98, 99 both in solid and solution-state, revealed the importance 

of hydrogen bonding and side-chain packing in determining preferred conformations. 

Given the potential shown by this class of foldamer to act as -helix mimetics, the 

insights offered by these results should be important for inhibitor design. 

The work reported in this chapter formed the basis of the following publication: 

P. Prabhakaran, V. Azzarito, T. Jacobs, M. J. Hardie, C. A. Kilner, T. A. Edwards, S. 

L. Warriner, A. J. Wilson, Tetrahedron 2012, 68, 4485-4491.117 

2.1 Design and synthesis of 2-O-alkylated benzamides 

The design and synthesis of novel foldamers represents one of the biggest 

challenges in contemporary chemical biology, since these scaffolds can be tailored as 

functional architectures to mimic the complexity of natural biopolymers.1, 119, 120 

Non-covalent interactions have been shown to play a key role in determining the 

preferred architecture adopted by a range of oligomers.18, 19, 29, 31, 48, 99, 105, 121, 122 Above 

all, hydrogen bonding has proven to be a significant driving force for conformational 

preference12 and the introduction of this structural feature through amide linkages has 

therefore been extensively exploited in designing new foldamers.29  
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Previous research reported by the Wilson group,98, 99 together with work 

carried out in several other groups,87, 93, 96, 101, 102, 123 has identified 3-O-alkylated 

aromatic oligoamides as a new class of -helix mimetics (see also Chapter 1).  

The 3-O-alkylated template enables cyclic five membered [S(5)] 

intramolecular H-bonding 124, 125 between the oxygen of the alkoxy substituent and 

the amide protons, which stabilises the structure in a rod-shaped conformation and 

restricts rotation around the NH-Ar axis (Figure 2.1 a).  

 

Figure 2.1 Role of non-covalent interactions in defining the conformational properties 

of aromatic oligoamides a 3-O-alkylated benzamides with a S(5) intramolecular H-bond; b  

2-O-alkylated benzamides with a S(6) intramolecular H-bond. 

In an effort to rationalise the effect of non-covalent interactions in driving the 

preferred conformation, a novel 2-O-alkylated template was therefore designed with 

the hypothesis that the introduction of a six-membered [S(6)] intramolecular 

H-bonded ring would lock the rotation around the  Ar-CO axis and change the 

conformational preference of this scaffold (Figure 2.1 b).  

The series was investigated with model dimers as they possess all the key 

structural features of longer oligomers. Together with the possibility of intramolecular 
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H-bonding through the linking amide moiety, the two side-chains of the dimer can be 

oriented on the same (syn) or opposite (anti) side of the backbone (Figure 2.1 a-b). 

Since the preferred orientation can be driven by either intra- or intermolecular 

side-chain/side-chain interactions (green and pink arrows in Figure 2.1), but also by 

steric effects (blue dashed line in Figure 2.1), structural studies on these derivatives 

provide insight on the role that such interactions play in defining backbone 

architecture and molecular packing for this class of foldamers. 

2.1.1 Monomer syntheses 

Monomers of the 2-O-alkylated series were synthesised by adapting the 3-step 

route previously reported for the 3-O-alkylated scaffold (Scheme 2.1).98 

Esterification of commercially available 2-hydroxy-4-nitro benzoic acid (41), 

followed by an aqueous work-up, gave access to methyl-ester 42 in excellent yield. 

Subsequent alkylation of the hydroxyl group with the appropriate bromide provided 

building blocks containing both aliphatic and aromatic side-chains. 

 

Scheme 2.1 Synthetic route to 2-O-alkylated p-nitrobenzoic acid and p-aminobenzoate 

monomers. 

Reduction of the nitro-group and hydrolysis of the ester moiety were 

performed on these common building blocks in order to obtain monomers for the 

synthesis of the dimers.  

A simple base-catalysed hydrolysis was used for the synthesis of the 

2-alkoxy-4-nitro benzoic acid derivatives (46-48), which were obtained in good yields 

after aqueous work-up. 
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Two different approaches were followed to access the 

methyl-4-amino-2-alkoxy-benzoate derivatives (49 and 50). Palladium-catalysed 

hydrogenation126  was used to reduce monomer 49 containing an aliphatic side-chain, 

however, the ability of the transition-metal-catalysed hydrogenation to cleave 

benzylic-type moieties made this method unsuitable for the synthesis of amine 50. 

Reduction mediated by tin(II)-chloride provided a convenient alternative and led to 

pure products in good to excellent yields.127 

2.1.2 Dimer syntheses 

2-O-Alkylated p-benzamide dimers 51-53 were obtained following the 

previously reported chain elongation strategy98 via coupling reactions between 

2-alkoxy-4-nitro benzoic acid and methyl-4-amino-2-alkoxy-benzoate monomers 

(Scheme 2.2).  

 

Scheme 2.2 Synthesis of 2-O-alkylated p-benzamide dimers via a chain elongation 

approach. 

The chosen coupling agent was dichloro triphenylphosphorane,128 which 

mediates the amide-bond formation through in situ pre-activation of the acid moiety 

as the acid chloride. Purification via column chromatography or SAX (strong anion 

exchange) chromatography led to pure dimers in good to excellent yields. 

In order to compare the conformational properties of this new 2-O-alkylated 

scaffold, dimers of the 3-O-alkylated series were also synthesised and purified by 

Dr P. Prabhakaran following a similar route (54-56, Figure 2.2). 
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Figure 2.2 3-O-alkylated p-benzamide dimers employed in conformational studies. 

2.2  Solid-state conformational analyses 

Single crystals of the 2-O-alkylated p-benzamide dimers 51 and 52 were 

grown by the slow evaporation of a chloroform or methanol solution respectively (for 

further details see Chapter 6). Crystals of the 3-O-alkylated p-benzamide dimers 

54-56 suitable for X-ray diffraction were also grown by Dr P. Prabhakaran by either 

slow evaporation or diffusion methods. 

Structural studies were then performed on these molecules to determine how 

the subtle balance between intra- and intermolecular interactions controls the 

conformational preference of these derivatives in the solid-state.  

2.2.1 Intramolecular non-covalent interactions 

The solid-state conformation of these molecules is shown in Figure 2.3 (X-ray 

structure determination performed by C. A. Kilner and Dr T. Jacobs). The X-ray 

structures confirmed that both 2-O-alkylated dimers 51 and 52 and 3-O-alkylated 

dimers 54-56 adopt an extended structure in the solid state. The distances and angles 

between atoms were also consistent with intramolecular H-bonding between the 

amide NH and the alkoxy oxygen on the neighbouring side-chain (Figure 2.3).  
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Figure 2.3 Single crystal X-ray structures of p-benzamide dimers shown in stick and 

CPK representation a Crystal structure of 51; b Crystal structure of 52; c Crystal structure 

of 54; d Crystal structure of 55; e Crystal structure of 56. [Reprinted from Tetrahedron, Vol 

68, P. Prabhakaran, V. Azzarito, T. Jacobs, M. J. Hardie, C. A. Kilner, T. A. Edwards, S. L. 

Warriner, A. J. Wilson, “Conformational properties of O-alkylated benzamides”, Pages No. 

4485-4491, Copyright (2011), with permission from Elsevier (License number 

3327630552830)] 

The measured NH∙∙∙O distances were ~ 1.9-2.0 Å for the 2-O-alkylated dimers 

and ~ 2.1-2.4 Å for the 3-O-alkylated dimers, in accordance with the range observed 

in foldamers constrained with S(6)129 and S(5)125 intramolecular H-bonding 

respectively (Table 2.1). 

Table 2.1 Hydrogen bonding parameters observed in the crystal structure of 

2-O-alkylated dimers 51 and 52 and 3-O-alkylated dimers 54, 55 and 56. 

Dimer dNH∙∙∙O 
Angle 

N-H∙∙O 
H-bond type 

51 1.957 Å 139.55° S(6) 

52 1.961 Å 140.49° S(6) 

54 2.385 Å 96.54° S(5) 

55 2.201 Å 108.73° S(5) 

56 2.138 Å 109.36° S(5) 

 

In the homofunctionalised 2-O-alkylated dimer 51, the isopropyl groups were 

oriented on opposite sides of the backbone, in an anti conformation (Figure 2.3 a). In 

contrast, its regioisomeric analogue 54 exposed the isopropyl groups in a syn 

orientation (Figure 2.3 c) and displayed a longer NH∙∙∙O distance, indicative of a 
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weaker interaction. In a similar way, the benzyl groups of the homofunctionalised 

3-O-alkylated dimer 56 were aligned in a syn orientation (Figure 2.3 d). Interestingly, 

a distance of 4.78 Å between the benzyl rings indicated that no - stacking was 

observed between these side-chains (reported - distance 3.3-3.8 Å),130 suggesting 

that larger or more flexible groups are necessary for intramolecular non-covalent 

interactions or steric effects to occurr and determine the syn/anti ratio in these 

oligomers. This hypothesis was confirmed by the crystal structure of the 

heterofunctionalised dimers 52 and 55 (Figure 2.3 b and d).  

In the 2-O-alkylated derivative 52 (Figure 2.3 b), the side-chains adopted a syn 

orientation. A distance of 2.78 Å between the isopropyl group and the 

2-(naphthyl)methyl moiety, indicative of a CH- interaction (reported distance 

< 3.2 Å),131, 132 illustrated that sterically larger groups are able to interact with each 

other. However, analogous groups in the 3-O-alkylated dimer 55 (Figure 2.3 d) were 

oriented in an anti conformation. This result on dimer 55, functionalised with an 

isobutyl group, was particularly noteworthy as it differed from observations 

previously reported by Hamilton and co-workers on a series of 3-O-iBu functionalised 

benzamides which were shown to adopt syn orientations in the solid-state, apparently 

due to a strong propensity to interdigitate through side-chain/side-chain 

interactions.133  

To gather information on the impact of the intramolecular H-bonds on the 

conformational properties of these p-benzamide derivatives, the curvature of the 

backbone was investigated. Crystal structures were superimposed using the software 

Maestro® (Figure 2.4 a-d) pairing 1-C1, 1-C4, 2-C1 and 2-C4 atoms (partial 

numbering of backbone is shown in Figure 2.4 a, complete numbering is given in 

section 6.1, Chapter 6). 
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Figure 2.4 Superposition of crystal structures showing backbone orientation and 

curvature a Crystal structures of 51 (blue) and 52 (red) showing the connection between the 

carbon atoms employed to measure the backbone curvature; b Crystal structures of 54 (pink) 

and 56 (green); c Crystal structures of 55 (orange) and 56 (green);  d Crystal structures of 51 

(blue) and 54 (pink).  

The degree of curvature of the backbone was then measured as the angle of 

inclination of two adjacent aromatic rings between the carbon atoms 1-C4, 1-C1 and 

2-C4 (Figure 2.4 a, Table 2.2).  

Table 2.2 Backbone angle of inclination for 2-O-alkylated dimers 51 and 52 and 

3-O-alkylated dimers 54, 55 and 56, measured between 1-C1, 1-C4 and 2-C4 atoms. 

Dimer 
Angle of 

inclination 

51 162.32° 

52 163.85° 

54 157.00° 

55 161.45° 

56 158.22° 

 

As shown in Figure 2.4 a, b and c, the backbone of dimers of the same series 

retained the same curvature. However, superimposition of dimers 51 and 54 revealed 

a reduced backbone curvature of the 2-O-alkylated scaffold, which differs by about 

5° (Figure 2.4 d). This data was also reflected in a higher RMSD (Root Mean Square 

Deviation) value obtained superimposing 51 and 54 compared to superimposition of 

51 and 52 (0.153 Å vs 0.070 Å) and can be attributed to the difference in 

intramolecular H-bonding between the two scaffolds. 
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2.2.2 Intermolecular non-covalent interactions 

The analysis on the intramolecular interactions shown by 2-O and 

3-O-alkylated dimers gave preliminary insight into how non-covalent forces can 

influence the syn/anti preference of functional groups in these aromatic foldamers. 

Further studies on the solid-state packing of these dimers were performed to 

investigate how other forces such as steric and intermolecular interactions can 

influence conformational preference. 

The three-dimensional packing of the homodimers 51 (Figure 2.5 a) and 54 

(Figure 2.5 b) displayed intermolecular interactions between the isopropyl side-chains 

of two different molecules. A hydrophobic channel formed by the methyl unit of the 

C-terminal ester was also observed in both cases. 

 

Figure 2.5 Packing diagrams for homofunctionalised dimers showing 

side-chain/side-chain interactions; isopropyl groups are shown in CPK format a 

Solid-state packing for dimer 51; b Solid-state packing for dimer 54. [Reprinted from 

Tetrahedron, Vol 68, P. Prabhakaran, V. Azzarito, T. Jacobs, M. J. Hardie, C. A. Kilner, T. 

A. Edwards, S. L. Warriner, A. J. Wilson, “Conformational properties of O-alkylated 

benzamides”, Pages No. 4485-4491, Copyright (2011), with permission from Elsevier 

(License number 3327630552830)] 

In the heterofunctionalised 2-O-alkylated dimer 52, intermolecular 

-stacking (3.7 Å) and benzylic CH- (2.727 Å) interactions determined the 

arrangement of the side-chains in the three-dimensional space (Figure 2.6 a). The 

3-O-alkylated dimer 55 (Figure 2.6 b) instead displayed intermolecular CH- 

interactions between the isobutyl and the naphthyl groups of two different molecules 

(3.14-3.2 Å). Such an interaction could be the driving force for the anti orientation of 

the side-chains, explaining the conformation shown by this molecule. 
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Figure 2.6 Partial three-dimentional packing diagrams a Solid-state packing for dimer 52 

showing - stacking interactions; b Solid-state packing for dimer 55 showing CH- 

interactions; c Solid-state packing for dimer 56 showing side-chain/side-chain interactions 

through - stacking. [Reprinted from Tetrahedron, Vol 68, P. Prabhakaran, V. Azzarito, T. 

Jacobs, M. J. Hardie, C. A. Kilner, T. A. Edwards, S. L. Warriner, A. J. Wilson, 

“Conformational properties of O-alkylated benzamides”, Pages No. 4485-4491, Copyright 

(2011), with permission from Elsevier (License number 3327630552830)] 

Finally, the packing diagram for dimer 56 (Figure 2.6 c) displayed 

intermolecular - stacking (3.58 Å) between benzyl side-chains from different 

molecules, suggesting that intermolecular side-chain/side-chain interactions influence 

the orientation of the functional groups in this derivative. 

In summary, the solid-state study seemed to suggest that the crystal packing 

plays a significant role in the side-chain positioning. However, the overall results 

showed that no specific driving force determined the solid-state conformational 

preference of these dimers and that the syn/anti ratio of functional groups was 

controlled by a subtle balance between intra- and intermolecular non-covalent 

interactions. 
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2.3 In silico studies 

In order to investigate if a theoretical model could be employed to predict the 

conformational preference of these dimers, a conformational search by employing a 

full Monte Carlo search in Macromodel® was performed using the MMFFs (Merck 

Molecular Force Fields) method.134 Energy minimisation was performed on dimers 

51 and 54 in simulated water and chloroform respectively, in order to cover a 

sufficient range of polarities for comparison with the solid-state structures. The lowest 

energy conformations were superimposed with the respective crystal structures 

(Figure 2.7 a-b). The predicted models matched in both cases, showing an anti 

orientation for 51 and a syn orientation for 54. 

 

Figure 2.7 Lowest Energy conformation of dimers 51 (a) and 54 (b) (yellow) and 

superimposition with the crystal structures (in blue or pink respectively). Key distances: 

51 2-NH∙∙∙1-O = 1.957 Å (modelling) vs 1.857 Å (crystal structure); 54 2-NH∙∙∙2-O = 

2.385 Å (modelling) vs 2.194 Å (crystal structure).  

The NH∙∙∙O distance measured in both molecules, was in accordance with the 

empirical data and in agreement with the presence of S(6) and S(5) intramolecular 

H-bonding for the 2-O and the 3-O-alkylated dimers respectively. RMSD values of 

0.019 Å for 51 and 0.045 Å for 54, calculated pairing 1-C1, 1-C4, 2-C1 and 2-C4 

atoms, showed the same preferred conformations between the predicted model and 

the crystal structure. Finally, an energy difference of + 2.963 kJ mol-1 from the anti 

conformation of the 2-O-alkylated dimer to the first syn conformation observed and 

an energy difference of + 2.409 kJ mol-1 from the syn conformation of the 

3-O-alkylated dimer to its first anti conformation, further demonstrated that, within 

the constraints of the method (limitations of the force fields and assumptions 

regarding restrictions and media employed in the simulation), these models match 

with the respective crystal structures. 
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2.4 Solution-state conformational analyses 

The analyses performed in the solid-state provided important information on 

the conformational properties of 2-O and 3-O-alkylated p-benzamide dimers. 

However, in order to design -helix mimetics that can effectively interact with target 

proteins, a further understanding of the role that different non-covalent interactions 

can have on the conformational properties of these mimetics in solution could prove 

crucial.135 

Solution-state structural analyses were therefore conducted on dimers of both 

series, focusing on the role played by H-bonding in defining preferred 

conformations.29, 48  

2.4.1 1D NMR and H/D exchange studies 

The down field shifts of amide protons in the 1H-NMR spectra of dimers 51-56 

indicated the presence of intramolecular H-bonding between the NH proton and the 

alkoxy oxygen atom (Table 2.3).  

Table 2.3 Chemical shift data measured in CDCl3. 

Dimer  NH 

51 10.17 

52 9.97 

53 10.01 

54 8.78 

55 8.80 

56 8.74 

 

The higher shifts of the amide proton in dimers 51-53 (> 9.8 ppm) compared 

to dimers 54-56 (< 9 ppm) was indicative of a strong S(6) intramolecular H-bonding, 

in accordance with studies performed on different classes of oligomers.129, 136, 137 

With the aim of comparing the stability of a five-membered vs a six-membered 

intramolecular H-bonding constraint, the relative strength of the H-bonds in the two 

scaffolds was then investigated.  

Linton and co-workers showed that the relative rates of a hydrogen/deuterium 

exchange in a 1H-NMR titration can be correlated with the presence of intramolecular 
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H-bonds.138 Even though the rate of this exchange can be affected by other parameters 

(e.g. the effect of electronic substituents on the acidity of the NH group and 

accessibility of the amide proton due to steric hindrance), it can also be correlated to 

the strength of the H-bonding in the molecule. The experiment was therefore 

performed on dimers 51 and 54 in 10% CD3OD/CDCl3 to ensure pseudo first order 

kinetics apply (Figure 2.8). To minimize variability, a constant baseline correction 

was applied and a distinct non-exchanging signal was used as an internal integration 

reference.  

 

Figure 2.8 H/D Exchange kinetics for dimers 51 (blue) and 54 (red). [Reprinted from 

Tetrahedron, Vol 68, P. Prabhakaran, V. Azzarito, T. Jacobs, M. J. Hardie, C. A. Kilner, T. 

A. Edwards, S. L. Warriner, A. J. Wilson, “Conformational properties of O-alkylated 

benzamides”, Pages No. 4485-4491, Copyright (2011), with permission from Elsevier 

(License number 3327630552830)] 

Rate constants (and corresponding half-lives) were determined from the slope 

of a non-linear least squares fit to the graph following Equation 2.1. 

kt

t eAA  0  
At = Integral of amide proton at time t; A0 = Integral of amide 

proton at time zero (fixed at 1); k = reaction rate coefficient  

Equation 2.1 

The half-life of the H/D exchange was determined using Equation 2.2. 

k
t

2ln

2
1   

Equation 2.2 
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The obtained kinetic parameters for both dimers are given in Table 2.4. 

Table 2.4 Kinetic constants and t1/2 based on H/D exchange in 10% CD3OD/CDCl3 for 

dimers 51 and 54. 

Dimer kH/D (min-1) t1/2 (min) 

51 0.00368 ± 0.00006 188 ± 3 

54 0.0263 ± 0.0006 26.4 ± 0.6 

 

The half-life of the H/D exchange studies revealed that the amide NH proton 

of the 2-O-alkylated dimer (S(6)) exchanges an order of magnitude slower than the 

amide proton of its regioisomeric 3-O alkylated analogue (S(5)), suggesting greater 

stabilisation for the six-membered system relative to the five-membered analogue. 

2.4.2 2D NMR studies 

1H-1H NOESY analyses were also carried out on the two model dimers 

51 and 54. At room temperature, the amide resonance in the 2-O linked dimer 51 

displayed nOe correlations with the adjacent aromatic protons 2-H3 and 2-H5, 

suggesting a mixture of anti and syn conformations of the isopropyl side-chains in 

solution (Figure 2.9 a). Absence of cross-peaks with the proton 1-H6 suggested that 

rotation was constrained about the Ar-CO axis, confirming that the amide proton was 

locked into an S(6) intramolecular H-bonded ring, in agreement with the result shown 

in the solid-state.  

In order to investigate the effect of temperature on the conformational 

flexibility of these derivatives, NOESY spectra were acquired at 212 K. As shown in 

Figure 2.9 b, at low temperature the ratio of intensities of the nOe correlations NH to 

2H5/NH to 2H3 changes from 2.6:1 to 10:1, suggesting that the anti conformation 

became dominant.  
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Figure 2.9 Partial 2D 1H-1H NOESY spectra of the 2-O-alkylated dimer 51 (CDCl3, 10 

mM) a 298 K; b 212 K. [Reprinted from Tetrahedron, Vol 68, P. Prabhakaran, V. Azzarito, 

T. Jacobs, M. J. Hardie, C. A. Kilner, T. A. Edwards, S. L. Warriner, A. J. Wilson, 

“Conformational properties of O-alkylated benzamides”, Pages No. 4485-4491, Copyright 

(2011), with permission from Elsevier (License number 3327630552830)] 

The same studies performed on the 3-O linked dimer 54 at room temperature 

(Figure 2.10 a) showed cross-peaks between the amide NH proton and the adjacent 

aromatic residual protons 1-H2 and 1-H6 due to free rotation around the Ar-CO axis, 

whilst the absence of nOe correlations with proton 2-H5 suggested constrained 

rotation around the NH-Ar bond, probably due to an S(5) H-bonded interaction.  

At 212 K, however, complete absence of NOE cross-peaks was observed 

between the amide proton and the aromatic resonance 1-H2, revealing that the anti 

conformation was favoured at this temperature (Figure 2.10 b). 
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Figure 2.10 Partial 2D 1H-1H NOESY spectra of the 3-O-alkylated dimer 54 (CDCl3, 10 

mM) a 298 K; b 212 K. [Reprinted from Tetrahedron, Vol 68, P. Prabhakaran, V. Azzarito, 

T. Jacobs, M. J. Hardie, C. A. Kilner, T. A. Edwards, S. L. Warriner, A. J. Wilson, 

“Conformational properties of O-alkylated benzamides”, Pages No. 4485-4491, Copyright 

(2011), with permission from Elsevier (License number 3327630552830)] 

2.5 Summary and conclusions 

The design and synthesis of a new 2-O-alkylated benzamide foldamer was 

described. Conformational studies were performed in solid and solution-states and 

results were compared with the regioisomeric 3-O-alkylated template. 

NMR studies and X-ray crystal structures confirmed the presence of 

intramolecular H-bonding (S(6) and S(5)) within the structures and suggested that this 

non-covalent constraint can promote an extended conformation in both scaffolds and 

restrict rotation around one of the aryl amide axes.  

Solid-state conformational analyses showed that a combination of 

intramolecular non-covalent interactions and intermolecular side-chain/side-chain 

interactions can play a key role in influencing the conformational preference of these 
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p-benzamide derivatives.  The syn or anti orientation of the side-chains was however 

mainly driven by the crystal packing and the nature of the groups involved.  

H/D exchange data further suggested an increased stability of the 

six-membered H-bond over the five-membered analogues and 2D NOESY studies 

allowed to gather some insight into the distribution between syn and anti 

conformations for the two regioisomers, revealing that the anti orientation seems 

preferred in solution.  

Overall, the results pointed to a complex interplay of interactions in defining 

the conformational properties of O-alkylated benzamide oligomers and should be 

considered in designing new oligoamide -helix mimetics tailored to a range of 

biological targets. 
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Chapter 3  

2-O-Alkylated para-benzamide -helix 

mimetics: the role of scaffold curvature 

in modulating protein recognition 

This chapter will discuss the design of a 2-O-alkylated p-benzamide -helix mimetics 

targeted to the p53/hDM2 PPI. Conformational studies were performed on this 

scaffold and a Fluorescence Anisotropy (FA) competition assay allowed the 

identification of micromolar inhibitors of this interaction. Comparison with the 

previously reported regioisomeric 3-O-alkylated template98, 99 permitted a preliminary 

evaluation of the role that backbone curvature has in determining molecular 

recognition properties. 

The work reported in this chapter formed the basis of the following publication: 

V. Azzarito, P. Prabhakaran, A. I. Bartlett, N. S. Murphy, M. J. Hardie, C. A. Kilner, 

T. A. Edwards, S. L. Warriner, A. J. Wilson, Org. Biomol. Chem. 2012, 10, 6469-

6472.118 

3.1 Design and in silico studies 

The use of aromatic oligoamides as proteomimetics has been extensively 

pursued in the past decade and several members of this family have been shown to act 

as good inhibitors of a range of PPIs (see also Chapter 1).29, 92, 93, 98, 99, 101, 102, 105  

Since the conformational analyses performed on 2-O and 3-O alkylated 

p-benzamide dimers (discussed in Chapter 2) showed that non-covalent interactions 

can influence conformational preference,116, 117 it was envisaged that the preferred 

shape and properties induced by such interactions could have an impact on the 

molecular recognition properties of longer oligomers towards a protein partner. 
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In this regard, the Wilson group previously reported a 3-O-alkylated trimeric 

scaffold (Figure 3.1 a) as an effective -helix mimetic and micromolar inhibitor of 

the p53/hDM2 interaction.98, 99 This PPI has been widely employed as a target for 

small molecule development and it was therefore chosen as the model system for the 

study.10, 41 An elongated regioisomeric 2-O-alkylated oligobenzamide scaffold was 

thus designed (Figure 3.1 b) to determine the effect that minor variations in backbone 

architecture and hydrogen bonding pattern (S(5), Figure 3.1 a vs S(6), Figure 3.1 b) 

can have on the inhibitory activity of these foldamers.117  

 

Figure 3.1 Regioisomeric oligobenzamides a 3-O-Alkylated scaffold; b 2-O-Alkylated 

scaffold. 

With the aim of predicting the preferred conformations of the two 

regioisomeric benzamides, molecular modelling was performed on both scaffolds 

using O-isopropyl moieties (57 and 58 Figure 3.2 a and c) as a model template (the 

conformational search on the 3-O-alkylated trimer was performed by N. S. Murphy). 

The structures were minimised by employing a full Monte Carlo search in the 

software Macromodel® using the MMFFs method.134 Water was chosen as the implicit 

solvent and free rotation around the amide bonds was allowed in order to increase the 

accuracy of the conformational search. The -helix mimicry of both scaffolds was 

evaluated by comparison with the p53 transactivation domain from the p53/hDM2 

crystal structure (PDB ID: 1YCR) in which  the three 'hot-spot' residues (Phe19, Trp23 
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and Leu26) are located at the i, i + 4, i + 7 positions of the helix respectively (Figure 

3.2 b).4 

     

Figure 3.2 Evaluation of -helix mimicry a 3-O-Alkylated trimer 57 and distances between 

the side chains; b Distance between the  key aminoacids of the p53 helix (PDB ID: 1YCR); c 

2-O-Alkylated trimer 58 and distances between the  side chains. [V. Azzarito, P. Prabhakaran, 

A. I. Bartlett, N. S. Murphy, M. J. Hardie, C. A. Kilner, T. A. Edwards, S. L. Warriner, A. J. 

Wilson, Org. Biomol. Chem. 2012, 10, 6469-6472] - Reproduced by permission of The Royal 

Society of Chemistry 

The results revealed the lowest energy conformation as the extended structure, 

in which all the amide bonds assumed a trans conformation. For poses where the side 

chains lie on the same face of the molecule, these matched the topography of the key 

p53 residues, with distances between the oxygens in good agreement with the 

distances between the -carbons of the native helix 'hot-spots' (Figure 3.2 a-c). 

The ensemble of structures within 1.5 kJ/mol, was aligned with the p53 helix 

(Figure 3.3 a-b).  A mean value of the RMSD resulting from the superposition of the 

oxygen of the alkoxy group and the -carbon of the key amino acids of the helix was 

calculated by aligning both scaffolds in parallel (Figure 3.3 a) and anti-parallel (Figure 

3.3 b) orientations with respect to the direction of the polypeptide chain, confirming 

the good agreement between the native helix and the two designed mimetics. 
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Figure 3.3 Superposition of oligobenzamide helix mimetics with the p53 polypeptide 

(PDB ID: 1YCR) a Parallel orientation overlay of 57 (RMSD = 0.4951 Å) and 58 

(RMSD = 0.2170 Å) with the p53 -helix; b Anti-parallel orientation overlay of 57 

(RMSD = 0.4953 Å) and 58 (RMSD = 0.2171 Å) with the p53 -helix. 

Despite this observation, superposition of the two molecules highlighted a 

reduced curvature of the 2-O-alkylated scaffold in comparison to the 3-O-alkylated 

template (Figure 3.4 a). Defining 'curvature' for a three-dimensional object is a 

complex task, since it is challenging to accurately represent it and relate it to the spatial 

presentation of the side-chains. An attempt to quantify this concept was nevertheless 

made by determining the angle of inclination of two sequential aromatic rings (Figure 

3.4 b), which resulted in an average difference of 3.5° between the regioisomers, 

measured from the sum of the two angles obtained for each molecule. Alternatively, 

the difference in pseudodiedhral angle between aromatic rings was considered, which 

led to angles of inclination of 168.8°-161.7° for the top and bottom units of the 

2-O-alkylated trimer and 142.1°-144.9° for the 3-O-alkylated template (Figure 3.4 c). 
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Figure 3.4 Backbone curvature studies a Superposition of trimers 58 (blue) and 57 (red) 

showing reduced curvature of the 2-O-alkylated scaffold; b Angles of inclination on trimers 

58 (blue) and 57 (red) showing the carbon atoms used in the measurement; c Pseudodihedral 

angles on trimers 58 (blue) and 57 (red) showing the carbon atoms used in the measurement. 

[V. Azzarito, P. Prabhakaran, A. I. Bartlett, N. S. Murphy, M. J. Hardie, C. A. Kilner, T. A. 

Edwards, S. L. Warriner, A. J. Wilson, Org. Biomol. Chem. 2012, 10, 

6469-6472] - Reproduced by permission of The Royal Society of Chemistry 

Even though these measurements need to be considered carefully as they do 

not constitute a complete representation of the conformational space, the reduced 

curvature shown by the 2-O-alkylated scaffold in comparison to the 3-O-alkylated 

template could be attributed to the different H-bonded geometries (S(6) and S(5)) 

between these two molecules. 

3.2 Trimer syntheses 

A small library of 2-O-Alkylated p-benzamide trimers was synthesised in 

order to study the role that reduced curvature would play in conformational properties 

and binding affinity with the target protein. The synthetic route is shown in Scheme 
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3.1 and followed minor variations to the previously reported iterative route via 

sequential coupling reactions.98, 117  

 

Scheme 3.1 Synthetic route to 2-O-alkylated p-benzamide trimers via a chain elongation 

approach. 

p-Nitro benzoate dimers (51-52, 59-60) were obtained as described in 

Chapter 2. The nitro moiety was unmasked to the aniline via a palladium-catalysed 

hydrogenation126  or by a tin-chloride reduction,127 leading to pure products (61-64) 

in good to excellent yields. A coupling reaction between a 2-alkoxy-4-nitro benzoic 

acid and the reduced dimers mediated by dichloro triphenylphosphorane128 allowed 

p-nitro benzoate trimers (65-68) to be obtained in good yields and purity. Subsequent 

reduction of the nitro group of the oligoamide 65 by palladium-catalysed 

hydrogenation126  led to the amino benzoate  trimer 69. The reduction of trimer 68 

was instead performed using cobalt chloride hexahydrate and sodium borohydride.139 
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Unfortunately, the poor solubility of trimers 66 and 67 prevented the isolation of their 

aniline analogues. A final base-catalysed hydrolysis led to the desired amino-acid 

oligoamides 58 and 71, which were obtained in good yields after an aqueous work-up. 

Following a similar route, Dr P. Prabhakaran synthesised and purified the 

3-O-alkylated trimers 57, 72, 73 and 74 (Figure 3.5) which were employed in these 

studies for comparison with their regioisomeric analogues. 

 

Figure 3.5 3-O-alkylated p-benzamide trimers employed in this study. 

3.3 Solid-state conformational analysis 

Solid-phase studies were conducted in order to investigate the conformational 

properties of these molecules. Unfortunately no crystals of a 2-O-alkylated trimer 

were obtained, however single crystals of a synthetic intermediate (61, Figure 3.6 a) 

were grown by the slow evaporation of a methanol solution (X-ray analysis performed 

by C. A. Kilner). The structure presented the isopropyl chains on opposite sides of the 

backbone in an anti orientation and the measured NH∙∙∙O distances (1.9 Å) confirmed 

the presence of an S(6) intramolecular H-bond.129 

Dr P. Prabhakaran also obtained a crystal of the nitro-ester 3-O-alkylated 

trimer 72 (Figure 3.6 b), which was grown by slow diffusion of methanol into a 

solution of compound in tetrahydrofuran. The X-ray structure confirmed the oligomer 

adopts an extended (all trans) structure in the solid state, placing the two bottom 

side-chains in a syn orientation and the isopropyl group at the N-terminus on the 

opposite face. The measured NH∙∙∙O distances between the amide protons and the 
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alkoxy oxygen on the neighbouring side-chains were ~ 2.2 Å, in accordance with the 

range observed in foldamers constrained with S(5) intramolecular H-bonding.125 

 

Figure 3.6 X-Ray studies on the backbone curvature a Solid state structure of dimer 61 

shown in stick (blue) and CPK representation, displaying the backbone angle of inclination; 

b Solid state structure of trimer 72 shown in stick (red) and CPK representation, displaying 

the backbone angles of inclination; c Superposition of 61 (blue) and 72 (red) 

(RMSD = 0.2436 Å) showing the reduced curvature of the 2-O-alkylated scaffold. 

[V. Azzarito, P. Prabhakaran, A. I. Bartlett, N. S. Murphy, M. J. Hardie, C. A. Kilner, T. A. 

Edwards, S. L. Warriner, A. J. Wilson, Org. Biomol. Chem. 2012, 10, 6469-

6472] - Reproduced by permission of The Royal Society of Chemistry 

In order to evaluate the conformational difference of the two molecules, the 

degree of curvature of the backbone of dimer 61 and trimer 72 was measured as the 

angle of inclination of two sequential aromatic rings (Figure 3.6 a-b). Superposition 

of the two molecules was performed by using Maestro® (Figure 3.6 c). In support of 

the modelling studies, the 2-O-alkylated dimer showed a visibly reduced curvature in 

comparison to the 3-O-alkylated trimer, which can be attributed to the difference in 

H-bonding patterns. Where the five-membered H-bonding in trimer 72 induced the 

backbone to bend, the presence of a six-membered H-bonded ring in dimer 61 

constrained the backbone allowing minimal distortion from the idealised backbone 

geometry. Furthermore, these studies highlighted the negligible influence that the 

moiety at the N-terminus (amino or nitro) plays on the final conformation, as 

comparison with the crystal structure of the analogous nitro-ester dimer 51, shown in 

Chapter 2, revealed that the anti orientation of the side-chains was preferred in both 

cases. 
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3.4 Solution-state conformational analyses 

Solution-state structural analyses were conducted on the model trimers 58 and 

57 (Figure 3.7). The down field shifts of amide protons in the 1H-NMR spectra 

indicated the presence of strong six-membered S(6) for 58 and five-membered S(5) 

for 57 intramolecular H-bonded rings between the amide proton and the alkoxy 

oxygen atom (Figure 3.7, Table 3.1).129, 136, 137 

 

Figure 3.7 Model isopropyl trimers for solution-state studies showing the labelling for 

the amide protons. 

 

Table 3.1 Chemical shift data measured in CDCl3. 

Trimer 1-NH  2-NH 

58 10.28 10.47 

57 8.74 8.90 

  

This result was further confirmed by Variable Temperature (VT) NMR 

studies. 1H NMR spectra of both trimers were acquired at temperatures ranging from 

243 to 333 K (Figure 3.8 a-b).  
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Figure 3.8 VT NMR Studies (10 mM CDCl3, 500 MHz) a 2-O-alkylated trimer 58; b 

3-O-alkylated trimer 57. [V. Azzarito, P. Prabhakaran, A. I. Bartlett, N. S. Murphy, M. J. 

Hardie, C. A. Kilner, T. A. Edwards, S. L. Warriner, A. J. Wilson, Org. Biomol. Chem. 2012, 

10, 6469-6472] - Reproduced by permission of The Royal Society of Chemistry 

Temperature coefficients (Tcoeff) were calculated following Equation 3.1. The 

results revealed Tcoeff of - 3 ppb K-1 for both the amide protons in trimer 58 and Tcoeff 

of - 1 ppb K-1 for both the amide protons in trimer 57.140  

3

12

12 10





TT
Tcoeff


  = chemical shift in ppm, T = temperature in K 

Equation 3.1 

 

Since internally hydrogen bonded amides are expected to show much smaller 

shifts with temperature (≤ 3 ppb K-1) than protons which are accessible for H-bonding 

to external polar solvents (> 4 ppb K-1),20, 22-24 the small Tcoeff observed suggested the 



Chapter 3: 2-O-Alkylated para-benzamide -helix mimetics: the role of scaffold curvature 

in modulating protein recognition 

 

67 

 

presence of an S(6) and an S(5) intramolecular H-bonding for trimers 58 and 57 

respectively. 

Dilution NMR studies were also conducted at concentrations ranging from 10 

to 0.5 mM and the results are summarised in Figure 3.9 a-b. 

 

 

Figure 3.9 Dilution NMR Studies (10 mM CDCl3, 500 MHz) a 2-O-alkylated trimer 58; b 

3-O-alkylated trimer 57. [V. Azzarito, P. Prabhakaran, A. I. Bartlett, N. S. Murphy, M. J. 

Hardie, C. A. Kilner, T. A. Edwards, S. L. Warriner, A. J. Wilson, Org. Biomol. Chem. 2012, 

10, 6469-6472] - Reproduced by permission of The Royal Society of Chemistry 

The experiments revealed concentration independence for the amide proton 

resonances in both cases, thus providing further evidence that intermolecular 

hydrogen bonding is negligible in nature. 
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3.4.1 H/D  Exchange studies 

The relative strength of the H-bonds in the two scaffolds was also investigated 

by performing H/D exchange titration experiments in 10% CD3OD/CDCl3 to ensure 

pseudo first order kinetics (Figure 3.10).138  

The half-life of the H/D exchange on the isopropyl trimers 58 and 57 (Table 

3.2), calculated following Equation 2.1 and Equation 2.2 (Chapter 2), revealed that 

the amide hydrogens of the 2-O-alkylated scaffold exchange on a timescale that is an 

order of magnitude slower than the 3-O-alkylated analogue. 

 

Figure 3.10 H/D Exchange kinetics for trimers 58 (1-NH pink, 2-NH blue) and 57 (1-NH 

red, 2-NH green). [V. Azzarito, P. Prabhakaran, A. I. Bartlett, N. S. Murphy, M. J. Hardie, 

C. A. Kilner, T. A. Edwards, S. L. Warriner, A. J. Wilson, Org. Biomol. Chem. 2012, 10, 

6469-6472] - Reproduced by permission of The Royal Society of Chemistry 

Table 3.2 Kinetic constants and t1/2 based on H/D exchange in 10% CD3OD/CDCl3 for 

trimers 58 and 57. 

Trimer Amide proton kH/D (min-1) t1/2 (min) 

58 1-NH 0.00176 ± 0.00005 394 ± 12 

58 2-NH 0.00230 ± 0.00005 301 ± 6 

57 1-NH 0.0212 ± 0.0004 32.7 ± 0.6 

57 2-NH 0.0225 ± 0.0005 30.8 ± 0.7 

 

These results suggest greater stabilisation of the S(6) over the S(5) 

intramolecular H-bond, in agreement with studies performed on the 2-O and 

3-O-alkylated dimers (see Chapter 2). The data however need to be considered 

carefully as the exchange kinetics may also be influenced by the steric accessibility 

of the amide protons and the observed difference could further arise from electronic 
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effects related to the acidity of the two protons. In this regard, it is worth noting that 

the NH at the N-terminus exchanges slightly slower than the NH at the carboxy 

terminus in both cases. This behaviour is probably due to the different electronic 

environment of these protons, as the acid moiety in the para position of 2-NH is more 

electron withdrawing than the amide function in the para position of 1-NH (reported 

Hammett constants: p (CO2H) = 0.45; p (CONH2) = 0.36).141 

3.4.2 2D NMR studies 

The results obtained by the NMR and H/D exchange studies seemed to suggest 

that even though both scaffolds adopt extended conformations, the rotation around the 

Ar-CO and NH-Ar axes are restricted by the nature of the hydrogen bonding involved, 

where S(6) intramolecular H-bonding in the 2-O-alkylated scaffold restricts the 

former and S(5) in the 3-O-alkylated scaffold restricts the latter. 2D 1H-1H NOESY 

experiments performed on the 2-O-alkylated trimer 58 and the 3-O-alkylated trimer 

57 confirmed this behavior. 

The NOESY spectra of 58 revealed the absence of correlations between the 

NH resonances and the ArCH resonances in the ortho position of the adjacent 

monomer, in agreement with restricted rotation around the Ar-CO axes (Figure 3.11).  

 

Figure 3.11 Partial 1H-1H NOESY spectra of 58 showing NOE cross-peak correlations. 

(10 mM CDCl3, 500 MHz) 



Chapter 3: 2-O-Alkylated para-benzamide -helix mimetics: the role of scaffold curvature 

in modulating protein recognition 

 

70 

 

On the other hand, correlations between the aniline NH resonance and both its 

ortho ArCH resonances suggested free rotation around the NH-axes. The result is in 

contrast with earlier observations on the regioisomeric analogue 571, 99 (Figure 3.12), 

where the S(5) H-bond restricted rotation about the NH-Ar axes and the Ar-CO bond 

was shown to be free to rotate. 

 

Figure 3.12 Partial 1H-1H NOESY spectra of 57 showing NOE cross-peak correlations. 

(10 mM CDCl3, 500 MHz) 

In spite of these constraints, correlations with the -carbon of the adjacent 

isopropyl moieties (see section 6.1.4, Chapter 6) highlighted in both cases the 

presence of conformations with all the side chains aligned on the same face of the 

molecule, thus confirming that, in solution-phase, conformers mimicking the -helix 

are accessible. 

3.5 Fluorescence Anisotropy competition assay against 

the p53/hDM2 PPI 

In order to evaluate the ability of this new scaffold to act as an effective -helix 

mimetic, 2-O-alkylated trimers 58 and 71 and 3-O-alkylated trimers 57, 73 and 74 

were tested in a Fluorescence Anisotropy (FA) competition assay against the 
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p53/hDM2 PPI (assay performed by Dr A. I. Bartlett; see Appendix I for details on 

the FA assay). 

    

 

Figure 3.13 Fluorescence anisotropy p53/hDM2 competition assay data for WT-p53 

peptide, 2-O-alkylated trimers 58 and 71 and 3-O-alkylated trimers 57, 73 and 74. (40 

mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) [V. Azzarito, 

P. Prabhakaran, A. I. Bartlett, N. S. Murphy, M. J. Hardie, C. A. Kilner, T. A. Edwards, S. L. 

Warriner, A. J. Wilson, Org. Biomol. Chem. 2012, 10, 6469-6472] - Reproduced by 

permission of The Royal Society of Chemistry 

As shown in Figure 3.13, the assay allowed the identification of micromolar 

inhibitors of this PPI. Notably, isopropyl trimers 58 and 57 possessing moieties which 

do not mimic the native side-chains exhibited low potency, whereas trimers 71, 73 

and 74, with side-chains matched to the p53 sequence, all displayed affinity in the 

same micromolar range as the native peptide.  

Unexpectedly, comparison of the two regioisomeric oligoamides 71 and 73 

revealed that both mimetics display similar inhibitory activity against this PPI. This 

result highlights an important point since the similar activity of the two scaffolds 

suggested that backbone curvature does not exert a major role on molecular 

recognition towards the hDM2 binding cleft.  
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This result could be rationalised by considering the conformational properties 

of these oligoamides. Even though the different intramolecular H-bonds in these two 

scaffolds result in different curvature of the backbones, in the molecular recognition 

process the mimetics will most likely try to adopt the best conformation possible in 

order to maximise their interaction with the protein binding cleft. As shown in Figure 

3.14, since both the NH-Ar/Ar-CO axes and the alkoxy side-chains are free to rotate, 

this could result in a similar vectoral presentation of the binding groups of the two 

regioisomers, thus generating multiple pharmacophores which can be similarly 

effective for helix mimicry.  

 

Figure 3.14 Schematic depicting rotatable bonds (one amide and one alkoxy is 

highlighted for each scaffold) in regioisomeric helix mimetics. 

3.6 Summary and conclusions 

In summary, the design, synthesis and structural studies of a new 

2-O-alkylated -helix mimetic scaffold was described. Comparison with a 

3-O-alkylated regioisomeric template illustrated that helix mimetic curvature can be 

readily tuned by subtle placement of side-chain mimicking groups.  

Preliminary evaluation of this new scaffold revealed minimal differences in 

potency for antagonism of the p53/hDM2 interaction, highlighting the complex 

relationship between helix mimetic conformation and molecular recognition. The 

combination of backbone and side-chain torsional angles enabled effective biological 

mimicry for both series, whilst suggesting strict geometrical matching of side chain 

presentation by proteomimetic scaffolds is not essential for effective inhibition of 

PPIs.  
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Chapter 4   

Solid-phase synthesis and biological 

evaluation of hybrid -helix mimetics 

This chapter will discuss the design and synthesis of a hybrid -helix mimetic, where 

the combination of previously reported synthetic building blocks with the most natural 

building block available (amino acids), allowed generation of a mimetic with access 

to a wider conformational space. Through structure-activity relationship (SAR) 

studies, micromolar inhibitors of two major PPIs involved in the development of 

cancer, p53/hDM2 and Mcl-1/NOXA B, were identified. Selectivity was also 

achieved between these PPIs, demonstrating that the structure of these mimetics can 

be tuned to achieve protein selective mimicry. The chiral nature of the scaffold further 

enabled stereocontrolled interactions and allowed the identification of the first 

examples of protein discrimination that is dependent on the absolute configuration of 

the -helix mimetic and enantioselective recognition of the chiral helix mimetic by 

the protein. These results provide an important foundation for the development of a 

more detailed understanding of the conformational properties that govern molecular 

recognition processes involved in PPI inhibition and a starting point for elaboration 

of rule based approaches for the synthesis of functional proteomimetics. 

4.1 Design and preliminary in silico studies 

Structural rigidity introduced via either covalent or non-covalent constraints, 

has generally been accepted as a pre-requisite for -helix mimetics to successfully 

replicate the topography of the native helix 'hot-spots' and function as effective 

mimetics.1, 18, 29 However, the results obtained for the inhibitory activity of the 

2-O-alkylated vs. the 3-O-alkylated scaffolds discussed in Chapter 3,118 highlighted 
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the significant role played by the conformational properties of these molecules and 

the complexity of the molecular recognition process with the protein partner. 

To further explore the effect of the backbone curvature and side-chain 

torsional angles in molecular recognition, modification of the oligobenzamide 

scaffold was envisaged through the introduction of different monomers with distinct 

H-bonding capabilities and stereoelectronic restraints. This idea led to the design of a 

new mimetic, where the structural rigidity of the oligobenzamide backbone was 

broken through substitution of the middle aryl-unit with an -amino acid to generate 

a 'hybrid' -helix mimetic (Figure 4.1). 

 

Figure 4.1 Design of a hybrid -helix mimetic. 

This new scaffold has the potential to adopt well-defined conformations 

through H-bonds at the top and bottom of the sequence, but the irregular backbone 

may permit adoption of multiple conformers of similar energy and access to different 

portions of conformational space. In order to investigate the effect of this structural 

change, the p53/hDM2 PPI was targeted for comparison of the new design with the 

2-O and 3-O-alkylated scaffolds. 

A conformational search was performed on the model molecule 75 (Figure 

4.2 a) presenting R1 = iPr, R3 = Bn and L-Phe as the central amino acid. The structure 

was minimised performing a full Monte Carlo search using the software 

Macromodel® with the MMFFs method.134 Water was chosen as implicit solvent and 

free rotation around the amide bonds was allowed in order to increase the accuracy of 

the conformational search. In the lowest energy conformation the scaffold adopted an 
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extended structure with the top two side-chains lying on one face of the molecule and 

the bottom unit being slightly twisted towards the other side (Figure 4.2 a).  

All the conformations within 1.5 kJ/mol from the lowest energy conformation 

were aligned with the p53 -helix superimposing the oxygen of the alkoxy group or 

the  carbon of Phe and the  carbons of the key amino acids of the p53 helix (Phe19, 

Trp21, Leu26; Figure 4.2 b). 

 

Figure 4.2 Molecular modelling studies for a hybrid -helix mimetic a Structure and 

model of the hybrid 75; b overlay of 75 with p53 (PDB ID: 1YCR, RMSD = 1.5284 Å). 

As revealed by the high RMSD mean value (1.5284 Å) obtained from the 

superposition, the irregular backbone of the hybrid scaffold diverged from idealised 

helical mimicry. Nevertheless, the good overlay of the top and bottom side-chains 

with Phe19 and Leu26 and the increased number of degrees of freedom of this 

backbone compared to the 2-O and 3-O-alkylated oligobenzamides, suggested that 

mimicry of the helical functionality at the protein interface could be achieved. A more 

diverse ensemble of conformers with different side-chains projections was also 

accessible, suggesting that the molecule can have a better chance to accommodate 

subtle variations in binding sites. 

A qualitative analysis of the conformational space accessible to the mimetics 

was performed by comparing the 3-O and 2-O-alkylated tri-methyl benzamides 76 

and 77 with the methyl-functionalised hybrid 78 (Figure 4.3 a). Methyl moieties were 

chosen to exclude all the effects induced by additional side-chain rotations, so the 

inherent flexibility of the backbone could be easily identified.142  
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The structures were minimised in Macromodel®134 and the three sets of 

conformers within 1.5 kJ/mol were superimposed without further manipulation. 

 

Figure 4.3 Investigation of the accessible conformational space (shown as a shaded 3D 

object) highlighting the orientation of the side-chains (shown in CPK format) a 

Structures of the 3-O-alkylated trimer 76, the 2-O-alkylated trimer 77 and the hybrid 78; b 

Side (top) and top (bottom) view of the 3-O-alkylated trimer 76; c Side (top) and top (bottom) 

view of the 2-O-alkylated trimer 77; d Side (top) and top (bottom) view of hybrid 78. 
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As shown in Figure 4.3 b and c, oligobenzamide trimers 76 and 77 presented 

different combinations of anti and syn orientation of the side-chains (for the definition 

of anti and syn, see Chapter 2) but the accessible conformational space was in both 

cases restricted by the intrinsic rigidity of the scaffold and the ordered H-bonded 

network. On the other hand, hybrid 78, where a difference of a few degrees in a bond 

torsion angle can result in diverse side-chain orientations, could access a significantly 

wider conformational space (Figure 4.3 d). 

To confirm that some of these conformers could still mimic the helix binding 

mode,  a set of minimised structures of hybrid 75 within 1.5 kJ/mol from the lowest 

energy conformation was docked with the crystal structure of hDM2 (PDB ID: 

1YCR)4 using the software Glide®.  

 

Figure 4.4 Docking studies (PDB ID: 1YCR) a Docked hybrid 75 with protein surface 3D 

representation and expansion; b p53/hDM2 interaction; c Docked hybrid 75 in schematic 2D 

representation highlighting the interacting amino acids (interactions taking place outside the 

hydrophobic cleft are represented with a grey shade).  
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Of all the poses generated, 77% assumed conformations which were binding 

in the hDM2 cleft. A representative example is shown in Figure 4.4 a and c. The native 

p53/hDM2 PPI is also shown in Figure 4.4 b for comparison. 

The hybrid mimetic bound in the hDM2 cleft with the top two units of the 

sequence through hydrophobic contacts between the benzyl side-chain and Ile61 and 

between the middle Phe residue and Phe91. The bottom unit instead interacted outside 

the hydrophobic cleft, through a hydrophilic interaction between the carboxylic acid 

of the terminal Gly and the Lys51 residue at the protein interface. 

Within the limitations of this qualitative analysis, these simulations indicated 

that this hybrid scaffold has the potential to adopt conformations that can access a 

broad conformational space and be recognised as a functional mimetic of the native 

-helix.   

4.2 Hybrid -helix mimetic syntheses 

In designing this new -helix mimetic scaffold, a solid phase peptide synthesis 

(SPPS) strategy was envisioned.100, 106  The synthesis uses the well-established Fmoc 

(9-fluorenylmethyloxycarbonyl) strategy and has the advantage of facilitating library 

generation and reducing the time of preparation.143 

4.2.1 Building block syntheses 

The isobutyl-functionalised 2-O-alkylated monomer 79 was synthesised using 

the route described in Chapter 2.  

 

The synthesis of protected monomers of the 2-O-alkylated and the 

3-O-alkylated series (synthesised by N. S. Murphy)100 was then achieved by 

performing a hydrolysis of the ester moiety of the amino-ester monomers (see 

Chapter 2 for the synthesis of these intermediates) followed by Fmoc-protection of 

the amino group (Scheme 4.1). 
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Scheme 4.1 Synthetic route to Fmoc-protected building blocks of the 2-O and 

3-O-alkylated p-aminobenzoic acid series. 

The strategy proved efficient and gave access to pure products in good to 

excellent yields.  

Fmoc-protected N-alkylated building blocks have also been developed within 

the group to build -helix mimetics (synthesis performed by Dr K. Long, Scheme 

4.2)105, 106 and were made available to be introduced in the hybrid scaffold in order to 

achieve structural diversity. 

 

Scheme 4.2 Synthetic route to Fmoc-protected building blocks of N-alkylated 

p-aminobenzoic acid series. 

4.2.2 Solid phase synthesis of hybrid -helix mimetics 

Hybrid -helix mimetics were built through the SPPS (Scheme 4.3), using an 

automated microwave-assisted CEM Liberty® peptide synthesiser. The strategy, 

adapted from previously reported solid phase synthesis of 3-O-alkylated100 and 

N-alkylated106 oligobenzamides, used Fmoc-Gly or Fmoc-Leu preloaded Wang resins 

as solid supports. 
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Scheme 4.3 Solid phase synthesis of hybrid -helix mimetics a Loading: resin (1 equiv.) 

swelled in anhydrous DMF and deprotected with 20% (v/v) piperidine/DMF (two cycles of 3 

min at 75 °C), 2-O or 3-O-alkylated monomer (1.5 equiv.) in anhydrous DMF pre-activated 

with HATU (1.9 equiv.) and DIPEA (3.8 equiv.), single coupling method (30 min at 50 °C); 

b Coupling of N-alkylated building blocks: monomer (3 equiv. per coupling) in anhydrous 

DMF pre-activated for a minimum of 2 hours with Ghosez’s reagent (2.7 equiv. per coupling), 

double coupling method (2×20 min at 60 °C); c Deprotection: 20% (v/v) piperidine/DMF 

(two cycles of 3 min at 75 °C); d Coupling: amino acid (2.5 equiv. per coupling) or 2-O and 

3-O-alkylated monomer (1.5 equiv. per coupling) in anhydrous DMF pre-activated with 

HATU (3 equiv. per coupling) and DIPEA (5 equiv. per coupling), double or triple coupling 

method (2 or 3×30 min at 60 °C); e Manual cleavage: 50% (v/v) TFA/CH2Cl2 (two cycles of 

40 min at r.t.); f Manual N-acetylation: acetic anhydride (10 equiv.) in anhydrous DMF 

(overnight, r.t.). 
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After resin deprotection with piperidine, protected monomers were coupled 

using HATU144 or Ghosez’s reagent145. The successful use of HATU as a coupling 

reagent is particularly noteworthy, as standard peptide synthesis coupling reagents 

have been previously shown to be ineffective to couple aminobenzoic acid building 

blocks due to their reduced nucleophilic properties.98, 100, 106 Elongation of the 

sequence was achieved through a series of sequential deprotection/coupling steps to 

load the central amino acid and the final monomer. The desired products were 

obtained in only 5 hours and, after manual cleavage with TFA, with purity higher than 

80% (determined via LC-MS and 1H-NMR) in moderate to good crude yields. In order 

to achieve an enhanced degree of purity to perform biological assays, the hybrid 

mimetics were then purified using mass-directed preparative HPLC (0.1% formic acid 

water/methanol or acetonitrile; 5-95% gradient). 

Following this synthetic route, an initial 24-membered library was synthesised 

and purified (Table 4.1). The library included four control molecules: three dimeric 

versions of the hybrid scaffold (98 and 99, synthesis shown in Scheme 4.3; 100, 

synthesis shown in Scheme 4.4) and a hybrid with an unfunctionalised 

p-aminobenzoic acid top unit (101). 

 

Scheme 4.4 Solid phase synthesis of a control hybrid -helix mimetic a Loading: resin (1 

equiv.) swelled in anhydrous DMF and deprotected with 20% (v/v) piperidine/DMF (two 

cycles of 3 min at 75 °C), amino acid (2.5 equiv. per coupling) in anhydrous DMF 

pre-activated with HATU (3 equiv. per coupling) and DIPEA (5 equiv. per coupling), double 

coupling method (2×30 min at 60 °C); b Deprotection: 20% (v/v) piperidine/DMF (two cycles 

of 3 min at 75 °C); c Coupling: O-alkylated monomer (1.5 equiv. per coupling) in anhydrous 

DMF pre-activated with HATU (3 equiv. per coupling) and DIPEA (5 equiv. per coupling), 

double coupling method (2×30 min at 60 °C); d Manual cleavage: 50% (v/v) TFA/CH2Cl2 

(two cycles of 40 min at r.t.). 



Chapter 4: Solid-phase synthesis and biological evaluation of hybrid -helix mimetics 

82 

 

Table 4.1 Library of hybrid -helix mimetics illustrating side-chain sequence and 

percentage of purity after mass-directed HPLC purification (determined via 1H-NMR).  

Hybrid number Resin R1 AA R3 Purity 

98 Gly 2-O-iPr L-Phe - 95% 

99 Gly 2-O-iPr N-acetyl-L- Phe - 95% 

100 Rink Amide - L-Phe 3-O-Bn 95% 

101 Gly 2-O-iPr L-Phe H 95% 

75 Gly 2-O-iPr L-Phe 3-O-Bn 95% 

102 Gly 2-O-iPr L-Phe 2-O-Bn 95% 

103 Gly 2-O-iPr L-Phe N-Bn 95% 

104 Gly 3-O-iPr L-Phe 3-O-Bn 95% 

105 Gly 3-O-iPr L-Phe 2-O-Bn 95% 

106 Gly 3-O-iPr L-Phe N-Bn 95% 

107 Gly N-iBu L-Phe 3-O-Bn 95% 

108 Gly N-iBu L-Phe 2-O-Bn 95% 

109 Gly N-iBu L-Phe N-Bn 95% 

110 Gly 2-O-iPr L-Phe 2-O-iBu 95% 

111 Gly 2-O-iPr L-Phe 2-O-iBu 90% 

112 L-Leu 2-O-iPr L-Leu 2-O-iBu 90% 

113 Gly 2-O-iPr L-Trp 3-O-Bn 90% 

114 Gly 2-O-iPr L-Trp 2-O-Bn 90% 

115 Gly 2-O-iPr L-Trp 2-O-iBu 90% 

116 Gly 2-O-iPr 4-F- L-Phe 3-O-Bn 95% 

117 Gly 2-O-iPr 4-Br- L-Phe 3-O-Bn 95% 

118 Gly 2-O-iPr 4-Cl- L-Phe 3-O-Bn 95% 

119 Gly 2-O-iPr L-Tyr 3-O-Bn 95% 

120 Gly 2-O-iPr L-His 3-O-Bn 95% 

 

In spite of the reduced reactivity of alkylated p-aminobenzoic acid building 

blocks100, 106, 117, 118 the strategy efficiently coupled monomers of all three series 

containing both aliphatic and aromatic side-chains.  

To extend the library, a further sub-family of functionalised hybrid -helix 

mimetics was also synthesised. The sequence of the native p53 helix contains a proline 

residue at the i + 8 position (Pro27, on the same face as the key 'hot-spots'), a glutamic 

acid at the i + 9 position (Glu28), facing the solvent-exposed edge and a further 

glutamic acid at the top of the helix, located at the i - 2 position (Glu17, Figure 4.5). 
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Figure 4.5 Design of amino acid functionalised hybrid -helix mimetics showing the 

correspondence with the bottom (blue) and the top (red) amino acids of the p53 -helix. 

Extended hybrid mimetics were hence prepared with different amino acids at 

the start and end of the sequence following an expanded SPPS strategy as shown in 

Scheme 4.5 and Table 4.2. 

 

Scheme 4.5 Solid phase synthesis of amino acid-functionalised hybrid -helix mimetics 

a Loading: resin (1 equiv.) swelled in anhydrous DMF and deprotected with 20% (v/v) 

piperidine/DMF (two cycles of 3 min at 75 °C), 2-O-alkylated monomer (1.5 equiv.) in 

anhydrous DMF pre-activated with HATU (1.9 equiv.) and DIPEA (3.8 equiv.), single 

coupling method (30 min at 50 °C); b Deprotection: 20% (v/v) piperidine/DMF (two cycles 

of 3 min at 75 °C); c Coupling: amino acid (2.5 equiv. per coupling) or 2-O-alkylated 

monomer (1.5 equiv. per coupling) in anhydrous DMF pre-activated with HATU (3 equiv. 

per coupling) and DIPEA (5 equiv. per coupling), double or triple coupling method (2 or 3×30 

min at 60 °C); d Terminal coupling: amino acid (2.5 equiv. per coupling) in anhydrous DMF 

pre-activated for a minimum of 2 hours with Ghosez’s reagent (3.2 equiv. per coupling), 

double coupling method (2×20 min at 60 °C); e Manual cleavage: 50% (v/v) TFA/CH2Cl2 

(two cycles of 40 min at r.t.). 
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Table 4.2 Library of amino acid-functionalised hybrid -helix mimetics illustrating 

side-chain sequence and percentage of purity after mass-directed HPLC purification 

(determined via 1H-NMR).  

Hybrid number Resin R1 AA R3 Top AA Purity 

121 L-Glu 2-O-iPr L-Phe 2-O-iBu - 90% 

122 L-Glu 2-O-iPr L-Phe 2-O-iBu L-Glu 90% 

123 L-Glu 2-O-iPr L-Phe 2-O-iBu L-Arg 90% 

124 L-Pro 2-O-iPr L-Phe 2-O-iBu - 90% 

125 L-Pro 2-O-iPr L-Phe 2-O-iBu L-Glu 90% 

126 L-Pro 2-O-iPr L-Phe 2-O-iBu L-Arg 90% 

127 Gly 2-O-iPr L-Phe 2-O-iBu L-Glu 90% 

128 Gly 2-O-iPr L-Phe 2-O-iBu L-Arg 90% 

 

4.3 Solution-state conformational analyses: NMR studies 

Solution-state structural analyses were conducted on the model hybrid 

mimetic 75 to elucidate the conformational properties of this new scaffold. 

 

The 2D 1H-1H NOESY experiment (Figure 4.6) showed nOe correlations 

between the amide protons 2-NH and 3-Phe-NH of the top two units and the ArCH 

resonances in the ortho position of the adjacent monomer units, implying free rotation 

around the Ar-CO and NH-Ar axes (partial numbering of backbone is shown in Figure 

4.6, complete numbering is given in section 6.2.2, Chapter 6). Furthermore, nOe 

correlations between the 1-Gly-NH and the 2-H proton, together with the absence of 

cross-peaks with the ArCH resonances in the ortho and meta positions of the adjacent 

monomer unit (2-H6 and 2-H5) indicated restricted rotation around this Ar-CO axis 

and intramolecular S(6) H-bonding with the oxygen of the adjacent isopropyl moiety. 

In addition, the absence of longer-range nOe correlations between the bottom 
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1-Gly-NH resonance and protons of the central Phe or top units, which may have been 

expected for a more closed conformation, is consistent with the molecule adopting a 

linear conformation in solution.  

 

Figure 4.6 Partial 1H-1H NOESY spectra of the hybrid mimetic 75 showing nOe 

cross-peak correlations in the aromatic (left) and aliphatic (right) regions. (10 mM 

DMSO-d6, 500 MHz) 

Dilution NMR studies were performed acquiring 1H NMR spectra at 

concentrations ranging from 10 to 1 mM (Figure 4.7; analysis performed by Dr J. 

Fisher). 
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Figure 4.7 Partial 1H-NMR spectra of hybrid 75 (DMSO-d6, 500 MHz) at concentrations 

of 10 mM (blue), 1 mM (green) and 0.1 mM (red) showing the acid proton (1-Gly-CO2H), 

the Gly-NH proton (1-Gly-NH) and the top amide proton of the sequence (3-Phe-NH). 

As expected, a resonance shift was observed for the acid and the top amide 

protons, but no change was detected for the Gly-NH. This concentration independence 

confirmed this proton is engaged in an intramolecular H-bond. 

Intramolecular H-bonding was further confirmed by VT NMR studies (spectra 

acquired by Dr J. Fisher) and the results are summarised in Figure 4.8. 

 

Figure 4.8 Partial 1H-NMR spectra of hybrid 75 (10 mM DMSO-d6, 500 MHz) at 293 K 

(blue), 303 K (green) 313 K (red), 323 K (magenta) and 333 K (light blue) showing the 

acid proton (1-Gly-CO2H), the Gly-NH proton (1-Gly-NH) and the top amide proton of 

the sequence (3-Phe-NH). 

Analysis of temperature coefficients (Tcoeff, calculated following Equation 3.1, 

Chapter 3)140 revealed Tcoeff of – 5.5 ppb K-1 and - 5 ppb K-1 for the acid (1-GlyCO2H) 

and the top amide (3-Phe-NH) protons respectively and Tcoeff of – 1.75 ppb K-1 for the 

1-Gly-NH proton. These data further supported the hypothesis that the Gly-NH proton 
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engages in a S(6) intramolecular H-bond, as internally hydrogen bonded amides are 

expected to show much smaller shifts with temperature than protons which are 

accessible for H-bonding to external polar solvents.129, 136, 137, 146 

In order to investigate the conformational properties of derivatives with an 

alternative side-chain spacing, 2D 1H-1H NOESY experiments were conducted on 

hybrids 104 and 107, containing a bottom 3-O or N-alkylated unit respectively. 

 

The nOe pattern for hybrid 104, was consistent with the monomers adopting 

conformations observed in previous studies. For example, the range of nOe 

correlations observed for the 1-Gly-NH and the 3-Phe-NH both suggest free rotation 

around the Ar-CO axes in the absence of intramolecular H-bonding, The absence of a 

cross-peak between the amide proton 2-NH and the ortho 2-H5 proton is also 

consistent with restricted rotation around this NH-Ar axis and intramolecular S(5) 

H-bonding with the oxygen of the adjacent alkoxy moiety (Figure 4.9). The absence 

of longer-range nOe correlations between the bottom 1-Gly-NH resonance and 

protons of the top units may also suggest the hybrid adopts a linear conformation in 

solution. 
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Figure 4.9 Partial 1H-1H NOESY spectrum of the hybrid mimetic 104 showing nOe 

cross-peak correlations in the aromatic (left) and aliphatic (right) regions. (10 mM 

DMSO-d6, 500 MHz) 

On the other hand, the N-alkylated unit of hybrid 107 did not possess protons 

that could engage in intramolecular H-bonding. As expected, nOe correlations 

between the 1-Gly-NH or 3-Phe-NH protons and the ArCH resonances in the ortho 

position of the adjacent monomer units implied free rotation around the Ar-CO and 

NH-Ar axes within the entire structure (Figure 4.10). However, nOe correlations were 

not observed between the Gly-NH and protons of the central Phe residue or of the top 

3-O-alkylated unit and the absence of these longer-range correlations may suggest 

that the linear conformer was preferred in solution also for this hybrid. 
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Figure 4.10 Partial 1H-1H NOESY spectrum of the hybrid mimetic 107 showing nOe 

cross-peak correlations in the aromatic (left) and aliphatic (right) regions. (10 mM 

DMSO-d6, 500 MHz) 

4.4 Proteolytic studies 

The introduction of an -amino acid in the middle of the hybrid sequence 

could render these mimetics more susceptible to enzymatic degradation and less 

suitable for cell-based assays. Proteolytic studies were performed on the model hybrid 

75 and the wild-type (WT) p53 helix. Unfortunately, the poor solubility of 3-O and 

2-O-alkylated benzamide mimetics did not allow analogous studies on the related 

scaffolds to be performed for direct comparison. 
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-Chymotrypsin and Proteinase K were chosen for this analysis, as these 

enzymes selectively cleave amide bonds adjacent to aromatic functionalities (Scheme 

4.6). Control studies were also performed by treating these substrates with no enzyme 

or Trypsin, as this protease cleaves amide bonds adjacent to arginine or lysine residues 

(Scheme 4.6) and therefore should not degrade any of the substrates considered. 

 

Scheme 4.6 Amide degradation mediated by Trypsin, -Chymotrypsin and 

Proteinase K. 

Hybrid 75 and WT-p53 were treated with the chosen enzyme in a 1:10000 

enzyme/substrate ratio (see section 6.2.3, Chapter 6 for further details) and the 

degradation was followed with analytical HPLC. Figure 4.11 shows a representative 

example of the analytical HPLC traces resulting by the treatment of WT-p53 (Figure 

4.11 a) and hybrid 75 (Figure 4.11 b) with -Chymotrypsin. (HPLC traces for other 

enzymes are shown in section 6.2.3, Chapter 6). 

 

Figure 4.11 Proteolytic studies on the model hybrid 75 (1:10000 enzyme/substrate ratio) 

a Analytical HPLC trace for WT-p53 treated with -Chymotrypsin; b Analytical HPLC trace 

for 75 treated with -Chymotrypsin.  
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The data obtained were then analysed to extract kinetic values (Figure 4.12 a). 

To minimize variability, the area of the peak corresponding to DMSO was used as 

internal reference for correction. Rate constants were determined from a linear fit 

following Equation 4.1 and the half-life of the proteolysis was determined using 

Equation 2.2 (Chapter 2). 

ln (
𝐴𝑡

𝐴0
) = −𝑘𝑡 

At = Substrate areas at time t; A0 = Substrate area at time zero; 

k = reaction rate coefficient  

Equation 4.1 

 

Figure 4.12 Kinetics of degradation from proteolytic studies  a Kinetics of degradation of 

hybrid 75 (red) and WT-p53 (green) treated with no enzyme (square), Trypsin 

(triangle),-Chymotrypsin (sphere) and Proteinase K (star) in 1 1:10000 enzyme/substrate 

ratio; b Kinetics of degradation from proteolytic studies of hybrid 75 at 1:10000 (red), 1:1000 

(purple) and 1:100 (blue)-Chymotrypsin /substrate ratio. 

As shown in Figure 4.12 and Table 4.3, hybrid 75 displayed at least eight fold 

greater resistance to -Chymotrypsin and four fold greater resistance to Proteinase K 

than the native peptide. It is however worth noting that even though the integral of the 
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starting material peak decreased over time, no degradation products could be seen in 

the HPLC trace (Figure 4.11 b). 

Table 4.3 Table illustrating the calculated half-lives of degradation for WT-p53 and 

hybrid 75. 

Substrate 
t1/2  

No Enzyme 

t1/2  

Trypsin 

t1/2  

-Chymotrypsin 

t1/2  

Proteinase K 

WT-p53 > 300 min > 300 min 28.8 ± 2.2 min 30.8 ± 1.4 min 

75 > 300 min > 300 min 239 ± 22 min 130 ± 21 min 

 

The greater resistance of hybrid 75 was also confirmed by increasing the ratio 

of -Chymotrypsin to hybrid to 1:1000 and 1:100 (Figure 4.12 b), suggesting that this 

new scaffold has sufficient proteolytic stability to be employed in complex biological 

studies. 

4.5 Proof-of-concept: targeting the p53/hDM2 PPI 

4.5.1 Preliminary Fluorescence Anisotropy Competition Assays 

To test the potential of this new scaffold to adopt an -helix mimicking 

conformation, the activity of hybrid 75 and control hybrids 98-101 was tested in a FA 

competition assay targeting the p53/hDM2 PPI (molecular cloning and expression of  

hDM2(17-126) L33E no tag: Dr K. Long, Dr. A. Bartlett and Dr J. Miles; see 

Appendix I for details on the FA assay).98  

The full competition curves, shown in Figure 4.13, provided encouraging 

results as hybrid 75 inhibited this PPI in the same micromolar range as the 2-O and 

3-O-alkylated oligobenzamides. It is worth noting that Nutlin-3a (4, Chapter 1) 

displayed an IC50 of 534.7 ± 23.9 nM in this assay (the full competition curve is shown 

in Appendix I). The identification of an inhibitor with activity only an order of 

magnitude poorer by rational design shows the strength of this scaffold system. 
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Figure 4.13 Preliminary FA competition assay Dose-response curves and structures of 

hybrids 75 (black), 98 (orange), 99 (dark cyan), 100 (purple) and 101 (magenta). (40 mM 

phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 

These data also demonstrated that the entirety of the sequence was required to 

mimic the key 'hot-spot' residues and therefore achieve inhibition. In this regard, the 

inactivity of hybrid 100 indicated that the bottom unit plays a significant role in 

binding. Furthermore, absence of activity for hybrids 98 and 99 proved that the top 

monomer was also essential for activity and the lack of inhibition of hybrid 101 

revealed that this unit needs to be functionalised with an interacting side-chain in order 

to achieve molecular recognition and retain binding affinity. 

4.5.2 1H-15N HSQC study of a model hybrid mimetic in complex 

with hDM2 

In order to investigate the binding mode of these mimetics, Dr J. Miles from 

the Astbury Centre for Structural Molecular Biology performed 1H-15N HSQC 

perturbation shifts studies.147 HSQC spectra were acquired for either the 15N-labelled 

apo form of the protein (125 M protein 100 mM sodium phosphate buffer at pH 7.3, 

2.5% glycerol, 1 mM DTT, 6% DMSO, 25 °C) or the protein in complex with a 

200 M solution of hybrid 75 after overnight incubation. 

As shown in Figure 4.14, distinct complexation-induced shifts were observed 

upon addition of 75. Once mapped onto the crystal structure of p53/hDM2 (PDB ID: 
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1YCR and 4HFZ; Figure 4.14 c-d),4, 148 the study showed that shift changes were 

induced throughout the protein and were comparable to those induced by the p53 

peptide in an experiment previously published by the group.105  

 

Figure 4.14 1H-15N HSQC study (600 MHz, 100 mM sodium phosphate buffer pH 7.3, 

2.5% glycerol, 1 mM DTT, 6% DMSO, 25 °C) a HSQC spectrum of the 15N-labelled 

125 M solution of hDM2 (black) overlapped with the HSQC spectrum of hDM2 (125 M) 

in complex with a 200 M solution of 75 (red), highlighting the moving residues; b 

Expansions showing the chemical shift of two relevant residues: His73 (top) and Phe55 

(bottom); c 1H-15N HSQC chemical shift perturbation mapping onto the crystal structure of 

p53/hDM2 (PDB ID: 1YCR) highlighting the position of the key Phe55 and His73 residues; 

d 1H-15N HSQC chemical shift perturbation mapping onto the crystal structure of p53/hDM2 

(PDB ID: 4HFZ) highlighting the shift changes of the residues on a dark blue (significant 

movement) to grey (minor movement) gradient. 

Shifts of residues around the helix binding cleft such as Phe55 and His73, 

which are located at opposite edges of the hydrophobic cleft (Figure 4.14 b-d), further 
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confirmed that the mimetic binds in the peptide binding site. In particular, the 

cross-peak of His73 broadened to the extent of being no longer visible, indicating that 

a specific yet transient interaction was taking place. Notably, shift changes at both 

ends of the hDM2 cleft also supported the hypothesis that the hybrid adopts an 

extended conformation. 

4.6 Fluorescence Anisotropy competition assays against 

the p53/hDM2 PPI: SAR studies 

Encouraged by the preliminary results obtained on hybrid 75, the full library 

of hybrid mimetics was tested against the p53/hDM2 interaction to obtain 

structure-activity relationship (SAR) data. 

4.6.1 The effect of the middle unit 

The lack of activity of the control hybrids 98-101 showed that the bottom and 

top units of the sequence were essential for binding. In order to gather better insight 

on the role of the central unit, a series of hybrids was functionalised with different 

middle -amino acids. 

Hybrids 113-115 were synthesised, which presented a tryptophan in lieu of the 

phenylalanine to mimic the natural 'hot-spot' residue. Full competition curves for 

p53/hDM2 inhibition are shown in Figure 4.15. 

The best inhibitor of this series (113) did not exhibit any improved activity 

when compared to hybrid 75 (IC50 = 11.9 ± 0.6 M). This result was unexpected as it 

was envisaged that the presence of a middle amino acid with perfect mimicry of the 

natural residue would have led to enhanced affinity for this PPI. Even more interesting 

was the reduced activity of hybrids 114 and 115 with 2-O-alkylated top monomers, 

as it highlighted the important role that the spacing of the side-chains plays for 

effective recognition (see also section 4.6.2).  
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Figure 4.15 L-Trp hybrids: Dose-response curves against the p53/hDM2 PPI. (40 mM 

phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 

 To better understand the role of the middle unit, hybrid 75 was compared to 

molecules functionalised with p-fluoro (116), p-bromo (117) and 

p-chloro-phenylalanine (118) at the middle position. Tyrosine (119) and histidine 

(120) functionalised hybrids were also synthesised to gather information on the role 

of more polar substituents. Figure 4.16 summarises the result of a FA competition 

assay against the p53/hDM2 PPI. Dose-response curves for hybrids 75 and 113 were 

also included for comparison.  

The dramatic difference in activity of these hybrids reinforced the hypothesis 

that the function of the middle amino acid is key for effective inhibition. Hybrid 117, 

the best hybrid -helix mimetic identified in the entire library, showed 

low-micromolar inhibition. Hybrids 118 and 116 followed in potency, highlighting 

the effect of the halo-substitution with potency following the order p-Br > p-Cl > p-F.   
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Figure 4.16 Halo-series and polar substituents: Dose-response curves against the 

p53/hDM2 PPI. (40 mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-

1 BSA) 

A QSAR (quantitative SAR) analysis was therefore performed on hybrids 75 

and 116-119 in an attempt to determine the driving force for this activity trend. Four 

different parameters were considered to investigate the effect of the p-substituent on 

the benzyl ring of Phe: i. hydrophobicity of the substituents, expressed as  values;149 

ii. electronic effects related to the electron withdrawing properties of the substituents, 

expressed as p Hammett constants;149 iii. H-bonding interactions, expressed as H 

(donor) or H (acceptor) values;150 iv. steric effects of the substituents, expressed as 

molar refraction (MR) values.149 The logarithm of the IC50 values was plotted against 

all four parameters and the result is shown in Figure 4.17 a-e. 
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Figure 4.17 QSAR analysis a Hydrophobic effect; b Electronic effect; c H-bonding acceptor 

effect; d H-bonding donor effect; e Steric effect. 

A linear correlation was found with  and p values, suggesting that more 

hydrophobic and more electron withdrawing groups favour binding affinity (Figure 

4.17 a-b).  On the other hand, the H-bonding ability of these substituents did not show 

a direct correlation with the activity (Figure 4.17 c-d). The steric effect seemed to 

have a linear correlation when considering the halo-substituted derivatives, but the 

trend was not consistent throughout the series and the result is therefore not conclusive 

(Figure 4.17 e). 
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Unfortunately, it was not possible to determine which parameter between 

hydrophobicity and electronic effects gives the strongest contribution to the activity 

as the parameter values for these substituents cross-correlate (Figure 4.18). 

 

Figure 4.18 Correlation between  and p values. 

Given the hydrophobic nature of the protein binding cleft, it is however 

possible to hypothesise that the hydrophobicity of the interacting side-chain may play 

the dominant role in maximising the affinity. Substituents with uncorrelated  and p 

values (e.g. p-nitrile:   = -0.57, p = 0.66; p-methyl:   = 0.56, p = -0.17)149 will be 

introduced in future in order to validate this hypothesis. 

4.6.2 The role of side-chain spacing 

The result obtained on hybrids 113-115 suggested that the spacing between 

interacting side-chains plays a key role for effective recognition.  

To further investigate this aspect of SAR, hybrids 75 and 102-109 were 

designed to include a combination of 2-O, 3-O and N-alkylated monomers. Since the 

alkylation topography is different for each of these building blocks, this library should 

possess different side-chain spacing and allow further information on which 

conformational features these mimetics require for molecular recognition.  

The mimetics were divided into three families (2-O, 3-O and an N-alkylated 

series) named after the first monomeric unit at the bottom of the sequence, and tested 

against the p53/hDM2 PPI. Full competition curves for the whole library are shown 
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in Appendix II and revealed a similar trend of activity within each family. Figure 4.19 

shows the results for hybrids 75, 104 and 107, which are representative of each series.  

 

 

Figure 4.19 Side-chain spacing studies targeting the p53/hDM2 PPI: Dose-response 

curves against the p53/hDM2 PPI. (40 mM phosphate buffer pH 7.50, 200 mM sodium 

chloride, 0.02 mg mL-1 BSA) 

The assay confirmed that the side-chain spacing has a significant effect on the 

binding affinity, with mimetics containing a 2-O-alkylated building block at the 

bottom position being better inhibitors than the corresponding 3-O-alkylated hybrids 

and five fold better inhibitors than hybrids of the N-alkylated series (see also 

Appendix II). 

The previous activity of the 2-O and 3-O-alkylated oligobenzamides98, 118 (see 

Chapter 3), seemed to suggest that the precise spacing of the side-chains was not a 

key element to control inhibition, as  in the presence of a well-defined backbone the 

residues could adopt the best possible conformation in order to maximise the 

interaction with the protein partner. These hybrid mimetics, however, show that when 
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introducing irregularity in the main core of the backbone, which gives a wider 

variation of structure, the side-chain spacing starts to play a crucial role. 

Sequence-dependent SAR therefore suggests that the interaction between the protein 

and these mimetics is not simply driven by a strong hydrophobic component, but 

instead through a well-defined process of recognition of the mimetic structure. 

The enhanced activity of the 2-O-alkylated series revealed that the entirety of 

the sequence and the presence of the top side-chain are key for inhibition (Section 

4.5.1), and that a 2-O-alkylated bottom monomer is optimal for maximum activity, 

thus reinforcing the hypothesis that these hybrid mimetics can recognise the protein 

cleft through a specific 3-dimensional structural motif. 

4.6.3 Aliphatic and amino acid-functionalised hybrid mimetics 

A small family of mimetics presenting aliphatic functionalities (110-112) was 

synthesised and tested in a FA competition assay against the p53/hDM2 PPI. 

 

Full competition curves, shown in Appendix II, revealed a remarkable loss of 

activity in mimetic 111, which presents R1 = iPr, R3 = iBu and L-Phe as the central 

amino acid. The activity was however recovered in the presence of a leucine middle 

unit (hybrids 110 and 112). The reasons for the difference in activity between these 

molecules are unclear. The presence of small hydrophobic functionalities may favour 

self-aggregation of these molecules and/or multimeric or non-specific binding to the 

protein. Further experiments, such as docking studies and 1H-15N HSQC analyses with 

a 15N-labelled protein, will be performed in future to clarify this result. 
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Amino acid (AA)-functionalised hybrids 121-128 were also tested in full 

competition against the p53/hDM2 interaction (full competition curves are shown in 

Appendix II). 

 

These mimetics were designed to mimic the additional i + 8 (Pro27), i + 9 

(Glu28) and i - 2 (Glu17) residues of the p53 helix, but surprisingly a general loss of 

activity was observed for the entire family. A combination of electronic effects and/or 

steric clash of the terminal functionalities with the protein cleft may be the reasons for 

these results. Future investigation (e.g. docking studies and crystal trials) will be done 

in order to clarify these data. 
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4.6.4 Hybrid -helix mimetics/hDM2 SAR: Summary 

A 32-membered library of hybrid -helix mimetics was designed, synthesised 

and tested in a FA competition assay to disrupt the p53/hDM2 PPI. 

Dose-response curves afforded important information regarding the key 

structural features of these molecules and allowed the development of preliminary 

SAR rules for this family of mimetics. 

In summary, the entirety of the sequence and a functionalised top 

p-aminobenzamide unit needed to be present to achieve inhibition. The activity was 

also shown to be related to a careful balance between the irregular backbone of this 

scaffold and a defined side-chain spacing to allow structural recognition. Hybrids of 

the 2-O-alkylated series exhibited the best conformational influence, revealing the 

importance of this bottom unit. 

The central amino acid was shown to be key for effective inhibition. A QSAR 

analysis revealed that the binding affinity is maximised in the presence of less polar 

and more electron withdrawing side-chains. Bromo-functionalisation of the 

phenylalanine residue allowed the identification of the best inhibitor of this family of 

mimetics.  

Together, these structural data backed the validity of the strategy adopted in 

designing this -helix mimetic scaffold, and showed that careful tuning of scaffold 

and side-chains can lead to matched ligands for inhibition. 

4.7 Targeting the Bcl-2 family PPIs with hybrid -helix 

mimetics 

As discussed in Chapter 1, proteins of the Bcl-2 family have a central role in 

the regulation of apoptosis and are therefore attractive targets for therapeutic 

purposes.3 Since BH3-only pro-apoptotic proteins of this family also mediate PPIs 

through three or four key residues of an -helix, it was envisaged that hybrid -helix 

mimetics could also be successfully employed to target and inhibit this family of PPIs. 
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A Fluorescence Anisotropy competition assay was therefore developed in a 

joint effort with Dr K. Long and D.J. Yeo in order to target the Mcl-1/NOXA B PPI, 

which allowed testing of the library of hybrid mimetics (molecular cloning and 

expression of Mcl-1 (172-327): Dr A. Bartlett and Dr J. Miles; synthesis of 

FITC-NOXA B (68-87): Dr P. Prabhakaran; for details on the assay development see 

Appendix I). 

4.7.1 FA competition assays against the Mcl-1/NOXA B PPI 

Hybrids of the 2-O, 3-O and N-alkylated series (75, 102-109) were initially 

tested for comparison with the side-chain spacing data obtained through the 

p53/hDM2 SAR. Unexpectedly, all these mimetics showed little or poor inhibitory 

activity against the Mcl-1/NOXA B PPI (full competition curves shown in 

Appendix II). A pivotal example was the difference in activity for hybrid 75 which 

showed, selectivity between these two PPIs (Figure 4.20). 

  

Figure 4.20 Dose-response curves of hybrid 75 against p53/hDM2 (black) and 

Mcl-1/NOXA B (red). (40 mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 

mg mL-1 BSA) 

Docking studies were performed to investigate the reasons for the inactivity 

of this hybrid towards Mcl-1/NOXA B inhibition. The set of structures within 

1.5 kJ/mol from the lowest energy conformation, previously minimised in 

Macromodel®,134 was docked with the crystal structure of Mcl-1 (PDB ID: 2JM6)27 

using the software Glide®. Of all the poses generated, only 3% assumed 

conformations which were binding in the Mcl-1 cleft. Most of the structures were 
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instead adopting conformations where the backbone of the two bottom residues 

entered the cleft thus inducing the side-chains to engage in interactions with amino 

acids outside the NOXA B binding pocket. A representative example is shown in 

Figure 4.21 a and c. The native Mcl-1/NOXA B PPI is also shown in Figure 4.21 b 

for comparison. 

 

Figure 4.21 Docking studies (PDB ID: 2JM6) a Docked hybrid 75 with protein surface 3D 

representation and expansion; b Mcl-1/NOXA B interaction; c Docked hybrid 75 in schematic 

2D representation highlighting the interacting amino acids (interactions taking place outside 

the hydrophobic cleft are represented with a grey shade).  

Within the constraints of the method (limitations of the force fields, 

assumptions regarding conformational restrictions and media for simulation), this 

analysis indicates that the side-chains of this hybrid are not matched to the NOXA B 

sequence and that this molecule does not act as a good mimetic of this helix. 

Intrigued by this surprising result, hybrids with the middle Trp unit were 

subsequently tested. The assay led to the identification of one hit, hybrid 113, which 

disrupted this Bcl-2 family PPI with an IC50 of 24.1 ± 1.4 M (Figure 4.22). 



Chapter 4: Solid-phase synthesis and biological evaluation of hybrid -helix mimetics 

106 

 

 

 

Figure 4.22 L-Trp hybrids: Dose-response curves against the Mcl-1/NOXA B PPI. (40 

mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 

 The general trend of this series matched the previous result in the p53/hDM2 

assay, showing reduced activity of hybrids presenting a top 2-O-alkylated 

functionality (section 4.6.1). The effect resulting from the combination of the 

side-chain spacing and the presence of a Trp middle amino acid seemed however to 

increase in targeting Mcl-1, resulting in nearly an order of magnitude difference in 

activity between hybrids 113 and 114. 

Hybrids with different middle unit functionalisation were also tested in a FA 

competition assay. As shown in Figure 4.23, halo-substituted hybrids 116-118 were 

identified as inhibitors of this PPI. Likewise the results obtained in targeting the 

p53/hDM2 PPI, the p-bromo functionalised hybrid 117 was shown to be the best 

inhibitor of the series.  
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Figure 4.23 Halo-series: Dose-response curves against the Mcl-1/NOXA B PPI. (40 mM 

phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 

These data were particularly noteworthy, as comparison with hybrid 75 

revealed that the simple para substitution of the benzyl ring of the Phe residue with a 

halogen moiety enabled tuning of the potency of this molecule, achieving effective 

recognition with both protein partners, hence modulating selectivity. 

The other members of the library were subsequently tested against the 

Mcl-1/NOXA B interaction. Dose-response curves, shown in Appendix II, showed 

however that none of these molecules were acting as inhibitors of this PPI. In this 

regard, the lack of activity of hybrids of the aliphatic series (110-112), originally 

designed to mimic the common aliphatic 'hot-spots' of the Bcl-2 family’s -helices, 

was particularly surprising and it further suggested that these molecules do not interact 

simply through hydrophobic contacts, but instead they are involved in a more complex 

recognition process. 
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The comparison of results obtained from the FA competition assays against 

Mcl-1/NOXA B with those obtained against p53/hDM2, revealed that these hybrid 

-helix mimetics present a high level of selectivity towards recognition with the 

hDM2 cleft. However, the identification of four hybrids inhibitors of the 

Mcl-1/NOXA B PPI (113, 116-118) was noteworthy, as studies performed on the 

WT- p53 peptide (described in Appendix II) revealed that in spite of its ability to be 

recognised by Mcl-1 in a direct binding assay, p53 is not able to compete with 

NOXA B in this interaction. 

The tuneable selectivity displayed by these hybrid -helix mimetics, therefore 

proved that this scaffold could be a powerful starting point to develop a better 

understanding of the properties that drive effective binding and to build rules to allow 

a tailored design of effective and selective PPIs therapeutics. 

4.8 Stereocontrolled interaction of -helix mimetics 

The chiral nature of the hybrid scaffold, naturally led to questions regarding 

the role played by the strereochemistry of these mimetics in the protein recognition. 

Chirality has been widely recognised as a pivotal element in drug design151 and some 

of the most potent small-molecule PPI inhibitors are chiral in nature.10, 35, 37 However, 

this aspect has not been thoroughly investigated in designing type III -helix 

mimetics, as the matched topography with the binding residues of a native helix 

constitutes the main structural pre-requisite.1 

Since these hybrid mimetics enabled investigation of this important aspect, 

three additional hybrid derivatives incorporating D-amino acids were synthesised 

following the SPPS route illustrated in Scheme 4.3, section 4.2.2 (Table 4.4).  

Table 4.4 Library of D-hybrid -helix mimetics illustrating side-chain sequence and 

percentage of purity after mass-directed HPLC purification (determined via 1H-NMR). 

Hybrid number Resin R1 D-AA R3 Purity 

129 Gly 2-O-iPr D-Phe 3-O-Bn 95% 

130 Gly 2-O-iPr D-Trp 3-O-Bn 90% 

131 Gly 2-O-iPr D-Trp 2-O-Bn 90% 
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Hybrid 129 was initially tested in competition assays against the p53/hDM2 

and the Mcl-1/NOXA B PPIs and compared to its L-Phe analogue 75. The remarkable 

result, shown in Figure 4.24 a-b, revealed that the chiral element of the backbone plays 

a significant contribution in the interaction allowing enantioselective recognition of 

the two -helix mimetics by these different proteins. 

 

Figure 4.24 Dose-response curves of L-Phe (75) and D-Phe (129) hybrid mimetics a FA 

competition assays against p53/hDM2; b FA competition assays against Mcl-1/NOXA B. (40 

mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 

This result provided more evidence that the recognition process is not simply 

driven by the hydrophobic contribution of the side-chains, but instead requires careful 

control of the presentation of the binding motif. Whereas hybrid 75, incorporating an 

L-Phe, displayed selectivity towards the hDM2 cleft, its D-Phe analogue hybrid 129 

showed low-micromolar inhibition towards both PPIs. The stereochemistry of the 

middle unit could hence be used to control the selectivity of binding between the two 

protein systems. The data obtained from the competition assay against 
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Mcl-1/NOXA B (Figure 4.24 b) further revealed that enantiodependent differentiation 

of the two mimetics by the same protein could also be achieved.  

Docking studies were performed on hybrid 129. The structure was minimised 

in Macromodel®,134 and the set of conformers within 1.5 kJ/mol from the lowest 

energy conformation, was initially docked with the crystal structure of hDM2 (PDB 

ID: 1YCR)4 using the software Glide® (docking study shown in Appendix II). In line 

with the docking experiment of the L-Phe analogue (75, section 4.1), 69% of all the 

poses generated assumed conformations that were binding in the hDM2 cleft, thus 

confirming the binding data obtained from the FA assay. 

Docking experiments were subsequently performed with the crystal structure 

of Mcl-1 (PDB ID: 2JM6).27  

Of all the poses generated, 62% assumed conformations that were binding in 

the Mcl-1 cleft and a representative example is shown in Figure 4.25 a and d. The 

docked L-Phe analogue (75) and the native Mcl-1/NOXA B PPI are also shown in 

Figure 4.25 b and c for comparison. 

The D-hybrid mimetic bound in the Mcl-1 cleft with all three residues through 

hydrophobic contacts (between the benzyl side-chain and Phe251, between the middle 

Phe residue and Phe209/Ala208 and between the isopropyl side-chain and Val246). 

These interactions suggest good matching between the position of the side-chains of 

this mimetic to the NOXA B sequence. Within the limitations of the method, 

comparison of this result with studies performed on hybrid 75 (Figure 4.25 b) for 

which only 3% of the generated poses were assuming binding conformations (section 

4.7.1), could explain the enantioselective recognition of this scaffold.  
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Figure 4.25 Docking studies for the D-Phe (129) hybrid mimetic (PDB ID: 2JM6) a 

Docked hybrid 129 with protein surface 3D representation and expansion; b Docked hybrid 

75 with protein surface 3D representation and expansion; c Mcl-1/NOXA B interaction; d 

Docked hybrid 129 in schematic 2D representation highlighting the interacting amino acids 

(interactions taking place outside the hydrophobic cleft are represented with a grey shade).  

The important role of the chiral element of the backbone was further supported 

by the results gathered from competition assays on hybrids 130 and 131 (Figure 4.26 

a-b). Competition against the p53/hDM2 interaction (Figure 4.26 a) displayed an 

interesting potency pattern. A two-fold difference in activity was found between 

hybrids 113 and its D-Trp analogue 130, with the L-hybrid being the best inhibitor. 

The opposite inhibitory activity was instead obtained between hybrids 114 and 131, 
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for which the D-analogue was better recognised in the assay, thus overcoming the 

reduced activity of hybrid 114 presenting a 2-O-Bn top monomer. Interestingly, the 

binding data obtained against the Mcl-1/NOXA B PPI (Figure 4.26 b), showed that 

hybrid 113 was the only mimetic with substantial inhibition of this interaction, thus 

providing further evidence that the protein can differentially recognise these chiral 

mimetics. 

 

 



Chapter 4: Solid-phase synthesis and biological evaluation of hybrid -helix mimetics 

113 

 

Figure 4.26 Dose-response curves of L-Trp (113 and 114) and D-Trp (130 and 131) 

hybrid mimetics a FA competition assay against p53/hDM2; b FA competition assay against 

Mcl-1/NOXA B. (40 mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-

1 BSA) 

Comparison of the inhibitory activity towards both PPIs, revealed that hybrid 

mimetics 114, 130 and 131, together with the L-Phe analogue 75, exhibited complete 

selectivity for the hDM2 cleft, thus constituting the first example of a library of 

enantioselectively recognised type III -helix mimetics. 

 

4.9 Summary and conclusions 

A novel hybrid -helix mimetic scaffold was designed and shown to be a 

selective and enantioselectively recognised inhibitor of PPIs involved in the 

development of cancer. 

Molecular modelling and docking studies indicated that this hybrid scaffold 

has the potential to access a wide conformational space and be recognised as a 

functional mimetic of the native -helix. Conformational analyses further revealed 

that H-bonded functionalities can introduce restraints in this irregular backbone and 

proteolytic studies demonstrated that this scaffold is resistant to enzymatic 

degradation and consequently suitable for cellular assays. 

FA competition assays of a 35-membered library assembled through a robust 

SPPS strategy, were performed against the p53/hDM2 PPI. Low micromolar 

inhibitors of this interaction were identified and 1H-15N HSQC studies proved that 

these molecules indeed bind in the hDM2 cleft. A tailored SAR analysis showed the 

role of the conformational properties of these mimetics in the molecular recognition 

process with the protein partner. The activity was related to a series of structural 

features: i. the importance of the complete sequence and of a functionalised top 

p-aminobenzamide unit; ii. a careful balance between the irregular backbone of this 

scaffold and a defined side chain spacing which required a S(6) H-bonded 

2-O-alkylated bottom unit; iii. the key role played by the middle amino acid unit, 

favouring more hydrophobic and electron withdrawing side-chains. 
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FA assays against the Mcl-1/NOXA B Bcl-2 family PPI, led to the 

identification of four further inhibitors of this interaction and, most importantly, 

revealed a high level of selectivity of these hybrid mimetics towards hDM2. 

Finally, introduction of a D-amino acid middle unit highlighted the importance 

of the stereochemical configuration in the 3D space in order to achieve effective 

recognition, thus allowing the identification of the first reported examples of 

enantioselective recognition of type III -helix mimetics by different proteins and 

enantiodependent differentiation of proteomimetics by a protein partner. 

All together, these data emphasised that the interaction of these mimetics with 

the protein partner is driven by a well-defined process of recognition of the mimetic 

structure, which goes beyond the hydrophobic contribution of the side-chains. The 

preliminary results obtained on this family of -helix mimetics therefore constitute a 

validated starting point for the development of a detailed understanding of the 

conformational properties necessary for PPI inhibition and to elaborate rule based 

approaches in order to achieve effective mimicry and enable selective targeting of 

PPIs. 
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Chapter 5  

Thesis summary and future directions 

Protein-protein interactions (PPIs) play a pivotal role in mediating a number 

of biological processes involved in the development of infected or diseased states.2-4 

Since -helices constitute the most abundant motif at protein interfaces, significant 

research effort has been focused on targeting -helix mediated PPIs.15 

Although traditional drug-discovery approaches provided potent inhibitors of 

some PPIs,10,11,12,13 they lack generality for the generation of drug candidates as they 

can only afford tailored answers. The development of rule based approaches to design 

effective inhibitors would therefore be highly desirable. 

A powerful strategy for the inhibition of PPIs is the development of -helix 

mimetics (Chapter 1). In designing these molecules, the helical core is recapitulated 

using a rod-shaped object presenting side chains in a topography comparable to that 

of the native helix. Encouraging results have been obtained through the design of 

foldamers, which are sequence-specific oligomers adopting well-defined three 

dimensional conformations to reproduce the secondary structural features of 

biological macromolecules.29 Type I mimetics (foldamers reproducing the local 

topography of the helix by matching the peptide backbone) and type III mimetics 

(non-peptidic structures that match the topography of the original helix motif by 

mimicking the spatial orientation of its key residues) able to function as inhibitors of 

PPIs have been reported in the last few years.1, 30 In spite of the potential shown by 

these foldamers, the discovery of mimetics that can target PPIs in a predictable 

manner remains nevertheless a major challenge. 

Previous work carried out in the Wilson group on 3-O-alkylated benzamide 

proteomimetics,98, 99 constituted the starting point for the work presented in this thesis, 

which was aimed at  developing a better understanding of the conformational 

properties of aromatic oligoamides, in order to identify key features required to 
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reproduce the functional role of -helices and to achieve specificity and selectivity 

towards different PPIs. 

A regioisomeric 2-O-alkylated oligobenzamide scaffold was initially designed 

to determine how minor variations in the backbone architecture and hydrogen bonding 

pattern affect the conformational properties of this scaffold. 117,118 Conformational 

analyses in solid and solution-states were performed on 2-O-alkylated p-benzamide 

dimers and compared with the regioisomeric 3-O-alkylated template (Chapter 2). The 

study was performed to understand the role played by non-covalent interactions in 

defining conformational preferences and long range inter/intramolecular order for this 

class of aromatic foldamers. NMR studies and X-ray crystal structures showed the 

presence of intramolecular H-bonding (S(6) and S(5) respectively) within the 

structures and revealed that these non-covalent constraints can restrict rotation around 

one of the aryl amide axes. The overall results showed that no specific driving force 

determined the conformational preference of these O-alkylated benzamide dimers and 

that the syn/anti ratio of functional groups was controlled by a complex interplay of 

interactions both in solution and solid -state. 

2-O and 3-O-Alkylated trimers were subsequently considered in order to 

investigate the impact of non-covalent interactions on the preferred shape and 

properties of these longer oligomers (Chapter 3). Structural analyses revealed that a 

more stable S(6) intramolecular H-bonding in the 2-O-alkylated scaffold results in a 

reduced curvature of the backbone. FA competition assays against the p53/hDM2 PPI 

were performed in order to study how the influence of the conformational differences 

between the two regioisomers modulated protein recognition. Micromolar inhibitors 

were identified for both families; however, the two regioisomers displayed minimal 

difference in the inhibitory activity.  

Despite the different intramolecular H-bonds and curvature of the backbones 

in these two scaffolds, the result suggested that in the presence of a well-defined 

structure, the residues would adopt the best possible conformation in order to 

maximise the interaction with the protein partner. Since side-chains are free to rotate, 

this could therefore result in a similar vectoral presentation of the binding groups of 
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the two regioisomers, thus generating multiple pharmacophores which can be 

similarly effective for helix mimicry.  

The design of a new hybrid -helix mimetic was subsequently conceived, 

where the structural rigidity of the oligobenzamide backbone was broken through 

substitution of the middle aryl-unit with an amino acid, introducing irregularity and 

different H-bonded conformations (Chapter 4). As shown by in silico studies, this 

strategy allowed the generation of a mimetic with access to a wider conformational 

space but still able to function as a mimetic of the native -helix. FA assays of a 

35-membered library assembled through a robust SPPS strategy, were performed 

against the p53/hDM2 and the Mcl-1/NOXA B PPIs. Dose-response curves allowed 

the identification of low micromolar inhibitors of both interactions and afforded 

important information for the development of preliminary SAR rules for this family 

of mimetics. 

Importantly, these hybrid mimetics were shown to be strongly selective 

towards hDM2, demonstrating that the molecular properties of these derivatives can 

be tuned to achieve protein selective mimicry. The chiral nature of the scaffold further 

highlighted the importance of stereocontrol in 3D space and allowed the identification 

of the first examples of enantioselective recognition of type III -helix mimetics by 

different proteins and enantiodependent differentiation of proteomimetics by a protein 

partner.  

The results obtained on the family of hybrid mimetics furnished some 

quantitative structure-activity relationship data. This scaffold therefore represents a 

potential starting point to elaborate rule based approaches for the design of 

proteomimetics aimed at effective PPI inhibition. In order to achieve this goal, a better 

understanding of the conformational properties that modulate protein recognition is 

however needed. 

Research efforts are ongoing within the group in order to gather further 

information. A collaboration with Dr J. Fisher is currently occurring in order to 

employ the NMR data collected on hybrid 75 as restraints for simulated annealing to 

generate a more accurate ensemble of conformers for structural studies. Attempts to 

obtain co-crystal structures of hybrid derivatives bound to hDM2 or Mcl-1 are also 
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ongoing. The success of this experiment would be remarkable, as it would allow 

elucidation of the binding mode of these mimetics and provide important information 

on conformational properties. The ability of these mimetics to act in cells will also be 

investigated in a Luciferase assay and/or in p53 or p21 pull-down assays. These tests 

have already been developed by Dr A. Barnard and assays on the library of hybrid 

mimetics will be performed shortly. 

Future directions should focus on additional studies regarding the 

conformational space accessible by these molecules. Possible modifications include 

the investigation of the binding activity of hybrids presenting a reverse-dipole 

sequence (Figure 5.1 a). Data on these derivative could in fact give insights on the 

role played by the dipole of these molecules and add information on the effect of the 

side-chain spacing. 

 

Figure 5.1 Possible modifications to the hybrid structure a Hybrids with a reverse-dipole 

sequence; b Hybrids with  or  amino acids.  

A further modification that could be introduced is the use of  or -amino acid 

as middle units (Figure 5.1 b), as the addition of one or two methylene units could 

affect the conformational properties of these molecules and have an impact on the 

binding affinity. 

In order to expand on the SAR data, further side-chains need to be employed 

within the structure. Suggestions for these modifications are shown in Figure 5.2. 
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Figure 5.2 Suggested modification of the side-chains for additional SAR studies. 

The use of functionalised amino acids will also necessitate the development 

of a robust synthetic strategy to obtain unnatural derivatives and access diversity. In 

particular, the effect of the halo-functionality on the activity of the hybrids and the 

role of the Trp moiety on selectivity (discussed in Chapter 4), suggest that the 

introduction of a halo-Trp could have an important effect in increasing the potency of 

these mimetics. 

In order to support the results obtained and determine dissociation constants 

(not obtainable with the FA assay, see Appendix I), the development of an orthogonal 

biophysical assay should also be pursued. Attempts in this direction have been made 

and are discussed in Appendix III, but the results have not been reproducible so far 

and necessitate further efforts. 

Finally, these mimetics should be tested against other PPIs of therapeutic 

importance in order to obtain additional information on their selectivity. This work 

will require additional molecular biology efforts to express the desired proteins and 

the development of new assays. As an example, research is currently ongoing within 

the group to develop a FA assay against the Bcl-xL/BAK PPI and the library will be 

tested against this interaction as soon as the test is available. 

The 2-O-alkylated and the hybrid -helix mimetics investigated during this 

PhD, provided knowledge on the impact exerted by the conformational properties and 

structural features of these derivatives on PPI inhibition. Additional work is being 
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carried out within the group on 3-O-alkylated, N-alkylated and di-functionalised 

libraries of mimetics, which are being tested against different PPIs, thus affording 

auxiliary data on the structure-activity relationship of aromatic oligobenzamides. 

The combination of these results could therefore help in addressing the key 

questions regarding the design of effective foldamers and allow accumulation of the 

quantitative understanding necessary to build a rule based approach and achieve 

potent and selective PPI inhibition. 
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Chapter 6  

Experimental Section 

General methods 

Unless otherwise stated, all the chemicals and reagents were obtained commercially 

from Sigma-Aldrich, Fisher Scientific, Alfa Aesar or Merck and used without further 

purification. Amino acid derivatives, coupling reagents and resins were purchased 

from Merck Millipore. All solvents used were HPLC grade. Analytical Thin Layer 

Chromatography was performed on precoated silica gel plates (Kieselgel 60F254, 

Merck). Column chromatographic purifications were performed either with flash 

silica gel or with aluminium oxide Brockmann I (50, 200 µm) from Acros Organics. 

NMR spectra were recorded in CDCl3 or CD3OD , unless otherwise stated, either on 

DPX300, AV 400 MHz or AV 500 MHz Bruker NMR spectrometers. All chemical 

shifts are reported in  ppm downfield of TMS and peak multiplicities as singlet (s), 

doublet (d), quartet (q), quintet (quin), septet (sep), doublet of doublets (dd), broad 

singlet (bs), and multiplet (m). Signal assignment, where possible/necessary, was 

made with the help of 2D-NMR techniques (COSY, HMQC, HMBC, and NOESY). 

High resolution mass spectra (HRMS) were obtained using either a Waters GCT 

Premier mass spectrometer, using electron impact (EI), a Bruker micrOTOF using 

electrospray ionisation (ESI), or a Bruker MaXis Impact, using electrospray ionisation 

(ESI). Liquid chromatography mass spectra (LC-MS) were run on an Agilent 1200 

LC system equipped with a Phenomenex Luna C18(2) 50 × 2 mm column, 5 m 

particle size, on an acetonitrile/water gradient (5-95% acetonitrile, 0.1% formic acid, 

over 3 minutes) and a Bruker Daltonics HTCUltra™ system equipped with an Ion trap 

MS detector. Analytical HPLC experiments were run on an Agilent 1290 Infinity LC 

series system equipped with an Ascentis® Express Peptide ES-C18 100 × 2.1 mm 

column, 2.7 m particle size, on an acetonitrile/water gradient (5-95% acetonitrile, 

0.1% TFA, over 5 minutes). Mass-directed HPLC purifications were run on an Agilent 
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1260 Infinity Preparative HPLC system equipped with a Waters XBridge™ Prep C18 

19 × 100 mm column, 5 m particle size, on an acetonitrile or methanol/water gradient 

(5-95% acetonitrile or methanol over 8 minutes) and an Agilent 6120 Quadrupole 

system equipped with a  quadrupole MS detector, using electrospray ionisation (ESI). 

Infra-red (IR) analyses were performed using a Perkin Elmer FT-IR spectrometer or 

a Bruker Platinum-ATR system equipped with an Alpha FT-IR spectrometer and the 

samples were analysed as solids. Optical rotations were recorded on a Schmidt 

Haensch Polatronic H 532 polarimeter using the sodium D line (589 nm). []D are 

reported in units of 10-1 deg dm2 g-1. Melting points were determined using a Griffin 

and George melting point apparatus and are uncorrected. CHN analyses were 

performed by the School of Chemistry Microanalysis facility using a Carlo Erba 

elemental analyser MOD 1106 instrument. Single crystal X-ray data were collected 

on a Bruker SMART APEX CCD Area diffractometer with graphite 

monochromatized (Mo Kα = 0.71073Å) radiation at room temperature.  

6.1 Synthesis of 2-O-alkylated benzamides (Chapters 2 

and 3) 

Synthetic procedures 

A generic procedure was followed using minor modifications to the previously 

reported work98 for the O-alkylation, ester hydrolysis, nitro group reduction and 

coupling reactions to make novel oligomers. These procedures are described briefly 

below: 

(a) Procedure for O-Alkylation 

Alkyl halide (1.2 equiv.) was added to a solution of the phenol (1 equiv.) in dry DMF 

under an argon or nitrogen atmosphere, followed by potassium carbonate (3 equiv.) 

and the reaction mixture was stirred at 50 oC for 12-48 h. After complete consumption 

of starting material based on TLC, the reaction mixture was diluted with ethyl acetate 

and acidified with 1N hydrochloric acid solution. The product was extracted into ethyl 

acetate (3 × 30 mL) and the combined organic layers were washed with water and 
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dried over anhydrous sodium sulfate. The crude product obtained after the removal of 

solvent was purified either by crystallization or column chromatography.  

 (b) Procedure for ester hydrolysis 

Ester (1 equiv.) in a mixture of tetrahydrofuran-methanol (10 mL) was subjected to 

hydrolysis using 1 M sodium hydroxide solution. After completion of the reaction 

(24-36 h), the pale yellow precipitate obtained on acidification was extracted into 

dichloromethane and the organic layer was washed with water until the pH was 

neutral. The organic layer was dried over anhydrous sodium sulfate. The product 

isolated after the removal of the solvent was used for the next step. 

 (c) Procedure for nitro reduction 

Tin (II) chloride dihydrate (5 equiv.) was added to a solution of nitro compound (1 

equiv.) in ethyl acetate, and the reaction mixture was stirred at 50 oC for 12-48 h. The 

reaction was diluted with ethyl acetate, basified with 1N sodium hydroxide solution 

and the product was extracted into ethyl acetate (3 × 30 mL). The organic layer was 

dried over anhydrous sodium sulfate and the product isolated after the removal of the 

solvent was used for the next step without further purification.  

(d) Procedure for the coupling  

Dichloro triphenylphosphorane (4.5 equiv.) was added to a stirred solution of amine 

(1.2 equiv.) and acid (1 equiv.) in anhydrous chloroform (5 mL per 50 mg of acid) 

under an argon atmosphere and the solution was heated to reflux (80 °C) until TLC 

analysis showed complete conversion. The crude product obtained after the removal 

of chloroform was treated with ethyl acetate (20-30 mL), filtered and washed with 

ethyl acetate (3x10 ml) to obtain a pale yellow coloured solid. 

Numbering system for 2-O-alkylated benzamides 

To simplify the numbering and NMR assignment of the 2-O-alkylated benzamides, a 

sequential nomenclature has been devised, where each of the monomer building 

blocks is considered separately (Figure 6.1). The monomers are numbered from 1 to 

3 starting from the N-terminus and named as [R-(n-HABA)], where R is the alkoxy 

side-chain, n- indicates the position of the alkoxy moiety on the aromatic ring (e.g. 

for a 2-O-alkylated monomer n = 2) and HABA is the acronym for Hydroxy Amino 
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Benzoic Acid. Within each monomer, the numbering is the same: the carbons from 

the aminobenzoic acid are numbered using the standard system (the aromatic carbon 

bearing the carboxylic acid is C1, the one bearing the amine is C4). Then, the lateral 

chain is numbered: the carbon attached to the oxygen is the Cα, and the numbering of 

the aliphatic part of the side chain continues with Cβ, etc. In the case of aromatic side 

chains, the aromatic carbons are numbered CAr1, CAr2, etc. 

 

Figure 6.1 Numbering of atoms in 2-O-alkylated benzamides. 

The numbering of the protons is based on the carbon numbering. To differentiate each 

individual carbon/proton, the monomer number is added as a prefix to the 

carbon/proton number. 

6.1.1 Monomer building blocks and dimers 

Methyl-2-hydroxy-4-nitrobenzoate (42) 

A stirred solution of 2-hydroxy-4-nitro benzoic acid (10.0 g, 54.6 mmol, 

1 equiv.) and concentrated sulphuric acid (1.0 mL, 18.8 mmol) in 

anhydrous methanol (200 mL) under an argon atmosphere was heated at 

reflux (65 ºC). After 96 h stirring, TLC analysis (SiO2, 7:3 

cyclohexane:ethyl acetate) showed complete conversion and the reaction mixture was 

concentrated to leave a pale yellow solid which was poured into ethyl acetate and 

washed twice with water (2 × 100 mL). The organic layer was dried (sodium 



Chapter 6: Experimental Section 

125 

 

sulphate), filtered and concentrated under reduced pressure to leave the pure product 

as a pale yellow powder (10.6 g, 98%); Rf  0.51 (SiO2, 30% ethyl acetate in 

cyclohexane); 1H NMR (CD3OD, 300 MHz) : 7.97 (d, J = 5.4 Hz, 1 H, H6), 7.65 (s, 

1 H, H3), 7.62 (d, J = 5.4 Hz, 1 H, H5), 3.91 (s, 3 H, OCH3) ppm; 13C NMR (CDCl3, 

75 MHz) : 170.7 (CO), 163.2 (C2), 153.8 (C4), 133.09 (C6), 119.36 (C1), 114.9 

(C5), 113.8 (C3), 53.9 (OC) ppm; IR (neat) ν (cm-1): 3627 , 2965, 1733, 1661, 1665, 

1558, 1440, 1387, 1237; ESI-MS Found: 196 (M-H)-; Elemental analysis calculated: 

C, 48.74; H, 3.58; N, 7.10); Found: C, 49.05; H, 3.65; N, 7.00.  

O2N-[O-iPr-(2-HABA)]-CO2Me (43) 

 Using general procedure for O-alkylation (a). Potassium carbonate 

(6.3 g, 45.7 mmol, 3 equiv.); methyl-2-hydroxy-4-nitrobenzoate 42 

(3.0 g, 15.2 mmol, 1 equiv.); 2-bromopropane (2.0 mL, 21.3 mmol, 1.4 

equiv.); anhydrous N,N-dimethylformamide (30 mL). Purification by 

column chromatography (Aluminium oxide, 10% dichloromethane in cyclohexane) 

to leave a bright yellow oil (3.6 g, quant.); Rf 0.65 (Aluminium oxide, 50% 

dichloromethane in cyclohexane:); 1H NMR (CDCl3, 300 MHz) : 7.84 (d, J = 5.1 Hz, 

1H, H6), 7.80 (s, 1 H, H3), 7.79 (d, J = 5.1 Hz, 1 H, H5), 4.75-4.70 (m, J = 4.2 Hz, 1 

H, H), 3.92 (s, 3 H, OCH3), 1.43 (d, J = 4.2 Hz, 6 H, H) ppm; 13C NMR (CDCl3, 

75 MHz) : 166.0 (CO), 158.0 (C2), 150.9 (C4), 132.3 (C6), 127.9 (C1), 115.1 (C5), 

109.5 (C3), 69.7 (C), 52.8 (OC), 22.3 (C) ppm; IR (neat)  (cm-1): 3117, 2980, 

1748,1614, 1590, 1538 1486; ESI-MS Found: 262 (M+Na)+; HRMS calculated for 

C11H13N1NaO5 (M+Na)+: 262.0686; Found: 262.0677. 

O2N-[O-Bn-(2-HABA)]-CO2Me (44) 

 Using general procedure for O-alkylation (a). Potassium carbonate 

(6.3 g, 45.7 mmol, 3 equiv.); methyl-2-hydroxy-4-nitrobenzoate 42 

(3.0 g, 15.2 mmol, 1 equiv.); benzyl bromide (2.5 mL, 21.3 mmol, 

1.4 equiv.); anhydrous N,N-dimethylformamide (30 mL). 

Purification by recrystallisation from cyclohexane to leave white needle crystals (2.85 

g, 65%); m.p. 89-90 ºC; Rf 0.82 (Aluminium oxide, 10% dichloromethane in 

cyclohexane); 1H NMR (CDCl3, 300 MHz) : 7.92 (d, J = 8.1 Hz, 1 H, H6), 7.87-7.82 

(m, 2 H, H3, H5), 7.50 (d, J = 6.9 Hz, 1 H, HAr4), 7.43-7.34 (m, 4 H, HAr2, HAr3), 
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5.27 (s, 2 H, H), 3.94 (s, 3 H, OCH3) ppm; 13C NMR (CDCl3, 75 MHz) : 165.7 

(CO), 158.6 (C2), 151.0 (C4), 135.8 (CAr1), 132.6 (C6), 129.1 (CAr3), 128.7 (CAr4), 

127.4 (CAr2), 127.0 (C1),115.7 (C5), 103.9 (C3), 71.5 (C), 53.0 (OC) ppm; IR (neat) 

 (cm-1): 3107, 3038, 3006, 2954, 2923, 2871, 2833, 1731, 1592, 1533, 1251; ESI-MS 

Found: 310 (M+Na)+; Elemental analysis calculated: C, 62.72; H, 4.56; N, 4.88; 

Found: C, 62.80; H, 4.55; N, 4.85. 

O2N-[O-CH2-2-Naph-(2-HABA)]-CO2Me (45) 

 Using general procedure for O-alkylation (a). Potassium 

carbonate (6.3 g, 45.7 mmol, 3 equiv.); methyl-2-hydroxy-4-

nitrobenzoate 42 (3.0 g, 15.2 mmol, 1 equiv.); 2-bromomethyl 

naphthalene (4.7 g, 21.3 mmol, 1.4 equiv.); anhydrous N,N-

dimethylformamide (30 mL). Purification by recrystallisation from cyclohexane to 

leave a colourless powdery solid (5.1 g, quant.); m.p. 143-144 ºC; Rf 0.66 (Aluminium 

oxide, 50% dichloromethane in cyclohexane);  NMR (CDCl3, 300 MHz) : 7.96-

7.84 (m, 7 H, H6, H3, HAr3, HAr5, HAr8, HAr10, HAr1), 7.59 (d, J = 5.1 Hz, 1 H, 

H5), 7.52-7.50 (m, 2 H, HAr5, HAr6), 5.43 (s, 2 H, H), 3.96 (s, 3 H, OCH3) ppm; 

13C NMR (CDCl3, 75 MHz) : 165.7 (CO), 158.6 (C2), 151.0 (C4), 133.7 (CAr2), 

133.6 (C6), 133.2 (CArH), 129.5 (CArH), 129.0 (CAr4), 128.8 (CAr9), 128.4 

(CArH), 128.2 (CArH), 127.1 (CArH), 126.8 (CArH), 126.7 (CArH), 126.6 (C1), 

115.7 (C5), 108.9 (C3), 71.7 (C), 53.0 (OC) ppm; IR (neat)  (cm-1): 3124, 3058, 

3007, 2953, 2871, 2833, 1731, 1590, 1536, 1347; ESI-MS Found: 360 (M+Na)+; 

Elemental analysis calculated: C, 67.65; H, 4.48; N, 4.15; Found C, 67.75; H, 4.50; 

N, 4.05. 

O2N-[O-iPr-(2-HABA)]-CO2H (46)  

 Using general procedure for ester hydrolysis (b). O2N-[O-iPr-(2-

HABA)]-CO2Me 43 (700.0 mg, 2.9 mmol, 1 equiv.); sodium hydroxide 

1 M (5 mL); anhydrous methanol (50 mL). On cooling, the reaction 

mixture was acidified to pH ≈ 1 (5 mL, hydrochloric acid 1 N) to induce 

precipitation as a white creamy solid. The product was then collected by filtration and 

dried thoroughly under vacuum to leave a colourless solid (561.6 mg, 86%); m.p. 146-
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147 ºC; Rf 0.06 (SiO2, 100% dichloromethane);  NMR (CDCl3, 300 MHz) : 8.34 

(d, J = 8.4 Hz, 1 H, H6), 7.95 (d, J = 8.7 Hz, 1 H, H5), 7.91 (s, 1 H, H3), 5.21-4.80 

(m, J = 6.3 Hz, 1 H, H), 1.57 (d, J = 6.3 Hz, 6 H, H) ppm; 13C NMR (CDCl3, 75 

MHz) : 164.0 (CO), 157.1 (C2), 151.9 (C4), 135.4 (C6), 124.3 (C1), 115.9 (C5), 

109.6 (C3), 75.8 (C), 22.2 (C) ppm; IR (neat)  (cm-1): 2976, 1698, 1586, 1528, 

1348, 1244; ESI-MS Found: 248 (M+Na)+; Elemental analysis calculated: C, 53.33; 

H, 4.92; N 6.22; Found: C, 53.55; H, 4.95; N, 6.15. 

O2N-[O-Bn-(2-HABA)]-CO2H (47) 

Using general procedure for ester hydrolysis (b). O2N-[O-Bn-(2-

HABA)]-CO2Me 44 (1.0 g, 3.5 mmol, 1 equiv.); sodium hydroxide 

1 M (5 mL); anhydrous methanol (25 mL); anhydrous 

tetrahydrofuran (25 mL). On cooling, the reaction mixture was 

acidified to pH ≈ 1 (5 mL, hydrochloric acid 1 N) to induce precipitation as a white 

creamy solid. The product was then collected by filtration and dried thoroughly under 

vacuum to leave a colourless solid (551.8 mg, 58%); m.p. 170-171 ºC; Rf 0.13 (SiO2, 

10% acetone and 2% ethanol in chloroform);  NMR (CDCl3, 300 MHz) : 8.35 (d, 

J = 8.2Hz, 1 H, H6), 8.0 (d, J = 8.2 Hz, 1 H, H5), 7.96 (s, 1 H, H3), 7.49-7.43 (m, 5 

H, HAr2, HAr3, HAr4), 5.32 (s, 2 H, H) ppm; 13C NMR (CDCl3, 75 MHz) : 158.0 

(CO), 151.9 (C2), 135.3 (C4), 133.7 (C6), 130.0 (CAr1), 129.7 (CAr4), 128.5 (CAr3), 

123.9 (CAr2), 117.1 (C5), 108.9 (C3), 90.9 (C1), 73.4 (C) ppm; IR (neat)  (cm-1): 

3062, 1682, 1586, 1525, 1382, 1256; ESI-MS Found: 274 (M+H)+, 585 (2M+K)+; 

Elemental analysis calculated: C, 61.54; H, 4.06; N, 5.13; Found: C, 61.60; H, 3.95; 

N, 5.30. 

O2N-[O-CH2-2-Naph-(2-HABA)]-CO2H (48) 

Using general procedure for ester hydrolysis (b). O2N-[O-

CH2-2-Naph-(2-HABA)]-CO2Me 45 (2.0 g, 5.9 mmol, 1 

equiv.); sodium hydroxide 1 M (10 mL); anhydrous 

methanol (50 mL); anhydrous tetrahydrofuran (50 mL). On 

cooling, the reaction mixture was acidified to pH ≈ 1 (10 mL, hydrochloric acid 1 N) 

to induce precipitation as a bright yellow creamy solid. The product was then collected 

by filtration and dried thoroughly under vacuum to leave a bright yellow powder (1.5 
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g, 81%). Rf 0.94 (10% acetone and 2% ethanol in chloroform);  NMR (acetone-d6, 

300 MHz) : 8.11 (d, J = 8 Hz, 1 H, H6), 8.05 (s, 1 H, H3), 8.02 (s, 1 H, HAr3), 7.97-

7.91 (m, 4 H, H5, HAr6, HAr7, HAr1), 7.96 (dd, J = 8.7, 1.2 Hz, 1 H, HAr10), 7.55-

7.52 (m, 2 H, HAr5, HAr8), 5.63 (s, 2 H, H) ppm; 13C NMR (acetone-d6, 75 MHz) 

: 166.7 (CO), 157.2 (C2), 150.1 (C4), 134.2 (CAr2), 133.1 (C6), 132.9 (CArH), 

131.4 (CAr), 129.0 (CArH), 128.5 (CArH), 128.1 (CArH), 128.0 (CArH), 126.8 

(CArH), 126.6 (CAr), 125.6 (CArH), 115.8 (C5), 109.0 (C3), 90.9 (C1), 70.8 (C); 

IR (neat)  (cm-1): 2934 , 1670, 1612, 1533, 1348, 1266 ; ESI-MS Found: 346 

(M+Na)+. 

H2N-[O-iPr-(2-HABA)]-CO2Me (49) 

To a stirred solution of O2N-[O-iPr-(2-HABA)]-CO2Me 43 (1.6 g, 6.7 

mmol, 1 equiv.)  in anhydrous methanol (50 mL) under a nitrogen 

atmosphere was added 10% Pd(C) (140.7 mg). The nitrogen 

atmosphere was evacuated under vacuum and hydrogen gas (2L) 

introduced via a balloon. The reaction mixture was stirred for 12h until TLC analysis 

(SiO2, 7:3 cyclohexane:ethyl acetate) showed complete conversion. The reaction 

mixture was passed through a celite pad, washed twice with methanol and 

concentrated. The resulting grey oil was then dried under reduced pressure to leave a 

grey creamy solid (1.2 g, 86%); Rf 0.16 (SiO2, 30% ethyl acetate in cyclohexane); 1H 

NMR (CDCl3, 300 MHz) : 7.71 (d, J = 8.7 Hz, 1 H, H6), 6.23 (d, J = 8.4 Hz, 1 H, 

H5), 6.21 (s, 1 H, H3), 4.52-4.47 (m, J = 6.0 Hz, 1 H, H), 3.98 (br, 2 H, NH2), 3.81 

(s, 3 H, OCH3),1.36 (d, J = 6.0 Hz, 6 H, H) ppm; 13C NMR (CDCl3, 75 MHz) : 

166.4 (CO), 160.3 (C2), 151.6 (C4), 134.1 (C6), 107.0 (C1), 101.7 (C5), 111.0 (C3), 

71.9 (C), 51.3 (OC), 22.1 (C) ppm; IR (neat)  (cm-1): 3466, 3376, 3257, 2988, 

2946, 2838, 1678, 1431, 1326, 1255; ESI-MS Found: 210 (M+H)+, 232 (M+Na)+; 

HRMS m/z calculated for C11H15N1NaO3 (M+Na)+: 232.0944; Found: 232.0942. 

H2N-[O-Bn-(2-HABA)]-CO2H (50) 

Using general procedure for nitro reduction (c) (heated at 50 °C). 

O2N-[O-Bn-(2-HABA)]-CO2Me 44 (1 g, 3.5 mmol, 1 equiv.); 

ethyl acetate (100 mL); tin (II) chloride dihydrate  (4.7 g, 20.9 



Chapter 6: Experimental Section 

129 

 

mmol, 6 eq). After 60h TLC analysis (SiO2, dichloromethane) showed complete 

conversion and on cooling was added sodium hydroxyde 10% (400 mL) until pH ≈ 9. 

The mixture was poured into ethyl acetate and washed twice with water (2 × 250 mL) 

and once with brine (200 mL). The organic layer was dried (sodium sulphate), filtered 

and concentrated to leave a colourless solid (839 mg, 94%); m.p. 104-105 ºC; Rf 0.21 

(SiO2, Eluent: dichloromethane);  NMR (CDCl3, 300 MHz) : 7.78 (d, J = 7.5 Hz, 

1 H, H6), 7.51 (d, J = 7.8 Hz, 2 H, HAr2), 7.41-7.36 (m, 2 H, HAr3), 7.31 (d, J = 7.2 

Hz, 1 H, HAr4), 6.24 (d, J = 7.5 Hz, 1 H, H5), 6.23 (s, 1 H, H3), 5.12 (s, 2 H, H), 

4.00 (br, 2 H, NH2), 3.84 (s, 3 H, OCH3) ppm; 13C NMR (CDCl3, 75 MHz) : 166.5 

(CO), 160.7 (C2), 151.2 (C4), 136.8 (CAr1), 134.2 (C6), 128.4 (CAr3), 127.7 (CAr4), 

126.8 (CAr2), 110.0 (C1), 107.4 (C5), 99.9 (C3), 70.4 (C), 51.5 (OC) ppm; IR (neat) 

 (cm-1): 3466, 3343, 3222, 1624, 1513, 1442, 1329; ESI-MS Found: 258 (M+H)+, 

537 (2M+Na)+; Elemental analysis calculated: C, 70.02; H, 5.88; N, 5.44; Found C, 

69.80; H, 6.05; N, 5.35. 

O2N-[O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me (51) 

Using general procedure for coupling reaction (d) (heated at 80 °C). 

H2N-[O-iPr-(2-HABA)]-CO2Me 49 (209.4 mg, 0.05 mmol, 1.2 

equiv.); O2N-[O-iPr-(2-HABA)]-CO2H 46 (113.0 mg, 0.05 mmol, 1 

equiv.); anhydrous chloroform (20 mL); dichloro 

triphenylphosphorane (750.0 mg, 2.3 mmol, 4.5 equiv.). The product 

was purified by column chromatography (SiO2, gradient ethyl acetate 

in cyclohexane) to leave the pure dimer as a yellow powder (113.7 mg, 55%); m.p. 

119-120 ºC;  Rf 0.16 (SiO2, 30% ethyl acetate in cyclohexane);  NMR (CDCl3, 300 

MHz) : 10.16 (br, 1 H, 1-NH), 8.45 (d, J = 8.7 Hz, 1 H, 1-H6), 7.95 (d, J = 8.7 Hz, 

1 H, 2-H6), 7.89 (s, 1 H, 2-H3), 7.88 (s, 1 H, 1-H3), 7.82 (d, J = 8.7 Hz, 1 H, 1-H5), 

6.85 (d, J = 8.7 Hz, 1 H, 2-H5), 5.00-4.88 (m, J = 6.0 Hz, 1 H, 1-H), 4.70-4.66 (m, 

J = 6.3 Hz, 1 H, 2-H), 3.88 (s, 3 H, 2-OCH3), 1.61 (d, J = 6.0 Hz, 6 H, 1-H), 1.50 

(d, J = 6.0 Hz, 6 H, 2-H) ppm; 13C NMR (CDCl3, 75 MHz) : 166.6 (2-CO), 161.9 

(1-CO), 159.6 (1-C2), 156.1 (2-C2),152.0 (2-C4), 142.9 (1-C4), 134.3 (1-C6), 133.2 

(2-C6), 127.9 (1-C1), 118.3 (2-C1), 116.5 (1-C5), 111.3 (2-C5), 109.5 (2-C3), 107.4 

(1-C3), 74.4 (1-C), 72.5 (2-C), 52.1 (2-OC), 22.4 (1-C, 2-C) ppm; IR (neat)  
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(cm-1): 3341, 2978, 2931, 2874, 2855, 1692, 1679, 1586, 1520, 1437, 1424, 1345; 

ESI-MS Found: 418 (M+H)+, 855 (2M+Na)+; HRMS calculated for C21H25N2O7 

(M+H)+: 417.1656; Found: 417.1657. 

O2N-[O-CH2-2-Naph-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me (52) 

Using general procedure for coupling reaction (d) (heated at 

80 °C). H2N-[O-iPr-(2-HABA)]-CO2Me 49 (100 mg, 0.48 

mmol, 1.2 equiv.); O2N-[O-CH2-2-Naph-(2-HABA)]-CO2H 

48 (109.0 mg, 0.34 mmol, 1 equiv.); anhydrous chloroform (10 

mL); dichloro triphenylphosphorane (520 mg, 1.50 mmol, 4.5 

equiv.). The product was purified by filtration on a silica pad 

(SiO2, Eluent: 10% ethyl acetate in dichloromethane) to leave a yellow powder (175 

mg, quant.); Rf 0.55 (SiO2, 10% ethyl acetate in dichloromethane:);  NMR (CDCl3, 

300 MHz) : 9.97 (br, 1 H, 1-NH), 8.53 (d, J = 8.4 Hz, 1 H, 1-H6), 8.10 (s, 1 H, 1-

H3), 8.05 (s, 1 H, 1-HAr3), 8.04 (d, J = 8.4 Hz, 1 H, 1-H5), 8.01-7.87 (m, 3 H, 3 × 1-

HAr), 7.66-7.58 (m, 3 H, 3 × 1-HAr), 7.47 (d, J = 8.4 Hz, 1 H, 2-H6), 7.21 (s, 1 H, 2-

H3), 6.21 (d, J = 8.4 Hz, 1 H, 2-H5), 5.50 (s, 2 H, 1-H), 4.20-4.15 (m, J = 5.7 Hz, 1 

H, 2-H), 3.81 (s, 3 H, 2-OCH3), 1.16 (d, J = 5.7 Hz, 6 H, 2-H) ppm; 13C NMR 

(CDCl3, 75 MHz) : 166.6 (2-CO), 161.5 (1-CO), 159.1 (2-C2), 157.1 (1-C2), 151.1 

(1-C4), 142.6 (2-C4), 134.5 (1-C6), 134.1 (1-CAr2), 133.6 (1-CAr4), 132.9 (2-C6), 

131.4 (1-CAr5), 129.9 (1- CArH), 128.9 (1- CArH), 128.5 (1- CArH), 128.4 (1- 

CArH), 127.8 (1- CArH), 127.6 (1- CArH), 126.9 (1-CAr3), 126.0 (2-C1), 117.4 (1-

C1), 117.1 (1-C5), 111.5 (2-C5), 108.4 (1-C3), 106.8 (2-C3), 73.4 (1-C), 72.0 (2-

C), 52.0 (2-OC), 22.2 (2-C) ppm; IR (neat)  (cm-1): 3343, 2972-2932, 1688, 1602, 

1548, 1521; ESI-MS Found: 1051 (2M+Na)+; HRMS calculated for C29H27N2O7 

(M+H)+ and C29H27N2NaO7 (M+Na)+: 515.1813 and 537.1632; Found: 515.1789 and 

537.1612; Elemental analysis calculated:  C, 67.70; H, 5.09; N, 5.44; Found: C, 67.85; 

H, 5.10; N, 5.30. 

O2N-[O-Bn-(2-HABA)]-[O-Bn-(2-HABA)]-CO2Me (53) 

 Using general procedure for coupling reaction (d) (heated at 80 °C). H2N-[O-Bn-(2-

HABA)]-CO2Me 50 (52 mg, 0.20 mmol, 1.2 equiv.); O2N-[O-Bn-(2-HABA)]-CO2H 

47 (46 mg, 0.17 mmol, 1 equiv.); anhydrous chloroform (5 mL); dichloro 
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triphenylphosphorane (257 mg, 0.76 mmol, 4.5 equiv.). The 

product was purified by filtration on a silica pad (SiO2, 10% ethyl 

acetate in dichloromethane) to leave a colourless solid (87 mg, 

99%); Rf 0.86 (SiO2, 30% ethyl acetate in dichloromethane); 1H 

NMR (CDCl3, 500 MHz) : 10.01 (br, 1 H, 1-NH), 8.51 (d, J = 

8.3 Hz, 1 H, 1-H6), 8.04 (s, 1 H, 1-H3), 8.03 (d, J = 8.3 Hz, 1 H, 

1-H5), 7.70 (d, J = 8.3 Hz, 1 H, 2-H6), 7.52 (s, 1 H, 2-H3), 7.59-7.51 (m, 8 H, 1-

HAr2, 1-HAr3, 2-HAr2, 2-HAr3), 7.40 (t, J = 7.1 Hz, 1 H, 1-HAr4), 7.32 (t, J = 7.1 

Hz, 1 H, 2-HAr4), 6.35 (d, J = 8.3 Hz, 1 H, 2-H5), 5.34 (s, 2 H, 1-H), 5.06 (s, 2 H, 

2-H), 3.87 (s, 3 H, 2-OCH3) ppm; 13C NMR (CDCl3, 125 MHz) : 166.0 (2-CO), 

161.1 (1-CO), 159.4 (2-C2), 156.6 (1-C2), 150.7 (1-C4), 142.6 (2-C4), 136.5 (1-C6), 

134.0 (2-C6), 132.8 (1-C1), 129.9 (1-CAr1), 129.1 (2-CAr2, 2-CAr3), 128.5 (1-

CAr4), 127.8 (2-CAr4), 127.0 (2-CAr1), 126.7 (1-CAr2, 1-CAr3), 116.7 (1-C5), 

115.9 (2-C1), 111.2 (2-C5), 107.9 (1-C3), 104.9 (2-C3), 72.9 (1-C), 70.5 (2-C), 

51.9 (2-OC) ppm; IR (neat)  (cm-1): 3340, 2927, 1695 , 1674, 1601, 1588, 1520, 

1507; ESI-MS Found: 1047 (2M+Na)+; HRMS calculated for  C29H24N2NaO7 

(M+Na)+: 535.1476; Found: 535.1477. 

O2N-[O-Bn-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me (59) 

 Using general procedure for coupling reaction (d) (heated at 80 

°C). H2N-[O-iPr-(2-HABA)]-CO2Me 49 (100.0 mg, 0.48 mmol); 

O2N-[O-Bn-(2-HABA)]-CO2H 47 (109.0 mg, 0.40 mmol); 

anhydrous chloroform (5 mL); dichloro triphenylphosphorane (520 

mg, 1.50 mmol). The product was purified by filtration on a silica 

pad (SiO2, 20% ethyl acetate in dichloromethane:) to leave a yellow 

powder (170.0 mg, 92%); Rf 0.39 (SiO2, 20% ethyl acetate in 

dichloromethane:); 1H NMR (CDCl3, 300 MHz) : 9.95 (br, 1 H, 1-NH), 8.52 (d, J = 

8.7 Hz, 1 H, 1-H6), 8.04 (s, 1 H, 1-H3), 8.02 (d, J = 8.7 Hz, 1 H, 1-H5), 7.63 (d, J = 

8.7 Hz, 1 H, 2-H6), 7.51-7.59 (m, 5 H, 1-HAr2, 1-HAr3, 1-HAr4), 7.53 (s, 1 H, 2-

H3), 6.28 (d, J = 8.7 Hz, 2 H, 2-H5), 5.38-5.31 (s, 2 H, 1-H), 4.50 (m, J = 6.0 Hz, 1 

H, 2-H), 3.85 (s, 3 H, 2-OCH3), 1.35 (d, J = 6.0 Hz, 6 H, 2-H) ppm; 13C NMR 

(CDCl3, 75 MHz) : 166.6 (2-CO), 161.4 (1-CO), 159.3 (2-C2), 157.0 (1-C2), 151.2 
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(1-C4), 142.7 (2-C6), 134.4 (1-C6), 134.2 (1-CAr1), 132.9 (2-C4), 130.2 (1-CAr4), 

129.8 (1-CAr2), 129.4 (1-CAr3), 127.2 (1-C1), 117.4 (2-C1), 117.0 (1-C5), 111.4 (2-

C5), 108.3 (1-C3), 107.3 (2-C3), 73.3 (1-C), 72.3 (2-C), 52.1 (2-OC), 22.4 (2-C); 

IR (neat)  (cm-1): 3343, 2979, 2949, 1688, 1601, 1547, 1507; ESI-MS Found: 465 

(M+H)+ and 951 (2M+Na)+; HRMS calculated for C25H24N2NaO7 (M+Na)+: 

487.1476; Found: 487.1484. 

O2N-[O-CH2-2-Naph-(2-HABA)]-[O-Bn-(2-HABA)]-CO2Me (60) 

 Using general procedure for coupling reaction (d) (heated at 

80 °C). H2N-[O-Bn-(2-HABA)]-CO2Me 50 (342.2 mg, 1.3 

mmol, 1 equiv.); O2N-[O-CH2-2-Naph-(2-HABA)]-CO2H 

48 (600 mg, 1.9 mmol, 1.4 equiv.); anhydrous chloroform 

(25 mL); dichloro triphenylphosphorane (2.2 g, 6 mmol, 4.5 

equiv.). The product was purified by column 

chromatography (SiO2, gradient diethyl ether in ethyl 

acetate) to leave the pure dimer as a yellow solid (488.0 mg, 65%); m.p. 159-160 ºC; 

Rf 0.38 (SiO2, 30% ethyl acetate in cyclohexane); 1H NMR (CDCl3, 300 MHz) : 9.99 

(br, 1 H, 1-NH), 8.51 (d, J = 8.7 Hz, 1 H, 1-H6), 8.08 (d, J = 8.7 Hz, 1 H, 1-H5), 7.97-

8.04 (m, 4 H, 1-H3, 2-HAr2, 2-HAr4), 7.88 (dd, J = 6.6, 2.1 Hz, 2 H, 2-HAr3), 7.64 

(d, J = 6.9 Hz, 1 H, 2-H6), 7.50-7.58 (m, 4 H, 4 × 1-HAr), 7.43 (s, 1 H, 2-H3), 7.35 

(m, 4 H, 2-H5, 3 × 1-HAr), 5.49 (s, 2 H, 1-H), 4.82 (s, 2 H, 2-H), 3.83 (s, 3 H, 2-

OCH3) ppm; 13C NMR (CDCl3, 75 MHz) : 166.4 (2-CO), 161.5 (1-CO), 159.7 (2-

C2), 157.1 (1-C2), 151.1 (2-C4), 142.9 (1-C4), 136.8 (2-CAr1), 134.4 (1-C6), 134.0 

(1-CAr2), 133.6 (1-.CAr4), 133.1 (2-C6), 131.4 (CArH), 129.9 (CArH), 128.8 

(CArH), 128.7 (CArH), 128.5 (CArH), 128.3 (CArH), 128.1 (CArH), 127.8 (CArH), 

127.6 (CArH), 127.4 (CAr), 125.9 (CArH), 117.1 (1-C5), 116.4 (2-C1), 111.6 (2-C5), 

108.4 (1-C3), 105.2 (2-C3), 90.9 (1-C1), 73.5 (1-C), 70.7 (2-C), 52.2 (2-OC) ppm; 

IR (neat)  νmax cm-1: 3338, 2930, 1679, 1590, 1529, 1482, 1442, 1343; ESI-MS Found: 

1148 (2M+Na)+; HRMS m/z calculated for C33H27N2O7 (M+H)+: 563.1813; Found: 

563.1806 . 
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H2N-[O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me (61) 

To a stirred solution of O2N-[O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-

CO2Me 51 (300.0 mg, 0.72 mmol, 1 equiv.) in anhydrous methanol 

(15 mL) under an argon atmosphere was added 10% Pd(C) (30.0 mg). 

The argon atmosphere was evacuated under vacuum and hydrogen 

gas (2 L) introduced via a balloon. The reaction mixture was stirred 

for 6 h and than was passed through a celite pad, washed twice with 

methanol and concentrated. The resulting grey oil was then dried under reduced 

pressure to leave a grey creamy solid (212.0 mg, 76%); m.p. 175-176 ºC; Rf 0.50 

(SiO2, 10% ethyl acetate in dichloromethane); 1H NMR (CDCl3, 300 MHz) : 10.27 

(br, 1 H, 1-NH), 8.12 (d, J = 8.7 Hz, 1 H, 1-H6), 7.94 (s, 1 H, 2-H3), 7.84 (d, J = 8.7 

Hz, 1 H, 2-H6), 6.84 (d, J = 8.7 Hz, 1 H, 2-H5), 6.42 (d, J = 8.7 Hz, 1 H, 1-H5), 6.27 

(s, 1 H, 1-H3), 4.85-4.75 (sept, J = 6.0 Hz, 1 H, 1-H), 4.75-4.67 (sept, J = 6.0 Hz, 1 

H, 2-H), 4.08 (br, 2 H, 1-NH2), 3.90 (s, 3 H, 2-OCH3), 1.56-1.54 (d, J = 6.0 Hz, 6 

H, 1-H), 1.46-1.44 (d, J = 6.0 Hz, 6 H, 2-H) ppm; 13C NMR (CDCl3, 126 MHz) : 

166.8 (2-CO), 164.4 (1-CO), 159.8 (2-C2), 157.7 (1-C2), 152.0 (1-C4), 144.3 (2-C4), 

134.6 (1-C6), 133.1 (2-C6), 116.0 (2-C1), 112.8 (1-C1), 111.0 (2-C5), 108.7 (1-C5), 

107.0 (2-C3), 99.8 (1-C3), 72.7 (1-C), 72.3 (2-C), 52.0 (2-OC), 22.7 (1-C), 22.5 

(2-C) ppm; IR (neat)  νmax cm-1: 3444, 3332, 3240, 2977-2928, 1715; ESI-MS Found: 

387 (M+H)+, 795 (2M+Na)+; HRMS m/z calculated for C21H27N2O5 (M+H)+: 

387.1914; Found: 387.01925; calculated for C21H27N2NaO5 (M+Na)+: 409.1734; 

Found: 409.1740. 

H2N-[O-CH2-2-Naph-(2-HABA)] -[O-iPr-(2-HABA)]-CO2Me (62) 

Using general procedure for nitro reduction (c) (heated at 50 

°C). O2N-[O-CH2-2-Naph-(2-HABA)]-[O-iPr-(2-HABA)]-

CO2Me 52 (700.0 mg, 1.36 mmol) in ethyl acetate (25 mL); tin 

(II) chloride dihydrate  (1.84 g, 8.17 mmol). The product was 

purified by column chromatography (SiO2, 10% ethyl acetate 

in dichloromethane) to leave a colourless solid (502.2 mg, 

76%); Rf 0.20 (SiO2, 10% ethyl acetate in dichloromethane); 1H NMR (CDCl3, 500 

MHz) : 9.93 (br, 1 H, 1-NH), 8.13 (d, J = 8.5 Hz, 1 H, 1-H6), 7.97 (s, 1 H, 1-HAr1), 
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7.94 (d, J = 8.5 Hz, 1 H, 1-HAr8), 7.91 (d, J = 7.5 Hz, 1 H, 1-HAr5), 7.86 (d, J = 7.0 

Hz, 1 H, 1-HAr10), 7.54-7.62 (m, 3 H, 1-HAr3, 1-HAr6, 1-HAr7), 7.43 (d, J = 8.5 

Hz, 1 H, 2-H6), 7.28 (s, 1 H, 2-H3), 6.43 (d, J = 8.5 Hz, 1 H, 1-H5), 6.42 (s, 1 H, 1-

H3), 6.37 (d, J = 8.5 Hz, 1 H, 2-H5), 5.30 (s, 2 H, 1-H), 4.21-4.16 (m, 1 H, J = 6.0 

Hz, 2-H ), 4.15 (br, 2 H, 1-NH2), 3.75 (s, 3 H, 2-OCH3), 1.14 (d, J = 6.0 Hz, 6 H, 2-

H) ppm; 13C NMR (CDCl3, 126 MHz) : 166.3 (2-CO), 163.7 (1-CO), 158.9 (2-C2), 

158.5 (1-C2), 151.8 (1-C4), 143.7 (2-C4), 134.4 (1-C6), 133.4 (1-CAr2), 133.2 (1-

CAr4), 132.5 (2-C6), 132.3 (1-CAr8), 129.1 (1-CAr9), 128.1 (1-CAr5), 128.0 (1-

CAr), 127.9 (1-CAr), 127.0 (1-CAr), 126.9 (1-CAr), 125.8 (1-CAr10), 115.8 (2-C1), 

111.3 (1-C1), 110.8 (1-C3), 108.3 (2-C3), 106.0 (2-C5), 98.0 (1-C5), 71.7 (1-C), 

71.4 (2-C), 51.6 (2-OC), 21.82 (2-C) ppm; IR (neat)  νmax cm-1: 3494, 3353, 2985, 

2953, 1700, 1659, 1598, 1504; ESI-MS Found: 485 (M+H)+; Elemental analysis 

calculated: C, 71.47; H, 5.57; N, 5.95; Found: C, 71.50; H, 5.90; N, 5.70. 

H2N-[O-Bn-(2-HABA)] -[O-iPr-(2-HABA)]-CO2Me (63) 

Using general procedure for nitro reduction (c) (heated at 50 °C). 

O2N-[O-Bn-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me 59 (120.0 mg, 

0.26 mmol) in ethyl acetate (15 mL); tin (II) chloride dihydrate  

(352.0 mg, 1.6 mmol) Yellow solid (117.0 mg, quant.); Rf 0.22 

(SiO2, 10% ethyl acetate in dichloromethane); 1H NMR (CDCl3, 

500 MHz) :  9.87 (br, 1 H, 1-NH), 8.04 (d, J = 8.5 Hz , 1 H, 2-H6), 

7.41-7.52 (m, 7 H, 2-H3, 1-H6, 5 × 1-HAr), 6.35 (d, J = 8.5 Hz, 1 H, 2-H5), 6.28 (s, 

1 H, 1-H3), 6.11 (d, J = 8.0 Hz, 1 H, 1-H5), 5.06 (s, 1 H, 1-H), 4.45-4.33 (m, J = 6.0 

Hz, 1 H, 2-H), 4.06 (br, 2 H, 1-NH2), 3.76 (s, 3 H, 2-OCH3), 1.26 (d, J = 6.0 Hz, 6 

H, 2-H), ppm; 13C NMR (CDCl3, 126 MHz) :  165.4 (2-CO), 162.6 (1-CO), 158.1 

(2-C2), 157.4 (1-C2), 150.7 (2-C4), 142.8 (1-C4), 134.0 (2-C6), 133.3 (1-CAr1), 

131.3 (1-C6), 128.2 (1-CAr4), 128.1 (2 × 1-CAr), 127.8 (2 × 1-CAr), 114.4 (2-C1), 

110.36 (1-C1), 109.7 (1-C3), 107.3 (2-C3), 105.4 (2-C5), 96.9 (1-C5), 70.7 (1-C), 

70.6 (2-C), 50.5 (2-OC), 21.0 (2-C) ppm; IR (neat)  νmax cm-1: 3471, 3347, 2924, 

1704, 1595, 1527; ESI-MS Found: 435 (M+H)+; HRMS m/z calculated for 

C25H27N2O5 (M+H)+: 435.1914; Found 435.1909; calculated for C25H26N2NaO5 

(M+Na)+: 457.1734; Found: 457.1734. 
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H2N-[O-CH2-2-Naph-(2-HABA)] -[O-Bn-(2-HABA)]-CO2Me (64) 

Using general procedure for nitro reduction (c) (heated at 50 

°C). O2N-[O-CH2-2-Naph-(2-HABA)]-[O-Bn-(2-HABA)]-

CO2Me 60 (150 mg, 0.27 mmol, 1 equiv.) in ethyl acetate (5 

mL), tin (II) chloride dehydrate (305 mg, 1.35 mmol, 5 eq). 

Colourless solid (92 mg, 64%);  Rf 0.39 (SiO2, 10% ethyl 

acetate in dichloromethane); 1H NMR (CDCl3, 300 MHz) : 

10.00 (br, 1 H, 1-NH), 8.14 (d, J = 8.4 Hz, 1 H, 1-H6), 7.98 (s, 1 H, 1-HAr3), 7.95 (d, 

J = 8.7 Hz, 1 H, 1-HAr1), 7.87-7.85 (m, 4 H, 2 × HAr), 7.62 (d, J = 8.4 Hz, 1 H, 1-

HAr10), 7.55 (s, 1 H, 2-H3), 7.50-7.54 (m, 2 H, 2 × HAr), 7.47 (d, J = 8.4 Hz, 1 H, 2-

H6), 7.40-7.29 (m, 5 H, 5 × HAr), 6.43 (d, J = 8.4 Hz, 1 H, 1-H5), 6.40 (s, 1 H, 1-H3), 

6.30 (d, J = 8.4 Hz, 1 H, 2-H5), 5.30 (s, 2 H, 1-H), 4.84 (s, 2 H, 2-H), 4.13 (br, 2 

H, 1-NH2), 3.82 (s, 3 H, 2-OCH3) ppm; 13C NMR (CDCl3, 75 MHz) : 166.7 (2-CO), 

164.1 (1-CO), 159.8 (2-C2), 158.9 (1-C2), 152.3 (1-C4), 144.4 (2-C4), 137.1 (2-

CAr1), 134.8 (2-C6), 133.9 (1-CAr2), 133.7 (CAr), 133.0 (2 × CArH), 132.8 (CArH), 

129.6 (1-CAr3), 128.7 (CAr), 128.4 (CAr), 128.3 (CAr), 128.2 (CAr), 127.9 (CAr), 

127.4 (CArH), 126.1 (CArH), 114.8 (2-C1), 111.9 (1-C1),111.3 (2-C5), 108.8 (1-C5), 

104.7 (2-C3), 98.5 (1-C3), 72.3 (1-C), 70.6 (2-C), 52.1 (2-OC) ppm; IR (neat)  νmax 

cm-1: 3464, 3355, 3224, 2950, 1712; ESI-MS Found: 533 (M+H)+; HRMS m/z 

calculated for C33H29N2O5 (M+H)+: 533.2071; Found: 533.2076; calculated for 

C33H28N2NaO5 (M+Na)+: 555.1890; Found: 555.1873. 

6.1.2 2-O-Alkylated benzamide trimers 

O2N-[O-iPr-(2-HABA)] -[ O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me (65) 

Using general procedure for coupling reaction (d) (heated at 80 °C). H2N-[O-iPr-(2-

HABA)]-[O-iPr-(2-HABA)]-CO2Me 61 (150 mg, 0.39 mmol, 1.2 equiv.); O2N-[O-

iPr-(2-HABA)]-CO2H 46 (73.0 mg, 0.32 mmol, 1 equiv.); anhydrous chloroform (10 

mL); dichloro triphenylphosphorane (494 mg, 1.45 mmol, 4.5 equiv.). The product 

was purified by column chromatography (SiO2, 10% ethyl acetate in 

dichloromethane) to leave the pure trimer as a yellow solid (114 mg, 49%); m.p. 119-

120 ºC;  Rf 0.16 (SiO2, 30% ethyl acetate in dichloromethane); 1H NMR (CDCl3, 300 
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MHz) : 10.40 (br, 1 H, 2-NH), 10.31 (br, 1 H, 1-NH), 8.48 (d, J = 

8.7 Hz, 1 H, 1-H6), 8.28 (d, J = 8.7 Hz, 1 H, 2-H6), 8.24 (s, 1 H, 2-

H3), 7.97 (d, J = 8.7 Hz, 1 H, 1-H5), 7.94 (s, 2 H, 3-H3, 1-H3), 7.83 

(d, J = 8.4 Hz, 1 H, 3-H6), 6.88 (d, J = 8.4 Hz, 1 H, 3-H5), 6.80 (d, 

, J = 8.4 Hz, 1 H, 2-H5), 5.10-5.03 (sep, J = 6.0 Hz, 1 H, 1-H), 

5.02-4.95 (sep, J = 6.0 Hz, 1 H, 2-H), 4.79-4.67 (sep, J = 6.0 Hz, 

1 H, 3-H), 3.88 (s, 3 H, 3-OCH3), 1.68-1.66 (d, J = 6.0 Hz, 6 H, 

1-H), 1.64-1.62 (d, J = 6.0 Hz, 6 H, 2-H), 1.48-1.46 (d, J = 6.0 

Hz, 6 H, 3-H) ppm; 13C NMR (CDCl3, 75 MHz) : 165.2 (3-CO), 

163.5 (2-CO), 162.1 (1-CO), 159.7 (3-C2), 157.1 (2-C2), 156.1 (1-C2), 151.2 (1-C4), 

143.8 (3-C4), 143.0 (2-C4), 134.3 (1-C6), 133.5 (2-C6), 133.2 (3-C6), 127.7 (2-C1), 

118.4 (1-C1), 116.6 (3-C1), 116.5 (1-C5), 112.5 (2-C5), 111.2 (3-C5), 109.5 (1-C3), 

107.2 (3-C3), 106.1 (2-C3), 74.5 (1-C), 73.4 (2-C), 72.4 (3-C), 52.0 (3-OC), 22.7 

(1-C), 22.6 (2-C), 22.5 (3-C) ppm; IR (neat)  νmax cm-1: 3342, 2974, 1677, 1598, 

1527;  HRMS m/z calculated for C31H36N3O9 (M+H)+: 594.2446; Found: 594.2440; 

calculated for C31H35N3NaO9 (M+Na)+: 616.2266; Found: 616.2282; Elemental 

analysis calculated: C, 62.72; H, 5.94; N, 7.08; Found C, 62.95; H, 6.05; N, 6.95. 

O2N-[O-Bn-(2-HABA)]-[O-CH2-2-Naph-(2-HABA)]-[ O-iPr-(2-HABA)]-CO2Me 

(66) 

Using general procedure for coupling reaction (d) (heated at 

80 °C). H2N-[O-CH2-2-Naph-(2-HABA)]-[O-iPr-(2-

HABA)]-CO2Me 62 (300.0 mg, 0.62 mmol); O2N-[O-Bn-(2-

HABA)]-CO2H 47 (145.0 mg, 0.53 mmol); anhydrous 

chloroform (15 mL); dichloro triphenylphosphorane (809.0 

mg, 2.4 mmol). The product was purified by filtration on a 

silica pad (SiO2, 10% ethyl acetate in dichloromethane) to 

leave the pure trimer as a yellow powder (279.0 mg, 71%); 

Rf 0.69 (SiO2, 10% ethyl acetate in dichloromethane); 1H 

NMR (CDCl3, 500 MHz) : 10.09 (br, 1 H, 1-NH), 9.95 (br, 1 H, 2-NH),  8.47 (d, J = 

8.5 Hz, 1 H, 3-H6), 7.95-8.05 (m, 7 H, HAr), 7.84 (dd, J = 18, 8.5 Hz, 1 H, HAr), 

7.42-7.57 (m, 9 H, HAr), 7.37 (d, J = 8.5 Hz, 1 H, 3-H5), 7.17 (s, 1 H, 3-H3), 6.34 (d, 
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J = 8.5 Hz, 1 H, HAr), 6.12 (d, J = 8.5 Hz, 1 H, HAr), 5.29 (s, 2 H, 2-H), 5.23 (s, 2 

H, 1-H), 4.11-4.05 (m, J = 6.0 Hz, 1 H, 3-H), 3.68 (s, 3 H , 3-OCH3), 1.08 (d, J = 

6.0 Hz, 6 H, 3-H) ppm; 13C NMR (CDCl3, 126 MHz) :  166.1 (3-CO), 163.7 (2-

CO), 161.4 (1-CO), 159.1 (CAr), 159.0 (CAr), 157.3(CAr), 156.7 (CAr), 150.5 (CAr), 

143.1 (CAr), 142.7 (CAr), 133.9 (CArH),  133.5 (CArH), 133.1 (CAr), 132.9 (CArH), 

132.3 (CArH), 132.0 (CAr), 129.3 (CAr), 129.1 (3 × CArH), 129.0 (3 × CArH), 128.2 

(CArH), 128.0 (CArH), 127.9 (CArH), 127.0 (CArC), 126.9 (CArH), 125.9 (CArH), 

116.8 (CAr), 116.4 (CArH), 115.9 (CArH), 112.4 (CAr), 110.9 (CArH), 108.0 (3-C5), 

106.0 (CArH), 103.7 (CAr), 72.8 (2-C), 72.0 (1-C), 71.3 (3-C), 51.4 (3-OC), 21.7 

(3-C) ppm; IR (neat)  νmax cm-1: 3352-3327, 2969, 1676, 1599, 1538, 1524, 1437, 

1412, 1351; ESI-MS Found: 738 (M-H)-; HRMS m/z calculated for C43H37N3NaO9 

(M+Na)+: 762.2422; Found: 762.2437. 

O2N-[O-Bn-(2-HABA)]-[O-Bn-(2-HABA)]-[ O-iPr-(2-HABA)]-CO2Me (67) 

Using general procedure for coupling reaction (d) (heated at 80 

°C). H2N-[O-Bn-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me 63 

(100.0 mg, 0.23 mmol); O2N-[O-Bn-(2-HABA)]-CO2H 47 (46.0 

mg, 0.19 mmol); anhydrous chloroform (5 mL); dichloro 

triphenylphosphorane (291.0 mg, 0.86 mmol). The product was 

purified by filtration on a silica pad (SiO2, 10% ethyl acetate in 

dichloromethane) to leave the pure trimer as a yellow powder 

(108.0 mg, 83%); Rf 0.55 (SiO2, 10% ethyl acetate in 

dichloromethane); 1H NMR (CDCl3, 500 MHz) :  10.19 (br, 1 

H, 1-NH), 10.04 (br, 1 H, 2-NH), 8.56 (d, J = 8.7 Hz, 1 H, 1-H6), 8.07-8.13 (m, 3 H, 

3 × HAr), 8.01 (s, 1 H, 2-H3),  7.59 (s, 1 H, 3-H3), 7.53-7.65 (m, 11 H, 11 × HAr), 

6.23 (d, J = 8.7 Hz, 1 H, 3-H5), 6.20 (d, J = 8.7 Hz, 1 H, 2-H5),  5.40 (s, 2 H, 1-H), 

5.18 (s, 2 H, 2-H), 4.55-4.50 (m, J = 6.0 Hz, 1 H, 3-H), 3.87 (s, 3 H, 3-OCH3), 1.37 

(d, J = 6.0 Hz, 6 H, 3-H) ppm; 13C NMR (CDCl3, 75 MHz) 166.3 (3-CO), 162.8 (2-

CO), 161.2 (1-CO), 159.0 (CAr), 157.5 (CAr), 156.7 (CAr), 150.8 (CAr), 143.2 

(CAr), 142.6 (CAr), 134.8 (CArH), 133.9 (CArH), 133.7 (CAr),  133.0 (CArH), 132.4 

(CArH), 130.0 (CArH), 129.5 (CArH), 129.4 (2 × CArH), 129.3 (CAr), 129.2 (3 × 

CArH), 129.0 (2 × CArH), 126.5 (CAr),  117.9 (CAr), 116.7 (CArH), 116.0 (CArH), 
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112.4 (3-C5), 110.8 (2-C5), 108.0 (CArH), 106.5 (3-C3), 103.8 (2-C3), 73.0 (1-C), 

72.1 (2-C), 71.8 (3-C), 51.6 (3-OC), 22.0 (3-C) ppm; IR (neat)  νmax cm-1: 3352, 

3330, 2975, 1682, 1594, 1537, 1523, 1437, 1412, 1348; ESI-MS Found: 690 (M-H)-; 

HRMS m/z calculated for C39H36N3O9 (M+H)+: 690.2446; Found: 690.2461. 

O2N-[O-iPr-(2-HABA)]-[O-CH2-2-Naph-(2-HABA)]-[O-Bn-(2-HABA)]-CO2Me 

(68) 

Using general procedure for coupling, H2N-[O-CH2-2-Naph-

(2-HABA)]-[O-Bn-(2-HABA)]-CO2Me 64 (250 mg, 0.47 

mmol, 1.2 equiv.); O2N-[O-iPr-(2-HABA)]-CO2H 46 (88.0 

mg, 0.39 mmol, 1 equiv.); anhydrous chloroform (15 mL); 

dichloro triphenylphosphorane (594 mg, 1.76 mmol, 4.5 

equiv.). The product was purified by column 

chromatography (SiO2, 10% ethyl acetate in 

dichloromethane) to leave the pure trimer as a colourless 

solid (167 mg, 48%); Rf 0.51 (SiO2, 10% ethyl acetate in 

dichloromethane); 1H NMR (500 MHz, DMF-d7) : 10.75 (br, 1 H, 1-NH), 10.53 (br, 

1 H, 2-NH), 8.41 (s, 1 H, HAr), 8.20- 8.17 (m, 14 H, 14 × HAr), 7.85 (s, 1 H, HAr), 

7.84-7.82 (d, J = 10 Hz, 1 H, HAr), 7.71-7.70 (m, 2 H, 2 × HAr), 7.58 (t, J = 10 Hz, 

2 H, 2 × HAr), 5.74 (s, 2 H, 3-H), 5.18 (s, 2 H, 2-H), 5.14- 5.07 (sep, J = 5 Hz , 1 

H, 1-H), 3.99 (s, 3 H, 3-OCH3), 1.61-1.60 (d, J = 5 Hz , 6 H, 1-H) ppm; 13C NMR 

(500 MHz, DMF-d7) : 166.9 (CO), 165.8 (CO), 164.1 (CO), 159.4 (CO), 156.9 

(CAr), 156.0 (CAr), 150.4 (CAr), 144.5 (CAr), 143.7 (CAr), 137.3 (CAr), 134.1 (2-

C6), 133.6 (3-C6), 133.6 (CAr),  132.5 (1-C6), 132.2 (CArH), 131.4 (CArH), 131.3 

(CArH), 128.8 (2 × CArH), 128.5 (CAr), 128.3 (CAr), 128.0 (3 × CArH), 127.9 

(CArH), 127.7 (CArH), 127.4 (CAr), 126.7 (2-C5), 126.4 (3-C5), 115.7 (1-C5), 115.2 

(CAr), 112.3 (CAr), 111.3 (4-C3), 109.8 (2-C3), 109.3 (CAr), 104.7 (CAr), 104.3 

(CAr), 72.5 (1-C), 71.3 (3-C), 70.2 (2-C), 51.4 (3-OC), 21.5 (1-C) ppm; IR 

(neat)  νmax cm-1: 3334, 2961, 1682, 1583, 1525;  HRMS m/z calculated for 

C43H37N3NaO9 (M+Na)+: 762.2422; Found: 762.2426. 
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H2N-[O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me (69) 

 To a stirred solution of O2N-[O-iPr-(2-HABA)]-[O-iPr-(2-

HABA)]-[O-iPr-(2-HABA)]-CO2Me 65 (100.0 mg, 0.17 mmol, 1 

equiv.) in anhydrous methanol (5 mL) under an argon atmosphere 

was added 10% Pd(C) (15.0 mg). The argon atmosphere was 

evacuated under vacuum and hydrogen gas (2 L) introduced via a 

balloon. The reaction mixture was stirred for 6 h and then was 

passed through a celite pad, washed twice with methanol and 

concentrated. The product was purified by column chromatography 

(SiO2, gradient ethyl acetate in dichloromethane) to leave the pure 

trimer as a yellow solid (76 mg, 79%); Rf 0.29 (SiO2, 10% ethyl acetate in 

dichloromethane); 1H NMR (CDCl3, 500 MHz) : 10.40 (br, 1 H, 2-NH), 10.31 (br, 1 

H, 1-NH), 8.28 (s, 1 H, 2-H3), 8.18 (d, J = 8.5 Hz, 1 H, 2-H6), 8.06-8.05 (d, J = 8.5 

Hz, 1 H, 1-H6), 7.89 (s, 1 H, 3-H3), 7.81-7.79 (d, J = 8.5 Hz, 1 H, 3-H6), 6.85-6.84 

(d, J = 8.5 Hz, 1 H, 3-H5), 6.70-6.68 (d, J = 8.5 Hz, 1 H, 2-H5), 6.38-6.36 (d, 1 H, J 

= 8.5 Hz, 1-H5), 6.22 (s, 1 H, 1-H3), 4.99-4.92 (sep, J = 6.0 Hz, 1 H, 2-H), 4.79-

4.72 (sep, J = 6.0 Hz, 1 H, 3-H), 4.70-4.64 (sep, J = 6.0 Hz, 1 H, 1-H), 4.06 (br, 2 

H, 1-NH2), 3.85 (s, 3 H, 3-OCH3), 1.55-1.54 (d, J = 6.0 Hz, 6 H, 2-H), 1.52-1.51 (d, 

J = 6.0 Hz, 6 H, 3-H), 1.41-1.40 (d, J = 6.0 Hz, 6 H, 1-H) ppm; 13C NMR (CDCl3, 

126 MHz) : 166.4 (3-CO), 164.2 (1-CO), 163.5 (2-CO), 159.3 (3-C2), 157.4 (1-C2), 

156.8 (2-C2), 151.7 (1-C4), 144.0 (2-C4), 143.7 (3-C4), 134.2 (1-C6), 132.8 (2-C6, 

3-C6), 116.6 (2-C1), 115.8 (3-C1), 112.1 (1-C1), 111.8 (2-C5), 110.8 (3-C5), 108.3 

(1-C5), 106.6 (3-C3), 105.2 (2-C3), 99.3 (1-C3), 72.7 (2-C), 72.4 (3-C), 71.9 (1-

C), 51.7 (3-OC), 22.4 (1-C), 22.3 (2-C), 22.1 (3-C) ppm; IR (neat)  νmax cm-1: 

3468, 3334, 2974, 1714, 1674, 1654, 1600, 1578, 1543, 1509, 1247; ESI-MS found: 

564 (M+H)+; HRMS m/z calculated for C31H38N3O7 (M+H)+:564.2704; Found: 

564.2601; calculated for C31H37N3NaO7 (M+Na)+: 586.2524; Found: 586.2404  . 

H2N-[O-iPr-(2-HABA)]-[O-CH2-2-Naph-(2-HABA)]-[O-Bn-(2-HABA)]-CO2Me 

(70) 

O2N-[O-iPr-(2-HABA)]-[O-CH2-2-Naph-(2-HABA)]-[O-Bn-(2-HABA)]-CO2Me 68 

(50.0 mg, 0.068 mmol, 1 equiv.) and cobalt chloride hexahydrate (193 mg, 0.810 
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mmol, 12 equiv.) were dissolved in dichloromethane (20 

mL) and methanol (40 mL). Sodium borohydride (38.0 mg, 

1.00 mmol, 15 equiv.) was then added in portion with stirring 

and evolution of hydrogen gas was observed with the 

resulting formation of a black precipitate. When the reaction 

was complete as observed by TLC analysis, the reaction 

mixture was passed through a celite pad and the residual 

organic was washed with hydrochloric acid 1 N (2 × 100 mL) 

and brine (100 mL). The solution was dried (sodium 

sulphate) and the solvent was removed under reduced pressure. The product was 

purified by column chromatography (SiO2, gradient ethyl acetate in dichloromethane) 

to leave the pure trimer as a yellow solid (12.5 mg, 26%); Rf 0.31 (SiO2, 10% ethyl 

acetate in dichloromethane); 1H NMR (CDCl3, 500 MHz) : 10.35 (br, 1 H, 2-NH), 

10.10 (br, 1 H, 1-NH), 8.45 (s, 1 H, 3-H3), 8.20-8.18 (d, J = 8.5 Hz , 1 H, 3-H6), 8.03-

8.02 (d, J = 9.0 Hz , 1 H, 1-H6), 7.97 (s, 1 H, HAr), 7.90-7.88 (d, J = 8.5 Hz , 1 H, 

HAr), 7.81-7.78 (m, 1 H, HAr), 7.60-7.59 (d, J = 8.5 Hz , 1 H, HAr), 7.40-7.45 (m, 5 

H, 5 × HAr), 7.25-7.29 (m, 4 H, 4 × HAr), 6.73-6.71 (d, J = 8.5 Hz, 1 H, 3-H5), 6.33 

(t, J = 9.0 Hz, 2 H, 1-H5, HAr), 6.19 (s, 1 H, 1-H3), 5.41 (s, 2 H, 3-H), 4.73 (s, 2 H, 

2-H), 4.73-4.67 (sep, J = 6.5 Hz, 1 H, 1-H), 3.75 (s, 3 H, 3-OCH3), 1.48-1.47 (d, J 

= 6.5 Hz, 6 H, 1-H) ppm; 13C NMR (CDCl3, 126 MHz) : 166.2 (3-CO), 164.3 (1-

CO), 163.3 (2-CO), 159.4 (CAr), 157.9 (CAr), 157.5 (CAr), 144.3 (CAr), 143.7 

(CAr), 136.6 (CAr), 134.2 (CAr), 133.4 (CAr), 133.3 (CAr), 132.9 (CAr), 132.7 

(CAr), 132.5 (CAr), 129.1 (CArH), 128.3 (CArH), 128.2 (CArH), 128.1 (CArH), 

127.9 (CArH), 127.6 (CArH), 127.0 (4 × CArH), 126.9 (CArH), 126.0 (CArH), 115.7 

(CAr), 114.7 (CAr), 112.0 (3-C5), 111.9 (CAr), 111.1 (CArH), 108.3 (CArH), 104.3 

(CArH), 103.9 (3-C3), 99.3 (1-C3), 72.4 (2-C), 72.1 (3-C), 70.1 (1-C), 51.7 (3-

OC), 22.4 (1-C) ppm; IR (neat)  νmax cm-1: 3337, 2976, 1704, 1664, 1582, 1525, 

1423; ESI-MS found: 710 (M+H)+;  HRMS m/z calculated for C43H40N3O7 (M+H)+: 

710.2861; Found: 710.2860. 
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H2N-[O-iPr-(2-HABA)]-[ O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-CO2H (58)  

Using minor modifications to ester hydrolysis (heated at 65 ºC), 

H2N-[O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-

CO2Me 69 (50 mg, 0.089 mmol, 1 equiv.); sodium hydroxide 1 M 

(3 mL); anhydrous methanol (25 mL). On cooling, the reaction 

mixture was acidified to pH ~ 1 (3 mL, hydrochloric acid 1 N) and 

extracted with dichloromethane (3 × 150 mL). The organic was 

dried (sodium sulphate) and the solvent removed under reduced 

pressure to leave a pale yellow solid (50 mg, 99%); Rf 0.08 (SiO2, 

10% ethyl acetate in dichloromethane); 1H NMR (CDCl3, 500 

MHz) : 10.53 (br, 1 H, 2-NH), 10.34 (br, 1 H, 1-NH), 8.39-8.28 (d, J = 8.5 Hz, 1 H, 

3-H5), 8.30 (s, 1 H, 2-H3), 8.19-8.18 (d, J = 8.5 Hz, 1 H, 2-H6), 8.13-8.11 (d, J = 8.5 

Hz, 1 H, 3-H6), 8.04-8.06 (d, J = 8.5 Hz, 1 H, 1-H6), 6.76-6.73 (d, J = 8.5 Hz, 1 H, 

3-H3), 6.75 (s, 1 H, 2-H5), 6.39-6.38 (d, J = 8.5 Hz, 1 H, 1-H5), 6.25 (s, 1 H, 1-H3), 

5.02-4.95 (sep, J = 6.0 Hz, 1 H, 2-H), 5.01-4.94 (sep, J = 6.0 Hz, 1 H, 3-H), 4.80-

4.73 (sep, J = 6.0 Hz, 1 H, 1-H), 4.13 (br, 2 H, 1-NH2), 1.58-1.57 (d, J = 6.0 Hz, 6 

H, 3-H), 1.54-1.52 (d, J = 6.0 Hz, 6 H, 1-H), 1.52-1.51 (d, J = 6.0 Hz, 6 H, 2-H) 

ppm; 13C NMR (CDCl3, 126 MHz) : 164.4 (3-CO), 163.2 (1-CO), 162.8 (2-CO), 

156.6 (3-C2), 156.4 (1-C2), 155.9 (2-C2), 150.1 (1-C4), 143.9 (3-C4), 143.3 (2-C4), 

133.2 (1-C6), 133.1 (3-C6), 131.7 (2-C6), 115.0 (2-C1), 112.1 (3-C1), 111.4 (3-C3), 

110.9 (1-C1), 110.8 (2-C5), 107.3 (1-C5), 104.1 (2-C3), 104.0 (3-C5), 98.3 (1-C3), 

73.1 (2-C), 71.8 (3-C), 71.3 (1-C), 21.4 (2-C), 21.3 (3-C), 21.0 (1-C) ppm; 

IR (neat)  νmax cm-1: 3446, 3321, 2977-2929, 1721, 1665, 1607, 1579, 1518; ESI-MS 

found: 550 (M+H)+; HRMS m/z calculated for C30H36N3O7 (M+H)+: 550.2548; 

Found: 550.2533. 

H2N-[O-iPr-(2-HABA)]-[O-CH2-2-Naph-(2-HABA)]-[O-Bn-(2-HABA)]-CO2H 

(71) 

Using minor modifications to ester hydrolysis (heated at 65 ºC), O2N-[O-iPr-(2-

HABA)]-[O-CH2-2-Naph-(2-HABA)]-[O-Bn-(2-HABA)]-CO2Me 70 (23 mg, 0.032 

mmol, 1 equiv.); sodium hydroxide 1 M (2 mL); anhydrous methanol (10 mL) 

anhydrous tetrahydrofuran (10 mL).. On cooling, the reaction mixture was acidified 
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to pH ~ 1 (5 mL, hydrochloric acid 1 N) and extracted with 

dichloromethane (3 × 150 mL). The organic was dried 

(sodium sulphate) and the solvent removed under reduced 

pressure and the crude was purified by column 

chromatography (SiO2, gradient ethyl acetate in 

dichloromethane) to leave the pure trimer as a colourless 

solid (8.4 mg, 38%); Rf 0.14 (SiO2, 10% ethyl acetate in 

dichloromethane); 1H NMR (CDCl3, 500 MHz) : 10.36 (br, 

1 H, 1-NH), 10.22 (br, 1 H, 2-NH), 8.47 (s, 1 H, 3-H3), 8.20-

8.18 (d, J = 8.7 Hz , 1 H, 3-H6), 8.04-8.03 (d, J = 8.3 Hz , 1 H, HAr), 7.79-7.81 (m, 2 

H, 2 × HAr), 7.71 (s, 1 H, HAr), 7.64-7.63 (d, J = 8.7 Hz , 1 H, HAr), 7.60-7.59 (d, J 

= 8.3 Hz , 1 H, HAr), 7.48-7.44 (m, 2 H, 2 × HAr), 7.33-7.26 (m, 5 H, 5 × HAr), 6.72-

6.70 (d, J = 8.7 Hz, 1 H, HAr), 6.34-32 (d, J = 8.7 Hz, 1 H, HAr), 6.18 (s, 1 H, 1-H3), 

6.18-6.16 (d, J = 8.7 Hz, 1 H, 1-H5), 5.41 (s, 2 H, 3-H), 4.86 (s, 2 H, 2-H), 4.75-

4.68 (sep, J = 6.5 Hz, 1 H, 1-H), 4.06 (br, 2 H, 1-NH2),1.49-1.48 (d, J = 6.5 Hz, 6 

H, 1-H) ppm; 13C NMR (DMSO-d6, 125 MHz) : 166.4 (3-CO), 163.9 (1-CO), 163.8 

(2-CO), 158.3 (CAr), 157.2 (CAr), 156.8 (CAr), 154.2 (CAr), 143.5 (CAr), 136.7 

(CArH), 133.8 (CArH), 132.9 (CAr), 132.8 (CAr), 132.7 (CArH), 132.1 (CArH), 

131.4 (CArH), 128.2 (3 × CArH), 127.7 (CArH), 127.6 (2 × CArH), 127.1 (3 × 

CArH), 126.8 (CAr), 126.4 (CArH), 126.3 (CAr), 125.8 (CArH), 117.9 (CAr), 115.6 

(CArH), 111.4 (CArH), 110.8 (CArH), 109.0 (CArH), 106.9 (1-C5), 104.1 (1-C3), 

103.5, 98.0, 71.6 (1-C), 70.5 (3-C), 69.5 (2-C), 21.9 (1-C) ppm; IR (neat)  νmax 

cm-1: 3333, 2926, 1715, 1668, 1582, 1520; ESI-MS found: 696 (M+H)+; HRMS m/z 

calculated for C42H37N3NaO7 (M+Na)+: 718.2524; Found: 718.2545. 

6.1.3 Single crystal X-ray crystallographic studies 

Crystal data of O2N-[O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me (51) 

Yellow needle shaped crystals of 51 were grown by slow evaporation of a chloroform 

solution. Despite long exposures and high power, the crystal diffracted weakly and 

consequently the complete structure of the molecule was not determined. Compound 

51 crystallizes in the triclinic space group P1̅ with one molecule in the asymmetric 
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unit. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could 

be located in a difference Fourier map but, in the final stages of the refinement, they 

were placed in calculated positions and refined using a riding model. A yellow needle 

of size 0.28 x 0.09 x 0.04 mm was used for the data collection; multi-scan acquisition; 

θ range = 2.02 ≤  ≤ 28.44°; Formula = C21H24N2O7; Formula weight = 416.42; a = 

6.5749(7) Å; b = 12.8076(15) Å; c = 13.3529(17) Å;  = 101.778(6)°;  = 

100.815(6)°;  = 90.011(6)°; V =1080.3(2) Å3; Z = 2; D (calculated) =1.28 Mg/m3; μ 

= 0.097 mm-1; Reflections collected 36646; Independent reflections = 5330 [R(int) = 

0.0641]; Observed reflections = 3481 [I >2(I)]; absorption correction max. and min. 

transmission = 0.9961 and 0.9734; R value = 0.0446, wR2 = 0.0981. CCDC 846382 

contains the supplementary crystallographic data. These data can be obtained free of 

charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

Crystal data of O2N-[O-CH2-2-Naph-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me (52) 

Single crystals of 52 were grown by slow evaporation of a methanol solution. A 

colorless prism of approximate size 0.30 x 0.16 x 0.15 mm was used for data 

collection. Multiscan acquisition. θ range = 1.92  30.69°, Formula = C30H30N2O8; 

Formula weight = 546.56; Crystals belong to triclinic, Space group P1̅; a = 

10.5500(10) Å, b = 11.3420(11) Å c = 12.6649(12) Å,  = 101.747(5)°,  = 

99.324(5)°, = 104.299(5)°, Volume =1401.3(2) Å3, Z = 2, Density (calculated): 

1.295 Mg/m3, μ = 0.095 mm-1, Reflections collected 89846; Independent reflections 

8518 [R(int) = 0.0594]; Observed reflections 6564 [I >2(I)]; R  value = 0.0502, wR2 

= 0.1349.  CCDC 846383 contains the supplementary crystallographic data. These 

data can be obtained free of charge from the Cambridge Crystallographic Data Centre 

via www.ccdc.cam.ac.uk/data_request/cif. 

Crystal data of H2N-[O-iPr-(2-HABA)]-[O-iPr-(2-HABA)]-CO2Me (61):  

Single crystals of 61 were grown by the slow evaporation of a methanol solution. A 

colourless prismatic crystal of dimensions 0.12 x 0.11 x 0.06 mm was used for the 

data collection; T = 150.2 K,  range = 1.87  28.55°, Crystals belong to 

Monoclinic; Space group P21/c; Formula = C21H26N2O5; Formula weight = 386.44; a 

http://www.ccdc.cam.ac.uk/data_request/cif
http://www.ccdc.cam.ac.uk/data_request/cif
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= 9.0441(7) Å, b = 13.9383(10) Å, c = 17.5956(12) Å,  = 90°,  = 99.421(4)°,  

= 90°; V = 2188.2(3) Å3; Z = 4, D (calculated): 1.173 g/cm3, μ = 0.084 mm-1, 

Reflections collected 53179; Independent reflections 5489; Observed reflections 3170 

[I >2(I)]; R  value = 0.0743, wR2 = 0.2001. CCDC 870275 contains the 

supplementary crystallographic data. These data can be obtained free of charge from 

the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 

6.1.4 2D NOESY Spectra 

 

Figure 6.2 1H-1H NOESY spectrum of 58 (10 mM CDCl3, 500 MHz). 

http://www.ccdc.cam.ac.uk/data_request/cif
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Figure 6.3 1H-1H NOESY spectrum of 57 (10 mM CDCl3, 500 MHz). 

 

6.2 Synthesis of hybrid -helix mimetics (Chapter 4) 

6.2.1 Monomer building blocks 

Synthetic procedures 

(e) Procedure for Fmoc-protection 

To a refluxing solution of amino benzoic acid (1 equiv) in anhydrous chloroform or 

tetrahydrofuran (10 mL) was added dropwise a solution of Fmoc-chloride (1.2 equiv.) 

in chloroform (15 mL) over a period of 30 minutes. The reaction mixture was allowed 

to stir for 48 h and the solvent was removed under reduced pressure. The resulting oil 

was crystallized from a mixture of dichloromethane-hexane. 
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O2N-[OiBu-(2-HABA)]-CO2Me (79) 

 Using general procedure for O-alkylation (a). Potassium carbonate 

(7.6 g, 54.8 mmol, 3 equiv.); methyl-2-hydroxy-4-nitrobenzoate 42 

(3.6 g, 18.3 mmol, 1 equiv.); 1-bromo-2-methylpropane (2.8 mL, 25.6 

mmol, 1.4 equiv.); anhydrous N,N-dimethylformamide (100 mL). 

Purification by column chromatography (SiO2, 100% Ethyl acetate) to leave a bright 

yellow oil (4.15 g, 90%); Rf 0.86 (SiO2, 30% ethylacetate in dichloromethane); 1H 

NMR (CD3OD, 500 MHz): 7.77 (d, J = 8.5 Hz, 1 H, H6), 7.75 (s, 1 H, H3), 7.72 (d, 

J = 8.5 Hz 1 H, H5), 3.90 (s, 3 H, OCH3), 3.87 (d, J = 6 Hz, 2 H, H), 2.14-2.09 

(apparent quin, J = 6 Hz, 1 H, H), 1.07 (d, J = 6 Hz, 6H, H) ppm; 13C NMR (CD3OD 

,126 MHz) : 167.1 (CO), 159.9 (C2), 152.1 (C4), 132.8 (C6), 127.5 (C1), 115.7 (C3), 

108.8 (C5), 76.9 (C), 53.0 (OC), 29.5 (C), 19.6 (C) ppm; IR (neat)  (cm-1): 3120, 

2961, 1737, 1709, 1616, 1589, 1530 1489; HRMS m/z calculated for C12H15NNaO5 

(M+Na)+: 276.0842; Found: 276.0853; Elemental analysis calculated: C, 56.91; H, 

5.97; N, 5.53; Found: C, 57.15; H, 6.05; N, 5.45.  

H2N-[OiBu-(2-HABA)]-CO2Me (81) 

 To a stirred solution of O2N-[OiBu-(2-HABA)]-CO2Me 79 (3.86 g, 

15.2 mmol, 1 equiv.) in anhydrous methanol (120 mL) under a 

nitrogen atmosphere was added 10% Pd(C) (386 mg). The nitrogen 

atmosphere was evacuated under vacuum and hydrogen gas (2L) 

introduced via a balloon. The reaction mixture was stirred for 24h until TLC analysis 

showed complete conversion. The reaction mixture was passed through a celite pad, 

washed twice with methanol and concentrated. The resulting grey oil was then dried 

under reduced pressure to leave a grey gel (3.4 g, quant.); Rf 0.56 (SiO2, 30% 

ethylacetate in dichloromethane); 1H NMR (CDCl3, 500 MHz) : 7.75 (d, J = 8.5 Hz, 

1 H, H6), 6.21 (s, 1 H, H3), 6.18 (d, J = 8.5 Hz 1 H, H5), 4.10 (br, 2 H, NH2), 3.84 (s, 

3 H, OCH3), 3.72 (d, J = 6.5 Hz, 2 H, H), 2.19-2.11 (apparent quin, J = 6.5 Hz, 1 H, 

H), 1.04 (d, J = 6.5 Hz, 6H, H) ppm; 13C NMR (CDCl3, 126 MHz): 166.6 (CO), 

161.3 (C2), 152.1 (C4), 134.2 (C6), 109.2 (C1), 106.3 (C3), 98.7 (C5), 75.0 (C), 

51.3 (OC), 28.3 (C), 19.3 (C) ppm; IR (neat)  (cm-1): 3635, 3445, 2977, 1732, 
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1433, 1395, 1221; HRMS m/z calculated for C12H17NNaO3 (M+Na)+: 246.1101; 

Found: 246.1107.  

H2N-[OiPr-(2-HABA)]-CO2H (83) 

 Using general procedure for ester hydrolysis (b) (heated at 65 ºC), H2N-

[OiPr-(2-HABA)]-CO2Me 49 (500 mg, 2.4 mmol, 1 equiv.); sodium 

hydroxide 1 M (5 mL); anhydrous methanol (40 mL). On cooling, the 

reaction mixture was acidified to pH ≈ 1 (ca 5 mL, hydrochloric acid 1 

N) and extracted with dichloromethane (3 × 50 mL). The organic was dried (sodium 

sulphate) and the solvent removed under reduced pressure to leave the pure product 

as a yellow solid (449 mg, 96%); Rf 0.51 (SiO2, 40% ethylacetate in dichloromethane); 

1H NMR (CDCl3, 500 MHz) : 10.83 (s, 1 H, CO2H), 7.86 (d, J = 8.5 Hz, 1 H, H6), 

6.27 (s, 1 H, H3), 6.17 (d, J = 8.5 Hz 1 H, H5), 4.72-4.67 (apparent quin, J = 6 Hz, 1 

H, H), 4.20 (br, 2 H, NH2), 1.38 (d, J = 6 Hz, 6H, H) ppm; 13C NMR (CDCl3, 126 

MHz): 165.0 (CO), 157.2 (C2), 151.9 (C4), 134.3 (C6), 107.5 (C5), 106.9 (C1), 97.7 

(C3), 72.4 (C), 21.0 (C) ppm; IR (neat)  (cm-1): 3437, 3356, 3246, 2978, 1685, 

1600, 1507, 1456, 1383, 1270; ESI-MS found: 194 (M-H)-;  HRMS m/z calculated for 

C10H13NNaO3 (M+Na)+: 218.0788; Found: 218.0796.  

H2N-[OiBu-(2-HABA)]-CO2H (85) 

Using general procedure for ester hydrolysis (b) (heated at 65 ºC), 

H2N-[OiBu-(2-HABA)]-CO2Me 81 (3.4 g, 15.2 mmol, 1 equiv.); 

sodium hydroxide 1 M (75 mL); anhydrous methanol (150 mL); 

anhydrous tetrahydrofuran (150 mL). On cooling, the reaction 

mixture was acidified to pH ≈ 1 (ca 100 mL, hydrochloric acid 1 N) and extracted 

with dichloromethane (3 × 250 mL). The organic was dried (sodium sulphate) and the 

solvent removed under reduced pressure to leave the pure product as a yellow solid 

(3.11 g, 98%); Rf 0.53 (SiO2, 30% ethylacetate in dichloromethane); 1H NMR (CDCl3, 

500 MHz) : 10.74 (s, 1 H, CO2H), 7.97 (d, J = 8.5 Hz, 1 H, H6), 6.37 (s, 1 H, H3), 

6.25 (d, J = 8.5 Hz 1 H, H5), 3.96 (d, J = 6.5 Hz, 2 H, H), 2.25-2.19 (apparent quin, 

J = 6.5 Hz, 1 H, H), 1.10 (d, J = 6.5 Hz, 6H, H) ppm;  13C NMR (CDCl3, 126 MHz) 

: 165.8 (CO), 159.5 (C2), 152.9 (C4), 135.5 (C6), 108.3 (C5), 107.2 (C1), 97.5 (C3), 
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76.1 (C), 28.1 (C), 19.2 (C) ppm; IR (neat)  (cm-1): 35937, 3436, 2979, 1732, 

1430, 1222; HRMS m/z calculated for C11H16NO3 (M+H)+: 210.1125; Found: 

210.1129; Elemental analysis calculated: C, 63.14; H, 7.23; N, 6.69; Found: C, 63.25; 

H, 7.35; N, 6.45.  

H2N-[OBn-(2-HABA)]-CO2H (86) 

Using general procedure for ester hydrolysis (b) (heated at 65 ºC). 

H2N-[OBn-(2-HABA)]-CO2Me 50 (300.0 mg, 1.2 mmol); sodium 

hydroxide 1 M (3 mL); anhydrous methanol (15 mL) and 

anhydrous tetrahydrofuran (15 mL). On cooling, the reaction 

mixture was acidified to pH ≈ 1 (ca 5 mL, hydrochloric acid 1 N) and extracted with 

dichloromethane (3 × 150 mL). The organic was dried (sodium sulphate) and the 

solvent removed under reduced pressure. The product was eventually purified by 

column chromatography (SiO2, gradient dichloromethane:ethyl acetate) to leave a 

grey gel (228.7 mg, 80%); Rf 0.40 (SiO2, 20% ethylacetate in dichloromethane); 1H 

NMR (CDCl3, 500 MHz) : 10.54 (s, 1 H, CO2H), 7.96 (d, J = 8 Hz, 1 H, H6), 7.44-

7.34 (m, 5 H, HAr2, HAr3, HAr4), 6.36 (d, J = 8 Hz 1 H, H5), 6.30 (s, 1 H, H1), 5.20 

(s, 2 H, H), 4.25 (br, 2 H, NH2) ppm;  13C NMR (CDCl3, 126 MHz) : 166.0 (CO), 

159.3 (C2), 153.5 (C4), 135.4 (C6), 134.5 (CAr1), 129.1 (CAr), 129.0 (CAr4), 127.3 

(CAr), 108.6 (C5), 106.9 (C1), 97.9 (C3), 71.9 (C) ppm;  IR (neat)  (cm-1): 3470, 

3359, 3237, 1704, 1602, 1453; ESI-MS found: 244 (M+H)+, 509 (2M+Na)+; HRMS 

m/z calculated for C14H14NO3 (M+H)+: 244.0968; Found: 244.0969. 

FmocNH-[OiPr-(2-HABA)]-CO2H (88) 

 Using general procedure for Fmoc-protection (e). H2N-

[OiPr-(2-HABA)]-CO2H 83 (350.0 mg, 1.8 mmol); 

anhydrous chloroform (12 mL); Fmoc-Chloride (555.0 

mg, 2.14 mmol) in chloroform (15 mL). The reaction 

mixture was allowed to stir for 46 h until TLC analysis 

showed complete conversion. The solvent was removed under reduced pressure and 

the resulting oil was crystallized from a mixture of dichloromethane-hexane to leave 

the pure product as a colourless solid (448 mg, 60%); Rf 0.60 (SiO2, 30% ethylacetate 

in dichloromethane); 1H NMR (CDCl3, 500 MHz) : 8.11 (d, J = 8.5 Hz, 1 H, H6), 
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7.82 (d, J = 7.5 Hz, 2 H, Fmoc-HAr5), 7.68 (br, 1 H, NH), 7.64 (d, J = 7.5 Hz, 2 H, 

Fmoc-HAr2), 7.46 (t, J = 7.5 Hz, 2 H, Fmoc-HAr4), 7.37 (d, J = 7.5 Hz, 2 H, Fmoc-

HAr3), 6.98 (s, 1 H, H3), 6.76 (d, J = 8.5 Hz 1 H, H5), 4.94-4.89 (apparent quin, J = 

6 Hz, 1 H, H), 4.61 (d, J = 6.5 Hz, 2 H, Fmoc-H), 4.31 (t, J = 6.5 Hz, 1 H, Fmoc-

H), 1.49 (d, J = 6 Hz, 6H, H) ppm; 13C NMR (CDCl3, 126 MHz) : 165.2 (CO), 

157.6 (C2), 159.2 (Fmoc-CO), 143.8 (C4), 143.4 (Fmoc-CAr1), 141.4 (Fmoc-CAr6), 

134.5 (C6), 127.9 (Fmoc-CAr4), 127.2 (Fmoc-CAr3), 124.8 (Fmoc-CAr2), 120.2 

(Fmoc-CAr5),  113.3 (C1), 111.5 (C5), 103.3 (C3), 74.2 (C), 67.2 (Fmoc-C), 47.0 

(Fmoc-C), 22.0 (C) ppm; IR (neat)  (cm-1): 3282, 2978, 1714, 1593, 1531, 1414, 

1217; ESI-MS found: 416 (M-H)-;  HRMS m/z calculated for C25H23NNaO5 (M+Na)+: 

440.1468; Found: 440.1478; Elemental analysis calculated: C, 71.93; H, 5.55; N, 

3.36; Found: C, 71.90; H, 5.60; N, 3.30. 

FmocNH-[OiBu-(2-HABA)]-CO2H (90) 

 Using general procedure for Fmoc-protection (e). H2N-

[OiBu-(2-HABA)]-CO2H 85 (3.1 g, 14.8 mmol); 

anhydrous tetrahydrofuran (180 mL); Fmoc-Chloride 

(11.5 g, 44.4 mmol) in tetrahydrofuran (60 mL). The 

reaction mixture was allowed to stir for 48 h until TLC 

analysis showed complete conversion. The solvent was removed under reduced 

pressure and the resulting oil was crystallized from a mixture of dichloromethane-

hexane to leave the pure product as a pale yellow solid (5.43 g, 85%); Rf 0.66 (SiO2, 

30% ethylacetate in dichloromethane); 1H NMR (CDCl3, 500 MHz) : 8.11 (d, J = 8.5 

Hz, 1 H, H6), 7.82 (d, J = 7.5 Hz, 2 H, Fmoc-HAr5), 7.67 (br, 1 H, NH), 7.64 (d, J = 

7.5 Hz, 2 H, Fmoc-HAr2), 7.46 (t, J = 7.5 Hz, 2 H, Fmoc-HAr4), 7.37 (d, J = 7.5 Hz, 

2 H, Fmoc-HAr3), 7.01 (s, 1 H, H3), 6.78 (d, J = 8.5 Hz 1 H, H5), 4.61 (d, J = 6.5 Hz, 

2 H, Fmoc-H), 4.31 (t, J = 6.5 Hz, 1 H, Fmoc-H), 4.05 (d, J = 6.5 Hz, 2 H, H), 

2.83-2.23 (apparent quin, J = 6.5 Hz, 1 H, H), 1.09 (d, J = 6.5 Hz, 6H, H) ppm; 13C 

NMR (CDCl3, 126 MHz) : 165.0 (CO), 158.8 (C2), 152.9 (Fmoc-CO), 144.0 (C4), 

143.4 (Fmoc-CAr1), 141.4 (Fmoc-CAr6), 134.5 (C6), 128.0 (Fmoc-CAr4), 127.2 

(Fmoc-CAr3), 124.8 (Fmoc-CAr2), 120.2 (Fmoc-CAr5),  112.2 (C1), 111.3 (C5), 

101.9 (C3), 76.5 (C), 67.2 (Fmoc-C), 47.0 (Fmoc-C), 28.1 (C), 19.2 (C) ppm; 
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IR (neat)  (cm-1): 3627, 3435, 2979, 1732, 1430, 1222; HRMS m/z calculated for 

C26H25NNaO5 (M+Na)+: 454.1625; Found: 454.1628. 

FmocNH-[OBn-(2-HABA)]-CO2H (91) 

Using general procedure for Fmoc-protection (e). 

H2N-[OBn-(2-HABA)]-CO2H 86 (150.0 mg, 0.62 

mmol); anhydrous chloroform (4 mL); Fmoc-

Chloride (192.0 mg, 0.74 mmol) in chloroform (3 

mL). The reaction mixture was allowed to stir for 50 

h until TLC analysis showed complete conversion. The solvent was removed under 

reduced pressure and the resulting oil was crystallized from a mixture of 

dichloromethane-hexane to leave the pure product as a colourless solid (205.7 mg, 

71%); Rf 0.30 (SiO2, (SiO2, 30% ethylacetate in dichloromethane); 1H NMR (CDCl3, 

500 MHz) : 8.16 (d, J = 8.3 Hz, 1 H, H6), 7.86 (d, J = 7.5 Hz, 2 H, Fmoc-HAr5), 

7.83 (br, 1 H, NH), 7.69 (d, J = 7.5 Hz, 2 H, Fmoc-HAr2), 7.47-7.51 (m, 5 H, HAr2, 

HAr3, HAr4), 7.39 (t, J = 7.5 Hz, 4 H, Fmoc-HAr4, Fmoc-HAr3), 7.33 (s, 1 H, H3), 

6.88 (d, J = 8.3 Hz 1 H, H5), 5.33 (s, 2 H, H), 4.65 (d, J = 6.5 Hz, 2 H, Fmoc-H), 

4.34 (t, J = 6.5 Hz, 1 H, Fmoc-H) ppm;  13C NMR (CDCl3, 126 MHz) : 165.2 (CO), 

158.5 (C2), 153.0 (Fmoc-CO), 144.2 (C4), 143.4 (Fmoc-CAr1), 141.4 (Fmoc-CAr6), 

134.6 (C6), 134.1 (CAr1), 129.2 (CAr4), 129.1 (CAr), 128.2 (Fmoc-CAr4), 127.9 

(Fmoc-CAr3), 127.2 (CAr), 124.9 (Fmoc-CAr2), 120.2 (Fmoc-CAr5), 112.4 (C1), 

111.7 (C5), 102.4 (C3), 72.3 (C), 67.2 (Fmoc-C), 47.0 (Fmoc-C) ppm;  IR (neat) 

 (cm-1): 3333, 1722, 1702, 1612, 1524, 1411; ESI-MS found: 488 (M+Na)+; HRMS 

m/z calculated for C29H24NO5 (M+H)+: 466.1649; Found: 466.1644. 

6.2.2 Solid phase synthesis of hybrid -helix mimetics 

Synthetic procedures 

A generic procedure was followed by adapting the previously reported solid phase 

synthesis of 3-O-alkylated100 and N-alkylated106 oligobenzamides. The reactions were 

all carried out on a CEM Liberty® automated microwave assisted peptide synthesiser. 

The procedure is described briefly below: 
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Resin preparation 

127 mg of  Fmoc-Gly-Wang resin (0.79 mmol g-1, 100-200 mesh; carrier: polystyrene, 

crosslinked with 1% DVB) were used for hybrid mimetics 75, 98, 99, 101-111, 

113-120, 127, 128, and 129-131;  170 mg of Rink Amide MBH resin (0.59 mmol g-1) 

were used for hybrid mimetic 100; 156 mg of Fmoc-Leu-Wang resin (0.64 mmol g-1) 

were used for hybrid mimetic 112; 185 mg of Fmoc-Glu(OtBu)-Wang resin (0.54 

mmol g-1, 100-200 mesh) were used for hybrid mimetics 121-123; 196 mg of Fmoc-

Pro-Wang resin (0.51 mmol g-1) were used for hybrid mimetics 124-126. The resin 

was swelled in Corning® tubes in DMF for at least 30 minutes prior to coupling. 

Standard washing and deprotection cycles were carried out on the synthesiser. A 

filtered drain took place in between every wash as follows: wash the reaction vessel 

from the top (‘DMF top’, 5 mL), then from the bottom (‘DMF bottom’, 7 mL), then 

‘DMF top’ (5 mL). 

Fmoc deprotection  

Before coupling of each monomer and after the last coupling reaction, two 

deprotection cycles were carried out on the CEM synthesiser using 6 mL of a 25% 

piperidine solution in DMF, under microwave heating at 75 °C. The initial 

deprotection lasted 30 seconds and was followed by a ‘DMF top’ wash and filtered 

drain. After a second addition of deprotection mixture, the deprotection was 

maintained under microwave heating for 3 minutes, and was again followed by DMF 

washes. 

Coupling of 2-O and 3-O-alkylated monomers to the resin  

Prior to the reaction, each fully protected monomer (1.5 equiv.) was dissolved in 

anhydrous DMF (2.5 mL) in a dry 50 mL Corning® tube (stored in an oven at 60 °C 

for at least 24 hours), and pre-activated with HATU (1.9 equiv.) and DIPEA (3.8 

equiv.) at room temperature. A single coupling method of 30 min was carried out 

under microwave heating at 50 °C. 

Coupling of N-alkylated monomers 

Prior to the reaction, each fully protected monomer (3 equiv. per coupling) was 

dissolved in anhydrous chloroform (2.5 mL per coupling, i.e. 5 mL for a double 
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coupling) in a dry 50 mL Corning® tube (stored in an oven at 60 °C for at least 24 

hours), and pre-activated with Ghosez’s reagent (2.7 equiv. per coupling) at room 

temperature for 1-3 hours under a nitrogen atmosphere. For each monomer, a double 

coupling of 20 minutes was carried out under microwave heating at 60 °C. 

Coupling of middle amino acids 

Prior to the reaction, each fully protected aminoacid (2.5 equiv. per coupling) was 

dissolved in anhydrous DMF (2.5 mL per coupling) in a dry 50 mL Corning® tube 

(stored in an oven at 60 °C for at least 24 hours), and pre-activated with HATU (3 

equiv. per coupling) and DIPEA (5 equiv. per coupling) at room temperature for 1-3 

hours under a nitrogen atmosphere. For natural amino acid derivatives, a double 

coupling of 30 minutes was carried out under microwave heating at 60 °C. For 

non-natural amino acids, a triple coupling of 30 minutes was carried out under 

microwave heating at 60 °C. 

Coupling of 2-O and 3-O-alkylated monomers 

Prior to the reaction, each fully protected monomer (1.5 equiv. per coupling) was 

dissolved in anhydrous DMF (2.5 mL per coupling) in a dry 50 mL Corning® tube 

(stored in an oven at 60 °C for at least 24 hours), and pre-activated with HATU (3 

equiv. per coupling) and DIPEA (5 equiv. per coupling) at room temperature. A 

double coupling method of 30 min was carried out under microwave heating at 60 °C. 

Coupling of top amino acids  

Prior to the reaction, each fully protected aminoacid (2.5 equiv. per coupling) was 

dissolved in anhydrous chloroform (2.5 mL per coupling) in a dry 50 mL Corning® 

tube (stored in an oven at 60 °C for at least 24 hours), and pre-activated with Ghosez’s 

reagent (3.2 equiv. per coupling) at room temperature for 1-3 hours under a nitrogen 

atmosphere. For each amino acid, a double coupling of 20 minutes was carried out 

under microwave heating at 60 °C. 

Cleavage 

The cleavage step was carried out manually, in 3 mL ‘Extract-Clean’ polypropylene 

reservoirs fitted with 20 µm polyethylene frits, both available from Alltech. The resin 

was transferred to a reservoir then washed with dichloromethane ( 2 × 3 mL × 2 min) 
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and diethylether ( 2 × 3 mL × 2 min). 3 mL of a 1:1 mixture of TFA in 

dichloromethane was added and the mixture was allowed to stir at room temperature 

for 40 minutes. The content of the reservoir was collected and the procedure was 

repeated. The combined solution was then concentrated under reduced pressure and 

the resulting oil was washed with hexane and diethylether to afford a solid. 

Purification 

The hybrid mimetics were purified using mass-directed preparative HPLC (0.1% 

formic acid water/methanol or acetonitrile; 5-95% gradient) to afford the desired 

products with purity higher than 90-95%. A representative example is shown in Figure 

6.4. 

 

Figure 6.4 Purification of hybrid -helix mimetics using mass-directed HPLC a MS (top) 

and UV (bottom) chromatograms of hybrid 75 before purification; b MS (top) and UV 

(bottom) chromatograms of hybrid 75 after purification. 
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Determination of the optical rotation 

Due to the limited amount of material available, the optical rotation was determined 

only for hybrids 75 and 129, carrying an L-Phe and a D-Phe as central units, in order 

to prove that amino acids do not undergo racemisation in the condition used. 

Numbering system for hybrid -helix mimetics 

To simplify the numbering and NMR assignment of the hybrid -helix mimetics, a 

sequential nomenclature has been devised, where each of the monomer building 

blocks is considered separately (Figure 6.5). The monomers are numbered from 1 to 

4 (or 5) starting from the C-terminus. O-Alkylated monomers are named as 

[R-(n-HABA)], where R is the alkoxy side-chain, n- indicates the position of the 

alkoxy moiety on the aromatic ring (e.g. for a 2-O-alkylated monomer n = 2) and 

HABA is the acronym for Hydroxy Amino Benzoic Acid; N-alkylated monomers are 

named as [R-(ABA)], where R is the N-alkyl side-chain, and ABA is the acronym for 

Amino Benzoic Acid. . Within each alkylated monomer, the numbering is the same: 

the carbons from the aminobenzoic acid are numbered using the standard system (the 

aromatic carbon bearing the carboxylic acid is C1, the one bearing the amine is C4). 

Then, the lateral chain is numbered: the carbon attached to the oxygen is the Cα, and 

the numbering of the aliphatic part of the side chain continues with Cβ, etc. In the case 

of aromatic side chains, the aromatic carbons are numbered CAr1, CAr2, etc. Amino 

acids are numbered using the standard convention. 
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Figure 6.5 Numbering of atoms in hybrid -helix mimetics. 

The numbering of the protons is based on the carbon numbering. To differentiate each 

individual carbon/proton, the monomer number is added as a prefix to the 

carbon/proton number. 

H2N-[O-Bn-(3-HABA)]-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (75) 

Pale orange solid, > 95% pure by NMR; isolated yield: 11.6 

mg, 19%; Rf 0.50 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
27.5 

= + 22.8° (c 0.008 g mL-1, methanol); 1H NMR (DMSO-d6, 

500 MHz)  10.46 (s, 1H,1-Gly-CO2H), 8.49 (t, J = 5 Hz, 1 

H, 1-Gly-NH), 8.36 (d, J = 8 Hz, 1 H, 3-Phe-NH),  7.91 (d, J 

= 8.5 Hz, 1 H, 2-H6), 7.64 (s, 1 H, 2-H3), 7.53 (d, J = 8.5 Hz, 

2 H, 3-Phe-HAr2), 7.45 (s, 1 H, 4-H2 ), 7.43-7.40 (m, 5 H, 

4-HAr2, 4-H-Ar3, 4-HAr4), 7.35 (t, J = 8.5 Hz, 2 H, 3-

Phe-HAr3), 7.30 (d, J = 8.5 Hz, 2 H, 4-H6, 2-H5), 7.28 (br, 1H, 2-NH), 7.20 (t, J = 

8.5 Hz, 1H, 3-Phe-HAr4), 6.66 (d, J = 8.5 Hz, 1 H, 4-H5), 5.34 (br, 2H, 4-NH2), 5.17 

(s, 2 H, 4-H), 4.85-4.81 (dd, J = 8.5 , 5.5 Hz, 1 H, 3-Phe-H), 4.76-4.71 (apparent 

quin, J = 6 Hz, 1 H, 2-H),  4.05 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.16-3.12 (dd, J = 8.5 
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, 5.5 Hz, 2 H, 3-Phe-H), 1.45-1.43 (dd, J = 8.5, 6 Hz, 6 H, 2-H) ppm; 13C NMR 

(DMSO-d6, 126 MHz) : 171.5 (1-Gly-CO), 166.4 (4-CO), 163.9 (2-CO), 156.2 (3-

Phe-CO), 144.0 (4-C3), 143.1 (2-C2), 141.5 (4-C4), 138.2 (2-C4), 137.2 (2-C6), 131.9 

(4-CAr1), 129.2 (3-Phe-CAr3), 128.4 (4-CAr2, 4-CAr3), 128.1 (4-CAr4), 127.7 (4-

C2), 127.4 (3-Phe-CAr2, 3-Phe-CAr4), 126.3 (3-Phe-CAr1), 121.8 (4-C6), 120.8 (4-

C1), 116.6 (2-C1), 112.3 (4-C5), 111.4 (2-C5), 104.7 (2-C3), 71.9 (2-C), 69.4 (4-

C), 55.9 (3-Phe-C, 41.7 (1-Gly-C1), 37.1 (3-Phe-C, 21.6 (2-Cppm; IR (neat) 

 (cm-1): 3344, 2922, 1682, 1594, 1494, 1257, 1208; ESI-MS found: 625 (M+H)+; 

HRMS m/z calculated for C35H37N4O7 (M+H)+: 625.2657; Found: 625.2666. 

H2N-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (98) 

Colourless solid, > 95% pure by NMR; isolated yield: 10 mg, 25%; 

Rf 0.05 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
26.6 = + 37.3° (c 

0.003 g mL-1, methanol); 1H NMR (DMSO-d6, 500MHz) : 8.51 (t, 

J = 5 Hz, 1 H, 1-Gly-NH), 8.20 (s, 1 H, 2-NH),  7.90 (d, J = 8.5 Hz, 

1 H, 2-H6), 7.59 (s, 1 H, 2-H3), 7.29 (d, J = 8.5 Hz, 2 H, 3-Phe-

HAr), 7.27 (s, 1 H3-Phe-HAr4), 7.26 (d, J = 8.5 Hz, 2 H, 3-Phe-

HAr), 7.23 (d, J = 8.5 Hz, 1 H, 2-H5), 4.66 - 4.76 (apparent quin, J = 6 Hz, 1 H, 2-

H), 3.99 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.78 (t, J = 5.5 Hz, 2 H, 3-Phe-H), 3.10-3.06 

(dd, J = 12.8, 5.5 Hz, 1 H, 3-Phe-H), 2.88-2.85 (dd, J = 12.8, 5.5 Hz, 1 H, 3-Phe-

H'), 1.42 ppm (d, J = 6 Hz, 6 H, 2-H); 13C NMR (DMSO-d6, 126MHz) : 171.4 (1-

Gly-CO), 164.0 (2-CO), 156.4 (3-Phe-CO), 142.5 (2-C2, 2-C4), 136.8 (3-Phe-CAr1), 

132.2 (2-C6), 129.5 (3-Phe-CAr), 128.6 (3-Phe-CAr), 126.9 (3-Phe-CAr4), 117.3 (2-

C1), 111.6 (2-C3), 105.1 (2-C5), 72.1 (2-C), 56.1 (3-Phe-C, 40.4 (1-Gly-C1), 40.1 

(3-Phe-C, 21.7 (2-C ppm; IR (neat)  (cm-1): 3356, 2979, 2930, 1693, 1629, 1593, 

1491, 1258, 1229; ESI-MS found: 400 (M+H)+; HRMS m/z calculated for 

C21H26N3O5 (M+H)+: 400.1867; Found: 400.1872. 

Ac-HN-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (99) 

Colourless solid, > 95% pure by NMR; isolated yield: 45.5 mg, quant.; Rf 0.17 (SiO2, 

20% methanol in acetonitrile); [𝛼]𝐷
26.9 = + 18.1° (c 0.005 g mL-1, methanol); 1H NMR 

(DMSO-d6, 500 MHz)  10.35 (s, 1H, 1-Gly-CO2H), 8.46 (t, J = 5 Hz, 1 H, 1-Gly-
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NH), 8.32 (d, J = 8.5 Hz, 1 H, 3-Phe-NH),  7.89 (d, J = 8.5 Hz, 1 

H, 2-H6), 7.59 (s, 1 H, 2-H3), 7.30-7.27 (m, 6 H, 3-Phe-HAr and 

2-NH), 7.22 (d, J = 8.5 Hz, 1 H, 2-H5), 4.68 - 4.73 (apparent quin, 

J = 6 Hz, 1 H, 2-H), 4.64-4.67 (m, J = 5.5 Hz, 2 H, 3-Phe-H),  

4.05 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.07-3.03 (dd, J = 12.8, 5.5 

Hz, 1 H, 3-Phe-H), 2.90-2.85 (dd, J = 12.8, 5.5 Hz, 1 H, 3-Phe-

H'), 1.82 (s, 1 H, Ac-H1), 1.43-1.41 (dd, J = 6, 9.5 Hz, 6 H, 2-

H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.2 (1-Gly-CO), 169.3 (Ac-CO), 

163.9 (2-CO), 156.2 (3-Phe-CO), 142.9 (2-C2), 137.6 (2-C4), 131.9 (2-C6), 129.5 (3-

Phe-CAr1), 129.1 (3-Phe-CAr), 128.1 (3-Phe-CAr), 126.4 (3-Phe-CAr4), 116.7 (2-

C1), 111.4 (2-C3), 104.7 (2-C5), 71.2 (2-C), 55.0 (3-Phe-C, 41.6 (1-Gly-C1), 37.5 

(3-Phe-C, 22.3 (Ac-C1 21.6 (2-C ppm; IR (neat)  (cm-1): 3285, 3063, 2981, 

2931, 1640, 1596, 1495, 1258, 1186; ESI-MS found: 442 (M+H)+; HRMS m/z 

calculated for C23H27N3NaO6 (M+Na)+: 464.1792; Found: 464.1794. 

H2N-[O-Bn-(3-HABA)]-Phe-CONH2 (100) 

Colourless solid, > 95% pure by NMR; isolated yield: 9.6 mg, 

25%; Rf 0.03 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
26.9 = - 

36.0° (c 0.002 g mL-1, methanol); 1H NMR (DMSO-d6, 500 

MHz)  8.05 (d, J = 8.5 Hz, 1 H, 1-Phe-NH),  7.51 (d, J = 7.5 

Hz, 2 H, 2-HAr2), 7.46 (s, 1 H, 2-H2), 7.41 (t, J = 8 Hz, 2 H, 1-Phe-HAr3), 7.35 (d, J 

= 7.5 Hz, 1 H, 2-HAr4), 7.32 (d, J = 8 Hz, 2 H, 1-Phe-HAr2 ), 7.27 (d, J = 8.5 Hz, 1 

H, 2-H6), 7.24 (t, J = 7, 5 Hz, 2 H, 2-HAr3), 7.16 (t, J = 8 Hz, 1 H, 1-Phe-HAr4), 7.06 

(s, 2H, 1-NH2), 6.63 (d, J = 8.5 Hz, 1 H, 2-H5), 5.29 (s, 2H, 2-NH2), 5.15 (s, 2H, 2-

H), 4.63 - 4.58 (apparent quin, J = 4.5 Hz, 1 H, 1-Phe-H), 3.11-3.07 (dd, J = 13.5, 

4.5 Hz, 1 H, 1-Phe-H), 3.0-2.96 (dd, J = 13.5, 4.5 Hz, 1 H, 1-Phe-H') ppm; 13C 

NMR (DMSO-d6, 126 MHz) : 173.7 (1-Phe-CO), 166.0 (2-CO), 144.1 (2-C3), 141.4 

(2-C4), 138.7 (2-CAr1), 137.2 (1-Phe-CAr1), 129.1 (1-Phe-CAr2), 129.1 (4-C4), 

128.4 (1-Phe-CAr3), 128.0 (2-CAr4), 127.4 (2-CAr2, 2-CAr3),  126.1 (1-Phe-CAr4), 

121.5 (2-C6), 121.3 (2-C1), 112.3 (2-C2), 111.3 (2-C5), 69.4 (2-C), 54.5 (1-Phe-

C, 35.1 (1-Phe-C ppm; IR (neat)  (cm-1): 3482, 3386, 3303, 2925, 2853, 1682, 
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1615, 1579, 1499, 1260, 1228; ESI-MS found: 801 (2M+Na)+; HRMS m/z calculated 

for C23H24N3O3 (M+H)+: 390.1812; Found: 390.1821. 

H2N-[ABA]-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (101) 

Pale brown solid, > 95% pure by NMR; isolated yield: 15.8 mg, 

19%; Rf 0.18 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
27.0 = + 

26.0° (c 0.005 g mL-1, methanol);  1H NMR (DMSO-d6, 500 MHz) 

 10.41 (s, 1H,1-Gly-CO2H), 8.46 (t, J = 5 Hz, 1 H, 1-Gly-NH), 

8.25 (d, J = 8.5 Hz, 1 H, 3-Phe-NH),  7.90 (d, J = 8.5 Hz, 1 H, 2-

H6), 7.60 (s, 1 H, 2-H3), 7.59 (d, J = 8.5 Hz, 2 H, 4-H2), 7.40 (d, 

J = 7.5 Hz, 1 H, 3-Phe-HAr2), 7.32 (d, J = 7.5 Hz, 1 H, 3-Phe-

HAr2̍ ), 7.29 (s, 1H, 2-NH), 7.25 (d, J = 8.5 Hz, 1 H, 2-H5), 7.20-

7.18 (dd, J = 7, 5 Hz, 1 H, 3-Phe-HAr4), 7.13 (d, J = 7.5 Hz, 1 H, 3-Phe-HAr3), 6.54 

(d, J = 8.5 Hz, 2 H, 4-H3), 4.82 - 4.79 (m, J = 5.5 Hz, 1 H, 3-Phe-H), 4.75-4.70 

(apparent quin, J = 6 Hz, 1 H, 2-H),  4.06 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.14-3.07 

(dd, J = 12.8, 5.5 Hz, 2 H, 3-Phe-H), 1.43-1.41 (dd, J = 6, 9.5 Hz, 6 H, 2-H) ppm; 

13C NMR (DMSO-d6, 126 MHz) : 171.2 (1-Gly-CO), 166.5 (4-CO), 163.9 (2-CO), 

156.2 (3-Phe-CO), 151.6 (2-C2), 143.8 (2-C4), 138.2 (3-Phe-CAr4), 131.9 (2-C6), 

129.2 (3-Phe-CAr2), 129.1 (4-C4), 129.0 (4-C2), 128.3 (3-Phe-CAr3), 128.0 (3-Phe-

CAr3̍ ),  126.3 (3-Phe-CAr4), 116.6 (2-C1), 112.6 (4-C3), 112.6 (2-C5), 111.3 (2-C3), 

71.9 (2-C), 55.8 (3-Phe-C, 41.6 (1-Gly-C1), 37.0 (3-Phe-C, 21.6 (2-C ppm; 

IR (neat)  (cm-1): 3359, 3023, 2980, 2931, 1721, 1630, 1596, 1494, 1259, 1184; ESI-

MS found: 519 (M+H)+; HRMS m/z calculated for C28H30N4NaO6 (M+Na)+: 

541.2057; Found: 541.2063. 

H2N-[O-Bn-(2-HABA)]-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (102) 

Yellow solid, > 95% pure by NMR; isolated yield: 10 mg, 16%; Rf 0.63 (SiO2, 20% 

methanol in acetonitrile); [𝛼]𝐷
26.2 = + 38.3° (c 0.002 g mL-1, methanol);1H NMR 

(DMSO-d6, 500 MHz)  10.40 (s, 1H,1-Gly-CO2H), 8.46 (t, J = 4.5 Hz, 1 H, 1-Gly-

NH), 8.11 (d, J = 7.5 Hz, 1 H, 3-Phe-NH),  7.87 (d, J = 8.5 Hz, 1 H, 2-H6), 7.59 (d, J 

= 8.5 Hz, 1 H, 4-H6), 7.58 (s, 1 H, 2-H3), 7.50 (d, J = 7 Hz, 2 H, 4-HAr2), 7.42 (t, J 

= 7 Hz 3 H, 3-Phe-HAr4, 4-HAr3), 7.36 (t, J = 7 Hz, 1 H, 4-HAr4), 7.18 (s, 1H, 2-
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NH), 7.17 (t, J = 7 Hz, 2 H, 3-Phe-HAr3), 7.12 (d, J = 8.5 

Hz, 1 H, 2-H5), 6.93 (d, J = 7 Hz, 2H, 3-Phe-HAr2), 6.31 

(s, 1H, 4-H3), 6.17 (d, J = 8.5 Hz, 1 H, 4-H5), 5.77 (s, 

2H, 4-NH2), 5.20-5.12 (dd, J = 31.5, 11.5 Hz, 2 H, 4-H), 

4.82-4.78 (dd, J = 9.5 , 4.5 Hz, 1 H, 3-Phe-H), 4.71-4.66 

(apparent quin, J = 6 Hz, 1 H, 2-H),  3.99 (d, J = 4.5 Hz, 

2 H, 1-Gly-H1), 3.03-2.99 (dd, J = 9.5 , 4.5 Hz, 1 H, 3-

Phe-H), 2.65-2.61 (dd, J = 9.5 , 4.5 Hz, 1 H, 3-Phe-H'), 

1.41-1.38 (dd, J = 8.5, 6 Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 

171.0 (1-Gly-CO), 164.6 (2-CO), 163.9 (4-CO), 158.3(4-C2), 156.2 (3-Phe-CO), 

153.6 (4-C4), 142.9 (2-C2), 137.1 (2-C4), 136.2 (4-CAr1), 132.7 (4-C6), 131.9 (2-

C6), 128.9 (4-CAr4), 128.6 (4-CAr2, 4-CAr3), 128.1 (3-Phe-CAr2, 3-Phe-CAr3, 3-

Phe-CAr4), 126.4 (3-Phe-CAr1), 116.6 (2-C1), 111.3 (2-C5), 108.0 (4-C5), 106.5 (4-

C1), 104.7 (2-C3), 97.1 (4-C3), 71.9 (2-C), 69.9 (4-C), 55.2 (3-Phe-C, 41.7 (1-

Gly-C1), 37.8 (3-Phe-C, 21.6 (2-Cppm; IR (neat)  (cm-1): 3357, 2980, 2932, 

1690, 1596, 1494, 1259, 1208; ESI-MS found: 625 (M+H)+; HRMS m/z calculated 

for C35H37N4O7 (M+H)+: 625.2657; Found: 625.2660. 

H2N-[N-Bn-(ABA)]-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (103) 

Pale yellow solid, > 95% pure by NMR; isolated yield: 9 mg, 15%; 

Rf 0.49 (SiO2, 20% methanol in acetonitrile); ); [𝛼]𝐷
26.1 = + 44.7° (c 

0.004 g mL-1, methanol); 1H NMR (DMSO-d6, 500 MHz)  10.37 

(s, 1H,1-Gly-CO2H), 8.44 (t, J = 5 Hz, 1 H, 1-Gly-NH), 8.22 (d, J 

= 8 Hz, 1 H, 3-Phe-NH),  7.87 (d, J = 8.5 Hz, 1 H, 2-H6), 7.59 (s, 

1 H, 2-H3), 7.58 (d, J = 8.5 Hz, 2 H, 4-H2), 7.36 (d, J = 8 Hz, 2 H, 

4-HAr2), 7.24-7.29 (m, 5 H, 3-Phe-HAr2, 3-Phe-HAr3, 3-

Phe-HAr4), 7.26 (d, J = 8.5 Hz, 1 H, 2-H5), 7.25 (s, 1H, 2-NH), 

7.24-7.21 (dd, J = 8, 5 Hz, 2H, 4-HAr3), 7.15 (t, J = 8 Hz, 1 H, 4-

HAr4), 6.80 (t, J = 6 Hz, 1 H, 4-NH ),  6.55 (d, J = 8 Hz, 2 H, 4-H3), 4.78-4.74 (dd, J 

= 8.5 , 5.5 Hz, 1 H, 3-Phe-H), 4.71-4.67 (apparent quin, J = 6 Hz, 1 H, 2-H),  4.31 

(d, J = 6 Hz, 2 H, 4-H), 4.01 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.11-3.60 (dd, J = 8.5 , 

5.5 Hz, 2 H, 3-Phe-H), 1.40-1.38 (dd, J = 8.5, 6 Hz, 6 H, 2-H) ppm; 13C NMR 
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(DMSO-d6, 126 MHz) : 171.2 (1-Gly-CO), 166.5 (4-CO), 164.0 (2-CO), 156.2 (3-

Phe-CO), 151.8 (4-C4), 143.1 (2-C2), 138.2 (2-C4), 134.6 (2-C6), 131.9 (4-CAr1), 

129.5 (4-CAr2, 4-CAr3), 129.1(3-Phe-CAr2, 3-Phe-CAr4), 128.3 (4-C2), 128.1 

(3-Phe-CAr3), 127.1 (4-CAr4), 126.3 (3-Phe-CAr1), 120.3 (4-C1), 116.5 (2-C1), 

112.4 (4-C3), 111.3 (2-C5), 104.7 (2-C3), 71.9 (2-C), 55.8 (3-Phe-C, 45.9(4-C), 

41.6 (1-Gly-C1), 37.0 (3-Phe-C, 21.6 (2-Cppm; IR (neat)  (cm-1): 3336, 3029, 

2925, 1680, 1605, 1494, 1256, 1222;ESI-MS found: 609 (M+H)+; HRMS m/z 

calculated for C35H37N4O6 (M+H)+: 609.2708; Found: 609.2716.  

H2N-[O-Bn-(3-HABA)]-Phe-[O-iPr-(3-HABA)]-Gly-CO2H (104) 

 Yellow solid, > 95% pure by NMR; isolated yield: 10 mg, 

16%; Rf 0.13 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
26.4 = - 

31.7° (c 0.003 g mL-1, methanol);1H NMR (DMSO-d6, 500 

MHz)  9.28 (s, 1H,1-Gly-CO2H), 8.69 (t, J = 5.5 Hz, 1 H, 1-

Gly-NH), 8.56 (d, J = 8 Hz, 1 H, 3-Phe-NH),  7.29 (d, J = 8.5 

Hz, 1 H, 2-H6), 7.51 (s, 1 H, 2-H2), 7.48 (d, J = 8.5 Hz, 1 H, 

2-H5), 7.46 (d, J = 7 Hz, 2 H, 4-HAr2), 7.41 (s, 1 H, 4-H2), 

7.38 (t, J = 7 Hz, 2 H,4-HAr3), 7.35 (d, J = 8 Hz, 1 H, 4-H6), 

7.33 (d, J = 7.5 Hz, 2 H, 3-Phe-HAr2), 7.32 (s, 1H, 2-NH), 7.24 (t, J = 7.5 Hz, 3 H, 

3-Phe-HAr3, 4-HAr4), 7.15 (t, J = 7.5 Hz, 1H, 3-Phe-HAr4), 6.63 (d, J = 8 Hz, 1 H, 

4-H5), 5.37 (br, 2H, 4-NH2), 5.11 (s, 2 H, 4-H), 4.86-4.82 (dd, J = 8, 4.5 Hz, 1 H, 3-

Phe-H), 4.66-4.61 (apparent quin, J = 6 Hz, 1 H, 2-H),  3.87 (d, J = 5.5 Hz, 2 H, 

1-Gly-H1), 3.12-3.07 (dd, J = 10.5 , 4.5 Hz, 2 H, 3-Phe-H), 1.16-1.13 (dd, J = 8.5, 6 

Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.3 (1-Gly-CO), 170.4 (2-

CO), 166.7 (4-CO), 165.7 (3-Phe-CO), 145.7 (2-C4), 144.1 (4-C4), 141.9 (4-C3), 

138.5 (2-C1), 137.1 (4-C4), 131.3 (2-C3), 129.1 (3-Phe-CAr2), 128.4 (4-CAr2, 4-

CAr4), 128.1 (4-CAr3), 127.7 (4-CAr1), 127.3 (3-Phe-CAr3, 3-Phe-CAr4), 126.2 (3-

Phe-CAr1), 121.8 (4-C6), 120.2 (2-C5), 118.4 (2-C6), 112.3 (4-C5, 2-C2), 111.4 (4-

C2), 71.4 (2-C), 69.4 (4-C), 55.6 (3-Phe-C, 41.73 (1-Gly-C1), 35.5 (3-Phe-C, 

21.4 (2-Cppm; IR (neat)  (cm-1): 3286, 3034, 2980, 2930, 1680, 1614, 1494, 1273, 

1210; ESI-MS found: 625 (M+H)+; HRMS m/z calculated for C35H36N4NaO7 

(M+Na)+: 647.2476; Found: 647.2480. 
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H2N-[O-Bn-(2-HABA)]-Phe-[O-iPr-(3-HABA)]-Gly-CO2H (105) 

Colourless solid, > 95% pure by NMR; isolated yield: 10 

mg, 16%; Rf 0.11 (SiO2, 20% methanol in acetonitrile); ); 

[𝛼]𝐷
26.5 = + 16.2° (c 0.002 g mL-1, methanol);  1H NMR 

(DMSO-d6, 500 MHz)  9.28 (s, 1H,1-Gly-CO2H), 8.67 

(t, J = 5.5 Hz, 1 H, 1-Gly-NH), 8.23 (d, J = 7.5 Hz, 1 H, 3-

Phe-NH),  8.21 (d, J = 8.5 Hz, 1 H, 2-H6), 7.64 (d, J = 8.5 

Hz, 1 H, 4-H6), 7.50 (s, 1 H, 2-H2), 7.46 (d, J = 8.5 Hz, 1 

H, 2-H5), 7.44 (d, J = 7 Hz, 2 H, 4-HAr2), 7.41 (s, 1H, 2-

NH), 7.40-7.36 (m, 3 H, 4-HAr3, 4-HAr4), 7.16 (t, J = 7 

Hz, 2 H, 3-Phe-HAr3), 7.13 (t, J = 7 Hz, 1 H, 3-Phe-HAr4), 6.96 (d, J = 7 Hz, 2H, 3-

Phe-HAr2), 6.28 (s, 1H, 4-H3), 6.18 (d, J = 8.5 Hz, 1 H, 4-H5), 5.81 (s, 2H, 4-NH2), 

5.19-5.12 (dd, J = 23, 12 Hz, 2 H, 4-H), 4.88-4.84 (sept, J = 4.5 Hz, 1 H, 3-Phe-H), 

4.65-4.61 (apparent quin, J = 6 Hz, 1 H, 2-H),  3.87 (d, J = 5.5 Hz, 2 H, 1-Gly-H1), 

3.15-3.12 (dd, J = 9.5 , 4.5 Hz, 1 H, 3-Phe-H), 2.71-2.66 (dd, J = 9.5 , 4.5 Hz, 1 H, 

3-Phe-H'), 1.15-1.13 (dd, J = 8.5, 6 Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 

MHz) : 170.1 (1-Gly-CO), 165.7 (2-CO), 165.1 (4-CO), 158.4 (4-C4), 153.8 (3-Phe-

CO), 145.9 (2-C4), 137.4 (2-C1), 136.2 (4-C2), 132.8 (4-C6), 131.1 (2-C3), 128.8 (3-

Phe-CAr2), 128.6 (4-CAr3, 4-CAr4), 128.2 (3-Phe-CAr1, 3-Phe-CAr3), 127.9 (4-

CAr2), 127.3 (4-CAr1), 126.4 (3-Phe-CAr4), 120.03 (2-C5), 118.8 (2-C6), 112.3 (2-

C2), 107.4 (4-C1), 106.5 (4-C5), 96.6 (4-C3), 71.3 (2-C), 69.8 (4-C), 55.2 (3-Phe-

C, 41.5 (1-Gly-C1), 36.5 (3-Phe-C, 21.4 (2-Cppm; IR (neat)  (cm-1): 3692, 

3356, 2980, 2921, 1688, 1631, 1598, 1494, 1269, 1209; ESI-MS found: 625 (M+H)+; 

HRMS m/z calculated for C35H36N4NaO7 (M+Na)+: 647.2476; Found: 647.2481.  

H2N-[N-Bn-(ABA)]-Phe-[O-iPr-(3-HABA)]-Gly-CO2H (106) 

Colourless solid, > 95% pure by NMR; isolated yield: 15 mg, 25%); Rf 0.12 (SiO2, 

20% methanol in acetonitrile); [𝛼]𝐷
26.5 = - 13.5° (c 0.003 g mL-1, methanol); 1H NMR 

(DMSO-d6, 500 MHz)  9.25 (s, 1H,1-Gly-CO2H), 8.67 (t, J = 5.5 Hz, 1 H, 1-Gly-

NH), 8.52 (d, J = 8 Hz, 1 H, 3-Phe-NH),  8.29 (d, J = 8.5 Hz, 1 H, 2-H6), 7.59 (s, J = 

8.5 Hz, 2 H, 4-H2), 7.50 (s, 1 H, 2-H2), 7.46 (d, J = 8.5 Hz, 1 H, 2-H5), 7.34-7.30 (m, 

6 H, 3-Phe-HAr2, 4-HAr2, 4-HAr3), 7.28 (s, 1H, 2-NH), 7.24 (t, J = 7.5 Hz, 2 H, 3-
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Phe-HAr3), 7.23 (t, J = 7.5 Hz, 1 H,  4-HAr4), 7.15 (t, J = 7.5 

Hz, 1H, 3-Phe-HAr4), 6.86 (t, J = 6 Hz, 1H, 4-NH), 6.56 (d, J = 

8.5 Hz, 2 H, 4-H3), 4.83-4.79 (sept, J = 7.5 Hz, 1 H, 3-Phe-H), 

4.65-4.60 (apparent quin, J = 6 Hz, 1 H, 2-H),  4.31 (d, J = 6 

Hz, 2 H, 4-H), 3.86 (d, J = 5.5 Hz, 2 H, 1-Gly-H1), 3.10-3.05 

(dd, J = 11 , 3.5 Hz, 2 H, 3-Phe-H), 1.13-1.07 (dd, J = 11.5, 6 

Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.3 

(1-Gly-CO), 170.4 (2-CO), 166.7 (4-CO), 165.7 (3-Phe-CO), 

151.5 (4-C4), 145.7 (2-C4), 138.5 (2-C1), 131.3 (2-C3), 129.0 

(4-CAr4), 128.9 (4-C2), 128.3 (4-CAr2, 4-CAr3), 128.1 (3-Phe-CAr1), 127.1 (3-Phe-

CAr2, 3-Phe-CAr3), 126.7 (3-Phe-CAr4), 126.2 (4-CAr1), 120.1 (4-C1), 119.8 (2-

C5), 118.3 (2-C6), 112.3 (2-C2), 111.1 (4-C3), 71.3 (2-C),  55.6 (3-Phe-C, 45.8 

(4-C), 41.4 (1-Gly-C1), 35.5 (3-Phe-C, 21.4 (2-Cppm; IR (neat)  (cm-1): 3328, 

3030, 2977, 2928, 1685, 1632, 1601, 1494, 1267, 1208; ESI-MS found: 609 (M+H)+; 

HRMS m/z calculated for C35H36N4NaO6 (M+Na)+: 631.2527; Found: 631.2532. 

H2N-[O-Bn-(3-HABA)]-Phe-[N-iBu-(ABA)]-Gly-CO2H (107) 

Yellow solid, > 95% pure by NMR; isolated yield: 5.7 mg, 

9%; Rf 0.72 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
26.5 

= + 160.1° (c 0.003 g mL-1, methanol); 1H NMR (DMSO-

d6, 500 MHz)  9.21 (s, 1H,1-Gly-CO2H), 8.97 (t, J = 5.5 

Hz, 1 H, 1-Gly-NH), 8.25 (d, J = 7.5 Hz, 1 H, 3-Phe-NH),  

7.97 (d, J = 8 Hz, 2 H, 2-H2), 7.51 (d, J = 7 Hz, 2 H, 4-

HAr2), 7.48 (br, 2 H, 2-H3), 7.42 (d, J = 7 Hz, 2 H, 3-

Phe-HAr3), 7.40 (t, J = 7 Hz, 1 H 3-Phe-HAr4), 7.35 (d, J 

= 8.5 Hz, 1 H, 4-H6), 7.33 (s, 1 H, 4-H2), 7.16-7.13 (m, , 3 H, 3-Phe-HAr2, 4-H-Ar4), 

6.87 (t, J = 7 Hz, 2 H, 4-H-Ar3), 6.64 (d, J = 8.5 Hz, 1 H, 4-H5), 5.32 (br, 2H, 4-NH2), 

5.17 (s, 2 H, 4-H), 4.61-4.57 (dd, J = 7, 4.5 Hz, 1 H, 3-Phe-H), 3.98 (d, J = 5.5 Hz, 

2 H, 1-Gly-H1), 3.75-3.71 (m, 1 H, 2-H), 3.42-3.38 (m, 1 H, 2-H'), 2.92 (d, J = 4.5 

Hz, 2 H, 3-Phe-H), 1.68-1.63 (apparent quin, J = 5.5 Hz, 1 H, 2-H), 0.87-0.85 (dd, 

J = 7.5, 5.5 Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.6 (1-Gly-

CO), 171.2 (4-CO), 166.2 (3-Phe-CO), 165.8 (2-CO), 144.1 (4-C1), 141.4 (4-C3), 
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138.0 (2-C1), 137.2 (4-C4), 128.8 (2-C2), 128.4 (3-Phe-CAr2, 3-Phe-CAr3, 3-Phe-

CAr4), 128.1 (4-CAr4), 127.7 (2-C3), 127.4 (4-CAr1, 4-CAr2, 4-CAr3), 126.3 (3-

Phe-CAr1), 121.8 (4-C6), 120.8 (2-C4), 112.3 (4-C5), 111.3 (4-C2), 72.8 (2-C), 69.4 

(4-C), 55.6 (3-Phe-C, 41.2 (1-Gly-C1), 36.5 (3-Phe-C, 26.3 (2-C19.8 (2-

Cppm; IR (neat)  (cm-1): 3367, 2962, 2933, 1701, 1629, 1594, 1495, 1259, 1199; 

ESI-MS found: 623 (M+H)+; HRMS m/z calculated for C36H38N4NaO6 (M+Na)+: 

645.2683; Found: 645.2686. 

H2N-[O-Bn-(2-HABA)]-Phe-[N-iBu-(ABA)]-Gly-CO2H (108) 

Colourless solid, > 95% pure by NMR; isolated 

yield: 1 mg, 2%; Rf 0.22 (SiO2, 20% methanol 

in acetonitrile); [𝛼]𝐷
26.5 = + 57.9° (c 0.003 g mL-

1, methanol);1H NMR (DMSO-d6, 500 MHz)  

8.95 (t, J = 5.5 Hz, 1 H, 1-Gly-NH), 8.07 (d, J = 

7 Hz, 1 H, 3-Phe-NH),  7.93 (d, J = 8.5 Hz, 2 H, 

2-H2), 7.60 (d, J = 8.5 Hz, 1 H, 4-H6), 7.58 (d, 

J = 7 Hz, 2 H, 4-HAr2), 7.47 (t, J = 7 Hz, 3 H, 4-HAr3, 4-HAr4), 7.40 (d, J = 8.5 Hz, 

1 H, 2-H3), 7.12-7.10 (m, 3 H, 3-Phe-HAr3, 3-Phe-HAr4), 6.49 (d, J = 7 Hz, 2H, 3-

Phe-HAr2), 6.35 (s, 1H, 4-H3), 6.19 (d, J = 8.5 Hz, 1 H, 4-H5), 5.80 (s, 2H, 4-NH2), 

5.23-5.15 (dd, J = 22, 11 Hz, 2 H, 4-H), 4.59-4.55 (dd, J = 7, 4.5 Hz, 1 H, 3-Phe-

H),  3.96 (d, J = 5.5 Hz, 2 H, 1-Gly-H1), 3.73-3.69 (dd, J = 8.5, 5 Hz, 1 H, 2-H), 

3.32-3.30 (dd, J = 8.5, 5 Hz, 1 H, 2-H'), 2.80-2.76 (dd, J = 9.5, 4.5 Hz, 1 H, 3-Phe-

H), 2.38-2.35 (dd, J = 9.5, 4.5 Hz, 1 H, 3-Phe-H'), 1.63-1.58 (apparent quin, J = 5 

Hz, 1 H, 2-H), 0.84-0.81 (dd, J = 7.5, 5 Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 

126 MHz) : 171.2 (1-Gly-CO), 171.1 (4-CO), 165.7 (3-Phe-CO), 164.2 (2-CO), 

158.2 (4-C4), 153.5 (4-C2), 144.3 (2-C4), 136.2 (2-C1), 132.9 (4-C6), 128.6 (4-CAr2, 

4-CAr3), 128.6 (2-C2), 128.3 (2-C3), 128.2 (3-Phe-CAr2,3-Phe-CAr3, 3-Phe-CAr4), 

128.2 (4-CAr4), 128.0 (4-CAr1), 126.4 (3-Phe-CAr1), 108.0 (4-C5), 106.5 (4-C1), 

97.1 (4-C3), 69.9 (4-C), 55.6 (2-C), 52.0 (3-Phe-C, 41.2 (1-Gly-C1), 37.6 (3-

Phe-C, 26.3 (2-C19.8 (2-Cppm; IR (neat)  (cm-1): 3359, 2923, 1701, 1631, 

1596, 1495, 1259, 1199; ESI-MS found: 623 (M+H)+; HRMS m/z calculated for 

C36H39N4O6 (M+Na)+: 623.2864; Found: 623.2867.  
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H2N-[N-Bn-(ABA)]-Phe-[N-iBu-(ABA)]-Gly-CO2H (109) 

Colourless solid, > 95% pure by NMR; isolated 

yield: 4 mg, 7%; Rf 0.30 (SiO2, 20% methanol in 

acetonitrile); [𝛼]𝐷
26.6 = + 113.1° (c 0.002 g mL-1, 

methanol); 1H NMR (DMSO-d6, 500 MHz)  8.97 

(t, J = 5.5 Hz, 1 H, 1-Gly-NH), 8.17 (d, J = 7 Hz, 1 

H, 3-Phe-NH),  7.97 (d, J = 8.5 Hz, 2 H, 2-H2), 7.60 

(d, J = 8.5 Hz, 2 H, 4-H2), 7.48 (br, 2 H, 2-H3), 7.36-

7.31 (m, 5 H, 3-Phe-HAr2, 3-Phe-HAr3, 4-NH), 7.24 (t, J = 7 Hz, 1 H 3-Phe-HAr4), 

7.13 -7.11 (m, 3 H, 4-HAr3, 4-HAr4), 6.83 (d, J = 7.5 Hz, 2 H, 4-HAr2), 6.56 (d, J = 

8.5 Hz, 1 H, 4-H3), 4.56-4.52 (dd, J = 7, 4.5 Hz, 1 H, 3-Phe-H), 4.33 (s, 2 H, 4-H), 

3.97 (d, J = 5.5 Hz, 2 H, 1-Gly-H1), 3.74-3.69 (dd, J = 8.5, 5 Hz, 1 H, 2-H), 3.38-

3.36 (dd, J = 8.5, 5 Hz, 1 H, 2-H'), 2.88 (d, J = 4.5 Hz, 2 H, 3-Phe-H), 1.66-1.61 

(apparent quin, J = 5 Hz, 1 H, 2-H), 0.85-0.83 (dd, J = 7.5, 5 Hz, 6 H, 2-H) ppm; 

13C NMR (DMSO-d6, 126 MHz) : 171.6 (1-Gly-CO), 171.2 (4-CO), 166.2 (3-Phe-

CO), 165.8 (2-CO), 151.2 (4-C4), 139.6 (2-C4), 138.1 (2-C1), 129.0 (4-CAr4), 128.8 

(2-C2), 128.4 (4-C2), 128.3 (3-Phe-CAr2, 3-Phe-CAr3, 3-Phe-CAr4), 128.1 (3-Phe-

CAr1), 127.1 (4-CAr2, 4-CAr3), 126.7 (2-C3), 126.3 (4-CAr1), 120.5 (4-C1), 111.0 

(4-C3), 72.6 (2-C), 55.6 (3-Phe-C, 45.9 (4-C), 41.2 (1-Gly-C1), 37.3 (3-Phe-

C, 26.3 (2-C19.8 (2-Cppm; IR (neat)  (cm-1): 3359, 3243, 2960, 2931, 1701, 

1630, 1595, 1495, 1260, 1199; ESI-MS found: 607 (M+H)+; HRMS m/z calculated 

for C36H38N4NaO5 (M+Na)+: 629.2734; Found: 629.2741. 



Chapter 6: Experimental Section 

165 

 

H2N-[O-iBu-(2-HABA)]-Leu-[O-iPr-(2-HABA)]-Gly-CO2H (110) 

Pale yellow solid, > 95% pure by NMR; isolated yield: 7.5 

mg,  14%; Rf 0.24 (SiO2, 20% methanol in acetonitrile);  1H 

NMR (DMSO-d6, 500 MHz)  10.48 (s, 1H,1-Gly-CO2H), 

8.47 (t, J = 5 Hz, 1 H, 1-Gly-NH), 8.12 (d, J = 8 Hz, 1 H, 

3-Leu-NH),  7.90 (d, J = 8 Hz, 1 H, 2-H3), 7.67 (d, J = 8.5 

Hz, 1 H, 4-H6), 7.64 (s, 1 H, 2-H3), 7.26 (d, J = 8 Hz, 1 H, 

2-H5), 6.27 (s, 1 H, 4-H3), 6.21 (d, J = 8.5 Hz, 1 H, 4-H5), 

5.79 (br, 2H, 4-NH2), 4.80 - 4.75 (apparent quin, J = 7 Hz, 

1 H, 3-Leu-H), 4.73-4.69 (apparent quin, J = 6 Hz, 1 H, 2-H),  4.03 (d, J = 5 Hz, 2 

H, 1-Gly-H1), 3.86 (d, J = 6 Hz, 2 H, 4-H), 2.19-2.14 (m, J = 6 Hz, 1 H, 4-H), 

1.72-1.66 (m, J = 6 Hz, 1 H, 3-Leu-H),  1.62-1.61 (dd, J = 12.8, 7 Hz, 2 H, 3-Leu-

H), 1.43-1.41 (dd, J = 6, 9.5 Hz, 6 H, 2-H), 1.08 (d, J = 6 Hz, 6 H, 4-H), 0.96-0.94 

(dd, J = 6, 4 Hz, 6 H, 3-Leu-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.0 (1-

Gly-CO), 171.2 (3-Leu-CO), 164.5 (4-CO), 163.9 (2-CO), 158.7 (4-C2), 156.2 (4-

C1), 153.6 (4-C4), 143.0 (2-C4), 132.8 (4-C6), 131.9 (2-C6), 116.6 (2-C1), 111.3 (2-

C5), 107.8 (4-C5), 106.2 (2-C3), 104.7 (2-C2), 96.6 (4-C3), 74.6 (4-C), 71.9 (2-C), 

51.9 (3-Leu-C, 41.8 (1-Gly-C1), 41.6 (3-Leu-C, 27.8 (4-C, 24.5 (3-Leu-C, 

22.9 (3-Leu-C, 21.7 (2-C19.1 (4-C ppm; IR (neat)  (cm-1): 3355, 3087, 2957, 

2932, 1691, 1627, 1593, 1494, 1258, 1199; ESI-MS found: 557 (M+H)+; HRMS m/z 

calculated for C29H40N4NaO7 (M+Na)+: 579.2789; Found: 579.2798. 

H2N-[O-iBu-(2-HABA)]-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (111) 

Pale yellow solid, > 90% pure by NMR; isolated yield: 10 

mg, 17%; Rf 0.54 (SiO2, 20% methanol in acetonitrile);  1H 

NMR (DMSO-d6, 500 MHz)  10.43 (s, 1H,1-Gly-CO2H), 

8.65 (t, J = 5 Hz, 1 H, 1-Gly-NH), 8.39 (br, 1H, 2-NH), 

8.23 (d, J = 8 Hz, 1 H, 3-Phe-NH),  7.89 (d, J = 8.5 Hz, 1 

H, 2-H6), 7.64 (d, J = 8.5 Hz, 1 H, 4-H6), 7.54 (s, 1 H, 2-

H3), 7.24 (d, J = 7.5 Hz, 2 H, 3-Phe-HAr2), 7.19 (m, J = 

7.5 Hz, 3 H, 3-Phe-HAr3, 3-Phe-HAr4), 7.14 (d, J = 8.5 

Hz, 1 H, 2-H5), 6.22 (s, 1 H, 4-H3), 6.18 (d, J = 8.5 Hz, 1 H, 4-H5), 5.76 (br, 2H, 4-
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NH2), 5.03-4.98 (m, J = 6.5 Hz, 1 H, 3-Phe-H), 4.68-4.63 (apparent quin, J = 6 Hz, 

1 H, 2-H),  3.77 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.60 (d, J = 6.5 Hz, 2 H, 4-H), 3.16-

3.14 (dd, J = 14, 6.5 Hz, 1 H, 3-Phe-H), 2.99-2.96 (dd, J = 14, 6.5 Hz, 1 H, 3-Phe-

H'), 2.08-2.03 (m, J = 6.5 Hz, 1 H, 4-H), 1.41-1.38 (dd, J = 8.5, 6 Hz, 6 H, 2-H), 

0.96-0.94 (dd, J = 6.5, 16.5 Hz, 6 H, 4-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 

170.5 (1-Gly-CO), 167.8 (3-Phe-CO), 164.3 (2-CO), 158.7 (4-CO), 156.1 (4-C2), 

153.6 (4-C1), 153.1 (4-C4), 136.4 (2-C4), 132.8 (4-C6), 131.9 (2-C6), 131.0 (3-Phe-

CAr1), 129.0 (3-Phe-CAr2), 128.2 (3-Phe-CAr3), 126.4 (3-Phe-CAr4), 117.7 (2-C1), 

115.1 (2-C5), 111.2 (4-C5), 110.5 (2-C3), 106.2 (4-C3), 74.7 (4-C), 71.5 (2-C), 

54.5 (3-Phe-C, 40.0 (1-Gly-C1), 38.4 (3-Phe-C, 27.5 (4-C, 21.5 (2-C19.1 

(4-C ppm; IR (neat)  (cm-1): 3255, 3142, 2923, 2806, 1677, 1618, 1584, 1496, 

1270, 1200; ESI-MS found: 591 (M+H)+; HRMS m/z calculated for C32H38N4NaO7 

(M+Na)+: 613.2633; Found: 613.2635. 

H2N-[O-iBu-(2-HABA)]-Leu-[O-iPr-(2-HABA)]-Leu-CO2H (112) 

Pale yellow solid, > 90% pure by NMR; isolated yield: 5.2 

mg, 9%; Rf 0.16 (SiO2, 20% methanol in acetonitrile);  1H 

NMR (DMSO-d6, 500 MHz)  10.48 (s, 1H,1-Leu-

CO2H), 8.41 (d, J = 8 Hz, 2 H, 1-Leu-NH, 2-NH), 8.13 (d, 

J = 8 Hz, 1 H, 3-Leu-NH),  7.87 (d, J = 8.5 Hz, 1 H, 2-H6), 

7.67 (d, J = 8.5 Hz, 1 H, 4-H6), 7.63 (s, 1 H, 2-H3), 7.26 

(d, J = 8.5 Hz, 1 H, 2-H5), 6.27 (s, 1 H, 4-H3), 6.21 (d, J = 

8.5 Hz, 1 H, 4-H5), 4.80 - 4.75 (m, J = 6.5 Hz, 1 H, 3-Leu-

H), 4.75-4.70 (apparent quin, J = 6 Hz, 1 H, 2- H),  4.51 (apparent quin, J = 5 Hz, 

2 H, 1-Leu- H), 3.85 (d, J = 6 Hz, 2 H, 4-H), 2.19-2.14, (m, J = 6 Hz, 1 H, 4-H), 

1.72-1.59 (m, 6 H, 1-Leu-H, 1-Leu-H, 3-Leu-H, 3-Leu-H), 1.41-1.39 (dd, J = 

12.5, 6 Hz, 6 H, 2-H), 1.08 (d, J = 6 Hz, 6 H, 4-H), 0.96-0.91 (m, 12 H, 1-Leu-H, 

3-Leu-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 173.9 (1-Leu-CO), 172.0 (3-Leu-

CO), 164.5 (4-CO), 163.7 (2-CO), 158.7 (2-C2), 156.0 (4-C4), 153.6 (2-C4), 143.0 

(4-C2), 132.8 (4-C6), 131.9 (2-C6), 116.7 (2-C1), 111.3 (2-C5), 107.8 (4-C1), 106.2 

(4-C5), 104.5 (2-C3), 96.6 (4-C3), 74.6 (4-C), 71.7 (2-C), 51.9 (1-Leu-C, 3-Leu-
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C, 41.9 (1-Leu-C1), 40.9 (3-Leu-C, 28.8 (4-C, 27.8 (3-Leu-C, 24.5 (1-Leu-

C, 22.9 (1-Leu-C, 22.7 (3-Leu-C, 21.8 (2-C19.1 (4-C ppm; IR (neat)  (cm-

1): 3357, 2978, 2928, 1691, 1628, 1593, 1493, 1258, 1213; ESI-MS found: 613 

(M+H)+; HRMS m/z calculated for C33H49N4O7 (M+H)+: 613.3596; Found: 613.3604. 

H2N-[O-Bn-(3-HABA)]-Trp-[O-iPr-(2-HABA)]-Gly-CO2H (113) 

 Yellow solid, > 90% pure by NMR; isolated yield: 9.8 mg, 

15%; Rf 0.53 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
26.6 = + 

91.1° (c 0.006 g mL-1, methanol);1H NMR (DMSO-d6, 500 

MHz)  10.83 (s, 1 H, 3-Trp-NH1), 10.46 (s, 1H,1-Gly-

CO2H), 8.51 (t, J = 5 Hz, 1 H, 1-Gly-NH), 8.26 (d, J = 7.5 Hz, 

1 H, 3-Trp-NH),  7.90 (d, J = 8.5 Hz, 1 H, 2-H6), 7.75 (d, J = 

7.5 Hz, 1 H, 3-Trp-HAr4), 7.65 (s, 1 H, 2-H3), 7.51 (d, J = 7.5 

Hz, 2 H, 4-HAr2), 7.45 (s, 1 H, 4-H2), 7.41 (t, J = 7.5 Hz, 3 

H, 4-HAr3, 4-HAr4), 7.33-7.31 (m, 3 H, 4-H6, 3-Trp-HAr7, 2-NH), 7.28 (s, 1 H, 3-

TrpHAr2), 7.27 (d, J = 8.5 Hz, 1 H, 2-H5), 7.07 (t, J = 7.5 Hz, 1H, 3-Trp-HAr6), 6.99 

(t, J = 7.5 Hz, 1H, 3-Trp-HAr5), 6.64 (d, J = 8Hz, 1 H, 4-H5), 5.33 (br, 2H, 4-NH2), 

5.17-5.13 (dd, J = 12, 4 Hz, 2 H, 4-H), 4.89-4.85 (dd, J = 9 , 5 Hz, 1 H, 3-Trp-H), 

4.74-4.69 (apparent quin, J = 6 Hz, 1 H, 2-H),  4.00 (d, J = 5 Hz, 2 H, 1-Gly-H1), 

3.27-3.24 (dd, J = 11 , 5 Hz, 2 H, 3-Trp-H), 1.43-1.41 (dd, J = 9.5, 6 Hz, 6 H, 2-H) 

ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.2 (1-Gly-CO), 166.3 (4-CO), 163.8 (2-

CO), 156.2 (3-Trp-CO), 144.1 (4-C1), 143.1 (2-C2), 141.5 (4-C4), 138.2 (2-C4), 

137.2 (4-C3, 3-Trp-CAr7a), 136.0 (3-Trp-CAr3a), 131.9 (2-C6), 128.4 (4-CAr3, 4-

CAr4), 127.7 (4-CAr1), 127.5 (4-CAr2, 3-Trp-CAr3), 124.5 (3-Trp-CAr2), 123.7 (4-

C6), 121.8 (3-Trp-CAr7), 120.8 (3-Trp-CAr5), 118.6 (3-Trp-CAr4), 118.2 (3-Trp-

CAr6), 115.1 (2-C1), 112.3 (4-C5), 111.4 (4-C2), 110.2 (2-C5), 104.8 (2-C3), 71.9 

(2-C), 69.4 (4-C), 55.1 (3-Trp-C, 41.0 (1-Gly-C1), 27.5 (3-Trp-C, 21.6 (2-

Cppm; IR (neat)  (cm-1): 3259, 3143, 2921, 2810, 1686, 1617, 1591, 1494, 1298, 

1209; ESI-MS found: 664 (M+H)+; HRMS m/z calculated for C37H37N5NaO7 

(M+Na)+: 686.2585; Found: 686.2599. 
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H2N-[O-Bn-(2-HABA)]-Trp-[O-iPr-(2-HABA)]-Gly-CO2H (114) 

Pale brown  solid, > 90% pure by NMR; isolated yield: 

10.6 mg, 16%); Rf 0.083 (SiO2, 20% methanol in 

acetonitrile); [𝛼]𝐷
27.6 = + 50.5° (c 0.008 g mL-1, methanol); 

1H NMR (DMSO-d6, 500 MHz)  10.78 (s, 1 H, 3-Trp-

NH1), 10.47 (s, 1H,1-Gly-CO2H), 8.49 (t, J = 5 Hz, 1 H, 

1-Gly-NH), 8.19 (d, J = 6.5 Hz, 1 H, 3-Trp-NH),  7.90 (d, 

J = 8.5 Hz, 1 H, 2-H6), 7.63 (d, J = 8.5 Hz, 1 H, 4-H6), 

7.63 (s, 1 H, 2-H3), 7.55 (d, J = 8 Hz, 1 H, 3-Trp-HAr4), 

7.45 (d, J = 7.5 Hz, 2 H, 4-HAr2), 7.36 (t, J = 7.5 Hz, 3 

H, 4-H-Ar3, 4-HAr4), 7.28 (d, J = 8 Hz, 1 H, 3-Trp-HAr7), 7.27 (s, 1 H, 3-TrpHAr2), 

7.22 (d, J = 8.5 Hz, 1 H, 2-H5), 7.05 (t, J = 7.5 Hz, 1H, 3-Trp-HAr6), 6.94 (t, J = 7.5 

Hz, 1H, 3-Trp-HAr5), 6.72 (s, 1H, 2-NH), 6.32 (s, 1 H, 4H1 ), 6.19 (d, J = 8Hz, 1 H, 

4-H2), 5.78 (br, 2H, 4-NH2), 5.17-5.08 (dd, J = 32.5, 11.5 Hz, 2 H, 4-H), 4.92-4.88 

(dd, J = 11.5 , 6.5 Hz, 1 H, 3-Trp-H), 4.73-4.68 (apparent quin, J = 6.5 Hz, 1 H, 2-

H),  4.05 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.19-3.15 (dd, J = 11.5 , 6.5 Hz, 2 H, 3-Trp-

H), 2.99-2.88 (dd, J = 11.5 , 6.5 Hz, 2 H, 3-Trp-H'),1.43-1.40 (dd, J = 9.5, 6.5 Hz, 

6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.2 (1-Gly-CO), 166.6 (4-

CO), 163.9 (2-CO), 158.2 (3-Trp-CO), 156.2 (4-C2), 153.5 (4-C4), 143.1 (2-C2), 

136.2 (2-C4), 137.1 (3-Trp-CAr3a), 132.7 (4-C6), 131.8 (2-C6), 128.5 (4-CAr2, 3-

Trp-CAr3), 128.1 (4-CAr1), 128.0 (4-CAr3, 4-CAr4), 127.1 (3-Trp-CAr2), 123.3 (3-

Trp-CAr7), 120.9 (3-Trp-CAr6), 118.5 (3-Trp-CAr4), 118.2 (3-Trp-CAr5), 116.5 (3-

Trp-CAr7a), 111.3 (2-C5), 109.4 (2-C1), 108.2 (4-C1), 106.5 (4-C5), 104.8 (2-C3), 

97.2 (4-C3), 71.9 (2-C), 69.8 (4-C), 54.5 (3-Trp-C, 41.6 (1-Gly-C1), 28.0 (3-

Trp-C, 21.6 (2-Cppm; IR (neat)  (cm-1): 3358, 3064, 2980, 2928, 1692, 1628, 

1593, 1494, 1258, 1213; ESI-MS found: 664 (M+H)+; HRMS m/z calculated for 

C37H37N5NaO7 (M+Na)+: 686.2585; Found: 686.2592. 

H2N-[O- iBu-(2-HABA)]-Trp-[O-iPr-(2-HABA)]-Gly-CO2H (115) 

Yellow solid, > 90% pure by NMR; isolated yield: 9.3 mg, 15%; Rf 0.59 (SiO2, 20% 

methanol in acetonitrile); 1H NMR (DMSO-d6, 500 MHz)  10.83 (s, 1 H, 3-Trp-

NH1), 10.45 (s, 1H,1-Gly-CO2H), 8.48 (t, J = 4 Hz, 1 H, 1-Gly-NH), 8.30 (d, J = 7.5 
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Hz, 1 H, 3-Trp-NH),  7.88 (d, J = 8.5 Hz, 1 H, 2-H6), 7.68 

(d, J = 8.5 Hz, 1 H, 4-H6), 7.60 (d, J = 7 Hz, 1 H, 3-Trp-

HAr4), 7.53 (s, 1 H, 2-H3), 7.31 (d, J = 7 Hz, 1 H, 3-Trp-

HAr7), 7.19 (d, J = 8.5 Hz, 1 H, 2-H5), 7.10 (s, 1 H, 3-

TrpHAr8), 7.05 (t, J = 7.5 Hz, 1H, 3-Trp-HAr6), 6.95 (t, 

J = 7.5 Hz, 1H, 3-Trp-HAr5), 6.59 (s, 1H, 2-NH), 6.22 (d, 

J = 8Hz, 1 H, 4-H5), 6.20 (s, 1 H, 4-H3), 5.75 (br, 2H, 4-

NH2), 5.07-5.03 (dd, J = 13.5 , 6.5 Hz, 1 H, 3-Trp-H), 

4.70-4.65 (apparent quin, J = 5.5 Hz, 1 H, 2-H),  4.02 (d, J = 4 Hz, 2 H, 1-Gly-H1), 

3.73-3.70 (apparent quin, J = 6 Hz, 2 H, 4-H), 3.31-3.28 (dd, J = 14.5 , 7 Hz, 2 H, 

3-Trp-H), 1.94-1.90 (dd, J = 13.5 , 6.5 Hz, 1 H, 4-H),1.42-1.39 (dd, J = 9.5, 5.5 Hz, 

6 H, 2-H), 0.94-0.88 (dd, J = 13.5 , 6.5 Hz, 6 H, 4-H), ppm; 13C NMR (DMSO-d6, 

126 MHz) : 171.2 (1-Gly-CO), 164.4 (3-Trp-CO), 163.9 (2-CO), 158.27 (4-CO), 

156.2 (2-C4), 153.6 (4-C4), 142.9 (2-C2), 136.1 (4-C2), 132.7 (4-C6), 131.8 (2-C6), 

129.2 (3-Trp-CAr3a), 127.4 (3-Trp-CAr7), 123.2 (3-Trp-CAr3), 120.9 (3-Trp-CAr6), 

118.4 (3-Trp-CAr2), 118.2 (3-Trp-CAr4), 116.6 (3-Trp-CAr7a), 115.0 (3-Trp-CAr5), 

111.4 (2-C5), 109.3 (2-C1), 108.0 (4-C5), 106.2 (4-C1), 104.8 (2-C3), 96.7 (4-C3), 

74.6 (4-C), 71.8 (2-C), 54.1 (3-Trp-C, 41.7 (1-Gly-C1), 28.5 (3-Trp-C, 27.4 

(4-C21.6 (2-C19.1 (2-Cppm; IR (neat)  (cm-1): 3357, 3134, 2967, 2933, 

1689, 1619, 1587, 1494, 1258, 1199; ESI-MS found: 630 (M+H)+; HRMS m/z 

calculated for C34H39N5NaO7 (M+Na)+: 652.2742; Found: 652.2747. 

H2N-[O-Bn-(3-HABA)]-4-F-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (116) 

 Colourless solid, > 95% pure by NMR; isolated yield: 12.5 

mg, 19%; Rf 0.10 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
27.1 

= + 140.6° (c 0.005 g mL-1, methanol); 1H NMR DMSO-d6, 

500 MHz)  10.44 (s, 1H,1-Gly-CO2H), 8.47 (t, J = 5 Hz, 1 

H, 1-Gly-NH), 8.34 (d, J = 8 Hz, 1 H, 3-Phe-NH),  7.90 (d, J 

= 9 Hz, 1 H, 2-H6), 7.62 (s, 1 H, 2-H3), 7.51 (d, J = 7 Hz, 2 

H, 4-HAr2), 7.44 (s, 1 H, 4-H2), 7.43-7.39 (m, 5 H, 3-Phe-

HAr2, 4-HAr3, 4-HAr4), 7.35 (s, 1H, 2-NH), 7.33 (d, J = 8.5 

Hz, 1 H, 4-H5), 7.25 (d, J = 9 Hz, 1 H,  2-H5), 7.10 (t, J = 9 Hz, 2H, 3-Phe-HAr3), 
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6.66 (d, J = 9 Hz, 1 H, 4-H5), 5.34 (br, 2H, 4-NH2), 5.16 (s, 2 H, 4-H), 4.81-4.76 

(dd, J = 9.5 , 5 Hz, 1 H, 3-Phe-H), 4.74-4.70 (apparent quin, J = 6 Hz, 1 H, 2-H),  

4.06 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.14-3.07 (dd, J = 9.5, 5 Hz, 2 H, 3-Phe-H), 1.43-

1.41 (dd, J = 12, 6 Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.2 (1-

Gly-CO), 166.4 (4-CO), 163.9 (2-CO), 161.9-160.0 (d, J = 242 Hz, 3-Phe-CAr4), 

156.2 (3-Phe-CO), 144.1 (4-C3), 143.0 (2-C2), 141.6 (4-C4), 137.2 (2-C4), 134.3 (3-

Phe-CAr1), 131.9 (2-C6), 131.0 (4-CAr1), 128.3 (4-CAr3, 4-CAr4), 127.7 (4-C2), 

127.4 (3-Phe-CAr2, 4-CAr2), 121.7 (4-C6), 120.8 (4-C1), 116.6 (2-C1), 114.8-114.7 

(d, J = 20 Hz, 3-Phe-CAr3), 112.3 (4-C5), 111.3 (2-C5), 104.7 (2-C3), 71.9 (2-C), 

69.4 (4-C), 55.9 (3-Phe-C, 41.6 (1-Gly-C1), 36.2 (3-Phe-C, 21.6 (2-Cppm; 

IR (neat)  (cm-1): 3358, 2975, 2931, 1690, 1596, 1496, 1260, 1216, 754; ESI-MS 

found: 643 (M+H)+; HRMS m/z calculated for C35H35FN4NaO7 (M+Na)+: 665.2382; 

Found: 665.2386. 

H2N-[O-Bn-(3-HABA)]-4-Br-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (117) 

Colourless solid, > 95% pure by NMR; isolated yield: 3.7 mg, 

5%; Rf 0.14 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
27.0 = + 

243.6° (c 0.003 g mL-1, methanol); 1H NMR DMSO-d6, 500 

MHz)  10.45 (s, 1H,1-Gly-CO2H), 8.47 (t, J = 5 Hz, 1 H, 1-

Gly-NH), 8.35 (d, J = 8 Hz, 1 H, 3-Phe-NH),  7.91 (d, J = 8.5 

Hz, 1 H, 2-H6), 7.61 (s, 1 H, 2-H3), 7.51 (d, J = 8.5 Hz, 2 H, 

4-HAr2), 7.47 (d, J = 8.5 Hz, 2 H, 4-HAr3), 7.42 (s, 1 H, 4-

H2), 7.41 (d, J = 8.5 Hz, 2 H, 3-Phe-HAr2),  7.39  (s, 1H, 2-

NH), 7.36  (t, J = 8.5 Hz, 3H, 3-Phe-HAr3, 4-HAr4), 7.32 (d, J = 8.5 Hz, 1 H, 4-H6), 

7.25 (d, J = 8.5 Hz, 1 H, 2-H5), 6.64 (d, J = 8.5 Hz, 1 H, 4-H5), 5.35 (br, 2H, 4-NH2), 

5.16 (s, 2 H, 4-H), 4.82-4.79 (dd, J = 9.5 , 5 Hz, 1 H, 3-Phe-H), 4.72-4.71 (apparent 

quin, J = 6 Hz, 1 H, 2-H),  4.05 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.10-3.07 (dd, J = 9.5 

, 5 Hz, 2 H, 3-Phe-H), 1.43-1.41 (dd, J = 12, 6 Hz, 6 H, 2-H) ppm; 13C NMR 

(DMSO-d6, 126 MHz) : 171.2 (1-Gly-CO), 166.4 (4-CO), 163.9 (2-CO), 156.2 (3-

Phe-CO), 144.0 (4-C3), 143.0 (2-C2), 141.6 (4-C4), 137.7 (3-Phe-CAr1),137.2 (2-

C4), 131.9 (2-C6), 131.4 (3-Phe-CAr2),  131.0 (4-CAr1, 4-CAr4), 128.3 (4-CAr3), 

127.7 (4-C2), 127.4 (3-Phe-CAr3, 4-CAr2), 121.7 (4-C6), 120.8 (4-C1), 119.5 (3-Phe-
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CAr4),116.6 (2-C1), 112.3 (4-C5), 111.3 (2-C5), 104.7 (2-C3), 71.9 (2-C), 69.4 (4-

C), 55.6 (3-Phe-C, 41.6 (1-Gly-C1), 36.4 (3-Phe-C, 21.6 (2-Cppm; ESI-MS 

found: 705 (M+H)+; IR (neat)  (cm-1): 3355, 2919, 2850, 1677, 1596, 1494, 1260, 

1215, 754; HRMS m/z calculated for C35H35BrN4NaO7 (M+Na)+: 725.1581; Found: 

725.1585. 

H2N-[O-Bn-(3-HABA)]-4-Cl-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (118) 

Colourless solid, > 95% pure by NMR; isolated yield: 20.1 

mg, 30%; Rf 0.16 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
26.9 

= + 239.7° (c 0.005 g mL-1, methanol); 1H NMR DMSO-d6, 

500 MHz)  10.45 (s, 1H,1-Gly-CO2H), 8.48 (t, J = 5 Hz, 1 

H, 1-Gly-NH), 8.35 (d, J = 8 Hz, 1 H, 3-Phe-NH),  7.91 (d, J 

= 8.5 Hz, 1 H, 2-H6), 7.61 (s, 1 H, 2-H3), 7.51 (d, J = 8.5 Hz, 

2 H, 4-HAr2), 7.43 (s, 1 H, 4-H2), 7.42-7.39 (m, 4 H, 3-Phe-

HAr2, 4-HAr3), 7.36-7.34  (m, 3H, 4-HAr4, 3-Phe-HAr2,), 

7.33 (d, J = 8.5 Hz, 1 H, 4-H6), 7.32  (s, 1H, 2-NH), 7.25 (d, J = 8.5 Hz, 1 H, 2-H5), 

6.65 (d, J = 8.5 Hz, 1 H, 4-H5), 5.35 (br, 2H, 4-NH2), 5.16 (s, 2 H, 4-H), 4.83-4.78 

(dd, J = 9.5 , 5 Hz, 1 H, 3-Phe-H), 4.74-4.70 (apparent quin, J = 6 Hz, 1 H, 2-H),  

4.05 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.15-3.07 (dd, J = 9.5 , 5 Hz, 2 H, 3-Phe-H), 1.43-

1.41 (dd, J = 12, 6 Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.2 (1-

Gly-CO), 166.4 (4-CO), 163.9 (2-CO), 156.2 (3-Phe-CO), 144.1 (4-C3), 143.0 (2-

C2), 141.6 (4-C4), 137.2 (2-C4), 131.9 (2-C6), 131.1 (3-Phe-CAr1, 3-Phe-CAr3),  

131.0 (3-Phe-CAr4), 128.3 (4-CAr1, 4-CAr3), 128.0 (4-C2), 127.7 (4-CAr4), 127.4 

(3-Phe-CAr2, 4-CAr2),   121.7 (4-C6), 120.7 (4-C1), 116.6 (2-C1), 112.3 (4-C5), 

111.3 (2-C5), 104.7 (2-C3), 71.9 (2-C), 69.4 (4-C), 55.6 (3-Phe-C, 41.6 (1-Gly-

C1), 36.4 (3-Phe-C, 21.6 (2-Cppm; IR (neat)  (cm-1): 3358, 3034, 2979, 2931, 

1726, 1688, 1594, 1493, 1260, 1214, 754; ESI-MS found: 659 (M+H)+; HRMS m/z 

calculated for C35H35ClN4NaO7 (M+Na)+: 681.2086; Found: 681.2092. 

H2N-[O-Bn-(3-HABA)]-Tyr-[O-iPr-(2-HABA)]-Gly-CO2H (119) 

Colourless solid, > 95% pure by NMR; isolated yield: 12.6 mg, 20%; Rf 0.092 (SiO2, 

20% methanol in acetonitrile); [𝛼]𝐷
26.9 = + 16.4° (c 0.004 g mL-1, methanol); 1H NMR 
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DMSO-d6, 500 MHz)  10.38 (s, 1H,1-Gly-CO2H), 9.17 (s, 

1 H, 3-Tyr-OH), 8.47 (t, J = 5 Hz, 1 H, 1-Gly-NH), 8.25 (d, 

J = 8 Hz, 1 H, 3-Tyr-NH),  7.90 (d, J = 8.5 Hz, 1 H, 2-H6), 

7.62 (s, 1 H, 2-H3), 7.52 (d, J = 7.5 Hz, 2 H, 4-HAr2), 7.43 

(s, 1 H, 4-H2), 7.41 (t, J = 7.5 Hz, 2 H, 4-HAr3), 7.39  (s, 1H, 

2-NH), 7.34 (d, J = 8.5 Hz, 1 H, 4-H6), 7.33  (t, J = 7.5 Hz, 

1H, 4-HAr4), 7.25 (d, J = 8.5 Hz, 1 H, 2-H5), 7.18 (d, J = 8.5 

Hz, 2 H, 3-Tyr-HAr2), 6.65 (d, J = 8.5 Hz, 3 H, 4-H5, 3-Tyr-

HAr3), 5.34 (br, 2H, 4-NH2), 5.16 (s, 2 H, 4-H), 4.74-4.70 

(apparent quin, J = 6, 5 Hz, 2 H, 3-Tyr-H, 2-H),  4.06 (d, J = 5 Hz, 2 H, 1-Gly-

H1), 3.03-2.98 (dd, J = 13, 5 Hz, 2 H, 3-Tyr-H), 1.43-1.41 (dd, J = 12, 6 Hz, 6 H, 2-

H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.2 (1-Gly-CO), 166.4 (4-CO), 163.9 

(2-CO), 156.2 (3-Tyr-CO), 155.8 (3-Tyr-CAr4), 144.1 (4-C3), 143.1 (2-C2), 141.5 

(4-C4), 137.2 (2-C4), 131.9 (2-C6), 130.1 (3-Tyr-CAr1, 3-Tyr-CAr2),  128.4 (4-

CAr2), 128.1 (4-CAr1), 127.7 (4-C2), 127.4 (4-CAr3, 4-CAr4), 121.7 (4-C6), 120.9 

(4-C1), 116.5 (2-C1), 114.9 (3-Tyr-CAr3), 112.4 (4-C5), 111.3 (2-C5), 104.6 (2-C3), 

71.9 (2-C), 69.4 (4-C), 56.2 (3-Tyr-C, 41.6 (1-Gly-C1), 36.4 (3-Tyr-C, 21.6 

(2-Cppm; IR (neat)  (cm-1): 3457, 3327, 2977, 2932, 1727, 1680, 1594, 1493, 

1257, 1216; ESI-MS found: 641 (M+H)+; HRMS m/z calculated for C35H36N4NaO8 

(M+Na)+: 663.2425; Found: 663.2430. 

H2N-[O-Bn-(3-HABA)]-His-[O-iPr-(2-HABA)]-Gly-CO2H (120) 

Colourless solid, > 95% pure by NMR; isolated yield: 2.6 mg, 

4%; Rf 0.01 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
27.0 = + 

32.5° (c 0.002 g mL-1, methanol); 1H NMR DMSO-d6, 500 

MHz)  10.36 (s, 1H,1-Gly-CO2H), 8.47 (t, J = 5 Hz, 1 H, 1-

Gly-NH), 8.40 (d, J = 8 Hz, 1 H, 3-His-NH),  7.89 (d, J = 8.5 

Hz, 1 H, 2-H6), 7.86 (s, 1 H, 3-His-HAr5), 7.63 (s, 1 H, 2-H3), 

7.52 (d, J = 7.5 Hz, 2 H, 4-HAr2), 7.46 (s, 1 H, 4-H2), 7.41 (t, 

J = 7.5 Hz, 3 H, 4-HAr3, 4-HAr4), 7.35 (s, 1H, 2-NH), 7.34 

(d, J = 8 Hz, 1 H, 4-H6), 7.25 (d, J = 8.5 Hz, 1 H, 2-H5), 6.99 (s, 1 H, 3-His-HAr2), 

6.67 (d, J = 8 Hz, 1 H, 4-H5), 5.34 (br, 2H, 4-NH2), 5.16 (s, 2 H, 4-H), 4.80-4.76 
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(dd, J = 8, 6 Hz, 1 H, 3-His-H), 4.73-4.68 (apparent quin, J = 5.5 Hz, 1 H, 2-H), 

4.5 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.14-3.07 (dd, J = 9, 6 Hz, 2 H, 3-His-H), 1.42-

1.40 (dd, J = 10.5, 5.5 Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.2 

(1-Gly-CO), 166.2 (4-CO), 163.9 (2-CO), 156.2 (3-His-CO), 144.2 (4-C3), 143.1 (2-

C2), 141.6 (4-C4), 137.2 (2-C4), 134.5 (4-CAr4), 131.8 (2-C6), 129.6 (3-HisCAr4), 

128.4 (4-CAr2), 128.1 (4-CAr1, 4-CAr3), 127.7 (4-C2), 127.4 (3-His-CAr2), 121.6 

(4-C6), 120.8 (4-C1), 116.5 (2-C1), 115.3 (3-His-CAr5), 112.4 (4-C5), 111.4 (2-C5), 

104.7 (2-C3), 71.9 (2-C), 69.5 (4-C), 54.3 (3-His-C, 41.6 (1-Gly-C1), 28.8 (3-

His-C, 21.6 (2-Cppm; IR (neat)  (cm-1): 3456, 3356, 2980, 2931, 1728, 1688, 

1614, 1493, 1259, 1213; ESI-MS found: 615 (M+H)+; HRMS m/z calculated for 

C32H35N6O7 (M+H)+: 615.2562; Found: 615.2573. 

H2N-[ O-iBu-(2-HABA)]-Phe-[O-iPr-(2-HABA)]-Glu-CO2H (121) 

Colourless solid, > 90% pure by NMR; isolated yield: 16.5 

mg, 25%; Rf 0.14 (SiO2, 20% methanol in acetonitrile);  1H 

NMR (DMSO-d6, 500 MHz)  10.46 (s, 1H,1-Glu-CO2H), 

8.49 (d, J = 7 Hz, 1 H, 1-Glu-NH), 8.25 (d, J = 8 Hz, 1 H, 

3-Phe-NH),  7.85 (d, J = 8.5 Hz, 1 H, 2-H6), 7.65 (d, J = 

8.5 Hz, 1 H, 4-H6), 7.58 (s, 1 H, 2-H3), 7.29 (s, 1H, 2-NH), 

7.26 (d, J = 7 Hz, 2 H, 3-Phe-HAr3), 7.23-7.20 (m, 3 H, 3-

Phe-HAr2, 3-Phe-HAr4), 7.16(d, J = 8.5 Hz, 1 H, 2-H5), 

6.25 (s, 1 H, 4-H3), 6.19 (d, J = 8.5 Hz, 1 H, 4-H5), 5.78 (br, 2H, 4-NH2), 5.05-5.00 

(dd, J = 13.5, 7.5 Hz, 1 H, 3-Phe-H), 4.72-4.68 (apparent quin, J = 6 Hz, 1 H, 2-H),  

4.54-4.51 (dd, J = 11.5, 5 Hz, 1 H, 1-Glu-H), 3.78 (d, J = 6.5 Hz, 2 H, 4-H), 3.19-

3.14 (dd, J = 13.5, 6 Hz, 1 H, 3-Phe-H), 3.02-2.99 (dd, J = 13.5, 7.5 Hz, 1 H, 3-Phe-

H'), 2.32-2.27 (dd, J = 12, 5 Hz, 2 H, 1-Glu-H), 2.1-2.06 (m, 2H, 1-Glu-H, 4-H), 

2.05-1.93 (apparent quin, J = 5 Hz, 1 H, 1-Glu-H'), 1.43-1.39 (dd, J = 9.5, 6 Hz, 6 

H, 2-H), 1.00-0.97 (dd, J = 11, 6.5 Hz, 6 H, 4-H) ppm; 13C NMR (DMSO-d6, 126 

MHz) : 173.6 (1-Glu-CO), 173.0 (1-Glu-CO), 170.6 (3-Phe-CO), 164.4 (4-CO), 

163.7 (2-CO), 158.7 (4-C2), 156.0 (2-C2), 153.6 (4-C4), 142.8 (2-C4), 136.9 (3-Phe-

CAr1), 132.7 (4-C6), 131.8 (2-C6), 129.0 (3-Phe-CAr3), 128.2 (3-Phe-CAr2), 126.5 

(3-Phe-CAr4), 116.8 (2-C1), 111.3 (2-C5), 107.8 (4-C5), 106.2 (2-C3), 104.6 (4-C1), 
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96.7 (4-C3), 74.7 (4-C), 71.7 (2-C), 54.5 (3-Phe-C, 51.6 (1-Glu-C), 38.4 (3-

Phe-C, 29.8 (1-Glu-C), 27.5 (4-C, 27.1 (1-Glu-C), 21.6 (2-C19.2 (4-C 

ppm; IR (neat)  (cm-1): 3473, 3357, 3088, 2962, 2930, 1702, 1626, 1592, 1494, 1257, 

1198; ESI-MS found: 663 (M+H)+; HRMS m/z calculated for C35H42N4NaO9 

(M+Na)+: 685.2844; Found: 685.2849. 

H2N-Glu-[ O-iBu-(2-HABA)]-Phe-[O-iPr-(2-HABA)]-Glu-CO2H (122) 

 Pale yellow solid, > 90% pure by NMR; isolated yield: 

4.1 mg, 5%; Rf 0.02 (SiO2, 20% methanol in acetonitrile);  

1H NMR (DMSO-d6, 500 MHz)  10.48 (s, 1H,1-Glu-

CO2H), 8.57 (d, J = 6.5 Hz, 1 H, 1-Glu-NH), 8.41 (d, J = 

8 Hz, 1 H, 3-Phe-NH),  7.87 (d, J = 8.5 Hz, 1 H, 2-H6), 

7.84 (d, J = 8.5 Hz, 1 H, 4-H6), 7.55 (s, 2 H, 2-H3, 4-H3), 

7.28 (s, 1H, 2-NH), 7.24 (d, J = 7 Hz, 2 H, 3-Phe-HAr3), 

7.25 (d, J = 8.5 Hz, 1 H, 4-H5),7.19-7.18 (m, 3 H, 3-Phe-

HAr2, 3-Phe-HAr4), 7.16 (d, J = 8.5 Hz, 1 H, 2-H5), 7.14 

(s, 1 H, 4-NH), 5.31 (br, 2H, 4-NH2), 5.05-5.00 (dd, J = 

13.5, 7.5 Hz, 1 H, 3-Phe-H), 4.69-4.64 (apparent quin, J = 6 Hz, 1 H, 2-H),  4.45-

4.41 (dd, J = 13, 6.5 Hz, 1 H, 1-Glu-H), 3.84 (d, J = 6.5 Hz, 2 H, 4-H), 3.64 (t, J = 

6.5 Hz, 1 H, 5-Glu-H), 3.21-3.17 (dd, J = 13.5, 7.5 Hz, 1 H, 3-Phe-H), 3.06-3.01 

(dd, J = 13.5, 7.5 Hz, 1 H, 3-Phe-H'), 2.35 (t, J = 7 Hz, 2 H, 5-Glu-H2.27 (t, J = 

7.5 Hz, 2 H, 1-Glu-H), 2.10-2.06 (apparent quin, J = 6.5 Hz, 1 H, 4-H, 2.01-1.95 

(m, 3H, 1-Glu-H, 5-Glu-H), 1.87-1.81 (apparent quin, J = 6.5 Hz, 1 H, 5-Glu-H'), 

1.41-1.36 (dd, J = 9.5, 6 Hz, 6 H, 2-H), 0.98-0.94 (dd, J = 11.5, 6.5 Hz, 6 H, 4-H) 

ppm; 13C NMR (DMSO-d6, 126 MHz) : 173.8 (5-Glu-CO, 5-Glu-CO), 173.1 (1-

Glu-CO), 171.9 (1-Glu-CO), 170.2 (3-Phe-CO), 163.5 (4-CO), 163.4 (2-CO), 157.4 

(4-C2), 156.1 (2-C2), 142.7 (4-C4), 142.6 (2-C4), 136.7 (3-Phe-CAr1), 131.9 (2-C6), 

129.6 (4-C6), 129.0 (3-Phe-CAr3), 128.2 (3-Phe-CAr2), 126.5 (3-Phe-CAr4), 117.1 

(2-C1, 4-C1), 111.3 (4-C5), 111.2 (2-C5), 104.7 (2-C3), 103.3 (4-C3), 75.2 (4-C), 

71.7 (2-C), 56.5 (3-Phe-C, 54.7 (5-Glu-C), 52.0 (1-Glu-C), 35.1 (3-Phe-C, 

30.3 (1-Glu-C), 28.7 (5-Glu-C), 27.5 (4-C, 26.6 (1-Glu-C), 25.1 (5-Glu-C), 
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21.5 (2-C19.0 (4-C ppm; IR (neat)  (cm-1): 3359, 2931, 1692, 1632, 1595, 1495, 

1261, 1199; HRMS m/z calculated for C40H50N5O12 (M+H)+: 792.3450; Found: 

792.3451. 

H2N-Arg-[ O-iBu-(2-HABA)]-Phe-[O-iPr-(2-HABA)]-Glu-CO2H (123) 

Orange solid, > 90% pure by NMR; isolated yield: 7 mg, 

9%; Rf 0.042 (SiO2, 20% methanol in acetonitrile);  1H 

NMR (DMSO-d6, 500 MHz)  10.54 (s, 1H,1-Glu-

CO2H), 8.62 (br, 2 H, 1-Glu-NH, 5-Arg-NH), 8.41 (d, J 

= 8 Hz, 1 H, 3-Phe-NH),  7.88 (d, J = 8.5 Hz, 1 H, 4-H6), 

7.86 (s, 1 H, 4-H3), 7.85 (d, J = 8.5 Hz, 1 H, 2-H6), 7.60 

(s, 1 H, 2-H5), 7.54 (d, J = 7 Hz, 2 H, 3-Phe-HAr2), 7.39 

(d, J = 8.5 Hz, 1 H, 4-H3),7.34 (br, 1 H, 5-Arg-NH),  

7.31 (t, J = 7 Hz, 1 H, 3-Phe-HAr4), 7.25 (s, 1H, 2-NH), 

7.23 (t, J = 7 Hz, 1 H, 3-Phe-HAr3), 7.17 (d, J = 8.5 Hz, 

1 H, 2-H5), 7.15 (s, 1H, 4-NH), 5.31 (t, J = 5 Hz, 2H, 5-Arg-NH2), 5.05-5.02 (dd, J = 

13.5, 7.5 Hz, 1 H, 3-Phe-H), 4.72-4.62 (m, J = 6 Hz, 2 H, 2-H5-Arg-H),  4.39-

4.35 (m, 2 H, 1-Glu-H-Arg-NH), 3.83 (d, J = 6.5 Hz, 2 H, 4-H),  3.16-3.11 (m, 

2 H, 3-Phe-H5-Arg-H), 3.01-2.97 (m, 2 H, 3-Phe-H', 5-Arg-H'), 2.27-2.24 (m, 

4 H, 1-Glu-H, 5-Arg-H), 2.11-2.05 (apparent quin, J = 6.5 Hz, 1 H, 4-H), 2.00-

1.96 (m, 3 H, 5-Arg-H 1-Glu-H), 1.82-1.76 (quin, J = 6 Hz, 1 H, 5-Arg-H'), 1.41-

1.38 (dd, J = 11.5, 6 Hz, 6 H, 2-H), 0.98-0.94 (dd, J = 14.5, 6.5 Hz, 6 H, 4-H)  ppm; 

13C NMR (DMSO-d6, 126 MHz) : 174.8 (5-Arg-CO), 174.0 (1-Glu-CO), 173.5 (1-

Glu-CO), 170.2 (3-Phe-CO), 163.5 (4-CO), 160.8 (2-CO), 157.4 (5-Arg-CN), 156.9 

(4-C2), 156.1 (2-C2), 142.8 (4-C4), 142.6 (2-C4), 136.8 (3-Phe-CAr1), 132.0 (2-C6), 

129.3 (4-C6), 129.1 (3-Phe-CAr3), 128.2 (3-Phe-CAr2), 126.5 (3-Phe-CAr4), 117.2 

(4-C1), 115.9 (2-C1), 111.3 (4-C5, 2-C5), 104.7 (2-C3), 103.3 (2-C3), 75.2 (4-C), 

71.7 (2-C), 59.8 (5-Arg-C), 54.7 (3-Phe-C, 52.4 (1-Glu-C), 45.5 (5-Arg-C), 

38.2 (3-Phe-C, 29.0 (1-Glu-C), 27.7 (1-Glu-C), 27.4 (4-C, 24.6 (5-Arg-C), 

22.0 (5-Arg-C), 21.5 (2-C4-C ppm; IR (neat)  (cm-1): 3358, 3172, 2966, 
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2929, 1671, 1597, 1496, 1262, 1199; HRMS m/z calculated for C41H56N8O10 

(M+2H)2+: 410.2054; Found: 410.2063. 

H2N-[ O-iBu-(2-HABA)]-Phe-[O-iPr-(2-HABA)]-Pro-CO2H (124) 

Pale brown solid, > 90% pure by NMR; isolated yield: 

25.5 mg, 41%; Rf 0.5 (SiO2, 20% methanol in 

acetonitrile);  1H NMR (DMSO-d6, 500 MHz)  10.36 

(s, 1H,1-Pro-CO2H), 8.41 (d, J = 7 Hz, 1 H, 3-Phe-NH),  

7.87 (d, J = 8.5 Hz, 1 H, 2-H6), 7.86 (d, J = 8.5 Hz, 1 H, 

4-H6), 7.55 (s, 1 H, 2-H3), 7.38 (s, 1 H, 4-H3), 7.28 (s, 

1H, 2-NH), 7.25 (d, J = 7 Hz, 1 H, 3-Phe-HAr4), 7.23 

(d, J = 8.5 Hz, 1 H, 4-H5), 7.20-7.18 (m, 4 H, 3-Phe-

HAr2, 3-Phe-HAr3), 7.11 (s, 1H, 4-NH), 7.08 (d, J = 8.5 

Hz, 1 H, 2-H5), 5.05-5.01 (dd, J = 13.5, 7.5 Hz, 1 H, 3-Phe-H), 4.49-4.44 (apparent 

quin, J = 6 Hz, 1 H, 2-H),  4.34-4.31 (dd, J = 9.5, 5 Hz, 1 H, 1-Pro-H), 3.84 (d, J 

= 6.5 Hz, 2 H, 4-H),  3.21-3.17 (dd, J = 13.5, 6 Hz, 1 H, 3-Phe-H), 3.05-3.00 (m, 3 

H, 3-Phe-H', 1-Pro-H), 2.23-2.19 (dd, J = 9.5, 5 Hz, 1 H, 1-Pro-H), 2.10-2.05 

(apparent quin, J = 6.5 Hz, 1H, 4-H), 2.01-1.97 (dd, J = 9.5, 5 Hz, 1 H, 1-Pro-H'), 

1.26-1.23 (dd, J = 9.5, 6 Hz, 6 H, 2-H), 1.16-1.13 (t, J = 9.5, 2 H, 1-Pro-H), 0.99-

0.94 (dd, J = 13.5, 6.5 Hz, 6 H, 4-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 173.3 

(1-Pro-CO), 169.8 (3-Phe-CO), 166.5 (2-CO), 163.5 (4-CO), 157.4 (4-C2, 2-C2), 

142.6 (4-C4), 140.5 (2-C4), 136.8 (3-Phe-CAr1), 132.0 (4-C6, 2-C6), 129.1 (3-Phe-

CAr3), 128.2 (3-Phe-CAr2), 126.5 (3-Phe-CAr4), 123.1 (4-C1), 116.0 (2-C1), 111.4 

(4-C5), 111.2 (2-C5), 105.3 (4-C3), 103.4 (2-C3), 75.2 (4-C), 70.5 (2-C), 58.2 (1-

Pro-C, 54.6 (3-Phe-C, 45.6 (1-Pro-C, 38.3 (3-Phe-C, 29.2 (1-Pro-C, 27.8 

(1-Pro-C, 27.5 (4-C, 21.6 (2-C19.1 (4-C ppm; IR (neat)  (cm-1): 3367, 

3031, 2958, 2927, 1725, 1596, 1498, 1268, 1199; ESI-MS found: 631 (M+H)+; 

HRMS m/z calculated for C35H43N4O7 (M+H)+: 631.3126; Found: 631.3136. 

H2N-Glu-[ O-iBu-(2-HABA)]-Phe-[O-iPr-(2-HABA)]-Pro-CO2H (125) 

Pale yellow solid, > 90% pure by NMR; isolated yield: 19.4 mg, 26%; Rf 0.03 (SiO2, 

20% methanol in acetonitrile);  1H NMR (DMSO-d6, 500 MHz)  10.36 (s, 1H,1-Pro-
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CO2H), 8.41 (d, J = 7 Hz, 1 H, 3-Phe-NH),  7.87 (d, J = 

8.5 Hz, 1 H, 2-H6), 7.86 (d, J = 8.5 Hz, 1 H, 4-H6), 7.55 

(s, 1 H, 2-H3), 7.38 (s, 1 H, 4-H3), 7.28 (s, 1H, 2-NH), 

7.25 (d, J = 7 Hz, 1 H, 3-Phe-HAr4), 7.23 (d, J = 8.5 Hz, 

1 H, 4-H5), 7.20-7.18 (m, 4 H, 3-Phe-HAr2, 3-Phe-

HAr3), 7.11 (s, 1H, 4-NH), 7.08 (d, J = 8.5 Hz, 1 H, 2-

H5), 5.05-5.01 (dd, J = 13.5, 7.5 Hz, 1 H, 3-Phe-H), 

4.49-4.44 (apparent quin, J = 6 Hz, 1 H, 2-H),  4.34-4.31 

(dd, J = 9.5, 5 Hz, 1 H, 1-Pro-H), 3.84 (d, J = 6.5 Hz, 2 

H, 4-H), 3.73-3.71 (t, J = 7 Hz, 1 H, 5-Glu-H), 3.21-

3.17 (dd, J = 13.5, 6 Hz, 1 H, 3-Phe-H), 3.05-3.00 (m, 3 H, 3-Phe-H', 1-Pro-H), 

2.37-2.34 (dd, J = 14.5, 7 Hz, 2 H, 5-Glu-H), 2.23-2.19 (dd, J = 9.5, 5 Hz, 1 H, 1-

Pro-H), 2.10-2.05 (apparent quin, J = 6.5 Hz, 1H, 4-H), 2.01-1.97 (dd, J = 9.5, 5 

Hz, 1 H, 1-Pro-H'), 1.90-1.85 (m, 2H, 5-Glu-H), 1.26-1.23 (dd, J = 9.5, 6 Hz, 6 H, 

2-H), 1.16-1.13 (t, J = 9.5, 2 H, 1-Pro-H), 0.99-0.94 (dd, J = 13.5, 6.5 Hz, 6 H, 4-

H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 177.4 (5-Glu-CO), 173.6 (5-Glu-CO), 

173.3 (1-Pro-CO), 169.8 (3-Phe-CO), 166.5 (2-CO), 163.5 (4-CO), 157.4 (4-C2, 2-

C2), 142.6 (4-C4), 140.5 (2-C4), 136.8 (3-Phe-CAr1), 132.0 (4-C6, 2-C6), 129.1 

(3-Phe-CAr3), 128.2 (3-Phe-CAr2), 126.5 (3-Phe-CAr4), 123.1 (4-C1), 116.0 (2-C1), 

111.4 (4-C5), 111.2 (2-C5), 105.3 (4-C3), 103.4 (2-C3), 75.2 (4-C), 70.5 (2-C), 

58.2 (1-Pro-C, 54.6 (3-Phe-C, 53.7 (5-Glu-C), 45.6 (1-Pro-C, 38.3 (3-Phe-

C, 30.1 (5-Glu-C), 29.2 (1-Pro-C, 27.8 (1-Pro-C, 27.5 (4-C, 24.3 (5-Glu-

C), 21.7 (2-C19.1 (4-C ppm; IR (neat)  (cm-1): 3356, 3190, 2930, 1692, 1595, 

1495, 1261, 1199; ESI-MS found: 760 (M+H)+; HRMS m/z calculated for 

C40H50N5O10 (M+H)+: 760.3552; Found: 760.3561. 

H2N-Arg-[ O-iBu-(2-HABA)]-Phe-[O-iPr-(2-HABA)]-Pro-CO2H (126) 

Pale yellow solid, > 90% pure by NMR; isolated yield: 25.8 mg, 33%; Rf 0.021 (SiO2, 

20% methanol in acetonitrile);  1H NMR (DMSO-d6, 500 MHz)  10.40 (s, 1H,1-Pro-

CO2H), 8.40 (d, J = 7 Hz, 1 H, 3-Phe-NH),  7.89 (d, J = 8.5 Hz, 1 H, 4-H6), 7.53 (s, 

1 H, 4-H3), 7.37 (s, 1 H, 1-H3), 7.30 (s, 1 H, 5-Arg-H), 7.31 (s, 1H, 2-NH), 7.29 (d, 
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J = 7 Hz, 2 H, 3-Phe-HAr2), 7.24 (d, J = 8.5 Hz, 1 H, 

4-H5), 7.25 (d, J = 7 Hz, 2 H, 3-Phe-HAr3),  7.20 (d, J = 

8.5 Hz, 1 H, 2-H6), 7.20 (t, J = 7 Hz, 1 H, 3-Phe-HAr4), 

7.12 (s, 1H, 4-NH), 7.08 (d, J = 8.5 Hz, 1 H, 2-H5), 5.04-

5.00 (dd, J = 13.5, 7.5 Hz, 1 H, 3-Phe-H), 4.50-4.44 

(apparent quin, J = 6 Hz, 2 H, 2-H5-Arg-H),  4.34-

4.31 (dd, J = 9.5, 5 Hz, 1 H, 1-Pro-H), 3.83 (d, J = 6.5 

Hz, 4 H, 4-H5-Arg-H), 3.21-3.18 (dd, J = 13.5, 6 Hz, 

1 H, 3-Phe-H), 3.13 (t, J = 7 Hz, 2 H, 1-Pro-H), 3.09-

3.05 (dd, J = 14, 7.5 Hz, 2 H, 5-Arg-H), 2.68-2.66 (m, 1 

H, 3-Phe-H'), 2.23-2.19 (dd, J = 9.5, 5 Hz, 1 H, 1-Pro-H), 2.11-2.06 (apparent quin, 

J = 6.5 Hz, 1H, 4-H), 2.01-1.97 (dd, J = 9.5, 5 Hz, 1 H, 1-Pro-H'), 1.89-1.83 (m, 

3H, 5-Arg-H5-Arg-H), 1.56-1.51 (dd, J = 9.5, 6 Hz, 1H, 5-Arg-H'), 1.26-1.24 

(dd, J = 9.5, 6 Hz, 6 H, 2-H), 1.18-1.15 (t, J = 9.5, 2 H, 1-Pro-H), 0.99-0.94 (dd, J 

= 13.5, 6.5 Hz, 6 H, 4-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 173.3 (5-Arg-

CO), 169.9 (1-Pro-CO), 166.4 (3-Phe-CO), 163.4 (4-CO), 157.9 (2-CO), 157.4 (5-

Arg-CN), 156.7 (4-C2), 153.5 (2-C2), 142.4 (4-C4), 140.5 (2-C4), 136.8 (3-Phe-

CAr1), 131.1 (2-C6), 129.9(4-C6), 129.1 (3-Phe-CAr3), 128.4 (3-Phe-CAr2), 126.5 

(3-Phe-CAr4), 123.1 (4-C1), 116.2 (2-C1), 111.4 (4-C5), 111.2 (2-C5), 105.3 (4-C3), 

103.3 (2-C3), 75.2 (4-C), 70.6 (2-C), 58.2 (1-Pro-C, 54.6 (3-Phe-C, 47.5 (5-

Arg-C), 45.7 (1-Pro-C, 38.3 (3-Phe-C, 30.6 (5-Arg-C), 29.2 (1-Pro-C, 29.0 

(1-Pro-C, 27.4 (4-C, 24.3 (5-Arg-C), 22.5 (5-Arg-C), 21.7 (2-C19.0 (4-C 

ppm; IR (neat)  (cm-1): 3359, 3183, 2959, 2930, 1672, 1596, 1496, 1262, 1199; 

HRMS m/z calculated for C41H56N8O8 (M+2H)2+: 394.2105; Found: 394.2114. 

H2N-Glu-[ O-iBu-(2-HABA)]-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (127) 

Pale yellow solid, > 90% pure by NMR; isolated yield: 8.9 mg, 12%; Rf 0.61 (SiO2, 

20% methanol in acetonitrile);  1H NMR (DMSO-d6, 500 MHz)  10.49 (s, 1H,1-Gly-

CO2H), 10.49 (s, 1H,1-Glu-CO2H), 8.47 (t, J = 5 Hz, 1 H, 1-Gly-NH), 8.41 (d, J = 8 

Hz, 1 H, 3-Phe-NH),  7.87 (d, J = 8.5 Hz, 1 H, 2-H6), 7.86 (d, J = 8.5 Hz, 1 H, 4-H6), 

7.56 (s, 1 H, 4-H3), 7.55 (s, 1 H, 2-H3), 7.28 (s, 1H, 2-NH), 7.25 (t, J = 7 Hz, 1 H, 3-
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Phe-HAr4), 7.23 (d, J = 8.5 Hz, 1 H, 4-H5), 7.21 (s, 1H, 

4-NH), 7.20-7.18 (m, 4 H, 3-Phe-HAr2, 3-Phe-HAr3), 

7.16 (d, J = 8.5 Hz, 1 H, 2-H5), 5.30 (br, 2H, 5-Glu-NH2), 

5.05-5.01 (dd, J = 13.5, 7.5 Hz, 1 H, 3-Phe-H), 4.69-

4.64 (apparent quin, J = 6 Hz, 1 H, 2-H),  3.97 (d, J = 5 

Hz, 2 H, 1-Gly-H1), 3.84 (d, J = 6.5 Hz, 2 H, 4-H), 3.21-

3.17 (dd, J = 13.5, 6 Hz, 1 H, 3-Phe-H), 3.05-3.01 (dd, J 

= 13.5, 7.5 Hz, 1 H, 3-Phe-H'), 2.99-2.97 (dd, J = 13, 7 

Hz, 1 H, 5-Glu-H), 2.36-2.3 (dd, J = 14, 7 Hz, 2 H, 5-

Glu-H), 2.1-2.06 (apparent quin, J = 6.5 Hz, 1H, 4-H), 

2.01-1.95 (m, 2H, 5-Glu-H), 1.41-1.38 (dd, J = 9.5, 6 Hz, 6 H, 2-H), 0.98-0.94 (dd, 

J = 11, 6.5 Hz, 6 H, 4-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 173.9 (5-Glu-

CO), 173.0 (5-Glu-CO), 171.3 (1-Gly-CO), 170.2 (3-Phe-CO), 163.7 (4-CO), 163.5 

(2-CO), 157.4 (4-C2), 156.2 (2-C2), 153.6 (4-C4, 2-C4), 136.7 (3-Phe-CAr1), 132.9 

(4-C6, 2-C6), 129.0 (3-Phe-CAr3), 128.2 (3-Phe-CAr2), 126.5 (3-Phe-CAr4), 116.9 

(2-C1, 4-C1), 111.4 (4-C5), 111.1 (2-C5), 104.8 (4-C3), 103.3 (2-C3), 75.1 (4-C), 

71.9 (2-C), 54.7 (3-Phe-C, 40.1 (1-Gly-C1), 38.2 (5-Glu-C), 35.1 (3-Phe-C, 

31.2 (5-Glu-C), 28.7 (4-C, 27.5 (5-Glu-C), 21.6 (2-C19.1 (4-C ppm; IR 

(neat)  (cm-1): 3358, 3270, 3168, 2958, 2925, 1691, 1594, 1494, 1259, 1200; ESI-

MS found: 720 (M+H)+; HRMS m/z calculated for C37H46N5O10 (M+H)+: 720.3239; 

Found: 720.3249. 

H2N-Arg-[ O-iBu-(2-HABA)]-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (128) 

Orange solid, > 90% pure by NMR; isolated yield: 12.8 mg, 18%; Rf 0.01 (SiO2, 20% 

methanol in acetonitrile);  1H NMR (DMSO-d6, 500 MHz)  10.48 (s, 1H,1-Gly-

CO2H), 8.53 (t, J = 5 Hz, 2 H, 1-Gly-NH, 5-Arg-NH), 8.40 (d, J = 7 Hz, 1 H, 3-Phe-

NH),  7.93 (s, 1 H, 4-H3), 7.91 (d, J = 8.5 Hz, 1 H, 4-H6), 7.90 (s, 1 H, 2-H3), 7.85 

(d, J = 8.5 Hz, 1 H, 2-H6), 7.54 (d, J = 7 Hz, 2 H, 3-Phe-HAr2), 7.46 (s, 1H, 4-NH), 

7.42 (br, 2 H, 5-Arg-NH), 7.35 (d, J = 8.5 Hz, 1 H, 4-H5), 7.31 (t, J = 7 Hz, 1 H, 3-

Phe-HAr4), 7.25 (s, 1H, 2-NH), 7.24 (t, J = 7 Hz, 1 H, 3-Phe-HAr3),7.19 (d, J = 8.5 

Hz, 1 H, 2-H5), 5.31 (t, J = 5 Hz, 2H, 5-Arg-NH2), 5.05-5.01 (dd, J = 13.5, 7.5 Hz, 1 
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H, 3-Phe-H), 4.70-4.63 (m, J = 6 Hz, 2 H, 2-H5-Arg-

H),  3.88-3.82 (m, 6 H, 1-Gly-H1, 4-H-Arg-NH2), 

3.12-3.09 (m, 3 H, 3-Phe-H5-Arg-H), 2.65-2.62 (dd, J 

= 13.5, 7.5 Hz, 1 H, 3-Phe-H'), 2.07-2.04 (quin, J = 6.5 

Hz, 1 H, 5-Arg-H), 2.01-1.96 (m, 4 H, 5-Arg-H5-Arg-

H', 4-H), 1.39-1.36 (dd, J = 11.5, 6 Hz, 12 H, 2-H4-

H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 174.2 (5-

Arg-CO), 171.6 (1-Gly-CO), 170.2 (3-Phe-CO), 169.6 (4-

CO), 163.4 (2-CO), 160.8 (5-Arg-CN), 157.0 (4-C2), 

156.1 (2-C2), 143.0 (4-C4), 142.2 (2-C4), 136.8 (3-Phe-

CAr1), 131.9 (2-C6), 129.6 (4-C6), 129.0 (3-Phe-CAr3), 128.2 (3-Phe-CAr2), 127.6 

(3-Phe-CAr4), 117.5 (4-C1), 117.1 (2-C1), 111.6 (4-C5), 111.3 (2-C5), 105.1 (2-C3), 

104.8 (2-C3), 75.2 (4-C), 71.8 (2-C), 59.9 (3-Phe-C, 42.9 (1-Gly-C1), 35.1 (5-

Arg-C), 34.3 (3-Phe-C, 31.2 (5-Arg-C), 29.0 (4-C, 27.5 (5-Arg-C), 25.1 (5-

Arg-C), 21.5 (2-C4-C ppm; IR (neat)  (cm-1): 3359, 3181, 2921, 2851, 

1630, 1595, 1492, 1258, 1200; HRMS m/z calculated for C38H52N8O8 (M+2H)2+: 

374.1949; Found: 374.1953. 

H2N-[O-Bn-(3-HABA)]-D-Phe-[O-iPr-(2-HABA)]-Gly-CO2H (129) 

Colourless solid, > 95% pure by NMR; isolated yield: 10.3 mg, 

17%; Rf 0.82 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
27.5 = - 

23.4° (c 0.008 g mL-1, methanol); 1H NMR (DMSO-d6, 500 

MHz)  10.46 (s, 1H,1-Gly-CO2H), 8.47 (t, J = 5 Hz, 1 H, 1-

Gly-NH), 8.35 (d, J = 8 Hz, 1 H, 3-D-Phe-NH),  7.89 (d, J = 

8.5 Hz, 1 H, 2-H6), 7.64 (s, 1 H, 2-H3), 7.50 (d, J = 8.5 Hz, 2 

H, 3- D-Phe-HAr2), 7.42 (s, 1 H, 4-H2), 7.40-7.37 (m, 5 H, 

4-HAr2, 4-H-Ar3, 4-HAr4), 7.32 (t, J = 8.5 Hz, 2 H, 3- D-

Phe-HAr3), 7.26 (d, J = 8.5 Hz, 2 H, 4-H6, 2-H5), 7.25 (s, 1H, 2-NH), 7.17 (t, J = 8.5 

Hz, 1H, 3- D-Phe-HAr4), 6.62 (d, J = 8.5 Hz, 1 H, 4-H5), 5.32 (br, 2H, 4-NH2), 5.15 

(s, 2 H, 4-H), 4.82-4.77 (dd, J = 8.5 , 5.5 Hz, 1 H, 3-D-Phe-H), 4.73-4.68 (quin, J 

= 6 Hz, 1 H, 2-H),  4.01 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.13-3.09 (dd, J = 8.5 , 5.5 
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Hz, 2 H, 3- D-Phe-H), 1.45-1.43 (dd, J = 8.5, 6 Hz, 6 H, 2-H), ppm; 13C NMR 

(DMSO-d6, 126 MHz) : 171.5 (1-Gly-CO), 166.4 (4-CO), 163.9 (2-CO), 156.2 (3-

D-Phe-CO), 144.0 (4-C3), 143.0 (2-C2), 141.5 (4-C4), 138.2 (2-C4), 137.2 (2-C6), 

131.9 (4-CAr1), 129.2 (3- D-Phe-CAr3), 128.4 (4-CAr2, 4-CAr3), 128.1 (4-CAr4), 

127.7 (4-C2), 127.4 (3- D-Phe-CAr2, 3- D-Phe-CAr4), 126.3 (3- D-Phe-CAr1), 121.8 

(4-C6), 120.8 (4-C1), 116.6 (2-C1), 112.3 (4-C5), 111.4 (2-C5), 104.7 (2-C3), 71.9 

(2-C), 69.4 (4-C), 55.9 (3- D-Phe-C, 41.9 (1-Gly-C1), 37.1 (3- D-Phe-C, 21.6 

(2-Cppm; IR (neat)  (cm-1): 3358, 3032, 2979, 2929, 1682, 1596, 1494, 1258, 

1211; ESI-MS found: 625 (M+H)+; HRMS m/z calculated for C35H37N4O7 (M+H)+: 

625.2657; Found: 625.2668.  

H2N-[O-Bn-(3-HABA)]-D-Trp-[O-iPr-(2-HABA)]-Gly-CO2H (130) 

 Pale brown solid, > 90% pure by NMR; isolated yield: 5 mg, 

8%; Rf 0.083 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
28.3 = - 

137.6° (c 0.007 g mL-1, methanol); 1H NMR (DMSO-d6, 500 

MHz)  10.83 (s, 1 H, 3-D-Trp-NH'), 10.45 (s, 1H,1-Gly-

CO2H), 8.48 (t, J = 5 Hz, 1 H, 1-Gly-NH), 8.24 (d, J = 7.5 Hz, 

1 H, 3-D -Trp-NH),  7.90 (d, J = 8.5 Hz, 1 H, 2-H6), 7.75 (d, 

J = 7.5 Hz, 1 H, 3-D-Trp-HAr4), 7.65 (s, 1 H, 2-H3), 7.51 (d, 

J = 7.5 Hz, 2 H, 4-HAr2), 7.45 (s, 1 H, 4-H2), 7.41 (t, J = 7.5 

Hz, 3 H, 4-HAr3, 4-HAr4), 7.35-7.32 (m, 3 H, 4-H6, 3-D-Trp-HAr7, 2-NH), 7.28 (s, 

1 H, 3-D-Trp-HAr2), 7.26 (d, J = 8.5 Hz, 1 H, 2-H5), 7.07 (t, J = 7.5 Hz, 1H, 3-D-

Trp-HAr6), 6.99 (t, J = 7.5 Hz, 1H, 3-D-Trp-HAr5), 6.64 (d, J = 8Hz, 1 H, 4-H5), 

5.33 (br, 2H, 4-NH2), 5.18-5.11 (dd, J = 12, 4 Hz, 2 H, 4-H), 4.89-4.84 (dd, J = 9, 5 

Hz, 1 H, 3-D-Trp-H), 4.74-4.69 (apparent quin, J = 6 Hz, 1 H, 2-H),  4.04 (d, J = 

5 Hz, 2 H, 1-Gly-H1), 3.28-3.24 (dd, J = 11 , 5 Hz, 2 H, 3-D-Trp-H), 1.43-1.41 (dd, 

J = 9.5, 6 Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.2 (1-Gly-CO), 

164.5 (4-CO), 163.9 (2-CO), 158.2 (3-D-Trp-CO), 156.2 (4-C1), 155.9 (2-C2), 153.5 

(4-C4), 143.1 (2-C4), 136.1 (4-C3), 132.7 (3-D-Trp-CAr7a), 131.8 (2-C6), 129.6 (3-

D-Trp-CAr3a), 128.5 (4-CAr3, 4-CAr4), 128.1 (4-CAr1), 128.0 (4-CAr2, 3-D-Trp-

CAr3), 127.1 (3-D-Trp-CAr2), 125.2 (4-C6), 123.3 (3-D-Trp-CAr7), 120.9 (3-D-Trp-

CAr5), 118.2 (3-D-Trp-CAr4), 116.5 (3-D-Trp-CAr6), 111.3 (2-C1), 109.4 (4-C5), 
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108.2 (4-C2), 106.5 (2-C5), 97.2 (2-C3), 71.9 (2-C), 69.8 (4-C), 48.6 (3-D-Trp-

C, 41.6 (1-Gly-C1), 28.0 (3-D -Trp-C, 21.6 (2-Cppm; IR (neat)  (cm-1): 3384, 

2922, 1634, 1597, 1494, 1259, 1216; ESI-MS found: 664 (M+H)+; HRMS m/z 

calculated for C37H37N5NaO7 (M+Na)+: 686.2585; Found: 686.2590. 

H2N-[O-Bn-(2-HABA)]-D-Trp-[O-iPr-(2-HABA)]-Gly-CO2H (131) 

Brown solid, > 90% pure by NMR; isolated yield: 5.3 mg, 

8%; Rf 0.083 (SiO2, 20% methanol in acetonitrile); [𝛼]𝐷
28.3 

= - 32.1° (c 0.003 g mL-1, methanol); 1H NMR (DMSO-

d6, 500 MHz)  10.78 (s, 1 H, 3-D-Trp-NH'), 10.47 (s, 

1H,1-Gly-CO2H), 8.49 (t, J = 5 Hz, 1 H, 1-Gly-NH), 8.19 

(d, J = 6.5 Hz, 1 H, 3- D-Trp-NH),  7.90 (d, J = 8.5 Hz, 1 

H, 2-H6), 7.64 (d, J = 8.5 Hz, 1 H, 4-H6), 7.63 (s, 1 H, 2-

H3), 7.55 (d, J = 8 Hz, 1 H, 3- D-Trp-HAr4), 7.45 (d, J = 

7.5 Hz, 2 H, 4-HAr2), 7.36 (t, J = 7.5 Hz, 3 H, 4-H-Ar3, 

4-HAr4), 7.28 (d, J = 8 Hz, 1 H, 3- D-Trp-HAr7), 7.28 (s, 1 H, 3- D-TrpHAr2), 7.22 

(d, J = 8.5 Hz, 1 H, 2-H5), 7.05 (t, J = 7.5 Hz, 1H, 3- D-Trp-HAr6), 6.94 (t, J = 7.5 

Hz, 1H, 3- D-Trp-HAr5), 6.72 (s, 1H, 2-NH), 6.32 (s, 1 H, 4-H3), 6.19 (d, J = 8Hz, 1 

H, 4-H5), 5.78 (br, 2H, 4-NH2), 5.17-5.08 (dd, J = 32.5, 11.5 Hz, 2 H, 4-H), 4.92-

4.88 (dd, J = 11.5 , 6.5 Hz, 1 H, 3- D-Trp-H), 4.73-4.68 (apparent quin, J = 6.5 Hz, 

1 H, 2-H),  4.05 (d, J = 5 Hz, 2 H, 1-Gly-H1), 3.17-3.15 (dd, J = 11.5 , 6.5 Hz, 2 H, 

3- D-Trp-H), 2.93-2.88 (dd, J = 11.5 , 6.5 Hz, 2 H, 3- D-Trp-H'),1.43-1.40 (dd, J = 

9.5, 6.5 Hz, 6 H, 2-H) ppm; 13C NMR (DMSO-d6, 126 MHz) : 171.2 (1-Gly-CO), 

166.3 (4-CO), 163.9 (2-CO), 156.2 (3- D-Trp-CO), 144.1 (4-C2), 143.2 (4-C4), 141.5 

(2-C2), 137.22 (2-C4, 3- D-Trp-CAr3a), 136.0 (4-C6), 131.8 (2-C6), 128.4 (4-CAr3, 

4-CAr4), 127.7 (4-CAr1), 127.4 (4-CAr2, 3- D-Trp-CAr3), 127.3 (3- D-Trp-CAr2), 

123.7 (3- D-Trp-CAr7), 121.7 (3- D-Trp-CAr6), 120.9 (3- D-Trp-CAr4), 118.2 (3- D-

Trp-CAr5), 116.5 (3- D-Trp-CAr7a), 112.3 (2-C5), 111.4 (2-C1, 4-C1), 110.2 (4-C5), 

104.8 (2-C3), 92.7 (4-C3), 71.9 (2-C), 69.8 (4-C), 55.1 (3- D-Trp-C, 41.6 (1-

Gly-C1), 28.8 (3- D-Trp-C, 21.6 (2-Cppm; IR (neat)  (cm-1): 3357, 3191, 2923, 

2851, 1692, 1631, 1594, 1493, 1258, 1213; ESI-MS found: 664 (M+H)+; HRMS m/z 

calculated for C37H37N5NaO7 (M+Na)+: 686.2585; Found: 686.2591. 
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H2N-[O-Bn-(3-HABA)]-Phe-[O-iPr-(2-HABA)]-[1-biotin-3-triazol-propyl-Gly]-

CO2H (132) 

Fmoc-propargyl-Gly (168 mg, 5 

equiv.) was dissolved in 

anhydrous DMF (5 mL), 

preactivated with HATU (380.29 

mg, 10 equiv.) and DIPEA (328 

L, 20 equiv.) for 1 h at room 

temperature and loaded onto 119 

mg of Wang resin (0.84 mmol g-

1, 100-200 mesh) using the CEM 

Liberty® automated microwave assisted peptide synthesiser (double coupling of 30 

minutes, microwave heating at 60 °C). The following three units were coupled by 

employing the standard solid phase procedure described before. The loaded resin was 

then treated manually and suspended in 1 mL of anhydrous tetrahydrofuran. Azido 

biotin (32.6 mg, 1 equiv., synthesised by Dr A. Barnard), copper (II) sulphate 

pentahydrate (2.5 mg, 0.1 equiv.) and sodium ascorbate (3.96 mg, 0.2 equiv.) were 

added and the resin was allowed to spin at room temperature for 46 h. The resin was 

then dried and washed with water (3 mL, 5 min), dichloromethane (3 mL, 5 min) and 

diethyl ether (3 mL, 5 min). Cleavage of the resin and purification were carried out as 

described in the general solid phase procedure. Pale yellow solid, > 95% pure by 

NMR; isolated yield: 8.6 mg, 9%); Rf 0.55 (SiO2, 20% methanol in acetonitrile); 1H 

NMR (DMSO-d6, 500 MHz)  10.44 (s, 1 H,1-Prop-Gly-CO2H), 8.65 (d, J = 6.5 Hz, 

1 H, 1-Prop-Gly-NH), 8.34 (d, J = 8 Hz, 1 H, 3-Phe-NH),  7.91 (d, J = 8.5 Hz, 1 H, 

2-H6), 7.87 (t, J = 5 Hz, 1 H, 1-Biotin-NH), 7.84 (s, 1H, 1-Triazol-H2), 7.58 (s, 1 H, 

2-H3), 7.51 (d, J = 8.5 Hz, 2 H, 3-Phe-HAr2), 7.43 (s, 1 H, 4-H2), 7.42-7.39 (m, 5 H, 

4-HAr2, 4-H-Ar4, 3-Phe-HAr3), 7.35 (br, 1H, 2-NH), 7.32 (d, J = 8.5 Hz, 1 H, 4-H6), 

7.29-7.24 (m, 3 H, 4-HAr3, 2-H5), 7.19 (t, J = 7.5 Hz, 1H, 3-Phe-HAr4), 6.66 (d, J = 

8.5 Hz, 1 H, 4-H5), 6.44 (br, 1H, 1-Biotin-NH), 6.37 (br, 1H, 1-Biotin-NH), 5.33 

(br, 2H, 4-NH2), 5.16 (s, 2 H, 4-H), 4.84-4.78 (dd, J = 8 , 5.5 Hz, 1 H, 3-Phe-H), 

4.75 (br, 1 H, 1-Prop-Gly-H), 4.69-4.64 (apparent quin, J = 6 Hz, 1 H, 2-H),  4.32-
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4.29 (m, 3H, 1-Biotin-H1-Biotin-H), 4.32-4.29 (dd, J = 12.5 , 6.5 Hz, 1H, 1-

Biotin-H), 3.22-3.19 (dd, J = 8 , 5.5 Hz, 2 H, 3-Phe-H), 3.13-3.09 (dd, J = 12.5 , 

6.5 Hz, 2 H, 1-Biotin-H), 3.04-3.01 (dd, J = 13.5 , 6.5 Hz, 2 H, 1-Biotin-H), 2.84-

2.80 (dd, J = 13.5 , 7 Hz, 1H, 1-Prop-Gly-H), 2.59-2.56 (dd, J = 13.5 , 7 Hz, 1H, 1-

Prop-Gly-H'), 2.07 (t, J = 5 Hz, 2 H, 1-Biotin-H), 2.02-1.99 (dd, J = 12.5 , 6 Hz, 2 

H, 1-Biotin-H), 1.91-1.87 (m, 3 H, 1-Biotin-H,1-Biotin-H), 1.52-1.46 (m, 4 H, 1-

Biotin-H1-Biotin-H),1.33-1.29 (dd, J = 8.5, 6 Hz, 6 H, 2-H) ppm; 13C NMR 

(DMSO-d6, 126 MHz) : 172.1 (1-Biotin-CO), 171.4 (1-Gly-CO), 169.6 (4-CO), 

166.4 (2-CO), 162.9 (1-Biotin-CO), 156.2 (3-Phe-CO), 144.0 (4-C3), 143.1 (2-C2), 

141.5 (4-C4), 138.2 (2-C4), 137.2 (2-C6), 132.0 (1-Triazol-C1), 129.6 (4-CAr1), 

129.2 (3-Phe-CAr3), 128.4 (4-CAr2, 4-CAr3), 128.1 (4-CAr4), 127.7 (4-C2), 127.4 

(3-Phe-CAr2, 3-Phe-CAr4), 126.3 (3-Phe-CAr1), 121.8 (4-C6), 120.8 (4-C1), 119.8 

(1-Triazol-C2), 116.5 (2-C1), 112.3 (4-C5), 111.2 (2-C5), 104.5 (2-C3), 71.7 (2-C), 

69.4 (4-C), 61.0 (1-Biotin-C), 59.2 (1-Biotin-C), 55.8 (3-Phe-C, 55.4 (1-Prop-

Gly-C), 47.0 (1-Biotin-C), 40.5 (1-Prop-Gly-C), 37.1 (3-Phe-C, 35.6 (1-Biotin-

C), 35.1 (1-Biotin-C, 1-Biotin-C), 30.1 (1-Biotin-C), 29.0 (1-Biotin-C), 28.2 (1-

Biotin-C), 25.2 (1-Biotin-C, 1-Biotin-C), 21.4 (2-Cppm; IR (neat)  (cm-1): 

3356, 2924, 2852, 1683, 1631, 1594, 1494, 1259, 1215; ESI-MS found: 989 (M+H)+; 

HRMS m/z calculated for C51H60N10NaO9S (M+Na)+: 1011.4158; Found: 1011.4167. 

 

6.2.3 Proteolytic studies 

-Chymotrypsin Type II from bovine pancreas (lyophilized powder, MW = 25 kDa, 

≥ 40 units/mg protein), Proteinase K from Tritirachium album (lyophilized powder, 

MW = 28.93 kDa, ≥ 30 units/mg protein) and Trypsin IV-O from chicken egg white 

(lyophilized powder, MW = 20 kDa, ≥ 20 units/mg protein) were purchased from 

Sigma-Aldrich and used without further purification. 

Hybrid 75 (Figure 6.6 b-d) and WT-p53(Figure 6.7 b-d) (200 M stock in PBS buffer 

pH 7.50, 2% DMSO) were treated with the chosen enzyme (0.02 M stock solutions 

in PBS buffer pH 7.50) in a 1:10000 enzyme/substrate ratio. Hybrid 75 was further 
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treated with -Chymotrypsin increasing the ratio enzyme/substrate to 1:1000 and 

1:100 (-chymotripsin 0.2 M and 2 M stock solutions in PBS buffer pH 7.50). The 

degradation was followed with analytical HPLC (Ascentis® Express Peptide Column, 

injection volume: 20 L, acetonitrile/water (0.1% TFA) 5-95% gradient) and the data 

was analysed to extract kinetic values. To minimize variability, the area of the peak 

corresponding to DMSO was used as internal reference for correction. A control was 

also run treating hybrid 75 and WT-p53 with no enzyme (Figure 6.6 a, Figure 6.7 a).  

 

 

 

Figure 6.6 Proteolytic study on hybrid 75 a Analytical HPLC trace for 75 treated with no 

enzyme; b Analytical HPLC trace for 75 treated with Trypsin; c Analytical HPLC trace for 

75 treated with Proteinase K; d Analytical HPLC trace for 75 treated with -Chymotrypsin. 
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Figure 6.7 Proteolytic study on WT-p53 a Analytical HPLC trace for WT-p53 treated with 

no enzyme; b Analytical HPLC trace for WT-p53 treated with Trypsin; c Analytical HPLC 

trace for WT-p53 treated with Proteinase K; d Analytical HPLC trace for WT-p53 treated 

with -Chymotrypsin. 

6.3 Biophysical assessment of proteomimetics (Chapters 3 

and 4, Appendix I) 

6.3.1 Proteins expression and purification 

The pET14b vector containing hDM2 (17-126) L33E was kindly provided by John 

Robinson (University of Zurich). The protein was expressed in E.coli BL21 (DE3) 

GOLD and purified by Dr J. Miles, Dr K. Long or Dr A. Bartlett following previously 

published methods.99,105 The purified hDM2 (17-126) L33E was concentrated 

(typically to ~ 100 M) and stored at – 80 °C. 

The pet28a His-SUMO Mcl-1 (172-327) construct was over-expressed in the E.coli 

strain Rosetta and purified by Dr J. Miles or Dr A. Bartlett. The purified Mcl-1 (172-

327) was concentrated (typically to ~ 200 M) and stored at – 80 °C. 
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6.3.2 Fluorescence anisotropy assays 

WT-p53(15-31) transactivation domain peptide and its fluorescein-labelled analogue 

p53 (15-31) Flu were purchased from Peptide Protein Research Ltd and used without 

further purification. WT-NOXA B (68-87) and its fluorescein-labelled analogue 

FITC-NOXA B (68-87) were synthesised and purified by Dr P. Prabhakaran and D.J. 

Yeo. Fluorescence anisotropy assays were performed in 96- or 384-well plates 

(Greiner Bio-one). Each experiment was run in triplicate and the fluorescence 

anisotropy measured using a Perkin Elmer EnVisionTM 2103 MultiLabel plate reader, 

with excitation at 480 nm (30 nM bandwidth), polarised dichroic mirror at 505 nm 

and emission at 535 nm (40 nM bandwidth, S and P polarised). 

All experiments were performed in assay buffer: 40 mM phosphate buffer at pH 7.50, 

containing 200 mM NaCl and 0.02 mg mL-1 bovine serum albumin (BSA) and data 

analysed following previously published methods.99,105 

Determining the binding of p53 to hDM2 

A stock of hDM2 was prepared by diluting the concentrated protein into assay buffer 

and used to prepare a serial dilution of hDM2 (starting point: 10 μM) across the plate 

(24-points, 2/3 serial dilution). Tracer peptide (p53 (15-31) Flu) was then added to 

each well to give a final concentration of 54.5 nM. For control wells, the tracer peptide 

was replaced with an identical volume of assay buffer. The experiments were 

performed in 96-well plates and the total volume in each well was 150 μL. The data 

for both the P (perpendicular intensity) and S (parallel (same) intensity) channels were 

corrected by subtracting the corresponding control wells and plotted using Origin 7.5. 

Determining the binding of NOXA B to Mcl-1 

A stock of Mcl-1 was prepared by diluting the concentrated protein into assay buffer 

and used to prepare a serial dilution of Mcl-1 (starting point: 5 μM) across the plate 

(24-points, 2/3 serial dilution). Tracer peptide (FITC-NOXA B) was then added to 

each well to give a final concentration of 50 nM. For control wells, the tracer peptide 

was replaced with an identical volume of assay buffer. The experiments were 

performed in 96-well plates and the total volume in each well was 150 μL. The data 
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for both the P and S channels were corrected by subtracting the corresponding control 

wells and plotted using Origin Pro 9.0. 

Competition assays 

Stocks of ligand (450 μM for 2-O-alkylated oligobenzamides and 400 μM for hybrid 

-helix mimetics in 90:10 (v/v) assay buffer: DMSO) were used to prepare serial 

dilution across the plate (starting point: 100 μM; 2-O-alkylated oligobenzamides: 

24-points, 2/3 serial dilution; hybrid -helix mimetics: 18-points, 3/4 serial dilution). 

For the p53/hDM2 FA competition assay, p53 (15-31) Flu and hDM217-126 L33E 

were then added to each well to give a final concentration of 54.5 nM and 154.2 nM, 

respectively. For the Mcl-1/NOXAB FA competition assay, FITC-NOXAB (68-87) 

and Mcl-1 (172-327) were added to each well to give a final concentration of 50 nM 

and 150 nM, respectively.  For control wells the tracer peptide was replaced with an 

identical volume of assay buffer. The total volume in each well was 150 μL for 

96-well plates and 60 μL for 384-well plates. The data for both the P and S channel 

were corrected by subtracting the corresponding control wells and plotted using 

Origin Pro 9.0. 
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Appendix I 

Fluorescence anisotropy competition assay against p53/hDM2 

A Fluorescence Anisotropy (FA) competition assay to test libraries of 

compounds against the p53/hDM2 PPI, was developed in the group as a result of a 

joint effort between Dr J. Plante, Prof A. J. Wilson, Dr S. L. Warriner and Dr T. A. 

Edwards (J. P. Plante et al., Chem. Commun. 2009, 5091-5093). 

Upon excitation with plane-polarised light, the anisotropy was measured from 

the unequal intensities of the light emitted by a fluorophore with different planes of 

polarisation. A fluorescein-label was chosen as a fluorophore to tag the p53 peptide 

for this assay (Figure AI.1).  

 

Figure AI.1 Fluorescein-label employed to tag the p53 peptide. 

In order to determine the limits of anisotropy that can be observed in the assay, 

the binding of a fluorescein-labelled p53 (tracer) to hDM2 was assessed. Different 

concentrations were screened and serial dilution of the protein (starting point: 10 μM) 

into a 54.5 nM stock of tracer afforded optimal conditions.  

At low concentrations of protein the p53 tracer is free to tumble in solution 

and the directionality of the polarised excitation light is not correlated with the 

emission polarisation. Upon binding to the protein at higher concentrations, the tracer 

is engaged in a much bigger complex which decreases its rate of tumbling so that it is 

slow relative to the fluorescence lifetime. The emission polarisation becomes 

correlated with the excitation polarisation and an increase of the anisotropy is 

observed (Figure AI.2 a-b).  
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Figure AI.2 FA direct binding assay for p53/hDM2 a Cartoon representing the equilibrium 

of formation of the tracer-protein complex; b Fluorescence anisotropy resulting from the 

direct binding. (40 mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 

BSA) 

The data for both the P (perpendicular intensity) and S (parallel (same) 

intensity) channels, resulting from this measurement and corrected by subtracting the 

corresponding control wells, were used to calculate the intensity and anisotropy for 

each well following Equation AI.1 and Equation AI.2: 

SPGI  )2(  

Equation AI.1 

I

PGS
r


  

Equation AI.2 

Where I is the total intensity, G is an instrument factor which was set to 1 for 

all experiments and r is the anisotropy.  

The average anisotropy (across three replicates) and the standard deviation of 

these values were then calculated and fit to a sigmoidal logistic model (Equation AI.3, 

Figure AI.2 b) using Origin 7.5. The maximum (rmax) and minimum (rmin) anisotropies 

obtained from this fit were used to calculate the fraction ligand bound (Lb) (Equation 

AI.4): 
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Equation AI.3 
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



 

Equation AI.4 

Where x0 is the midpoint, p is the power and λ is the ratio of Ibound/Iunbound and 

is equal to 1. The fraction ligand bound was multiplied by the concentration of 

p53 (15-31) Flu and fit to a 1:1 binding model shown in Equation AI.5 to determine 

the dissociation constant (Kd). 

2

][4])[(][ 2 FLxFLxKFLxK
y

dd 
  

Equation AI.5 

Where [FL] is the concentration of p53 (15-31) Flu; y is Lb*[FL], and x is the 

concentration of hDM2.  

This measurement afforded a Kd of 187.1 ± 24.6 nM for this interaction, in 

accordance with the value previously published by the group (Figure AI.3).  

 

Figure AI.3 Ligand bound plot for determination of the dissociation constant for 

p53/hDM2. (40 mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 
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When the interaction is disrupted by a competitor, the tracer peptide can be 

displaced and return to tumble faster in solution. This process consequently result in 

the loss of the directionality of the polarised excitation light and in a decrease of 

anisotropy (Figure AI.4 a-c).  

A FA competition assay was therefore developed in order to assess the ability 

of designed proteomimetics to inhibit the p53/hDM2 PPI. After optimisation, the 

assay was run through serial dilution of the proteomimetic (starting point: 100 µM) 

into stocks of tracer and protein, kept at constant concentrations of 54.5 nM and 

154.2 nM, respectively. The dose-response titration of the known inhibitor Nutlin-3a 

(4, Chapter 1), obtained after fitting to a sigmoidal logistic model (Equation AI.3) 

using Origin Pro 9.0,  is shown in Figure AI.4 c and provided an IC50 of 534.7 ± 23.9 

nM, which was in the nanomolar range, as originally reported by Vassilev and 

co-workers using a surface plasmon resonance assay (IC50 = 90 nM, L. T. Vassilev et 

al., Science, 2004, 303, 844-848). 

 

Figure AI.4 FA competition assay against p53/hDM2 a Cartoon representing the 

displacement of the tracer upon binding of a proteomimetic to the protein; b Increase of the 

fluorescence anisotropy resulting from the direct binding of the p53 tracer to the protein; c 

Decrease of the fluorescence anisotropy resulting from the titration of Nutlin-3a. (40 mM 

phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 
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Unfortunately, this assay suffers from an intrinsic limitation as an inhibition 

constant (Ki) cannot be extracted. As shown in Figure AI.5 a, the assay does not occur 

through a simple two state equilibrium between the free tracer/mimetic or protein and 

the complex protein-ligand. Further contributions to the anisotropy are instead given 

by homo-aggregates of the tracer (r1 in Figure AI.5 a) and hetero tracer-mimetic 

aggregates (r2 in Figure AI.5 a). 

In the direct binding experiment, the r1 contribution is added to the theoretical 

minimum of anisotropy (r0) provided by the free tracer, resulting in the higher 

experimental minimum rmin (Figure AI.5 b). 

 

Figure AI.5 Equilibria preventing Ki determination a Cartoon representing the equilibria 

of complexation/aggregation occurring in the FA competition assay and highlighting r0, r1 and 

r2 contributions; b Experimental (red) and theoretical (green) anisotropies of the direct 

binding experiment highlighting the difference between the r0 and rmin minima of anisotropy 

and the additional r1 contributions to rmin; c Anisotropy of the competition assay (blue) 

highlighting the r0 and r2 contributions to r’ and its difference with rmin from direct binding. 

Upon competition with a proteomimetic, the anisotropy of the 

hetero-aggregate (r2) adds to the overall minimum r’. Since the r2 contribution is 
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smaller than the contribution of r1, the competition minimum r’ differs from the 

binding end-point rmin, thus preventing the determination of Ki (Figure AI.5 c). 

For this reason, the test was employed only to extract IC50 values of inhibition. 

Fluorescence anisotropy competition assay against Mcl-1/NOXA B 

A FA competition assay to test libraries of compounds against the 

Mcl-1/NOXA B PPI, was developed in a joint effort with Dr K. Long and D. J. Yeo 

following the same principles employed in the development of the assay against 

p53/hDM2. 

Different concentrations were screened to run a direct binding experiment and 

serial dilution of Mcl-1 (starting point: 5 μM) into a fluorescein-labelled NOXA B 

stock at a constant 50 nM concentration, afforded the optimal conditions. Plot of the 

average anisotropy values (following Equation AI.3, Figure AI.6 a) and conversion to 

Lb, allowed to extract a Kd of 18.7 ± 0.9 nM for this interaction (Figure AI.6 b, 

Equation AI.5). 

 

Figure AI.6 FA direct binding assay for Mcl-1/NOXA B a Fluorescence anisotropy 

resulting from the direct binding; b Ligand bound plot for determination of the dissociation 

constant. (40 mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 
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The competition assay was then developed, using the wild-type (WT) 

NOXA B as a model substrate to optimise conditions. Serial dilution of WT-NOXA B 

(starting point: 10 µM) into stocks of tracer and protein at constant concentrations of 

50 nM and 150 nM respectively, afforded the best conditions and allowed to obtain 

the IC50 value for the competition (704.3 ± 35.0 nM, Figure AI.7, Equation AI.3). 

 

Figure AI.7 FA competition assay of WT-NOXA B against Mcl-1/NOXA B. (40 mM 

phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 

Unfortunately, also for this assay the minimum of anisotropy of the 

competition was lower than the direct binding minimum, thus implying that further 

equilibria are involved and preventing the determination of an inhibition constant. 
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Appendix II 

The role of side-chain spacing against p53/hDM2 

 

 

Figure AII.1 Side-chain spacing studies targeting the p53/hDM2 PPI: dose-response 

curves a 2-O-alkylated series; b 3-O-alkylated series; c N-alkylated series. (40 mM phosphate 

buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 
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The role of side-chain spacing against Mcl-1/NOXA B 

 

 

Figure AII.2 Side-chain spacing studies targeting the Mcl-1/NOXA B PPI: 

dose-response curves a 2-O-alkylated series; b 3-O-alkylated series; c N-alkylated series. 

(40 mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 
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Aliphatic hybrid mimetics against p53/hDM2 

 

 

 

Figure AII.3 Aliphatic hybrid mimetics: Dose-response curves against the p53/hDM2 

PPI. (40 mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 

 

Aliphatic hybrid mimetics against Mcl-1/NOXA B 

 

 

Figure AII.4 Aliphatic hybrid mimetics: Dose-response curves against the 

Mcl-1/NOXA B PPI. (40 mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg 

mL-1 BSA) 
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AA-functionalised hybrid mimetics against p53/hDM2 

 

Figure AII.5 AA-functionalised hybrid mimetics: dose-response curves against the 

p53/hDM2 PPI a Bottom Glu series; b Bottom Pro series; c Top functionalisation. (40 mM 

phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 
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AA-functionalised hybrid mimetics against Mcl-1/NOXA B 

 

 

Figure AII.6 AA-functionalised hybrid mimetics: dose-response curves against the 

Mcl-1/NOXA B PPI a Bottom Glu series; b Bottom Pro series; c Top functionalisation. (40 

mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 
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The effect of the middle unit against Mcl-1/NOXA B 

 

 

 

Figure AII.7 Halo-series and polar substituents: Dose-response curves against the 

Mcl-1/NOXA B PPI. (40 mM phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg 

mL-1 BSA) 

 

Hybrid -helix mimetics: a selective scaffold 

The p53 helix is known to bind to the Mcl-1 cleft (H. Yao et al., Biochemistry 

2013, 52, 6324-6334). Fluorescence Anisotropy direct binding experiments were 

therefore performed to investigate the affinity of a fluorescently labelled p53 with 

Mcl-1, leading to a Kd value of 14.4 ± 4.6 M, in accordance with the value reported 

in literature (Figure AII.8 a-b).  

For comparison with the data obtained on the hybrids, the wild-type p53 

peptide was then tested in competition-mode against the Mcl-1/NOXA B PPI. As 

shown in Figure AII.8 c, no inhibition was observed, revealing that in spite of its 
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ability to be recognised by Mcl-1, p53 is not able to compete with NOXA B in this 

PPI. 

 

 

Figure AII.8 Studies on the binding affinity of p53 towards Mcl-1 a Fluorescence 

Anisotropy direct binding assay of FITC-p53 to Mcl-1; b Ligand bound plotting of 

FITC-p53/Mcl-1; c FA competition assay of WT-p53 against Mcl-1/NOXA B. (40 mM 

phosphate buffer pH 7.50, 200 mM sodium chloride, 0.02 mg mL-1 BSA) 

This result was noteworthy, as the four identified hybrids inhibitors (113, 

116-118), originally designed to be p53-mimetics, were on the other hand able to 

compete with the native NOXA B peptide and achieve low-micromolar recognition 

with Mcl-1.  
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Docking studies on the D-Phe hybrid mimetic 129 in complex with hDM2 

 

 

Figure AII.9 Docking studies for the D-Phe (129) hybrid mimetic (PDB ID: 1YCR) a 

Docked D-Phe functionalised hybrid 129 with protein surface 3D representation and 

expansion; b Docked L-Phe functionalised hybrid 75 with protein surface 3D representation 

and expansion; c p53/hDM2 interaction; d Docked hybrid 129 in schematic 2D representation 

highlighting the interacting amino acids (interactions taking place outside the hydrophobic 

cleft are represented with a grey shade).  
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Appendix III 

Attempted development of an ITC assay for the p53/hDM2 PPI 

The development of an Isothermal Calorimetry (ITC) assay to monitor the 

inhibition of the p53/hDM2 PPI, was attempted in a joint effort with Dr A. Barnard. 

Unfortunately the assay was temperamental in our hands and it could not be employed 

to test the mimetics. Details on the attempts are described below. 

The native interaction was initially targeted. After dialysis in a 40 mM sodium 

phosphate buffer (200 mM sodium chloride, pH = 7.50), the concentration of the 

protein was determined via UV spectroscopy following the Beer-Lambert law, 

Equation AIII.1 (hDM2 Extinction coefficient = 15676 M-1cm-1, determined 

experimentally after protein denaturation with guanidinium chloride following 

Equation AIII.2). In order to accurately determine the concentration, the solid 

WT-p53 was then dissolved in the dialysis buffer to obtain a concentration ten fold 

higher than the protein and used without further dialysis. 

280

280



A
c   

c = concentration at 280 nm; A280 = absorbance at 280 nm;  

280 = extinction coefficient at 280 nm.  

Equation AIII.1 

denat

denat

nat

nat
A

A
 










  

nat = extinction coefficient at 280 nm; Anat = 

protein absorbance at 280 nm; Adenat = denatured 

protein absorbance at 280 nm; denat = extinction 

coefficient of the denatured protein at 280 nm, 

calculated from the number of Trp, Tyr and Cys 

residues (9080).  

Equation AIII.2 

Following these conditions, titrations of a 250 M solution of WT-p53 were 

performed into buffer for corrections and into a 25 M hDM2 stock using an iTC200 

MicroCal calorimeter (GE Healthcare). After an initial 0.5ul injection, 19 subsequent 

injections of 2 L ligand were made into 180 L of the second binding partner with 
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150 seconds in between injections. The area of each injection was integrated and 

subtraction of the buffer titration afforded a binding curve (Figure AIII.1). 
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Figure AIII.1 ITC data for the p53/hDM2 interaction (right) obtained after correction 

with the titration of p53 into buffer (left). Reference power 10 cal/s, 25 °C. 

Fitting of the curve using a OneSite model in Origin7, allowed extraction of 

thermodynamic data (Table AIII.1) and afforded a Kd of 1.47 ± 0.42 M. 

Table AIII.1 Thermodynamic data obtained from ITC of the p53/hDM2 interaction. 

Model OneSites 

Chi^2/DoF 3.137E5 

N 1.51 ± 0.0289 Sites 

K 1.47E6 ± 4.20E5 M-1 

H -9224 ± 251.8 cal/mol 

S -2.71 cal/mol/deg 

 

The assay was then attempted using Nutlin-3a. Several attempts at different 

concentrations and temperatures, revealed that it was not possible to obtain a curve 

from this titration. A representative example is shown in Figure AIII.2. 
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Figure AIII.2 ITC data for the Nutlin-3a/hDM2 interaction:  titration into buffer (left), 

titration into hDM2 (right). Reference power 10 cal/s, Nutlin-3a concentration = 140 

M, 25 °C. 

The poor solubility of this molecule proved problematic in the preparation of 

the sample, as precipitation of the compound in the dialysis buffer was observed. 

Self-aggregation and precipitation could therefore be the reason for the result obtained 

after titration with the protein.  

Attempted CD experiments 

Circular dichroism (CD) experiments were attempted in order to assess 

structural changes in hDM2 upon binding of hybrid mimetics. Unfortunately the 

experiment was not reproducible and it could not be employed for further studies. 

Details on the attempts are described below. 

A CD thermal scan was initially performed on a 25 M solution of hDM2 and 

on a solution of hDM2 incubated with hybrid 98 (Figure AIII.3 c) for 45 minutes 

(stock concentrations at 25 M and 30 M respectively). The experiment was run as 

a control, since this hybrid was shown to be inactive towards hDM2 binding and no 

structural changes were therefore envisaged in the protein.  

Conditions were optimised using 5 mM phosphate buffer (pH = 7.50) and 

0.3% acetonitrile (either as an addition to the protein or from a 10 mM compound 

stock). The thermal scan was run on a Chirascan™ CD Spectrometer (Applied 
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Photophysics) using a temperature range 20-90 °C on a 1 °C ramp step, held for 120 s 

before each acquisition. 

As expected, the CD traces of the protein and of the solution with 98 (shown 

in Figure AIII.3 a-b) showed minimal difference.  

 

Figure AIII.3 CD thermal scan of the complex hybrid 98/hDM2 a CD and high tension 

(HT) voltage spectra of a 25 M stock of hDM2; b CD and HT spectra of the complex hybrid 

98/hDM2 (30 M/25 M); c Structure of hybrid 98; d MRE spectra of hDM2 (black) and of 

the complex hybrid 98/hDM2 (red) showing correspondent melting temperatures. 

The mean residue ellipticity (MRE) at 222 nm was then calculated following 

Equation AIII.3, and the values obtained were plot with a logistic sigmoidal fit in 

OriginPro 9 to afford the melting temperatures (Tm) resulting from the thermal scan. 

As shown in Figure AIII.3 d, minimal variation was observed, thus confirming the 

binding data obtained from the FA full competition curve. 
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 
 1
10






N

lc
MRE


  

MRE = MRE at 222 nm;  = observed ellipticity at 

222 nm; c = protein concentration (M); l = 

pathlength (0.1 cm); N = number of peptide bonds.  

Equation AIII.3 

A CD thermal scan was therefore performed on a 25 M solution of hDM2 

and on a solution of hDM2 incubated with hybrid 75 (Figure AIII.4 c) for 45 minutes 

(stock concentrations at 25 M and 30 M respectively). Since this hybrid was shown 

to bind to hDM2 in a FA assay, structural changes in the protein might have been 

envisaged in this experiment. 

 

Figure AIII.4 CD thermal scan of the complex hybrid 75/hDM2 a CD and HT spectra of 

a 25 M stock of hDM2; b CD and HT spectra of the complex hybrid 75/hDM2 

(30 M/25 M); c Structure of hybrid 75; d MRE spectra of hDM2 (black) and of the complex 

hybrid 75/hDM2 (red) showing correspondent melting temperatures. 
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As shown in Figure AIII.4 a-b, changes in the CD traces were observed. The 

MRE plots (Figure AIII.4 d) resulted in a 3 °C difference of the Tm at 222 nm, showing 

that the protein was stabilised from unfolding in the presence of the mimetic.   

The experiment revealed however that the melting temperature of the protein 

differed from the value obtained in the previous experiment, showing that the data 

were not reproducible. Unfortunately, repeat attempts confirmed this behaviour. As 

shown in the representative example in Figure AIII.5, MRE plots could in fact not be 

accurately replicated.  

 

 

Figure AIII.5 Repeated MRE spectra resulting from the CD thermal scan of hDM2 

(black) and of the complex hybrid 75/hDM2 (red) showing correspondent melting 

temperatures. 

Attempted development of an SPR assay for the p53/hDM2 PPI 

The development of a surface plasmon resonance (SPR) assay targeting the 

p53/hDM2 PPI, was attempted to access an orthogonal assay to test libraries of 

mimetics. Unfortunately the only experiment performed, described below, did not 

work. Further attempts will be needed in future to optimise the conditions to use this 

assay. 

SPR studies were endeavoured to study the interaction between hDM2 and a 

Biotinyl-p53 peptide (synthesised by D. J. Yeo) and a Biotinyl-tagged version of 

hybrid 75 (132). 
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 The experiments were run using a Biacore 3000 system (GE Healthcare). 

Stock solutions of the Biotinylated compounds (0.1 nM in phosphate buffer, 

pH = 7.50) were immobilised onto a streptavidin functionalised chip (Sensor Chip 

SA, GE Healthcare) reaching immobilisation densities of 26.7 response units (RUs) 

for hybrid 132 and 48.1 RUs for the Biotinyl-p53 peptide. One flow cell was left blank 

for corrections. The hDM2 protein was then flushed over the surface at different 

concentrations (ranging from 19.5 nM to 50 M) and the response was followed for 

all the compounds (Figure AIII.6 a-b).  

 

Figure AIII.6 SPR studies a SPR response for the flow cells functionalised with hybrid 132 

(green) and Biotinyl-p53 (blue) and the unfunctionalised flow cell (pink); b SPR response 

corrected after blank subtraction. 
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As shown in Figure AIII.6 b, binding was observed only for the Biotinyl-p53. 

The shape of the response curves indicated however that the kinetics of the 

association/dissociation process are really fast and for this reason it was not possible 

to extract a Kd directly from the response plot. The corrected RU signals obtained 

were instead plotted against the protein concentrations in OriginPro 9. The data, 

shown in Figure AIII.7, confirmed that no binding was observed for hybrid 132 and, 

after analysis with a sigmoidal logistic fit, allowed to extract a Kd of 4.8 ± 0.4 M for 

the Biotinyl-p53/hDM2 interaction. 

 

Figure AIII.7 Response units plot for hybrid 132 (black) and Biotinyl-p53 (red) 

highlighting the Kd obtained from the interaction of the latter with hDM2. 

The higher value obtained with respect to the native interaction (187.1 ± 

24.6 nM in a FA assay, see Appendix I), indicated that the biotinyl-functionality had 

a negative effect on the binding and suggested that this could be the reason for the 

inactivity of the other derivative. Further investigation will be needed in order to 

repeat and confirm this result. 

 

 

 


