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Abstract

I analyse different decompositions of composite light-matter systems into con-
stituent subsystems. I show that given a single description of a composite atom-
field system, many different decompositions into “atom’ and “field” subsys-
tems can be made. I show that these decompositions are generally physically
inequivalent, and that they can be understood as corresponding to different
choices of gauge. I discuss some of the implications this has for the ontol-
ogy of QED, and find experimental signatures that could be used to distinguish

between different theoretical subsystem decompositions.



Abbreviations

QSR Quantum subsystem relativity
QED Quantum electrodynamics
EDA Electric dipole approximation
PZW Power-Zienau-Woolley

WwWw Weisskopf-Wigner

2LA Two-level approximation
RWA  Rotating wave approximation
MA Markovian approximation

EMED Electromagnetic energy density
AQFT  Axiomatic/algebraic quantum field theory



vi



Contents

Acknowledgement
Abstract
Abbreviations

List of figures

List of tables

Introduction

I  Gauge-freedom and physical subsystems

1 Physical systems

1.1 Classical mechanics . . . . . . . . ...
1.1.1 Lagrangian systems . . . . . . . . .. ...
1.1.2 Thelegendremap . ... ... ... ... ... .. ......
1.1.3 Observables, states and dynamics in classical mechanics

1.2 Quantum mechanics . . . . . . . . ..
1.2.1 Postulates . . . . . . ...
1.2.2 Unitary operators . . . . . . . . ...
1.2.3 Composite quantum systems . . . . . . . . .. .. .. .. ...

1.3 Interacting oscillators: the classical and quantum descriptions . . . . . .
1.3.1 The classical description . . . . . .. ... ... ... ...
1.3.2 The quantum description . . . . . . . . .. .. .. ... ...,

1.4 Summary and discussion . . . . . ... L

2 Electrodynamics in an arbitrary gauge
2.1 Recap of special relativity . . . . . ... ... ... . L.
2.2 Free electrodynamics . . . . . .. ..o

2.2.1 Deriving the source free equations of motion. . . . . . . . . ..

vii

Xi

Xiv

11
12
14
14
17
17
20
20
25
28



CONTENTS

2.2.2 Gauge freedom and gauge fixing . . . . . ... ... ... ...
2.3 Electrodynamics with sources . . . . . . . ... ...
2.3.1 Deriving the equations of motion with sources . . . . . . . . ..
2.3.2 Gauge freedom and the Lagrangian. . . . . . . ... ... ...
2.3.3 Gauge fixing and quantisation . . . . . ... ... ...
2.4 Summary and discussion . . . ... Lo

Quantum-mechanical gauge fixing and QED

3.1 TheDiracfield. . . . . ... ...
3.1.1 The free Dirac field . . . . .. .. ... ... ... ...
3.1.2 The Dirac field with an external Coulomb potential . . . . . . .

3.2 Non-covariant QED in an arbitrary gauge . . . . ... ... ... ...
3.2.1 The QED Lagrangian . . . . . .. ... ... ... .......
3.2.2 Eliminating redundancies through symmetries . . . . . . . . ..

3.3 Quantisation of the composite Dirac-Maxwell system . . . . . .. . ..
3.3.1 The Weyl gauge Lagrangian and residual gauge symmetry
3.3.2 Unitary gauge fixing transformations . . . . . . . ... ... ..
3.3.3 The Hamiltonian inthe gauge g . . . . . . . .. .. ... ...
3.3.4 The Dirac equation in the gauge g . . . . . . .. .. ... ...

3.4 Summary and discussion . . ... ...

The classical and quantum theories of radiation

Classical radiation theory

4.1 Maxwell's equations . . . . . . ... ...
4.2 Poynting'stheorem . . . . . . ... . ...
4.3 Onthe natureof covariance . . . . . . . . .. .. ... ... ....
44 The Lorentzforcelaw . . . . . . . . . .. ... ...

4.5 Summary and discussion . . ... ...

The S-matrix and perturbation theory

51 The S-matrix . . . . . . . ..
5.1.1 The S-matrix from the time-independent formalism . . . . . ..
5.1.2 Green's functions for the Schrodinger equation . . . . . . . ..
5.1.3 The S-matrix via time-dependent perturbation theory . . . . . .

5.2  Time-independent perturbation theory . . . . . . . . .. ... ... ..
521 Theresolvent . . . . . . ... ...
5.2.2 Perturbation theory . . . . . . ... oo

5.3 Summary and discussion . . . . ...

viii

71

73
74
77
81
82
84



CONTENTS

6 The bare atom versus the dressed atom 103
6.1 The Coulomb and Poincaré gauges in the EDA . . . . . .. ... ... 103
6.1.1 Multipolar polarisation . . . . . ... ... L 104
6.1.2 The minimal coupling and multipolar Hamiltonians . . . . . . . 105
6.1.3 The Maxwell fields in the Coulomb and Poincaré gauges . . . . 107

6.2 Levelshifts. . . . . . . . .. 111
6.2.1 The Welton interpretation . . . . . . ... ... ... ..... 111
6.2.2 The Power-Feynman interpretation . . . . . . . . .. ... ... 113
6.2.3 Self energy and renormalisation . . . . . . .. ... ... 114
6.2.4 Level shifts via elementary perturbation theory . . . . . . . . .. 115

6.3 Photon emission; spontaneous and virtual . . . . .. .. ... ... .. 118
6.3.1 The spontaneous emissionrate . . . . .. ... ... ... .. 118
6.3.2 The Weisskopf-Wigner treatment . . . . . . . .. ... ..... 119
6.3.3 Photodetection divergences and the symmetric representation . 121
6.3.4 A survey of quantum optical approximations . . . . . . ... .. 124

6.4 Thevirtualcloud . . . . .. .. .. 127
6.4.1 The Poynting vector . . . . . . . .. ... ... ... ...... 128
6.4.2 Measuring the cloud directly . . . . . .. ... ... ... ... 132

6.5 Summary and discussion . . . .. ... 136
IIl  Gauge-variant and gauge-invariant predictions 139
7 Excited states and spectral lineshapes 141
7.1 Excited states . . . . . . ... 142
7.1.1 Excited dressed states . . . . . . . .. ... ... 142
7.1.2 The case of a flat continuum . . . . . .. ... ... ... ... 144
7.1.3 The pole approximation . . . . . . . ... ... ... ... .. 147
7.1.4  Analytic properties of the resolvent . . . . . . . ... ... ... 148

7.2 The natural lineshape in an arbitrary gauge . . . . . . . .. ... ... 150
7.2.1 The theory of radiation damping . . . . . . . . ... ... ... 150
7.2.2 The approximations ensuring gauge invariance . . . . . . . . . . 154
7.2.3 The lineshape after removal of the virtual field . . . ... . .. 156

7.3 The atom’s excitation through resonant absorption . . . . ... .. .. 158
7.3.1 Absorption of incident radiation with a sharp line . . . . . . .. 158
7.3.2 The Lamb linein hydrogen . . . . . . .. ... ... ... ... 160

7.4 The atom’s excitation by a laser pulse . . . . . . ... ... ... ... 162
7.4.1 Modellingthelaser . . . . .. ... ... ... ... ...... 162
7.4.2 Calculation of the lineshape . . . . . . ... .. ... ... ... 163

7.5 Summary and discussion . . ... ... 166

ix



CONTENTS

8 Radiation as a reservoir

8.1 The photon-absor

8.2 Non-equivalent m

bing environment . . . .. .. . Lo

aster equations . . . . . . ...

8.2.1 The subensemble without photon detection . . . . . . ... ..

8.2.2 The subensemble with photon detection . . . . . ... ... ..

8.2.3 The gener

al Lindblad master equation . . . . . ... ... ...

8.3 Analysis of the master equation constants . . . . . .. ... ... ...

8.3.1 Analysis o

ftherates. . . . . . . . . . ...

8.3.2 \Verifying the Lindblad form . . . . . . .. ... ... ... ...
8.4 The stationary state photon emissionrates . . . . . . . . ... ... ..

8.5 Summary and discussion . . . .. ...

9 Subsystems and causality

9.1 A standard no-sig

nalling theorem . . . . . . . ... ... ... .. ...

9.2 Causality in quantum field theory . . . . . . . . .. ... ... ... ..

9.3 Fermi's two atom

problem. . . . . ...

9.4 Summary and discussion . . . . ...

Conclusions

IV Appendices

A Basic algebraic structures

Al Sets ... ...

A.2 Some basic conce

A.22 Morphisms . . . . ...
A.3 Groups and vector spaces . . . . . . . . . ...

A.3.1 Basics .

A.3.2 Inner product spaces . . . . . ... ...

A3.3 Linearoperators . . . . . . . ...

A.3.4 Operators
A.3.5 Group act
A.3.6 The tenso
A.3.7 Tensors

B Differential geometry
B.1 Tensor Analysis
B.1.1 Manifolds

with continuous spectrum . . . . . . . ... ... ..
ON . . .

rproduct of spaces . . . . . . .. ... ... ... ..

169
170
171
173
174
175
177
177
180
181
184

187
187
188
190
195

197

199

201
201
202
202
203
203
203
204
204
206
207
210
210
212
214



CONTENTS

B.1.2 Tangents and cotangents . . . . . .. ... ... ... ..... 220
B.1.3 Vector fields and pforms . . . . . .. ... 222
B.1.4 pushforward and pullback . . . . . .. ... .. ... .. .... 223
B.1.5 The Lie algebra of vector fields . . . . . ... ... ... ... .. 224
B.1.6 Integral curvesand flow . . . . . . . ... ... 225
B.1.7 Derivatives . . . . . . . . 226

B.2 Symplectic Geometry . . . . . ... 227
B.2.1 Basics . . . . ... 228
B.2.2 Hamiltonian systems . . . . .. ... ... ... L. 228

B.3 LieGroups . . . . . . .. 233
B.3.1 Basics . . . . ... 233
B.3.2 The Lie Algebra of a Liegroup . . . . . . . ... .. ... ... 234
B.3.3 Subgroups of the general linear group and their Lie algebras . . 236
B.3.4 Representations of Lie groups and Lie Algebras . . . . . . . .. 238
B.3.5 Rotations, spinors and the Lorentz group . . . . . . . .. .. .. 239
B.3.6 Representations on function spaces . . . . . . .. .. ... ... 244

B.4 Fibre bundles . . . . . .. .. 247
B4l Basics . . . . . .. 247
B.4.2 Vector bundles and connections. . . . . . . .. ... ... ... 248
References 262

X1






List of Figures

7.1

7.2

7.3

8.1

8.2

8.3

8.4

8.5

8.6

The lineshapes associated with the minimal coupling, multipolar and rotating-wave
Hamiltonians. In each plot I' = @,,/10 and the Lamb shift A;g has been sup-
pressed. In 7.1(a) S(®) is plotted on a linear axis, whereas in 7.1(b) it is plotted on
a logarithmic axis. Since the rotating-wave coupling is a symmetric mixture of the
minimal and multipolar couplings, the corresponding curve interpolates between
the curves associated with the Coulomb and Poincaré gauges. . . . . . . . . ..
Q = w,, and 6 = 0. The lineshapes associated with the minimal coupling, multipo-
lar and rotating-wave Hamiltonians are plotted. Each lineshape includes the laser
contribution. In 7.2(a) I = @,,/10 and in 7.2(b) ' = @, /100. . . . . . . . . ..
The lineshape in the symmetric representation including the laser contribution is
compared to the bare Lorentzian curve (I'/27) /(8> 4+ T2 /4), and to the Lorentzian
including the laser contribution. In 7.3(a) I = @, /10 and in 7.3(b) I = @,,/100. .

Logarithmic plot of the function f_ (®) in 8.39, in the Coulomb gauge, the Poincaré
gauge and the symmetric representation. . . . . . . . . . . . ... L. ...
Logarithmic plot of the function f}(®) in 8.39, in the Coulomb and Poincaré
gauges. (In the symmetric representation f1 =0.) . . . . ... ... ... ...
Logarithmic plot of the rate A_ in 8.38, in the Coulomb gauge, the Poincaré gauge
and the symmetric representation as functions of the upper cut-off frequency @,,
with @At =10% . . . . . .
Logarithmic plot of the rates A in 8.38, in the Coulomb gauge and the Poincaré
gauge as functions of the upper cut-off frequency @,, with @,,Ar = 10*. The results
are in very good agreement with the analytical results in 8.40 -8.41. . . . . . . .
Logarithmic plot of lower bounds for (A;A_)/|B|? in the Coulomb and Poincaré
gauges obtained via numerical integration of the expressions in 8.38 and 8.30. The
plots confirm that 8.37 holds for the experimental parameters of interest and that
the corresponding master equations are therefore of Lindblad form. . . . . . . . .
Logarithmic plot of the stationary state photon emission rate I in the Coulomb
and Poincaré gauges as a function of ®,. The plots are the result of numerical
solutionsof 8.48 and 8.38. . . . . . . ... Lo o oo

xiii

165

166



List of Tables

7.1

7.2
7.3

8.1

The frequency dependence of the lineshape numerator |Rsi(@f)|? (c.f. 7.60) in

different representations. . . . . . . ... L. oL oo 157
The frequency dependence of the different resonance fluorescence rates. . . . . . 159
The frequency dependence of the Lamb line in different representations. . . . . . 161

The coefficients u,jf in 6.82 and the coefficients fi(®) in 8.39, in the Coulomb

gauge, the Poincaré gauge and the symmetric representation. . . . . . . . . . .. 178

X1V



Introduction

Altogether this thesis is unusually long, which is the result of my desire to produce an essen-
tially self-contained work. I begin by identifying a problem regarding the notion of subsys-
tem in quantum theory. Subsystems of a composite quantum system can only be uniquely
defined relative to a particular choice of basis for the composite system’s Hilbert space
H. Different representations of HH incur different tensor product decompositions of I, and
these decompositions generally constitute physically inequivalent means by which to iden-
tify physical subsystems. I call this phenomenon quantum subsystem relativity (QSR). My
aim in the remainder of the thesis is to present a clear view of the implications of QSR in
quantum optics and quantum electrodynamics (QED). The thesis is divided into three parts
with three chapters in each part. Below I summarise the structure and main objectives of

each part.

PART

Quantum mechanics and classical mechanics are radically different theories, yet they retain
formal similarities. In both theories one specifies physical states and observables. Both
theories use a Hamiltonian together with a Lie algebraic bracket structure to generate dy-
namics, and both theories utilise canonical variables satisfying canonical bracket relations.
It is these formal similarities that lead to the idea of canonical quantisation.

The decomposition of a classical mechanical system into component subsystems seems
to be relatively uncontentious and natural. It is assumed that a system is a collection of
particles each objectively possessing a definite position and velocity at each moment in
time.! The physical observables of interest such as energy, momentum, force, work etc., are
defined in terms of particle motions. These motions are in turn described by the (empirically
verified) equations of motion. Viewed as a physical subsystem, an individual particle’s state
is unambiguously specified through its position and velocity variables. These variables do
not generally coincide with any given set of canonical variables.

In contrast to this the underlying mathematical structure of quantum mechanics gener-
ally forces one to use the canonical variables to specify physical subsystems. This makes the
notion of quantum subsystem fundamentally different to the corresponding classical notion.

In particular, the non-uniqueness of canonical variables implies a certain relativity in the

IIn the relativistic setting these positions, velocities and moments in time are specified with respect to some
inertial frame of reference. The specification will generally be different in different inertial frames.



decomposition of a composite quantum system. In the case of massive particles interacting
with electromagnetic fields this non-uniqueness is directly related to gauge freedom.

Part I of this thesis is entitled “gauge-freedom and physical systems” and consists of
three chapters. The material I present in chapter 1 is elementary, and can be found in nu-
merous textbooks. My presentation is specifically aimed at elucidating the assumptions that
are conventionally made regarding classical and quantum subsystems. I begin in 1.1 by
reviewing the classical notion of physical subsystem. In 1.2 this classical idea is compared
and contrasted with the corresponding quantum notion of subsystem. In section 1.3 T illus-
trate the differences between the classical and quantum viewpoints by using a particularly
simple composite system example.

In chapter 2 I look at how QSR manifests itself in the context of nonrelativistic QED. I
start off by reviewing free electrodynamics and discussing the gauge freedom present (2.1-
2.2). Moving on to the case of electrodynamics with sources, in 2.3 I obtain an arbitrary
gauge formulation of interacting nonrelativistic QED by following the approach of Woolley
(1999). Again the ideas of this chapter are not new or original, but the presentation is
intended to emphasize the interplay between gauge freedom and subsystem relativity. The
arbitrary gauge quantum Hamiltonian obtained in 2.3.3 (equation 2.71) shows precisely how
the canonically defined material and electromagnetic subsystems depend on the choice of
gauge.

In chapter 3 I extend the ideas of chapter 2 to describe relativistic QED in noncovariant
gauges. I begin in 3.1 by reviewing the free Dirac field. In 3.2 I review a method of quantum
mechanical gauge fixing due to Lenz et al. (1994) and use this method to extend the results
of chapter 2 to the relativistic setting. This section summarises (and in places elaborates
upon) the results presented in the paper Stokes (2012). The main new result presented in
this section is the arbitrary noncovariant gauge Hamiltonian 3.96. Like the corresponding
Hamiltonian 2.71 obtained in chapter 2, this Hamiltonian shows how the canonically de-

fined material and electromagnetic subsystems depend on the choice of gauge.

PART I I

Part II is entitled * the classical and quantum theories of radiation”. The aim in this part
is to consider what physical interpretations of light-matter interactions QSR necessitates. |
consider whether or not it’s possible to establish a clear ontology within QED? There are no
new results presented in this part; the aim is simply to review conventional interpretations
of QED, and to compare the theory with the corresponding classical theory. This part can
be used as and when it is needed as a reference section that provides the appropriate context
for the new material presented in part III.

I begin part II by reviewing the classical theory of electromagnetism (chapter 4). The
most severe problems in classical electromagnetism are encountered when one considers the

effects of the electromagnetic fields produced by a charge acting back on the charge itself.



My aim in chapter 4 is to summarise these and other aspects of classical electromagnetism
in a way that facilitates a clear comparison with the quantum theory in the subsequent
chapters.

In chapter 5 I review QED from the quantum field-theoretic perspective, QED being the
prototypical quantum field theory. I introduce the terminology bare subsystems to refer to
canonically defined material and electromagnetic subsystems. I then review the central tool
used in quantum field theory—the gauge-invariant S-matrix formalism, which describes
interactions between bare subsystems over infinite durations. This ultimately leads to the
notion of virtual particles, which dress bare particles giving rise to dressed particles.

Having introduced the notions of bare and dressed systems in chapter 5, in chapter 6
I begin to address the question as to their respective physical realities. This is carried out
within the nonrelativistic arbitrary gauge QED formalism laid out in chapter 2, and I use
nothing but conventional quantum optical techniques and approximations. My analysis con-
centrates on two well-known quantum-optical effects; atomic level shifts and spontaneous
emission. I also review an analysis of the virtual cloud of photons that is hypothesised to

surround a bare atom.

PART III

In part III I look at specific signatures associated with different decompositions of light-
matter systems into subsystems. These signatures come in the form of concrete physical
predictions.

In chapter 7 I consider the spectral lineshape of spontaneous emission of photons by
an excited atomic source using the formal theory of radiation damping. I begin in 7.1 by
obtaining some standard results concerning bare atomic states (including their decay) and
how they relate to excited dressed states of the total atom-field Hamiltonian. In sections
7.2-7.4 1 move on to tackle the problem of the spectral lineshape of light emitted by an
excited bare atom. This analysis constitutes all of the new work presented in this chapter.
The procedure by which the atom is initially excited is described in two ways; through the
absorption of incident radiation with a sharp line, and through irradiation with laser light
treated semi-classically. The results of sections 7.2-7.4 are presented in the paper Stokes
(2013).

In chapter 8 I adopt an open quantum systems approach to study the dynamics of a
single bare atom in an electromagnetic reservoir. This involves deriving a master equation
that describes the dynamics of the reduced density matrix associated with the bare atomic
source. The aim in this section is to discern the dependence of the (Markovian) quantum
optical master equation and its associated photon emission rates on the decomposition of the
atom-field system into subsystems. In order to do this various standard approximations must
be avoided. The results of this chapter are summarised in the paper Stokes et al. (2012).

The main new result obtained is the general master equation 8.29. The method of derivation



of this master equation is also original. It works by combining the quantum jump approach
(cf. Hegerfeldt & Wilser (1992), Gardiner et al. (1992), Mg@lmer et al. (1993), Carmichael
(1993)) with the ideas of Zurek (2003) on einselection. This method which is presented in
sections 8.1 and 8.2, was developed by myself along with the coauthors A. Kurcz, A. Beige
and T. P. Spiller of the paper Stokes ef al. (2012). A. Kurcz, A. Beige and T. P. Spiller also
contributed to the physical interpretation of the master equation constants presented in 8.3.

In the final chapter 9, I discuss the famous Fermi (1932) two-atom problem. An apparent
violation of Einstein causality within this problem has been the subject of intense debate in
the past. I point out that this issue is intimately related to questions regarding the precise
nature of bare and dressed subsystems, and to their localisation properties. I begin in 9.1
and 9.2 by briefly discussing Einstein causality in the contexts of quantum mechanics and
(algebraic) quantum field theory. Section 9.3 on the Fermi problem includes some material
from the paper Stokes (2012).

Summary of the thesis’ structure

In part I I review what I have called the problem of quantum subsystem relativity, and relate
this to gauge freedom in quantum electrodynamics. The new results in this part are to
be found in chapter 3 section 3.2. Part II contains no new results and is simply included
to provide a broader context within which any new work can be placed. In it I review
the conventional interpretations of the classical and quantum theories of radiation. In part
IIT T look at experimental signatures that could be used to distinguish between different
theoretical subsystem decompositions of an atom-field composite system. The new results

presented in this part are to be found in chapter 7 sections 7.2-7.4, and in chapter 8.

Appendices

I have provided extensive appendices to be used as a reference for information on the math-

ematical details of the theories reviewed and developed in part L.

Units

Throughout the thesis I use natural Lorentz-Heaviside units i =c=¢& =1, e = v4rcr.



PART |

Gauge-freedom and physical subsystems






CHAPTER 1

Physical systems

In this opening chapter my aim is to review the conventional definition of a subsystem in
quantum mechanics, and to compare this with the definition of a subsystem as it most natu-
rally occurs in classical mechanics. To this end I review both theories and attempt to deter-
mine precisely what physical assumptions are encoded into their mathematical structures.
The first section is dedicated to classical mechanics; its basic postulates and mathematical
setting.

In the second section I carry out a parallel analysis of quantum mechanics, again starting
with the basic postulates. Then [ review the conventional approach to defining subsystems of
a composite quantum system. In the final section I compare the way in which subsystems are
defined in the classical and quantum settings by using the simple example of two interacting
oscillators. My conclusion is that there are some very important differences, which could
present a formidable problem of subsystem ambiguity within interacting quantum theories.
This is what I have called the phenomenon of QSR.

1.1 Classical mechanics

In 1687 Newton published his laws of motion. What Newton noticed was that the motion
of an object doesn’t change unless something changes it. This was his first law. His second
law F' = ma can be viewed as a quantitative version of his first. A force is defined as that
which gives rise to changing motion i.e., acceleration. Implicit within Newton’s laws is the
assumption that what we are physically interested in is motion, and how motions change in
space and time. In other words we are primarily interested in the quantities position, velocity
and acceleration. Force, energy, momentum and other interesting observable quantities, are
each defined in terms of these three. Space and time are themselves primitive concepts for
which it seems that any attempt at a definition would end up being circular.

We now know that Newtonian mechanics is incapable of explaining a number of phys-



1. Physical systems

ical phenomena, and we have upgraded the theory accordingly. For example, in special
relativity we realise that time is not absolute, but rather an observer dependent coordinate,
that changes between different frames of reference. Nevertheless, it seems that we are still
interested in motion of objects with respect to some frame of reference, so motion still plays
a key role. In quantum mechanics we realise that we cannot prescribe a system with a def-
inite value of a physical observable, unless it is in an eigenstate of the observable when it
is measured. Despite this, it remains meaningful to talk about observables, and moreover,
it appears that the observables in which we are interested are still those like energy and
momentum defined in terms of motion.

The canonical (Hamiltonian) formalism was originally developed to describe classical
systems. It seems to me that in adapting this formalism so as to describe quantum reality,
we may be forced to abandon the idea that it is the motional degrees of freedom that are
physically relevant. If this is the case we must decide what the physically relevant degrees
of freedom are? To properly understand what I mean by this it is necessary to understand
the precise nature of the classical canonical formalism. It’s for this reason that I begin with
classical mechanics. My treatment closely follows the treatment of Fecko (2011) chapter
18. The definitions and basic results required to make full sense of this section are presented
in B.1.

1.1.1 Lagrangian systems

The natural setting for Lagrangian mechanics is the tangent bundle 7M of an m-dimensional
base manifold M called configuration space. For example, M could be Euclidean space E3
or Minkowski space-time E'. A curve y: R — M could represent the motion of a particle
in configuration space and the tangents v, to ¥ at x € M would then represent possible
instantaneous velocities of the particle at x. A point (x,v,) € TM would thus constitute a
physical state of the particle system. Any tangent v, € T,M can be written v/(x)0d;, i =
1,...,m in terms of some set of local coordinates {x'} on M (cf. B.1.3). Thus the (x,v')
constitute coordinates on the 2m-dimensional manifold 7M (cf. B.4.1).2

In Lagrangian mechanics one starts off with some equations of motion, that the system
has been empirically verified to obey. A Lagrangian is a function on the tangent bundle i.e.,
amap L:TM — R, which is chosen to yield the equations of motion when it is plugged

into the Euler-Lagrange equations;
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Here y() is a curve of motion of the system with values in M. A fact that will be important
%I am using the same symbol x to denote a point in M and the coordinates {x'} on U C M. The restriction of

quantities to a point x € M will be denoted with a subscript ., otherwise the coordinate expression of a quantity
isvalidatany x € U C M.



1.1. Classical mechanics

to us is that

any two Lagrangians L and L' such that

rer+d (1.2)

dt |y

for some function f : TM — R, yield the same equations of motion. One therefore

has considerable (gauge) freedom in choosing the Lagrangian for a system.

The Euler-Lagrange equations can be derived from a least action principle, in which
the action is obtained by integrating L over a temporal interval with fixed endpoints. The
freedom 1.2 arises because the action will not be changed by the presence of f whenever
f vanishes at the endpoints. The determination of the physical significance of the principle
of least action seems to constitute a rich branch of philosophy, but one that I would rather
not get into. Regardless of any such considerations what is known is that most all of the
fundamental equations of physics take the form of Euler-Lagrange equations for some La-
grangian.> This means a Lagrangian often constitutes the starting point for a fundamental
theory like QED.

A complimentary approach to mechanics is the Hamiltonian approach, which is the one
most commonly adapted to describe the quantum universe. In order to investigate the link
between the Lagrangian and Hamiltonian formulations I will develop some technical ideas.
Namely, these are the vertical endomorphism and the Liouville field.

The vertical endomorphism is defined using the vertical lift operation. In B.4.1 I define
vertical tangent vectors over a point in a base manifold M. The vertical lift of a vector
uy € TM to v, € T,M is a vector u, ) € Tix,vy)TM,;

e, (f) = % F, v+ tuy) = ui(x)aa‘{; (1.3)
where the last equality gives the coordinate expression. The lifted vector field is given by
the “de-restriction” of this expression to all of some neighborhood U C TM, on which the
coordinates (x', V) are defined, explicitly u" = u'd /dv'. Similarly one can define the vertical
lift of a type ( })—tensor field A on M, which in coordinates reads AT = Af,-dxj ®d/dv'. In
particular the vertical endomorphism is defined by

S—l'—dade 2 (1.4)
AV

where I denotes the identity.

3Newton’s laws, Maxwell’s equations, Einstein’s field equations, the Dirac equation and the Schrodinger equa-
tion in wave mechanics are a few examples of Euler-Lagrange equations.



1. Physical systems

Now for the Liouville field. Consider a curve ¢ : R — TM such that (x(@ (7)), vi(¢(2))) =
(x,e'v). This can be viewed as a right action R on TM defined by R((x,vy),e') := (x,e'v,)
(cf. A.3.5). The corresponding infinitesimal generator is a vertical vector field denoted
A € xTM, called the Liouville field (cf. B.3.6). In coordinates

A=vi—. (1.5)

Given a Lagrangian L : TM — R one can define the following so-called Cartan forms
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where again the second equalities give the coordinate expressions. The two-form @y, is

symplectic (non-degenerate) in the sense of B.2.1, if and only if

9*L

in which case the Lagrangian is said to be non-degenerate or non-singular. The energy

associated with a Lagrangian L is defined as
Ep:=AL—L=——V'—L(x',»/)). (1.8)

Thus, one obtains a Hamiltonian system (TM,w;,E;) provided the Lagrangian is non-
singular. The dynamics generated by the Hamiltonian E; are strictly equivalent to the
dynamics governed by the Euler-Lagrange equations. Something particularly important

to note about the Hamiltonian system obtained is that

the canonical momentum

. dL
Pis= 5y

1.9)

clearly depends on the Lagrangian chosen. Since there is a freedom in the choice
of the Lagrangian we should expect that canonical momenta are non-unique. Fur-
thermore, for a point particle of mass m with path y(r) € M, there exists no explicit

requirement that the canonical momenta must coincide with the mechanical mo-

menta p .. (1) := mv' (y(t)).
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1.1. Classical mechanics

1.1.2 The Legendre map

I have described how a Hamiltonian system can be constructed on 7M from a non-degenerate
Lagrangian. However, the natural setting for Hamiltonian mechanics is not 7'M, but rather
the cotangent bundle 7*M dual to TM. The map associating a Hamiltonian system on 7TM
with one on 7*M is called the Legendre map. The Legendre map L, : TM — T, M is defined
by

(Love) () = u (Ll ) (1.10)

where u,,v, € T,M and L : TM — R is a Lagrangian. In coordinates this definition yields

) oL .
[Ly(vy)]i(x)dx, = W(x)dx;, (1.1D)

which without the restriction to the point x € M, can be written

JdL
L= 55 = pie (1.12)
I give the definition of the pullback map in B.1.9. Assuming the Lagrangian L is non-
singular, the pullback of the Legendre map IL* is used to obtain the Hamiltonian H, canon-
ical form 6 and symplectic form @ on T*M, from the energy E;, and Cartan forms 6; and

oy, respectively. More precisely
EL:L*H, GL:]L*G, (DLI]L*(D. (113)
In coordinates this yields

H=p/'({x'},{p;}) — L'V ({x'},{p;})), 6=pidx', ©=—d6=dx'Ndp
(1.14)

where the components of velocity V' are expressed in terms of the coordinates (x', p;) on
T"M.
It is worth noting that in either formulation it is easy to identify symmetries of the

system. If x' is a cyclic coordinate i.e. the Lagrangian does not explicitly depend on x', then

JdL

pi = > is conserved in Lagrangian mechanics, and...
%
pi is conserved in Hamiltonian mechanics.
This is the most basic form of Noether’s theorem as applied to classical mechanics (But-
terfield (2005)). It is not too difficult to formulate classical mechanics in such a way that

time ¢ is a coordinate (Howland (2005), Fecko (2011)). One then sees that for an explicitly
time-independent Hamiltonian, energy i.e. the Hamiltonian itself, is the conserved quantity.
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1. Physical systems

In summary, given some equations of motion and a non-singular Lagrangian, we can
construct two Hamiltonian systems, one on TM and one on T*M. M is often some real
m-dimensional vector space, which supports global coordinates. The tangent and cotangent
bundles are then both isomorphic to R?". For example M = E? for a single Euclidean point
particle, so TM = T*M = R®. The dynamics are generated by the Hamiltonian H, which can
be written in terms of the p; = dL/dV', or the v'. In the latter case the Hamiltonian is referred
to as the energy and is denoted E; instead. The component functions V' of tangents in TM =
R?"™ have the unambiguous interpretation as velocity components, whereas the canonical
momenta are coordinates on T*M =2 R>", that depend on the choice of Lagrangian. They
have the advantage of enabling one to find the dynamics y(¢) € M by solving Hamilton’s
first order dynamical equations without having to solve the second order Euler-Lagrange

equations.

1.1.3 Observables, states and dynamics in classical mechanics

I’m now set up nicely to expound the physical assumptions underpinning classical mechan-
ics, so I will jump straight in. The definition of a Hamiltonian system (M, ®,H) is given
in B.2.2. Given such a system, states of the physical system it describes are points in M.
The manifold M is usually a tangent or cotangent bundle of some underlying base mani-
fold representing space or space-time. The images of the integral curves y: R — M of the

Hamiltonian vector field X are the paths of evolution of states in M;

(0 2i0) = X0 = (5 i ) (1.15)
Curves with different starting points correspond to different initial states. The associated
flow {F, : M — M} where F;(y(0)) = y(¢), is the set of dynamical maps that govern the
evolution of the system by deterministically mapping a state at some initial time to state at
a later time. This perspective on dynamics constitutes the Schrodinger picture of classical
mechanics whereby states evolve and observables stay fixed.

Observables are represented by functions on M i.e., smooth maps f : M — R. The
value the physical system in state P € M possesses for an observable f € F*M is f(P) € R.
This idea clearly reflects the classical intuition that a system possesses a definite value
for f irrespective of whether or not it has been measured. In the Heisenberg picture the
observables evolve while the states remain fixed. If states in the Schrodinger picture evolve
according to a map F; : M — M, then the evolution of observables in the Heisenberg picture
is governed by the pull-back F* : F*M — F*~M, which is defined by F* f := f o F;. Clearly

both pictures yield the same results as far as physical predictions are concerned;

f(E(P)) =:(foF)(P)=: (F f)(P) (1.16)
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1.1. Classical mechanics

VP € M. It is easy to determine a differential equation for the evolution of an observable f;

. d
f(0) = —EFz*f L =: —Lx, f=—Xu(f) ={f(0),H}, (1.17)

which for arbitrary ¢ generalises to

f(6)={f@),H}. (1.18)

Thus, one defines the classical algebra of observables A(M) := (F*M,{,-},-), which is
a Lie algebra with respect to the Poisson bracket {-,-}, and an associative commutative
(Abelian) algebra with respect to the pointwise product - defined by (f- g)(P) := f(P)g(P).

I’lIl now briefly go over the example of a single particle with mass m, in Euclidean space
to demonstrate the above formalism in action. For this simple system the base manifold M
is E3, so the tangent and cotangent bundles are isomorphic to R®. If the particle moves in a

potential V then

1 . . 1 . .
L= 2mZi'v’2 —V{x¥'}, EL= 2m;v’2—|—V{xf},

BL:vaidxi, a)L:dei/\dmvi. (1.19)
i i
As is common the Lagrangian is the difference in kinetic and potential energies, while the
total energy Ey, is their sum. The equations of motion read

m oxi

(& (1),¥' (1) = (v"(r%— 1 aV) (1.20)

which expresses the fact that the v/(¢) are components of the particle’s velocity, and that the
force exerted on the particle is the negative of the gradient of the potential; F = ma = —VV.

In the Hamiltonian formalism one has

pi=5n=

. 1 . . .
m, H:%Zpiz—l—V{xf}, 0 = pidx', ®=dx Adp;,
i
(1.21)

which shows that in this example the canonical momentum p coincides with the mechanical
momentum mv. This is predominantly the case when dealing with non-interacting systems.

As a technical extension to conclude this section I remark that the points in the state
space M actually correspond to the so-called pure states of the system. More generally one
can define a mixed state as a probability measure p over M. The integral of a function f
with respect to p yields the average result of a measurement of the associated observable
in the state p. The probabilistic nature of classical mechanics is purely epistemic meaning

that the measure p merely represents the observer’s ignorance of the state of the system,

13



1. Physical systems

which objectively possesses a definite value for every observable. The pure states are just
those mixed states for which p is concentrated at a single point in M. For example if
M = R® for a Euclidean point particle, a pure state (x, p) would be associated with a measure

d(x—x')6(p—p’). The average result of measuring an observable f in this state, would be
& [ &0 1 )3(x=x)3(p—p) = S (x.D). (122

1.2 Quantum mechanics

Having done classical mechanics it’s now time to move on to quantum mechanics. The
ultimate goal of this chapter is to compare how the two theories differ with regards to how
subsystems are defined. The definitions and basic results required to make full sense of this

section are presented in A.3.

1.2.1 Postulates

I start by presenting the rules of quantum mechanics:

1. States of a physical system are represented by normalised vectors in a complex Hilbert

space J(.4

2. Observables associated with a physical system are represented by self-adjoint opera-
tors in £(JH).

3. The average result of repeated measurements of an observable A with non-degenerate

eigenvalues, associated with a system in state |y), is

(ylAly). (1.23)

This is equivalent to the requirement that the individual measurement outcomes are
eigenvalues a,, of A, and that the probability of a measurement yielding the value a,,

is given by

(Wl (lam)an)lv) = (Wlan) (1.24)

where |a,,) denotes the eigenvector corresponding to a,,. This rule is easily extended

to the case of operators with degenerate eigenvectors.

4. The state |y) of a closed system evolves in time according to the Schridinger equa-

4States are actually subspaces called rays in the Hilbert space. The elements in a ray are allowed to differ by a
complex phase with magnitude 1. I'm going to ignore this point for now, but will revisit it at the end of section
1.2.2
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1.2. Quantum mechanics

tion

) =Hly) = ) =e ™)) (1.25)

where H is a distinguished observable called the Hamiltonian. This perspective on
dynamics constitutes the Schrodinger picture of quantum mechanics in which states
evolve and observables are held fixed. In the Heisenberg picture observables evolve
and states are held fixed. If at time = 0, A denotes an observable in the Schrodinger
picture, then in the Heisenberg picture at time ¢ > 0 this observable is represented
by A(t) := e 'f'Ae'f", Differentiating this expression with respect to ¢ yields the

Heisenberg equation

A(f) = i%A(r) — [A(t),H] (1.26)

where H(t) = H(0) =: H. Clearly both pictures yield the same results as far as phys-

ical predictions are concerned;
(w(O)lAlw(0) = (yle™Ae™™ [y) = (w|A(1)|y) (1.27)

where |y) := [y/(0)).

The vectors |y) € H actually represent the so-called pure states of the system. As in the
classical case one can generalise the rules, so as to be able to describe mixed states. A mixed

state is represented by a density operator, which is a Hermitian operator p such that

wp ==Y (ilpliy =1, (wlply) >0 V|y) € K. (1.28)

1

Any density operator can be written as a sum of projection operators onto pure basis states;
p =Y pili)il (1.29)
i

where p; represents the “classical” probability that the system is in state |i). The probability
that the eigenvalue a,, is found when a measurement of the observable A is carried out on
a system with state p, is tr(|am)(an,|p) where as usual |a,,) denotes the eigenstate corre-
sponding to a,,. The expectation value of A in the state p is simply tr(Ap). This reduces to
the usual probabilistic rule 3 above, whenever p = |y)(y/| for some pure state |y) € 3. In

the Schrodinger picture the density operator evolves according to the equation
ip(r) = [H,p(1)]. (1.30)

In the last section I used the Euclidean point particle as a simple example of a classical

mechanical system. The quantum analog of this system is the wave-mechanical particle in

15



1. Physical systems

Euclidean space. An appropriate state space for this system is the Hilbert space L?(R?) of
square integrable functions. Components of position £ and canonical momentum p; are ob-
servables in £(L?(R?)) satisfying the canonical commutation relation [x', p;] = i&;;. These
operators are said to be canonically conjugate, which means they are related by Fourier
transformation. With respect to the position representation of states they have the following

Schrédinger picture representations

Ry() =xy(x),  pivlx) = —ig (). (1.31)

Thus, the canonical momentum generates spatial translations. The position operator like-
wise generates momentum translations, which can be seen by representing the operators
with respect to the momentum representation of states. If the particle moves in a potential

V, the Hamiltonian of the system is
Z +V{x'} (1.32)
and the equations of motion read
Al A 1 n A%
00100 = (0 =55 ) (1.33)

closely mirroring the classical case. We can write states of the system using other represen-
tations besides position. For example canonical momentum states y(p), and energy states

@, (x) (or equivalently ¢,(p)) are defined by

H(Pn(x) = wn(Pn(x)v ﬁzW(p) = piW(p) (1.34)

where I have assumed V is such that H has a discrete spectrum labelled by n, with ¢, € C.

These representations have the following relationships

~Yaoi, a= [dEramwe)

xe" Py (x)

(1.35)

If we define & = (£',%2,%%) and p = (p1, P2, p3), then in the heuristic formalism of Dirac

(cf. A.3.4) the above are written

X[x) = x[x), H|n) = @, |n), p\P> plp),

~Y o, )= [dxmx. )=

xe’”'|x

(1.36)
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1.2. Quantum mechanics

1.2.2 Unitary operators

The relationships 1.35 can be thought of as expressions of basis states in terms of another
basis. Bases are generally related by unitary transformations, which I consider to be impor-
tant enough to warrant their own subsection. The crucial fact to remember regarding unitary

operators is that

if initially the associations

operator A < physical observable O, and...

vector |y) <> physical state S

are made, then precisely the same physical predictions will be obtained if the as-

sociations

operator UAU ~! < physical observable O, and...

vector U|y) <> physical state S

are made, where U denotes any unitary operator.

In other words, the associations observable <> operator and vector <+ state are unique only
up to unitary transformation. This is so, because in quantum theory all physical predictions
come in the form of inner products and unitary operators are the automorphisms in the
category of inner product spaces. I call a particular assignment of vectors to physical states a
representation of states. Given some representation of states one assigns to each observable
a unique operator, which represents the observable with respect to the given representation
of states. According to the box above unitary operators are the objects relating different
representations.

It is easy now to understand why states are in fact rays in the Hilbert space rather
than just vectors. In the case U € U(1), U commutes with any A € £(H), which means
transformation of A by U leaves A invariant. Now according to the rule above any two
states such that |y,) = U|y;) must yield the same predictions used in conjunction with
A. Since A is arbitrary this implies that physical states are only defined up to such U(1)-
transformations. Thus, states are equivalence classes of vectors called rays, with two vectors

belonging to the same ray if they can be related by a U (1)-transformation.

1.2.3 Composite quantum systems

I arrive now at what I most want to discuss - composite quantum systems. The formalism
for composite quantum systems relies on the tensor product operation. Given two systems

1 and 2 with Hilbert spaces J{; and I, respectively, the Hilbert space of the composite
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1. Physical systems

system consisting of 1 and 2 is J{; ® J{(,. Any state of the composite system can be written
n m

W) =Y ) viuli)1 @ u) (1.37)
i W

where {|i);} and {|u),} are bases in HH; and 3, respectively, with dimH; =: n and dimH, =:
m. As a notational device product states such as |y) ® |@) are usually abbreviated to |y, ¢).

A general observable B € L(H; ® H;) of the composite system has the form
n2 m2
B=Y Y ByA  ®Ay (1.38)
i

where {A}} and {A}} are bases in £(3(;) and £(3(,) respectively. An observable Oy of
subsystem 1 is represented by A; ® I, with A} € L£(3;) and I denoting the identity on
H,. Thus, subsystem 1 is defined by the collection of operators {A; ®1:A; € L(H;)} C
L(H, @ H,). The eigenstates of the self-adjoint operators A; provide bases for the Hilbert
space H;. Similarly subsystem 2 is defined by the set of operators {I ® A, : Ay € L(H>)}.

There are a couple of reasons that I can identify for extending the basic quantum me-
chanical formalism in this way. First and perhaps most importantly, operators of the form
Ay ®I and I ® A; are trivially compatible, that is, they commute for any A} € £(%H;) and
Ay € L(H,) (Sakurai (1993)). Assume to the contrary that two observables O and O, were
represented by operators A; and A, such that [A},A] # 0. Suppose in the first instance that
consecutive measurements of O were to be performed and the outcomes recorded. Now
suppose instead that a measurement of O, was to be made in-between the measurements of
0. This time the second measurement of O; will not, in general, yield the same result as in
the first instance, because of the measurement of O, made beforehand. If observables asso-
ciated with separate subsystems were incompatible a measurement of one subsystem could
“disturb” the other subsystem in this way. Now, we want the definition of subsystems to be
flexible enough to describe a situation in which two subsystems are space-like separated. If
observables associated with separate subsystems were incompatible then one could in prin-
ciple use measurement disturbances for super-luminal communication. One requires then,
that observables associated with separate subsystems are compatible. The second reason for
the above composite systems description is that the straightforward extension of the inner
product A.25 means that for the system in a product state |y;, ¢,) the probability that O,
has value a and O; has value @' is simply

[(ar, |y, 62) > = {aly)1]*|{a|9)2 ], (1.39)

which is just the joint probability of finding O; = a and O, = d’, as one might expect.
Given the definition of composite quantum systems all sorts of strange and exciting
states of the composite system e.g. entangled states can be constructed. To talk about

such things a prerequisite would surely be physically unambiguous definitions of quantum
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1.2. Quantum mechanics

subsystems. Indeed, to study physics means to study physical systems, and the notion of
physical system is surely only useful insofar as it is unique. Since the only physical system
that is not a subsystem is the biggest system of all, there is no real distinction between
defining subsystems and defining systems in general. Quantum subsystems as they are
defined above are not unique, because they are defined in terms of the structural forms of
operators, and the association of operators with physical observables is not one-to-one.

Suppose, for example, we start off with a representation of states with respect to which
an observable O associated with subsystem 1 is represented by the operator A; ® 1. It is
quite possible that a unitary transformation U € £(H; ® H;) exists, such that U (A; 1)U !
is not of the form A} ® I. Therefore, with respect to the initial representation of states, the
observable represented by the operator U(A; @ I)U ~! is not, according to our definition, an
observable associated with subsystem 1. However, we know that with respect to the new
representation of states the operator U(A; ® I)U ™! represents the same physical observ-
able Oy, as the operator A| ® I represents with respect to the initial representation of states.
Conversely, the operator A; ® [ itself represents an altogether different observable with re-
spect to the new representation of states. The subsystem 1 is supposed to be defined by
the collection of operators of the form A ® I, yet these operators represent different physi-
cal observables depending on the representation of states chosen for the composite system.
Thus, the definition of a quantum subsystem is a physically relative one. A transformation
of the global system to a physically equivalent representation will not, in general, produce
physically equivalent subsystems.

This fact by itself does not necessarily present us with a problem. Provided we can
identify the physical degrees of freedom by which subsystems should be defined, and then
identify some representation of states of the global system with respect to which the iden-
tified observables have the required form i.e. A} ®/ for system 1, and / ® A, for system
2, then we should always be able to keep track of which operators represent the subsystem
observables, whatever the representation of states chosen for the global system.

The task of defining quantum subsystems unambiguously, seems to be nothing more
than that of identifying the physical observables, which should be taken as defining the sub-
systems. In classical physics this seems straightforward and even tacit to some extent. I
went to great lengths in the previous section to emphasize that in classical physics the ob-
servables in which we are interested are those defined in terms of motion. For example, in
a system of two classical particles, it is the position and velocity observables of each parti-
cle, that constitute the means by which they are identified as individual particle subsystems.
By way of the example in the following section I aim to show that for certain interacting
composite quantum systems there is no representation of states for the composite system,
in which the velocity observables associated with each subsystem are simultaneously repre-

sented by operators of the form A1 ® I for subsystem 1, and I @ A, for subsystem 2.
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1. Physical systems

1.3 Interacting oscillators: the classical and quantum descriptions

In this section I use the simple example of two interacting harmonic oscillators to try and
show how the classical and quantum points of view towards subsystems diverge. Although
somewhat long-winded, this example clearly and simply highlights the ambiguity inherent
in quantum mechanical subsystems defined in terms of canonical variables. The reason for
contrasting this viewpoint with the classical viewpoint is to emphasize how radically the
notion of physical system changes when we move to the quantum setting, and to pose the
question as to whether or not such a radical departure is really warranted. The example is
somewhat artificial, which is the price paid for its simplicity. To try and inject a modicum of
actual physics into the proceedings one could imagine that one of the oscillators represents
a charged particle in a harmonic trapping potential, while the other one represents a single
mode of electromagnetic radiation. The equations of motion of the system are then “single

mode versions of Maxwell’s equations”.

1.3.1 The classical description

For iiber simplicity I will assume that both oscillators are restricted to one dimension in
space, and that they each have mass 1 and oscillate with frequency 1 about the coordinate
origin.’ The classical state space for each oscillator is R?, which makes the total space R*.
Suppose now that the other day I was fortunate enough to obtain two harmonic oscillators
with these exact properties. Suppose also, that in anticipation of writing this section, I took
them to my lab, “interacted” them, and found that they obeyed the following equations of

motion
X=—x+y, y=-—-y—x (1.40)

where x and y denote the positions of oscillators 1 and 2 respectively, and X and y denote the
corresponding velocities. These equations are sufficiently simple to be solved exactly, and
for the initial conditions x(0) = y(0) = x(0) =0, y(0) = 1, one obtains

x(t) = \% sin (%) sin (?) , o oy() = —\% cos (%) sin (?) . (1.41)

We can find velocities and accelerations by differentiating these expressions. From there we
can find forces, energies, momenta and whatever else tickles our fancy. Thus we are essen-
tially done with the classical description. However, I am interested in how this description

is encoded into the canonical formalism, so I wish to find a Hamiltonian yielding 1.40. It is

SIf, as I suggested, the reader wishes to think of one of the oscillators as a charged particle, then we are assuming
the charge of this particle is 1.
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1.3. Interacting oscillators: the classical and quantum descriptions

easy to verify that the Hamiltonian

1

1, 1
H= (Pr+y)* + 522+ 5 (P2 +)7) (1.42)

2 2

does the job. Here p, and p, are the canonical momenta satisfying the canonical Pois-
son bracket relations B.43 with the coordinates x and y.® The velocities according to this

Hamiltonian, are identified as

X=px+y, y=Dpy. (1.43)

Thus, we have encountered a situation whereby the canonical momentum p, does not coin-
cide with the velocity X, rather it is the velocity x minus the position of the second oscillator
y. In the classical setting the oscillators as physical subsystems are most naturally defined in
terms of their position and velocity observables. Each oscillator occupies a certain position
at each point in time. The rate of change of this position is the definition of the oscillator’s
velocity.

From this point of view the canonical momentum p, conjugate to x is not an observable
associated solely with oscillator 1. Is this a problem? In the classical setting it isn’t, because
there is simply no requirement that p, should be an observable associated with oscillator 1.
Sometimes the canonical momenta will represent physically relevant degrees of freedom
and sometimes they won’t. When they do that’s good, and when they don’t that’s fine
too. In the latter case one simply identifies what the physically relevant degrees of freedom
are in terms of the canonical coordinates. By solving the dynamics using the canonical
coordinates, one can determine the value of any given physical observable at any point in
time.

So knowing the dynamics in terms of positions and canonical momenta is strictly equiv-
alent to knowing the dynamics in terms of positions and velocities. It is important to recog-
nise however, that this fact does not imply that canonical momenta p;(z) and mechanical
momenta mv'(¢) are the same. One of the primary reasons for using the canonical formal-
ism is that the canonical dynamics are typically much easier to solve than the second order
Euler-Lagrange dynamics.

It is instructive to write the Hamiltonian 1.42 in terms of the velocities, in which case
one obtains

(% +x%) +l (P +y%), (1.44)

E =
2

| —

which clearly represents the total energy of the system as the sum of energies of the indi-

6Recall that in the classical setting observables are represented by functions on the state space. In particular the
“projection” functions such as fy(x, px,y, py) := x for some (x, px,y, py) € R* will often be denoted by the same
symbol as the component of the point itself; x(x, px,y, py) := fx(x, px,y, py) := x. The x,y, p, py appearing in
the Hamiltonian 1.42 are functions not components of points. In writing an expression such as x(¢) what is
meant is x(y(r)) where x is the function not the point, and 7 : R — R* is a curve of motion in the state space.
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vidual oscillators. Notice there is no semblance of an “interaction component” appearing
explicitly in this expression. The interaction of the subsystems is described by the fact that
the velocity x is not in involution with the velocity p, = y. It is also easy to see from 1.44,
that the required Hamiltonian 1.42 is obtained by replacing the “free” canonical momentum
px = X with the canonical momentum p, = x —y. This is known as the minimal coupling
prescription, and here it has been applied to oscillator 1.

At the start I noted that the state space for the system is R*. It is clear that one can
“divide up” this state space in a number of ways. If a state is to be specified in terms of the

manifestly physically meaningful positions and velocities, then one has a division
R* = R?[x,%] x R?[y,]. (1.45)

The physical state space of oscillator 1 is R?[x,%], and that of oscillator 2 is R?[y,y]. Simi-

larly we could divide the state space up according to canonical degrees of freedom;
R* = R?[x, pi] x R?[y, p, ], (1.46)

in which case it is often called phase space. The individual factors in the cartesian product
here are not the physical state spaces of the individual subsystems, so the canonical factori-
sation 1.46 not only offers an alternative mathematical decomposition to 1.45, but also one
that is physically distinct. One might think that these divisions are the only ones possible,
but this is not so, because as I eluded to earlier canonical coordinates are not unique.

Suppose I define new canonical momenta by

Pri=Px—Y, Pyi=py—x (1.47)

It is easy to verify that the primed momenta also satisfy the canonical Poisson bracket
relations with the coordinates x and y. If p, and p, in 1.42 are replaced by p/ and p;
respectively, then one obtains a Hamiltonian

H’Zl(p/ —|—y)2+lx2—|—l(p’,2+y2). (1.48)

2V 2 2\

Obviously H’ will produce exactly the same equations of motion when it is used in con-
junction with p’. and p; as H does when used in conjunction with p, and p,. I could express
the Hamiltonian H in terms of the primed quantities, but an equivalent way of doing things
(which I prefer) is to keep the momenta the same and change the Hamiltonian. So, suppose
now that one expresses H’ in terms of the unprimed momenta to give

1
(P2 +22) + = (py—x) + 2y~ (1.49)

H =
2

N =
N =

This is nothing but the Hamiltonian obtained by applying the minimal coupling prescription

(with opposite sign) to the second oscillator instead of the first. The equations of motion for
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1.3. Interacting oscillators: the classical and quantum descriptions

the coordinates x and y now read
X=px, Y=DPy—X (1.50)

so it is now the momentum p, that doesn’t coincide with the velocity y. Despite this ap-
parent change in the equations of motion, they are exactly the same as they were before
when written in terms of velocities and accelerations. This is easy to understand when one

expresses H' in terms of the velocities given in 1.50, which yields

(x2+x2)+%(y‘2+y2) =E. (1.51)

E =

N =

The positions and velocities are invariant under the canonical transformation, but the sets
of canonical momenta {py, py} and {p;, p\ } have different physical meanings when used in
conjunction with the same Hamiltonian. This fact is shown by 1.47 explicitly. Thus, we see

that one could also divide the state space up according to
R* = R2[x, pl] x R*[y, p{] (1.52)

offering yet another physically different decomposition. In the alternative viewpoint in
which the Hamiltonian changes rather than the canonical momenta, one can see that the
same canonical momenta p, and p, have different physical meanings when they are used
in conjunction with the two different Hamiltonians. This is because physical meaning is
partly determined through dynamical input and the Hamiltonian generates the dynamics.
From this point of view the state space decomposition R* = R?[x, p,] x R?[y, p,] must be
understood as being physically different when it is used in conjunction with each different

Hamiltonian.” The box below summarises the classical perspective.

The state space of the oscillators can be divided into factors in a number of ways.
The decomposition corresponding to a division of the physical degrees of free-
dom that specify the individual oscillator subsystems uses positions and velocities;
R* = R?[x,%] x R2[y,y]. The physical state space of oscillator 1 is R?[x,], and
that of oscillator 2 is R?[y,y]. There are also many ways to divide the state space
based on canonical variables; R* = R2[x, p,] x R?[y, py]. In such decompositions
the factors R?[x, p,] and R?[y, p,] do not represent the physical state spaces of the
individual oscillators. This point of view is sharply contrasted in quantum me-

chanics as we will see in 1.3.2.

It is worth noting that I could have started with a Lagrangian L for the system and

derived the Hamiltonian H in 1.42 from it. Similarly I could have started with a Lagrangian

70f course every Hamiltonian must yield the correct equations of motion when used in conjunction with p, and
Dy-
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L' and derived the Hamiltonian H’. These Lagrangians would have been related by the

gauge transformation

d
L'=L——xy. 1.53
P (1.53)

Thus the primed and unprimed canonical momenta above can be understood as correspond-
ing to different Lagrangians L' and L. The Lagrangians themselves correspond to different
choices of gauge. In this sense canonical momenta are manifestly gauge dependent. One
often hears the viewpoint expressed that gauge dependent quantities are physically mean-
ingless. It seems to me that such a vague statement is at best an oversimplification, and
at worst simply incorrect. What is certainly true is that certain mathematical objects may
have different physical meaning in different gauges. This does not imply that in any one
gauge such objects will be devoid of any physical meaning whatsoever. In our example,
when the Hamiltonian H is used the canonical momentum p, has the unambiguous inter-
pretation as the velocity of oscillator 1, minus the position of oscillator 2. In the second
instance when Hamiltonian H’ is used p, simply coincides with the velocity of oscillator
1. The positions and velocities are manifestly gauge-invariant observables, whereas the
canonical momentum p, is a manifestly gauge dependent coordinate. Nevertheless, the co-
ordinate p, will always be related in some way to the gauge-invariant observables. What
varies between gauges is this relationship itself. One might naturally wonder whether there
exists any representation, i.e, choice of Hamiltonian (or Lagrangian, or gauge) in which
both canonical momenta coincide with the velocities i.e, py = X and p, = y. If this were the

case the Hamiltonian, which represents the total energy would be

1 1
H=2 (i +2) +5 (r1 7). (1.54)

This Hamiltonian doesn’t yield the correct equations of motion 1.40. The equations of

motion it yields are simply the free equations for non-interacting oscillators
X=—x, J=-y (1.55)

Thus, we see that the canonical momenta only coincide with the velocities in the description
of the “free” (non-interacting) composite system.

In summary, we have seen that classical subsystems are most naturally defined in terms
of gauge-invariant and physically unambiguous positions and velocities. As well as these
there exist various sets of canonical coordinates each having different physical significance
when identified in terms of the positions and velocities, but each equally suitable when
it comes to describing the dynamics of the composite system. When the subsystems are
defined in terms of positions and velocities, the Hamiltonian of the composite system simply
represents the sum of energies of the subsystems. The interaction between these subsystems

is described by the fact that the velocity observables do not, in general, commute.
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1.3. Interacting oscillators: the classical and quantum descriptions

1.3.2 The quantum description

Two points I have made so far are that canonical momenta are non-unique, and that the
association of quantum observables with linear operators is also non-unique. At the quan-
tum level canonical transformations are unitary transformations and in practice quantum
subsystems are often defined in terms of canonical momentum operators. We can obtain
the quantum description of the interacting oscillators of 1.3.1 by canonically quantising the

classical description, which first of all involves the replacements®

R*[x, pi] = L2(R), RPly,py] = LA(R), R%[x,p] xR*[y, py] = L*(R) @ L*(R),
(1.56)

so the quantum state space for the system is L?(R?) 22 L?(R) ® L*(R). The classical algebra

of observables is replaced according to
ARY) = (F7RY{,},) = (L(LP(R) ® LX(R)), —il-, ). (1.57)
In particular the x,y, py, py as functions are replaced by linear operators according to
X, ) po by — x@I, I®y, pal, I@p, € LL*(R)RL*(R)), (1.58)

which in terms of the position representation of states, support the Schrodinger picture
representations in 1.31. Since both Poisson brackets and commutators are Lie algebras, all
of the classical equations of motion are transposed to the quantum level in agreement with

the Heisenberg equation of motion used in conjunction with the Hamiltonian

H= %(Px®1+l®y)2+%(x®1)2+% ((1®Py)2+(1®y)2). (1.59)

The crucial difference in the classical and quantum descriptions is that

in the classical case the state space decomposition R?[x, p,] x R%[y, p,] is not such
that the individual factors are the physical subsystem state spaces, whereas in the
quantum theory the individual tensor factors of the Hilbert space L?(R) ® L*(R)
are supposed to represent the physical subsystem state spaces. In the quantum
setting, unlike in the classical setting, it appears that it is the canonical momenta
px®1 and I ® p, that are supposed to represent the physical momenta of oscillators

1 and 2 respectively.

81 should point out that the canonical quantisation procedure is not really an integral part of the point I'm trying
to make about subsystems. Regardless of the existence of any classical description the subsystem problem
on the quantum level arises as soon as we have quantum mechanical equations of motion, that we require the
quantum mechanical Hamiltonian to yield, while at the same time we use the standard definition in 1.2.3 of
quantum subsystems. The canonical quantisation procedure I’'m using here is merely a convenient tool.
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1. Physical systems

In the quantum setting the velocity of oscillator 1
Xi=—ix,H|=p:,@I+IQYy (1.60)

is not an observable associated with oscillator 1, which seems to be an immediately patho-
logical statement. The interaction between the oscillators is now described by an explicit

interaction component H; in the Hamiltonian, defined according to

H=Hy,+Hj,
1 1
Ho = Hy +Hy = > (P2 +2) @1+ S (pr+y%),
1
Hp = pe@y+5(I0y) (1.61)

In the typical quantum mechanical problem one introduces the so-called ladder opera-

tors, which are non-Hermitian operators defined by

1 1
a:=—(x+ipy), b:=—7+i 1.62
7 (x+ipx) 7 (y+ipy) (1.62)
satisfying the bosonic commutation relations

[a,a’] = [b,b] = 1. (1.63)

If one denotes eigenstates of H; by |n;) such that

1 Ty\n

|ny) := —=(a")"0y) (1.64)

Vn!
where |0;) denotes the lowest energy eigenstate, then one can show that
d'ln) =\/nm +1ni+1), aln)) = /nini—1), a'aln;) =ny|ny). (1.65)

When the frequency of oscillation is 1, as it is in the present case, H; can be written

-

N 1
H1:a'a+aaT:aTa+§%a'a (1.66)

where to write the second equality I have used 1.63, and in writing the third equality I have
neglected the irrelevant constant % Thus, the ladder operators a' and a respectively create
and destroy the free energy quanta associated with oscillator 1. The Hamiltonian H can be

written in terms of the ladder operators as

H=Hy+H;, Hy=H +H,=da®I+Ib'b

Hy = i(a*—a)®(b*+b)+%(l®(bT+b))2. (1.67)
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1.3. Interacting oscillators: the classical and quantum descriptions

A typical problem could be that of energy transfer, in which the quantity of interest is the
total excitation in oscillator 2 at a time # > 0 after oscillator 1 was known to be in the excited
state |1;), and oscillator 2 was known to be in the ground state |0,). This probability is given

according to the rules of quantum mechanics by
(11,05 (b"h @ I)e M|1,,0,). (1.68)

Up until now everything seems to be okay, but let’s now consider the other route I could
have taken to the quantum description, after all I could also have quantised H’ in 1.48. In

this case I would have obtained the quantum Hamiltonian

H = % (pr@D)*+ (x@1)%) + % (I@py—x@1)°+ %(1®y)2- (1.69)

At the quantum level the Hamiltonians H and H’ are related by a unitary transformation
H' =UHU™' where U :=e"™ (1.70)

in which the generator x ® y is clearly the quantum analog of the classical generator of the
gauge transformation in 1.53. The canonical momenta do not commute with U; using the
Baker-Campbell-Hausdorff formula A.17 one finds

UpeaDU ' =p,@l-I®y, UlI®p)U'=I2p,—x3I, (1.71)

which explains why the Hamiltonians H and H' have different forms in terms of the same
canonical momenta. The non-trivial transformations 1.71 mean that the canonical momenta
px®1 and I ® p\, have different physical meanings with respect to the two different represen-
tations of states related by U. We should already expect this to be true having been through
a similar procedure in the classical setting. What is important to note though, is that now all
of the operators defined in terms of the momenta i.e, a, b, Hy, H,, H; etc., also have differ-
ent physical meanings with respect to the new representation of states, or equivalently said,
with respect to the new Hamiltonian. Suppose we look again at the energy transfer problem
and calculate the excitation in oscillator 2 for the initial state |1;,0,), what we obtain this

time round is
(11,02le™" (b @ I)e™""|1,,0,), (1.72)
which is not the same as what we got in 1.68;

(11,00|e™ " (bT b @ Ne ™ |11,0,) = (11,02| UM U (b b2 U U 14,0,)
#(11,0|U U U U BT b U U U U1, 0,)
=(11,00|e™" (b b @ 1)e ™"|11,0,). (1.73)
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The reason for the difference is that the quantum mechanical subsystems defined in terms
of the canonical momenta are not left invariant by the transformation U. It is important to
recognise that the two quantum mechanical formulations are strictly equivalent, in the sense
that given any prediction calculated within one of the representations, precisely the same
result can be obtained in the other representation by using the appropriately transformed

operators and states. For example, in the case of the first prediction 1.68 above we have

(11,00]e™ (" @ 1)e™™M|11,0,)
=(1,,0,|U UM U U BT b U U ™ U U|14,0,)
(17,050e™" (B0 @ 1')e ™|17,04) (1.74)

where I have simply defined new operators and states by
WYl :=UbbanU™, |1],05) :=U|1,0,). (1.75)

What we have in 1.68 and 1.72 is two altogether separate predictions pertaining to two
physically distinct definitions of quantum subsystems. So which prediction is the correct
one? Is it the case that either of the predictions are correct? For in neither of the equivalent
descriptions did the canonical momenta p, ®I and I ® p,, simultaneously coincide with the
gauge-invariant velocities x and y, which constitute the natural degrees of freedom by which
classical mechanical systems are defined. While I have only compared two representations
of states for the system, there exists an infinitude of other equivalent descriptions, for which

the subsystems defined in terms of canonical degrees of freedom are physically different.

1.4 Summary and discussion

In both classical and quantum theories canonical momenta are generally physically differ-
ent within any two physically equivalent formulations. In the classical setting this does not
present a problem with regard to defining subsystems, which defined in terms of veloci-
ties, are physically unique and unambiguous. The canonical coordinates x', p; satisfy the
canonical Poisson bracket relation {x', p;} = 5]‘ while the physical subsystems are defined
in terms of their velocity and position coordinates x',v'({x/},{p;}). The Hamiltonian of a
closed composite system is the sum of energies of the subsystems, and there appears to be
no need to introduce anything like an “interaction component”. The interaction is described
by the fact that the velocities associated with different subsystems do not commute (in the
sense of the Poisson bracket) while it is the canonical momenta which do commute. In
classical physics then, dynamical interactions are described using the Lie algebra of Pois-
son brackets, with respect to which observables pertaining to different subsystems do not,
in general, commute.

In stark contrast to this, in quantum mechanics dynamical interactions are described us-

ing the Lie algebra of commutators, with respect to which observables pertaining to different
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1.4. Summary and discussion

subsystem are required to commute. If we require non-trivial equations of motion to hold,
then it is immediately evident that using the velocities to define physical subsystems is not
an option in any theory based on the use of a Hamiltonian—the total energy—together with
a Lie algebraic bracket structure with respect to which observables pertaining to different
subsystems have to commute. In short, the interacting equations of motion will only follow
if the velocities pertaining to separate subsystems don’t commute, but it is precisely this
fact which in a quantum theory makes the velocities unsuitable candidates when it comes
to defining physical subsystems. As a result, in (canonical) quantum theories the canonical
operators are used to define physical subsystems instead. Consequently, the Hamiltonian,
rather than simply being the sum of subsystem energies, contains an explicit interaction
component. This strategy results in a plethora of non-equivalent quantum subsystem de-
compositions, each associated with a different representation of states of the composite
system. This is what I have called the phenomenon of QSR.

It is far from clear that the canonical formalism was ever intended to describe interac-
tions between canonical degrees of freedom through an explicit interaction component in
the Hamiltonian. This is nevertheless its primary method of application in quantum physics.
If the motional degrees of freedom are no longer to be taken as physically relevant then there
seems little point in requiring a Hamiltonian to yield equations of motion in the first place.
In this case we are “back at square one” in that we simply have to guess at a Hamiltonian
(or some such object), which given the rules of quantum mechanics produces the correct
(empirically verified) predictions.

In any case there is an inherent relativity in the definition of quantum subsystems. In fact
it has been understood for some time that “‘quantum tensor product structures are observable
induced” Zanardi et al. (2004). It is natural to assume that what makes one or another
particular tensor decomposition preferred, is linked to what is operationally available in
the lab. If, for example, the results 1.68 and 1.72 are supposed to predict the number of
photons in a single mode of radiation then a comparison of these predictions with the unique
experimental result appearing on a dial connected to a photo-detector should reveal which
decomposition is best (this is the underlying assumption that will be made in chapter 8).

But even after having determined a Hamiltonian for which the photon number predic-
tion is correct, we would still be far from done. Supposing that oscillator 1 represents an
oscillating electron, we would have to check that the outcomes of measurements of the elec-
tron’s energy (or some such observable) are also correctly predicted. In this instance one
is confronted with the question of how experimentally the energy of the electron is actu-
ally measured, whether or not any such measurement involves the electron’s velocity, and
whether or not the equations of motion for the system correctly describe these observables,
for if they do, then we require the formalism to yield them as well. In addition to all of
this, we would have to ensure that nothing like violations of causality could occur. All in
all, we would be faced with a large number of conditions that the formalism would be re-

quired to satisfy, and it is not entirely clear how such a theory could be constructed. As the
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example above clearly demonstrates one cannot generally use velocities to define physical
quantum subsystems in interacting theories. One can of course use canonical operators, but
then the question occurs as to which of the infinite number of inequivalent sets of canonical
operators should be used?

As I set fourth at the beginning of this chapter, the assumption that the motion of phys-
ical systems in space and time is definitive of such systems, seems to be quite fundamen-
tal. Indeed, it could be argued that such an assumption holds for any dynamical theory of
physics whether it be quantum, classical or otherwise. If quantum mechanics forces us to
abandon this assumption then we are left with an enormous void to fill in determining how
precisely physical systems should be defined. We might even be tempted to entertain the
idea that no meaningful division of the (quantum) universe into distinct physical subsystems
can actually be given at all?

The following chapters in this thesis explore how subsystems should be defined in quan-
tum optics and quantum electrodynamics, as well as how quantum electrodynamics should
be used and what it tells us as a physical theory. The basic question I consider is how does

one separate out material and radiative degrees of freedom?
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CHAPTER 2

Electrodynamics in an arbitrary gauge

Between 1861 and 1862 James Clerk Maxwell unified the known laws of electromagnetism
in a set of four elegant equations. To this day Maxwell’s equations provide the fundamen-
tal underpinnings of electrodynamics, and constitute one of the cornerstones of modern
physics. In quantum electrodynamics and quantum optics one models processes involving
electromagnetic radiation through the concept of the photon, meaning that Maxwell’s equa-
tions themselves have less direct involvement. The quantum theory however, is still based
upon a theory of fields in which the Hamiltonian is required to yield Maxwell’s equations.
The photon is defined in terms of the (operator-valued) fields used in this approach, so to
understand quantum electrodynamics, the canonical approach to classical electrodynamics
is a good place to start.

It is customary to start with a Lagrangian for which the Euler-Lagrange equations are
Maxwell’s equations, and then derive a Hamiltonian. However, the gauge freedom inherent
in Maxwell’s equations means that the Lagrangian will be singular (c.f. 1.7), that is, there
will be more canonical position variables than corresponding canonical momenta, because
the Lagrangian turns out to be independent of the velocity of the scalar potential. For this
reason the passage to the canonical formalism won’t be as straightforward as we are used
to. Ultimately what we will see is that in a similar way to the example in 1.3, gauge freedom
leads to a multitude of different ways to decompose the matter-radiation system into matter
and radiation subsystems.

The aim of this chapter is to review a canonical quantum theory of nonrelativistic elec-
tromagnetism, in which the gauge freedom is kept at the forefront throughout. Following
Woolley (1999) (see also Babiker & Loudon (1983)), the gauge freedom will be contained
entirely within a (classical) vector Green’s function denoted g. At the end, we will be set up
nicely to discuss the physical implications of this gauge freedom for the quantum theory. It

will be useful to give a brief summary of special relativity and relativistic kinematics before
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2. Electrodynamics in an arbitrary gauge

discussing any electromagnetism.

2.1 Recap of special relativity

Minkowski space-time consists of R* with the symmetric bilinear form g = Nuvdx*dxY,
n :=diag(1,—1,—1,—1). The study of particles in Minkowski space-time is called rela-
tivistic kinematics. The Lorentz group O(1,3) consists of transformations A leaving the
form g invariant (cf. A.3.5). Physically, Lorentz transformations relate different inertial
frames of reference in E'3.° A Lorentz invariant quantity is one which is the same in all in-
ertial frames of reference.!’ A covariant equation or law, is one which takes the same form
in every inertial frame. These ideas are all that is needed to formulate special relativity in

its entirety:
1. There is a maximum speed of propagation c¢ for all physical phenomena.
2. The laws of physics are covariant.

Each point (or event) x in Minkowski space-time can be viewed as the mutual apex
of two cones, the backward light cone and the forward light cone. The forward (resp.
backward) lightcone consists of points x’ such that ¥ —x° > 0 (resp, x® — x° < 0), and for
which the (invariant) interval g(x' —x,x’ —x) is greater than zero. The intervals between x
and the points inside the light cone of x are said to be timelike with respect to x. The points
inside the lightcone are the ones which can be connected to x by a signal propagating with
speed v < c. The “present” of the point x consists of all points which lie outside the light
cone. According to rule 1 above, points in the present of x can’t effect, or be effected by x,
and they are said to be spacelike to x.

A convenient notion is that of proper time T, which is the time experienced by a particle
(observer) in its own rest frame. If a particle'! has position r(¢) and velocity v := dr/dt
at time ¢ measured with respect to some inertial frame O, then in an elapsed time t, — £

measured in O, it experiences a proper time interval T given by
15}
o= [Ca, y= (- Vo) @
n

9By inertial frame I mean a frame in uniform relative motion with respect to all other inertial frames, i.e. a
non-accelerating frame.

10Note the difference between a conserved quantity and an invariant quantity. The former being any quantity
which does not change in time as measured in a specific frame of reference, and the latter being a quantity
which may or may not be conserved in a given frame, but which takes the same value in each inertial frame.

"'The term “particle” is really just a label for another inertial frame ©’. It could equally well refer to an “observer”
rather than to an actual particle.
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Unlike ordinary time, proper time is by definition, an invariant quantity. The proper velocity

and proper momentum of a particle are

'_dr_dtdr_

U= o= =W, pi=mu=ymv. (2.2)

A covariant quantity is one which transforms according to a representation (see B.3.7)
of the (proper orthochronous) Lorentz group. These include for example, scalars, four-
vectors, spinors and four-tensors. Sometimes vectors with four components, which are not
covariant are referred to as four-vectors as well, and a clarifier covariant or non-covariant
must therefore be added where necessary. The velocities, momenta and other observables
of nonrelativistic Newtonian kinematics are not covariant, but one can often define relativis-
tically covariant analogs and extensions of these quantities. For example, one can define (in

units such that ¢ = 1) the four-velocity and four-momentum by

u::= ('}’,ll), pi=mu = (poap)v PO =my. (23)

the quantity py is the relativistic energy po = E = mYy, which is nonzero even when the
particle is at rest; E.st = m. In relativistic kinematics the quantities p and E are conserved,

and so is p. In fact
plpu=(p°) —p* =m* (1 -v?*) =m?, (2.4)
which establishes the well-known relativistic energy momentum relation
E? =p*+m?. (2.5)

This relation will be the starting point in my consideration of the Dirac field in chapter 3.

2.2 Free electrodynamics

It will be helpful to review free electrodynamics, see how gauge freedom arises and con-
sider how it might be handled. The interacting case of electrodynamics with sources, while
more complicated, can be handled in essentially the same way. First in 2.2.1 I identify an
appropriate Lagrangian, then in 2.2.2 I consider how to construct the Hamiltonian and deal

with the redundant (gauge) degrees of freedom.

2.2.1 Deriving the source free equations of motion

One can express Maxwell’s equations in terms of the electric field E and magnetic field
B defined on Euclidean space E>. However, Maxwell electrodynamics is most naturally

formulated on Minkowski space-time E'3 (cf. A.3.5), which supports global coordinates
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{x*}. Maxwell’s equations in the absence of any sources read
dF =0, dxF=0 (2.6)

where F = %Fuvdx” AdxV is a two-form called the electromagnetic field strength tensor and

the operation * denotes the Hodge dual. The components of F' form a matrix

0 E' E* E
-E' 0 -B* B
—-E> B 0 -B!
—E> —-B*> B! 0

(Fuv) = ) 2.7)

and the Hodge dual operation has the effect (E,B) — (—B,E) in 2.7. To see how F trans-
forms under Lorentz transformations A € L1 (cf. B.93) I denote an inertial frame with co-
ordinates {x*} by O, and another frame with coordinates {x'* = Ayx"} by 0. If F(x) := F,
is the field tensor measured in O then the field tensor measured in O is F'(x") := F, such
that

FI

n () = A%AL Fop (x), (2.8)

where A := (A7)~ is the contragradient matrix of the matrix A. With the understanding
that F is to be evaluated at x and F’ is to be evaluated at x’, 2.8 is often written simply
Fyy = /\l‘f[\ljFaB. If O’ is obtained from O by a boost with velocity v then 2.8 yields the
following transformation rules for the electric and magnetic fields'? (Jackson (1998))

2 2
r_ 7 ) r_ _ T .
E =y(E+vxB) }/+1V(V E), B =yB-vxE) +1V(V B). (2.9)

Thus, the electric and magnetic fields in O’ are mixtures of the electric and magnetic fields
in O. What is interpreted as an electric phenomenon in one frame will be interpreted as
partially magnetic in another frame, and vice versa.

One can write F' as the exterior derivative of a one-formi.e. ' = dA where A = A dx*.

In terms of components one has
F‘uv == a'uAv - avA#. (2.10)
The vector potential A and scalar potential ¢ can be defined simply as

A= (AL A2 A%, ¢ :=A, 2.11)

12The physical significance of these transformations will be discussed in 4.3.
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2.2. Free electrodynamics

which according to equations 2.7 and 2.10 yields

E:—%?—V¢, B=VxA (2.12)
where t = x° and V := (9,0, ).

To derive Maxwell’s equations from a Lagrangian one starts by taking a Banach space
FE'3 consisting of certain functions on Minkowski space-time vanishing at spatial infinity.
The component functions A* and d,A" are assumed to belong to FE 13 In total there are
four components of A* and four components of A* := dyA*, which means that to actually
specify a state of the electromagnetic system the eighth power Z := (FE'3)? is required.

One can consider the functions A* and 8MAV on a fixed time slice, which means that
one fixes their zeroth argument x° = ¢, and expresses everything with respect to the spe-
cific inertial frame for which ¢ denotes the coordinate time. The space of such restricted
functions is denoted F({t} x E3), and Z, := F({t} x E3)? denotes the restricted state space.
Similarly one can restrict Z to a single event (,x) € E' to yield a space denoted Z(; x)- Co-
:Z — R, which
respectively evaluate functions and their zeroth derivatives at the point (¢,x). For example,
el {A"}, {A*}) := A'(t,x) € R. One can define similar functions on Z and Z, ). The
Lagrangian for the system is a map L(¢) : Z, — R defined by

ordinates on Z are given by the evaluation functions e&x) :Z — Rand é&x)

L(t) == /d3x$(t,x) (2.13)

where the Lagrangian density £ (t,X) : Z; x) — R is defined by

1 1

L= —ZF“"F,JV = (E*-B?). (2.14)

In conjunction with this Lagrangian (density) the Euler-Lagrange equations

d 0¥ 0.7
Ixk I(IyAY) AV 2.15)

yield Maxwell’s equations 2.6.

2.2.2 Gauge freedom and gauge fixing

Since F = dA and d(dA) =0 for any A € F*E'? it follows that F = d(A +dA). Thus,

Maxwell’s equations are unchanged if one substitutes A with A’ such that
Ai=A+dL & A=A, + A & ¢ = j:a—k d A=AFVA (2.16)
= pi=ApEdy o =0 > oo =AFVA. .

The transformation A — A’ is what is meant by a gauge transformation of A yielding A’,
and to fix a gauge means to choose a particular potential A. It is useful to try and determine

what “part” of A is the gauge dependent part. To do this the three-vector notation seems
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2. Electrodynamics in an arbitrary gauge

best suited.
Any three-vector field v € yE> can be uniquely decomposed into so-called transverse

and longitudinal components vt and v, which satisfy
V=Vr+vL, V-vr =0, Vxv,=0. 2.17)

The magnetic field is always purely transverse due to the Maxwell equation V- B = 0. This
condition is satisfied identically if B =V x A, because the curl of a three-vector field is
necessarily transverse; V-V x v =0 Vv € yE>. Similarly the gradient of a function is
necessarily longitudinal; V x VA = 0 VA € FE>,

In the absence of any sources the other static Maxwell equation
V-E=0 (2.18)

known as Gauss’ law, implies that the electric field is also entirely transverse E = Er.

According to 2.12 we therefore have in total

Ar=—-Er, VxAr=B, —A.-V¢=E_ =0. (2.19)

The redundant gauge degrees of freedom are characterised entirely by the longitudinal vec-
tor potential and scalar potential, for which the only requirement is that the third equation
in 2.19 is satisfied. The gauge-invariant physical degrees of freedom are entirely transverse.
Thus, there are in fact only four physical degrees of freedom per space-time point rather
than eight.'> Gauss’ law is what in the terminology of Dirac (1964) is called a constraint.'*

Dirac (1964) masterfully crafted a way to construct a Hamiltonian version of a La-
grangian theory with constraints, and then quantise it. This approach constitutes the so-
called constrained Hamiltonian formalism. The first thing to do is to naively construct the

Hamiltonian on Z; ignoring the constraints to begin with. We have

I, := aﬁ, I = aﬁA” - (2.20)
aAu aA# A#:A#(AH’HH)
and the corresponding Hamiltonian
H:= /d%ysﬂ(z,x) = /d3x B (T +(V x A)?) — VAO-H] : 2.21)

Since . is independent of A the conjugate momentum I is identically zero, which poses

a problem for the entire construction. It means that the Lagrangian is singular, so we will

130ne might at first think that since At and A are three-vectors there should be six rather than four degrees of
freedom per space-time point. However, only two components of At are independent, because the transversality
condition implies that the Fourier transform At must lie in the plain orthogonal to its argument.

145ee Dirac (2003) for the more recent publication.
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2.2. Free electrodynamics

be unable to give our state space a symplectic form yielding a Hamiltonian system with
dynamics equivalent to the Euler-Lagrange equations.

Dirac’s strategy in facing this obstacle is as with Gauss’ law, to ignore the fact that
ITp = 0 at first, and only later impose it as a constraint. Thus, one first defines a naive
symplectic form on Z given in definition B.2.7, and one defines a naive Poisson bracket

structure on Z as in definition B.2.8. Then one considers the constraint functions
Iy, V-E=-V.II, (2.22)

which are required to vanish. The first one Ily represents a primary constraint resulting
immediately from the form of the Lagrangian. The second one, Gauss’ law, represents
a secondary constraint resulting from the equations of motion. The secondary constraint
arises if we require the first constraint to hold for all times. This is easily verified using
the naive Poisson bracket, which yields ITy = {ITy,H} = V -II. A constraint is said to be
first class, if its Poisson brackets with all other constraints are zero. We have only two
constraints and each is first class, because their Poisson bracket is zero. The constraint
surface is defined as the physical subspace of states for which the primary constraint holds
throughout all time i.e., Zcs C Z is such that ITp|z., = V - II|z., = 0.

Next one defines the total Hamiltonian H, which adds to H the primary constraint

function 1o multiplied by an arbitrary Lagrange multiplier A € F({t} x E?)
1
Hyy := /d3x [2 (I + (V x A)?) = VAq - TT+ )LHO] : (2.23)

The naive Poisson bracket now yields Ag = A, so according to Hy, the evolution of Ag is

completely arbitrary. One can therefore write Hy, = H + G where
1 .
H:= §/d3x (MP+(VxA?), G:= /d3x (Ao +Av-10). (2.24)

To write G in this form an integration by parts has been performed.!> Thus, we see that G

is the sum of the constraints each multiplied by arbitrary functions. In the original form
G— / dx (J'LHO —va -II) : (2.25)

G can in fact be identified as the the generator of gauge transformations. To see this let
A € F({t} x E®) and suppose the Lie group U(1), whose Lie algebra is iR (cf. B.3.3), has

right action on Z, given by

(AH T1,) - ™ = ((Ao _ ie*’“aoe‘“,Af+ie*“ajeil),nﬂ> L j=1,2,3. (2.26)

I5Recall that functions in F({t} x E3) are assumed to vanish at spatial infinity.
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2. Electrodynamics in an arbitrary gauge

The infinitesimal generator of this action is X i e xZ; defined by (cf. B.3.6)

. d .
XM (F) = oF ((Ao+ 59, AT —59,2),11,) | . (2.27)
5 s=0
Denoting the evaluation functions on Z; by ek for the A" and &% for the I1y,, and considering

them as coordinates on Z;, one obtains
Xy = A (t,x),  X*(e))=—-0A(t,x), X*@)=o0. (2.28)

The orbits of the U (1) right action on Z, are called gauge orbits. The function G (or equiv-
alently the vector field X) generates motion within the gauge orbits, while the function
H generates motion from orbit to orbit. The reduced phase space Zrps C Z is defined as
the quotient set Zcs /> under the equivalence relation >, which defines the gauge orbits (cf.
section A.3.5). Physical observables are functions on Zgrps, which are in one-to-one cor-
respondence with the gauge-invariant functions on Z. To fix a gauge means to choose a
particular representative potential A to work with. A gauge fixing criterion in the form of an
equation F(A) = 0 provides a third and final constraint to impose. Since according to Ho
the dynamics of A are completely arbitrary, having reached the Hamiltonian level one may
as well do away with A altogether. This does not completely fix the gauge since it only
takes us from eight to six (and not four) degrees of freedom per space-time point. There is
still some freedom in choosing the vector potential A. The remaining gauge freedom can
be fixed through some condition F(A) = 0.

Given the total Hamiltonian and our three constraints there are a number of ways in

which we might proceed towards the quantum theory!°:

1. We could try to equip the constraint surface with a suitable bracket structure before
imposing all of the constraints at the classical level, and then quantise the theory. This
is achieved using Dirac’s method of replacing Poisson brackets with so-called Dirac
brackets, which are consistent with the constraints. The Hamiltonian H together with
the Dirac brackets yield the correct equations of motion. Subsequently one can re-

place functions with operators and the Dirac brackets with commutators to obtain the

16 According to Dirac one can actually go further at the classical level by defining the so-called extended Hamil-
tonian (Dirac (1964)). The extended Hamiltonian Hex; adds to Ho in 2.23 the secondary constraint Gauss’ law
multiplied by a Lagrange multiplier. For us however, there isn’t really anything to be gained by considering
Hext-
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2.3. Electrodynamics with sources

quantum theory.!”

2. We could first quantise the theory by replacing Poisson brackets with commutators on
some Hilbert space, and then impose the constraints at the quantum level to modify
the commutators and obtain the physical space of quantum states as a subspace of the

original Hilbert space.

3. We could use some mixture of the above two approaches and impose some constraints
at the classical level, then quantise the theory, and impose the rest of the constraints

at the quantum level.

These three methods should all give the same results, so which is used is really a matter
of personal preference. In the next section I will use the first of the above methods to
obtain a quantum description of nonrelativistic electrodynamics with sources. I will return

to methods 2 and 3 later on in chapter 3.

2.3 Electrodynamics with sources

I will now consider the case of a single electron —e, possibly bound externally, interacting
with the electromagnetic field. As in the previous section the first job will be to find a
Lagrangian yielding the right equations of motion. For this purpose there is a standard
Lagrangian, which will do fine, but it is not gauge-invariant. Following Woolley (1999) 1
will demonstrate how a gauge-invariant Lagrangian can be constructed. This involves using
the non-unique Green’s function for the divergence operator on y E3, denoted g. By writing
the total vector potential in terms of its gauge-invariant transverse part the gauge will be
fixed up to a choice of g, which then carries the entire gauge freedom of the theory. Fixing
the gauge therefore amounts to choosing a particular g, which can be done at the level of
the quantum Hamiltonian. Consequently, this method offers a good way of determining the

implications of gauge freedom for the quantum theory.

2.3.1 Deriving the equations of motion with sources

The state space for the particle is ¥ := (E'*)? and that of the electromagnetic field is Z as
defined previously. The total space for the composite system is therefore Y x Z. In terms of
proper time 72 := (x°)? — x? the particle can be described in terms of coordinates r* (1) and
(7). Within a fixed frame of reference with time coordinate ¢ the particle space becomes
Y; := ({t} x E?)?. The particle can then be described by three-vectors r(z) and (¢). The

equations of motion to be found are the inhomogeneous Maxwell equations supplemented

7There is another method equivalent to Dirac’s, which is attributed to Jackiw (1993), but which I will not discuss.
The basics of this method and a demonstration of its equivalence to Dirac’s method can be found in Jackiw
(1993), Jackiw (1995) and Muller-Kirsten (2006).
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2. Electrodynamics in an arbitrary gauge

with the Lorentz force law

d
dF =0  d+F =xj, —equ:d—{Z_ (2.30)

where u, p, E and 7 are all defined in 2.1, and i denotes the interior product (cf. B.28). Two
of the Maxwell equations are now inhomogeneous due to the source term j = j,dx" called
the current, which appears on the right-hand-side. The Hodge star operation produces a
three-form from the one-form j. In components the inhomogeneous equations above take

the form
QuF“V =j". (2.31)

The components p := jo and J := (j', j2, j3) make up the charge density and the current
density respectively. The Lagrangian L(t) : Y; X Z, — R for the composite system is the sum
of three terms, Lp for the particle, L for the field and L; for their interaction;

1
L(t) == —my ' — / dx j* A, — i / dxFyyF* = Lp+ L+ L. (2.32)

This Lagrangian together with the Euler Lagrange equations yields the correct equations of
motion 2.30. I am primarily interested in the nonrelativistic limit of a particle that might be
bound in a potential V. Expanding —my ' as —my ! = —m+ imi? + Imi* + .. ~ Imi?
and adding in the external potential V yields the nonrelativistic Lagrangian, which can be

written

L(t) = —mi* —V(x) — / d*x (pAg—J-A)+ % / d’x (E* —B?). (2.33)

2.3.2 Gauge freedom and the Lagrangian

Noether’s theorem relates symmetries of a variational problem involving an action defined
in terms of a Lagrangian, with conservation laws (see, for example, Hassani (1999)). The
four-current j is in fact a conserved Noether current associated with the global gauge sym-
metry. By “global” gauge symmetry I mean the gauge symmetry for which the gauge func-
tion A is independent of space-time points (¢,x).'® The associated conservation law is the

conservation of electric charge, which can be locally expressed through the continuity equa-

18More precisely, if we were dealing with a matter field as in chapter 3, we could say that it is Noether’s first
theorem that relates the global gauge symmetry of electrodynamics with the conserved current j. Noether’s
second theorem relates local gauge symmetry with the existence of constraints, by proving that if there exists a
local gauge symmetry then the Euler-Lagrange equations are not independent. This means that the Lagrangian
must be singular. At this stage however, we are just dealing with a single classical electron and the material
variables are not directly effected by the gauge transformation. Thus, in the present context we actually have to
assume that the continuity equation holds, but this is fine, because we are assuming Maxwell’s equations hold.
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2.3. Electrodynamics with sources

tion

d
it =5 +V-J=0. (2.34)

where p and J are called the charge density and the current density respectively. One can

then define polarisation and magnetisation fields P and M by
p=-V-P, J=P+VxM, (2.35)

in terms of which the charge and current densities satisfy 2.34 identically. These definitions

do not fix P and M uniquely. If they were to be replaced with P’ and M’ defined by
P:=P+VxU M:=M-U-VU,, (2.36)

where U and U are arbitrary fields, then the charge and current densities would remain
unchanged. Notice that the difference M’ — M has the form of an electric field —U — VU,
defined in terms of a potential U = (Up,U). The difference P’ — P has the form of the
corresponding magnetic field V x U. Since the potential U is only unique up to a gauge
transformation, we appear to have introduced an interesting hierarchy of arbitrary fields
starting from nothing but the continuity equation 2.34.

One can solve the first equation in 2.35 to give
P(x) = — / a*x' g(x,x')p(x) (2.37)
where g(x,x’) is the Green’s function for the divergence operator defined by
V.-g(x,x')=8(x—x). (2.38)

While the longitudinal component of the Green’s function g is fixed according to 2.38 by

1
/
X,X)=—-V—— 2.39
gL( ) ) 47T’X—X"7 ( )
its transverse component gr is essentially arbitrary, which expresses the arbitrariness of
P. Since the magnetisation can also be expressed in terms of p, J and g, the freedom in
choosing P and M is entirely equivalent to the freedom in choosing gr.

For a single electron —e, the charge and current densities can be written
p(t,x) =—ed(x—r), J(t,x)=—erd(x—r). (2.40)

in conjunction with which 2.35 gives purely mathematical definitions of polarisation and
magnetisation fields. In order to make contact with the conventional physical notions of

multipolar polarisation and magnetisation fields that are associated with a globally neutral
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2. Electrodynamics in an arbitrary gauge

system of charges like a hydrogan atom, one must include the contributions of all charges
within the densities in 2.40. If the (relatively heavy) nucleus of the hydrogen atom for
example, is assumed to be fixed at the origin 0, one simply adds a term ed(x) to p in 2.40.
The multipolar polarisation and magnetisation fields are then obtained by making a specific
choice for the Green’s function g. I postpone giving the explicit expression for this Green’s
function until section 6.1.2 (equation 6.6).

What does any of the above have to do with the Lagrangian? Well the Lagrangian 2.33
is not gauge-invariant, because Lp and Ly are gauge-invariant, while L; isn’t. To make the
Lagrangian gauge-invariant one must add to it a term involving P. If one transforms the
potential A — A +dA =: A’, then with some integration by parts along with the use of 2.34

one can show that the Lagrangian L transforms into L’ such that
l d 3
L :L+E d’xpA. (2.41)

Although L' is certainly equivalent to L, it is clearly not the same as L, so L is not gauge-

invariant. On the other hand the Lagrangian
d 3
Lar ::L——/d xA-P (2.42)
dt
is gauge-invariant, for now the same gauge transformation produces a Lagrangian
/ d 3 d 3
LGI:L—E/d‘xA-P—i-%/dx?L(p—i—V-P):LGI (2.43)

where the first equality follows after an integration by parts, and the second from the defi-
nition of P in 2.35.

2.3.3 Gauge fixing and quantisation

The Hamiltonians used in nonrelativistic electromagnetism are usually obtained by starting
with a Lagrangian in the form of L in 2.33. Since such a Lagrangian is not gauge-invariant
a particular potential is implicitly selected to work with. In other words the gauge is fixed
from the outset and the Lagrangian used belongs to a specific gauge. A formulation of
electrodynamics, which is sufficiently general so as to include all Lagrangians of this type

can be constructed by starting with L, and employing the gauge fixing condition
/ *x' g(x',x)-A(X') =0, (2.44)

which makes the additional term in 2.42 vanish. Although this condition does not involve
Ay, as in the free case the dynamics of Ay are completely arbitrary, so that it naturally drops

out of the formalism altogether. A set of vector potentials satisfying 2.44 identically, are
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those such that
A(X) = Ar(x) +V / X g(x,x) - Ar(x) = Ar(x) + Ar (x). (2.45)

Thus, we can use the components of the gauge-invariant transverse vector potential to spec-
ify any total vector potential in the field configuration space F({t} x E?)? that satisfy 2.44.
Notice that the freedom in choosing gy implies a concurrent freedom in choosing Ap, but
this is necessarily a gauge freedom. This means that the gauge can be specified completely
by choosing a particular transverse Green’s function gr. Although at the quantum level At
will be operator-valued, g won’t be. We will therefore obtain a Hamiltonian written explic-
itly in terms of the gauge-invariant potential A, but in an arbitrary gauge controlled by the
“classical” object g.

Starting with the Lagrangian L we can construct the total Hamiltonian, symplectic form
and Poisson bracket structure in the usual way (cf. 2.23, B.2.7 and B.2.8 respectively). The
total Hamiltonian can be written H, = H + G where

H: (p+eA(r)? +V(r)+ % /d3x (TI+(V x A)?) (2.46)

1
- 2m
and G is the following generator of gauge transformations.

G::/d3x (?LH0+7L[p+V-H]>. (2.47)

In total there are three constraint functions ITy, p —V-E = p + V-II and F(A), but as I
remarked earlier the time evolution of Ay is completely arbitrary, so it can be removed from
the formalism completely. This leaves us with Gauss’ law and a gauge fixing condition

F(A) = 0 as the only two constraints. The generator G is then simply Gauss’ law
G:/d3x7L(p+v-II), (2.48)

which generates gauge transformations of the vector potential A.

To construct a Lie algebraic bracket structure, which is consistent with the constraints
and the equations of motion we can use Dirac’s method 1, which was briefly explained at
the end of section 2.2.2. Fixing the gauge according to 2.44 means we have two constraint

functions
Ci:=p+V-II, G:= /dSX/g(XI7X) -A(X') (2.49)

whose Poisson brackets C;j(x,x) := {C;(x),C;(x")} form a matrix with symplectic inverse

Cxx) = 5(x—x) ( _01 (1) ) . (2.50)
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The equal-time Dirac bracket of functions F,G € F(Y; x Z;) is defined by
{F.G}p:={F,G} — / d*x / &’x' {F,Ci(x)}C;;' (x,x){C;(x),G}. (2.51)

For a point particle with canonical coordinates r and p, it is straightforward to check that

the nonzero Dirac brackets of the dynamical variables are as follows

{riij}D = 0;j, (2.52a)
. 0
{A'(x),I1;(x)}p = 8;6(x—x') + ﬁgj(x’,x), (2.52b)
0
{p[,HJ(X)}D = eﬁgj(x,r). (252C)

If the Coulomb gauge gt = 0 is chosen then A = A, which along with 2.39 yields

9? 1
t oxiox anx—x|
ok e
 9ridxi 4m|x —r|

{AT(x),IL;(x) }p = §;;6(x — X)) = 55(x—x’), (2.53a)

{pi.11;(x)}p = (2.53b)
where 55(X —x/) is called the transverse delta function.
Rather than setting gt = 0, we are now free, having constructed the Dirac brackets, to

implement our constraints C; = C, = 0. The first constraint C; implies that
II, = —-E. =P (2.54)

up to a constant vector. The second constraint C, implies that A can be written as in 2.45. In
view of the fact that I = —E, the transverse component of IT must be —Er. In the Coulomb
gauge II is entirely transverse; I = IIt = —Er, and one has the transverse canonical Dirac

bracket relation
{Ari(x),IIj(x)}p = & (x —X). (2.55)

For this reason Ilt can be viewed as the momentum conjugate to the fransverse vector
potential. The field that satisfies the same Dirac bracket relations as It in all gauges (in-
cluding the Coulomb gauge) will henceforth be denoted using the same symbol Ilr, and it
is defined as

HT = —DT = —ET —PT. (256)

This is nothing but (the negative of) the transverse component of the electric displacement
field D :=E+P.
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The Hamiltonian 2.46 can be written

H=H _ (p+e [AT(r)+V/d3x’g(x’,r) 'AT(X’)]>2+V(1') + Vsels

2m
1
-, / dx [(Ty +Pr)? + (V x Ar)?] 2.57)
where
1 1
Vi := 5 / d*xEL(x)* = 3 / d*xPp(x)? (2.58)
represents the divergent Coulomb self-energy of the electron, due to its own static longitu-
dinal electric field. For a point particle p(x) = —ed(x —r) one has
e [ 2
Vselt = E/d ng(X7r) . (2.59)

The Dirac bracket {p;,IIt(x)}p vanishes identically, so equation 2.57 gives a Hamil-
tonian in terms of transverse fields that are in involution with the particle variables r and p
(with respect to the Dirac bracket). The vector potential At belongs to the Coulomb gauge,
but the Hamiltonian itself has been expressed in an arbitrary gauge, which is determined by
gr. The Coulomb gauge Hamiltonian is obtained by setting gt = 0. The conjugate momenta

can be identified in the gauge g as
p=mi—e (AT(r) - V/d3x’g(x’,r) -AT(X’)> : (2.60)

Thus, as in the example in section 1.3 both p and Ilt are manifestly gauge-dependent,
while the velocities i and At = —Et are gauge-invariant. The Hamiltonian in any gauge

can be written

H = Hy + Vieir + Hrr = Hp + Hpwm,
. 1 -2 . 1 3 2 2 . 1 3 2 2
HA.:EWLI' +V(I‘), HTF-:E/dx(ETJFB)a HEMZE/dx(E JrB)
(2.61)

The term Hy represents the electron’s energy, while the terms Htp and Hgy represent the en-
ergy of the transverse electromagnetic field and the foral electromagnetic field respectively.
As usual the Hamiltonian for the system represents the total energy as the sum of energies
of the subsystems, which can be naturally defined in terms of gauge invariant observables.
To quantise the theory we will need to define the so-called normal variables (Cohen-
Tannoudji et al. (1997)). This is done using the spatial Fourier transform § : yE*> — xE?
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defined for v € yE> by

v(k) = [3(v)] (k) := (;703 / Prv(x)e . (2.62)

Since any transverse vy € yE satisfies
k-vr(k) =0, (2.63)

the Fourier transform vt can be written
vr(k) = A;Zex(k)vm (k) (2.64)

where {e; (k),e>(k),k} is an orthogonal triad of unit three-vectors. In other words the vector
vr(K) lies in the plane orthogonal to k, within which {e; (k),e,(k)} denotes an orthogonal
basis. The normal variable ¢ (k) is defined as

ak)= ) e (kjoy(k), oy(k):= \/g(wAT,/l (k)+iHT,7L(k)> (2.65)

A=12

where @ := |Kk|. The bosonic Dirac bracket relation
{on (K), 0, (K) }p = =828 (k —K), (2.66)

follows from 2.55 and the fact that the canonical fields At and Il are real. It is common
to consider the fields as being contained within a cube of volume V = L3, and as satisfying
periodic boundary conditions at the sides of the cube. One can let L go to infinity at the end
of the calculation of some physical prediction. The components of the vector k then take
discrete values k. = 27tn,, /L, nj € Z. This allows one to substitute Fourier integrals

with discrete sums as follows

1 1
Pk — =Y. (2.67)
(27)3 / v Zk:

Quantities dependent on k are subsequently labelled with a discrete index .

We can now quantise the theory by firstly replacing the classical state space Y X Z|cs
with some suitable Hilbert space J{, by secondly replacing the classical canonical variables
in F(Y x Z)|cs with canonical operators in £(H), and by finally replacing the Dirac bracket
{-,-}p on F(Y x Z)|g with the commutator —i[-,-] on £(H)?. To carry out this procedure
it is actually the normal variables which are replaced with operators satisfying the com-

mutation relation of bosonic creation and annihilation operators; 04, — axy, 04, — ab
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with
@, at] = Sau G- (2.68)

We can therefore take the Hilbert space for the canonical field degrees of freedom to be
the bosonic Fock space F (L*(R?,C?)), built out of the single particle space L*(R?, C?) =
L*(R*) @ L*(R?) = L*(R3) ® C? (cf. section A.3.6). Two lots of L?(R?) are required to cater
for the two values of A, which is now taken to label the polarisation state of the photon. The
single particle eigenstate |[kA) of the number operator a; 29Ky 18 the state of one photon with
definite momentum k and polarisation A. As operators the canonical fields in real space At

and It support the following mode expansions

Ar(x) =) ge (abe—ik‘x +akaeik'x) ;
kA

Iy (x) = iZa)gekk (a;le_"k‘x — ak;teik'x) (2.69)
kA
where
= ! (2.70)
g: TR .

The electron’s canonical Hilbert space can be taken to be L?(R?) as usual, which means
the total Hilbert space of the composite electron-field system is H := L*(R*) @ Fp (L*(R?,C?)).
Since the entire construction is defined in terms of the canonical degrees of freedom, as with
the example in section 1.3, the quantum mechanical subsystems are manifestly gauge de-
pendent and generally physically distinct for each different choice of gr. The quantum

Hamiltonian consists of three gauge dependent components

H=H:=Hjys+Hr+YV,

2 1
HA = |:21:n +V(r)+VSelf+2/d3XPT(X)2:| ®I

2

v ::%[p®l]-A(r)+2e—mA(r)2+/d3x Pr 1] [[® 1]

Hp :=I® [l/d% (H%+(V><AT)2)] =I/® |} o <abak&+l> (2.71)
2 o 2
where
A(r) == Ar(r) + Vs / Brg(x,r) - Ar(x). 2.72)

Since r is an electronic operator in £(L?(R3)), any products of the field operators ak;t,a:;l

+ik-r

with functions of r such as the plane wave terms e in 2.69, must be interpreted as tensor

products. The operators At (r) and ITr(r) therefore act nontrivially in the entire composite
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2. Electrodynamics in an arbitrary gauge

space . From here on I will employ the standard practice of omitting tensor products with
the identity, so for example, Hy ® I will be written simply Hy, and “interaction” terms like
[Pt ®1] - [I @ ITt] will be written simply Pr - ITr.

I will end this section with a note of caution regarding the Hamiltonian 2.71, which has
been obtained using the somewhat ad hoc ideas of canonical quantisation. Having crudely
supplanted classical structure with quantum structure we might anticipate having created
certain problems. In particular the Hamiltonian is certain to require regularisation through
momentum cut-offs in order that it is well defined and self-adjoint on some domain in J{.
The divergences associated with relativistic modes are actually also found at the classical
level, where they arise due to difficulties with the notion of a point particle. In any case,
the spectral properties of the Coulomb gauge Hamiltonian with cut-offs have been studied
thoroughly, and in particular it is known that a ground state exists (see Bach (2001), Fréhlich
et al. (2008), Sigal (2009), Dimassi & Guillot (2003), and references therein). In what
follows throughout this thesis I will assume that similar results hold in gauges other than the
Coulomb gauge, and when discussing the physical content of the theory developed so far, I
will rely heavily on the formal ideas of nonrelativistic quantum field theory predominant in

the physics literature (see for example, Cohen-Tannoudji ef al. (1997)).

2.4 Summary and discussion

We have arrived at an arbitrary gauge quantum theory of a bound electron interacting with
electromagnetic radiation, and along the way encountered the photon concept. A com-
mon impression of photons is that they are unique particle-like globules of radiant energy.
However, we have seen that photons are defined using gauge dependent and physically am-
biguous canonical degrees of freedom. There is in fact an infinitude of physically distinct
“photons”, just as there is an infinitude of physically distinct “bound electrons”, whenever
these things are defined in terms of canonical degrees of freedom.

Only in the case of free quantum electrodynamics can photons be uniquely defined. This
is possible, because in free space the electric and magnetic fields are entirely transverse,
and coincide with the transverse canonical field operators i.e., in free space E = Er = —Ily
and B =V x Ar. Similarly, there is no ambiguity in defining the non-interacting quantum
mechanical electron for which p = mi. However, while the non-interacting electron is
relatively uncontentious, the notion of photon has to be handled with care even in free
space. As Lamb (1995) put it;

“photons cannot be localized in any meaningful manner, and they do not be-

have at all like particles.”
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CHAPTER 3

Quantum-mechanical gauge fixing and QED

In this chapter I will adapt the methods used in chapter 2, to describe the relativistic Dirac
field interacting with electromagnetic radiation. The results of section 3.3 of this chapter
are summarised in the paper Stokes (2012). The main new result presented in this chapter
is the arbitrary gauge Hamiltonian to be found in 3.96.

In the late 1920s Dirac was unhappy with the viewpoint that the Klein-Gordon equation
was the correct relativistic version of the wave-mechanical Schrodinger equation, because
it suffered from quite severe interpretational problems. He viewed these problems as symp-
toms of its second order nature and so sought a relativistic wave equation, which was first
order in time. The Dirac equation was the fruit of this labour. While it immediately solves
some of the problems associated with the Klein-Gordon equation, the Dirac equation still
incurs problematic negative-energy solutions. This problem is seen to dissolve if the Dirac
wavefunction is treated as a quantum field. The interacting Dirac-Maxwell quantum system
is the system of study in quantum electrodynamics.

In the last chapter I quantised the composite charge-electromagnetic system, by treat-
ing the material degrees of freedom as those of a single wave-mechanical particle. In this

chapter I will treat the material degrees of freedom using the quantised Dirac field instead.'®

190ne can also describe the nonrelativistic theory of chapter 2 in purely field-theoretic language by way of the
Schrodinger matter field (Babiker et al. (1973)). In practice this is quite common, and can be useful in de-
scribing many-body systems such as complex atoms and molecules. However, the total number of electrons
is necessarily conserved in such a theory (in contrast to the relativistic theory), because the electronic number
operator commutes with the Hamiltonian (Cohen-Tannoudji er al. (1997)). Thus, if one is only interested in
describing a single electron system there is no need to use the field-theoretic description, which reduces to the
ordinary wave-mechanical description when restricted to the one-electron subspace.
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3. Quantum-mechanical gauge fixing and QED

3.1 The Dirac field

I begin by briefly reviewing the free Dirac field and its quantisation. More detailed accounts
can be found in a number of textbooks (see for example Thaller (1992), Peskin & Schroeder
(1995), Ryder (1996)). Afterwards I will add an external Coulomb potential appropriate for
the description of bound systems of charges.

3.1.1 The free Dirac field
Consider relativistic wavefunctions y defined on Minkowski space-time A.3.5. Taking the

relativistic energy-momentum relation 2.5 and making the naive substitutions

p— —iV, E—>i§t (3.1)

one immediately arrives at the Klein-Gordon equation
(O+m*)y =0, O:=3,d". (3.2)

Since this second order equation doesn’t work very well Dirac decided to “linearise” it by
first taking the square root of 2.5, and only then making the substitutions 3.1. He assumed
that the required linear version of 2.5 took the natural form E = ¢ - p + fm. Upon using

3.1, the Dirac equation
W =hpy, hp:=—ia-V+Pm. (3.3)

follows. For the idea to make sense we need to get back 2.5, which means the ¢; and 8 have

to satisfy

{0} =268, {o,B}=0, p*=1. (3.4)

where {-,-} denotes the anti-commutator. It follows immediately from this, that the ; and
B must be at least 4 x 4 matrices, and therefore that the Dirac wavefunctions are (at least)
C*-valued. These wavefunctions are actually called Dirac spinors, and they quite naturally

support a representation of the Lorentz group. The standard representation of the Dirac

ﬁ— 1 0 o — 0 O; (35)
“\No -1/’ “\lao 0 '

where [ is the 2 x 2 identity matrix and the Pauli matrices o; are defined in B.79. Defining

matrices is

the y-matrices by

Y=B, 7Y=nw, (3.6)
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3.1. The Dirac field

the Dirac equation 3.3 can be written
(iYdy —m)y =0. 3.7

In actual fact the defining property of the y-matrices can be taken as the (Clifford) algebraic

relation

{r, 7'} =2n"". (3.8)

where 1 is defined in A.3.5. The relations 3.4 along with 3.5 and 3.6 merely constitute a
particular manifestation of 3.8. The Dirac equation 3.7 will also be satisfied if we transform

the y-matrices and wavefunctions using a similarity transformation R as

Y* =RY'R™', ¢ =Ry. (39)

A useful second representation of the y-matrices is the Weyl representation, which is related

to the standard representation via the matrix

R LT 1 (3.10)
Va1 -1 ) '

where I denotes the 2 x 2 identity matrix. In the Weyl representation the y-matrices take the

0 I . 0 O;
Yoz(l 0>, Vz(_ai o)' G.11)

and the Dirac spinors can be viewed as being composed of left and right Weyl spinors (cf.

B.101 and B.110);
v = < v ) (3.12)
YR

Within this representation the effect of a Lorentz transformation is particularly simple with

form

the left and right Weyl spinors individually transforming according to B.110. An isomorphic
representation of the Lie algebra of the Lorentz group so(1,3) given by the relations B.96

is given in terms of the y-matrices by

1 ; i o 0O 1 i 1 O; 0
li<—>ZiZ:*[' Jyt = —— y bi = == )
L&YY 2( 0 6i> © K= o0t 2( 0 _Gi>

(3.13)

which is clearly just the natural adaptation of the representations B.100 on C2, to the C*-

valued wavefunctions in 3.12. The representation D : Ll — GL(Ly(E'?,C*)) of a general
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3. Quantum-mechanical gauge fixing and QED

(61+¢B)

Lorentz transformation A = &% (cf. B.3.5) on the Dirac spinor ¥ is given through

exponentiation of 3.13 (cf. B.llO).ZO It is constructed out of two maps, D: L1 — C4,
which is a representation in the sense of B.3.7, and D : Ll — GL(L,(E"?)), which is a
representation in the sense of B.3.10. Letting {E,} denote the canonical basis in C* and

writing ¥ = Y“E,, we have that under a Lorentz transformation

A

W(x) = DA)W() = DA WA %) = [DAE] y(A %)
_ eﬁ;(92i+¢1<z)w(e—ﬁ'(91+¢b)x) (3.14)

where the representation D is evidently defined by D(A)w®(x) := w*(A~'x).
Often (see for example Peskin & Schroeder (1995)), the generators of so(1,3) in B.96
are combined into a set of anti-symmetric generators /*#, o, = 0,1,2,3 for which I

choose the convention
0= —jgliky, 0= —jp,. (3.15)
These definitions imply that
[0OB orV] = i(nBHe®Y — norgBY _ nB>goar 4 noveBuy, (3.16)
Defining now the anti-symmetric generators S*? by
S“ﬁ:—f ¥ =—5 l—éaﬁ)y“yﬁ (3.17)
it follows that
St = —igpx,  S%=—ix;, [S%P SHV] = (0P ), (3.18)
and that the representation defined in 3.13 is simply
0oP 5 576, (3.19)
We can therefore express a Lorentz transformation as
A= MOTEOD) — pioasl? gy o gy, €y = O, w9 =0R,  (3.20)
so that according to 3.14 we obtain the representation

DA (x) = D(A)y(A'x) = ei®as5™ (e i0apt™ ). (3.21)

2013 B.3.4 I use the symbol p to denote representations in keeping with the common practice in some of the maths
literature. Here I adopt the symbol D instead as this seems to be the convention used throughout the physics
literature.
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3.1. The Dirac field

It is easy to verify using [y, %] = (¢2F )4 y¥ that
DY A)D(A) = ALy, (3.22)

It follows from this that the Dirac equation is covariant under a Lorentz transformation

x—x = Ax;

iy — )y’ () = [P (A~) 0y —m] D(A)W(x)
i[DA)Y' D™ (A)3y — DAYD ™ (A)m] D(A) ()

D(A)i[y" oy —m] y(x) =0 (3.23)

where I have used 9}, = (9x¥/dx'")dy = (A™1)}0y.
The scalar quantity w'y is not a Lorentz scalar meaning that it isn’t covariant. For this

reason one defines the relativistic adjoint ¥ by

vi=y'y, (3.24)

which can be used to define the covariant scalar Y. One can define a covariant conserved

current of the Dirac field by

P =9y = vy yiay) = (p.j), (3.25)

and it is easy to verify using 3.7 that j* does indeed satisfy d,, j* = 0.
To understand the significance of the three-current j it is instructive to look at the time
evolution of the standard position operator r(t) (Thaller (1992)).2! According to 3.3 we

have
r(t) = —i[r(t),hp| = (1), (3.26)

which means j(t) = y'i(t)y in direct analogy with the nonrelativistic theory. However, in
contrast to the nonrelativistic theory mi # p with p = —iV denoting the canonical momen-
tum. This is perhaps not surprising, because in relativity the proper momentum p is related
to the velocity by 2.3, which along with 2.5 implies i = v = p/E. We might therefore ex-
pect the velocity operator to be p/hp. This “classical-type” velocity is related physically to

the operator I = & in the following simple way. According to 3.3

&(t) = 2ihpe*v! <a(0) — :) , (3.27)
D

21The clarifier “standard” is necessary here, because the position observable is somewhat contentious within the
relativistic quantum mechanical theory described by the Dirac equation. According to this theory, it is far from
clear that localised single particles exist at all. As such there are several candidates for operators that could each
reasonably be called “position” operators (Thaller (1992)).
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3. Quantum-mechanical gauge fixing and QED

which upon integrating yields

i(r) = a(r) = £ 4 g2itr (a(o) - }5)) (3.28)
meaning that the velocity oscillates about the classical velocity p/hp. This peculiar be-
haviour is related to the existence of negative energy solutions, and to the lack of a satis-
factory position operator within the relativistic theory. We can nevertheless go ahead and
define the current j = w¥ay. Moreover, in a way analogous to the nonrelativistic theory,
when we couple the Dirac field to the Maxwell field the canonical momentum p is replaced

using a minimal coupling prescription.

Solutions of the free Dirac equation

To quantise the theory we need to find solutions of the Dirac equation. This is most easily
done in momentum space. The Fourier transform of the Dirac spinor y = y*E,, is defined

componentwise as in 2.62;

1

/@y

The Dirac Hamiltonian Ap (in the standard representation) is in momentum space given by

v (p) == [FY*)(p) = [ @y e, (3.29)

Hy(p) :=FhpT '=a-p+pm, (3.30)

This just means that acting on momentum spinors the operator p; multiplies by the i’th
component of the vector p, so that we simply need to make the familiar substitution —iV —

p in 3.3. If we square hp(p) and use the relations 3.4 then we see that
hp(p)? = (p* +m?)I (3.31)

where for convenience I have introduced the notation p := |p|, which mustn’t be confused
with p? = pup* sometimes used for the four-momentum. It follows from 3.31 that ip(p)

possesses two energy eigenvalues

E = +¢(p) := £/ p* +m?. (3.32)

Since we expect there to be four eigenspinors for each value of p, the eigenspinors must be
degenerate. We need therefore, to find an operator commuting with 4p(p), which we can

use to label the degenerate eigenspinors. A suitable choice is the helicity operator

h(p) :=i%-p (3.33)
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3.1. The Dirac field

with ¥ := (X1,X,,X3) defined in 3.13. The four eigenspinors we seek are given in numerous
textbooks (see for example Sakurai (1967), Peskin & Schroeder (1995), Ryder (1996), Tic-
ciati (2008)). They are usually found by boosting the trivial rest frame solutions for which
p = 0 to a general frame (Peskin & Schroeder (1995), Ryder (1996), Ticciati (2008)). I will
use Thaller (1992) to simply state general solutions for which it can be checked easily that
the Dirac equation is satisfied. In total there are two mutually degenerate positive energy
solutions u’(p), r = +,—, and two mutually degenerate negative energy solutions v'(p).
Both positive and negative energy sets consist of simultaneous eigenspinors of energy and
helicity, with the label » = 4, — corresponding to the two distinct eigenvalues of helicity
+p/2. Explicitly the solutions are (Thaller (1992))

h
uwt(p) = ( jf; ZE ) (3.34a)
vE(p) = ( q;“—h}f ) (3.34b)
+

1 px_ipy 1 Pz:—D
ho(p)i= ——— . ho(p)i= ———— (3.35)
+®) 2p(p—p:) ( p:—p > ®) 2p(p—p:) ( px+ipy >
as(p) =4/ <1im>. (3.36)

i (p)=u"(p), 7 (p)=r"(p)Y. (3.37)

With the appropriate normalisation, the solutions together with their adjoints will satisfy the

normalisation conditions

—r

@' (p)u’ (p) =2md,y, ¥ (P)V (p)=—2md,y, ¥ (p)u"(p)=a"(p)V (p)=0, (3.382)
' (p)"u” (p) =V (p)"v" (p) =2e(p)S,», ' (p)"v"' (—p) =V (—p)"u” (p) = 0. (3.38b)

Useful projection operators onto the positive and negative subspaces can be defined as (Pe-
skin & Schroeder (1995), Ryder (1996))

P = r:g,i”r(P)ﬁr(P) =YWpu+m, P_= r:z;:vr(p)ﬁr(p) =—Y*pu+m.  (3.39)
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3. Quantum-mechanical gauge fixing and QED

Quantisation

The fields v and ¥ can be expanded in plane wave components as follows (Peskin &
Schroeder (1995), Ryder (1996), Ticciati (2008))

1 1 r —ip-X * r ip-x
V)= s [0 s L e e P b ] G
- 1 1 * ~r ip-x =r —ip-X
V9= s [ €0 ey, B[ @T @ b TR ] G

In the quantised theory these fields along with the a, and b, are interpreted as operators. To
quantise the theory we need to impose specific commutation or anti-commutation relations
between the y and their conjugates, or between the a, and b, and their conjugates. To find
suitable conjugate momenta we need a Lagrangian (density) whose equation of motion is

the Dirac equation. The classical free Dirac Lagrangian density can be taken simply as
_ <~
Lp ="y —m)y (3.41)

where in the classical setting the y are square-integrable C*-valued wavefunctions and it
is understood that the derivative “acts in both directions” on the (classical) field y and its

adjoint ;

< 1
l[/laulllz = 5 (llllaﬂlllz—(aullfl)lllz). (3.42)
According to 3.41 the momentum 7 conjugate to y is

07 ;

In order to get an energy operator # = wy — %, which is bounded from below, we must
impose anti-commutation relations between the a, and b, and their conjugates. We therefore
demand that

{ar(p),a(p')} = {b-(p), D} (p)} = (27)*8. 8 (p—P),
{ar(p)aar’(p,)} = {br(p)vbr’(p,)} =0. (3.44)

We interpret the a'(p) and a,(r) as creation and annihilation operators of electrons with
momentum p and helicity labelled by r. The b}(p) and b,(r) are creation and annihila-
tion operators of positrons, the anti-particles of electrons. The Hilbert space I of the free
Dirac field can therefore be taken as the tensor product of fermionic Fock spaces built out
of L2(R3,C*); H = Fp(L*(R3,C*)) @ Fr(L*(R3,C*)) (cf. A.3.6).2> The field y(x) at a

22The single particle space for both electrons and positrons is in fact a subspace of LZ(R37 (C4) on which Ap is
self-adjoint.
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3.1. The Dirac field
specific point X is clearly a superposition of positron and electron terms. Using 3.39, 3.40
and 3.44, the fields w and y are found to satisfy (Ryder (1996))
{v*x), v (x)} = 8P §(x —x). (3.45)
The conserved four-current operator such that d, j# = 0 is defined as
M= utyi=(pj), p=e:yy:, j=c:ylay: (3.46)

with e the elementary charge. The notation : - : indicates that normal-ordering of the creation
and annihilation operators is to be carried out once the fields ¥ and y have been multiplied
out in terms of these operators. The four-current is related to the operator representing the

total charge by

0=~ [dxp—- a7 / LY [ @ar(p) B @IP)]. G4

The Hamiltonian is found to be

1
(27)?

H= [ & = [@xvihoy =5 [ e Y [a] 0)ar(p)+0i()bB)].

(3.48)

and the total momentum operator is as one would expect, given by 3.48 with the energy

€(p) replaced by p itself.

3.1.2 The Dirac field with an external Coulomb potential

A complete discussion of the Dirac equation in the presence of an external Coulomb po-
tential would be too lengthy for me to give. I will review only the elements necessary to

proceed with quantisation. The Dirac equation with an attractive single proton nucleus is
&2

x|

In this situation the spectrum of A}, has a discrete component corresponding to bound

i =hpy, hp:=—iet-V+Bm+ (3.49)

states with energy between 0 and m. The energies within the continuous spectrum remain
te(p) =ze(p) = i\/lm. The eigenspinors of the Dirac operator %}, are labelled by
the quantum numbers j = %,%,..., mj=—j,—j+1,...j—1,jand x; = +=(j+ %), which
correspond to angular momentum operators commuting with /}, (Thaller (1992)). It is con-
venient to collect these quantum numbers into a single label 7. As well as 7 there is also
the principal quantum number n labelling the bound states. One can divide the single par-
ticle space L*(R3,C*) into three components corresponding to the positive and negative,

discrete and continuous spectrum of A}, and one can find corresponding eigenspinors of A,
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3. Quantum-mechanical gauge fixing and QED

satisfying

hpu®(x,p) = €(p)u*(x,p),  hpv'(x,p) = —€(p)v*(x.p),  hpy, (x) = Ouy; (x)

(3.50)
together with the normalisation conditions
[ xop) (5, p) = [ @i x ) (x,p) = 67 8(p— )
/ Pyt (x) Y (x) = 8,067 (3.51)

with the integrals of all other combinations of an adjoint spinor multiplied by a spinor being
zero. With due care one can then build three separate Fock spaces over each of the three
components of LZ(R3, (C4) (Dimassi & Guillot (2003)). The total Fock space for electrons
and positrons including bound states is then the tensor product of these three. One can
define three types of creation and annihilation operators corresponding to positrons, bound
electrons and free electrons each satisfying canonical anti-commutation relations. Finally,
one can expand the fields y and y' satisfying the anti-commutation relation 3.45 in terms
of the creation and annihilation operators. One can then define the conserved four current

as in 3.46, along with the Hamiltonian, total momentum and total charge operators.

3.2 Non-covariant QED in an arbitrary gauge

Having reviewed the free Dirac field I now turn my attention to QED. First I will derive
the QED Lagrangian and then look at how redundant gauge degrees of freedom can be
eliminated at the quantum level. Finally, I will adapt the quantisation method of the last

chapter in order to construct a formulation of the theory in an arbitrary gauge.

3.2.1 The QED Lagrangian

Following the procedure laid out in B.4.3, we can view the spinor wavefunctions Y as
sections of a trivial bundle E'3 x C* equipped with a U(1) right action. The associated

transition maps cyy (x) between open regions U,V C E'3 are given by
cuv(x) = e (3.52)

where A : E'® — R and I denotes the 4 x 4 identity matrix. Since the transition maps

ieA (x)

are proportional to the identity one can simply write cyy (x) = e . Requiring that the

connection defined in B.4.5 be unique on an overlap U NV gives rise to a connection one-

form, which according to B.4.5, can in each region U be written

AV = Aﬂ (x)dxH1 = A‘Lf (x)dxH (3.53)
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3.2. Non-covariant QED in an arbitrary gauge

where again we can simply omit the identity. Furthermore, since on an overlap U NV the
connection one-form 3.53 obeys the transformation law B.129, we can interpret it as the
gauge potential defined in 2.16. The so-called gauge-covariant derivative acting on the

components of the Dirac spinors is given by B.126;
DY wy (x) == (I +ieA]] ) yy (x). (3.54)

The QED Lagrangian density is obtained by adding to . in 3.41 the field Lagrangian
density in 2.14, and replacing the ordinary four-derivative d, in 3.41 with the gauge covari-

ant derivative in 3.54:23
g 1
L= q'/(iy“D# —m)y — ZF#VF“V. (3.55)

The Lagrangian density 3.55 yields as Euler-Lagrange equations Maxwell’s equations con-

taining the classical analog of the four-current 3.46, and the Dirac equation
(iy*Dy —m)y =0, (3.56)

which is the generalisation of the free Dirac equation, so that it includes electromagnetic in-
teractions. Note that this equation is obtained if one simply replaces the normal derivative in
3.7 with the gauge-covariant derivative from 3.54. We obtain in this way an electromagnetic

field for which any two potentials A and A" such that
Ax):=AY(x), A'(x):=AY(x) =AY (x) +cyy(x) ldeyy (x) = A(x) +dA(x), (3.57)

are viewed as physically equivalent. This is necessary (and sufficient) to ensure local phase
invariance of the Dirac equation. By local phase invariance I mean invariance under the
replacement ¥ — v’ such that

V() = v () = Y () = evu (Y (x) = e F g (1) = v/ (x), (3.58)

which will only follow if the covariant derivative is used rather than the ordinary derivative.

3.2.2 Eliminating redundancies through symmetries

To quantise the interacting Dirac-Maxwell field theory we must try to construct an irre-
ducible representation of the field operator algebras on the tensor product space JHp ® FHyy,
in which Hp is the Dirac field Hilbert space and J,, is the Maxwell field Hilbert space.
To achieve this I will use a similar procedure to the one used in chapter 2, but instead of

implementing the constraints at the classical level I will quantise the theory first and then

231 have omitted the label U from the covariant derivative and spinors in 3.55 in order to indicate that the gauge
is not fixed in the Lagrangian. To fix the gauge would be to choose a specific set {yy,AY} to work with.
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3. Quantum-mechanical gauge fixing and QED

implement the constraints to obtain the physical subspace of states. In order to do this I
will fix the gauge, i.e., eliminate the redundant degrees of freedom, by using unitary trans-
formations. This method of gauge fixing has been called quantum-mechanical gauge-fixing
in the past (Lenz et al. (1994)). It bares a close resemblance to the method of symplectic
reduction used in classical mechanics, which relies on the identification of symmetries. To
see how the idea works I will go through the simple example of a two particle system (e.g.
a hydrogen atom), which is assumed to have an initially stationary centre-of-mass. It is this
stationary centre-of-mass constraint, that effectively halfs the number of physically relevent
degrees of freedom.
I will denote the canonical variables of the first particle ry,p; and those of the second
rp,Pp2. I take the Hamiltonian for the system to be
2 2
111:2"—’;1 2p—n32+V(\r1—r2\). (3.59)
In the classical theory the state space is R'2[ry, 12, p1,p2] = T*RS[r, 1] (cf. B.9 and 1.1.3).
It is equipped with the symplectic form @ = dp; A -dr| +dp, A -dr, where aA-b :=a’ A b;
(cf. B.2.1 and 1.21) and there is a natural action of the translation group on the position

variables which reads
Rar;=r;+a. (3.60)

Moving to centre-of-mass/relative coordinates defined by

_ mr;+mr;

R: , P=pi+m 3.61)
my +my
r:=r;—r; p:= map1 — P2 (3.62)
my +my

leaves the symplectic form invariant; ® = dP A -dR 4 dp A -dr, which means the transfor-
mation is canonical. Moreover, the translation group only alters R without changing r, and
the Hamiltonian

P2 p2 mimy

2M+2m+ (Ir(), mitimy, M my +my (3.63)

is invariant under translations, because it doesn’t depend on R. The centre-of-mass mo-
mentum P is seen to be a symmetry of the Hamiltonian. Since by assumption the atom
is initially stationary P = 0, it remains stationary for all time. The dynamically invariant
constraint P = 0, therefore defines the physical subspace of classical states as those having
zero components of centre-of-mass motion. Considering only the physical states amounts
to ignoring P altogether, which gives for the Hamiltonian

2

_ P
H =4V (Jr]). (3.64)
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3.2. Non-covariant QED in an arbitrary gauge

We have therefore arrived at the reduced phase space R®[r, p| of a one particle system having
half the dimension of the original space. The (reduced) symplectic form on this reduced
phase space is simply @ = dp A -dr. To summarise, we have identified the physical subspace
of states by way of a constraint function P, which is a symmetry of the Hamiltonian.>*

On the quantum level the state space for the system is L>(RS, C) = L>(R3,C) ® L*(R?,C)
and the r;, p; are canonical operators. We can define the physical subspace of states as the

subspace consisting of states |y) which vanish under the action of the constraint P;

(p1+p2)ly) =Ply) =0. (3.65)

Since P is a symmetry of H (now an operator, but still as in 3.59), the physical subspace
is dynamically invariant. Moreover, the constraint P is the generator of translations by R
under which H is invariant. The translation group here is the analog of the gauge group

U(1) in QED, and P is the analog of Gauss’ law G. The unitary transformation
Q[a] ;=T (3.66)

generates translations, and we will see in 3.3 that this is analogous to the generator of gauge
transformations in QED (c.f. 3.77);

Q[A] i= ¢/ AxGWAK) (3.67)

where G is the Gauss law operator constraint.

To eliminate the unphysical degrees of freedom we can do exactly what we did in the
classical setting. We define the physical subspace H, by P|y) = 0 V|y) € 3, and obtain
the Hamiltonian 3.64 on }(,. To implement the elimination we can use the transformation
(Lenz et al. (1994))

U = ¢ i P2 girpr (3.68)
such that

UrU '=r,, URU '=r,, UpU'=p;, UPU'=p,. (3.69)

With respect to the new representation of states |y’) = U|y), the same operators now take
on a different physical meaning. For example, with respect to the new representation the
operator r; has the same physical meaning as the operator r; — rp had with respect to the

original representation; r; therefore denotes the relative position. Furthermore, we have

P2 Pi
H=—"—+— .
2M+2m+V(]r1\) (3.70)

24Recall that as a classical observable P is viewed as a function on phase space defined by P(R,P,r,p) :=P.
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3. Quantum-mechanical gauge fixing and QED

which can be simplified further by noting that the physical states are subject to the constraint
0=U(p; +p2)U"'U|y) = pa|y'). Thus, on the physical subspace I, = UK, 3.70 can

be written

P1
H=—+V . 3.71
ot (Jre]) (3.71)

One can obtain from 3.71 the classical functional form 3.64 for the quantum Hamiltonian
by simply relabelling the physical operators as follows p; — p and r; — r. This notation
reflects the physical observables that the operators in 3.71 represent with respect to the
new representation of states. Of course, we could have gotten this reduced formulation by
simply writing down the initial Hamiltonian 3.59 in the form 3.63, and by then identifying
the physical subspace through P|y) = 0. What the transformation 3.69 gives us is the

explicit relationship between the old and new representations of states.

3.3 Quantisation of the composite Dirac-Maxwell system

I turn my attention now to quantising the Dirac-Maxwell system. The new results presented
here are summarised in the paper Stokes (2012). First I identify the states of the system as
Schrodinger wave functionals and determine the general form of a physical state using the
“coordinate” representation for the canonical operators of the Maxwell field and the Gauss
law constraint. From there I identify a general unitary gauge fixing transformation U, as a
map from the physical space of states }, to a space H,, which is the space of states for
the gauge g. Next I determine the effect of this transformation on the various operators of
the theory and express the Hamiltonian in the arbitrary gauge g. I conclude by using the

Hamiltonian to calculate the Dirac equation in the gauge g.

3.3.1 The Weyl gauge Lagrangian and residual gauge symmetry

I start formally with the QED Lagrangian density 3.55 with an external Coulomb potential
¢, added;>

“ . 1
L =iy WP Dy — v (om+ege )y — S Fuy F1Y. (3.72)

Since the Lagrangian is independent of the velocity of the scalar potential its conjugate mo-

mentum is identically zero. As a result it is natural to quantize the theory within the Weyl

25This Lagrangian (density) is clearly gauge-invariant and can therefore be considered the relativistic analog
of 2.42. The reader may have been curious as to why in chapter 2 I went to the trouble of giving 2.42, but
then proceeded to use the gauge dependent Lagrangian 2.33. The reason is that due to the constraint 2.44 the
gauge-dependent and gauge-invariant Lagrangians of chapter 2 both yield the same results, because whenever
the constraint is satisfied the two Lagrangians are identical. The quantisation procedure to be followed in this
chapter is the relativistic analog of the quantisation procedure used in chapter 2 in which one starts with the
gauge-invariant Lagrangian 2.42 (this of course, is true with the proviso that this time I am going to implement
the constraints at the quantum level rather than the classical level).
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3.3. Quantisation of the composite Dirac-Maxwell system

gauge corresponding to the choice ¢ := Ay = 0.2 The remaining redundant degrees of free-
dom are eliminated by defining the physical subspace of states H,, consisting of those states,
which vanish under the action of the Gauss law constraint; G|¢,) = (V-E —p)|¢,) = 0.
The Hamiltonian density is obtained from the Lagrangian density via a Legendre transfor-

mation;
H =iy a-(V—ieA)y+vy' (Bm+ed)y+ % (I + (V x A)?). (3.73)

Quantum mechanically v and its conjugate y' are Dirac field operators satisfying the anti-
commutation relation 3.45, while A and IT = —E are the canonical operators of the Maxwell

field satisfying the commutation relation
[A;(x),IT;(x")] = i6;;6(x —x'). (3.74)
The polarization field P, can be defined as in 2.37 and Gauss’ law G can be written
G=V-II+p=V. -(II-P,). (3.75)

As an operator G is a symmetry of the Hamiltonian; [G,H] = 0, and is responsible for
generating time-independent gauge transformations of the vector potential and Dirac field
operators. Identifying a group ({A(x)},+) consisting of real valued functions on R* and
group operation of addition, we define a group action ® (cf. A.3.5) acting on the vector
potential and Dirac fields by

Oy, Al =e*y, DA A]=A+VA. (3.76)

A unitary representation of this action on the Hilbert space J{ is given by QuQ ! = ®[y, 7]
and QAQ ™! = ®[A, 1] where

Q[A] =exp (—i/d3x(V‘H+p)l(x)> =exp (i/d3x(H-V—p)7L(X)> . (37D

The second equality follows after an integration by parts has been performed and as usual
use has been made of the fact that the fields vanish at infinity. These transformations
are called residual gauge transformations, with the word residual intended to signify that
the above time independent symmetry is what remains of the local gauge-symmetry (local

phase-invariance) present in the original formulation Lenz et al. (1994).

260ne could impose as an additional constraint A |w) = 0 at the quantum level, but then the physical states would
be completely independent of Ag, and the dynamics of Ay would be permanently restricted to the non-physical
subspace. As such we may as well get rid of A at the beginning.
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3. Quantum-mechanical gauge fixing and QED

3.3.2 Unitary gauge fixing transformations

In order to determine the form of a general gauge fixing transformation we first need to
identify the form of a physical state. To do this I take as a Hilbert space J{ for the composite
system wave functionals ¢ : FE* — C of the classical vector potential A € FE? (cf. 2.2.1).
I denote the space of such wave-functionals .% (FE?). The inner-product required to make
F (FE 3) a Hilbert space is defined in terms of functional integration (Jackiw (1995)). These
wave functionals are supposed to take values in the Hilbert space J{p of the Dirac field
operators, which can be taken as the usual Fock space for electrons and positrons as in
3.1.1. Alternatively one can use functionals to represent the states of the Dirac field as well.
Regarding this I refer the reader to Jackiw (1995) and Hatfield (1998). The Hilbert space H
of the composite system can be written .% (FE3, Hp) D .# (FE*) @ Hp.

A realization of the algebra of the Maxwell field operators A and IT is given on H using
the “coordinate” representation

(Ap)Al = AplAl,  (Tig)[A] = —iOPAl

(3.78)

where the functional derivative is defined in B.2.6, and I have introduced hats to distinguish
between operators and classical vector fields. Defining a scalar function @ by Voo = A, we

can vary the wave functional ¢ with respect to o and make use of 3.78 to obtain (cf. B.2.1)

R L oL P R

I~ =—pQ, (3.80)
and finally solving this equation gives the general form of a physical state;
¢p[A] = @,[AT+ Va] =exp (i/d3xa(x)p(x)> ¢p[AT]. (3.81)

It is easy to verify using B.49b for the functional differentiation of a function of a functional,
that 3.81 is indeed a solution of 3.80. We can now begin to define some unitary gauge
fixing transformations. In the original work of Lenz ef al. (1994) a unitary gauge fixing

transformation yielding the Coulomb gauge representation was given as
U =exp <—i/d3x&(x)p(x)> (3.82)

where & is defined analogously to @ by V& = A Inthe present context we see clearly that
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3.3. Quantisation of the composite Dirac-Maxwell system

U eliminates the dependence of the physical state on Ay ;

(Ugy)[A] = @p[Ar]. (3.83)

Since the transverse vector potential is gauge-invariant we can use it as a coordinate with
respect to which any other vector potential can be specified. We therefore write the longitu-
dinal vector potential as the gradient of a functional of the transverse vector potential as in
2.45;

AL = V%g (X7 [AT]) (384)
where we could for example put
2e(X,[AT]) = /d3x’g(x’,x) -Ar(x) (3.85)

as in 2.45. We can then define a more general unitary gauge fixing transformation U, by

U, == exp (- i/d3x (6(x) - 24(x, [Aﬂ))p(x)), (3.86)

mapping from J, to an isomorphic space denoted H,, which is the space of states for the

gauge g;

(Uugp 1A =exp (i [ s (AT ) ,[A1] = gy Ar-+ V2] = gyl € 5,
(3.87)

The vector potential operator in the gauge g is Ag(x) = Ar(x) + V. (X, [A1]) with action
on H, given by

(Ag @) [A1] = (AT + V) 9 [A1]. (3.88)

Finally, we can define a Unitary transformation from a fixed gauge g to a fixed gauge g’ by

Ugg := eXp <— i / & (2 (x, [Ar]) — 20 (x, M))p(x)) (3.89)

an example of which is the well known Power-Zienau-Woolley transformation (cf. 6.14).
Such a gauge transformation is not to be confused with the residual gauge (symmetry)
transformation given in 3.77.

3.3.3 The Hamiltonian in the gauge g

To obtain the Hamiltonian in the gauge g we need to determine the effect of the transfor-

mation in 3.86 on the various operators of the theory, namely v, y', A and I1. In doing
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3. Quantum-mechanical gauge fixing and QED

so we will resume denoting operators without hats. Clearly U, leaves the vector potential
A unchanged, while the action of A on H, is given in 3.88. To determine the effect of U,
on the remaining operators I use the Baker-Campbell-Hausdorff formula A.17. With this
useful formula the effect of U, on the Dirac field operator y is found using 3.45 to be

2

_ . 4
Uy (U = y(x) +ie [o(x) — 2,(3)] W(x) — 5 [0x) ~ Z(x) Py +.. (3.90)
and summing up all terms in 3.90 gives
UgyU, ' = % %)y =y, (3.91)

which is clearly just a gauge transformation. To find the transformed field canonical mo-
mentum it is convenient to express Uy in terms of the polarisation field P,, which can be

achieved by noting that

1 ,V’~A ¢ , / ,
alx) =~ [ 4 \_(\) —— [ @m0 AK). (3.92)

Together with 3.85 this gives
U, = exp (i/d3x/d3x’p(x’)g(x,x') -A(x)) =exp <—i/d3ng(x) -A(x)) . (3.93)
Using this expression along with A.17 and 3.74 one obtains
UIU, ' =TI+P,. (3.94)

Thus, in the new representation IT represents the (negative of) the gauge dependent dis-
placement operator D, = E +P,. Using 2.37 it’s easy to work out how the constraint G and

the residual gauge transformation € transform;
U,GU; ' =V-TI, U, QAU " =exp (i/d3x (H-V)A(x)), (3.95)

which are both independent of the gauge g. The constraint G implies that the longitudinal
canonical momentum Iy, vanishes on H(,. On the one hand this means Py, alone represents
(the negative of) the longitudinal electric field, and on the other that the Hamiltonian density

on H, can be written in terms of the transverse operators At and It only;

’ 1 1
H = _i‘lfga (V—ieAg)y, + II/; (Bm+ege )y, + EPLZ + 5 [(TIy +P3)%+ (V AT)Z]
(3.96)

where A, is the vector potential in the gauge g (given in 3.88), and y, is the Dirac field

operator in the gauge g (given in 3.91). In writing 3.96 I have neglected the cross term
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3.3. Quantisation of the composite Dirac-Maxwell system

2Py - P obtained by expanding Pé. This is because for suitably well-behaved transverse
and longitudinal vector fields Wt and Vi, one can show that

/ d*xWr(x) - VL (x) = 0. (3.97)

Equation 3.96 gives a Hamiltonian in an arbitrary gauge, which is fully relativistic in the

material degrees of freedom. It can also be written (cf. 2.61)

I = Iy + Veelt + ¥ = Koy + HEM,

1 1
JOF = 5 [(HT +P§i~)2 + (V X AT)Z] = E [Egr —I—Bz] s

1 1
Hiw = 5 [(TT+P,)* + (V x Ar)?] = 5 [E*+B?], (3.98)

with Vieir = [ d>x Vel given in 2.58. This gives a partition of .77 in which the total energy
density is seen to be the sum of individually gauge-invariant material and electromagnetic
energy densities. As in 2.61, the electromagnetic energy density is itself a sum of transverse
and longitudinal components.

The commutator of the transverse operators follows from 3.74 and is given by
AL (x),TE, ()] = 87 (x — X). (3.99)

Note also that denoting the Fourier transforms of At and Ilt with tildes we can define

photon creation and annihilation operators in the usual way;

a, (k) = \/g <a)AT7,1 (k) + il 2 (k)> (3.100)

where A = 1,2 denotes one of two polarization directions orthogonal to k. The bosonic

commutator
laz (k). a}, (K')] = 820 (k —K') (3.101)
follows from 3.99.

3.3.4 The Dirac equation in the gauge g

It is an instructive exercise to calculate in the arbitrary gauge g, the equation of motion for
the Dirac field operator y, which should be the Dirac equation in the presence of a Maxwell
field. The calculation demonstrates how the scalar potential, like the longitudinal vector
potential is re-expressed through the functional x,. The top line of the Hamiltonian density

in 3.96 gives rise to the following Weyl gauge (A = 0) Dirac equation with an external
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3. Quantum-mechanical gauge fixing and QED

potential ¢.;
Oy = [—ic- (V—ieAg) +Pm+ed|ly, <&  i(YDy—m)y=0 (3.102)

where Dy, := (0; +ie@,, d; — ieAi,). The complete Dirac equation contains a scalar potential
term coming from the second line in 3.96. Explicitly, one obtains with a little work
3., P(X')

[w,(x),H] = Len/d A~ —e/‘d3x’gT(X,x’)-(HT+P§) W (X). (3.103)

The first term in brackets is equal to eV with V denoting the static Coulomb potential of
charges; this term arises from the ¥g¢ term in 3.98. The second term arises from the
transverse term Z7r in 3.98, and evidently involves the transverse electric field Et =

—(TIy + P} ). Furthermore, it is straightforward to verify that
Ar(x) = —i[A1(x),H] = 1 (x) + P} (x) = —Er(x) (3.104)
implying that 3.103 can be written in the form
W =@ (I — A+ Pmte(9et 0l Wy & (FDy—m)yp=0  (3.105)

where D, := (9, + ie[¢ + 9], 0; — ieA}) and where I have defined the scalar potential anew
by
9
=V - =% 3.106
(Pg at ( )
This is the scalar (Coulomb) potential V' of the Coulomb gauge transformed by the gauge
function Y, as it should be. Moreover, the Dirac equation 3.105 is clearly invariant under a

gauge transformation, that is, under the three simultaneous transformations

Ve = YWy = Uyy y/gUé;,} — e Ay, = )y

(X — X Ixy
¢g_>¢g’:¢g+(gatg>:v_ atg’
Ay Ay =Ay V(e —Xg) = Ar+ V. (3.107)

3.4 Summary and discussion

In this chapter I have given a formulation of QED in an arbitrary non-covariant gauge. It
would seem that the comments made in 2.4 apply to the results of this chapter too. The
decomposition of the Dirac-Maxwell system into quantum subsystems is non-unique and
gauge dependent.

Having now derived both relativistic and nonrelativistic quantum-electrodynamic theo-

ries, I am still yet to discuss any real physics. In the next part I attempt to determine what
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we can say about the physical content of quantum electrodynamics, starting with Maxwell’s
equations and the Lorentz force law, and ending with quantum mechanical photons and

atoms.
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PART |l

The classical and quantum theories of radiation
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CHAPTER 4

Classical radiation theory

In this chapter I attempt to understand the dynamics of the composite charge-electromagnetic
system, using Maxwell’s equations and the Lorentz force law. The motivation for doing this
is to precisely pin down, at least for the system of a free classical charge, how material
and electromagnetic subsystems are to be defined, and in particular, what is to be regarded
as radiation. Even in the classical setting this task is fraught with difficulty. The theory
predicts that a point charge exhibits a self force due to its own electromagnetic fields, and
this self force gives rise to highly unphysical effects. Despite several attempts historically
to develop a consistent classical theory of point charges, it seems that the only solution is
to give up on the idea of a point charge altogether, and consider even a single charge as an
extended charge distribution.

On a practical level the situation is perhaps not all that bad. The problems only arise
when one attempts to solve the coupled system consisting of both Maxwell’s equations and
the Lorentz force law. On the other hand, solving Maxwell’s equations for given source
distributions yields extremely fruitful results. Likewise solving the Lorentz force law for
a point charge within given electromagnetic fields, (which themselves may be due to some
other given sources) is also possible. In this sense, it seems the electromagnetic effects of
charges on other charges make relatively good sense. It is understanding the effect of a
charge on itself, which is problematic. On the face of it this problem seems quite relevant
to the present discussion regarding material and electromagnetic subsystems. The question
being, how to separate out the bare charge from its own electromagnetic fields, which act
back on it?

The first thing I do in this section is look at Maxwell’s equations alone (4.1). After
that I review one of their physical implications; a result known as Poynting’s theorem (4.2).

Finally I consider the full set of coupled equations including the Lorentz force law (4.4).
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4. Classical radiation theory

4.1 Maxwell’s equations

B=-VxE, (4.1a)
E=VxB-J, (4.1b)
V-B=0, (4.1c)
V-E=p. (4.1d)

The first two equations describe dynamics, while the second two are merely constraints.

With a little rearranging, the dynamical equations can be written
OE=-Vp-J, [OB=Vx], 4.2)

which are inhomogeneous wave equations with source terms that are functions of the charge
and current densities and their derivatives. Methods of finding general solutions to these
equations invariably involve the Green’s function G for the wave operator [, which is de-
fined by

OG(t—t';x—x)=8(t—1")d(x—X). (4.3)

This equation has the solution

o(t' —1+)
G=G"+G", GTi=+——H 4.4
T 47R 4
where

R:=|x—X| t :=t.:=t—R, t.:=t,:=t+R. 4.5)

The times ¢, and ¢, are called the retarded and the advanced times respectively, and the
corresponding Green’s functions G and G~ are called the retarded and advanced Green’s

functions. One also frequently encounters the Fourier transform denoted G, which satisfies

G(1,x) = W / PG, K)e % G(1,K) == Sing‘”) (4.6)
where @ := |K|. In terms of G, the inhomogeneous wave equation
Oy (t,x) = s(t,x) 4.7)
admits the general solution
v=yt+y, yr.= /dt'/d3x' GE(t—1',x—x)s(t,x). (4.8)
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4.1. Maxwell's equations

Jackson (1998) gives a clear interpretation of the solution 4.8 in the general context. Sup-
pose that in the remote past there is an incoming wave Yy, and then the source s is activated.
In this case the solution of the wave equation at time ¢ depends only on the retarded Green’s

function G*;

w(t) = wo(t)+ (). (4.9)

The other situation is that in which their is a known outgoing wave " in the remote future,
in which case y(¢) = w°(t) + w~(¢). T will deal only with the former situation. Applying

these ideas directly to the wave equations 4.2 one obtains the retarded solutions
E=Ey+E,, B=By+B, (4.10)

where Eq and By are the initial homogeneous fields propagated up to time ¢ and E, and B,

are retarded source fields, given by

N [V'p+1J]: N N W V' x Jl
E,(1,x) := /d YELES B (x) = /d YESL @

The notation [-|, means that the quantity inside the brackets is to be evaluated at the retarded
time .. These solutions show that the electric and magnetic fields produced by charged
sources propagate outwards causally. The same is true of the scalar and vector potentials
in the Lorentz gauge for which the four-potential satisfies dyA* = 0. In this gauge the

potentials admit the simple solutions

[ aalPlr vl
¢,.—/dx4n_R, : /d o (4.12)

from which it is often easier to obtain results. It is worth pointing out that the transverse
electric field and transverse vector potential are not retarded. The transverse vector potential
satisfies the wave equation for which the source term is the nonlocal transverse current Jt
defined by

Jri(t,x) : /d3x’6T )=

U-’\l\)

i(t,%) /d3’ i —3RiR;) J;(t,X). (4.13)

The transverse current at (z,X), receives contributions from all other points x’ at the same
time 7. Since Er = —Ar the transverse electric field like the transverse vector potential can’t
be a retarded field either. One can deduce this immediately from the fact that Ep, = —VV is
instantaneous, while the total field E = Et + E;_ is retarded.

For a point charge —e with position r(¢) it is useful to define the quantities R:=x—r
and v := R — i, where I have used a hat to specify the unit vector in the direction of R.
Using 2.40 the expressions in 4.11 can then be written (Jackson (1998), Griffiths (1999),
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Spohn (2007))

v+Rx (vxi)}|, B,=[RxE], (4.14)

r

R
E,=|———{(1—i
" 4n(R-v)3 {=n
with the retarded time 7, now defined as the unique solution of the equation
tr=t—|x—r(t)|. (4.15)

The expression for the electric field in 4.14 consists of two components, which are added
together inside the curly braces. The first term involves the position and velocity of the
charge only, and falls off away from the charge with a 1/R? dependence. In fact, if the ve-
locity and acceleration of the charge are both zero, the position dependent component of this
term gives the only contribution to the electric field, which is nothing but the electrostatic

(longitudinal) field of the single charge, corrected such that retardation is present;

—eR
Estatic = |:47'L'R2:| . (4'16)
r

The first term, dependent on the position and velocity of the charge, can be thought of as
the electric field which is tied to the charge as it moves. There is of course a corresponding
magnetic field tied to the particle, which is simply obtained by taking the cross product of
R with the corresponding electric field tied to the particle.

The second contribution to the electric field in 4.14 depends on the acceleration of the
charge and falls of with a 1/R dependence. It is this term which survives at large distances
away from the charge. Along with its magnetic counterpart this term gives the only con-
tribution to the power radiated by the charge which survives as R — .?’ The acceleration
dependent contributions therefore constitute the electric and magnetic radiation fields of the

charge, and are given explicitly by

Erad = WR X (V X l‘) s Brad = [R X Erad]r- (4‘17)

r

There a number of other ways to obtain solutions to Maxwell’s equations as well as the
method used above. One can, for example, express the Green’s function G associated with
the wave operator [J in covariant form; JG(x—x') = §®* (x—x’), and find the solution to the
dynamical inhomogenous Maxwell equation for the components A, of the four-potential di-
rectly (Jackson (1998)). This yields the solutions 4.12 directly. One can also use geometric
algebra (also variously known as Clifford algebra, Kdihler-Atiyah algebra and other permu-
tations of these names), which I do not touch upon in this thesis. The interested reader is
referred to Hestenes & Sobczyk (1984), Jancewicz (1988), Hestenes (1998), Doran (2007)
and Arthur (2012). Geometric algebra allows one to write all of Maxwell’s equations as

271 will postpone giving the precise definition of the radiated power until the next section.
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a single differential equation involving F. Moreover the geometric differential operator
appearing in this equation is invertible, which allows one to use the method of Green’s
functions to solve for the field tensor F directly. The method of solution I have opted for in
this chapter is the more conventional.

So it seems one can fairly successfully work out how the electric and magnetic fields
produced by a moving point charge behave. Implicitly within this sort of exposition one
assumes that the material subsystem is defined in terms of the motional degrees of freedom
r and ¥, or more generally p and J. The main subject of the following section, will be the
behavior of the energies of the material and electromagnetic subsystems, having made this

same assumption.

4.2 Poynting’s theorem

Noether’s theorem reveals a deep connection between symmetries and conservation laws.
Indeed, the paradigmatic example is afforded by the theory of electromagnetism, in which
local conservation of charge results from global gauge symmetry. There are numerous other
conserved quantities of interest. The energy represented by the Hamiltonian is conserved,
due to the system’s invariance under temporal translations. The total angular momentum is
conserved, because the system is invariant under rotations. The total linear momentum is
conserved, because the system is invariant under spatial translations. One can verify that all
of these quantities are conserved by checking that their Dirac brackets with the Hamiltonian
vanish.

A description of Noether’s theorem can be found in numerous quantum field theory and
mathematical physics textbooks (a few that I know of are Bjorken & Drell (1965), Peskin &
Schroeder (1995), Weinberg (1995), Ryder (1996), Hassani (1999), Ticciati (2008), Mandl
& Shaw (2010), Fecko (2011)), so I will discuss it only briefly.

Given a Lagrangian density . dependent on a set of fields {¢, € FE'?} and their
derivatives, we expect .Z to be invariant under space-time translations and Lorentz trans-

formations.”® The combined group of such transformations is called the Poincaré group.®

28 Anti-symmetry of e*¥ follows from the properties of the Lorentz transformation.

29The Poincaré group is therefore the group of pseudo-orthogonal affine transformations OA(1,3) consisting of
elements (A, a) such that (A,a)x = Ax+aand A € O(1,3). It can be thought of as a subgroup of GL(5,R) with

x A a x Ax+a
(V)= ) () -0) w15
The Lie algebra oa(1,3) has as generators the generators of the Lorentz group B given in 3.15, and the
generators of translations P%, which can be represented by 5 x 5 matrices and are such that

[P* PPl =0, [¢*F PY|=i(PPn*Y — ponhY). (4.19)
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4. Classical radiation theory

A general infinitesimal Poincaré transformation can be written
A =M etVx, 4 e? (4.20)

where "V = —g"# is the first term in the Taylor expansion of a Lorentz transformation and
€* is an infinitesimal translation. The above transformation leads to concurrent transforma-
tions in the fields ¢, = ¢y + O ¢ and the Lagrangian density £’ = £ + 6. Requiring that
£ = £ then yields various conservation laws for fields that satisfy the Euler-Lagrange

equations. For example, under pure translations (¢ = 0) we obtain

9T =0 4.21)
where
0.Z
.- _—= 9Py —n* Py 4.22
8(ay¢k) q)k TI ( )

are the components of the canonical energy-momentum density tensor T. Since the fields

vanish at infinity 4.21 implies the continuity equation
0= / dx9q T = 9y / X1 (4.23)
In the case of free electromagnetism using 2.14 we have
T — %n“ﬁFqu“" —N*E,0PAY, (4.24)
which in three-vector language can be written

T = £F V. (AE), TY=S§+4+V-(A'E), T°=8+(VxA)B) —09(A°E)
(4.25)

where S and & are the Poynting vector and the electromagnetic energy density respectively,

and are defined as follows

S:=ExB, &:=_[E*+B?]. (4.26)

N —

The tensor 7', while adequate for the expression of the conservation of energy and mo-
mentum of the free field (see Jackson (1998)), is overly complicated by the additional terms
involving the A, in 4.25. Moreover, it isn’t symmetric, which means it can’t possibly be
used to describe the conservation of angular momentum (Jackson (1998)). A simple sym-

metric tensor O satisfying 4.21 can be constructed out of T as follows (Jackson (1998))

Q% =T1% 9, (FFAP) = n® Fy FYP 4-n®P Fy FHY, (4.27)
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4.2. Poynting's theorem

which due to its symmetry, is fully specified by the components
W =¢f eY=y5 @/= 55”(5” —(E'E/+BB)) =TV (4.28)

in which T is known as the Maxwell stress-tensor. The tensor ® can also be obtained
by considering the invariance of the Lagrangian density under rotations, which ultimately
yields the (local) conservation of angular momentum of the free field in the form do M apy —
0 where (Healy (1982), Rohrlich (2007))

MOPY = 9P xY _ 9oxP. (4.29)
Combining the quantities in 4.26 one obtains the electromagnetic four-momentum density
P = (&Y, —8) = B = B0, (4.30)

and the time component of the equation 9°®g, = 0 yields a continuity equation expressing

the local conservation of energy;
°Pl = 9,67 +V-S=0. (4.31)

This result is known as Poynting’s theorem for the free field. Equation 4.23 now yields

conservation of energy and momentum of the free field
/ d*x3°@yy = 0, / dx 2L =o,PL =0. (4.32)
where
Pl = / d*x 2E = (EF,—PF) (4.33)

is the four-momentum of the field.*
In the presence of sources the four-divergence of ®*F no longer vanishes. Using the

inhomogeneous Maxwell equations one easily finds that (Jackson (1998))
0q0%F = —FPHj, = —fF — (J-E,pE+S) (4.34)

where j, = (p,—J). The energy of a free particle is E” := my~! and according to the
Lorentz force law, if the particle is charged the energy obeys the equation of motion>!

o,EF = /V dxJ E= /V d&x &P (4.35)

30The designations energy and momentum for EF and PF respectively, may only be valid with respect to a specific
frame of reference (see the comments at the end of this section).

2

31The results of this section stay the same if the nonrelativistic approximation E¥ ~ %ml" is used instead.
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4. Classical radiation theory

within some volume V containing the charge. The quantity & = J-E is evidently the
energy density of the charge system. Defining the momentum density of the charge system

P such that its time derivative gives the Lorentz force density;
oP:=pE+JxB, (4.36)

the four-vector f% is seen to be the time derivative of the four-momentum density of the

charge system;
fa=0/(&",—P) =092, 2L .= (&7, —P). 4.37)
Poynting’s theorem with sources present, is given by the time component of 4.34;
0% PL+0,6" =0, (67 + &) +V-S=0, (4.38)
while the space component of 4.34 reads (Jackson (1998))
o (Si+P,) =V,0;;. (4.39)

Finally the conservation of the energy and momentum of the composite system can be

expressed simply as

/d3x(8a®aﬁ +/p) = jt/d3x [@g + L@[;} = jt/d%c% =0. (4.40)

The Poynting vector S has the dimensions of energy per unit time per unit area, meaning
that it is a power density. Its integral over V gives the total momentum carried by the fields
within V. Poynting’s theorem 4.38 tells us that the total rate P at which energy leaves the
volume V, is equal to the flux across the surface Q, which encloses V;

P= 7{ dQS-f (4.41)
Q

where i is the unit normal field pointing outward from Q. Considering a single charge at r,
and letting Q denote the sphere with radius R centered at r, the total power radiated by the
charge can be defined as the component of P surviving infinitely far away;

Poag:= lim P. (4.42)

R—o0

Only the radiation fields E;,g and B,q contribute to P;,q, which is why they are called the
radiation fields. Using the expressions in 4.17 for a single charge —e, with some work, one

obtains the Liénard formula

2
Prd = 663;6 (i — [f x ¥]?) (4.43)
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for the total power radiated by the charge. These results illustrate in a concrete way, how
using the motional degrees of freedom to define the material subsystem, and the electric and
magnetic fields to define the electromagnetic subsystem, yields both elegant and physically
meaningful results. In actual fact I will use the results of this section, much later on in
chapter 9.

4.3 On the nature of covariance

I wish now to discuss the important issue of covariance with regard to the results above.
The field four-momentum defined in 4.33 is not covariant when sources are present, due to
the integration over three-space (Rohrlich (2007)).%> However, one can define a covariant
four-momentum using 8,5 by integrating over a spacelike hyperplane. Such a hyperplane

is defined by an equation
nuxt —1=0, (4.44)

in which 7 denotes proper time, and # is a unit timelike four-vector normal to the hyperplane
(Jackson (1998), Rohrlich (2007)). Supposing that the coordinates {x* } are associated with
an inertial frame O, then setting n* = (1,0,0,0), equation 4.44 describes an inertial observer

O at the instant T = ¢ := x°. The covariant field four-momentum is defined as

P = [do® 6y (4.45)
where d6® = n®d>c and d3c is an invariant infinitesimal element of three-dimensional
area. In the frame O, d°c = d°x, so definition 4.45 reduces to 4.33 (Rohrlich (2007)).
It is important to note that 4.45 only coincides with 4.33 in the inertial frame O. If the
inertial frame O" moves with respect to O with velocity v, then putting n* = v* = (y, yv),
4.44 defines a hyperplane at the instant ¢’ = 7 (in Q') as seen by the observer O (Rohrlich
(2007)). If we assume that expression 4.33 holds in O’ then in O, 4.45 reads (Jackson
(1998))

Py = (E",—P"), EF:y/d36[£F—v-S], PF:y/d3G[S+v-T] (4.46)

where T is defined in 4.28 and d°c = d3x’. Since by assumption the frame O is the rest
frame of the volume under consideration, d>x’ determines a proper volume element. Any
interval |Ax'| := |x}, — x| denotes a “proper length”, which takes the same value independent
of whether or not x| and x} are taken as the spatial coordinates of simultaneous events in O'.
We can therefore choose #{ # t} as the times at which the endpoints of the interval determing

the volume element d>x” are measured (in ©'). In particular, we may choose #| and #, such

321t turns out that in the absence of sources the four-momentum 4.33 is covariant (Rohrlich (2007)).
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4. Classical radiation theory

that in O the corresponding events are simultaneous; #; = t,. The Lorentz transformation
between frames then implies the simple contraction formula d3x’ = yd°x, which can be
substituted into 4.46 to obtain an expression written purely in terms of quantities measured
in O.

The four-momentum 4.46 is clearly different to 4.33 and because of this it has been
argued that the expression 4.33 can only be valid in a particular inertial frame O’ (Rohrlich
(2007)). Perhaps a natural choice for O’ is the rest frame of sources in which the only field
is the static longitudinal electric field. Then 4.46 yields in the frame O (Butler (1969))

PE = / Fxol, k=B ), (4.47)
which has been advocated as the correct energy-momentum four-vector in the past (Butler
(1969)).

Although 4.33 does not define a covariant four-vector Poynting’s theorem is covariant,
because it follows from Maxwell’s equations, which are covariant. If one calls 4.33 the
energy-momentum four-vector then the energy and momentum of the field is different for
each inertial observer, and moreover, if two observers are related by a Lorentz transforma-
tion, their four-momenta are not related by that Lorentz transformation. Of course, this
trait is shared by the electric and magnetic fields themselves, neither of which form the
components of a four-vector within conventional treatments. Like the energy density and
Poynting vector in 4.26, their components make up the components of a tensor F, which is
covariant. Requiring that the field energy and momentum make up a covariant four-vector
forces one to either sacrifice the generality of 4.30 and use something like 4.45 instead, or
to append the theory with essentially ad hoc, additional concepts, such as Poincaré stresses
(see Schwinger (1983), Rohrlich (1997), Jackson (1998), Rohrlich (2007), Yaghjian (2010)

and references therein).

4.4 The Lorentz force law

Problems arise in classical electromagnetism, when one tries to combine Maxwell’s equa-
tions with the Lorentz force law, for a point charge distribution p = —ed(x —r). The
Coulomb self energy diverges at the position of the charge, as do the solutions to Maxwell’s
equations, but this is precisely the position at which the electromagnetic fields are sup-
posed to be evaluated within the Lorentz force law. Consequently, to obtain finite results
one must regularise the so-called radiation reaction fields, or self fields, at short distances
from the charge. Working out precisely how to do this seems to embody a substantial area
of research. In the nonrelativistic quantum theory one usually uses ultra-violet momentum
cut-offs to control the divergences, it being assumed that physical predictions will come
out finite in a proper relativistic treatment, in which the high frequency modes are dealt
with properly. The self force generated by a single charge can be interpreted as rescaling

its observable mass. In fact it was suggested early on that perhaps all mass is actually
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4.4. The Lorentz force law

electromagnetic in origin.

I consider the case of a single extended charge distribution with effective dimension d,
and give a slightly modified derivation of the electromagnetic mass due to Jackson (1998).
For simplicity one neglects the magnetic contributions, which vanish anyway if one assumes

the charge is instantaneously at rest. The Lorentz force law for the charge then reads
Pmech = /V d*xpE. (4.48)
p

Separating the total electric field as E = Egef + Ecy(, and assuming the total momentum

P = Pmech 1 Pseir 0beys Newton’s second law p = Fex, one obtains

Pselt = — d3xpEself- (4.49)
Vo
Next one assumes a spherically symmetric charge distribution of size d, and taking Egef =
E, as given in 4.11, performs a Taylor expansion of the charge and current densities about
" = t. Neglecting terms nonlinear in ¥, one obtains the following expression
4 (1)

. ni . 1 3 3 n—1
Pself = gr;) Py U0,  Uy:i= 2/\/,,d x/d X p(x)p(x )R, (4.50)

The first term in the sequence U, is proportional to the Coulomb self energy; Uy = 47Vyys.
Assuming the charge is uniformly distributed throughout a sphere of radius d, one obtains

2 2
Uo = 5; and Uy = 5. Newton’s second law then reads

2e...
Mopst: — ?" i+ 0(97%) = Fey, 4.51)

where mps is the observable mass of the charge, which is the sum of the bare mass m and a

renormalisation term

4Uy  2e*
Mops 1= m+8m,  Sm:= TO =37 (4.52)
For a point charge d — 0, and 6m — oo. Using p = —ed(x —r), one has explicitly
smi= o _ 4 / “do (4.53)
m=— =_—— : .
3 3n Jo

At the same time the higher order terms in 4.51 vanish as d — 0, which means it coincides

with the so-called Abraham-Lorentz equation

262

3mgps

Mops(F—TT) =Fexe, T (4.54)

This notorious equation admits peculiar unphysical solutions, the so-called runaway solu-

tions. Tf Foyy = 0 then ¥ = #(0)e'/7, so that the charge’s acceleration grows exponentially.
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4. Classical radiation theory

Moreover the charge can be seen to respond to changes in Fey acausally, an effect known
as preacceleration. The infinite mass and runaway solutions are merely manifestations of
the problems associated with the point charge model.

There are however, some silver linings. The “bare mass” m appears to be an artifact of
the theory, which can be chosen arbitrarily. Thus, the observable mass of the point charge
Mgbs, May yet come out finite. For extended charge distributions the mass renormalisation
is finite, and furthermore the acceleration of the charge is bounded (Jackson (1998), Spohn
(2007), Rohrlich (2007), Yaghjian (2010)). An extended charge model can be used in the
quantum theory as well (Moniz & Sharp (1974)). There the results come in the form of

expectation values of the appropriate operators, and the quantity d is effectively replaced
h

by the electron’s reduced Compton wavelength (Ac = ;- in units not such that c =7 = 1).
The quantum treatment is remarkably successful in that there are no acausal effects and no
runaway solutions. This remains true even in the presence of an external force Fex(®),
provided the frequencies are such that @ < i In all of these models it appears that the
electromagnetic mass contribution is the same as the longitudinal electric field energy, but

that this mass is actually a property of the particle.

4.5 Summary and discussion

We have finished our brief survey of classical electrodynamics. We have seen that accelerat-
ing charges effect other charges by producing electric and magnetic fields, which propagate
causally. Unfortunately, the action of a point charge on itself incurs an infinite mass, and
peculiar runaway solutions of the Abraham-Lorentz equation. Furthermore, an accelerating
charge is predicted to lose energy through radiation, which seems to contradict the observed
stability of atoms and molecules. These problems associated with the classical theory are at
least partly alleviated by the quantum treatment to be discussed in the coming chapters (see
for example Milonni (1994)). The quantum theory however, relies heavily on the canonical
formalism, which may itself entail certain problems. Specifically, the fact that canonical
degrees of freedom are gauge dependent and physically ambiguous means that one must

take great care when interpreting results.
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CHAPTER b

The S-matrix and perturbation theory

Having reviewed classical electromagnetism now is the time to move on to the quantum
theory. The aim of this chapter is to review in a general way, the tools used to analyse
problems in QED, and discern what implications they might have with regard to determining
the most appropriate subsystem decomposition of the composite atom-field system. In many
places my treatment will be idealised to such an extent that it will not hold for the system
of interest. Certain relations will hold only under quite restrictive assumptions such as
the assumption of no bound states, or the assumption of no level-shifts in the continuum.
Despite the fact that the atom-field Hamiltonian 2.71 has bound states embedded within
a continuous spectrum, it will be useful to review the conventional methods used to treat
interacting theories and try to glean insights as to the nature of physical subsystems.
According to 2.71 the bare vacuum state |0,0) consisting of no photons and the atom
in its ground state is the ground state of the free Hamiltonian Hp, but not the ground state
of the fotal Hamiltonian H. In fact there is an infinite number of photons in the ground
state (Compagno et al. (1995)). In the dressed atom model one interprets these photons as
the virtual photons, which are continually emitted and reabsorbed by the atom. They are
said to be virtual, because they appear in processes that do not conserve the free energy Hp.
One interprets them as corresponding to intermediate states, in overall processes, that do

conserve the free energy. These are the so-called real processes. Thus,

free energy conservation becomes a crucial factor in determining the reality of
physical processes. It also seems to be crucial in ensuring the gauge invariance of

probability amplitudes.

It behooves us therefore, to ask under what conditions the theory necessarily describes

free energy conserving processes, and to what extent the bare atom-photon degrees of free-
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5. The S-matrix and perturbation theory

dom give meaningful results without these conditions. The formalism within which pro-
cesses always conserve the free energy is the gauge-invariant S-matrix formalism, which is
the sole tool used to make predictions within quantum field theory. Philosophically, there

seems to be two possible points of view regarding the bare atom-photon degrees of freedom:

1. They are nothing but mathematical devices allowing us to understand atom-
field interactions as processes conserving free energy, the associated probability

amplitudes being found using the S-matrix.

2. They have real physical meaning, and predictions pertaining to them made
outside of the S-matrix formalism, should at least in principle, be experimentally

verifiable.

Viewpoint 1 is somewhat restrictive, because the S-matrix formalism is non-dynamical
in the sense that it provides probability amplitudes associated with processes taking place
between times #; — —oo and ¢ty — . On the other hand viewpoint 2 forces us to take as
physically real, processes which do not conserve the free energy. Virtual photons belong-
ing to the cloud surrounding the atom may therefore be measured. Moreover, we will be
confronted with the problem that the bare atom-photon degrees of freedom are physically
distinct in each gauge.

It does not seem permissible to me, to choose some middle ground between these two
points of view by taking as meaningful those processes which conserve free energy over
finite interaction times, while ignoring all others. One cannot simply pick and choose at
will, which predictions to keep and which predictions to throw away. Neither does it seem
we can impose free energy conservation as a fundamental law, for in general the free energy
is not conserved [Hp, V| # 0, so that the imposition of its conservation as a fundamental law
would actually contradict the theory.

In this chapter I consider the S-matrix from various points of view (5.1). This will
be illuminating in that it will allow us to understand precisely why the S-matrix is gauge-
invariant, despite it seemingly giving probability amplitudes for transitions between gauge-
dependent bare states. It will also allow us to decide how physical subsystems are usually
viewed from the quantum field-theoretic perspective. In 5.2 I will briefly turn my attention
to time-independent perturbation theory. In doing so I will introduce briefly, the resolvent

operator, which I will use extensively in chapter 7.

5.1 The S-matrix

In section 5.1.1 I will be using nothing but time-independent quantum theory. In sections

5.1.2 and 5.1.3, I consider the S-matrix using time-dependent approaches.
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5.1.1 The S-matrix from the time-independent formalism

Suppose we are given free and interaction Hamiltonians Hy and V, such that Hy and H =
Hy +V both have continuous spectra. We know the eigenvalues and eigenstates of Hy, and
so we look for eigenstates of H, which tend to those of Hy as V — 0. These eigenstates
will be denoted |n*), where |n ") is called an in-state, and |[n~) is called an out-state. The
S-matrix is used to obtain probability amplitudes (f~|i"), in terms of the corresponding
free states. The in/out-states satisfy the Schrodinger equation with respect to the composite

system Hamiltonian;

H|n®) = o,|n™). (5.1
Similarly, the free eigenstates |ny), satisfy

Hp|no) = @y|no). (5.2)

where for simplicity, to begin with I have assumed that there are no level-shifts, so the
spectra of Hy and H are the same. The free eigenstates are assumed to form an orthonormal
basis in the system’s Hilbert space, and it is assumed moreover that they are in one-to-
one correspondence with the in and out-states. It is easy to show that the in/out-states are

normalised as (Roman (1965))

(n"|m*) = (n”"|m~) = (no|mo). (5.3)
One now makes the ansatz
%) = [no) + G**(@,)V|n*) (5.4)
where
G (w,) := v (5.5)
o, —HoLin

It is supposed to be implicitly understood here, that the limit 7 — 0" will be taken at the
end of the calculation, the denominator contribution i) merely ensures that G** (®,) is not
singular at w,. Equation 5.4 is called the Lippman-Schwinger equation, and it is easily
verified that the |n*) defined by it satisfy 5.1. Using the completeness relation over the free
eigenstates, 5.4 can be written in the alternative form

1
+ +
=\ny+y —T 5.6
|I’l > | 0) anm in nm’n0> (5.6)
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where @, := W, — ®,, and
T = (ng|V|m®). (5.7)

It would be convenient to have an expression for the in and out-states purely in terms of
the free states, as well as expressions 5.4 and 5.6, in which the in and out-states appear on
both sides. This can be achieved by first multiplying 5.4 by V to obtain an expression for
V|n*), and then substituting the result back into 5.4 on the right-hand-side. Rearranging the
resulting expression yields the result

(@, —H £ im)|n*) = in|no) (5.8)
from which it follows that
by _ M +
) = o= a0 = Ino) + G (@n)VIno). (5.9)
where
) Ep—— (5.10)
Y w,—H+Ein’ :

Thus, we can write the Lippman-Schwinger equation in terms of the in/out-states together
with the free Hamiltonian as in 5.4, or, in terms of the free states together with the to-
tal Hamiltonian as in 5.9. By making use of 5.4, the operator G*(®,) can be expanded

iteratively in terms of its free counterpart as

G*(@,)V = G™ (@) f) [VG™(wn)]", (5.11)

m=0

which is known as the Born expansion.
We are now in a position to formally define the S-matrix. The S-matrix links the free

initial and final states |ip) and | fo), with the in and out-states |i*) and | f~) as follows

(folSlio) := (£~ |i")- (5.12)
Using 5.6 we have

1 2in

ity =84+ T + TH =84— ———=T, 5.13
) =0t o T+ e i = O o ©.13)
and using
li =né 5.14
oo P Ax @) G-I
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we can write the S-matrix as

Sf,' = 5f,'—2717i5((1)f,')Tﬁ (5.15)
where Ty; 1= Tff. The amplitude (f~|i") is completely determined through knowledge of
the T-matrix element 7;, which using the Born expansion can be expanded as follows

Vf nVni Vf nVoumVini
—+) : .
Wi +-1M (@ +in) (@ + M)

n,m

Ti=T) + T + T + .. =V + Y f.... (5.16)

n

Thus, we have a means by which to determine (f~|i*) up to arbitrary order in powers of

the interaction V.

5.1.2 Green's functions for the Schrodinger equation

In this section I review a time-dependent approach to the S-matrix facilitated by Green’s
functions, or propagators, which shed further light onto the assumptions underlying the
S-matrix formalism. It is in terms of propagators that the S-matrix is usually formulated
within relativistic QED.

Consider the evolution operator
Ut ) = e M0 — o7HT — (1),  T:=1—1, (5.17)
which satisfies the Schrodinger equation
(id, —H)U(t,10) =0, Ul(t,1)=1. (5.18)
Define now the operators
G* (1) := FiO(£1)U (1) (5.19)

where 0 is the Heaviside-step function, which is defined by

1 ifx>0
0(x) = 5.20
() { 0 ifx<O, 620
and which satisfies
0(x)+0(—x) = (5.21a)
0,0(x) = 0(x). (5.21b)

It follows from 5.21a and the definitions of the G* that

—iU(1) =G* (1) -G (7). (5.22)
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Similarly using 5.21b it is easy to show that
(id, — H)G* (1) = 8 (1)U (7). (5.23)

Due to the presence of the delta function we can ignore U(7) in 5.23, which is effectively
equal to U(0) = I. This means we can identify G (7) and G~ (¢) as the retarded and ad-
vanced Green’s functions for the Schrédinger equation. We can construct retarded and

advanced solutions of the Schrodinger equation as

Y= (1) = 19(1)) +/dfoGi(f)V|¢(to)>

)+ [ do GOV v ) (524

where G%F are the free retarded and advanced Green’s functions, associated with the free
Schrodinger operator (id, — Hp), and | (¢)) is a bare state satisfying (id; — Hp)|¢(¢)) = 0. It
is easily verified that the |y (¢)) satisfy the Schrodinger equation (id, — H)|y=(t)) = 0, by
either applying id, — H to the top line in 5.24, or by applying id; — Hy to the second line.

If we now make the same no level-shifts assumption as in 5.1.1, then the energy states

|n*) and the bare states |ng) have the same oscillatory time dependence;
InE(2)) = e [nE), () = e |np). (5.25)

Setting |w*(¢)) = [n*(¢)) and |¢(¢)) = |no(¢)) in 5.24, and making the substitution T =t —tg

one obtains
In%) = |no) + / 4T GE (1) o) = o) + / AT G (T nE).  (5.26)

To evaluate the integrals one must ensure they converge, which will be the case if an in-
finitesimal term —1, 1 > 0 is inserted into the exponent and the limit 7 — 07 is taken at
the end. This addition ensures adiabaticity of the switching on and off of the interaction.

We have for example

/ dtG* (1) ™" = / dT6(x)U (1) = —ilim [ a7
T— /0
1
i lim lim [ ¢ ef@—HmT — =G (5.27)
n—=0" 7= Jg -0t w,—H-+in

Thus, the expressions in 5.26 reduce to the Lipmann-Schwinger equations
[n*) = Ino) + G, V|no) = [no) + G**(@,)V |n*). (5.28)

We see then, that the |n*) are nothing but retarded and advanced energy eigenstates.
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The S-matrix with level-shifts

In general the free energy eigenvalues don’t coincide with the eigenvalues of the total Hamil-

tonian; @, — ) = A®,. One therefore defines the level-shift operator R by

n

R:=Y Aw,lno)(no|, Aw, = w,— o (5.29)

where clearly R is diagonal in the free eigenbasis, with (ng|R|no) = Aw,. This operator

allows the level-shifts to be included in the free Hamiltonian through the definition
= Hy+R, (5.30)
which clearly has the same spectrum as H, but the same eigenstates as Ho;
| no) = @y |no). (5.31)

Defining in addition the new interaction Hamiltonian #" = V — R, one can write the total
Hamiltonian as H = 7%y + 7. In the case that R # O the results of section 5.1.1 remain
essentially valid. One simply has to replace Hy and V with their shifted counterparts
and V respectively. However, as a result of the shifts the in/out-states will no longer be

normalised, so they must be renormalised as follows (Roman (1965))

) = —n),  Zy = () = (o). (5.32)

VZ,
The S-matrix is then defined by

1
VZiZy

The results of this section appear to require us to know the level-shifts to begin with.

Sgi = ({fx lig) = (fli*). (5.33)

I’ll end this section by remarking that the 7-matrix to be derived in 5.1.3 can in fact be
used to find the level-shift of the i’th free state. The change in energy is due to free energy
conserving scattering processes in which the initial and final states are identical. These
processes are made up of energy non-conserving intermediate processes in which virtual

quanta are emitted and reabsorbed.

5.1.3 The S-matrix via time-dependent perturbation theory

One of the most physically illuminating methods of deriving the S-matrix uses time-dependent
perturbation theory formulated using the interaction picture. The interaction picture is de-

fined by changing basis using the evolution operator associated with the free Hamiltonian
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5. The S-matrix and perturbation theory

Ho;

W) =Us ' (0,0)ly(@),  O():=Us"(1,000U0(1,0),  Up(t,to) := e~ 1)
(5.34)

where |y(z)) and O respectively denote a state and an operator in the Schrédinger picture.
Using the Schrodinger equation, it is easy to show that the interaction picture state | )

obeys the equation of motion

W) =V ()|y), (5.35)

which implies that the evolution operator U is related to the Schrodinger picture evolution

operator U by
Ul(t,t0) = Uo(to,t2)U (t2,11)Up(t1,10)- (5.36)
It is easily shown additionally that U like U, has the following basic properties
U0,0)=1, U@t,\U( 10)=0U(t,19), U '(t,10)=0U(10,1). (5.37)

Dyson (1949) sought to determine the dynamics of the system by solving the basic

dynamical equation of the interaction picture;

W (1)) = U(1,10)|¥(t0))- (5.38)

His first step was to substitute 5.38 into 5.35 and integrate to obtain

Ut,to) =1—i dtV( NO(t to). (5.39)
fo

Iteration of this expression gives the Dyson series;

U(t,t0) Z (1) (5.40)

n=0

where

U,(t,10) /dt /[(n] AtV (i)..v (z(n))
//, a7 V). (10)] (5.41)
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in which T denotes Dyson’s time-ordering operator defined by

TAWBE)] = { o) 5.4

Armed with these ideas I’'m ready to give a second definition of the S-matrix;
S :=U (o0, —00) = U (0,0)U (0, —o0). (5.43)

The use of the interaction picture is necessary to obtain a well defined matrix as the initial
and final times approach infinity. This however, is still not guaranteed even within the inter-
action picture. In order to ensure that the S-matrix 5.43 is well defined one adopts an adi-
abatic switching mechanism whereby the interaction V' is replaced by the interaction term
e Ny, N > 0 and the limit n — 0™ is taken at the end (Roman (1965), Cohen-Tannoudji
et al. (1997), Lawrie (2002)). Alternatively one can use a different, more formal limit-
ing procedure whereby one defines operators evaluated at infinite times as follows (Roman
(1965))

= lim T]/ di'e "A(f), A(—e0):= lim 77/ dt’ " A(t'). (5.44)
n—>0+ n—0+t

With these definitions in place one writes the S-matrix using the so-called Mgller operators
QF as

S=(@Q)'Q", Q =0(0,0), QF:=0(0,—co). (5.45)

It is straight forward to verify that the Mgller operators obey the following relations (Roman
(1965))

Qi — — 7‘/ == . 546
Ino) = = 0O+ H In0) = Ino) + @O+ HEin o) =: ) (5:46)
Thus, the S-matrix can be written

Sfi = 8 —2mis (09 Tyi (5.47)

as it was in the time-independent case, but with the T-matrix defined by the formal relation

T=V+VG"T (5.48)
in which
1
G w)= —r—. 5.49
(@) ©—HoLin (5.49)
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5. The S-matrix and perturbation theory

The T-matrix can also be viewed as an operator-valued function of the real variable w,
defined as (Cohen-Tannoudji et al. (1992))

1

(5.50)
In 5.47 T (w) is evaluated on-energy-shell i.e. at @ = w; = wy. It is easy to see using the
Born expansion 5.11 that the two definitions of the 7-matrix are equivalent. The second
definition 5.50 is obtained via an alternative method by which one arrives at 5.47, which
involves relating the advanced and retarded Green’s functions for the Schrédinger equation
to the resolvent operator G(z) := (z— H)~! (Cohen-Tannoudji et al. (1992)). The route I
have opted for shows most clearly how the physical states involved in scattering processes
are related to the bare states associated with Hy.

In experiments one does not usually deal with probabilities directly, but rather with
transition rates and cross sections. 1 will end this section by using the S-matrix to define a

transition rate into a final state or a set of final sates. The S-matrix can be written

Spi= 5fi — 27ri6(w]9i)Tﬂ
T/2 00
= 5f,' —1ilim dt ' Tf,‘

T=ee ) —1/2
_ L . g T 0' )
= & — 2 1121;6 (o) T§i (5.51)
where
1 sin(®%7/2)
5"(@%) === ’ 5.52
(wfl) T (J)O ( )

is a delta-function of width 47/ centered at wj(?[.. This delta-function is interpreted as
expressing the conservation of free energy with an uncertainty ~ 1/7 due to the finite time
of the interaction. The uncertainty tends to zero as T — oco. It is important to recognise
that this uncertainty relation is not a fundamental law following directly from the quantum
mechanical formalism, as the generalised uncertainty relation pertaining to conjugate linear
operators is.

In light of 5.51 and 5.52 one defines the transition rate from state |i) — |f), i # f by

wi s = 4m* lim Mﬁﬁﬁ =218 (0f)| Tl (5.53)

: T 7 .
where in general Ty; = Tfl-(a)j?, a)lp ) depends on the initial and final state energies, as well as
other parameters upon which the bare states might depend. Often one is interested in the
transition rate into a group of final states with energy density p. If we denote collectively
with A all other parameters on which the final states might depend besides energy, the

transition rate to the group of final states with energy in J := [@ +3®/2,0 — §®/2] > @°
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5.2. Time-independent perturbation theory

is
Wi P =Y wiy = 27r/jda)}92p(a)}9,/l)w,-_>f
f A

(5.54)

o=0p

— 21} p(0,4)|Ts(0,0,1)
A
This result is called Fermi’s golden rule, although it was first used by Dirac.

5.2 Time-independent perturbation theory

Before summarising the results of this chapter, I wish to make a brief detour. The theory of
resolvents (Kato (1976), Van Hove (1955), Van Hove (1956), Hugenholtz (1957)) provides
an illuminating perspective on both S-matrix theory and perturbation theory, and I will use
it quite a bit later. I will give only the definition and some basic properties here with the
aim of developing time-independent perturbation theories. I will go into much more detail

in chapter 6.

5.2.1 The resolvent
The resolvent of a Hamiltonian H is defined as

1

G(Z) = ﬁ, zeC. (555)

To obtain the free resolvent Gy(z) one simply replaces H with Hy in 5.55. Applying the

operator identity

—

1 1 1
—+—(B—A)— )
B+B( )A (5.56)

3=
with A =z— H and B = z— Hy to G(z) yields the relation

G(z) = Go(z) + Go(2)VG(z2), (5.57)
which closely resembles the Born expansion 5.11. Similarly one can show that

G(z) = Go(z) + G(2)VGo(z2). (5.58)

The operators G* given in 5.10, can be identified in terms of the resolvent as

G*(w) = nli_}r& G(w+in). (5.59)
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5. The S-matrix and perturbation theory

The resolvent is also closely related to the evolution operator U (7,1). In fact, according to
5.22 and 5.27, we have

U(r) =i[G* (1)~ G (7)] = zim [aoe® (G- (0)-G"@)] 550

Using 5.59 this gives (Cohen-Tannoudji et al. (1992))

_ 1
27

U(7) / dze G (2) (5.61)
Iy

where y* is the complex contour running horizontally from right to left immediately above

the real axis, and Yy~ is the contour running left to right immediately below the real axis. As

I mentioned at the end of 5.1.3 it is possible to give a derivation of the S-matrix in terms of

the resolvent, regarding this I refer the reader to Cohen-Tannoudji et al. (1992).

5.2.2 Perturbation theory

The resolvent can be used to obtain traditional perturbative devices including Rayleigh-
Schrodinger perturbation theory (Hubac & Wilson (2010)). To this end consider the eigen-
problems

Hy|no) = @¥|ng),  Hln) = w,|n), H=Hy+V. (5.62)

where Hj is assumed to have discrete spectrum. For simplicity, I assume that the |ng) are
non-degenerate and moreover that the true eigenstates |n) satisfy the normalisation condi-

tion
(noln) = 1. (5.63)

If we assume naturally that |n) # |ng), then this condition implies that the eigenstates |n)

are not themselves normalised;

|ny|| > 1. It will be useful to consider the operators

1

P:=no)(ng|, Q:=1-P, Golw)= T

(5.64)

where |ng) denotes a particular bare state. The operator Gy is just the resolvent of the

projected Hamiltonian QH Q. Note that using 5.63 the useful relation
|no) = Pln) (5.65)

immediately follows.

With the definitions above established I turn now to the task of finding an effective
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5.2. Time-independent perturbation theory

Hamiltonian H.g, satisfying the hybrid eigen-problem Hgt|ng) = w,|ng). We have
H(P+0)|n) = 0,(P+Q)n) (5.66)
implying
PHP|n) + PHQ|n) = ©,P|n). (5.67)

Since H(P+ Q)|n) = @,(P+ Q)|n) we have

QHP|n) + QHQ|n) = ©,Q|n) (5.68)
implying
Q|n) = Go(w,)QHP|n). (5.69)
Using 5.65 this implies
Hegt|ng) = @y |no) (5.70)
where
Hef = PHP + PHQGo(®,)QHP. (5.71)

With respect to the state |ng) this effective Hamiltonian does the same job as the shifted
Hamiltonian .77 in 5.30.
Next I find the inverse of the operator P, that is, the operator which takes a bare state

|no) and gives the corresponding true eigenstate |n). One defines the wave operator Q by
In) =Qlng), PQ=P, QP=Q, Q’=Q. (5.72)
We have
QH,|ng) = 0,Q|ng) = H|n) = HQ|np) = QHe = HQ (5.73)
and since PHQ|no) = wy,|no), it follows using 5.71 that
Q= [I+QGy(w,)QV]P (5.74)

Applying this expression onto |ng) and using 5.72 one obtains an equation closely resem-
bling the Lippmann-Schwinger equation 5.9.

Finally I define the level-shift operator R, which relates the various operators found
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above;
R=VQ, R(z)=V+VQGp(z)QV. (5.75)
We have immediately
Hetr = PHyP + PRP, (5.76)
from which it follows that
@, = @, + (no|R|no), (5.77)

hence the name level-shift operator. With respect to the state |ng), this operator does the
same job as the level-shift operator in 5.29. One can derive a number of useful relations
between R(z) and G(z). Using the definition of the resolvent 5.55, and the fact that P+ Q =1

we have
(z—H)(P+Q)G(z) =1. (5.78)
Applying P from the left gives
P(z—H)PG(z)P—PVQG(z)P=P (5.79)
while applying Q from the left, then P from the right, and finally rearranging gives
0G(z)P = QGp(z)QVPG(2)P. (5.80)

Substituting 5.80 into 5.79 and rearranging yields

1 1
PG(z)P =P P Gy —
@F =P —pmp—prp 9= e R@

(5.81)

where G, (z) := (no|G(z)|no) and R,(z) := (no|R(z)|no).

The operators above allow us to determine the true eigenvalues and eigenstates from the
free eigenvalues and eigenstates. Usually however, this can’t be done exactly, but only by
recourse to perturbation theory. One can obtain a perturbative expansion by applying to the

resolvent Gy, the operator identities

1 1 1 1

L M 582
A+B A A’asB (5.82a)
1 111

AtB A A A—B (5.82b)

where A — B = A’ — B'. By using different partitions of A — B, as is allowed according
to 5.82, one can obtain a number of different perturbation theories. The most common
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of which is Rayleigh-Schrodinger perturbation theory, defined by the use of 5.82a along
with the partition A = @0 — Hy, B =V — A®,. These choices yield the following series
expansions (Hubac & Wilson (2010))

Her = PHP+ Y PHQGY [(V — Aw,)GY]* OHP, (5.83a)
a=0

Q=1+Y 0G)[(V-Aw,)G5]% 0V, (5.83b)

a=0
R=V+ Y VOGY[(V-Aw,)GH]" oV (5.83¢)

a=0

where

0.y | 5.84
= ; —5~|mo) {mo| (5.84)

is sometimes called the Rayleigh-Schrodinger resolvent.
To get an expansion for the level-shift Aw, I first replace V with AV, where A is a small
parameter (e.g. A = &) and expand the level-shift in a power series;

Ao, = Y A0 (5.85)
a=1

with Aa),(,()) = (. According to 5.77, by substituting 5.85 into 5.83c, and taking the matrix
element for the state |np) one will obtain a second power series expansion for A@,. Setting
this second series equal to the right-hand-side of 5.85, and equating coefficients of each

power in A yields expressions for the Aot Up to O(A?) we have

Awlgl) = Vnm
Awr(zz) — Z [Vnm(‘)/mn] :
(0)
m#n nm
1 VimVimpV, VanVamV,
Aa),(l3) _ Z . Z nm n(1)p pn _ Ynn n(;n mn (586)
m#n N | m#n wnp Opi
Similarly, one can expand the eigenstate |n) as
n) =Y A%n(®) (5.87)
a=1

with |n(?)) = |n). Substituting 5.85 into 5.83b and using Q|ng) = |n) one obtains a second
power series expansion for |n). Setting this second series equal to the right-hand-side of

5.87, and equating coefficients of each power in A yields expressions for the [12(*)). Up to
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O(A?) we have

= X [ )

m#n nm
1 ViurV, Vi Vin ViV
) =X 5 | X | oy mo) | = =g o) — 5 o) | (5.88)
m#n - nm | p=#£n wnp wnm wnm

The expressions quickly become complicated in the higher orders, which is why I have only

given the expansion up to O(A?). I will use the results 5.86 and 5.88 in chapter 6.

5.3 Summary and discussion

The S-matrix; bare versus dressed states

The Mgller operators QF defined in 5.45, produce the in/out-states |i*),|f*) associated
with the fotal Hamiltonian H, from the bare states |i),|f). Taking the limiting values #; —
—oo and 7y — oo in definition 5.44, is the means by which this is achieved. This in turn,
is equivalent to the use of an adiabatic switching condition between the initial and final
times over which the interaction is assumed to occur. With this mechanism in place, bare
states coincide with true eigenstates of the total Hamiltonian, before and after the interaction
takes place. These eigenstates unlike bare states, are gauge-invariant, which allows us to
understand the gauge invariance of the S-matrix. Mathematically gauge invariance of the
T-matrix can be proven on-energy-shell, i.e. when the free energy is conserved over the
duration of a process (Woolley (1998), Woolley (2000)). Thus, gauge invariance of the
S-matrix is ensured by the presence of the delta-function & (y;).

So the “naive” S-matrix formalism starts with the assumption that in the remote past and
remote future bare particles exist, and that they are too remote to interact. These particles
are described by the bare states. The Mpgller operator Q* has the effect of dressing the
bare particles with clouds of virtual quanta, turning them into physical particles. These
physical particles are described by the in/out-states associated with the fofal Hamiltonian.
The physical particles interact over a finite period of time, and finally, as they move away
from each other, the Mgller operator (™)' undresses them, turning them into bare particles
once again.

Alternatively one can view the in-state as a retarded energy eigenstate, which in the re-
mote past coincides with some bare state |ip). The adiabatic switching on of the interaction
dresses the bare state with virtual quanta to produce the physical state |i*). Similarly one
can view the out-state as an advanced energy eigenstate, which in the remote future coin-
cides with some bare state | fy). The adiabatic switching off of the interaction undresses this
bare state (or equivalently dresses the bare state backwards in time) to produce the physical
state |f ).

The action of dressing and undressing described above, is somewhat unphysical. It is
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difficult to see how one can adiabatically switch on and off the interaction of a massive
particle with the electromagnetic field, for example. One corrects for this idealisation via
the process of renormalisation, in which the virtual quanta are included within the initial and
final states. Since § is proportional to a coupling constant, the expressions 5.32 and 5.33
for the renormalised S-matrix, show that the process of renormalisation simply changes
the value of this coupling constant. More generally renormalisation can be viewed as the
procedure by which the effects of virtual quanta are contained within renormalised physical
parameters.

So, in summary, starting with the bare states, one arrives at a description of processes
involving physical states via the S-matrix formalism. Within the S-matrix formalism it is
the in and out-states associated with the foral Hamiltonian, which are assumed to give true
descriptions of physical particles. On the other hand, the bare states do not directly describe
physical particles. We have therefore ended up at the first of the two possible points of view
I gave in the introduction.

It seems to me, that this point of view is quite blatantly at odds with the assumption that
tensor product structure offers the means by which one decomposes a composite system into
physical subsystems. It is this second point of view however, which is adopted throughout
many areas of physics besides quantum field theory, including quantum information theory,
open quantum systems theory, and even quantum optics. Indeed, many of the strange and
counter-intuitive aspects of quantum theory, such as quantum nonlocality and entanglement,
rest upon this very assumption. The physical reality of any such phenomenon, is subject
to whether or not the mathematical representatives of physically meaningful degrees of
freedom, can actually be decomposed into tensor product based structures.

Take the Hamiltonian H in 2.71, which clearly admits an infinitude of physically distinct
tensor product based decompositions in terms of canonical degrees of freedom. According
to the ideas used in scattering theory, the physically meaningful states of well defined energy
for the atom, are eigenstates of H itself, and not eigenstates of the free Hamiltonian Hy. A
physical state describing the atomic subsystem, does not therefore appear as a tensor factor
of some larger tensor product state describing the composite system. Words to this effect
appear elsewhere in the literature. For example, having determined that the canonical atomic
Hamiltonian HX of the Coulomb gauge is physically different to HY of the Poincaré gauge,
Cohen-Tannoudji et al. (1997) write...>3

“One can then ask the question: what is the “true” ground state of an atom or
a molecule? Is it that ofHAC or Hf? It is in fact neither one or the other. One
cannot really remove the interaction of the charges with the transverse field
and observe the ground state of HAC or H f . What we call the ground state of a

system of charges is in fact the ground state of the system charges + transverse

331 have altered the notation in the quote, so that it fits with my own, and I have added my own equation numbering
where necessary.
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field, which must be an eigenstate of Hc or Hp. These operators are really
related by S = e X from 6.14, so that the ground state from either point of
view describes the same physical state. The eigenstates of Hf and of HE, are
different approximations of the real state, involving the neglect of this or that
part of the effects of the transverse field on the system of charges.”
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CHAPTER 6

The bare atom versus the dressed atom

We saw in chapter 5 that the question as to precisely what, in the interacting composite
system, is to be taken as defining the atomic and electromagnetic subsystems, is intimately
related to the question as to what extent the “bare” atom-photon degrees of freedom have
any basis in physical reality. The common hypothesis is that the bare atom is surrounded
by a cloud of virtual photons within which emission and reabsorption events occur over
extremely short time scales (cf. 6.4.2). In seeking to determine the reality of bare degrees
of freedom, I analyse in this chapter, the quintessential quantum electrodynamic effects of
the Lamb shift and spontaneous emission. In order to do this I start in 6.1 by reviewing
conventional quantum optical models. Section 6.2 will be dedicated to level-shifts and the
numerous physical interpretations they afford. Section 6.3 will be dedicated to both sponta-
neous and virtual photon emission, including an analysis of the photodetection divergences
brought about by the latter. Finally in 6.4 I will review the work of Compagno et al. (1995)

on the direct measurement of the virtual cloud.

6.1 The Coulomb and Poincaré gauges in the EDA

In quantum optics one uses the canonical operators belonging to one of two gauges, the
Coulomb gauge or the Poincaré gauge. Moreover, the electric dipole approximation (EDA)
based on the assumption that the atomic radius is much smaller than optical wavelengths of
light, is ubiquitously employed. In this section I briefly demonstrate how these formulations
can be obtained from the general Hamiltonian 2.71. This should allow us to begin to assess
the specific effects of gauge freedom within the conventional approaches to quantum optics,

and to determine the physical natures of the corresponding subsystem decompositions.
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6.1.1 Multipolar polarisation

Consider an electron —e displaced by r € E® from the origin, which is the position of a
fixed nucleus +e located at the origin. Now suppose one links the nucleus to the electron
by joining together n dipoles end to end, with each dipole consisting of charges —e and
+e separated by a distance r/n. The sum of these dipoles is a field whose limit as n — o

defines the multipolar electric polarisation field P(X);
1
P(x) = —e/ dArS(x—Ar). ©.1)
0

The value of P is 0 away from the path connecting the two charges. The divergence of this

field is closely related to the charge distribution p. In fact using the standard representation

1 .
S _ /d3k +ik-x 6.2
one sees that
0 . —e€ _ —ikr
ik-P(k) = (2n) /2 (1—e'™7), (6.3)
which in real space reads V -P = —p, as is required according to 2.35.

The electric displacement field given in 2.56 is entirely transverse; D = Dr. Moreover,
it is clear that the displacement field is equal to the electric field E at all points outside the
atom, for if V C E3 contains the atom, then the integral of P over the region E*/V, evaluates
to zero. Supposing that V is a sphere of radius a, then if ® < a~' one can perform the

electric dipole approximation, which constitutes setting
R (6.4)

after having used 6.2 to represent the delta-function in 6.1. This approximation necessitates
the introduction of an ultra-violet frequency cut-off @, ~ m~!, which prohibits interaction
with the relativistic modes. Within the EDA the multipolar polarisation field is

PEPA (x) = —erd(x), (6.5)

so the displacement field coincides with the total electric field everywhere except at the

origin, which becomes the effective “position of the atom”.
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6.1.2 The minimal coupling and multipolar Hamiltonians

Having specified the multipolar polarisation in full we can immediately read off its trans-

verse component, which is given by 2.37 with

gri(x,x') / dﬂ,x 5T (x—AxX). (6.6)

According to what was said in chapter 2, choosing gt in this way specifies a choice of gauge.
The Hamiltonian 2.71 in this gauge is the familiar multipolar Hamiltonian frequently used
in molecular QED (Craig & Thirunamachandran (1984), Cohen-Tannoud;ji et al. (1997)).
The vector potential given in 2.72, corresponding to the gauge choice 6.6, is easily shown to
satisfy r-A(r) = 0 (Cohen-Tannoudji ef al. (1997)). This condition is known as the Poincaré
gauge condition, the gauge choice 6.6 is therefore variously known as the multipolar gauge
and the Poincaré gauge. It is interesting to note that the Poincaré gauge condition is nothing
but the Coulomb gauge condition implemented in reciprocal space; Vi - A(k) = 0.

In the EDA the multipolar transverse polarisation field is given by 6.5, which can be
obtained from 2.37 by taking the Poincaré gauge Green’s function gr to be given in the
EDA by

gT (x,X) = —x; 8 (x). (6.7)

Using this expression together with the definition of the vector potential given in 2.45, we

see that in the EDA, the Poincaré gauge vector potential vanishes at the origin;

AEPA(0) = Ar;(0) — [ai / dxx; 85 (XA (X)) =0. (6.8)
x=0

In the EDA the transverse fields At(r) and Ilt(r) taken at the relative position r of the
electron —e, are approximated by their values at the origin 0.3* This implies that in the
Poincaré gauge and EDA, the canonical momentum p given in 2.60 coincides with the
mechanical momentum mr. Thus, in the Poincaré gauge, not only do we have a properly
retarded transverse field canonical momentum It = —Dr, but within the EDA, we also
have a true (mechanical) particle canonical momentum. The Poincaré gauge Hamiltonian

in the EDA is according to 2.71 given by
HEPA = Hy + Hp —d-Dr(0) (6.9)

where d := —er is the atomic dipole moment operator. As I explained after giving the
Hamiltonian 2.71 in chapter 2, the dot product in 6.9 must be understood as a dot product

of tensor products of operators with the identity, and the Hamiltonians H4 and Hr must

34This approximation constitutes a zeroth order expansion of the plane waves e**T appearing in the mode ex-

pansions 2.69, and it is certainly consistent with the definition of the EDA given in 6.4.
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be taken as extended to the entire composite space using the identity operator. The atomic
Hamiltonian Hy includes a polarisation self energy term, which in the Poincaré gauge and
EDA gives

Hy = % SV () + Vet + &t (6.10)

where &gjs is the dipole self energy. Upon discretising the field modes & can be written

Exelf = %;V(em -d)*. (6.11)
The explicit form of the Hamiltonian 6.9 is often referred to as the multipolar Hamil-
tonian in quantum optics and molecular QED. The Hamiltonian in the Coulomb gauge
meanwhile is referred to as the minimal coupling Hamiltonian. This labelling can serve
to obscure the fact that these two Hamiltonians actually constitute different explicit forms
of the same Hamiltonian. I will use the labels Coulomb gauge and Poincare gauge to re-
fer to the different gauges themselves, whereas I will use the labels minimal coupling and
multipolar to refer to the explicit form of the Hamiltonian within these gauges.
The Coulomb gauge is specified by the choice gr = 0, implying A = Ar. The associated

(minimal coupling) Hamiltonian in the EDA is
HEPA — H, + Hr + $p - A1(0) (6.12)
m

where Hy is the same as in 6.10 minus the dipole self energy &, and instead Hg includes

a self energy term;

1 e?
Hr=Y o(aq =)+ —A0)% 6.13

F % <aklakl + 2> + m ( ) ( )
The minimal coupling and multipolar Hamiltonians are related by a unitary gauge fixing
transformation S = =% of the type given in 3.89. This transformation is known as the
Power-Zienau-Woolley (PZW) transformation. The generator ¥ is the generator of the gauge

transformation relating the two gauges. Explicitly we have

Hp=e¢ “XHee%,  y:= /d3ng(x,r) ‘Ar(x) = 1/d3xPT(x) -Ar(x) (6.14)
e

where gt corresponds to the Poincaré gauge, so that P is the multipolar polarisation field.
In the EDA 6.14 simplifies to

EDA EDA

HpPA = o7 HEPR T yEPA . — 4. A1(0). (6.15)

The generator ) appearing in 6.14 and 6.15 produces a nonlocal unitary operator S #

S4 ® Sp. Thus, the PZW transformation mixes up the canonical degrees of freedom of
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the Coulomb gauge in passing to the Poincaré gauge. This can be viewed as the cause of
the physical differences in the canonical momenta between the two gauges. It is obviously
important to determine which physical predictions come out gauge-invariant, despite the

use of physically distinct canonical degrees of freedom. This was the subject of chapter 5.

6.1.3 The Maxwell fields in the Coulomb and Poincaré gauges

Classically Maxwell’s equations for given sources were solved in chapter 4. On the quan-
tum level the Hamiltonian 2.71 yields Maxwell’s equations as operator equations. Formally
these equations can be solved in the same way as before. Predictions however, come in the
form of expectation values, with the system allowed to possess, in general, superposition
states. I review here the canonical Maxwell fields in the Coulomb and Poincaré gauges,
within the EDA. For more detailed accounts the reader is referred to Power & Thiruna-
machandran (1999a) and Power & Thirunamachandran (1999b).

Using the Hamiltonians 6.9 and 6.12 together with the Heisenberg equation we can
calculate the various Maxwell fields, of the two gauges. I will assume the EDA throughout
and therefore omit the superscript "PA. In addition the canonical field operators at the origin
At1(0) and IIt(0), will be written simply At and ITy. It is instructive to use the photon
creation and annihilation operators to work out the Maxwell fields in the two gauges. In the

Coulomb gauge one has

iy (1) = —ilayy (1), He] = —iway (t) + igd (1) - e, (6.16)
where md = —e(p + eA). Formal integration then yields
. ! : N
ax (1) = a4y, (0)e ™ +ig / dt'e U d (1) - ey (6.17)
0

In the Poincaré gauge one has in a similar manner

. 1 . ’
axs (1) = a, (0)e ™ + g / dt'e A (1) - e (6.18)
0

The term @y, (0)e "

in these expressions is the component of evolution generated by the
“free” field Hamiltonian Hy given in 2.71.% The creation and annihilation operators clearly
carry different physical significance in the two gauges, and so too, does Hr. We will see
shortly that in separating the Maxwell fields out into free and source components based on
the corresponding partitions in 6.17 and 6.18, the individual free and source components are

generally gauge dependent, even for gauge-invariant fotal fields such as the electric field.

35Note that with regard to the Coulomb gauge calculation, by Hr I mean Hy as in 2.71, and not as in 6.13.
Therefore, the %A% term does not contribute to the free evolution of ay .
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The transverse vector potential and the magnetic field

Substituting 6.17 into the mode expansions 2.69 for At one obtains in the Coulomb gauge
Ar=AJ +Af, (6.19)
where A% is the free component with evolution generated by H;
AY(t,%) =Y gea (aj;l (0)e~kxtior g (O)el'k"‘*f“”) , (6.20)
kA
and A7 is the source component, which with a little work is found to be

!
(—80* +9,9)) 41nx/ dr'd;(t') if 1 > x,
Ar;(t,x) = T 6.21)

1 ! / / .
(—5ij82+8,-8j)4—m/0 di' [d;(t') —d;(0)] ifr<x

where as always repeated spatial indices are assumed to be summed.
To obtain the Poincaré result one substitutes 6.18 into the mode expansion 2.69 for Ar.

As aresult one obtains 6.19 with A% as in 6.20, but with A7 given instead by

1 ! .
(=8;;0% + 9:9;) e t_xdt/dj(t/) if t > x,

hilx) = (6.22)

1 .
(—5ij82+3i3j)m/0 dr'd;(t')  ifr<x.

Despite the gauge invariance of Ar its source and free components are different in the
two gauges due to the implicit difference in the generator Hr of the “free” evolution. The
free component in the Coulomb gauge implicitly contains an extra factor compared to the
Poincaré gauge result;

A%CG(;) = A% pi(t) + (—8;j0% + 9;9;) 4%1 1(0), fort <x, (6.23)

so that the total field is seen to be gauge-invariant, as it should be. The magnetic field B is
readily obtained using B =V x Ar. The result contains a causal source component which

is the same in both gauges;

1 . .
— ,‘jkak%dj(t) ift > x,

B(f,x) = (6.24)

0 ift <x

where g;j; denotes the Levi-Civita symbol.
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The transverse and total electric fields

The transverse electric field can be found using Et = —Ar. As usual we have
Er = EJ +E5. (6.25)

In the Coulomb gauge the source component is

1
(—8j0% +9:9;) — [d;(r —x) —d;(1)] ift>x,
B (1,%) = Amx (6.26)
T,i\*» 1 .
(—8,j0% +9i0;) 7 1d;(0) — d;(1)] ift <x,
whereas in the Poincaré gauge one has
1
(—8j0% +9:9;) — [d;(r —x) —d;(1)] ift>x,
B (t,x) = Amx (6.27)
T,i\*» 1 .
2 .
(—8:0% + 9;9;) dej(t) ift < x.
The total electric field can be found by adding the longitudinal component to the trans-
verse component. For x = 0, E_ is given by E. = —Py, = P, and
T 2 1
Pri(1,x) = §;(x)d;(t) = (—8;0° + di9;) @dj(l)- (6.28)

Adding this term to the transverse field gives in the Coulomb gauge

1 .
(—5:'./92 +0;0;) dej(t —x) ift>x,

Ej(t,x) = | (6.29)
(=8;;0% +9:9)) 2di(0) ift <x,
while in the Poincaré gauge we get
2 1 .
(= 6;;0°+0:0;))—d;(t—x) ift>x,
Ej(t,x) = D1,(1,x) = ‘ 4mx (6.30)

0 ifr <ux.

So, our review of the Maxwell fields in the two gauges shows that the free and source
components of fields tend to differ, even when the total fields are the same. The Coulomb
gauge source fields depend on additional contributions from the initial atomic dipole mo-
ment d(0). This is because the Coulomb gauge field Hamiltonian H is defined in terms
of the transverse electric field, rather than the total electric field as in the Poincaré gauge.
Moreover, as I have already noted the atomic source in the Poincaré gauge is defined in
terms of the true mechanical dipole momentum. This seems to show that the Poincaré
gauge partitioning of the composite system into subsystems is the more physical.

It should be noted however, that only in the EDA do the mechanical and canonical
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dipole momentum of the Poincaré gauge coincide. Without the EDA p contains additional
contributions from a variant of the polarisation field (Craig & Thirunamachandran (1984)).
This can be understood by noting that p = mi- — eA(r), but outside the EDA the total vector
potential in the Poincaré gauge does not vanish. Furthermore, the electric displacement
field Dt only coincides with the total electric field at points outside the source. In the
EDA the atomic source is effectively a point source at the origin, yet strictly speaking the
atomic electron wavefunction will only vanish infinitely far from the source of the binding
potential. Without the EDA, and particularly within the quantum mechanical setting the
distinction between the displacement field and the total electric field may be significant.
Finally, it is worth remarking that at the origin the two fields E and Dr differ by an
infinite contribution in the form of the electric polarisation field P. This is not trivial because
the atom must respond to any field at its own position. A consequence of the difference in
the two fields is that one obtains the additional infinite contribution & within Hy, on top
of the longitudinal self energy Vir. We shall see in section 6.4 that the Poincaré gauge
suffers more severely than the Coulomb gauge from divergences that plague the theory of

photodetection, in which the atom is assumed to absorb photons at its own position.

Vacuum fluctuations and radiation reaction

The results of this section have been based on the partition of operators into free and source
components. In expressions 6.17 and 6.18 the free components with evolution generated by
Hp are often termed vacuum contributions. These are the only contributions in free quantum
electrodynamics. The presence of a background quantum vacuum is often inferred from the
non-vanishing of the expectation values of the squares of the electric and magnetic fields,
taken in the photon vacuum state. This is due to the anti-normally ordered products of
creation and annihilation operators, that appear in such expressions.®® The electric and
magnetic fields can be viewed as fluctuating about their mean values of zero. The existence
of the quantum vacuum, which is not present according to the classical theory, can be used
to explain why atoms are stable, and even to eliminate the existence of runaway solutions
to the Abraham-Lorentz equation (Milonni (1994)).

The name given to the source component of a field at the position of the source is
radiation reaction. A feature of quantum optics that has received a great deal of attention
in the past, is the apparent facility to (somewhat arbitrarily) attribute physical phenomena
to both radiation reaction and the vacuum; which of the two mechanism contributes more
seems to be determined by the ordering employed when writing down commuting atom and
field operators (Milonni ef al. (1973), Dalibard et al. (1982), Milonni (1994), Compagno
et al. (1995)).

We should really expect this sort of freedom, because in the presence of sources, the

36Creation and annihilation operators are said to be normally (anti-normally) ordered when all creation (annihi-
lation) operators are found to the left of the annihilation (creation) operators.
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vacuum and source components of a field are physically different in each gauge (cf. section
6.1.3). The problem of determining the complimentary nature of vacuum and radiation
reaction fields, is not separate to our problem concerning how to decompose the composite
system into subsystems. The fact that we can attribute physical phenomena to one or the
other of vacuum and radiation reaction fields, is consistent with the viewpoint that it is only
really the gauge-invariant fotal fields, that have physical meaning. If one wishes to attribute
physical effects to either the vacuum field or radiation reaction, one must choose a gauge
in conjunction with which one makes such attributions. This physical interpretation would
have to be modified to be given in a different gauge, in order to account for any differences

in the source and free components between the two gauges.

6.2 Level shifts

Given the discussion above, this seems like a good point at which to analyse the physical
significance of level shifts, which can be attributed to both vacuum and radiation reaction
fields. The Lamb shift named after Lamb & Retherford (1947), which is the difference in
energy of the 252 level above the Zp% level in atomic hydrogen, is the best known example.
Without taking the electromagnetic field into account the 252 and Zp% levels are predicted
to be degenerate. Thus, the Lamb shift is a purely quantum electrodynamic effect. Indeed,
the agreement between the theoretically predicted Lamb shift and the measured value, is
probably the single most significant factor responsible for the perceived success of quantum
electrodynamics.

The importance of the Lamb shift might go some way to explaining the vast amount of
attention it has received over the years, as well as the surprisingly large number of different
physical interpretations of level shift phenomena conceived since the original calculations
of Bethe (1947).

6.2.1 The Welton interpretation

Welton (1948) has given a heuristic interpretation of atomic level shifts, in which vacuum
fluctuations are seen as the root cause. In Welton’s interpretation the electron experiences
oscillations r about its position r within the atom. These oscillations are induced by the
vacuum fluctuations of the field. Their effect is to perturb the Coulomb potential due to the

atomic nucleus, which gives an effective potential
1
V(r+8r) =V (r)+8r-VV(r)+ 2 (dr- V2V(r)+.... (6.31)

Since Or is the oscillation induced by the vacuum fluctuations one assumes that it obeys the

same equation of motion as a free i.e. unbound electron coupled to the free component of
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the transverse electromagnetic field. In the electric dipole approximation one has
mdr = —eES (6.32)

for a stationary nucleus at the origin. Expanding Or in plane wave Fourier modes akin to

the expansions in 2.69, one obtains

5r=Y e (3rk,1e*"“” + 5rhe“’”> (6.33)
kA

while for the right-hand-side of 6.32 we have

E) =i} ogey, (afd (0)e® — ay, (0)(’”) . (6.34)
kA

From 6.32 one therefore obtains

e
ma*dry, = ey,  Org, = mii)ak’l' (6.35)

We see then, that dr is to be taken as an operator in the field Hilbert space. The vacuum

fluctuations are assumed isotropic, so one can assume that
1
((8r-V)?) = §<5r2>V2. (6.36)

To obtain an expression for the effective potential experienced by the electron one sub-
stitutes the result 6.35 into 6.36 and takes the vacuum expectation value. Converting the
discrete sum into an integral, performing the sum over polarisations, and substituting the

resulting expression into 6.31 gives

1/ ¢ 1\ on
Ver(r) :=V(r+06r) = V(r)+ 3 (sz /da) (0) V-V (r) (6.37)
where only the first nonzero correction in the expansion 6.31 has been retained. The electric
dipole approximation warrants the use of an upper frequency cut-off w, ~ m. Also required
to regularise the integral, is a lower frequency cut-off @y, which is taken to depend on the
details of the binding potential. Introducing these cut-offs and using V2V = —p = ed(r)

one obtains

et o,

AV (r) := Vege(r) =V (r) = WS(r) In o

(6.38)
The expectation value of this operator for the atomic state |mg) gives its energy shift induced
by the vacuum field. Furthermore, a natural lower cut-off @; is obtained if one assumes
that the vacuum fluctuations are at least as large as the average difference in the energy

®,, between the state |mg) and the other atomic levels. With this, one finally obtains the
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standard “Bethe log” nonrelativistic level shift of the state |mg);

Ay = ;f‘;wm( 0PI 639)
In atomic hydrogen this shift is nonzero for s-states only. For the 2s state
Y (0) = Sl (6.40)
where ap = 1/ma denotes the Bohr radius. Thus, the Lamb shift is
ma’ . oy,
A=A, —Awn), = ﬁl By (6.41)

6.2.2 The Power-Feynman interpretation

Feynman (1961) suggested a different interpretation of level shifts, which was taken to
fruition by Power (1966). In contrast to Welton’s idea, in the Feynman-Power interpretation,
it is the zero-point energy of the field which is altered by the presence of the atom, rather
than the atomic levels being altered by the field. The energy shift manifests itself by altering
the refractive index n of the vacuum. In a medium of N atoms each in the bare state |my), the
velocity of light is 1/n(m). The field frequency dispersion relation is consequently altered;
o(m) := ®/n(m). The total zero-point shift between the 2s and 2p levels can now be found

as the difference

A=EF(25)—EF(2p) = ;); [®(2s) — w(2p)]. (6.42)
k.

One takes the refractive index n(m) to be given in terms of the atomic energy levels by
(Becker (1982), Compagno et al. (1995))

4r ’d m’ Opm ’ m’ a)3m
=14+ NY “Lm T N P2 opm+ =25 6.43
n(m) 3 Z (me (L) Z pm + w2 ( )

with the approximate equality valid under the assumption that it is the high frequency field

modes that give the dominant contribution. Using the Thomas-Reiche-Kuhn sum rule

3e2
2
gwpm|d,,m| =5 (6.44)
and the relation
Ppm = imwpmrpm (645)

between matrix elements of position and canonical momentum in the free energy basis, one
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obtains after some straightforward manipulation (Power (1966), Compagno et al. (1995))

é_moﬁl ,

- ni
N 61 @

(6.46)

which is the same as the result 6.41.

We have seen then that level-shifts can be attributed to the quantum vacuum or to ra-
diation reaction fields. They can also be viewed as shifts in the bare atomic energies or as
shifts in the bare vacuum field energy. This (quite considerable) freedom in the choice of
physical interpretation of level-shift phenomena is of course, exactly what one might ex-
pect, given that “atom” and “field”, as well as “vacuum” and “radiation reaction” are all
gauge-dependent labels. The freedom one possesses in attaching these labels (somewhat

arbitrarily) to physical phenomena, could be viewed as nothing but gauge freedom.

6.2.3 Self energy and renormalisation

The most common method of deriving level shifts is to use elementary time-independent
perturbation theory, which does not rely on heuristic arguments. As a necessary precursor
to the level shift calculation of the bound electron, I consider here the self energy shifts of a

free electron.

The longitudinal self energy

We saw in 4.4 that the longitudinal field energy associated with a point charge gives rise to
a divergent Coulomb self energy Vi.js. I suggested that the only directly observable effect of
this energy is to contribute to the observed mass of the electron. In the fully covariant QED
formalism longitudinal and scalar photons are quantised. The longitudinal self energy can
be shown to give rise to a small contribution to the mass of the electron, due to emission and
reabsorption of longitudinal photons (Heitler (1954), Lawrie (2002)). In the non-covariant
gauges the Coulomb self energy term is usually omitted from consideration.

It is important to note however, that the omission of terms from the Hamiltonian is a
dangerous business if one wishes to retain the crucial property that it produces the correct
equations of motion. The neglect of the Coulomb self energy on the grounds that it is
unobservable may be premature. It seems that it would be more correct to say that it is not
directly observable. If however, one observes the equations of motion, and the self energy
is required to yield the correct form of these equations, then it does evidently produce some
observable effects. It must therefore be understood as being present, while the infinite
contribution it makes in various calculations understood as renormalising the bare mass of

the electron. This situation is of course, quite familiar (cf. 4.4).
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The transverse self energy

In the quantum setting there arises an infinite energy shift of the free electron due to its
coupling to the transverse field. This energy shift is dealt with in precisely the same way
as the longitudinal self energy, it is taken as renormalising the bare mass of the electron. I
take the Hamiltonian 6.12 in the Coulomb gauge and EDA, but without the potential term

describing the binding of the electron to the nucleus;’’

1
H=— (p+eAr)* +Hy. (6.47)
2m

Second order perturbation theory (5.86) yields for the bare state |po;0p) of zero photons and

electronic canonical momentum p, a shift of (see for example Craig & Thirunamachandran

(1984))
o p’[4a o0
[M_Zm<37rﬂ [ a0 (6.48)

The first term in the square brackets arises from the A% term of the interaction Hamiltonian.
Since it is independent of the state of the electron it can’t lead to any directly observable
effects and its contribution can be included within the zero-point energy.*® The remaining
term can be written
p> ém 4ot (=
———, Om:= —/ do. (6.49)
3w Jo

2m m

Defining the observable mass as my,s := m + 0m, one obtains correct to second order

(p+eAr)’ p e & o P dm
H—Hy = P A Ads P
2(mobs - 51’7’1) 2Mgps  Mobs 2Maps T 2Mgbs Mobs

(6.50)

If one now calculates the energy shift as before, the contribution from the last term in 6.50
will cancel that of the the second term, giving a total shift of zero. Thus, we can effectively
absorb the shift induced by the transverse field into the observable mass of the electron, a
procedure known as mass renormalisation. The bare energy of the electron is subsequently

pz/zmobs-
6.2.4 Level shifts via elementary perturbation theory
I start-off in the Coulomb gauge and as usual neglect Viir. The level shift, as in the case

of the free electron, is the difference in the energy of the bare eigenstate |mg;00) and the

37 As is conventional, I neglect Vggis.

381In a similar fashion to the longitudinal self energy, one cannot neglect the A% term from the Hamiltonian and
hope to obtain the same equations of motion. Thus, it seems that it is only within the calculation of the self
energy that it can be neglected.
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corresponding true eigenstate denoted |m;0). Using second order perturbation theory (5.86)
with mass renormalisation already carried out, and as before neglecting the contribution of

the A% term, one obtains (see for example Craig & Thirunamachandran (1984))

2 2
o / dop ComlPom | 6.51)

Wy + @

Following Bethe (1947) I introduce the upper cut-off w, to carry out the integration, and

replace the energy difference @, in the resulting logarithm with the average difference ®,

to give
A0 = =22 Y D pan 10 2 (6.52)
m — 37Tm0b5 - nm pnm E . .
Finally, using the sum rule
, €& 2
n
one obtains the standard Bethe log result
AGm = 2y (0)PIn 2 6.54)
EEC S |

The same result is obtained using the Poincaré gauge provided the polarisation self
energy term &gy is retained, and as in the Coulomb gauge calculation, any contributions
independent of the bare electronic state are neglected (Craig & Thirunamachandran (1984)).
Of course, this invariance is just a particular case of the gauge invariance of the on-energy-
shell T-matrix. From the point of view of perturbation theory, the level shifts must be
identical, because Hy is identical in both gauges, while Hcg and Hpg possess identical
spectra due to their unitary equivalence.

We have seen that the Lamb shift can be viewed as a shift of the bare atomic energy as
in 6.2.1, or a shift in the bare field energy as in 6.2.2. It is therefore not all that surprising
that as the calculation above clearly demonstrates the Lamb shift in atomic hydrogen, can
also be viewed as a shift in the energy of the composite atom-field system.

If the measured energy of the hydrogen atom is an eigenvalue of the total Hamiltonian,
then we appear to be no closer to achieving our goal of identifying the atom and field
subsystems. It is natural to ask whether or not there is a reasonable decomposition of the
Hamiltonian 2.71 into subsystem components, which is consistent with the fact that the
Lamb shift coincides with a difference in eigenvalues of the total Hamiltonian. In fact, such
a decomposition appears to be afforded by 2.61, in which one primitively takes the energy

of the atom to be defined in terms of precisely the same physical observables as in the
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noninteracting theory

1
H{" = 5mrz +V(r). (6.55)

Similarly the transverse field energy is
1
Hie = / &x (B2 +B?), (6.56)

while the longitudinal field energy is only directly observable through the mass of the elec-
tron. It is clear that after subtracting the infinite zero-point energy of the transverse field,
the vacuum |0p) is an eigenstate of Hr with eigenvalue 0. The shift between the energy of
any bare eigenstate |ng;00) of Hy, and the corresponding eigenvalue of H, is therefore the
same as the shift between the energy of |np;0p) viewed as an eigenstate of Hy ® I, and the
corresponding eigenvalue of Hy". Thus, the observed shifted energy eigenvalue of the 2s
state in hydrogen, is indeed an eigenvalue of Hy".

This suggests that in going from the theory of a noninteracting bound electron, to a
bound electron in the electromagnetic field, one should continue to define the atomic energy
in terms of the same physical observable as was used in the noninteracting theory, which
is the mechanical momentum. The same is true of the transverse field, whose energy Hp"®
should be defined in terms of Et regardless of whether or not It = —Er, which happens to
be the case in the Coulomb gauge.

To my knowledge, this interpretation of the Lamb shift has not been given explicitly
before, although it is certainly possible that it has been tacitly assumed when interpreting
level shifts as arising from emission and absorption of virtual quanta. The Coulomb gauge
calculation presented above for example, is consistent with viewpoint 1 and the S-matrix
formalism - that virtual quanta are emitted and reabsorbed by the bare atom, but these
virtual quanta are really just mathematical devices allowing us to determine the true atomic
energy.

In the Poincaré gauge and EDA, the free atomic Hamiltonian is already defined in terms
of the mechanical momentum, but Hr is defined in terms of the transverse displacement
field and not the transverse electric field. Thus, the Lamb shift is a shift between the bare
and true transverse field energies. In both gauges, and indeed in any gauge, we have the
same unambiguous subsystem definitions. In measuring the energy of a true hydrogen atom
in the true electromagnetic vacuum, one obtains an eigenvalue of H{"¢. The notions of bare
atom, bare photons and the virtual cloud therefore become superfluous. In addition one
can decisively determine what the appropriate vacuum/radiation-reaction decompositions
should be for the various Maxwell fields. It’s a separate issue as to whether or not such a

decomposition is of any physical significance.
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6.3 Photon emission; spontaneous and virtual

Spontaneous emission is the process by which an excited atom makes a transition to a lower
level, and in doing so emits a photon. This is the quantum interpretation of radiation, which
implicitly seems to presuppose some notion of free energy conservation. Of course, in the
case of bare atoms and photons the emission event must occur over an infinite time in order
that the free energy is conserved with absolute certainty.

It is not surprising then that the S-matrix formalism provides the most direct route to
obtaining the spontaneous emission rate of an excited atom. There are however, alternatives.
One of the best known of these is the Weisskopf & Wigner (1930) (WW) treatment used
in quantum optics. This treatment entails a series of “approximations”, which eliminate
the effects of virtual quanta and effectively turn the entire calculation into that of an S-
matrix element. We have seen however, that rather than approximations the assumptions
underlying the S-matrix formalism appear to be necessary restrictions in order that the use
of bare states is actually permissible. We are therefore lead quite naturally to the question;
are these so-called approximations bona fide approximations, and what happens if we avoid

making them?

6.3.1 The spontaneous emission rate

The S-matrix calculation of the spontaneous emission rate I" of an excited atom, consists of
the straightforward application of the Fermi golden rule given in 5.1.3, and as such is stan-
dard textbook fare (see for example Craig & Thirunamachandran (1984), Cohen-Tannoud;ji
et al. (1992)). Let |f) = |g;kA) be the state in which the atom is in the ground state and a
single photon KA is present, and let |i) = |e;0) be the state in which the atom is excited and

there are no photons. Summing over all one-photon final states constitutes the prescription
Zp:/dwa)z/dQZLy (6.57)
G ~ (27)

Taking the minimal coupling Hamiltonian in the EDA in 6.12, the first order 7T-matrix ele-
(1)

ment T7;” is
(1) eg ) 1
gkl — Zpeg'ekb 8= oV (6.58)
The total transition rate out of the state |e,0) is according to 5.54
3 2
14 Dz |deg|
. group 2 2 _ Teg 8
A Zn/dcoco ;/mwn&mg 80— ) = —L - (659)

where the sum over polarisations and spherical solid angle integration have been carried
out, and 6.45 has been used. Note that this result must be gauge-invariant, due to the gauge

invariance of the S-matrix.
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6.3.2 The Weisskopf-Wigner treatment

The Weisskopf & Wigner (1930) treatment can be found in most introductory texts on quan-
tum optics (see for example Scully & Zubairy (1997), Milonni (1994)), so I will keep my
review brief. My main aim is to clearly ascertain the role of the approximations made in the
treatment.

I start with the minimal coupling Hamiltonian in the EDA 6.12 again, and make two
further approximations. The first is the two-level approximation (2LA) for the atom, in
which only the ground state |g) and first excited state |e) are taken into account. The atom

becomes a fictitious spin with raising and lowering operators
o i=le)sl, o =lg)lel. (6.60)

This approximation is justified on the grounds that only two states of the atom are involved
in spontaneous emission, so there is no need to take the other states into account.”® The
next approximation constitutes the neglect of the Agr term of the minimal coupling inter-
action Hamiltonian. This can be justified, because it is second order in the coupling e.
Alternatively one could argue that being independent of the (canonical) atomic operators
it can be absorbed into the free field Hamiltonian Hr, and taken as renormalising the bare

field frequencies.* In total we have

d=dy,(c"+07), (6.61a)
—ep = imegdyy (6T —07), (6.61b)
Hy= Y un)(n|=w.0"c" +w,0 c", (6.61c)
n=e,g
V=iY (o =0 )(ay +an),  aq = —80(de-exn) (6.61d)
kA

where for simplicity I have assumed d,, € R3.

Next I make the rotating-wave approximation (RWA), which constitutes the neglect of
the terms in V that give rise to free energy non-conserving processes. Within our simplified
model, in which the EDA and 2LA have been made, and in which the A2 term has been
neglected, the counter-rotating terms G*al
cloud. Since spontaneous emission is a first order real process the counter-rotating terms do

4 and 0~ ay, are synonymous with the virtual

3The 2LA is nevertheless highly non-trivial. It fundamentally alters the algebra of atomic observables, which
essentially becomes su(2) (cf. B.3.2). The finite dimensionality of su(2) means that it is incapable of supporting
the canonical commutation relations, which the original canonical atomic operators satisfied. It happens that
this fact bears no consequences with regard to the WW theory of spontaneous emission.

40This is a second highly non-trivial approximation, because as I noted in 6.2.3 neglecting the A% term results in
a Hamiltonian, which is incapable of producing the correct equations of motion. Of course, deriving the correct
equations of motion is something the 2LA has already eliminated any possibility of achieving.
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6. The bare atom versus the dressed atom

not contribute to the spontaneous emission rate. With the addition of the RWA we have

V=i ca(cTag —oal,). (6.62)
kA
This sort of rotating-wave, linear-coupling interaction Hamiltonian is ubiquitous within the
quantum optics paradigm.
To calculate the rate of spontaneous emission the WW treatment starts with the assump-

tion that the state at time ¢ can be written
(W (1)) = be(t)e ' |e;0) + Y bia ()e "< [g:kA),  bo(0) =1, by (0)=0. (6.63)
kA

This too, is an approximation. First of all only one-photon states have been included, be-
cause spontaneous emission is a first order process. Furthermore, only the atomic ground

state appears in tensor products with the one-photon states, because spontaneous emission

is a real process in which the atom must make a transition |e) — |g) with the emission of a

photon. The Schrodinger equation is equivalent to the coupled differential equations
be =- ch/lbkly bk/l = —i(o— weg)bkl + ckabe, (6.64)
kA
from which it follows that

1 . /
be ==Y cia / di' b(1')e (OO0, (6.65)
0

Our final approximation, the Markovian approximation (MA), is made here. One assumes
that the amplitude is approximately memoryless, so that one can write b, (t') ~ b,(¢) in the

integrand in 6.65. Moreover, for times 7:=1—1t' > wggl we have®!

t . , 00 . 1
/ dt/e—l(w—(lkg)([—f) ~ / dre—l(w—akg)r — _11@7 ~|— 7[:6(0) — a)eg) (666)
0 0 O — Mg
Thus,
. T .
b, ~ <iAcoe - 2) be, b, B0l e711/2 (6.67)
where
3 |d,,|?
I:=27Y ¢ 8(0— o) = g;;”' (6.68)
KA

4INote that a limiting procedure must be invoked to evaluate the integral over 7 (cf. 6.3.4).
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6.3. Photon emission; spontaneous and virtual

and

2 de 2
Aa)e.—gzz G _ Pulda <33/da)

O—0, 6712

(0]
- (Deg> . (6.69)

So we see that in the WW treatment the excited state decays with a rate I'. The term A,

describes a radiative level-shift of the excited atomic state, but only appears in the amplitude

as a complex phase meaning it doesn’t contribute to the probability |b,(¢)|>. Substituting

6.67 back into 6.64 and integrating yields
. . t .
bkl (l,) — e*l(wfa)eg)tbkl (O) + e*l(wfa)eg)tckl/ dTel(erw"g)Te*FTﬂ (670)
0

from which using by, (0) = 0 we obtain

2 2
- ‘i 6.71)

b (1) 7 ~ (0 — )2 + (T/2)?

Ckl/o dTefFr/ZH(a)fweg)r

in the (Markovian) approximation holding for I' > 1/¢. This result implies that the line-
shape of radiation spontaneously emitted by the excited atom is approximately Lorentzian.
I will revisit this topic in much more detail in chapter 7.

So we have now covered two ways of obtaining the spontaneous decay rate of an excited
atomic state. The WW approach entails, as we have seen, a number of approximations.
To assess the general validity of these approximations and to shed further light on to the
physical nature of the contributions they eliminate, I turn my attention now to probabilities

of photon detection at finite times.

6.3.3 Photodetection divergences and the symmetric representation

I start by considering a two-level atom linearly coupled to the field. I denote by PpJ[l(t) the
probability to detect a photon for an initial state [g,0). I denote by £ (¢) the probability
to detect a photon given the initial state |e,0). Time-dependent second order perturbation

theory yields

" 2F @, .2 3 :i: 2

Z/ dt/dt” 2 om0t ) —1") _ 2L da)fi(a))sm ([0eq a)]zt/ )
% T Jo (g + @)

(6.72)

Here the coupling constant ¢y, is dependent on the form of the atom-field coupling, so it
is different in the Coulomb and Poincaré gauges. The f*(®) are dimensionless and also
coupling dependent. In the Coulomb gauge f*(®) = [~ (@) = ®/ W, O P[E(t) in 6.72
diverges logarithmically. In the Poincaré gauge f(®) = f~ (@) = (®/@,)* so P;{l(t)
diverges quadratically.

If in 6.72 f~ () is sufficiently slowly varying, and the peak at @,, of the sinc function
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dominates the integration, so that effectively one has

sin ([@ — @t /2) Ut
(0 — g)? T2

TS (W — Weg) (6.73)
then one obtains

P (t) =27t Y ¢ 8(0 — @) = 1T (6.74)
kA

This is twice that obtained by applying the MA to P in 6.72 and subsequently taking the
real part. Defining the rates
P (1)

I :=lim ==
t—eo  f

(6.75)

one sees that within the above approximation I'" = 0 and I'” = I, so we have effectively
performed the first order S-matrix calculation for each rate.

The results for P;h are as expected different in the Coulomb and Poincaré gauges, but
perhaps more surprisingly in both cases P;[l is divergent. The probability comes out nonzero,
because of the counter-rotating terms present in the minimal coupling and multipolar inter-
action Hamiltonians; the atom can emit a virtual photon while making an upward transition.
Because P;}r1 (¢)/t vanishes in the limit # — oo, the counter-rotating contributions are often
said to be transient; they are associated with the virtual cloud of photons.

Nevertheless the results are paradoxical, not only because they are divergent, but also
because they appear to imply that we can extract energy from the vacuum by simply placing
a ground state atom into the field. The formalism allows for this, because the energy we are
talking about here, is actually free energy, and this is by no means conserved; [Hy,H| #
0. The obvious deficiency here, is the idea that a non-conserved free energy constitutes a
legitimate candidate as observable energy.

A pragmatic approach to tackling the divergence problem would be to construct a for-
mulation in which [Hy, H] = 0, that is, we could try to partially diagonalise the Hamiltonian.
A method of doing this by applying a generalised PZW transformation to the minimal cou-
pling Hamiltonian was developed by Drummond (1987) (see also Baxter (1989) and Baxter
et al. (1990)). By constructing the generalised transformation in such a way that upon mak-
ing the 2LA the counter-rotating terms in the interaction are eliminated, one eliminates the
photodetection divergences.

The required transformation symmetrically mixes the minimal and multipolar couplings,
and so I call the resulting representation the symmetric representation. It has also been
called the rotating-wave representation, due to the similar form of the resulting interaction
with that obtained by employing the RWA. I use the label symmetric to refer to the rep-
resentation itself whereas I use the label rotating-wave to refer to the explicit form of the

Hamiltonian obtained within the symmetric representation. In the symmetric representation
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6.3. Photon emission; spontaneous and virtual

the free ground state |g;0) is the true ground state of the foral Hamiltonian and moreover,
the free energy Hy is a symmetry of the Hamiltonian; [Hy,V| = [Hy, H] = 0. Thus, the vir-
tual cloud dressing the vacuum is included implicitly within the bare degrees of freedom,
which consequently become (at least partially) dressed.

The generalised PZW transformation required is
Speyy 1= € A ©) (6.76)
where

A (0) 1= Y goveis (af; + ) (6.77)

kA
with the oy’s being real and dimensionless. In the case o = 1, S¢q,) reduces to the PZW
transformation 6.15 in the EDA. Applying S{,, to the minimal coupling Hamiltonian 6.12

yields the general Hamiltonian

Hygy := Ho+Vigy = Ha+HFp +Vig)

2
P .
Hay =2 +V(r) +elod

2
e

He = £ A0) ~ Ay (O + Y. 0al a0
m KA

e

Vi =P (A(0) = Agy(0) +d Tl (0) (6.78)
where
{o} vy L o 0
Eelt *= Z oy % (exy - d) (6.79)
oy
and
(4 (0) := i) wgoyey; (a,ﬁ,L - akl) : (6.80)
%)

Neglecting the (self energy) terms quadratic in e and making the 2LLA, one obtains the

approximate model 6.61, but with the interaction Hamiltonian

. _ @,
Vigy =iy e00" (i ay +1p ag ) +He,  gui=—\/55eq-d (68D
kA

where

o, 0]
Ui ::(l_ak)‘/?g]Fak‘/weg' (6.82)

This general interaction includes the minimal coupling (o = 0), multipolar (o = 1) and
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rotating-wave interactions as special cases. The rotating-wave Hamiltonian is defined by

the choice
g
oy = ——— 6.83
T 0t o (6:83)
yielding
2, /@@
N 6ta +He., (6.84)

Vs = izgkl
) Weg + O

which is of the same form as 6.62.
The symmetric representation affords us the opportunity to eliminate the counter-rotating
contributions without any need for the RWA or MA, but is this really necessary?*> To try to

answer this question I will now attempt a more systematic analysis of these approximations.

6.3.4 A survey of quantum optical approximations

The approximations used in 6.3.2 tend, in one way or another, to eliminate the effects of
virtual processes. The most used approximation is perturbation theory, which requires that
the perturbation is small i.e. the coupling is weak. Other approximations like the RWA
and the MA also rely on the weak coupling condition. Determining the validity and self

consistency of different combinations of these approximations can be a complicated matter.

The RWA

Starting with a linear coupling model the RWA neglects the energy non-conserving terms
in the interaction. In the Coulomb or Poincaré gauge and in the interaction picture with

respect to Hy we have;

V(t)=i) cx (GJra;lei(w“ngw)t + 0 ay el @)t —H.c.)

kA
RWA, ich;L (GJrak;Lei(a’“g*w)t - Gfabe*i(a"’fw)ﬁ ) (6.85)

kA

The neglected counter-rotating terms are those which come with the alleged rapidly oscil-

+i(e+0) which it is argued will cause the counter-

lating off-resonant exponential factors e
rotating terms to contribute much less than the terms retained. The statement that the
counter-rotating contributions necessarily oscillate more rapidly than the “rotating” con-
tributions is however, false. It holds only for mode frequencies close to @,g. As an example

take the “rotating” term /(%< ~2%)" in which ® = 2@,,. This term is equal to the counter-

421t is worth asking this question, because there may be traits of other formulations that could perhaps be viewed
as attractive. For example, the field canonical momentum propagates causally in the Poincaré gauge (6.1.3),
so that all interactions are properly retarded. This property of interactions is something that is necessarily
sacrificed when using the symmetric representation (see chapter 9 for a full discussion of this point).

124



6.3. Photon emission; spontaneous and virtual

rotating term e~ (@ +0)t

in which @ = 0. Thus, one can only legitimately neglect particular
contributions based on a mode-by-mode comparison.

The RWA is justified if all the @ are close to @, but assuming such a resonance con-
dition is the same as assuming free energy conservation. Since the counter-rotating terms
are neglected to ensure free energy conservation, the entire justification becomes circular.
In fact, it is quite difficult to see the sense in which the RWA constitutes any sort of approx-
imation at all. No such problem arises in the case of a single mode, because in the single
mode case one need only compare two individual terms. We have seen that the counter-
rotating terms give rise to divergent contributions, but only in the continuum limit of many
modes. Regarding the implications of these divergences for the consistency of the RWA,

one is reminded of the famous quote by Dirac on renormalisation;

“sensible mathematics involves neglecting a quantity when it is small - not

neglecting it just because it is infinitely great and you do not want it!”

Of course, the divergences associated with the counter-rotating terms are ultra-violet in
nature and this kind of problem is hardly unheard of in QED. The method of Drummond,
which eliminates the offending terms by partially diagonalising the Hamiltonian can be
viewed as a renormalisation procedure in which the effects of virtual processes are absorbed

into a redefinition of the atom-field coupling constant (compare 6.62 with 6.84).

The MA

The MA is also quite interesting. The MA, part of which constitutes taking the limit t — oo
(reminiscent of the S-matrix), can sometimes obscure the behaviour of terms at finite times.
The MA comes in different, but essentially equivalent forms. It also has close ties with the

so called pole approximation. Let’s suppose we are given an expression
I:= /Ol d A()X(t—1). (6.86)
where
X(1):= /OwdwY(w)e—’(“’—W. (6.87)

When Y is sufficiently slowly varying and has dominant peak at @y, X has a narrow domi-
nant peak at T =t —t' = 0. There are two ways to proceed. As we did in 6.3.2, one can put

A(1") =~ A(r) and take the limit T — oo in the integral. In order that this integral converges a
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factor —m must be added to the exponent. We have

oo

1 o . .
/dt’X(t—t’)% lim dwY((o)/ drei(@—m—in)T
0 0

n—0+.Jo
—itim [ do—22 oy - iz /de Vo)
n—=0+Jo O —wy—in Jo ®—
o [ Y(w)]
= I~A(t) |nY —@/d . 6.88
0| -iz [ a0 2 (6.58)

On the other hand one could put Y () ~ Y (@y) and extend the frequency integration to —oo.
This gives twice the result of the MA 6.88 in the real part;

X(1) =Y (ay) /0 T d@e OO Z2n TS (7) = [~ 2A()Y (). (6.89)

We saw a specific example of this approximation in 6.3.3. We can apply these ideas directly
to the spontaneous emission rate calculations in 6.3.2 and 6.3.3. For the calculation in 6.3.2
we identify A as the excited state amplitude b,. The approximation A(¢') ~ A(t) requires
that the decay of the excited atom is negligible over the time ¢, so for self-consistency we
require I'7 < 1. On the other hand the alteration of the integral limits requires @, > 1. We
therefore obtain the Markovian regime

1 1
=>t>—. 6.90
T >t> o (6.90)

The error incurred by the MA is small in the context of the calculation of I" within the
Coulomb gauge and symmetric representation, but not in the Poincaré gauge. The Poincaré
gauge also suffers much more severely from the finite-time divergence problem caused by
the counter-rotating terms, whose contributions vanish within the MA whereby ¢ — co.

Consider for example, the expression 6.72 for PPTI, in which the dominant peak of the
sinc? function is outside the range of integration. When combined with the function £~ ()
also appearing in the integral the “small” oscillations outside the peak can lead to non-
negligible contributions within the interval [0, @,]. In the Coulomb gauge such contributions
generally remain small, which is why P;;l (t) diverges only logarithmically. In the Poincaré
gauge however, Pljl'1 diverges quadratically. We will see in chapter 8 in which I employ an
open quantum systems treatment of the atom, that the counter-rotating terms can lead to
non-negligible emission rates.

The conclusion we must draw from our considerations of the RWA and MA is that it
isn’t always clear, that virfual contributions can be neglected within apparently real emis-
sion rates, on the grounds of a legitimate approximative procedure. Therefore, the use of
the symmetric representation would sometimes appear to be necessary in order to retain any

hope of obtaining meaningful results when it comes to interactions over finite times.

126



6.4. The virtual cloud

6.4 The virtual cloud

In this section I adopt the alternative viewpoint 2 (cf. chapter 4), which allows for the
possibility that under certain conditions, bare atomic and/or field degrees of freedom, are at
least in principle, experimentally accessible. In other words I will assume that the virtual
cloud surrounding the atom is in every sense a real physical object.

Detailed investigations of the virtual cloud have been carried out in the past (see Fein-
berg & Sucher (1970), Persico & Power (1986), Passante & Power (1987), Compagno
et al. (1988b), Compagno et al. (1988a), Compagno et al. (1990), Compagno et al. (1991),
Milonni (1994), Compagno et al. (1995), and references therein). The starting idea is that
virtual photons are emitted and reabsorbed continually by the bare atom over very short

time scales. The time scales are determined by the energy-time uncertainty relation

1

T~ S0 (6.91)
Virtual emission and reabsorption can only violate free energy conservation to within 1/7,
where 7 is the interaction time over which the event occurs. Assuming that this is the
case, and assuming for now that the virtual photons propagate at the speed of light ¢, the
virtual cloud associated with an emission-reabsorption event of duration 7 extends a dis-
tance x ~ ¢7.*> The cloud is therefore localised at the atom. While it is consistent with the
classification of virtual processes as transient, this idea appears to promote the energy-time
uncertainty relation 6.91 to the status of a fundamental law, or failing this at least requires
that it is a legitimate approximation. To illustrate how the idea works consider the emission
of a photon from the bare ground state. The associated energy change is §® = W + ®. If
0.5 > @ then 0 ® ~ @,,. For optical frequencies one obtains T ~ 1075 and x ~ 10~ *cm.
At the other extreme ® ~ @, ~ 10'%s~! and x ~ 10~ %cm.

More rigorous quantitative results regarding the virtual cloud are obtained by analysing
the EMED around the atom, as well as the associated energy flux given by the Poynting
vector. The bare and dressed expectation values of these operators exhibit various 1/x"
behaviours (see references given in 6.4.1 shortly). These expectation values can be found
in both time-dependent quantum theory utilising bare states, and in the time-independent
S-matrix formalism utilising retarded true eigenstates. In the time-dependent approach one
neglects the transient contributions associated with the virtual cloud, which arise from the
second order fields. In this section I will begin by briefly reviewing the details of the cal-
culation of the expectation value of the Poynting vector taken in a bare excited atomic state
containing no photons. This calculation sheds no light upon whether or not the transient
contributions associated with the virtual cloud are measurable. To investigate this question

Compagno et al. (1995) have used a simple model of finite-duration quantum measurement

41t is far from clear that photons propagate at all, but the EMED defined in terms of the electric and magnetic
fields does propagate at speed c, and this is often used to obtain quantitative results regarding the virtual cloud.
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due to Peres & Wootters (1985). I will review this model in 6.4.2.

6.4.1 The Poynting vector

Both the virtual cloud and spontaneous emission can be described in terms of the elec-
tric and magnetic fields in the presence of an atom. We saw in 4.2 that charges in mo-
tion produce electromagnetic energy, which is carried by the Poynting vector. Using the
results of 6.1.3 perturbative expressions for the electromagnetic energy density (EMED)
and the Poynting vector can be obtained within both the time-dependent and time inde-
pendent formalisms, and expectation values for specific states of the atom-field system can
be found. I concentrate on the Poynting vector. My review will be brief, so I refer the
reader to the following for details; Power & Thirunamachandran (1983a), Power & Thiruna-
machandran (1983b), Power & Thirunamachandran (1983c), Power & Thirunamachandran
(1992), Power & Thirunamachandran (1993), Power & Thirunamachandran (1999a), Power
& Thirunamachandran (1999b), Salam (2008), Salam (2009).

According to 6.1.3, within the Poincaré gauge, within the EDA, and for an atom located
at 0, we have that —IIp(x) = Dp(x) = E(x) whenever x # 0. Moreover, we have that
mr = p. The Poincaré gauge is therefore well suited to our present task of obtaining the

Poynting vector. The radiative energy flux of an excited atom is found to be

4 2 3 2
w, |d w> |d
P= Z nm?|,7rnm, = Z Donsn@mnny,  Tinon i= M, (6.92)

n<m n<m

where we recognise I'),_,, as the spontaneous emission rate for the transition |m) — |n). The
quantity I',,,_,, quantifies the number of real photons with energy @,,, irreversibly emitted
per unit time, and since each photon carries an energy @, the rate at which energy is
lost via the |m) — |n) transition is I, ®,,,. The total rate P is simply the sum over all
rates I, @y, One way of deriving 6.92 is to use a time-dependent approach in which
the expectation value (S(z)) is calculated in the bare state |n;0). In this approach certain
transient contributions associated with the virtual cloud must be neglected. The second way
to arrive at 6.92 is to use the time-independent S-matrix formalism to find retarded energy
eigenstates and use these to calculate the expectation value of S. I will consider the former
approach first.

Our first task is to find the equation of motion for the Poincaré gauge bare atomic oper-
ator &, := |n)(m|. One can then use this to obtain an integrated equation of motion for the
dipole moment d, which is something I didn’t find in 6.1.3. To find the equation of motion
I use 6.9 without the self energy term &gj¢. This is allowed because I’'m only going to go up
to second order in the fields, and the first contribution from this term arises at third order.

We have after integration

Eam(t) = E (1) + iei®mt / 'Y Dr(t')- [dmpe*iwnpr'gnp(/)_dpne*fw’c,,m(z’)} (6.93)
p

128



6.4. The virtual cloud

with £ (¢) := {,ne’®* and Dp(1) := Dr(z,0). Using

t) = Zdnanm(t) (6.94)

nm

6.93 gives

d(1) =dV (1) +1 Y dye@nt / A D) - [dpe ™7 Gy (1) — Ay Gy (1)

nmp

(6.95)

where the free evolution component is denoted d(!) for reasons that will become clear

shortly;

dV () := Y dym|n) (e’ (6.96)
nm
Next one expands each of the dipole moment, electric field, and magnetic field in powers of
e = v4rna (or equivalently d) as follows

oo oo

— Y a0, Diex) =Y DY), Br=YBY0x)  (697)
n=1

n=0 n=0

where the zeroth order terms of the electric and magnetic field expansions are simply the

free evolution components;

DSFO) (t,x) :=D%(t,x) := —lZa)gekl (aue tkextior —akle"k'xfia”) , (6.98a)
kA
B (1,x) := BY(z,x) —lz wgk x e, ( I emextion_ ameik"‘*"“”) . (6.98b)

The free component of d(¢) is first order in the e, which is the reason for the notation used
in 6.95 and 6.96.

Substituting 6.96 in place of the total dipole moment in each of 6.30 and 6.24 gives the
first order components of Dt and B respectively. Assuming as usual that repeated cartesian

indices are to be summed we have

DY) (x,1) := Za)mn Fii (@), |2) (m] O 1) (6.99a)

4w

B! (x,1) Ezw’rmgu D X) Ay 1) (] 1 60 (6.99b)
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where d{;m denotes the nm™ matrix element of the i’th cartesian component of d, and

aany 1 R —i 1
fij(wx) = (61']' _xix]) a + (61] - 3xlxj) ((02)62 + (J)3x3> s (6.100a)
1 i
gij(0x) := —& ks <a)x + W) . (6.100Db)

The functions in 6.100 satisfy the relations

10X

(=802 +09;) “— = @ fyj(wx)e®™, (6.101a)
iox
(i€:j10)) — =0 2gij(wx)e™, (6.101b)

which were used in deriving 6.99. To find the second order term in the expansion of the
dipole moment one puts &, (1') ~ C,S,%) (7') and Dr(¢') =~ D(TO) (') in 6.95. By substituting the
resulting expression into each of 6.30 and 6.24, one obtains the second order terms in the

expansions of Dt and B respectively;

2 i —
DE(0.%) =7 LY ogeig il (p |[ 0l (@pn + @) fiy ([0pn + @) /O
kA np

dnmdl 3 i@y (x—1) dilmdinp 3 [@p (x—1)
_ Z o O (D) €O + mwpm fij(@pmx)e'rm

+Hec., (6.102a)

B (%) = - T T ogclgaia n) 7 [ (@t 0) g5 (@ + @) 0

kA np
dd! ) dd! _
-x { o~ o i1 (Oun) ) LT 0 i (@) } ]
m mp mn
+He. (6.102b)

where

di dhy . dhndi,

all = (6.103)
" ;[wmpw wmn+w

The top lines in 6.102a and 6.99a give time-independent contributions to the Poynting vector

while the second lines give oscillatory contributions.
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The total Poynting vector is the sum of free and source components;**

S—8' 1§ (6.104)
S0 := % (E°xB°—B" x E),
S’ = % (E“) «BD +E x BD +ED x B4+ E° x B? + E? x B0> tHec.

The expectation value of S* for the initial state |i) = |m;0) gives the radiative energy flux of

the bare atom in the bare vacuum. For this initial state the source vector reduces to
1
§=3 (EO «B® +E® x B+ EM x B“)) fec. (6.105)

Furthermore, the off-resonant oscillatory components of the second order fields produce
only transient contributions to S, whose time average over a finite interval is zero. These
contributions describe electromagnetic energy which is not lost irreversibly, but may be
reabsorbed by the atom. They are consequently associated with the virtual photon cloud
surrounding the atom. The question as to whether or not they give rise to observable effects
depends on the time scale over which the virtual emission-reabsorption events take place
within the cloud (see 6.4.2). For now, I look to obtain the rate at which energy is irreversibly
lost and so neglect these contributions.
Using 6.99, with a little work one obtains
<S(1)> _ &g (E(.I)Bl(l) —B(~1)El(1))

2 J J
gljl

Zd:nndizm mn fjr(wmnx)gls(a)mnx) +gl§(a)mnx)fjr(wmﬂx)] (6106)

and neglecting the oscillatory terms

2 Eiji 0)p (2 2) (0 2) 5 (0 0)(2
() = % (08P - BPEY + EXB - BUE?)
Eiji

= 2(47)2 ZSgn(wmn)dzrnndfszm mn [fjr(wmnx)gls( hnX) +87s(wmnx)f;r(wmnx)] (6.107)

where sgn denotes the signum function defined by

1 ifx>0
sgn(x) := 0 ifx=0 (6.108)
-1 ifx<O.

41n order that it is Hermitian, in the quantum theory S must be symmetrised;

S:=-(ExB-BXxE).

N\'—‘
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Adding 6.106 to 6.107 one obtains to second order

A

! o s\ N
8 Q2 Z d{nndnm mn jl xjxl) )T; (6109)
n<m
in which it is seen that only downward transitions make a net contribution. The x> depen-
dence of S; in 6.109 is highly significant. Poynting’s theorem tells us that the energy flux
across the surface of a sphere with radius x is (cf. 4.41)

P= / dQx*5:8i(x,1), (6.110)

and using 6.109 one obtains 6.92.

The same result can be found using the S-matrix formalism, without any need to neglect
particular contributions. The method consists of calculating the expectation values using
the true excited eigenstate [n;0") =: |n;0) e, rather than the bare atomic state |n;0) (Power
& Thirunamachandran (1993)). In the Poincaré gauge we already have a properly defined
atomic energy in terms of the canonical momentum p = mf, so as in 6.2.4, one can interpret
|n;0)rue as the correction to the incorrectly defined bare field vacuum. Using the 7-matrix

in 5.48, in conjunction with Hp from 6.9 one easily obtains the O(g?) unnormalised state

)
17;0) rue =|1;0) ZZ o wnm+l17 |m;KA)
,k’)L’,kMV!m,kM(m;kMV\n;O)

+ : -
mzr:n’gk: (@ — O+ iN) (O + @ — Oy + M)

im';K'A KA). (6.111)

Long calculations (see Power & Thirunamachandran (1993)) eventually give the result
6.109 for the expectation value (S) taken in the state |n;0)ue. The difference between
the two approaches is captured entirely within the transient contributions neglected in the
first method. It is only through an analysis of these contributions and their physical impli-
cations, that we can hope to determine the reality of the initial bare state assumed in the first
method.

6.4.2 Measuring the cloud directly

Suppose first that we wish to perform measurements on a single two-level atom whose zero

of energy is taken as @,,/2, and whose Hamiltonian can therefore be written

1
Hy = @y0;, 0= 5 (le) (el —g){gl)- (6.112)

In the formalism of Peres & Wootters (1985) the measurement device, or pointer, is de-

scribed by canonical operators P and Q, which for simplicity I will assume are confined to
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one spatial dimension. The pointer Hamiltonian is taken as that of a free massive particle;

(6.113)

and the atom-pointer system is described by a Hamiltonian Ha + Hy; + Hap. A measurement

of duration 7 starting immediately after # = 0 is assumed to be described by the interaction
Ham(t) :=Q(t)o,P (6.114)

where

Q>0 if0<r<t

Qt) = (6.115)
) { 0 otherwise.
Att = 7T an observation is made, which causes the familiar collapse of the state of the atom.
The observable relevant to determining the measurement outcome is the position Q(7) of
the pointer when the observation is made. The relevant equations of motion are

P(1)

P(t)=6,(t)=0, Q)= Ta +Q(1)o,(1). (6.116)

Using the notational convention A := A(0) for any operator A, 6.116 yields

P
Q(t)=Q+’M+QoZ, 0<tr<rt. (6.117)

Assuming at = 0 a normalised product state |@, ) with |@) := ale) + b|g) an arbitrary
atomic state, and |@) chosen such that (¢|Q|¢) = (¢|P|¢) = 0, one obtains

Q
(1)) =Q(0;) == (la* = [b]*), la]*+|b]*=1 (6.118a)

2
2
Lo 1= (Q(r)) — (Q(r)) = (i - <cz>) — S (- [aP b)), 118D

The position of the pointer is perfectly correlated with the atomic populations. The expec-
tation value in 6.118a gives the average pointer position within the interval [—Q/2,Q/2],
taken over a series of identical measurements starting with the initial state |@,¢). Individ-
ual observations yield outcomes +Q /2, with the outcome — /2 revealing that the atom has
ground state energy, and the outcome /2 revealing that the atom is excited. One deduces
that there are two peaks in the probability distribution associated with the pointer’s position,
one at /2 with relative height |a|?, and one at —Q/2 with relative height |b|?. In this way
the measurement yields information about the atomic state at t = 0.

Now consider the case in which the atom interacts with a single field mode. Taking

the single-mode analog of the general atom-field interaction in 6.81 one obtains the total
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6. The bare atom versus the dressed atom

Hamiltonian

P? . R
H=——+0,0,+0a'a+Q(t)o,P+ |igo" (u"a"+u a)+Hc]. (6.119)

2M

This situation is obviously more complicated than the bare atom case, because the bare
atomic energy is no longer a symmetry; &, # 0. The coupled system of equations of motion
can be solved perturbatively up to O(g?) in a fairly straightforward fashion. Compagno
et al. (1990) assume that the initial state of the atom-field system is the dressed ground state
|25 0)rue, Which is the ground state of the composite atom-field system. The second order
perturbation theory results given by 5.87 and 5.88 yield the following state normalised up
to 0(g”)

u+2 iout 2M+I/l_
lsu”] }\;> g i €:2).  (6.120)

O)rue = |1— = L1 |g;0) — el
8 >true |: 2(a)eg+(o)2 weg+w > \/E(D(a)gg"—w)

Assuming the same initial state |¢) for the pointer, lengthy calculations give the O(g?) result
(Compagno et al. (1990), Compagno et al. (1995))

(00 =90 =5 (P 1oF) . Jaf = B

zQ:Qz<1_< z>z) sin? ([0 + @]7/2) _ 05 |gut P sin’ ([0 + 0]7/2)

b> =1—a)*>, (6.121a)

4 ([0 +0]T/22 " (0 + 02 ([0 +@]7/2)

(6.121b)

There are two limiting situations; if the measurement is “short” i.e. (0., + ®)7 < 1, then
the sinc? function in 6.121b tends to 1, and Yo consequently tends to the bare result 6.118b.
The distribution of pointer frequencies is therefore the same as in the bare case with a small
peak (of height |a|?) centered at the outcome /2 corresponding to the atom excited, and
a large peak at —Q/2 corresponding to the atom in the bare ground state. This affords the
interpretation that measurements such that 7 < (@, + o)~ are capable of resolving virtual
emission events according to 6.91, and the atom is therefore perceived as bare by the pointer.

The second limiting situation is that in which (., + ®)7 > 1. Then the sinc? func-
tion tends to 0, which implies the existence of a single peak in the distribution of pointer
positions, centered at the average value Q(o;)/2 € [—Q/2,Q/2]. This affords the interpre-
tation that for sufficiently long measurements the pointer is incapable of resolving virtual
emission-reabsorption events and the atom is perceived as a ground state dressed atom cor-
responding to the single outcome Q(c;) /2.

It is immediately clear from 6.120 that for the atom-field system in the ground state
there is in general a nonzero probability to measure the bare atom as excited. The ques-
tion is whether or not this actually means anything physically. The above treatment presup-
poses that free energy constitutes a physically real observable, and based on this assumption

demonstrates that the atom can be detected as bare with sufficiently short measurements.
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6.4. The virtual cloud

One can therefore prepare an excited atomic state by measuring the atom, even when the
system is initially in the ground state. Thus, one will have apparently created “energy” from
nothing.

Compagno et al. (1990) suggest that the measurement process is capable of transferring,

according to 6.91, an energy no larger than 7!

into the atom-field system. If T < (0. +
®)~! then any virtual excitations become real, which accounts for the reality of the “energy”
that seemingly came from nowhere. This is also consistent with the pointer’s perception of
the atom as bare; a real photon is separate from the atom, which consequently must be
measured as bare. Precise details regarding the mechanism by which the measurement
transfers energy are somewhat scarce. To be sure, the bare pointer energy is a symmetry
of the Hamiltonian and is therefore conserved. The bare atom-pointer interaction energy is
however, not conserved, because &; # 0.

Compagno et al. (1995) have extended their considerations to the many-mode case. To
do this one takes the many-mode interaction 6.81 instead of its one-mode counterpart. After

lengthy calculations the results come out as follows

O +12
() =0lo) =2 (P -IbP). P =L AN o1,

= (g + @)
(6.122a)

oy Suasd |2 sin? ([0 + 0]7/2)

(e + @) ([0eg + ] T/2)? (6.122b)

The variance Xp in 6.122b is closely related to P;ﬂ in 6.72. In fact if one identifies the
coupling ¢y, in 6.72 with the coupling gy, then one sees that £g = (Q/7)*P;; (7). A
similar analysis is afforded in this situation as in the one-mode case; one simply has to
perform it term-by-term. The pointer perceives the atom as dressed only by photons with
high frequency relative to the inverse measurement duration, because these photons corre-
spond to terms in the mode sum on the right-hand-side in 6.122b that don’t contribute to
the nonzero value of Xp. For a measurement of duration 7 those virtual photons for which
Weg + 0> 77!

surement is incapable of transferring sufficient energy to “release” such virtual photons.
1

are not perceived as separate from the atom. According to 6.91 the mea-
The relatively low frequency photons for which w,, + ® < 77" are however, released, and
so with respect to these modes the atom is perceived as bare.

The measurement formalism employed here is extremely idealised. The pointer is mod-
elled somewhat arbitrarily and couples directly to the bare atom. Even so a more thorough
quantitative analysis of the results above is difficult, not least because the discussion de-
pends quite heavily on the atom-pointer coupling Q. Setting Q = 1 for simplicity, choosing
an ultraviolet cut-off, and choosing ®,, in the optical range, one is left with only two free
parameters; T and gy, u,j. The small probability |a|?> corresponding to the atom excited is
independent of 7, and is of the order 107% — 107 in both the Coulomb and Poincaré gauges,

while it vanishes identically in the symmetric representation. For “very long” measurements

135



6. The bare atom versus the dressed atom

T ~ ls, the variance Xy is of the order 1079 in the Coulomb gauge, but is still as large as
1072 in the Poincaré gauge. For short measurements Yo can blow up rapidly due to the
1/7? dependence. Thus, while the average pointer position remains strongly weighted in
favour of detecting the bare atom in its ground state, the deviation from this average can be
very large.

In any eventuality choosing the symmetric representation means there is zero chance
of finding the atom excited. The virtual cloud dressing the vacuum does not exist in this
representation, because the bare ground state coincides with the true ground state. Although
a virtual cloud is present whenever u,j' = 0 it may be quite different in nature depending on
the representation chosen. Thus, there are various ambiguities to be fixed in determining
the nature of a photon. First, there is perhaps an occasionally quite subtle distinction to
be made between real and virtual photons, but one must also decide which type of photon
dresses the atom by choosing the appropriate coupling. Of course, these two facets are not
entirely separate; as I have just noted, there are no virtual photons dressing the ground state
within the symmetric representation. The extremely loose numerical results above suggest
that short measurements are required to probe such questions pertaining to bare states, and
that over such time scales it’s possible that strange things occur.

The results of Compagno and co-workers are at least intriguing. If nothing else the
above exposition demonstrates just how involved the question as to the reality of bare de-
grees of freedom can get. It suggests that, as one might already have suspected, such ques-

tions are quite intimately intertwined with questions regarding quantum measurement.

6.5 Summary and discussion

In this chapter I have tried to focus on simple atom-field interaction models utilising stan-
dard quantum-optical models and approximations. The chapter consists of an analysis of
level-shifts, real and virtual photon emission, and the virtual cloud. These analyses tend
to lend support to various conclusions and interpretations not all of which are mutually
compatible.

We have seen that the separation of radiative and material degrees of freedom is far
from clear cut, a fact that gives rise to the notion of virtual quanta subject to the energy-time
uncertainty relation (6.4). I will use the ideas of 6.4.2 in chapter 8 in which I investigate
an open quantum systems description of the atom-field system as a means by which to
determine the most appropriate subsystem decomposition. We saw in 6.3 that numerous
approximations are required in order to avoid paradoxical divergent results brought about
by counter-rotating (virtual) contributions. The symmetric representation discussed in 6.3.3
eliminates these divergences without requiring the use of approximations. It is for this
reason that in chapter 8, it will be seen to give the most physically sensible results. We
will see in chapter 9 however, that the use of such a representation in describing interatomic

interactions necessarily incurs violations of Einstein causality.
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6.5. Summary and discussion

In 6.2 I discussed radiative level-shifts. The empirical verification of these shifts seems
to show that measured atomic energy levels are eigenvalues of the composite atom-field
Hamiltonian. However, excited atom-field eigenstates are stationary and will not decay,
something that seems to be at odds with the empirical fact that excited atoms spontaneously

emit. Excited dressed states and spontaneous emission are the subject of chapters 7 and 9.
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PART |11

Gauge-variant and gauge-invariant predictions
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CHAPTER (

Excited states and spectral lineshapes

The only dressed state I have discussed in any detail so far has been the bare atomic ground
state dressed by the bare vacuum field. Excited dressed states are difficult to identify, be-
cause the Hamiltonian H does not have, as H4 does, discrete excited states. The bare field
Hamiltonian Hr has purely continuous spectrum, and the discrete atomic states of Hy dis-
solve into the continuous spectrum of H due to the coupling V. In problems involving
excited states one usually assumes an initially bare excited state, and as such one inevitably
runs into gauge dependence problems.

The natural lineshape is the frequency distribution of radiation spontaneously emitted
by an atom in an excited state. One calculates in the limit # — oo, and for an initial bare state
le;0) at r = 0, the probability to detect a photon and the atom in its ground state. Since bare
states are gauge dependent, and one specifies the initial state at = 0 rather than t = —co the
lineshape prediction is gauge dependent. The difference in lineshapes between the Coulomb
and Poincaré gauges was investigated in detail by Power & Zienau (1959), who found that
the prediction of the Poincaré gauge was in better agreement with the experiment of Lamb
(1952).

It is clear that a definition of the lineshape in terms of some set of physical observ-
ables and states is an implicitly gauge-invariant definition. One can therefore view the task
at hand as that of determining the representation, if any, in which the canonical operators
and bare states happen to represent the physical observables and states that give rise to
the correct definition. Such a determination may be possible by comparison of the theo-
retical predictions with experiment. Of course, this reasoning is valid only if there exists
with certainty, some gauge in which the canonical momenta and bare states are the right
ones. Failing this one would be forced to seek an entirely different method of calculation
altogether.

In this chapter I review various analyses of the behaviour of excited bare and dressed
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states. I then attempt a detailed analysis of the lineshape paradox using the formal theory of
radiation damping (Heitler (1954), Cohen-Tannoudji et al. (1992)) and the arbitrary gauge
Hamiltonian 2.71. This analysis constitutes the entirety of new work presented in this chap-
ter. It can be found in sections 7.2-7.4, and is summarised in the paper Stokes (2013). 1
describe the preparation of the initially excited atomic state by resonant absorption of in-
cident radiation with a sharp line, and with a slight modification use the same result to
describe the Lamb transition in atomic hydrogen in a way relevant to the early experiments
of Lamb (1952) (Power & Zienau (1959)). I then use a simplified treatment whereby the

atom is excited by a laser pulse treated semi-classically.

7.1 Excited states

7.1.1 Excited dressed states

For the purposes of getting a feel for excited dressed states I first analyse the two-level atom
coupled to the field in the symmetric representation. The Hamiltonian H for this model has

the interaction component given in 6.84, and can be written

H:=Hy+V, Hy = wggGZ+Za),?aZak, V.= ngaicf—i—H.c.. (7.1)
k k

For the purpose of what follows I have collapsed the double index kA into a single index &,
and I have explicitly labelled the bare photon frequencies and coupling strengths with this
index.

Even for this simplified model it quickly becomes apparent that conventional perturba-
tive techniques fail in determining the shift in energy of the excited bare state |e;0) when
the continuum limit of field modes is taken. This is due to the presence of divergences in
the expressions obtained at higher orders. Such divergences arise, because to any arbitrar-
ily small neighbourhood of the bare atomic energy @2, there corresponds an uncountably
infinite set of nearly degenerate one-photon states |0,kA) with energy P ~ a)gg.

In contrast, when the set of field modes is discrete the only degeneracies that occur
are countable. To try to understand the spectrum of H in the continuum limit one can at-
tempt to solve the problem in the discrete case and then study the behaviour of the resulting

expressions in the continuum limit. The basic eigen-problem to be solved is
H|n) = w,|n), (7.2)

so we must consider the determinant |H — @,|. The problem is tractable if we restrict our-
selves to the one-excitation subspace. If we represent H — @ as a matrix in the bare atom-

field basis restricted to states with one-excitation and let N denote the total number of field
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modes, the determinant |H — @| can be written as an (N + 1) x (N + 1) array;

Of— 0 g g 8N
g o) —w, 0 - 0
H—o,=| g 0o - S (1.3)
. 0
gN 0 e (L)N—(l)n

The ij™ entry in 7.3 is the matrix element
(00;04,...,0,1;,0,...,0|(H — ®,)|00;01,...,0,1;,0,...,0) (7.4)

where |0p) := |g) and |1¢) := |e). Owing to the simplicity of the model, all entries are zero
except for the left most column, top row and main diagonal. The determinant 7.3 can be

written

N N 2
0 0 |gx|
H—an = |[][(@— o) | [0 — 0 —F(@,)], Flan):=) —5 . (1.5
k=1 =1 O — Dn
an expression which can be used to find the w, by setting the second factor in square brack-
ets equal to zero. Unfortunately an analytic solution doesn’t seem possible, but before
addressing this issue let’s turn our attention to the eigenstates |n). An arbitrary eigenstate

|n) within the one-excitation subspace can be written
N
) = AGle;0) + ) A¥le, ). (7.6)
k=1

The A, j=0,...,N can be found via 7.2, which can be written (H — (x),,)[-jA? = 0. This

equation is equivalent to the coupled equations

N

(09, — 0,)AG+ Y geA} =0, (7.72)
k=1

giAG+ (0 — @,)A} = 0. (7.7b)

At the same time the normalisation condition (n|n) = 1 implies that

1
Al = ————— 7.
4P = e (7.8)

where F'(®,) := dF /d®,, and equation 7.7b together with 7.8 yield up to an arbitrary
phase

* AR 1 N *
A= 8K 8k (1.9)

of —on  1+F(w,) 5 on—0f
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Combining our results so far we have up to an arbitrary phase

W, = 0 — F(o,), (7.10a)
1 N g*

n)=——-o |0+ Y —5 g 1) |, (7.10b)

=y |0 G e ap

in which

N ‘ 2 N 2

8kl ) gkl
Flw): =Y =2 —  Flo,)=Y — . (7.11)

These results can be analysed with the aid of a graphical technique (see Cohen-Tannoudji
et al. (1992), Compagno et al. (1995)). Within each interval [w,?, a),? +1] there is precisely
one eigenvalue @, and the intervals become increasingly dense as N increases. If the g; are
nonzero and assumed independent of N, then in the limit N — oo the width of the intervals
shrinks to zero and the spectrum of H is equivalent to the free field spectrum. The discrete
e;0)

and any of the eigenstates |n) tending to zero. This means that when N tends to oo no trace

atomic level at a)gg completely dissolves in this continuum with the overlap between

of the discrete atomic level can be found in any of the new eigenstates.

When the coupling |gx|? is proportional to 1/V where V is the volume within which
the field modes are quantised, the situation is different, because N is proportional to V.
Consequently the interaction strength decreases with the number of modes. This is the case
in the atom-field system of interest. Indeed, Fermi’s golden rule 5.54 gives the excited

atomic state decay rate®

T =27|gi|*p () : (7.12)

0_ )0
0 =Weq

and in order that I is finite the coupling |gx|> must scale as 1/N. In this case the spectrum
of H still forms a continuum, yet the new eigenstates seem to retain some memory of the
discrete atomic level. I will consider this situation in more detail in the next section after

having made the simplifying assumption of a flat continuum.

7.1.2 The case of a flat continuum

Consider now the case of a flat continuum for which the coupling gip (a),?) = g is the same

for each k, coupled by an interaction V' to a discrete atomic level |e;0) with energy wgg.% I

43Tt must of course be understood that the sum over polarisations and integral over solid angle have been carried
out in 7.12, and that | gk\zp(a),? )| P actually represents the effective coupling after having performed this
P=af,

procedure.

46Note that I have assumed that the energy density of modes a),? is implicitly contained in the coupling, which as
in 7.12 actually refers to the effective coupling after integration has been performed using Fermi’s golden rule.
The flat continuum approximation assumes that this effective coupling is constant.
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will assume for simplicity that V' is off-diagonal in the bare basis as was the case in 7.1.1.
Discretising the continuum by introducing an energy spacing 8, the decay rate of the atomic

level is according to Fermi’s golden rule 5.54 given by

27g|?
-

I'= (7.13)
This decay rate remains finite in the continuum limit § — 0%, provided |g|? is proportional
to 6. Thus, g — 0 when 6 — 07. As before we seek a solution to the eigenvalue problem
7.2. In fact the results of 7.1.1 remain valid if one simply replaces the varying coupling g
with the constant coupling g. Thus,

0, = &

eg—F(w,,) (7.14)

where using 7.13 (Cohen-Tannoudji et al. (1992)) we have

o sl o lgl?/o /2
Flwy): =) —F/——=— =— . (7.15)
@)=L a0 0, = Lajo—k T,
We therefore have a solution to the eigenvalue problem in the form
r/2
0
Wy — e = —————7 5+ - 7.16
"% an (T, /2gP) (710

The discrete eigenvalues of H can be obtained as the horizontal components of the points of
intersection of the line y; (@) = 0 — wgg and the curve y,(®) =T'/2tan (F'w/2|g|?). There is
one eigenvalue w, per interval [co,?, w,? ', 1] For large mode frequencies the eigenvalues of H
get closer and closer to the asymptotes, which represent the eigenvalues w,? of the bare field
Hamiltonian Hr. In order that @, ~ (0,9 we require according to 7.14 that I’ < a),? — a)gg.
We conclude that the eigenvalues of H are different to those of Hr only over an interval of

width of the order of I', centered on @(,. The probability |Aj|* = |(e;0[n)|* associated with

the discrete state |e;0) in the new continuum, exhibits significant variations in ®, near wgg.
The eigenstates |n) with energy within I'/2 of a)gg therefore seem to retain some memory

of the discrete atomic level |e;0). Explicitly, using 7.8 and 7.15 we have

2
‘An‘2_ ‘g‘

o ‘8’2+(a)n—w£g)2+(r/2)2 (7.17)

which tends to zero in the continuum limit (|g|> — 0 as § — 07). However, Cohen-
Tannoudji ef al. (1992) obtain a simple expression for the variation of this probability with
®,, which doesn’t vanish in the limit § — 0. If we let [, ® + d®] be an energy interval
much greater than &, but much less than I, the total probability in 7.17 within this interval
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is

dw
P = Y A =~ (7.18)
W<, <O+dw
which using 7.17 and 7.13 gives in the limit § — 0"
dP I'/2x
= / (7.19)

do  (T/22+(0—wf)?*
This is a normalised Lorentzian of width I" centred on @?,, which justifies my previous

g
statement that the @, are different to the eigenvalues of HFgonly over an interval of width
of the order of I, centered on a)eg, and that in this region the new eigenstates seem to retain
some memory of the discrete atomic level.

Finally I wish to consider the decay of the discrete state. To work this out I start by
expanding |e;0) in the new eigenbasis {|n) };

:0) =A% = i . (1.20)

(g2 + (@, — @Q)2 + (T/2)2] "/

:0) =Y caln),  ca=(n

The Schrédinger equation yields for the temporal evolution of |e;0)

iW,t
— ¢ Hg:0 gle” . 721
(o) = e "]e;0) = ZW o007+ (T /2)2]1/2|n> (7.21)
Thus,
A e—iwnz
(e:0ly(1)) =Y olél v (1.22)
m [lg? + (0, — @0f)? + (I'/2)?]
which using 7.13 and 7.21 becomes in the limit § — 0™
7l(l)nl
(e; / do (Ve (7.23)

The integral in 7.23 can be evaluated via the residue method, which yields (Cohen-Tannoudji
et al. (1992))

[{e;0lw())|? = e~V (7.24)

Finally then, we have obtained the well-known exponential decay of the state

;0), which

for the case of a flat continuum appears to be exact.
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7.1.3 The pole approximation

I will now begin to consider more realistic models in which the continuum is not assumed
flat and there may be many discrete levels of Hy. The true atom-field system of interest is
of precisely this type. Suppose |0,e) denotes an excited bare state with energy ®?. The
quantity relevant to describing the decay of this state is the corresponding matrix element

of G(z), which is given according to 5.81 by

1

Celd) = =R

(7.25)
where R,(z) is defined in 5.75. In actual fact what we will usually be interested in are the
propagators G (®) := G.(® +in) from which G,(z) can always be constructed. Clearly
the propagators will be known as soon as the corresponding matrix elements RE (@) :=
R.(® £ in) of the level-shift operator have been found. Using 5.75 and the relation

lim — =L ins(x) (7.26)

with P denoting the Cauchy principal value, we have

() — (o 0N Te(o)
R, (@) = (e; ®—QHO+in QV]e;0) =V, +A.(0) Fi > (7.27)
where Q :=1—e;0)(e;0|, V, := (e; ;0) and
1
I(w):=2n(e; (0—QHOQ) ;0). (7.28Db)

Equation 7.28a when substituted into 7.25 gives a shift of the bare energy ®?, while equation
7.28b gives an imaginary component I',(@) > 0, which vanishes for o < ®,, ®, being the
ground state energy of H. The occurrence of I',(®) indicates dissipative behaviour of the
excited bare state. If the complete set of eigenstates of QHQ is denoted {|ct)} and the

completeness relation with respect to these states is used in 7.28 one easily obtains

- pyleorgaf v Qlaf’

_ . 2 _
pra— Fe(w)—zn;|<e,0|VQra>| S(w—wq), (7.29)

from which the useful relation

/
w) = lﬁ/dw’ Le(o
2 w—

It is usually not possible to calculate I',(®) and A.(®) exactly, so one must resort to

(7.30)

follows quite generally.

approximations. A common approximation is the use of perturbation theory to find the
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level-shift operator R (see 7.2.1).*’ 1 denote the perturbative approximations of A,(®) and
I.(w) with a tilde; To (@) ~ To (@), A(®) =~ A ().

Another widely used approximation is the pole approximation, which consists of ne-
glecting in 7.28 the variations of A,(®) and I, (@) (or possibly A, () and I, (®)) with o.
The pole approximation is justified when A, (@) and I',(®) are sufficiently small and vary
sufficiently slowly over the neighbourhood of ®? + A, (@?), having a width of the order of
several I',(@?). In this case one can put A, (®) =~ A, (®?) and T,(®) =~ T.(®?). Loosely
speaking the pole approximation approximates the varying continuum as flat and therefore

leads to the results for a flat continuum found in 7.1.2.

7.1.4 Analytic properties of the resolvent

As we have seen the resolvent operator serves as a useful tool in the analysis of excited
states. Clearly G in 5.55 is only singular on the real axis, because H is Hermitian. One can
show that the matrix element Gy, (z) with respect to a normalised state |y), is in fact analytic
everywhere except on the real axis (Cohen-Tannoudji ef al. (1992)). A discrete eigenvalue
@, of H, corresponds to a simple pole of Gy/(z) with residue |(n|y)|*. Continuous eigen-
values of H correspond to branch cuts of Gy (z) along the real axis. To determine the nature
of such cuts let us take a resolution of the identity using eigenstates of H, following Cohen-
Tannoudji et al. (1992)

I:Z]n><n|—|—/dw/d?tp(a),/l)|a),7t><a)l]. (7.31)

Here the |n) are discrete eigenstates, while |, A) is formally used to denote an “eigenstate”
corresponding to @ within the continuous spectrum. The extra A is meant to characterise all
other variables besides energy upon which the continuous eigenstates might depend, while
p(w, ) describes the density of continuous states. Now, using 7.31 and 7.26 the part of the

matrix element Gi(a)) dependent on the continuous spectrum of H is seen to be

Fir fy (@) + / do' ﬁ) "’Eww), (7.32)
where
ful@) = [arp(@.2)|(@.Ay)F. (133

According to 7.32 Gy,(w) and Gy, () differ by an amount 27i fy, (@), which effectively
represents the length of the branch cut of Gy(z). The matrix element Gy (@ £ in) has

471t is important to recognise that a perturbative approximation of R doesn’t amount to a perturbative approxima-
tion of G. The expression 7.25 already implies that all orders in perturbation theory have been used to find G..
Using a perturbative approximation of R, to find G, in 7.25 constitutes replacing an exact infinite sum by an
approximate infinite sum (Cohen-Tannoudji et al. (1992)).
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7.1. Excited states

a different value depending on whether the real axis is approached from above or below.
Using 7.25 the difference between G, and G, of 7.1.3 is easily found to be

—il(®

Ge (@)= G (@) = (= = A (@) + (Ta(@) /2

e

(7.34)

which is nonzero whenever I',(®) # 0, that is, whenever @ > ®,. Thus G(z) has a cut
starting at @, and extending to infinity. The free resolvent Go(z) has a pole at wg . The fact
that we have gone from a pole to a branch cut in replacing Gy by G shows that H unlike H
does not possess discrete eigenvalues. The discrete eigenvalues of Hy have dissolved in the
new continuum associated with H.

Despite this, it is clear that the function G (z) has no poles in the lower-half complex
plane. Similarly G, (z) has no poles in the upper-half complex plane. The reason for this be-
ing that the imaginary parts of the denominators are necessarily nonzero on these domains.
If we make the pole approximation in 7.34 then A, and I', are independent of @ and one
can perform an analytic continuation of G (z) defined on the domain Im(z) > 0, into the
lower-half plane.*® The analytic continuation of G (z) has a pole at zo = @0 + A, — il /2.
In this way one can characterise unstable states as corresponding to poles in the analytic
continuation of G*(z), which are also known as resonances.

It is worth noting that 7.34 is close to a Lorentzian centred at @, = a)g +A,. For this to be
the case one must perform the pole approximation, so that A, and I', don’t vary with @. The
decay of the excited state is described directly by the amplitude U, (7) := (e;0|U(7)|e;0).
Using 5.60 we have

U, (1) = 2%1 /da) (G, (0)— G} (w)] e, (7.35)

If we make the pole approximation in 7.34 and substitute the resulting expression into 7.35

the integral can be evaluated via Cauchy’s residue formula and we obtain
U, (1) = e 1ot/ 200 +A)T, (7.36)

which is the same exponential decay as was encountered in 7.1.2 for a flat continuum, and
in the WW treatment of spontaneous emission (cf. 6.3.2). The pole approximation in this
context gives the same result as the Markovian approximation used in 6.3.2.

Summarising results so far, we have seen that excited bare atomic states correspond to
resonances in the spectrum of the composite atom-field Hamiltonian, indicating that some
memory of the old discrete states is retained within the new continuum. More precisely the
probability 7.17 exhibits significant variations in energy near to the bare energy a)gg. In the
case of a flat continuum an excited discrete bare state decays exponentially with a decay rate

that doesn’t depend on the energy w. This result can be extended to more general continua

480ne could of course make an analytic continuation of G (z) defined on Im(z) < 0 into the upper-half plane.
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7. Excited states and spectral lineshapes

via the use of the pole approximation, which neglects the energy variation of the decay rate
and level-shift.

7.2 The natural lineshape in an arbitrary gauge

Having reviewed some aspects of excited state decay I’m now in a position to look at con-
crete experimental situations. I look here to determine the spectral lineshape of photons
emitted in the decay of an excited atomic state via spontaneous emission. The results pre-

sented from this section onwards are summarised in the paper Stokes (2013).

7.2.1 The theory of radiation damping

Assuming the atom is in the first excited state |e;0) at# =0, I calculate the long-time squared
amplitude |by; (e0)|?, representing the probability of finding the atom in the ground state |g)
and a photon |kA) with frequency @ present upon measurement. The lineshape is defined

S(0) = p(w)QV,r)g / 40 b (=) (7.37)

where p(®) = @ is the density of field modes, the sum is over polarisations belonging
to a given direction, and the integration is over all directions. To derive an expression for
| by, (0) |? T start with the traditional method of considering the variation of the coefficients
by(t) :== (f|w(r)) associated with a Hamiltonian H = Hy+ V, in the interaction picture
(Dirac (1927)). For ease of writing I hereafter omit the superscript ° when writing down
bare energies such as ®° and a true energy @, will be denoted with a tilde; @,. Following

Heitler (1954) I introduce the Fourier transform
. 1 .
by(t) := (flU(z,0)|i)e'™" = —ﬁ/da)Gﬁ(erin)e’(“’f*“’)t, (7.38)
i

where G is the resolvent of H, and |i) is the initial state at = 0. Note that only y* con-
tributes to the contour integral in 5.61, i.e., only the propagator G on the left-hand-side of
5.22 contributes when 7 > 0. The Schrédinger equation yields the amplitude equation for
t>0

ibs(t) = Y Vimbu(t)e'® " (7.39)

to which we seek a solution subject to the initial conditions lim, o+ b, (1) = &, with |i) =

e;0). Equivalently we require a solution to the equation

ib(t) =Y. Vimbm(t)e' ™" +i845(t) (7.40)
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7.2. The natural lineshape in an arbitrary gauge

for all t € R, subject to the condition that the amplitudes be normalised to zero for negative
times; Vn, b,(t) = 0 whenever ¢ < 0.* This corresponds to imposing a sudden jump from
0 to 1 of the amplitude b; associated with |i) at time # = 0, which clearly contrasts with the
adiabatic switching on of the interaction from ¢t = —oo used in the S-matrix. It has been
argued by Milonni ef al. (1989) that this sudden switching condition is responsible for the
lineshape paradox. They claim that only in the Poincaré gauge is the imposition of such
a condition justified, which is why the Poincaré gauge result is in better agreement with
experiment than the Coulomb gauge result.

Substituting the representation
i0(t) = 2m/dcoe o= o)t (7.42)

and 7.38 into 7.40 one finds that

((D - C()n)G;;((D) = 6ni + ZVan:;”'((D), (743)
which implies that™°
G,i(®) = (0 — o) m+2v Gli(o (7.44)

where { is a distribution defined by

{(x) := lim — =P - —ind(x). (7.45)
Next I define for all n # i the matrix elements R,;(®) through the relation

G (®) = Ryi(0)G () (0 — w,). (7.46)

1

Substituting 7.46 into the right-hand-side of 7.44, imposing the condition n # i, and finally

49Explicitly equation 7.40 corresponds to a solution for b ¢(t) of the form

lbf( 6f,+/ dr’ Zme lw’” (7.41)

where 0 is the Heaviside step function defined in 5.20. The presence of 6 in 7.41 encodes the assumption of a
sharp initial bare state; b;(0) = 1.

S0This implication follows from the fact that the expressions 7.43 and 7.44 involve distributions in @. Tt must
of course be implicitly understood that such expressions are to be integrated. This presents a problem when it
comes to dividing both sides of 7.43 by @ — w,, because such a division produces a nonintegrable singularity
on the right-hand-side. In order to avoid such an eventuality one adds an infinitesimal imaginary component
in to the prefactor @ — @, appearing on the left-hand-side. One then divides through by @ — @, + i1 instead.
Viewing the matrix elements of the resolvent (the G,},) as functions of a complex variable z, the expression
obtained on the right-hand-side then has a pole in the lower-half complex plane rather than on the real axis
Re(z) = . Finally taking the limit of this expression as 7 — 0™ gives rise to the term (@ — ®,) appearing in
7.44.
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7. Excited states and spectral lineshapes

equating the resulting expression with the right-hand-side of 7.46, gives

Rui(@0) = Vi + Y VinRui(0) S (0 — @),  n#i. (7.47)
m#i

At the same time 7.43 with n = i, and 7.46 imply that

(0— )G (0) = 14ViG (0)+ Y. VinRui(0)G (0) (0 — @) (7.48)
m#i

from which it follows that

1
+ —
G/ (o) = -0 -R(0) (7.49)
where
RE () :=Vi+ Y VinRi(0) & (0 — ). (7.50)
m#£i

It is easy to verify that the R, (®) appearing above is the same R (@) as was defined in
7.27. The decay rate I';(®) in 7.27 can be written

Ti(0) = —Im [R] (0) = Vi] =27 ) [Rui(@)[*8 (@ — 0), (7.51)
m#£i

which can be verified by substituting 7.47 and its conjugate into the right-hand-side. Only
the first term V,; in 7.47 contributes, because the two double-sums arising from the sec-
ond term cancel between 7.47 and its conjugate. The remaining contribution is exactly
[(R (®) — V) —c.c] /2= —Im [R} (@) — V] Using 7.51 and 7.30 one sees that the shift

component A;(®) of R (@) can be written

Rmi m 2
A@) =2 Y |w£ww)‘ (1.52)
m#i m

The expressions 7.51 and 7.52 are ideally suited to obtaining perturbative approximations
through perturbative approximation of the R,,;(®). In order to calculate the lineshape it
would also be useful to obtain an expression for the amplitude b (o) purely in terms of the
R.i(®). This is readily achieved by substituting 7.46 into 7.38, which yields

by(t) = —Zim. / dORH(0)G; (0)(0—wp)e@ O f4i (153

Since we require b7(0) = 0 for f # i we require that

ﬁ/dwai(w)Gj(w)C(W— o) =0. (7.54)
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7.2. The natural lineshape in an arbitrary gauge

We can therefore add the left-hand-side of 7.54 to the right-hand-side of 7.53, which gives

- / doR ()G (0) (0 — ) [ei(“’f_“’)’—l]. (7.55)

The delta-function contribution from the §-distribution in 7.55 is zero, because the complex

exponential term in square brackets vanishes at @ = @y. Furthermore,

i ei(wf_w)t —1 7 56
tggw_iwf—g(wf—w)v (7.56)

SO
by(e0) = —%me@/da)Rﬁ(w)G;“(w)C(wf— ). (7.57)

Subtracting 7.54 from this expression we obtain

1
by() = =32 [ doR(0)G] (@)[E(0y— @)+ S(@-0p],  (1.58)
but §{(wf — )+ § (0 — wf) = —27id(® — @), which implies using 7.49 that

Ryi(or)

fi =R () (73

bf() = Rysi(@y)G/ (07) =

and this is the expression for bs(e0) in terms of R that we sought. Finally using 7.27 the
associated probability can be written

Ryi(wy)|?
(05— Ai(@p))? + (Ti(wy) /2)%

by (eo)|* = (7.60)
whenever V;; = 0. When V;; # 0 we can absorb it into A;(®), which means 7.60 is actually
completely general. In the case | f) = |g;kA) and |i) = |e;0), 7.60 defines the amplitude in
7.37.

Since according to 7.51 and 7.52 I';(ws) and A;(@y) can be written in terms of the
Rii(0y) alone, our task now reduces to that of obtaining explicit expressions for the R,,,;(@y).
Such expressions can only be found by using a perturbative expansion of R(®) in powers of
V. Therefore, in order to go further I make the first approximation Ry, (@) = V,,;,. The com-
ponents of the lineshape now only depend on matrix elements of the form (n;kA|V|e;0).

Using 2.71 we have
<n k)“|V|e 0> 7ekl [p - ‘r]ne + iewg ey 'gne(kar)

—|——pV{ek,1 (k,r)} +V, {ex,-gk,r)}-p| , (7.61)

ne
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where

1
20V

gim ,glkr) = / Prg(x,r)e X, (7.62)

The matrix element in 7.61 is clearly explicitly dependent on the gauge choice g. Choosing
the Coulomb gauge and making the EDA, one obtains the following approximate expres-

sions for respectively, the numerator, level shift and decay rate in 7.60
21

2. € 2
IRe0.g:10 (0 + @) = Tm“’eg'ek/l‘ )

(0 —I—O) ‘@Z Z 1 ’pne'ek’l"z
§ nk%,mZZw’V(o—a)g—a)”

(0, + 0) = 27:211:];:‘/ — 2a)’V ———|Pne - |28 (0 — g — @). (7.63)
where for convenience I have omitted the subscript ; in writing the decay rate and shift.

Similarly using the Poincaré gauge and EDA one obtains

(0]
¢;0,g:;kA \Wg ~ 55, Ueg "CkA| >
Re g (0 ©)F = 57 ldeg ey

Alw, + o) 9’2): @' |dne - e
# - l(,/,L,2Va)—co — o’

I, + o) 27:22 |d,,e e |° 8 (0 — 0, — o). (7.64)
n k/ﬂ.’

We see that, as is implied by 7.61, the expressions in 7.63 are not the same as those in 7.64.

7.2.2 The approximations ensuring gauge invariance

I review here the various approximations, which can be used to reproduce previous results
and eliminate the dependence of the lineshape on the choice of gauge. I note first that
three approximations have already been used; first the limiting value t — oo ensures the
level shift and decay rate in 7.60 are evaluated at @y = @, + @. Second an approximation
Rum(®) =V, is used for the matrix elements of the level-shift operator. Finally the EDA
is used to give the eventual expressions in 7.63 and 7.64.

Crucial in ensuring gauge invariance is the further approximation of insisting that the
emission process conserves energy i.e. that @ = w,,. In the decay rate I" the delta function
then ensures that the matrix element of V; is evaluated on-energy-shell. It is a standard
result that such matrix elements are quite generally invariant for two Hamiltonians related
by a unitary transformation of the form R = exp(ieS) (Craig & Thirunamachandran (1984),
Woolley (1999)). The invariance of I can easily be verified explicitly for the Coulomb and
Poincaré gauges by using the relation 6.45. The result is nothing but the well-known first

order decay rate found using Fermi’s golden rule.
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7.2. The natural lineshape in an arbitrary gauge

Turning our attention to the level shift A, it is easy to check that the imposition of energy
conservation alone does not suffice to ensure gauge invariance. For this, one must also add
to A the contribution (e; 0|V |e;0), which produces the total shift

n|Vle:0)
Aworal = (€;0[V]e;0) +Zu

7.65
o — o (7.65)

This is the same on-energy-shell shift in energy of the excited state

e;0) as is obtained
through second order perturbation theory. Note that the term V;; does appear explicitly in
7.59, but was omitted when writing 7.60, where it was remarked that V;; can be absorbed
into A. Thus, the shift term in 7.65 is nothing but the actual shift appearing in the line-
shape denominator once the additional contribution V;; has been absorbed. Like I', A¢oq 1S
invariant for two Hamiltonians related by a unitary transformation R = exp(ieS) (Craig &
Thirunamachandran (1984)). As with I' this invariance is easily verified for the Coulomb
and Poincaré gauges. In the Coulomb gauge the additional contribution in 7.65 comes from

the A2 /2m part of the minimal coupling interaction Hamiltonian to give a total shift

e 1 |ek7L|2 1 \Pne'ekﬂz
Ay =Y — -y —— = ). 7.66
total = m 20V ( 2 ;m Ope + © ) (7.66)

In the Poincaré gauge the additional contribution comes from the polarisation field term
¢*|r87|% /2. Hence, the total shift is

1 [0}
Avoral = —|dpe ey |2 [ 1— . 7.67
total ;§ 2V| ne ekl’ < W+ CO> ( )
Using the expansion
! L O @ 0 (7.68)

a)ne+a):a) 0> ® (0t o)

and 6.45 it is straightforward to show that 7.66 and 7.67 are identical (Craig & Thiruna-
machandran (1984)). Neglecting in A1, all contributions not dependent on the state of the
electron, and removing the electron self-energy contribution through mass renormalization
gives the standard nonrelativistic Lamb shift 6.39 (Craig & Thirunamachandran (1984)).
The energy conservation condition ® = @, has been justified on the grounds that I'(®)
and A(w) do not vary appreciably over the interval w > I', A centered at ®,, and they can
therefore be evaluated at @, to within sufficient accuracy (Cohen-Tannoudji et al. (1992)).
This argument however, is somewhat ruined by the gauge arbitrariness of the matrix ele-
ments of R(®). More precisely, the required slow variations of I'(®) and A(®@) cannot be
guaranteed irrespective of g. At the same time it is clear that without energy conservation
the denominator in 7.60 is gauge dependent. Nevertheless, for most “sensible” choices of
gauge energy conservation as an approximation may certainly be valid and good. In such

cases its use would be of little or no practical significance.
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7. Excited states and spectral lineshapes

| in 7.60 is more troublesome. It is typically neglected alto-

The numerator |Ry;(@y)
gether, or otherwise evaluated on-energy-shell, yielding the gauge-invariant result I'/27.
Either procedure can only be justified on the grounds that the numerator’s dependence on @
is sufficiently slow so as to be undetectable when compared with the denominator. If this is
not the case then it should be possible to determine with an experiment, which form of the

Hamiltonian produces the most accurate lineshape prediction.

7.2.3 The lineshape after removal of the virtual field

Starting in the Coulomb gauge and EDA I define the unitary operator

Ry:=exp | — Y ¥ ig(ews - dum) Og ) (ml (@), +aia) |, (7.69)

kA nm
This transformation is the extension to the case of a general multi-level atom, of 6.76. The
term Oy, is as before, chosen so as to eliminate the energy non-conserving terms in the

linear part of the interaction Hamiltonian. The appropriate choice being

| @y
Ok nm

=, 7.70
’ w+|wnm| ( )

It is important to note that R only eliminates the energy non-conserving terms to first order
in the coupling, and within the EDA. The resultant Hamiltonian Hy := R;HR; ! has to first

order in e, the interaction component

T 3 3 U CLL R MM a.71)
mia .C. .
= nmgkl am Oy + @ kA
where
@\ 1/2
g = =1 () (61 ). (1.72)

Terms of O(e?) have been omitted, because they give rise to O(e*) contributions in the
lineshape; their only contribution is to the term (e;0[V|e;0) in 7.65. Yet we know this
level shift is invariant under a unitary transformation R = exp(ieS), so the total level shift
obtained in the new representation must be the same as for the Coulomb gauge. The same
is true of the decay rate I', and therefore of the denominator in 7.60. The lineshape in the

symmetric representation is therefore

40° r/2n
Dpg (g + @)% (0 — Wg — Ars)? +17%/4

S(w) = (1.73)

which is plotted in Figs. 7.1(a) and 7.1(b) along with the Coulomb and Poincaré gauge
results. The difference in lineshapes between gauges is a result of the differing |Rs;(y)|?

terms of 7.60, which are collected in table 7.1 for the three main cases.
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271 si(wy) 2T, to O(e2)

Hc

Hp

_ 40’
g (g + )2

(0]
Weg

(&)

Table 7.1: The frequency dependence of the lineshape numerator |Rf;(@¢)[? (c.f. 7.60) in different

representations.

minimal coupling
multipolar =======
rotating-wave -

0 0.25
(W —weg)/T
(a)

=
ry
3
n
~0.25
1
= 01}
=
3
“og01f

minimal coupling
multipolar =======
rotating-wave e

0 6
(@ = weg) /T

(b)

Figure 7.1: The lineshapes associated with the minimal coupling, multipolar and rotating-wave
Hamiltonians. In each plot I = @, /10 and the Lamb shift A; 5 has been suppressed. In 7.1(a) S(®)
is plotted on a linear axis, whereas in 7.1(b) it is plotted on a logarithmic axis. Since the rotating-
wave coupling is a symmetric mixture of the minimal and multipolar couplings, the corresponding
curve interpolates between the curves associated with the Coulomb and Poincaré gauges.

157



7. Excited states and spectral lineshapes

7.3 The atom’s excitation through resonant absorption

The lineshapes obtained so far have all assumed a sharp bare state |e;0) at r = 0. It was
noticed some time ago however, that the shape of spectral lines is bound to depend on the
mechanism by which the atom is excited (Low (1952)). In this section I describe the process

by which the atom is initially excited, as well as the emission process itself.

7.3.1 Absorption of incident radiation with a sharp line

Let’s first consider the situation whereby the atom starts in its ground state in the presence
of incident radiation with intensity distribution S. A primary photon with frequency @y is
absorbed by the atom out of S and a photon with frequency ® near @y is emitted. The
quantity of interest is the total rate y at which the system leaves the initial state |i). This can
be obtained using the theory of radiation damping used in the preceding sections (Heitler
(1954)). Another method is to use the S-matrix element for the process by which the atom
absorbs and re-emits a photon.

Suppose |i) = |g;kA) and |f) = |m;k'A). The associated T-matrix element is

Tri(@:) = Vii+ Y VinG (@) Vai. (7.74)

n,m

If we are interested in emission out of the state |e;0) it seems natural to restrict attention to

the single intermediate state

;0) in 7.74. This also seems necessary in order to obtain a
lineshape formula. Of course such a restriction will break the gauge invariance of the matrix

element. The restricted matrix element is

(m

;0)(e;0[V|g; kA)
Deg — 0 — /2

T gki (@e) = (m; KA |V [e;0)G, (@,)(e;0]V | gskA) = —
(1.75)

where I is the gauge-invariant on-energy-shell spontaneous decay rate of the excited atomic
state, and Deg = Weg + A.(®,) is the shifted transition frequency with A,(®,) = A given by
7.65.

I now assume for simplicity that |m) = |g) meaning that the atom returns to the ground
state after it has emitted the photon k’A’. The total rate W; ~, f at which the system leaves
the state |i) is given by Fermi’s golden rule 5.54 whereby all one-photon final states are

summed over;

group _ o ’<e O‘V‘g’kl ’2

.0\ |2 oy
WP = n(@g r/zzg',' ;0)[76 (0 — @)
. . 2
=T.(0) |<e’0‘v‘g’kk>| (7.76)

(g — @)*+ (T'/2)?
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7.3. The atom’s excitation through resonant absorption

where
Fo(0):=21Y (KL |V]e;0)[*8(0— o) (7.77)
KA/
is the first order approximation of the exact decay rate in 7.51 evaluated at the incident
photon frequency @. I’m interested in the case in which the distribution S(®) of incident
radiation is sharp i.e. different from zero only at some @y. The total rate of resonance
fluorescence 7y after absorption of incident radiation with a sharp line is

y= / do o*S(0)w P (o). (7.78)

i—f

If we assume the explicit distribution

S(w) b(w—ap)
=S 7.79
| 3 (7.79)
for some constant intensity S we obtain the result
ST ;koA |V |e;0)]?
¥ _STln) [lgkod VIO 750
1% Wy (g — )>+12/4

which is the same as the result obtained using the radiation damping formalism (Heitler
(1954)). The transition rate ¥ is clearly dependent on the form of the interaction and there-
fore gauge dependent. For the Coulomb gauge, Poincaré gauge and symmetric representa-

tions in the EDA 7 can be written

Y= STle-dg|* n(@y, Weg)

5 (@0 — g)? +T2/4" (7.81)

where the incident signal, intensity S is polarised along e. The “numerator” n differs be-
tween the different representations, analogously to the difference in the |Ry;(@y)|* terms

listed in 7.1. This is summarised in table 7.2 for the three main cases.

H n( @y, Weg)

160,07
H' (2]
§ (g +ap)*
@,
Hc a;f
o 3
He (‘%)

Table 7.2: The frequency dependence of the different resonance fluorescence rates.
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7.3.2 The Lamb line in hydrogen

The 2s — 1s transition in atomic hydrogen has received a great deal of attention over the
years (Lamb & Retherford (1947), Lamb (1952), Power & Zienau (1959), Fried (1973),
Bassani et al. (1977), Cohen-Tannoudji et al. (1997)). We know that T-matrix elements on-
energy-shell are gauge-invariant, the matrix element of the two photon resonant transition
2s — lsis a particular example. This has been amply verified with semi-classical treatments
when complete sets of intermediate states are used (Fried (1973), Bassani et al. (1977),
Cohen-Tannoudji ef al. (1997)). On the other hand lineshape formulas including radiation
damping will not in general produce the same results in each gauge.

The quantity relevant to the experiments of Lamb is the fluorescence rate y out of the
metastable state 2s in a process of stimulated decay, due to the presence of a microwave
signal with frequency @y near the Lamb separation @y, of the 2s — 2p transition. Free
energy conservation implies that a photon with frequency @2, + @2, 15 — @ is emitted in
the cascade 2s — 2p — 1s. It is assumed that the spontaneous single photon decay pro-
cess 2s — 2p is negligible, as is the spontaneous two photon decay process 2s — 2p — 1s.
Moreover, the 2s-level can be considered sharp in the presence of an incident microwave
signal for all signal levels, which means the treatment of 7.3.1 should be valid. This time
we have [i) = |2s;kA) and |f) = |1s;K’A’), and we restrict our attention to the single in-
termediate state |2p;0). The resonance condition determining the frequency dependence of
the delta-function in the rate w?f;p must be modified, so that it now reads (Power & Zienau
(1959), Cohen-Tannoudji et al. (1997))

515 = o5 0p+ Wp1s = O+ @ = O =0 =50, + Wp1s— O. (7.82)

The total process consists of an induced emission (due to the presence of the sharp incident
microwave signal) of a microwave photon kA with frequency close to the Lamb frequency
0 25, followed by spontaneous emission of a Lyman-a., ultraviolet photon k'A’ with fre-

quency close to the transition frequency @), 15. Proceeding as in 7.3.1 we obtain

|(2p:0[V |25, kA)

W;%f;P =T 15(@252p + @2p 15 — @) (@252p — ©)2+ (Tap.13/2)2 (7.83)
which upon using 7.79 gives
Y _ STop 15(@52p + Wop 15— ) |(25:koA|V[2p;0)|? . (7.84)
74 (0} (0)0_0)2572P)2+F%p,15/4
With this we obtain
y— STop1sle-dasopl> 7' (@0, 0252p, W2p.15) (7.85)

2 (@0 — @2p25)> +13, /4

where as before n’ differs between the different representations, as is summarised in table
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!/
H n (CO(), 0)25,2[” a)Zp,ls)
H 4(a)2s,2p+a)2p,lx_w0)3 40‘)223',21)
§ a)Zp.ls(a)ZJ.Zp+2a)2p7lx_a)0)2 ((1)25.21,—0-(00)2
2
a}ls.2p+a)2p.lsfw() sz,Zp
HC p. 1s wg
W252p+W2p, 15— Wo 3
5,2p p,ls
HP ( a)2p4ls )

Table 7.3: The frequency dependence of the Lamb line in different representations.

7.3. Lamb’s experiments yielded a distribution of frequencies @y, as a function of inten-
sity. The relative differences in the distributions ¥( a)z‘q_yzp) associated with the different »’ in
table 7.3 are essentially the same as the relative differences in the lineshapes plotted in Figs.
7.1(a) and 7.1(b). The Poincaré gauge result is indistinguishable from the bare Lorentzian
whereas the other curves exhibit small deviations.

A good deal of work has been put into clarifying the conditions under which predic-
tions pertaining to the two-photon Lamb transition 2s — 1s in atomic hydrogen are gauge-
invariant. For two-photon scattering processes the S-matrix in second order yields the
Kramers-Heisenberg dispersion relation (Craig & Thirunamachandran (1984)), which can
be obtained by a direct second order approximation of G, (z) in 7.75. However, a treatment
limited to second order is insufficient to describe the exponential decay of the excited atomic
state, which gives rise to the decay rate in the denominator of the lineshape. Thus, in order
to obtain a lineshape formula from the Kramers-Heisenberg formula one must add by hand
a decay term into the denominator of the resonant contribution (Sakurai (1967)). Ignoring
the non-resonant contribution and restricting one’s attention to the apparently dominant 2p
intermediate state, the Kramers-Heisenberg formula can be used to obtain the results of
7.3.1 (Power & Zienau (1959)). Of course in carrying out these steps one breaks the gauge
invariance of the matrix element.

Furthermore, as soon as finite times are considered, predictions pertaining to canonical
degrees of freedom will yield different results in different gauges. The experiments of
Lamb were in sufficiently close agreement with the Poincaré gauge result to rule out the
Coulomb gauge result. A simple explanation for this is that the physical degrees of freedom
represented by the canonical operators in the Poincaré gauge are closer to the correct ones.
This is essentially the explanation first offered by Power & Zienau (1959). Milonni et al.
(1989) show that if the “sudden switching” condition of assuming a sharp bare state at t =0
is avoided, the Poincaré gauge lineshape result can be found using the Coulomb gauge. The
proposed method to avoid this condition is tantamount to using the canonical observables of
the Poincaré gauge within the Coulomb gauge, so they essentially resolve the discrepancy

in the same way as Power & Zienau (1959).

161
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7.4 The atom’s excitation by a laser pulse

In this section I choose the WW approach to lineshape derivations (cf. 6.3.2), because it
is easily adapted to include a description of the atom’s excitation by laser light. Although
this treatment does not really allow for any frequency variation of the lineshape numerator
in a self-consistent manner, it yields the same results as the resolvent method provided the
Lamb shift is suppressed in the latter. Since the previous lineshapes have only depended on
one transition frequency @,e, and we have seen that the quadratic parts of the interaction
Hamiltonian do not contribute, I adopt a two-level model for the atom, and the purely linear

atom-field interaction Hamiltonian 6.81.

7.4.1 Modelling the laser

To describe the laser I add an appropriate semi-classical interaction term to 6.84. For con-
sistency the laser should be taken to couple to the atom in the same way as the quantised
field does. Thus I define the atom-laser interaction by

iQ(r)

Vi=—~0 (uf ™ +u; e ") +Hee., (7.86)

where Q(#) is a real but otherwise completely arbitrary time dependent coupling envelope.
Assuming resonant driving @; = ®,,, 7.86 reduces to
iQ‘(t ) + 1Wegt — i Wegt
Vi=—=0" ((1-20)e% +¢7) +He, (7.87)
where « is an arbitrary real number. Choosing o = 0 and defining Q(7) = (e/m)(p) - Ao(t),

7.87 gives a (semi-classical) minimal coupling interaction in which the electron’s canonical

momentum couples to a classical vector potential of the form A () cos W,t;
Vi =i (p) - Ag(t)(0 — 67 ) cos iyt (7.88)
m

Choosing o = 1 and defining Q(7) = (d) - Eo(¢) yields an interaction in which the electron’s

position (dipole moment) couples to a classical electric field of the form Eq(z) sin @,,?;
Vi =(d)-Eo(t)(0" + 0 )sin @t (7.89)

The appropriate choice to accompany the symmetric representation is o = 1/2.

Before continuing to derive the lineshape I wish to make a note on the rotating wave ap-
proximation, which I’ll use in the following section. The RWA for the atom-laser interaction
constitutes the prescription ul+ = 0, which of course holds as an identity in the symmetric
representation. We have seen that if it is to be made in the atom-field interaction use of
the RWA (u™ = 0) may be questionable. However, for a single mode or a semi-classical

interaction no sum over modes is present and the counter-rotating contributions promise to
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be very small. When used together with the resonant driving assumption it is clear from

7.87 that the RWA gives an atom-laser interaction which does not depend on ¢.

7.4.2 Calculation of the lineshape

To derive the lineshape I assume an initial state |g;0). Att = —n/Q alaser m-pulse irradiates
the atom until # = 0. If we assume Q >> I" then we can ignore spontaneous emission over the
duration of the pulse and set g, = 0. For ¢ > 0 the laser has ceased and we make the WW
ansatz of exponential decay of the excited atomic state; b, = ¢ 1"/2. With these assumptions
in place I calculate the long time amplitude by (o) as in 7.2.1.

I will consider the rectangular envelope

Q if—n/Q<t<0
Q1) = if ~m/ (7.90)
0 otherwise,
and begin with the assumption that the state at time ¢ can be expanded as
[W(1)) = by|g:0)e ' +b,le;0)e ™ + Y by |gs kA )e (@), (7.91)

kA

Adding the general two-level atom-field interaction in 6.81 to the atom-laser interaction in

7.86 and using 7.91, the Schrodinger equation yields the set of coupled differential equations

bexa = —igiau”e @b,
. Qt ; ; ;
bg;O — _ é ) (u;refza)/t + ulfeta)/t)efta)egtbe’
i _ Q(t) + iyt — —iyt\ i@t . — (W — @)1
beo = > (u e 4 u; e "M )e' e bg—lnglu bgpe" s, (7.92)

kA

Setting g3 = 0 for —/Q < ¢ < 0 and implementing the RWA we obtain

bgo = _Qét)ul—e—i(wyg—w,)zbe,

be;O = —ul_ei(wfg_w’)tbg. (7.93)

In conjunction wth the initial conditions b, (—7/Q) =1, b, o(—7/Q) =0, 7.93 yields

be = —mfeﬁ(f—”/ﬂ)/? sin [% (r+ g)] , (7.94)

where —7/Q <1 <0, and & := W, — @y, and p := [(Qu; )? + 67 12 Substituting this
solution into 7.92, along with b, = e T*/2 for t > 0, and then integrating with respect to ¢
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yields the result
_ —ig U
i0'+T'/2
2igyuu; Qe
(Qu; )2 +46'5;

by, ()

—ind/2Q

20 20
(7.95)

£im(26'=8)/2Q _ ¢ <§g> - ;(25, —0)sin (E> ]

where 0’ := @, — ® and & := @ — @;. Unless the laser driving is resonant by (o) depends
on the laser detuning, and therefore on the form of the atom-laser coupling through u; . It
happens that this dependence is actually extremely weak, so the only notable dependence
on the laser comes through Q. A great simplification is afforded by assuming a resonant

pulse whereby 7.95 reduces to

ba () = ~igia " | 757 +1 ot —2 467 <Qem5//g - 2i5/>} ' (7:9)
The lineshape is defined in 7.37. Near resonance the Lorentzian component dominates, but
in the wings the lineshape is sensitive to Q. It is dependent on the representation chosen
through the function #~. Various lineshapes including the laser contribution are plotted in
Figs. 7.2(a)-7.3(b). For an optical transition @,g ~ 10~ Bs~! with decay rate I" ~ 108571
the differences in lineshapes associated with different representations are extremely small,
significant differences only occurring for much larger decay rates relative to @,,. It is worth
noting that even for these parameters, the difference between lineshapes with and without

taking into account the laser should be detectable with modern spectroscopy.
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Figure 7.2: Q = w,.; and 6 = 0. The lineshapes associated with the minimal coupling, multipolar
and rotating-wave Hamiltonians are plotted. Each lineshape includes the laser contribution. In 7.2(a)

T = /10 and in 7.2(b) T = @,,/100.
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Figure 7.3: The lineshape in the symmetric representation including the laser contribution is com-
pared to the bare Lorentzian curve (I'/27) /(8> +12/4), and to the Lorentzian including the laser
contribution. In 7.3(a) I" = @, /10 and in 7.3(b) I' = @,, /100.

7.5 Summary and discussion

The purpose of this chapter has been to investigate excited atomic states and their decay. In
particular, I have considered the spectral lineshape of radiation emitted by an excited atom.
As expected the lineshape result depends on the choice of gauge due to the use of gauge
dependent bare states and canonical operators. This sharpens the question as to whether or
not physically meaningful time-dependent probabilities can actually be obtained in QED. It
has been demonstrated yet again (see for example Cohen-Tannoudji ez al. (1997)) that all in-
termediate states must be retained to maintain gauge invariance of S-matrix elements. Since

all orders in perturbation theory are also required to yield the characteristic exponential de-
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cay and accompanying lineshape denominators, the calculation of an exact gauge-invariant
lineshape formula seems out of reach. This in turn shows how limiting a restriction the use
of the exact S-matrix can be.

On the other hand if we take bare states and canonical operators as physically meaning-
ful the question becomes what gauge do we choose to model spontaneous emission? There
are various criteria we might require to be fulfilled in order to determine this, which was
largely the subject of chapter 6. The Poincaré gauge incurs a causally propagating field
canonical momentum, as well as a definition of the atomic energy in terms of the electronic
velocity operator. These observables, at least according to classical intuition, would appear
to represent the physical degrees of freedom, that are directly involved in the emission of
radiative energy. On the other hand the symmetric representation incurs the elimination of
virtual contributions, which in the quantum optics paradigm are interpreted as renormalis-
ing bare parameters to give the physical parameters describing real interactions. Finally the
Coulomb gauge offers a definitive separation of longitudinal and transverse field degrees
of freedom, with the longitudinal field energy and momentum included entirely within the
material subsystem. This again does not seem unreasonable when we recall that, according
to the classical theory, the longitudinal field energy merely renormalises the bare electronic
mass. In any case a precise experiment would be required to distinguish between the line-
shapes associated with the different light-matter coupling models discussed.

On top of the situations studied in this chapter one can also imagine hybrid approaches
in which the bare states of one gauge are combined with the canonical observables of an-
other (see Power & Thirunamachandran (1999b)). In fact one could take this idea further
and argue on physical grounds that since the causally propagating total electric field is re-
sponsible for the transport of radiative energy, the observables that we are really interested
in are those represented by the canonical field operators in the Poincaré gauge. At the same
time, when it comes to identifying the correct states, one could argue that the initial vacuum
state of the field should be defined in terms of the fransverse electric field as it is in the
Coulomb gauge, because the total longitudinal field energy just renormalises the electronic
mass. Furthermore, there appears to be no good reason to suddenly abandon the idea that
the atomic energy be defined in terms of the electronic velocity, as is the case in the clas-
sical setting. Thus, the initial atomic state should be taken as an excited eigenstate of the
Poincaré gauge bare atomic Hamiltonian. It is clear however, that the transverse electric
field energy and the Poincaré gauge atomic Hamiltonian do not commute, so the specifi-
cation of an initial state, which is simultaneously an eigenstate of both operators becomes
much more involved. Here again, we appear to be confronted with limitations built into

subsystem decompositions based on tensor product structure.
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CHAPTER 8

Radiation as a reservoir

This chapter is dedicated to a treatment of the atom-field system from an open quantum
systems perspective. I derive a master equation governing the evolution of the reduced
density matrix associated with the atomic system for which the field is viewed as a reservoir.
The aim is to try and avoid approximations such as the RWA and MA wherever possible.
The results presented in this chapter are summarised in the paper Stokes et al. (2012).

The main new result obtained is the general master equation 8.29. The method of deriva-
tion of this master equation is also original. It works by combining the quantum jump
approach (cf. Hegerfeldt & Wilser (1992), Gardiner et al. (1992), Mglmer et al. (1993),
Carmichael (1993)) with the ideas of Zurek (2003) on einselection. This method, which
is presented in sections 8.1 and 8.2, was developed by myself and the coauthors A. Kurcz,
A. Beige and T. P. Spiller of the paper Stokes e al. (2012). All authors of this paper also
contributed to the interpretation of the master equation constants presented in 8.3.

The reduced atomic density matrix is by definition obtained by tracing over the field
canonical Fock space Jp (L2 (R3, (Cz)), which is a tensor factor within the total atom-field
Hilbert space {4 ® F (L*(R?,C?)). For simplicity I will be assuming a two-level model
for the atom, and so identify 34 as simply C2. Since atom-field tensor product decom-
positions are physically non-unique and gauge-dependent, one should expect the resulting
reduced atomic dynamics to exhibit the same traits. It turns out that indeed they do, but only
when the RWA and MA are avoided. This again should not be too surprising, because these
approximations tend to transform calculations in such a way that they become quite similar
to calculations of S-matrix elements (see 6.3.2 and 6.3.4).

Many derivations of quantum optical master equations can be found in the literature
(Agarwal (1974), Cohen-Tannoudji et al. (1992), Mandel & Wolf (1995), Gardiner & Zoller
(2004), Breuer & Petruccione (2007), Walls & Milburn (2008)). One expects that with re-

gard to spontaneous emission, the field should not retain any memory of the atomic dynam-
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ics. The atomic master equation should therefore be Markovian in nature. The standard
Born-Markov master equation for a two-level atom, which is found using both the RWA
and MA is of this type, and it has been successfully applied to the study of a range of
phenomena.

However, virtual emission events described by counter-rotating terms, are not irre-
versible, and are non-Markovian in nature. The approach in this chapter posits that irre-
spective of any distinction between real and virtual photons the physical mechanism of
environment-induced decoherence is responsible for the Markovian nature of the quantum
optical master equation. The model to be used yields a Markovian quantum optical master

equation without requiring the use of the RWA and the MA.

8.1 The photon-absorbing environment

Following the ideas of Hegerfeldt & Wilser (1992) (see also Gardiner et al. (1992), Mglmer
et al. (1993), Carmichael (1993) and Hegerfeldt (2009)), the approach I adopt takes the
coupling of the field to an additional external environment, like a detector or the walls of
the lab explicitly into account. This external environment thermalises very rapidly and is
generally in an equilibrium state pg"™. Following the ideas of Zurek (2003) on decoherence
and einselection and applying them to the field and its external environment, I assume that
the environment resets the field on a coarse-grained time-scale Az onto its vacuum state |0).

We begin by assuming the atom-field-environment density matrix can be written
Pa ®10)(0] © pE 8.1

where p&"v denotes a stationary state of the environment consisting of a large number of
degrees of freedom. It’s assumed that any coherences between the field and its environment
are rapidly destroyed by decoherence (Zurek (2003)). This is the justification for the fac-
torisation of the field-environment density matrix in 8.1. The other factorisation appearing
in 8.1, that of the arom-field density matrix, will be justified shortly.

The environment is assumed not to interact with the atom directly, but only with the
field. Starting with 8.1 the interaction between the atom and the field will create a small

photon population in the field modes {kA };

P4 @10)(0]©pE™ — VY s I 1] @ [KA) (kA| @ e 8.2)
n kA

where the |n) = |g),|e) form an orthogonal basis in H4. The photon kA is free to interact

with the environment, which is assumed to have the effect
KAV (KA @ pS™ — |0)(0| @ pgy". (8.3)
Pss Pxa

In words, any initial excitation in the field vanishes very quickly as a result of the inter-
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action between the field and the environment. Note that this does not a priori preclude
the possibility of virtual photons being intercepted and absorbed by the environment. The
time-scale over which the field-environment interaction occurs is assumed to be sufficiently
small so that population of the field by more than one photon is negligible. This justifies
the inclusion of one-photon states only in 8.2. Finally, the environment itself is assumed to

thermalise extremely quickly;
P — paM. (8.4)

The time over which the entire interaction occurs is denoted Az, and is called the envi-
ronmental response time. The complete atom-field-environment evolution over Af can be

summarised as
At
pa®(0)(0]@ pg™ = py @[0)(0] @ pis™. (8.5)

In the language of Zurek (2003) the vacuum state |0) is an environmentally-selected, or
einselected state of the field. Einselected states are states which remain stable in spite of the
environment. In the absence of an atomic emitter but in the presence of a photon-absorbing
environment, the vacuum state |0) is the only state of the field which does not evolve in time.
The environmental interaction giving rise to 8.5 acts as a monitor, which continuously mea-
sures the field (Hegerfeldt & Wilser (1992), Gardiner et al. (1992), Mglmer et al. (1993),
Carmichael (1993)). Regardless of whether or not a photon is found in such a hypothetical
measurement, decoherence destroys any coherences between the field and the environment,
and transfers the field into the einselected state |0) (Zurek (2003)).

8.2 Non-equivalent master equations

Assuming a two-level model for the atom I define the free Hamiltonian Hy by

Hy := 000; + Y 0a) ay; (8.6)
kA

and take the general interaction V given in 6.81. In the interaction picture with respect to

H) the interaction Hamiltonian V is given by
V=Y g o Tel®! (u,jarde"“” + u,jak;te*"“”> +H.c., (8.7)
kA
while the atomic density matrix becomes

Pa(t) = Uy (1,0)pa(t)Uo(t,0). (8.8)
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Defining the superoperator £ by

pa(t) = Lpa(t)] (8.9)

and taking the time derivative of p4 in 8.8, one obtains
Pa(t) = iwe[0, pal + Uy ' (£,0)L [Uo(,0)paUy * (£,0)] Uo(t,0). (8.10)

I seek a description of the evolution p4 — pj given in 8.5, in the form of an atomic
master equation akin to 8.9, or 8.10. To this end the model in 8.1 permits us to write the

interaction picture density matrix at time ¢ as

p (1) = pa(t) ©[0)(0]. (8.11)

This factorisation of the density matrix is often referred to as the Born approximation and
is usually justified on the grounds of weak coupling (see for example Breuer & Petruccione
(2007)). The emergence of this condition as the result of environmental interaction justi-
fies the derivation of a master equation without employing the RWA and MA, while still
employing 8.11. Any such master equation is automatically Markovian, but contains terms
that depend on an additional parameter — the environmental response time As. The only
approximations I will use are second order perturbation theory and the resetting of the field
over the coarse-grained time-scale into its vacuum state. The first is well justified as long
as the environmental response time At is short compared to the characteristic time-scale of
the effective atomic evolution (weak-coupling). The second is justified by the decoherence
model laid out in 8.1.

Over a time interval Az, p(z) in 8.11 evolves into
P(t+Ar) =U(t+Ar,1) [pa(t) @10)(0]] U~ (t 4 Ar,1). (8.12)

This atom-field density matrix corresponds in general to an entangled state with population
in most modes (k, A ) of the field. Using 8.3 and 8.4, we see that the atom-field-environment

density matrix p(r + At) @ pS™ corresponding to 8.12, transforms in the present model as

Pt +At) @ pE™ —> trp [U(t + At 1)pa(t) ® [0) (01T~ (¢ 4+ Ar,1)] © |0) (0] @ pS™, (8.13)

where trp denotes the partial trace over the field. This equation shows that the atom-field
density matrix remains uncorrelated on the coarse-grained time-scale given by Ar.

The trace over the field in 8.13 ensures that the density matrix on the right hand side is
always normalised. It also implies that the interaction between the field and the environment
occurs on a very short time-scale avoiding nonlocal effects on the atom. Since I’'m only

interested in the time evolution of the atomic density matrix P4 (7), evaluating the trace over

172



8.2. Non-equivalent master equations

the field in 8.13 shows that P4 (7) can be written

Pa(t+Ar) = pS(t+At) + Py (¢ +Ar), (8.14)

where
Pa(t 4 Ar) := (0|U (t + At,1)[0)pa(£) (0|0~ (t + Az, 1)|0), (8.15a)
Bo (A : i%”‘“'” (£ A1, 1)[0) () (01T (¢ + At 1)y ). (8.15b)

The density matrix pg describes the subensemble of atoms for which a photon wasn’t de-
tected in the environmental “measurement” that occurred within (¢,7 + Ar), whereas p;
describes the subensemble for which a photon was detected.

The interaction picture difference quotient £ is defined as

£ [pu(o)) o= LA =)

(8.16)

In the limit Az — O the right hand becomes the derivative of p4 at ¢, but because the super-
operator £ is obtained via a partial trace, by applying the limit A — 0 one encounters the
quantum Zeno effect in which the dynamics of the atom-field system become completely
restricted to the zero photon subspace (Hegerfeldt & Wilser (1992)). We must therefore
avoid this limit and only assume that the time increment At is sufficiently small compared
to the time-scale over which the atomic system evolves that an effectively continuous evo-
lution equation results. Equation 8.16 then constitutes a Markovian approximation of the
true (non-Markovian) continuous dynamics.

The next step in our derivation is the explicit calculation of £, which is independent of
t as long as no time-dependent interactions, like laser fields, are applied. In contrast one
can easily check that £ depends explicitly on Az. In the following Ar will be treated as an
external parameter, which can be absorbed into the coefficients of the master equation.

8.2.1 The subensemble without photon detection

Assuming Az is small compared to the time-scale on which the atomic density matrix pa ()
evolves we can calculate ﬁg (t 4 Ar) in 8.15 using second order perturbation theory. Up to

second order one has
- t+A
(O|U(t+At,t)|O>:1—/ dt/ dr" (O|V ('YV (")[0).. 8.17)

Using 8.7 and introducing the time-independent constants

Al = A/ dt/ dt”2|g 2| e @) =) (8.18)
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8.17 simplifies to
0|0t +A1,1)0)=1—(A_c"o™ +A 6 c")Ar (8.19)

The constants A’, in 8.18 are complex numbers and their real and imaginary parts have

different physical significance. It is convenient to consider them separately by defining

Ay :=2Re(Al), (8.20a)
A, :=TIm(A) (8.20b)

such that A’, = %Ai +iA@g .. The A, in 8.20a are emission rates related to the PE oh in 6.72
by

P (A1) sin? (@, £ @]AL/2)
A — ph _ 2 42 8 8.21
Y ka g2 "2 (o + ©)2A1 8.21)

The Aw, . are radiative shifts of the bare atomic energies @, .. Substituting 8.17 into 8.15
and using 8.19, one finds that

PR+ A1) = pa(r) i X Awu[p4(0) In)
- % [(A—ot 0™ +A 0 0") palt) = pat) (A_o o™ +A 0 ch)|Ar (8.22)

up to first order in Ar.

8.2.2 The subensemble with photon detection

Evaluating U (f + At,t) again using second order perturbation theory, the density matrix
ps (t+ Ar) in 8.15 for the subensemble with photon detection during (¢ 4 At,r) can be
found;

prutan =Y [at [ P 0p 0076 ). 829
kA
Substituting 8.7 into this equation, p; (# + Ar) simplifies to
px (1 +Ar) = R[pa(1))Ar, (8.24)
where the reset superoperator R is defined by

R[pal :=A,0"pac" +A_ 0 pact +B, 6 pscT +B_ 0 psc (8.25)
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with
1A / i " 2t — i (") Jiw(f 1)
B, ::E/ dt/ di" Y geyufu e e : (8.26a)
t t KA
1A / rrar " x \2 4 — =i (' +t") Jiw(t' —t")
_ ::A—Z/t dt/t dr" y (g) uy u e ' e . (8.26b)
kA

Substituting 8.22, 8.24, and 8.25 into 8.16, one obtains the superoperator L in 8.16;
2

Xix 1 < 1 X o 4 a
L[pA]:zZ‘A(x),-[p/s‘,\nﬂnl]+§AJr (267psc" —0 0" pa—pac ")

n=1
1
+ EA, (267 pact —0t0 pa—pacto ) +B.6 pacT +B_0 pac .
(8.27)
8.2.3 The general Lindblad master equation

To determine the superoperator £ in the Schrédinger picture I use 8.10, which implies
L[pa] = —iteg[0z,pa] + Vo (1,0)L [Ug ' (1,00pali(1,0)] Up ' (1,0).  (8.28)

Combining this equation with 8.27 and redefining the atomic transition frequency @,, such
that the first term in 8.27 is absorbed into the free energy of the atom, we obtain the general

master equation

. . 1 _ _ _
Pa = —i@[0e,pal + 54+ (207 pa0” =0 0 pa—pac c”)

1
+ EA_ (267 pac" —06"0 pa—pacto ) +BoTpsct + B0 pacT, (8.29)
where @, is the shifted atomic frequency and where B is defined as

A SiN ([@Weg + @]A?/2) sin ([@eg — 0]AL/2)
(0eg + ) (g — @) '

— 10

B:=Y guiuce (8.30)
kA

The general master equation 8.29 reduces to the standard Born-Markov master equation
within the RWA and MA, in which one has A, =B =0and A_ =T (cf. 8.21 and 6.75).
In the symmetric representation Ay = B = 0, and as we will see in 8.3.1 A_ ~I'. Thus,
the symmetric representation yields the standard result without any need for the RWA and
MA. One might wonder whether it is the case that A, =~ 0, B~ 0 and A_ ~ I regardless
of the chosen atom-field coupling. This would imply that the RWA and MA are universally
justified in the present context, and would make our endeavors somewhat pointless. We will
see in 8.3.1 however, that this is certainly not the case.

One can show that for a wide range of experimental parameters the master equations

associated with the Coulomb gauge, the Poincaré gauge and the symmetric representation
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can be written in Lindblad (1976) form
2 P R
pa = —i@|[0z,pal + Y A | Lnpalyy = 5{LyLn Pa} |, (8.31)
n=1

where {, } denotes the anti-commutator, and where Vn tr(L,) = 0 and A, > 0. The Lindblad
form is the most general form that a Markovian (non-unitary) dynamical equation for py4
can take, which is completely positive and trace-preserving. These properties are essential
in order that the density matrices the master equation yields are valid physically.

To obtain the Lindblad form, notice first that 8.29 is an equation in first standard form
2 1
Ty ~ ~ ~t =
Pa = —i@[0-,pa]+ Y, Mun |5uPAG,, — 516G, pat |, (8.32)
nm=1

where the M,,,, are matrix elements of an Hermitian operator M. A transformation of this
equation into Lindblad form can be achieved via diagonalisation of M using the spectral

representation

2
M= Z An|7Ln><7Ln|a (833)
n=1

where the 4, and |A,) are the eigenvalues and eigenvectors of M. One can now easily check

that M is diagonalised by the unitary matrix

2 . M0
U:=Y len){A|, U 'MU= : (8.34)
n=1 0 A

where |e1) = (1,0)T and |e;) = (0,1)T are canonical vectors. Finally, defining operators L,

by
61 1 Ly
= 8.35

and substituting them into 8.32 gives a diagonal master equation in Lindblad form 8.31,
provided the L, are traceless and the A, are non-negative. Now, if we identify the operators

61 in 8.35 as the 0~ in 8.29, and we identify the matrix M as

m=| 4 B (8.36)
B A '

we obtain a master equation of the form 8.31 in which the L, are given by 8.35 and the A,
are the eigenvalues of M. The obtained Lindblad operators L, are certainly traceless, so

the resultant master equation is of Lindblad form provided the A, are positive semi-definite.
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This applies when det(M) > 0, or equivalently when
ALA_> B, (8.37)

which can only be verified through explicit calculation of the master equation constants.

8.3 Analysis of the master equation constants

As expected the master equation 8.29 is dependent on the form of atom-field coupling cho-
sen. I analyse in this section, the master equation constants in the Coulomb and Poincaré

gauges, and the symmetric representation.

8.3.1 Analysis of the rates

To determine the rates A1 as functions of At and w,, it is convenient to write them in the

form

_2r Ou
B Jw)eZgAt 0

Al dofi(w)sin’ B(weg + w)At} (8.38)

with the fi (@) defined by

+
fi(o):= ((E)Z:Cf)a))f (8.39)
In the limit A# — oo, one obtains A = 0 and A_ =T " as expected (cf. 5.1.3).

Table 8.1 summarises the uki and f (o) for the Coulomb gauge, Poincaré gauge and
symmetric representation cases. In case of the rotating-wave and the minimal coupling
Hamiltonian, f_(®) tends to zero when @ tends to infinity. Thus, when performing the
integration in 8.38, we are likely to obtain a rate A_ which depends only weakly on the
cut-off frequency @,. This is confirmed in figure 8.3, which shows that in both cases A_
is essentially the same as the spontaneous decay rate I" for a wide range of environmental
response times and cut-off frequencies. The same is not true in the Poincaré gauge, within
which f_(®) grows rapidly as @ increases. As a result A_ diverges badly with @, as is
illustrated in 8.3.

The other rate appearing in the master equation has been labelled A. This is the rate
associated with virtual photon emission from the bare ground state. As such A =0 in the
symmetric representation. In the Coulomb gauge and the Poincaré gauges A is relatively
straightforward to calculate, because f. (®) has no singularity for finite values of @. It is
clear that in the Coulomb gauge A, diverges logarithmically, while in the Poincaré gauge
it diverges quadratically. Explicit results are obtained by replacing the sin? function in 8.38

by its average value 1/2. This approximation is certainly well justified when Ar >> 1/ .,
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and gives
r 1 0,/ Weg+1

AL = —+1 8.40
* T ,q At [x + nxL (840)

in the Coulomb gauge, and

r 1 1 ) 0y Weg+1

A= ——3x+= 31 8.41
T Tt [x rhoe nx]l 84D

in the Poincaré gauge. Both rates depend strongly on the environmental response time At
as well as the cut-off frequency w,. This is illustrated in figure 8.4 which shows A, as a
function of @, for fixed Ar. The rates A1 diverge badly in the Poincaré gauge, which entails
a cubic coupling > in the numerators of the functions in table 8.1. These results show that
for sufficiently large cut-offs the Poincaré gauge coupling can no longer be classed as weak,

consequently the entire treatment will break down.

- +
H i u; f-(o) f(@)
yNomol 40 0
H; Wpg+@ 0 (0% —w?)? 0
Weg [ e W ® W ®
He o o (@ —0)? (0eg+)?
H ) o o’ o’
P Weg Weg g (Weg—0)* Weg (Weg+0)

Table 8.1: The coefficients uki in 6.82 and the coefficients fi (®) in 8.39, in the Coulomb gauge,
the Poincaré gauge and the symmetric representation.
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Figure 8.1: Logarithmic plot of the function f_(®) in 8.39, in the

gauge and the symmetric representation.
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Figure 8.2: Logarithmic plot of the function f; (®) in 8.39, in the Coulomb and Poincaré gauges.
(In the symmetric representation f = 0.)
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Figure 8.3: Logarithmic plot of the rate A_ in 8.38, in the Coulomb gauge, the Poincaré gauge and
the symmetric representation as functions of the upper cut-off frequency @,, with @.gAt = 10%,
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Figure 8.4: Logarithmic plot of the rates A in 8.38, in the Coulomb gauge and the Poincaré gauge
as functions of the upper cut-off frequency w,, with @At = 10*. The results are in very good
agreement with the analytical results in 8.40 —8.41.

8.3.2 \Verifying the Lindblad form

The Lindblad-form condition 8.37 clearly holds in the symmetric representation. To check

whether it holds in the Coulomb and Poincaré gauges the constant B must be calculated as
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Figure 8.5: Logarithmic plot of lower bounds for (A A_)/|B|? in the Coulomb and Poincaré gauges
obtained via numerical integration of the expressions in 8.38 and 8.30. The plots confirm that 8.37
holds for the experimental parameters of interest and that the corresponding master equations are
therefore of Lindblad form.

a function of Ar and @,. Assuming for simplicity that the atomic dipole moment is real, one

easily finds that

o0 ooa [P @%ufu 1 1

=— 8 do———7 = (g + 0)At (W —w)Ar| . (8.42
ilf(l)engte 0 0 — 0? - 2( g+ ©)A7 | sin 2( g = ©) (8.42)

Using trigonometric relations and approximating the integral over cos(wAr) as zero, this

expression simplifies to

T ) @, ou u;
B=———e¢ ™Y cos(wAr) | do—K. (8.43)
Tz, At 0 W;, — @

Concrete expressions for the ;" can be found in table 8.1. Replacing |cos(w,,At)| by its
maximum of one, we obtain an upper bound for |B|. Figure 8.5 uses this bound and verifies
that the condition 8.37 holds in both the Coulomb and Poincaré gauges, for a wide range of
experimental parameters. This shows that the master equations associated with these gauges

are generally of Lindblad form.

8.4 The stationary state photon emission rates

In this section I calculate the stationary state photon emission rate I for the three coupling
models considered in 8.3.1. The probability density /(¢) for the emission of a photon at time

t is given by the trace over the density matrix ﬁ[ﬁA] in 8.25. Denoting the matrix elements
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of the atomic density matrix as follows

pa — P11 P12 , (8.44)
P21 P22
one obtains
I(t) :A_pzz(t)+A+p11(t). (8.45)

According to 8.29, the matrix elements evolve according to

P11 =—Aypn+A_pxn,

. . 1 *
P12 = iWegP12 + E(A_ +A4)p12+B pa,

P21 =P12, P2 =1-pi, (8.46)

which imply that the stationary state of the atom (for which ps = 0), is described by a
diagonal matrix with

P2 pi1=1—pn. (8.47)

-7+
A_+ALT
Substituting the population py> above into 8.45, one obtains the stationary state photon

emission rate

2A_A,

===+ 4
A_fA, (84%)

55
The proportion of this rate associated with the excited state |e) is only half the total rate;
A_pa = I;/2. The other half is associated with the ground state |g). Expression 8.48
is proportional to A, because the off-resonant (virtual) excitation of the atom creates the
stationary state population p> # 0 in the first place.

Each representation incurs a different definition of bare “photon”. Assuming that there
exists a representation in which the bare photons are the physical photons observed in real-
ity, then we can identify this representation as that which produces theoretical predictions
closest to the experimental results.”! If one requires that in the absence of external driving
I = 0, then in the present context one concludes that the symmetric representation yields

the most accurate master equation. The master equation it yields is the simplest special case

STA problem here is that there may be more than one empirical (i.e. experimental) constraint that we have to
impose within our theory. For example, along with the (possible) requirement that /;; = 0 we may require that
Einstein causality holds in all physical interactions. It may not always be possible to obtain a theory within the
standard framework, that satisfies all such requirements simultaneously (cf. chapter 9).
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of the general equation given in 8.29;

1
pa = —ie[0z, pa] + 5A- (207 pact =0 0 pa—pacToT), (8.49)

which is nothing but the Born-Markov master equation with a decay rate A_ instead of I".

To determine the natures of the nonzero rates associated with the Coulomb and Poincaré
gauges we need some numbers. A typical transition frequency in the optical regime is
Weg = 3.7 X 10!3s~! corresponding to a wavelength of 500nm. A possible estimate for
the upper cut-off frequency is @, = 3.7 x 10'?s~! corresponding to the Bohr radius.”> An
estimate for the environmental-response time Af is the time it takes a photon to reach the
walls of the laboratory. Assuming that photons travel at the speed of light and that the walls
of the laboratory are about 3m away yields Ar = 10~3s. Finally a typical spontaneous decay
rate is ' = 107571,

Using these estimates one obtains a stationary state photon emission rate I, of about
1.5 photons per second in the Coulomb gauge. This is well below typical detector dark
count rates of about 500 photons per second and more or less impossible to observe exper-
imentally. Using the same parameters in the Poincaré gauge one obtains an A, of about
4 x 10% photons per second, which clearly shows that the master equation associated with
the Poincaré gauge can’t be valid.

A way of obtaining higher stationary emission rates (in any gauge) is to move the
photon-absorbing environment closer to the atom. The reason for this is that A, scales
essentially as 1/Ar, while A_ remains more or less the same when Ar changes. A photon-
absorbing environment 10cm away from the atom implies At ~ 3 x 10~'%s and using the
same values as above one obtains an I, of about 40 photons per second in the Coulomb
gauge.

One could also consider atomic systems with a relatively large spontaneous decay rate I
and a relatively small transition frequency ®,,, like the ones used in recent experiments with
single quantum dots and colour centers in diamond. Matthiesen et al. (2011) have studied
the fluorescence from Gallium Arsenide with a single layer of self-assembled Indium Ar-
senide at a temperature of 4.2K and measured a lifetime of 760ps for an excited electronic
state with a transition wavelength of about 950nm. This corresponds to a decay rate I" of
about 10°s~! and a transition frequency @, of about 2 x 105s~!. Assuming moreover that
At =3 x 10~ !%, we obtain a Coulomb gauge I, of about 8400 photons per second.

Miiller et al. (2011) have studied photon emission from an excited state using chromium-
based colour centers in diamond with a lifetime of 1ns and a transition wavelength of
710nm at a temperature of 4K. These parameters correspond to @, = 2.6 x 105! and
' = 10°s~!. If we assume again a photon-absorbing environment which is 10cm or less

away from the colour centre, the condition I'Ar < 1 applies and the above calculations

521t should be noted that changing @, by a few orders of magnitude does not change A, significantly.
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Figure 8.6: Logarithmic plot of the stationary state photon emission rate Iy, in the Coulomb and
Poincaré gauges as a function of w,. The plots are the result of numerical solutions of 8.48 and 8.38.

hold. In this case the master equation associated with the Coulomb gauge predicts an Iy of

about 2600 photons per second.

8.5 Summary and discussion

According to the model employed in this chapter environmental interactions have the effect
of continuously projecting the atom-field system onto a product state with the field in its vac-
uum state. For most representations of the atom-field system, the ground state of the total
Hamiltonian is entangled with respect to the bare state basis. With respect to these Hamilto-
nians the field-environment interaction continually resets the atom-field system onto a state
that is necessarily energetically higher than its ground state. Thus, the photon-absorbing
environment constantly pumps energy into the system, which manifests itself as a nonzero
stationary state photon emission rate even in the absence of external driving (Kurcz ef al.
(2010)). The only exception to this situation occurs when the bare ground state |g;0) coin-
cides with the true ground state of the atom-field system, which is the case in the symmetric
representation.

When the atom-field interaction V contains counter-rotating terms, one obtains a nonzero
stationary state photon emission rate, which increases with decreasing A¢. One can offer a
tentative explanation of this emission rate in terms of the virtual photon cloud (cf. 6.4); the
counter-rotating terms cause virtual excitations of the atom-field system, which results in
the virtual emission of photons. The environment can absorb these photons, which leaves
the atom in an excited state with no possibility of virtually reabsorbing a photon to become

de-excited. The atom must therefore decay via real emission. If Af is the time taken for
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a photon to interact with the environment, then by decreasing Ar one is, in effect, moving
the environment closer to the atom. If the virtual cloud is localised around the atom, then
moving the photon-absorbing environment closer to the atom will increase the frequency
of virtual photon absorption. This will increase the frequency with which the atom is left
excited, and thereby increase the stationary state emission rate. In summary, the emission
rate increases with decreasing Ar—the distance of the environment from the atom—because
decreasing At increases the exposure of the virtual cloud to the environment.

This qualitative analysis is consistent with the ideas of 6.4.2 and the energy-time un-
certainty principle 6.91. According to 6.91 the environment is only able to resolve virtual
emission events such that @,, + ® < At~!, and therefore perceives the atom as dressed by
photons with frequency @ + @ > At~! (Compagno et al. (1995)). Decreasing At increases
the bandwidth of frequencies that the environmental “measurements” are able to resolve.

Of course, the number of photons perceived by the environment also varies with the
chosen atom-field coupling. Assuming that Az is given by the environment, the coupling
becomes the only free parameter and determines the extent to which the environment per-
ceives a virtual cloud. Although I have focused on three main cases, in principle the { o}
that determine the atom-field coupling could be chosen to generate any value of I, whatso-
ever. In this way, it becomes possible for the model to reproduce detector dark count rates

and finite temperature effects.
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CHAPTER 9

Subsystems and causality

I end here with a final rather short chapter in which I discuss the important subject of
Einstein causality, and review how the concept relates to quantum subsystem relativity.
Ever since the inception of quantum mechanics its interplay with the theory of relativity has
been the subject of intense study. The elusive and often counter-intuitive nature of quantum
nonlocality makes it one of the most important foundational aspects of the theory, yet to
be fully understood. Given the nonlocal nature of quantum theory it isn’t surprising that its
consistency with Einstein causality (postulate 1, section 2.1) has frequently been called into
question.

Since the literature on this subject is vast and ever increasing it would be hopeless to
attempt to review it all. In this chapter I will review only simple “standard” results, and
then focus entirely on the famous thought experiment of Fermi (1932) known as Fermi’s
two atom problem. The setup envisioned by Fermi offers a simple means by which to
investigate questions regarding quantum nonlocality and Einstein causality. In particular, I
will be interested in determining the role of virtual contributions in ensuring causal signal
propagation, and the implications this has with regard to determining suitable subsystem

decompositions.

9.1 A standard no-signalling theorem

Quantum entanglement leads to nonlocal correlations between spacelike separated systems.
Bell (1964) showed that any hidden variable theory capable of reproducing the results of
quantum mechanics must also be nonlocal. There are many “proofs” in the literature, that
the nonlocality of quantum mechanics can’t be used for superluminal communication. Since
one assumes that subsystem operators take the form A; ® I and I ® A, for subsystems 1 and
2 respectively, there are no (local) measurements that can be performed on one of the the

subsystems alone, that will effect the statistics of the other. These no-signalling theorems
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seem to be little more than tautologies amounting to the unremarkable statement that the
identity operator does indeed leave a Hilbert space invariant.

In the general formulation of quantum measurement theory the act of measurement on a
single subsystem is represented using Kraus operators (see for example, Kraus et al. (1983),
Breuer & Petruccione (2007)). A measurement performed on subsystem 1 for example, has
the effect

p—p =Y (Ku®h)p(K},®L). 9.1)
m

where {Kj, } denotes a set of Kraus operators, which satisfy
Y K Kiy=1,. 9.2)
in

Subsequently, the expectation value of an operator O, pertaining to subsystem 2 is

tl’(ll & Ozp/) = tr(h & 02p) 9.3)

with the equality following from 9.2, the fact that operators pertaining to separate subsys-
tems commute, and the cyclic property of the trace. It follows from 9.3 that the statistical
predictions for the results of (local) measurements performed on subsystem 2 are unaffected
by a (local) measurement of subsystem 1 made immediately beforehand. This shows that
there can’t be any instantaneous communication between distant observers based solely on

local measurements.

9.2 Causality in quantum field theory

In order to properly investigate locality and microscopic causality in quantum theory one
must encode these notions into well-defined conditions to be imposed on observables that
are explicitly associated with regions (or points) in spacetime. One achieves this through the
use of quantum fields. Attempts to put quantum field theory on a mathematically rigorous
footing are ongoing. These attempts have come to be known as constructive quantum field
theory and algebraic (or sometimes axiomatic) quantum field theory (AQFT).

The first attempt at specifying a precise set of axioms upon which quantum field theory
could be built was given by Wightman (1964) (see also Haag (1996) and references therein).
A field ¢(x) at a point x € E'* is an operator valued distribution over a Hilbert space
H. An observable O associated with some U C E'3 is some polynomial of operators
{0(f)} C L(H), which smear the fields over test functions { f} whose support is U;

0()i= [ d'x0(0f (). ©4)

The space of test functions FE!? is often taken as the space of smooth functions all of
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whose derivatives approach zero faster than any positive power of x~! as x approaches

infinity. Causality is encoded into the theory through the requirement that

1. if the supports of the test functions f, g are spacelike separated then [¢ (f),d(g)] =0
for bosons and {¢(f), ¢ (g)} = O for fermions.

Thus, all observables are compatible in two regions that can’t be connected to each other by
a causal signal.

There is also a notion of primitive causality built-in to AQFT, which assumes that phys-
ical equations of motion for fields are hyperbolic, so that solutions propagate with finite
velocity v < ¢. Suppose we are given a region R C E> taken with respect to some inertial
frame O, and that our Hilbert space J{ consists of states giving a complete physical descrip-
tion of physical phenomena in O. Any two (in general distinct) states |y) and |y’) look
the same in a given region R and at a given time ¢, if for all observables O(¢) (which are

polynomials of the operators in 9.4 associated with (z,R) C E'333) one has

(W0x(1)|w) = (y/'|O= (1) [¥'). 9.5)

In other words |y) and |y’) look the same in R if they can’t be distinguished by any mea-
surement made in R, that is, by any measurement of observables associated with (¢, R).
Now suppose that R denotes the ball of radius R centered at some x € E>, and that we are
given states |y) and |y') satisfying 9.5 at, say, r = 0. Primitive causality is the requirement
that equation 9.5 taken at time # = O implies that at time ¢ € (0,R/c)

(W]0s(t)|w) = (¥'|0s(1)|v) (9.6)

where & is the ball of radius R — ct centered on x. This assumes that there is a one-to-
one correspondence between observables associated with different time slices, so that if for
example, energy can be defined in some region at a fixed time, then there is a corresponding
unique energy associated with any other region at any other time. This is ensured by the

Heisenberg equation, which implies
O(t) := ™' Qe 9.7)

for some Hamiltonian H. Primitive causality is the direct encoding of Einstein causality into
the field theoretic structure. It means that no causal influence (one that effects measurement
outcomes) can move into R from its complement faster than light. Primitive causality nec-
essarily holds—in the sense that 9.6 follows from 9.7 and 9.5—whenever the equations of
motion governing the dynamics of the fields are hyperbolic (Buchholz & Yngvason (1994)).

There are very few (in fact, I'm not sure that there are any) interacting quantum field

33Since according to 9.4 observables have to be smeared over time and space, the notation (£,R) should really be
taken as shorthand for R, - := {(x,x) : x® —t| < &, x € R} where ¢ is small.
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theories used in practice, that can be cast into the algebraic/axiomatic framework, and cer-
tainly none as elaborate as a Yang-Mills gauge field theory such as QED. Those theories
that can be put into the algebraic framework are predominantly free field theories. Most
elementary textbooks on conventional quantum field theory seem content to formally verify
that something like axiom 1 above holds for a handful of free theories and leave it at that.

For example in scalar field theory one can show that (Ryder (1996))

[0(x),07(¥)] = [9(x),6(x')] =0, (9.8)

whenever (x —x')*(x—x"), <0, i.e., for all points outside the lightcone of x —x’. Similarly,
outside the lightcone the free Dirac field satisfies (Peskin & Schroeder (1995))

(v (), v} = (v (0. vP ()} =0, 9.9)
the electric and magnetic fields in free QED satisfy (Cohen-Tannoudji et al. (1997))
[E(x), B/ ()] = [E'(x), B/ (x')] = [E(x), B/ (') = 0, (9.10)
and in covariant formulations the four-potential satisfies (Cohen-Tannoudji ef al. (1997))
[Au(x),Ay(x)] = 0. 9.11)

That the operators appearing in the above relations evolve freely (under the action of a
free Hamiltonian), is what allows for the simple determination of their commutators/anti-

commutators.

9.3 Fermi’s two atom problem

Fermi (1932) imagined a setup consisting of two two-level atoms A and B. He posed the
question; if atom A is excited and atom B is in its ground state then can atom B become ex-
cited before the time taken for a signal to propagate from A to B? He probably envisioned a
scenario in which atom A decays via photon emission leading to a nonzero probability of ex-
citation of atom B through absorption of the same photon. He most likely expected that this
probability would be zero for times less than that taken for a signal to propagate from A to
B. The general problem is that of identifying the nature of (electromagnetic) energy transfer
between spatially separated material systems. This problem has received a good deal of at-
tention over the years (see Fermi (1932), Biswas et al. (1990), Craig & Thirunamachandran
(1992), Hegerfeldt (1994), Buchholz & Yngvason (1994), Milonni et al. (1995), Power &
Thirunamachandran (1997), Sabin ef al. (2011) and references therein).

On the face of it the idea of the Fermi problem seems to be quite straightforward (even
if its solution is technically hard to find), but the problem is actually of a very subtle na-

ture. First of all the setup envisioned by Fermi appears to presuppose that the atoms have
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well-defined localisation properties, and that there is a parameter R giving the distance be-
tween them. That particles exist as localised objects in spacetime is far from clear however.
A more modern perspective might be that localisation is only a property of interactions
between field quanta and detection devices.

Even if the atoms are assumed to be fixed and separated by a distance R, the naive as-
sumption that atom B can only become excited via the absorption of photons emitted by
atom A is unwarranted. We know that bare ground state atoms can become spontaneously
excited even in the absence of photons, due to the existence of counter-rotating terms in
atom-field interaction Hamiltonians. Thus, we can’t assume that a nonzero excitation prob-
ability of atom B for times less than R/c implies a violation of Einstein causality. Such an
excitation might have nothing to do with atom A at all. This aspect of the problem will de-
pend on the form of atom-field coupling chosen to model the problem. Actually the entire
problem is clearly dependent on how one defines the atoms and field as physical subsys-
tems. Separating out virtual excitations of atom B and real excitations caused by atom A, is
a key step towards finding a solution.

Assuming an initial bare state |e4;gp;0) consisting of atom A excited, atom B in its
ground state, and zero photons present, there are a number of excitation probabilities which
could be perceived as relevant to the Fermi problem. The most naive approach would be to

calculate the probability
Pi(t) := |(gasen;0le " |eas g5; 0)|? 9.12)

in which the final state of all three systems is specified. Fermi found using approximations
that this probability is causal, i.e., zero for r < R/c, but without approximation this result
can’t be achieved. This is not too surprising given that no attempt has been made to separate

out virtual excitations. One might also calculate

Py(1) := (eas g5: 0™ | Y |na) (na] @ les) (e ©10)(0] | e™]ea: g 0)

n

=Y [{ea:85:0le™[na;e5:0) |, (9.13)

n

in which one finds the probability that atom B is excited and that there are no photons at
time ¢, irrespective of the state of atom A. Similarly, one could calculate the probability
to find atom A in its ground state and atom B excited without specifying the final state of
the field. Again one would have to separate out the virtual and real excitations to obtain
a relevant result. Evidently, the most general probability relevant to the problem is Py (%),

which is defined as the component of the probability

P(1):=Y Y'Y [(ea:85:0le™" [nase:m )| (9.14)

nom kA

that depends on atom A. The probability P(¢) to find atom B excited irrespective of the state

191



9. Subsystems and causality

of the field and atom A will be the sum P(t) = Py(t) + Ps(t) where Py(t) denotes the virtual
contribution independent of atom A. Hegerfeldt (1994) proved quite generally that if

1. the atoms are initially assumed to be localised in disjoint regions separated by R,
2. the probability P(z) is given by the expectation value of a positive operator,
3. the energy (Hamiltonian) is bounded from below,

then P(¢) is nonzero for times t < R/c. It follows that a nonzero Py(t) is necessary in order
to preserve the possibility that Einstein causality holds in the Fermi problem. This condition
is necessary but certainly not sufficient to prove that Einstein causality holds. One must still
employ an interaction Hamiltonian without instantaneous coupling terms. For this reason
the Poincaré gauge Hamiltonian has been chosen in all previous formal proofs of causality
in the Fermi problem.

In a simple quantum optical treatment in which one assumes the EDA, the fields at
the position of each of the atoms are evaluated at the centre-of-mass positions R4 and Rp
with |[Rs — Rp| =: R. The Poincaré gauge electric field E(x) is equal to the transverse
displacement Dr(x) whenever x # R4, Rp, and the electromagnetic fields Dt and B can be

written formally as the sum of free and source components corresponding to each atom;
Dr=D%+D}+DE  B=B’+B"+BE (9.15)

It is easy to show that in the Poincaré gauge all observables of atom B depend on atom
A either directly or indirectly through the transverse displacement field D4, from which
it follows using the retarded solution 6.30 that P4(¢) = 0 for r < R/c. Of course, due to
the counter-rotating terms in the Poincaré gauge interaction Hamiltonian there is a nonzero
probability Py(r) that the bare atom B is spontaneously excited out of the vacuum. Consid-
ering atom B alone, the state |gp;0) is not an eigenstate of the Poincaré gauge atom-field
interaction Hamiltonian. Because of this the Poincaré gauge treatment in the EDA doesn’t
countenance an inconsistency with Hegerfeldt’s theorem.

If |ga;gp;0) were the ground state of the Hamiltonian, which would be the case if each
atom coupled to the field via the symmetric coupling 6.84, and the atoms were not directly
coupled to each other, then Py(¢) would be zero and Pg(¢) would not be causal. Thus, the
explicit presence of the virtual field in the Hamiltonian is necessary in order to preserve
Einstein causality, meaning that the virtual cloud of photons can’t be included within the
initial atomic states (see for example Milonni ef al. (1995) and references therein). This
would seem to imply that, at least in quantum optics, a measurement of the energy of an
atom constitutes a measurement of the bare Poincaré gauge atomic energy observable.

The paper of Hegerfeldt (1994) sparked a controversy at the time of publication, and a
spate of responses followed the next year (see references given at the start of this section).
The most common argument against the alleged causality problem was exactly that given

above—that even if P(r) is not causal, the relevant probability Pg(r) is causal. However, this
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9.3. Fermi's two atom problem

does not seem to be something unbeknown to Hegerfeldt when he published his result. In
fact the causal nature of Pg(r) had already been verified using a simple model (Biswas e al.
(1990)). Rather it seems that Hegerfeldt was posing the following question. If we require a
nonzero Py(t) in order that P(7) is causal, do we not then encounter a problem, given that
a nonzero Py(t) is surely itself unphysical? He seems to be arguing that in attempting to
renormalise a theory, spontaneous virtual excitations—described in the case of the Fermi
problem by Py(r) # 0—are precisely the kind of excitations one seeks to eliminate. His
result shows that in such a successfully renormalised theory violations of Einstein causal-
ity necessarily occur if the seemingly reasonable conditions 1-3 above are satisfied. Most
responses to Hegerfeldt’s theorem seemed to ignore the issue that a nonzero Py(z) could in
itself be viewed as presenting a serious problem of physical interpretation. In order to get
around Hegerfeldt’s theorem we must assume that either one or more of the conditions 1-3
are not valid (for example, the assumption that localised states as specified in condition 1
exist, may be invalid), or to accept that virtual excitations are a genuine physical occurrence.

The real problem we are faced with is how to construct a quantum theory in which un-
physical violations of Einstein causality do not occur. This is one of the main problems
AQFT confronts. The original ideas of Fermi about verifying Einstein causality by calcu-
lating the transition probability in 9.12 seem fairly far detached from a classical viewpoint
involving Maxwell’s equations. But in all of the proposed solutions to the Fermi problem
equations of motion incurring retarded solutions play a key role. In the simple quantum
optical solution one uses the retarded nature of the source component of the transverse
displacement field. In AQFT there is a built-in primitive causality facilitated by the as-
sumption that all physical equations of motion are hyperbolic. This suggests that a general
formal proof of causality can be given within the framework of conventional QED without
the use of any simplifying assumptions, by using Maxwell’s equations directly in the quan-
tum theory. Doing this in a mathematically rigorous and consistent fashion is probably far
from straightforward, but it seems to be well-motivated on physical grounds.>* It is perhaps
amusing to note that in formulating QED we start right at the beginning with a theory in
which there are no violations of causality when it comes to the action of charges on other
charges—namely Maxwell electrodynamics. In trying to determine without approximation
how to ensure that Einstein causality holds in the two atom problem we are naturally lead
back to this beginning.

Through the direct use of Maxwell’s equations one would be able to avoid the EDA, as
well as any separation of charges into bound and free systems. Such a separation is based
upon the ideas of macroscopic classical electromagnetism whereby the internal details of
a bound system of charges are ignored, and one only retains interest in the source fields
outside of the bound system itself. With this strategy in mind adopting the Poincaré gauge

is natural, because the Poincaré gauge field canonical momentum is equal to the (negative

S4For a discussion of Maxwell’s equations in the context of AQFT see Ferrari ez al. (1974), Ferrari et al. (1977).
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9. Subsystems and causality

of the) total electric field outside the system of charges. But with regard to fundamental
questions concerning causality it is just as important that charges within a bound system are
causally connected as it is that any two bound systems are themselves causally connected.
Thus, to really ensure Einstein causality at the microscopic level the detailed structure of
each bound system is important. Fundamentally each individual charge produces its own
electric and magnetic fields.

Since the electric and magnetic fields afford retarded solutions we can ensure general
microscopic causality through Poynting’s theorem. This requires the use of the gauge-
invariant definitions of material and electromagnetic energy densities .73, and gy from
3.98. These definitions are quite natural given that the Hamiltonian is supposed to represent
the total energy, but they do not specify the energies of bare subsystems with Hilbert spaces
whose tensor product gives the composite system Hilbert space. In this particular sense
they seem to be closer to the energies of renormalised subsystems of the type envisioned
by Hegerfeldt (1994). No renormalisation procedure has been carried out however, and the
(bare) vacuum expectation values of these energies are nonzero.

Poynting’s theorem 4.38 along with the retarded solutions 4.10 ensure that changes in
the energy density of the matter field at a point (7,X) are independent of the matter field at
all points, which can’t be connected to (¢,x) by a causal signal. To work out the equation
of motion for .7 explicitly I note that in the Coulomb gauge A=At and E=Er+EL =
—IIt — P, where Py, is given by 2.37. With these identifications it is straightforward to
show using the relations 3.45 and 3.99 that

[ (x), EY (x')] = i (x) [& (x = x') + Dy (X', x)] (9.16)
=iJ'(x) [8(x—x) + 8 (x = x)] = il (x)8(x —X).

where g is defined in 2.39 and 6}; (x—x') = digr j(X',x) is the longitudinal delta function,
which satisfies

5I~§(X—X’)—|—6,%(X—x’) =§;;6(x—x). 9.17)

The equation of motion for 7%, is now easily found using 9.16;

, 1

Hia(t,X) = —i[ Hg(1,%),H] = = [J(1,%) - E(t,x) + E(t,x) - J(£,%)]

2
[(V xB(t,x) —E(t,x)) -E(1,x) + E(1,x) - (V x B(1,x) — E(£,x))] (9.18)

| =

where 4.1b has been used in writing the second equality. Substituting the solutions 4.10
into the right-hand-side of 9.18 shows that the rate of change of the energy density of the
matter field .74 (¢, x), only depends on the matter field at other points x’ at the retarded time
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t, =t — |x —x/|. The energy of the matter field in some closed region R € R? is merely
HR () = / &Ex A (t,%) 9.19)
R

and the delta function in the commutation relation 9.16 ensures that 7#(¢,x') and E(¢,x’)
are compatible observables for x # x’. Moreover it ensures that the material and the elec-

tromagnetic energies are compatible in disjoint regions i.e.
[Hy HY, = / d3x / X' [y (x), A (X)] =0 (9.20)
R /

whenever RNR’ = 0. Ideally I would like to show that all of the observables are compatible
outside the lightcone, but I don’t know how.

Since .74 is gauge-invariant the above result does not rely on the use of a particular
gauge and avoids any approximations. Of course, the specifications of the electric and mag-
netic fields, as well as the specifications of the material and electromagnetic energy densities
have been made with respect to a specific inertial frame. Therefore the comments regarding

the covariance of Poynting’s theorem made towards the end of section 4.2 continue to apply.

9.4 Summary and discussion

We have seen in this section that virtual contributions play a crucial role in ensuring causal-
ity in the Fermi problem. Dressed state (renormalised) models will necessarily lead to
apparent violations of Einstein causality, which shows that they are either unphysical, or
do not possess the localisation properties required in order that certain questions regarding
Einstein causality make proper sense. If dressed states are not strictly localised, then what
look like small violations of Einstein causality might inevitably show up in calculations.

The standard QED framework may well be insufficient for the purposes of investigating
the delicate nature of particle localisation with which the idea of virtual clouds is intimately
related. If, as the name suggests, virtual particles are not real, then neither are bare particles.
It is then unclear how to use the standard framework in which all observables are built out
of operators pertaining to bare particles, to describe physical particles in such a way that we
can pose unambiguous questions about Einstein causality in physical interactions.>

One can, as has been shown, use traditional definitions of material and electromagnetic
energy densities to give a “proof” of causality in the Fermi problem, which generalises stan-
dard proofs given in quantum optical treatments. These traditional energies don’t constitute
what in quantum theory one would call free energies pertaining to bare subsystems. In this
sense they may be better termed dressed energies. If we agree that these definitions are in

fact the correct ones, then we will have “come full circle”. Starting out with these defini-

331 use the term “particle” here very loosely and for want of a better word. It seems increasingly likely that
whatever the fundamental physical “objects” are, they are quite far removed from anything resembling what we
traditionally mean by particles.
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9. Subsystems and causality

tions, we will have then quantised the theory and abandoned them in favour of the standard
quantum mechanical interpretation of physical subsystems. We will then have decided that
such bare subsystems are not actually physical, and that physical subsystems are made of
dressed particles with dressed particle energies. Finally we will have decided that these
dressed energies are nothing but the original energies that we had at the beginning. Our
(somewhat lofty) goal would then be to construct a rigorous theory of QED based directly
on these definitions without any reference to bare and virtual particles. This theory would
have to replicate the undeniable practical success of conventional QED, and adhere to all
the physical constraints imposed by fundamental principles like causality. Any attempts
along these lines using constructive/axiomatic quantum field theory seem to have been un-

successful so far.
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Conclusions

The aim of this thesis has been to investigate the nature of different decompositions of com-
posite light-matter systems into constituent subsystems. Because the notion of quantum
subsystem is a relative one, there is considerable freedom in choosing such decompositions,
and in QED this freedom is directly related to gauge freedom. In the classical setting gauge
freedom has no consequences with regard to physical predictions. Material systems are
specified through charge and current densities, and electromagnetic interactions are medi-
ated by electric and magnetic fields. At the quantum level bare subsystems are defined in
terms of gauge dependent operators, and predictions concerning bare states and canonical
subsystem observables come out gauge dependent except in special cases such as scattering
theory.

The crucial property ensuring gauge invariance of the S-matrix is free energy conserva-
tion. Upon recognising this we have at least two reasonable options regarding the physical
interpretation of QED. The first option is to close the door on any hope of obtaining a mean-
ingful ontology pertaining to QED. One stipulates that all observable quantities are encoded
into the S-matrix, and that we can only assign physical meaning to scattering processes that
lead to decay rates and cross-sections with direct operational meaning. Such a viewpoint
has been advocated in the past by Heisenberg (1943) for example, but to me seems ex-
tremely limited. Not least because the current framework is mathematically ill-defined, but
also because it places such an incredibly modest limit on the capability of physical theories.
It implies that the best we can possibly hope to do is only approximately understand reality,
as it would be if all processes occurred over infinite periods of time from f = —oco to f = co.

Our other option is to try and interpret QED in terms of traditional notions such as
particle. In quantum optics one views bare particles as surrounded by clouds of virtual
particles, but if virtual particles are not real then neither are bare particles, and our task is
to identify what the real physical objects are. In other words we must provide an ontol-
ogy, which clearly and unambiguously links the mathematical objects of the theory with
physical objects occurring in reality. A somewhat vague idea along these lines is that phys-
ical particles are bare particles dressed with their virtual clouds. With this idea in mind I
have obtained results using different atom-field coupling models in different physical sit-
uations. This has revealed that while using dressed states in certain situations eliminates
unphysical divergences, their use necessarily leads to such things as violations of Einstein
causality. Of course, this is only really a problem if we assume dressed states must have the
requisite localisation properties in order that questions regarding Einstein causality can be

properly posed. Turning this around it appears that dressed (i.e. physical) particles, must be



delocalised to some extent, which in a quantum theory is not overly shocking.

The original Maxwell theory of electrodynamics retains many desirable properties, such
as the causal propagation of electric and magnetic fields and simple energy-momentum con-
tinuity equations. Perhaps this explains why the Poincaré gauge has been so successful at
the quantum level in the treatment of spontaneous emission, level shifts and energy transfer
(including Van der Waals interactions). Even in the Maxwell theory there is still an ambigu-
ity regarding the nature of the infinite longitudinal field and the associated self energy. This
is solved at the classical level using extended charge distributions and mass renormalisation.
It should be noted however, that a mathematically rigorous quantum theory of Maxwell’s
equations/QED, in the sense of constructive/algebraic quantum field theory, has not been
achieved.

In simple quantum optical models the Maxwell fields are expressed in terms of photon
creation and annihilation operators, and photons appear to be seen as more fundamental.
Models in which the fundamental processes are the absorption and emission of photons
invariably suffer from additional infinite (often transient) virtual contributions, and often
sacrifice the causal aspect of the original theory described in terms of Maxwell fields. This
is the case, for example, in the Glauber (1963) theory of photodetection. At least part of
the problem here (a large part in my opinion) seems to have its roots in the strategy of
starting with free (non-interacting) quantum theories and obtaining the interacting theory
by simply joining the free theories together using the tensor product of Hilbert spaces.
This not only leads to field theories that are mathematically dubious—QED being a prime
example—but also leads to strange physical notions such as the notion of virtual particle,
which often proves difficult to sustain. The problem is that interacting systems are viewed
as nothing but free systems whose interaction is described by a term appearing explicitly
in the Hamiltonian. Infinities occur because interactions uncontrollably create free particles
out of free Fock vacua, and very few of these infinities can be removed by normal-ordering.

Contrary to the above view regarding quantum subsystems, we must recognise that a
subsystem of a composite system with interactions, is not a free subsystem, and we must
proceed to build theories consistent with this realisation. Although this may have been
recognised in the context of quantum field theory (see for example Haag (1996)), the state-
ment seems applicable quite generally. This suggests a re-evaluation of the standard rules
of quantum mechanics, such as the use of the tensor product in constructing a composite

system’s state space.
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APPENDIX A

Basic algebraic structures

The aim of the appendices is to identify and review the various mathematical structures,
which are used throughout the thesis. I have attempted to introduce the material in as
intuitive a way as I am able, but cover only the bare minimum of topics required to make
full sense of the content in the chapters. This first appendix concentrates mostly on algebraic
structures. I begin by reviewing fundamental concepts in set theory and then review some
useful ideas from category theory. I go on to introduce the basic structures ubiquitous in
physics, starting with groups and vector spaces.

The material I present has been drawn from a handful of textbooks and so I refer the
reader to the following for more detailed expositions. For introductory set theory see Has-
sani (1999) part 0. For the use of categories in mathematical physics see Geroch (1985)
chapter 2. For the basics of groups and vector spaces see Hassani (1999) parts I, IT and VII,
and for a view with an eye toward quantum theory see Isham (1995) chapters 1 — 3, 5 and
7.

A.1 Sets

A set A is a collection of things called elements. An element a could be anything from a
physicist in a pickle to an event in space-time. I use the standard notation a € A to mean
“a belongs to A”, and the symbols 3 and V to mean “there exists” and “for all” respectively.
A set B is said to be a subset of a set A if a € B=-a € A, in this case one writes B C A.
The intersection of two sets A and B is denoted AN B and is defined as the set of elements
belonging to both A and B. The union of A and B is denoted AU B and is defined as the
set of elements belonging either to A or to B. Finally the cartesian product of A and B is
denoted A x B and is defined as the set of all ordered pairs (a,b) witha € A and b € B.
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A. Basic algebraic structures

A.1.1 Equivalence

It is useful in set theory to have a notion of equivalence as a means by which elements can
be organised into subsets based on a particular property. Such a notion is afforded by the

following definition.

Definition A.1.1 A relation > on a set A is a comparison test on the cartesian product

%

A X A. If (a,d") passes the test one writes a>a’ meaning “a is related to a'”. An equivalence

relation is a relation satisfying the following three conditions.

1. a>a, Ya € A (reflexivity),

2. avd = dva, Va,d € A (symmetry),

3. avd andd >d" = a>d’, Va,d ,d" € A (transitivity).
The set of all d' € A equivalent to a is denoted [[a]] and is called the equivalence class of a.
An equivalence relation can be used to define a useful set called the quotient set.

Definition A.1.2 A collection {By} of subsets of a set A is said to be a partition of A if
they are mutually disjoint and cover A i.e. Bo N Bg =0 and \J, Bq = A, where 0 denotes
the empty set and o # B. The collection A/>:= {[[a]] : a € A} of all equivalence classes of

elements of A is a partition of A called the quotient set of A under the relation 1.

A.1.2 Maps

A map f:A — Bfrom aset A to aset B is an assignment of an element a € A to an element
of B denoted f(a). The subset of points in B mapped from A under f is denoted f(A). The
set of all points in A, which are mapped by f into C C B is denoted f~!(C). Three important
properties of maps are defined in the following.

Definition A.1.3 A map f: A — Bis said to be injective if Va, d' €A, f(a) = f(d') = a=d.
A map f:A— Bis said to be surjective if f(A) = B. If f is injective and surjective it is said

to be bijective.

For our purposes a map will be invertible if and only if it is bijective. The inverse of
f:A— Bisdenoted f~!: B— A and is such that (fo f~!)(b) =b and (f o f)(a) = a.
Here o denotes the composition of maps defined as (go f)(a) := g(f(a)) with f: A — B,
g:B—Cand fog:A—C.

The only structure a set really has is its number of elements, or its cardinality. Two sets
have the same cardinality if and only if there exists a bijection mapping from one to the
other. In other words bijections are the structure preserving maps in the category of sets.

This leads us nicely into a discussion of...
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A.2 Some basic concepts in category theory

A.2.1 The idea of a category

Category theory provides, among other things, a convenient way to organise different math-
ematical structures and to identify their relationships. It allows one to identify certain con-
structions like sums and products, which pop up in separate areas of maths as being the
same idea applied in two different places. Of particular use is the categorical classification
of maps, which in some sense allows one to identify what a map does without reference to
the particular branch of maths under consideration.

A category consists of three things; a collection of elements called objects, a set of
morphisms which are the maps between objects, and a rule o called composition, which
assigns to two morphisms ¥ : A — B and ¢ : B — C, amorphism denoted ¢ oy : A — C from
A to C. We have already encountered the most elementary category, which is the category of
sets. The objects of any other category are generally obtained by equipping sets with certain
additional structure. For example, if one gives a set a closed binary multiplicative operation,
for which there exists inverses and an identity, one obtains a group. If the multiplication is
commutative the group is Abelian. Providing an Abelian group with a notion of scalar
multiplication one obtains a set with linear structure i.e. a linear space or vector space.
These structures are each algebraic in nature. The other (complimentary) type of structure
is topological structure, which we will encounter in due course.

It is worth noting that there may be a great deal of overlap between any two categories.
For example if one gives a vector space a certain kind of binary map called an inner product
one obtains an inner product space. An inner product defines a norm on the vector space,
so an inner product space is necessarily a normed space. A norm is simply a metric on a
vector space and a metric space is necessarily a topological space with the fopology induced

by the metric. Thus, an inner product space is a topological space.

A.2.2 Morphisms

To conclude this section I have one thing left to do, and that is to examine the “structure
preserving” morphisms in a category. We will see that such morphisms are of particular

interest. Their classification is given in the following definition.

Definition A.2.1 Let O and O’ be any two objects in a category C. A structure preserving
map 0 : O — O is called a homomorphism. When 0 also happens to be a bijection, 0 is said

to be an isomorphism. When it happens that O = (', then 6 is said to be an endomorphism.
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If 0 is both an isomorphism and an endomorphism it is said to be an automorphism.

Auto Iso

Endo Homo

The diagram illustrates the relationships between morphisms. The arrows are intended to

signify inclusion.

As an example consider (G,-) and (G',) in the category of groups. A group homo-
morphism M : G — G’ is a map such that (g -h) = 0(g) x0(h), Vg,h € G. Whether 0 is
an isomorphism, endomorphism or automorphism simply depends on whether 0 is bijec-
tive, and/or whether the two groups are actually the same group. As I noted earlier often
categories overlap with each other. As a result one must take care to identify the structure
or structures with respect to which a morphism is a possible homomorphism. For example,
it is quite possible that a morphism between topological groups preserves the topological
structure, but isn’t a group homomorphism.

There are important and useful examples in physics of each of the above types of mor-
phism. Linear operators representing observables in quantum theory are the endomor-
phisms on vector spaces. The set of automorphisms on a vector space forms a group of
transformations under composition, and nearly all of the groups in physics seem to be of
this type. For example unitary operators used in quantum theory form the group of auto-
morphisms on some inner product space.

The only morphisms I haven’t really mentioned yet are the isomorphisms, which quite
generally determine whether two separate objects can be identified. Roughly speaking iso-
morphic spaces can be thought of as abstractly “the same”. T use the notation O = 0’ to
mean that the objects O and O’ are isomorphic. A natural (or canonical) isomorphism is
an isomorphism between spaces which is independent of any arbitrary choices. This could
be for example, an isomorphism between vector spaces, which identifies elements in a way
that is independent of any choice of bases for the spaces. The existence of a canonical iso-
morphism seems to signify that two spaces are really one and the same space, though this

space might previously have been considered from two different points of view.

A.3 Groups and vector spaces

A.3.1 Basics
It seems that two of the most useful constructions in physics are groups and vector spaces.

Definition A.3.1 A group is a set G together with a binary map - : G X G — G such that

1. g-(¢g-8)=1(g-8) ¢ Vgg.g€qG
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2. deeGstg-e=e-g=g VgeQ,
3.VgeG,3g'eGstg- gl =gl g=e

1

The element e is called the identity element and the element g~ is called the inverse of the

element g. If in addition to the above g-g' = g’ -g Vg, g’ € G, the group is said to be Abelian,

in which case the map - is often written + instead.

A vector space is obtained from an abelian group by equipping the set with a notion of linear

scalar multiplication as follows.

Definition A.3.2 A real (complex) vector space is an Abelian group (V,+) for which the
identity is usually denoted 0 and the inverse of v € V is usually denoted —v € V. In addition

it is equipped with a notion of real (complex) scalar multiplication defined by
1. a(v+u)=av+au,
2. (a+B)v=oav+pPy,
3. a(Bv) = (aB)v,
4. Ov:aandlv:v,

Yu,v €V and o, € R(C). A vector space with a binary multiplication map - : V xV —V

is called an algebra.
A variety of algebra, that pops up time and time again in physics is a Lie Algebra.

Definition A.3.3 A Lie algebra consists of a vector space V together with a binary map
[-,-] : VXV =V called a Lie bracket, or commutator, such that

1. [v,au+ Bw| = afv,u] + B[v,w] and [au+ Bw,v] = alu,v]+ B[w,V],
2. [vyv] =0,
3. v, [u,w]] + [w, [v,u]] + [u, [w,v]] = O (Jacobi identity),

Yu,v,w €V and o, € R(C). Points 2 and 3 above imply the commutator is antisymmetric

[v,u] = —[u,v].

Maps on the cartesian product of vector spaces such as the commutator above are com-
mon. However, the cartesian product of vector spaces is not a vector space. This prob-
lem is rectified by defining the direct sum V @& W of vector spaces V and W as the carte-
sian product V x W endowed with the natural vector space structure; ot[(v,w) + (V' ,w')] =
(a[v+V],aw+w]).

In practice, to specify a vector one chooses a basis for the vector space V. A set of N

vectors {u; }Y | C V is said to be linearly dependent if o, ..., oy € R (C) such that

N —
Z oiu; = 0, (A.1)
i=1
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otherwise they are said to be linearly independent. A vector space V is said to have dimen-
sion N if it contains a subset of N linearly independent vectors, but no subset of N 4 1 such
vectors. A set of N linearly independent vectors in an N-dimensional vector space is called
a basis of the vector space V. The elements u; of the basis are said to span V. Any vector

v € V can be written as a linear combination of basis elements;

N
v=Y oju;. (A.2)
i=1

Example A.3.1 Every N-dimensional real (complex) vector spaceV is such thatV =R" (C"),
where R" (C") denotes the set of all ordered n-tuples of real (complex) numbers. Thus, there
is only really one finite-dimensional real (complex) vector space. Moreover as vector spaces
we have C = R?, so that an N-dimensional complex vector space can be viewed as a 2N-

dimensional real vector space.!

The dual space V* of a real (complex) vector space V is the vector space of all maps Y :
V — R (C), taking elements of V to its underlying field of numbers. Addition and scalar
multiplication, which turn the set V* into a vector space are defined in the obvious way. It
happens that if dimV < cothen V = V*.

A.3.2 Inner product spaces

I have now covered most of the basics of vector spaces, but it seems that a bare vector space
is often not enough to do any physics. A structure given to a vector space, which is of great

importance is an inner product.

Definition A.3.4 Let V be a complex vector space. A (positive definite) inner product on V
isamap (,):V xV — C such that

1. (w,a(v+u)) = o{w,v) + o{w,u),
2. (u,v) = (v,u)*,
3. (vv) >0,

Yu,v,w € V and o € C. A vector space with an inner product is called an inner product
space. The map |- || : V — C defined by ||v|| := (v,v) is called the norm induced by the
inner product. If two vectors v,u € V are such that (v,u) = 0 they are said to be orthogonal
and a basis {u;} such that (u;,u;) = 0Vi# jis called an orthogonal basis. A vector v € V
such that ||v|| = 1 is said to be normalised (to one), and a basis {u;} such that (u;,u;) = &;

where 0; = 1 and 6;j = 0 if i # j, is called an orthonormal basis.

Tt is important to recognise that C and R? are only isomorphic as vector spaces, and not as fields of numbers.
There is no natural multiplication of elements in the plane as there is for complex numbers. This is an example
of an incidence when the warning I gave in section A.2.1 must be heeded.
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In quantum mechanics one talks about Hilbert spaces rather than ordinary inner product
spaces. A Hilbert space J{ is simply a complete inner product space, with completeness
meaning that every Cauchy sequence converges (with respect to the norm) to a point inside
the space. An infinite dimensional Hilbert space is said to be separable if it has a countably
infinite dimension i.e. the indexing set {i} of the basis {u;} has the same cardinality as the
natural numbers N. Every real (complex) separable Hilbert space is isomorphic to the space

[? of square summable real (complex) sequences (x,). A sequence is square summable if

Y lxal* <o (A.3)
n=1

Example A.3.2 The Hilbert space L>(R"), which is the space of all square integrable func-
tions Y : R" — C, is separable. A function  is said to be square integrable if

| v, P < (A4)

In quantum theory one often uses an alternative notation called Dirac notation. In Dirac
notation the vector v is denoted |v), which is called a ket, and one uses (u|v) = (u,v) to
denote the inner product. The so-called bra (u| can be identified as an element of the dual
space V*, which maps a ket |v) to the value (u,v) € C. In general infinite-dimensional vector
spaces there may be many more bras than kets, but in a Hilbert space it turns out that they

are in one-to-one correspondence.

A.3.3 Linear operators

Having defined the inner product we have almost everything needed to do some quantum
physics stuff. The final ingredient is given by the maps on V preserving its structure. These

are the endomorphisms, which in this context are called (linear) operators.

Definition A.3.5 A linear operator (linear endomorphism or sometimes linear map) on a

real (complex) vector space V is amap L :V — 'V such that
1. L(owv+ Bu) = aL(v)+ BL(u)

Vu,v € V and o, € R(C). For operators the standard map notation A(v) is usually
replaced by Av. The sum A+ B of operators A and B is itself an operator defined by
(A+B)v = Av+ Bv, and the product AB of A and B is an operator defined by (AB)v = A(Bv).

Example A.3.3 The space of all operators on a real (complex) vector space V is a real
(complex) vector space denoted £(V). If dimV = n then dimL (V) = n? and since V =
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R" (C") we have
L(V) = M(n,R) (M(n,C)) := L(R") (£L(CY) X R” (C7) (A.5)
where M(n,R) (M (n,C)) denotes the set of all real (complex) n X n matrices.

An operator A € £L(H) has eigenvector |a) with eigenvalue a if
Ala) = ala). (A.6)

An eigenvalue a, is said to be d-fold degenerate if there exist d linearly independent eigen-
vectors |a,) with the same eigenvalue a,. The set of matrix elements of A is the set of
numbers (y,A¢) = (y|A|¢) € C. In particular, the matrix elements of A with respect to
some orthonormal basis {e;} = {|i)} are the numbers A;; := (¢;,Ae;) = (i|A|j). The adjoint
AT of an operator A is defined by the condition

(v, AT9) = (Ay,9), (A7)

or in Dirac notation

(wlA"|g) = (ylAle)". (A.8)
I now give the definitions of three especially important types of operator.
Definition A.3.6 An operator is said to be self-adjoint or Hermitian if >
A=A". (A.9)

An operator A is said to be anti-Hermitian if A" = —A. A result of the utmost importance
in quantum theory is the spectral theorem for self-adjoint operators, which states that the
eigenvalues of the self-adjoint operators are real numbers, and that the eigenvectors cor-
responding to distinct eigenvalues are orthonormal. Thus, the eigenvectors of self-adjoint

operators often form orthonormal bases for a Hilbert space J.

Definition A.3.7 Let V be an inner product space. An operator U : V — 'V is said to be

unitary if it is invertible and

Uy, Ug) = (ylU'U|9) = (y]9). (A.10)

Yy, ¢ € V. The space of all unitary operators on'V is denoted U (V) and constitutes the set

of automorphisms on 'V as an inner product space. The eigenvalues of a unitary operator

2There is a subtle difference between what is meant by self-adjoint and Hermitian (see Reed & Simon (1975)),
but I’'m going to ignore this.
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are complex numbers with absolute value 1. Note that the definition above is equivalent to

the requirement Utu =1, or U ' =U".
Definition A.3.8 A projection operator is any self-adjoint operator P such that
P>=P (A.11)

Given a vector |y) we can write the projection operator onto the state |y) as |y)(y| such
that (|y)(y])|9) := (y|@)|w). In particular the projection onto some orthonormal basis
vector i) is |i) (i|. Now any y € H can be written y = }; a;e; or equivalently |y) =Y ; 0;]i).
/) gives (jly) = o,

Taking the inner product of both sides of this expression with e¢; =
i), which can be viewed

because the ¢; = |i) are orthonormal. Thus we have |y) =Y, (i|y)

as the vector |y) multiplied by a resolution of the identity
I:me. (A.12)
i
One can use this to express an operator A with respect to a particular basis {|i) };
A=Y | aY 1) Gl =Y Auli) (. (A.13)
i j ij

If in particular the vectors {|i) } are eigenvectors of A with non-degenerate eigenvalues {a;},
(A.13) becomes

A=) aili){i, (A.14)

and this result is easily extended to the case of d-fold degenerate eigenvalues. The result

(A.14) motivates the following definition

Definition A.3.9 Let f: R(C) — R(C) be some function, let V be a real (complex) vector
space, and let A € L(V) be an operator with non-degenerate eigenvalues a; and correspond-

ing eigenvectors |i). We define the function f : A — f(A) € L(V) of operator A, by
F(A) =} flali)il. (A.15)

Again this result is easily extended to the case of degenerate eigenvalues.

Example A.3.4 IfA € L(V) is self-adjoint then
U:=et =Y e li)il (A.16)
i

is unitary.
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An extremely useful combinatorial formula involving a similarity transformation of an op-

erator B by the exponential of an operator A is the Baker-Campbell-Hausdorff formula

[[A]", B]

'Be ™ =B+[A,B]+ -

1[A,[A,B]]%—%[A,[A,[A,B]H—i—...:Z (A.17)

21
where [[A]", B] denotes the n-times nested commutator of A with B. The formula is quite
general and works in infinite dimensions. When the commutator [A, B] is central (propor-
tional to the identity), like for example, the canonical commutation relation [x', p;] = & J’ the
series on the right-hand-side in A.17 terminates after the second term.

A.3.4 Operators with continuous spectrum

So far the assumption regarding the orthonormal basis {|i)} is that the label i is discrete.
Quantum theories like wave mechanics use operators like the position operator £ which
have continuous spectrum. Strictly speaking, for an operator A with continuous spectrum
there are no eigenvectors |a) corresponding to a single eigenvalue. However with due care
it seems the rules for the discrete case can be extended to the continuous case, which ul-
timately justifies the heuristic formalism laid out by Dirac, in which one assumes that a
relation Ala) = ala) does, in some sense, exist. The projection onto the eigenvalue a is then
written |a) (a|da. The orthonormality condition (i| j) = &;; becomes (a|b) = §(a —b) where
the Dirac delta function is defined for a given f : R (C) — R (C), by

b) = / dad(a—b)f(a) (A.18)

whenever b is within the range of integration, otherwise the integral evaluates to 0.> Any

vector |y) can be expanded as

= /da y(a)la), (A.19)

and the function of an operator A can be written

_ / da f(a)|a){al. (A.20)

Finally, any other operator B € £L(H) can be written in the eigenbasis of A as
B= /da/da a|Bld)|a)(d]. (A21)

A.3.5 Group action

So far I have talked mostly about vector spaces, but I began this section with the definition

of a group. The action of groups on vector spaces seems to play a large role in most of

3 As the definition clearly shows the so-called delta function is in fact a measure.
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modern physics. Group action on a set is defined as follows.

Definition A.3.10 Ler G be a group with multiplication simply written gg', and let S be a
set. A left action of G on S isamap ® : G x S — S such that

1. ®(e,s) =s,

2. (g, ®(¢',5)) = P(gg,9),

Vg,¢' € G and Vs € S. Often the group action ®(g,s) is written simply g -s. A right action
of G on S can be defined analogously.

The set S could be more than just a set. It might be a vector space or even G itself. In
fact group multiplication is just the action of G on itself. In physical applications S is most
often a vector space. A representation of G on V can be viewed as a collection of operators
T, :V —V defined by T,(v) := ®(g,v) for some action ®.*

It will be useful to identify some particular types of group action. For example, an
action is said to be free if the only element g € G such that g-s = s for any s € S is the

identity e. A Particularly useful concept is the orbit of an element s € S due to the action.

Definition A.3.11 The orbit of s € S is the set Oy defined by
Oy:={s€S:3g€Gstg-s=5}. (A.22)

In other words the orbit of s consists of all the points in S that can be obtained by acting on
s with G.

The action is called transitive if O; = S for any s € S i.e., if any element of S can be obtained
from some other element via the action of G on S. It is easy to verify that belonging to
the same orbit Oy C S is an equivalence relation > on S, and that the orbits are equivalence
classes. One can therefore construct the quotient set under the equivalence relation > as the
collection of orbits; S/>:= {O, : s € S}.

A good deal of the useful actions of groups on a vector space V are by subgroups of the

general linear group GL(V).

Definition A.3.12 The general linear group GL(V) C L(V) of a vector space V' is the set

of all invertible operators in L(V). For an n-dimensional real (complex) vector space
GL(V) =2 GL(R") (GL(C")) =: GL(n,R) (GL(n,C)).

A subgroup of a group is a subset, that happens to be a group in its own right. The
special linear group SL(n,R) (SL(n,C)) is a subgroup of the general linear group consisting
of matrices with determinant one. The orthogonal group O(n) = O(n,R) C GL(n,R) is the

group of orthogonal matrices i.e. matrices O such that OT = O~! with the superscript 7

4A representation T of G on V is in fact a group homomorphism 7 : G — GL(V) where GL(V) is the general
linear group on V. A group action on V defines a representation via T, (v) = ®(g,v).
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denoting the matrix transpose. The unitary group U(n) = U (n,C) C GL(n,C) is the set of
all unitary matrices i.e. matrices U such that UT = U~!, where the T denotes the adjoint
(conjugate transpose, cf. A.3.3). One can show that the intersection of two subgroups is
necessarily a subgroup. The special orthogonal and special unitary groups are defined as
SO(n) := SL(n,R)NO(n), which consists of orthogonal matrices with determinant one, and

SU(n) := SL(n,C)NU (n), which consists of unitary matrices with determinant one.

A.3.6 The tensor product of spaces

To describe composite quantum systems the tensor product is used. The full definition of
the tensor product is quite involved, so I will just list its important properties. The tensor
product of an n-dimensional vector spaces V and an m-dimensional vector space W is an
nm-dimensional vector space denoted V @ W. The tensor product operation is linear in each

slot, i.e.

(ay+o)@e=ayR9+Po®e, Y (ap+po)=aye+fyx6 (A.23)

Vy,p € V,Vp,0 € W and Vo, B € R(C). If the vectors e; = |i) form a basis of V and the
vectors £, = |u) form a basis for W then ¢; ® &, = |i) ® | 1) is a basis vector in V @ W. Thus
any vector Y = |y) € V®W can be written

W)=Y ) wiuli)® |u). (A.24)
i M

If V and W have inner products (-, -)y and (-, -)w then an inner product on V ® W is naturally
defined by

(Y@¢,020) :=(y,0)v(9,0)w. (A.25)

IfAcL(V)and Be L(W)thenA®B € L(V ®@W) is defined by
A@Bly)®|g) :=Aly) ©B|g). (A.26)

With due care these results can be extended to the case of infinite-dimensional spaces and
operators with continuous spectrum.

The type of space used in quantum field theory is called a Fock space. Fock spaces are
built out of some “single particle” vector space V, using the tensor product and the direct
sum operations. The so-called vacuum state belongs to C. One adds to the vacuum space
the single particle space V using the direct sum; C & V. To this one adds the “two particle
space” V. ® V. One continues in this way to obtain a space accommodating an arbitrary
number of particles. To make the space usable one must take into account particle indistin-
guishability. This depends on the species of particle to be described, because different par-

ticles obey different statistics. The bosonic Fock space F5(V) is obtained by symmetrising
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(via isomorphism) the elements of each n-particle space. For example, y ® ¢ € V@V goes
to %(l]/@ © 4+ @ ® ). The fermionic Fock space Fp(V) is obtained by anti-symmetrising
each n-particle vector, so for example Y @ ¢ € V@V goes to (Y @ ¢ — 9 @ y).

In applications the single particle space V is usually a function space like L*>(R3,C").
The value of the integer n depends on the field being described. For example n =1 for
a scaler field, n = 2 for a photon field, and » = 4 for a Dirac spinor field. Assuming for
simplicity that n = 1 and considering the bosonic Fock space Jp one defines the inner

product as
(@,%):= Y /Hd3k,-qb(m)(k1,...,k,,,)*l//(’")(kl,...,km). (A.27)
m=1 i=1

The states @, W € Jp are viewed as infinite sequences (q)(’"))::] , ( 1//(’"))::] of the ¢ y!m) ¢
S, L*(R?)], in which S, denotes the symmetric subspace. In Dirac notation we can

1=
write a state with sharp momentum as |Kj,...,k,,) and express the orthonormality of mo-

mentum basis states via

eey ’nl

(K1, ... kK], K] >=N6mm/;6(k1 —Kp(1))s - S (K = Kp))- (A.28)

The sum is over permutations of the integers 1,...,m. The constant N is a normalisation
dependent on the number of the {k;} and {k!} that are equal. For example, N = n! if this
number is 7.

One can define operators on Jp, that create and destroy particles with particular mo-
menta. The creation and annihilation operators, which are in fact operator valued measures,

are defined by

aT(k)W(M)(kbvkn) =vm+1 ll/(m>(k7kl7"'7km)

a(K)y™ (k... kn) =vm Y S(k— k) y"™ (ki ..., ki1, K1, ..., Kin) (A.29)
i=1

where as before y(") (k1,...,ky) belongs to the m-particle (symmetric) subspace. In Dirac

notation these definitions can be taken as applying to the momentum basis states and written

a' (K)|ky,....k,) =vVm+ 1|k kq,....K,,)

n
a(K)IKi, oo, k) =v/m Y Sk — ki) ki, oo Kio 1 K1, ey Ko (A.30)
i=1
The bosonic creation and annihilation operators obey the commutation relation
[a" (k). a(k')] = 8 (k— k), (A31)

while in the fermionic case the commutator above must be replaced with the anti-commutator
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to be consistent with the statistics fermions obey.

Supposing now that the momenta of a particle can only take discrete values, because
the particles have been confined to a box with periodic boundary conditions, then we can
label particle states differently. From the new point of view the notation k; is intended
to label the allowed values of momentum. The slots in the kets are taken to refer to these
different values rather than to different particles. Conversely the labels in the slots denote the
number of particles with the momentum value assigned to the slot. This is the occupation
number representation of states, in terms of which the action of the creation and annihilation

operators satisfy

alUn1,...,nm> =v/ni+1ng,...oni+1,...)

ag, |y ...,nm) =v/nmilng,..oni—1,...), (A.32)

and the commutator A.31 can be written

laf ,ar] = Se- (A.33)

The orthonormality condition A.28 in the occupation number representation, takes the sim-

ple form
(n1,n0, ... |0y 1y, ) = Byt By (A.34)

The construction above formally resembles the representation of a collection of harmonic
oscillators with different frequencies. The number in each slot in the ket represents the

number of oscillators with a particular frequency.

A.3.7 Tensors

Given a real vector space V an element ® of the dual V* maps v € V to R. Equally, we can
view v € V asamap o : V* — R defined by

v(w):= o). (A.35)

The tensor product of two dual vectors ®,n € V* denoted o ®@n isamap o @n:V XV —
R. Similarly, the tensor product of two vectors v,u € V is denoted v ® w and can be viewed
asamap veu:V*xV* — R. More generally, one can construct mixed maps such as
®®v:V xV*— R, and express them in terms of the bases {¢;} and {&'} for V and V*
respectively. To do this a most useful notational idea due to Einstein is used. Using the
Einstein summation convention repeated indices, one upper and one lower, are implicitly
assumed to be summed over. For example within the Einstein convention ¢; ® & means
Y, ei @€' The basis {€'} C V* is said to be dual to the basis {e;} C V if €'(e;) = ¢,(€) = 5]’:
where 51‘. equals 1 if i = j and O otherwise.
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Tensors are multilinear maps that take vectors and dual vectors to an underlying field of

numbers.

Definition A.3.13 LetV be a finite-dimensional real vector space, and let the r-times carte-
sian product of V with itself be denoted V'. A real type (:) -tensorisamap A: V' xV* > R,
which is linear with respect to each of its arguments. If {e;} is a basis in V and {€’} is the
dual basis in V*, then within the Einstein summation convention any type (;)—tensorA can
be written A4i/.ll.~.~.~l:;sei1 ®...Qe, VN R...Q €’ where A{.l‘b‘."'[.{s € R are the components of A with
respect to the bases {e;} and {€’}.

The space of all (})-tensors is V/, the space of all (¥)-tensors is V*, and the space of all (})-

tensors is 7} (V) = £(V) = £(V*). The tensor product of an (*)-tensor and a (’q’ )-tensor is

s
r+p
s+q

called the algebra of tensors.

an ( )—tensor. Thus, the space of all tensors together with the tensor product is an algebra
If swapping the indices in the components of a tensor leaves their values unchanged the

tensor is called symmetric.

Definition A.3.14 Let V be a finite-dimensional real vector space. The symmetric product

of dual vectors w,m € V* is a symmetric (g) -tensor defined as

1
on ::§(w®n+n®w). (A.36)
Any symmetric (g)-tensor g can be written g = gijeiej where {€'} is a basis in V*. If g
is invertible it is called an inner product. A basis {e;} C V is said to be g-orthonormal if
g(ei,ei) =0,x1 and g(ei,e;) =0if i # j.

By feeding an inner product g only one vector, we can view it as a map g : V — V* such
that

g(v)= gijei&‘j(vkek) = ghel = vl e V¥ (A.37)

where I have defined v; := gy v*. The inverse of g is a map g~! : V¥ — V with components
(g~ 1) such that v/ = (g~')"y,. In practice one usually omits the ~!' and simply writes

v =gy,

Example A.3.5 The inner product space E'3 consisting of R* together with the inner prod-
uct g : R* x R* = R defined by

0.,/0 1

g(x,x') i= x0x0 — xIx — 24 — x5 (A.38)
is called Minkowski space-time. It is easy to show that x° = xo and x' = —x; fori =1,2,3.
The group of matrices A for which g(Ax,AxX') = g(x,x') can be viewed as a generalisa-

tion of the orthogonal group O(4) called the Lorentz group, and is denoted O(1,3). The
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generalisation of this construction to any real n = r + s-dimensional vector space V is

straightforward;
gvyu) =viu + v — Tyt (A.39)

The components of the bilinear form g : V xV — R above can be arranged in a matrix
N :=diag(—1,...,—1,1,...,1) in which there are r lots of —1 and s lots of +1. It is easy to
show that the matrices A belonging to O(r,s) are those which satisfy ATnA = n. It follows
by taking the determinant of both sides that such matrices must satisfy (detA)* = 1, so that
detA = +1. The associated special group SO(r,s) is the subgroup of matrices in O(r,s)

with unit determinant.

If swapping the indices in the component of a tensor multiplies its value by —1 then the

tensor is called anti-symmetric.

Definition A.3.15 Let V be a finite-dimensional real vector space. The anti-symmetric (or
wedge) product of dual vectors o, € V* is an anti-symmetric (g) -tensor called a 2-form
defined as

OAN=03N—NQ0. (A.40)

Any 2-form g can be written g = % gi jei A€/ where {€'} is a basis in V*. We can extend this
idea to anti-symmetric type (g) -tensors, which are called p-forms. The space of all p-forms
on'V is denoted APV. Any p-form @ € APV can be written

1 . .
0=—0; ; E"N...NEP. (A41)
p! !

Thus, {€"' A... AN€r} is a basis in APV.

Example A.3.6 A two-form @ on a vector space V is said to be non-degenerate if Vv €
VgvV)=0=V = 0. A non-degenerate two-form is called a symplectic form, and a

vector space V together with a symplectic form is called a symplectic vector space.

Symplectic spaces necessarily have even dimension. The matrix elements of a symplectic
form with respect to a basis {e;} C V are defined by w;; := @(e;,e;). A famous result known
as Darboux’s theorem states that for a 2n-dimensional symplectic space (V, @) there exists
a so-called canonical basis {(e;, f;)} C V, i =1,...,n, with dual basis {(&',u’)} C V* such
that

o=Y¢eny' (A.42)
i=1

1
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The matrix of @ with respect to the canonical basis has the form

0 I
(@) = ( o ) (A43)

where I denotes the n X n identity matrix.
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APPENDIX B

Differential geometry

This appendix is devoted to differential geometry including brief reviews of tensor analysis,
Lie groups and fibre bundles. As in A the material I present has been drawn from a handful
of textbooks. Two excellent books on differential geometry in physics are Fecko (2011) and
Frankel (2011). For introductory tensor algebra, tensor analysis on manifolds and Lie group
theory see Hassani (1999) part VII and VIII, chapters 27 and 28, Fecko (2011) chapters
1—6, 10— 14 and 16 — 18, Frankel (2011) part I, and finally Isham (1999) chapters 1 — 4.
For applications in mechanics and field theory see Marsden & Ratiu (2003) chapters 2 and 3.
For an introduction to fibre bundles see Fecko (2011) chapters 19 — 21, Frankel (2011) part
III, Isham (1999) chapters 5 and 6, and for concrete applications in physics see Chruscinski
& Jamiolkowski (2004) chapter 1.

B.1 Tensor Analysis

Usually in physics we are not merely interested in “static” vectors, but wish to know how
objects change in space and time. The setting for such a description is a (smooth) manifold,
which marries algebraic and topological structure. Manifolds are extremely rich structures

supporting a vast number of useful constructions.

B.1.1 Manifolds

Loosely speaking an m-dimensional manifold is a topological space, which locally looks
like R™, a flat m-dimensional vector space. There are some caveats in the definition of a
manifold, which I will not touch on. I will give an adequate definition for our purposes, but

first we must recall the definition of a topological space.

Definition B.1.1 A topological space is a set X with a topology T. A topology is a collection
of subsets U C X called open sets, such that
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1. XetandO e,
2. The union of two open sets is open,
3. The intersection of a finite number of open sets is open.

A chart on a topological space M is a pair (U, y), where ¥ : U — R™ and U is an open set.
Sometimes one refers to the map y alone as a chart. Each chart defines a set of coordinates
x': U — R on U such that w(P) = (x'(P),...,x"(P)). We say that two charts (U, y) and
(V, ) have smooth structure if the map @ o y~! : R™ — R™ is smooth (infinitely continu-
ously differentiable).” In other words, if y' are coordinates on V and x’ are coordinates on
U then the y'(x!,...,x™) are required to be smooth functions of the x. An atlas is a collec-
tion {(Uqy, W)}, of such charts, which cover M i.e. they are such that | J, Uy = M. The
topological space M together with such an atlas is a (smooth) manifold.

The useful maps on manifolds are the ones compatible with the smooth structure.

Definition B.1.2 Let N and M be manifolds with dimension n and m respectively. A map
¢ : M — N is said to be smooth if its coordinate representation @ o ¢ oy~ : R” — R" with
respect to charts W and @ on M and N respectively, is smooth. A smooth bijective map
¢ :U CM — ¢(U) with smooth inverse is called a local diffeomorphism. If U = M then
o(U) = N and ¢ is called a diffeomorphism. Diffeomorphisms are the isomorphisms in the
category of (smooth) manifolds.

A submanifold is a subset U which is a manifold in its own right. A submanifold of M can
be obtained simply by taking an open set U and restricting all of the charts on M to U. It
seems we do not really lose any generality by defining maps globally on manifolds, because

their local counterparts will just be their restriction to a submanifold.

Example B.1.1 A function on a manifold M is a smooth map f : M — R, in other words a
map such that f oy~ is smooth, where \ is a chart on M. The set of all functions on M is
denoted F”M. The set of all functions at a particular point P € M is denoted F*{P}.

Example B.1.2 A curve in a manifold M is a smooth map vy : [a,b] C R — M, in other words

a map such that y oy is smooth, where y is a chart on M

B.1.2 Tangents and cotangents

To do physics with manifolds we need to understand how the idea of a vector (e.g. position,
velocity, momentum) fits into the manifold picture. The idea of a fangent space is to attach
a vector to a point in a manifold. We will see that any such vector can be represented by a

derivative acting on functions.

>The domain of the transition map ¢ o w~! is actually w(U NV) C R™, but I will usually abuse notation on this
sort of thing and just write R™ instead.
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If y: [a,b] — M is a curve in a manifold M we define the tangent to y at P = ¥(¢) to be
the map Xp : F*{P} — R such that Xp(f) := df(y(t))/dt. The tangent measures the rate
of change of f along 7. In fact there is a natural correspondence (canonical isomorphism)
between basis vectors e; in R and derivatives d/dx. The crucial features of the above
example of a tangent to a curve are captured within the following general definition of a

tangent vector.
Definition B.1.3 A tangent at P € M is a map Xp : F*{P} — R such that
1. Xp(fg) =Xp(f)g+ fXp(g) (derivation property),

2. Xp(of +Bg) = aXp(f) + BXp(g),

Vf,g € F*{P} and o,3 € R. The set of all tangents at P is denoted TpM. By defining
addition and scalar multiplication of tangents in the obvious way one sees that TpM is an

m-dimensional vector space.

To construct a basis of 7pM one uses the idea of a coordinate curve. The i’th coordinate
curve through P € M is given by the inverse of a chart y~! : R™ — M with all but its i’th
argument held frozen;

Y(u) =y {(x'(P),...x (P),u,...x"(P)) (B.1)

where the x' are the coordinates associated with .

Definition B.1.4 A rangent basis vector 0;p : F*{P} — R at P € M is a tangent to a coor-
dinate curve ¥ through P. If we let ¥'(t) = P then

d ., ; J
dpf = 2 (Y (0) = 55 (Foy Hx,..a™) . (B.2)

P

The 0; p form a basis for the tangent space TpM, so any Xp € TpM can be written Xp =
X(P)o; p with X'(P) = Xp(x'|p).

To construct tensors we need to determine the vectors dual to tangents.

Definition B.1.5 If f € F*”{P} then one can view f as a map on tangent vectors. In this
case one writes df : TpM — R, which is defined by

df(Xp) :=Xp(f)- (B.3)

The space of all such maps is the dual of TpM denoted Ty M. The basis of Ty M dual to
{0i.p} C TpM is simply {dxi,}, where the x' are the coordinate functions used to define the
0; p. Thus, any cotangent ®p € TiM can be written ®p = @;(P)dx), with @;(P) = wp(9; p).

Armed with tangents and cotangents we can define tensors of any type at a point P € M. 1

won’t bother to do this since I am only going to use vectors, one-forms and two-forms.
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B.1.3 Vector fields and p-forms

In the previous chapter I defined tangents and cotangents as vectors at a specific point P € M.
By removing the restriction to the point P tangents and cotangents become vector fields and

one-forms respectively.

Definition B.1.6 The tangent bundle over a base manifold M is defined as the union of all

of the tangent spaces at points in M

™ := | TpM. B4
PeM

To specify a point in TM one must specify a point P € M and a vector Xp € TpM. Thus, the
tangent bundle has dimension 2m = 2dimM. A vector field isamap X : U C M — TM such
that 6

X(P):=Xp € TpM. (B.5)
The set of all vector fields on M is denoted xM. Any vector field can be written X = X'0;
where X' € F*U, and 0; € xM is defined by 0;(P) := d; p € TpM.

Having defined vector fields it is easy to see how one-forms should be defined. I will
define the more general p-forms of which one-forms are of course a special case. A p-form
at a point P € M is an anti-symmetric map @p : TpM? — R, and the space of all such maps
is denoted ADM. A basis for ALM is {dxi A ... Adx}} where {dxb} is a basis in Ty M. The

associated bundle is simply

APM = | ] AM. (B.6)
PeM

As with vector fields we define a p-form generally by “de-restricting” a p-form at P € M,
toallof U C M.

Definition B.1.7 A p-form is a map @ : U C M — APM such that
O (P) := wp € ALM. (B.7)
Any p-form can be written in terms of its components ;,..i, € F “U in the basis {dxi }as

1 . . . . . .
O=—a;, jdx" N..\dx?, dx" A Adx'"(P):=dxp A .. /\dx}f. (B.8)
p! !

Sometimes the tangent bundle is defined as the disjoint union TM := Jp{P} x TpM, which includes the point
P explicitly. A vector field then takes P € M and gives a pair (P,Xp). This is in fact what I mean by a vector
field in definition B.1.6, but it becomes tedious to continually have to write down the point P, which doesn’t
actually do anything! Within the notation I have opted for it must be implicitly understood that the P is there.
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Example B.1.3 The cotangent bundle dual to TM is simply

T"M:= | M =A'M, (B.9)
PeM

so covectors at P € M are simply one-forms at P € M. The space of smooth functions on M

is
FoM =AM, (B.10)
meaning that functions are actually just zero-forms.

B.1.4 pushforward and pullback

It is conceivable that we should need to move vectors and p-forms around the manifold M,
or even connect them to the same objects in a different manifold. The pushforward and
pullback are maps taking a tensor at a point in M and giving a tensor of the same type at
another point, possibly in a different manifold N. They are induced by some smooth map

between the base manifolds M and N themselves.

Definition B.1.8 Let M and N be manifolds and let ¢ : M — N. The pushforward of a
vector Xp € TpM by @, is a map ¢.p : TpM — Ty(p)N defined by 7

(0:pXp)(f) :=Xp(fod|p) (B.11)

where f € F*{¢(P)} and |p denotes the restriction to P € M. By removing the restriction on
the point P we can view the pushforward as a map ¢, : TM — TN written simply ¢.(X) :=
X (-0 @), whose restriction to P yields B.11.

Example B.1.4 Let y: [a.b] — M be a curve in M. Its pushforward ¥, : TR — TynM is

d d
() = 5o .12

which is just the tangent to y at Y(t). Choosing a chart ¢ with coordinates x' on M, and
writing x'(t) := x(y(t)) we have

Yat (i) (f) = xi(t)(;)cl.f(xl (t)y...,x" (1)) (B.13)

where f:= fo@~! € F*R™ is just the coordinate representation of f, and ¥'(t) := dx' /dt

is a coordinate “velocity” component of the curve Y.

That’s the pushforward, now for the pullback.

"The pushforward is also sometimes called the differential or even just the derivative.
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Definition B.1.9 Let M and N be manifolds and let ¢ : M — N. The pullback of a p-form
Wy (p) € Ag(P)N by ¢, is a map ¢*F : Ag(P)N — AbM defined by

((p*Pa)q,(p))(XLP, "'7XP7P) = (Dq)(p) ((P*pXLp, ceny ¢*po’p) (B.14)

where X;p € TpM. By removing the restriction to the point ¢(P) € N we can view the
pullback as amap ¢* : APN — APM given by (¢* o) (X1, ...,X,) := 0(9.X1,..., 0. X)), whose
restriction to ¢ (P) yields B.14.

Example B.1.5 In the case of one-forms definition B.1.9 reduces to

(9" 0)(X) := 0(¢.X) s.t ($"0)(X)]|g(p) := @p(p)(PrXp). (B.15)

The inverse maps of the pushforward and pullback (¢.p)~' : Typ)N — TpM and (¢*F)~1:

TgM — Tj )N are such that (¢ep) ' = (0 )sppy and (9*F) ' = (¢~ 1yoP),

Example B.1.6 One of the most useful pullbacks is that of a zero-form f € F”N, which is
defined simply as

0" (f)=ro9 st 9°(N)lp=0"(flor) = o) lp- (B.16)

B.1.5 The Lie algebra of vector fields

A while back I defined vector fields, which it turns out are a bit special. A vector field
X : U C TM by its definition should be fed a point in M to give a vector in 7M. But since a
vector in TM is to be given a function (to yield a real number), we can give the vector field
the function without giving it the point. Suppose we do this, by writing down X (f). This
object, upon receiving a point P € M, spits out a real number; X (f)(P) := Xp(f) € R. In
other words X (f) is a function in F*M, which means X can be viewed as taking functions
to functions. This makes it possible for the set of vector fields y M to become an algebra.
Vector fields are unique in this respect, because no other tensor fields afford this possibility.

A natural first guess at a multiplication map for yM would be to take straightforward
composition of vector fields. A quick calculation shows that X oY is not in general a vector
field, because it doesn’t satisfy the derivation property. On the other hand [X,Y] :=X oY —

Y o X is a derivation.

Definition B.1.10 The set yM of vector fields on a manifold M equipped with the Lie
bracket (commutator) |-,-] : xM x xM — M defined by

[X,Y]:=XoY—YoX (B.17)

is a Lie algebra called the Lie algebra of vector fields.
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An idea that I will make use of in B.3.2 is that of y-related vector fields. Given man-
ifolds M and N, and a smooth map v : M — N, the vector fields X € yM and Y € N are
said to be y-related if y. X =Y. If v is a diffeomorphism then y, X is defined on the whole
of N. An important property of the Lie bracket B.17 is that, if X; € yM, i = 1,2 is y-related
to ¥; € xN, then the Lie brackets [X;,X;] and [Y},Y>] are also y-related. More succinctly

v.Xi =Y = y[X,X]=[,Y. (B.18)

B.1.6 Integral curves and flow

So a vector field can be thought of as a map taking functions to functions. It can also be
though of as an assignment of a tangent to every point in M. An integral curve of a vector

field X is a curve whose tangents at the points along it, make up the vector field X.
Definition B.1.11 Let y: [a,b] — M be a curve in a manifold M, and let X :U C M — TM

be a vector field on U C M, 7y is said to be an integral curve of X if

d
| — | =X(y()), B.19
() =X00) (.19
which in the coordinates specified in B.1.4, is equivalent to the requirement
) =X (1),... 2" (1) =X (1(1)) (B.20)

where X' := X' o @~ is the coordinate representation of the component functions of X =
X0,

Local integral curves of a vector field are unique up to reparametrisation. If v and I" are both
integral curves of X such that y(0) = P and I'(0) = y(a) for some a € R, then I'(t) = y(t +a).

The image Y([a, b]) of an integral curve could represent the path of a classical particle in
a configuration space M. It would be nice in this instance to have a map, which rather than
taking a real number and giving a point in M, actually moves points to points, i.e. moves
the particle around in ¥([a, b]). This is the idea behind the flow of the vector field X.

Definition B.1.12 Let y: [a,b] — U be an integral curve of X : U C M — TM, starting at
P € M i.e., such that y(0) = P. The flow of X is the set of maps {(F;)icr} with F, : U —
F,(U) C M defined by

F(P) = F(v(0)) = 7(). (B.21)

If F; is a local diffeomorphism then F;* and F;. are vector space isomorphisms. Given the

uniqueness of integral curves the following properties of the flow can be deduced

FoF=F., F,=F"' FR=I (B.22)
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where I denotes the identity map on M. Maps satisfying these properties form a so-called

local one parameter group of transformations.

B.1.7 Derivatives

In this final subsection I discuss some useful derivatives of vector fields and p-forms. The
first of these is the Lie derivative Ly, which measures the rate of change of a tensor field
as it is infinitesimally transported along an integral curve of the vector field X, using the

pullback of the associated flow.

Definition B.1.13 From the more technical definition of a Lie derivative of a tensor field on
a manifold M, (which I give for p-forms below) one can show that for a vector field on M,
the Lie derivative with respect to a vector field X € xM, is a map Lx : xM — xM such that

LyY = [X,Y], (B.23)

which serves well as a definition of the Lie derivative of a vector field on M.

For completeness I will give the definition of the Lie derivative of a p-form, which is a

bit more involved.

Definition B.1.14 Let @ be a p-form on M and X € yM. The Lie derivative of ® with
respect to X is Lx @ defined by

*\ — d * * — d *
Lxw:= (F) laFlw st Ly®|gp) = Ly | g p) O p) := (FF) EF, Popp). (B.24)

In particular the Lie derivative of a zero-form f € F”M is

Lyf = X(f). (B.25)

The next derivative I will discuss is a derivative of p-forms called the exterior derivative.
We have already encountered this derivative in the discussion of the relationship between
functions and cotangents i.e., zero-forms and one-forms. Any zero-form f defines a one-
form written df. The d here, is a map d : A’M — AP M called the exterior derivative.

Definition B.1.15 The exterior derivative is a map d : A’M — APT'M with the following

properties
1. df(X)=X(f) VYXeTM, f€F*M,
2. ddw)=0 VYoecA’M,
3.dlw+n)=do+dn VYo,n e A’M,

4. dlonn)=(-DPdorn+(—1)IoAdn Yo e A’M, n € AIM.
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It follows that in coordinates

1 : : 1 . )
do=d(—w; ;dxX'""N..Ndx'"?)=—da;, ; Ndx" N\...A\dx'"? (B.26)
p! ! p! !

for an arbitrary p-form .

The second property of d in the above definition makes it very interesting indeed. For
regular vector fields on R this property can be seen to be equivalent to the vanishing of the
curl of the gradient and of the divergence of the curl. It can also be seen as the cause of
gauge freedom in electromagnetism.

The final derivative I wish to discuss is another derivative of p-forms called the interior

product.

Definition B.1.16 Let X € TM be a vector over a manifold M and @ € APM. The interior
product is a map ix : APM — AP~'M defined by

(iXa)>(X1,...,Xp_1) = (O(X,X],...,Xp_l), (B.27)

which is just the contraction of X with @, in the first slot. The interior product can be

classed as a derivative, because it satisfies the following property
ix(wAn) = (ixo) AN+ (=1)’o A (ixn). (B.28)

So that’s all three derivatives covered. I end this section with some fun formulas relating

them;

i (df) = Ly f = X(f) = df(X), (B.29)
Ly = ixod+doix, (B.30)
fod):fLXa)+df/\ix(l) (B.31)

where @ € A’M, X € TM and f € F*M.

B.2 Symplectic Geometry

At the end of section A.3.7 I touched on the idea of a symplectic space, but this was within
the purely algebraic setting. Symplectic manifolds are of immense importance, because they
provide the setting for most classical physical theories. Since quantum theories are usually
obtained from their classical counterparts in such a way as to preserve much of the classical

structure, symplectic manifolds are important in physics quite generally.
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B.2.1 Basics

Definition B.2.1 A symplectic form @ on a 2m-dimensional manifold M is a closed non-

degenerate two-form. A two-form is said to be closed if
do=0. (B.32)

The so-called flat map " : TM — T*M is defined as @’ (X) := ix(®) = o(X,-), and the so-
called sharp map ®* : T*M — TM is defined as @* := . The two-form @ is symplectic
if and only if ®° and ®* are vector space isomorphisms (the musical isomorphisms). A map
W : M — M is said to be symplectic if y* @ = @ i.e. if its pullback preserves the symplectic

form.

Darboux’s theorem guarantees the existence of a local chart on M with coordinates (x', p;),

i=1,...,m such that °

o =dx' Ndp;, (B.33)
which can be written @ = —d0 where 0 is the canonical form defined as
0 := pidx'. (B.34)

In terms of the canonical coordinates any vector field X € yM can be written

X = X(xi)i +X(p,-)i

pa P (B.35)

Using this expression one obtains the following expressions for the musical isomorphisms
o’ (X) = —X(p;)dx' + X (x')dp;, (B.36)

WH(X) = X(p) X ()

I (B.37)

where I assume repeated indices are summed over irrespective of their relative positions
(upper or lower).
B.2.2 Hamiltonian systems

Definition B.2.2 A Hamiltonian system is a triple (M,®,H) where M is a manifold with

even dimension, @ is a symplectic form and H is a distinguished function on M called the

56The reason for denoting the second m coordinates with a lower rather than an upper index should become clear
in what follows.
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Hamiltonian. The Hamiltonian vector field Xy associated with H is defined as
Xy = w(dH). (B.38)
In canonical coordinates

0H 9 9H 3 _<8H 8H) .39

B 9pioxi oxi dp; dp;’ ox
where the latter identification follows by identifying derivatives with basis vectors in R™.

If y: R — M is an integral curve of X;; and we define x'(¢) := x'(y(¢)) and p;(¢) := p;(¥(t))
it follows that

on o > (B.40)

(€0 pi0) = Xalr0) = (5~

which we recognise as Hamilton’s equations of classical mechanics.
A formulation of these equations in terms of Lie-algebraic structure is most convenient
when it comes to the question of how to quantise a classical theory. Such a formulation is

afforded by defining the Poisson bracket.

Definition B.2.3 Let the space of functions on a symplectic manifold (M,®) be denoted
F*M. The Poisson bracket is a map {-,-} : F°M x F*M — F*M defined by

{f,g} = (O(Xf,Xg) = nginw = _inng(O (B.41)

where Xy and X, are the Hamiltonian vector fields associated with the functions f and g

respectively. In canonical coordinates this reads

_9fds 9df g
{f.8r= oxi dp; dp;oxl’

(B.42)

When f and g coincide with the canonical coordinate functions x' and p j» B.42 yields the

canonical Poisson bracket relation
{x',p;} =6 (B.43)

The function space F~M equipped with the Poisson bracket is a Lie algebra, i.e., the Poisson

bracket satisfies the conditions in A.3.3.

I’'m now set up to discuss symmetries of the Hamiltonian system. A Cartan symmetry
of the Hamiltonian system (M, @, H) is any local vector field V : U C M — T M whose local
flow F; : U — F;(U) satisfies F;*ow = o and F;"H = H. This is equivalent to the requirement
that Ly w = 0 and Ly H = 0. This condition in turn implies that iy @ is closed i.e., diy @ = 0.

The most important Cartan symmetries are the exact ones.
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Definition B.2.4 A closed two-form ® on a manifold M is said to be exact if 30 € A'M
such that d® = ®. An exact cartan symmetry V € yM of a Hamiltonian system (M,,H )
is characterised by the fact that iy is not only closed, but also exact. This requires the
existence of a function f € F*M such that V = Xy € xM is a global Hamiltonian vector
field with global flow F, : M — M satisfying F;*0w = @ and F'H = H. This is in turn

equivalent to the requirement that
—Xu(f) =Xy(H) =df(H) = ix,(0)(Xu) = {f,H} = 0. (B.44)

Exact Cartan symmetries are in one-to-one correspondence with conservation laws. The

function f € F*M is called the conserved quantity.

So far I have dealt with finite-dimensional Hamiltonian systems. To be able to use
the same ideas in field theory we must consider generalisations. The setting for classical
field theories is usually a Banach space, which is a complete normed vector space (cf.
A.3.2). I will only need to deal with Banach spaces which are function spaces over some
Y € R™. I will denote such a space FY and in the remainder of this section I will introduce
constructions on FY similar to those above. The material I present has been adapted from
Marsden & Ratiu (2003).

A natural pairing on real Banach spaces Z,Z' is justamap (-,-) : Zx Z' — R. A vector
field X on A Banach space Z is just a linear operator X : Z — Z. It can be seen that this is

equivalent to the familiar definition from B.1.3 when Z is a manifold.

Definition B.2.5 Let Y C R™ and let FY denote some function space on Y. The exterior
derivative of f € FY isamap d : FY — M(Y,(R™)*) defined by

df(x) :=df, € (R")* (B.45)

where M(Y,(R™)*) denotes the set of maps from Y to (R™)*. The gradient is a map V :
FY — M(Y,R™) defined by

V@) =Vf st dfi=(Vf.") (B.46)

where (-,-) : R" x R™ — R is a natural pairing. Thus, the gradient can be viewed as
the “dual” of the exterior derivative. An example of a gradient is given by the functional

derivative.

Definition B.2.6 Let Y C R™ and FY denote some function space on Y. Let a natural
pairing on FY be defined by

(f.8) = /Y d"xfg (B.47)

Vf,g € FY. Let L: FY — R. The functional derivative of L with respect to g denoted
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OL/dg, is a function in FY defined by

oL d
(2 )= Latg o .

t=0

The functional derivative is linear in its arguments and satisfies the usual product rule for

differentiation. The chain rule for functional derivatives can be expressed in the form

SL[f(g)] _ OL[f(8)] df(g)

e (B.492)
6f(Llgl) _ SL[g]df(L[g])
5g  8g dL[g] (B490)

The evaluation map Ey : FY — R is defined by E,(f) := f(y). In particular one finds for
x,yeY

SE,

S—f(x) =06(x—y), (B.50)

which is sometimes written simply

m:5()c—y). (B.51)

6f(x)

I have intentionally left the nature of the function spaces such as FY in the above definitions
somewhat vague. Sometimes the space of square-integrable functions L?(Y) will do fine.
What one invariablly requires at the least is that F'Y consists of all functions vanishing at
the boundary of Y. Often Y will be the whole of R" and the functions will have to approach
zero at infinity faster than some inverse power of the magnitude of x € R”, in order that
certain desired properties hold. Equally often ¥ will be a bounded region of E3. In this
case it will have to come with (periodic) boundary conditions, which ensure that the fields
vanish there.

In chapter 3 states of the electromagnetic field are taken to be integral functionals ¢
of the classical vector potential A € yE>, which is an ordered three-tuple of functions.
The functional derivatives in this case are special cases of the functional derivatives in the

following example.

Example B.2.1 A general functional @ of several functions f; € FR" and their derivatives

can be written
ol = [ dxp(x LA} V(X)) (B.52)

where V f denotes the n-tuple (df/dx",...,d f/dx"). First I define

ap ap

V'aVﬁ ‘:Vfavjﬁ

(B.53)
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in which the repeated index j is summed. Now, to compute the functional derivative, we

simply appeal to definition B.2.6;

d
—olfi+1g]

d :i / d"xp(x, fi(x) +18(x), Vfi(x) +1Vg(x))

= / d"x a ﬁ +aapv(;) -Vg(x)
5% = (VT s v (e
_/d" < 8; —V-aapv(ﬁ)>g(x) (B.54)

where by Stokes’ theorem the integral over the total divergence on the third line is a surface

t= t=0

integral, which vanishes because the functions vanish at infinity. Thus, according to B.2.6

6o dp v ap

§fi  dfi  IVfi

(B.55)

Given a natural pairing on a Banach space one can easily construct a space with symplectic

structure using the functional derivative.

Definition B.2.7 Let FY be a Banach (function) space onY. and (-,-) : FY" X FY" — R be
a natural pairing. Let Z := FY?". The map Q : Z x Z — R defined by

Q((o" my), (9%, my)) = — (o™ mu) +(@*, 7)), p=1,...n (B.56)

is a closed non-degenerate (i.e. symplectic) two-form in A>Z provided the natural pairing
(+,) is not degenerate. A Hamiltonian vector field Xg € xZ for some function G € FZ, is
defined as usual by @’ (Xg) = dG = ix,Q = Q(Xg, ). In terms of coordinates o*, 7, € FY"

this reads

6G 6G
Xe(o", my) = (571_”7—5@1) .

As before an integral curve 7 : R — Z of X¢ satisfies z(t) = Xg(z(t)). The associated flow

(B.57)

is a collection of maps {F, : Z — Z} defined by F;(z(0)) := z(t), which constitute a one-

parameter group of transformations.

Definition B.2.8 Let Z = FY?" where FY is a function space onY C R™. Let {-,-) : FY" x
FY" — R be a natural pairing defined by

(o, my) - /d xohmy, u=1,. (B.58)

Let Q : Z X Z — R be defined as in definition B.2.7. The Poisson bracket of F,G € FZ is a
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map {-,-} : FZ x FZ — FZ defined by

[ 8F 8G G SF
{F Gz = Q(XF|<<pu,nu>7XG\<<pu,np>>:/Yd X( )

Sk 8my  SoH Sy
(B.59)

As before a conserved quantity is one which is in involution (i.e. Poisson commutes) with a

distinguished function H € FZ assumed to be the generator of dynamics.

B.3 Lie Groups

Groups always play a role in the description of symmetries. In a gauge field theory the
gauge group is used to describe the gauge symmetry. Gauge groups are subgroups of the
general linear group(s) GL(n,R)(GL(n,C)). These groups are not only groups, but also
manifolds for which matrix elements act as coordinates. They are in fact Lie groups, which
means that the group operations of multiplication and inversion respect the smooth manifold
structure. In general, matrix multiplication produces matrix elements that are polynomials
of the elements of the matrices being multiplied and which are therefore smooth. The
matrix elements of inverted smooth matrices are also smooth. Thus, finite-dimensional

matrix groups are Lie groups.

B.3.1 Basics

Definition B.3.1 A Lie group G is a (smooth) manifold, which is also a group, such that the
multiplication map m : G X G — G and the inversion map i : G — G are both smooth. An
r-parameter local Lie group is a Lie group on U CR" withm : U xU — R" and i : Uy C
U — R'. Given a manifold M, a local group of transformations on M is a Lie group G with
action ® : U — M where {e} xM C U C M X G, and

1. g-(h-P)=(gh)-P,

2. e-P=P,

3.6 (gP)=P
where g- P := ®(g,P).

The left (right) action of a Lie group on itself is called left (right) translation. For example,
left translation on the Lie group G is the map L : G x G — G defined by L(g,h) = gh=: Ly(h)
where L, : G — G is a diffeomorphism. For each translation there are useful pushforward
and pullback maps, which move tangents and cotangents around G. For example, the push-
forward Ly, : TG — TG (such that L. |, =: Lgsp - ThG — Ty, G) is used to define an espe-

cially important type of vector field on G called a left-invariant vector field.
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Definition B.3.2 Ler G be a Lie group. A vector field & € xG is said to be left-invariant if
it is Lg-related to itself, that is,

L& =¢, (B.60)

Vg € G. Restricted to some h € G this reads Lei&p = Egn. The subset of xG consisting of

all left-invariant vector fields is denoted g.

Right-invariant vector fields can be defined analogously, using right translation. The set of
left (right)-invariant vector fields {&,} is a frame for the vector space ¥ G, which means that

any X € yM can be written
X =a%, (B.61)

where &, , = ¢/,(g)0ic and a® €', € F*G.
Through analogy with the definitions of left and right-invariant vector fields one can

define left and right-invariant one-forms.

Definition B.3.3 A left-invariant one-form on a Lie group G is a one-form @ € A'G such
that

L,0= o, (B.62)

Vg € G. A one-form @ is left-invariant if and only if 0(&) is a constant function in F*G for
any & € g.

B.3.2 The Lie Algebra of a Lie group

Since given a Lie group G, the map L, : G — G is a diffeomorphism, L. & is defined on all
of G. This means Lg.; &y = (Lg«&)4n is a well defined tangent in T, G. Furthermore if & € g
then Ly, & = &gy, and so according to B.18 we have

Lg.[81,80] = [Lgi 81, L &2] = [61, 8], (B.63)

V&1, & € g. In other words if &, &, € g, then [, &] € g, which means that (g, [-,-]) is a Lie
subalgebra of xG.

Definition B.3.4 Let G be a Lie group. The Lie algebra (g,[-,-]) of left-invariant vector
fields on G is called the Lie algebra of the Lie group G. If {&;} is a basis for g then one can
show that

(&, = ¢l (B.64)
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k

where the c;; are called structure constants satisfying

k k m k m k.m _
ij = —Cjis  CijCr T Cjict ey = 0. (B.65)

The basis fields &; are often called generators of the Lie algebra.

Suppose that given £ € g, we define &, € T,G by &, = Lg..&, Vg € G, then one can show
that the map 1 : T,G — g defined by 1(&,) := & is a vector space isomorphism. Thus,
(quite remarkably) these spaces can be identified; g = 7,G. This means that g is a finite-
dimensional subalgebra of ¥ G, whose elements are completely determined by their values
at the identity element e € G.

The flows of elements of g are each one parameter subgroups, and every one parameter
subgroup is the flow of some & € g. The integral curves of the elements of g are unique and
complete i.e., they are defined on the whole of R. The map relating the Lie algebra g to the
Lie group G is called the exponential map.

Definition B.3.5 Let G be a Lie group with Lie algebra g. The exponential map exp:g — G
is defined by

exp(r€) := (1) (B.66)

where ¥ : R — G is the integral curve of & € g. Conversely, if ¥: R — G defines a one

Ee 1= Yee (Z)

defines the associated left-invariant vector field &.

parameter subgroup then

(B.67)

t=0

Of particular importance is the concept of infinitesimal generators, which are the vector

fields on some manifold M induced by a local group of transformations.

Definition B.3.6 Let G be a local group of transformations on M a manifold. Let X, € T,G.
The infinitesimal generator of transformations is a vector field EX € yM defined by

& (/) = %f(Pexp(tX)) : (B.68)
=0

The associated flow consists of maps FX such that FX(P) = P-exp(tX). The map p' : g =

T,G — xM defined by p'(X) = EX is a Lie algebra homomorphism.>’

Example B.3.1 A particular case of the above definition is that in which M = G and the
action of G on M is simply right translation. It is then easy to show that X = X, which

57This means that p defines a representation (cf. B.3.7).
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shows that the left-invariant vector fields are the infinitesimal generators induced by the

right action of G on itself.

B.3.3 Subgroups of the general linear group and their Lie algebras

I come now to the important matter of Lie groups and Lie algebras acting on a vector space
V. The most general Lie group acting on a vector space V is the general linear group GL(V)
consisting of the invertible operators (endomorphisms) A : V — V. If the dimension of V
is n, then one can identify V with R” if it is real, or C" = R?" if it is complex. One can
therefore represent the operators in £ (V) with real or complex matrices. It is easy to verify
that the action of GL(V') on V is a group action as defined by A.3.10.

Here I turn my attention to the identification of the Lie algebras of GL(V) and its sub-
groups. We saw in B.3.2 that an element & of a Lie algebra g defines a one-parameter
subgroup }/é (1) = ¢'S, which takes values in the associated Lie group G. This means one
can obtain the Lie algebra of G by first differentiating the one-parameter subgroups at the
unit element r = 0 to obtain a unique element of 7, G (cf. B.67), and then using the pushfor-
ward to find the associated left-invariant vector field in g.

To properly see how this works let’s consider the case G C GL(V). Since we are
dealing with matrices it’s natural to take matrix elements as coordinates. Explicitly, one
writes x; (A) = a; where (ai.) is the matrix representation of A € GL(V). Defining the one-
parameter subgroup ¥5" (1) := " whose initial velocity is denoted A := 7% (0), we seek
the associated left-invariant vector field &4 € g. Note that A € £(V) need not be invertible,
it is a completely arbitrary operator. We have according to B.67

g =2 (o' 0)

0 =3 (7" (0))9/, = d'd} (B.69)

J J%ie’
t=0

which gives us the element £ of T,GL(V') associated with A. Now we use the pushforward
to find 4 € g;

ED = Lo &) = (E1)59), (B.70)
where

, , : LOgh" , ,
(5= 8 () o= o [ (en)],_ =t o ~alerdf, @

from which it follows that
EA = ajxnz?l’ (B.72)

where it is understood that £4(g) = ’g’A is given by B.70. To check this construction has
worked let }/5 ) denote the integral curve of &4 starting at the identity; )/‘5 0)=e=1=
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(Sij ). We have

i7

A gieA j _ ki fY j
S =P 0)3] ) =am(F (0)2] (B.73)
which using the abbreviation x(z) := x(y‘ﬁA (1)) implies

) =dx() o X)) =Ax). (B.74)
In particular we have x(0) = Ax(0) = Ax(e) = AI = A, and from this it follows that £} =
a?&i{e, which takes us back to B.69. Since A € £(V) is arbitrary, what the above calculations

have established is a three-way canonical identification £(V) = T,GL(V) = gl(V);

L(V) —— TGL(V) —— gl(V)

A & &

For the general linear group there are no restrictions on the operators (matrices) A, which
is why the Lie algebra is the whole of £(V). Taking subgroups of GL(V) means imposing
conditions on its elements, and this leads to concurrent restrictions on the vector fields that
make up the Lie algebra of the subgroup. The above method can be used to determine
the Lie algebra g of any Lie subgroup G C GL(V). Take, for example, the orthogonal
group O(V) = O(n.R), which acts on the real n-dimensional vector space V = R". Letting
Y:R — O(V) be a curve that starts at ¢ = I (a subgroup always contains the identity)
and writing in coordinates x(¢) := x(y(¢)) we have by definition of the orthogonal group
x(t)x(t)T =1, where T denotes the matrix transpose. Thus,

_dl d

0=— = Ex(t)x(t)T B =%(0)+%(0)7 &  %0) = —x(0)7. (B.75)

If we let A := x(0) then we can identify 2 € T,O(V) and €4 € o(V') as follows

Ed=diof,, E'=dxd!, where A=-4". (B.76)

So, the general recipe for finding the Lie algebra g of the Lie group G is as follows; let
Y:R — G start at e and let A := %(0), then, based on the fact that x(f) € G must satisfy cer-
tain properties defining of the subgroup, deduce the properties that A must possess through
simple differentiation.

In B.76 we have established the identifications o(V) = T,0(V) = o(n,R) where o(n,R)
denotes the set of all anti-symmetric real n x n matrices. These matrices are necessar-
ily traceless which means that o(n,R) = so(n,R) := o(n,R) Nsl(n,R), where sl(n,R) is
(isomorphic to) the Lie algebra s[(V) of the Lie group SO(V) consisting of orthogonal
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operators (matrices) with unit determinant. The Lie algebra si/(n,R) simply consists of
traceless real matrices, which can be checked easily with the help of the matrix identity
d/dt(detx(t))|;—o = trx(0) and the recipe used above.

Another important subgroup is the pseudo-orthogonal group O(r,s), which consists of
real matrices leaving the symmetric bilinear form g : V x V — R defined in A.3.5 invariant.
The associated special group SO(r,s) consists of those elements of O(r,s) having unit de-
terminant. There are also the unitary and special unitary groups U (n) and SU (n) acting on
the n-dimensional complex vector space. Our general recipe allows us to obtain all of the

Lie algebras associated with these subgroups, which are collected below

GL(n,R), GL(n,C) detA #0 invertible matrices

SL(n,R), SL(n,C) detA=1 unimodular matrices

Sp(2n,R) ATJA=1J symplectic matrices

O(r,s) ATnA=n pseudo-orthogonal matrices

SO(r,s) ATnA=m, detA =1 pseudo-orthogonal, unimodular matrices
O(n,R) Al =AT orthogonal matrices

SO(n,R) A~'=AT detA=1 orthogonal, unimodular matrices
U(n,C) A"l =AT unitary matrices

SU(n,C) A'=A" detA=1 unitary unimodular matrices

in which the matrix 7 is defined in A.3.5 and the matrix J in A.43. The corresponding Lie

algebras are

L(n,R), L(n,C) all matrices

sl(n,R), sl(n,C) tA=0 traceless matrices

sp(2n,R) AT =—-JA symplectic pseudo-antisymmetric matrices
o(r,s) = so(r,s) ATn=-nA pseudo-antisymmetric matrices

o(n,R) =so(n,R) A=—-AT anti-symmetric matrices

u(n,C) A=—-Af anti-hermitian matrices

su(n,C) A=—A" trA=0 anti-hermitian, traceless matrices

B.3.4 Representations of Lie groups and Lie Algebras

Often of interest in physics are the representations of certain Lie groups and Lie algebras

on vector spaces.

Definition B.3.7 A representation of a Lie group G on V is a Lie group homomorphism
p: G — G' C GL(V). Similarly a representation of a Lie algebra g on V is a Lie algebra
homomorphism p' : g — g C gl(V), which is a map such that p'(E4 + AEB) = p’(E4) +
Ap'(EB) and [p'(E2),p" ()] = p’ ([€4,&5]).%8 This definition implies that a Lie algebra
representation necessarily maps generators to generators and therefore preserves structure

constants.

If dimg = dimg’ then g = ¢’ if and only if there exist bases of each algebra for which the

structure constants are the same.

58Note that p’ is itself linear with respect to its argument and the images of p’ are linear maps on V.
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The exponential map maps a Lie algebra to its Lie group. Thus, a Lie group repre-
sentation induces a Lie algebra representation and vice versa. A Lie group representation
p : G — G and its derived representation p' : g — ¢’ are related by the following commu-

tative diagram’®

p

G GL(V)
exp exp
8 gl(V)
Explicitly p and p’ are related by
E o @ prEy = Lo
p(ef) =@, pl(&)=Sp(e)| . (B.77)
dt 1=0

If p: G— G' and G’ C GL(V) is defined by some set of conditions, then the derived
representation will have properties induced by the conditions imposed on p. For example, if
p : G — O(r,s) then for g defined in A.3.5 we have g(p(h)v,p(h)u) = g(v,u). The derived
representation p’ : g — o(r,s) must therefore satisfy g(p’(&)v,u) = —g(v,p’(&)).

Two important properties of representations are irreducibility and equivalence.

Definition B.3.8 If a representation p : G — GL(V) is such thatYw e W CV, p(g)w € W
then W is said to be an invariant subspace of V with respect to p. The spaces V and
{0} are necessarily invariant subspaces, but if no other invariant subspaces exist then the

representation p is said to be irreducible, otherwise it is said to be reducible.

Definition B.3.9 Two representations py : G — GL(V}) and p, : G — GL(V») are said to be
equivalent if there exists an isomorphism A : V| — V5 such that p2(g) = Ap1(g)A~".

The nature of the isomorphism depends on the spaces V| and V,. If, for example, they
are complex inner product spaces A : Vi — V, must be unitary. The equivalence of Lie

group representations implies the equivalence of the derived representations p and p) with

PH(E) = Ap|(E)A~".
B.3.5 Rotations, spinors and the Lorentz group
I have now developed all of the machinery necessary in order to properly understand the

action of important physical groups on important physical vector spaces, and how these

1n a diagram an arrow represents a map and the vertices are objects in a category. Combining arrows to make
a longer route from one object to another represents composition of maps. A diagram is said to commute if
whenever there are two different routes from one object to another the two maps representing those routes are
equal.
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actions might be related. Often the relationships between Lie algebras are more simple than

those between Lie groups, the latter necessarily containing more information.

SO(3) rotations and SU (2)

An important relationship in physics is the relationship between SO(3) the rotation group
and SU (2) the special unitary group generated by the Pauli matrices. I will start by consid-
ering the corresponding Lie algebras.

The algebra su(2) = {2 x 2 matrices A : A = —A" and trA = 0} possesses a basis

S; = —iGi/z, i=1,2,3, such that [Si,Sj] = &jjkSk (B.78)

where the o; are the Pauli matrices

O] =0y .= 01 O) = 0y = 0 = 03 =0; .= bo
1=0x.— 10 ) 2 =0y.=— i 0 ) 3=0z.— 0 —1 :

(B.79)

The structure constants are evidently cffj = &;jx where g;j; is the Levi-Civita symbol, which
takes the value +1 for cyclic permutations of 123, the value O if any of the indices are equal,
and the value —1 otherwise. The most general element of su(2) is a linear combination of
the generators S; and can therefore be expressed as

i i, 5

A=—-0M0;=—-0h-0 (B.80)

2 2

where 0f € R? is a three-vector and 6 := (oy, 0y, 0;). The matrix A is the generator corre-

sponding to the group element e € SU(2);

0
A=—0) (B.81)
96 0=0

In fact the most general element of SU(2) can be written
B=by—i(b-8)=cos(0/2)—i(h-G)sin(0/2) = &’ (B.82)

where the second equality follows from the definition of SU(2), which requires that b3 +
b2 = 1 of which the most general solution is by = cos(68/2), b = fisin(8/2). Thus, in this
case the exponential map covers the whole Lie group.

A similar analysis of the group SO(3) and it’s Lie algebra so(3) can be performed. As

generators of so(3) one can take the matrices {/;} such that (/;) x = —&jx. Explicitly we
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have
0 -1 0 0 0 1 00 O
L=L=|1 0 0|, b=l:= 0 00|, hL=L:=]100 -1
0O 0 O -1 0 0 01 O
(B.83)
The structure constants are again the &, i.e.
i, 1] = €ijilk, (B.84)

and the most general element of so(3) can be written 0f -/ where [ := (I}, l,[3). This is the

generator corresponding to the element

i - d
M= f = A0 (B.85)
de 0-0
of SO(3), which is the most general expression of an SO(3) group element. It actually
corresponds to a rotation by an angle 6 about the vector fi. The Lie algebras su(2) and

so(3) are clearly isomorphic;

su(2) 2 so(3), —%oi s (B.86)

which establishes a representation of so(3) on C2, as well as a representation of su(2) on
R3.

Unlike the Lie algebras the Lie groups SU(2) and SO(3) are not isomorphic. In fact
SU(2) covers SO(3) twice. A 2-to-1 surjective representation of SU(2) on R? is established
via the representation p : SU(2) — SO(3) defined by

p(Le 08 — (ORT (B.87)

The representation is established in the following way. Let Hy(2) denote the set of 2 x 2
complex Hermitian matrices with unit determinant. Next define the vector space isomor-
phism v : R? — Hy(2) by

y(x):=x-0. (B.88)
It is easily checked that dety(x) = —x> and y(x)? = Ix>. Now define the map L : SU(2) x
Hy(2) — Hy(2) by L(A,H) = Ly(H) := AHA", which it is readily verified preserves the

determinant and Euclidean metric;

detLa(w(x)) =1, La(y(x))* =Ix (B.89)
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It follows that the matrix R* such that
R'x:=[pA)](x), p) =y loLyoy (B.90)

belongs to the orthogonal group O(3). Now, we have from B.88 that Ay(x)A" = Ac;ATx;,
so that if we now suppose R* is given by Rf‘jdj = Ac;A" then according to this definition
Rixi =y ' (Riox) =y ' (AcA'x)). (B.91)
This last expression is precisely [p(A)] (x) with p as defined in B.90. Thus R := p(A) de-
fined in B.90 also satisfies Rj‘j oj= Ac;AT. This implies that detR* = 1, and therefore that R4

actually belongs to SO(3). It is also implies that R* = R~4, meaning that the representation
p :SU(2) — SO(3) given in B.90 is 2-to-1.

The Lorentz group and SL(2,C)

The relationship between a particular component of the Lorentz group O(1,3) and SL(2,C)
is similar to the relationship between SO(3) and SU(2) covered above. The Lorentz group

is defined in A.3.5. It consists of four connected mutually disjoint components;

o1,3)=ctuctuctuct, £,nc =0=L"ng (B.92)
where
Ll :={Ae€0(1,3): A > 1, deth = +1},
L={A€0(1,3): A > 1, detA = —1},
LY ={Ac0(1,3): AJ <1, deth = +1},
LY ={Ac0(1,3): A} < 1, deth = —1}. (B.93)

The component Ll is called the proper orthochronous subgroup and consists of the regular
Lorentz boosts and rotations in SO(3). The other components can be obtained from Ll
by reversing time and space through the time-reversal and parity matrices defined by T :=
diag(—1,1,1,1) and P := diag(1,—1,—1,—1) respectively. Explicitly

o =pcl, oh=gcl,  of =70l (B.94)

I’ll now show that the Lie algebra so(1,3) is isomorphic to s/(2,C), while the Lie group
Ll is covered twice by SL(2,C) analogously to the situation with SO(3) and SU(2). The
generators of the Lorentz group can be taken as the sets of matrices {/;},{b;} defined for
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i=1,2,3by

0 of 0 nf
= b= n’ (B.95)
0 ll.3 n, 03

where the 7 are the matrices defined in B.83, 03 denotes the 3 x 3 zero-matrix, and the
n; are defined by (n;); := §;;. The structure constants with respect to these generators are

given by
i lj) = €jxlk,  [bisbj] = —€iely,  [li,bj] = — &by (B.96)

The most general proper orthochronus Lorentz transformation can be written A = AgAp

where Ag is a rotation and Ap is a boost. The most general rotation as we have already seen

in B.85 can be written Ag = 0T 60 A general boost with velocity v is
T
Ap = ! (yyv_w r |- (B.97)
v L+ TS

where y:= (1 — |v|)~!/2. Defining the rapidity ¢ := |v|/c = |v| so that v = ¢ one obtains
cosh ¢ = y and sinh ¢ = y|v|. The boost in B.97 can then be written

Ap = Aco.sh i) fi sinh ¢ 3 _ o0 (B.98)
fisinh¢ I3+ (cosh¢ — 1)AnT

from which we see that the exponential map covers the entire set of boosts.%! Since any A €
SL(2,C) can be written A = UH where U € SU(2) and H € Hy(2), to obtain a representation
p:SL(2,C)— £1 it suffices to find representations mapping from each of SU (2) and Hy(2)
into LL A basis for su(2) are the —io;/2 and a basis for hp(2) (the Lie algebra of Hy(2))
are the matrices 0;/2. The procedure used to find the representation p : SU(2) — SO(3) in
B.90 can be adapted to find the representation p : SL(2,C) — Ll being sought. The 2-to-1

surjective representation found can be written
p(ie—ia‘(é—iﬁ)/Z) — eé‘l-‘r(]}g. (B99)
Between the Lie algebras so(1,3) and s/(2,C) we can construct two isomorphisms la-

belled 1 and 2 below;

1 2 2 1
EG,', bi<—> —EGI'. (B.100)

1 1
liH—Eci, bi+— —0;, [+ —

[\

Viewed as representations these isomorphisms are inequivalent according to B.3.9. Their

01n this expression the 3 x 3 matrices from B.85 must of course be replaced by the 4 x 4 matrices from B.95.

61Note that the subset of boosts doesn’t constitute a subgroup.
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exponentiation induces inequivalent Lie algebra representations denoted pg 12 and py/ :
£l — SL(2,C), and defined by

P1/2,0(€§'T+M) — ¢ OO, (B.101a)
P01/ (P TH9P) = ¢ 1O (E-0)/2, (B.101b)

Each representation defines an action of the (proper orthochronus) Lorentz group on C2.
The two distinct sets of Complex vectors transforming under Lorentz transformations ac-
cording to B.101a and B.101b are called right and left (Weyl) spinors respectively.

B.3.6 Representations on function spaces

In quantum mechanics we don’t deal with spin degrees of freedom only, but also with
square-integrable wavefunctions. Quantum states of actual (non-interacting) particles are
usually taken to be C"-valued square integrable functions, a prescription through which we
seek to combine the ideas of wave mechanics with the notion of spin. More precisely, a
spinor field is a field over spacetime, which takes values in a vector space that supports an
irrecducible representation of 61.62 For this reason we need to extend the formalism of
representations on finite-dimensional vector spaces to vector-valued function spaces. First

I will consider representations on scalar function spaces.

Definition B.3.10 Let FM be a function space over a manifold M.® Let G be a Lie group
and R : G x M — G be a right action; R(g,P) = R,(P) = P-g. A representation of G on
FM isamap p : G— GL(FM) defined by [p(g)y](P) := y(P-g).

In order that p defines a representation, i.e. a left action on F'M, one requires a right action of
G on M. The representation p is in fact nothing but the pullback induced by Ry; p(g)y = yo
Ry =R;y. Assuch p(g) is an associative algebra automorphism p(g)(y¢) = p(g)yp(g)¢
with respect to the point-wise product on FM, meaning p : G — aut(FM) C GL(FM). The
Lie algebra of aut(FM) turns out to be yM the set of vector fields on M.

Definition B.3.11 Let p : G — GL(FM) be a representation. The derived representation is
amap p': g — xM denoted p'(X) = EX, where EX is the infinitesimal generator (cf. B.3.6)
associated with X € g at the point P € M defined by

EX (P = () = 5 (7(P- ) (B.102

t=0

920ne usually adds to Ll the spacetime translation group, which means the full symmetry group for spinor fields
is actually the restricted Poincaré group.

931n physical applications M will typically denote Euclidean 3-space or Minkowski space-time, and FM will
denote the space of square-integrable functions L?(M). There are however, many other spaces we might also
be interested in, the smooth functions F*°M for example. For this reason it is good to keep the function space
FM general.
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for a given f € FM. If {E;} is a basis in g then we write EEi =: &,

To bring these definitions to life let’s consider the case of a wave-mechanical particle
and the rotation group. In this example M = E3, FM = L*(E?), G = SO(3), g = s0(3), and
R:E3x SO(3) — E? is defined by R(r,A) = A~'r. The group representation p : SO(3) —
GL(L*(E?)) is given simply by [p(A)y](r) = w(A~'r). To obtain the derived representa-
tion we let X € so(3) and find the associated infinitesimal generator in yE>. Letting x' be
coordinates on E3 such that x'(r) := r; and letting y : E3 — C be an arbitrary wavefunction

we have®

. . d . y
S W) =& (e, &)= Zx(e ) ==Xy, (B.103)

t=0
In particular we can look at the infinitesimal generator associated with the generators /; of

50(3) defined in B.85;
I d
grl = —(l,-)jkrk8j7r = Sijkrkﬁ = —(l‘ X V)i, (B.104)
J

which we recognise, to within a factor of i, as the angular momentum operator in wave
mechanics. %

I’'m now in a position to extend these ideas to deal with vector valued wavefunctions.

Definition B.3.12 Let F(M,V) denote a function space consisting of vector-valued func-
tions on a manifold M. Let G be a Lie group. If p : G — GL(FM) is a representa-
tion on FM, and p : G — GL(V) is a representation on V then we can define a rep-
resentation p : G — GL(F(M,V)) on F(M,V) by [p(g)y](m) := [p(g)](w(m-g)) where

y(m-g) = [p(g)y](m).
If {E;} is a basis for V then y € F(M,V) can be written ¥ = W'E; where y' € FM. The

action of the representation p on Y can therefore be written

P ()] (m) = ([p(2)¥'](m)) p(§)Ei = w'(m-g)p(8)E:. (B.105)
The derived representation p’ : g — autF (M, V) is defined as follows

Definition B.3.13 Given the definitions in B.3.12 let p' : g — xM denote the derived rep-
resentation associated with p and let p' : g — xM denote the derived representation asso-
ciated with p. The derived representation p' : g — autF (M, V) can be written p' = p’ + p/,
or equivalently p(X) = EX + p(X). More precisely, letting W = W'E;, the action of p'(X)

%note that in this example m - ¢X =r- X = ¢~ X,
65To obtain the actual angular momentum operator L := —ir x V one simply has to replace the /; used in B.104
with the generators of angular momentum J; := il;.
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on a vector-valued wavefunction Y can be written
P (X)y = (EXY)E+yip' (X)E: (B.106)

Simply put, the derived representation p’ consists of two components. The first one consists
of a normal representation (in the sense of B.3.7) acting on the basis vectors E;, multiplied
by the component functions W', which are unchanged. The second one consists of a normal
representation (in the sense of B.3.11) acting on the component functions y’ multiplied by
the basis vectors E;, which remain unchanged. Since p’(X): F(M,V) — F(M,V) we can
write p'(X)y = (p/(X)w)'E;, and if the E; are canonical basis vectors such that (E;)/ = 3ij ,
then the components (p’ (X))’ are easily verified to be

(P'X)y) =X (v) + v/ (p' (X))} (B.107)

where p’(X) : V — V is represented by a matrix.
As an example consider the two-component wave-mechanical spinor under the action
of rotations. The spaces are the same as those specified above for the wave-mechanical

particle without spin. The only difference is that the wavefunctions take values in C.

Example B.3.2 A spinor wavefunction y can be written w = W'E; + y2E, = (y', y?)T,
where Ey = (1,0)T and E, = (0,1)T are canonical basis vectors. The representation p :
SO(3) — SU(2) is given by ﬁ(eeﬁj) = ¢~ %5/2 and the representation p : SO(3) —
GL(L*(E®)) is given as in B.3.10 by [p(X)(y!)](r) = ¥ (X~'r). The representation p

is therefore given by
[p(®)y](r) = (e O r)e 079/, (B.108)

The derived representation P’ : so(3) — su(2) is just the isomorphism p'(l;) = —ic; /2 from
B.86, and the derived representation p' : so(3) — xE? is given as in B.104 by [p'(1;)](r) =

= —(r x V);. The derived representation p' is therefore given by

[p" (L) w](r) = —(rx V);y(r) — %Gillf(r) = —i(Li+S$)y(r) =: —i/iy(r).  (B.109)

Here L; = —ir x V is the i component of the orbital angular momentum operator. Tt
differentiates the component functions without mixing them up. On the other hand S; = ¢;/2
is the i™ spin operator, which scrambles the components but leaves their r dependence
unchanged. The operator J; is the i component of the total angular momentum operator.®

The final example I wish to look at are the representations of Ll on spinor wavefunc-
tions. As we saw in B.101 their are actually two inequivalent representations, which serve

to define two distinct types of spinor.

96Tf we use the generators of angular momentum il; instead of the /; in B.109 we get [p’(il;)w](r) = J;y(r). As it
must be by definition, p’ is linear with respect to il;, so p’(il;) = ip’ (I;).
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Example B.3.3 The right spinors are those which transform under a Lorentz transforma-
tion A = e™O190) qecording to the representation P, 2,0 from B.101a. The left spinors
transform according to Py, j, in B.101b. The associated inequivalent representations p 2

and py,1 /> acting on two-component wavefunctions are given by

[p1/2’0<eﬁ-(97+¢5))} wr(r) = w}ie(efﬁ»(el@(pZ)r)efiﬁ»6(6+i¢)/2Ei, (B.110a)

[0, /2™ OTH0%) |y (1) = i (¢~ OT 0Dy~ iR3(0-i0) 2 (B.110b)

B.4 Fibre bundles

Fibre bundles play a central role in modern gauge field theories. Intuitively speaking a fibre
bundle consists of the assignment of a manifold called a fibre to each point in some base
manifold. Requiring that each fibre be diffeomorphic to some manifold called the typical
fibre, means a fibre bundle is locally trivial, but might have a very rich global structure.
I am primarily interested in vector bundles and principal bundles. Vector bundles, as the
name suggests are fibre bundles made out of vector spaces. We have already encountered
two paradigmatic examples, the tangent and cotangent bundles over some base manifold M.

Principal bundles are made out of Lie groups.

B.4.1 Basics

Definition B.4.1 A fibre bundle is a collection (E,n,M,F) where E is a manifold called
the total space, M is manifold called the base space, @ : E — M is a surjective smooth map,
and F is a manifold called the typical fibre such that F = n~'{x} Yx € M. The pre-image
n~Yx} is called the fibre over the point x € M.®" Sometimes the total space E itself is
referred to as the fibre bundle rather than (E,mn,M,F).

A real (complex) vector bundle is a fibre bundle for which each fibre 7! {x} has the struc-
ture of a real (complex) vector space. A trivial bundle is one for which E = M x F and
7 = pr, with pr; defined as the map that projects out the first element of an ordered pair.
Given a covering {Oy} of the base manifold M (= |J, Og), a local trivialisation of the

bundle E is a collection of maps {y} such that
Vot H{0u}) =0y xF and prjoyy,=rm. (B.111)

Each y,,; maps the portion of E over Oy, to the trivial bundle such that the fibre above every
point x € Oy is the typical fibre F. Every fibre bundle is locally trivial i.e., given any E

70One could instead write E := Jycp Ex with 771 {x} := E, := {x} x F; and call F; the fibre over x. Then E is
just the collection of all points in M each glued to a fibre F, = F. This way of doing things perhaps yields a
more intuitive picture of what a fibre bundle is. However, as I noted in B.1.3 the point x doesn’t actually do
anything, so we can identify E, := {x} x F; with F, itself, provided we understand that the point x is implicitly
present when working with Ej.
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there always exists a local trivialisation.

I’ll now review some useful constructions on fibre bundles.

Definition B.4.2 Let (E,7,M) be a fibre bundle and let wy € T;E. The tangent wy is said

to be vertical if
mewe =0. (B.112)
The subspace of all vertical vectors is denoted V¢ E

Example B.4.1 Suppose E = TM for some base manifold M. As coordinates on TM we
can take the (x',v') where TM > vy = v'(x)0; and the x' are local coordinates on M. A
general vector w(y ) € T, ) TM can be written

i a i a
Wiewe) = W) (X )ﬁ + Wy (v )a—v;. (B.113)

Since m,(9/0V)(f) = d(fom)/IV =0 for any f € F*M it follows that

n*(x,vx)w(x,vx) =0 & Wixy,) = W(XNX)(V )ﬁ (B.l 14)

A section of a fibre bundle is an important map, which loosely speaking can be viewed as
doing the opposite to the projection 7.

Definition B.4.3 Let (E,n,M) be a fibre bundle. A local section y :U C M — E is a

smooth map such that
moy=1I (B.115)
where I denotes the identity. The collection of sections on E is denoted T'E.

Example B.4.2 The sections on a tangent bundle M are nothing but the local vector fields,
ie,'E =M.

B.4.2 Vector bundles and connections

Here, following Frankel (2011), I consider vector bundles in more detail. Suppose we are
given a bundle (E,7,M,F), and a covering {Uy} of M. In a vector bundle each fibre has
the structure of a vector space, so we can take F = R¥ (recalling that C* 22 R?¥). The local
diffeomorphisms (local trivialisations) are then ¢y : U x R* — 7~1(U). Now, we denote
by {eV : U — E} a collection of smooth sections, which are independent for each x € U,
and we assume these sections constitute a local frame in the sense that any section from

U can be written yy = l;ll‘}ef{. We can use this frame to define the diffeomorphisms ¢y as
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ou (x, W E,) := yy (x) where ¥ = yE, € RF and {E,} denotes a basis in R¥. In particular

we have
du(x,E,) =eY, xcU, {E,}abasisinRF. (B.116)

The map ¢y effectively turns the basis {E,} C R¥ into a basis {eU} of the abstract fibre
n~'(U), which sits over U C M. Of course £~ ! (U) is supposed to be identifiable with R,
but we don’t make this identification until the point x € U has been specifed. Then we use
¢y to make the identification.

With the maps {¢y : U C M} we can define transition maps cyy : VU x RF — RF
with V and U open in M, by

cvu@)wu () =0y (Gu(x, WiE)) = Wi(x) =cov(x)iv](x) (B.117)

where naturally cyy (x) : R¥ — R¥ belongs to a group G C GL(k,R). This extremely impor-
tant group is called the structure group of the vector bundle and the most general structure
group is just the general linear group itself. Note that from the definition B.117 of the

transition maps a couple of important properties follow;
cyveywewy =1, CU\/()C) = CVU(X)il. (B.118)

If we arrange the components y{ of Yy into a column vector ¥y = (y, ..., y&)T

can express the definitions above in terms of these columns. In particular we can write

l//‘a/ = CUV l[/[l} ~ lP\/()C) = CU\/(X)"PU(X) (B.119)
To define a connection on the bundle we need the notion of an E-valued one-form.

Definition B.4.4 An E-valued one-form is a map that assigns to each point in M, a cotan-
gent that maps tangent vectors over M to points in E. More concisely an E-valued p-form
wisamap ®:M — T*(M,E)? where T)(M,E)P > o, : TMP — E. The collection of such
p-forms is denoted AP(M,E), and in particular A'(M,E) = A(M,E) = E @ AM. Thus,

locally in U, any E-valued one-form can be written
o = wfel @dx'. (B.120)
Definition B.4.5 A connectionon E isamap V :TE — A(M,E) such that for any f € F*M
Vvf)=(Vy)f+vyedf. (B.121)

According to B.120, locally in U, Vy € A(M,E) can be written Vy = (Vl[/)ﬁeg ® dx*,
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and in particular
Vel = o) e @di =¢ff 90 & V' ="0o (B.122)

where the @) = 0)37 pdx* are viewed as matrix elements of ®, which is called the connection

one-form.

The gauge potential in electromagnetism can be identified as a connection one-form. To
see how we need to look at what the two definitions above can tell us. Using B.121 and
B.122 we have

Vyy = V(e y) =l @ [wgm;; +dq/g,] — VoV (B.123)
where
Vi = yhaf +dyf. (B.124)

Using @) = a)g#dx“ and dy{; = dy y{idx* (cf. B.1.5) we have

Vv = |Vh o, + duvi | axt = D] yglax* (B.125)

where

Dyt =y of , + 0u i (B.126)

The derivative DII{ is sometimes called the covariant derivative. Using B.121 and B.122

again we obtain

Vel = V(e} (con)i) = &/ @ [ (euv )i+ dleuv )| = ef @ [ (evu) e (cov )+ dleuv)s]

(B.127)

Equating the right-hand-side of B.127 with Ve = % @ @'¢ where @’ denotes the connec-

tion one-form on V C M, and using cyy = c{,‘l,, we obtain on the overlap U NV

"= (cpy)baS(cov)d+ (cpb)bd(euy)S, (B.128)

(0]
which can be written simply

o' = cyvocyy +cyvdeyy. (B.129)

Example B.4.3 In electrodynamics M = E 13 E is the trivial bundle E'3 x C", the structure
group G is U(1) 22 SO(2), and sections are wavefunctions y : E'> — C". It is easiest to

consider each component Y = Wg Ty l;/g 2 seperately and identify such a component as
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the real two-tuple (W', y*?). There are then two real basis vectors to consider in each
U € E'3. These are ellj eV and eg < ieV where €V is to be viewed as a frame for the

complex line bundle. We have using B.122 that
Vel =V @eAV, AV = 0} = o) (B.130)

where e denotes the elementary charge unit, and for each component we have Yy{j(x) =

cuy (X)W (x) where cyy (x) := et In real terms we identify cyy (x) € SO(2) as

v () = ( coseAd(x) —sined(x) ) B3

sineA(x) coseA(x)
Equation B.129 along with eAV := col2 then yields forx e UNV
AV =AY +dA,  Aj=A]+0uA(x), (B.132)
which is the same as 3.57, while B.126 yields
DY = duy +ieAl v (B.133)

which is the same as 3.54.
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