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Abstract

We study the homeostasis of a peripheral naive T cell population through

the use of deterministic mathematical models. A two compartment ap-

proach is used, where, naive T cells are assumed to be either in a resting

state, or undergoing the cell cycle. We begin by assuming all rates are

linear, then discuss the limitations in doing so. We next explore examples

of published methods which improve this simple description. Finally, we

introduce a model in which resting T cell survival and entry into the cell

cycle is assumed to be dependent on the amount of available IL-7.

To aid our description of T cell homeostasis, a stochastic model of IL-7

signalling is developed. In this model we consider the number of IL-

7 receptors, either membrane bound or internalised, the extra-cellular

concentration of IL-7, and the amount of IL-7 induced signalling. The

model is used to derive a relationship between the amount of IL-7 in-

duced signalling to the extra-cellular concentration of IL-7. The survival

and proliferative ability of the T cell population is then assumed to be

dependent on the amount of IL-7 induced signalling with respect to IL-7

signalling thresholds for survival and division.

This signalling relation is then used with the model of T cell homeostasis.

The model is fitted to experimental data measuring the expansion of

transgenic naive T cells in lymphopenic mice. We show this approach can

capture the homeostatic equilibrium, and notably, time scales required

to reach equilibrium. The model is then explored in the context of the

human periphery.

In a separate piece of work we develop a stochastic Markov model of

the peripheral CD4+ T cell pool, in which we consider sub-populations

of naive, IL-2 producing, IL-2 non-producing and regulatory T cells.

The balance between the IL-2 producing and regulatory sub-populations

is assumed to be determined by a recently proposed quorum-sensing

hypothesis. This model is explored in scenarios where no antigen is



presented to the CD4+ population, before and after a challenge, and

when antigen is presented at a constant level. We show, amongst other

results, that the number of regulatory T cells in equilibrium is greater

when antigen is presented, whilst the number of IL-2 producing T cells

remains the same. We finally use the stochastic aspect of this model to

explore probabilities of and times to extinction of the sub-populations.
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Chapter 1

Biological introduction

1.1 The immune system

With the evolution of the first multicellular organisms arose a need for regulation

of the individual cells and inter-cellular environments within organisms. A group of

cells belonging to the same organism must work together to promote survival of the

organism as a whole. However, the processes at work within each cell are, whilst

highly controlled, not perfect. Intra-cellular processes may begin to function in a

detrimental manner to the organism. There is therefore, an evolutionary advantage

for mechanisms by which the collective group of cells of an organism can recognise

individual, misbehaving cells, and remove them for the collective good.

The intra and inter cellular space within an organism is a highly regulated environ-

ment specifically tailored to support the biological processes involved in life. This

environment in complex organisms has, for aeons past, been exploited by other

organisms. Such relationships between cells differing in the genetic identification

encoded in the DNA can be beneficial for both organisms. In humans for example,

digestion is aided by the micro flora in the intestinal tract (Sears, 2005). Alterna-

tively, the presence of one organism may be detrimental to the survival of the other,

as in the case of a bacterial infection. For complex organisms there has therefore

been an evolutionary pressure for the development of immune mechanisms, through

which harmful foreign bodies can be recognised and removed.

The mechanisms by which unwanted cells or foreign organisms are removed from

the host, along with the cells responsible for mediating these actions, are collec-

tively referred to as an organism’s immune system. The immune system has evolved

to protect an organism from detrimental cellular behaviour, both from misbehaving
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cells within the organism itself and from pathogens. Pathogens take many forms, in-

cluding bacteria, viruses, fungi and unicellular/multicellular eukaryotes, collectively

termed parasites (Janeway et al., 2001).

An example of misbehaving cells in humans are cancer cells. Cancer cells undergo

rapid proliferation, the possible causes of which are numerous. Various cell types

of the human immune system are responsible for recognising and destroying cancer

cells. Cancer cells which are not recognised by the immune system are called ma-

lignant and can grow into tumours, which are often harmful. In the most severe

cases, tumour growth can cause an early death. Humans are susceptible to infection

by a plethora of pathogens, many of which would rapidly kill if not for the immune

response.

1.1.1 Innate and adaptive immunity

Cells of the immune system recognise pathogens and mutant host cells using recep-

tors on the cell’s surface. Such receptors recognise the molecular pattern of invading

pathogens and signal to the immune cells to initiate effector functions of an im-

mune response. If successful, effector functions eradicate the pathogen from the

host. A distinction is made between immune cells which possess receptors capable

of recognising a wide array of pathogens, and immune cells which possess receptors

capable of recognising a limited repertoire of pathogens. Immune components which

recognise a wide array of pathogens typically display the same group of receptors

on all cells of the same type. Such receptors are called non-specific. These immune

components form the innate immune system. Conversely, cells which possess re-

ceptors capable of recognising a limited diversity of pathogens are called specific.

To maintain immune coverage, there exist many clones of cells possessing specific

receptors. Each clone differs only in the receptor expressed; thus clones differ in the

pathogens they respond to. Such cell types form the adaptive branch of the immune

system. Upon detecting a pathogen, a handful of clones will respond, whilst the

rest of the population remains quiescent. The adaptive immune system generates a

large number of clones potentially allowing response to any possible pathogen.

The innate immune system is the first line of defence against pathogens following

physical and chemical boundaries such as the skin mucous membranes, not typically

considered immune components. The cells of the innate immune response are always

active and respond to pathogens within hours of recognition (Janeway et al., 2001).

The type of protection conferred by the innate immune system is non-specific; whilst
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fast acting, innate responses are metabolically costly and can confer damage on

healthy host tissue. Conversely, the adaptive immune response takes days before

effector functions are mediated against pathogens. Whilst slower than the innate

immune response, during an adaptive immune response, a population of immune

cells specifically tailored to combat the recognised pathogen is generated, resulting

in a specific and highly efficient response. These two components of the immune

response work in tandem to confer immune protection, indeed, the adaptive immune

response is initiated by cells of the innate system and promotes the activity of

additional innate cells as one of several response strategies.

1.1.2 Cell types of the immune system

All cell types of the immune system (leukocytes) are generated from hematopoietic

stem cells (HSCs), found in the bone marrow. HSCs give rise to two distinct lin-

eages: the myeloid lineage and the lymphoid lineage. Progenitors of the myeloid

lineage generate cells of the innate immune system such as granulocytes and den-

dritic cells. Progenitors of the lymphoid lineage develop into cells of the adaptive

immune system, which are T and B cells and natural killer (NK) cells. The lineage

tree of the various cells of the immune system is presented in Figure 1.1.

1.2 T cells

This study is focused on the homeostasis of T cells, we therefore present over the

next sections, a brief introduction to T cells.

1.2.1 Antigen presentation to T cells

T cells recognise antigen bound to the surface of antigen-presenting cells (APCs).

During an infection, pathogens are engulfed by phagocytic cells such as macrophages

and dendritic cells. Inside these cells the proteins of the pathogens are broken down

into peptide fragments. The peptide fragments are bound to host-cell glycoproteins

known as MHC molecules. These proteins are encoded by a gene cluster known

as the major histocompatibility complex (MHC) (Janeway et al., 2001). Peptides

bound to MHC molecules (peptide:MHC) are displayed on the surface of APCs.

These membrane expressed complexes can be recognised by T cells.

T cell recognition of peptide bound to the surface of APCs is mediated through the

T cell receptor (TCR). If the T cell receptor is specific for the peptide fragment
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Figure 1.1: Cell types of the immune system.
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displayed on the surface of the APC, a stable bond is formed. Following this pre-

liminary bond formation, T cells recruit the co-receptors CD4 and CD8 to further

stabilise the bond formed resulting in an activation signal being transduced to the

T cell (Janeway et al., 2001). This signal then induces the T cell to exhibit effector

functions. Such events are referred to as T cell activation.

There are two classes of MHC molecules defined as class I and class II. The classes

differ in their molecular structure and expression pattern within the tissues of the

body (Janeway et al., 2001). MHC class I is displayed on virtually all nucleated

cells. MHC class I binds to protein fragments of viruses; it enables nucleated cells

to display virus peptides on their surface, indicating that they have been infected.

Only T cells possessing the CD8 co-receptor recognise MHC class I, these cells are

referred to as cytotoxic T cells. Cytotoxic T cells, upon recognition of virus peptide

displayed on the surface of host cells, signal to the host cells to die, thus preventing

replication of the virus in these cell (Janeway et al., 2001).

On the other hand, MHC class II molecules are expressed by professional cells

such as macrophages, dendritic cells and B cells. These cells phagocytose bacte-

rial pathogens, displaying peptide fragments bound to MHC class II on their sur-

face. T cells possessing the co-receptor CD4 recognise the bacterial derived peptide

expressed by these APCs. Upon activation, effector CD4 T cells perform anti-

bacterial functions. These functions include stimulating B cells to produce anti-

bodies and activating macrophages to further phagocytose bacteria at the sight of

infection (Janeway et al., 2001).

1.2.2 T cell development in the thymus

Progenitor T cells are derived from HSCs in the bone marrow. Progenitors migrate

from the bone marrow to the thymus, an organ located above the heart. The thymus

is composed of an outer cortical region named the thymic cortex and an inner region

named the medulla. Progenitor T cells enter the outer cortex in which they begin

a maturation programme. As T cell development continues, cells migrate towards

the medulla. Mature T cells leave the medulla and enter the peripheral lymphoid

tissues (Janeway et al., 2001).

Mature T cells are defined by expression of surface markers, namely the CD3:T-cell

receptor complex, and the co-receptors CD4 and CD8. Progenitor T cells entering

the thymus do not yet express any of these markers. Two distinct lineages of T cells

develop in the thymus, the α:β lineage and the γ:δ lineage. The lineage pathway
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is displayed in Figure 1.2. The two lineages of T cells differ in the type of T cell

receptor expressed, as well as the co-receptors CD4 and CD8. Whilst all mature

T cells express CD3, γ:δ T cell express only CD3 whereas α:β T cells express CD3

and either CD4 or CD8 (Janeway et al., 2001). α:β T cells comprise approximately

95% of the mature T cell population, and are the focus of this study.

Development of the α:β lineage

Progenitor cells entering the thymus are said to be double negative (DN); these cells

do not express either of the CD4 or CD8 co-receptors. The DN stage is split into four

distinct stages of T cell development, termed DN1-DN4. The stages of development

are distinguished by expression of the molecules CD44 and CD25. During these

stages the T cell receptor (TCR) is generated.

The TCR allows mature T cells to recognise antigen displayed by antigen-presenting

cells (APCs) and subsequently initiate an immune response. The TCR is generated

by somatic recombination of gene segments encoding the α and β chains of the

receptor. This process allows in theory up to 1018 distinct T cell receptors to be

generated (Janeway et al., 2001).

Rearrangement of the β chain locus begins in the DN2 stage and continues into

the DN3 stage. Cells which fail to rearrange the β chain remain in the DN3 stage

and eventually die. During the DN4 stage, thymocytes undergo proliferation before

expressing both CD4 and CD8. At this point thymocytes are referred to as being

double positive (DP). During the transition from the late DN3/DN4 to the DP

stage, thymocytes undergo several rounds of division, greatly increasing the size of

the population (Germain, 2002). Following this burst of division, thymocytes reduce

in size, after which rearrangement of the α chain locus of the TCR occurs. DP cells

may make several attempts to rearrange the α chain locus and therefore most DP

cells will generate a TCR.

A fully formed TCR is then tested against self-peptide:MHC complexes (sp:MHC)

displayed on the surface of APCs. Two selection events must be passed before

the T cell completes its maturation programme. First, the TCR must recognise

sp:MHC (positive selection). This ensures the generated TCR is functional and will

potentially recognise a not yet encountered foreign antigen. If the TCR does not

recognise sp:MHC, the thymocyte dies by neglect since no signal is transduced via

the TCR. Secondly, the TCR must not recognise sp:MHC too strongly (negative

selection). If a TCR induced signal through recognition of sp:MHC is too strong,
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the thymocyte will die by apoptosis. This ensures that the thymus does not generate

T cells which respond to self-tissue and elicit effector functions. Self-reactivity is a

major factor in the onset of many autoimmune disorders.

T cells which pass positive and negative selection cease to express one of either

the CD4 or CD8 co-receptors, becoming single positive (SP) cells. Mature T cells

expressing either CD4 or CD8, then leave the thymus and enter the peripheral

lymphoid tissues. The entire process takes about 3 weeks (McCaughtry et al., 2007).

Figure 1.2: T cell development lineages in the thymus.

1.2.3 Naive T cells

T cells which have matured and left the thymus enter the peripheral lymphoid or-

gans. The peripheral lymphoid organs are the lymph nodes, spleen and the mucosa-

associated lymphoid tissues, such as the Peyer’s patches in the gut (Janeway et al.,

2001). T cells sequentially visit the peripheral lymphoid organs, circulating between

them via the bloodstream. The process of circulation allows T cells to regularly scan

APCs for peptide:MHC complexes which will trigger the T cell to respond. T cells

which have matured and left the thymus, but have not yet encountered antigen spe-

cific for their TCR, are classified as naive T cells.

The survival of naive T cells in circulation is dependent on signals from cytokines
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and signals resulting from TCR recognition of self ligands (Sprent & Surh, 2011;

Takada & Jameson, 2009). In particular, interleukin-7 (IL-7) has been identified

as the foremost required cytokine for naive T cell survival (Fry & Mackall, 2005;

Schluns et al., 2000; Tan et al., 2001). Signals from both the TCR and the IL-7

receptor are sufficient to maintain survival of naive T cells independently of each

other, but, these signals may also combine to promote survival (Seddon & Zamoyska,

2002).

Signals received from IL-7 and sp:MHC binding promote cell survival by preventing

the accumulation of pro-apoptotic proteins such as the Bim family (Li et al., 2004).

Cells that do not receive sufficient stimulus from IL-7 or TCR signalling will die by

apoptosis (Kieper et al., 2004; Tan et al., 2001). The same signals may also induce

naive T cell division, when lymphocyte numbers are low, presumably because the

availability of these signals is in excess (Seddon & Zamoyska, 2002). The availabil-

ity of survival signals, in combination with the influx of new naive T cells from the

thymus determines the number of naive T cells in circulation. This is termed the

homeostasis of naive T cells.

Self-peptide:TCR interactions not only regulate the total number of naive T cells,

but also the abundance of clonotypes within the population. For the T cell popula-

tion to respond to an invading pathogen, there must exist at least one T cell clono-

type possessing a TCR capable of recognising antigen from the pathogen. Since no

prior knowledge of the pathogen is known, the antigen that needs to be recognised is

essentially random. Effective response therefore requires a large enough number of

distinct TCRs to be present within the population such that any possible antigen can

be recognised. However, maintaining a large pool of cells is also metabolically costly,

and so the repertoire of T cell clonotypes is ideally optimised such that structurally

similar TCRs (that recognise the same antigen), are not needlessly maintained. It is

likely that IL-7 also plays a role in maintaining clonotype diversity within the naive

T cell pool (Palmer et al., 2011; Troy & Shen, 2003).

1.2.4 Activation of naive T cells

Recognition of specific antigen by the TCR alone is insufficient to activate a naive

T cell. Two further co-stimulatory signals are required before the T cell undergoes a

programme of proliferation and differentiation into effector T cells (Curtsinger et al.,

1999; Linsley & Ledbetter, 1993). Naive T cells continually circulate through the

peripheral lymphoid organs, transiently coming into contact with APCs. When a
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naive T cell encounters an APC, adhesion molecules on the surface of the T cell and

APC bind, thereby allowing the naive T cell to remain in contact with the APC for

a limited length of time. The area of contact between the two cell types is called the

immunological synapse (Grakoui et al., 1999). During the contact period, TCRs in

the synapse come into contact with many peptide:MHC complexes (Janeway et al.,

2001). If there is no recognition of peptides specific for the TCR in this period, the

immunological synapse breaks and the T cell continues circulation.

If the TCR recognises a p:MHC molecule, a bond is formed between peptide:MHC

and the TCR. This bond is further stabilised by binding of either of the co-receptors

CD4 or CD8 to the peptide:MHC molecule. Two further signals are then required for

the naive T cell to become an effector T cell. The first of these is signalling through

the CD28 co-receptor, mediated by the B7 family of proteins found on dendritic cells.

Signalling through the CD28 co-receptor induces the T cell to produce interleukin-

2 (IL-2) and up-regulate the α chain of the IL-2 receptor (IL-2R) (Janeway et al.,

2001). This then allows the T cell to proliferate in response to IL-2, produced locally

by the T cells responding to antigen.

The form of the third signal varies with the type of infection antigen is derived from.

Naive CD4 T cells differentiate into one of several functionally different effector

types. This signal determines the type of effector cell the naive T cell will become.

The different CD4 effector T cells, as well as the nature of the signal which induces

them, are presented in Figure 1.3.

Naive CD8 T cells, when activated, become cytotoxic CD8 cells. This activation

process, likely, requires the dendritic cell to be stimulated by CD4 T cells to express

higher levels of B7, since the basal amount of signalling through the CD28 co-

receptor is insufficient for naive CD8 T cells (Janeway et al., 2001).

1.2.5 Effector T cells

CD8 cytotoxic T cells

Cytotoxic T cells are induced from CD8 naive T cells. The TCR of CD8 expressing

T cells recognises MHC class I, expressed by all nucleated cells. Viruses cannot

replicate by themselves, instead, replication of a virus can only occur by the virus

exploiting the intra-cellular machinery of host cells. When a cell is infected by

a virus, peptides specific to the virus are expressed on the surface of the cell in

peptide:MHC class I complexes. This allows cytotoxic T cells to recognise that the

cell is infected.
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Figure 1.3: The different types of CD4 effector T cells.

Upon recognition of foreign peptide, a cytotoxic T cell forms an immunological

synapse with the infected cell. The cytotoxic T cell signals to the infected cell

to die by secreting pro-apoptotic molecules through the immunological synapse.

Apoptosis is primarily induced through the release of cytotoxic granules through

the immunological synapse (Janeway et al., 2001). Cytotoxic granules are modified

lysosomes that contain three families of proteins used to induce apoptosis. These

protein families include perforin which enables the contents of the granules to be

delivered to the target cell membrane. The other two families are called granzymes

and granulysin, the latter of which has anti-microbial properties (Janeway et al.,

2001).

Cytotoxic CD8 T cells may also induce apoptosis in other cell types by interaction

of Fas and Fas ligand, members of the TNF family of proteins (Janeway et al.,

2001). Typically, all activated lymphocytes express Fas and Fas ligand and these

interactions between activated cells serve as a regulatory mechanism which limits

the numbers of these cells.

CD4 TH1 T cells

Macrophages remove pathogens by phagocytosis, ingesting pathogens and breaking

them down in lysosomes. Some micro-organisms, such as mycobacteria, inhibit the

anti-bacterial mechanisms of macrophages and are able to survive and grow inside

the macrophage (Janeway et al., 2001). The principal effector function of CD4 TH1

T cells is to enhance the antibacterial function of macrophages, called macrophage

10
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activation (Janeway et al., 2001). The activation of macrophages is required for

protection against some intracellular pathogens, such as mycobacteria.

TH1 T cells secrete interferon-γ (IFN-γ), one of two signals required for activation of

macrophages. The second signal is interaction through the ligand CD40, expressed

by both TH1 T cells and macrophages (Janeway et al., 2001). The antibacterial

actions of macrophages are detrimental to host tissue, as well as foreign pathogens.

Furthermore, activated macrophages require a large amount of energy (Janeway

et al., 2001). It is therefore beneficial if macrophages are activated only in response

to a foreign pathogen, rather than being maintained in a constantly activated state.

TH1 T cells coordinate the activity of macrophages, such that host tissue damage

and energy consumption is minimised, whilst still providing protection against the

pathogen (Janeway et al., 2001).

CD4 TH2 T cells

Antibodies, similar to the TCR, are antigen specific, but are produced by B cells (Janeway

et al., 2001). Unlike the TCR, which is membrane bound to T cells, antibodies can

be either membrane bound to B cells or secreted. Membrane bound antibodies

are required for activation of B cells whereas the soluble form is secreted to medi-

ate effector functions. Antibodies bind to pathogens and the products produced by

pathogens. TH2 CD4 T cells enhance immune responses by stimulating naive B cells

into production of antibodies. This enhancement is mediated through the release of

various cytokines required by B cells to proliferate and differentiate into activated

cells. In particular, TH2 T cells induce activated B cells to isotype switch into cells

which produce the IgE class of antibodies, the main function of which, is to fight

parasites (Janeway et al., 2001).

IL-10 is one the various cytokines produced by TH2 T cells. This particular cytokine

can inhibit the development of TH1 T cells. On the other hand, IFN-γ, produced

by TH1 T cells, can prevent the development of TH2 T cells (Janeway et al., 2001).

Each of these two types of effector cells has a distinct role within response to infec-

tion, and the pathology of many responses favours one of these cell types. However,

they have also been observed to act in a complementary manner (Janeway et al.,

2001).
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CD4 TH17 T cells

CD4 TH17 T cells are induced in the early phase of an immune response. Following

activation they migrate to the site of infection at which they secrete a number of

cytokines, the predominant being members of the IL-17 family (Janeway et al.,

2001). IL-17 induces tissue cells to secrete cytokines which aid immune function.

Furthermore, stimulation by IL-17 induces tissue cells to secrete chemokines which

attract neutrophils to the site of infection.

1.2.6 Regulatory T cells

Regulatory T cells suppress the effector activity of other lymphocytes. They express

CD4 and are derived from progenitor T cells in the thymus, but also can be induced

from naive CD4 T cells (Chen et al., 2003). Regulatory T cells which develop in

the thymus are called natural regulatory T cells, on the other hand, regulatory

T cells induced from naive CD4 T cells are called adaptive (or induced) regulatory

T cells (Bluestone & Abbas, 2003). Natural regulatory T cells typically make up

around 10-15% of the total CD4 T cell population in circulation in humans (Janeway

et al., 2001). They are identified by expression of the α chain of the IL-2 receptor

(CD25), as well as the transcription factor Foxp3 (Janeway et al., 2001). In con-

trast to non-activated lymphocytes, peripheral maintenance of the regulatory T cell

population requires IL-2 (Shen et al., 2013). It has been established that CD25 is

expressed constitutively by resting regulatory T cells, whereas other lymphocytes

express CD25 following recognition of antigen through the TCR (Malek et al., 2002).

Regulatory T cells have evolved to suppress the effector activity of other lympho-

cytes. They are critical to the control of many autoimmune diseases, indeed, it has

been shown that removal of the regulatory T cell population induces severe autoim-

munity in mouse models (Janeway et al., 2001; Sakaguchi, 2004). In contrast, it has

been demonstrated that they suppress other, beneficial immune responses, such as

the removal of tumours (Antony et al., 2005; Belkaid & Rouse, 2005).

The mechanisms by which regulatory T cells inhibit the effector activity of activated

lymphocytes are unclear. It is largely accepted that suppression is contact dependent

(interaction between the regulatory T cell and the activated lymphocyte), further-

more this contact may require the interaction to be mediated at binding sites on

antigen presenting cells (León et al., 2000). However, regulatory T cells may also

secrete IL-10 and TGF-β, which inhibit the activation and proliferation of activated

lymphocytes (Janeway et al., 2001).
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1.2.7 Memory T cells

Following an immune response and the elimination of a pathogen, most effector

T cells are lost through apoptosis. This loss ensures effector responses, which may

have detrimental effects on the tissue near an infection site, are not mediated un-

necessarily. Whilst the frequency of surviving effector T cells is unclear, and likely

pathogen specific, it has been estimated that more than 95% of the effector popula-

tion is lost following the response (Janeway et al., 2001). The remaining T cells are

called memory T cells.

Memory T cells retain some of the characteristic markers of effector T cells such as

CD44, whilst down-regulating others such as CD69 (Janeway et al., 2001). Further-

more, they are characterised by two subclasses, termed central memory and effector

memory. Central memory T cells are phenotypically similar to naive T cells in that

they are found in the peripheral lymphoid tissues and are relatively slower than ef-

fector memory to respond to antigen derived signalling. Effector memory T cells are

phenotypically similar to effector T cells in that they are quick to respond to infec-

tion. The distinction between central and effector memory is likely a simplification

of a heterogeneous population of cells.

An antigen specific memory T cell population is typically 100-1000 fold bigger than

the naive population from which it was generated (Janeway et al., 2001). Survival

of memory T cells largely requires IL-7 for CD4 memory. On the other hand, IL-15

is critical for CD8 memory. Recognition of sp:MHC via the TCR is apparently less

important for memory T cells than it is for the naive population (Janeway et al.,

2001).

Primary infection by a pathogen canonically results in the generation of a memory

T cell population specific for the pathogen. Upon secondary infection, which can

occur years later, the memory population will respond to the invading pathogen.

This response is typically faster than the response of a naive population, which

results in the pathogen being removed or suppressed more efficiently. In conjunction,

the severity of disease resulting from the pathogen is often reduced. The aim of

vaccinations (offered for example, by the National Health Service in the UK) is to

generate a memory T cell population for specific diseases.
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1.3 Objectives of this thesis

In this study our aims are to develop mathematical models of T cell homeostasis.

Such models are developed to offer further insight into the balance between thymic

output, peripheral survival and peripheral division in maintaining a peripheral T cell

population. We begin, in Chapter 2, by recapping the mathematical theory behind

the modelling approaches we take in later chapters. In Chapter 3 we introduce

deterministic mathematical approaches to modelling a population of naive T cells in

the periphery. The first model in this chapter is a simple description of the dynamics

of the naive T cell population, the limitations of this model are discussed. We next

present examples of approaches which have been taken in the literature to improve

the simple description. We finish this chapter by introducing a model describing

naive T cell homeostasis in which we encode, in a mechanistic manner, naive T cell

requirement for IL-7.

In Chapter 4 we consider a single naive T cell suspended in a medium of soluble IL-

7. We present a stochastic model describing IL-7 receptor dynamics during binding

of IL-7 to the IL-7 receptor. We introduce a variable to quantify the amount of

IL-7 induced signal. This variable is used to determine whether a cell survives or

divides for a given amount of IL-7. We conclude the chapter with the derivation of

a relationship between the concentration of IL-7 in the extra-cellular medium to the

amount of IL-7 induced signal inside the cell. This signalling relation is then used

to refine the resource model presented in Section 3.3.

In Chapter 5 we introduce and analyse the refined model. The model is fitted to

experimental data obtained from studies of lymphopenia induced proliferation in

mice (Hogan et al., 2013). In doing so we estimate the parameters of the model,

from which the numerical model behaviour is analysed and discussed. The model is

also presented in the context of the human periphery. Taking into account involution

of the human thymus (Aspinall & Andrew, 2000), we analyse the human model and

compare it with clinical observations.

Somewhat separate from the preceding chapters, in Chapter 6 we introduce a stochas-

tic model of the peripheral CD4+ T cell population in which is included sub-

populations of naive, IL-2 producing, IL-2 non-producing and regulatory T cells.

In this chapter we focus on the population dynamics between the effector and reg-

ulatory T cell populations, which behave similarly to a predator-prey system. The

model presented in this chapter is a stochastic reformulation of an earlier model pub-
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lished to describe a quorum-sensing mechanism for CD4+ T cells (Almeida et al.,

2012). This chapter was published in reference (Reynolds et al., 2013a).

Finally, in Chapter 7 we present some concluding remarks to the study.
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Chapter 2

Mathematical summary

In Chapters 3 and 5, we introduce mathematical models formulated as systems of

ordinary differential equations (ODEs). The reader is assumed to be familiar with

the concept of an ODE, however in Section 2.1, we review the requirements for

asymptotic stability of stationary solutions of systems of ODEs. In Chapters 4

and 6, we formulate models as continuous time Markov processes; in particular, we

shall work with birth and death processes defined on multidimensional lattices. In

Section 2.2 we review basic concepts in probability, define a stochastic process and

introduce the birth and death process.

2.1 Stability of steady-state solutions of ODEs

In Section 2.1.1 we present the requirements for asymptotic stability of steady-state

solutions of systems of ODEs. In Section 2.1.2, we introduce a convenient method

for evaluating the conditions for stability.

2.1.1 Linear stability approximation

Let x(t) be a vector of deterministic trajectories defined on Rn. Consider the system

of ordinary differential equations

dx(t)

dt
= f(x(t); t), x(0) = x0. (2.1)

In this thesis, we shall interchangeably refer to solutions xs which satisfy f(xs) = 0,

as either stationary solutions, steady-state solutions, equilibrium solutions or fixed-

point solutions. We derive the requirements for asymptotic stability of stationary
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solutions xs. First, we linearise the system about the stationary solution xs. Define

a change of variables

y(t) = x(t)− xs, (2.2)

where y(t) is defined on Rn. A Taylor expansion of the function f about the steady-

state solution xs, retaining only linear terms gives

f(x(t)) ≈ f(xs) +
df(x)

dx

∣∣∣∣
x=xs

(x(t)− xs),

= Ay(t), (2.3)

where A is the Jacobian of the function f evaluated at the vector of stationary

solutions xs. By construction, the derivatives of x and y, are equal,

dx(t)

dt
=

dy(t)

dt
. (2.4)

Therefore, the linearised set of equations is

dy(t)

dt
= Ay(t). (2.5)

This system of linear, homogeneous, ODEs has solution (Perko, 1991)

y(t) = y0eAt, (2.6)

for initial condition y(0) = y0. The system exhibits stationary solutions, if and only

if, all eigenvalues of A are negative, λ1, λ2, . . . , λn < 0 (Coddington & Levinson,

1955). In the case that any of the eigenvalues λi are complex, we require the real

part of λi to be negative. If such a condition is met, then the solution x(t) converges

to the steady-state solution xs in some neighbourhood about xs.

If f is linear in x, then the Taylor expansion of f in equation (2.3) is exact. For a

linear system, if a steady-state solution is stable, it is also globally stable. Global

stability implies that deterministic trajectories will converge to the steady-state

solution from any given initial condition. In general this is not true, deterministic

trajectories will converge to a stable steady-state solution in some neighbourhood

about the solution.
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2.1.2 Routh-Hurwitz criterion

Let A be the Jacobian of the function f in equation (2.1), evaluated at the steady-

state solution xs. Let the characteristic polynomial of the matrix A be

λk + a1λ
k−1 + . . .+ ak = 0. (2.7)

We define the following matrices, usually referred to as Hurwitz matrices (Gant-

makher, 2005)

H1 = (a1); H2 =

a1 1

a3 a2

 ;

H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 ; Hk =



a1 1 0 . . . 0

a3 a2 a1 . . . 0

...
...

...
...

...

0 0 0 . . . ak


.

(2.8)

For the characteristic polynomial above, all solutions λ satisfy Re(λ) < 0, if and only

if, det(Hj) ≥ 0 for all j = 1, 2, . . . , k (Hurwitz, 1964). In practice, for polynomials

of order 2, λ2 + a1λ + a2, these conditions are met if both a1 and a2 are positive.

For third order polynomials, λ3 + a1λ
2 + a2λ + a3, stability is ensured if an > 0,

n = 1, 2, 3, and a1a2 > a3.

2.2 Probability review

In this section, we review basic concepts in the theory of probability. The introduc-

tory material primarily follows that published in reference (DeGroot & Schervish,

2002).

2.2.1 State space and outcomes

The collection of all possible outcomes of an experiment is called the state space or

sample space. Let the number of distinct outcomes of an experiment be N . We note

that N may be infinite. Mathematically, the state space, S, is the set of all possible

disjoint outcomes, s, of an experiment. We express S as the union of all possible
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outcomes s,

S =
N⋃
i

si. (2.9)

2.2.2 Events of an experiment

An event, A, of an experiment, is a collection of outcomes, si, i = 1, 2, . . ., of the

state space S. An event A is defined to be a subset of S, A ⊂ S. Each event A is a

union of one or more outcomes si ∈ S, i = 1, 2, . . .. The probability of an event A is

a positive number, Pr(A), which quantitatively describes the chance that the event

A will occur.

2.2.3 The axioms of probability

The probabilities of events, Pr(A), satisfy the following three axioms of probabil-

ity (DeGroot & Schervish, 2002):

1. The first axiom states that the probability of any event A, is positive,

Pr(A) ≥ 0, for all A ⊂ S. (2.10)

2. The second axiom states that the probability of events guaranteed to occur is

one. Since S is the collection of all outcomes, we may formally write,

Pr(S) = 1. (2.11)

3. Let Ai, i = 1, 2, . . ., be a finite or countably infinite set of disjoint events.

Disjoint implies that for any two events Ai, Aj, the intersection between events

is equal to the empty set, Ai ∩Aj = φ, i 6= j. The third axiom states that the

probability of a union of disjoint events is equal to the sum of the probabilities

of each individual event,

Pr

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

Pr(Ai). (2.12)

In this thesis we also use the notation Prob{•} to denote the probability of the event

inside the parentheses occurring. That is,

Pr(A) = Prob{Event A has occurred}. (2.13)
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2.2.4 Law of total probability

Let S be the sample space of an experiment and let {si : i = 1, 2, . . .} be a finite

or countably infinite partition of the sample space, as expressed by equation (2.9).

The law of total probability proposes that

Pr(A) =
∑
i

Pr(A and Bi), (2.14)

where Pr(A and Bi) is the probability that events A and Bi, i = 1, 2, . . ., both

occur.

2.2.5 Conditional probability

Suppose two events may occur in which the outcome of the first event affects the

chances of the second event occurring. We say that the two events are dependent.

Let the first event be A and the second event be B, the probability that event A

occurs, given that event B has occurred is called a conditional probability of A given

B, and is defined (DeGroot & Schervish, 2002)

Pr(A | B) =
Pr(A and B)

Pr(B)
. (2.15)

If two events A and B are independent, that is, the occurrence of one event does

not change the probability of the second event occurring, then Pr(A and B) =

Pr(A)Pr(B). In this case, Pr(A | B) = Pr(A).

2.2.6 Probability space

A probability space (Ω,F,P) is a mathematical triplet built with the intention of

quantifying random phenomena. A probability space is constructed of three com-

ponents.

• The sample space is denoted by Ω and is the collection of all possible outcomes.

• F is the set of all possible events (collection of outcomes), consisting of zero

or more elements of Ω.

• P is a function which assigns a probability to each event, A ∈ F.

21



2. MATHEMATICAL SUMMARY

2.2.7 Random variables

A random variable is a function X : Ω → R such that for all a ∈ R, the event

{X ≤ a} = {ω;X(ω) ≤ a} for ω ∈ Ω. It can be assigned a probability, that

is (Bremaud, 1999),

{X ≤ a} ∈ F. (2.16)

In this definition, Ω is the sample space of the probability space, ω is an outcome

in the sample space, and F is the collection of all possible events. Suppose now we

define X : Ω → D where D is a denumerable set. Then X is said to be a discrete

random variable where for all x ∈ D

{X = x} ∈ F. (2.17)

Random variables for which the output is a real value are usually referred to as

being continuous. The set R (in the discrete case, D) is called the state space of the

random variable (DeGroot & Schervish, 2002).

Example Consider an experiment in which two 6-sided dice are thrown, after

which, the sum of both upturned faces is recorded. The sample space is the set of

all pairs {i, j} where i, j ∈ {1, 2, . . . , 6}. All possible events in F, with the respective

assigned probabilities, are shown in the table below.

A ∈ F 2 3 4 5 6 7 8 9 10 11 12

P(A ∈ F) 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

In this example our discrete random variable takes the outcome {i, j}, i, j ∈ {1, 2, . . . , 6}
and returns the event i+ j.

2.2.8 Cumulative distribution function

Given a probability distribution defined over all possible outcomes of an experiment,

we assign a probability for each value a random variable may take. Let A be some

interval on the real line, and let ω be one of possibly many distinct outcomes in the

sample space, such that, for a random variable X, we have X(ω) ∈ A. Then

Pr(X ∈ A) =
∑
ω

Pr(ω : X(ω) ∈ A). (2.18)
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In the case that the random variable has a discrete state space, let A be some value

in state space of the random variable. Let ω be one of, possibly many, distinct

outcomes in the sample space, such that, X(ω) = A. We define

Pr(X = A) =
∑
ω

Pr(ω : X(ω) = A). (2.19)

Let x denote the upper boundary of the semi-closed interval (−∞, x] on the real

line. The cumulative distribution function of a random variable X, with continuous

state space, is the function

FX(x) = Pr(X ≤ x). (2.20)

In the discrete case, let xi, i = 1, . . . , n, be n (n may be countably infinite) ordered

elements of the state space of a random variable X, with x = sup{x1, x2, . . .}. The

discrete cumulative density function (CDF), is given by

FX(x) =
n∑
i=1

Pr(X = xi). (2.21)

Example Consider again the experiment in which two dice are thrown and the

sum of the upturned face values is recorded. Let A be the event that the value

observed is 4. The three outcomes ω which give this value are {1, 3}, {2, 2} and

{3, 1}, each occurring with probability 1/36. The probability of observing 4 is 1/12

from equation (2.19). In Figure 2.1 we plot the CDF for this example as defined

by (2.21).

Figure 2.1: Cumulative density function for the sum of upturned face values of two
dice.
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2.2.9 Probability distribution functions

The probability density function (PDF) of the continuous random variable X, is the

integrable function fX : R→ [0, 1], such that

FX(x) =

∫ x

−∞
fX(y) dy, (2.22)

where FX(x) is the cumulative density function of X. The PDF, fX(x), for any

continuous random variable, satisfies∫ ∞
−∞

fX(y) dy = 1. (2.23)

That is to say, the probability that the random variable takes some value is certain,

i.e., the experiment is guaranteed to occur. The PDF of a random variable allows

the computation (or specification) of probabilities of any event. Let A = [a1, a2] be

an event on the real line, then for a random variable X : Ω → R with PDF fX(x),

the probability that X ∈ A, is given by

Pr(X ∈ A) =

∫ a2

a1

fX(y) dy. (2.24)

The probability mass function (PMF) of a discrete random variable, X, is the func-

tion

fX(x) = Pr(X = x). (2.25)

Let S be the set of distinct values X may take, then the PMF satisfies∑
x∈S

fX(x) = 1. (2.26)

Example For the example in which two dice are thrown, the PMF for the sum of

upturned faces is given in Figure 2.2.

2.2.10 Expectation

The expectation of a continuous random variable corresponds, in an intuitive sense,

to the average value one would expect to observe if an experiment is repeated a

large number of times. The expectation of a random variable X, with PDF fX(x),
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Figure 2.2: Probability mass function for the sum of upturned face value of two
thrown dice.

is defined (DeGroot & Schervish, 2002)

E[X] =

∫ ∞
−∞

yfX(y) dy. (2.27)

More generally, the expected value of a measurable function of a random variable,

g(X), is defined as,

E[g(X)] =

∫ ∞
−∞

g(y)fX(y) dy. (2.28)

For a discrete random variable X, taking values in S, the expected value of a mea-

surable function of the random variable, g(X), is defined as

E[g(X)] =
∑
x∈S

g(x)fX(x). (2.29)

2.2.11 Moments

The moment of a random variable X, is a quantitative measure of some “feature”

of the random variable’s probability distribution. For example, the first moment of

a random variable is the mean, which corresponds to the “centre” of the probabil-

ity distribution. The second moment of a random variable is the variance, which

characterises the “width” of the random variable’s probability distribution. Higher

moments characterise further descriptions of the shape of a random variable’s prob-

ability distribution, such as for example how symmetric the distribution is, more

commonly known as skewness (Ziegel, 2002).

The kth moment about c of a random variable X, with PDF fX(x), is defined as

m(k) = E[(X− c)k] =

∫ ∞
−∞

(y − c)kfX(y) dy. (2.30)

For a discrete random variable X taking values in S, with PMF fX(x), the kth
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moment about c is defined as

m(k) = E[(X− c)k] =
∑
x∈S

(x− c)kfX(x). (2.31)

In the case that c = 0, the moment is referred to as the uncentred or raw moment

of the random variable. In the case that c = µ = E[X], the moment is referred to as

the central moment or the moment of X about the mean. For example, the variance,

σ2, of a random variable X is the second central moment,

σ2 = V[X] = E[(X− µ)2] (2.32)

A useful relation derived directly from (2.32), in both the continuous and discrete

case, is

σ2 = E[X2]− (E[X])2. (2.33)

Example Let us return to our example in which two dice are thrown and the sum

of upturned face values is recorded. The mean is 7 and the variance is 35/6.

2.2.12 Generating functions

Generating functions provide an alternative representation of a random variable’s

probability distribution. They provide convenient methods for investigating various

properties of random variables, such as the probability of a random variable taking

a particular value or deriving the moments of a random variable.

Probability generating functions

The probability generating function (PGF) of a random variable X is defined

G(z) = E[zX] =


∫ ∞
−∞

zyfX(y) dy, if X is continuous,∑
x∈S

zxfX(x), if X is discrete.
(2.34)

If the PGF of a random variable X is known, one can recover the probability distri-

bution of the random variable. Taking repeated derivatives of G with respect to z,
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we find

dkG(z)

dzk
def
= G(k)(z) =


∫ ∞
−∞

y!

(y − k)!
zy−kfX(y) dy, if X is continuous,∑

x∈S

y!

(y − k)!
zy−kfX(x), if X is discrete.

(2.35)

Evaluating the derivatives of G at z = 0 and dividing the resulting expressions by

k!, we find

G(k)(0)

k!
=


1

k!

∫ ∞
−∞

y!

(y − k)!
fX(y)δ(y − k) dy = fX(k), if X is continuous,

k!

(k − k)!
fX(k) = fX(k) if, X is discrete,

(2.36)

where δ(y − k) is the Dirac delta function (Dirac, 1947).

Moment generating functions

The moment generating function (MGF) of a random variable X is defined

M(t) = E[etX] =


∫ ∞
−∞

etyfX(y) dy, if X is continuous,∑
x∈S

etxfX(x), if X is discrete.
(2.37)

The MGF allows immediate computation of the moments of a random variable.

Taking the derivatives of M we have

dkM(t)

dtk
def
= M (k)(t) =


∫ ∞
−∞

yketyfX(y) dy, if X is continuous,∑
x∈S

xketxfX(x), if X is discrete.
(2.38)

Evaluating the derivatives of the moment generating function at t = 0, we derive

M (k)(0) =


∫ ∞
−∞

ykfX(y) dy = m(k), if X is continuous,∑
x∈S

xkfX(x) = m(k), if X is discrete,
(2.39)

where m(k) are the kth raw moments of the random variable X.
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2.2.13 Common probability distributions

Exponential distribution

The probability density function of an exponentially distributed random variable X

is

fX(x;λ) =

 λe−λx if x ≥ 0,

0 if x < 0.
(2.40)

A random variable with an exponential PDF has mean λ−1 and variance λ−2.

Normal distribution

A normally distributed random variable X has probability density function

fX(x;µ, σ2) =
1√

2πσ2
e
−

(x− µ)2

2σ2 . (2.41)

The parameters µ and σ2 are respectively the mean and variance of the normally

distributed random variable X.

Log-normal distribution

The probability density function of a log-normally distributed random variable is

fX(x;µ, σ2) =


1

x
√

2πσ2
e
−

(log x− µ)2

2σ2 if x > 0,

0 if x ≤ 0.

(2.42)

The mean and variance of a random variable with log-normal PDF are respectively,

E[X] = eµ+ 1
2
σ2

, (2.43)

V[X] = (eσ
2 − 1)e2µ+σ2

. (2.44)
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2.3 Stochastic processes

2.3 Stochastic processes

2.3.1 Stochastic process

A stochastic process is a family of random variables {X(t): t ∈ T}, taking values in

a common sample space, S (Allen, 2003). Stochastic processes are the probabilistic

counterpart to deterministic processes, such as the time evolution of the solutions of

ordinary differential equations. In the stochastic models introduced in this thesis, the

index set T, represents time. We only deal with stochastic processes with discrete

sample spaces. Typically, random variables in this thesis represent some discrete

measurable quantity, such as the number of cells in a population, or the number of

receptors on the surface of a cell. Such stochastic processes are said to be continuous

in time and discrete in space.

2.3.2 Markov chains

The following definition is taken directly from reference (Allen, 2003). The stochastic

process {X(t)}, t ∈ [0,∞), is called a continuous time Markov chain, if it satisfies

the following condition: for any sequence of real numbers satisfying 0 ≤ t0 ≤ t1 ≤
. . . ≤ tn ≤ tn+1,

Prob{X(tn+1) = in+1 | X(t0) = i0,X(t1) = i1, . . . ,X(tn) = in}

=Prob{X(tn+1) = in+1 | X(tn) = in}. (2.45)

Loosely speaking: this definition guarantees that the state of a stochastic process,

in the immediate future, depends only on the state of the process in the present. All

past information about the process is forgotten. This condition is called the Markov

property. Stochastic processes with this property are often referred to as being

memoryless. All the stochastic processes introduced in this thesis are memoryless.

State probabilities

Each random variable of a stochastic process {X(t)}, t ∈ [0,∞), which takes values

on the set of natural numbers (including zero), S = N0, has an associated probability

distribution {pn(t)}∞n=0, where

pn(t) = Prob{X(t) = n}. (2.46)
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Each state probability, pn(t), gives the probability that the process is in the state n

at time t.

Transition probabilities

Let t1 < t2 be two different times in T. The transition probabilities relate the random

variables X(t1) and X(t2). Define

pj,i(t1, t2) = Prob{X(t2) = j | X(t1) = i}, (2.47)

for all i, j ∈ S. In this thesis, all transition probabilities depend only on the dif-

ference between t1 and t2. Such stochastic processes are said to be stationary or

homogeneous. Let t2 − t1 = τ be some time interval, then

pj,i(τ) = Prob{X(t2) = j | X(t1) = i} = Prob{X(τ) = j | X(0) = i}. (2.48)

The transition rates for a stochastic process are defined (Allen, 2003)

qj,i =


lim∆t→0+

pj,i(∆t)

∆t
, if i 6= j,

lim∆t→0+
pj,i(∆t)− 1

∆t
, if i = j.

(2.49)

2.3.3 Chapman-Kolmogorov equations

The Chapman-Kolmogorov equations for a continuous time stochastic process are (Allen,

2003; Bremaud, 1999)

pj,i(t+ ∆t) =
∞∑
k=0

pj,k(∆t)pk,i(t). (2.50)

Intuitively, these equations can be thought of as expressing the probability of a

stochastic process visiting state j, from state i, in time t+ ∆t, as equal to the sum

of the probabilities for each possible path from i from j (via intermediate states k)

in time ∆t.

2.3.4 Birth and death processes

A specific type of continuous time Markov process, which we make use of in this

thesis, is the birth and death process. In a birth and death process, the state space is

a well ordered set, typically the set of positive integers, including zero. Transitions in
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a birth and death process are only permitted between adjacent states. For example,

in a one-dimensional process, the stochastic process can only increase, or decrease,

by one unit during any jump of the process. Define the state space S to be the set

of positive integers including zero (S may also be finite with largest state N). Then

a stochastic process {X(t)}, t ∈ [0,∞), with transition probabilities defined as

pj,i(∆t) = Prob{X(t+ ∆t) = j | X(t) = i}

=



λi∆t+ o(∆t), if j = i+ 1,

µi∆t+ o(∆), if j = i− 1,

1− (λi + µi)∆t+ o(∆t), if j = i,

o(∆t), if j 6= −1, 0, 1,

(2.51)

is called a birth and death process. The notation o(•) is the Landau order symbol.

For a function f , we say f(∆t) = o(∆t) if, as ∆t→ 0+, f satisfies

lim
∆t→0+

f(∆t)

∆t
= 0. (2.52)

The corresponding transition rates for a birth and death process are then

qj,i =



λi, if j = i+ 1,

µi, if j = i− 1,

−(λi + µi), if j = i,

0, if j 6= −1, 0, 1,

(2.53)

The Chapman-Kolmogorov equations for a birth and death process are

pj,i(t+ ∆t) = pj−1,i(t)[λj−1∆t+ o(∆t)] + pj+1,i(t)[µj+1∆t+ o(∆t)]

+ pj,i(t)[1− (λj + µj)∆t+ o(∆t)] +
∑

k 6=j−1,j,j+1

pk,i(t)o(∆t). (2.54)

Dividing by ∆t and taking the limit ∆t→ 0+, we derive

dpj,i(t)

dt
= pj−1,i(t)λj−1 + pj+1,i(t)µj+1 − pj,i(t)(λj + µj). (2.55)
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Let us assume the initial state of the process is fixed in the state x0, such that

Prob{X(0) = x0} = 1. From the law of total probability and the definition of

conditional probability, we may express the state probabilities as

pn(t) = Prob{X(t) = n} =
∑
k

Prob{X(t) = n and X(0) = k}

= Prob{X(t) = n and X(0) = x0}

= Prob{X(t) = n | X(0) = x0}Prob{X(0) = x0}

= Prob{X(t) = n | X(0) = x0} = pn,x0(t). (2.56)

It therefore follows from (2.55), that the state probabilities satisfy

dpn(t)

dt
= pn−1(t)λn−1 + pn+1(t)µn+1 − pn(t)(λn + µn). (2.57)

The above equation is commonly referred to as the master equation for a birth and

death process.

2.3.5 Inter-event times

Define the continuous random variable, T > 0, to be the time the process waits in

the state n, before jumping to the next state. From the definition of the transition

probabilities of a birth and death process, the probability that the process remains

in the state n, after a small time ∆t, is

pn,n(∆t) = 1− (λn + µn)∆t+ o(∆t). (2.58)

Let G(t) be the probability that the process remains in state n at time t, then

G(t) = Prob{T > t}. (2.59)

From the condition T > 0, it follows that G(0) = Prob{T > 0} = 1. If ∆t is

sufficiently small then (Allen, 2003),

G(t+ ∆t) = G(t)[1− (λn + µn)∆t+ o(∆t)]. (2.60)
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Dividing by ∆t and letting ∆t→ 0+, we derive the differential equation

dG(t)

dt
= −(λn + µn)G(t), G(0) = 1, (2.61)

which has the specific solution

G(t) = e−(λn+µn)t. (2.62)

From the definition of G, it follows that

Prob{t ≥ T} = 1− e−(λn+µn)t. (2.63)

This is the cumulative density function of an exponentially distributed random vari-

able, T , whose probability distribution is specified by the parameter λn +µn. Wait-

ing times in a birth and death process are, therefore, exponentially distributed with

mean (λn + µn)−1 and variance (λn + µn)−2.

2.3.6 The Gillespie algorithm

The Gillespie algorithm allows numerical simulations of stochastic processes with

exponentially distributed waiting times (Gillespie, 1977). The algorithm follows the

procedure given below:

• Define two counters to represent time, t, and the state of the process, n. Set

t = 0 and n = n0, where n0 is the initial condition for the quantity of interest.

Choose a time to end the process, Tend.

• Repeat the following sub-procedure until t > Tend.

1. Calculate the transition rate to each state that can be reached from n in

a single jump. Let α be the sum of these transition rates.

2. Draw a random time, τ , from an exponential distribution with parameter

α−1.

3. Update time t, to t+ τ .

4. Draw a uniformly distributed random number, r, from the interval [0, α].

5. Partition the interval [0, α] by the relative size of each transition proba-

bility.

6. Determine which sub-interval r falls within.
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7. Update n based on the corresponding transition probability determined

by r.

8. Record the time and state of the process as a pair, (t, n).

• Algorithm ends.

In practice, the Gillespie algorithm allows one to produce a vector, which has as

components, the times at which the process undergoes a transition. A corresponding

vector composed of the states of the process following each jump, is also produced.

2.3.7 A simple example of cellular division

Consider a single cell which undergoes repeated divisions. We assume the time each

cell takes to divide, is exponentially distributed with parameter λ. This simple

example is known as a birth process for which the transition probabilities are

pj,i(∆t) = Prob{X(t+ ∆t) = j | X(t) = i}

=


λi∆t+ o(∆t), if j = i+ 1

1− λi∆t+ o(∆t), if j = i

o(∆t), if j 6= −1, 0, 1

(2.64)

The master equations for this process are

dpn(t)

dt
= pn−1(t)λ(n− 1)− pn(t)λn, n ≥ 1, pn(0) = δn,1, (2.65)

where δn,1 is the Kronecker delta1. Since this is a linear system of first order ODEs,

there exists a unique solution (Coddington & Levinson, 1955). Furthermore, the

specific solution given initial conditions, pn(0) = δn,1, is

pn(t) =
n−1∑
k=0

(−1)k
(n− 1)!

k!(n− k)!
e−λ(k+1)t. (2.67)

To verify this is indeed the unique solution, one may take the derivative of (2.67)

and recover (2.65).

1The Kronecker delta function is defined

δi,j =

{
0 if i 6= j,
1 if i = j.

(2.66)
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Proof. Taking derivatives of (2.67) we have,

dpn(t)

dt
=− λ

n−1∑
k=0

(−1)k
(n− 1)!

k!(n− k − 1)!
(k + 1)e−λ(k+1)t

=λ(n− 1)pn−1(t)− λ(n− 1)pn−1(t)− λ
n−1∑
k=0

(−1)k
(n− 1)!

k!(n− k − 1)!
(k + 1)e−λ(k+1)t

=λ(n− 1)pn−1(t)− λ(n− 1)
n−2∑
k=0

(−1)k
(n− 2)!

k!(n− k − 2)!
(k + 1)e−λ(k+1)t

− λ
n−1∑
k=0

(−1)k
(n− 1)!

k!(n− k − 1)!
(k + 1)e−λ(k+1)t

=λ(n− 1)pn−1(t)− λ
n−2∑
k=0

(−1)k
(n− 1)!

k!(n− k − 1)!
(n− k − 1)(k + 1)e−λ(k+1)t

− λ
n−1∑
k=0

(−1)k
(n− 1)!

k!(n− k − 1)!
(k + 1)e−λ(k+1)t

=λ(n− 1)pn−1(t)− λ
n−1∑
k=0

(−1)k
(n− 1)!

k!(n− k − 1)!
(n− k − 1)(k + 1)e−λ(k+1)t

− λ
n−1∑
k=0

(−1)k
(n− 1)!

k!(n− k − 1)!
(k + 1)e−λ(k+1)t

=λ(n− 1)pn−1(t)− λ
n−1∑
k=0

(−1)k
(n− 1)!

k!(n− k − 1)!
(n)(k + 1)e−λ(k+1)t

=λ(n− 1)pn−1(t)− λnpn(t).

In the top panel of Figure 2.3 we plot the time evolution of the state probabilities

for n ∈ {1, 2, 5, 10, 20, 40}, where λ = 1. Looking at the plot for n = 1, we see

that the probability the initial cell remains undivided is an exponentially decreasing

function of time. The probability of observing a finite number of cells peaks at some

later time. The position in time of this peak shifts to the right as the number of

cells increases.

In the bottom panel of Figure 2.3 we plot a single stochastic trajectory realised

using the Gillespie algorithm. The blue line is the theoretical mean number of cells

at time t (µ(t) = eλt), and the red area is the mean ± 1.96 standard deviations, as

calculated from the theoretical variance (σ2(t) = e2λt − eλt).
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Figure 2.3: Top: time evolution of the state probabilities for n ∈ {1, 2, 5, 10, 20, 40}.
Bottom: One stochastic realisation (black), mean number of cells (blue) and mean
± 1.96 standard deviations (red).
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The code used to produce the realisation in Figure 2.3 was implemented in the

programming language Python. The section of code which implements the Gillespie

algorithm is presented below:

# Define time course

T_end = 10.0

# Define parameters & initial conditions

lam = 1.0

# Gillespie algorithm

n = 1

t = 0

time = [0]

cells = [n]

while t < T_end:

# Choose next event from random variable r2

if t != 0:

s = 0

s_ = s

s += birth_rate

if s_ <= r2 <= s:

n += 1

cells.append(n)

time.append(t)

# Calculate transition rates & sum over all rates

birth_rate = lam * n

sum_rates = sum([birth_rate])

# Draw random variables to determine next event

# and corresponding time to event
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r1 = random.random()

tau = math.log(1/r1) / sum_rates

t += tau

cells.append(n)

if t < T_end:

time.append(t)

else:

time.append(T_end)

r2 = random.random() * sum_rates
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Chapter 3

Modelling naive T cell homeostasis

A population of T cells in homeostasis is able to adapt to changes in various features

of the population. An example of such a change could be a loss of cells within the

population; in which case homeostatic mechanisms serve to replace the lost cells,

returning the population to its original number. Another example may be a loss in

the diversity of TCR specificities within a population; a homeostatically regulated

population should be able to reconstitute its original diversity. Many examples of

homeostatically regulated systems, not necessarily restricted to T cells, can be found

in the biological literature. Some of these examples the reader is no doubt familiar

with, such as blood pressure or body temperature.

For the next three chapters we shall be considering the homeostasis of the peripheral

naive T cell pool. Introduced in Chapter 1, the periphery of the mammalian immune

system is made up of the lymph nodes, spleen and mucosa-associated lymphoid

tissues. Mature naive T cells which have egressed from the thymus circulate through

these tissues, wherein their survival (and hence population size) is regulated by the

availability of trophic factors required for survival such as IL-7 or access to sp:MHC.

In the periphery, naive T cells may die or divide, depending on the signals available.

Furthermore, in healthy mice and humans, there is output of recently matured T cells

from the thymus throughout life. Understanding the relative contribution each of

these factors has to regulating the absolute number of naive T cells is non-trivial.

It is our hope that mathematical modelling can aid this understanding.

In this chapter we introduce deterministic mathematical models which describe naive

T cell homeostasis. We begin with a very simple description, which, whilst math-

ematically easy to analyse, does a poor job of describing the number of T cells in

steady state conditions. The limitations of the simple model are discussed, following

which we present some examples which have been taken in the literature to improve
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it. In the final section of this chapter we introduce a deterministic description in

which T cell homeostasis is assumed to be dependent on the availability of a resource,

included as a variable within the model.

3.1 A simple model of a peripheral naive T cell

population

We introduce a simple model to describe a population of naive T cells in the periph-

ery. The model is described by a pair of coupled ordinary differential equations with

constant coefficients. The steady state behaviour of the model is analysed, and then

we discuss how this model compares against qualitative biological observations.

Naive T cells are assumed to either be resting or cycling (undergoing a round of

cell division). Let R(t) be the number of resting naive T cells. Formally R(t)

corresponds to the number of cells in the G0 phase of the cell cycle (Cooper, 2000).

Furthermore, we define C(t) to be the number of naive T cells in either one of the

G1, S, G2 and M phases of the cell cycle (Cooper, 2000). The assumptions of the

model are presented forthwith.

Thymic production of naive T cells Naive T cells are assumed to mature

within the thymus. Following maturation, we assume naive T cells leave the thymus

and enter the peripheral lymphatic tissue. At this point we assume that naive

T cells are resting. We let the rate of thymic export of naive T cells be constant.

We introduce the parameter ν to denote this rate.

Cell death We assume resting naive T cells may undergo cell death due to apop-

tosis. We further assume cycling cells may experience cell death as a consequence

of induced apoptosis and mechanistic failures during the division process. The rates

of T cell death are assumed to be proportional to the respective population sizes.

We denote the constants of proportionality as µR and µC , respectively.

Entry into the cell cycle We assume resting naive T cells may be induced to

undergo division in response to the cytokine IL-7 and TCR interactions with sp:MHC

presented by APCs. The availability of these stimuli is assumed to be constant. We

model entry into division as a transition term from the pool of resting T cells to

the pool of cycling T cells. This transition occurs at a rate proportional to the
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number of resting T cells. The constant of proportionality for the rate at which this

transition occurs is denoted by the parameter ρ.

Cell division We assume cycling T cells take a fixed length of time to complete

division. Following division, we assume a cycling T cell produces two daughter

T cells in the resting state. In reference (Reynolds et al., 2012) we consider alter-

native possibilities for the location of daughter T cells in this model. Here however,

we restrict ourselves to assuming both daughter T cells are produced in the resting

state. The rate of production of daughter T cells is defined to be proportional to

the number of T cells in cycle, with rate constant λ.

Deterministic model As stated earlier, we describe the model as a pair of cou-

pled ordinary differential equations. Based on the assumptions introduced above,

the equations are expressed as follows:

dR(t)

dt
= ν − (µR + ρ)R(t) + 2λC(t), (3.1)

dC(t)

dt
= ρR(t)− (µC + λ)C(t). (3.2)

Initial conditions are specified as R(t = 0) = R0 and C(t = 0) = C0. We note that

functionally similar versions of this model have been proposed to describe naive

T cells previously. One example of mention is give in reference (Ribeiro & de Boer,

2008).

3.1.1 Exact solutions of the simple model

Let us define

X̄(t) =

R(t)

C(t)

 . (3.3)

Then, the system of ODEs given by equations (3.1) and (3.2) can be expressed as

d

dt
X̄(t) =

−(µR + ρ) 2λ

ρ −(µC + λ)

 X̄(t) +

ν
0

 = AX̄(t) +

ν
0

 . (3.4)
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The eigenvalues of the matrix A are

ε1,2 =
1

2

(
−(µR + ρ+ µC + λ)±

√
(µR + ρ+ µC + λ)2 + 8ρλ− 4(µR + ρ)(µC + λ)

)
,

(3.5)

where we let ε1, ε2 correspond to the positive and negative root, respectively. The

eigenvectors associated with the above eigenvalues are

V̄1 =

v11

v12

 =

 1

ε1 + µR + ρ

2λ

 , (3.6)

V̄2 =

v21

v22

 =

 1

ε2 + µR + ρ

2λ

 . (3.7)

We let

h1 =
v22ν

v11v22 − v12v21

, (3.8)

h2 = − v12ν

v11v22 − v12v21

. (3.9)

The exact solution of the simple model is then

X̄(t) =

(
C1eε1t − h1

ε1

)
V̄1 +

(
C2eε2t − h2

ε2

)
V̄2, (3.10)

where

C1 =

(
R0 + h1v11

ε1
+ h2v21

ε2

)
(v11v22 − v12v21 + v11v12)−

(
C0 + h1v12

ε1
+ h2v22

ε2

)
v2

11

v11 (v11v22 − v12v21)
,

(3.11)

C2 =

(
C0 + h1v12

ε1
+ h2v22

ε2

)
v11 −

(
R0 + h1v11

ε1
+ h2v21

ε2

)
v12

v11v22 − v12v21

. (3.12)

For stationary solutions we require ε1, ε2 < 0, which is true if and only if

2ρλ < (µR + ρ)(µC + λ). (3.13)
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In the event that the parameters satisfy the above inequality, solutions asymptoti-

cally converge to the pair of stationary solutions X∗ = (R∗, S∗), where

R∗ =
ν(µC + ρ)

(µR + ρ)(µC + λ)− 2ρλ
, (3.14)

C∗ =
νρ

(µR + ρ)(µC + λ)− 2ρλ
. (3.15)

If the parameters are such that equation (3.13) is not satisfied, then solutions grow

exponentially as t tends to infinity.

3.1.2 Simple model discussion

Homeostasis of T cells is characterised by a population that is not only of constant

size in time, but that will also return to its original size following perturbations in

the number of T cells. For this simple model, only parameters that satisfy (3.13)

give rise to deterministic trajectories that approximate T cell homeostasis. Parame-

ters not satisfying this condition result in deterministic trajectories tending towards

infinity, which clearly does not represent in vivo T cell dynamics. For the simple

model introduced above, steady state solutions are proportional to the rate of thymic

output. This implies that the number of T cells will tend to zero if thymic output (ν)

is zero. This prediction contradicts observations from experimental mouse studies

and clinical studies in humans. Children undergoing cardiothoracic surgery rou-

tinely have the thymus removed (thymectomy). Despite removal of the thymus, in

later life, these individuals maintain a peripheral T cell population; however, the

total number of cells may be different to a non-thymectomised individual (Halnon

et al., 2005). Thymectomised mice maintain steady populations of T cells. Indeed,

such mice may even reconstitute the peripheral compartment following acute T cell

depletion (Jameson, 2005). An in vivo environment characterised by low numbers

of T cells is referred to as being lymphopenic. It is widely reported in the liter-

ature that T cell populations expand in response to an abundance of homeostatic

stimuli such as TCR signalling induced by recognition of sp:MHC and cytokine sig-

nalling (Martin et al., 2003; Min et al., 2003; Seddon & Zamoyska, 2002). Parameter

values may be chosen such that the simple model captures the early expansion phase

of T cell population dynamics, but since it cannot possess a steady state that is not

maintained by thymic output, the model cannot capture the plateau at which an

expanding T cell population reaches equilibrium. This motivates a modification to
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the simple model: we introduce a carrying capacity to limit the expansion of the

T cell population.

3.2 Introducing a carrying capacity

From a mathematical perspective, there exist many possible modifications one can

make to the simple model, such that solutions tend to some equilibrium for any

choice of parameters. For each of the possible modifications, the dynamics of the

model may behave differently. Choosing a particular method should then be mo-

tivated by the biology. In the simple model, we have assumed that self-peptide

and cytokine availability is constant, where availability is encoded in the parameter

governing the rate of entry into division, ρ, and the respective death rates, µR and

µC . One possible modification is to assume that the availability of self-peptide and

cytokines decreases as the population of T cells expand. Mathematically, we could

choose to replace the parameter ρ by a decreasing function of the number of T cells

(R(t)) competing for self-peptide and cytokine induced signals. That is, one might

replace ρ by the term

ρ exp

(
−R(t)

κ

)
, (3.16)

where κ corresponds to the population size. The parameter κ governs the degree to

which this function tends to zero, as the population of cells increases. Specifically,

at R(t) = κ, this function decreases by approximately 63%. Recently, a model in-

corporating such a term to describe the rate of entry into the cell cycle has been

published. In reference (Hapuarachchi et al., 2013), the authors publish a two com-

partment model of resting and cycling CD4+ naive T cells in the periphery. The rate

of entry into the cell cycle is described by a term similar to that above. However,

this model also includes a similar term to describe the death rate of resting naive

T cells, as well as a non-linear term to describe the rate of thymic output.

Allowing for a decrease in the availability of self-peptide and cytokines, as the pop-

ulation of T cells expand, is however only one of many modifications we could make.

Under specific conditions, T cells have been observed to induce apoptosis in other

T cells within the population. Apoptosis induced in this manner is a result of inter-

actions between the Fas receptor and Fas-ligand (FasL) (Brunner et al., 1995). This

approach has been taken in the literature previously (Callard et al., 2003; Yates

et al., 2000). We note that in these studies, the class of T cells being modelled is

assumed to be activated in response to immunisation. This approach then may not
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3.2 Introducing a carrying capacity

be suitable to modelling, for example, the naive T cell population. T cell activation

may be a requirement for expression of Fas/FasL (Suda et al., 1995). Despite this,

a simple method in which these assumptions may be realised within the model is to

include a second order death term to model cell-cell contact resulting in Fas-FasL in-

teractions. One might modify the ODE describing the time dynamics of the resting

population to include a quadratic death term of the form

−ξR(t)R(t). (3.17)

Alternatively, one could assume only cycling cells express Fas/FasL receptor/ligand.

We could include a similar term in the ODE describing the time dynamics of the

cycling population. In the following sections we analyse the simple model with these

modifications.

3.2.1 Self-peptide and cytokine availability decreases as a

population expands

We assume the rate of entry into cell cycle is a decreasing function of the number

of resting T cells. The model is then fully described by the pair of ODEs

dR(t)

dt
= ν −

(
µR + ρ exp

(
−R(t)

κ

))
R(t) + 2λC(t), (3.18)

dC(t)

dt
= ρ exp

(
−R(t)

κ

)
R(t)− (µC + λ)C(t). (3.19)

Due to the exponential term, we cannot express stationary solutions by means of

regular analytic functions. The stationary number of resting T cells, R∗, is found

by solving the relation

f(R∗) =
ν

R∗
= ρ

(
µC − λ
µC + λ

)
exp

(
−R

∗

κ

)
+ µR = g(R∗). (3.20)

Notice that limx→0+ f(x) = +∞ > g(0) = ρ

(
µC − λ
µC + λ

)
+ µR and limx→+∞ f(x) =

0 < limx→+∞ g(x) = µR. Since both f and g are continuous functions on the open

interval (0,∞), it follows from the intermediate value theorem (Truss, 1997), that

there exists at least one solution R∗ such that f(R∗) = g(R∗). The stationary

solution R∗ > 0 is unique if λ > µC , however, for λ < µC , we may find multiple

solutions.
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Proof. Suppose λ > µC . Assume there exist two solutions x∗1 < x∗2 such that f(x∗1) =

g(x∗1) and f(x∗2) = g(x∗2). Given that λ > µC , the derivatives satisfy f ′(x) < 0 and

g′(x) > 0. It follows

f(x∗1) > f(x∗2) = g(x∗2) > g(x∗1). (3.21)

This contradiction implies x∗1 = x∗2. That is, any stationary solution is unique.

A numerical exploration of the trajectories1 has revealed, for the case λ > µC , that

the model either tends to the unique fixed point or exhibits periodic solutions. For

λ < µC , we could find parameter sets for which there exists multiple fixed points,

which could be concurrently stable. Late time trajectories, were then dependent on

the choice of initial conditions. We cannot claim however, that these are the only

behaviours for late times.

Consider that as R(t)→ +∞, the rate of entry into division, ρ exp
(
−R(t)

κ

)
R(t)→

0+. This ensures that solutions cannot grow to infinity, even if 2ρλ < (µR +ρ)(µC +

λ), which is the stability criterion for the simple model, presented in Section 3.1.

If thymic output, ν, is zero

Suppose now we assume no thymic output, that is, we set ν = 0. There exist two

possible sets of steady solutions. Respectively, these are

R∗ = 0, C∗ = 0, (3.22)

R∗ = κ log

(
ρ(λ− µC)

µR(λ+ µC)

)
, C∗ =

µRκ

λ− µC
log

(
ρ(λ− µC)

µR(λ+ µC)

)
. (3.23)

The second set exists if and only if λ > µC . The Jacobian for the system, evaluated

at stationary solution (R∗, C∗), is

J =

 −µR − ρ exp

(
−R

∗

κ

)(
1− R∗

κ

)
2λ

ρ exp

(
−R

∗

κ

)(
1− R∗

κ

)
−µC − λ

 . (3.24)

The Jacobian J , has negative eigenvalues if and only if trace(J) < 0 and det(J) > 0.

For the first set of stationary solutions (R∗ = C∗ = 0), these conditions are satisfied

1We used a 4th order Runge-Kutta scheme to compute deterministic trajectories.
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3.2 Introducing a carrying capacity

if and only if
ρ(λ− µC)

µR(λ+ µC)
< 1. (3.25)

The second set of stationary solutions is stable if and only if λ > µC and

1 <
ρ(λ− µC)

µR(λ+ µC)
< exp

(
1 +

(µR + λ+ µC)(λ− µC)

µR(λ+ µC)

)
. (3.26)

If the right hand side of the above inequality is not satisfied, we observe periodic

solutions which neither decay to the steady state nor grow to infinity. In Figure 3.1

we show example trajectories for the cases when (3.25) holds (left panel), (3.26)

holds (middle panel) and when neither hold (right panel).

Figure 3.1: Numerical solution of equations (3.18) and (3.19) for the parameter set
ν = 0, µR = 0.4, µC = 0.5, λ = 1, κ = 10 and ρ = 1 (left), 10 (middle) and 100
(right). Initial conditions are R(0) = C(0) = 1.

3.2.2 Fas-FasL induced apoptosis as a consequence of cell-

cell interactions

We modify the simple model such that we include a second order death term. The

appearance of this term is motivated by the observation that T cells may induce

apoptosis in other T cells due to Fas-FasL interactions (Ju et al., 1999). In this

section we assume Fas-FasL interactions are mediated between resting T cells. The

modified pair of ODEs governing the time evolution of the model are:

dR(t)

dt
= ν − (µR + ρ)R(t) + 2λC(t)− ξR(t)R(t), (3.27)

dC(t)

dt
= ρR(t)− (µC + λ)C(t). (3.28)
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Stationary solutions R∗ satisfy the equation

1

2
R∗ − ΓR∗ − ν

2ξ
= 0, (3.29)

where

Γ =
2λρ− (µR + ρ)(µC + λ)

2ξ(µC + λ)
. (3.30)

It follows that solutions R∗ satisfy

R∗ = Γ±
√

Γ2 +
ν

ξ
. (3.31)

For solutions satisfying R∗ greater than zero we are required to take the positive

square root and thus

R∗ =

(
Γ +

√
Γ2 +

ν

ξ

)
, (3.32)

C∗ =
ρ

(µC + λ)

(
Γ +

√
Γ2 +

ν

ξ

)
. (3.33)

The Jacobian of this system is given by

J =

 −µR − ρ− 2ξR∗ 2λ

ρ −µC − λ

 . (3.34)

The trace of the Jacobian is,

trace(J) = −µR − ρ− 2ξR∗ − µC − λ (3.35)

which, for positive solutions R∗, is negative. The determinant of the Jacobian is

det(J) = (µC + λ)(µR + ρ) + 2ξR∗(µC + λ)− 2λρ. (3.36)

The determinant is strictly positive for positive solutions R∗.

Proof. Assume det(J) < 0. Then,

(µC + λ)(µR + ρ) + 2ξR∗(µC + λ) < 2λρ

⇒ R∗ < Γ
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⇒ Γ +

√
Γ2 +

ν

ξ
< Γ

⇒
√

Γ2 +
ν

ξ
< 0.

This contradiction implies det(J) > 0 for positive solutions R∗.

It follows then that the positive solution (R∗, C∗) is stable. Note, if we assume

R∗ < 0 (by taking the negative square root), it is easily proved in the same manner

as above that det(J) < 0 for all parameters. Hence, negative solutions are unstable.

If thymic output, ν, is zero

In the event that thymic output is zero, the single set of steady solutions above

splits into the two solutions:

R∗ = 0, C∗ = 0, (3.37)

R∗ = 2Γ, C∗ =
2ρΓ

µC + λ
. (3.38)

This first set of solutions, corresponding to extinction of both populations, exists

unconditionally. The second set of solutions is positive if Γ > 0. The Jacobian for

this system is the same as when ν > 0, that is, the Jacobian is given by (3.35).

For the first set of solutions, trace(J) < 0 and the determinant is positive provided

Γ < 0; that is, provided

2λρ < (µR + ρ)(µC + λ). (3.39)

The second set of solutions exists and is stable provided this inequality does not

hold.

If Fas-FasL interactions are mediated by cycling cells

Suppose now that Fas-FasL interactions are mediated between cycling T cells, rather

than resting T cells. The model is described by the pair of ODEs

dR(t)

dt
= ν − (µR + ρ)R(t) + 2λC(t), (3.40)

dC(t)

dt
= ρR(t)− (µC + λ)C(t)− ξC(t)C(t). (3.41)
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The positive stationary solution for ν > 0 is

R∗ =
ν

µR + ρ
+

2λ

µR + ρ

(
Γ +

√
Γ2 +

ρν

ξ(µR + ρ)

)
, (3.42)

C∗ = Γ +

√
Γ2 +

ρν

ξ(µR + ρ)
. (3.43)

In a completely analogous method as before, it is readily shown that these solutions

are stable. For ν = 0, there again exist two stationary solutions:

R∗ = 0, C∗ = 0, (3.44)

R∗ =
4λΓ

µR + ρ
, C∗ = 2Γ. (3.45)

The first one is stable provided the inequality

2λρ < (µR + ρ)(µC + λ), (3.46)

holds, whilst the second one is positive and stable provided this inequality does not

hold.

3.2.3 Discussion on including a carrying capacity

Consider the modified simple model in which the rate of transition into the cell cycle

is a decreasing function of the number of resting cells. If ν > 0, the model either

tends to a fixed-point (which may not be unique if λ < µC), or exhibits periodic

solutions. If ν = 0, then there exist two stationary solutions, one characterised by

extinction of the T cell population, and one in which population growth is limited

by the availability of self-peptide and cytokines. In both cases, if parameters are

such that the positive stationary solutions are stable, this model can be used to

describe T cell populations in equilibrium and during expansion in lymphopenic en-

vironments. The model is limited with respect to capturing changes in the lifetimes

of resting cells, corresponding to µ−1
R . Lifetimes of resting cells are invariant during

lymphopenia and lymphocyte populations in equilibrium. Such a prediction may

not match the biology, since the survival of naive T cells is dependent on both the

availability of signals from cytokines and TCR induced signals through recognition

of self-peptides presented by APCs. The availability of these trophic factors is pre-

sumably limited in homeostatic environments when compared to lymphopenic ones.
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Now consider the modified simple models in which we assume a cell-cell contact

term to describe Fas-FasL interactions. For ν > 0 we observe a single steady state,

which is stable for all choices of parameters. When ν = 0 we observe a pair of steady

states, one corresponding to extinction of the T cell population, and one in which

population growth is balanced against T cell death due to T cell induced apoptosis.

This second modified model does not possess periodic solutions. One can make sim-

ilar criticisms as before for this approach, the most obvious being the rate of entry

into cell cycle. This model assumes this rate is constant for both lymphopenic and

homeostatic environments. This is likely to be not the case due to the change in

availability of self-peptides and cytokines, from which entry into cell cycle may be

induced. Additionally, whilst it has been reported in the literature that activated

T cells induce cell death by Fas-FasL interactions, the same may not be true for

naive T cells.

For the simple models presented, analysis of the model behaviour is relatively

straightforward. However it is unreasonable to use these simple approaches to make

predictions on the more nuanced details of T cell population dynamics such as the

lifetimes of individual T cells. In the next section we expand the simple model to

include an equation modelling the availability of some resource. Furthermore, the

rates of entry into the cell cycle and death are described by functions of a resource.

3.3 Modelling a resource

Naive T cells in the periphery require signals induced from trophic factors such as

IL-7 and recognition of self-peptides. In vitro studies have shown that the survival

of CD8+ naive T cells is dependent on the concentration of available IL-7 (Palmer

et al., 2011). For low concentrations of IL-7, the amount of signalling naive CD8+

T cells receive is sufficient to promote cell survival, whereas the same cells have

been shown to proliferate in excess IL-7 (Palmer et al., 2011). Studies show that

the ability of a naive T cell to survive, or undergo division, is dependent on the

amount of signalling a cell receives with respect to signalling thresholds for survival

and proliferation. The threshold for proliferation has been shown to be at least an

order of magnitude greater than the signalling threshold for survival (Palmer et al.,

2011). We use these observations to construct functions that describe the respective

loss rates and rates of entry into cell cycle for naive T cells. These functions are then

included in the simple model to refine the previously discussed weak assumptions of

constant rates of entry into cell cycle and death.
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In this model we assume the amount of signalling naive T cells receive is a function

of some global resource, the amount of which is encoded in the variable I(t). We

introduce a variable to describe the amount of signal each T cell in the population

receives. This variable is denoted by S(t), and is assumed to be some function of

the resource, I(t). Each naive T cell within the population is assumed to experience

the same amount of signal for a given amount of the resource.

3.3.1 Rate of cell loss

Suppose that we consider each T cell as a distinct object, rather than considering the

population as some continuous density. We assume each T cell within this population

receives, at resource availability I, an amount of signal S. Further suppose that each

T cell, labelled by index j, possesses some threshold θsj , above which signalling is

required for survival of the cell. Let f sj (S, θsj) be the rate of cell death for each T cell

j and define:

f sj (S, θsj) =

 µR if S < θsj ,

0 if S > θsj .
(3.47)

Thus, we assume that T cell j may survive indefinitely if the amount of signal re-

mains above this cell’s signalling threshold θsj . If the amount of signal is below this

threshold, we assume this cell will be lost due to cytokine deprivation. If cytokine

signalling is insufficient to promote survival, the average time for the loss of this cell

is given by µ−1
R .

We assume each T cell j possesses its individual survival threshold θsj . We assume

no T cell can survive indefinitely, independently of the resource I, thus we choose a

distribution such that each signalling threshold is greater than zero. Furthermore,

the survival threshold for each T cell is finite, that is, there exists some finite amount

of signalling which is sufficient to maintain the cell. We are taking a deterministic

approach to modelling the population of cells, therefore we approximate the discrete

distribution of cells by a continuous distribution. Let Θ be a continuous random

variable defined on the state space of all possible survival thresholds. We assume Θ

is log normally distributed. That is, we define Θ ∼ logN(log θs,
1

2α2 ). The choice of

a log normal distribution ensures that all survival thresholds are positive. Further-

more, the probability of Θ taking a survival threshold for which no finite amount of

signalling can promote cell survival is vanishingly small. This implies that no T cell

can survive independently of IL-7. Lastly, log normal distributions have been used
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in the literature to describe receptor densities on the surface of T cells, therefore it

seems reasonable to assume other quantities may be described by these distributions.

By definition, the probability density of Θ is given by

pΘ(θsj) =
α

θsj
exp

(
−
(
α
(
log θsj − log θs

))2
)
. (3.48)

From equations (3.47) and (3.48), we derive the average rate of loss of T cells from

this population. We denote the average rate of resting T cell loss due to death as

µ̄R(S(t)). Then,

µ̄R(S(t)) =

∫ +∞

0

f sj (S(t), θsj)pΘ(θsj) dθj

=

∫ +∞

S(t)

µRpΘ(θsj) dθsj

=
1

2
µR (1− erf (α (logS(t)− log θs))) . (3.49)

The average rate of cell loss is a monotonically decreasing function of the amount

of signalling S. As S → +∞, the average rate of cell loss tends to zero. Fur-

thermore, µ̄R(S) obtains a maximum equal to µR when S = 0. We assume the

distribution of signalling thresholds does not change with changes in the size of the

naive population.

3.3.2 Rate of entry into the cell cycle

We derive the average rate of entry into the cell cycle in a similar manner to the

derivation of the average rate of cell loss. This time we assume each cell possesses a

signalling threshold, which signalling must exceed to enter division, denoted by θpj .

The rate of entry into division for each individual cell j is then assumed to be given

by

fpj (S, θpj ) =

 ρ if S > θpj ,

0 if S < θpj .
(3.50)

As before, we assume the distribution of each threshold θpj can be approximated

by some continuous distribution, which we again choose to be log normal. Let
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Figure 3.2: Example plots of µ̄R(S(t)) (left panel) and ρ̄(S(t)) (right panel). Pa-
rameter values used: µR = 1, ρ = 1, α = 2, θs = 50 and θp = 100.

Θ ∼ logN(log θp,
1

2α2 ). Then the average rate of entry into the cell cycle is

ρ̄(S(t)) =

∫ +∞

0

f(S(t), θpj )pΘ(θpj ) dθpj

=

∫ S(t)

0

ρpΘ(θpj ) dθpj

= ρ

(
1−

∫ +∞

S(t)

pΘ(θpj ) dθpj

)
= ρ

(
1− 1

2
(1− erf (α (logS(t)− log θp)))

)
=

1

2
ρ (1 + erf (α (logS(t)− log θp))) . (3.51)

The rate of entry into the cell cycle is then an increasing function of the amount of

signal S. This function is equal to zero when S = 0 and tends to ρ as S → +∞.

We plot examples of both µ̄R(S(t)) and ρ̄(S(t)) in Figure 3.2.

3.3.3 Modelling changes in resources

Changes in the concentration of resource, denoted by I(t), are encoded in a dif-

ferential equation. The resource is assumed to be produced by cells not of the

T cell population; therefore, we assume production occurs at some constant rate

independent of the size of the T cell population. Let β denote the rate of resource

production. We assume that in the absence of a T cell population, the resource

reaches some equilibrium, at which, production of the resource is balanced against
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the loss of the resource. The simplest approach to encoding this within an ODE,

is to assume the rate of loss of the resource is proportional to the amount of the

resource. The constant of proportionality for this relation is denoted by δ. We lastly

assume the resource is consumed by the T cell population. The rate of this con-

sumption is assumed to be proportional to the product of the amount of signal each

T cell receives and the number of T cells. We denote the constant of proportionality

by γ. The rate of change of resource is then

dI(t)

dt
= β − γS(t)R(t)− δI(t). (3.52)

Initial conditions are chosen to be I(0) = I0. We do not assume cycling cells consume

the resource.

3.3.4 Signalling as a function of the resource

In this first approach, we make the simple assumption that the amount of signal

depends linearly on the availability of the resource. That is,

S(t) = ηI(t). (3.53)

In Chapter 4 of this thesis, we derive a signalling relation from a consideration of

the events occurring at the molecular level.

3.3.5 Resource model

Combining the simple model with the equation describing changes in resources and

the rate functions (3.49) and (3.51), we may write a down a system of ODEs to

describe the model. The system of ODEs is:

dI(t)

dt
= β − γS(t)R(t)− δI(t), (3.54)

dR(t)

dt
= ν − (µ̄R(S(t)) + ρ̄(S(t)))R(t) + 2λC(t), (3.55)

dC(t)

dt
= ρ̄(S(t))R(t)− (µC + λ)C(t). (3.56)

The rates of cell death and entry into the cell cycle, µ̄R(S(t)), ρ̄(S(t)) are respectively

given by equations (3.49) and (3.51), and the signalling relation is given by (3.53).
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Figure 3.3: Diagrammatic illustration of the resource model. T cells leaving the
thymus enter the resting state. Cells in either a resting state or cycling state may
die; the rate of death from the resting state is dependent on the availability of the
resource. Resting cells enter the cell cycle at a rate dependent on the resource.
Cycling cells produce two daughter cells in the resting state upon completion of the
cell cycle.

3.3.6 Steady state analysis of the resource model

Setting the derivative in equations (3.54) and (3.56) equal to zero, we derive the

steady state solutions I∗ and C∗ as functions of R∗. Respectively these are:

I∗ =
β

γηR∗ + δ
, (3.57)

C∗ =
ρ̄(S∗)R∗

µC + λ
, (3.58)

where S∗ = S(I∗). Setting the derivative in equation (3.55) equal to zero and

substituting the above two expressions for I∗ and C∗, we find

ν

R∗
= µ̄R (S∗) + ρ̄ (S∗)

(
1− 2λ

µC + λ

)
, (3.59)

where

S∗ =
ηβ

γηR∗ + δ
. (3.60)

Let us define S̄(x) =
ηβ

γηx+ δ
. Consider the functions

f(x) =
ν

x
, (3.61)

g(x) = µ̄R
(
S̄(x)

)
+ ρ̄

(
S̄(x)

)(
1− 2λ

µC + λ

)
. (3.62)

Letting x→ 0+ we have f(x)→ +∞ and g(0) = c1, where c1 is some real number.
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Furthermore, considering the limit x → +∞, we find f(x) → 0 and g(x) → c2,

where c2 is a positive real number. It follows from the intermediate value theorem

that there exists at least one solution x∗ > 0 such that f(x∗) = g(x∗). Suppose

λ ≥ µC , then g′(x) > 0. Since f ′(x) < 0, the solution x∗ is unique when λ ≥ µC .

For λ < µC , there exists at least one solution, however this solution may not be

unique since g′(x) can be either positive or negative, allowing multiple intersections

between f and g. Numerically, we observed up to three solutions, however, there

may be more for some parameter sets.

In the case that λ > µC , it cannot be proved that the unique stationary solution

is stable for all parameter values, indeed, numerical exploration reveals the model

exhibits periodic solutions in some region of the parameter space.

3.3.7 If thymic output, ν, is zero

Suppose now that we set ν = 0, stationary solutions are found by solving the system

of equations

β − γS∗R∗ − δI∗ = 0, (3.63)

− (µ̄R(S∗) + ρ̄(S∗))R∗ + 2λC∗ = 0, (3.64)

ρ̄(S∗)R∗ − (µC + λ)C∗ = 0. (3.65)

From (3.65) we find C∗ =
ρ̄(S∗)

µC + λ
R∗. Substituting this into (3.64) we find

− (µ̄R(S∗) + ρ̄(S∗))R∗ +
2λρ̄(S∗)

µC + λ
R∗ = 0. (3.66)

One solution is R∗ = 0, which implies I∗ = β
γ

and C∗ = 0. Alternatively, if R∗ > 0,

then the resource satisfies

µ̄R(S∗)(µC + λ) + (µC − λ)ρ̄(S∗) = 0, (3.67)

from which R∗ is found from (3.63) and C∗ > 0 is found from (3.65). The second

solution satisfying I∗, R∗, C∗ > 0 exists if and only if λ > µC . The Jacobian for this
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system is

J =


−γηR∗ − δ −γηI∗ 0

−η(µ̄′R(S∗) + ρ̄′(S∗))R∗ −(µ̄R(S∗) + ρ̄(S∗)) 2λ

ηρ̄′(S∗)R∗ ρ̄(S∗) −(µC + λ))

 . (3.68)

The characteristic polynomial of det(J − ξI), evaluated at the set of stationary

solutions I∗ = β
δ
, R∗ = C∗ = 0, is

ξ3 + a1ξ
2 + a2ξ + a3 = 0, (3.69)

where

a1 = δ + µ̄R(s) + ρ̄(s) + µC + λ, (3.70)

a2 = δ (µ̄R(s) + ρ̄(s) + µC + λ) + (µC + λ)µ̄R(s) + (µC − λ)ρ̄(s), (3.71)

a3 = δ ((µC + λ)µ̄R(s) + (µC − λ)ρ̄(s)) , (3.72)

s =
ηβ

δ
. (3.73)

The stationary solution I∗ = β
δ
, R∗ = C∗ = 0 is stable if and only if ai > 0 for

i = 1, 2, 3 and a1a2 > a3. Since both µ̄R and ρ̄ are strictly positive, a1 > 0. Consider

that we can write a2 = δ(a1 − δ) + δ−1a3. Then a1a2 = δa1(a1 − δ) + δ−1a1a3 =

δa1(a1− δ) + a3 + δ−1(a1− δ)a3 > a3. Thus, a necessary and sufficient condition for

stability is a3 > 0, which holds if and only if

δ ((µC + λ)µ̄R(s) + (µC − λ)ρ̄(s)) > 0. (3.74)

Clearly, a sufficient condition for stability is λ < µC . The stationary solution I∗ = β
δ

represents the maximum possible amount of resource at equilibrium. Thus, any

solution S∗ satisfying equation (3.67) is less than s. Given S∗ < s, we have µ̄R(s) <

µ̄R(S∗) and ρ̄(s) > ρ̄(S∗), therefore, for λ > µC , it follows a3 < 0. Therefore λ < µC

is also a necessary condition for stability of solutions I∗ = β
δ
, R∗ = C∗ = 0.
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3.3.8 Resource model discussion

In healthy individuals, from energy considerations alone, it seems reasonable to

expect that T cells which enter division are more likely to survive and produce

daughter cells than fail to complete the cycle and die. Mathematically, within the

resource model this corresponds to the condition λ > µC . We have shown that if

this parameter relation holds, then there exists a unique fixed point representing

the number of T cells at equilibrium. This fixed point, however, is not necessarily

stable, indeed, during numerical explorations we observed periodic solutions.

Under conditions favouring stability, the resource model may approximately describe

the homeostasis of T cell numbers for healthy individuals. We may also use this

model to describe T cell populations expanding in a lymphopenic environment. If

initial conditions are such that I0 is equal to I∗ evaluated at R∗ = 0 (i.e., the

maximum possible stable resource) and further, we set R0 to be some small value

relative to R∗ for a given parameter (also, set C0 = 0), then the resource model

predicts the rate of entry into the cell cycle is sufficient enough to allow the T cell

population to expand. As the trajectories of the model approach the steady value

R∗, we see a drop in the number of cycling cells, the balance of total cell numbers

shifts to a greater fraction of quiescent, resting cells (see Figure 3.4).

The resource model is of greater interest in the case λ < µC . Under this restriction

the model may possess either one positive fixed point or a set of three positive fixed

points. In the case of three fixed points, ordered by their size, within some region

of the parameter space, the smallest and largest fixed points are stable whilst the

middle point is unstable. A change in various parameters of the model can result in

a saddle-node bifurcation, moving through which can cause a significant change in

the number of T cells at equilibrium. In Figure 3.5 we give an example of this for

changes in the parameter ν. We note however, that the parameters used to produce

Figures 3.4 and 3.5 are somewhat arbitrary. Later in this thesis we introduce a

parameter set representative of in vivo time-scales for T cell dynamics.

In humans the thymus is atrophic (Haynes & Hale, 1998; Simpson et al., 1975).

As a consequence, there is a reduction in the number of thymocytes entering the

periphery as an individual ages. In healthy individuals, this reduction is relatively

slow compared to the time scales of T cell dynamics (Bains et al., 2009b). In the

resource model this reduction could be included by defining the parameter ν to be a

continuous function of time, with the condition that ν changes slowly compared to

the model dynamics. This allows us to assume that after some initial time period,
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3. MODELLING NAIVE T CELL HOMEOSTASIS

the model is in quasi-equilibrium for a given time, and corresponding rate of thymic

output ν(t). This implies that when cell division is impaired, a reduction in thymic

output can cause the model to bifurcate.

In equation 3.53 we chose a linear relationship between the extra-cellular concen-

tration of IL-7 (I(t)) and the amount in IL-7 induced signalling (S(t)). This rela-

tionship however has no biological basis, rather, it was chosen to be simple here for

the purposes of introducing the resource model. In the next chapter we consider

IL-7R dynamics during IL-7 signalling, from which we derive a signalling relation to

improve upon the one used here. This signalling relation is then used in Chapter 5

to refine the model shown in this section.

Figure 3.4: Left: Example solutions for a population of resting and cycling cells
during lymphopenic expansion. As the number of cells approaches the fixed point
we see the balance of cell numbers shifts to favour a greater a proportion of resting
cells representing a more quiescent repertoire. Right: The density of resource. The
resource is at its maximum stable value at time zero, during the expansion the
resource density is reduced. The parameters used to produce this plot were chosen
to be non-representative of the biology. In Chapter 5 we revisit the issue of the
parameter estimation. The parameter values chosen are: β = 1, γ = 1, δ = 1,
η = 1, ν = 1, µR = 1, µC = 0.1, ρ = 1, λ = 3, α = 5, θs = 0.05, θp = 0.1.
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3.3 Modelling a resource

Figure 3.5: A reduction in thymic output will cause a modest reduction in the
number of T cells at equilibrium. Near the critical value of ν = 0.2 cells day−1, a
small reduction in thymic output can cause a drop of several orders of magnitude
in the number of T cells in equilibrium. The parameter values used are given in the
caption of Figure 3.4.
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Chapter 4

A stochastic model of

interleukin-7 signalling

In Section 3.3.4 we related the average signalling S and the resource availability I by

the linear function (3.53). This choice was motivated by little more than the fact that

such a relationship is simple to work with when analysing the the model. However,

one problem with this choice is that it predicts that the amount of signalling a T cell

can receive is unbounded. Consider that T cells internalise IL-7 following its binding

to the IL-7 receptor (Henriques et al., 2010). Furthermore, note that the maximum

number of IL-7R receptors a T cell can express is finite, therefore it follows that

there should be an upper limit to the amount of signalling a T cell can receive.

Exactly what functional form the signalling relation should take is unclear. To ad-

dress this issue, in this chapter we consider the molecular dynamics of IL-7 signalling.

We develop a stochastic Markov model in which we introduce random variables to

represent the number of IL-7 receptors on the surface of a cell, the amount of signal

internal to the cell, and, in the latter part of this chapter, also consider internalised

receptors which may or may not be bound to IL-7. This chapter is split into two

sections. In Section 4.1 we introduce a basic model of the molecular events of IL-7

signalling. This model possesses non-linear transition terms. This first section is

used to explain the methods we use to deal with the non-linear terms in the deriva-

tion of the moments of the stochastic model. In Section 4.2 we introduce a more

detailed stochastic model of IL-7 signalling. The methods developed in the first sec-

tion are then used to analyse the second, more complicated, model. At the end of

Section 4.2 we derive functions which respectively describe the relationship between

the concentration of IL-7 external to the T cell and the amount of signalling the
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4. A STOCHASTIC MODEL OF INTERLEUKIN-7 SIGNALLING

T cell receives. In addition, we derive a relationship between the external concen-

tration of IL-7 and the rate of internalisation of IL-7. These relationships are then

used in Chapter 5, in which redefine the model presented in Section 3.3.

4.1 Simple signalling relation

We consider a single T cell which is assumed to be suspended in some well-mixed

medium containing the resource. The resource is assumed to be IL-7 and we let the

concentration be fixed. The availability of IL-7 is denoted by the parameter I. IL-7

signals through the IL-7 receptor (IL-7R) and activates several signal transduction

pathways. IL-7 signalling through the JAK and STAT pathways results primarily in

the production of anti-apoptotic proteins such as Bcl-2 (Jiang et al., 2005). Many

of the proteins in these pathways are essential for the development of T cells in the

thymus (Fry & Mackall, 2005). IL-7 further activates the PI3 kinase and Src kinase

pathways (Dadi et al., 1994; Seckinger & Fougereau, 1994). These pathways pro-

mote the survival and growth of lymphocytes both during development and during

peripheral maintenance (Bradley et al., 2005; Datta et al., 1999; Rathmell et al.,

2001). T cell survival depends on a large number of distinct proteins, in particular

the ratio of pro and anti-apoptotic proteins, which respectively promote or retard

apoptosis. IL-7 signalling has been shown to promote JAK3 activity which is re-

quired for production of Bcl-2 (Eynon et al., 1999; Suzuki et al., 2000), however this

is by no means the only mechanism by which IL-7 promotes cell survival. The aim

of this work is not to model each individual intra-cellular pathway IL-7 activates.

Instead, we introduce a pair of discrete random variables which describe the num-

bers of IL-7 receptors on the surface of the cell, and the number of signalling units

inside the cell. We introduce the idea of signalling units as an abstraction to de-

scribe the amount of pathway activation resulting from internalisation of IL-7:IL-7R

complexes. Studies of CD8+ T cells support the notion that CD8+ T cells require

a minimum amount of IL-7 signalling to prevent death by apoptosis (Palmer et al.,

2011). The same studies highlighted the need for a minimum, but greater, amount

of IL-7 signalling for proliferation of CD8+ T cells. The behaviour of the single cell

in this model is assumed to be determined by the amount of signalling units the cell

possesses relative to thresholds for survival and division. As in the simple resource

model, we assume thresholds in signalling must be surpassed to promote either cell

survival or entry into the cell cycle.
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4.1 Simple signalling relation

We introduce the family of pairs of discrete random variables {X1(t),X2(t)}t≥0,

where X1(t) denotes the number of IL-7 receptors on the surface of the cell and

X2(t) denotes the number of signalling units inside the cell. Time, t, is measured in

hours. Both random variables take values on the space of positive integers (including

zero) with probabilities

pn1,n2(t) = Prob{X1(t) = n1,X2(t) = n2 | X1(0) = n1,0,X2(0) = n2,0}, n1, n2 ∈ N∪{0}.
(4.1)

The pair of random variables take the values (n1,0, n2,0) at time t = 0. Formally the

family of pairs of random variables {X1(t),X2(t)}t≥0 are a continuous-time homoge-

neous Markov process. Denote by n the pair of states (n1, n2), then the infinitesimal

transition probabilities of this Markov process are defined as

pm,n(∆t) = Prob{X1(t+ ∆t) = m1,X2(t+ ∆t) = m2 | X1(t) = n1,X2(t) = n2}.
(4.2)

In the following section we outline the biological assumptions from which the tran-

sition probabilities of this stochastic process are defined.

4.1.1 Transition probabilities

Transcription of IL-7R

We assume in the absence of signalling the IL-7 receptor is transcribed and ex-

pressed at a constant rate, denoted by the parameter ν. We furthermore assume

IL-7 signalling induces negative feedback on the rate of transcription of the recep-

tor (Jiang et al., 2005). The amount of negative feedback is a function of the number

of signalling units. This function takes the form e−n2/κ, where κ is the number of

signalling units required to retard the expression rate by approximately 63%. The

transition probability is encoded as

p(n1+1,n2),n(∆t) = νe−n2/κ∆t+ o(∆t), n1, n2 ≥ 0. (4.3)

Internalisation of IL-7R

IL-7 receptor is assumed to be internalised. The rate of internalisation is denoted

by the parameter µ. The transition probability encoding this is

p(n1−1,n2),n(∆t) = µn1∆t+ o(∆t), n1 ≥ 1, n2 ≥ 0. (4.4)

65



4. A STOCHASTIC MODEL OF INTERLEUKIN-7 SIGNALLING

Production of signal

We assume signalling units are generated at a rate proportional to the number of

receptors bound to IL-7. In this first approach, we assume generation of signal is

described by a cross-product term between the number of IL-7Rs and the external

concentration of IL-7, γIn1. The concentration of IL-7, I, is assumed to measured

in the units ng ml−1, in keeping with commonly reported units in the literature. The

parameter γ therefore takes the units ng−1ml hour−1. The transition probability is

written as

p(n1,n2+1),n(∆t) = γIn1∆t+ o(∆t), n1, n2 ≥ 0. (4.5)

Decay of signal

We assume the IL-7 signal decays at a rate proportional to the number of signalling

units. This rate is specified by the parameter ρ. The transition probability encoding

decay of signal is

p(n1,n2−1),n(∆t) = ρn2∆t+ o(∆t), n1 ≥ 0, n2 ≥ 1. (4.6)

Conservation of probabilities

Probabilities should be conserved, therefore we introduce the probability that no

transition occurs in a small time interval ∆t as:

pn,n(∆t) = 1−
(
νe−n2/κ + µn1 + γIn1 + ρn2

)
∆t+ o(∆t), n1, n2 ≥ 0. (4.7)

4.1.2 Master equation

Based on the defined transition probabilities, we write down the system of forward

Kolmogorov equations governing the time evolution of the transition probabilities

of the Markov process (Allen, 2003):

dpn(t)

dt
=νe−n2/κp(n1−1,n2)(t) + µ(n1 + 1)p(n1+1,n2)(t)

+ γIn1p(n1,n2−1)(t) + ρ(n2 + 1)p(n1,n2+1)(t)

−
(
νe−n2/κ + µn1 + γIn1 + ρn2

)
pn(t). (4.8)

The state space for this model is defined as the set of pairs of positive integers, that

is, (n1, n2) ∈ N0×N0. Therefore, we define p(n1−1,n2)(t) = p(n1,n2−1)(t) = 0, such that
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these equations are consistent at the lower limits of the state space. The stochastic

process cannot take either a negative number of receptors or signalling units.

4.1.3 Time evolution of the moment generating function

The moment generating function for the stochastic process is defined as

M(θ1, θ2, t)
def
=

+∞∑
n1=0

+∞∑
n2=0

en1θ1+n2θ2pn(t), n = (n1, n2), θ1, θ2 ∈ R+. (4.9)

We use the moment generating function technique (described in reference (Allen,

2003)) to derive a partial differential equation describing the time evolution of the

moment generating function. From this PDE we then derive ordinary differential

equations governing the time evolution of the moments of the stochastic process. The

moment generating function technique is outlined in the remainder of this section.

First multiply equation (4.8) by en1θ1+n2θ2 . We next sum over all probabilities in

the state space. Note that in the summations of terms encoding loss of receptor and

decay of signal, we sum from n1 = −1 and n2 = −1, respectively. This ensures we

count the terms containing the probabilities p(0,0)(t). Thus, equation (4.8) becomes

+∞∑
n1=0

+∞∑
n2=0

dpn(t)

dt
en1θ1+n2θ2 =

+∞∑
n1=1

+∞∑
n2=0

νe−n2/κp(n1−1,n2)(t)e
n1θ1+n2θ2

+
+∞∑

n1=−1

+∞∑
n2=0

µ(n1 + 1)p(n1+1,n2)(t)e
n1θ1+n2θ2

+
+∞∑
n1=0

+∞∑
n2=1

γIn1p(n1,n2−1)(t)e
n1θ1+n2θ2

+
+∞∑
n1=0

+∞∑
n2=−1

ρ(n2 + 1)p(n1,n2+1)(t)e
n1θ1+n2θ2

−
+∞∑
n1=0

+∞∑
n2=0

(
νe−n2/κ + µn1 + γIn1 + ρn2

)
pn(t)en1θ1+n2θ2 .

(4.10)

We next rewrite the summations such that they are expressed over the same limits

and collect terms by the parameter coefficients. Assume the moment generating

function exists and hence the summation on the left hand side of the above equation

converges absolutely, then, we can interchange the derivative and summation. This
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gives

∂

∂t

+∞∑
n1=0

+∞∑
n2=0

pn(t)en1θ1+n2θ2 =ν(eθ1 − 1)
+∞∑
n1=0

+∞∑
n2=0

e−n2/κpn(t)en1θ1+n2θ2

+ µ(e−θ1 − 1)
+∞∑
n1=0

+∞∑
n2=0

n1pn(t)en1θ1+n2θ2

+ γI(eθ2 − 1)
+∞∑
n1=0

+∞∑
n2=0

n1pn(t)en1θ1+n2θ2

+ ρ(e−θ2 − 1)
+∞∑
n1=0

+∞∑
n2=0

n2pn(t)en1θ1+n2θ2 . (4.11)

A Taylor expansion of the function f(x) = e−x/κ about the point x = 0 gives the

relation

f(x) =
+∞∑
j=0

(−1)j

j!κj
xj, (4.12)

which holds for all x ∈ R. Using this relation, we express our equation in terms of the

partial derivatives of the moment generating function with respect to θi. Therefore

equation (4.11) may be written as

∂M(θ1, θ2, t)

∂t
=ν(eθ1 − 1)

+∞∑
j=0

(−1)j

j!κj
∂jM(θ1, θ2, t)

∂θj2
+ µ(e−θ1 − 1)

∂M(θ1, θ2, t)

∂θ1

+ γI(eθ2 − 1)
∂M(θ1, θ2, t)

∂θ1

+ ρ(e−θ2 − 1)
∂M(θ1, θ2, t)

∂θ2

. (4.13)

Taking derivatives of the moment generating function with respect to θi and eval-

uating at θi = 0, i = 1, 2, we derive expressions for the moments of the stochastic

process. For a general bivariate process, we can write

m(i,j) def
= E[Xi

1(t)Xj
2(t)] =

∂i+jM(θ1, θ2, t)

∂θi1∂θ
j
2

∣∣∣∣
θ1=θ2=0

. (4.14)

The moments m(i,j) depend on time and should be written as m(i,j)(t), from now

on however, we drop the dependence on time for notational convenience. Therefore,

finding the derivatives of equation (4.13) with respect to θ1 and θ2 and evaluating

the resulting expressions at θ1 = θ2 = 0, we derive dynamical equations for the first
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moments of the stochastic process. We have

dm(1,0)

dt
= ν

+∞∑
j=0

(−1)j

j!κj
m(0,j) − µm(1,0), (4.15)

dm(0,1)

dt
= γIm(1,0) − ρm(0,1). (4.16)

Finding the second derivatives of equation (4.13) allows us to write down ODEs for

the second moments of the process. Doing so gives the set of equations:

dm(2,0)

dt
=ν

+∞∑
j=0

(−1)j

j!κj
m(0,j) + 2ν

+∞∑
j=0

(−κ−1)
j

j!
m(1,j) + µm(1,0) − 2µm(2,0) (4.17)

dm(1,1)

dt
=ν

+∞∑
j=0

(−1)j

j!κj
m(0,j+1) − µm(1,1) + γIm(2,0) − ρm(1,1), (4.18)

dm(0,2)

dt
=γIm(1,0) + 2γIm(1,1) + ρm(0,1) − 2ρm(0,2). (4.19)

4.1.4 Mean field approximation

In this section we derive a mean field approximation to the stochastic process. As-

sume that the variance and higher moments of the process are zero, then, for a

discrete random variable, Y, we have from Lemma 3 in Appendix B:

E[Yk] = E[Y]k, for k ≥ 2. (4.20)

The infinite series in equation (4.15) can be expressed as

+∞∑
j=0

(−1)j

j!κj
m(0,j) =

+∞∑
j=0

(−κ−1)
j

j!

(
m(0,1)

)j
= e−m

(0,1)/κ. (4.21)

Letting m1(t) = m(1,0), m2(t) = m(0,1), the mean field approximation to the stochas-

tic process is given by the following pair of ODEs:

dm1(t)

dt
= νe−m2(t)/κ − µm1(t), (4.22)

dm2(t)

dt
= γIm1(t)− ρm2(t). (4.23)
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4.1.5 First order approximation

The coupled pair of ODEs describing the time evolution of the stochastic process,

(4.15) and (4.16)), constitute an open set of equations. The solution of this set of

equations depends on an infinite number of higher moments. We require a closed

system of equations when computing the first two moments of the process, namely

the mean and variance. We derive a closed system of equations by truncating the

infinite summation. We may choose to truncate the sum at j = 0. However, in

doing so we lose the dependence on the number of signalling units in the term

representing the rate of expression of the IL-7 receptor, ν. Let us define a first order

approximation as one in which we take j = 1. This gives the following system of

equations, which describe the time evolution of the first and second moments of the

process:

dm(1,0)

dt
=ν

(
1− m(0,1)

κ

)
− µm(1,0), (4.24)

dm(0,1)

dt
=γIm(1,0) − ρm(0,1), (4.25)

dm(2,0)

dt
=ν

(
1− m(0,1)

κ

)
+ 2ν

(
1− m(1,1)

κ

)
+ µm(1,0) − 2µm(2,0) (4.26)

dm(1,1)

dt
=ν

(
m(0,1) − m(0,2)

κ

)
− µm(1,1) + γIm(2,0) − ρm(1,1), (4.27)

dm(0,2)

dt
=γIm(1,0) + 2γIm(1,1) + ρm(0,1) − 2ρm(0,2). (4.28)

The linear approximation gives a system of closed equations which can be solved

to find the first and second moments of the process. Furthermore, under this ap-

proximation, if we are interested in the higher moments of the system, we are free

derive the equations describing their time evolution by taking further derivatives of

equation (4.13). There is no complication from the linear approximation. For the

linear approximation, notice that the term representing the rate of expression of the

IL-7 receptor becomes negative as the average number of signalling units exceeds κ.

From a biological perspective we cannot have a negative expression rate and so this

approximation is only valid when m(0,1) < κ.
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4.1.6 Second order approximation

Let us define the second order approximation as one in which we set j = 2 in the

infinite summation of moments in 4.13. This gives the system of equations:

dm(1,0)

dt
=ν

(
1− m(0,1)

κ
+
m(0,2)

2κ2

)
− µm(1,0), (4.29)

dm(0,1)

dt
=γIm(1,0) − ρm(0,1), (4.30)

dm(2,0)

dt
=ν

(
1− m(0,1)

κ
+
m(0,2)

2κ2

)
+ 2ν

(
m(1,0) − m(1,1)

κ
+
m(1,2)

2κ2

)
+ µm(1,0) − 2µm(2,0), (4.31)

dm(1,1)

dt
=ν

(
m(0,1) − m(0,2)

κ
+
m(0,3)

2κ2

)
− µm(1,1) + γIm(2,0) − ρm(1,1), (4.32)

dm(0,2)

dt
=γIm(1,0) + 2γIm(1,1) + ρm(0,1) − 2ρm(0,2). (4.33)

This set of equations is not a closed system; that is, there exist terms with third

order moments in equations (4.31) and (4.32). To allow solutions of the system to

be computed we must use a moment closure technique. Moment closure techniques

allow closed systems of equations to be formed by expressing higher order moments

as polynomial functions of the lower order moments of the system. One chooses such

a dependence by making assumptions on the distribution of the fluctuations of the

process. For example, one might assume fluctuations are normally distributed. In

a normal distribution, third order and higher order moments are zero. Correspond-

ingly, for a random variable Y ∼ N(µ, σ2), one may derive the relation

E[Y3] = 3E[Y]E[Y2]− 2E[Y]3. (4.34)

In reference (Singh & Hespanha, 2006b), Singh and Hespanha suggest matching the

first derivatives of the approximations to the (n + 1)th moments of the stochastic

system, to the first derivatives of the true (n + 1)th moments, when attempting to

close a system for the first nth moments. Specifically, the authors consider clos-

ing a system for the first two moments. This entails introducing a polynomial to

express third moments in terms of the first and second moments. Borrowing from
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reference (Singh & Hespanha, 2006b), let us define

m(0,3) =


(
m(0,2)

m(0,1)

)3

, if m(0,1) > 0,

0, if m(0,1) = 0,

(4.35)

m(1,2) =


m(0,2)

m(1,0)

(
m(1,1)

m(0,1)

)2

, if m(1,0) > 0 and m(0,1) > 0,

0, if m(1,0) = 0 or m(0,1) = 0.

(4.36)

These polynomials are symmetric with respect to the indices of the moments. Thus,

one may easily derive m(3,0) and m(2,1) by replacing m(i,j) by m(j,i) in the above

equations. This moment closure approach is equivalent to assuming fluctuations are

distributed log-normally (Singh & Hespanha, 2006a). For a log-normally distributed

random variable Y, the probability that Y takes the value zero is zero. Therefore

the log-normal approximation is only valid when Xi ≥ 1, i = 1, 2. However, for the

stochastic process we have introduced, there is a non-zero probability that Xi = 0,

i = 1, 2, for some time t ≥ 0. Suppose however, that we assume the random

variables Xi, i = 1, 2 have a multi-variate log-normal distribution. In Theorem 1 in

Appendix A we show that in the limit E[Xi] → 0, we have E[Xj
1Xk

2] → 0 for any

j, k ≥ 0 such that j+ k > 1. Therefore, setting the above polynomials equal to zero

when either m(1,0) or m(0,1) is zero, is consistent with the log-normal assumption as

the first moments become vanishingly small. Under this moment closure method,

the first two moments are described by the system of equations:

dm(1,0)

dt
=ν

(
1− m(0,1)

κ
+
m(0,2)

2κ2

)
− µm(1,0), (4.37)

dm(0,1)

dt
=γIm(1,0) − ρm(0,1), (4.38)

dm(2,0)

dt
=ν

(
1− m(0,1)

κ
+
m(0,2)

2κ2

)
+ 2ν

(
m(1,0) − m(1,1)

κ
+

1

2κ2

m(0,2)

m(1,0)

(
m(1,1)

m(0,1)

)2
)

+ µm(1,0) − 2µm(2,0), (4.39)

dm(1,1)

dt
=ν

(
m(0,1) − m(0,2)

κ
+

1

2κ2

(
m(0,2)

m(0,1)

)3
)
− µm(1,1) + γIm(2,0) − ρm(1,1),

(4.40)

dm(0,2)

dt
=γIm(1,0) + 2γIm(1,1) + ρm(0,1) − 2ρm(0,2). (4.41)
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If we truncate the infinite summation in equation (4.13) at j = k, the derivative

matching method for moment closure allows us to express moments of order k+1 in

terms of moments up to order k. However, we must find derivatives of (4.13) up to

order k such that we derive a closed system of equations. Therefore, whilst we may

truncate at arbitrary order, we are required to derive increasingly larger numbers

of equations to close the system. Here we truncate at j = 2. Consider that the

infinite summation of moments is approximated by a second order polynomial. If

for example m(0,2) grows too large, this polynomial may dominate the terms of the

ODEs and trajectories may tend to infinity. Therefore, this method is only valid

when parameters are such that the random variable X2 takes values typically less

than κ. The accuracy of this method is explored in the following sections, however,

first, in the next section, we derive parameters for this model from the literature.

4.1.7 Choice of parameter values

In this section we use the mean field approximation derived in Subsection 4.1.4 to es-

timate parameter values from published experimental data. We use reference (Park

et al., 2004) to derive our parameter values since this paper presents extensive stud-

ies of the effect IL-7 has on IL-7Rα expression. The mean field model is given by

equations (4.22) and (4.23). Whilst exact solutions for the fixed points of these

equations cannot be expressed in terms of regular functions, the fixed points satisfy

m∗2 =
γI

ρ
m∗1, (4.42)

where m∗1 is the unique solution of the following equation:

ν exp

(
−γI
κρ
m∗1

)
= µm∗1. (4.43)

It is easily proved m∗1 exists and is unique. Furthermore, the solution (m∗1, m∗2) is

asymptotically stable. In reference (Park et al., 2004), CD4+ T cells were found

to express approximately 3.6×104 IL-7Rα chains on the surface of the cell in IL-7

free medium, whilst CD8+ T cells were found to express approximately 4.1×104

IL-7Rα chains. In our model of IL-7 receptor dynamics we shall ignore this modest

difference between CD4+ and CD8+ expression and assume T cells express 4×104

IL-7Rα chains at steady state in IL-7 free medium. Therefore, using equation (4.43)
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4. A STOCHASTIC MODEL OF INTERLEUKIN-7 SIGNALLING

we have

m∗1|I=0 =
ν

µ
= 4× 104 receptors. (4.44)

Surface expression of IL-7Rα was assessed for T cells left overnight in 6 ng ml−1

culture of IL-7. After overnight treatment, IL-7Rα expression was approximately

2% of control T cells left in IL-7 free medium. Assuming steady state numbers of

receptors after overnight culture, we have

m∗1|I=6 = 0.02
ν

µ
= 8× 102 receptors. (4.45)

Substituting this expression into relation (4.43) we find

exp

(
−6γ

κρ
m∗1

)
= 0.02,

⇒ − 4.8× 103 γ

ρκ
= log(0.02),

⇒ ρκ ≈ 1.2× 103γ. (4.46)

T cells left in overnight culture of 6 ng ml−1 IL-7 were placed in IL-7 free medium

and the abundance of IL-7Rα mRNA was measured relative to controls over a 12

hour period. After 12 hours, IL-7 mRNA levels were approximately 99% of control

levels (Park et al., 2004). These observations allow us to obtain an estimate for

the rate of signal decay. We shall assume that over the 12 hour period, the IL-7Rα

transcription rate, T (m2(t))
def
= ν exp(−m2(t)/κ), returns to approximately that of

the transcription rate of an uninhibited (m2(t) = 0) cell. We let

T (m2(12)) = 0.99ν. (4.47)

The ODE describing the change in the number of signalling units is given by equa-

tion (4.23). Note that without IL-7 stimulus (I = 0 ng ml−1), this ODE has solution

m2(t) = S0 exp(−ρt), where S0 = m2(t = 0). Combining this solution with the above

expression for T , we find

T (m2(12)) = ν exp

(
−m2(12)

κ

)
= ν exp

(
−S0 exp(−12ρ)

κ

)
= 0.99ν,

⇒ S0

κ
e−12ρ = − log(0.99). (4.48)
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4.1 Simple signalling relation

Assume the number of signalling units reach equilibrium during overnight culture

in 6ng ml−1 IL-7, then S0 = m∗2|I=6. Combining relations (4.42) and (4.43), m∗2|I=6

satisfies
ν

µ
e−m

∗
2|I=6

/κ =
ρ

6γ
m∗2|I=6 . (4.49)

Substituting our previously derived parameter relations (ν/µ = 4 × 104, ρ/γ =

1.2× 103/κ), this equation reduces to

2× 102eS0/κ ≈ S0

κ
. (4.50)

We solve this equation numerically for S0/κ, from which we find S0/κ ≈ 3.9. There-

fore, from equation (4.48) we find

ρ ≈ 0.5 hours−1. (4.51)

T cells rested overnight in IL-7 free medium were placed in 6 ng ml−1 IL-7 culture

for 6 hours, following which the expression of IL-7Rα was found to be approximately

10% of controls for CD8+ T cells and 16% of controls for CD4+ T cells. Let us assume

after 6 hours in IL-7 culture, IL-7Rα expression drops to 13% of initial expression.

This observation allows us to determine a value for the rate of internalisation of

IL-7R, µ. However, the calculation requires the full solution of equations (4.43)

and (4.42) and a known value of κ. Due to the non-linearity of these equations, we

omit an analytical calculation, and instead carry out a numerical study. Prior to

this, we must choose a value for κ.

We have introduced the idea of signalling units as an abstraction to avoid modelling

a myriad of downstream signalling pathways inside the T cell. Since we are working

with an abstraction, rather than a measurable quantity, we have one degree of

freedom in choosing a typical value for the number of signalling units. The decisions

a cell makes, for example, whether to undergo apoptosis or enter the cell cycle, are

assumed to be dependent on the number of signalling units relative to thresholds

for survival and division. In particular, if the number of signalling units is below a

threshold given, θs, we assume the cell will die due to apoptosis at some fixed rate.

Likewise, if the number of signalling units is greater than a threshold, θp, the cell

will enter the cell cycle at some fixed rate. In reference (Palmer et al., 2011), T

cells placed in in vitro cultures of IL-7 were assessed for cell viability and markers

of proliferation. Results show a significant drop in cell viability for concentrations

below, approximately, 10−2 ng ml−1 IL-7, whereas markers for proliferation were
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observed for IL-7 concentrations above 0.1 ng ml−1. Let us choose 10−2 ng ml−1

IL-7 as a typical value for a low concentration of IL-7. We choose κ such that in low

concentrations, stochastic fluctuations in the number of signalling units typically

remain above zero. This should minimise any issues arising from the log-normal

moment closure method for the stochastic moments when the moment m(0,1) is close

to zero. A numerical exploration of different values of κ reveals this condition is met

for values of κ greater than 100 signalling units. Reducing κ to 10 signalling units

produces stochastic realisations under which X2 frequently visits the state n2 = 0.

Therefore, let us choose κ = 102 signalling units.

It should be noted that the choice to define a typical number of signalling units for

a given concentration is somewhat arbitrary. However, for the results derived at the

end of this chapter, this choice is not important, provided the signalling thresholds

θs and θp (introduced in Section 3.3 and reintroduced in Section 5.2) are chosen

appropriately.

Based on this value chosen value for κ, and the observations of an 87% drop in

receptor expression after 6 hours in IL-7 culture of 6 ng ml−1, we numerically de-

termine a suitable value for internalisation rate to be µ = 0.4 hours−1. Table 4.1

summarises our chosen parameter set.

Based on our chosen parameter set and the observations at which significant changes

occur in cell viability and proliferation in reference (Palmer et al., 2011) we choose

the respective thresholds for survival and proliferation to be the equilibrium numbers

of signalling units for I = 10−2, I = 0.1, respectively. Graphical inspection of the

mean field trajectories shows m∗2 ≈ 25 when I = 10−2 and m∗2 ≈ 1.1 × 102 when

I = 0.1. In Figure 4.1 we show numerical solutions to the mean field approximation

for our chosen parameter set for I = 10−2 ng ml−1 and I = 0.1 ng ml−1.

Parameter Value Units
ν 1.6× 104 rec hour−1

µ 0.4 hour−1

κ 102 signalling units
γ 4× 10−2 signalling units rec−1 ng−1 ml hour−1

ρ 0.5 hour−1

θs 25 signalling units
θp 1.1× 102 signalling units

Table 4.1: Parameter set for mean field approximation. We let rec be the units for
the number of surface receptors.
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4.1 Simple signalling relation

Figure 4.1: Trajectories of mean field approximation over a 24 hour period. We show
one stochastic trajectory (black). The stochastic trajectory was realised using the
Gillespie algorithm wherein the transition rates are defined by equations (4.3)-(4.7).
Initial conditions are 4× 104 receptors and zero signalling units. The parameter set
used is given in Table 4.1. Blue: I = 10−1 ng ml−1. Red: I = 10−2 ng ml−1.

4.1.8 Comparison of approximations

We use the Gillespie algorithm to produce 104 realisations of the stochastic process

over a time interval of 24 hours. We discretise the 24 hour period into 2.4×103 time

intervals of length 10−2 hours. For each time interval, the state of the stochastic

process following the first jump in the time interval, is recorded. Thus, we produce

104 observations of the stochastic process during each time interval. The mean and

sample standard deviation for each time interval is computed, both for the number

of receptors and the number of signalling units. This is done for I = 10−2 ng ml−1

and I = 0.1 ng ml−1, we compare the statistics obtained from the simulated data

sets with the approximations discussed in Sections 4.1.4, 4.1.5 and 4.1.6.

First order approximation, I = 10−2 ng ml−1. Figure 4.2, first row. The

first moments from the theoretical approximation and simulated trajectories agree

under this approximation. However, the first order approximation completely fails

to reproduce the second moments of the process. Indeed, numerical solutions for the

second moments predict E[X2
1] < (E[X1])2, this does not make mathematical sense,

since this would imply the variance is negative.

First order approximation, I = 0.1 ng ml−1. Figure 4.2, second row. For

I = 0.1 ng ml−1, the first order approximation performs worse than when I = 10−2

ng ml−1. Not only does the approximation predict the variance is negative, but for

both the number of receptors and the number of signalling units, there is a significant
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Figure 4.2: Green areas represent the mean ±1.96 standard deviations of 104 re-
alisations produced using the Gillespie algorithm. Blue areas represent the mean
±1.96 standard deviations computed from the various approximations. From top to
bottom, we present in each row, the first order approximation for I = 10−2 ng ml−1,
the first order approximation for I = 10−1 ng ml−1, the second order approximation
for I = 10−2 ng ml−1, and finally, the second order approximation for I = 10−1 ng
ml−1.
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deviation in the prediction of the first moments from the numerically simulated

observations. The issue arises since when I takes this larger value, because, at

this larger value we typically observe the number of signalling units exceeding the

parameter κ. This implies the approximation to the exponential in Section 4.1.1 is

negative.

Second order approximation, I = 10−2 ng ml−1. Figure 4.2, third row.

The second order approximation for the lower value of I closely matches the simu-

lated observations for both the first and second moments. It is difficult to see any

discrepancy between outputs at the scale shown in Figure 4.2.

Second order approximation, I = 0.1 ng ml−1. Figure 4.2, fourth row.

The second order approximation completely fails to capture both the first and sec-

ond moments for the greater value of I. Typically, for this value of I, the number of

signalling units exceeds κ. In the second order approximation this implies quadratic

growth terms dominate all other terms in the system of ODEs. The result is rapidly

increasing trajectories for which the numerical schemes (4th-order Runge-Kutta)

used to produce solutions quickly break down. These schemes break because the

variables representing the number of receptors and signalling units quickly become

so large, Python returns the object “Nan”, that is, an object used to represent num-

bers beyond what the limits of what can be stored in memory.

Neither the first order or second order approximations satisfyingly predict the first

two moments for I = 0.1 ng ml−1. Two options present themselves when considering

improvements upon the approximations. The first option is to derive and solve ODEs

for the higher order moments of the process. Suppose we wish to derive a system

of ODEs up to and including the third order moments of the stochastic process.

The dynamical equations governing the third order moments now contain terms

which are dependent on the fourth and fifth order moments. In reference (Singh &

Hespanha, 2006a) the approaches outlined in reference (Singh & Hespanha, 2006b)

are extended to stochastic processes with multiple populations. In particular, for a

system of two populations, the authors suggest the polynomial approximations to

the fourth order moments given in Table 4.2. As for the polynomial approximations

presented in Section 4.1.6, these polynomials are symmetric with respect to the

indices. That is, we can find m(j,i) from m(i,j) by replacing all terms m(k,l) by

the terms m(l,k) in the corresponding polynomial. These polynomials were derived
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using the derivative matching techniques outlined in (Singh & Hespanha, 2006b).

However, these methods are equivalent to assuming the random variables of the

process corresponding to a given time t are distributed log-normally. For a simple

example, consider the univariate log-normally distributed random variable Y with

log-mean and shape parameters (µ, σ2). For such a random variable, the moments

can be expressed as (Johnson et al., 1970)

E[Ys] = esµ+ 1
2
s2σ2

. (4.52)

From this expression and the first polynomial in Table 4.2, we see that

(E[Y]E[Y3])
4

(E[Y2])6 =

(
eµ+ 1

2
σ2

e3µ+ 1
2
×9σ2

)4

(
e2µ+ 1

2
×4σ2

)6

=
e16µ+ 1

2
×40σ2

e12µ+ 1
2
×16σ2

= e4µ+ 1
2
×16σ2

= E[Y4]. (4.53)

Using the general method outlined in (Singh & Hespanha, 2006b), we derived the

equivalent results for a set of fifth order moments. These polynomials are expressed

in Table 4.3. We nested the polynomials for the fourth order moments inside the

polynomials for the fifth order moments to derive polynomials with which we can

close the system of equations describing the third and lower order moments. We

omit the presentation of this nine-equation system. However, the numerical solution

of this system for I = 0.1 ng ml−1 is presented in the top row of Figure 4.3.

The second approach we take is to reconsider the expansion described by equa-

tion (4.12). In this series we expanded about the point x = 0. This implies the

expansion is most accurate for x in some neighbourhood about 0. From the mean

of the Gillespie realisations presented in Figure 4.2, we see, for I = 0.1 ng ml−1,

the number of signalling units in equilibrium is approximately 1.1 × 102, which is

reasonably close to κ = 102 signalling units. We may improve the accuracy of the

expansion for I = 0.1 ng ml−1 by expanding about a value close to the number of

signalling units in equilibrium. In this case we expand about κ. Equation (4.12)
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Moment Polynomial approximation

m(0,4)

(
m(0,1)m(0,3)

)4

(m(0,2))
6

m(1,3)

(
m(1,2)

m(1,1)

)3(
m(0,1)

m(0,2)

)3

m(0,3)m(1,0)

m(2,2)

(
m(1,2)m(2,1)m(1,0)m(0,1)

)2

(m(1,1))
4
m(0,2)m(2,0)

Table 4.2: Polynomial approximations to the fourth moments of a two species
Markov process.

Moment Polynomial approximation

m(0,5)

(
m(0,2)

m(0,3)

)10(
m(0,4)

m(0,1)

)5

m(1,4)

(
m(0,2)

m(1,2)

)6(
m(1,1)m(1,3)

m(0,1)m(0,3)

)4
m(0,4)

m(1,0)

m(2,3)

(
m(1,1)

m(1,2)

)6(
m(0,2)m(2,2)

m(0,1)m(0,3)

)3 (
m(1,3)

m(1,0)

)2
m(2,0)

m(0,3)

Table 4.3: Polynomial approximations to the fifth moments of a two species Markov
process.

therefore becomes

f(x) = e−1

+∞∑
j=0

(−1)j

j!κj
(x− κ)j = e−1

∞∑
j=0

j∑
k=0

(−κ)−k

k!(j − k)!
xk, (4.54)

where we have used a binomial expansion1 to expand the term (x− κ)j. Using such

an expansion, equation (4.13) becomes

∂M(θ1, θ2, t)

∂t
=νe−1(eθ1 − 1)

+∞∑
j=0

j∑
k=0

(−κ)−k

k!(j − k)!

∂kM(θ1, θ2, t)

∂θk2

+ µ(e−θ1 − 1)
∂M(θ1, θ2, t)

∂θ1

+ γI(eθ2 − 1)
∂M(θ1, θ2, t)

∂θ1

+ ρ(e−θ2 − 1)
∂M(θ1, θ2, t)

∂θ2

. (4.55)

From this equation we again derive a second order approximation using the same

1We define
(
j
k

)
=


j!

k!(j − k)!
if j ≥ k

0 if j < k.
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methods discussed in Section 4.1.6. Numerical solutions of the second order approx-

imation are shown in the bottom row of Figure 4.3. It can be clearly seen that the

second order approximation derived by first expanding about κ rather than 0 is in

closer agreement with the simulated moments than the third order approximation

when expanding about 0. We surmise that the dominant factor limiting the accu-

racy of the approximations is the agreement between the term exp(−n2/κ) and its

polynomial expansion. The point about which we expand should be chosen to be

representative of a typical value any given stochastic realisation may take. When

considering the process in equilibrium this choice is clear: to obtain the best approx-

imations to the fluctuations in equilibrium, we should expand about a point equal

to the mean value of the fluctuations, which may be estimated from the mean field

approximation.

Figure 4.3: As in Figure 4.2, green areas represent the mean ±1.96 standard de-
viations of 104 realisations produced using the Gillespie algorithm, and blue areas
represent the mean ±1.96 standard deviations computed from the approximations.
In the top row we present the third order approximations to the stochastic model
for I = 10−1 ng ml−1. In the bottom row we present second order approximations
where we have expanded about κ.
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4.1.9 Fluctuations in equilibrium

Let m∗2 be the steady state solution of equation (4.23). We define

ε =
m∗2
κ
. (4.56)

In this section we present a second order approximation to the stochastic model in

which we replace equation (4.12) by an expansion about the point εκ. Omitting the

derivation, which follows exactly the same procedure as shown in previous sections,

the system of ODEs governing the time evolution of the first and second moments

is given by

dm(1,0)

dt
=νe−ε

(
1 + ε+

ε2

2
− (1 + ε)

m(0,1)

κ
+
m(0,2)

2κ2

)
− µm(1,0), (4.57)

dm(0,1)

dt
=γIm(1,0) − ρm(0,1), (4.58)

dm(2,0)

dt
=2νe−ε

((
1 + ε+

ε2

2

)
m(1,0) − (1 + ε)

m(1,1)

κ
+

1

2κ2

m(0,2)

m(1,0)

(
m(1,1)

m(0,1)

)2
)

+ νe−ε
(

1 + ε+
ε2

2
− (1 + ε)

m(0,1)

κ
+
m(0,2)

2κ2

)
+ µm(1,0) − 2µm(2,0),

(4.59)

dm(1,1)

dt
=νe−ε

((
1 + ε+

ε2

2

)
m(0,1) − (1 + ε)

m(0,2)

κ
+

1

2κ2

(
m(0,2)

m(0,1)

)3
)

− µm(1,1) + γIm(2,0) − ρm(1,1), (4.60)

dm(0,2)

dt
=γIm(1,0) + 2γIm(1,1) + ρm(0,1) − 2ρm(0,2). (4.61)

As a verification that this approach accurately approximates the fluctuations of the

process in equilibrium, Figure 4.4 shows numerical solutions of these ODEs for I = 1

ng ml−1 (top row) and I = 10 ng ml−1 (bottom row). Since this approximation is

only valid when the number of signalling units takes values in some neighbourhood of

m∗2, we choose initial conditions to be close to the equilibrium to ensure the process

stays within this neighbourhood. If initial conditions are not suitably chosen, the

process may enter a regime where typically m(0,1) � εκ. In this situation, quadratic

growth terms dominate the remaining terms, and solutions grow sufficiently fast

that the numerical schemes used to solve the system of ODEs break down. The

choice was made by reducing initial conditions until the numerical scheme used to
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solve the ODEs completed successfully. The numerical scheme breaks down more

readily for larger values of I (the average amount of signalling, m(0,1), is more likely

to exceed εκ), hence, the initial conditions for I = 10 ng ml−1 had to be chosen

closer to the equilibrium.

Figure 4.4: As in Figures 4.2 and 4.3, green areas represent the mean ±1.96 standard
deviations of 104 realisations produced using the Gillespie algorithm, and blue areas
represent the mean ±1.96 standard deviations computed from the approximations.
In the top row we present the second second order approximation centred on the
mean field solution m∗2 for I = 1 ng ml−1. In the bottom row we present the second
order approximation centred on m∗2 for I = 10 ng ml−1. Initial conditions were
reduced relative to those chosen in Figures 4.2 and 4.3 to ensure trajectories stay
within a suitable neighbourhood of m∗2.

4.1.10 Signalling in equilibrium

We look for fixed point solutions of the system of equations (4.57)-(4.61). To de-

termine a value of ε, we find fixed point solutions of equations (4.22) and (4.23),

from which we use equation (4.56) to find ε. For values of I less than approximately

Ic = 8.4 × 102 ng ml−1 there exist three stationary solutions. Ordered by size, the
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middle of these solutions is unstable, whilst the remaining two are stable. For con-

centrations of IL-7 greater than Ic, there exists a single stationary solution which, at

the bifurcation point, matches the largest of three solutions for concentrations less

than Ic. For clarity, we plot these solutions in Figure 4.5. Note that, the uppermost

line should continue as the concentration decreases, however, these solutions are

computationally expensive to obtain and so are not displayed.

Mean field solutions qualitatively concur with the lowest line in Figure 4.5, for con-

centrations up to the Ic. For concentrations above Ic, the mean field solutions differ

from the second order approximation obtained from expanding about m∗2. This be-

Figure 4.5: We plot the steady state solutions for the number of signalling units as
a function of the concentration of IL-7.

haviour can be understood intuitively by considering a realisation simulated for a

value of I greater than Ic. In Figure 4.6 we show one such realisation for I = 104 ng

ml−1. For IL-7 at this concentration, the model predicts a single receptor present

on the surface of the cell, over a period of several hours, is able to increase the num-

ber of signalling units by several hundred. Typically, at this concentration, after

some time we observe few receptors present on the surface of the cell (less than 10).

Stochastic effects from the varying number of receptors produce dramatic changes

in the number of signalling units. We discussed earlier that the second order ap-

proximation is valid only when X2 takes values in some neighbourhood around εκ.

If the concentration of IL-7 is sufficiently high, fluctuations are large enough that

a typical trajectory does not stay within this neighbourhood, resulting in a break-

down of the approximation (the breakdown in this case being the disappearance of

a representative solution). Whilst we may increase the size of the neighbourhood

by taking higher order approximations, we conjecture that there exists some value

of I for which the approximation will break down due to fluctuations in equilibrium
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deviating far enough away from εκ. The relatively large fluctuations observed in the

right panel of Figure 4.6 also explain why the number of signalling units at equilib-

rium becomes erratic for high concentrations, as observed for I > 104 ng ml−1 in

Figure 4.5.

Figure 4.6: Black: realisation simulated using the Gillespie algorithm for I = 104

ng ml−1. Red: numerical solution of the mean field approximation.

Figure 4.7: Left panel: average number of signalling units ± 1.96 standard devia-
tions, derived using the second order approximation where we have expanded about
εκ. Parameters used are given in Table 4.1. Right panel: we computed 104 Gille-
spie realisations from which we calculated an estimate for the average number of
signalling units when the process is in equilibrium. Red: relative error of the mean
field approximation. Black: relative error of the second order approximation derived
by expanding about εκ.

In Figure 4.7 (right plot) we present comparisons of the mean field estimates versus

the second order estimates (expanded about εκ) of the first moments of the stochas-

tic process. We computed 104 realisations of the stochastic process and recorded

the number of signalling units at the 48 hour time point. The average number of
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signalling units at 48 hours was then computed. We defined the relative error by

the following formula:

relative error =
approximaton estimate

Gillespie estimate
× 100%. (4.62)

In the right panel of Figure 4.7 we plot the relative error between the mean field

and second order approximations and the statistics of the stochastic simulations.

As can be seen, with the exception of two points, the second order approximation

(black dots) consistently performs better than the mean field approximation (red

dots) when computing the first moments of the stochastic process. Indeed, for larger

values of I we observe approximately an order of magnitude reduction in the relative

error.

4.1.11 Discussion

At the start of this chapter we introduced a simple model to describe changes in

IL-7 receptor numbers in response to IL-7 signalling. In this model, we introduced

a non-linear transition term (equation (4.3)) to describe the probability of express-

ing a receptor on the surface of the cell in some small time interval ∆t. Due to

the presence of this non-linear term, we cannot find exact expressions for the time

evolution of the moments of the stochastic process. Instead, we have presented a

method to devise a system of ODEs whose solutions approximate the nth moment

of the stochastic process. In particular, we have demonstrated this method gener-

ally performs better than the mean field approximation when considering stationary

solutions of the first moments of the process.

The simple model analysed here predicts the number of signalling units at equilib-

rium is an increasing function of the availability of the resource. In particular, the

number of signalling units at equilibrium grows like the logarithm of the resource.

Let this quantity be denoted by S, and let the resource be denoted by I, then the

dependence may be approximated by introducing the relationship

S = a log(bI + 1), (4.63)

for some appropriate values of a and b. We note that this function was chosen by

inspection of the numerical trajectory given in Figure 4.7. The function above is

given by the red line. Considering I in the range [10−4, 102.5] ng ml−1, we determine

S at the end points of this interval via the second order approximation, centred on
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εκ. Using this pair of values, S1, S2, with corresponding values I1 = 10−4, I2 = 102.5,

we solve for a and b in equation (4.63), giving a ≈ 77.3 signalling units and b ≈ 41.4

ng−1 ml. In Figure 4.8 we plot the number of signalling units at equilibrium over

this interval (black line). We also plot the above function S(I) for I in the range

[I1, I2] (red line). As can be seen, the signalling relation defined by (4.63) does a

reasonably good job at approximating the number of signalling units at equilibrium

for I in this range.

Figure 4.8: Left panel: Black: number of signalling units at equilibrium, calculated
from the second order approximation centred on εκ. Red: plot of relation (4.63).
Right panel: Black: reproduction of left plot where we have replaced equation (4.5)
by equation (4.64). Red: approximate description of this solution using the func-
tional form S = aI/(b+ I). The parameters γ and φ were chosen to be 0.2 hours−1

and 1 ng ml−1, respectively. All other parameters as listed in Table 4.1.

As discussed earlier, the second order approximation breaks down when the resource

exceeds the value Ic, introduced in Section 4.1.10. Fortunately, this area of the pa-

rameter space is not representative of the biology. For IL-7 at these concentrations,

the model predicts a single receptor can increase the signalling intensity by several

hundred units in a few hour hours. Taking a biological viewpoint, once a single

IL-7 ligand binds to the IL-7Rα/γc heterodimer, it seams reasonable that the same

heterodimer cannot be stimulated by further IL-7, since its binding site is occu-

pied (Jiang et al., 2005). This should presumably place an upper bound on the

amount of signal each IL-7:IL-7R complex can produce. One suitable modification

we can make to the model such that this upper bound is encoded would be to replace

the linear term γI by some bounded function of I. The most obvious change would

be to let equation (4.5) become

p(n1,n2+1),n(∆t) =
γI

φ+ I
n1∆t+ o(∆t), (4.64)
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where φ determines how quickly this probability attains its maximum with respect

to increasing resource availability, for a given number of receptors. Provided γ < Ic,

the inclusion of this function eliminates the possibility of the bifurcation discussed

in Section 4.1.10. Such a change also qualitatively changes the form the signalling

function takes as described by equation (4.63). If the probability of producing a unit

of signal is now a bounded function of I, the fixed point solution to the number of

signalling units in the second order approximation is also a bounded function of I.

This can be seen in the right plot of Figure 4.8 where we have made this modification

in the above transition probability and reproduced the left plot of Figure 4.8. Now

we find

S =
aI

b+ I
(4.65)

is a more suitable functional form for the approximate dependence of the signal on

the resource. In this modified example the approximation is valid for all I ∈ R+.

4.2 A stochastic model of IL-7R dynamics

In the simple model introduced in the previous section we presented a simple de-

scription of IL-7 receptor signalling. In this section we refine the model to take

into account a little more of the biology. The simple model allowed us to introduce

mathematical techniques which were used to derive the relationship between the

average number of signalling units at equilibrium and the external concentration

of IL-7. We apply the techniques introduced in the previous section to derive the

signalling relation for the more detailed model introduced forthwith.

The IL-7 receptor is composed of the IL-7Rα-chain and the common cytokine re-

ceptor γ-chain (γc) (Mazzucchelli & Durum, 2007). Whilst signalling through the

IL-7R has dramatic effects on the abundance of IL-7Rα on the surface of the cell,

in reference (Park et al., 2004), only modest changes in expression of γc were ob-

served following exposure to IL-7. In the construction of the upcoming model we

shall assume γc availability is constant and non-limiting. Signalling through the IL-7

receptor requires cross-linkage of the extracellular domains of IL-7Rα and γc (Maz-

zucchelli & Durum, 2007). We shall further assume that the time to recruit γc to

the IL-7Rα:IL-7 complex, thereby constructing a fully functional receptor complex,

is negligible. As such, when referring to the IL-7 receptor, we do not distinguish

between whether γc is linked with IL-7Rα or not, we merely assume it is present
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when required.

4.2.1 Model description

In this section we introduce the transition probabilities of the stochastic model of IL-

7 receptor dynamics. We shall construct a multi-variate Markov process defined on

a 4-dimensional lattice. We let X(t) = (X1(t),X2(t),X3(t),X4(t)) be a 4-dimensional

random vector for the state of the process at time t, where n0 = (n10, n20, n30, n40),

n ∈ N ∪ {0}, is the state of the process at time t = 0. We shall consider a single

cell suspended in a medium of IL-7 at fixed concentration. Further, we shall define

three observable variables in addition to the previously introduced description of

the internal IL-7 signal. We consider changes in the numbers of receptors on the

surface of the cell, the number of internalised receptors and the IL-7 signal. We

make a further distinction between the number of receptors which are internalised

as a consequence of binding to IL-7 and those which internalise whilst unbound.

1. We model the number of receptors on the surface of the cell, represented by

the random variable X1(t).

2. Also taken into account are the number of internalised-unbound receptors,

described by the random variable X2(t).

3. In addition to this we include the number of internalised receptors bound to

IL-7, represented by the random variable X3(t).

4. The number of IL-7 signalling unit is encoded by the random variable X4(t).

The state probabilities of the Markov process are defined as

pn(t) = Prob{X(t) = n | X(0) = n0}, (4.66)

furthermore, the transition probabilities are defined as

pm,n(∆t) = Prob{X(t+ ∆t) = m | X(t) = n},

= qm,n∆t+ o(∆t), (4.67)
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where the qm,n are the corresponding transition intensity functions (Allen, 2003).

We define

qm,n =


limt→∞

pm,n(∆t)

∆t
, if m 6= n,

limt→∞
1− pm,n(∆t)

∆t
, if m = n.

(4.68)

Proportion of receptors bound to IL-7

We assume the number of surface receptors bound to IL-7 is a constant fraction of

the total number of surface receptors. Such an assumption comes from considering

a single cell possessing a fixed number of surface receptors suspended in a medium

of IL-7 at constant concentration I. Assume IL-7 binds to IL-7R with rate k+,

and furthermore, assume IL-7 unbinds from the receptor at rate k−. Let the total

number of surface receptors be RT and define the number of bound receptors to be

RB(t). Then, assuming conservation of receptors, the number of bound receptors

can be described by the ODE

dRB(t)

dt
= k+I (RT −RB(t))− k−RB(t). (4.69)

This ODE has steady state solution

R∗B =
RT I

k−
k+

+ I

def
= fIRT . (4.70)

In equilibrium the number of receptors bound to IL-7 is given by fI which is con-

stant for a given concentration I. We assume the time scales typical for this simple

description are much shorter than the time scales typical for changes in receptor

numbers due to the expression and internalisation terms, introduced below. Fur-

thermore, we assume this process reaches equilibrium quickly given a change in the

total number of surface receptors. In our stochastic model we let the fraction of

bound surface receptors be approximated by

fI =
I

k−
k+

+ I

. (4.71)
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Transcription of the IL-7 receptor

We assume, in an unstimulated cell, IL-7 receptors are transcribed and upregulated

to the surface of the cell at a constant rate per unit time, ν. A key study examining

the effect of cytokine signalling on transcription of the IL-7 receptor found IL-7

signalling suppresses transcription of the α-chain of the IL-7 receptor (Jiang et al.,

2005). Based on this study we shall assume the rate of receptor transcription is

a decreasing function of the number of signalling units. Our particular choice of

function shall be an exponential akin to the function introduced in Section 4.1.1.

We let

q(n1+1,n2,n3,n4),n = νe−n4/κ, ni ≥ 0, i = 1, 2, 3, 4. (4.72)

In the above expression, ν represents the maximal rate of expression of receptors

and κ governs the magnitude of suppression due to signalling. Specifically, larger

values of κ imply IL-7 signalling effects the expression rate to a lesser degree.

Internalisation of the IL-7 receptor

The study given in (Henriques et al., 2010) presents results showing that, in un-

stimulated cells, the pool of IL-7 receptors on the surface of the cell internalises.

We assume the rate of internalisation of unbound receptors is constant with param-

eter µU . Letting fI denote the fraction of bound surface receptors, the transition

intensity function for the internalisation of unbound surface receptors is defined to

be

q(n1−1,n2+1,n3,n4),n = µU(1− fI)n1, n1 ≥ 1, ni ≥ 0, i = 2, 3, 4. (4.73)

Correspondingly, we define the transition intensity function representing internali-

sation of the bound receptor as

q(n1−1,n2,n3+1,n4),n = µBfIn1, n1 ≥ 1, ni ≥ 0, i = 2, 3, 4. (4.74)

Recycling of internalised receptors

Reference (Henriques et al., 2010) presents further results showing internalised re-

ceptors recycle back to the surface of the cell. This was observed to occur in both

unstimulated and stimulated cells, however the fraction of recycled receptor was

shown to be less for stimulated cells. We define the pair of transition intensity func-

tions denoting the rates at which internalised receptors are recycled back to the cell
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surface as

q(n1+1,n2−1,n3,n4),n = ξUn2, n2 ≥ 1, ni ≥ 0, i = 1, 3, 4, (4.75)

q(n1+1,n2,n3−1,n4),n = ξBn3, n3 ≥ 1, ni ≥ 0, i = 1, 2, 4. (4.76)

Degradation of internalised receptors

In reference (Henriques et al., 2010) it was also observed that internalised receptor

is degraded by at least two distinct pathways. The two pathways reported were the

ubiquitin-proteasome and pH-dependent lysosomal pathways. The rate of receptor

degradation was observed to be enhanced for bound internalised receptors. The

transition intensity functions encoding degradation of unbound receptors are given

as

q(n1,n2−1,n3,n4),n = δUn2, n2 ≥ 1, ni ≥ 0, i = 1, 3, 4, (4.77)

q(n1,n2,n3−1,n4),n = δBn3, n3 ≥ 1, ni ≥ 0, i = 1, 2, 4. (4.78)

Signal generation and decay

It is further reported in reference (Henriques et al., 2010) that internalisation of

the bound receptor is required for signal transduction. We assume the rate of sig-

nal generation is proportional to the number of internalised and bound receptors.

Furthermore, we assume the signal decays at a linear rate. The pair of transition

intensity functions encoding generation and decay of IL-7 induced signal are given

by

q(n1,n2,n3,n4+1),n = γn3, ni ≥ 0, i = 1, 2, 3, 4, (4.79)

q(n1,n2,n3,n4−1),n = ρn4, n4 ≥ 1, ni ≥ 0, i = 1, 2, 3. (4.80)

4.2.2 Time evolution of the moment generating function

The same techniques outlined in Section 4.1 are used to derive a PDE describing the

time evolution of the moment generating function for this stochastic process. The
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Figure 4.9: Diagrammatic representation of the transition probabilities of the
stochastic model for the IL-7 and IL-7 receptor system.

moment generating function is defined

M(θ, t) = E[eθ·X(t)] =
+∞∑
n1=0

+∞∑
n2=0

+∞∑
n3=0

+∞∑
n4=0

pn(t)eθ·n, (4.81)

where θ = (θ1, θ2, θ3, θ4). We perform a Taylor expansion about the point εκ to

express the exponential in equation (4.72) as a series of polynomials. The resulting

terms (n4 − εκ)j, j ∈ Z are expanded using the Binomial Theorem (Brualdi, 1992),

giving

e−n4/κ = e−ε
+∞∑
i=0

i∑
j=0

(−κ)−jεi−j

j!(i− j)!
nj4, n4 ∈ R. (4.82)

Omitting the derivation which proceeds exactly as in the previous section for the

simple model of the IL-7 receptor, the PDE governing the time evolution of the

moment generating function is given by

∂M(θ, t)

∂t
= νe−ε

(
eθ1 − 1

) +∞∑
i=0

i∑
j=0

(−κ)−jεi−j

j!(i− j)!
∂jM(θ, t)

∂θj4

+
(
µU(1− fI)

(
e−θ1eθ2 − 1

)
+ µBfI

(
e−θ1eθ3 − 1

)) ∂M(θ, t)

∂θ1

+
(
ξU
(
eθ1e−θ2 − 1

)
+ δU

(
e−θ2 − 1

)) ∂M(θ, t)

∂θ2
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+
(
ξB
(
eθ1e−θ3 − 1

)
+ δB

(
e−θ3 − 1

)
+ γ

(
eθ4 − 1

)) ∂M(θ, t)

∂θ3

+ ρ
(
e−θ4 − 1

) ∂M(θ, t)

∂θ4

. (4.83)

The nth order moment of the stochastic process is defined by

m(i,j,k,l) = E
[
(X1(t))i (X2(t))j (X3(t))k (X4(t))l

]
=
∂i+j+k+lM(θ, t)

∂θi1∂θ
j
2∂θ

k
3∂θ

l
4

∣∣∣∣
θ1=θ2=θ3=θ4=0

,

(4.84)

where n = i+ j + k + l. In the next section we present a mean field approximation

to describe the time evolution of the first order moments of the stochastic process.

In the section following the mean field approximation, we present a system of ODEs

which approximately describe the time evolution of the first two moments.

4.2.3 Mean field approximation

To derive the mean field approximation we assume all central moments of the process

are zero. Let us define si to be a 1-dimensional vector of length 4 containing a 1 in

the ith position and zeros elsewhere. Then the first order moment of the ith random

variable of the stochastic moment is given by msi , i = 1, 2, 3, 4. We let

E

[
4∏
i=1

(Xi(t)−msi)ni

]
= 0, 1 ≤ i ≤ 4. (4.85)

From Lemma 3 in Appendix B, it follows that

E

[
4∏
i=1

(Xi(t))
ni

]
=

4∏
i=1

(msi)ni . (4.86)

Combining this result with definition (4.84) implies

m(i,j,k,l) = (ms1)i (ms2)j (ms3)k (ms4)l (4.87)

in the mean field approximation. Taking derivatives of (4.83) with respect to θi,

i = 1, . . . 4 and evaluating the expression at θ = 0 allows us to derive the system

of ODEs constituting the mean field approximation. Equation (4.86) allows us to

collapse the expansion in the resulting equations back into an exponential. The
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mean field approximation is then given by

dm1(t)

dt
= νe−m4(t)/κ + ξUm2(t) + ξBm3(t)− (µU(1− fI) + µBfI)m1(t), (4.88)

dm2(t)

dt
= µU(1− fI)m1(t)− (ξU + δU)m2(t), (4.89)

dm3(t)

dt
= µBfIm1(t)− (ξB + δB)m3(t), (4.90)

dm4(t)

dt
= γm3(t)− ρm4(t). (4.91)

Finally, let us define

ε =
m∗4
κ
, (4.92)

where m∗4 is the stationary solution corresponding to limt→+∞m4(t), which exists

and is unique (proved below). Numerical exploration suggests the unique solution

is also stable.

Proof. Stationary solutions of the system of ODEs (4.88)-(4.91) are found from

solving the system

0 = νe−m
∗
4/κ + ξUm

∗
2 + ξBm

∗
3 − (µU(1− fI) + µBfI)m

∗
1, (4.93)

0 = µU(1− fI)m∗1 − (ξU + δU)m∗2, (4.94)

0 = µBfIm
∗
1 − (ξB + δB)m∗3, (4.95)

0 = γm∗3 − ρm∗4. (4.96)

After some algebra, it is easily shown that m∗4 satisfies

Γm∗4 = νe−m
∗
4/κ, (4.97)

where

Γ =
ρ [µBfI(ξU + δU)δB + µU(1− fI)(ξB + δB)δU ]

γµBfI(ξU + δU)
. (4.98)

Since Γ > 0 over the entire parameter space, it follows that there exists a unique

solution to equation (4.97). Thus there exists a unique solution to the number of

signalling units at equilibrium.

4.2.4 Second order approximation

We replicate the methods used in Section 4.1 to derive a second order approximation

describing the time evolution of the first two moments of the stochastic process.
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That is, we truncate the infinite summation in equation (4.83) at j = 2, and use the

moment closure methods outlined in (Singh & Hespanha, 2006b) to express third

order moments in terms of the first and second order moments. The second order

approximation to the time evolution of the first two moments is given by:

dm(1,0,0,0)

dt
=νe−ε

((
1 + ε+

ε2

2

)
+

1 + ε

κ
m(0,0,0,1) +

1

2κ2
m(0,0,0,2)

)
− (µU(1− fI) + µBfI)m

(1,0,0,0) + ξUm
(0,1,0,0) + ξBm

(0,0,1,0), (4.99)

dm(0,1,0,0)

dt
=µU(1− fI)m(1,0,0,0) − (ξU + δU)m(0,1,0,0), (4.100)

dm(0,0,1,0)

dt
=µBfIm

(1,0,0,0) − (ξB + δB)m(0,0,1,0), (4.101)

dm(0,0,0,1)

dt
=γm(0,0,1,0) − ρm(0,0,0,1), (4.102)

dm(2,0,0,0)

dt
=νe−ε

((
1 + ε+

ε2

2

)
+

1 + ε

κ
m(0,0,0,1) +

1

2κ2
m(0,0,0,2)

)
+ 2νe−ε

((
1 + ε+

ε2

2

)
m(1,0,0,0) +

1 + ε

κ
m(1,0,0,1) +

1

2κ2

m(0,0,0,2)

m(1,0,0,0)

(
m(1,0,0,1)

m(0,0,0,1)

)2
)

+ (µU(1− fI) + µBfI)
(
m(1,0,0,0) − 2m(2,0,0,0)

)
+ ξU

(
m(0,1,0,0) + 2m(1,1,0,0)

)
+ ξB

(
m(0,0,1,0) + 2m(1,0,1,0)

)
, (4.103)

dm(1,1,0,0)

dt
=νe−ε

((
1 + ε+

ε2

2

)
m(0,1,0,0) +

1 + ε

κ
m(0,1,0,1) +

1

2κ2

m(0,0,0,2)

m(0,1,0,0)

(
m(0,1,0,1)

m(0,0,0,1)

)2
)

+ µU(1− fI)
(
m(2,0,0,0) −m(1,0,0,0)

)
− (µU(1− fI) + µBfI + ξU + δU)m(1,1,0,0)

+ ξU
(
m(0,2,0,0) −m(0,1,0,0)

)
+ ξBm

(0,1,1,0), (4.104)

dm(1,0,1,0)

dt
=νe−ε

((
1 + ε+

ε2

2

)
m(0,0,1,0) +

1 + ε

κ
m(0,0,1,1) +

1

2κ2

m(0,0,0,2)

m(0,0,1,0)

(
m(0,0,1,1)

m(0,0,0,1)

)2
)

+ µBfI
(
m(2,0,0,0) −m(1,0,0,0)

)
− (µU(1− fI) + µBfI + ξB + δB)m(1,0,1,0)

+ ξUm
(0,1,1,0) + ξB

(
m(0,0,2,0) −m(0,0,1,0)

)
, (4.105)

dm(1,0,0,1)

dt
=νe−ε

((
1 + ε+

ε2

2

)
m(0,0,0,1) +

1 + ε

κ
m(0,0,0,2) +

1

2κ2

(
m(0,0,0,2)

m(0,0,0,1)

)3
)

− (µU(1− fI) + µBfI + ρ)m(1,0,0,1) + ξUm
(0,1,0,1) + ξBm

(0,0,1,1) + γm(1,0,1,0),

(4.106)
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dm(0,2,0,0)

dt
=µU(1− fI)

(
m(1,0,0,0) + 2m(1,1,0,0)

)
+ (ξU + δU)

(
m(0,1,0,0) − 2m(0,2,0,0)

)
,

(4.107)

dm(0,1,1,0)

dt
=µU(1− fI)m(1,0,1,0) + µBfIm

(1,1,0,0) − (ξU + ξB + δU + δB)m(0,1,1,0),

(4.108)

dm(0,1,0,1)

dt
=µU(1− fI)m(1,0,0,1) + γm(0,1,1,0) − (ξU + δU + ρ)m(0,1,0,1), (4.109)

dm(0,0,2,0)

dt
=µBfI

(
m(1,0,0,0) + 2m(1,0,1,0)

)
+ (ξB + δB)

(
m(0,0,1,0) − 2m(0,0,2,0)

)
,

(4.110)

dm(0,0,1,1)

dt
=µBfIm

(1,0,0,1) + γm(0,0,2,0) − (ξB + δB + ρ)m(0,0,1,1), (4.111)

dm(0,0,0,2)

dt
=γ
(
m(0,0,1,0) + 2m(0,0,1,1)

)
+ ρ

(
m(0,0,0,1) − 2m(0,0,0,2)

)
. (4.112)

4.2.5 Parameter estimates

In this section we use the mean field approximation to obtain parameter estimates

from the literature.

Reduced model in the case when I = 0. Consider a T cell in an IL-7 free

medium with initial conditions such that the IL-7 induced signalling is zero and the

number of IL-7:IL-7R internal complexes is zero. Then the mean field model can be

reduced to the following set of ODEs:

dm1(t)

dt
= ν + ξUm2(t)− µUm1(t) ,

dm2(t)

dt
= µUm1(t)− (ξU + δU)m2(t) .

This reduced system is governed by four parameters ν, ξU , µU and δU , and possesses

the following stable steady state:

m∗1 =
ν (ξU + δU)

µUδU
,

m∗2 =
ν

δU
.
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Let us assume in the reduced model 10% of the total number of receptors are in-

ternalised in equilibrium. We note however, that we could not find any evidence in

the literature to support this value. We set m∗1 = 9m∗2. Based on the measurements

of Park et al. (2004), we shall assume 4 × 104 receptors in total when the reduced

model is in steady state. Therefore, we let

ν (ξU + δU)

µUδU
= 3.6× 104 , (4.113)

ν

δU
= 4× 103 . (4.114)

In the study by (Henriques et al., 2010), cells were cultured with the translation

inhibitor cycloheximide (CHX) to prevent transcription of the IL-7 receptor. Total

expression of the IL-7 receptor was measured over several time points, from which

the authors estimate the half-life of the receptor in an unstimulated cell to be ap-

proximately 24 hours.

In the reduced model, all receptors are guaranteed to be degraded in a finite amount

of time. The expected time for a receptor, that is initially on the cell surface, to be

degraded in the lysosome is given by

τ1 =
δU + µU + ξU

µUδU
.

For the derivation of this equation see Appendix C .

Assuming exponential decay, the half-life for a receptor to undergo lysosomal degra-

dation, starting on the cell surface, is then given by

t 1
2

=
δU + µU + ξU

µUδU
log 2 .

Thus, we can write
δU + µU + ξU

µUδU
log 2 = 24 hour . (4.115)

Combining (4.113), (4.114) and (4.115) we find

δU ≈ 0.29 hour−1 ,

ν ≈ 1.2× 103 receptors hour−1 ,

ξU + 0.29 hour−1 ≈ 9µU .
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The value of ξU relative to δU effectively dictates the ratio of receptors which are

degraded to those recycled back to the cell surface. We assume the system has

evolved to minimise waste of functional proteins and tentatively let ξU > δU . That

is, we assume that a greater fraction of unbound receptors are recycled back to the

surface of the cell than are degraded. We somewhat arbitrarily set

ξU = 1 hour−1 ⇒ µU ≈ 0.14 hour−1 .

Receptor ligand kinetics Suppose the number of surface receptors is constant

and denoted by RT . Let us also assume the extra-cellular concentration of IL-7 is

constant and denoted by I. Define RB(t) to be the number of IL-7 receptors bound

to IL-7. Note that we assume the time to recruit the common gamma chain, γc, is

negligible. Then, we can describe changes in the number of bound complexes by the

following ODE
dRB(t)

dt
= k+ [RT −RB(t)] I − k−RB(t) ,

where k+ and k− are, respectively, the binding and unbinding rates of the IL-7:IL-7R

receptor-ligand system. We assume the time scales for this reaction are shorter than

the time scales for changes in total membrane receptor numbers, such that we can

consider these reactions to be in equilibrium. This ODE has a unique stable steady

state:

R∗B =
RT I
k−
k+

+ I

def
= fIRT . (4.116)

The Supplementary Material for reference (Palmer et al., 2008) provides estimates

for k+ and k−, from which we set k+ = 1 nM min−1 and k− = 0.1 min−1. It is

reported IL-7 has a molecular mass of around 17 kDa, from which we estimate the

ratio k−/k+ ≈ 1.7 ng ml−1.

Early internalisation events In reference (Henriques et al., 2010), surface re-

ceptor expression was assessed in human thymocytes. It is reported, cells in 50 ng

ml−1 IL-7 culture down-regulated IL-7R expression. A 20% reduction was observed

after 10 minutes. Using the above estimate for k−/k+, we find fI |I=50 ≈ 0.97. Based

on this, we can neglect internalisation of the unbound receptor. In the first ten min-

utes, we shall also neglect recycling and inhibition of receptor transcription. We

assume surface receptor expression loss is modelled by the ODE

dm1(t)

dt
= ν − µBm1(t) .
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Given initial surface expression levels equal to m1(0), this ODE has solution

m1(t) =
ν

µB
+

[
m1(0)− ν

µB

]
eµBt . (4.117)

We assume the previous estimates obtained from the reduced model for m1(0) and

ν. That is, we let m1(0) = 3.6× 104 receptors and ν = 1.2× 103 receptors hour−1.

Then using the above expression for m1(t), (4.117), we obtain an estimate for µB.

We find µB ≈ 1.4 hour−1. The authors of reference (Henriques et al., 2010) estimate

the half-life of the IL-7 receptor in cells treated with CHX, cultured in 50 ng ml−1,

to be approximately three hours. Derived in a similar manner to the calculation

presented in Appendix C, the expected time to degradation in the lysosome for a

surface receptor is given by

τ2 =
[µU (1− fI) + (ξU + δU)] (ξB + δB) + µBfI (ξU + δU)

µU (1− fI) δU (ξB + δB) + µBfI (ξU + δU) δB

≈ 1.3 hour−1 (ξB + δB) + 1.7 hour−2

4.6× 103 hour−2 (ξB + δB) + 1.7 hour−2δB
.

Assuming exponential decay, with a half-life of three hours, we find ξB ≈ 0.2δB +

0.3 hour−1. Again, without a direct measurement, let us set ξB = 1 hour−1, to

obtain an estimate for δB ≈ 3.5 hour−1.

Remaining parameters Consider the observation of an approximately 98% re-

duction in surface receptor expression following overnight culture in 6 ng ml−1 IL-7

made in reference (Park et al., 2004). We let m∗1|I=6 = 0.02 m∗1|I=0 = 0.02
ν (ξU + δU)

µUδU
≈

763 receptors. We set the derivatives equal to zero in the system of ODEs (4.88)-

(4.91), and manipulate the resulting system of equations to obtain

ν exp

(
− γµBfI
ρκ (ξB + δB)

m∗1

)
=

[
µU (1− fI) + µBfI −

µU(1− fI)ξU
ξU + δU

− µBfIξB
ξB + δB

]
m∗1 ,

(4.118)

⇒ exp

(
−1.9× 102

(
γ

ρκ

))
≈ 0.54 ,

⇒ γ

ρκ
≈ 3.2× 10−3 receptors−1 .
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From the steady solutions of ODEs (4.90) and (4.91), we find

m∗4 =
γµBfI

(ξB + δB) ρ
m∗1 ≈ 1.9× 102

(
γ

ρ

)
receptors .

We use this expression to rearrange (4.118) in terms of m∗4. This gives

exp

(
−m

∗
4

κ

)
≈ 9.1

m∗4
κ

.

Solving the above expression numerically, we find m∗4/κ ≈ 0.1. We estimate a value

for ρ based on the observation that following culture in 6 ng ml−1 IL-7, mRNA

levels took approximately twelve hours to return to 99% of the control levels (Park

et al., 2004). The transcription rate is given by ν exp(−m4(t)/κ). We again assume

the IL-7 induced signal decays according to the equation m4(t) = m4(0)e−ρt, where

m4(0) = 0.1κ, as found from m∗4 above. Combining these assumptions with the

experimental observations, we have

ν exp

[
−m4(0) exp (−12ρ)

κ

]
= 0.99ν ,

from which we find ρ ≈ 0.19 hour−1 ⇒ γ ≈ 6.1 × 10−4 receptors−1 hour−1 κ. The

parameter κ was chosen to be 1000. This choice was made from the stochastic

model: κ = 1000 is the minimum value (to the nearest power of 10) such that

fluctuations in the signalling quantity are typically greater than zero in low (10−2

ng ml−1) concentrations of IL-7. Using this value for κ, we find γ ≈ 0.61 hour−1.

The parameter estimates are summarised in Table 4.4.

4.2.6 Signalling in equilibrium

The parameter set established in the previous section allows us to numerically eval-

uate the number of signalling units and surface receptors at equilibrium. Equilib-

rium solutions are found from numerically solving equations (4.99)-(4.112) when the

derivatives are set to zero. We may numerically calculate the number of signalling

units and surface receptors for a range of values of the resource. By inspection, we

choose analytic functions to approximate the dependence these quantities have on

the resource. Let S(I) be the approximate number of signalling units and R(I) be
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Parameter Value Units
ν 1.2× 103 rec hour−1

κ 103 signalling units
ξU 1 hour−1

ξB 1 hour−1

µU 0.14 hour−1

µB 1.4 hour−1

k−/k+ 1.7 ng ml−1

δU 0.29 hour−1

δB 3.5 hour−1

γ 0.61 signalling units rec−1 hour−1

ρ 0.19 hour−1

Table 4.4: Parameter estimates obtained from the mean field model of IL-7 receptor
dynamics.

the number of surface receptors. Then we choose

S(I) =
c1I

c2 + I
, (4.119)

R(I) = c3 +
c4

c5 + I
, (4.120)

where the constants ci, i = 1, . . . 5 are to be determined.

Signalling units Equation (4.119) possesses two constants to be determined. We

pin this function to the numerical solution at the end points of our interval of

consideration for the resource. We are interested in an approximation for I in

the interval [10−5, 103] ng ml−1, since this interval encompasses the concentrations

typically reported in the literature. Numerically, we find m∗4 evaluated at I = 10−5

and I = 103 is approximately 0.223 and 603 signalling units, respectively. Solving for

c1 and c2 we find c1 ≈ 600 signalling units and c2 ≈ 0.027 ng ml−1. Figure 4.10 shows

the numerical solution and analytic approximation along with the relative error for

the approximation. As can be seen in Figure 4.10, the analytic approximation lies

within two standard deviations of the numerical mean. Based on this, we deem the

function S(I) to be a reasonable approximation to the number of signalling units in

equilibrium as a function of the resource.

Surface receptors Considering equation (4.120), there exist three constants to

be determined. Looking at the numerical solution as the resource tends to zero and
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Figure 4.10: Left panel: The black line and grey area show the numerical mean num-
ber of signalling units with a boundary of 1.96 standard deviations. The red line is
the analytical approximation to the numerical mean, derived from equations (4.99)-
(4.112). Right panel: Black dots represent the relative error between the numerical
mean and the mean + 1.96 standard deviations. Red dots represent the relative
error between the numerical mean and analytic approximation.

infinity we find that the number of surface receptors is 38128 and 603, to the nearest

integer, respectively. Noting that limI→+∞R(I) = c3, we choose c3 = 600 receptors.

Letting R(0) = 38128, we find c4 = 37525c5. For the remaining constant, we may

pin the function at an arbitrary choice of I. We chose I such that the relative

error between the analytical approximation and the numerical mean is smaller than

the relative error between the numerical mean and the numerical mean plus two

standard deviations. Using this choice we find c4 ≈ 960 receptors ng ml−1 and

c5 ≈ 0.026 ng ml−1. The numerical solution and analytic approximation, along with

the relative error, is presented in Figure 4.11.

The analytical approximations established in this section are used in the following

chapter to refine the simple resource model.
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4.2 A stochastic model of IL-7R dynamics

Figure 4.11: Left panel: The black line and grey area show the numerical mean
number of surface receptors with a boundary of 1.96 standard deviations. The red
line is the analytical approximation to the numerical mean. Right: The black line
represents the relative error between the numerical mean and mean + 1.96 standard
deviations. The red line shows the relative error between the numerical mean and
the analytic approximation.
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Chapter 5

The resource model revisited: IL-7

dependent dynamics

In this chapter we revisit the resource model in which we assume naive T cell survival

is dependent on IL-7, introduced in Chapter 3, Section 3.3. In the resource model,

we assumed the per cell IL-7 internalisation rate to be linearly proportional to the

signalling strength (see equation 3.52). Furthermore, in equation 3.53, the signalling

strength is linearly related to the external concentration of IL-7. We make use of

the functions derived at the conclusion of Chapter 4 to revise these assumptions.

The main content of this chapter is divided into three sections. In the first of these

sections (Section 5.2), we reintroduce the resource model in light of our derived

functions for the IL-7 signalling strength and internalisation rate. Furthermore, we

present the assumptions made to model considering the peripheral compartment

of both mice and humans. In the second section (Section 5.3) we make use of

experimental data provided by Ben Seddon 1 to estimate parameters of the model

as applied to the murine periphery. In the final section (Section 5.4) we discuss the

model in the context of a human periphery, investigating the homeostasis of T cells.

Before delving once again into the assumptions of the model, we present a brief

biological introduction taken from reference (Reynolds et al., 2013b).

5.1 Introduction

The number of T cells in the periphery is determined by a balance of cell loss (death

or differentiation) and cell renewal due to cell division and thymic export (Almeida

1University College London, benedict.seddon@ucl.ac.uk
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et al., 2005; Surh & Sprent, 2008). Survival of the naive T cell population in the

periphery depends on both common gamma chain cytokines and weak “tonic” signals

induced by recognition of self-peptides by the T cell receptor (TCR) (Sprent &

Surh, 2011; Takada & Jameson, 2009). IL-7 is required for homeostatic expansion

of naive CD8+ and CD4+ T cells in lymphopenic hosts. This is established from

the observation that naive T cells disappear over a one-month period upon adoptive

transfer into IL-7 deficient (IL-7−) hosts (Fry & Mackall, 2005; Schluns et al., 2000;

Tan et al., 2001).

Signals from recognition of self-peptides bound to major histocompatibility com-

plex (sp:MHC), and IL-7, promote cell survival. Naive T cell survival is impaired

when removing access to one of these signals (Brocker, 1997; Kondrack et al., 2003;

Markiewicz et al., 2003; Martin et al., 2006; Vivien et al., 2001). Of interest are the

mechanisms by which these signals are regulated, resulting in a stable number of

naive T cells throughout the lifetimes of mice and humans. IL-7 is produced by stro-

mal cells in the tissues of the lymphatic architecture, including fibroblastic reticular

cells, marginal reticular cells and lymphatic endothelial cells (Mueller & Germain,

2009). These cells produce very small amounts of IL-7 messenger RNA (mRNA),

consistent with IL-7 protein levels limiting T cell expansion. IL-7 is a heparin-

sulphate binding protein and, as such, it will bind extracellular matrix surrounding

stromal cells. Thus, the interaction between naive T cells and stroma controls their

homeostasis (Kang & Coles, 2012). Recognition of higher affinity, non-self-peptides

by the T cell receptor induces naive T cells to undergo an alternative, IL-7 indepen-

dent, survival program dependent on IL-2 (Koenen et al., 2013).

Naive CD8+ T cell responses depend on the amount of IL-7 the cells are exposed

to (Palmer et al., 2011). The experiments in (Palmer et al., 2011) demonstrated that

at low IL-7 concentrations (< 10−2 ng ml−1 ), cell viability was impaired; at higher

concentrations (> 1 ng ml−1 ) cells were observed to proliferate in response to IL-7.

This difference might arise from changes in the strength of the IL-7R induced signal

the cell receives. For an individual cell, IL-7R mediated signalling must be greater

than some threshold to prevent the cell death (Palmer et al., 2011). A sufficient

amount of signalling is likely required to prevent the accumulation of pro-apoptotic

proteins and also regulate glucose uptake (Jiang et al., 2005; Wofford et al., 2008).

Similarly, IL-7R signalling must be greater than a second, higher, threshold to induce

cell division. Heterogeneity at the single cell level in IL-7 signalling thresholds, a

property reported to depend on expression of IL-7R, resulted in differential survival

and division (Palmer et al., 2011). Although these observations are based on two
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different CD8+ T cell receptor transgenic mice, it is assumed in this study that the

mechanisms for T cell survival are the same for both naive CD4+ and CD8+ T cells.

We introduce a deterministic mathematical description of the naive T cell popula-

tion in the peripheral compartment of both the human and mouse immune system.

Parameters are estimated for the model in the context of the murine periphery. For

the human immune system, we describe changes in the homeostasis of naive T cells,

as the body ages from childhood to adulthood. We assume cell survival depends

on the availability of IL-7. We do not include availability of sp:MHC as a variable

within the model, but assume sp:MHC availability is sufficient to allow cell survival

and proliferation in conjunction with sufficient IL-7 stimulus. We also make the

approximation that the distribution of signalling thresholds does not depend on the

age of an individual. For a mathematical study of the impact sp:MHC availability

has on clonal diversity, the reader is referred to Stirk et al. (Stirk et al., 2010a,b).

Our model is a mathematical description of the homeostasis of the naive T cell

repertoire, but does not consider stimulation by foreign antigens.

5.2 A mathematical description of the size of the

peripheral naive T cell population

Stochastic processes provide a method of treating each cell as a distinct, count-

able object and permit a more realistic model than a deterministic characterisation.

Fluctuations in the number of cells can be considered, but, in a non-linear stochas-

tic model, approximations are often made to facilitate the analysis. In the linear

noise approximation (Wallace, 2010), for example, fluctuations are assumed to be

of order Ω
1
2 for a system of size Ω. The human peripheral T cell compartment is

estimated to contain of the order of 1011 naive T cells (Bains et al., 2009b), whilst

the murine immune system is estimated to contain of the order of 107 naive T cells.

Letting the system size be the average number of naive T cells in humans (mice),

we find O(Ω) = 1011 (107) cells, and correspondingly, fluctuations are expected to

be typically 105−106 (103−104) cells in magnitude. That is, we expect fluctuations

of approximately 0.001% (0.1%) in the size of the human (mouse) naive T cell pool

due to stochasticity in the per cell division and death rates. Based on these con-

siderations, adopting a deterministic approach to describe the total human (mouse)

peripheral naive T cell population is reasonable.
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We assume peripheral naive T cells are either in a resting state, or proceeding

through the cell cycle. The deterministic variables R(t) and C(t) are introduced to

model the total number of T cells in the resting and cycling states, respectively. The

variable I(t) is introduced to model the concentration of IL-7. The deterministic

approach we take assumes a volume for the periphery. However, it is assumed that

T cells are spaced uniformly across this space. Indeed, this approach is tantamount

to assuming the resource, IL-7, is shared equally amongst all cells. Competition

for the resource is introduced only so far as each cell acts to reduce the global

concentration of the resource. Resting cells may receive a signal which induces

them to proceed through one round of division. Upon completion of the cell cycle,

a cycling cell produces two daughter cells in the resting compartment. Resting cells

are assumed to die if the IL-7 induced survival signal is insufficient; cells may also

die during the cell cycle. The input of naive T cells from the thymus into the resting

compartment, in keeping with observations in humans, is a decreasing function of

time (Mitchell et al., 2006; Steinmann, 1986). Production of IL-7 is assumed to

occur at a constant rate per unit volume of the immune system. In the absence of

T cells, IL-7 is assumed to be degraded and/or consumed by other cell types at a

constant rate. Upon signal induction through the IL-7 receptor, IL-7 is assumed to

be internalised by the T cell. A diagrammatic representation of the model is given

in Figure 5.1.

Resting
R(t)

Cycling
C(t)

ρ(I(t))

λ

Thymus
ν(t)

�

µR(I(t))

�

µC

Figure 5.1: Diagrammatic illustration of the resource model. T cells leaving the
thymus enter the resting naive peripheral pool. Cells in either a resting or cycling
state may die. The rate of death from the resting state depends on the availability
of the resource (IL-7), whereas the death rate for cycling cells is constant. Resting
cells enter the cell cycle at a rate that depends on the concentration of IL-7. Cycling
T cells produce two daughter cells in the resting state upon completion of the cell
cycle.
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5.2.1 IL-7 signalling and heterogeneity in signalling thresh-

olds

In the model, the amount of signalling each T cell receives is assumed to be the

same for all cells in the population. Yet, we introduce heterogeneity in the signalling

thresholds for survival and proliferation. This introduces differences in the death and

cell cycle entry rates for any two cells receiving the same amount of IL-7 signalling.

Let S(t) be the average amount of IL-7 signalling across the naive T cell population.

We assume each T cell experiences the same amount of IL-7 induced signalling

for a given concentration of IL-7, I(t). We relate this amount of signalling to the

extra-cellular concentration of IL-7 by equation (4.119), derived at the conclusion

of Chapter 4:

S(t) =
600I(t)

0.027 + I(t)
. (5.1)

We assume each individual cell possesses a unique pair of signalling thresholds for

survival and proliferation. Furthermore, we assume, in the continuous limit, that

these thresholds are distributed log-normally across the entire population of resting

T cells residing in the periphery. Let the random variable Θs represent the survival

threshold, and let Θp represent the proliferation threshold. We let

Θs ∼ logN

(
log θs,

1

2α2

)
, Θp ∼ logN

(
log θp,

1

2α2

)
, α ∈ R+ . (5.2)

The respective probability density functions for these distributions are

pΘx(θ) =
α√
πθ

exp
[
− (α (log θ − log θx))

2] , x = s, p . (5.3)

Death rate of resting cells Suppose each T cell in the naive population is a

distinct member possessing a unique signalling threshold for survival. As in the

previous section, we assume these signalling thresholds are distributed log-normally

(in the continuous limit). We suppose the death rate of an individual cell is Boolean,

in the sense that if the global amount of IL-7 signalling is greater than the cell’s

individual survival threshold, then the cell can survive indefinitely. Otherwise, if the

amount of signalling is below the survival threshold, the cell will undergo apoptosis
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at rate µR. The death rate for cell i with survival threshold θ
(i)
s , is given by

fs(S(t), θ(i)
s ) =

 µR if S(t) < θ
(i)
s ,

0 if S(t) ≥ θ
(i)
s .

(5.4)

In the continuous limit (assuming signalling thresholds are distributed log-normally),

the average death rate for the population of naive T cells is given by

µ̄R(S(t)) =

∫ +∞

0

fs(S(t), θ)pΘs(θ) dθ

=

∫ +∞

S(t)

µR pΘs(θ) dθ ,

=
1

2
µR [1− erf (α (logS(t)− log θs))] , (5.5)

where pΘs(θ) is the probability density function of the random variable Θs, defined

by (5.3) with x = s.

Rate of entry into cell cycle Analogous to Section 5.2.1, we assume each T cell

in the naive population is a distinct member possessing a unique signalling threshold

for proliferation. We let the individual rate of entry into the cell cycle be given by

fp(S(t), θ(i)
p ) =

 0 if S(t) < θ
(i)
p ,

ρ if S(t) ≥ θ
(i)
p .

(5.6)

Assume, in the continuous limit, the signalling threshold for entry into the cell cycle

is represented by the random variable Θp, defined in equation (5.2), with probability

density function pΘp(θ) (equation (5.3), x = p). The average rate of entry into cell

cycle is given by

ρ̄(S(t)) =

∫ +∞

0

fp(S(t), θ) pΘp(θ) dθ

=

∫ S(t)

0

ρ pΘp(θ) dθ ,

=
1

2
ρ [1 + erf (α (logS(t)− log θp))] . (5.7)
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5.2.2 Internalisation of IL-7

At the conclusion of Chapter 4, we derived a relationship to describe the total

number of IL-7 receptors, at equilibrium, on the surface of a T cell exposed to IL-7

at concentration I ng ml−1. This relation is given by equation (4.120):

R = 600 +
960

0.026 + I
receptors cell−1. (5.8)

Allowing receptor dynamics to occur with time scales faster than changes in the

concentration of IL-7, one can assume the relation holds as the concentration varies

with time. Let us define

R(t) = 600 +
960

0.026 + I(t)
receptors cell−1. (5.9)

In Chapter 4 we found the fraction of surface receptors bound to IL-7 in equilibrium

is

F(I) =
I

1.7 + I
. (5.10)

In the above equation the concentration I is assumed to be constant. As above,

we again assume receptor dynamics reach equilibrium in shorter time scales than

changes in the concentration of IL-7. From this assumption, we let the above ex-

pression for F(I) hold when I is non-constant. Therefore F(I)→ F(I(t)). It follows

that the number of IL-7:IL-7R complexes internalised into the cell in a 24 hour time

period, starting at time t, is given by

γcomplexes(I(t)) =

∫ t+24 hours

t

µBF(I(s))R(s) ds complexes day−1 cell−1

=

∫ t+24 hours

t

1.4I(s)

1.7 + I(s)

(
600 +

960

0.026 + I(s)

)
ds complexes day−1 cell−1,

(5.11)

where µB takes the value given in Table 4.4. It is reported that IL-7 has a molecular

mass of 17 kDa (≈ 2.8× 10−11 ng) (Haugen et al., 2010). Based on this, the per cell

rate of IL-7 internalisation is given by

γmass(I(t)) =

∫ t+24 hours

t

3.9I(s)

1.7 + I(s)

(
6.0 +

9.6

0.026 + I(s)

)
×10−9 ds ng day−1 cell−1.

(5.12)
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Our aim is to estimate the rate at which a T cell internalising IL-7 reduces the

concentration of IL-7. It follows that we must choose a volume for the model.

Such a volume must be chosen with respect to the animal model being considered.

In the experiments introduced in the next section, we assume the volume of the

murine immune system is constant. Considering the homeostasis of naive T cells in

the human immune system during ageing, the volume should reflect growth from

childhood to adulthood. Naive T cells are generally assumed to be found only in

the lymphoid tissues and the blood, however studies have suggested this may not

be strictly true (Cose, 2007). The choice of an appropriate volume is difficult and

due to the lack of studies specifically motivated with this in aim, we are forced to

make a guess. For simplicity, we shall assume a volume of 1 ml for the murine

immune system. A typical laboratory mouse weighs around 20 grams (0.02 kg),

which, assuming mammalian tissue has a similar density to water, implies a total

volume of around 20 ml. Thus, our assumed peripheral volume is around 5% of the

total volume of a mouse.

To estimate the average body mass of a human we use the model for males given

by Burmaster and Crouch (Burmaster & Crouch, 1997). The explicit relationship

between mass (kg) and age (years) is given by the function M(y) as follows

M(y) = exp
[
4.1 + 1.4× 10−2y − 1.5× 10−4y2

− 2.0 exp
[
−y
(
0.15− 1.4× 10−2y + 9.8× 10−4y2

)] ]
kg, (5.13)

where y is age measured in years. A plot of this function is given in the left panel

of Figure 5.2. Assuming the volume (ml) is 5% of total body mass (grams), we let

the volume of the human immune system be given by

V (t) = 0.05M(t/365)× 103 ml, (5.14)

where t is time in days. The rate of IL-7 concentration reduction due to internali-

sation of IL-7 is then defined as

γconc(I(t)) =
γmass(I(t))

V (t)
. (5.15)

To simplify this expression, we assume that for a homeostatic environment, the

concentration of IL-7 is approximately constant over a period of one day. Using this
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assumption the integral in equation (5.12) reduces to∫ t+24 hours

t

3.9I(s)

1.7 + I(s)

(
6.0 +

9.6

0.026 + I(s)

)
× 10−9 ds

= 24
3.9I(t)

1.7 + I(t)

(
6.0 +

9.6

0.026 + I(t)

)
× 10−9

≈ 9.4I(t)

1.7 + I(t)

(
6.0 +

9.6

0.026 + I(t)

)
× 10−8. (5.16)

Finally, we define the IL-7 internalisation rate to be

γ(I(t))
def
=

9.4I(t)

1.7 + I(t)

(
6.0 +

9.6

0.026 + I(t)

)
× 10−8(V (t))−1 ngml−1 cell−1 day−1,

(5.17)

where V (t) is given by equation (5.14) for humans and V (t) = 1 ml for mice. A plot

of this function for a human volume with t in the range 0 - 60 years and I(t) in the

range 0 - 1 ng ml−1 is shown in the middle panel of Figure 5.2.

Figure 5.2: Left panel: Average body mass of males (equation (5.13)) between ages
0 and 60 years. Middle panel: Plot of the function γ(I(t)) (equation (5.17)) for a
human immune volume with t in the range 0 - 60 years and I(t) in the range 0 - 1
ng ml−1. Right panel: rate of export of thymocytes for human individuals aged 0 -
60 years (equation (5.18)).

5.2.3 Export of thymocytes

In the experiments described in the next section, host mice were Rag1 knock-outs,

for which we assume thymic export is zero. For humans we let the rate of export of

thymocytes to the periphery be a decreasing function of time. In particular, we use

the functional form given by Bains et al. (Bains et al., 2009b). Let us introduce the

thymic output function, ν(t), as follows

ν(t) = 2.32× 108 exp(−1.1× 104t) + 1.15× 108 exp(−1.6× 107t2) , (5.18)
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where t corresponds to the age of the individual, measured in days. A plot of

this function is shown in the left panel of Figure 5.2. The function was chosen by

Bains et al. to describe the rate of thymic export of CD4+ T cells. We use the same

function to describe the export rate of all naive T cells (CD4+ or CD8+ T cells).

This approximation is justified since we require the absolute cell count to roughly

approximate the cell count observed in humans (indeed, such an observation is likely

subject to large differences). Of interest later in this chapter is the relative variation

of cell numbers with different choices of parameter values. For our purposes, the

important feature of ν(t) is that it is a decreasing function of time.

5.2.4 Production and degradation of IL-7

We assume IL-7 is produced at a constant rate per unit time. This rate is encoded

by the parameter β, which has units ng ml−1 day−1. Furthermore, we assume IL-7

is degraded and internalised by other cell types at a constant rate per unit time.

We let the degradation rate of IL-7 be denoted by the parameter δ, which has units

day−1.

5.2.5 Cell cycle progression

Cycling cells take on average λ−1 days to complete the cell cycle. After a cell divides,

both daughter cells are produced in the resting state and require a second signal

before they can progress through another round of cell division. Cell cycle may be

interrupted resulting in the death of the cell. Such death events occur at a rate µC ,

which has units days−1.

5.2.6 Deterministic equations for the resource model

From the above assumptions, the system of differential equations governing the

behaviour of the naive T cells (resting and cycling) and the concentration of IL-7 is

given by

dI(t)

dt
= β − γ(I(t))R(t)− δI(t) , (5.19)

dR(t)

dt
= ν(t)− [ρ̄(S(t)) + µ̄R(S(t))]R(t) + 2λC(t) , (5.20)

dC(t)

dt
= ρ̄(S(t))R(t)− (µC + λ)C(t) . (5.21)
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The model expressed in these equations is assumed to describe naive T cell survival

for both humans and mice. However, the parameter choices, functional form of ν(t)

and volume used in the function γ(I(t)) differ between humans and mice. This

system is subject to the initial conditions I0, R0, and C0 at time t = 0.

5.3 Inferring parameters from experimental data

An immune system possessing an abnormally low number of lymphocytes is referred

to as being lymphopenic. Lymphopenia induced proliferation (LIP) is defined as

the expansion of a population of lymphocytes in response to such an environment.

Expansion in this manner is not a response to antigenic stimulation, such as in the

case of an infection. Rather, it has been suggested that during LIP, the signals

normally regulating homeostasis of lymphocyte populations are in excess due to the

low numbers of lymphocytes competing for these signals (Goldrath et al., 2004). In

this section we use measurements of an expanding population of T cells in a mouse,

to estimate the parameters of our model.

The abundance of IL-7 and sp:MHC induces T cells to divide, thereby increasing

the size of the population. After expansion, it is assumed the availability of trophic

factors required to induce proliferation returns to levels found in lymphoreplete

environments (Fry & Mackall, 2005). We restrict ourselves to assuming the rate

of expansion is controlled by the effective concentration at which IL-7 is available.

Availability of sp:MHC is not considered.

In an experimental setting, T cells may be induced to undergo LIP by creating a

lymphopenic environment in mice. The gene Rag-1 is expressed during development

of the T cell receptor. Mice, genetically engineered such that they do not express

the Rag-1 gene, do not generate T cells. Such mice are lymphopenic and have been

used to study the expansion of lymphocytes in response to lymphopenic environ-

ments (Mombaerts et al., 1992). Rag1 knock-out OT-I T Cell Receptor mice are

engineered to produce CD8+ T cells which possess only the OT-1 TCR. Similarly,

Rag1 knock-out F5 T Cell Receptor mice are engineered to produce CD8+ T cells

possessing the F5 TCR. Such mice are used for adoptive transfer experiments. In

the experiments performed by Hogan et al., OT-1 and F5 T cells were adoptively

transferred from transgenic mice into Rag-1 knock-out mice to study the mecha-

nisms controlling the lymphopenic expansion of these two T cell clonotypes (Hogan

et al., 2013). In these experiments, both T cell clonotypes proliferate in lymphopenic
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hosts. Measuring the number of T cells at various time points allows the acquisi-

tion of time course data. In reference (Hogan et al., 2013) the authors present a

deterministic mathematical model, sharing features of the model presented in Sec-

tion 3.2.1. The authors conclude that the underlying mechanisms regulating LIP

are the same for both OT-1 and F5 T cells. The authors kindly agreed to share the

experimental data obtained through these experiments. In this section, we fit the

model introduced in this chapter (in the context of a mouse) to this data, allowing

us to make an estimate for the parameters of the model.

Prior to adoptive transfer into Rag-1 deficient hosts, the two transgenic T cell clono-

types were stained with carboxyfluorescein succinimidyl ester (CFSE). CFSE is a

fluorescent green dye which can be used to track the division history of a population

of T cells. A cell stained with CFSE will, upon division, produce two daughter

cells which fluoresce at half the intensity of the parent. If one labels a population of

T cells using CFSE, one can, at later time points, count the total number of cells that

have undergone n divisions. The population of cells having undergone n divisions

fluoresces, on average, at half the intensity of the population which has undergone

n− 1 divisions. After about 8 divisions, CFSE is practically indistinguishable from

background fluorescence. In the experiments performed by Hogan et al., mice were

sacrificed at days 3, 4, 5, 6, 7, 10, 12 and 18. At these time points, CFSE labelled

cells were recovered from the spleens and lymph nodes of recipient mice. The total

number of recovered donor transgenic T cells was determined by flow cytometry.

5.3.1 Generational model

Our model presented thus far describes the average number of resting T cells and

the average number of cells in the cell cycle. In this section we extend the model

to record the average number of T cells which have divided n times for both the

resting and cycling compartments. The approach we take bears similarity to the

approaches taken by Schittler et al. (2013), and Ganusov and De Boer (2013) in

modelling lymphocytes populations for BrdU labelling experiments.

To avoid introducing more parameters, we assume the parameters governing the

dynamics of the total population also govern the dynamics of each generation. Let

us denote by N the generation at which CFSE fluorescence is indistinguishable from

the background. Furthermore, denote by Rn(t), the number of resting cells which

have divided n times and by Cn(t), the number of cycling cells which have gone

through n divisions previously. Then, assuming dividing cells enter the resting pool
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in the next generation, the generational model is described by the following system

of ordinary differential equations:

• The number of cells internalising IL-7 is now summed over the number of

resting cells in each generation. We also assume host mice produce IL-7 at a

constant rate for the time course of the experiment:

dI(t)

dt
= β − γ(I(t))

N∑
k=0

Rk(t)− δI(t). (5.22)

• Since the host mice in the experiments are Rag-1 knock-outs, no T cells are

produced by the host and therefore we set ν = 0. The ODEs describing the

number of cells which have not divided are given by:

dR0(t)

dt
= − [ρ̄(S(t)) + µ̄R(S(t))]R0(t), (5.23)

dC0(t)

dt
= ρ̄(S(t))R0(t)− (µC + λ)C0(t). (5.24)

• Cycling cells in generation n produce two resting cells in generation n+1. The

ODEs describing the model for n = 1 . . . ...N − 1 are given by:

dRn(t)

dt
= 2λCn−1(t)− [ρ̄(S(t)) + µ̄R(S(t))]Rn(t), (5.25)

dCn(t)

dt
= ρ̄(S(t))Rn(t)− (µC + λ)Cn(t). (5.26)

• At generation N , we assume CFSE fluorescence is indistinguishable from the

background and therefore, collect all subsequent generations of cells into a

single variable. The ODEs describing the model beyond CFSE detectability

are given by:

dRN(t)

dt
= 2λ (CN−1(t) + CN(t))− [ρ̄(S(t)) + µ̄R(S(t))]RN(t), (5.27)

dCN(t)

dt
= ρ̄(S(t))RN(t)− (µC + λ)CN(t). (5.28)
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Summing over all generations, the generational model gives identical results to the

model presented in Section 5.2.6. That is,

N∑
k=0

Rk(t) = R(t) and
N∑
k=0

Ck(t) = C(t). (5.29)

5.3.2 Initial parameter guesses

The model possesses 9 parameters, {α, β, δ, θs, θp, λ, ρ, µR, µC}, which we aim to

estimate. Furthermore, the initial conditions are unknown. We let the in vivo

concentration of IL-7 prior to T cell transfer be equal to the equilibrium solution of

equation (5.22), subject to setting the internalisation rate equal to zero (γ(I(t)) = 0).

We define

I(t = 0) = I0 =
β

δ
. (5.30)

In the experiments, 1.5×106 T cells were adoptively transferred to host mice (Hogan

et al., 2013). Following transfer, T cells must migrate to the lymphoid tissue to

access IL-7. We assume approximately 5% of cells survive the transfer, however, we

treat the initial number of resting cells as a further parameter to be estimated, with

7.5×104 cells as the initial guess. We assume no cells are in cycle following transfer.

In the experiments, host mice receiving OT-1 T cells are the same as those receiving

F5 T cells. Due to this, we assume the rates of IL-7 production and degradation

due to non-T cell sources are the same in both sets of experiments. Thus, rather

than performing parameter estimation for the OT-1 and F5 data independently, we

combine data sets, such that β and δ can be fixed between data sets.

A rough estimate for the total number of T cells in a lymphoreplete mouse is around

107 cells. We guess that in a lymphoreplete mouse, the effective concentration of

IL-7 is limiting and close to the mean survival threshold. The studies of Palmer

et al. (Palmer et al., 2011) indicate cell viability becomes impaired at around 10−2

ng ml−1 IL-7 in vitro. We use this value as the effective concentration of IL-7 in

a lymphoreplete mouse containing around 107 T cells. Equation (5.17), subject to

choosing a volume for the mouse of 1 ml, is given by

γ(I(t)) =
9.4I(t)

1.7 + I(t)

(
6.0 +

9.6

0.026 + I(t)

)
× 10−8 . (5.31)

From (5.31), we estimate the rate of IL-7 internalisation (γ(I(t))R(t)) in a lym-

phoreplete mouse to be approximately 1.5 ng ml−1 day−1. Let us choose β = 2 ng
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ml−1 day−1. Furthermore, we let the difference between β and γ(I(t)) be accounted

for by δ, which we initially guess is 40 days−1.

The parameter λ encodes the average length of time a cell takes to complete the cell

cycle, we guess λ−1 to be half a day (λ = 2 days−1). The parameter µC encodes the

rate at which cells fail to complete the cell cycle resulting in cell death. We choose

µC = 0.5 days−1. The rate of resting cell death due to IL-7 starvation is encoded

by the parameter µR. We guess T cells may survive on average for 2 days without

IL-7 stimulus, hence µR = 0.5 days−1. We note that this represents the minimum

lifetime of a T cell, in the absence of any survival signals. In IL-7 deficient hosts,

trasferred T cell survive for approximately a month. However, in vivo these cells

may have access to other pro-survival cytokines and TCR signals. Lastly, we guess

the rate of entry into cell cycle is of the order of a few hours, we choose ρ = 4 days−1.

Assuming signalling thresholds are an order of magnitude apart, as suggested by Palmer

et al. (2011), and noting that the average number of signalling units is, by construc-

tion, bounded between 0 and 600, we guess θs = 50 signalling units and θp = 500

signalling units. Given the above parameter choices, an initial exploration of the

numerical solutions suggests a suitable value for α is 3 (log signalling units)−1.

5.3.3 Parameter optimisation

Data obtained at days 3, 4, 5, 6, 7, 10, 12 and 18 was processed such that the average

number of cells per day per generation was recorded for generations 0 - 8. This was

done for both the OT-1 and F5 data sets. No distinction was made between resting

and cycling cells within the experiments, therefore data is compared to Ri(t)+Ci(t),

i = 0, . . . , 8. Data for both sets of experiments was stored in a matrix Xobs of size

8 (number of days) × 9 (number of generations). Model output was formatted to

simulate observations at the equivalent time points and stored in the matrix Xsim,

for both the model subject to the OT-1 and F5 parameter sets. For each data set,

the discrepancy between model output and experimental data was quantified using

the measure

D(Xsim, Xobs) =
∑
i,j

(
xsim
ij − xobs

ij

xsim
ij + xobs

ij

)2

, 1 ≤ i ≤ 8, 1 ≤ j ≤ 9. (5.32)

Parameter optimisation was performed using the function fmin tnc, available within

the scipy.optimize package for Python. The parameter vector passed to this function
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was

{β, δ, αOT−1, θOT−1
s , θOT−1

p , λOT−1, ρOT−1, µOT−1
R , µOT−1

C ,

ROT−1
0 , αF5, θF5

s , θ
F5
p , λ

F5, ρF5, µF5
R , µ

F5
C , R

F5
0 }. (5.33)

Note that we have assumed β and δ are the same for both sets of experiments, but

in principle all other parameters are intrinsic to the cell type being transferred to

the host. We therefore obtain two values of D, one for the OT-1 data set and one

for the F5 data set. These two values are summed to give the total distance the

model output and the experimental data.

The measure above was minimised using the initial guesses given in the second

column of Table 5.1. In this table we also present the parameters obtained post

optimisation. In Figures 5.3 and 5.4 we present bar charts showing each component

of Xobs against the simulated observation in Xsim, for the OT-1 and F5 data, re-

spectively. The aggregate simulated number of cells (
∑8

i=0 Ri(t) + Ci(t)) is shown

alongside the observed number of cells (aggregate) recorded for each mouse, in the

left panel of Figure 5.5.

Parameter β δ α θs θp λ ρ µR µC R0

Initial Guess 2 40 3 50 500 2 4 0.5 0.5 7.5× 104

Best Fit OT-1 1.83 41.5 3.33 50.0 483 3.20 4.38 0.500 0.396 7.69× 104

Best Fit F5 1.83 41.5 3.19 50.0 555 2.37 3.54 0.500 0.279 8.42× 104

Units ng
m

l −1
day −

1

days −
1

(log
signalling

units) −
1

signalling
units

signalling
units

days −
1

days −
1

days −
1

days −
1

cells

Table 5.1: Initial guesses and optimised parameters.

5.3.4 Testing the model

To test the model, further data was obtained from Hogan et al. (2013). The original

experiments were repeated; however this time, observations were recorded at days

1, 20, 42 and 48. These time points lie outside the range of the time points used to

estimate the parameters of the model. In the right panel of Figure 5.5 we plot the
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Figure 5.3: Red: Experimental cell counts obtained from mice receiving OT-1
T cells. Grey: model output using best fit parameter set.
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Figure 5.4: Blue: Experimental cell counts obtained from mice receiving F5 T cells.
Grey: model output using best fit parameter set.
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Figure 5.5: Left: Solid lines show the aggregate number of T cells calculated using
equations (5.19)-(5.21) and the parameter set given in the third column of Table 5.1.
Each point represents the total number of cells recorded from a mouse. OT-1 data
shown in red, F5 data shown in blue. Right: Purple markers show experimental test
data for OT1 T cells. Green markers indicate experimental test data for F5 T cells.

Figure 5.6: Left panel: model output computed with best fit parameter set for OT-
1 data. Solid lines are produced with R0 as obtained from parameter estimation
(presented in the third column of Table 5.1 for both the OT-1 and F5 varieties).
Dashed lines simulated withR0/10, dotted lines simulated withR0/100. Right panel:
model output computed with best fit parameter set for F5 data. Solid lines are
produced with R0 as obtained from parameter estimation. Dashed lines simulated
with R0/10, dotted lines simulated with R0/100.

125



5. THE RESOURCE MODEL REVISITED: IL-7 DEPENDENT
DYNAMICS

additional observations (triangles) against model predictions. The model extrapo-

lated to later times matches the new time points reasonably well for both the OT-1

and F5 cell types.

To further test the model we emulated tests made by Hogan et al. In these tests,

model parameters were used to estimate the rate of T cell expansion from different

initial numbers of cells. Using our model, we reduced the initial number of resting

cells (R0) by a factor of 10 and 100. In Figure 5.6 solid lines correspond to taking R0

as estimated from the parameter optimisation, dashed lines were produced using the

initial condition R0/10, and dotted lines were simulated with R0/100 resting cells.

The model realised using the OT-1 parameter set predicts that solid and dotted tra-

jectories converge to within 2× 105 cells of each other within the experimental time

course of 86 days. In contrast to this, the model realised using the F5 parameter set

predicts a lesser degree of convergence over the 86 day time window. Indeed, the

closest approach between solid and dotted trajectories is approximately 1.6 × 106

cells, nearly an order of magnitude larger than the closest approach for the OT-1

trajectories. These predictions are reflected remarkably well in the experimental

data shown in the middle panel of Figure 7B in reference (Hogan et al., 2013). The

agreement between these model predictions and the experimental observations sug-

gests our model is good at describing the rate of expansion of a population of T cells

in a lymphopenic environment.

5.3.5 Stability analysis of the mouse model

The analysis of steady states of the resource model in the context of an experimental

mouse is similar to the analysis presented in Section 3.3.7. Stationary solutions are

found from solving the system of equations

0 = β − γ(I∗)R∗ − δI∗ , (5.34)

0 = − [ρ̄(S∗) + µ̄R(S∗)]R∗ + 2λC∗ , (5.35)

0 = ρ̄(S∗)R∗ − (µC + λ)C∗ , (5.36)

where S∗ = S(I∗). Combining (5.35) and (5.36) we find

((µC + λ)µ̄R(S∗) + (µC − λ)ρ̄(S∗))R∗ = 0. (5.37)
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Therefore, either R∗ = 0, in which case C∗ = 0 and I∗ = β
δ
, or the signalling at

equilibrium satisfies

(µC + λ)µ̄R(S∗) + (µC − λ)ρ̄(S∗) = 0. (5.38)

Note, that by construction, µ̄R(0) = µR > 0 = ρ̄(0) and limx→+∞ µ̄R(x) = 0 <

limx→+∞ ρ̄(x). Given that µ̄R(x) and ρ̄(x) are respectively, strictly decreasing and

increasing, there exists a unique solution S∗ satisfying (5.38), on the semi-open

interval [0,∞). It follows then that I∗, R∗ and C∗ are unique if R∗ > 0. The

Jacobian for this system is

J =


−γ′(I∗)R∗ − δ −γ(I∗) 0

−S ′(I∗)R∗ (ρ̄′(S∗) + µ̄′R(S∗)) − (ρ̄(S∗) + µ̄R(S∗)) 2λ

S ′(I∗)ρ̄(S∗)R∗ ρ̄(S∗) −(µC + λ)

 . (5.39)

The characteristic polynomial for this system is det(J − ξI) = 0:

ξ3 + a1ξ
2 + a2ξ + a3 = 0, (5.40)

where

a1 =ρ̄(S∗) + µ̄R(S∗) + µC + λ+ γ′(I∗)R∗ + δ, (5.41)

a2 = (ρ̄(S∗) + µ̄R(S∗) + µC + λ) (γ′(I∗)R∗ + δ) + (µC + λ)µ̄R(S∗) + (µC − λ)ρ̄(S∗)

− γ(I∗)S ′(I∗)R∗ (ρ̄′(S∗) + µ̄′R(S∗)) , (5.42)

a3 = (γ′(I∗)R∗ + δ) ((µC + λ)µ̄R(S∗) + (µC − λ)ρ̄(S∗))

− γ(I∗)S ′(I∗)R∗ ((µC + λ)µ̄′R(S∗) + (µC − λ)ρ̄′(S∗)) . (5.43)

All eigenvalues ξ, are negative if and only if, ai > 0, i = 1, 2, 3, and a1a2 > a3. If

these conditions are met, then stationary solutions I∗, R∗, C∗ are stable (Hurwitz,

1964).
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Stationary solutions of the form I∗ = β
δ
, R∗ = C∗ = 0

Consider stationary solutions of the form I∗ = β
δ
, R∗ = C∗ = 0. The coefficients ai,

i = 1, 2, 3 reduce to

a1 =ρ̄(Ŝ) + µ̄R(Ŝ) + µC + λ+ δ, (5.44)

a2 =
(
ρ̄(Ŝ) + µ̄R(Ŝ) + µC + λ

)
δ + (µC + λ)µ̄R(Ŝ) + (µC − λ)ρ̄(Ŝ) (5.45)

a3 =δ
(

(µC + λ)µ̄R(Ŝ) + (µC − λ)ρ̄(Ŝ)
)
, (5.46)

(5.47)

where Ŝ = S(β
δ
). The functions ρ̄ and µ̄R, are, by definition, strictly positive.

Therefore, a1 > 0 (as is a1 − δ). We may write a2 = (a1 − δ)δ + δ−1a3. From which

it follows, a1a2 = a1(a1 − δ)δ + δ−1a1a3 = a1(a1 − δ)δ + δ−1(a1 − δ)a3 + a3 > a3.

Stability is thus ensured if a3 > 0, which is true if and only if

(µC + λ)µ̄R(S∗) + (µC − λ)ρ̄(S∗) > 0. (5.48)

The above inequality holds if µC > λ. Consider that, for non-zero stationary so-

lutions R∗, C∗, any corresponding stationary solution I∗ must be less than β
δ
. It

follows that any solution S∗ paired with non-zero stationary solutions R∗, C∗ is less

than Ŝ. Thus, µ̄R(S∗) > µ̄R(Ŝ) and ρ̄(S∗) < ρ̄(Ŝ) and from (5.38) we have

(µC + λ)µ̄R(Ŝ) + (µC − λ)ρ̄(Ŝ) < 0 (5.49)

when λ > µC . Therefore, if λ > µC , a3 is negative. Thus, λ < µC is a necessary and

sufficient condition for stability of stationary solutions corresponding to extinction

of the T cell population.

Stationary solutions of the form I∗, R∗, C∗ > 0

Consider now non-zero stationary solutions. From (5.38) the coefficients ai, i =

1, 2, 3 reduce to

a1 =ρ̄(S∗) + µ̄R(S∗) + µC + λ+ γ′(I∗)R∗ + δ, (5.50)

a2 = (ρ̄(S∗) + µ̄R(S∗) + µC + λ) (γ′(I∗)R∗ + δ)
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Stationary solution Value Stability coefficient Value
I∗ 8.98× 10−3 ng ml−1 a1 1.56× 102

R∗ 1.30× 107 cells a2 5.50× 102

C∗ 1.30 cells a3 1.73× 10−3

I∗ 9.90× 10−3 ng ml−1 a1 1.38× 102

R∗ 1.21× 107 cells a2 3.58× 102

C∗ 1.90× 10−1 cells a3 5.84× 10−4

Table 5.2: Top: Stationary solutions and stability coefficients for the OT-1 parame-
ter set. Bottom: Stationary solutions and stability coefficients for the F5 parameter
set.

− γ(I∗)S ′(I∗)R∗ (ρ̄′(S∗) + µ̄′R(S∗)) , (5.51)

a3 =− γ(I∗)S ′(I∗)R∗ ((µC + λ)µ̄′R(S∗) + (µC − λ)ρ̄′(S∗)) . (5.52)

The rate of IL-7 internalisation is an increasing function of the concentration and

so γ′(I∗) > 0, therefore a1 > 0. In general, parameters may be chosen such that a2

and a3 are negative. Note, if λ > µC then a3 > 0 but, for example, ρ may be chosen

such that a2 < 0. The stationary solutions and stability coefficients are given in

Table 5.2 for both the OT-1 and F5 parameter sets. In both cases, the parameters

lead to trajectories tending to non-zero stationary solutions which are stable. Notice

that at steady state, practically zero cells are undergoing division.

5.3.6 Numerical exploration of the mouse model

The optimised parameter set represents optimisation with respect to a local mini-

mum, rather than a global minimum. This is because there is insufficient explanatory

power in the data to uniquely estimate all parameters. Despite this, over the next

section we explore the numerical behaviour of the model given this parameter set.

Negligible resting cell death rate One may have noticed that the best fit

parameters for µR and θs are identical to the initial guesses. Looking at the reduction

in the average signalling per T cell, S(t), for both parameter sets the signalling is

far above the guessed threshold for survival (θs = 50 signalling units). To see this,

consider Figure 5.7, the range of signalling observed lies between the two dashed

green lines. Between the green lines, the function µ̄R(S(t)) is approximately zero.

As such, we cannot say with any certainty that θs and µR represent the true values.

We predict that during LIP, T cell death due to lack of IL-7 stimulus is negligible.
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Figure 5.7: Top panels: Reduction in concentration of IL-7 and average signalling
per T cell for both the OT-1 (red) and F5 (blue) parameter sets. Bottom panel:
The death rate of resting cells µ̄R(S), as a function of the signalling S. Blue and
red curves correspond to the F5 and OT-1 parameter sets respectively. The dashed
green lines indicate the range of signalling observed from days 0 - 18.
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Rates of entry into the cell cycle In the left panel of Figure 5.8 we plot the

average rate of entry into the cell cycle, ρ̄(S). From this plot it is clear why the

signalling does not fall lower than 260 signalling units for the OT-1 parameter set

(330 for F5). Below these values, the rate of entry into the cell cycle is approximately

0, and so below these amounts of signalling we observe a relatively slow increase in

the population size and hence a slow decrease in the amount of IL-7.

Given that the resting T cell death rate is negligible, this suggests that resting

T cells are becoming quiescent, that is, these cells are remaining in the resting pool

for a relatively long period of time. Since, in this model, the concentration of IL-7

is determined by the number of T cells sharing it, a slow increase in the number of

T cells results in a slow decrease in the IL-7 concentration and hence, the amount

of signalling.

In the right panel of Figure 5.8 we plot the probability distributions of the signalling

thresholds for entry into the cell cycle. The distribution for OT-1 T cells has a peak

to the left of the peak for the F5 distribution. This suggests that on average OT-1

T cells require less IL-7 to enter cell cycle than F5 T cells. For both transgenic T cell

types, the distributions predict a significant proportion of cells cannot enter division

even when receiving the maximum amount of signalling at equilibrium, indicated by

the vertical dashed line.

Figure 5.8: Left panel: rate of entry into cell cycle as a function of the number
of IL-7 signalling units. The dashed green lines indicate the range of signalling
observed from days 0 - 18. Right panel: probability distribution of thresholds for
entry into cell cycle. The vertical dashed line indicates the theoretical maximum
number of signalling units (in equilibrium) a T cell can possess. Blue and red curves
correspond to the F5 and OT-1 parameter sets, respectively.
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Convergence to fixed points Another interesting feature is the model’s propen-

sity to approach an equilibrium value. Over the 86 day time window shown in the

right panel of Figure 5.5, the total number of cells is still increasing, albeit slowly,

even after 86 days. Simulating the model for a longer time, it is evident that even

after 2 years, a time scale comparable with the lifetime of a mouse, the total number

of T cells is slowly increasing (Figure 5.9). It should be noted that the increase is

slight enough that in an experimental setting it would be practically impossible to

distinguish such an observation from a true equilibrium, due to the inherent noise

in these types of observations. We shall classify trajectories showing such modest

increase in the number of cells over time as quasi-fixed-points.

Figure 5.9: Model output simulated over a two year time course. Red, OT-1 and
blue, F5.

Theoretically, there exists a single fixed point solution to the model for the estimated

parameter set, which is independent of initial conditions. For the estimated param-

eter sets this fixed point is stable. The markedly slow convergence to the fixed point

implies the existence of quasi-fixed-points (defined as trajectories wherein the rate

of change of cell numbers is negligible relative to the lifespan of a mouse) which are

dependent on initial conditions. In Figure 5.10 we simulate the model for 80 days

for various choices of R0 in the range 103-108 T cells. In a region near the theoretical

fixed point, we observe a number of quasi-fixed-points dependent on the choice of

R0. We note that the upper boundary of this region depends on the lower signalling

threshold θs. Since we could not infer a true value for θs, we cannot reliably infer

where the upper part of this boundary lies. When the total number of T cells is

within this region, the average amount of IL-7 signalling lies to the left of the distri-

butions in the right panel of Figure 5.8 and to the right of equivalent distributions
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for the survival thresholds. For signalling in this range (see the area between the

dashed vertical lines in Figure 5.11), resting T cells are largely quiescent, hardly

undergoing death or entering the cell cycle. The total number of quiescent resting

cells is dependent on the number of cells at the time in which the signalling enters

this zone for quiescence, ranging from roughly 5 - 20 million T cells.

Figure 5.10: Illustration of quasi-fixed-points reached from various initial conditions.

Figure 5.11: The rates of resting cell death and entry into the cell cycle as a function
of the concentration of IL-7. The black lines indicate the boundaries of the region
in which IL-7 signalling results in resting T cell quiescence.

Thymic output Suppose we now simulate the model using the OT-1 parameter

set, but introduce the parameter ν > 0 to describe thymic output. In Figure 5.12 we

compute trajectories with the OT-1 parameter set with thymic output set at a rate

of 106 T cells per day. Inclusion of thymic output predicts a faster reconstitution of

the T cell population, furthermore, the total number of cells at equilibrium is higher
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(relative to setting ν = 0). It is also clear that inclusion of thymic output drives the

model to converge to the fixed-point at a much faster rate. In the example shown,

it takes about a week to reconstitute the number of T cells to the quiescent zone

discussed in the previous paragraph. It then takes about a month of slower expansion

for the model to converge to the set point. To reinforce this point, we repeated the

computation used to produce Figure 5.10, however this time we included thymic

output at a rate of 106 cells per day (right panel, Figure 5.12). It is clear that

the extra competition from the new T cells drives the model to a fixed-point at a

markedly faster rate than peripheral homeostatic expansion or contraction of the

T cell population alone.

Figure 5.12: Left panel: Model computed with the OT-1 parameter set with thymic
output set at 106 cells per day (solid line) and zero cells per day (dashed line). Right
panel: Trajectories from various initial conditions subject to setting thymic output
at a rate of 106 cells per day.

5.3.7 Discussion of the mouse model

The model is over parameterised for the available data set. Starting with different

initial guesses, the optimisation scheme presented above will converge to different

local minimum. Despite this, we have demonstrated that the model is able to re-

produce the experimental data. In our exploration of different initial guesses, we

consistently observed that the death rate of resting T cells was negligible, and further

observed the tendency of the model to exhibit quasi-fixed-point solutions. We note

though that the model does not possess these types of trajectories when α � 1.

However, one immediate implication of this is that the distributions of signalling

thresholds significantly overlap, which contradicts the statement by Palmer et al.
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(2011) that the thresholds are significantly distinct. We conclude that the observa-

tion of quasi-fixed-points is a robust feature of the model, and not a peculiarity of

the local minimum we have found.

Parameter values could be uniquely determined if the number of cells undergoing

division, as well as the amount of IL-7, is measured, in addition to the data presented.

Exactly how one would measure the amount of IL-7 is not easy, since IL-7 is not

uniformly distributed throughout the lymphatic architecture. One possible method

is to measure the amount of IL-7 in the serum. However, this measurement is

most likely not equal to the effective concentration at which IL-7 is available to

T cells. Even so, measuring the amount of IL-7 in the serum over time could

indicate the relative changes in its availability following expansion of the T cell

population. From information about the relative changes, it should be possible

to infer the rate at which the effective concentration changes as the size of the

population increases. Despite the limitations in our ability to uniquely estimate

the parameters of the model, we have demonstrated that the model is capable of

reproducing the experimental observations made in reference (Hogan et al., 2013).

The model, simulated under the parameter sets estimated from experimental data,

predicts the existence of quasi-fixed-point solutions at which resting T cell death

and entry into cell cycle rates are small. Quasi-fixed-points were observed for T cell

population sizes in the range 5 − 20 million cells. Population sizes smaller than 5

million cells expand over a few weeks to about 5 million T cells. A T cell population

with more than 20 million cells contracts until it reaches around 20 million cells. For

populations whose size is between these values, the rate of change of the size of the

population is sufficiently slow that the population does not reach true equilibrium

within the expected lifetime of a mouse. Inclusion of thymic output at a rate of 106

cells per day (den Braber et al., 2012) predicted an equilibrium of around 27 million

cells. Interestingly these observations are in agreement with a previous study which

found that transferred T cells are unable to reconstitute the entire naive T cell pool

in mice lacking a thymus (Tanchot et al., 2002).

Consider the following scenario: a healthy mouse undergoes thymectomy, leaving

the mouse with approximately 27 million naive T cells in the periphery. Initially,

from the model, we would expect a modest reduction in the total number of T cells.

Suppose at some later time, the mouse experiences acute T cell loss, losing say,

90% of the peripheral population. Our model predicts that the mouse is unable to

reconstitute the entire T cell pool. Indeed, for our estimated parameters the trans-

genic mouse can only reconstitute approximately 20% of the peripheral population
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following acute loss of T cells. However, this figure is very sensitive to the value of

α, which we could not determine uniquely. For a polyclonal population, we would

expect α to be smaller, as it is reasonable to expect a polyclonal population of cells

has more variability in IL-7 signalling thresholds than a population of a single speci-

ficity. Thus, for a polyclonal mouse, we would make the same predictions as above,

but would expect a greater fraction of the population to be reconstituted.

The numerical values given in this discussion are dependent on the choice of param-

eters, which as discussed above, we were not able to determine uniquely. However,

the qualitative predictions stand provided there is a noticeably flat region between

the functions describing the resting cell death rate and rate of entry into division.

That is, there exists a region of signalling between thresholds at which rates of

apoptosis of resting cells and rates of entry into cell cycle are relatively small. This

region is shown in Figure 5.11 by the area between the vertical dashed black lines.

This region is maintained provided θp � θs and α is such that the distributions of

signalling thresholds do not significantly overlap in the regions in which there is a

significant probability density.

5.4 Resource model in the context of the human

periphery

In this section we explore the resource model in the context of the human periphery.

Changes between the mouse model presented in the previous section and the human

model are as follows: we let the volume of the system be defined by equation (5.14),

wherein, the term M(y) represents the average body mass of American males be-

tween ages 0-60 years, specified by (5.13). Also, the rate of export of thymocytes

into the periphery is defined by equation (5.18), taken from reference (Bains et al.,

2009a). The rate of thymic export, specified by this function, decreases with the

age of an individual. The non-linearity of these functions further complicates the

analysis of the steady states of the model. Therefore, in this section, we restrict

ourselves to exploring the model numerically. To that end, we require a parameter

set representative of a polyclonal population of naive T cells in the periphery.

5.4.1 Human parameters

OT-1 and F5 T cells are commonly used in experiments because they are reported

to represent opposite ends of the spectrum of responsiveness to stimuli. We guess

136



5.4 Resource model in the context of the human periphery

then that the average signalling threshold for division lies somewhere between the

the thresholds for the OT-1 and F5 parameter sets, respectively 482 and 554. Let

us choose θp = 520 signalling units to represent the average signalling threshold for

division in a human polyclonal naive T cell population. The signalling threshold

for survival is 50 in both the OT-1 and F5 parameter sets. We also choose θs =

50 signalling units in the human parameter set. Given that we are considering a

polyclonal population, it is reasonable to assume a greater degree of variability in the

signalling thresholds than was found for the monoclonal OT-1 and F5 populations.

This is done by choosing α to be smaller than the inferred values in Table 5.1. Let us

choose α = 2 (log signalling units)−1. In addition to the above parameter choices,

we let β = 2 ng ml−1 day−1 and δ = 40 day−1. For the remaining parameters,

we choose a rough average between the inferred parameters for the OT-1 and F5

parameter sets. The full parameter set for the human model is given in Table 5.3.

Parameter Value Units
α 2.0 (log signalling units)−1

β 2.0 ng ml−1 day−1

δ 40 day−1

θs 50 signalling units
θp 520 signalling units
λ 2.5 day−1

ρ 4.0 day−1

µR 0.50 day−1

µC 0.30 day−1

Table 5.3: Parameter set for the human model.

5.4.2 Adiabatic solutions

Let us assume changes in T cell numbers and the concentration of IL-7 occur on

faster time scales than changes in body mass and rate of thymic output. Under this

assumption we define adiabatic solutions to be solutions of the following system of

equations:

0 = β − γ(Î(t))R̂(t)− δÎ(t) , (5.53)

0 = ν(t)−
[
ρ̄(Ŝ(t)) + µ̄R(Ŝ(t))

]
R̂(t) + 2λĈ(t) , (5.54)

0 = ρ̄(Ŝ(t))R̂(t)− (µC + λ) Ĉ(t) . (5.55)
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This system is derived by simply setting the derivatives in (5.19)-(5.21) equal to

zero. Adiabatic solutions are found by numerically solving the above system for

Î(t), R̂(t), Ĉ(t), given a fixed time t. We use the programming language Python

in conjunction with the package scipy.optimize to find numerical solutions. In the

left panel of Figure 5.13 we plot the relative error between the adiabatic solution

and the numerical solution of the system (5.19)-(5.21), where initial conditions have

been fixed to be equal to the adiabatic solutions at t = 0. The relative error for

the number of resting cells and concentration of IL-7 is less than 1% for nearly all

times in the interval 0-60 years. For the number of cycling cells, the relative error

peaks at approximately 10%. However, since this population is small relative to the

resting population, the relative error between solutions for the total number of cells

remains less than 1% over the period 0-60 years, see the right panel of Figure 5.13.

Figure 5.13: Left panel: Relative error between adiabatic solutions of equa-
tions (5.53)-(5.55) and numerical solutions to equations (5.19)-(5.21) computed using
a 4-th order Runge-Kutta scheme, subject to initial conditions equal to adiabatic
solutions at t = 0. Right panel: relative error for the total number of T cells
(R(t) + C(t)).

5.4.3 Changing the IL-7 production rate

Adiabatic solutions for the parameter set presented in Table 5.3 are shown in Fig-

ure 5.14. We see that for this parameter set the total number of naive T cells is

an increasing function of age up until about age 20, then approximately stationary

thereafter. Qualitatively, this trajectory appears superficially similar to the increase

in body mass, as shown in the left panel of Figure 5.2. The number of cycling cells

increases with age. However, the number of cycling cells is only a small proportion

of the total number of cells, ranging from 1.7× 10−5% at age 0 years to 1.7× 10−2%
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at age 60.

Of interest is the effect of varying the parameter describing the rate of IL-7 pro-

duction. In Figure 5.15 we plot the total number of T cells (adiabatic solution) for

values of β in the set {10−1.5, 10−1.4, . . . , 100.9, 101.0}. For the lower values of β in this

set, the shape of the curves qualitatively resemble the curve representing the rate of

thymic output (green line). However, for larger values of β the shape of the curves

resemble the curve representing body mass (black line, equal to 1010M(t/365)). For

intermediate values of β there is a continuous transition between these two qualita-

tively different behaviours.

The difference between the lowest trajectory and the curve representing thymic out-

put (in Figure 5.15) is determined by the parameter µR. This parameter specifies

how long a naive T cell will survive if starved of IL-7. For the smallest value of β

in the above set, the amount of IL-7 is sufficiently small that the resting cell death

rate µ̄R(t) is approximately equal to its maximum, µR. This implies that trajecto-

ries, for which the total number of T cells resemble thymic output, do so, because

the behaviour of an individual T cell is to leave the thymus, live for approximately

µ−1
R days, then die. The small value of β implies that the maximum adiabatic con-

centration of IL-7 (equal to β/δ) is insufficient to promote cell survival, hence the

dominance of the resting T cell death term.

In contrast to this, for the largest values of β in the above set, adiabatic solutions

qualitatively resemble the change in body mass. For the higher values of β, the

maximum stable concentration of IL-7, given by β/δ, is sufficient to promote cell

division. This causes the T cell population to expand. As it does so, the rate of

internalisation of IL-7 increases, which in turn decreases the concentration of IL-7.

The adiabatic solution is representative of the equilibrium point for this expansion,

for a given age t. Trajectories for the larger values of β are qualitatively similar to

body mass because the equation for this is encoded in the IL-7 internalisation rate.

5.4.4 Comparisons with clinical observations

In Section 5.3 we demonstrate that the resource model can agree well with experi-

ments studying LIP in mice. Of interest then is whether the resource model in the

context of the human periphery agrees with clinical observations or not. For ethical

reasons, measuring the total number of naive T cells in humans is not practical1.

1In experimental settings using mice, the mouse is typically sacrificed such that the spleen and
lymphatic tissue can be removed.
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Figure 5.14: Left panel: The total number of T cells (resting plus cycling) obtained
from solving equations (5.53)-(5.55) using the parameter set given in Table 5.3.
Right panel: the blue line shows the adiabatic solution for the number of resting
T cells and the red line indicates the number of cycling T cells.

Figure 5.15: Adiabatic solutions for choices of β in the set {0.5, 1.0, . . . , 9.0, 9.5}
ng ml−1. The green line represents the number of thymocytes entering the periph-
ery in one day (equation (5.18)), whereas the black line is a plot of body mass
(equation (5.13)) multiplied by a factor of 1010.
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However, one can count the number of T cells in a blood sample. In reference (Prelog

et al., 2009), the authors published data showing observed numbers of CD4+ T cells

per µl of blood versus age, from 0-40 years. Figure 1 in reference (Prelog et al.,

2009) shows that the number of naive CD4+ T cells per µl of blood decreases from

around 3000 to 1000 over the first 10 years of life, then decreases at a slower rate

from around 1000 to 300 over the next 25 years.

To compare our model against these observations we must first infer the number

of T cells per volume of blood from the total number of T cells in the body. Let

us assume a typical 70kg adult has 5 litres of blood (Taggart & Starr, 2009). Fur-

thermore, let us assume the ratio between blood volume and body mass is constant

throughout life. It is estimated that approximately 2% of the naive T cell population

is found in the blood at any one time (Trepel, 1974). In our model the number of

T cells per kilogram of body mass is given by

R(t) + C(t)

M(t/365)
, (5.56)

where M(t/365) is defined by (5.13). Under our assumptions, 70 kg of body mass

is equivalent to 5 litres of blood, (70 kg : 5× 106 µl). Therefore 1 kg−1 : 1.4× 10−5

µl−1. Given that we are assuming 2% of cells are in the blood at any one time, it

follows that 1 cell kg−1 : 2.8 × 10−7 cell µl−1. Thus, in our model, the number of

cells per µl of blood is given by

2.8× 10−7R(t) + C(t)

M(t/365)
. (5.57)

Using the parameter set given in Table 5.3 we plot, in Figure 5.16, the number of

cells per µl of blood, calculated by using the above conversion with adiabatic solu-

tions of equations (5.53)-(5.55). We see in this plot that the number of naive T cells

per µl of blood decreases from around 320 cells at age 0 to about 180 cells at age

40. This decrease is neither as pronounced as that presented in reference (Prelog

et al., 2009), nor is the number of cells as high.

To explain these discrepancies, first consider that our parameter set was estimated

from observations made on studies of T cell population kinetics in mice. We have as-

sumed that parameters for human naive T cells are similar but this is not necessarily

true (den Braber et al., 2012). A modest increase in β from 2 ng ml−1 day−1 to 5 ng

ml−1 day−1 is sufficient for our model to roughly agree with observations in (Prelog

et al., 2009) for ages 20 to 40 years. However, we do not reproduce the sharp decline
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in the number of T cells per µl of blood observed in childhood. The decline in CD4+

T cells per µl of blood in childhood is also observed in reference (Hapuarachchi

et al., 2013). In this study the number of CD4+ T cells per µl of blood is presented

for healthy infants aged 0-3 years. Whilst there is a high degree of variability in the

observations, the general trend is a decrease from around 3000 cells to around 1500

cells over the first 3 years of life. Consider also the estimations of absolute CD4+

T cell numbers made in (Bains et al., 2009b). Here, the authors estimate that the

absolute number of CD4+ T cells peaks to about 8 × 1010 cells at age 2, which is

followed by a modest decline to around 6 × 1010 cells at age 7, and lastly followed

by an increase to approximately 1.2× 1011 cells by age 20. As can be seen from the

plot in Figure 5.14, our model does not reproduce the peak in T cells observed in

childhood (Bains et al., 2009b). Taken together, these observations suggest that our

model underestimates the number of naive T cells in childhood.

Figure 5.16: The number of cells per µl of blood calculated form solutions of (5.53)-
(5.55) and the conversion given by (5.57).

The question remains as to how our model should be modified such that we can rec-

oncile it with the above clinical observations made in childhood. For the remainder

of this section, we discuss some possibilities.

Non-constant IL-7 production In the model presented thus far we have as-

sumed the amount of IL-7 produced in a fixed volume of the peripheral immune

system is constant. Suppose now we revise this assumption, specifically, let us

assume IL-7 production peaks in childhood before returning to a constant in adult-

hood. We expect such a change to increase the number of naive T cells in childhood

relative to the numbers observed in adulthood. Furthermore, given that the volume

of a child’s lymphatic architecture is expected to be smaller than an adult’s, this
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Figure 5.17: Left panel: plot of equation (5.58). Middle panel: total cell count
found with IL-7 production rates specified by (5.58). Right panel: number of cells
per µl of blood subject to IL-7 production being specified by (5.58).

should lead to a higher peak in the number of naive T cells per volume of blood. To

explore this hypothesis, we replaced the constant term β by the function

β̂(t) = 4 + 0.06te−t/365. (5.58)

This function has a base level of IL-7 production at 4 ng ml−1 day−1. IL-7 production

rises at age 0 from 4 ng ml−1 day−1 to approximately 12 ng ml−1 day−1 at age 1,

before declining back to the base production level of 4 ng ml−1 day−1. A plot of

this function is shown in the left panel of Figure 5.17. Adiabatic solutions for the

total number of T cells computed with this function are presented in the middle

panel of Figure 5.17. Modifying the rate of IL-7 production to take this functional

form allows the model to reproduce the estimated total naive CD4+ T cell count

presented in (Bains et al., 2009b) reasonably well. The number of T cells per µl of

blood is shown in the right panel of Figure 5.17. Observe that this plot shows the

decrease in T cells per blood volume is more pronounced from 1 year of age, but,

the cell density actually increases over the first year of life. Clinical observations

suggest a modest increase in the T cell density during the first two months of life,

but a decrease thereafter (Bains et al., 2009b).

Using this modification we are able to reproduce the previously estimated absolute

cell counts, but the predictions of cell counts per volume of blood are still unsat-

isfactory. Furthermore, we could find no evidence in the literature to suggest IL-7

production rates are intrinsically higher in childhood relative to adulthood.

Non-constant lymphatic volume to body mass ratio In the model presented

in this chapter, we have assumed the volume of the peripheral compartment of the

immune system is a constant proportion of body mass. As it stands, the model

underestimates the number of naive T cells in childhood. Suppose however, that

143



5. THE RESOURCE MODEL REVISITED: IL-7 DEPENDENT
DYNAMICS

for childhood, we assume the volume to body mass ratio is higher than it is in

adulthood. Such an assumption would lead to an increase in the number of naive

T cells in childhood, relative to adulthood. Likewise, the concentration of naive

T cells in the blood would be more pronounced in childhood relative to adulthood,

in keeping with the observations in reference (Prelog et al., 2009).

In a clinical setting, it would of course be difficult to assess the volume of the

peripheral immune architecture. A proxy measurement could possibly be the volume

of the spleen, a major secondary lymphoid organ. However, we could not find

any data for measurements of spleen volume to body mass ratios versus age of

individuals. Such data, would be interesting to obtain in light of this discussion.

Non-constant distributions of signalling thresholds The parameters θs, θp

and α, respectively, specify the mean survival and division thresholds and the vari-

ance in signalling thresholds. These parameters are fixed in time, implying that

the distributions of signalling thresholds are the same in childhood and adulthood.

Suppose now that these parameters evolve in time such that the mean survival and

division thresholds are higher in adulthood relative to childhood. Under this as-

sumption, in childhood, it follows that for a given concentration of IL-7, the amount

of T cells the system could support is higher. Thus, the physically smaller space

of the immune system of a child could support a proportionally larger number of

T cells, because these cells require less signalling for survival and division.

Memory T cells During an infection, a population of memory T cells, specific

for the antigen derived from the infection, is generated from the responding naive

T cell clonotypes. Central memory T cells require IL-7 for their survival within

the peripheral lymphoid organs (Kondrack et al., 2003; Schluns et al., 2000; Surh

& Sprent, 2008). One might expect there would be a degree of competition be-

tween the naive and memory T cells for the available IL-7. Given that an individual

encounters pathogens repeatedly throughout their life, it is reasonable to assume

to an individual will continually be generating clonotypes of memory T cells. In-

deed, studies have confirmed that the percentage of T cells which are of the central

memory phenotype increases with age (Saule et al., 2006). Furthermore, the rate

of accumulation of memory T cells is presumably at its highest during infanthood,

since it is at this age that our exposure to not yet encountered pathogens is highest.

Therefore, it is in infanthood when we would expect to observe the quickest drop in

the number of naive T cells per µl of blood.
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In our model we have not included a term to represent the transition of naive T cells

to the memory T cell pool. Memory T cells are generated from naive T cells during

clonal expansion of a naive T cell population responding to a pathogen (Lanzavecchia

& Sallusto, 2005). However, in mice, memory T cells are also generated through the

division of naive T cells in homeostatic conditions, such as during LIP (note that this

is distinct from division during a challenge since in homeostatic conditions, T cells

are not responding to specific antigen) (Cho et al., 2000; Schüler et al., 2004). This

may also be true for humans. We could reconcile the model with clinical observations

with the inclusion of these considerations. However, if we were to include terms

within the model to describe loss of naive T cells to the memory pool, it is unclear

how significant these factors would be. During the expansion phase of an immune

response, T cells undergo many IL-7 independent divisions to generate an effector

population. Thus, a relatively small number of naive T cells is capable of generating

a much larger population of memory T cells. To our knowledge, no reliable estimates

have been made for the average number of naive T cells activated during one day.

Similarly, to our knowledge there are no estimates for the rate at which memory

T cells which are generated through homeostatic turnover of naive T cells. These

assumptions present further avenues for modelling efforts.

5.4.5 Discussion

Throughout this chapter we have assumed naive T cell survival is dependent on the

effective concentration of IL-7. In the mammalian immune system, IL-7 is produced

by the stromal tissues of the lymphatic architecture (Jiang et al., 2005). We expect

that IL-7 availability is at its highest in the vicinity of these tissues. Naive T cells

are continually circulating between the peripheral lymphoid organs, and so will

regularly transit into close proximity of the stromal tissues (Bromley et al., 2005).

We therefore feel that modelling IL-7 availability as being uniformly distributed,

over a typical time scale of a day, is a reasonable approximation.

In addition to IL-7, studies have shown that naive T cell survival is dependent

on recognition of self-peptide through the TCR, where self-peptide is presented

within a sp:MHC complex on the surface of an antigen presenting cell (Kieper et al.,

2004; Seddon & Zamoyska, 2002; Tan et al., 2001). TCR signalling has not been

included in the model, we have restricted ourselves to the assumption that sp:MHC

availability is sufficient and non-limiting for T cell survival. We feel inclusion of

TCR signalling is largely unnecessary in the context of the mouse model, since in
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this model, we consider T cell populations of single specificities. The OT-1 and F5

transgenic T cell populations each possess a unique T cell receptor. It is reasonable to

assume there is far less diversity with respect to TCR mediated signalling strengths

for the OT-1 and F5 populations relative to a polyclonal population. Even in an

expanded model in which we explicitly model self-peptide availability, it is assumed

the parameters governing availability could be absorbed into the existing parameters

we have introduced in this chapter.

The exclusion of modelling TCR interactions is more problematic when considering

a polyclonal naive T cell population in the human model. Each clonotype present

in the population presumably possesses its own death and cell cycle entry rates,

which are based on the availability of self-peptide which the clonotype can recog-

nise (Kieper et al., 2004). The model we have presented does not consider the

diversity of clonotypes within the naive T cell population, indeed, it is restricted

to modelling the total number of resting naive T cells and the total number of

naive T cells in the cell cycle. However, if the model was to be extended to include

diversity of clonotypes, TCR interactions would need to be taken into account.

In the previous section we discussed how the human model fails to capture the

decline in numbers of naive T cells per µl of blood, which occurs from childhood

to adulthood. Of the various possibilities for this discrepancy, we feel the exclusion

of modelling a population of memory T cells is the most likely candidate. In our

modelling efforts, we have assumed IL-7 signalling thresholds for survival and entry

into cell cycle are distributed log-normally; the parameters of these distributions are

specified by θs, θp and α. Suppose now we introduce two further variables into the

model which denote the number of central memory T cells which are either resting

or in the cell cycle. Let us also assume that the memory population is dependent

on IL-7 for the survival and division of its members (Kondrack et al., 2003; Schluns

et al., 2000). Furthermore, suppose the distributions of IL-7 signalling thresholds

for the memory T cell population are log-normal and specified by the parameters

θ̂s, θ̂p and α̂. For the naive population, these parameters were inferred from the

mouse model. It is unclear how we should choose these parameters for the memory

population. Presumably, to agree with clinical observations, where memory T cells

dominate the T cell repertoire with age, memory T cells should out-compete the

naive population for IL-7 (Saule et al., 2006). Thus, we might require the relations

θ̂s < θs and θ̂p < θp. However, this may not be a necessary condition. Suppose the

naive population requires less IL-7 for survival and entry into the cell cycle such

that θ̂s > θs and θ̂p > θp. The memory T cell population may still dominate if there
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is a sufficient rate of differentiation of naive T cells into memory T cells. Further

quantitative studies of the homeostasis of peripheral T cell populations in humans

and mice should help elucidate these considerations.

The average time for a resting T cell to die, as well as the average waiting time

before a cell enters the cell cycle, is highly sensitive to changes in the parameter

α. The average time to die for resting T cells is given by (µ̄R(I(t)))−1. Similarly,

the average time to enter the cell cycle is given by (ρ̄(I(t)))−1. We compute these

quantities for times in the range 0-60 years from adiabatic solutions, for values of α

in the set S = {1.0, 1.5, 2.0, 2.5}. Plots of these quantities are shown in Figure 5.18.

We see that varying α has little effect on the number of resting T cells. However,

these small changes in α have an enormous effect on the number of cycling T cells

and the times to die and enter the cell cycle. The number of T cells in the cell cycle

varies from 104 to 109 cells for values of α in this range. The time to die for resting

T cells varies from roughly 18 days to 7 years, whereas the time to enter the cell

cycle varies from 15 days to 106 years.

Figure 5.18: We plot the number of resting (blue) and cycling (red) T cells. We
also plot the average time to die (black) for resting T cells and the average time to
enter the cell cycle (green) for resting T cells. This is done for values of α in the set
{1.0, 1.5, 2.0, 2.5}.
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As discussed previously, due to the model being over parameterised, we were unable

to uniquely estimate the parameters of the mouse model. Since the parameters for

the human model were inferred from the mouse model parameters, it follows that our

parameter set for the human model is largely a guess. A previous study suggested

that in humans, the peripheral T cell population is largely maintained by cellular

division, especially post childhood (den Braber et al., 2012). Thus, it seems to be

the case that times to divide are of the time scale of days (true for α < 1.5), rather

than millennia (α > 2.0). In the same study, a mathematical model was postulated

for peripheral T cell survival in mice (den Braber et al., 2012). In this model, the

death rate of peripheral T cells was assumed to be dependent on the number of

T cells, in contrast to this, it was assumed that these cells undergo no division in

the periphery. This model was found to fit the data reasonably well. We note that

these findings are consistent with the mouse model for which we have chosen a larger

value of α to model the OT-1 and F5 data sets. That is, for a larger value of α,

inclusion of thymic output within the model implies that peripheral T cell division

is negligible.

For the OT-1 parameter set, in equilibrium, with thymic output set at 106 T cells

per day, resting T cells take approximately 24 days to die; the rate of entry into the

cell cycle is effectively zero. This death rate is comparable with the rates reported

for the model in which T cells do not divide in reference (den Braber et al., 2012).

Considering that for this value of α, we were able to model the LIP data in refer-

ence (Hogan et al., 2013), we conclude that a larger value of α is appropriate for the

mouse model. In contrast, we find that we must choose a smaller value of α for the

human model (relative to the mouse model) such that the human model is consis-

tent with the observation that the peripheral naive T cell population is maintained

by peripheral division (den Braber et al., 2012). From these findings, we conclude

that while the distributions of signalling thresholds for survival and cell cycle entry

may be distinct for a given clonotype, for a polyclonal repertoire, this distinction

is blurred. A more suitable value of α for the human model would be α = 1 (log

signalling units)−1. For this value, the distribution of IL-7 signalling thresholds for

survival overlaps significantly (for regions in which there is non-negligible proba-

bility density) with the distribution of signalling thresholds for entry into the cell

cycle. The overlap between distributions is shown in Figure 5.19. We note that this

implies, for the human parameter set, that we do not observe resting T cells which

are quiescent as discussed for the mouse model in Section 5.3.6.
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Figure 5.19: Probability density functions of IL-7 signalling thresholds for resting
T cell survival (red) and entry into cell cycle (blue).

In reference (Reynolds et al., 2013b) we published an earlier version of the model

presented in this chapter. One difference between the earlier version and the current

one is in the function representing the rate of decrease in the concentration of IL-7

due to internalisation. In the earlier version, the volume of the space of occupied

by naive T cells was assumed to be constant, whereas in the current version, the

volume is proportional to the mass of the animal being considered (either mouse

or human). Rather, the model in reference (Reynolds et al., 2013b) assumed IL-7

production increased with age, thus the parameter β was a function of time. In the

model presented in this chapter, β is a constant. Also, the parameter set for the

earlier model was not supported by any experimental data, whereas the parameter

set for the current version is guided by the data in reference (Hogan et al., 2013).

In our previously published model, we explored adiabatic solutions of the model

under the assumption that λ < µC . This parameter relation implies the probability

that a naive T cell will complete division, given that it has entered the cell cycle,

is less than one half. Under this condition, for thymic output in the approximate

range of 6.2× 107-1.2× 108 T cells per day, there exist three adiabatic solutions to

the number of resting T cells (and hence the concentration of IL-7 and the number

of cycling T cells). This is illustrated in Figure 5.20, taken directly from (Reynolds

et al., 2013b).

In humans, the thymus is atrophic, and so the rate of export of thymocytes declines

with age (Bains et al., 2009b). Therefore, for the hypothetical scenario where λ <

µC , we naturally traverse along the curve from the right to the left in Figure 5.20.

Note, in producing the figure in (Reynolds et al., 2013b), for a given value of ν, we
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Figure 5.20: Adiabatic solutions for the number of resting T cells when λ < µC for
the model presented in reference (Reynolds et al., 2013b).

computed the corresponding age from equation (5.18). For this age, we computed

the corresponding rate of IL-7 production, as defined by equation (12) in (Reynolds

et al., 2013b). The rate of IL-7 production was then used for the computation of

adiabatic solutions. Since the rate of IL-7 production was defined to increase with

age, the number of naive T cells initially increases as we traverse along adiabatic

solutions in Figure 5.20 to the left. However, when thymic output drops to about

6.2 × 107 T cells per day, corresponding to roughly 33 years of age, the number of

resting naive T cells drops nearly two orders in magnitude from around 1011 T cells

to around 109 T cells. What was interesting about these findings is that a contracted

condition (in early age), in which the ability of naive T cells to complete the cell

cycle is impaired, initially would not have much of an effect on the number of resting

naive T cells in the peripheral pool. However, at some later age, an individual could

be left severely immunocompromised as a result of declining thymic output.

The same behaviour can also be observed in the model presented in this chapter.

In the middle panel of Figure 5.21 we plot the adiabatic solution for the number

of resting T cells against the parameter ν, where we have chosen µC = 5 days−1,

such that µC < λ. For our estimated parameter set, the discussion in the previous

paragraph is applicable, however a quantitative difference is that the bifurcation

point occurs at about 36 years of age rather than 33. This result is however, like

times to die or enter the cell cycle, highly dependent on the choice of the parameter

α. If we choose α to be equal to 1 (log signalling unit)−1, then the number of resting

T cells is largely proportional to thymic output over the biological range for humans

(≈ 2.3× 107-3.5× 108 cells per day). If we increase α to 3 (signalling units)−1, then
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we still observe the bifurcation, however it occurs much later, at around 55 years of

age. See the left and right panels of Figure 5.21.

Figure 5.21: Adiabatic solutions for the number of resting T cells. We have used
the parameters given in Table 5.3 with the exception that µC = 5.0 days−1 and from
left to right we plot solutions for α in the set {1.0, 2.0, 3.0}.

5.5 Summary

In summary, we have developed a model of naive T cell homeostasis which assumes

resting T cell survival and entry into division is dependent on the effective con-

centration of IL-7 available to the population. Whilst over parameterised for the

available data, the mouse version of this model was able to describe the expansion

of a transgenic T cell population in a lymphopenic environment. The model also

accurately predicted the rates of expansion of OT-1 and F5 T cells for different

transferred numbers of cells. The human version of the model reasonably agreed

with clinical observation of blood T cell counts in elderly individuals (with a modest

change in the rate of IL-7 production), but failed to predict the fall in T cell numbers

per volume of blood observed through childhood. This was most likely because we

have not modelled a central memory T cell population. Not including a memory

population within the model implies there is no competition for IL-7 with central

memory T cells, or loss of naive T cells to the central memory T cell pool through

homeostatic division. Both models are highly sensitive to changes in the param-

eter α, which describes the spread in signalling thresholds across the population

of T cells. However, we predict that the spread is greater for human populations

relative to murine populations. Further modelling efforts with this approach would

require careful support from biological observations.
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Chapter 6

A mathematical perspective on

CD4+ T cell quorum-sensing

6.1 Introduction

Regulatory T cells, characterised by the expression of the transcription factor FOXP3,

make up 5-10% of the peripheral CD4+ T cell pool in humans and mice (Feuerer

et al., 2010; Josefowicz et al., 2012; Powrie & Maloy, 2003; Sakaguchi, 2000; Sak-

aguchi et al., 1995; Seddon & Mason, 2000; Walker & Sansom, 2011). They are able

to regulate disease in adoptive transfer models, and prevent unconstrained prolifer-

ation of CD4+ T cells (Sakaguchi, 2004). While a sufficient number of regulatory

T cells is required to prevent the onset of autoimmune disease (Almeida et al., 2002;

Fontenot et al., 2003), regulatory T cells have also been shown to suppress beneficial

immune responses against tumours and viral infections (Antony et al., 2005; Belkaid

& Rouse, 2005). These experimental findings suggest that there exists an ideal size

for the regulatory T cell pool, which allows for both the prevention of autoimmunity

and the effective mounting of adaptive immune responses.

Mathematical and computational models have been developed to propose potential

cellular (or molecular) mechanisms that control the size of the regulatory T cell pop-

ulation. León et al. (Carneiro et al., 2007; León et al., 2000, 2001, 2003; Sepúlveda &

Carneiro, 2011) have developed the cross-regulation model, based of the interactions

between populations of regulatory and effector CD4+ T cells. This model is built

on experimental studies that support the cell-cell contact hypothesis (Tang et al.,

2005). That is, that interactions between regulatory and effector T cells occur at

conjugation sites present on the surface of antigen presenting cells (APCs). The

153



6. A MATHEMATICAL PERSPECTIVE ON CD4+ T CELL
QUORUM-SENSING

cross-regulation model predicts that the peripheral CD4+ T cell repertoire is com-

prised of two distinct subsets (Carneiro et al., 2007; León et al., 2000, 2001, 2003;

Sepúlveda & Carneiro, 2011): small clones of auto-reactive effector T cells, which

are highly suppressed by their T cell receptor (TCR) related regulatory T cells, and

effector T cell clones which barely recognise self-antigen, but have the potential to

strongly recognise non-self-antigen. Thus, an effective immune response can take

place, without autoimmunity. Other approaches include that of Fouchet and Re-

goes, who analysed the interaction between antigen and six populations of APCs

and regulatory T cells (Fouchet & Regoes, 2008). Kim et al. (Kim et al., 2007)

introduced a comprehensive model of immune responses, that includes populations

of CD4+ T cells, CD8+ T cells, APCs, virus infected cells and antigen. Feinerman et

al. provided a model in which binding of IL-2 leads to the up-regulation of IL-2Rα

(CD25) in both effector and regulatory T cells, favouring their subsequent ability to

bind IL-2 (Feinerman et al., 2010). Other mathematical models, based on the idea

of bystander T cell activation (Burroughs et al., 2011; Kim et al., 2007), predict that

an autoimmune state can arise following an immune response.

According to the recent quorum-sensing (QS) hypothesis (Almeida et al., 2012),

homeostasis of CD4+ T cell numbers can be achieved by the ability of the regula-

tory T cell population to sense the number of interleukin-2 (IL-2) producing CD4+

T cells (Almeida et al., 2012). Quorum-sensing, thus, is a mechanism whereby an

optimum ratio between CD4+ effector and regulatory T cells can be established and

maintained (Almeida et al., 2005, 2006a, 2012). The mechanism resembles that ob-

served in species of bacteria, in which gene expression is regulated in response to

the density of the bacterial population (Diggle et al., 2007; Miller & Bassler, 2001).

Rather, control is mediated by the regulatory T cell subset, which responds to the

size of the peripheral CD4+ population; the mechanism does not involve a change

in gene expression. Furthermore, the CD4+ T cell QS mechanism considered here

also controls the dynamics of the regulatory T cell population itself.

Here, we use a mathematical model of four interacting CD4+ T cell subsets to

explore the dynamics in the absence and in the presence of specific antigen. It is

assumed that all subsets are specific for the same antigen, furthermore, we assume no

interaction with T cells not specific for the same antigen. In the absence of antigen,

we study the establishment of the peripheral CD4+ T cell pool from thymic output,

and its return to homeostasis after an immune challenge. In the presence of antigen,

we make use of the QS mathematical model to understand the steady state of the

IL-2 producing and regulatory T cell populations and how to avoid autoimmunity.
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We divide the CD4+ T cell pool into four subsets. The first, population 1, is the set

of CD4+ naive T cells, defined as not having yet encountered their specific antigen.

The second subset, population 2, is the set of CD4+ T cells which have encountered

their specific antigen. These cells exhibit effector (or helper) function, such as the

production of various cytokines to promote immune responses (Banchereau et al.,

2012). In particular, we assume that effector cells produce the cytokine interleukin-

2 (IL-2) (Wan & Flavell, 2009), and we refer to this population as the effector or

the IL-2 producing population. The third subset, population 3, is the set of CD4+

T cells, assumed to have encountered their specific (or cognate) antigen, but not to

be producing IL-2. Lastly, population 4 is the set of CD4+ regulatory T cells. These

cells are assumed to suppress the activity of the effector T cell population (Almeida

et al., 2006b), but to depend on the IL-2 produced by the effector T cells for their

survival (Cheng et al., 2011; Malek & Castro, 2010) and proliferation. Proliferation,

death and differentiation of cells within these populations will be introduced as tran-

sition probabilities of a stochastic Markov model. The quorum-sensing hypothesis

will be implemented as follows:

• the (per cell) death rate of regulatory T cells depends on the number of IL-2

producing cells (Almeida et al., 2012), and

• in the absence of antigen, and due to the fact that regulatory T cells consti-

tutively express the IL-2Rα chain, IL-2 induced proliferation only takes place

in the regulatory T cell pool (Almeida et al., 2012).

The regulatory T cell suppression mechanism (Sakaguchi, 2004; von Boehmer, 2005)

will be implemented mathematically as follows:

• the rate at which an IL2-producing cell becomes a non-IL2 producing cell is

proportional to the number of regulatory T cells.

The initial stages of an immune response are characterised by the presence of antigen,

that perturbs the homeostatic equilibrium of the CD4+ T cell population, and leads

to proliferation of the antigen specific T cells and thus, to an increase in the number

of IL-2 producing T cells. This, in turn, leads to regulatory T cell proliferation.

Eventually, CD4+ T cell homeostasis is re-established due to the suppression of the

IL-2 producing CD4+ T cell subset by the regulatory T cell population. We assume

that the level of IL-2 is proportional to the number of IL-2 producing CD4+ T cells.
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The structure of the chapter is as follows. In Section 6.2, we introduce the stochastic

quorum-sensing model and the transition probabilities that describe the dynamics

of the four different CD4+ T cell subsets. The deterministic approximation in the

absence of specific antigen is discussed in Section 6.2.2. Two scenarios of immuno-

logical relevance are considered. In the first, we study how CD4+ T cells establish

themselves in the periphery (see Section 6.3.1). In the second, we study how the

CD4+ T cell population returns to its homeostatic equilibrium after antigenic chal-

lenge (see Section 6.3.2). In Section 6.4 we discuss, from a deterministic perspective,

how the homeostatic equilibrium of the CD4+ T cell population will change in the

case of specific antigen presentation (see Section 6.4). In Section 6.5, we study the

stochastic dynamics of the CD4+ T cell population after antigenic challenge and its

return to homeostasis. Given the potentially small number of specific CD4+ T cells

involved, we consider extinction of either regulatory T cells or IL-2 producing cells.

We show that extinction takes place with probability one, and compute the tempo-

ral order in which extinction occurs. We also compute the probability of extinction

and the expected time to extinction as a function of the parameter values. We finish

the chapter with a summary of our results and a discussion.

6.2 Stochastic model of CD4+ T cell quorum-sensing

The stochastic model will be defined in terms of the transition probabilities of a

multi-variate Markov process. The state space of this Markov process, S, is the

four-dimensional lattice N × N × N × N, with N = {0, 1, 2, . . .}. The transition

probabilities describe the jumps the process may take on this lattice in a small time

interval ∆t. Note that, in this immunological context, jumps correspond to either

cell proliferation, death, differentiation or migration (thymic export). Let {X(t)}
be a four-dimensional Markov process, where each sub-chain {Xi(t)}, i = 1, 2, 3, 4,

is a uni-variate Markov chain that describes one of the four subsets of the CD4+

T cell population. Let the four-dimensional vector n(t) ∈ S be a realisation of the

multi-variate Markov process at time t, and assume the process starts at N ∈ S,

that is,

Prob{X(0) = N} = 1 . (6.1)
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The state probabilities of the Markov process are denoted by pn(t) and are defined

as follows (Allen, 2003):

pn(t) = Prob{X(t) = n | X(0) = N} . (6.2)

The transition probabilities of the Markov process are derived from the assumed

possible cellular fates (proliferation, death, differentiation or migration) of the four

different CD4+ T cell subsets (Almeida et al., 2012). We describe these cellular

events and their associated transition probabilities in the following section.

n1 n2

n3n4

Figure 6.1: Representation of the cellular birth events that can increase the number
of T cells in any of the four CD4+ pools. Dashed lines indicate the events that
depend on recognition of specific antigen. Not shown are cell death processes that
occur in each T cell pool. The death rate of regulatory T cells, n4, depends on the
number of IL-2 producing cells, n2 (QS mechanism). Thymocytes are exported to
the periphery into naive, n1, and regulatory, n4, T cells (teal arrows). Homeostatic
proliferation takes place for naive, n1, IL-2 producing, n2, and IL-2 non-producing,
n3, T cells (blue arrows). IL-2 induced proliferation takes place for IL-2 producing,
n2, IL-2 non-producing, n3, and regulatory, n4, T cells (red arrows). The solid red
arrow of IL-2 induced proliferation for n4 is a QS mechanism. Differentiation and
activation processes are shown in black. Suppression of effector T cells by regulatory
T cells is shown in purple.

6.2.1 Transition probabilities: immunological background

The transition probabilities are denoted by pm,n(∆t) and defined as (Allen, 2003):

pm,n(∆t) = Prob{X(t+ ∆t) = m | X(t) = n} . (6.3)
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We shall adopt the following notation for the transition probabilities in order to

simplify the expressions. Let us introduce the state vector n = (n1, n2, n3, n4) ∈ S.

By writing {n : ni ± k} we refer to the new state vector in which the entry ni is

replaced by ni ± k. For example, {n : n1 − 1} = (n1 − 1, n2, n3, n4). In a similar

manner, if we refer to changes in two entries of n, we shall write, for example

{n : n1 − 1, n2 + 1} = (n1 − 1, n2 + 1, n3, n4).

Specific antigen presentation We do not consider specific antigen a dynamical

variable. However, we introduce a function, f(t), to represent presentation of specific

antigen by APCs, where t denotes time. In the case of a successful immune response

(which entirely clears antigen), f(t)→ 0+ as t→ +∞.

IL-2 level We assume that IL-2 availability is proportional to the number of IL-2

producing cells, that is, n2.

Thymic export We assume both naive T cells and regulatory T cells develop in

the thymus and upon thymic maturation migrate to the periphery (Almeida et al.,

2005). We shall assume this occurs at a constant rate, νi (i = 1, 4). In a small time

interval ∆t, the transition probability encoding the influx of thymocytes into the

peripheral CD4+ T cell pool is

p{n:ni+1},n(∆t) = νi∆t+ o(∆t) , i = 1, 4 . (6.4)

Death In a small time interval ∆t, it is assumed that for each CD4+ T cell subset,

a cell belonging to that subset may die. The probability of a natural death event

occurring for all subsets, with the exception of the regulatory subset, is assumed

to be proportional to the number of cells in that subset. The expression for the

transition probability for such a death event is

p{n:ni−1},n(∆t) = µini∆t+ o(∆t) , i = 1, 2, 3 , (6.5)

with µi the (per cell) death rate for i = 1, 2, 3. The survival of regulatory T cells

is assumed to depend on the available level of IL-2, and thus the number of IL-

2 producing cells (Cheng et al., 2011; Malek & Castro, 2010). This is one of the

hypotheses of the QS mechanism. The transition probability modelling the death
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of regulatory T cells is

p{n:n4−1},n(∆t) = µ4
κ4

κ4 + n2

n4∆t+ o(∆t) , (6.6)

where µ4 is the (per cell) death rate of regulatory T cells, and κ4 is the number of

IL-2 producing cells at which the probability of death of a regulatory T cell is half

the value of the probability when there are no IL-2 producing cells.

Homeostatic proliferation We assume cells from the first three subsets may

proliferate in response to homeostatic signals. A number of different signals consti-

tute the full set of signals a CD4+ T cell requires under homeostatic conditions. The

main signals regulating homeostasis of T cells are believed to be self-peptide/MHC

signals mediated via the T cell receptor (TCR), and the cytokine interleukin-7 (IL-

7) (Kimura et al., 2012; Seddon et al., 2003). We assume that each population

(naive, IL-2 producing, and IL-2 non-producing) has a different niche for homeo-

static signals. Thus, we consider these signals are limiting in the sense that as a

population of T cells of subset i grows larger than a carrying capacity κi, i = 1, 2, 3,

the probability of a cell receiving a signal to proliferate decreases. For cell subsets

smaller than κi, we assume the probability of a proliferation event occurring in that

subset is an increasing function of the subset size. The homeostatic proliferation rate

is denoted by λiH . We encode these assumptions into the transition probabilities as

follows:

p{n:ni+1},n(∆t) = λiHnie
−ni/κi∆t+ o(∆t) . (6.7)

Specific antigen/IL-2 induced proliferation We assume all T cells, except

naive T cells, may proliferate in response to the cytokine IL-2. We assume that IL-2

and IL-2 non-producing T cells first require recognition of specific antigen mediated

via TCR:peptide/MHC (T cell:APC) interactions, to up-regulate the α chain of the

IL-2 receptor. Upon recognition of specific antigen, it has been shown naive T cells

proceed through a small number of divisions before exhibiting markers typical of

effector T cells (Jelley-Gibbs et al., 2000). However, we simplify the model by as-

suming antigenic stimulation of naive T cells causes them to differentiate to effector

T cells, without proliferating first. CD4+ effector T cells up-regulate the IL-2 recep-

tor α chain (IL-2Rα or CD25) in response to their specific antigen (Feinerman et al.,

2010). Therefore, it is reasonable to assume effector cells become more sensitive to

IL-2 following specific antigenic stimulation. We also assume this is the case for
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CD4+ IL-2 non-producing cells. For IL-2 producing and IL-2 non-producing cells,

we assume the IL-2 derived signals are only able to induce proliferation when specific

antigen is being presented. Hence, the transition probabilities for IL-2 induced pro-

liferation for these two subsets will depend on the function f(t) introduced above.

Regulatory T cells up-regulate the α chain of the IL-2 receptor in larger numbers at

the basal (pre-antigen stimulation) level and, unlike IL-2 producing cells and IL-2

non-producing cells, are critically dependent on IL-2 for their survival and prolif-

eration (Malek et al., 2002). This is the second hypothesis of the QS mechanism.

For this reason, for the regulatory T cell subset: (i) we neglect TCR and/or IL-7

induced proliferation, and (ii) we we assume IL-2 induced proliferation does not de-

pend on specific antigen levels encoded by f(t). The specific antigen/IL-2 induced

proliferation rate is denoted by λiA for i = 2, 3, 4. The transition probabilities for

specific antigen/IL-2 induced proliferation are

p{n:ni+1},n(∆t) = λiAf(t) n2 ni∆t+ o(∆t) , i = 2, 3 , (6.8)

p{n:n4+1},n(∆t) = λ4An2 n4∆t+ o(∆t) . (6.9)

Differentiation of naive T cells We assume naive CD4+ T cells may become

activated and start exhibiting effector (helper) functions in response to signals re-

sulting from TCR interaction with their specific antigen (Jenkins et al., 2001). This

transition probability will then depend on f(t), and is given by

p{n:n1−1,n2+1},n(∆t) = α12f(t)n1∆t+ o(∆t) , (6.10)

where α12 is the naive T cell differentiation rate into IL-2 producing T cells.

We additionally assume naive T cells can differentiate directly into IL-2 non-producing

cells through homeostatic-driven proliferation. This event is considered to be inde-

pendent of TCR recognition of specific antigen (Ge et al., 2002). The transition

probability for this differentiation event is

p{n:n1−1,n3+1},n(∆t) = α13n1∆t+ o(∆t) , (6.11)

where α13 is the naive T cell differentiation rate into IL-2 non-producing T cells.

Differentiation of IL-2 producing T cells We assume IL-2 producing cells may

stop producing IL-2 and become IL-2 non-producing cells (Pepper & Jenkins, 2011).
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The transition probability is

p{n:n2−1,n3+1},n(∆t) = α23n2∆t+ o(∆t) , (6.12)

where α23 is the IL-2 producing cell differentiation rate into IL-2 non-producing

T cells.

Activation of IL-2 non-producing T cells We assume IL-2 non-producing

T cells can become activated and start producing IL-2 in secondary responses to

specific antigen (Berard & Tough, 2002). This transition probability will then de-

pend on f(t), and is

p{n:n2+1,n3−1},n(∆t) = α32f(t)n3∆t+ o(∆t) , (6.13)

where α32 is the IL-2 non-producing cell differentiation rate into IL-2 producing

T cells.

Suppression of IL-2 producing T cells We assume regulatory T cells suppress

the ability of IL-2 producing T cells to secrete IL-2 (Sakaguchi, 2004; von Boehmer,

2005). This cellular process is introduced as a contact term: an IL-2 producing

T cell will become a IL-2 non-producing T cell, if it receives a suppressive signal

from a regulatory T cell. This transition probability is given by

p{n:n2−1,n3+1},n(∆t) = βn2n4∆t+ o(∆t) , (6.14)

with β the suppression parameter.

Remaining probabilities In a small time interval ∆t, it is possible that none of

the above transitions may occur (Allen, 2003). The probability of no event occurring

within a time interval ∆t is

pn,n(∆t) = 1−

[
ν1 + ν4 +

3∑
i=1

µini + µ4
κ4

κ4 + n2

n4 +
3∑
i=1

λiHnie
−ni/κi

+
3∑
i=2

λiAf(t)n2ni + λ4An2n4 + α12f(t)n1 + α13n1

+α23n2 + α32f(t)n3 + βn2n4

]
∆t+ o(∆t) .
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The probability of any other transition occurring within the proposed Markov pro-

cess in a small time interval ∆t is assumed to be o(∆t) (Allen, 2003).

6.2.2 Deterministic approximation of the QS mathematical

model

Throughout this chapter we assume the CD4+ T cell population being modelled is

the subset of CD4+ T cells specific to a given antigen. We write down a system of

ordinary differential equations (ODEs) which approximate the average behaviour of

the stochastic model. That is, we let mi(t) be an approximation to the first moments

of the Markov chain {Xi(t)} for i = 1, 2, 3, 4. One may derive these equations from

the stochastic model using the generating function technique and assuming the kth

central moment is zero for k ≥ 2 (Allen, 2003). The system of ODEs is given by the

following equations:

dm1

dt
= ν1 − µ1m1 + λ1Hm1e−m1/κ1 − α12f(t)m1 − α13m1 , (6.15)

dm2

dt
= −µ2m2 + λ2Hm2e−m2/κ2 + λ2Af(t)m2

2 + α12f(t)m1

− α23m2 + α32f(t)m3 − βm2m4 , (6.16)

dm3

dt
= −µ3m3 + λ3Hm3e−m3/κ3 + λ3Af(t)m2m3 + α13m1

+ α23m2 − α32f(t)m3 + βm2m4 , (6.17)

dm4

dt
= ν4 − µ4

κ4

κ4 +m2

m4 + λ4Am2m4 . (6.18)

6.2.3 Deterministic approximation of the model without the

QS hypothesis

If we do not make use of the QS hypothesis, we need to modify the system of ODEs

as follows:

dm1

dt
=ν1 − µ1m1 + λ1Hm1e−m1/κ1 − α12f(t)m1 − α13m1 , (6.19)

dm2

dt
=− µ2m2 + λ2Hm2e−m2/κ2 + λ2Af(t)m2

2 + α12f(t)m1
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− α23m2 + α32f(t)m3 − βm2m4 , (6.20)

dm3

dt
=− µ3m3 + λ3Hm3e−m3/κ3 + λ3Af(t)m2m3 + α13m1

+ α23m2 − α32f(t)m3 + βm2m4 , (6.21)

dm4

dt
=ν4 − µ4m4 + λ4AσIL−2m4 , (6.22)

where we have introduced the parameter σIL−2, which represents an external source

of IL-2 (which is, of course, independent of the population n2). In the absence of

the QS hypothesis, one needs to assume that the death rate of regulatory T cells

does not depend on the IL-2 producing cells. Inspection of (6.22) allows us to infer

that the dynamics of the regulatory T cell population does not depend on any other

population, in particular the population of IL-2 producing cells, n2. Thus, the steady

state that characterises the population of regulatory T cells is given by

m∗4 =
ν4

(µ4 − λ4AσIL−2)
, (6.23)

with the condition µ4 > λ4AσIL−2. Given the experimental observations that support

the indexation of regulatory T cell numbers to the size of the IL-2 producing CD4+

T cells (Almeida et al., 2005, 2006b), we conclude that a mathematical description

of the CD4+ T cell population requires a QS mechanism, as the one proposed earlier

and analysed here (Almeida et al., 2012).

6.3 Deterministic approximation in the absence

of specific antigen

We start the mathematical analysis of the deterministic model in the case when

specific antigen is not being presented by APCs, by setting f(t) = 0. The system of

ODEs simplifies to

dm1

dt
= ν1 − µ1m1 + λ1Hm1e−m1/κ1 − α13m1 , (6.24)

dm2

dt
= −µ2m2 + λ2Hm2e−m2/κ2 − α23m2 − βm2m4 , (6.25)

dm3

dt
= −µ3m3 + λ3Hm3e−m3/κ3 + α13m1 + α23m2 + βm2m4 , (6.26)

dm4

dt
= ν4 − µ4

κ4

κ4 +m2

m4 + λ4Am2m4 , (6.27)
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with initial conditions m(0) = M, where m(t) = (m1(t),m2(t),m3(t),m4(t)).

6.3.1 CD4+ T cell establishment in the periphery

The first question that can be studied with the deterministic approximation of the

QS model is the establishment in the periphery of the CD4+ T cell pool from thymic

output. That is, the homeostatic distribution of the sub-populations before any

antigenic challenge has taken place.

We will analyse the steady states of the model described by equations (6.24)-(6.27).

We begin with the observation that the differential equation for population m1(t)

does not involve any other CD4+ T cell subset and, thus, can be treated indepen-

dently of the remaining equations. Let us introduce

g(m1) = ν1 − (µ1 + α13)m1 + λ1Hm1e−m1/κ1 . (6.28)

Then the steady state solution of (6.24), m∗1, is found by solving g(m1) = 0. Due

to the presence of the term e−m1/κ1 , an analytical solution for m∗1 cannot be found.

However, the existence and stability of such a steady state solution can be proved,

as follows.

Existence In the limit m1 → +∞, we have g(m1) → −∞. Furthermore, at

m1 = 0, we have g(m1 = 0) = ν1 > 0. Since g is a continuous function, by the

intermediate value theorem, there exists at least one solution m∗1 ∈ (0,∞), such

that g(m∗1) = 0. That is, there exists at least one steady state solution for the

population of naive T cells, such that m∗1 > 0.

Uniqueness Assume a solution m∗1 > 0, such that g(m∗1) = 0, exists. We have

λ1He−m
∗
1/κ1 = µ1 + α13 −

ν1

m∗1
. (6.29)

Let us introduce h1(m) = λ1He−m/κ1 and h2(m) = µ1 + α13 −
ν1

m
for m > 0. The

derivatives of h1 and h2 with respect to m are given by h′1(m) = −λ1H
κ1

e−m/κ1 < 0

and h′2(m) = ν1
m2 > 0, respectively, for m > 0. The derivatives of h1 and h2 are,

respectively, monotonically increasing and decreasing, and continuous functions (for

m > 0). We conclude that (6.29) has at most one solution.
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Stability The steady state m∗1 > 0 is asymptotically stable if and only if

dg(m1)

dm1

∣∣∣
m∗1

< 0 . (6.30)

Taking the first derivative of g we have

dg(m1)

dm1

= − (µ1 + α13) + λ1H

(
1− m1

κ1

)
e−m1/κ1 . (6.31)

We also know that by definition m∗1 satisfies the following equation:

ν1 − (µ1 + α13)m∗1 + λ1Hm
∗
1e−m

∗
1/κ1 = 0 . (6.32)

Rearranging equation (6.32) we have

ν1 +m∗1
(
λ1He−m

∗
1/κ1 − µ1 − α13

)
= 0. (6.33)

Since m∗1 and ν1 > 0, the term inside the parenthesis must be negative and so the

following inequality must hold:

e−m
∗
1/κ1 <

µ1 + α13

λ1H

. (6.34)

We now evaluate equation (6.31) at m∗1:

dg(m1)

dm1

∣∣∣
m∗1

= − (µ1 + α13) + λ1H

(
1− m∗1

κ1

)
e−m

∗
1/κ1 . (6.35)

If m∗1 > κ1 then the RHS of (6.35) is negative, and m∗1 is stable. Now suppose

m∗1 < κ1. Then, using the inequality in equation (6.34), we have:

dg(m1)

dm1

∣∣∣
m∗1

= − (µ1 + α13) + λ1H

(
1− m∗1

κ1

)
e−m

∗
1/κ1

< − (µ1 + α13) + λ1H

(
1− m∗1

κ1

)
µ1 + α13

λ1H

= −(µ1 + α13)m∗1
κ1

< 0 .

Therefore, we conclude that m∗1 > 0 is stable for all parameter values.

IL-2 producing T cells The value m∗2 = 0 is a steady state of (6.25). That is, as

there are no source terms for the population of IL-2 producing cells, if m2(t = 0) = 0,
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then m2(t) = 0 for all t ≥ 0.

We do not consider any other steady states for the IL-2 producing T cell population,

since we are interested in the peripheral CD4+ T cell establishment from thymus

output, before any T cell activation takes places. Thus, before specific antigen has

been introduced, the number of IL-2 producing cells should be zero.

IL-2 non-producing T cells In a similar manner to the naive T cells, the expo-

nential term in equation (6.26) implies that an analytical solution for m∗3 cannot be

found. However, setting the derivative equal to zero in equation (6.26), and assum-

ing that m∗2 = 0, gives an equation for m∗3, which is of exactly the same form as that

for m∗1. The same arguments used to prove existence and uniqueness of m∗1 can be

invoked to show that m∗3 > 0 not only exists, but is unique. It is also stable, under

the assumption that m∗2 = 0.

Regulatory T cells If m2(t) = 0 then

dm4

dt
= ν4 − µ4m4 , (6.36)

and the steady state population is

m∗4 =
ν4

µ4

. (6.37)

It is easy to show that m∗4 is a stable solution in this case.

Summary The steady state analysed in this section corresponds to populations

of cells that originate in the thymus and are established in the periphery. There

are non-zero populations of naive, IL-2 non-producing and regulatory T cells. The

steady state population of naive T cells is determined by a balance between cell

death, proliferation, loss due to differentiation and an influx of new thymic emi-

grants. Similarly, the population of IL-2 non-producing T cells is determined by a

balance between cell death, proliferation and differentiation of the naive T cell pool

into IL-2 non-producing cells, which we have assumed to be due to homeostatic

proliferation. The population of regulatory T cells is set by the balance between

migration of new regulatory cells from the thymus to the periphery and cell death.

If ν4 = 0, that is, there is no further thymic output for the CD4+ regulatory T cell

population, the regulatory T cell pool will eventually become extinct.
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Since we have assumed there is no specific antigen presentation, there can be no

differentiation from the naive pool into the IL-2 producing one. If we start with no

IL-2 producing cells, this population will always be equal to zero. Thus, the above

steady state represents a scenario of T cell homeostasis prior to any specific antigen

challenge. That is, it represents the steady state CD4+ T cell population that,

from thymic export, gets homeostatically established in the periphery. Naive T cells

in the periphery require TCR signals from self-peptide/MHC complexes for their

survival. These TCR signals can, on rare occasions, promote activation of naive

T cells to exhibit effector functions. Additionally, IL-2 produced by effector cells of

a given TCR specificity (or clonotype) may produce a bystander effect, supporting

the regulatory T cell populations of other TCR specificities (Burroughs et al., 2011;

Feinerman et al., 2010).

6.3.2 Homeostasis of CD4+ T cells after a specific antigenic

challenge

The second question that can be studied with the deterministic approximation of

the QS model is the re-establishment of peripheral homeostasis in the CD4+ T cell

pool after an immune challenge, and when antigen has been cleared.

In this Section, we explore a scenario in which a specific antigen challenge has already

taken place. We assume that the specific antigen of the CD4+ T cell population be-

ing modelled is no longer presented by APCs, and that there is no thymic output.

That is, we assume sufficient time has elapsed to allow all T cells of the specificity

under consideration to have egressed from the thymus (Bains et al., 2009a,c; Fre-

itas & Rocha, 2000). This approximation can be justified as follows: estimates of

thymic output for mice are 2.5 ×106 T cells per day (CD4+ and CD8+) (Scollay

et al., 1980), and the αβ T cell receptor diversity for mice is of the order of 2

×106 (Nikolich-&Zcaron et al., 2004). This means that, at most, one CD4+ T cell of

a given specificity is incorporated into the peripheral pool per day. The contribution

from thymic output can then be neglected when compared with any of the prolif-

erating terms in the post-challenge scenario considered in this Section (homeostatic

or specific antigen/IL-2 induced).

This post-challenge scenario can be described by initial conditions, such that all

T cell subsets have non-zero cell numbers at time t = 0. We set ν1 = ν4 = 0 and

167



6. A MATHEMATICAL PERSPECTIVE ON CD4+ T CELL
QUORUM-SENSING

f(t) = 0. Under these assumptions, the deterministic model is

dm1

dt
= −µ1m1 + λ1Hm1e−m1/κ1 − α13m1 , (6.38)

dm2

dt
= −µ2m2 + λ2Hm2e−m2/κ2 − α23m2 − βm2m4 , (6.39)

dm3

dt
= −µ3m3 + λ3Hm3e−m3/κ3 + α13m1 + α23m2 + βm2m4 , (6.40)

dm4

dt
= −µ4

κ4

κ4 +m2

m4 + λ4Am2m4 , (6.41)

with initial conditions mi(0) 6= 0, i = 1, 2, 3, 4.

Naive T cells The steady state solution of population m1(t), denoted by m∗1,

satisfies

0 = −µ1m
∗
1 + λ1Hm

∗
1e−m

∗
1/κ1 − α13m

∗
1 . (6.42)

There are two solutions to equation (6.42): the first is given by m∗1 = 0 and the

second by m∗1 = κ1 log

(
λ1H

µ1 + α13

)
. The vanishing solution exists unconditionally

and is stable provided λ1H < µ1 + α13. This stability condition can be shown as

follows. The steady state m∗1 = 0 is asymptotically stable if and only if (Edelstein-

Keshet, 2005)
dg(m1)

dm1

∣∣∣
m∗1

< 0 , (6.43)

with g(m1) = −µ1m1 + λ1Hm1e−m1/κ1 − α13m1. We have

dg(m1)

dm1

= −µ1 + λ1He−m1/κ1 − λ1H
κ1
m1e−m1/κ1 − α13 , (6.44)

which evaluated at the steady state vanishing solution, m∗1 = 0, yields

dg(m1)

dm1

∣∣∣
m∗1=0

= −µ1 + λ1H − α13 . (6.45)

Thus, in order for the vanishing solution to be stable, the condition λ1H < µ1 + α13

needs to be imposed. On the other hand, the non-zero solution exists and is stable

provided λ1H > µ1 + α13. This condition is required to ensure that the argument of

the logarithmic term is positive.

For the analysis of the remaining CD4+ T cell populations, we shall assume λ1H > µ1,

but λ1H < µ1 + α13, so that m∗1 = 0 is a stable steady state. This can be justified

as follows: during an immune challenge, most, if not all, naive T cells specific to
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the antigen presented will differentiate to become IL-2 producing T cells. Under

the assumptions of no thymic output and antigen clearance, all naive T cells have

differentiated and thus, the naive T cell population vanishes, so that this CD4+

population subset is unable to reconstitute itself after the challenge.

IL-2 producing T cells and regulatory T cells The steady state solutions for

populations m2 and m4 are found by solving the following pair of coupled equations:

0 = −µ2m
∗
2 + λ2Hm

∗
2e−m

∗
2/κ2 − α23m

∗
2 − βm∗2m∗4 , (6.46)

0 = −µ4
κ4

κ4 +m∗2
m∗4 + λ4Am

∗
2m
∗
4 . (6.47)

There exist three solutions (m∗2,m
∗
4) withm∗2,m

∗
4 ≥ 0. The first solution is (m∗2,m

∗
4) =

(0, 0), which always exists and is stable provided λ2H < µ2+α23. The second solution

is

(m∗2,m
∗
4) =

(
κ2 log

(
λ2H

µ2 + α23

)
, 0

)
, (6.48)

which exists provided λ2H > µ2 + α23, and is stable provided µ2 + α23 < λ2H < λ?2H ,

where

λ?2H = (µ2 + α23) exp

(
κ4

2κ2

(√
1 +

4µ4

κ4λ4A

− 1

))
. (6.49)

The third solution is

(m∗2,m
∗
4) =

(
κ4

2

(√
1 +

4µ4

κ4λ4A

− 1

)
,
λ2He−m

∗
2/κ2 − µ2 − α23

β

)
, (6.50)

which exists and is stable provided λ?2H < λ2H . The bifurcation diagram provided in

Figure 6.2 illustrates the steady state analysis for the populations of IL-2 producing

and regulatory T cells. We note that the existence and stability of the three steady

states depends on the parameter λ2H , which is the homeostatic proliferation rate of

the effector T cell population. This parameter encodes the level of auto-reactivity

of the CD4+ T cell clonotype under consideration. As λ2H increases above λ?2H ,

the number of regulatory T cells required to suppress the effector population also

increases.
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Figure 6.2: Bifurcation diagram for the IL-2 producing and regulatory T cell subsets
under the assumptions ν1 = ν4 = 0 and f(t) = 0. For proliferation rates of the IL-2
producing T cells (λ2H) greater than λ?2H , the steady state number of IL-2 producing
cells is held constant by a non-zero population of regulatory T cells. Note that in the
region λ2H > λ?2H , increasing the proliferation rate of IL-2 producing cells leads to a
linear increase in the number of regulatory T cells at steady state. The vertical black
dashed lines at µ2 + α23 and λ?2H have been drawn to separate the three different
stability regions. The red (regulatory) and green (IL-2 producing) dashed lines in
the third region (λ2H > λ?2H) indicate the unstable steady state solution.

IL-2 non-producing T cells The steady state solution for the population of IL-2

non-producing T cells is found by solving the following equation:

0 = −µ3m
∗
3 + λ3Hm

∗
3e−m

∗
3/κ3 + α23m

∗
2 + βm∗2m

∗
4 . (6.51)

An analytical solution for m∗3 cannot be found. However, if we assume m∗2 and

m∗4 > 0, a solution can be shown to exist, be unique and be unconditionally stable.

This is shown in an identical manner to the proof of existence, uniqueness and

stability of m∗1 provided in Section 6.3.1.
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Summary The steady state, under the assumptions of no specific thymic output

and antigen clearance, has no naive T cells. A steady state solution exists with

non-zero population sizes of IL-2 producing and regulatory T cells. This describes

a tolerant state of the CD4+ population; by tolerant, we mean a state in which the

steady state number of effector (IL-2 producing) T cells is less than the “natural”

carrying capacity of this population in the absence of regulatory T cells. Given

that effector T cells may promote the activity of some components of the innate

immune system (for example, by secretion of interferon gamma), limiting the effector

population number is presumably desirable (Banchereau et al., 2012). When the

proliferation rate of IL-2 producing T cells is low, µ2 + α23 < λ2H < λ?2H , the steady

state number of IL-2 producing T cells is always smaller than the corresponding

steady state number of IL-2 producing cells in the parameter region λ2H > λ?2H

(see Figure 6.2). This suggests that a population of IL-2 producing cells with poor

proliferative capacity does not need regulatory T cell suppression to remain tolerant,

as defined above.

Another interesting feature of our analysis is the independence, both in the steady

states and their stability, of the effector T cell subset on the parameter β. Varying

β only affects the steady state number of regulatory T cells. This suggests that

at equilibrium, regulatory T cells compensate for either a diminished or enhanced

ability to suppress IL-2 producing T cells by increasing or decreasing their population

size.

Finally, for values of λ2H > λ?2H , the third steady state, (m∗2 > 0 and m∗4 > 0), is

globally stable. From a deterministic perspective, and unless the initial condition

for the population of regulatory T cells is given by m4(t = 0) = 0, we shall always

observe a regulated number of IL-2 producing cells; that is, m∗2 is smaller than the

carrying capacity of IL-2 producing cells. However, from a stochastic perspective,

there exists a non-zero probability of a fluctuation causing the regulatory T cell

population to become extinct. In Section 6.5, we shall explore both the probability

of such an event occurring and the average time to extinction.

Figure 6.3 shows deterministic trajectories for a range of initial conditions and for

parameter values as described in Table 6.1, in the absence of thymic output and

specific antigen.
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A) B)

Figure 6.3: Deterministic trajectories in the absence of thymic output and specific
antigen, computed from various initial conditions, and within the stochastic finite
state space. Parameter values are described in Table 6.1. Blue dots represent
the steady state solution that corresponds to extinction of both cell types, IL-2
producing and regulatory T cells. A) The green dot represents the stable steady
state solution that exists when µ2 + α23 < λ2H < λ?2H . In this case λ2H = 2.2× 10−2

hours−1. B) The red dot represents the stable steady state solution that exists when
λ2H > λ?2H . In this case λ2H = 8× 10−2 hours−1.

6.4 Deterministic approximation in the presence

of specific antigen

A third question that can be studied with the deterministic approximation of the QS

model is the dynamics of an immune response. It is interesting to see that the QS

hypothesis is not only a mechanism of CD4+ T cell homeostasis, but a mechanism

that allows immune responses to take place, yet avoids autoimmunity (Almeida

et al., 2012).

In the previous sections, we have restricted ourselves to the case f(t) = 0, that is, to

cases where antigen specific for the CD4+ T cells is not presented. In this section,

however, we consider the behaviour of a clonotype of CD4+ T cells when its specific

antigen is presented at a constant level. We set f(t) = c, where c > 0 is constant.

Antigen is presented to T cells by professional APCs, such as dendritic cells or

macrophages (Janeway et al., 2001). APCs collect antigen in the lymph and tissue

via phagocytosis. Inside the APC, antigen is broken down further into peptides,

which are subsequently displayed on the surface of the cell as peptide/MHC com-

plexes (MHC class II complexes in the case of CD4+ T cells). A naive CD4+ T cell,
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Parameter Value Units
µ2 1× 10−2 hours−1

µ3 1× 10−2 hours−1

µ4 1× 10−2 hours−1

λ2H 2.2× 10−2/8× 10−2 hours−1

λ3H 5× 10−2 hours−1

λ2A 1× 10−5 cells−1hours−1

λ3A 1× 10−5 cells−1hours−1

λ4A 1× 10−5 cells−1hours−1

κ2 6× 102 cells
κ3 2× 103 cells
κ4 1× 101 cells
α23 1× 10−2 hours−1

α32 1× 10−3 hours−1

β 1× 10−4 cells−1hours−1

Table 6.1: Parameter values used to generate numerical results. The two values
given for λ2H are chosen to ensure stability of the types of steady solution shown in
the middle and right regions of the bifurcation diagram in Figure 6.2, respectively.
For the middle region the stability interval for λ2H is [µ2 + α23 = 0.02, λ?2H ≈ 0.023],
hence the specific choice λ2H = 0.022 hours−1.

upon successful binding with a dendritic cell presenting antigen of the correct speci-

ficity, will become activated. After activation, the naive T cell will undergo a pheno-

typic change and elicit effector functions. For CD4+ T cells, these effector functions

serve to promote the functional ability of CD8+ effector T cells and boost the innate

components of the immune system by, for example, releasing pro-inflammatory cy-

tokines. During a successful immune response, the target of T cells (infected cells)

are destroyed and cleared from the body. In a typical response, the elimination of

infected cells leads to a decrease in the amount of antigen available for uptake and

presentation by APCs.

We now consider the steady state behaviour of a clonotype of CD4+ T cells when

its specific antigen is presented at a constant level. This implies f(t) = c, where

c > 0 is constant. We further assume thymic output is zero, and that consequently

there are no naive CD4+ T cells. That is, all naive T cells have been activated due

to the presentation of specific antigen. The deterministic equations describing the

model, where c has been absorbed into the relevant parameters, are

dm2

dt
= −µ2m2 + λ2Hm2e−m2/κ2 + λ2Am2m2 + α32m3 − α23m2 − βm2m4 , (6.52)
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dm3

dt
= −µ3m3 + λ3Hm3e−m3/κ3 + λ3Am2m3 + α23m2 − α32m3 + βm2m4 , (6.53)

dm4

dt
= −µ4

κ4

κ4 +m2

m4 + λ4Am2m4 . (6.54)

The non-linear system of ODEs (6.52)-(6.54) admit multiple steady state solutions.

We focus on non-vanishing steady state solutions for all three populations. Other

steady state solutions, which may be stable, can be found (numerically) in the

following combinations: m∗2 = m∗3 = m∗4 = 0, and m∗2,m
∗
3 > 0,m∗4 = 0. Although

we did not observe any other vanishing steady states during numerical exploration,

this may not be an exhaustive list.

Let us look for steady state solutions such that m∗2,m
∗
3,m

∗
4 > 0. The steady state

m∗2 is unique and found directly from equation (6.54):

m∗2 =
κ4

2

(√
1 +

4µ4

κ4λ4A

− 1

)
. (6.55)

We can make use of (6.52), and write down an expression for m∗4, which depends on

m∗2 and m∗3. This expression is given by

m∗4 =
λ2He−m

∗
2/κ2 − µ2 − α23

β
+
λ2A (m∗2)2 + α32m

∗
3

βm∗2
. (6.56)

The above equation provides a unique value of m∗4 for a given (but fiducial) steady

state value of m∗3. The problem of determining the number of positive steady state

solutions can then be reduced to determining how many stable steady state solutions

can be found for m3. Equation (6.52) can be written as

c2 − α23m
∗
2 + α32m

∗
3 = βm∗2m

∗
4 , (6.57)

where

c2(µ2, λ2H , λ2A , κ2, µ4, λ4A , κ4) = −µ2m
∗
2 + λ2Hm

∗
2e−m

∗
2/κ2 + λ2Am

∗
2m
∗
2 . (6.58)

We substitute this expression into (6.53) to find

c2 + c3m
∗
3 + λ3Hm

∗
3e−m

∗
3/κ3 = 0 , (6.59)

where

c3(µ3, λ3A , µ4, λ4A , κ4) = λ3Am
∗
2 − µ3 . (6.60)
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The constants c2 and c3 may be positive or negative real numbers. Let us define

f(m) = −λ3Hme−m/κ3 , g(m) = c2 + c3m . (6.61)

We know that
dm3

dt
= g(m3)− f(m3) . (6.62)

Stability of m∗3 > 0 requires that

dg(m3)

dm3

− df(m3)

dm3

∣∣∣
m∗3

< 0 . (6.63)

The definition of the derivative and the fact that f(m∗3) = g(m∗3), allows us to

conclude that m∗3 > 0 is a stable steady state if g(m∗3 + ε) < f(m∗3 + ε) for ε→ 0+.

In Figure 6.4 we provide an example plot of f(m) (red curve), which for positive λ3H

and κ3 has a qualitatively fixed shape. Black lines give various examples of g(m)

for different choices of c2 and c3. If c2 > 0, then we may either have no (c3 > 0) or

one (c3 < 0) fixed point solution. If c2 < 0, we may either have no solution or up

to three solutions. For any choice of c2 and c3, there is at most one solution which

satisfies the necessary condition for asymptotic stability. We conclude that we have

at most one stable steady state solution in the case of constant specific antigen.

Figure 6.4: The red line gives an example plot of f(m). Black lines give various
examples of g(m) for different choices of c2 and c3. If c2 > 0, then we may either
have no (c3 > 0) or one (c3 < 0) fixed point solution. If c2 < 0, we may either
have no solution or up to three solutions. For any choice of c2 and c3, there is at
most one solution which satisfies the necessary condition for asymptotic stability.
We conclude that we have at most one stable steady state solution.

We conclude that the model, under the assumptions listed at the start of this section
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(no thymic output, no naive T cells, and constant presentation of antigen) exhibits

one possible stable steady state solution, such that all populations are non-zero.

The solution for m∗2 is the same as the solution for m∗2 in (6.50), found under the

assumption of no specific antigen presentation. We further note that the solution for

m∗4 is greater than the solution for m∗4 when f(t) = 0 [given by (6.50)]. The QS model

predicts that, when antigen specific to the CD4+ T cell population is presented at a

constant level, the number of regulatory T cells at steady state is greater than the

number required to maintain homeostasis is the absence of antigen. The quorum

sensing hypothesis, as implemented with this model, predicts that the number of

IL-2 producing T cells found at steady state (assuming parameters are such that

all populations are non-zero) is the same, whether the IL-2 producing population

sees specific antigen or not. In the latter case, when the IL-2 producing population

is exposed to specific antigen, a greater number of regulatory T cells is required to

maintain the steady state. Of further note is that the steady state solution for the

IL-2 producing population does not depend on the parameter describing the rate

of suppression, β. Rather, varying β has the effect of controlling the number of

regulatory T cells at steady state.

In Figure 6.5 we present numerical solutions of equations (6.52)-(6.54) in the case

that f(t) = 0 (dashed lines), and in the case that f(t) = 1 (solid lines). Parameters

used are given in Table 6.1. If antigen is presented at a constant level, a greater

number of regulatory T cells is observed, whereas the steady state number of IL-2

producing T cells remains the same. Overall, there is a modest increase in the total

number of CD4+ T cells in the case of constant antigen presentation.

Autoimmunity Let us assume now that the CD4+ T cell clonotype being mod-

elled is specific to self-antigen. Without loss of generality, let us also assume that

self-antigen is presented by APCs at a constant rate, so that the dynamics of the

clonotype are governed by equations (6.52)-(6.54).

We discuss the requirements for the QS model to be in a regime in which autoim-

munity can occur. Let us use the trajectories in Figure 6.5 as an example of a

self-reactive clonotype, in which autoimmunity is controlled due to the relatively

small number of IL-2 producing T cells. That is, we assume tolerance can be main-

tained with a non-zero population of IL-2 producing T cells, provided the size of

this population is relatively small (compared to the size of the regulatory T cell

population). We suppose a typical feature of tolerance is an abundance of regula-

tory T cells relative to the number of IL-2 producing cells (m∗4 > m∗2). Given this
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Figure 6.5: Deterministic trajectories when f(t) = 1 are shown by solid lines. So-
lutions for f(t) = 0 are shown by dashed lines. Initial conditions are 3 × 10 IL-2
producing T cells, 3×103 IL-2 non-producing T cells, and 3×102 regulatory T cells.
Parameters used are given in Table 6.1. For f(t) = 1 and at equilibrium, we have a
greater number of regulatory T cells and non-IL-2 producing T cells.

example of a tolerant state, we define an autoimmune state as one in which the

number of IL-2 producing T cells is in excess relative to the number of regulatory

T cells.

As discussed earlier, the steady state number of IL-2 producing T cells is a func-

tion of the parameters λ4A , µ4 and κ4. The question of how to increase the steady

state number of IL-2 producing T cells is clear: increase κ4, µ4, decrease λ4A , or a

combination of these. In Figure 6.6, we decrease the value of λ4A by a factor of 10

(set λ4A = 10−7 cells−1hours−1). The number of IL-2 producing T cells increases

by approximately 3-fold, whereas the number of regulatory T cells decreases by ap-

proximately 2-fold. Varying the parameters in this manner allows the ratio between

m∗2 and m∗4 to approach the autoimmune scenario described above.

The findings from this model suggest that in the event that a clonotype is self-

reactive, autoimmunity may arise as a consequence of poor proliferation and/or

high death rate of regulatory T cells. However the mechanism by which regulatory

T cell function may be impaired is unclear. Many autoimmune diseases are specific

by a particular antigen, whilst the rest of the T cell pool is effectively normal in its

ability to fight infection. It seems unlikely that only the regulatory T cells implicated

in autoimmune disease could have their survival impaired whilst the rest of the pool

does not.

Of interest in this model is the fact that the rate of suppression is irrelevant for con-

trolling the number of IL-2 producing T cells at steady state. Indeed, if suppression
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is reduced, the regulatory population expands to compensate.

Figure 6.6: Deterministic solutions computed using the parameters given in Ta-
ble 6.1, with the exception that λ4A has been reduced by a factor of 10 (λ4A = 10−6).
The number of IL-2 producing T cells at equilibrium has increased approximately
3-fold, whereas the number of regulatory T cells has decreased approximately 2-
fold. Decreasing λ4A further (or increasing µ4) may result in the loss of stability
with trajectories tending towards infinity. This can be rectified by replacing each
parameter λiA (i = 2, 3, 4) by a density dependent term in the same manner as done
for parameters of the form λjH (j = 1, 2, 3).

6.5 Extinction: a stochastic analysis

In this Section, we consider the stochastic model under the assumptions that spe-

cific antigen is not presented, f(t) = 0, and thymic output is zero, ν1 = ν4 = 0.

This corresponds to the scenario analysed in Section 6.3.1 from a deterministic per-

spective. We evaluate the probability of regulatory T cell extinction conditioned on

the non-extinction of the IL-2 producing T cell population, and the average time

one must wait before regulatory T cell extinction takes place (Allen, 2003). We

also compute the probability of IL-2 producing T cell extinction conditioned on the

non-extinction of the regulatory T cell population, and the average time to IL-2

producing T cell extinction.

In this section, we show that the ultimate fate of the CD4+ T cell subsets is extinc-

tion, and present some results for general birth and death processes (Allen, 2003).

It is of interest to record which population is extinguished first. We shall study

whether the process visits, (before extinction takes place), the region in which the

number of IL-2 producing T cells is greater than their characteristic size when reg-

ulated. We consider the problem of regulatory T cell extinction conditioned on the
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non-extinction of the IL-2 producing T cell population, and then study the prob-

lem of IL-2 producing T cell extinction conditioned on the non-extinction of the

regulatory T cell population.

6.5.1 Extinction for a regular birth and death process

For a regular uni-variate birth and death process {X(t)} we have (Allen, 2003)

pji(∆t) = Prob{X(t+ ∆t) = j | X(t) = i} (6.64)

=



λi∆t+ o(∆t) if j = i+ 1 ,

µi∆t+ o(∆t) if j = j − 1 ,

1− (λi + µi) ∆t+ o(∆t) if j = i ,

o(∆t) otherwise ,

(6.65)

where λi > 0 for i ≥ 1, µi > 0 for i ≥ 1, and λ0 = µ0 = 0. For such a process, the

state defined by i = 0 is an absorbing state (Allen, 2003).

Karlin and McGregor (Karlin & McGregor, 1957) provide conditions for guaranteed

absorption (or extinction) of a birth and death process of the form above, as well as

giving conditions for absorption in a finite time. Let us introduce rn as follows:

rn =
λ1λ2 · · ·λn−1

µ2µ3 · · ·µn
for n ≥ 1 . (6.66)

A sufficient condition for guaranteed absorption of the process at state n = 0 is that

the series
∞∑
n=1

1

λnrn
(6.67)

diverges (Karlin & McGregor, 1957). A birth and death process with guaranteed

absorption will be absorbed in a finite time if the series

∞∑
n=1

λnrn (6.68)

converges (Karlin & McGregor, 1957). Let a birth and death process be defined by

the transition rates

λn = λne−n/κ , (6.69)
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µn = µn for n ≥ 0 , (6.70)

with λ, µ and κ > 0. We prove, in what follows, that for such a process, absorption

at the (absorbing) state n = 0 is certain and occurs in a finite time.

Absorption is certain For the birth and death process defined by equations (6.69)

and (6.70) we have

rn =
λn−1(n− 1)! exp

(
−
∑n−1

i=1 i/κ
)

µn−1n!
. (6.71)

Then, it follows that
1

λnrn
=

µn−1

λn exp (−
∑n

i=1 i/κ)
, (6.72)

and by the ratio test we have

lim
n→+∞

λnrn
λn+1rn+1

= lim
n→+∞

µ exp [(n+ 1)/κ]

λ
→ +∞ . (6.73)

Thus, the series
∞∑
n=1

1

λnrn
diverges and hence the process is absorbed with certainty,

as we wanted to show.

Time to absorption is finite For this process we can write

λnrn =
λn exp (−

∑n
i=1 i/κ)

µn−1
, (6.74)

and again by the ratio test we have

lim
n→+∞

λn+1rn+1

λnrn
= lim

n→+∞

λ

µ exp [(n+ 1)/κ]
= 0 . (6.75)

Thus, the series
∞∑
n=1

λnrn converges and the process is absorbed in a finite time as

we wanted to show.

Naive T cells The Markov sub-chain {X1(t)} can be considered a birth and death

process with transition rates of the type given by equations (6.69) and (6.70). For
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the population of naive T cells we have

λ = λ1H ,

µ = µ1 + α13 ,

κ = κ1 .

Thus, the population of naive T cells will become extinct with certainty in a finite

time.

IL-2 producing T cells Borrowing ideas from Iglehart (Iglehart, 1964), we can

bound the Markov sub-chain {X2(t)} by a birth and death process (with transition

rates of the form given in equations (6.69) and (6.70)), which “travels to infinity”

faster than {X2(t)} (Iglehart, 1964). For such a process we have

λ = λ2H ,

µ = µ2 + α23 ,

κ = κ2 ,

which is absorbed at n = 0 in a finite time. Since this process bounds the Markov

sub-chain {X2(t)}, it follows that the population of effector T cells will also become

extinct with certainty in a finite time.

Regulatory T cells If sufficient time has passed for the population of effector

T cells to become extinct, that is, n2 = 0, the transition probabilities for the Markov

sub-chain {X4(t)} depend only on n4. Indeed, the only non-zero transition proba-

bility for the sub-chain {X4(t)} is

pn4−1,n4(∆t) = Prob{X4(t+ ∆t) = n4 − 1 | X4(t) = n4} = µ4n4∆t+ o(∆t) . (6.76)

Such a process is a simple death process and if not already at the unique absorbing

state, n4 = 0, before extinction of the effector T cell population, the process will be

absorbed in a finite time (Karlin & McGregor, 1957).

IL-2 non-producing T cells Lastly, suppose sufficient time has elapsed for the

naive and effector T cell populations to become extinct. Following extinction of
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these populations, the Markov sub-chain representing the IL-2 non-producing T cell

population can be considered a birth and death process of the form (6.69) and (6.70)

with

λ = λ3H ,

µ = µ3 ,

κ = κ3 .

It, therefore, follows that the IL-2 non-producing T cell population will become

extinct in a finite time, given populations {X1(t)} and {X2(t)} have already become

extinct.

Let us suppose the process starts in a general state (n1, n2, n3, n4) ∈ S, where ni ≥ 1

for i = 1, . . . , 4. By virtue of the fact that population {X1(t)} will become extinct

in a finite time, independently of the remaining three populations, the process is

guaranteed to reach (in a finite time) region R1 defined as

R1 = {(0, n2, n3, n4) : ni ≥ 0 for i = 2, 3, 4} . (6.77)

Equivalently, we have shown that population {X2(t)} will become extinct in a finite

time, independently of the other populations. Thus, the process is guaranteed to

reach (in a finite time) region R2 defined as

R2 = {(n1, 0, n3, n4) : ni ≥ 0 for i = 1, 3, 4} . (6.78)

Since both R1 and R2 are reached with certainty in a finite time, it follows that the

intersection of these regions, R3, defined as

R3 = {(0, 0, n3, n4) : ni ≥ 0 for i = 3, 4} , (6.79)

is reached with certainty in a finite time. Given that enough time has elapsed for

the populations of naive and effector T cells to have become extinct, we have shown

that the population of IL-2 non-producing T cells will become extinct in a finite

time. Therefore, if the process is in R3, the region R4 defined as

R4 = {(0, 0, 0, n4) : n4 ≥ 0} , (6.80)

is reached with certainty in a finite time. Equivalently, we have shown that following
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extinction of the population of effector T cells, the population of regulatory T cells

will become extinct in a finite time. Thus, the region R5 defined as

R5 = {(0, 0, n3, 0) : n3 ≥ 0} , (6.81)

is reached with certainty in a finite time for a process starting in R3. Finally,

considering that R4 and R5 are both reached with certainty in a finite time, the

intersection of these regions, namely the absorbing state (0, 0, 0, 0) is reached with

certainty in a finite time from region R3. It, thus, follows the entire process becomes

extinct in a finite time starting from an arbitrary state (n1, n2, n3, n4) ∈ S, with

ni ≥ 0 for i = 1, . . . , 4.

6.5.2 Probability and time to extinction of populations 2

and 4

We have shown that the populations of effector and regulatory T cells will both

become extinct in a finite time. In this Section we present a numerical method to

approximately calculate the probability that the regulatory T cell population will

be driven to the absorbing region defined by

R = {(n2, n4) : n2 6= 0, n4 = 0} , (6.82)

before the population of effector T cells becomes extinct. In such an event, when the

population of regulatory T cells becomes extinct before the effector T cell population,

the CD4+ T cell population is at risk of unregulated proliferation of the effector

T cell subset, following a possible increase in their proliferative capacity, which for

example could be induced by presentation of specific antigen. In this scenario, the

probability of autoimmunity increases (Almeida et al., 2012).

In this Section, we let {X(t)} = {(X2(t),X4(t))} be the bi-variate Markov process

representing populations 2 and 4. The transition probabilities for such a process are

pm,n(∆t) = Prob{X(t+ ∆t) = m | X(t) = n}
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=



(µ2 + α23 + βn4)n2∆t+ o(∆t) if m = (n2 − 1, n4) ,

µ4
κ4

κ4 + n2

n4∆t+ o(∆t) if m = (n2, n4 − 1) ,

λ2Hn2e−n2/κ2∆t+ o(∆t) if m = (n2 + 1, n4) ,

λ4An2n4∆t+ o(∆t) if m = (n2, n4 + 1) ,

1−
[
(µ2 + α23 + βn4)n2 + µ4

κ4

κ4 + n2

n4

+λ2Hn2e−n2/κ2 + λ4An2n4

]
∆t+ o(∆t) if m = n ,

o(∆t) otherwise .

To calculate the probability that population 4 becomes extinct before population 2,

we first impose that the state space of the Markov process {X(t)} is finite, such that

the maximum number of cells for population 2 is N2, and the maximum number of

cells for population 4 is N4. Imposing a finite state space implies that the calculated

probabilities will be an approximation to the true ones. Since the process typically

does not grow to infinity (due to the carrying capacities of the cell subsets), for

increasing values of Ni, i = 2, 4, the likelihood of any realisation (for a given param-

eter set) reaching either Ni, decreases. Thus, we can increase the accuracy of the

calculation to arbitrary precision by increasing N2 and N4. This, however, comes at

a further computational cost which we discuss below.

Let Pn be the probability of reaching region R from an arbitrary state n = (n2, n4).

By definition we have P(n2,0) = 1, P(0,n4) = 0, P(0,0) = 0, and 0 < P(n2,n4) < 1, with

n2, n4 > 0. We define

qm,n =



(µ2 + α23 + βn4)n2 if m = (n2 − 1, n4) ,

µ4
κ4

κ4 + n2

n4 if m = (n2, n4 − 1) ,

λ2Hn2e−n2/κ2 if m = (n2 + 1, n4) ,

λ4An2n4 if m = (n2, n4 + 1) ,

(µ2 + α23 + βn4)n2 + µ4
κ4

κ4 + n2

n4

+λ2Hn2e−n2/κ2 + λ4An2n4 if m = n ,

(6.83)

and ρm,n as follows

ρm,n =
qm,n

qn,n
. (6.84)
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Let Sn be the set of states which can be reached in a single transition from state n.

Then Sn is given by

Sn = {(n2 − 1, n4), (n2 + 1, n4), (n2, n4 − 1), (n2, n4 + 1)} , (6.85)

for 0 < n2 < N2 and 0 < n4 < N4. When n2 = N2, we have Sn = {(N2 −
1, n4), (N2, n4− 1), (N2, n4 + 1)}. When n4 = N4, we have Sn = {(n2− 1, N4), (n2 +

1, N4), (n2, N4−1)}, and when n2 = N2, n4 = N4, we have Sn = {(N2−1, N4), (N2, N4−
1)}. If the process reaches either the region defined by R or the region R̄ defined by

R̄ = {(n2, n4) : n2 = 0} , (6.86)

the process stops.

Probability of extinction

By a first step analysis argument, for which further details can be found in Ref. (Allen,

2003), we write

Pn −
∑
m∈Sn

ρm,nPm = σ . (6.87)

We define σ as follows: when n ∈ R, σ = 1, and σ = 0 if n /∈ R. We can express

equation (6.87) in the form

AQ = a , (6.88)

where A is a (N2N4) × (N2N4) matrix that depends on the variables ρm,n, Q is a

(N2N4)×1 (column) vector that depends on the variables Pn, and a is a (N2N4)×1

(column) vector that depends on the variables σ. In order to construct A, Q and a,

we first define a bijection ψ from the set K = {0, . . . , N2} × {0, . . . , N4} to the set

K = {0, . . . , (N2 + 1)(N4 + 1)− 1}, such that an ordering for all states in K can be

introduced. We note that the ordering of the states in K defined by the bijection

is irrelevant to the calculation, therefore any choice of bijection ψ will suffice. Let

A = (Ai,j), Q = (Qk) and a = (ak), with i, j, k ∈ K. We then define

Ai,j = 1 if i = j ,

Ai,j = −ρψ−1(i),ψ−1(j) if ψ−1(i) ∈ Sψ−1(j) ,

ak = 1 if ψ−1(k) ∈ R ,
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ak = 0 if ψ−1(k) /∈ R ,

Qk = Pψ−1(k) .

Since the matrix A has been defined so that Ai,i = 1, A is non-singular and thus,

invertible. In this case, the numerical solution is

Q = A−1a . (6.89)

One immediate drawback of this method is the computational time it takes to invert

the matrix A. As one increases the size of the state space, A increases with the square

of N2N4. It, therefore, follows that the computational time to invert A grows like

(N2N4)2 as N2 and N4 increase.

Expected time to extinction

In a similar manner to the calculation of the probability of extinction, we can also

compute the expected time to extinction of the populations of effector and regulatory

T cells. Let τn be the expected time to reach the set of states Ω = R ∪ (0, 0) from

n /∈ Ω. Then, by a first step analysis argument we have (Allen, 2003)

τn −
∑
m∈S′n

ρm,nτm = in , (6.90)

where in is the mean time the process waits in state n. This waiting time is given

by in = 1
qn,n

(Allen, 2003). Note that S ′n is the set of all states that can be reached

from state n in a single transition and that are not in Ω. For n ∈ Ω we impose

τn = 0.

We solve the above equation by setting it up as a linear algebra problem as we

did before. Define a bijection ϕ from the set K = {0, . . . , N2} × {0, . . . , N4}\Ω to

the set K = {0, . . . , (N2 + 1)(N4 + 1) − 1 − |Ω|}. Given i, j ∈ K, let B = (Bi,j),

b = (b0, b1, . . . , b(N2+1)(N4+1)−1−|Ω|)
T and T = (T0,T1, . . . ,T(N2+1)(N4+1)−1−|Ω|)

T, and

define

Bi,j = 1 if i = j ,

Bi,j = −ρϕ−1(i),ϕ−1(j) if ϕ−1(i) ∈ S ′ϕ−1(j) ,

bk = iϕ−1(k) ,
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Tk = τϕ−1(k) ,

for i, j, k ∈ K. The solution for the expected time to absorption into the set Ω is

T = B−1b . (6.91)

6.5.3 Numerical results: extinction of regulatory T cells

Figures 6.7 A) and B) present numerical (Gillespie) simulations of the stochastic

process for two different sets of parameters, differing in the value of λ2H . Figures 6.7

C) and D) make use of the method described in Section 6.5.2 to compute probabil-

ities of extinction. Finally, Figures 6.7 E) and F) make use of the matrix method

described in Section 6.5.2 to compute the expected time to extinction for both sets

of parameter values. The regions R and R̄, introduced in Section 6.5, are given by

R = {(n2, n4) : n2 6= 0, n4 = 0} , and R̄ = {(n2, n4) : n2 = 0} . (6.92)

Probabilities of regulatory T cell extinction conditioned on the non-extinction of

the IL-2 producing T cell population, and the expected time to extinction, are given

in Table 6.2. We note that the value of λ2H = 0.022 corresponds to a parameter

set that yields a deterministic stable steady state with no regulatory T cells, and

λ2H = 0.080 to a parameter set that yields a deterministic stable steady state with

both effector and regulatory T cells present.

6.5.4 Numerical results: extinction of IL-2 producing T cells

Figures 6.8 A) and B) make use of the method described in Section 6.5.2 to com-

pute probabilities of extinction of IL-2 producing T cells, conditioned on the non-

extinction of regulatory T cells. We have generated numerical realisations of the

stochastic process for two different sets of parameters, as described in Table 6.1, dif-

fering only in the value of λ2H . In Figures 6.8 C) and D), we make use of the matrix

method described in Section 6.5.2 to compute the expected time to extinction for

both sets of parameter values.

Summary We consider two sets of parameter values. In the first, there are no reg-

ulatory cells in the steady state of the deterministic model of Section 6.3.2. However,

we may choose an initial condition with numbers of regulatory T cells sufficiently
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A) B)

C) D)

E) F)

Figure 6.7: (Caption continued on the following page.)
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Figure 6.7: A) Gillespie realisation of populations 2 and 4 for the parameter set given
in Table 6.1, taking λ2H = 0.022 h−1. Using this value ensures the deterministic
steady state of the form (n∗2 > 0, n∗4 = 0) is stable. Initial conditions were chosen
such that the stochastic realisation begins with 30 IL-2 producing T cells and 300
regulatory T cells and is run for 30 days. B) Gillespie realisation for the same initial
conditions as in A), with a time interval of two years, and the same parameter set
except λ2H = 8 × 10−2 h−1. This proliferation rate guarantees the stability of a
deterministic steady state of the form (n∗2 > 0, n∗4 > 0). As the populations do not
exceed 250 effector T cells or 550 regulatory T cells, we impose these values for
N2 and N4, respectively. C) Probability of reaching the region R from a general
state (n2, n4), with a maximum state space given by N2 = 250 and N4 = 550. The
parameter set is the one used for Figure A). D) Probability of reaching the region
R from a general state (n2, n4) with a maximum state space N2 = 250 effector cells
and N4 = 550 regulatory cells with parameters as chosen in Figure B). For this
parameter set the probability of population 4 going extinct before population 2 is
∼ 10−12 for most initial conditions. E) Expected time to absorption in the region
defined by R ∪ (0, 0) with a maximum state space of N2 = 250 effector T cells and
N4 = 550 regulatory T cells. Parameters have been chosen as in Figures A) and C).
F) Expected time to reach R ∪ (0, 0) with same parameters as chosen in Figures B)
and D).

large to drive the IL2-producing population to extinction. In the second case, the

steady state of the deterministic model corresponds to a situation where a non-zero

population of regulatory cells moderates the size of the IL2-producing population.

Here, by choosing an initial condition with large numbers of IL2-producing cells, we

are able to explore the possibility that this population can avoid regulation.

6.6 Conclusions

The quorum-sensing mechanism allows an IL-2 producing population to be main-

tained at a regulated size that does not depend on the absence or presence of specific

antigen. In the latter case, a larger number of regulatory T cells is required to main-

tain the homeostatic distribution of the CD4+ T cell population. Such scenarios

include the late part of an immune response, once it has peaked (Almeida et al.,

2012).

The model presented here does not include competition for IL-2 at the recep-

tor/molecular level. However, implicit in choosing the proliferation of regulatory

T cells to be antigen independent, is the assumption that regulatory T cells are

more sensitive to IL-2 than IL-2 producing cells (Feinerman et al., 2010). We do
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A) B)

C) D)

Figure 6.8: Upper plots) Probability of extinction of the IL-2 producing population
conditioned on survival of the regulatory population. The parameter set used for
the left (right) plot corresponds to the same parameter set used for the left (right)
plot in Figure 6.7. Lower plots) Expected time to absorption in the region R̄∪ (0, 0)
with parameter sets corresponding to the above plots. Plot D) looks qualitatively
similar to plot F) in Figure 6.7. This is due to the fact that the most probable path
of extinction in Figure 6.7 F) is by absorption in the region R̄. Furthermore, the
amount of time spent in region R is short relative to the time scales shown in D).
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λ2H = 0.022 h−1

IC (n2, n4) Prob n4 ext Expected time (days)
(40,100) 0.38732 41.794
(80,200) 0.12850 34.339
(120,300) 0.039915 31.820
(160,400) 0.012389 31.243
(200,500) 0.0038638 31.314

λ2H = 0.080 h−1

IC (n2, n4) Prob n4 ext Expected time (years)
(40,100) 9.0657e-12 1552.2
(80,200) 9.0657e-12 1552.2
(120,300) 9.0657e-12 1552.2
(160,400) 9.0657e-12 1552.2
(200,500) 9.0656e-12 1551.9

Table 6.2: Probabilities and expected times to extinction that correspond to Fig-
ure 6.7. The Table provides the conditional probability of extinction of the regula-
tory T cell population and the expected time to this extinction event given initial
conditions for λ2H = 0.022 h−1 and λ2H = 0.080 h−1.

not assume this limits the proliferative capacity of IL-2 producing cells, as in our

model the limiting factor of proliferation for IL-2 producing cells is the number of

cells themselves; regulatory cells play a role through the suppressive term β (Qureshi

et al., 2011; Wing et al., 2008).

A possible extension of the model is to include a carrying capacity, for the IL-2

induced proliferation terms, which encodes some concept of space or availability of

other trophic factors; availability would become limiting for large enough cell num-

bers. Another similar approach is that of Yates et al. (Callard et al., 2003), where

T cells are assumed to induce fratricidal apoptosis due to Fas-FasL interactions.

The simplest method of including such a mechanism in the model would be to add

non-linear death terms in the ODEs for the populations of antigen-experienced cells

( IL-2 non-producing and IL-2 producing T cells).

In vivo, and due to the cross-reactivity of T cell clonotypes, IL-2 producing T cells

might be suppressed by regulatory T cells of different TCR specificities. Inter-

clonal suppression would limit the degree of proliferation the effector population

could undergo. Additionally, regulatory T cells may make use of IL-2 produced by

effector T cells of different TCR specificities, a hypothesis not considered in our

model, but that should be included in future mathematical models of CD4+ T cell

populations (Müller et al., 2012).
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λ2H = 0.022 h−1

IC (n2, n4) Prob n2 ext Expected time (days)
(40,100) 0.61268 34.561
(80,200) 0.87150 19.493
(120,300) 0.96008 11.774
(160,400) 0.98761 7.9934
(200,500) 0.99613 5.9972

λ2H = 0.080 h−1

IC (n2, n4) Prob n2 ext Expected time (years)
(40,100) 1.0000 1552.2
(80,200) 1.0000 1552.1
(120,300) 1.0000 1552.1
(160,400) 1.0000 1552.1
(200,500) 1.0000 1551.9

Table 6.3: Conditional probability of IL-2 producing T cell extinction conditioned
on the non-extinction of the regulatory T cell population, and the expected time to
this extinction.

A regulatory T cell phenotype can be induced in non-regulatory cells (Bettelli et al.,

2006; Chen et al., 2003; Kretschmer et al., 2005) via the transforming growth factor

TGF-β, perhaps providing additional protection against losses in the regulatory

T cell population. It is, however, unclear if regulatory T cells can be induced from

all non-regulatory phenotypes or just naive phenotypes. These considerations are

out of the scope of this chapter.

Recent experimental studies have provided a molecular basis for the cell-extrinsic

function of the co-receptor CTLA-4 (Qureshi et al., 2011). As regulatory T cells

constitutively express the co-receptor CTLA-4 on their surface, this mechanism can

allow them to capture, via CTLA-4 trans-endocytosis of CD80 and CD86, these

ligands from APCs. In this way, regulatory T cells can deplete CD80 and CD86

molecules from the surface of APCs, and in turn suppress the activation of CD4+

T cells. This mechanism will be explored in future work.

If a tolerant steady state exists and is stable, the model predicts that the equilibrium

number of IL-2 producing T cells is the same regardless of whether these cells see

specific antigen or not. In the former case, we observe a larger number of regulatory

T cells to compensate for the increased turnover of effector cells. The model further

predicts that an imbalance in the number of regulatory and effector T cells can

lead to large populations of effector cells. However, this is only in the event these
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cells see specific antigen. Such an imbalance could result from a stochastic fluctu-

ation, or from the immune activity of other T cell clonotypes during an immune

response. Exploring potential mechanisms driving this imbalance would require a

more comprehensive future model to be developed.

In this chapter, we have restricted ourselves to examining the model under the re-

striction of constant antigen presentation. This restriction has been appropriate as

we have not modelled the precise details of an immune response, which require a gen-

eral function f(t). We conclude our discussion with numerical results that describe

the time evolution, in the case of time-dependent specific antigen presentation, of

the n2, n3 and n4 populations. In Figure 6.9, we present example trajectories for

non-constant antigen presentation. We first assume f(t) = 0 for seven days. Be-

tween days seven and fourteen we let f(t) = 1, and following day fourteen we set

f(t) = e−0.027(t−14×24). That is, from day fourteen f(t) is a decreasing exponential,

which decreases from 1 to 1/100 by approximately day twenty one. Trajectories

were computed using the parameter set given in Table 6.1; at day zero we let initial

conditions be equal to the steady state solution subject to setting f(t) = 0. This

figure shows that there is only a modest increase in the number of IL-2 producing

T cells. It seems the main factor allowing growth of the total CD4+ pool is not a

large increase in the amount of available IL-2 (assumed to be proportional to the

number of IL-2 producing T cells). We have assumed recognition of antigen by the

non-regulatory populations allows them to up-regulate IL-2Rα. It would appear

that it is this extra responsiveness to the available IL-2, which drives growth of the

population. A caveat to these observations is that we have made the simplification

that IL-2 levels are proportional to the size of the IL-2 producing subset. Such an

assumption does not take into account any notion of space or competition for IL-2,

which may be the case in vivo.
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Figure 6.9: For the first seven days we have set f(t) = 0. Between days seven
and fourteen, we set f(t) = 1. After day fourteen we set f(t) = e−0.027(t−14×24) (an
exponentially decreasing function which reduces from 1 to 1/100 in approximately
seven days). The parameter set used for these trajectories is given in Table 6.1,
taking λ2H = 0.08 h−1. Furthermore, we have increased α32 by a factor of 10
(α32 = 0.01 h−1) to give a more distinct peak within the second week period. Initial
conditions are given by the steady state solution subject to setting f(t) = 0.

194



Chapter 7

Concluding remarks

Mathematical approaches to modelling expanding populations of cells can be traced

back to the Smith-Martin model, for which many generalisations have been devel-

oped (Lee & Perelson, 2008). The Smith-Martin approach introduces two variables

to, respectively, describe the number of cells in the resting phase of the cell cycle

(G0) and the number of cells undergoing cycling (G1, S, G2 and M). Callard et al.,

Yates et al. and Seddon et al. have favoured the two compartment approach to

modelling lymphocyte populations, from which the models presented in Chapters 3

and 5 are heavily inspired (Bains et al., 2009b; Callard et al., 2003; Hogan et al.,

2013; Yates et al., 2007, 2008). In these studies, the two compartment approach has

been applied to populations of naive T cells, memory T cells, and when considering

these phenotypes as a single population.

In the models presented in Chapters 3 and 5, we have assumed that following divi-

sion, two daughter cells are produced in the resting compartment. However, there

are other possibilities that may be considered, such as both daughter cells imme-

diately proceeding through another round of division. In an earlier paper we used

the simple model to explore two further hypotheses: firstly, that both daughter cells

remain in the cycling pool following a round of division, and secondly, one daughter

cell remains in the cycling pool whilst the other becomes a resting cell (Reynolds

et al., 2012). These assumptions required the introduction of a relaxation term al-

lowing cycling T cells to revert back to a resting state. In this paper we explored the

differences in the steady state solutions (with thymic output) of the simple model

arising from these assumptions. Based on the study we discussed how one may

potentially test for these differences in an experimental setting.

Given that one may choose to describe a population of T cells by this two com-

partment model, the most immediate question is how one should choose to model
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the transitions between compartments, also noting that T cells may die. In the

deterministic formulation, a first approach is to assume all transitions are linear, as

we have done for the simple model presented in Section 3.1. Assuming linear tran-

sition rates has of course the immediate drawback that, if there are no source terms

for T cells (for example thymic output), then the only steady state corresponds to

extinction of the populations. To remedy this, a typical approach taken in the lit-

erature is to replace one of the linear terms by one which allows for the existence

of a positive steady state. Examples include assuming cell-cell induced fratricide

due to interactions between the Fas receptor and the Fas ligand, introduced via the

inclusion of a second order death term (Bains et al., 2009b; Callard et al., 2003) and,

more recently, assuming density dependent death and cell cycle entry rates (Hogan

et al., 2013). We explored examples of these changes in Section 3.2.

The novelty of the approach taken in Chapter 5 is in the introduction of a resource,

which for naive T cells, is assumed to be IL-7. The approach taken for this model

has its roots in the observations of Palmer et al. (Palmer et al., 2011). In this

paper, naive CD8+ T cell responses in vitro were reported to be dependent on the

concentration of IL-7 these cells were exposed to. The authors suggested naive CD8+

T cells require a threshold in IL-7 signalling to be surpassed to enable survival of the

cells, whilst a second, higher, threshold must be surpassed before a T cell can enter

the cell cycle. Assuming this behaviour is also true for CD4+ T cells (such that

we can model both cell types with a single variable), we took an approach where

we assume the death and cell cycle entry rates in the two compartment model were

functions of the average amount of IL-7 induced signalling with respect to signalling

thresholds for survival and division.

Modelling the resource in the manner discussed above required us to relate the

concentration of IL-7 to the amount of IL-7 induced signalling, and developing a

relationship for this has been the focus of Chapter 4. Whilst we have attempted

to establish the model from biological observations, the two compartment model

ultimately is a modified version of the linear model in which two terms are replaced

by functions of the resource (µ̄R(S(t)) and ρ̄(S(t))). These functions qualitatively

resemble hill functions (Gesztelyi et al., 2012). That is, the rates of resting T cell

death and entry into the cell cycle possess a maximum which is reached if IL-7

induced signalling is in excess. The parameter α determines the “steepness” of

these functions, with the functions being linear in the limit α→ 0+, whilst tending

to step functions in the limit α→ +∞.
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The analysis of the model in Chapter 5 highlighted how sensitive the model is to

changes in the parameter α. An accurate determination of the true values of α (for

humans and mice) would require experiments specifically designed with measuring

this parameter in mind. Despite this, our results suggest that α should be smaller

for the human parameter set, relative to the mouse parameter set. Biologically,

this implies greater variability in IL-7 signalling thresholds for a human population

of naive T cells, compared with a murine population. If the diversity in signalling

thresholds could be measured experimentally, it would be interesting to see if these

differences between human and mice T cells exist.

Let us suppose the suggested diversity in IL-7 signalling thresholds for human T cells

occurs mainly between different T cell clonotypes. Then we might expect that there

exist clonotypes within the repertoire which survive and enter cell division prefer-

entially when compared with other clonotypes. We might further expect that the

number of T cells in clonotypes which are homeostatically “fitter” for IL-7 would in-

crease. Correspondingly, the clonotypes which require the most amount of signalling

for survival and division may well be lost from the repertoire. Thus, a consequence

of this variability in IL-7 signalling thresholds between clonotypes could result in

a loss of diversity of clonotypes. For young individuals, lost clonotypes are pre-

sumably replaced by new T cell clonotypes maturing in the thymus. However, in

later life, when thymic output has waned considerably, loss of T cell clonotypes

may leave holes in the repertoire, resulting in oligoclonality and insufficient immune

coverage. Oligoclonality in this respect would result from homeostatic selection of

T cell clonotypes which possess lower than average signalling thresholds for survival

and division. This is in contrast to oligoclonality resulting from persistent antigenic

stimulation of T cell clonotypes, as has been observed for various pathological condi-

tions such as autoimmunity and response to tumours (Balk et al., 1991; Even et al.,

1995; Sakkas et al., 2002).

Previous studies have shown that naive T cells acquire a memory-like phenotype fol-

lowing repeated homeostatic division (Cho et al., 2000; Murali-Krishna & Ahmed,

2000). We might therefore expect that the T cell clonotypes with the lowest IL-7

signalling thresholds would become memory-like T cells. This, somewhat paradoxi-

cally, may increase the overall average level of signalling thresholds across the naive

T cell pool by leaving behind the clonotypes which possess higher thresholds. The

remaining naive T cell pool would thus, over time, become less responsive to IL-7.

A mathematical confirmation of this suggestion would require a modification of the
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model in Chapter 5 to be introduced in which we include a division dependent dif-

ferentiation term for naive T cells being lost to the memory pool. Given that we

have struggled to estimate the parameters for the model presented in this work, es-

timating the parameters of a more complicated model would require experiments to

be designed with these measurements in mind. Developing such a model is therefore

beyond the scope of this study.

In the derivation of the signalling relation in Chapter 4, we have assumed recep-

tor/signal dynamics are in equilibrium. This allowed us to assume all T cells in

the population receive the same amount of IL-7 induced signalling for a given con-

centration of IL-7. Furthermore, this signalling occurs continuously. A study by

Singer et al. suggests, for CD8+ T cells, continuous IL-7 signalling causes these cells

to express interferon-γ (IFN-γ), resulting in cell death (Kimura et al., 2013). This

was observed in vitro, for IL-7 at a concentration of 1 ng ml−1, which, in the context

of our results, is more than sufficient to drive T cells into the cell cycle. Indeed, in

the studies of Singer et al. extensive proliferation was observed for CD8+ T cells

cultured at this concentration. Previous studies have shown that extensive prolifer-

ation of naive T cells causes them to acquire a memory like phenotype (Cho et al.,

2000; Murali-Krishna & Ahmed, 2000), and thus it is likely that interferon-γ produc-

tion results from naive T cells acquiring a memory/effector phenotype. Indeed, the

authors of (Kimura et al., 2013) reported that proliferating T cells acquired memory

markers. What is unclear from this study is if the same observations are true for

lower concentrations of IL-7. In the supplementary material of (Kimura et al., 2013),

it was reported that the same observations are true for low concentrations of IL-7

at 0.6 ng ml−1. However, in the context of our model, 0.6 ng ml−1 is by no means

a low concentration of IL-7 since from equation (5.1) this produces approximately

574 signalling units at equilibrium, well above the thresholds for proliferation which

were found to be around 483 and 555 for OT-1 and F5 T cells respectively. It would

be interesting to see if the same results hold for IL-7 concentrations in the range

where we expect T cell quiescence, approximately 5.4× 10−3-1.9× 10−2 ng ml−1.

Continuous signalling was reported to be interrupted by intermittent signalling

through the TCR. These findings were established both in vivo and in vitro by

comparing the dynamics of two CD8+ T cell types, one of which was specific for

a given peptide, whilst the other was not (Kimura et al., 2013). The authors con-

clude that IL-7 signalling must be intermittent to promote homeostasis of naive

T cells. From a modelling perspective this presents a challenge, since under these

assumptions, for each individual T cell, its current state in signalling, which under
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these assumptions oscillates, must be recorded. Deterministic modelling, as used in

Chapters 3 and 5, is unsuitable for this, since, we would require a set of ODEs to

be solved for each T cell in the population. A more suitable framework would be

agent based modelling, a computational approach in which each T cell is considered

an autonomous agent. To date however, due to the computational cost involved,

agent based approaches are not capable of effectively simulating population sizes

typical of the number T cells found in a lymphoreplete mouse, let alone a human.

However, it is likely that in the near future, computational approaches will become

the prominent modelling platform.

The model in Chapter 6 was developed in collaboration with Freitas et al., resulting

in a publication proposing the quorum-sensing hypothesis for CD4+ T cells (Almeida

et al., 2012). Within this paper we introduced an earlier, deterministic version of

the stochastic model analysed in Chapter 6. One key difference between these two

models is in the implementation of a carry capacity allowing the model to possess

positive steady state solutions. In the earlier version, we used logistic growth terms,

however such terms were unsuitable for the stochastic model. A logistic growth

term has the general form an(1−n/k), where a is the growth rate, k is the carrying

capacity and n is the population size. For populations sizes where n > k, this term

becomes negative. Within a continuous time Markov process, transition probabilities

must be non-negative, thus the appearance of this term in the transition probabilities

of a Markov process becomes contextual depending on the state of the process.

Instead, we replaced logistic growth terms by density dependent growth terms of

the form aen/k. These terms are strictly positive and thus suitable for use in the

Markov model.

The number of T cells in each sub-population of the CD4+ T cell pool has been

described by a single variable. This is in contrast to the earlier chapters, wherein, for

a given population, we distinguish between cells which are either resting or cycling.

Since the study of the quorum-sensing mechanism deals with four sub-populations,

this has been done to reduce the overall number of variables from eight to four.

This does however create some problems for the division rates, which we highlight

in the following sentences. Consider the IL-2 dependent growth terms, which, for

the population of IL-2 producing T cells, take the form λn2. These terms describe

the time scales for a cell to divide and produce two daughter cells, resulting from

IL-2 stimulation. Consider that as the population grows, the average time for a cell

to complete division, given by (λn)−1, tends to zero. That is, in modelling T cell

division in this manner, we impose no lower limit for the time it takes a cell to
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divide. Indeed, λ must be chosen keeping the size of the cell populations in mind.

If we choose to model populations at a significantly different size, a different value

of λ should be chosen. Using the two compartment approach, one may allow resting

cells to enter the cell cycle at an arbitrary fast rate, however we still maintain a

fixed length of time for the cell to complete the cell cycle. We therefore place an

upper limit to the rate at which a population can expand. This makes sense from a

biological perspective and furthermore aids the stability of numerical schemes when

solving ODEs1.

The quorum-sensing hypothesis was explored using a continuous-time Markov pro-

cess. In process we have used, waiting times for events such as cellular division

or death are assumed to be exponentially distributed. Studies by Hawkins et al.

have shown that more appropriate distributions to describe waiting times for cellu-

lar events are right skewed distributions allowing for a minimum waiting time for

events, such as the log-normal distribution (Duffy et al., 2012; Hawkins et al., 2009,

2007; Markham et al., 2010). The stochastic analysis of the times to extinction of

the IL-2 producing and regulatory populations in Section 6.5 could be improved by

recasting the Markov model into a modified version of the Cyton model, developed

by Hawkins et al. (Hawkins et al., 2007). This would however introduce more param-

eters into the model, and the extra mathematical scrutiny would be wasted without

coinciding experimental approaches to determine the parameters of the model.

Regulatory T cell suppression of IL-2 producing T cells is likely mediated through

contact with an APC (Kubo et al., 2004; Sepúlveda & Carneiro, 2011). Therefore,

the number of available APCs as well as their spacial distribution within the tissue,

are likely to contribute to the homeostatic balance between effector T cells and

regulatory T cells. Such considerations may become important for future modelling

of effector/regulatory T cell dynamics. Indeed, spacial considerations will likely

become important for much of the future modelling of T cell homeostasis in vivo.

In this study we have explored the homeostasis of the peripheral T cell pool. We

used the two compartment approach to study the homeostasis of the peripheral naive

T cell population. We presented a model of the naive T cell pool in which we have

assumed cell survival is dependent on the concentration of available IL-7. With this

model we could describe the expansion of a naive T cell population in a lymphopenic

1With the current implementation, if the sub-populations of cells with growth terms of the form
λn2 becomes too large, these growth terms dominate. This quickly results in a typical time-scale
for division being smaller than the time-steps used for the numerical scheme. At this point the
numerical scheme quickly loses stability.
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mouse. However, using the available data we were unable to estimate the parameters

of the model uniquely. The model less accurately described the homeostasis of the

naive T cell pool in humans. We felt this is most likely because the model does

not take into account competition for IL-7 from the memory T cell pool, nor do we

describe differentiation of naive T cells into memory T cells. Developing the model

further to take the memory T cell pool into account is an obvious direction for further

modelling efforts. Given our uncertainties in the parameters of the model thus

far, further modelling efforts would benefit greatly from being developed alongside

experimental approaches.

In addition to our study of the homeostasis of the naive T cell pool we presented

a mathematical treatment of the quorum-sensing hypothesis proposed by Freitas et

al. (Almeida et al., 2012). The main findings from this study was that the quorum-

sensing mechanism implies the number of IL-2 producing T cells at equilibrium is

the same in the cases where specific antigen is either not presented or presented at a

constant level. In the latter case, a larger number of regulatory T cells are required

to maintain the equilibrium. Dynamics representative of autoimmunity are obtained

when either the survival or death rates (or both) of the regulatory sub-population

are compromised. Lastly, we found that the rate of suppression of IL-2 producing

T cells has no effect on the number of IL-2 producing T cells at equilibrium.
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Appendix A

The limit E [Xi]→ 0, i ∈ {1, . . . , n}
for log-normal moment closure

polynomials

Definition 1 (Positive-definite matrix). Let A be an n× n square matrix with real

entries (aij), 1 ≤ i, j ≤ n. The matrix A is defined to be positive-definite if for all

non-zero real column vectors b,

bTAb > 0. (A.1)

Lemma 1. Let A be a positive-definite n × n matrix. Then each diagonal element

aii > 0 for all i ∈ {1, . . . , n}.

Proof. Let A = (aij)i,j=1,...,n be a real-valued positive-definite matrix and b =

(b1, . . . , bn)T be a non-zero real valued vector. Then by the definition of a positive-

definite matrix
n∑

i,j=1

bibjaij > 0. (A.2)

Suppose akk < 0 for some k ∈ {1, . . . , n}, we show that under this assumption we

can always find a bk such that equation (A.2) does not hold. To find such a bk,

notice that

n∑
i,j=1

bibjaij = b2
kakk +

n∑
i=1,
i 6=k

b2
i aii +

n∑
i,j=1,
i 6=j

bibjaij > 0,

⇒
n∑
i=1,
i 6=k

b2
i aii > −akk

b2
k +

1

akk

n∑
i,j=1,
i 6=j

bibjaij

 .
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Completing the square we find

n∑
i,j=1,
i,j 6=k

bibjaij −
1

4akk

 n∑
j=1,
j 6=k

bjakj +
n∑
i=1,
i 6=k

biaik


2

> −akk

bk +
1

2akk

 n∑
j=1,
j 6=k

bjakj +
n∑
i=1,
i 6=k

biaik




2

.

Since we assume akk < 0, we may divide both sides by −akk without changing the

direction of the inequality, this gives

1

4a2
kk

 n∑
j=1,
j 6=k

bjakj +
n∑
i=1,
i 6=k

biaik


2

− 1

akk

n∑
i,j=1,
i,j 6=k

bibjaij >

bk +
1

2akk

 n∑
j=1,
j 6=k

bjakj +
n∑
i=1,
i 6=k

biaik




2

.

(A.3)

The right hand side of equation (A.3) is strictly positive, it follows that the left hand

side must also be positive. We are free to take the positive square root, from which

we find bK must satisfy√√√√√√√ 1

4a2
kk

 n∑
j=1,
j 6=k

bjakj +
n∑
i=1,
i 6=k

biaik


2

− 1

akk

n∑
i,j=1,
i,j 6=k

bibjaij−
1

2akk

 n∑
j=1,
j 6=k

bjakj +
n∑
i=1,
i 6=k

biaik

 > bk.

(A.4)

We are free to choose bk greater than the left hand side of equation (A.4) to negate

the inequality (A.2), hence the proof follows. Note that if we relax the assumption

akk < 0, existence of real solutions when computing the above square root is not

guaranteed and hence we are not guaranteed to find bk to negate (A.2).

Lemma 2. Let X = (X1,X2, . . . ,Xn) be a random vector where the components

of X have a multivariate log-normal distribution. Define s = (s1, s2, . . . , sn) where

si ∈ N, i = 1, . . . , n. Then

E

[
n∏
i=1

Xsi
i

]
= es·µ+ 1

2
sTΣs. (A.5)

Proof. The joint probability density function of a multivariate log-normal distribu-
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tion is given by

f(x) =
1

(2π)
n
2 |Σ| 12

∏n
i=1 xi

exp

(
−1

2
(logx− µ)T Σ−1 (logx− µ)

)
. (A.6)

First notice that

E

[
n∏
i=1

Xsi
i

]
=

∫
Rn

n∏
i=1

xsii f(x) dx. (A.7)

By definition, Σ is a positive-definite, symmetric, n × n matrix. We use Cholesky

decomposition to write

Σ =
(
DTD

)−1
, (A.8)

where D is a triangular matrix. Make the substitution

y = D (logx− µ) . (A.9)

Take derivatives of this and multiply by product of xsii , i = 1, . . . , n, then we find

es·µ+sTD−1ydy =

∏n
i=1 x

si−1
i

|Σ| 12
dx. (A.10)

Under this change of variables we find∫
Rn

n∏
i=1

xsii f(x) dx =
1

(2π)
n
2

∫
Rn

es·µ+sTD−1ye−
1
2yTy dy. (A.11)

Completing the square for the exponent, the right hand side in the above equation

becomes

1

(2π)
n
2

es·µ+ 1
2
sTΣs

∫
Rn

e
− 1

2

(
y−(D−1)

T
s
)T(

y−(D−1)
T
s
)

dy =
1

(2π)
n
2

es·µ+ 1
2
sTΣs

∫
Rn

e−
1
2
zT z z,

(A.12)

= es·µ+ 1
2
sTΣs, (A.13)

as required.

Theorem 1. Let X = (X1,X2, . . . ,Xn) be a random vector where the components of

X have a multivariate log-normal joint probability distribution with finite covariance

matrix Σ. Let

E [Xi] <∞ (A.14)
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for all i ∈ {1, . . . , n}. Suppose

E [Xj]→ 0, (A.15)

for some j ∈ {1, . . . , n}. Then, if sj ≥ 1,

E

[
n∏
k=1

Xsk
k

]
→ 0. (A.16)

Proof. Suppose that

E [Xi] = eµi+
1
2

Σii → 0 (A.17)

for some i ∈ {1, . . . , n}. The covariance matrix Σ is positive-definite by definition,

therefore by Lemma 1 it follows Σii > 0 for all i ∈ {1, . . . , n}. Thus, the expectation

in (A.17) tends to zero if and only if µi → −∞. Suppose µi → −∞, from Lemma 2,

lim
µi→−∞

E

[
n∏
k=1

Xsk
k

]
= lim

µi→−∞
es·µ+ 1

2
sTΣs = 0 (A.18)

if si ≥ 0, i ∈ {1, . . . , n} and Σ,µ <∞.
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Appendix B

Miscellaneous results

Lemma 3. Let X1, . . . ,Xk be k discrete random variables. Impose the condition

E

[
k∏
i=1

(Xi − µi)ni
]

= 0 (B.1)

where µi is the mean of random variable Xi and ni ∈ Z. Then

E

[
k∏
i=1

Xni
i

]
=

k∏
i=1

µni . (B.2)

Proof. First construct a bijection from Z ↔ Zk such that we define a natural or-

dering on the set Zk. Denote the nth element of Zk by n = (n1, . . . , nk). By the

linearity property of the expectation operator and the multi-binomial theorem we

have

E

[
k∏
i=1

(Xi − µi)ni
]

= E

[
n∑
j=0

k∏
i=1

(
ni
ji

)
Xji
i (−µi)ni−ji

]
,

=
n∑
j=0

k∏
i=1

(
ni
ji

)
(−µi)ni−jiE

[
k∏
i=1

Xji
i

]
,

= E

[
k∏
i=1

Xni
i

]
+

k∏
i=1

µnii

n−1∑
j=0

k∏
i=1

(
ni
ji

)
µ−jii (−1)ni−jiE

[
k∏
i=1

Xji
i

]
,

= E

[
k∏
i=1

Xni
i

]
+

k∏
i=1

µnii

n−1∑
j=0

k∏
i=1

(
ni
ji

)
(−1)ni−ji = 0. (B.3)
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Now considering that

n−1∑
j=0

k∏
i=1

(
ni
ji

)
(−1)ni−ji = −1 +

n∑
j=0

k∏
i=1

(
ni
ji

)
(−1)ni−ji = −1 +

k∏
i=1

(1 + (−1))ni = −1,

(B.4)

the result follows from equation (B.3), we have

0 = E

[
k∏
i=1

Xni
i

]
+

k∏
i=1

µnii (−1)⇒ E

[
k∏
i=1

Xni
i

]
=

k∏
i=1

µmii . (B.5)
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Appendix C

Time to degradation of an IL-7

receptor

Consider the location of a single unbound IL-7 receptor in a T cell. Let us assume

the receptor can be either expressed on the cell membrane (state 1), internalised

in an endosome (state 2), or degraded in a lysosome (state 3). Let us describe the

location of the receptor by a 3-state Markov process. The transition probability

for going from the cell membrane to the endosome, in a small time ∆t, (1 → 2) is

µU∆t + o(∆t). The transition probability for returning to the cell membrane from

the endosome (2 → 1) is given by ξU∆t + o(∆t). The transition probability for

transiting to the lysosome (2→ 3) is δU∆t+ o(∆t). We assume the lysosome (state

3) is an absorbing state, and for this process the probability of the receptor being

degraded (entering state 3) is 1. Define τi, i = 1, 2, 3, to be the expected time for a

receptor to enter state 3 from state i, i = 1, 2, 3. The transitions between states are

illustrated in Figure C.1.

From a first step analysis argument (for which further details can be found in (Allen,

State 1
Cell Mem-

brane

State 2
Endosome

State 3
Lysosome

µU∆t+ o(∆t) δU∆t+ o(∆t)

ξU∆t+ o(∆t)

Figure C.1: Illustration of the transition probabilities between states of the three-
state Markov process.
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2003)), each τi satisfies

τ1 = τ2 +
1

µU
, (C.1)

τ2 =
ξU

ξU + δU
τ1 +

δU
ξU + δU

τ3 +
1

ξU + δU
, (C.2)

τ3 = 0. (C.3)

Therefore, the expected time to degradation for an expressed, unbound, receptor is

given by

τ1 =
µU + ξU + δU

µUδU
. (C.4)
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recovery of peripheral näıve T cell numbers during antiretroviral treatment for

HIV infection. Journal of acquired immune deficiency syndromes (1999), 49, 1.

Sakaguchi, S. (2000). Regulatory T cells: key controllers of immunologic self-

tolerance. Cell , 101, 455.

Sakaguchi, S. (2004). Naturally arising CD4+ regulatory T cells for immunologic

self-tolerance and negative control of immune responses. Annual Review of Im-

munology , 22, 531–562.

222



REFERENCES

Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. (1995).

Immunologic self-tolerance maintained by activated T cells expressing IL-2 recep-

tor alpha-chains (CD25). breakdown of a single mechanism of self-tolerance causes

various autoimmune diseases. The Journal of Immunology , 155, 1151–1164.

Sakkas, L.I., Xu, B., Artlett, C.M., Lu, S., Jimenez, S.A. & Platsoucas,

C.D. (2002). Oligoclonal T cell expansion in the skin of patients with systemic

sclerosis. The Journal of Immunology , 168, 3649–3659.

Saule, P., Trauet, J., Dutriez, V., Lekeux, V., Dessaint, J.P. & La-

balette, M. (2006). Accumulation of memory T cells from childhood to old age:

Central and effector memory cells in CD44+ versus effector memory and termi-

nally differentiated memory cells in CD8+ compartment. Mechanisms of ageing

and development , 127, 274–281.
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