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For mm-waves, two types of low-loss waveguide are analysed, designed and mea-

sured. One is the hollow substrate integrated waveguide (HSIW) in which the

inner dielectric of a traditional substrate integrated waveguide (SIW) is removed

to resemble the propagation characteristics of a standard rectangular waveguide

(RWG). The measured attenuation of a WR28-like HSIW is 2 Np/m or 17 dB/m

throughout the Ka band. The second is the dielectric insular image guide (DIIG)

in which an insular layer is added between the dielectric and the metallic ground

to further reduce the conductor loss. The measured attenuation of a Ka band

DIIG is 26 dB/m at 35 GHz.

Based on the two waveguides, two high-gain antenna arrays operating in the Ka

band are designed and measured. One is a 6 × 6 slot antenna array, centre-

fed by the HSIW. The Taylor-distribution technique is applied in two orthogonal

directions to suppress the sidelobe level. The measured gain of this antenna array

is 17.1 dBi at the centre frequency of 35.5 GHz. The other is a double-sided 10-

element dielectric insular resonator antenna (DIRA) array, end-fed by the DIIG.

The Taylor-distribution technique is also applied here to achieve a gain of 15.8 dBi

at the centre frequency of 36 GHz.

The great potential of these high-performance antennas is that they can be inte-

grated with other microwave components (filters, power amplifiers, etc.) to form

a complete front-end or transceiver in multi-chip module (MCM) technology.
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Chapter 1

Introduction

This chapter is organised as follows: Section 1.1 reviews the start and develop-

ment of modern wireless communication in terms of the long-range cellular radio,

medium-range wireless local area network (WLAN) and short-range wireless per-

sonal area network (WPAN). After that, Section 1.2 summarises three mm-wave

on-chip technologies especially for the antenna applications, i.e., semiconductor,

printed circuit board (PCB) and low temperature co-fired ceramics (LTCC) tech-

nologies. A comparison is given among the three technologies in terms of perfor-

mance, cost, yield, etc. Finally, a full transceiver system which integrates antennas

and other active and passive components is also reviewed on the same technologies

in Section 1.3.

1.1 A Short Review of Wireless Communication

In wireless communications, the ever increasing demand for a higher data rate

and network capacity has always been a challenge for electronic engineers; it will

be explicitly explained and profoundly proved after a look back at the history of

cellular radio, WLAN and WPAN which have become indispensable elements in

our daily life nowadays.

1.1.1 Evolution of Cellular Radio

As early as in the early 1940s, the concept of cellular radio was conceived by

Bell Labs. After a period of mild progress, not until 1979 did the world see the

1
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first cellular radio system called MCS (Mobile Control Station) available to the

mass market in Japan. Since then, the cellular radio era began and soon domi-

nated the mobile communication. Transmitting analog signals by FM (Frequency

Modulation), MCS provided radio coverage by seamless overlapping cells in the

configuration of a honeycomb, which was employed by the following generations of

cellular radios. Later on, some European countries and the United States devel-

oped their own cellular radio systems, such as TACS (Total Access Communication

System), AMPS (Advanced Mobile Phone System), etc., which were all commer-

cially deployed but not compatible with each other. With an unexpected surge

of subscribers in the early 1990s, the first-generation (1G) cellular radio system

suffered severe congestion for insufficient frequency channels. Why did this hap-

pen? Take AMPS of the United States as an example: In AMPS systems, voice

signals were modulated by FM with a transmission bandwidth of 30kHz and thus

the whole channel was occupied by one subscriber. So within a certain frequency

band, the number of channels was quite limited. Then, frequency reuse was in-

troduced in a nearby cell cluster to boost the spectral efficiency and thus system

capacity. However, since the FM signal needs a high SIR (Signal-to-Interference

Ratio) (SIR = 18dB) to maintain the quality of service, the frequency reuse factor

(the size of a cell cluster) could not be too small (K = 7). So the reuse efficiency

was low and so was the improvement on spectral efficiency [1, 2].

A change from analog to digital operation brought about the 2G cellular radio

system which included: the global system for mobile communication (GSM) in

Europe, two digital-AMPS systems, D-AMPS TDMA (Time Division Multiple

Access) and CDMA (Code Division Multiple Access), in the United States, and

two personal digital cellular systems (PDC 800 and PDC 1500) in Japan. Take

the upgraded version of AMPS, D-AMPS, as an example: Based on hybrid FDMA

(Frequency Division Multiple Access)/TDMA or hybrid FDMA/CDMA, the same

30kHz bandwidth was divided into three timeslots to accommodate three channels

of the digitised signal compared with one analog channel in the AMPS system. So

the total number of voice channels in D-AMPS was increased by three times. Apart

from that, the required SIR was reduced to less than 13 dB due to the digitisation

and error correction coding and so is the frequency reuse factor. As a result, the

spectral efficiency and thus system capacity was enhanced substantially. From

another perspective, the congestion in mobile communications might not easily

deteriorate, provided more spectrum resources could be allocated [1, 2].

As time passed by, instead of just voice exchange, people were more and more

looking at a multimedia service and Internet access in mobile communications as
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they usually did in front of a computer screen. It could not be satisfied with

the low data rate (e.g. 9.6 kbps for GSM) of the 2G scheme which was meant

for voice, SMS (Short Messaging Service) and limited wireless data service. From

mid-1990s, over the existing 2G systems that operated on the existing 2G spectrum

only, some technology enhancements were developed, namely 2.5G, such as High-

speed circuit-switched data (HSCSD, 64 kbps in circuit-switched mode), General

packet radio service (GPRS, 115 kbps in packet-switched mode), Enhanced data

rates for GSM evolution (EDGE, up to 384 kbps in wide-area applications and

up to 554 kbps in local areas). In 1996, the International Telecommunication

Union (ITU) presented a concept for a third-generation (3G) International Mobile

Telecommunication System dubbed IMT-2000 and requested its members to sub-

mit respective proposals. After a lengthy discussion and debate, a consensus was

reached that a new standard called Universal mobile telecommunications system

(UMTS), with North Americans maintaining their own CDMA2000, which was

established based on wideband CDMA (W-CDMA). As a result of the IMT-2000

consensus, UMTS provided broadband voice and data transmission in a frequency-

division duplex (FDD) mode for large areas with a data rate up to 384 kbps, and

in a time-division duplex (TDD) mode in areas with heavy traffic with speeds up

to 2 Mbps [1–4].

This was, by no means, the end of the pursuit of a high data transmission in

wireless communications. In March 2008, the Radio communications sector of

ITU (ITU-R) specified a set of requirements for 4G standards, named the In-

ternational Mobile Telecommunications Advanced (IMT-Advanced) specification,

setting a peak speed for 4G service at 100 Mbps for mobile access and 1 Gbps

for nomadic wireless access. At that time, there were two 4G candidate systems

commercially deployed: The Mobile WiMAX standard (at first in South Korea in

2006), and the first-release Long Term Evolution (LTE) standard (in Scandinavia

since 2009). They are recognised as “4G” by ITU-R, albeit they were not com-

pletely compliant to IMT-Advanced standard for a much lower bit rate. Yet, their

enhanced versions, Mobile WiMAX Release 2 and LTE Advanced (LTE-A), ful-

filled the requirements of IMT-Advanced and was deployed and operated in 2013.

Possible applications include IP telephony, gaming services, high-definition mobile

TV, video conferencing, etc. [3, 4].

In May 2013 (just a couple of months before the finalisation of this thesis), Sam-

sung made an announcement of a technology breakthrough which might enable
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Figure 1.1: The evolution tree of the cellular radio.

the realisation of 5G mobile communication. This adaptive array transceiver tech-

nology used 64 antenna elements, along with signal-processing technology, to con-

centrate radio signals in a narrow, directional beam, thereby increasing received

signal power without requiring more transmission power. The operating frequency

was 28 GHz (Ka band) with a data rate of up to 1.056 Gbps to a distance of up

to 2 kilometers. To take the pre-emptive moves, Samsung has made a plan to

commercialise these technologies by 2020 [5–7].

The brief history of cellular radio can be summarised in Fig. 1.1, which clearly

shows the trend of the ever growing data rate. Taking into account the evolution

from the previous generation to the next one, how to enhance the spectral efficiency

and thus the system capacity within a limited frequency band is also key to keeping

a cellular system competitive in the industry of mobile communications.

1.1.2 IEEE Standards for WLAN

While cellular radio completely dominates the long-range wireless mobile com-

munications, the WLAN has found itself hardly challenged when it comes to the

short-range (within a company, university, house, etc.) data communications,

which enables people to gain network access anytime anywhere. The idea of WLAN

derived from a “wireless Ethernet” which was to sustain connectivity where wiring
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proved difficult to support wired LANs (Ethernet). Also, the allocation of the un-

licensed 2.4 GHz industrial, scientific and medical (ISM) and Unlicensed National

Information Infrastructure (U-NII) radio band by the Federal Communications

Commission (FCC) facilitated the fast development of WLANs. As expected, the

problem of incompatibility arises on the interfaces between WLANs and existing

wired LANs and also in the wireless devices between different vendors. In order to

provide interoperability, a universal communication standard was called for. The

IEEE Standards Association (IEEE-SA), as one of the world’s leading standards-

makers, started a working group named IEEE 802.11 to work on the first wireless

data communications standard in 1990 and introduced the first IEEE 802.11 stan-

dard in 1997. Later, amendments, supplements and enhancements of IEEE 802.11

were made to cope with the ever-growing demands for high data rate and other

ever-emerging problems [2, 8–10].

Table. 1.1 summarises the IEEE 802.11 standard and its variants. There are

five variants specifying the speed of the data transmission and bandwidth and a

tendency toward a higher data rate and wider bandwidth is clearly indicated. As

the newest variant of IEEE 802.11, the 802.11ac Draft 2.0 specification was just

released in February 2012; it effectively supports more client devices and multiple

HD (High Definition) video streams simultaneously with a peak data rate of 6.93

Gbps. A possible improvement to this standard is the working frequency. If it can

be moved up to a higher ISM band, the data rate could be increased even further

[11, 12].

1.1.3 IEEE Standards for WPAN

The WPAN is a short-range network centred on an individual person with wireless

connection and communication among his/her personal electronic devices: cellular

phones, digital cameras, music players, etc. The fast growing market of these

small and inexpensive devices promotes the development of WPAN, just as that

of laptops does to WLAN. There are similarities between WPAN and WLAN, such

as they both belong to the family of short-range wireless mobile communication

technologies, which could be the basis for their competition against each other.

Differences, however, are also quite obvious, as illustrated in Table. 1.2 [9, 14].

The first WPAN technology, Bluetooth, was originally developed by Ericsson in

1994 and its development is now managed by the Bluetooth Special Interest Group

(SIG). The driving force behind this is that some cell phone manufacturers wanted
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Table 1.1: IEEE 802.11 and its variants [8–13]

Standard Description

802.11 Specify a physical layer for the 2.4 GHz ISM band, 1 and 2 Mbps with
a 20 MHz bandwidth

802.11a Amendments to the physical layer for the 5 GHz U-NII band, 6 - 54
Mbps with a 20 MHz bandwidth

802.11b Enhancements to the physical layer for the 2.4 GHz ISM band, 5.5 and
11 Mbps with a 20 MHz bandwidth

802.11c Supplements to cover Media Access Control (MAC) bridge operation
802.11d supplements to the MAC layer to promote greater worldwide use of

WLANs
802.11e Enhancements to the MAC layer for Quality of Service (QoS) support
802.11f Interaccess point protocol in a multivendor environment
802.11g Enhancements to the physical layer for the 2.4 GHz ISM band, 6 - 54

Mbps with a 20 MHz bandwidth
802.11h Enhancements of spectrum and power management to the MAC layer

of 802.11a
802.11i Enhancements of security to the MAC layer
802.11j Enhancements to 802.11a for operation in 4.9-5.0 GHz in Japan
802.11k Radio resource management
802.11m Technical corrections and clarifications
802.11n High-throughput enhancements to the physical layer, 100 - 600 Mbps

with a 20 or 40 MHz bandwidth
802.11r A method for minimizing the terminal transfer from one access point

(AP) to another
802.11ac Enhancements to the physical layer of 802.11a for the 5 GHz U-NII

band, 6.93 Gbps with a 160 MHz bandwidth

Table 1.2: Differences between WLAN and WPAN [9]

Aspects WLAN WPAN

Communication mode Central access point (AP) peer-to-peer connections or ad-hoc
networks

Power consumption High power consumption (on wall
sockets or short battery operation)

Low power consumption (long bat-
tery operation)

Coverage 100 m with a transmit power of 100
mW and about 500 m for 1 W

about 10 m with transmitted power
of about 1 mW

Power consumption High power consumption (on wall
sockets or short battery operation)

Low power consumption (long bat-
tery operation)

Control of the media The mechanism for access to the
medium must handle potential col-
lisions (CSMNCA in IEEE 802.11)

The medium access protocol can be
less tight

Lifespan of the networks Constant existence independent of
their constituent devices

Spontaneously created and lasting
only for as long as needed
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Table 1.3: The IEEE 802.15 standards [9, 14]

Standard Description

802.15.1 Amendments to Bluetooth v.1.1
802.15.1a Amendments to Bluetooth v.1.2
802.15.2 Recommended practice for WPAN to coexist with other

systems
802.15.3 High-speed WPAN for the 2.4 GHz ISM band
802.15.3a Amendments to the physical layer of 802.15.3 for the

UWB band
802.15.4 Low-speed WPAN for the 2.4 GHz ISM band
802.15.4a Enhancements to the physical layer of 802.15.4

make their products capable of wirelessly communicating with devices other than

phones and thus increase the value. Working only as a cable replacement, Blue-

tooth wasn’t after a high data rate (using the 2.4 GHz ISM band with a theoretical

capacity up to 1 Mbps). Formed in July 1999, the IEEE 802.15 working group

took Bluetooth into account and started to work on its own standards for WPAN.

Table. 1.3 summarises the IEEE 802.15 standards, among which IEEE 802.15.3

was written to address a specific class of applications that did not have a wireless

standard. Some of the applications were in response to the call for applications

(CFA) sent out by 802.15.3, such as connecting digital still cameras to printers

or kiosks, video camera display on a television, etc. For those applications, high

throughput is the most demanding requirement, a typical data rate of greater than

20 Mbps. IEEE 802.11a/b/g seems to be capable of fulfilling that requirement,

just from the standing point of data rate. The ability of low power consumption

and ad hoc connectivity, however, deters 802.11 in a great deal. So the 802.15.3

group took advantage of that and recently began to work on a new physical layer

802.15.3a, providing a data rate over 100 Mbps, and up to 480 Mbps. This new

standard will be based on ultra-wide band (UWB) technology, which is a 7500

MHz wide (3100-10600 MHz) band with an average radiated emission limit of -

41.3 dBm/MHz released in February 2002 by the FCC. Suppose 802.15.3 could use

a higher unlicensed band (e.g. 60 GHz), the data rate and bandwidth utilisation

could be enhanced even more [8, 9, 15].

1.1.4 Conclusion

Take a look at the frequency bands already exploited for wireless mobile communi-

cations: 450/900/1800/1900/2100 MHz for cellular radio, the 2.4 GHz ISM band
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and 5 GHz U-NII band for WLAN and WPAN. A common feature is that they

are all in relatively low bands, whereas a higher frequency means a higher data

rate, wider absolute bandwidth and smaller device size.

So, the mm-wave band (30 ∼ 300 GHz) is attracting more and more research

interest nowadays, such as the Ka-band used for high-date-rate cellular communi-

cations (spotted by Samsung very recently) and the unlicensed 60 GHz band for

short-range high-capacity WPANs.

Challenges and opportunities always go hand in hand when it comes to explor-

ing new frontiers. Some cheap and simple technologies, such as PCB, are widely

and maturely used in low frequencies. How to move it up to mm-wave band and

maintain existing performances needs to be resolved. Some semiconductor process-

ing technologies, such as gallium arsenide (GaAs) and silicon germanium (SiGe),

should be no problem dealing with mm-wave antennas and other components.

However, how to reduce the cost and make it available to the mass market is a

big issue. Apart from those, the LTCC technology has been added to the shortlist

capable of mm-wave processing. With its moderate cost and complexity, it seems

quite promising in the mm-wave front-end technologies. All these technologies and

their current research state will be elaborated in the following sections.

1.2 Mm-Wave Antenna Technology

Antennas play an important role in a radio system, as they are at the front end

working as an interface between the designed systems and the radio channel. How-

ever, they always seem to be an obstacle to compact radio systems, as it is relatively

bulky and hard to be incorporated into the system package. So it would be a huge

step forward for system integrity if research on antenna in package (AiP), which

would create complete system in package (SiP), could be finally proved successful

[16]. The following section will focus on this key design factor.

This section is organised as follows: Section 1.2.1 illustrates a brief history and

state of the art of the semiconductor technologies, among which a comparison is

made when they are applied in mm-wave communications. Section 1.2.2 looks

back at a brief history of the PCB technology with an overview of its applications

in mm-wave antennas nowadays. After that, it’s LTCC technology in Section

1.2.3. Finally, in the conclusion section, antenna performances implemented with

different technologies are summarised and compared.
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1.2.1 Semiconductor Technology

There is no doubt that semiconductors have changed and shaped our life beyond

the wildest imagination. Although it’s hard to trace back to the very origin of

semiconductors and people may take a somewhat different viewpoint, there are

some significant observations and discoveries on different materials contributing to

the eventual invention of semiconductor devices: negative temperature coefficient

of resistance (by Michael Faraday in 1833), photoconductivity ((by Becquerel in

1839)), rectification (by F. Braun and A. Schuster in 1874), photoelectromotive

force (by W. G. Adams and R. E. Day in 1876), and the demonstration of the

existence of electromagnetic waves (by H. Hertz in 1888). The sudden emerge of

the vacuum tube, however, disturbed and delayed the progress of semiconductors

(point contact detectors of radio waves at that time) until the 1920s. By the 1940s,

substantial theoretical work has been developed, such as the theory of electrons

in lattices, the theory of thermionic emission, models of the potential barrier and

current flow through a metal-semiconductor junction, etc. Based on that, a lot

of essential semiconductors, such as the p-n junction (by Russel Ohl), the bipolar

transistor (by John Bardeen and Walter Brattain in 1947) etc. have been invented

and soon put into industry production [17–20].

1.2.1.1 Mm-Wave Applications

Previously, III-V technologies, mostly based on GaAs and InP, were considered

as the only suitable candidates to implement mm-wave systems. Only recently,

Si-based technologies, such as SiGe HBT and Si CMOS technology, have emerged

as strong contenders for mm-wave applications. III-V technologies are highly

favoured for their high operation speed which is vital for fast-speed mm-wave

systems. As the indicator of operation speed, the highest cutoff frequency fT

of two leading III-V technologies, HBT and HEMT, is 765 GHz and 610 GHz,

respectively, much higher than all kinds of Si-based technologies (485 GHz for Si

CMOS). Another favourable advantage of III-V technologies is the high resistivity

of the substrates which can reduce transmission line loss and increase the Q-

factor of passive devices. Despite these advantages, the relatively low reliability

(resulting in potential non-planar structures and exposing active regions of devices)

and high cost hamper its dominance in semiconductor technologies for mm-wave

applications. In contrast, the Si-based technologies are growing fast with its low

cost and high reliability. Also it is by far the most prevailing semiconductor
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Table 1.4: Comparison among semiconductor technologies [21, 22]

Aspects III-V technologies Si-based technologies

Leading technologies III-V HBT, III-V HEMT SiGe HBT, Si CMOS
Substrate compounds GaAs, InP, GaN, ... (25 in total) SiGe, SiC, SiN, ...
fT 765 GHz (HBT), 610 GHz (HEMT) 350 GHz (HBT), 485 GHz (CMOS)
Advantages High operation speed and high sub-

strate resistivity
Smooth monolithic integration without
wire/flip-chip bonding and highly de-
veloped design environment to improve
design efficiency and accuracy

Disadvantages High cost and low reliability caused
by non-planar structures and low
thermal conductivity

Low operation speed

technology, which implies that the existing chip design procedure can be reused

for mm-wave applications. Yet, there is still room for the operation speed to be

improved [21, 22]. A detailed comparison is listed in Table. 1.4.

1.2.1.2 Mm-Wave Active Integrated Antennas

An active integrated antenna array together with a down-converter working at 39

GHz was successfully analyzed and made by R. Carrillo-Ramirez et al. in 2004.

Using a silicon/BCB (benzocyclobutene) packaging technique, it is fabricated at a

relatively-low cost, although it does introduce some additional loss and results in

a low radiation efficiency[23]. Then at 60 GHz, Y. Zhang et al. presented on-chip

inverted-F and quasi-Yagi antennas based on an improved Si CMOS technology

in 2005. The same problem occurs with these two antennas as the radiation

efficiency for the inverted-F antenna is only 3.5% and that for the quasi-Yagi

antenna (through simulation) is 5.6%. Two reasons are accounted for this poor

performance: a low resistivity (10 Ω·cm) silicon substrate is employed which results

in a high transmission line loss; a long conductor line on top of the substrate is

exposed to the air which contributes more to the whole loss in the mm-wave

band [24].

Based on the semiconductor technology, researchers have been putting much effort

in the improvement of the mm-wave antenna’s radiation efficiency. M. Barakat et

al. proposed a 60 GHz interdigitated dipole antenna on a high resistivity (> 1000

Ω·cm) silicon substrate utilising 0.13 µm CMOS SOI (silicon on insulator) technol-

ogy in 2010. With a gain extraction method to mitigate the disturbs brought in by

the V-connector, the radiation efficiency is calculated as 80%. However, one year

later, they came up with a double slot antenna fabricated and measured with the

same technology which exhibits an efficiency of only 20% [25, 26]. So it seems that
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their work still needs to be validated with further solid research. Another effort

has been made by E. Herth et al. who employs a thick high-resistivity GaAs sub-

strate for the feeding and wet-etched a cavity around the patch antenna. Another

difference is that the radiating patch is on a low-dielectric glass substrate bonded

with the GaAs substrate using benzocyclobutene (BCB) adhesive. As a result, the

antenna is integrated inside the package and the simulated radiation efficiency has

been improved up to 60%, although the bandwidth seems a bit narrower [27]. A

similar cavity is built underneath the patch antenna by A. Adane et al. in [28] to

maintain a high radiation efficiency, while a T-microstrip feeder is employed to in-

crease the bandwidth up to 20%. Their later work features a reconfigurable patch

antenna array on Si/BCB membrane with RF MEMS phase shifters for beam-

forming applications at 60 GHz [29]. Another high gain and broadband antenna

is reported in [30] by B. Pan et al. as a CPW-fed horn antenna integrated on a

silicon substrate using CMOS-compatible microfabrication steps. The dielectric

(silicon) in the horn is etched away leaving an air cavity, which results in a even

higher gain of 14.6 dB, flaring only in the H-plane, and the bandwidth is 10%.

It can be found that a high-resistivity, low-permittivity and thick substrate or

superstrate with the AiP concept is highly preferred in the 60 GHz antenna design,

as it substantially enhances the bandwidth and/or radiation efficiency.

1.2.2 PCB Technology

1.2.2.1 A Brief History

The history of PCB technology begins with a patent filed by Albert Hanson, a

German inventor who was working in England, in 1903. The original idea was

to replace the bulky point-to-point wiring in electronic components or systems.

Although not a true “printed circuit” method, Mr. Hanson did come up with

the concept of “conductive patterns laminated on an insulator” and also some

concepts that can still be considered as modern PCB principles, such as “double-

sided through-hole circuitry”. Over the next few decades, several other ideas were

presented with the rise and boom of radios and wireless communication systems.

In 1943, a low cost and mass production circuit process, later known as photo

etching process, was developed by Paul Eisler in England which, however, didn’t

come into widespread use until the 1950s when the transistor was introduced to

commercial use to reduce the overall chip size. The through hole technology and its

use in multi-layer PCBs were introduced by the U.S. firm Hazeltyne in 1961, which
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substantially enhanced the density of electrical tracks and electronic components.

With the advent of integrated circuit chips in the 1970s, the chip density and

complexity of PCBs could be increased to a higher level [31–33].

Through the development over more than 100 years, the PCB has become a cheap,

basic and profound technology widely used for consumer electronics. With the 60

GHz band opened up, researchers all over the world are working hard to explore

the new frontier and trying to keep in pace.

1.2.2.2 Mm-Wave PCB Antennas

A research group led by K. Wu is renowned for their innovative work on substrate

integrated waveguide (SIW) and recently they have applied it to the mm-wave

band. Although the microstrip patch antenna have been widely used for its easy

fabrication and low cost, it suffers severe loss in the mm-wave band and the radi-

ation efficiency of an array is roughly estimated to be lower than 20% at 60 GHz

when a saturated gain of 35 dBi for planar antenna array is reached [34, 35]. So

K. Wu et al. switched to the waveguide slot antenna which seems to be the least

lossy among all planar antennas and presented a range of antenna arrays based

on SIW and its variations, such as the half-mode SIW [36] and T-type folded SIW

[37], etc. Among them, there is a 12 × 12 SIW array on Rogers RT/Duroid 6002

substrate with the standard PCB process. The measured gain is around 22 dBi at

60 GHz and an estimated radiation efficiency of 68% is achieved [38]. A similar 4

× 20 slot array is designed at 35 GHz and the measured gain is also 22 dBi [39].

Then, in order to break the barrier of the 35 dBi saturated gain, they proposed

a novel 3D Yagi antenna by stacking the radiating patches on multiple Duroid

5880 layers. A single 4-element antenna and a 4 × 4 array were both fabricated

and measured. The result shows that a gain of 18 dBi is attained for the array

which could be further improved with more elements. The radiation efficiency is

not clearly indicated. With a microstrip line as the feeding structure, however,

it’s not highly expected [40].

In 2009, another research group led by D. Liu et al. shifted their attention from

SiGe to PCB technology to combine their previous work in [41] and [42] aiming for

a low-cost, high-efficiency and wideband superstrate patch antenna for mm-wave

applications. A cross sectional view is shown in Fig. 1.2. This is a multilayer PCB

structure with the radiating patch attached on the bottom side of the superstrate.

An air cavity is right beneath the patch to enhance the radiation efficiency and
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ground pad probing pad feed line reflector

via ground plane aperture patch

air cavity

Figure 1.2: The cross sectional view of the superstrate patch antenna [43].

impedance bandwidth. The feeding structure is a aperture-coupled slot with a mi-

crostrip line underneath. Finally, a probing pad with a transition to the microstrip

line feeds the energy in. A bandwidth of more than 15% and a radiation efficiency

of more than 90% can be achieved from simulation [43]. Based on this antenna,

two years later, they came up with another feeding structure and developed two

16-element circular arrays to achieve a peak gain of 17 dBi. Another interesting

part of this design is that the room at the array centre has been reserved for an

active RFIC chip, which could be integrated to allow beamforming and thus a

reconfigurable antenna [44].

The dielectric resonator antenna (DRA) has been attracting much attention in

mm-wave applications for its low loss, wide bandwidth and easy integration. PCB

technology can also be applied to implement DRAs, although the permittivity (εr)

of the dielectric resonator is normally higher (10 ∼ 100) than the PCB materials.

In [45], Q. Lai et al. present a novel feeding scheme for cylindrical DRAs, the half-

mode SIW. A Duroid 5880 substrate is employed together with Duroid TMM10i

for the cylinders to achieve a high radiation efficiency between 80% and 92%. A

superstrate air cavity is introduced to enhance the gain of the DRA by 10.7 dBi

to 16.71 dBi through simulation in [46]. Solid SIW cavities are also seen to help

with low loss and high gain in [47].

Despite all the benefits the introduction of an air cavity could bring about, the

realisation of it can be challenging and difficult especially when mainstream PCB

processing technology is to be used; it will be even more challenging to realise a

plastic or multilayer organic (MLO) package enclosing the antenna and the whole

system [44]. So on one hand, further improvement should be made on the existing
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PCB technology to easily accommodate air cavities without substantially increas-

ing the cost; on the other hand, the search or development of a new technology

which can inherently handle this problem should be carried out.

1.2.3 LTCC Technology

1.2.3.1 A Brief History

LTCC technology is a 3D integration technology with multilayered ceramic sub-

strates which is applicable to electronic circuits. Fig. 1.3 shows a standard pro-

cedure for LTCC processing. The history of multilayer co-fired ceramic substrate

technology dates back to the late 1950s when it was developed at RCA Corpora-

tion. Thereafter, this multilayer board, developed by IBM for its commercialized

computers in the early 1980s, was co-fired at a high temperature of 1600 ◦C with

low-conductivity high-melting-point materials (Mo, W, Mo-Mn), which was called

High Temperature Co-fired Ceramics (HTCC). After that, the demand for con-

ductive materials with low electrical resistance (Cu, Au, Ag) in the wiring process

inspired the development of the LTCC technology (in contrast to HTCC), which

fires all the materials below 1000 ◦C (typically 900 ◦C). By the early 1990s, the

collaboration between LTCC tape producers (DuPont, Heraeus and Ferro) and

packaging companies (Fujitsu and IBM) accelerated the commercialisation, mainly

for mobile communication components. Up to present, the research on LTCC has

been keeping pace with the development of high frequency wireless communica-

tions for its outstanding merits toward the high frequency band (e.g., the mm-wave

band) [48–50].

Here is the list of the unique characteristics which makes LTCC a promising tech-

nology for mm-wave applications [51–53]:

• Low thermal coefficient of expansion (TCE), which is close to semiconduc-

tors, to achieve high connection reliability in very-large-scale integration

(VLSI) systems over a wide temperature span.

• Low loss tangent and hence low dielectric loss in the mm-wave band to give

low loss performances.

• Good thermal conductivity, which is much better than organic PCBs and

could be further improved with thermal vias, to easily dissipate heat.
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Laminating Co-firing

Figure 1.3: A standard procedure for LTCC processing [48].

• Easy to be 3D interconnected and packaged based on a multilayered struc-

tures.

• Easy to be integrated with various microwave components even of different

types of materials.

1.2.3.2 Mm-Wave LTCC Antennas

After an attempt of an extremely low-efficiency on-chip antenna using the semi-

conductor technology, Y. Zhang et al. quickly switched to LTCC technology and

came up with the concept of AiP in 2006 [16, 24]. AiP enables the codesign of

the antenna, active chip and package at the same time, which makes a compact

and efficient system with a low cost and high performance. Fig. 1.4 illustrates a

3D view of the basic AiP structure. Located in the recessed cavity is the active

chip connected with the antenna through bond wires. There are also signal traces

extending outside to be connected with power sources and other processing units.

Finally, ceramic ball grid array (CBGA) technology is used to seal the package.

With this novel AiP concept and technology, Y. Zhang et al. have successfully

incorporated a Yagi antenna [54], a grid array antenna [55] and a triangular ra-

diator [56] into a highly integrated 60 GHz radio system. Although the radiation

efficiency of all three antennas is high (at least 85% without the active chip), the

wire-bonding technique poses a real challenge and threat to the performance of

the whole system as the introduced discontinuity and the thin wire itself could be

lossy in the mm-wave band. In order to take advantage of the cheap and robust
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Figure 1.4: A 3D view of the basic AiP structure [54].

wire-bonding technology, a compensation scheme is introduced to minimize the

mismatch and the length of the wire is also reduced to some extent in [56].

Apart from the research group led by K. Wu, another group with W. Hong et al.

has also done some remarkable work on SIW and the collaboration between them

is often seen. Recently, however, W. Hong et al. have fit their SIW designs into

LTCC technology instead of PCB which they have been using for the last few

decades. Published in 2011, this paper features a 8 × 8 cavity antenna array fed

by a substrate integrated waveguide in the 60 GHz band. A total of 20 LTCC

layers are used to achieve a bandwidth of 17.1% and a gain up to 22.1 dBi. The

measured radiation efficiency is 44.4%, not as high as expected. The reason is

not explained in the paper; yet the transition from WR 15 to SIW has certainly

contributed to that [57]. Another high-gain LTCC antenna is demonstrated by

A. Lamminen et al. who employs chain antenna array with SIW feed network to

achieve a gain of 22 dBi at 62 GHz. The simulated radiation efficiency without the

transition is 74%, higher than that of [57]; while the actual measured efficiency

could be degraded greatly [58]. The highest-gain single-element LTCC antenna

ever reported in the 60 GHz band is an improved Vivaldi antenna with a novel

stepped dielectric director (SDD). This antenna features a broad bandwidth of

10% and a boresight gain of 10.25 dBi at 60 GHz [59]. While someone is pursuing

a higher gain, the other one is looking at a smaller size. In [60], J. Lee et al. present

a compact V-band front-end solution by integrating cavity filters/duplexers and

antennas together. The measured channel-to-channel isolation is better than 49

dB across the RX/TX band. The proposed front-end can easily incorporate an

active MMIC to complete a full RF transceiver in the near future.
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Within the Easy-A project sponsored by the German Ministry of Education and

Research (BMBF), M. Martinez et al. have carried out intensive work on mm-

wave LTCC technology. Firstly, simulation and experiments are completed on

the electrical and mechanical properties of the LTCC substrates, DuPont 943 and

9k7, at 60 GHz as the data is only available at the low frequency band. It is

found that the actual permittivity of DuPont 943 at 60 GHz is slightly lower than

that specified by DuPont at 40 GHz [61, 62]. With that in mind, they design

and demonstrate a balanced-fed 2 × 1 60 GHz antenna array which could be

integrated into an RF transceiver for high data rate WLAN systems [63, 64]. [65]

presents another 2 × 2 patch array with a stripline-to-waveguide transition which

could be integrated with front-end SiGe MMICs to complete a transceiver system.

This array also shows good RF performance with a bandwidth of 12.5% and a

radiation efficiency of 65%. A 60 GHz SIW fed steerable LTCC cavity antenna

array is demonstrated in [66]. To reduce the mismatch at the interface between the

SIW cavity and free space, an air cavity is etched to reduce the effective dielectric

constant. Also, two passive elements are added at each column of the array to

suppress the side lobe level. Finally, a prototype is made and tested. It should be

noted, however, that only one column of the array is activated each time and the

field superposition method is applied to calculate the far-field radiation pattern,

which could be further improved.

1.2.4 Conclusion

Merits and drawbacks exist in all three major technologies. Semiconductor tech-

nology comes as the most expensive when it’s applied in the mm-wave band; yet

the integration level is the highest (24 times that of PCB). With the lowest inte-

gration level, PCB technology is cheapest in terms of both material and processing

cost and has fulfilled every corner of modern microwave applications. The high

TCE (Thermal Coefficient of Expansion) of PCB, however, has really dragged it

down. A high TCE leads to thermal-mechanical fatigue defects and changes the

mechanical and electrical properties of the board when it goes through thermal

cycling or thermal shock. A trade-off is found in LTCC technology which has

a moderate TCE, cost and performance and hence, a great potential in future

mm-wave applications [67].
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Figure 1.5: A 60 GHz transceiver before and after assembled with a brass
fixture [71].

1.3 Mm-Wave Transceiver Technology

1.3.1 Semiconductor Transceivers

Utilizing 100 nm InAlAs/InGaAs HEMT technology on GaAs substrate, S. Koch

et al. have realised and improved an integrated transceiver MIMIC with multiple

antenna ports at 60 GHz from 2007 to 2009. There is a RF switch to change signal

routes which has evolved from a DPDT, through 2:4, to 2:6 to achieve the capabil-

ity of multiple bands. The newest version of this MIMIC is 2.5 × 5.5 mm 2, which

claims to be the highest integration level for a 60 GHz semiconductor transceiver

chip to date [68–70]. With antennas incorporated, however, the transceiver chip

will be much larger. Apart from their work on a high gain horn antenna in [30],

B. Pan et al. also present a 60 GHz transceiver by integrating the horn antenna

with a duplexer and active amplifiers as shown in Fig. 1.5. Although the design

claims to be substrate-independent, they do use a silicon substrate to implement

it. A gain of 14.5 dBi is achieved with a clearly bulky size; the horn itself is 14 ×
12 mm2 [71].

1.3.2 PCB Transceivers

K. Wu and his group demonstrate two single-layered transceiver front-ends with

SIW technology in [72] and [73]. In [72], it’s a dielectric rod antenna fed by

substrate integrated image guide (SIIG) and hybridly integrated with an MMIC

low-noise amplifier. The incorporation of a dielectric antenna is aiming at a low

loss characteristic, which also inevitably increases the overall size of the system.

The same problem emerges in their another design of a smart antenna receiver

in [73], which integrates an antenna array, a Butler matrix, a bandpass filter,
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Figure 1.6: A 60 GHz receiver using the PCB technology [73].

and other active components in one single PCB layer as shown in Fig. 1.6. The

obvious advantage is that it’s low cost and easily fabricated; however, the large

area it occupies is certainly a huge drawback and hinders its possible application in

the space-demanding mm-wave band. A multilayer 60 GHz antenna embedded in a

phased-array transmitter or receiver is presented in [74]. The size of the system has

been reduced and a high data rate up to 5.3 Gbps using 16-quadrature amplitude

modulation single-carrier and orthogonal frequency division multiplexing schemes

has also been achieved.

None of the previously-mentioned systems can function as a real transceiver, as

they can’t transmit or receive signals at the same time. [75] demonstrates a

transceiver system by integrating two separate RX/TX antennas into the same

board, which could, however, be further improved by incorporating a single an-

tenna and a duplexer as in [30, 60].
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1.3.3 LTCC Transceivers

In 2003, K. Kunihiro et al. presented a fully integrated LTCC transceiver at

5 GHz suitable for WLAN systems at a data rate up to 54 Mbps. With the

help of a high-permittivity LTCC (εr =17), the whole size of the system can be

reduced to 8 × 10 × 1 mm. However, a high dielectric constant could hamper

the antenna’s radiation and reduces its efficiency [76]. Another similar design for

Bluetooth applications with even smaller size was given by Y. Cho in 2008 [77].

Transceivers are also analysed and designed in X band [78] and Ku band [79]

and Ka band [80], respectively. The SANTANA project is performed by some

German researchers, which aims at electronically steerable antennas to realise

multimedia terminals, i.e., a transmitter operating at 30 GHz and a receiver at

20 GHz [81, 82]. One thing to be noted is that the transmitter and receiver are

implemented as separated modules and hence no complete transceiver system has

been demonstrated by far. When it comes to V band, however, no complete LTCC

transceivers have been reported to date. In 2005, Y. Lee et al. demonstrated a

highly integrated transmitter with a size of 36 × 12 × 0.9 mm3, which is suitable

for high speed multimedia communications, such as WPAN (Wireless Personal

Area Network) [83]. Later, still using LTCC, J. Lee et al. designed and developed

cavity-backed filters and antennas with the capability of integration into a full

transceiver system [60, 84]. With the proposal of the AiP concept, Y. Zhang et

al. have also contributed a lot to V-band LTCC antennas and come up with some

models of AiP transmitters. Nevertheless, the final actual prototype still needs to

be implemented [54–56].

1.4 Conclusion

After briefly reviewing the history of wireless communication, this chapter draws

the conclusion that the operating frequency band should advance higher to the

mm-wave band in pursuit of a higher data rate and wider bandwidth. Then,

three main-stream technologies to implement mm-wave antennas and transceivers

are reviewed and compared to find that the LTCC technology seems to be well-

balanced in terms of its cost and performance, although they all have their own

advantages and disadvantages.

LTCC technology is employed in this thesis to implement high-gain high-efficiency

antenna arrays based on novel low-loss transmission lines (waveguides).
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Chapter 2 presents a novel hollow SIW (HSIW) which removes most of the di-

electrics inside SIW to achieve a lower loss. Detailed theoretical analysis and

computer-aided simulation are provided and compared. Prototypes are also fab-

ricated and measured to verify the concept.

Chapter 3 presents another type of low-loss transmission line, the dielectric insular

image guide (DIIG). Detailed theoretical analysis and computer-aided simulation

are provided and compared. Prototypes are also fabricated and measured to verify

the concept.

Chapter 4 builds on Chapter 2 to present design and measurement of a slot antenna

array. Similarly, a DRA antenna array is presented in Chapter 5 based on the DIIG

in Chapter 3.

Chapter 6 concludes the whole thesis and gives some advice on the further and

future work following this thesis.



Chapter 2

Hollow Substrate Integrated

Waveguide

2.1 Introduction

The hollow substrate integrated waveguide (HSIW) proposed here derives from

the newly-emerged substrate integrated waveguide (SIW) which is a key part of

a general concept of a substrate integrated circuit (SIC). This concept was first

introduced by K. Wu etal. to unify hybrid and monolithic integrations of various

planar and non-planar circuits that are made in single and/or multi-layer sub-

strates [85]. Since RF and millimetre-wave technologies are always searching for

something that can bring about easy-fabrication, low-cost, and high-integrity etc,

the SIC concept is certainly a good candidate.

As mentioned above, SIW is one of the various implementation forms of SICs and

the most widely studied and used. In 1998, H. Uchimura et al. proposed a novel

multilayer waveguide with sidewalls consisting of lined metal posts and named it

as “laminated waveguide” [86]. Another similar waveguide was brought up by J.

Hirokawa and M. Ando in the same year with the most obvious distinction being

that the whole structure was single-layered [87]. That should be the origin of SIW

even though it didn’t get its name then. After that, K. Wu et al. theoretically

analysed SIW, extracted the complex propagation constant of each SIW mode and

provided basic design rules in 2002 [88] and 2005 [89]. Then came an application

boom for SIW. Antennas [66, 90], filters [91, 92], mixers [93], couplers [94], circu-

lators [95], phase shifters [96], power amplifiers [97], and power dividers [98] have

all seen SIW as their vital components.

22
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Figure 2.2: (a) 3D and (b) cross-sectional view of the HSIW.

As can be seen in Fig. 2.1, SIW is based on a solid dielectric substrate with two

parallel rows of metallic posts (vias) used to replace the side walls of a RWG. Here

a novel HSIW is introduced where an air cavity is etched out inside the traditional

SIW, as shown in Fig. 2.2(a). By incorporating this hollow cavity, the following

advantages are expected:

1) Lower loss due to the removal of most of the lossy dielectric material.

2) The HSIW can be realized with high-permittivity substrates and at higher fre-

quencies, where the size of SIW otherwise tends to be too small to accommodate

the vias.

3) The HSIW can be directly connected with normal RWGs, whereas the SIW

requires more complicated transitions with potentially more loss.

4) The low permittivity is advantageous for the design of many antennas
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After the removal of the inner dielectric material, a supporting layer needs to be

added on both top and bottom of the HSIW, which can be seen in Fig. 2.2 (b). To

facilitate the fabrication process, the supporting layer can use the same material

as the filled dielectric, in our case, LTCC (εr = 7.1). Apart from that, the metallic

vias and layers can use the same conductive material, in our case, silver paste

(σ = 3.7e7).

The theoretical-analysis method of an HSIW is a combination of those of RWG and

SIW; therefore, to analyse and design the HSIW (to find the width of the HSIW),

two steps need to be followed. Firstly, HSIW is viewed as a two-dielectric loaded

RWG. After solving this boundary value problem, the two-dielectric loaded RWG

is transformed into a uniformly-filled RWG by introducing the effective dielectric

constant (EDC), εe. Then, by modifying the empirical formula in [89] relating

SIW and RWG, the dimension of HSIW can be finally determined. These are

reflected in Section 2.2 and 2.3, respectively. In Section 2.4, an HSIW prototype

resembling WR28 is also fabricated and measured to verify the theory.

2.2 Two-Dielectric Loaded RWG

This section deals with the boundary value problem of the two-dielectric loaded

RWG to determine its width for a prescribed cutoff frequency. Firstly, by combin-

ing Maxwell’s Equations and boundary conditions, the characteristic equations for

both even and odd modes are set up. After analysing possible propagating modes

inside the RWG, the TE10 mode is found to be fundamental when the height/width

ratio, b/a ≤ 0.5. Then the cutoff frequency of TE10 mode is determined through

either exact or empirical method. With the introduction of the EDC, εe, the two-

dielectric loaded RWG is redistributed uniformly and the loss characteristics of

TE10 mode can be immediately obtained through ready formulas in [99]. Finally,

the design process for a single-mode dielectric-filled RWG is given.

2.2.1 Characteristic Equations

As shown in Fig. 2.3, a metallic RWG is longitudinally filled with two symmetrical

dielectrics and hence, divided into three regions: 1, 2, and 3. a, b stands for

the width and height of the two-dielectric loaded RWG, respectively, while the

widths of Dielectric 1 and 2 are represented by a1 and a2, respectively. Then,
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Figure 2.3: The cross-sectional view of the dielectric-filled RWG.

assume both dielectrics are linear, isotropic, homogeneous and lossless with a pair

of permittivities and permeabilities of ε1, µ1 and ε2, µ2, respectively. The metal

encompassing the dielectrics is initially assumed to be perfectly electric conductor

(PEC), whereas the attenuation due to a finite conductivity can be analysed later

by the perturbation method discussed in [99].

Assuming time-harmonic fields with an ejωt dependence propagate in the dielectric-

loaded RWG shown in Fig. 2.3, the electric and magnetic fields can be expressed

as follows:

Ā(x, y, z) = [Āx(x, y) + Āy(x, y) + Āz(x, y)]e−jβz (2.1)

where Ā denotes Ē or H̄ and β is the phase constant of the travelling wave.

Since the RWG is source-free, the electric and magnetic fields should also satisfy

the Helmholtz’s equation:

∇2Ā+ k2
i Ā = 0, i = 1, 2 (2.2)

where Ā denotes Ē or H̄ and

ki = ω
√
µiεi = 2π/λi, i = 1, 2 (2.3)

stands for the wavenumber with λi as the wavelength in its corresponding dielec-

tric.
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Following (2.1) and (2.2), the transverse components of the fields, i.e. Ex, Ey, Hx,

Hy can be solved in terms of the longitudinal components, i.e. Ez, Hz:

Ex =
−j
k2
ci

(
β
∂Ez
∂x

+ ωµ
∂Hz

∂y

)
Ey =

j

k2
ci

(
−β∂Ez

∂y
+ ωµ

∂Hz

∂x

)
Hx =

j

k2
ci

(
ωε
∂Ez
∂y
− β∂Hz

∂x

)
Hy =

−j
k2
ci

(
ωε
∂Ez
∂x

+ β
∂Hz

∂y

)
(2.4)

where

k2
ci = k2

i − β2, i = 1, 2 (2.5)

is defined as the cutoff wavenumber in its corresponding dielectric.

Boundary conditions at the PEC walls and dielectric interfaces should also be

included to solve this problem, which are as follows:

Ex|y=0, b = Ey|x=±a/2 = Ez|x=±a/2 = Ez|y=0, b = 0 (2.6a)

Ap1 = Ap2|x=−a2/2, Ap2 = Ap3|x=a2/2 (2.6b)

where A denotes E or H and p denotes y or z.

By applying the method of separation of variables to (2.2) together with bound-

ary conditions at a PEC wall, (2.6a), the longitudinal field components in three

different regions, i.e. Ezi, Hzi, i = 1, 2, 3, can be derived as follows:

Ez1 = A1 sin [kx1(x+ a/2)] sin (nπy/b)

Ez2 = [A2 cos (kx2x) + A4 sin (kx2x)] sin (nπy/b)

Ez3 = A3 sin [kx1(x− a/2)] sin (nπy/b)

Hz1 = B1 cos [kx1(x+ a/2)] cos (nπy/b)

Hz2 = [B2 cos (kx2x) +B4 sin (kx2x)] cos (nπy/b)

Hz3 = B3 cos [kx1(x− a/2)] cos (nπy/b)

(2.7)
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Figure 2.4: The odd/even mode of the transverse electric field.

where n = 0, 1, 2, · · · and kxi, i = 1, 2 (the x-direction wavenumber in the corre-

sponding dielectric) also satisfies the following separation equations:

k2
1 = εrk

2
0 = k2

x1 + (nπ/b)2 + β2

k2
2 = k2

0 = k2
x2 + (nπ/b)2 + β2

(2.8)

where k0 is the wavenumber in free space.

Since the dielectric-loaded RWG is symmetrical in terms of material and geometry

with respect to the plane of x = 0, the fields within it are either symmetrical or

asymmetrical, namely even or odd, with respect to the same plane. Here on

a regular basis, the transverse electric fields, namely Ex and Ey, are taken to

determine the odd/even nomenclature of the travelling wave.

Suppose Ēx1 and Ēy1 and their vector sum, Ēt1, are depicted in Region 1, as

shown by Fig. 2.4. For the even mode of the transverse fields, Ēte3 in Region 3

is symmetrical to Ēt1 with respect to the plane x = 0. This results in an even-Ey

pair (Ey1 = Ey3) and an odd-Ex pair (Ex1 = −Ex3), as shown in Fig. 2.4. With

the aid of (2.4) and (2.7), it is then found that

A3 = −A1, B3 = −B1. (2.9)

The odd-mode field in Region 3 represented by Ēto3 in Fig. 2.4, therefore, brings

about an opposite relation:

A3 = A1, B3 = B1. (2.10)
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These two modes will be analysed individually as follows.

a) Even mode

In this case, the transverse fields are symmetrical with respect to the plane of x = 0,

which results in a relation among the unknown field coefficients as expressed by

(2.9).

Based on that, we apply boundary conditions at dielectric interfaces, (2.6b), for

Ez

Ez1 = Ez2|x=−a2/2, Ez2 = Ez3|x=a2/2 (2.11)

to obtain

A1 sin (kx1a1/2) = A2 cos (kx2a2/2)− A4 sin (kx2a2/2)

A1 sin (kx1a1/2) = A2 cos (kx2a2/2) + A4 sin (kx2a2/2)
(2.12)

which gives

A4 = 0

A1 sin (kx1a1/2)− A2 cos (kx2a2/2) = 0 (2.13)

Again, we apply (2.6b) for Hz to obtain

B2 = 0

B1 cos (kx1a1/2) +B4 sin (kx2a2/2) = 0 (2.14)

Hence, two unknown field coefficients have been removed by the assumption of even

mode and the boundary equations have also been greatly simplified compared with

the method presented in [100].

Once again, we apply boundary conditions, (2.6b), for Ey and Hy to obtain

A1

[
β

k2
c1

nπ

b
sin (kx1a1/2)

]
− A2

[
β

k2
c2

nπ

b
cos (kx2a2/2)

]
+B1

[
ωµ1

k2
c1

kx1 sin (kx1a1/2)

]
+B4

[
ωµ2

k2
c2

kx2 cos (kx2a2/2)

]
= 0 (2.15a)

A1

[
ωε1
k2
c1

kx1 cos (kx1a1/2)

]
− A2

[
ωε2
k2
c2

kx2 sin (kx2a2/2)

]
−B1

[
β

k2
c1

nπ

b
cos (kx1a1/2)

]
−B4

[
β

k2
c2

nπ

b
sin (kx2a2/2)

]
= 0 (2.15b)
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Combining (2.13), (2.14), and (2.15), a homogeneous linear equation array is pro-

duced with 4 unknowns: A1, A2, B1, B4. In order to obtain nontrivial solutions,

the determinant of the coefficient matrix must be zero, which yields the charac-

teristic equation:[
Kµkx1 tan (kx1a1/2)

k2
c1

− kx2

k2
c2 tan (kx2a2/2)

] [
Kεkx1

k2
c1 tan (kx1a1/2)

−kx2 tan (kx2a2/2)

k2
c2

]
+

(
βc2nπ

ωb

)2(
1

k2
c2

− 1

k2
c1

)2

= 0

(2.16)

where Kµ = µ1/µ2, Kε = ε1/ε2 and c2 is the speed of light in Dielectric 2.

At an arbitrary given frequency, the electromagnetic fields can be solved by com-

bining (2.8) and (2.16) for a two-dielectric loaded RWG with a specific shape and

material.

b) Odd mode

In this case, the transverse fields are asymmetrical with respect to the plane of

x = 0, which results in a relation among the unknown field coefficients as expressed

by (2.10).

Following a similar route, apply boundary conditions at the dielectric interfaces,

(2.6b), for Ez, Hz, Ey, and Hy to obtain the characteristic equation:[
Kµkx1 tan (kx1a1/2)

k2
c1

+
kx2 tan (kx2a2/2)

k2
c2

] [
Kεkx1

k2
c1 tan (kx1a1/2)

+
kx2

k2
c2 tan (kx2a2/2)

]
+

(
βc2nπ

ωb

)2(
1

k2
c2

− 1

k2
c1

)2

= 0

(2.17)

In the same way, with the help of the separation equation, (2.8), the odd-mode

fields can also be derived for a specific two-dielectric loaded RWG.



Chapter 2. Hollow Substrate Integrated Waveguide 30

2.2.2 Propagating Modes

A special case of the propagating modes inside the two-dielectric loaded RWG

when n = 0 should be mentioned here. If n = 0, the longitudinal electric compo-

nent, Ez, vanishes according to (2.7), generating TEm0 modes.

For other modes with n 6= 0, both Ez and Hz will exist and thus, brings about a

hybrid mode, EHmn, where m,n 6= 0. The reason why m 6= 0 results from the fact

that the two-dielectric loaded RWG is not homogeneous along the x-direction.

Consequently, the lowest cut-off frequency is from either (a) TE10 mode or (b)

EH11o and EH11e modes. It can be found that the cut-off frequency of the TE

modes is independent of the y dimension, i.e., b, while that of the EH modes

decreases with an increasing b. Therefore, it is foreseen that the TE and EH

modes will exchange their role as the dominant mode at a certain point.

Suppose Dielectric 1 is the DupontTM GreenTapeTM 9K7 LTCC system with a rel-

ative dielectric constant εr1 of 7.1 and Dielectric 2 is air. Thus, Kµ = 1, Kε = 7.1.

Let

p =
2a1

a
(2.18)

represents the filling factor of Dielectric 1, the influence of which on the cutoff

wavelength of possible fundamental modes is shown in Fig. 2.5. Also in this

figure, the influence of b is clearly depicted.

As can be seen in Fig. 2.5, there are three groups of curves representing three

possible fundamental modes: TE10, EH11o, and EH11e. In each group, each of the

five curves, from top to bottom, corresponds to a filling factor, p, from 1 to 0 in

a descending order. The cutoff wavelength, λc, (= λc2, the cutoff wavelength in

Region 2) has been normalised to that of the RWG with a 0-loaded ratio, i.e.,

p = 0, while the height, b, has been normalised to the width a. Higher cut-

off wavelengths mean lower cutoff frequencies. Intersections are clearly seen and

marked by those green squares for the curves with the same load ratio. These are

the turning points, to the left of which TE10 mode has a lower cutoff frequency and

thus, is the fundamental one and to the right EH11o is the fundamental one. The

EH11e mode always prompts a higher cutoff frequency than EH11o mode provided

with the same p. It’s worth noting that when the RWG is completely occupied by

one dielectric, i.e., p = 1 and p = 0, the EH11o mode is converted to TE01 mode,

with the EH11e mode being TE11.
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Figure 2.5: The cut-off wavelength with the change of height, b, and load
ratio, p, of the two-dielectric loaded RWG.

It can also be found that those turning points occur when b/a approximates 1,

which means the height and the width of a RWG is about the same. On a regular

basis, the width of a RWG is larger than its height and laid on its wider side.

Therefore, if Dielectric 2 is placed vertically as shown in Fig. 2.3, the dominant

mode is probably TE10; however, if Dielectric 2 is placed horizontally on the top

and bottom of a RWG, the EH11o mode will probably be the dominant one. The

single-mode bandwidth will depend on how much longer a is than b; the longer a

is or the shorter b is, the wider the bandwidth is.

Simulation by Ansoft HFSSTM has also been carried out to verify this theory and

the discrepancy is within 0.1%. So the results are not plotted in Fig. 2.5, otherwise

they will be overlapping and obscuring those from theoretical calculations.

2.2.3 TE10 Mode

For TEm0 modes, n = 0 removes the longitudinal electric component, Ez, and

hence, the Ex and Hy components (based on (2.4)), leading to

kyi = 0, k2
ci = k2

xi, i = 1, 2 (2.19)
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Since the TE10 mode has a symmetrical distribution of transverse electric fields,

it belongs to the even-mode group.

Applying boundary conditions at dielectric interfaces, (2.6b) for the even TEm0

modes to obtain

B1 cos (kx1a1/2) +B4 sin (kx2a2/2) = 0

B1Kµkx2 sin (kx1a1/2) +B4kx1 cos (kx2a2/2) = 0
(2.20)

and setting the determinant of its coefficient matrix to 0, the simplified character-

istic equation for the even TEm0 modes can be obtained as follows

Kµkx2 tan (kx1a1/2) tan (kx2a2/2)− kx1 = 0, even mode (2.21)

A similar process can be taken to derive the characteristic equation for the odd

TEm0 modes

Kµkx2 tan (kx1a1/2) + kx1 tan (kx2a2/2) = 0, odd mode (2.22)

The four unknown coefficients can then be solved for the even modes in terms of

B1, suppose all the other terms are known, to give the field components as follows:

Hz1 = A cos [kx1(x+ a/2)]

Hz2 = −Acos (kx1a1/2)

sin (kx2a2/2)
sin (kx2x)

Hz3 = −A cos [kx1(x− a/2)]

Ey1 = −Ajωµ1

kx1

sin [kx1(x+ a/2)]

Ey2 = −Ajωµ2

kx2

cos (kx1a1/2)

sin (kx2a2/2)
cos (kx2x)

Ey3 = A
jωµ1

kx1

sin [kx1(x− a/2)]

Hx1 = A
jβ

kx1

sin [kx1(x+ a/2)]

Hx2 = A
jβ

kx2

cos (kx1a1/2)

sin (kx2a2/2)
cos (kx2x)

Hx3 = −A jβ
kx1

sin [kx1(x− a/2)]

Ex = Ez = Hy = 0

(2.23)

where A is an arbitrary constant.
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For the convenience of later designs, suppose Dielectric 2 is air and Dielectric 1

is a nonmagnetic material with a relative permeability, µr = 1, and a relative

permittivity, εr. Then, Kµ = 1 and Kε = εr.

To determine the cutoff frequency of the even TEm0 modes, set β to 0 for (2.21).

Therefore, the separation equations can also be rewritten as

k2
x1 = εrk

2
0, k

2
x2 = k2

0

which yields the final characteristic equation for even modes as

√
εrk0a1/2 = arctan [

√
εr/ tan (k0a2/2)] +m′π, m′ = 0, 1, 2, · · · (2.24)

Note in this equation, there are four unknowns, a, p, εr, and k0. With three of them

given, the remaining one will be solved out immediately. This, in another way, has

offered a high degree of flexibility when designing the two-dielectric loaded RWG.

If k0 is the target and when it has been worked out, the cutoff frequency can then

be derived as

fc =
k0c0

2π
(2.25)

where c0 is the speed of light in free space. It is also worth noting that m′ has

nothing to do with m; the introduction of m′ is just for the convenience of solving

(2.21). In fact, when m′ takes one single value, it could correspond to a series of

continuous guided modes depending on the number of curve intersections repre-

sented by the two sides of (2.24).

Since the HSIW has most of its inner dielectric removed and behaves like an

air-filled RWG, the dielectric-loaded RWG considered here should also be lightly

loaded, i.e., the product of p and
√
εr is small. So the cutoff wavenumber kc is

close to that of an air-filled RWG, i.e., mπ/a. If

kx1a1/2 =
√
εrkcap/2 =

√
εrmπp/2� 1

i.e.,

p
√
εr � 2/(mπ),

tan (kx1a1/2) ≈ kx1a1/2, which can simplify (2.24) to

k0a2/2 = arctan [2/(k0a1)] +m′π, m′ = 0, 1, 2, · · · (2.26)
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Figure 2.6: The comparison of cut-off wavelength with p
√
εr (εr = 7.1).

When m takes a high value, it’s very hard to meet that simplification condition.

So it is only realistic for low-order modes.

Regarding the TE10 mode, Fig. 2.6 describes the accuracy of (2.26) compared

with the accurate (2.24) and the simulation results from HFSS. Dielectric 1 used

here is the LTCC material as before with εr = 7.1. As in Fig. 2.5, the cut-off

wavelength λc has been normalised to that of the RWG with a 0-loaded ratio, i.e.,

2a. The λc derived from the approximated (2.26) has a different trend from those

obtained by (2.24) and HFSS simulation, with the increase of p
√
εr. Nevertheless,

the discrepancy is not much, about 1% at p
√
εr = 0.35. It can also be found,

however, that the cutoff wavelength of an air-filled RWG is closer to that of the

accurate model.

In a word, the TE10 mode of an air-filled RWG can probably replace that of

a dielectric-loaded RWG in terms of cut-off frequency when p
√
εr ≤ 0.35 (1%

discrepancy approximately).

To further explore the cut-off characteristics and obtain a more accurate expres-

sion for this dielectric-loaded RWG, a series of different permittivities has been

theoretically calculated with the accurate (2.24), as shown in Fig. 2.7. The rela-

tive dielectric constant εr starts at 2 and endes at 12 with a step of 2. Generally,

when εr increases, the normalised cut-off wavelength λc decreases and behaves

more like the TE10 mode of an air-filled RWG. However, note that the maximum

λc doesn’t appear at the lowest εr, as it resembles, again, an air-filled RWG when
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Figure 2.7: The comparison of cut-off wavelength with different permittivities
and the curve fitting.

εr approaches 1. It is therefore searched through accurate calculation that εr = 3.2

gives the maximum λc.

Since the accurate (2.24) needs to be numerically calculated and thus, is compli-

cated, a curve-fitting technique is used here to derive a simplified approximation.

For 2 ≤ εr ≤ 12 which accounts for most of the regular dielectric materials, εr = 7.1

is chosen to be curve-fitted, as it stands close to the middle and will later be used

for the HSIW design. The fitted curve takes the form of an exponential function,

shown as the red solid line in Fig. 2.7. The approximated empirical expression for

the cutoff wavelength of TE10 mode is

λc = 2a [0.999 + 4.946e(−4) exp (9.409p
√
εr)] , p

√
εr ≤ 0.35 (2.27)

with a discrepancy less than 0.2%. After that, the cutoff frequency is obtained as:

fc =
c0

λc
. (2.28)

2.2.4 EDC, εe, of TE10 Mode

A waveguide needs to be single-moded to be practically in use. For a two-dielectric

loaded waveguide with b/a ≤ 0.5, the cut-off frequency of higher modes, i.e., TE20,
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Figure 2.8: The transformation from a two-dielectric loaded RWG into a
uniformly filled one with EDC, εe.

EH11o, etc., will at least double that of the TE10 mode for a lightly-loaded case

(refer to Fig. 2.5 to get a sense). So the single-mode band is from the cut-off

frequency fc to 2fc. In order to characterise the propagation of a lightly-loaded

RWG (p
√
εr ≤ 0.35) in its single-mode band, a concept of EDC, εe, is proposed,

which transforms a two-dielectric loaded RWG into a uniformly-filled one, as shown

in Fig. 2.8.

2.2.4.1 Derivation of εre

In a situation where no dielectric loss exists, εe = εre. Therefore, the propagation

constant, β, can now be rewritten as

β =
√
εrek2

0 − (π/a)2 (2.29)

Take (2.21) with a simplified separation equation (2.30):

εrk
2
0 = k2

x1 + β2

k2
0 = k2

x2 + β2
(2.30)

to solve for β and hence, εre.

Calculation and HFSS simulation on εre have been carried out for εr = 7.1 along

a frequency range of fc ∼ 2fc, as shown in Fig. 2.9 (For simplicity, results from

HFSS simulation are not displayed as they tend to overlap those from theoretical

calculation). Fig. 2.9 shows that εre curves take the form of an exponential func-

tion and tend not to be flat with high p
√
εr values in the single-mode band. A
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Figure 2.9: The EDC, εre, of a lightly-loaded RWG with different p
√
εr values

(εr = 7.1).

Table 2.1: The coefficients’ values for the fitted εre (εr = 7.1).

p
√
εr εr0 A B

0.05 1.00007 0 0
0.10 1.00052 4.357e-6 0.832
0.15 1.00173 4.045e-5 0.779
0.20 1.00402 1.441e-4 0.855
0.25 1.00776 3.320e-4 0.983
0.30 1.01334 5.975e-4 1.142
0.35 1.02131 8.700e-4 1.349

curve-fitting technique has also been applied here to extract an empirical expres-

sion for εre with different p
√
εr values:

εre = εr0 + A exp (Bf ′) (2.31)

where f ′ = f/fc and the values for the coefficients are listed in Tab. 2.1.

Similar to the analysis of the cut-off characteristics, a series of εr has also been

calculated to obtain εre and shown in Fig. 2.10. Since εre varies with changing

frequency toward high p
√
εr, a fixed frequency point at f/fc = 1.5 has been chosen

to evaluate εre. It is seen in Fig. 2.10 that a cluster of curves, with 2 ≤ εr ≤ 12,

tend to open up toward higher p
√
εr values, which is similar to that depicted in

Fig. 2.7. εre from εr = 7.1 stands in the middle with the maximum deviation,
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Figure 2.10: The EDC, εre, of a lightly-loaded RWG with different εr.

0.4%, occurring at p
√
εr = 0.35. Note that this deviation is achieved at f/fc = 1.5.

As the frequency rises, the deviation is expected to be escalated toward the end

of the single-mode band, f/fc = 2.

2.2.4.2 Derivation of tan δre

If the dielectric loss exists which is the normal case in practice, ε and εe become

complex

ε = ε′ − jε′′ = ε0εr(1− j tan δ) (2.32a)

εe = ε′e − jε′′e = ε0εre(1− j tan δe) (2.32b)

Hence, from [99], the time-average power dissipated per unit length due to the

dielectric loss of the two RWGs shown in Fig. 2.8 should be equal to each other

and found to be

Pd =
ωε′′

2

(∫
S1

|Ey1|2ds+

∫
S3

|Ey3|2ds

)
Fig. 2.8 (a)

=
ωε′′e
2

∫
S4

|Eye|2ds Fig. 2.8 (b) (2.33)
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where Eye is given by Eq. (3.89b) in [99] as

Eye = −jωµa
π

B′1 sin
πx

a
(2.34)

Solve (2.33) using (2.23) to find ε′′e as

ε′′e = ε′′
B2

1

B′21

(π/a)2

k2
x1

a1 − sin (kx1a1)/kx1

a
(2.35)

To obtain B2
1/B

′2
1 , a power condition needs to be taken into consideration, which

is the power flow down the two RWGs in Fig. 2.8 are also the same, i.e.,

Po =
1

2
Re

(∫
S1

Ey1H
∗
x1ds+

∫
S3

Ey3H
∗
x3ds

)
Fig. 2.8 (a)

=
1

2
Re

∫
S4

EyeH
∗
xeds Fig. 2.8 (b) (2.36)

where Hxe is given by Eq. (3.89c) in [99] as

Hxe =
jβa

π
B′1 sin

πx

a
(2.37)

Solve (2.36) using (2.23) to find B2
1/B

′2
1 and substitute it into (2.35) to find ε′′e as

ε′′e = ε′′
[
1 +

k2
x1

k2
x2

a2 + sin (kx2a2)/kx2

a1 − sin (kx1a1)/kx1

cos2 (kx1a1/2)

sin2 (kx2a2/2)

]−1

(2.38)

hence,

tan δe =
ε′′e
ε′e

=
ε′′e
εre

= tan δ

(
εr
εre

)[
1 +

k2
x1

k2
x2

a2 + sin (kx2a2)/kx2

a1 − sin (kx1a1)/kx1

cos2 (kx1a1/2)

sin2 (kx2a2/2)

]−1

(2.39)

To simplify (2.39), a series of tan δe normalised to the actual dielectric loss tangent,

tan δ, has been calculated using (2.39) with different p
√
εr values when εr = 7.1,

as shown in Fig. 2.11. It can be found in Fig. 2.11 that the curves take the form

of an exponential function and tend not to be flat with high p
√
εr values in the

single-mode band. A curve-fitting technique has also been applied here to extract
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Table 2.2: The coefficients’ values for the fitted tan δe/ tan δ (εr = 7.1).

p
√
εr δ0 A′ B′

0.05 0.00008 0 0
0.10 0.00060 1.380e-5 0.739
0.15 0.00195 8.565e-5 0.830
0.20 0.00451 2.707e-4 0.963
0.25 0.00866 5.739e-4 1.146
0.30 0.01499 9.247e-4 1.380
0.35 0.02433 1.190e-3 1.674
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Figure 2.11: The normalised tan δe of a lightly-loaded RWG with different
p
√
εr values.

an empirical expression for tan δe/ tan δ with different p
√
εr values:

tan δe
tan δ

= δ0 + A′ exp (B′f ′) (2.40)

where f ′ = f/fc and the values for the coefficients are listed in Tab. 2.2.

Similar to the analysis of εre, a series of εr has also been calculated to obtain

tan δe/ tan δ and shown in Fig. 2.12. Since tan δe/ tan δ varies with changing

frequency toward high p
√
εr, a fixed frequency point at f/fc = 1.5 has been chosen

to evaluate it. It is seen in Fig. 2.12 that a cluster of curves, with 2 ≤ εr ≤ 12,

tend to flare up toward higher p
√
εr values, which is similar to that depicted in

Fig. 2.10. The only difference lies in that tan δe is monotonically increasing with
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Figure 2.12: The normalised tan δe of a lightly-loaded RWG with different εr
values.

the decrease of εr. tan δe from εr = 7.1 stands in the middle with the maximum

deviation, 2%, occuring at p
√
εr = 0.35. Note that this deviation is achieved at

f/fc = 1.5. As the frequency rises, the deviation is expected to be escalated

toward the end of the single-mode band, f/fc = 2.

2.2.4.3 Combination of εre and tan δre

To summarise the EDC method in a lossy situation, a complex dielectric constant

is introduced as (2.32b), where εre can be derived through (2.21), (2.29), and (2.30)

and tan δe is found by (2.39). Nevertheless, if approximation is allowed, εe can be

transformed into a simplified empirical expression as

εe = εre(1− j tan δe)

= [εr0 + A exp (Bf ′)]
{

1− j tan δ [δ0 + A′ exp (B′f ′)]
}

(2.41)

where f ′ = f/fc and the coefficients’ values are listed in Tab. 2.1 and 2.2 for dif-

ferent p
√
εr values. Note that this approximated formula will give exact solutions

when εr = 7.1 and a maximum 0.4% discrepancy for εre and 2% for tan δe when

2 ≤ εr ≤ 12 and f ′ ≤ 1.5.
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2.2.5 Loss of TE10 Mode

Generally, for a matched transmission line, the loss is composed of three compo-

nents: conductor loss, αc, dielectric loss αd, and radiation loss, αr, attributed by

a finite conductivity, σ, imperfect dielectric material, ε′′, and an open structure,

respectively. As to the dielectric-loaded RWG, the radiation loss can be ignored

as the structure is sealed within a metallic surface.

With the introduction of EDC, εe, the two-dielectric loaded RWG can be viewed

as one uniformly-filled with a new dielectric in its single-mode band, i.e., TE10

mode. Hence, the attenuation constant due to conductor loss, αc, of the TE10

mode can be expressed as (3.96) in [99]

αc =
Rs

a3bβkη
(2bπ2 + a3k2) (2.42)

where

ω = k0c0

k =
√
εrek0

Rs =

√
ωµ

2σ
, the wall-surface resistance

η =

√
µ

ε0εre
, the intrinsic impedance of the filling material

c0 =
1

√
µ0ε0

, the speed of light in free space

(2.43)

Fig. 2.13 shows the conductor loss constant, αc, of dielectric-loaded RWGs with

different widths. As can be seen, αc is high in the proximity of cut-off frequency

and decreases drastically to a stable value across the single-mode band. As the

width a decreases or in other words, the operating frequency increases, αc gets

higher which means that the attenuation due to finite conductivity tend to be

severe toward high frequencies. This fact has become a serious constraint for the

application of RWGs in mm-wave and higher frequency bands. The result from

HFSS simulation has also been presented in Fig. 2.13. A minor deviation has

been observed between results from the calculation and simulation and it gets

worse toward narrower RWGs, which is probably resulted from the fact that εre is

not derived from the standing point of power.
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Figure 2.13: The conductor loss constant, αc, when εr = 7.1, σ = 5.8e7 S/m,
p
√
εr = 0.3, and b = 1 mm.
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Figure 2.14: The dielectric loss constant, αd, when εr = 7.1, tan δ = 0.001,
p
√
εr = 0.3, and b = 1 mm.

With tan δe known from either (2.39) or (2.41), the attenuation constant due to

dielectric loss, αd, for the TE10 mode is modified from (3.29) in [99] to give

αd =
εrek

2
0 tan δe
2β

(2.44)



Chapter 2. Hollow Substrate Integrated Waveguide 44

Fig. 2.14 shows the dielectric loss constant, αd, of dielectric-loaded RWGs with

different widths. As can be seen, αd is high in the proximity of cut-off frequency,

drops drastically to a relatively-stable value and then rises again toward the end of

the single-mode band. Similar to αc, as the operating frequency increases, αd gets

higher which means high dielectric attenuation at high frequencies. Compared

with αc for a specific case (p
√
εr = 0.3), αd is negligible, at the order of 10% of

αc. It is clear that with the removal of most of the dielectric in the RWG, the

dielectric attenuation is very low. The result from HFSS simulation has also been

presented in Fig. 2.14. A perfect agreement has been found and the curves are

actually overlapping each other.

2.2.6 Design of Two-Dielectric Loaded RWG

To design a dielectric-loaded air-filled RWG with b/a ≤ 0.5, as shown in Fig. 2.3,

one can follow a rigorous route:

1) Figure out p and εr based on the materials and techniques available.

2) Use (2.24) to find the width, a, for a prescribed cut-off frequency. Numerical

analysis is needed to solve this transcendental equation.

3) Use (2.21), (2.29), (2.30), and (2.39) to find the phase constant, β, and the

complex EDC, εe. εe at several discrete frequency points can be solved first

and then extrapolated to be a continuous curve.

4) Use (2.42) and (2.44) to find the loss characteristics, i.e., αc and αd.

5) Use HFSS to build up 3D models and make necessary adjustments upon sim-

ulation.

Alternatively, if approximation is allowed, a simpler route can be taken as follows

(exact solutions throughout the single-mode band when εr = 7.1):

1) Choose one value from 0.05 to 0.35 with a 0.05 step for p
√
εr, based on the

materials and techniques available as long as 2 ≤ εr ≤ 12.

2) Use (2.27) to find the width a for a prescribed cut-off frequency with a discrep-

ancy less than 0.2%.
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3) Choose one equation from a set of (2.41) to find the complex EDC, εe, based

on the p
√
εr value you already chose in Step 1), and hence, (2.29) to find the

propagation constant, β, when fc ≤ f ≤ 1.5fc. The maximum discrepancy of

0.4% for εre and 2% for tan δe occurs at f = 1.5fc.

4) Same as the exact method.

5) Same as the exact method.

2.3 SIW

In this section, a multimode calibration method proposed in [89] is used to analyse

and extract the propagation characteristics of the SIW. After that, a modified

formula on K. Wu’s method in [88] and [89] is given to better adapt our design

with LTCC as the filling dielectric.

As stated in Section 2.1, the main difference between an SIW and a completely

dielectric-loaded RWG lies in that the solid side walls of a RWG are replaced by

two rows of periodic metal posts. As can be seen in Fig. 2.1, the diameter of the

posts is d and the pitch between two adjacent posts is s. In addition, a, b, and l

represents the width, height, and length of the SIW, respectively.

Based on [89], only TEm0 modes can propagate within an SIW, since the discrete

posts will cut off the surface currents of all other modes. Various methods have

been applied to analyse the propagation characteristics of this newly-introduced

structure. By assuming a uniform longitudinal electric current on the post surface,

J. Hirokawa et. al. used the dyadic Green’s function to solve the fields generated

by a unit cell of the SIW. This method is completely numerical without giving

any closed-form formula [87]. K. Wu has used the BI-RME method in [88], the

FDTD method, and a multimode calibrated FEM method in [89]. Apart from

the numerical nature of these two methods, approximated numerical formulas are

derived to determine the equivalent RWG width of an SIW, which is simple and

straightforward within a certain accuracy.

The multimode calibrated FEM method is employed here to characterise the

SIW. Two lowest-order modes will be considered, where HFSS based on the FEM

method will implement the calculation.
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The multimode calibration method is essentially a multiline method, where the

basic principle is that one can determine the propagation constant through uncal-

ibrated S-parameter measurements of at least two transmission lines [101, 102].

Instead of a simple and less-accurate formula for a single-mode case:

α =
ln |Si21/S

j
21|

∆l
, β =

∠(Si21/S
j
21)

∆l
, (2.45)

where Si21 and Sj21 are for SIW i and SIW j with a length difference of ∆l, a matrix

method is introduced to take on board all the elements of the S-matrix aiming for

a more-accurate solution.

Under a premise of two-mode calibration, define T i0,

T i0 = diag[e−γ1li eγ1li e−γ2li eγ2li ] (2.46)

as the cascade T -parameter matrix for an ideal transmission line i, where γ1, γ2

are the propagation constant for mode 1 and mode 2, respectively, and li is the

length of transmission line i. Then, define T i

T i = XT i0Y (2.47)

as an uncalibrated cascade T -parameter matrix, where matrices X and Y repre-

sent imperfections and errors from practical measurements or modelling-software

simulations. It is worth noting that X and Y are assumed unchanged for each

measurement and simulation of both transmission line i and j. The definition of

T j0 and T j takes a similar manner [102].

Since the S-parameter matrix is generally obtained directly from measurements

or simulations, the conversion from a S-matrix into a T -matrix is necessary. In

this case, the conversion will be performed in a two-mode environment, which is

intended to yield a more-accurate result than that from a single-mode calibration

and clearly identify the single-mode band of the transmission line.

Recall the definition of a single-mode S-parameter matrix:(
b1

b2

)
=

(
S11 S12

S21 S22

)(
a1

a2

)
(2.48)
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and interchange b2 and a1, then a2 and b2 to obtain the T -parameter matrix as:(
b1

a1

)
=

(
T11 T12

T21 T22

)(
a2

b2

)
(2.49)

Now, extend the single-mode S-parameter and T -parameter matrix into the two-

mode case: 
b1

1

b2
1

b1
2

b2
2

 =


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44



a1

1

a2
1

a1
2

a2
2

 (2.50)


b1

1

b2
1

a1
1

a2
1

 =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44



a1

2

a2
2

b1
2

b2
2

 (2.51)

where the superscript 1 and 2 indicate the corresponding mode 1 and mode 2,

respectively.

To solve for the elements of the T -matrix, it needs to be decomposed into separate

equations. Take the solution of T11 for example.

First,

b1
1 = T11a

1
2 + T12a

2
2 + T13b

1
2 + T14b

2
2 (2.52)

Then,

T11 =
b1

1

a1
2

|a22 = b12 = b22 =0 (2.53)

Substitute a2
2, b1

2, and b2
2 in the S-matrix, (2.50), with 0 to solve for b1

1 in terms of

a1
2, suppose the S-matrix is known. In the end, T11 can be found as

T11 = S11
S43S32 − S42S33

S42S31 − S41S32

+ S12
S41S33 − S43S31

S42S31 − S41S32

+ S13 (2.54)

As can be seen, the algebraic expression for the whole T -matrix in terms of S-

parameters will be too complex to be presented here. Nevertheless, one can always

follow the same method discussed above to solve for the T -matrix.
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With T i and T j solved from the S-matrix, they can thus be combined into an

eigenvalue equation:

T ij = XT ij0 X
−1 (2.55)

where

T ij = T j(T i)−1, T ij0 = T j0 (T i)−1
0 (2.56)

The eigenvalues of T ij, λij1T , λij2T , λij3T , λij4T , are equal to those of XT ij0 X
−1, which,

after a simple derivation, equal those of T ij0 , i.e., the diagonal elements: e−γ1∆l,

eγ1∆l, e−γ2∆l, and eγ2∆l.

Hence, the propagation constant γ1 and γ2 are given as:

γ1 = ln(λij1 )/∆l, γ2 = ln(λij2 )/∆l (2.57)

where ∆l = lj − li and λij1 , λij2 are the mean value of the first and second pair of

T ij’s eigenvalues, respectively:

λij1 =
1

2

(
λij1T +

1

λij2T

)
, λij2 =

1

2

(
λij3T +

1

λij4T

)
(2.58)

Following this two-mode calibration method, the properties of three SIWs with

different widths, a = 2, 3, and 4 mm are calculated and compared with results

obtained from [89], while the other parameters are chosen as b = 1 mm, d = 0.25

mm, s = 0.5 mm, σ = 3.7e7, tan δ = 0.001, and εr = 7.1.

Fig. 2.15 shows the propagation constants of the three SIWs with the frequency

normalised to their own cutoff. The attenuation constant, α, is for the TE10 mode.

Mode 2 starts to appear at f/fc = 2, where the single-mode band ends. Based on

the phase constant, β, of TE10 mode in Fig. 2.15, we can use

ae =
π√

εrk2
0 − β2

(2.59)

to find the equivalent width of a RWG completely filled with the same dielectric

material, as shown in Fig. 2.16.

An interesting phenomenon is discovered here that the equivalent width, ae, is

weakly increasing with the frequency and tends to merge with a constant value

given by [89] at the end of the single-mode band, i.e., f/fc = 2 (Note that results

given by Formulas (8) and (9) are overlapping each other and thus, presented in one

curve.). Therefore, a maximum discrepancy is indicated at the cutoff frequency,
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Figure 2.15: The propagation constants of three SIWs with different widths,
a = 2, 3, and 4 mm.
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Table 2.3: The equivalent width, ae, from two-mode calibration method and
K. Wu’s method [89].

a (mm) 2 3 4

ae (mm, Formula (8) in [89]) 1.868 2.868 3.868
ae (mm, two-mode calibration) 1.847 2.847 3.848

i.e., f/fc = 1. In an ideal situation, the definition of the cutoff is where the phase

constant, β, equals 0. In HFSS simulation, however, β takes a small positive value

below the cutoff. Therefore, the new definition of the cutoff is where the largest

leap of β happens, which is also where ae stops dropping and tends to be stable in

Fig. 2.16. To accurately determine the cutoff frequency, ae at f/fc = 1 is required.

ae from both two-mode calibration method and [89] is shown in Tab. 2.3. A

maximum discrepancy of 1.1% can be observed. Apparently, however, Formula

(8) will match our results if the coefficient of the second term is adjusted slightly

as

ae = a− d2

0.817 · s
(2.60)

Other basic design rules with respect to s/d and a/d in [89] can be followed to

minimize the leakage loss, ensure a proper TEm0 mode, etc.

2.4 HSIW

Combining the analysis in Sections 2.1 and 2.3, this section designs, fabricates

and measures HSIWs at the mm-waves to achieve a low-loss transmission line

comparable with an air-filled RWG.

2.4.1 Design

With the introduction of the EDC, εe, the partially-filled RWG can be viewed as

one completely filled with an equivalent dielectric; while the SIW is also connected

with its corresponding RWG based on the theory in [89]. So the theoretical analysis

of HSIW can be the combination of them. Design steps of exact solutions for a

HSIW with b/a ≤ 0.5 are as followed:
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1) Determine the cutoff frequency fc of the TE10 mode and hence, the single-mode

band is fc ∼ 2fc.

2) Determine s, d, a1, and εr based on the materials and techniques available and

make sure s/d ≤ 2, a1/d ≥ 2.

3) Use (2.24) to find the width of the two-dielectric loaded RWG, ap, for fc and

check if ap/d ≥ 5. If not, reduce fc, d, or a1 until it satisfies the condition.

Numerical analysis is needed to solve this transcendental equation.

4) Use (2.21), (2.29), (2.30), and 2.39 to find the phase constant, β, and the

complex EDC, εe. εe at several discrete frequency points can be solved first

and then extrapolated to be a continuous curve. Now the partially-filled RWG

has been transformed into one completely filled with a single dielectric.

5) Use (2.60) to find the width of the HSIW, ah. Note that ae = ap. The height

of the HSIW, bh, enjoys a certain degree of flexibility and can be selected to

the convenience of fabrication, loss requirements, etc.

6) Use the two-mode calibration method to find the loss characteristics, i.e., αc,

αd and αr, where αr is the radiation loss. HFSS based on the FEM method is

needed to perform the 3D modelling.

Alternatively, if approximation is allowed, a much simpler route can be taken as

follows (exact solutions throughout the single-mode band when εr = 7.1):

1) Same as the exact method.

2) Choose one value from 0.05 to 0.35 with a 0.05 step for p
√
εr and determine s

and d based on the materials and techniques available as long as 2 ≤ εr ≤ 12

and s/d ≤ 2.

3) Use (2.27) to find the width of partially-filled RWG, ap, for a prescribed cut-off

frequency with a discrepancy less than 0.2%. Check if ap/d ≥ 5 and pap ≥ 2d.

If not, reduce fc, d or increase p until it satisfies the condition.

4) Choose one equation from a set of (2.41) to find the complex EDC, εe, based

on the p
√
εr value you already chose in Step 1), and hence, (2.29) to find the

phase constant, β, when fc ≤ f ≤ 1.5fc. The maximum discrepancy of 0.4%

for εre and 2% for tan δe occurs at f = 1.5fc. Now the partially-filled RWG has

been transformed into one completely filled with a single dielectric.
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Table 2.4: The configurational parameters (in mm) of WR28-like and WR15-
like HSIWs.

HSIW d s a1 εr ap ah a b

WR28-like 0.30 0.60 0.70 7.1 7.08 7.26 7.11 1.32
WR15-like 0.25 0.50 0.50 7.1 3.71 3.87 3.76 1.32

5) Same as the exact method.

6) Same as the exact method.

Based on the steps discussed above, two HSIWs have been designed which have

the same cutoff frequency as the standard WR28 (21.10 GHz) and WR15 (39.89

GHz), respectively. Both the exact and approximated method have been used.

The results tend to be the same as εr of the dielectric is selected as 7.1.

Tab. 2.4 shows the configurational parameters of WR28-like and WR15-like

HSIWs, where a is the width of a standard RWG. The propagation character-

istics are shown in Fig. 2.17. The frequency has been normalised to the calculated

cutoff, which is 21.21 GHz for WR28-like and 40.20 GHz for WR15-like. The loss

tangent of LTCC is tan δ = 0.001 and the conductivity of silver paste is σ = 3.7e7

S/m. Standard WR28 and WR15 and corresponding dielectric-filled SIWs with

the same cutoff frequencies have also been simulated by HFSS and results are

shown as a comparison. Note that the height of the RWGs and SIWs is also 1.32

mm, the same as the HSIW.

In Fig. 2.17(a), the loss of SIW implied by the attenuation constant, α, is signifi-

cantly larger than that of the HSIW. This has clearly verified the reduction of loss

by removing the inner dielectric of the SIW. Compared with standard RWGs, the

WR28-like HSIW is very close to a standard one in terms of attenuation; while

WR15 is separated apart slightly. A possible explanation is that the conductor

loss from the surface current flowing along the metallic posts gets severe, as the

frequency rises. Another point to be noted is that the loss of WR15-like HSIW

is obviously larger than that of WR28-like. This is probably results from the fact

that the conductor loss, which rises with frequency, has accounted for the majority

of the loss, as the dielectric has mostly been removed.

In Fig. 2.17(b), the cutoff frequency defined by the largest derivative of the phase

constant, β, is close to that of standard RWGs (0.11 GHz deviation for WR28-like
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Figure 2.18: The fabricated three WR28-like HSIWs.

HSIW and 0.31 GHz for WR15-like) for the TE10 mode. For the TE20 mode,

however, that deviation doubles and can be clearly seen in Fig. 2.17(b).

2.4.2 Measurement

Due to the restriction of measurement equipments, only a WR28-like HSIW sample

has been made and measured to verify the design, as shown in Fig. 2.18. Three

HSIWs with an equal difference in length of 10 mm, i.e., 30 mm, 40 mm, and 50

mm, are built into one panel using a progressive-lamination LTCC technique. The

DupontTM GreenTapeTM 9K7 LTCC system with a relative dielectric constant of

7.1 is employed as the dielectric, while the silver paste with a conductivity of 3.7e7

S/m is adopted as the conductive material.

Regarding the feeding scheme, a back-to-back transversal slot-pair is employed

to couple the energy in and out. The transmission loss, S21, for each HSIW is

measured, as shown in Fig. 2.19. As can be seen, the transmission loss has a

relatively flat response in the frequency range of 30 - 35 GHz apart from multiple

resonances probably due to the two feeding slots.

After that, the propagation constant of this WR28-like HSIW is thus extracted

with the single-mode multiline calibration technique introduced in Section 2.3,

since the measured result cannot differentiate those fundamental and higher-order

modes. The result is shown in Fig. 2.20. To compare with the measurement, the

simulated propagation constant using the two-mode multiline calibration technique

has also been plotted in the same figure.

In Fig. 2.20, the measured phase constant, β, stays very close to the simulated

one, including the cutoff frequency. As for the measured loss constant, α, it ripples
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Figure 2.19: Measured S21 of the three HSIWs with lengths of 30 mm, 40
mm, and 50 mm.
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Figure 2.20: Extracted propagation constant of the WR28-like HSIW.
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greatly and a Savitzky-Golay smoothing technique [103] has to be used to find out

the figure shape and tendency, which is indicated by the blue line. As can be seen,

α from 30 to 35 GHz ripples around 2 Np/m, whereas the simulated one is only

0.5 Np/m, which implies that the actual sample is more lossy. It is then assumed

that α in other frequency ranges are about the same if the multiple resonances

could be eliminated. The shape and tendency of the measured α agree with that

of the simulated one, especially for the frequencies below 35 GHz, in that they

both have a sharp drop near the cutoff frequency and tend to be flat afterwards.

Finally, possible reasons for the high loss may lie in that the loss characteristics

of materials (LTCC, silver paste) tend to be worsening at higher frequencies and

minor fabrication errors are inevitable. Nevertheless, an average α of 2 Np/m or

17 dB/m is still an excellent loss performance.

2.5 Conclusion

By decomposing the HSIW into the two-dielectric loaded RWG and a standard

SIW, this chapter builds up a systematic theory for the analysis and design of

HSIW. A prototype operating in the Ka band is fabricated and the measured

results suggest that the HSIW can work similarly to a standard RWG with the

same cutoff frequency and slightly higher loss. The potential of HSIW to be

integrated with other microwave components is highly desired and advantageous

over standard RWGs.



Chapter 3

Dielectric Insular Image Guide

This chapter is organised as follows: firstly, a short review of the history and

methodology for the dielectric guides is presented in Section 3.1. Then in Section

3.2, a traditional rectangular DIG is analysed in terms of both approximate and

numerical methods among which the widely-used EDC method is improved and

generalised for all aspect ratios. Finally, the DIIG is analysed and designed to

show an improved loss performance on the DIG with measurement given to verify

the validility in Section 3.3.

3.1 Introduction

3.1.1 History

The study of the dielectric guide (DG) started as early as 1910 when Hondros et al.

analysed the propagation characteristics of electromagnetic waves along cylindrical

DGs. Although further investigations were carried out both theoretically and

experimentally in the following decades, the progress of the DG in practice was

overshadowed by the rapid development of metal waveguides during the 1940s

[104].

The 1950s saw the revival of the DG used for microwave and millimetre wave

integrated circuits as they are easier to be manufactured compared with 3D metal

waveguides. A metallic layer or surface, however, is inevitable for transmission

lines in microwave and millimetre wave circuits for use as a mechanical support,

heat sink, DC bias and for integration with other components. This brings about

57
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Figure 3.1: (a) Marcatili’s DG model, (b) equivalent horizontal and vertical
slab guides (For simplicity, the surrounding dielectric is assumed to be air.)

a new configuration on the DG by incorporating a large pure metallic layer at the

bottom of the dielectric guide, popularly referred to as the dielectric image guide

(DIG) which is the simplest millimetre-wave dielectric integrated guide structure

[104] and was first proposed by King in 1952 [105]. After that, a variety of dielectric

transmission lines was proposed based on this rectangular DIG, including dielectric

insular image guide (DIIG) [106–109], dielectric slab guide [107, 110], inverted strip

dielectric waveguide [108], cladded rectangular dielectric image guide [111], etc.

3.1.2 Theoretical Methods

Together with the development of DG applications came various theoretical in-

vestigations to qualitatively and quantitively characterise the propagation and

dispersion characteristics of the electromagnetic wave inside and in the vicinity

of the DG in its various forms. Since there are no closed-form solutions to rigor-

ously describe the wave behaviour, unlike the case in the metallic waveguide, the

methods to be reviewed here are all essentially approximate, although they are all

reasonably close to the actual field distribution.

3.1.2.1 Approximate Methods

Marcatili’s paper [112] in 1969 is the earliest and most comprehensive effort to give

a deep insight into the waveguiding mechanisms of the low-permittivity rectan-

gular DG during this period. In this paper, Marcatili introduced an approximate

solution by neglecting the electromagnetic fields of certain field regions as shown

in Fig. 3.1(a). Firstly, E. Marcatili divides the DG and its surroundings into 9

regions. Then, he simplifies this boundary value problem by making two assump-

tions:
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(a) For well-guided modes, the fields decay exponentially in Regions 2, 3, 4 and 5

and hence, a small portion of the energy travels in these regions with even less

in the shaded Regions 6, 7, 8 and 9. Consequently, the fields are matched only

along the sides of the DG and only a small error should be introduced into

the field calculation if the shaded regions were removed from this DG model.

These assumptions will inherently lead to the following wavenumber relations:

kx = kx1 = kx2 = kx4 (3.1a)

ky = ky1 = ky3 = ky5 (3.1b)

where kxi and kyi, i=1, 2, · · · 5, are the transverse propagation constants along

the x- and y-direction in the ith region, respectively.

(b) The permittivity of the dielectric rod must be low, which guarantees the in-

ternal total reflection at grazing angles within the dielectric rod.

We take a deeper look at Marcatili’s Assumption (a) and found that there is

always one of the subequations, (3.1a) and (3.1b) slightly more accurate than the

other for a specific configuration (except when b/a = 1), although they are all

reasonably correct. Suppose the aspect ratio, b/a � 1, the wave behaviour will

certainly approach the horizontal slab guide rather than the vertical one, resulting

in (3.1a) rather than (3.1b). It is the other way around when b/a � 1. So, it is

expected that (3.1a) holds more strongly when b/a <1 and (3.1b) is closer to the

actual situation when b/a > 1.

Based on all the preceding assumptions, Marcatili has calculated the propagation

constants and provided a solution for both a single and two coupled DGs in the

form of transcendental equations, which is further approximated into a closed

form. With the establishment of characteristic equations for this boundary value

problem, it is then found that this DG model can be split into two independent and

simpler slab guides with infinite extension along one single direction, respectively,

i.e., the horizontal and vertical slab guides, as shown in Fig. 3.1(b) [112].

In 1970, Knox et al. followed Marcatili’s approximation and introduced an EDC

method, which was applied to the DIG shown in Fig. 3.2(a) and showed pos-

sible microwave and millimetre wave applications. Up until now, it is still the

most commonly used method for calculating the propagation characteristics of

the rectangular DG [113]. Through the image theory, it can be inferred that DIG
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Figure 3.2: (a) Knox’s DIG model, (b) equivalent horizontal (εr) and vertical
(εre) slab guides (c) equivalent vertical (εr) and horizontal (εre) slab guides.

represents the top half of a rectangular DG of twice the height, except that certain

modes are shorted out by the metallic ground plane and hence suppressed. This

is a distinct advantage over the DG, giving a much wider frequency bandwidth for

single mode operation [104].

In addition to Marcatili’s assumptions, Knox et al. assume that the aspect ratio

of the DIG, b/a ≤ 1 (low aspect ratio), which aims for a non-variation of the

fields in the x direction and in other words, (3.1b) holds. Then the DIG model

can be split into two infinite slab guides, as is the case for Marcatili’s DG model.

Fig. 3.2(b) shows this transformation and the difference from Marcatili’s model,

where the dielectric constant of the vertical slab guide is an EDC, εre [113]. It’s

also worth noting that a modification to Knox’s DIG model is made here where

the ground plane is removed from the vertical slab guide to accommodate the

tangential electric components, i.e., Ex and Ez.

The derivation process is demonstrated in [113] and summarised as follows:

Firstly, the infinite horizontal slab guide shown in Fig. 3.2(b) is analysed. k′x (=0)

and ky are the guided propagation constant in the x and y direction, respectively.

Then, the propagation constant in the z direction, namely phase constant under

a low-loss situation, β′, satisfies

β′2 = εrk
2
0 − k2

y

= k2
0

[
εr −

(
ky
k0

)2
]

= k2
0εre (3.2)

where εre is defined by

εre = εr −
(
ky
k0

)2

(3.3)
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and k0 is the free space wavenumber.

Secondly, since an effective dielectric constant, εre is introduced, a new uniform

medium is generated, which is a new vertical slab guide shown in Fig. 3.2(b). Here

contrary to that in the horizontal slab guide model, k′y = 0, while kx is nontrivial.

Likewise, the propagation constant of the final DIG satisfies:

β2 = β′2 − k2
x

= εrek
2
0 − k2

x (3.4)

With a deep look into this process, it’s found that kx is obtained from the horizontal

guide and then ky is from the vertical guide, which is exactly the same route

with Marcatili’s method. A different dielectric constant, however, will certainly

differentiate the two methods.

In fact, Knox et al. have only presented one type of this EDC method, i.e., EDC-H

which starts with a horizontal slab guide. As shown in Fig. 3.2(c), one may also

start the analysis with a vertical slab guide whose dielectric constant is εr and

then form a horizontal slab guide with a uniform effective dielectric constant, εre.

This supplementary EDC method is named as EDC-V. The key to this analysis

order lies with the aspect ratio. If the aspect ratio, b/a, is smaller than 1, better to

start with the horizontal guide and vice versa. This will result in a more accurate

result by Marcatili’s first assumption. With this flexibility, the EDC method takes

an advantage to be potentially more accurate through suitable analysis order over

Marcatili’s method which doesn’t account for the aspect ratio.

The characteristic equations as to find solutions of kx and ky will be explicitly

explained in Section 3.2.

An improvement on these approximation methods was made near the cutoff fre-

quency in 1988 by J. Xia et al. They introduced a new factor F0/F1, (which equals

1 at high frequencies as in Marcatili’s and EDC method; while deviates from 1 at

low frequencies) into the transcendental characteristic equation and found that the

propagation losses will be lowered and the fields will be more effectively confined

within the guide in the vicinity of the cutoff frequency. So it will be helpful to

design the DIG in a way so that it operates near the cutoff to achieve a low-loss

performance [114].
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Figure 3.3: The cross-sectional view of the DIG model for applying the mode-
matching method [115].

3.1.2.2 Rigorous Methods

Attention should be paid to how the approximation is made in Marcatili’s and

EDC methods so as to improve the accuracy by taking into account what’s been

neglected, although closed-form solutions can’t be achieved and the workload is

substantially increased. Research on this subject has been carried out, which gives

rise to the mode-matching method [109, 115, 116], the generalised telegrapher’s

equations [107] and the finite element iterative method [117], etc. All these nu-

merical methods tolerate the existence of geometrical discontinuities which enable

the coupling among different modes and create hybrid ones [118].

Here the mode-matching method is taken as an example. In order to define a

proper eigenvalue problem, a perfect electric conductor (PEC) is placed on top

of the DIG, which is also parallel to the ground plane. A large distance from

the PEC to the ground plane is chosen to minimize the field distortion by the

PEC, as shown in Fig. 3.3. The guided modes in the DIG generally have all the

components of E and H fields. Because of the symmetry of the structure, however,

they can be divided into even and odd modes and only half plane of the structure

(divided by an electronic or magnetic wall) needs to be considered. Further, the

region under consideration continues to be divided into two subregions (1 and 2)

and the fields in each region can be expanded in terms of its eigenfunctions, which

is a set of infinite harmonics. Finally, the fields at the interface are matched by

applying boundary conditions and solved for the propagation constant as well as

for the field distribution. Ideally, this mode-matching method will bring about an

exact solution for the characterization of DIGs. In practice, however, one must

choose a limited number of harmonics. Consequently, an approximated solution

will be yielded with its accuracy depending on the volume of harmonics and the

capacity of the computers [109, 115].
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Through rigorous analysis, it’s found that all 6 components of electric and mag-

netic fields exist in the rectangular DG/DIG [118]. By neglecting one of the weak-

est electric or magnetic component, however, the modes of the DG/DIG can be

grouped into TE-like and TM-like ones, which is essentially how the approximate

methods solve this problem.

As for the wave pattern, it tends to be standing inside the DG/DIG, whereas

decaying exponentially with distance outside it in the x and y directions; while

in the z direction, it’s travelling suppose the transmission line is infinitely long or

perfectly matched.

3.2 DIG

In this section, both the approximate and numerical methods disscussed in Sec-

tion 3.1 are used to characterise the DG/DIG in terms of propagation and attenu-

ation. Results are presented and comparisons are made amongst various methods.

As for the characterisation of the rectangular DG/DIG, there are mainly two

approximate methods, namely Marcatili’s method and the EDC method, which are

widely accepted and applied. The basic rules are followed here, whereas reasonable

modifications and extensions are also made.

In this thesis, only the DIG model will be discussed, as it has the potential to be

applied and integrated in the microwave band. In fact, with the existence of the

metallic ground plane, certain modes that are guided in the DG are shorted out

in the DIG. Apart from that, the DIG and DG of twice its height are equivalent.

As discussed in Chapter 2, the electric and magnetic fields are characterised by

(2.1) for a infinitely-long and uniformly-distributed transmission line. The trans-

verse and longitudinal field components can be further decomposed and retain a

relation regulated by (2.4).

Before the boundary conditions are formulated, take on board that the DIG model

can be approximately split into two infinite slab guides, as shown in Fig. 3.2.

Then, the boundary condition for the horizontal slab guide is given as follows:

Ep|y=0 = 0, Ep|y→∞ → 0

Ap1 = Ap2|y=b/2

(3.5)
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and that for the vertical slab guide is:

Eq|x→∞ → 0 (3.6a)

Aq1 = Aq2|x=−a/2, Aq1 = Aq3|x=a/2 (3.6b)

where A denotes E or H, p denotes x or z and q denotes y or z.

After the establishment of this boundary value problem, the theoretical analysis

will be based on the two slab guides individually. An infinite slab guide can only

support the TM or TE mode, which means none of the TEM or hybrid modes

exists [99]. Therefore, the propagating modes in the DIG will be grouped into two

families: TM-like (with Ey andHx as the main field components) and TE-like (with

Ex and Hy as the main field components), which is in line with the conclusions

in [104, 112]. Note that the TE/TM modes for a slab guide are conventionally

defined with respect to the z direction (TMz/TEz), while those for the DIG are

defined with respect to the y direction (TMy/TEy).

The following analysis will start with the TMy
mn mode, followed by the TEy

mn mode

in a similar manner.

3.2.1 TMy
mn Mode

The TMy
mn mode in the DIG will require a TMz

n mode in the horizontal slab

guide and a TEz
m mode in the vertical one, based on the consistency of main field

components in each guide. Hence, the analysis will be based on the two guides

individually and then combine them together to generate the overall characterisa-

tion.

Suppose the aspect ratio, b/a < 1 and thus the EDC-H method is employed, which

demands the horizontal slab guide to be first analysed. If b/a > 1, the vertical

slab guide will be studied first with the EDC-V method. Either method is suitable

for the case of b/a = 1. As for the Marcatili’s method, it’s not sensitive to the

analysis order.
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3.2.1.1 Horizontal Slab Guide

Since there is no field variation in the x direction, the Helmholtz’s equation (2.2)

for the TMz
n mode can be simplified as(

∂2

∂y2
+ k2

yi

)
Ez = 0, i = 1, 2 (3.7)

where kyi, i = 1, 2, is the cutoff wavenumber in Regions 1 and 2, respectively,

and defined as

ky1 =
√
εrk2

0 − β2
h

ky2 =
√
k2

0 − β2
h

(3.8)

where βh is the phase constant of the horizontal slab guide.

Since the fields in Region 2 of the horizontal guide are exponentially attenuating

along the y direction, ky2 is essentially a pure imaginary number. Hence, to obtain

a positive real number, ky0 is introduced as

ky0 =
√
β2
h − k2

0

=
√

(εr − 1)k2
0 − k2

y1 (3.9)

Solve (3.7) and apply the boundary condition, (3.5), to obtain the field compo-

nents, Ez, Ey, and Hx as

Ez1 = A1 sin(ky1y)

Ez2 = A1 sin(ky1b/2)eky0(b/2−y)

Ey1 =
−jA1βh
ky1

cos(ky1y)

Ey2 =
−jA1βh
ky0

sin(ky1b/2)eky0(b/2−y)

Hx1 = −ωε
βh
Ey1

Hx2 = −ωε0
βh

Ey2

(3.10)

where A1 is an arbitrary constant. ε (complex if lossy) and ε0 are the permittivity

of the DIG and free space, respectively. The characteristic equation is then found
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to be

1− ky1

εrky0

tan (ky1b/2) = 0 (3.11)

or for the convinience of calculation, transformed into

ky1b = −2 arctan

(
ky1

εrky0

)
+ nπ (3.12)

where

n = 2n′ − 1, n′ = 1, 2, 3, · · ·

Note that n, which stands for the number of field variations in the y direction, can

only be odd for the TMy
mn mode in the DIG.

3.2.1.2 Vertical Slab Guide

In this case, the electromagnetic fields are non-variant along the y direction, which

reduces the Helmholtz’s equation (2.2) for the TEz
m mode into(

∂2

∂x2
+ k2

xi

)
Hz = 0, i = 1, 2, 3 (3.13)

where kxi, i = 1, 2, 3, is the cutoff wavenumber in Regions 1, 2, and 3, respectively,

and defined as

kx1 =
√
ε′rk

2
0 − β2

v

kx2 = kx3 =
√
k2

0 − β2
v

(3.14)

where βv is the phase constant of the vertical slab guide and ε′r is the new relative

dielectric constant defined as

ε′r = εr, Marcatili’s method

= εre = εr −
(
ky1

k0

)2

, EDC method
(3.15)

Since the fields in Regions 2 and 3 of the vertical guide are exponentially attenu-

ating along the x direction, a positive real number, kx0, is introduced to replace
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kx2 and kx3, where

kx0 =
√
β2
v − k2

0

=
√

(ε′r − 1)k2
0 − k2

x1 (3.16)

Since the vertical slab guide has a finite symmetrical structure (the dielectric rod),

the fields can be either symmetrical or asymmetrical, namely even or odd. Note

that the classification of even/odd modes here is based on the transversal electric

component, Ey. Then, the even mode is chosen to be analysed first.

Solve (3.13) and apply the boundary condition, (3.6a), to obtain the general solu-

tions of Hz as:

Hz1 = A′1 sin(kx1x) + A′2 cos(kx1x)

Hz2 = A′3ekx0(x+a/2)

Hz3 = A′4e−kx0(x−a/2)

(3.17)

and then, Ey, in Regions 2 and 3 as:

Ey2 =
−jA′3ωµ
kx0

ekx0(x+a/2)

Ey3 =
jA′4ωµ

kx0

e−kx0(x−a/2)

(3.18)

where µ is the permeability of the DIG.

(a) Even mode

Under the circumstances of the even mode,

Ey2|x=−x0 = Ey3|x=x0 , a/2 ≤ x0 <∞ (3.19)

which gives

A′4 = −A′3 (3.20)
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Now, we apply the boundary condition of continuous Ey at two interfaces, (3.6b),

to obtain

jωµ

kx1

[A′1 cos(kx1a/2) + A′2 sin(kx1a/2)] =
−jA′3ωµ
kx0

jωµ

kx1

[A′1 cos(kx1a/2)− A′2 sin(kx1a/2)] =
−jA′3ωµ
kx0

(3.21)

which gives

A′2 = 0 (3.22a)

A′1kx0 cos(kx1a/2) + A′3kx1 = 0 (3.22b)

Again, we apply the boundary condition of continuous Hz at the interface between

Regions 1 and 2 or 1 and 3, (3.6b), to obtain

A′1 sin(kx1a/2) + A′3 = 0 (3.23)

Then, we combine (3.22b) and (3.23) to obtain the characteristic equation as:

1− kx1

kx0

tan (kx1a/2) = 0 (3.24)

or for the convinience of calculation, transformed into

kx1a = −2 arctan

(
kx1

kx0

)
+mπ (3.25)

where

m = 2m′ − 1, m′ = 1, 2, 3, · · ·

Note that m, which represents the number of field variations in the x direction,

can only be odd for the even TMy
mn mode in the DIG.
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Finally, the field components of even mode for the vertical slab guide are given as

Hz1 = A2 sin(kx1x)

Hz2 = −A2 sin(kx1a/2)ekx0(x+a/2)

Hz3 = A2 sin(kx1a/2)e−kx0(x−a/2)

Ey1 =
jA2ωµ

kx1

cos(kx1x)

Ey2 =
jA2ωµ

kx0

sin(kx1a/2)ekx0(x+a/2)

Ey3 =
jA2ωµ

kx0

sin(kx1a/2)e−kx0(x−a/2)

Hxi = − βv
ωµ

Eyi, i = 1, 2, 3

(3.26)

where A2 has replaced A′1 as an arbitrary constant.

(b) Odd mode

The analysis of the odd mode is following the same route as that of even mode.

In this case,

A′4 = A′3 (3.27)

and the characteristic equation is thus derived as

1 +
kx0

kx1

tan (kx1a/2) = 0 (3.28)

or for the convinience of calculation, transformed into

kx1a = −2 arctan

(
kx1

kx0

)
+mπ (3.29)

where

m = 2m′, m′ = 1, 2, 3, · · ·

Note that for the odd TMy
mn mode in the DIG, m can only be even.
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Finally, the field components of odd mode for the vertical slab guide are given as

Hz1 = A3 cos(kx1x)

Hz2 = A3 cos(kx1w/2)ekx0(x+w/2)

Hz3 = A3 cos(kx1w/2)e−kx0(x−w/2)

Ey1 =
−jA3ωµ

kx1

sin(kx1x)

Ey2 =
−jA3ωµ

kx0

cos(kx1w/2)ekx0(x+w/2)

Ey3 =
jA3ωµ

kx0

cos(kx1w/2)e−kx0(x−w/2)

Hxi = − βv
ωµ

Eyi, i = 1, 2, 3

(3.30)

where A3 has replaced A′2 as an arbitrary constant.

With all three characteristic equations given, it can then be summarised that for

the TMy
mn mode, n can only be odd and if m is odd, the TMy

mn mode is even; vice

versa.

3.2.1.3 Phase Constant, β

Now the solutions from horizontal and vertical slab guides are combined to find

the phase constant, β, of the DIG as shown in Fig. 3.2(a). In order to do that, the

field components in both guides must agree. From the preceding analysis, it can be

found that the field components for the TM modes in horizontal guide are Ez, Ey,

and Hx, while those for the TE mode in vertical guide are Hz, Ey, and Hx. With

Marcatili’s Assumption (b), however, this disagreement can be resolved. Since

the dielectric constant of DIG, εr, is low and close to 1, only modes impinging at

grazing angles can be propagating, which means

βh � ky1, βv � kx1 (3.31)

Hence, through (3.10), (3.26), and (3.30),

Ey, Hx � Ez, Horizontal slab guide

Ey, Hx � Hz, Vertical slab guide
(3.32)
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Therefore, Ez and Hz are neglidible in their corresponding guide and the main

field components agree on Ey and Hx for the TMy mode in the DIG.

From the analysis of horizontal slab guide, the wavenumber of the DIG in the

y direction, ky, is found out, i.e., ky = ky1; while that in the x direction, kx, is

obtained as kx = kx1. Hence, that in the z direction in a lossless situation, β, also

known as phase constant, is derived as

β =
√
εrk2

0 − k2
x − k2

y

=
√
εrk2

0 − k2
x1 − k2

y1 (3.33)

In terms of the expressions for field components in each region of Fig. 3.2(a), they

are now restrained by both x and y dimensions and are actually the product of

field expressions in each slab guide. The only difference lies in that the amplitude

of the new field expressions should take the square root of the product. Since the

TMy
11 mode has a symmetrical distribution of transverse electric fields, it belongs

to the even-mode family and is given as

Ey1 = A

√
ωµβh
kx1ky1

cos(kx1x) cos(ky1y)

Ey2 = A

√
ωµβh
kx1ky0

sin(ky1b/2) cos(kx1x)e−ky0(y−b/2)

Ey3 = A

√
ωµβh
kx0ky1

sin(kx1a/2) cos(ky1y)e−kx0(x−a/2)

Ey4 = A

√
ωµβh
kx0ky1

sin(kx1a/2) cos(ky1y)ekx0(x+a/2)

Hx1 =

√
εβv
µβh

Ey1

Hxi =

√
ε0βv
µβh

Eyi, i = 2, 3, 4

(3.34)

where A has substituted ±
√
A1A2 as an arbitrary constant.

The derivation of field expression for the odd mode can follow a similar route and

will not be presented here for simplicity.

By this stage, the propagation characteristic of the rectangular DIG has been

analysed and demonstrated.
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3.2.1.4 Attenuation Constant, α

Due to the finite conductivity, the complex dielectric constant and the open bound-

ary, attenuation in the rectangular DIG is inevitable, which is characterised by the

attenuation constant, α. Consequently, α is composed of three constituents: αc,

conductor loss, αd, dielectric loss, and αr, radiation loss.

To find the attenuation constant, αc, αd and αr, the perturbation method in [99]

will be applied here.

By assuming that the fields of low-loss transmission lines are not greatly different

from those of lossless lines, which is accurate enough, the attenuation constant, α,

can be derived as:

α =
Pl
2P

=
Plc + Pld + Plr

2P
= αc + αd + αr (3.35)

where P is the total power flow and Pl is the total power loss at a certain cross

section along the transmission line. Then Pl can be decomposed into Plc, conductor

power loss, Pld, dielectric power loss, and Plr, radiation power loss.

Firstly, find P through

P = P1 + P2 + P3 + P4

=
1

2
Re

∫
S

Ē × H̄∗ · ẑ ds
(3.36)

where S is an area that encompasses Regions 1, 2, 3, and 4, as depicted in

Fig. 3.2(a) and Pi, i = 1, 2, 3, 4, is their corresponding power flow:

P1 =
1

2
Re

∫
S1

Ey1H
∗
x1 ds

=
|A|2ω

√
µβhβvRe(ε)

16

kx1a+ sin(kx1a)

k2
x1

ky1b+ sin(ky1b)

k2
y1

(3.37a)

P2 =
1

2
Re

∫
S2

Ey2H
∗
x2 ds

=
|A|2ω

√
µε0βhβv
8

kx1a+ sin(kx1a)

k2
x1

sin2(ky1b/2)

k2
y0

(3.37b)
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P3 = P4

=
1

2
Re

∫
S4

Ey4H
∗
x4 ds

=
|A|2ω

√
µε0βhβv

16

sin2(kx1a/2)

k2
x0

ky1b+ sin(ky1b)

k2
y1

(3.37c)

where it’s assumed that Re(ε) = εrε0 ≈ |ε| in a low-loss situation and hence,

Re(
√
ε) ≈

√
Re(ε).

Secondly, find Plc through

Plc = Plc1 + Plc3 + Plc4

=
Rs

2

∫
C

|H̄t|2 dl
(3.38)

where Rs is surface impedance of the ground metal with a conductivity of σ,

Rs =
√
ωµ/(2σ) and H̄t is tangential magnetic field with respect to the integral

route, C, which is a line along the ground plane at a certain cross section that

encompasses Lines 1, 3, and 4, as depicted in Fig. 3.2(a). Plci, i = 1, 3, 4, is their

corresponding power loss due to a finite σ:

Plc1 =
Rs

2

∫
C1

|Hx1|2 dl

=
Rs

4

|A|2ωβvRe(ε)

ky1

kx1a+ sin(kx1a)

k2
x1

(3.39a)

Plc3 = Plc4

=
Rs

2

∫
C4

|Hx4|2 dl

=
Rs

4

|A|2ωε0βv
ky1

sin2(kx1a/2)

k2
x0

(3.39b)

Thirdly, find Pld through

Pld = Pld1

=
ωε′′

2

∫
S

|Ē|2 ds
(3.40)

where ε′′ = ε0εr tan δ is the imaginary part of ε and tan δ represents the dielectric

loss tangent. Here S is only Region 1 where the lossy dielectric exists and Pld1 is
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the corresponding dielectric power loss:

Pld1 =
ωε′′

2

∫
S1

|Ey1|2 ds

=
|A|2ω2µε′′βh

16

kx1a+ sin(kx1a)

k2
x1

ky1b+ sin(ky1b)

k2
y1

(3.41)

Finally, the power loss due to the radiation comprises the whole power flow in

Region 2 and that in Regions 3 and 4 excluding the conductor loss:

Plr = P2 + P3 + P4 − Plc3 − Plc4

=
|A|2ω

√
µε0βhβv
8

kx1a+ sin(kx1a)

k2
x1

sin2(ky1b/2)

k2
y0

+
|A|2ω

√
µε0βhβv
8

sin2(kx1a/2)

k2
x0

ky1b+ sin(ky1b)

k2
y1

− Rs

2

|A|2ωε0βv
ky1

sin2(kx1a/2)

k2
x0

(3.42)

With all the power losses found out, the next step is to apply (3.35) to obtain

the attenuation constants individually and then, collectively. Since the preceding

power equations all seem to be complicated, simplification is made, which lets

Mx =
kx1a+ sin(kx1a)

k2
x1

, My =
ky1b+ sin(ky1b)

k2
y1

Nx =
sin2(kx1a/2)

k2
x0

, Ny =
sin2(ky1b/2)

k2
y0

T = (
√
εrMxMy + 2MxNy + 2NxMy)

−1

(3.43)

After that,

αc =2Rs

√
ε0βv
µβh

(εrMx + 2Nx)T

ky1

αd =
ω

2

√
µε0βh
βv

(tan δ)εrMxMyT

αr =

(
MxNy +NxMy − 4Rs

√
ε0βv
µβh

Nx

ky1

)
T

(3.44)
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α =αc + αd + αr

=

[
MxNy +NxMy + 2Rs

√
ε0βv
µβh

εrMx

ky1

+
ω

2

√
µε0βh
βv

(tan δ)εrMxMy

]
T

(3.45)

By this stage, the attenuation characteristic of the rectangular DIG has been

analysed and demonstrated.

3.2.2 TEy
mn Mode

The analysis of the TEy
mn mode follows a similar manner as that of the TMy

mn mode

and hence, the detailed derivation process will not be mentioned here. Instead,

results and conclusions are directly presented.

The TEy
mn mode in the rectangular DIG will require a TEz

n mode in the horizontal

slab guide and a TMz
m mode in the vertical one, based on the consistency of

main field components in each guide. Hence, the characteristic equation of the

horizontal slab guide is given as

1 +
ky0

ky1

tan (ky1b/2) = 0 (3.46)

or for the convenience of calculation, transformed into

ky1b = −2 arctan

(
ky1

ky0

)
+ nπ (3.47)

where

n = 2n′, n′ = 1, 2, 3, · · ·

can only be even for the TEy
mn mode in the DIG. Then, that of the vertical slab

guide is derived as

1 +
ε′rkx0

kx1

tan (kx1a/2) = 0, Even Mode

1− kx1

ε′rkx0

tan (kx1a/2) = 0, Odd Mode

(3.48)
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or for the convenience of calculation, transformed into

kx1a = −2 arctan

(
kx1

ε′rkx0

)
+mπ (3.49)

where

m = 2m′, m′ = 1, 2, 3, · · · even mode

m = 2m′ − 1, m′ = 1, 2, 3, · · · odd mode

and the classification of even/odd modes is based on the symmetry/asymmetry of

Ex which is now the main transverse electric-field component.

With kx1 and ky1 solved, the phase constant, β, and attenuation constant, α, can

hence be found out through the same method used in preceding sections. Detailed

results are not presented here for simplicity and also for the reason that TEy
mn

modes are not to be focused on.

In the DIG, it can be found that the TMy
mn and TEy

mn modes are now separated,

which means one specific pair of “mn” can only refer to either the TMy or TEy

mode, since n can only be odd for TMy
mn modes and even for TEy

mn modes. In

other words, half the numerous modes of the DG are eliminated. This is especially

useful for microwave applications, as it opens up a possible wideband for single-

mode operation, where only the TMy
11 mode is guided. By contrast, the DG will

probably have a much narrower single-mode band with both the TEy
11 and TMy

11

modes interfering on each other.

3.2.3 Comparisons and Calculations

3.2.3.1 Comparison on Marcatili’s and EDC Method

Marcatili’s method and the EDC method differ at the second stage of the analysis

process in terms of the relative dielectric constant, ε′r, as shown in Section 3.2.1.2.

Marcatili keeps it unchanged, which means he treats the two slab guides inde-

pendently and the order of solving the two characteristic equations can also be

random; while Knox takes advantage of the preceding result, which integrates the

two guides together and follows a specific order. The difference is summarised as
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follows

k2
y1 = εrk

2
0 − β2

h, Both

k2
x1 = εrk

2
0 − β2

v , Marcatili’s method

= εrek
2
0 − β2

ve, EDC method

= β2
h − β2

ve, EDC method

(3.51)

By recalling Marcatili’s Assumption (a), it is found that Marcatili’s method will

always generates a wavenumber which is poor in accuracy, unless the aspect ratio

b/a is 1. The EDC method, however, can choose the direction with a larger

dimension to start with and utilise the result in the analysis of the other direction,

as demonstrated in [113].

3.2.3.2 Theoretical Calculations and Comparisons

The rectangular DIG shown in Fig. 3.2(a) with various aspect ratios is theoreti-

cally analysed with Marcatili’s method, the EDC method (including EDC-H and

EDC-V Methods) and rigorous numerical analysis using HFSSTM, which is based

on the FEM method.

The DupontTM GreenTapeTM 9K7 LTCC system is used as the dielectric material

of the DIG, which has a relative dielectric constant, εr of 7.1 at 10 GHz. Its loss

tangent is also characterised at 10 GHz to be tan δ = 0.001. The material used

as the metallic ground plane here is copper plated on a RT/duroid 5880 board,

which has a conductivity of σ = 5.8e7 S/m, a relative dielectric constant of 2.2

and a loss tangent of 0.001 at 10 GHz.

Results and comparisons are shown from Figs. 3.4 to 3.6, where the normalized

guided wavelength, i.e., the free-space to guided wavelength ratio, λ0/λg, is shown

as a function of the normalised dimension, D, of the DIG, where

D =
a+ b

λ0

√
εr − 1 (3.52)

For well-guided modes, the wavelength ratio, λ0/λg, varies in the following range:

1 ≤ λ0/λg ≤
√
εr
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When λ0/λg = 1, it indicates that the field is completely leaking into the free space

around it, whereas when λ0/λg =
√
εr, the field is completely confined inside the

dielectric.

(a) Phase constant, β

In Fig. 3.4, where MAR is short for Marcatili’s method, the normalised guided

wavelength λg/λ0 of the fundamental mode, TMy
11, is calculated for five different

aspect ratios, b/a. It can be seen that while results from all the four methods tend

to agree well beyond a certain D (at least triple the cutoff frequency), which means

that they are equally accurate for the DIGs with an electrically-large cross-section,

the obvious discrepancy occurs near the cutoff. Marcatili’s method will always give

a higher cutoff than the other three methods and have a sharper intersection with

the horizontal axis, which brings about a poor accuracy regardless of the aspect

ratio, b/a. On the contrary, cutoffs from the two EDC methods tend to be lower

and those from the rigorous FEM method tend to stand in the middle.

Between the two EDC methods, EDC-H and EDC-V, the aspect ratio, b/a, clearly

shows its influence on the accuracy with respect to results from the FEM method.

In Fig. 3.4(a) when b/a < 1, the EDC-H method which analyses the horizontal

slab guide first is more accurate, as expected in Section 3.1.2.1; while in Fig.

3.4(b) when b/a > 1, the EDC-V method is more accurate. Furthermore, it can

be predicted that the accuracy of the corresponding EDC method will increase

when b/a deviates more from 1 in the corresponding direction. When b = a,

results from both methods agree well.

So only the EDC and FEM methods are used to explore higher-order modes in the

rectangular DIG to find out a wide single-mode band, where only the fundamental

mode propagates and the isolation from other modes is as high as possible.

In Fig. 3.5, the normalised guided wavelength of three lowest-order modes are

plotted for various aspect ratios. Note that when b/a = 1, the two higher-order

modes, the TMy
21 and TEy

12 modes should have the same cutoff frequency theoret-

ically and hence tend to be clustered.

It is then observed in Fig. 3.5 that the single-mode band when a = b is the widest,

which is in line with the conclusion in [113]. It’s worth noting that the normalised

dimension D in Fig. 3.5(b) is only half of those in Figs. 3.5(a) and 3.5(b) and

hence, should be doubled. When b/a deviates from 1 in both directions, the width

of the single-mode band narrows. Another feature to be observed is that the
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Figure 3.4: The normalised guided wavelengths of the TMy
11 mode vs. the

normalised dimension D of the rectangular DIG for various aspect ratios.
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Figure 3.5: The normalised guided wavelengths vs. the normalised dimension
D of the rectangular DIG for three lowest-order modes and various aspect ratios.

isolation in Fig. 3.5(a) is much smaller than that in Fig. 3.5(c), which indicates

the isolation amongst adjacent modes deteriorates as b/a decreases. So it is better

to choose an aspect ratio smaller than 1 when b/a = 1 can’t be realised in practice.

To provide a direct view of the field distribution within the cross-section of the

DIG, Fig. 3.6 shows three lowest-order modes for three different aspect ratios

obtained through the rigorous FEM method. As the nomenclature of the DIG

modes follows that of the DG, the field variations in the y direction in Fig. 3.6 is

in fact doubled, represented by n.

(b) Attenuation constant, α

The attenuation constant, α, of the fundamental TMy
11 mode is calculated here

for the aspect ratio of b/a = 1 which exhibits the widest single-mode band and

b/a = 3/1 which has a high isolation between the fundamental and second-lowest

modes. Both the EDC and FEM methods will be employed.

As for the two methods, results shown in Fig. 3.7 agree well, especially for αc and

αr toward the higher end of the normalised dimension. Near the cutoff, a relatively

high deviation can be observed, which gradually converges as D increases.
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Figure 3.6: The field distribution inside the DIG: (a) b/a = 1/3, (a1) TMy
11,

(a2) TMy
21, (a3) TMy

31; (b) b/a = 1, (b1) TMy
11, (b2) TEy12, (b3) TMy

21; (c)
b/a = 3/1, (c1) TMy

11, (c2) TEy12, (c3) TMy
13.

Among the four attenuation constants, αd (the dielectric loss) accounts for a large

percentage (more than 60%) of the total attenuation, α. Furthermore, that per-

centage goes up as D increases. So it’s expected that αd ≈ α at a frequency far

enough from the cutoff, although αc (the conductor loss) will also be rising. As

for αr due to the radiation loss, it’s low enough to be negligible.

Now, results from the two aspect ratios are compared. It can be seen in Fig. 3.7

that the loss of the DIG of b/a = 3/1 is considerably lower than that of b/a = 1.

Even if we transform the horizontal axis into normalised frequency, f/fc, the DIG

with a higher height still has a lower loss. This characteristic can be used in search

of a low-loss dielectric transmission line.

In the end, results from the EDC method have also been compared with those from

Knox’s other paper in 1976 [106], as shown in Fig. 3.8. It is observed that both

the conductor loss and dielectric loss from the EDC method deviate from Knox’s

results at the low values of the normalised dimension, D, and approaches closer

when D increases. This is similar to what has been observed in Fig. 3.7 when

compared with the HFSS simulation. It’s worth noting that dielectric and conduc-

tor loss cannot be differentiated in practice, so all this analysis and comparison

are based on the theory.
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Figure 3.7: The attenuation constant, α, of the TMy
11 mode vs. the normalised

dimension D of the rectangular DIG.
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Figure 3.8: Comparison of the attenuation constant, α, of the TMy
11 mode

with Knox’s results in [106] (b/a = 2/1, εr = 9.8, tan δ = 0.0001, and σ =
3.72e7S/m).

3.3 DIIG

In search of a low-loss transmission line, the DIG is not a perfect solution. The

reason is that the DIG suffers from the conductor loss with a large field concentra-

tion near the metallic ground plane when it’s operating in the fundamental TMy
11

mode. This can be further reduced by introducing a low-permittivity (normally

lower than that of the dielectric rod) low-loss dielectric layer between the dielectric

rod and the ground plane [106]. This layer works as an insulator which keeps the

fields away from the ground plane and hence, this new type of DIG is named as

dielectric insular image guide (DIIG) [104].

3.3.1 Theoretical Analysis

As shown in Fig. 3.9(a), an insular layer with a low dielectric constant of εr2 and a

thickness of d/2 is added below the original DIG dielectric (εr1). Using the EDC-

H method, the DIIG can be divided into three constituent regions each of which

can be then extended into infinite horizontal slab guides. After the equivalent

dielectric constants, εre1 and εre2 are extracted, the vertical slab guides can also be

established in Fig. 3.9(b). The EDC-V method may also be applied if the height,

a, of the DIIG is larger than the width, b. However, note that the subsequent
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Figure 3.9: (a) The DIIG model, (b) equivalent horizontal and vertical slab
guides using the EDC-H method, (c) equivalent vertical and horizontal slab

guides using the EDC-V method.

results are not accurate as applied in the DIG case since the infinite horizontal

insular layer is against the assumption made by the EDC-V method. This is shown

in Fig. 3.9(c).

The theoretical analysis is similar to that demonstrated in Section 3.2 and the

generated results are shown as follows.

3.3.1.1 TMy
mn Mode

(a) EDC-H method

In this case, the aspect ratio, b/a, is smaller than 1 and the DIIG is firstly ex-

tended into infinite horizontal slab guides, as shown in Fig. 3.9(b). Hence, the

characteristic equations for the horizontal slab guides in the three regions are given

as:

1 +
ky2

εr2ky3

tanh (ky2d/2)− ky1

εr1ky3

tan (ky1b/2)

+
εr1ky2

εr2ky1

tanh (ky2d/2) tan (ky1b/2) = 0, Region I (3.53a)

1− ky4

εr2ky5

tan (ky4d/2) = 0, Regions II & III (3.53b)
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where

ky1 =
√
εr1k2

0 − β2
h1

ky2 =
√

(εr1 − εr2)k2
0 − k2

y1

ky3 =
√

(εr1 − 1)k2
0 − k2

y1

ky4 =
√
εr2k2

0 − β2
h2

ky5 =
√

(εr2 − 1)k2
0 − k2

y4

(3.54)

With ky1 and ky4 solved, Regions I, II, and III are then transformed into three

uniformly-distributed media whose equivalent relative dielectric constants are

εre1 = εr1 −
(
ky1

k0

)2

εre2 = εr2 −
(
ky4

k0

)2
(3.55)

As a result, the infinite vertical slab guide is built up to obtain its characteristic

equation as:

1 +
k2
x0 − k2

x1

kx0kx1

tan (kx1a/2)− tan2 (kx1a/2) = 0 (3.56)

which can then be split into

1− kx1

kx0

tan (kx1a/2) = 0, even mode

1 +
kx0

kx1

tan (kx1a/2) = 0, odd mode

(3.57)

where

kx1 =
√
εre1k2

0 − β2

kx0 =
√

(εre1 − εre2)k2
0 − k2

x1

(3.58)

Note that β is the final phase constant of the DIIG.

It’s also worth noting that the transendental equations, (3.53) and (3.56), have

infinite roots. The TMy
mn mode is determined by the mth root of kx1 through

(3.56) and the nth root of ky1 through (3.53).

(b) EDC-V method



Chapter 3. Dielectric Insular Image Guide 87

In this case, it’s assumed that the aspect ratio, b/a, is larger than 1 and the DIIG

is firstly extended into infinite vertical slab guides, as shown in Fig. 3.9(c). Note

that the insular layer can’t be vertically extended, as the wavenumber in the y

direction varies along the x direction. This will potentially result in poor accuracy

as shown later on.

The characteristic equation for the vertical slab guide is given the same as (3.56),

wherein the difference is

kx1 =
√
εr1k2

0 − β2
v

kx0 =
√

(εr1 − 1)k2
0 − k2

x1

(3.59)

With kx1 known, Regions I, II, and III are then transformed into one uniform

media whose equivalent dielectric constant is

εre1 = εr1 −
(
kx1

k0

)2

(3.60)

After that, the infinite horizontal slab guide is established and the characteristic

equation is obtained the same as (3.53a), except that εr1 is now replaced by εre1

and

ky1 =
√
εre1k2

0 − β2

ky2 =
√

(εre1 − εr2)k2
0 − k2

y1

ky3 =
√

(εre1 − 1)k2
0 − k2

y1

(3.61)

The TMy
mn mode is also determined by the mth root of kx1 through (3.56) and

the nth root of ky1 through (3.53).

It can be seen that there is one less characteristic equation in the EDC-V method

due to the fact that the insular layer can’t be extended vertically. The influence

prompted will be shown later.

(c) Field components

Similar to the analysis of the DIG, Ey and Hx are the dominating field components

from Marcatili’s Assumption (b). Furthermore, the wave behaviours in Areas 1,

2, 3, and 4 (shown in Fig. 3.9(a)) are the same as those in the DIG. The fields
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in Area 5, however, are different: for the part underneath the dielectric, the fields

stand along the x direction and decay along the y direction; for that extending

toward infinity, the fields decay on both directions.

Since TMy
11 is the dominating mode in the single-mode frequency band and belongs

to the even-mode family, only the field expressions of even TMy
mn modes are given.

Referring to the derivation process of the DIG through the EDC-H method, the

field expressions in five areas shown in Fig. 3.9(a) are as follows:

Main electric field, Ey,

Ey1 = A1

√
ωµβh1

kx1ky1

cos(kx1x)
{

cos [ky1(y − d′)] + A2 sin [ky1(y − d′)]
}

Ey2 = A1A3

√
ωµβh1

kx1ky3

cos(kx1x)e−ky3[y−(b′+d′)]

Ey3 = A1

√
ωµβh1

kx0ky1

sin(kx1a
′)
{

cos [ky1(y − d′)] + A2 sin [ky1(y − d′)]
}

e−kx0(x−a′)

Ey4 = A1

√
ωµβh1

kx0ky1

sin(kx1a
′)
{

cos [ky1(y − d′)] + A2 sin [ky1(y − d′)]
}

ekx0(x+a′)

Ey5 = A1A4

√
ωµβh1

kx1ky2

cos(kx1x)(eky2y + e−ky2y), −a′ ≤ x ≤ a′

= A1A4

√
ωµβh1

kx0ky2

sin(kx1a
′)ekx0(x+a′)(eky2y + e−ky2y), −∞ ≤ x ≤ −a′

= A1A4

√
ωµβh1

kx0ky2

sin(kx1a
′)e−kx0(x−a′)(eky2y + e−ky2y), a′ ≤ x ≤ ∞

(3.62)

Main magnetic field, Hx,

Hx1 =

√
ε1β

µβh1

Ey1

Hxi =

√
ε0β

µβh1

Eyi, i = 2, 3, 4

Hx5 =

√
ε2β

µβh1

Ey5

(3.63)
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where

A2 =
ky1 tan(ky1b

′)− εr1ky3

ky1 + εr1ky3 tan(ky1b′)

A3 =
εr1ky3

ky1 cos(ky1b′) + εr1ky3 sin(ky1b′)

A4 =
εr1ky2sech(ky2d

′)

2εr2ky1

a′ = a/2, b′ = b/2, d′ = d/2

(3.64)

(d) Attenuation constant, α

Following the perturbation method in [99], the attenuation constant, α, of the

DIIG is given by (3.35). In this case, the number of areas to be studied has

increased to 5 suplemented by the insular layer, as depicted in Fig. 3.9(a). The

field expressions have also been given by (3.62) and (3.63) through the EDC-H

method.

Before α is derived, the simplification quantities, My and Ny, as shown in (3.43)

need to be redefined as:

My =
(1 + A2

2)ky1b+ (1− A2
2) sin(ky1b) + 2A2 [1− cos(ky1b)]

k2
y1

Ny =
A2

3

k2
y3

T =
[√
εr1MxMy + 2MxNy + 2NxMy + 2

√
εr2Qy(Mx + 2Nx)

]−1

(3.65)

where Qy is a new simplification quantity which is defined as

Qy =
A2

4(2ky2d+ eky2d − e−ky2d)

k2
y2

(3.66)

After that,

αc =4Rs

√
ε0β

µβh1

εr2(Mx + 2Nx)T

ky2

αd =
ω

2

√
µε0βh1

β
[(tan δ1)εr1MxMy + 2(tan δ2)εr2Qy(Mx + 2Nx)]T

(3.67)
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αr =

[
MxNy +NxMy − 8Rs

√
ε0β

µβh1

εr2Nx

ky2

−2ω

√
µε0βh1

β
(tan δ2)εr2NxQy

]
T

α =αc + αd + αr

=

{
MxNy +NxMy + 4Rs

√
ε0β

µβh1

εr2Mx

ky2

+
ω

2

√
µε0βh1

β
[(tan δ1)εr1MxMy + 2(tan δ2)εr2MxQy]

}
T

(3.68)

where tan δ1 and tan δ2 are the loss tangents of the main dielectric and insular

layer, respectively.

3.3.1.2 TEy
mn Mode

(a) EDC-H method

According to the TMy
mn mode, the characteristic equations for the TEy

mn mode

can be obtained in a similar format.

For the horizontal slab guides,

1 +
ky3

ky2

tanh (ky2d/2) +
ky3

ky1

tan (ky1b/2)

−ky1

ky2

tanh (ky2d/2) tan (ky1b/2) = 0, Region I (3.69a)

1− ky4

ky5

tan (ky4d/2) = 0, Regions II & III (3.69b)

where the defination of ky1 ∼ ky5 is the same as that in the TMy
mn mode given by

(3.54).

For the vertical slab guide,

1 +
(εre1kx0)2 − (εre2kx1)2

εre1εre2kx0kx1

tan (kx1a/2)− tan2 (kx1a/2) = 0 (3.70)
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which can then be split into

1 +
εre1kx0

εre2kx1

tan (kx1a/2) = 0, even mode

1− εre2kx1

εre1kx0

tan (kx1a/2) = 0, odd mode

(3.71)

where the definition of εre1, εre2, kx0, and kx1 is the same as that in the TMy
mn

mode given by (3.55) and (3.58).

Finally, by finding out the mth root of kx1 through (3.70) and the nth root of ky1

through (3.69), the TEy
mn mode is determined.

(b) EDC-V method

Firstly, extend the DIIG vertically and then apply the EDC-V method to obtain

the characteristic equation the same as (3.70) except that εre1 and εre2 are now

replaced by εr1 and 1. The definition of kx0 and kx1 is the same as that in the

TMy
mn mode given by (3.59).

Secondly, extend the DIIG horizontally to find the characteristic equation as

(3.69a), where the definition of εre1, ky1, ky2, and ky3 is the same as that in the

TMy
mn mode given by (3.60) and (3.61).

For simplicity, the field components and attenuation constant, α, will not be dis-

played here.

3.3.2 Calculations and Comparisons

The rectangular DIIG with an aspect ratio of b/a = 1 is analysed, where various

values of the insular ratio, p = d/b, are considered. The materials used here are

the same as those for the DIG, which means that εr1 = 7.1, εr2 = 2.2, tan δ1 =

tan δ2 = 0.001 and σ = 5.8e7 S/m.

3.3.2.1 Phase Constant, β

Fig. 3.10 shows the normalised phase constant, β, as a function of the normalised

dimension, D. In Fig. 3.10(a), the EDC-H, EDC-V, and FEM methods are

applied and compared for the case of b/a = 1 and p = 0.1. It’s seen that the

EDC-V method gives rise to poor agreement with the rigorous FEM method for
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the TMy modes. That deviation won’t converge even at very high frequencies.

For the TEy modes, results from the EDC-V and EDC-H agree well with a small

gap from the FEM method that narrows down gradually. Generally speaking,

due to the fact that the DIIG doesn’t fully conform to Marcatili’s Assumption

(a), the EDC-V method easily brings about poor accuracy and is not suitable for

theoretical analysis of the DIIG.

In Fig. 3.10(b), the EDC-H method is applied to find out how different insular

ratios may affect the propagating characteristics. As can be seen, the normalised

guided wavelength, λ0/λg which is equal to β/k0, of the TMy modes goes upward

with the increase of p; while that of the TEy modes are on the contrary. This will

unwantedly narrow down the width of the single-mode band. So the insular ratio,

p, cannot be too large to maintain a reasonable single-mode bandwidth.

To provide a direct view of the field distribution within the cross-section of the

DIIG, Fig. 3.11 shows three lowest-order modes for with an aspect ratio of b/a = 1

obtained through the rigorous FEM method. Same as the nomenclature of the

DIG modes, the field variations in the y direction in Fig. 3.11 is in fact doubled,

represented by n.

3.3.2.2 Attenuation Constant, α

The attenuation constant, α, of the fundamental TMy
11 mode is calculated here for

the aspect ratio of b/a = 1 which exhibits the widest single-mode band. Both the

EDC-H and FEM methods will be employed.

Fig. 3.12(a) shows the calculated attenuation constant from the EDC-H and FEM

methods in terms of αd and αc. A slowly-diminishing gap (about 10%) can be

seen between two αd’s, which is similar to the case in the DIG. By contrast, the

agreement of αc is much better.

Now the three constituent constants of α, αd, αc, and αr are studied individually.

With the introduction of an insular layer, αd decreases for all p’s compared with

that for p = 0 (the DIG)) at low D’s and the higher p is, the lower αd is. Then

comes a turning point where αd with high p’s overtakes and approaches that of the

DIG. So it can be predicted that the dielectric loss of the DIIG can be higher with

a sufficiently-thick insular layer. However, given that a transmission line normally

works in its single-mode band and that turning point is beyond it, the introduction

of an insular layer can only reduce the dielectric loss.
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Figure 3.10: The normalised guided wavelength vs. the normalised dimension
D of the rectangular DIIG for b/a = 1.
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malised dimension D of the rectangular DIIG for b/a = 1.
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The most obvious improvement by employing an insular layer is the significant

reduction of the conductor loss, αc, as observed in Fig. 3.12(c). For the DIG

where p = 0, αc increases with D; while for the DIIG, αc decreases and tend to be

0 at high D’s. Furthermore, the higher p is, the lower αc is. This is because the

thicker the insular layer is, the more separation it creates. However, the radiation

loss deteriorates for the DIIG. The reason for this is that the introduction of a

low-permittivity dielectric loosens the confinement of electromagnetic fields and

make them easily radiate. Since αr is considerably low, the deterioration doesn’t

affect much.

Finally, for the combination, α, significant reduction for all p’s compared with the

DIG can be observed in Fig. 3.12(d), especially before the turning point. Since

the single-mode band falls before the turning point, a thicker insular layer will

yield a lower loss for the DIIG.

3.3.2.3 Conclusion

In search of a low-loss transmission line, a low-permittivity low-loss insular layer

is introduced. On one hand, the attenuation constant, α is significantly reduced

and will be further reduced by increasing the thickness of the insular layer; on the

other hand, the phase constant, β, of the fundamental and adjacent modes tend

to get closer when the insular layer gets thicker, which narrows the single-mode

bandwidth. The reduction of loss is in fact at the cost of a reduced single-mode

bandwidth. This conflict will probably end up with a compromise of the insular

ratio, p. Recommended value is between 0.1 and 0.3.

3.3.3 Measurement

Three DIIGs with an equal difference in length of 20 mm, i.e., 20 mm, 40 mm,

and 60 mm, are manufactured, as shown in Fig. 3.13, using a standard LTCC

technique. The DupontTM GreenTapeTM 9K7 LTCC system with a relative di-

electric constant of 7.1 is employed as the dielectric, while the RT/duroid 5880

board, which has a relative dielectric constant of 2.2 and a thickness of 0.254 mm

is adopted as the insular layer. Due to the restrictions of the LTCC technique,

the thickness of the DIIG is chosen as 1.54 mm, which is 7 layers of LTCC (0.22

mm for each layer after firing). So the insular ratio, p, is 0.16 which falls into the
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Figure 3.13: Three fabricated DIIG samples of 20 mm, 40 mm, and 60 mm.

recommended range. To ensure the DIIG works in the Ka band, the width of the

DIIG is derived as 1.3 mm through the theoretical calculation.

As can be seen in Fig. 3.13, tapered transitions are added at both ends of the

DIIG in order to be fed from a standard WR28. Note that the transitions are

tapered at both horizontal and vertical planes to ensure a smooth feeding. The

transmission loss, S21, for each DIIG is measured, as shown in Fig. 3.14. As can

be seen, the transmission loss has a sharp rise near 25 GHz and an obvious drop

after it. For the rest of the operating frequency band, S21 tends to be relatively

stable yet with constant ripples.

Through the single-mode multiline calibration technique introduced in Section 2.3,

the propagation constant of the DIIG can be extracted, as illustrated in Fig. 3.15.

To compare with the measurement, the simulated propagation constant using the

two-mode multiline calibration technique has also been plotted in the same figure.

In Fig. 3.15, the measured phase constant, represented by the normalised guided

wavelength, stays close to the simulated one, although there are some gentle ripples

above and below. As for the measured loss constant, α, it ripples greatly and a

Savitzky-Golay smoothing technique [103] has to be used to find out the figure

shape and tendency, which is indicated by the blue line, as performed in Section

2. As can be seen, α throughout the Ka band ripples around 3 Np/m, whereas

the simulated one gradually increases from 0.3 to 0.8 Np/m, which implies that

the actual sample is more lossy. The shape and tendency of the measured α agree

with that of the simulated one in that they both have a sharp drop near the cutoff

frequency and tend to be flat afterwards. Possible reasons may lie in that the loss

characteristics of materials (LTCC, silver paste) tend to be worsening at higher
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frequencies, the bond between the LTCC and PCB board might not be completely

intact and the surface of the insular layer might not be exactly flat. Nevertheless,

an α of 3 Np/m or 26 dB/m at 35 GHz is still an excellent loss performance.

3.4 Conclusion

By reviewing the traditional approximate methods on the analysis of the DG/DIG,

this chapter improves the EDC method by extending it for all aspect ratios. As a

result, the EDC method is now complete. Apart from that, the analytical expres-

sion of the attenuation constant, α, of the rectangular DIG has also been given

and can be directly used. The rectangular DIG with various aspect ratios have

been calculated and compared with the results from the rigorous FEM method

and published literatures. Good agreement has been observed, which verifies the

validility of this new EDC method.

After that, the new EDC method is applied to the DIIG which gives rise to lower

loss than the DIG. Detailed analytical expression of α has also been given. Three

DIIG samples are made to extract the propagation constant and compared with

the result from the rigorous FEM method.



Chapter 4

A Slot Antenna Array Based on

HSIW

This chapter starts with a brief introduction of the history and general radiation

characteristics of the waveguide slot antennas in Section 4.1. After that, a single

waveguide slot is analysed theoretically and numerically in Section 4.2. The anal-

ysis starts with a thin slot on RWG, then extends to thick slot on RWG and finally

to thick slot on HSIW. All the analysis is in the Ka band which is in line with the

design and fabrication in Chapter 2. Finally, a linear slot array is designed taking

mutual coupling into account and then extends to a 6 × 6 planar array aiming at

high gain and high efficiency. Fabrication and measurement are also carried out

to verify the results from theory and simulation in Section 4.3.

4.1 Introduction

4.1.1 Historical Review

The first waveguide slot antenna array was developed at McGill University in

Montreal in April, 1943, according to W. Watson [119]. That 50-element radiator

attempted to leak high power from large-aperture antennas, mainly for military

radar use. Fortunately, the experiment on the array was carried out successfully

and theoretical analysis was derived later on by A. Stevenson in 1948 [120]. For the

first time, waveguide slots were proved to be equivalent to series or shunt resistance

or conductance in a transmission line and simple closed expressions are obtained,

100
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although Stevenson’s waveguide is assumed to be zero thickness. Following his

work, A. Oliner demonstrated more explicit results and circuit representations

on a variety of broad-wall waveguide-slots through variational techniques in 1957

[121]. More importantly, he has accounted for the finite wall-thickness in real

world and laid out ground foundation for the applications of slot antennas.

After World War II and with the strong support of theory, waveguide slot antennas

received extensive interest and many studies were reported. Now it has been widely

used in applications of radar, communications, meteorology, and navigation, etc.

What makes slot antennas stand out is their simple geometry, easy fabrication,

conformal installation, low cross-polarization, and high efficiency [122]. This is

becoming more and more intriguing nowadays, as it’s more and more demanding

for the antenna to be light-weight, low-profile, and low-cost.

4.1.2 Radiation Characteristics

Fig. 4.1(a) shows a single rectangular slot cut in a infinitely-large ground plane,

where the slot is free to radiate on both sides of the plane. A balanced transmission

line can be imagined to feed the slot at the central points, P1 and P2.

Assuming that w � l, and w � λ, where λ is the guided wavelength, the slot

itself resembles a section of balanced two-wire line, where the two “wires” are semi-

infinite ground planes extending from edges at x = ±w/2 and shorted at z = ±l/2.

Then, the electric field distribution inside the slot is found to be maximum at the

centre and vanishing at both ends (resembling a sinusoid), which is identical to

the electric current distribution on the complementary wire; in other words, with

the wire in free space being a electric dipole, the slot in a large ground works

as a complementary magnetic dipole [121–123]. Detailed analysis on the relation

between slot and wire antennas can be found in [124].

Fig. 4.1(b) shows various waveguide slot configurations and their equivalent circuit

models. Since the slots are cut on either the broad or edge wall of a waveguide,

they cannot radiate freely in both directions. The influence on the impedance

and radiation pattern could be significant and should be taken into account in

the design process. Nevertheless, the waveguide doesn’t just work as a base of

the slots but also the feeding system, which simplifies the design since baluns or

matching networks are not required [122].
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Figure 4.1: The electric field distribution of a free-radiating slot and the
equivalent circuit models of waveguide slots.

Among the slots in Fig. 4.1, Slots d, g, and h do not radiate. The reason is that

Slot d lies symmetrically across the waveguide centreline and the radiation cancels

out, Slot g does not cut through any surface current, and the current around Slot

h is zero. Apart from those, since Slots a, b, c, i, and j disturb the transverse

currents (Jx and Jy), they can be represented by two-terminal shunt admittances,

whereas Slots e, and k interrupt Jz and are represented by series impedance. Both

Jx and Jz excite slot f and A π- or T-impedance network can represent it.

Not all of the above slot types are commonly seen and widely used, so in this thesis,

only the longitudinal Slot a is chosen and will be employed for the antenna design.
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Figure 4.2: A single longitudinal slot on the broadwall of a waveguide: (a)
the geometry, (b) the equivalent circuit model.

4.2 Single Waveguide Slot

4.2.1 Thin Slot

4.2.1.1 Theory

As shown in Fig. 4.2(a), a longitudinal slot offset by x0 from the centre line is cut

on the broad wall of a rectangular waveguide with a dimension of a× b. Assume

that the thickness of the metallic wall is small and thus negligible, which gives

rise to a thin slot. Also, the metal has an infinite conductivity, i.e., PEC (Pefect

Electric Conductor). Apart from that, the previous assumptions on the narrow

dimension of the slot still hold.

On these premises, the electric field inside the slot follows a symmetrical distribu-

tion and satisfies [121, 123]:

Ē(x, y, z) = x̂
Vs
w

cos
(πz
l

)
, (4.1)

where Vs is the peak slot voltage and then it results in a symmetrical reflection

and transmission upon the slot, suppose there is an incident wave and a matched

load. This symmetry implies that the slot works as a shunt element on a two-wire

transmission line [123], as shown in Fig. 4.2(b).

The normalised admittance of the shunt element can then be derived as [123]:

Y

G0

=
G+ jB′

G0

= − 2B

A+B
, (4.2)
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where G0 is the characteristic conductance of the transmission line and A, B,

and C are the complex amplitudes of the incidence, reflection and transmission,

respectively.

The slot is believed to be resonant when B′ = 0 or in connection with (4.2), Y/G0

is pure real. In this case, the normalised resonant conductance can be deduced in

a closed form with the approximation, kl ≈ π, as:

gr =
Gr

G0

= 2.09
aλg
bλ

cos2

(
πλ

2λg

)
sin2

(πx0

a

)
, (4.3)

where λ and λg are the wavelength unbounded and bounded by the waveguide,

respectively.

From (4.3), it can be found that although the resonant conductance is offset-

dependent, the resonant length is assumed constant around λ/2, which has been

verified by experiments in [125]. This, in another way, means that the radiation

pattern doesn’t change much with different offsets [123].

As for the radiated power, Pr, of the narrow slot (normalised to the incident

power) at its resonant frequency, it is easily derived from the equivalent circuit

from Fig. 4.2. As assumed, one end of the two-port network is matched and thus

the power absorbed by the admittance is

Pr =
G

1 +G
. (4.4)

4.2.1.2 Calculation and Simulation

Here the radiation characteristic of a single slot based on a standard WR28 (7.11

× 3.55 mm2) is calculated and simulated.

Note that there is no simple closed-form formula to refer to in search of the resonant

length, lr (formulas provided by [120, 121] are too complicated to be followed).

With the help of the HFSS simulation based on the FEM method, however, this

can be an easy job to do. The only preparation is to rewrite (4.2) in terms of S

parameters as:
Y

G0

= − 2S11

1 + S11

, (4.5)

where S11 = B/A and can be directly given by the HFSS simulation.
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Figure 4.3: gr, Pr, and lr vs. x0 of a single longitudinal slot based on a
standard WR28 at 35 GHz (b = 3.55 mm and w = 0.3 mm).

As shown in Fig. 4.3, the normalised conductance, gr, and normalised radiated

power, Pr, at the resonance rise up with an increasing offset, x0 and reach their

peaks at the maximum x0. Results from both HFSS simulation and theoretical

calculation agree well when x0 is below about half the maximum value, i.e., a/2.

After that, the deviation becomes noticeable and keeps increasing, which indicates

that (4.3) is not suitable to be applied to large offsets. This has been observed in

[126] and attributed to the distortion of the field symmetry in the slot.

As for the resonant length, lr, of the waveguide slot at 35 GHz, it doesn’t vary

much with the offset. Nevertheless, it does have relatively high values at the offset

of around a/4 and decreases (less than 4%) toward both ends. Compared with the

free-space wavelength at 35 GHz, 8.57 mm, the resonant slot is about 45% long,

where klr ≈ π still holds as expected.

In Fig. 4.4, gr, Pr, and lr are simulated by HFSS to see how the changing of w

affects the radiation characteristic of a waveguide slot. It’s found that none of the

three quantities significantly changes as w increases from 0.1 to 0.5 mm. This,

to some extent, can be expected from (4.3), as no involvement of w can be found

in it. Further, this also indicates that w is not a key factor to be considered in

the antenna design and can be flexibly chosen to the convenience of fabrication,

measurement, etc.
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Figure 4.4: gr, Pr, and lr vs. w of a single longitudinal slot based on a
standard WR28 at 35 GHz (b = 3.55 mm and x0 = 1 mm).
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Figure 4.5: gr, Pr, and lr vs. b of a single longitudinal slot based on a standard
WR28 at 35 GHz (x0 = 1 mm and w = 0.3 mm).
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The influence from b on the radiation characteristics is studied and shown in

Fig. 4.5. In contrast to w, it’s obvious that b has produced a massive effect.

Take the resonant length, lr, as an example: It drops from 4.35 to 3.80 mm when

b increases from 0.5 to 3.5 mm, which is 12.6%. The changes of gr and Pr are

significant as well. This phenomenon is also mentioned in [126], which concludes

that the shunt-element model in Fig. 4.2 is not valid for reduced-height waveguide

(b < λ/10). As shown in Fig. 4.5, the disagreement of results between HFSS and

theory start to be seen when b < 1 mm (about 0.12λ at 35 GHz). Apart from

that, the agreement is still very good, since the offset, x0, is 1 mm (small offset).

Also in [126], a wave method dealing directly with field theory instead of circuit

models is recommended in the end aiming at validility and high accuracy.

Since the radiation pattern of the slot antenna is very stable, the change of w and

b has little effect as long as the aspect ratio of the slot stays in a reasonable region.

Given the lack of accurate theory at large offsets, numerical methods based on

electromagnetic field theory, such as FEM (realised by HFSS) will be the first

option to be considered in later analysis and design.

4.2.2 Thick Slot

In practice, the waveguide or HSIW supporting the slots will have a finite thick-

ness which brings about a noticeable effect on the radiation characteristics. This

problem is solved by the microwave network theory in [121, 127] and summarised

here. As before, only the longitudinal shunt slot is considered.

As shown in Fig. 4.6, the basic principle is to divide the thick slot into three

constitutions: A, the feeding waveguide with a T-junction on the broad wall; B, a

section of waveguide with a length of t and a cross section of l×w; C, the radiating

junction into a half space connected with A through B. Based on this theory, it’s

predicted that the radiation pattern of the slot won’t change much.

After that, closed-form expressions for normalised conductance, susceptance, etc.,

are given. As expected, they are even more complicated than those of the thin

slot. Hence, (4.5) based on the HFSS simulation continues to be used here in order

to characterise the thick waveguide slot.
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Figure 4.6: A thick longitudinal slot on the broadwall of a waveguide or HSIW:
(a) the geometry, (b) the equivalent circuit model [121].
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Figure 4.7: gr, Pr, and lr vs. t of a single longitudinal slot based on a standard
WR28 and HSIW at 35 GHz (x0 = 1 mm, w = 0.3 mm and b = 3.55 mm).

4.2.2.1 Thick RWG slot

Here, the wall thickness of WR28 is taken into account and assumed to change

from 0.1 to 0.6 mm. The effect of this changing on the radiation characteristics

is shown in Fig. 4.7. As can be seen, the resonant length, lr, gradually moves

upward with the increasing thickness, t, while gr and Pr barely change except

when t jumps from 0 to 0.1 mm.
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Figure 4.8: gr, Pr, and lr vs. t of a single longitudinal slot based on an HSIW
at 35 GHz (x0 = 1 mm, w = 0.3 mm and b = 1.32 mm).

4.2.2.2 Thick HSIW slot

Following the design of a Ka-band HSIW in Chapter 2, a longitudinal shunt slot

is now cut on its broad wall to radiate.

Firstly, an HSIW slot with the same height as WR28 (b = 3.55 mm, other geomet-

rical and physical parameters can be found in Table 2.4) is analysed and compared

with the WR28 slot, as shown in Fig. 4.7. It can be seen that gr, Pr, and lr are

all approximately following the same trend as those of the WR28 slot, except that

those of the HSIW slot are all slightly higher. This obviously is introduced by

the structural change: the side walls of WR28 replaced by two rows of metallic

posts and this might be preferred as high capability of power radiating facilitate

the Taylor distribution to each array element.

Then, the slot based on the HSIW designed in Chapter 2 (now b = 1.32 mm)

is analysed and results are shown in Fig. 4.8. As expected, gr, Pr, and lr are

following a similar trend as those of the HSIW with b = 3.55 mm, except that all

the values are now even higher, since b has been reduced.
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4.3 Waveguide Slot Array

Waveguide slot arrays are classified into two groups in terms of the wave pattern

inside the waveguide: (a) standing-wave arrays, (b) travelling-wave arrays [122].

For standing-wave arrays, each element is spaced λg/2 apart and left/right-offset

alternatively on the broadwall to ensure that each element is fed in phase and

jointly radiate a broadside beam. As for the feeding scheme, standing-wave arrays

can be fed either at one end or the centre of the waveguide with the rest end(s)

terminated with a matched load or short circuit. Short-circuit terminations pro-

vide for a more efficient array since the incident power can be potentially all

radiated instead of absorbing by the matched load. If a slightly larger bandwidth

is desired, however, matched-load terminations are preferred, as they minimize

reflected waves that potentially could cause the array to radiate another beam

in the opposite direction and thus narrow down the bandwidth. It’s also worth

noting that due to the dispersive nature of the waveguide, the main beam will

shift from the broadside with frequency if the array is fed at one end, which is

called “Long-Line Effect” [128, 129] by M. Ando, et.al. This can be significantly

improved by the centre feeding, also known as corporate feeding [128–133].

For travelling-wave arrays, the main difference is that they are designed to radiate

at scanning angles to the broadside with frequency. This means that the inter-

element spacing should deviate from λg/2 slightly and avoid λg/2 paticularly. As

for the feeding scheme, they can be fed only at one end of the waveguide. With the

use of wideband terminations, however, the bandwidth is noticeably wider than

that of standing-wave arrays.

Waveguide slot arrays can also be classified into two groups in terms of the con-

figuration: (a) linear array, (b) planar array.

A linear array, by its very nature, is one dimensional by including multiple radi-

ating elements on the same waveguide, while a planar array is two dimensional,

which comprise multiple linear arrays placed side by side.

In this section, the high-efficiency and load-saving standing-wave array will be

focused on. Within standing-wave arrays, A single waveguide slot antenna is

extended firstly into a linear slot array and then a planar array to realise a high

gain and high selection (pencil beam).
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4.3.1 Linear Array

4.3.1.1 Mutual Coupling

When a slot is set in an array, its radiation characteristics will be inevitably

affected by the other slots from the same branch line or across branches. This is

known as “mutual coupling”, which includes external and internal coupling.

In 1978, R. Elliott did a first look into the external mutual coupling between waveg-

uide longitudinal slots and produced two decisive equations for small antenna array

designs. The drawback of these two equations, however, is that they can only be

applied to air-filled waveguide because of the analogy of slot to the complimentary

dipole [134]. Later in 1983, he improved that design procedure by extending it to

dielectric-filled waveguide. At the end of this paper, the new iterative procedure

is presented in the presence of external mutual coupling [135]. In the situation

of reduced-height waveguide, the internal coupling becomes strong and has to be

accounted for. R. Elliott quickly spotted and investigated that in 1986 and con-

cluded that “the effects are ignorable for full-height guide, marginally detectable

for half-height guide, but significant for quarter-height guide” [136]. In addition

to Elliott’s work, a similar conclusion on internal higher-order mode coupling of

waveguide slots was achieved in 1991 [137].

All these methods above are complex, less-accurate and rely heavily on computer

programming. Take the design procedure in [135] for example. It needs the nor-

malised admittance of the shunt slot at all locations, (x0, l) beforehand, which

either comes from measurement or simulation. That already is time-consuming.

After that, at least 3 to 4 iterations are needed before a suitable set of slot di-

mension can be found. With the advent of commercial 3D softwares, the design

process could get easier and more accurate.

4.3.1.2 Design Procedure

The basic principle is to firstly design the linear array ignoring the mutual coupling

effects and then optimise it taking coupling into account, all with the aid of HFSS.

1) Characterisation of a single slot

The influence of the thickness, t, of a single HSIW slot may bring to the radia-

tion characteristic has been studied in Section 4.2.2. Now t is fixed to 0.44 mm



Chapter 4. A Slot Antenna Array Based on HSIW 112

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 g r 

x0 (mm)

gr
 

lr (m
m

)

4.0

4.1

4.2

4.3

4.4

4.5

4.6

 l r

Figure 4.9: gr and lr vs. x0 of a single longitudinal slot based on an HSIW at
35 GHz (t = 0.44 mm and w = 0.3 mm).

which is roughly two layers of LTCC tapes after firing. The resonant length and

corresponding normalised conductance are re-simulated through HFSS and given

in Fig. 4.9.

As shown in Fig. 4.9, gr and lr follow a similar tendency as those shown in Fig. 4.3.

The only difference lies in that the values of gr and lr are all noticeably higher

with a reduced b and thickened t. Particularly, gr gets over 1 when x0 is larger

than 2.7 mm, which will certainly rule out these offsets in standing-wave array

design for the sake of input match.

2) Design without mutual coupling

In the design of a standing-wave slot array, the end of the supporting waveguide

is short-circuited and the distance to the centre of the end slot is always λg/4,

which transforms a short circuit into an open circuit. Hence, the total of the

normalised resonant conductance, gt, suppose each slot is at its own resonance, for

an input-matched linear array of N slot elements is

gt =
N∑
n=1

grn = 1, End-fed Array

= 2, centre-fed Array

(4.6)
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Table 4.1: The radiation characteristics for each slot in the centre fed 6-
element linear array.

S1 S2 S3 S4 S5 S6

Pr 0.0387 0.1594 0.3019 0.3019 0.1594 0.0387
gr 0.0774 0.3188 0.6038 0.6038 0.3188 0.0774
lr / mm 4.12 4.27 4.42 4.42 4.27 4.12
xr / mm 0.55 1.20 1.78 1.78 1.20 0.55
lro / mm 4.25 4.42 4.55 4.55 4.42 4.25
xro / mm 0.56 1.23 1.83 1.83 1.23 0.56

and for each slot,

gri = 2Pri/V
2, i = 1, 2, · · · , N (4.7)

where V is the input voltage. Hence, gr is proportional to the radiated power of

the slot.

Based on the prescribed array performance, such as the beamwidth, gain, and

sidelobe level, etc., the approximated number of elements can be determined by

empirical knowledge. After that, through either Dolph-Chebyshev or Taylor dis-

tribution, the aperture distribution and thus radiated power for each slot can be

obtained. Since the normalised conductance is proportional to the radiated power,

gr is also known. Finally, refer to Fig. 4.9 (some data interpolation technique may

be needed to obtain sufficient data points) to find the initial corresponding res-

onant length, lr, and offset, xr. Note all this synthesis is based on the centre

frequency of the interested band (35 GHz here).

According to [122], the number of slots that can be arrayed in a single waveguide

is limited, as the impedance bandwidth narrows down quickly with the increasing

number of elements. Furthermore, the main beam with the centre-fed scheme

doesn’t shift with frequency.

So a small centre-fed array of 6 elements centred at 35 GHz is chosen here to

realise at least 10 dB gain. The aperture distribution is calculated based on a 25-

dB Taylor distribution (ñ = 4). After that, Pr, gr, lr, and xr without accounting

for mutual coupling can be derived and shown in Table 4.1. The geometrical

configuration and equivalent circuit model are shown in Fig. 4.10. It can be

observed that the aperture distribution and geometry are symmetrical.

The 6-element array is fed by a standard WR28 from the backside of the HSIW,

so the feeding slot is actually the cross-sectional size of WR28 (7.11 × 3.55 mm2).

Note there is a blockage area on top of the feeding slot, which enlarges the distance



Chapter 4. A Slot Antenna Array Based on HSIW 114

S1 S2 S3 S4 S5 S6

Feeding slot
WR 28

Blockage area

gr1

+

(b)

Vgr2 gr3

-

gr4 gr5 gr6

(a)

lb

Figure 4.10: The centre-fed 6-element linear array: (a) geometrical configu-
ration, (b) equivalent circuit model.

between the third pair of slots by lb. For the linear array, lb could be reduced to

nil. For the planar array in later designs, however, lb does exist because of the

feeding power divider. The appearance of this blockage area pushes centre slots

further apart (now λg/2 + lb) and will consequently result in a increase in the

sidelobe level [129, 132].

The initial return loss, S11, and radiation patterns in E-plane and H-plane from

the HFSS simulation are shown as the dashed lines in Fig. 4.11.

As can be observed in Fig. 4.11(b), S11 from the initial design deviates from 35

GHz by about 0.7 GHz, which obviously is the result by ignoring the mutual cou-

pling. As for the radiation pattern, the peak gain achieved is 14.5 dB which meets

the prescribed requirements. The sidelobe suppression in the H-plane, however,

is only 21.9 dB which will be improved by the following optimisation.

3) Optimisation with mutual coupling

There are all together six parameters, i.e., three pairs of lr and xr that can be

utilised to optimise the performance of the small linear array. The radiation char-

acteristics of a single slot will certainly be affected in the situation of an array,

though not much. It is found, through empirical knowledge, that lr has more

influence on the resonant position, where S11 reaches its minimum, whereas xr

causes more effects on the radiation pattern.
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Figure 4.11: The radiation performance of a centre-fed 6-element linear array.
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Figure 4.12: The simulated H-plane radiation pattern at various frequencies
for the centre-fed 6-element linear array.

With that in mind, the optimisation process can be split into two separate stages:

S11 optimisation and radiation-pattern optimisation. Generally speaking, increas-

ing the length of a resonant slot will decrease the resonant frequency. So lr is

increased marginally of each slot at the same time to find the response of S11.

This could be repeated multiple times and try to avoid a sudden big increment at

a time. After that, adjust xr of each slot one by one to find the possible change

of sidelobe suppression. If it’s getting worse, adjust xr in the other direction.

Normally, the sidelobe suppression is not much from predefined value after the

optimisation of S11. So a few times of repeats will achieve the goal.

The optimised values of lr and xr are shown in the last two rows of Table 4.1 as

lro and xro. It can be seen that all the optimised values are slightly higher than

the initial ones.

The optimised performance is shown as the solid lines in Fig. 4.11. The resonance

is now shifted to exactly 35 GHz, although there is also a weak one at around

32.4 GHz which can be viewed as an enhancement of the frequency bandwidth.

Further, the resonance is now much deeper than the initial one, which indicates

an excellent input match. As for the radiation pattern, the peak gain and E-plane

pattern don’t change much while the sidelobe suppression in the H-plane has now

increased to 25.4 dB. So to summarise, the optimisation has successfully reached

its objective. Nevertheless, it’s worth noting that the backlobe of the radiation
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Figure 4.13: The degradation of H-plane sidelobe suppression at 35 GHz with
the increase of normalised blockage length, 2lb/λg, of the centre-fed 6-element

linear array.

pattern for both planes is very high. This is due to the narrow width of the HSIW

and can be significantly improved in the later design of planar arrays.

An important feature of centre feeding is that the long-line effect disappears, which

means that the main beam doesn’t change its orientation along with frequency.

This can be clearly observed in Fig. 4.12: The main beam at various frequencies

keep the same angle, i.e., exactly broadside to the HSIW, although the sidelobe

level might fluctuate considerably. Also, the peak gains keep stable at 14.5 dBi.

Together with this feature, there is a main drawback for centre-feeding arrays,

which is the introduction of the blockage area as shown in Fig. 4.10. Although

this can be avoided in the linear array, the planar arrays will have to face this grey

area where no slots are radiating and an increase in the sidelobe level occurs, as

shown in Fig. 4.13.

As can be found, the sidelobe suppression deteriorates quickly from 25.4 dB to 9.5

dB when the length of the blockage area increases from nil to one half-wavelength.

So in order to maintain a high sidelobe suppression, lb should be kept as small

as possible. Apart from that, re-optimisation is probably needed when lb, the

width of the feeding power divider, is determined and the inter-subarray coupling

appears in the design of a planar array.
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4.3.2 Planar Array

In this section, a 6 × 6 planar HSIW slot array is designed based on the 6-element

linear array designed in last section. Firstly, a multiway power divider is designed

and placed at the centre of the planar array, which also satisfies the requirements

on the amplitude and phase for each subarray. Then, all 6 subarrays are put

together and optimised with the inter-subarray coupling to achieve a high-gain

and high-selection planar array.

4.3.2.1 A Multiway Power Divider

M. Ando et.al. proposed a multiway power divider based on RWG in 1997 [138].

The basic mechanism is to use a coupling window coupling energy from the feeding

waveguide to the radiating waveguide and one or two metallic posts near the

window to suppress the reflection. This power divider was later extended to post-

wall waveguide in [139] and has been widely used in his own antenna designs

[128–133] and by K. Wu et.al. based on SIW slot antennas [140–142].

A multiway power divider for the use of waveguide slot arrays should be able to

provide: (a) an alternating 180◦ phase change, since each subarray should be fed

in phase and 360◦ phase change will make the power divider too wide; (b) an

amplitude distribution which agrees with the prescribed aperture distribution.

Here a simplified multiway power divider is proposed as shown in Fig. 4.14, which

employs only two aligned metallic posts to meet the requirements. The removal

of the coupling window will also simplify the fabrication process, since to realise

a hollow structure on LTCC has already proved to be difficult.

As shown in Fig. 4.14, there are 6 radiating HSIWs corresponding to 6 subarrays

symmetrically located on both sides of the feeding slot. lb stands for the length
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Figure 4.15: The simulated performance of the multiway power divider for
the use of 6 × 6 planar HSIW slot array.

of the blockage area, through which the injected energy is distributed following a

set aperture-excitation pattern. There are 6 pairs of posts, one for each HSIW,

responsible for the energy distribution. Further, the horizontal location, q, relative

to the host HSIW has more influence on the phase response and the vertical

distance, p (symmetrical with respect to the centreline of the blockage area to

keep the phase stability), causes more effects on the magnitude response. Special

caution should be paid to the closest pair to the feeding slot, as they are key to

suppress the return loss.

Here the 25-dB Taylor distribution (ñ = 4) continues to be applied, which results

in an energy-distribution of Port 1, 0.0194; Port 2, 0.0797; Port 3, 0.1510 in terms

of power ratio or Port 1, -17.12; Port 2, -10.99; Port 3, -8.21 in terms of dB. Note

that the energy distribution of the other ports can be obtained based on symmetry.

After optimised through the HFSS simulation, the magnitude and phase response

of this multiway power divider is shown in Fig. 4.15 and the finalised blockage

area and post locations are: lb = 4.6, p1 = 1.5, q1 = 3.3, p2 = 1.6, q2 = 3.5,

p3 = 3.1, q3 = 6.1, all in mm.

As shown in Fig. 4.15, S11 has a deep resonance at around 35 GHz and S21, and

S31 stay rather flat in the studied band and close to the prescribed magnitudes

(-8.48 dB and -11.03 dB achieved, respectively). S41, however, is inclined and the

middle value is 15.8 dB, slightly drifting from the objective. As for the phase
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Figure 4.16: The top view of the 6 × 6 planar HSIW slot array.

response, ∆φ12, 172◦, is flat throughout the band, whereas ∆φ23 is inclined as the

shape of S41. The middle value of ∆φ23, however, is 185◦, which might narrow

down the operating bandwidth of the slot array but still could be used.

4.3.2.2 A 6 × 6 Planar Array

a) Configuration

All 6 linear subarrays are assembled into a planar panel, where the relative posi-

tions of slots should be given caution to. Since the power divide generates alter-

nating 180◦ phase switch, the neighbouring subarrays should be on the opposite

side of the radiating HSIW. Further, the slot arrangement inside a single subarray

is also different from that of a linear array: the slots are now symmetrical with

respect to the feeding slot, as shown in Fig. 4.16, instead of sequentially located

as shown in Fig. 4.10(a). The reason is that the orientation of the feeding slot is

changed by 180◦ and thus the phase response changes accordingly.

Note that there is a 9 × 11 mm2 marginal area surrounding the planar array which

is for the convenience of fabrication. This area will slightly enhance the upward

radiation (gain) and suppress the backlobe.

As discussed in Section 4.3.1, the blockage area (the power divider) should be kept

as small as possible and has been given as lb = 4.6 mm (about 0.43λg) in Section
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4.3.2.1. This is very high and will result in a big surge in the sidelobe level. A

technique to reduce the adverse effect the power divider has brought is to extrude

the slots outward into the blockage area to reduce the distance between the split

slots. As shown in Fig. 4.16, the middle slots have small fractions of themselves

into the power divider. Through this technique, the length of the blockage area,

lb, can be reduced by 3 via distances (3 × 0.6 mm) to 2.8 mm, which can greatly

relieve the sidelobe degradation.

Another technique is proposed by M. Ando in [129], wherein an E- to H-plane

cross-junction is used in the power divider. Hence, the blockage area is reduced to

the narrow side of the feeding waveguide and the sidelobe level can be improved

from 10 dB to 15 dB. Apart from that, he also proposed a multi-layer power divider

corporately feeding the slots to remove the blockage area completely in [133]. The

common feature to his techniques is that they are all realised in traditional RWGs

and are considerably complicated, which will not be employed here.

b) Optimised performance

With the existence of inter-subarray coupling, re-optimisation is needed and fol-

lows the basic principle given in Section 4.3.1. The only difference lies in the

optimisation of E-plane radiation pattern, which is now jointly affected by the

power divider and slot locations. Advice to that is to adjust slots first to see the

performance and if not satisfied, change the location of post-pairs of the power

divider.

After optimisation, the finalised parameter values are given as xr1 = 0.57, xr2 =

1.25, xr3 = 1.85, lr1 = 4.11, lr2 = 4.28, lr3 = 4.42, all in mm and the parameters

from the power divider keep unchanged.

The simulated S11 and peak gain of this 6 × 6 slot array is shown in Fig. 4.17

as the black lines. As can be seen, S11 resonates at 35 GHz and the impedance

bandwidth is about 1.5 GHz, which belongs to the narrow-band antenna array.

The peak gain for this array is 18.4 dBi at 35 GHz, 3.9 dB increase compared with

that of a single linear array. Across the operating frequency band, the peak gain

centres at 35 GHz and drops quickly toward both directions, which also indicates

a narrow-band characteristic in line with the features of the waveguide slot array

and power divider.

The radiation patterns of the E-plane and H-plane are shown in Fig. 4.18. Note

that the peak gain has been normalised. The best sidelobe suppression that can
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Figure 4.17: S11 and the gain of the 6 × 6 planar HSIW slot array.

be found is about 13 dB in both planes at 35 GHz and the degradation toward

the higher frequency is much larger than that toward lower frequency. As can

be observed, the main beam at all 3 frequencies is fixed at the broad side of the

HSIW and the backlobe drops significantly compared with that of the linear array

in Section 4.3.1.

The moderate sidelobe suppression in the H-plane can be expected after the ex-

trusion technique is used, otherwise it will be below 10 dB, as demonstrated in

[129, 131, 133]. As for the sidelobe suppression in the E-plane, it is also less than

designed value. This is probably because of the phase instability, as shown in

Fig. 4.15 and the extrusion of radiating slots. Note that high sidelobe suppression

is probably causing a reduction of peak gain, so if the gain is the main concern,

the demand on the sidelobe suppression can be loosened.

c) Measurement

A progressive-lamination LTCC technique is used to manufacture the 6 × 6 planar

HSIW slot array, as shown in Fig. 4.19. The DupontTM GreenTapeTM 9K7 LTCC

system with a relative dielectric constant of 7.1 is employed as the dielectric, while

the silver paste with a conductivity of 3.7e7 S/m is adopted as the conductive

material.

As shown in Fig. 4.19, the vias of the multiway power divider are implemented

through copper wires whose positions are indicated by the red circles. On the
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Figure 4.18: The radiation pattern of the 6 × 6 planar HSIW slot array: solid
line for the simulation; solid line with squares for the measurement.
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(a) top (b) bottom

Figure 4.19: The fabricated 6 × 6 planar HSIW slot array.

bottom side of the sample, a feeding slot is located at the centre to be connected

with a standard WR28 through elastic strings or adhesive tapes.

The measurement setup is shown in Fig. 4.20, where a small wooden anechoic

box with an internal size of 1.2 × 1.2 × 1.8 mm3 is housing the measurement

equipments and devices under test. The blue tapered absorbers attached to the

inner sides of the wooden box are specially made for mm-wave applications. An

Agilent PNA working up to 67 GHz is used as the source. A pair of Q-par horn

antennas attached to two perspex poles work at the Ka band are used as the

standard gain antennas which have a stable gain of 20 dBi. The gain of antenna

under test (AUT) can be determined when replacing Antenna 2 and comparing

the gain difference.

In order to measure the radiation pattern of an antenna, the AUT has to stay

beyond the far-field distance of the source antenna; so does the source antenna.

The far-field distance is defined as the spherical wave front radiated by antenna

becomes approximately a plane wave front and given as [99]:

Rf =
2D2

λ
(4.8)

where D is the largest linear dimension of the antenna. So the far-field distance

of an measurement system is the larger one of those for the two antennas.

In our case, the slot array measures 42.1 × 56.2 mm2 which gives D 70.2 mm

and works at a centre frequency of 35 GHz which gives λ 8.6 mm. Then, using

(4.8), the far-field distance of the slot array, Rf is obtained as 1.15 m. Since the

dimension is obviously larger than the horn antenna, the far-field distance of the

slot array is thus that of the system. The distance between the two perspex poles



Chapter 4. A Slot Antenna Array Based on HSIW 125

Figure 4.20: The measurement setup of the 6 × 6 planar HSIW slot array.

is 1.4 m which satisfies the requirements for the radiation pattern measurement in

the far-field.

The measured S11 and peak gain of the slot array is shown in Fig. 4.17 as the red

lines. As can be observed, the measured response seems to shift slightly upwards

with a centre frequency of about 35.5 GHz and the measured gain is generally lower

than that from the simulation with the peak gain of 17.1 dBi, 1.3 dB lower than

the peak simulated gain. Apart from that, the measured and simulated results are

in a good agreement.

The measured radiation pattern at 35 GHz is at a 5◦ increment up to 70◦ and is

shown in Fig. 4.18 as the solid lines with squares. It can be seen that the sidelobes

in both the E-plane and H-plane are about 11.5 dB, 1.5 dB higher than those from

the HFSS simulation and the main beams are both slightly wider. Furthermore,

the main beam in the H-plane, has shifted toward one side for 5◦. Possible reasons

for the disagreement and degradation may come from the unaccounted shrinkage

of the LTCC and poor via connection between adjacent LTCC layers.
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4.4 Conclusion

In this chapter, a 6 × 6 planar array based on a slotted HSIW is designed, fabri-

cated, and measured. A simulated gain of 18.4 dB and a sidelobe suppression of

13 dB in both E and H planes are achieved. Fabrication and measurement have

also been performed to verify the design.

For this centre-fed array, an inherent drawback is that the sidelobe suppression

cannot be too high with the existence of the blockage area. The investigations on

how to alleviate this problem with the LTCC HSIW technology will be studied in

the future.



Chapter 5

A Dielectric Insular Resonator

Antenna Array Fed by DIIG

This chapter is organised as follows: Section 5.1 presents an introduction to the di-

electric resonator antenna (DRA), in terms of its history, advantages/challenges,

and feeding schemes. After that, Section 5.2 explains how resonant modes are

generated in a DR and radiate as a DRA. Then, Section 5.3 employs two theoret-

ical models to analyse the DRA and dielectric insular resonator antenna (DIRA).

Results from the two models are compared with each other and those from pub-

lications. Finally, a double-sided Taylor-distributed DIRA array fed by the DIIG

is designed, fabricated and measured in Section 5.4.

5.1 Introduction

Over the last few decades, the dielectric resonator antenna (DRA) has been draw-

ing massive interest to prompt significant progress in microwave and mm-wave an-

tenna technologies. What’s more, a recent surge of DRA publications in Fig. 5.1

is arguably showing that the interest on this subject tends to be in an explosively-

growing mode. The preference on the DRA mainly lies in the fact of its versatility,

efficiency and design flexibility compared with traditional microstrip antennas and

other low-gain narrow-band antennas [143].

127
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Figure 5.1: The number of publications on DRAs in recent years [143].

5.1.1 Historical Review

1939 saw the birth of a new term, “Dielectric Resonator (DR)”, by Ritchmyer

of Stanford University who found that dielectric objects in the form of toroids

could function as microwave resonators and thus are potential to be developed as

oscillators and filters [144]. Little interest, however, was triggered by Ritchmyer’s

theoretical investigations over the next two decades and no actual applications were

seen in real practice. Not until the early 1960s did worldwide engineers start to pay

attention to DRs, together with extensive theoretical and experimental research

conducted on various shapes of them. A real breakthrough in the dielectric ceramic

industry early 1970s certainly accelerated this process and made massive reliable

production of DR circuits possible. During this time, DRs, typically cylindrical,

are fabricated out of high dielectric constant materials (εr ≥ 35) and usually

shielded to maintain the high quality factor needed for applications in oscillators,

filters, etc. [145].

By removing the shielding and with proper feeding schemes, these DRs are found

to be functioning as efficient radiators. In fact, the theoretical investigations on

the radiation characteristics of DRs were carried out long ago in the 1960s as a

sideline and practically suppressed for the prevailing application of oscillators and

filters until 1983 [146, 147]. In this year, S. Long et al. published a paper on the

cylindrical DRA which studied and examined at length the radiation performances

of DRs as antennas [148]. After that, they continued with the research on this
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subject to explore DRAs in other shapes: rectangle [149] and hemisphere [150]. All

their serial work laid the foundation for future extensive investigations on various

aspects of DRAs in various forms [122, 151].

In the late 1980s and early 1990s, the mainstream of the DRA research was fo-

cused on the feeding mechanisms, the eigenmodes of and analytical and numerical

techniques to determine the input impedance, Q factor and radiation patterns of

DRAs with simple shapes. Much of this work was summarized in [152] by R.

Mongia et al. By the mid- to late 1990s, linear and planar arrays of DRAs started

to draw people’s attention and publications on simple two-element arrays up to

complex planar phased arrays of over 300 elements with electronic phase-steering

capabilities were also seen during this period of time [143].

Entering into this new century, many more researchers started to turn their interest

to DRAs and an unprecedented rate of publications has been prompted as shown in

Fig. 5.1. New areas of DRA research came into being, such as enhanced-gain tech-

niques, finite-ground-plane effects, tunable DRAs, reconfigurable patterns, ultra-

wideband designs, polarization agility, and dual-function designs (where the di-

electric resonator antenna is used both as a resonator and as an antenna), etc.

Also, new shapes of DRAs have been introduced, including conical, tetrahedral,

hexagonal, pyramidal, elliptical, and stair-stepped shapes, or hybrid antenna de-

signs, using dielectric resonator antennas in combination with microstrip patches,

monopoles, or slots. With the fast-growing wireless communications, new spe-

cific applications have also emerged: integration into mobile handsets for PCS,

IMT2000 and WLAN applications; use in cellular base-station antennas; UWB

applications; radar applications; breast-cancer imaging; RFID; spatial power com-

bining; direction finding; and all-dielectric wireless receivers [143].

With more and more researchers and funding joining in, the research on DRAs

will continue to be a hot subject and promote the development of modern antenna

technologies and wireless communications.

5.1.2 Advantages and Challenges

Quite a variety of DRA shapes have been studied and manufactured. Some of

them are commonly seen and shown in Fig. 5.2. Although they do vary in forms,

some basic advantages are shared in contrast with traditional microstrip antennas

and other low-gain narrow-band antennas, together with challenges.
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Figure 5.2: Various shapes of DRAs, including cylindrical, rectangular, hemi-
spherical, low-profile circular-disk, low-profile triangular, and spherical-cap

DRAs [151].

Advantages:

• Efficient radiation

The DRA is immune to surface-wave losses and maintains reduced conductor

losses, which contributes a lot to a high radiation efficiency. This advantage

becomes even more pronounced when it comes to the millimetre-wave or

higher band, as the conductor loss deteriorates quickly with respect to the

increasing frequency [143, 151].

• Wide band

The DRA radiates through the whole surface except for the grounded part,

whereas the microstrip antenna radiates only through two narrow edges.

This gives DRAs a much wider bandwidth compared with microstrip anten-

nas. A typical impedance bandwidth for a DRA with a dielectric constant of

10 is around 10%; while the widest for a simple rectangular DRA reported

till today is 42% [145, 151, 153].

• Flexible design

A wide range of εr (from 4 to 100) can be used, thus allowing the designer

the flexibility in controlling the size and bandwidth of DRAs. In addition,

various modes can be excited which produce different radiation patterns

for flexible coverage requirements. Moreover, the Q-factor of some of these
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modes depend on the aspect ratio of the DRA, thus allowing one more degree

of flexibility in the design. Finally, many existing feeding schemes can be

used (slots, probes, microstrip, coplanar waveguides, dielectric image guide,

etc.), which makes DRAs easy to be integrated with existing technologies

and adds another degree of flexibility to their design [143, 145].

Of all the different shapes of DRAs, rectangular DRAs offer extra advantages over

DRAs in other shapes, such as cylindrical and spherical ones. One advantage is

that it has two degrees of dimensional freedom. For any given resonant frequency

and fixed dielectric constant, two of the three dimensions of the rectangular DRA

can be chosen independently (one for the cylindrical DRA and none for the hemi-

spherical DRA), which provides more flexibility in terms of aspect ratios and thus

bandwidth control [151, 154]. The other is that mode degeneracy, which can en-

hance the cross-pol levels of an antenna and should be strongly avoided, can be

removed in rectangular DRAs; while it always exists in a spherical DRA and in

the hybrid modes of a cylindrical DRA [146, 154, 155].

Further details with regard to mode analysis and radiation characteristics will be

explained in Section 5.3.

Challenges:

• Fabrication complexity

The standard fabrication process for a DRA array is to machine all the radi-

ating elements from a block of the dielectric material and then individually

place and bond them to the feeding structure. This could be a labour-

intensive and relatively expensive procedure. Moreover, air gaps are easily

introduced as fabrication imperfections which severely affect DRAs’ perfor-

mances, especially when it comes to the millimetre-wave band. In fact, air

gaps are potential to increase the radiation efficiency and bandwidth; the

unwanted ones, however, could be a trouble-maker [143, 156].

• Integration with MMICs

Micro-machining techniques are starting to be used in the fabrication pro-

cess of DRAs, which could extend their frequency range well beyond 100

GHz. How to surface-mount small DRA blocks to silicon based substrates

in the forms of MMICs is challenging. If successful, however, it will ful-

fil the demand of DRAs on chip for future generation of very compact RF

applications [143, 156].
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DRAs can fit in a wide range of physical or electrical requirements of various wire-

less communication applications. From as low as 55 MHz to 94 GHz, from a single

radiating element to a planar array of 529 elements, DRAs have demonstrated

a large degree of flexibility and adaptability which can still be improved on as

they don’t represent fundamental theoretical or practical limits. Although fabri-

cation complexity is increased compared with the printed technology, it could be

resolved as research is conducted and new or existing technologies are applied into

this area. All this will certainly make the DRA a promising and viable alternative

to traditional low-gain narrow-band antennas.

5.1.3 Feeding Schemes

For most practical applications, energy must be coupled into or out of a DRA

element through one or more ports for it to be working as an antenna (a possible

exception is the DRA used in a reflectarray configuration). The type and location

of the port with respect to the DRA will determine which mode will be excited

and how much energy will be coupled between the port and the antenna, that is

the resonate frequency and radiation Q-factor of a DRA. Although there are no

simple closed-form expressions to accurately decide on these quantities (numerical

techniques are required), it can still be qualitatively analysed through approximate

field distributions of the modes of both the coupling structure and the isolated

DRA [122, 151]. This section outlines some commonly-seen feeding schemes which

might use aperture, coaxial probe, coplanar waveguides, microstrip line or DIG

for energy coupling. Fig. 5.3 illustrates some of these feeding schemes.

5.1.3.1 Aperture Coupling

Here the aperture can be of various shapes, such as narrow rectangular slot, loop,

cross, or C-shape cut in the ground plane of a microstrip line or on the broad

surface of a waveguide. It is worth noting that the aperture should be kept elec-

trically small to avoid excessive radiation beneath the ground plane in the case

of microstrip line feeding. Also, if the aperture is too large, it will overly load

the DRA to significantly shift the resonant frequency and Q-factor compared to

the theoretical calculation. If the aperture is electrically small, it will behave like

a magnetic current running parallel to the length of the slot, which excites the

magnetic fields in the DRA. Locating below the ground plane, aperture coupling
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Figure 5.3: Various feeding schemes of the DRA [122].

offers the advantage of protecting the radiating element from any unwanted cou-

pling or spurious radiation of the feed. Moreover, aperture coupling is widely used

for integrating DRAs with printed feeding structures [122, 145].

5.1.3.2 Probe Coupling

In this coupling scheme, the probe, considered as an electric current running verti-

cal to the DRA ground, usually consists of the centre pin of a coaxial transmission

line that extends through the ground plane or a thin metal post soldered to a flat

metal strip. The strength of coupling and nature of modes depend on the length

and location of the probe and can be thus optimized. Generally, the probe length

is chosen to be less than the height of the DRA, to avoid probe radiation. (A

notable exception is the hybrid monopole-DRA, where the probe acts as both a

feed and a monopole radiator.) Also, in terms of practicality, locating the probe

feed adjacent to the DRA is preferred since embedding the probe into the DRA

requires drilling into it. (This, however, cannot be avoided for the TM01δ mode of

cylindrical DRAs where the probe must be at the centre of the DRA.) [122, 151]

An advantage of the probe coupling method is that the antenna system can be

directly connected to a 50 Ω circuit without the aid of any matching network [122].
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Figure 5.4: Various coplanar structures for coupling to the DRA [145].

5.1.3.3 Coplanar Coupling

An advantage of coplanar coupling (normally through coplanar waveguides) is that

it enables easy integration with MMICs compared with coaxial probe coupling.

Open-circuit coplanar waveguides can be used to directly feed DRAs, together

with stubs or loops at the end of the line for additional control of impedance

matching as shown in Fig. 5.4. The coupling level and nature of modes can be

adjusted by moving the DRA over the coplanar structure [122, 145].

5.1.3.4 Microstrip Line Coupling

The microstrip line coupling mechanism is the simplest method to feed DRAs

which offers easy and cost-effective fabrication of DRA arrays because feedlines

can be simply printed over the substrate. In this method, the level of coupling from

the microstrip line to the DRA can be controlled by adjusting the spacing between

the DRA and the line for the side-coupled case or the length of the line underneath

the DRA for the direct-coupled case. A more dominant parameter affecting the

degree of coupling is the permittivity of the DRA. The higher permittivity, the

stronger coupling. This can be problematic when a single low-dielectric-constant

demands a wideband operation. For series-fed linear arrays of DRAs, however,

the lower level of coupling may not be an impediment, since each DRA element

only radiates a small amount from the microstrip feed line [122, 151].

Apart from the merits microstrip line coupling exhibits, there is also a disadvan-

tage: The polarization of the array is dictated by the orientation of the microstrip

line and moreover, this excitation scheme may also generate surface waves in the

microstrip line substrate, which is highly undesirable [122].
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5.1.3.5 DIG/DIIG Coupling

The DIG coupling to the DRA offers advantages over the microstrip line scheme

in that they do not suffer from severe conductor loss, especially in the mm-wave

band. What’s more, this conductor loss could be further reduced by introducing a

low-permittivity inset between the dielectric guide and the ground plane, namely

employing dielectric insular image guide (DIIG) [106]. Similar to the microstrip

line coupling, DRAs can be fed either from sideways or underneath through DIG.

Here the coupling level between the guide and the DRA is usually small, which,

however, can be increased by operating the guide closer to its cutoff frequency.

This feeding scheme is promising and has found its way in many applications,

especially in series-fed linear DRA arrays [122, 145].

5.1.4 Conclusion

An introduction to the basic principles of DRs/DRAs is presented in this sec-

tion, including a historical review, potential advantages and challenges and var-

ious feeding schemes. Of all the shapes and feeding schemes DRAs may have,

the rectangular DRA and DIG/DIIG stand out in terms of design flexibility and

mode-degeneracy suppression. Apart from that, they could also share the same

processing technology because of the similar cross section. So the following design

will be focusing on this promising type of DRA and its feeding scheme of DIIG.

5.2 Resonant Modes of a Rectangular DR

The resonant mode is generated for a microwave resonator, including the DR,

when the stored electric energy is equal to the magnetic energy. Generally, there

will be an infinite number of resonant modes and each of them corresponds to

a particular resonant frequency. Only the lowest order or a couple of low-order

modes will be of interest in the scientific research and practical applications. As

for the DR, there are no metallic surfaces to completely confine electromagnetic

fields inside, which gives rise to the leakage or radiation in a specific field pattern

at a specific mode. That’s basically how a DRA is formed [122].

A rectangular DR can be viewed as a truncated DG engulfed in the air, as shown

in Fig. 5.5(a), (b). So the modes in a rectangular DR is similar to that in a DG,
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except that the wave will be standing (suppose there is a field variation) along the

z direction instead of travelling. Theoretical methods to analyse the propagation

characteristics of the DG/DIG, such as Marcatili’s method [112] and the EDC

method [113], can be easily transferred to that of the DR. In order for the DR

to be used as a DRA in the microwave and millimetre-wave band and also for

the facility of feeding, the DR is practically placed on top of a pure or insulated

metal together with the feeding DIG/DIIG, as shown in Fig. 5.5(c), (d) [104, 151].

The DRA with an insulated metal ground is named as DIRA (Dielectric Insular

Resonator Antenna).

On one hand, the rectangular DR enjoys more design flexibility compared with the

spherical or cylindrical DR, which comes from the three independent dimensions;

on the other hand, this edge-rich shape brings in more discontinuities and hence,

more complexity of its field distribution. In fact, all 6 components of electric and

magnetic fields exist in the rectangular DG and hence, the rectangular DR [118].

In contrast, only TE, TM or the combination of these two modes reside in the

spherical and cylindrical DR [146, 155]. By neglecting the weakest electric or

magnetic components, however, the modes of the rectangular DR can be grouped

into TE-like and TM-like ones, as demonstrated in Chapter 3 for the DG/DIG.

Based on the nomenclature used for the rectangular DG/DIG [112], the propagat-

ing modes can be classified into TMy
mn and TEy

mn modes. For the TMy
mn mode,

Ey and Hx are the principal transverse field components, whereas Ex and Hy are

taken as the strongest transverse components when the TEy
mn mode is separated.

Following this nomenclature, the resonant modes of a rectangular DR as a trun-

cated section of a DG is thus specified as TMy
mnl and TEy

mnl modes. The mode

indices, m,n, and l, refer to the number of field extremas or half cycle variations

of electric and magnetic components inside the DR along x, y, and z directions,

respectively. At resonant frequencies, the fields tend to be standing inside the DR

(except when m,n, or l equals 0), whereas decaying exponentially with distance

outside it [104].

For the record, it’s not just the TMy
mnl and TEy

mnl modes that can reside inside

a rectangular DR. R. Mongia, et.al., point out that TE and TM modes to other

directions, i.e., x, z, are also possible if the three dimensions of the resonator are

not very different from each other [154, 157].
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Figure 5.5: The 3D geometry of a DG, DR, DRA and DIRA.

5.3 Models of Rectangular DRA and DIRA

Since a rectangular DR can be viewed as a truncated DG, as shown in Fig. 5.5,

the rectangular DG model is generally used to describe the wave behaviours in

and around the DR. As for the characterization of DGs, there are approximate

and numerical methods, as demonstrated in Chapter 3. When it comes to high-

permittivity rectangular DRs, the imperfect magnetic-wall condition, (5.12a), can

be applied to the DR surfaces and hence, simplify the calculation process. This is

sometimes called the magnetic-wall model [154, 157]. Both these two models are

elaborated in the following section.

5.3.1 The DG Model

If the DG is truncated in the z direction to form a DR and hence, a DRA, as

shown in Fig. 5.5, there could also be a standing-wave pattern triggered inside

the DR and an exponentially-decaying wave outside it along that direction, as is

the case along the x and y directions.

Following the analysis on the DIG in Chapter 3, assumptions can be made that the

propagation constants along the x and y directions, kx1 and ky1, stay unchanged,

while a similar characteristic equation can then be set up along the z direction.

For clarity and simplicity, assume that a > b, c > b and only the EDC-H method

is applied and presented; otherwise, the EDC-V method will be used.
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5.3.1.1 DRA

The rectangular DRA to be studied is shown in Fig. 5.5(c). Detailed derivation

has been demonstrated in Chapter 3 and for simplicity, only the final results will

be given here.

For the TMy
mnl mode, the characteristic equations in the x and y directions have

already been given by (3.12) and (3.25) or (3.29). Now that in the z direction is

given through the EDC-H method by

1− kz1
kz0

tan (kz1c/2) = 0, even mode

1 +
kz0
kz1

tan (kz1c/2) = 0, odd mode

(5.1)

where

kz0 =
√

(εre − 1)k2
0 − k2

z1 (5.2)

or for the convenience of calculation, transformed into

kz1c = −2 arctan

(
kz1
kz0

)
+ lπ (5.3)

where

l = 2l′ − 1, l′ = 1, 2, 3, · · · even mode

l = 2l′, l′ = 1, 2, 3, · · · odd mode

Note that kx1, ky1, and kz1 should also satisfy the separation equation

εrk
2
0 = k2

x1 + k2
y1 + k2

z1 (5.5)

Solve the equation array, (3.12), (3.25) (or (3.29)), (5.3) and (5.5) for k0 and hence,

the resonant frequency

f0 =
k0c0

2π
(5.6)

where c0 is the speed of light in the free space.

For the TEy
mnl mode, the characteristic equations in the x and y directions have

already been given by (3.46) and (3.48). Now that in the z direction is given
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through the EDC-H method by

1 +
εrekz0
kz1

tan (kz1c/2) = 0, even mode

1− kz1
εrekz0

tan (kz1c/2) = 0, odd mode

(5.7)

where kz0 is defined in (5.2); or for the convenience of calculation, it’s transformed

into

kz1c = −2 arctan

(
kz1
εrekz0

)
+ lπ (5.8)

where

l = 2l′, l′ = 1, 2, 3, · · · even mode

l = 2l′ − 1, l′ = 1, 2, 3, · · · odd mode

After that, the resonant frequency of the TEy
mnl mode follows the same derivation

process as the TMy
mnl mode.

As for the TE and TM modes to the x and z directions, they can be derived and

expressed in a similar way and therefore, wll not be repeated here.

One thing to be noted is that the subindex which corresponds to the superindex

can be 0, e.g., for the TEx
mnl mode, m can start from 0, whereas for the TEz

mnl

mode, it’s z that can be 0, unless restrained by the metallic ground plane. This

is an obvious difference between the DRA and DIG, which means that the fields

can now be uniformly distributed in one specific direction in the DRA.

5.3.1.2 DIRA

The rectangular DIRA to be studied is shown in Fig. 5.5(d).

For the TMy
mnl mode, the characteristic equations in the x and y directions have

already been given by (3.53) and (3.56). Now that in the z direction is given

through the EDC-H method by (5.1), where

kz0 =
√

(εre1 − εre2)k2
0 − k2

z1 (5.10)

After that, the resonant frequency follows the same derivation process as the

TMy
mnl mode of the DRA.
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For the TEy
mnl mode, the characteristic equations in the x and y directions have

already been given by (3.53) and (3.56). Now that in the z direction is given

through the EDC-H method by

1 +
εre1kz0
εre2kz1

tan (kz1c/2) = 0, Even Mode

1− εre2kz1
εre1kz0

tan (kz1c/2) = 0, Odd Mode

(5.11)

where kz0 is defined in (5.10).

After that, the resonant frequency follows the same derivation process as the

TMy
mnl mode of the DRA.

5.3.2 The Magnetic-Wall Model

5.3.2.1 The Magnetic-Wall Condition

DRAs used to be designed with dielectric materials of a very high permittivity

to reduce the size at low frequencies. Although this is already not necessary

when frequencies have risen up to millimetre-waves, it is helpful to simplify the

theoretical analysis as magnetic-wall conditions can be applied on all the surfaces

of high-permittivity materials [158, 159]. The magnetic wall conditions are as

follows:

Ē · n̂ = 0 (5.12a)

n̂× H̄ = 0 (5.12b)

where n̂ denotes the normal to the surface of the resonator.

It should be noted that rectangular DRs can only satisfy (5.12a) which is the imper-

fect magnetic-wall condition, whereas spherical and cylindrical DRs can support

both conditions in (5.12) [158, 159].

5.3.2.2 DRA

Suppose the rectangular DRA shown in Fig. 5.5(c) has a high dielectric constant

(normally εr ≥ 10), so that the magnetic-wall method can be applied.
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In [154], the analysis of the TEz
mnl mode has been given as an example and those

of the TEx
mnl and TEy

mnl modes can be obtained in a similar way. Note that the

magnetic-wall model is not suitable for the TM modes of rectangular DRs/DRAs,

as the imperfect magnetic-wall condition can only regulate the behaviour of the

electric field.

Firstly, the field components inside the DRA can be derived through the z directed

magnetic potential [154] as

Hx =
kxkz
jωµ0

A sin(kxx) cos(kyy) sin(kzz)

Hy =
kykz
jωµ0

A cos(kxx) sin(kyy) sin(kzz)

Hz =
k2
x + k2

y

jωµ0

A cos(kxx) cos(kyy) cos(kzz)

Ex = Aky cos(kxx) sin(kyy) cos(kzz)

Ey = −Akx sin(kxx) cos(kyy) cos(kzz)

Ez = 0

(5.13)

where A is an arbitrary constant and kx, ky, and kz are the wavenumbers inside

the DRA in the x, y, and z directions, respectively.

Since Ez = 0, the surfaces at |z| = c/2 automatically satisfy the imperfect

magnetic-wall condition, (5.12a). In conjunction with that, Ex = 0 at the sur-

face of y = 0, which satisfies the electric-wall condition at the metallic ground

plane. After that, by applying (5.12a) to the remaining surfaces of the DRA, i.e.,

y = b/2 and |x| = a/2, the following results are obtained:

kx =
mπ

b
, m = 0, 1, 2, · · ·

ky =
nπ

c
, n = 1, 3, 5, · · ·

(5.14)

In order to find kz, the DG model in Section 5.3.1 is borrowed to set up a standing-

wave pattern along the z direction and hence, the characteristic equation is ob-

tained as follows:

kzc = −2 arctan

(
kz
kz0

)
+ lπ (5.15)
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where

kz0 =
√

(εr − 1)k2
0 − k2

z

l = 0, 1, 2, · · ·

Note that m and l can’t take 0 simultaneously for any of the resonant modes.

Similarly, for the TEx
mnl mode, Ex = 0 and then

ky =
nπ

b
, n = 1, 3, 5, · · ·

kz =
lπ

c
, l = 0, 1, 2, · · ·

(5.17)

and

kxa = −2 arctan

(
kx
kx0

)
+mπ (5.18)

where

kx0 =
√

(εr − 1)k2
0 − k2

x

m = 0, 1, 2, · · ·

Finally, for the TEy
mnl mode, Ey = 0 and then

kx =
mπ

a
, m = 0, 1, 2, · · ·

kz =
lπ

c
, l = 0, 1, 2, · · ·

(5.20)

and

kyb = −2 arctan

(
ky
ky0

)
+ nπ (5.21)

where

ky0 =
√

(εr − 1)k2
0 − k2

y

n = 2, 4, 6, · · ·

After that, apply the separation equation, (5.5), to find k0 of each mode and then

the resonant frequency, f0.
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It can be observed that for the TEy
mnl mode, n can only be an even number,

whereas for the TEx
mnl and TEz

mnl modes, n turns out to be odd. This results from

that the metallic ground plane works a short circuit.

5.3.2.3 DIRA

Since the DIRA includes a dielectric layer with a considerably low permittivity,

the magnetic-wall model is not suitable here and therefore won’t be discussed.

5.3.3 Theoretical Calculation and Comparison

The DRA and DIRA shown in Fig. 5.5(c), (d) are taken to be analysed in terms of

the resonant frequency with the DG model and magnetic-wall model, respectively.

5.3.3.1 Comparison with Published Results

Firstly, the computed results are compared with those from experiments carried

out in [154] and [157].

It should be corrected that TE/M
x/y/z
111 modes are not the lowest-order modes

as claimed by [154] and [157]. It will be clearly shown that the modes with a

zero subindex among m,n, or l may have lower resonant frequencies for certain

dimensions and will be verified in this subsection. In fact, with the DRA and

DIRA, n can only be an odd number starting from 1 for the TMy
mnl mode and

an even number starting from 2 for the TEy
mnl mode. This means that numerous

and complex modes in the DR as presented by [154] and [157] can now be greatly

simplified.

As shown in Tab. 5.1, a set of resonant frequencies of the DRA with various

dimensions and dielectric constants is calculated and compared with experimental

results. Note that due to a different nomenclature, the TEx
131 and TEx

132 modes

are equivalent to TEx
121 and TEx

122in [157]. Both the DG model and magnetic-wall

model of the DR/DRA precedingly presented in this section are employed for the

calculation.

It can be found in Tab. 5.1 that the dielectric constant of the DR plays an

important role in the accuracy of two different methods. When the dielectric



Chapter 5. A Dielectric Insular Resonator Antenna Array Fed by the DIIG 144

Table 5.1: Theoretical and experimental resonant frequencies of the DRA.

a b c εr Mode Resonant frequencies (GHz)
(mm) (mm) (mm) / Difference with experiment(%)

DG Model Magnetic- Experiment
Wall Model [154, 157]

6 4 6 37.1 TE
x/z
111 7.81 / -4.8 8.01 / -2.3 8.20

6 3 6 37.1 TE
x/z
111 9.41 / -5.6 9.72 / -2.5 9.97

12 16 10 12.7 TMy
113 9.46 / +4.9 — / — 9.02

8 24 10 12.7 TEx131 7.35 / +0.8 7.62 / +4.5 7.29
8 24 10 12.7 TMy

212 9.99 / +8.6 — / — 9.20
8 24 10 12.7 TEx132 10.27 / +3.2 10.68 / +7.3 9.95
15.24 15.24 3.10 10.8 TEz111 6.69 / +7.7 6.95 / +11.9 6.21

constant takes a high value (37.1, in this case), the theoretical calculations are all

below the experimental results, where the DG model generates the lowest value;

it’s the other way around while the dielectric constant is low (12.7 and 10.8, in

this case), where the magnetic-wall model brings about the highest value.

The reason why the magnetic-wall method tends to be more accurate among high-

permittivity materials is obvious as the magnetic-wall condition only exists for

materials with a very high dielectric constant as explained in [158, 159]. As for

the DG model which is originally established for the application of an optical

transmission line, the dielectric constant of the rectangular rod is normally close

to the surrounding air to ensure a total internal reflection occurs only at grazing

angles as assumed in [112, 113]. So the DG model of a rectangular DR seems to

be valid only with low-permittivity materials.

5.3.3.2 Calculation of Fundamental Modes

A low-loss DIIG designed in Chapter 3 will be used here as the feeding line and

hence, transforms the DRA into DIRA. The fundamental mode propagating in the

DIIG is TMy
11 with a main Hx component, which couples into the nearby DIRA

with the same corss-section and triggers the resonant modes with Hx as one of

their main field components: TMy
11l, TMz

11l, and TEx
11l modes. It can be further

revealed that the remaining field components are Ey, Hz for the TMy
11l modes,

Hy, Ez for the TMz modes, and Ey, Ez for the TEx modes. These modes should

be carefully separated in the DIRA array design in order to avoid the radiation

interference.
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Figure 5.6: The resonant frequencies of TExmnl modes vs. the length of the
DRA and DIRA (a = 1 mm, b/a = 1, εr1 = 7.1, εr2 = 2.2).

Since the DupontTM 9K7 LTCC and RT/duroid 5880 are going to be used, the

DRA and DIRA shown in Fig. 5.5(c), (d) have dielectric constants of εr1 = 7.1

and εr2 = 2.2. The DG model is employed together with the magnetic-wall model

as a comparison.

As shown in Fig. 5.6(a), the computed results from the magnetic-wall model and
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DG model vary greatly, especially for long DRAs. One obvious reason for the

large discrepancy is that the dielectric constant considered now has decreased to

7.1, where the magnetic-wall condition doesn’t hold anymore. Apart from that,

the abrupt dimension change also contributes.

As for the TEx
011 and TEx

111 modes analysed by the DG model, there is a turning

point in terms of the length, c, where the two modes exchange their role as the

fundamental mode. When c is close to a and b, the TEx
011 mode has the lowest

resonant frequency; while the TEx
111 mode quickly descends into the fundamental

mode when c is well larger than a and b. Since the TEx
011 and TEx

111 modes

have similar field patterns inside the DRA, their radiation pattern won’t differ

much. The TEx
011 mode, however, doesn’t exist when excited by the DIIG, as its

fundamental mode is TMy
11.

As explained before, the DRA turns into DIRA when fed by the DIIG. The reso-

nant frequency, f0, of the DIRA with various insular ratios, p’s, are illustrated in

Fig. 5.6(b). As can be seen, f0 doesn’t change much as p increases from 0 to 0.3.

As a result, the effect of a insular layer on the DRA in terms of resonant frequency

can be negligible.

To present a direct view of the inner field distributions, the rigorous HFSS sim-

ulation is used and the results are shown in Fig. 5.7 in terms of some low-order

modes. The dimension of the DR is a = 4 mm, b/2 = 3 mm, and c = 6 mm

with the dielectric constant, εr = 37.1. As shown in Fig. 5.7, there is no field

variation (electric field is taken as an example here) along the x and z directions

for the TEx
011 and TEz

110 modes, respectively. As for the TE
x/z
111 and TMy

111 modes,

they share a similar field pattern and there is one field variation along all three

directions shown in Fig. 5.7(c). The last field pattern in Fig. 5.7 is for the TEx
012

mode.

5.3.3.3 DIRA in Ka Band

Following the design of the DIIG in Chapter 3, a DIRA with the same cross-section

is designed to resonate in the Ka band centring at 35 GHz. Tab. 5.2 lists a set

of the possible modes resonating at 35 GHz with a = 1.32 mm, b = 3.08 mm,

p = 0.16, εr1 = 7.1, and εr2 = 2.2, exactly the same as the DIIG.
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Figure 5.7: The field distribution inside the DRA: (a) TEx011; (b) TEz110; (c)
TEx/z/TMy

111; (d) TEx012.

Table 5.2: The length of the DIRA for possible modes resonating at 35 GHz.

Mode order 111 112 113 114
Mode type TMy TMz TEx TMy TMz TEx TMy TMz TEx TMy TMz TEx

c (mm) 0.9 2 1.7 3.5 4.3 4.3 5.9 6.6 6.8 8.3 8.9 9.4

Since the guided wavelength at 35 GHz for the TMy
11 mode is calculated to be 6.16

mm, the 113 and higher-order modes need double-wavelength feeding line and thus

are not suitable for compact antenna designs.

As for the 111 and 112 modes, TMz and TEx stay too close to be differentiated,

which leaves the TMy modes as the only option. In the following section, they

will be further reduced into one specific mode as the best candidate based on the

coupling between the feeding line and radiating elements.

5.4 Design of a DIRA Array

In this section, a double-sided DIRA array fed by the DIIG is designed and simu-

lated to demonstrate the merit of high gain and wide band.
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DIGs [113].

5.4.1 Coupling

5.4.1.1 Coupling between the DIG and DRA

Firstly, consider the coupling between two DIGs with the same cross-section, as

shown in Fig. 5.8. The reason for choosing the same cross-section is to achieve

maximum coupling, which has been concluded in [160]. Now the structure under

investigation is symmetrical with respect to the x = 0 plane and hence, the fields

propagating along the DIGs can be classified into symmetrical (even) and asym-

metrical (odd) groups depending on whether it’s a electric or magnetic wall at the

x = 0 plane. Further, the symmetrical and asymmetrical modes will inevitably

generate different phase velocities, which is the root of coupling [112, 113].

We now apply the EDC method, where the EDC-H and EDC-V methods are to be

selected depending on whether a is larger or smaller than b. For simplicity, here

assume b ≤ a and then the EDC-H method is employed. In addition, only the

TMy
mn mode will be considered, as the fundamental operating mode in the DIG is

TMy
11.

On the preceding premises, the coupling analysis between two DIGs are carried

out. The characteristic equations defining the wavenumber in the y direction, ky1,

and the effective dielectric constant, εre, have already been given by (3.11) and

(3.15). Now the wavenumber in the x direction, kx1, needs to be rewritten, in the

light of the new configuration in that direction, as [113]:

kx1a = − arctan

(
kx1

kx0

)
− arctan

(
Dkx1

kx0

)
+mπ, m = 1, 2, 3, · · · (5.23)
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where

D = coth(kx0g/2), even mode

= tanh(kx0g/2), odd mode

and kx0 is defined in (3.16)

So kx1 now comprises two values, kxe for the even mode and kxo for the odd mode.

Hence, the phase constant, β (equals kz in a low-loss situation), can be derived in

two forms:

βe =
√
εrek2

0 − k2
xe , even mode

βo =
√
εrek2

0 − k2
xo , odd mode

(5.24)

In order to be connected with the propagation in a single DIG, βe and βo can be

rewritten as [112]:

βe

βo

}
= β

[
1± 2

k2
x

β2

1

kx0a

exp(−kx0g)

1 + k2
x/k

2
x0

]
,

where β and kx are the phase constant and x-direction wavenumber of the single

DIG, respectively.

Then we define the coupling coefficient, K, between the two DIGs as:

−jK =
βe − βo

2

= 2
k2
x

β2

1

kx0a

exp(−kx0g)

1 + k2
x/k

2
x0

(5.25)

and the length, L, necessary for complete power transfer from one DIG to the

other is then derived as:

L =
π

2|K|
. (5.26)

Now the second DIG is truncated to form a DRA and the coupling mechanism

follows the same rule as that of two DIGs.

As predicted, the coupling is enhanced exponentially by decreasing either the gap,

g, or the real attenuation constant, kx0, whereas by changing the length, c, of the
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Figure 5.9: The power coupling coefficient, Kp, of the TMy
11 mode between

the DIG and DRA (a = b = 1 mm, εr = 7.1).
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DRA, the coupling fluctuates square-sinusoidally as [161, 162]

Kp = sin2
( πc

2L

)
(5.27)

where Kp is the power coupling coefficient which stands for the ratio of coupled

power to the DRA from the feeding DIG.

In order to verify those conclusions, a 3D simulator, HFSS, based on the FEM

method is used to calculate this coupling problem for the fundamental TMy
11 mode,

as shown in Fig. 5.8. The configurational parameters are that a = b = 1 mm and

εr = 7.1. Results are shown in Fig. 5.9.

In Fig. 5.9(a), g is fixed to be 0.5 mm and the corresponding L for complete power

transfer (where Kp = 1) is calculated through the EDC method to be 10.4 mm.

Then, substitute it for L in (5.27) to obtain the theoretical result. As expected,

the curve takes the shape similar to a square sinusoid. The result from HFSS

has also been provided as a comparison. It can be seen that the peak and valley

positions agree well, while the peak value from the HFSS simulation can only go

up to 0.7 compared to theoretical 1. There are two main factors that contribute to

this disagreement: one is the unaccounted dielectric and metallic loss in theoretical

calculation is revealed in the more practical HFSS simulation; the other is that

radiation into free space is given rise to because of the coupling.

In Fig. 5.9(b), c is fixed to be 3 mm. By changing g, L is changed and Kp is

affected in the end. Results from HFSS and the EDC method agree well and they

all descend quickly as the gap, g increases, which is predicted by the preceding

conclusion.

5.4.1.2 Coupling between the DIIG and DIRA

Through (5.25) and (5.26), L is obtained for the DIRA as 7.5 mm. Then, Kp with

various c’s and g’s is analysed and shown in Fig. 5.10. As can be seen, results

from HFSS and the EDC method agree well in terms of the shape and positions of

peaks and valleys. The coupled power from the EDC method is obviously lower for

the same reason in the DRA case. Furthermore, the level of free-space radiation

is now much higher since there are two resonators for the coupling. As a result,

the coupling coefficient is much lower than that of the DRA. One thing to be

noted is that Kp doesn’t drop quickly to 0 in Fig. 5.10(b). In fact, a residual

coupled power still exists even when the DIIG and DIRA are 5 mm apart. The
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Figure 5.10: The power coupling coefficient, Kp, of the TMy
11 mode between

the DIIG and DIRA (a = b = 1 mm, p = 0.2 εr = 7.1).

reason is that the insular layer binds the DIIG and DIRA together and works as a

chanel where power couples. This will inevitably slows down the fade-away speed

of power coupling.

As presented in Section 5.3.3.3, the resonant frequency of 35 GHz under the DIIG-

feeding scheme has only left two options for the resonant modes of the DIRA:
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Figure 5.11: The transformation from single-sided to double-sided DIRA.

TMy
111 and TMy

112. In order to achieve high level of coupling, the TMy
112 mode is

chosen as its resonant length, c, is closer to L compared with the TMy
111 mode.

It’s also worth mentioning that still Kp is very low for the TMy
112 mode, even at

its peak value (about 0.3). To obtain higher antenna gain and more flexibility in

antenna design, higher power coupling is needed.

5.4.2 Double-sided Taylor-distribution

In order to achieve higher coupling, the original DIRA fed by the DIIG in [162, 163]

is improved by adding a mirror array of DIRA blocks on the other side. As a result,

the DIRA array now becomes double-sided, as shown in Fig. 5.11. The two DIRA

block arrays are coupled to the DIIG by an Hx component and are thus resonant

in the same TMy
112 mode. With more receptors to couple, the power coupling

coefficient, Kp is now certainly higher.

This is verified through the HFSS simulation on the double-sided DIRA shown in

Fig. 5.11, where the DIIG is one guided-wavelength long (6.16 mm). Results are

shown in Fig. 5.12. It can be seen that the peak Kp has increased to nearly 0.45,

whereas the peak position has shifted upwards from c = 0.8 mm to 1.1 mm.

For a practical antenna array, it is always desirable to have a main beam as narrow

as possible, a gain as high as possible and side lobes as low as possible, which,

in many cases, is hard to realise. Since several decades ago, two methods have

been developed and widely used to achieve the optimum: The Dolph-Tchebysheff

distribution [164] and Taylor distribution [165, 166]. For the Dolph-Tchebysheff

distribution, the width of the main beam is the narrowest that a symmetric array

can get at the prescribed side-lobe level, whereas the drawback of this method is

that all its side lobes are at the same level, even extending to infinity. The Taylor
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Figure 5.12: The comparison of the power coupling coefficient, Kp, between
the single-sided and double-sided DIRA.

distribution, however, has side lobes which are gradually vanishing, by sacrificing

some main-beam width.

In this design, the Taylor distribution is chosen to minimise the side-lobe level.

To start the Taylor distribution, the number of DIRA elements in the array needs

to be determined based on the prescribed gain. Here at least a 15 dB gain is

needed, which requires 10 elements or more. Next is to prescribe the side-lobe

level at 20 dB or 25 dB.

Then, the original Taylor distribution of 10 array elements for 20-dB and 25-

dB side-lobe level are calculated and shown in Tab. 5.3. Note that the power

distribution is recalculated here. The reason is because when the energy travels

through an element, a portion is absorbed and thus the energy injected into the

next element is the residual from the total. Hence, the power ratio is calculated

based on the residual. Results are also shown in Tab. 5.3. Note that all the power

feeding is realised through the coupling between the DIIG and DIRA, i.e., Kp.

As can be observed in Tab. 5.3, Kp of the last element in the recalculated Taylor

distribution is 1. This is not hard to achieve, as the last element will be open

ended and radiate most of the power easily. For the other elements, however, it

has to stay below the peak Kp of the double-sided DIRA in Fig. 5.12. This will
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Table 5.3: The Taylor distribution of 10 array elements in terms of power.

Element 20 dB 20 dB g 25 dB 25 dB
(original) (recalculated) (mm) (original) (recalculated)

1 0.070 0.070 2.47 0.030 0.030
2 0.051 0.054 2.67 0.046 0.047
3 0.096 0.110 2.15 0.096 0.104
4 0.129 0.165 1.89 0.147 0.177
5 0.154 0.235 1.66 0.182 0.267
6 0.154 0.308 1.47 0.182 0.364
7 0.129 0.372 1.32 0.147 0.461
8 0.096 0.444 1.10 0.096 0.558
9 0.051 0.418 1.20 0.040 0.605
10 0.070 1.000 0.50 0.030 1.000

rule out the application of the 25-dB distribution, as Elements 7, 8, and 9 are on

top of the threshold.

After finalising the side-lobe level, the next step is to find the corresponding gap,

g, which enables that amount of power coupling, by referring to Fig. 5.12. It’s

worth noting that one Kp might prompt two g′s. For the convenience of fabrication

and also to minimise the influence of fabrication errors, all g’s are to be chosen

from the gentle slope rather than the sharp one.

The final set of g’s are also shown in Tab. 5.3, where g for Element 10 is flexible

in a wide range as the open-end DIRA easily radiates out all the energy.

5.4.3 Simulation and Comparison

The DIRA array needs transitions to be connected with WR28 for practical mea-

surement and application, as shown in Fig. 5.13. As can be seen, only one tapered

transition is added at the input end of the DIRA array in order to be fed from a

standard WR28, as the energy almost dies out at the other end. Note that the

transition is tapered at both horizontal and vertical planes to ensure a smooth

feeding.

After optimised by the HFSS simulation, the performance of this double-sided

Taylor-distributed DIRA array is given by Fig. 5.14.

In Fig. 5.14(a), the gain of both double-sided and single-sided DIRA array are

shown from 30 to 40 GHz. As can be found, the peak gains centre around 35
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Figure 5.13: The geometric configurations of the double-sided Taylor-
distributed DIRA array: (a) 3D view, (b) top view.

GHz and those of the double-sided array are all higher than the single-sided one.

Average gain increase is from 1.5 to 2.5 dB. The maximum gain this DIRA array

can achieve is 17.3 dBi at 36 GHz. As for the impedance bandwidth represented

by S11, it is very wide, nearly throughout the whole 10-GHz band.

The radiation pattern is shown in Fig. 5.14(b) as the solid lines, where 34, 35,

and 36 GHz are all included. The side-lobe suppression has been observed as

the best side-lobe level is 17.5 dB at 35 GHz. Possible reason for the 2.5 dB

degradation is that the cross coupling between nearby elements are not accounted

for in the design process (optimisation of the cross coupling is too complicated

for a 10-element array and thus will not be carried out here) and the transition

added afterwards might disturb the field pattern of radiation. As there is no

side-lobe suppression technique applied in the H-plane, a 10-dB sidelobe can be

found. An interesting characteristic for the E-plane radiation pattern is that as

frequency varies, the peak-gain position changes accordingly. This, in fact, occurs

to all antenna arrays fed at one end, which in some literatures are called Long-

Line Effect, [128]. Hence, the solution to suppress the centre-shifting is to feed the

array at the centre, which has been employed for the waveguide-based slot antenna

arrays in Chapter 4. As for the level of the cross-polarisation, it is found to be

well below the desired polarisation in the E-plane, while in the H-plane, the level

of cross-polarisation starts low at the centre and increases quickly toward higher

angles, which might be acceptable given that the main direction of radiation is

confined at the centre. The simulated radiation efficiency is about 92.54%, which

has demonstrated the low-loss characteristic of this type of antenna.

Finally, the magnetic field pattern responsible for the power coupling is obtained
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Figure 5.14: The performance of the double-sided Taylor-distributed DIRA
array.
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Figure 5.15: The magnetic field pattern of the double-sided Taylor-distributed
DIRA array.

Figure 5.16: The fabricated 10-element double-sided DIRA array.

through the HFSS simulation and presented in Fig. 5.15. As observed in this

figure, the magnetic field is mainly in the x direction, i.e., Hx. It is strong at the

input of the array and gradually dies out as the field travels through the array. In

the end, the last bit of power radiates at the open end. Since the array elements

are all one-wavelength away, they are in phase or the Hx components are in the

same direction, as shown in Fig. 5.15.

5.4.4 Measurement

A standard LTCC technique is used here to fabricate the 10-element double-sided

DIRA array, as shown in Fig. 5.16. The feeding DIIG is designed in Chapter 3

and directly employed here.

The measurement setup is shown in Fig. 5.17, which is similar to that used for

the HSIW slot array in Section 4. Using (4.8), the double-sided DIRA array

(20.1 × 77.8 mm 2) generates a Rf of 1.16 m, which is smaller than that between
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Figure 5.17: The measurement setup of the 10-element double-sided DIRA
array.

two perspex poles and hence, satisfies the requirement for the radiation pattern

measurement in the far-field.

The measured S11 and peak gain of the DIRA array is shown in Fig. 5.14(a) as the

red lines. As can be observed, the measured S11 tends to have multiple resonances

which is in line with that from the HFSS simulation. The measured gain of the

double-sided array also centres around 36 GHz, although the peak gain is 1.5 dB

lowered to 15.8 dBi compared with 17.3 dBi from the HFSS simulation.

The measured radiation pattern at 35 GHz is at a 5◦ increment up to 45◦ and is

shown in Fig. 5.14(b) as the solid lines with squares. It can be seen that the main

beams in both E- and H-planes get wider toward the transition end and hence,

the sidelobe suppression on that side degrades by about 1.5 dB to 16 dB. Also, the

measured radiation pattern cannot fully demonstrate the peaks and valleys among

the sidelobes. Possible reasons for the disagreement and degradation may come

from the unaccounted shrinkage of the LTCC and the bond between the LTCC

and PCB board might not be completely intact.
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5.5 Conclusion

In this chapter, a short review of the DRA is introduced. Then, the DRA and

DIRA are studied in depth in terms of resonant modes, resonant frequencies, and

field patterns. After that, a 10-element double-sided Taylor-distributed DIRA

array is designed, simulated, and measured. Results agree well, which verifies the

design of this antenna array.



Chapter 6

Conclusions and Future Work

This thesis has described research on two types of waveguides and their applica-

tions to antenna arrays. The main contributions of the work can be summarised

as follows:

1) A new type of metallic rectangular waveguide, the HSIW, has been proposed

and studied. By adding a hollow air cavity to the traditional SIW, the HSIW

has proved to be comparable in loss to a standard air-filled RWG and hence

offers low-loss performance in mm-waves. An HSIW prototype manufactured

in a progressive-lamination LTCC technique has demonstrated a loss of approx-

imately 2 Np/m or 17 dB/m in the Ka band, higher than WR28. However, the

potential of HSIW to be integrated with other microwave components is highly

advantageous compared with standard RWGs.

To theoretically analyse the HSIW, a new method is proposed which decom-

poses the HSIW into a RWG and SIW; therefore, two steps need to be followed.

Firstly, the HSIW is viewed as a two-dielectric loaded RWG. After solving this

boundary value problem, the two-dielectric loaded RWG is transformed into a

uniformly-filled RWG by introducing the effective dielectric constant (EDC),

εe. Then, by modifying the empirical formula in [89] relating SIW and RWG,

the dimensions of the HSIW can be finally determined.

2) An existing type of the dielectric waveguide, the DIIG, is studied to find out its

low-loss performance in the Ka band. A prototype made in a standard LTCC

technique has demonstrated an attenuation constant of approximately 3 Np/m

or 26 dB/m in the Ka band, which is higher than the metallic waveguides, such

as the HSIW. As the frequency increases, however, the conductor loss rises

161
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more quickly than the dielectric loss. So there is a turning point where the

dielectric transmission line starts to be better.

To theoretically analyse the DIIG, the traditional EDC method originally used

for the DIG is improved and completed, which takes into account all aspect

ratios of the DIG. Through this method, the DIIG is divided into different areas

which are then solved individually and finally combined together for the final

phase constant. Apart from that, the attenuation constant is also derived and

given in detailed analytical expressions for both the DIG and DIIG. It has been

found that the increase of the insular layer in the DIIG can reduce the loss but

narrow the single-mode bandwidth. Therefore, a compromised insular ratio

(the ratio of the thickness between the insular layer and the main dielectric) is

given as 0.1 ∼ 0.3.

3) A 6 × 6 slot antenna array based on the HSIW is designed, fabricated and

measured seeking for a high-gain performance. The analysis and design starts

with a single slot, for which theoretical calculations and HFSS simulations are

compared. Then, the single slot is extended into a linear array and eventually

a planar array. To eliminate the tilting of the main beam, the slot array is

fed from the centre at the back side of the HSIW, which results in a blockage

area. To alleviate the resulting sidelobe increase, a slot extrusion technique is

introduced. A simplified multiway power divider is demonstrated to feed the

array elements following a Taylor distribution and the detailed optimisation

procedure to reach prescribed antenna specifications is also provided. To verify

the antenna design, the 6 × 6 planar array is fabricated and measured. Due

to the low loss of the HSIW comparable to the standard WR28, a high gain of

17.1 dBi has been achieved.

4) A double-sided DIRA array fed by the DIIG is designed, fabricated and mea-

sured seeking for a high-gain performance. The analysis and design starts with

the rectangular dielectric resonator (DR), then extends to the DRA and finally

the DIRA. This is performed through the complete EDC method, verified by

the HFSS simulation based on the finite element method (FEM). In order to

enhance the gain, the DIRA array is made double-sided, i.e., adding another

mirror array on the other side of the DIIG. The Taylor distribution technique is

employed here to suppress the sidelobes. Finally, the 10-element linear DIRA

array is fabricated and measured, where a high gain of 15.8 dBi has been

achieved.
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It is worth noting that the difference between the DRA and DIG or the DIRA

and DIIG, in terms of the application of the complete EDC method, is that the

characteristic equations are now written in all three directions for the latter

while it is two directions for the former. We have also found that the insular

ratio has little effect on the resonant frequency of the DIRA compared with

that of the DRA, which facilitates the design of the DIIG.

Furthermore, these proposed waveguides and their corresponding antenna arrays

can then be integrated with other active and passive microwave components, such

as, filters, mixers, power amplifiers, etc., to form a complete communication system

in MCM technology.

For future research, the author would like to pinpoint some suggestions that may

be helpful for researchers who are interested in this area:

1) As mentioned above, the average loss of the DIIG is higher than that of the

HSIW in the Ka band. It will be turned around, however, at the higher frequen-

cies, above mm-waves. Some HSIW designs at 300 GHz have been attempted

and the loss is terribly high. So, it can be foreseen that dielectric guides will be

the main waveguiding structures at these frequencies, unless super conductors

at room temperature proves to be a success.

2) As found in the measured results of the HSIW, there are quite a few resonances

throughout the Ka band, which greatly affects the extraction of the propagation

constant as the resonances might not occur at the same frequency for different

lengths. So, a horizontal feeding structure rather than a vertical one with a

pair of backside slots might be favourable, as it could avoid, to a great extent,

the resonances, if not entirely. Also, increasing the length differences between

adjacent samples and the number of samples all seem to be promising. These

rules are also applicable to the measurement of the DIIG.

3) Further study can be undertaken to reduce the sidelobe levels of both antenna

arrays. For the HSIW slot array, the technique presented by M. Ando in [133]

can be taken into consideration, although it is complicated. For the DIRA

array, a simplified optimisation method needs to be found to make a feasible

implementation using 3D modelling.

4) A proper automatic positioner is needed for the small anechoic chamber to ac-

curately locate the angles for the radiation pattern measurement and save time.
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Ideally, embedded automatic software to control the positioner and measure the

gain should be developed.

5) As mentioned a few times in this thesis, both antenna arrays have the potential

to be integrated with other microwave components to form a complete front-

end or transceiver in MCM technology. This was the ultimate goal of the

research, and by investigating two types of transmission line, a significant and

novel contribution to the subject of antenna-in-package design has been made.
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