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Abstract 

In this thesis, theoretical electronic structure methods have been used to 

study systems of interest to materials science and engineering. The many-

body problem of quantum mechanics has been reviewed, and it has been 

explained that the density functional theory (DFT) of Hohenberg, Kohn and 

Sham is a very practical approach to solving it. The core details of DFT have 

been explicitly laid out. Having then demonstrated an awareness of the 

many different powers and varied capabilities of DFT in predicting material 

properties, systems laying at the current frontiers in nanoelectronics 

(chapters 3 and 5) and theoretical surface science (chapter 4) have then 

been focused on. In chapter 3, the behaviour of metal adatoms on graphene 

substrates has been predicted using DFT. From adatom binding energy and 

migration energy calculations, it has been theoretically suggested that single 

Cr, Au and Al adatoms diffuse randomly on graphene at room temperature 

until they collide with edge sites or defects, where they form stable bonds. 

This prediction has been used to explain experimental electron microscopy 

data which shows that metal adatoms evaporated onto graphene by 

chemical vapour deposition (CVD) have only ever been observed at edge 

sites and defects, and never on the pristine regions. In chapter 4, a new 

methodology has been developed for predicting the energies of step defects 

on crystalline solid surfaces, and it has been applied to steps on the (110) 

surface of TiO2 rutile. The limitations of currently published methods of 

calculating step energies have been explained in detail, and it has been 

demonstrated that this new method is much more reliable. The method has 

been used to predict the shape of a terrace island on the (110) surface of 

TiO2 rutile, and the prediction has been found to compare well with published 

experimental electron microscopy data. In chapter 5, current progress on an 

ongoing project has been summarised which investigates whether there is 

an energetic advantage to multiple substitutional nitrogen dopants in 

graphene occupying the same sublattice. The results are inconclusive so far, 

although it has been shown so far that magnetic effects are unlikely to be 

playing a role. In chapter 6, the accomplishments of this thesis have been 

summarised and future directions suggested. 
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Preface 

In this thesis, theoretical electronic structure methods are employed to try to 

explain experimental electron microscopy observations of materials of 

current interest to materials science and engineering. Particular emphasis is 

placed on designing calculation methods with a view to differentiating 

between artificial aspects of the calculations which have the potential to be 

misleading, and aspects which can be used to motivate robust and valid 

physical arguments of real explanatory merit. The entire thesis was written 

by myself. 
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Chapter 1: Introduction 

1.1 Electronic structure theory and its relevance to materials 

engineering 

Materials, and their remarkable properties, play an extremely important role 

in many areas of engineering and technology. Much of the advancement in 

these fields relies on successfully exploiting material properties in particular 

contexts, such as using semiconducting materials to manipulate and 

systematically control electric currents and thereby open the door to modern 

electronics. With the exception of radioactive isotopes, most of the chemical, 

mechanical, magnetic and electrical properties of materials can be very well 

explained in terms of the behaviour of their constituent electrons alone. 

Therefore, gaining an understanding of the behaviour of electrons in 

materials is one of the most pressing objectives in theoretical materials 

science, because such an understanding forms the foundation upon which to 

explain and predict material properties which can ultimately lead to new 

technologies. Nowadays, all credible theories which attempt to understand 

electrons in materials are rooted in quantum mechanics. Generally speaking,  

material properties which emerge directly from the behaviour of electrons 

can be divided into two categories: properties which emerge from electrons 

in the quantum mechanical ground state, and those which emerge from 

electrons in excited states. Ground state properties include cohesive energy, 

equilibrium crystal structures and the phase transitions between them, 

electric and magnetic susceptibilities, and mechanical properties such as 

elastic constants. Excited state properties include the band gap in insulators 

and semiconductors as determined by the energy gap between ground and 

excited states, the interactions of materials with electromagnetic waves, e.g. 

photon-induced surface plasmons in metals, and emission spectra 

determined by energy gaps between electron states. Physical theories which 

deal with the quantum mechanical states of electrons in materials are most 

generally referred to as theories of electronic structure. The motivational 

premise of this thesis is that the application of electronic structure methods 
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to materials used in engineering and technology can result in significant 

advancement in these fields. The specific goal of this thesis is to try to 

demonstrate that this is indeed true by applying electronic structure methods 

to three systems, and to then argue that the insight gained from these 

investigations results in significant, and, most importantly, new 

understanding of these systems. The specific aims and objectives of the 

thesis are now outlined. 

1.2 Aims and objectives of this thesis 

   There are two overriding aims of this thesis. The first aim of this thesis is to 

demonstrate to the reader that the author has a robust understanding of the 

methods of electronic structure theory which have been applied in this 

thesis. This is obviously a necessary prerequisite because it adds credibility 

to the results and conclusions drawn from the investigations carried in the 

subsequent chapters. To achieve this aim, the many-body problem of 

quantum mechanics will be outlined, and an awareness of the various 

formalisms which have been developed to try to solve it will be 

demonstrated. Density functional theory1,2 (DFT) - the core method used on 

all systems studied in the thesis - will then be introduced, and the significant 

practical advantages of DFT over many-body methods will be explained. The 

Kohn Sham (KS) equations2 of DFT will be derived in full with explanations 

of all of the mathematical steps, using Schrödinger's wave equation as the 

starting point. The KS equations will then be modified so that they can be 

applied to periodic crystalline systems by appealing to some basic 

crystallography, again with full commentary of the mathematical steps. It will 

be explained that imposing periodic boundary conditions offers significant 

practical advantages, and that the periodic KS equations can be solved for a 

vast array of both periodic and non-periodic systems in order to determine 

their properties. Finally, the basic conventions for solving the periodic KS 

equations numerically in a practical way using computers will then be 

outlined in a non-rigorous way. 

   The second aim of this thesis is to then apply the periodic KS equations of 

DFT to low-dimensional systems of current interest to surface science and 
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nanoelectronics, and to demonstrate that novel and significant insight 

emerges from these investigations which has the power to both increase 

scientific understanding and influence future directions of technological 

advancement. In order to achieve this aim, continued emphasis is placed 

throughout the entire thesis on carefully designing the DFT calculations and 

evaluating the extent to which the model outputs can be validly compared 

with published experimental observations of the systems of interest. Due to 

the wide availability of well-developed commercial DFT codes nowadays, it 

is very easy to perform high level calculations using DFT. However, with 

great power comes great responsibility. There exists a great responsibility 

with theoretical modellers to try to ensure that output results obtained from a 

DFT code can be used to reliably explain experimental observations, or even 

better, predict them. Theoretical calculations must be robust despite the 

necessary approximations, and they must be carefully designed so that they 

simulate the system observed in an experiment as faithfully as possible. In 

addition to this, an experimental observation of a system of interest may be 

affected by the fact that in order to observe the system, one must interact 

with it which may affect its physical state. Thus, the most pressing objective 

when applying established theoretical methods of electronic structure is not 

just to merely execute a code, but to give a full account of all of the possible 

discrepancies between the code output, the available experimental data and 

the factors which may influence it, and the true system that both of these 

approaches are trying to shed light on. With this in mind, the specific 

investigations carried out in chapters 3, 4 and 5 are now described. 

   In chapter 3, a theoretical investigation into the interaction between 

graphene and metals is conducted. For graphene to be integrated into future 

nanoelectronic circuits, it needs to be interfaced - contacted - with materials 

used in current devices, like highly conductive metals. A proper 

understanding of the behaviour of metal atoms on graphene substrates 

would be needed in order to determine the stability of such interfaces and 

the prospects for long-term large-scale manufacture. The specific objective 

of chapter 3 is to begin to assess this, starting at a basic level, by 

investigating the types of bonds that metals form with graphene, and to 

predict how single metal atoms behave on graphene. To achieve this, 
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periodic ground state DFT calculations, i.e. zero Kelvin calculations, will be 

carefully designed and applied to try to predict the behaviour of single metal 

adatoms on graphene. Recently obtained experimental electron microscopy 

images obtained by collaborators will then be presented which show metal-

graphene systems at room temperature, and the conclusions drawn from the 

calculations will be compared with the experimental observations. Since the 

theoretical model differs from the system observed experimentally by a 

temperature difference of about 300 K, a careful and conservative 

assessment of the extent to which the calculations are representative of the 

experimental data is given. 

   The aim of chapter 4 is to develop and apply a new and general theoretical 

method of characterising and understanding the nature of step defects on 

solid crystalline surfaces. Knowing the structure of surfaces is of widespread 

importance. Many of the processes of interest to new technologies take 

place at surfaces and interfaces, such as diodes which derive their 

functionality from the existence of an interface, or heterogenous catalytic 

reactions which occur at surfaces. Specifically, a new theoretical method is 

designed to be used in conjunction with electronic structure codes for 

calculating the energies of step defects and the energies associated with the 

interactions between neighbouring steps. This method will be explained in 

full, and it will be explained why a widely published method of calculating the 

energies of step defects on solid surfaces can sometimes fail dramatically 

depending on which material is studied. It will be argued in detail why the 

method presented in this thesis is a significant improvement over this widely 

published method. This will be achieved by directly carrying out DFT 

simulations of stepped TiO2 rutile surfaces, and then applying the flawed 

published method to the output data and showing that the resulting step 

energy depends sensitively on the arbitrary range of output data chosen to 

be included in the analysis. The improved method developed in this thesis 

will then be tested by applying it to the same DFT data and then predicting 

the shape of a terrace island for direct comparison with published 

experimental electron microscopy data showing an annealed TiO2 rutile 

surface at 120 K. As in chapter 3, a careful assessment of the validity of 

comparing the zero-temperature DFT output data with the system observed 
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experimentally is given, along with an attempt to account for defects which 

are visible in the experimental data but which were not accounted for 

theoretically, the statistical uncertainty associated with step energy 

calculations which are extremely sensitive to the output values, and finally, 

any possible consequences of having neglected smaller structures like 

kinks. 

   In chapter 5, a project which is incomplete but ongoing at the time of 

writing is presented which focuses on substitutional nitrogen dopant atoms in 

graphene. In some recent experimental microscopy publications3-5 it has 

been noticed (although some collaborators are currently not convinced by 

current experimental data) that there seems to be an overall tendency for 

substitutional nitrogen dopants in graphene to be observed mostly in only 

one of the two carbon sublattices. This observation suggests the possible 

existence of a strong long-ranged N-N interaction causing collective 

sublattice binding to occur, perhaps during synthesis. Besides this being a 

very interesting apparent phenomenon in its own right, it also has immediate 

implications for the possibility of N/graphene-based nanoscale devices which 

may derive their functionality from particular configurations of dopants. The 

aim of chapter 5 is to summarise the current understanding of the outputs 

obtained from theoretical calculations of nitrogen-doped graphene systems, 

and to outline proposed improvements for further calculations. Preliminary 

calculations carried out so far suggest that there is not an energetic 

advantage to collective sublattice binding of substitutional nitrogen dopants; 

in fact, the opposite is suggested by the current results. However, there are 

still many reasons to suggest that the calculations so far performed may not 

yet be properly representative of the systems being observed 

experimentally, although there is no a priori reason for assuming that more 

stringently converged calculations would give different results. To conclude 

chapter 5, proposed refinements to the calculations are briefly outlined. 

   Finally, chapter 6 aims to summarise the key findings of this thesis, to 

explain why these findings are novel and significant, and to anticipate future 

directions of further enquiry. Firstly though, chapter 2 now commences with 

a discussion of basic electronic structure theory. 
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Chapter 2: Density functional theory 

In this chapter, the many body problem of quantum mechanics is outlined, 

the Hohenberg-Kohn theorems are proved and the Kohn-Sham equations 

are derived. The Kohn-Sham equations are then expressed in the context of 

periodic solids. Practical aspects of solving the equations, such as using a 

finite plane-wave basis and using pseudopotentials are then discussed. 

2.1 The many-body problem 

Consider an isolated neutral system of 𝑁 electrons and 𝑀 atomic nuclei 

which are all interacting with eachother. The mathematical object which can 

be used to represent them is the quantum mechanical many-body 

wavefunction, 𝛹(𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁 , 𝑅  1, … , 𝑅  𝐼 , … , 𝑅  𝑀 , 𝑡) , where 𝑟 𝑖  denotes the 

position vector of the 𝑖th electron, 𝑅  𝐼 denotes the position of the 𝐼th nucleus, 

and 𝑡 is time. The Schrödinger equation states that the many-body 

wavefunction 𝛹 is an eigenstate of the Hamiltonian operator 𝐻  if it satisfies 

𝑖ħ
𝑑𝛹

𝑑𝑡
= 𝐻 𝛹 = 𝐸𝛹,                                                                                                           2.1  

where 𝐸 is the total energy of the electrons + nuclei system. Following the 

notation of Martin6, (followed loosely throughout this whole chapter) the 

Hamiltonian operator of this system can be written as: 

𝐻 = − 
𝛻𝑖

2

2

𝑁

𝑖

−  
𝑍𝐼

 𝑟 𝑖 − 𝑅  𝐼 

𝑁,𝑀

𝑖 ,𝐼

+
1

2
 

𝑍𝐼𝑍𝐽

 𝑅  𝐼 − 𝑅  𝐽  

𝑀

𝐼≠𝐽

+
1

2
 

1

 𝑟 𝑖 − 𝑟 𝑗  

𝑁

𝑖≠𝑗

−  
𝛻𝐼

2

2𝑀𝐼

𝑀

𝐼

,       (2.2) 

where Hartree atomic units have been used so that ħ = 𝑒 = 𝑚𝑒 = 4𝜋 𝜀0 = 1, 

𝑀𝐼 denotes the mass of the 𝐼th nucleus, and 𝑍𝐼 denotes the charge of the 𝐼th 

nucleus. Each term in equation (2.2) has a very clear physical identity. The 

first term is the sum of the individual kinetic energy operators of the 𝑁 

electrons. The second term corresponds to the interaction of each and every 

electron with each and every nucleus, the third term corresponds to the 

interactions amongst the nuclei, and the fourth term to the interactions 

amongst the electrons. The fifth term gives the kinetic energy operators of 
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the 𝑀 nuclei. In the third term, the interaction of a given nucleus with itself is 

excluded from the summation by summing over all 𝐼, 𝐽 except the cases for 

which 𝐼 = 𝐽, and double-counting of the total number of nucleus-nucleus 

interactions is avoided by multiplying the bare sum by 1 2 . Identical 

reasoning applies to the electron-electron term. 

   The general solution in the form of the many-body wavefunction 𝛹 is 

practically impossible to find analytically in virtually all cases, so to begin to 

make the problem of solving equation (2.1) tractable, the Born-Oppenheimer 

approximation7 (BOA) is used. The detailed derivation is bypassed here, but 

the BOA neglects the motion of the nuclei in the ground state on the basis 

that 𝑀𝐼 ≫ 𝑚𝑒 , and treats the nuclei as a static array of point charges such 

that the fifth term from the Hamiltonian of equation (2.2), which is 

proportional to 1 𝑀𝐼  and therefore comparatively small, can be neglected 

(or, strictly speaking, treated as a small perturbation and ignored): 

− 
𝛻𝐼

2

2𝑀𝐼

𝑀

𝐼

   
𝐵𝑂𝐴
      0.                                                                                                           (2.3) 

Under the BOA, the Hamiltonian in equation (2.2) therefore simplifies to 

(where 𝑁 and 𝑀 are also now dropped) 

𝐻 =  − 
𝛻𝑖

2

2
𝑖

−  
𝑍𝐼

 𝑟 𝑖 − 𝑅  𝐼 𝑖 ,𝐼

+
1

2
 

𝑍𝐼𝑍𝐽

 𝑅  𝐼 − 𝑅  𝐽  𝐼≠𝐽

+
1

2
 

1

 𝑟 𝑖 − 𝑟 𝑗  𝑖≠𝑗

.                          (2.4) 

Equation (2.3) implies that the nuclear position vectors 𝑅  𝐼 are fixed, so all 

explicit 𝑅  𝐼-dependence of the nuclear interaction terms can be withdrawn 

from the wavefunction 𝛹: 

𝛹 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁 ;  𝑅  1, … , 𝑅  𝐼 , … , 𝑅  𝑀 , 𝑡   
BOA
     𝛹 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁 , 𝑡 .                       (2.5) 

and instead expressed more simply as fixed but adjustable parameters on 

which the energy eigenvalue 𝐸 = 𝐸(𝑅  1, … , 𝑅  𝐼 , … , 𝑅  𝑀) and Hamiltonian 

𝐻 = 𝐻 (𝑅  1, … , 𝑅  𝐼 , … , 𝑅  𝑀) depend. Also, it is clear that the spatial and temporal 

variables of 𝛹 can be separated by writing it as the following product of 

spatial and temporal components: 

𝛹 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁 , 𝑡 = 𝑒
−𝑖𝐸𝑡

ħ 𝜓 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁 ,                                                         (2.6) 



- 25 - 

because the Schrödinger equation (2.1) is clearly satisfied by this 

expression: 

𝑖ħ
𝑑

𝑑𝑡
 𝑒

−𝑖𝐸𝑡
ħ 𝜓 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁  = 𝐸𝑒

−𝑖𝐸𝑡
ħ 𝜓 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁  

                                                           = 𝐸𝛹 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁 , 𝑡                                          (2.7) 

Equations (2.6) and (2.7) are important, because they show that the time-

independent electronic wavefunction 𝜓 can generally be extracted for any 

system, even if its explicit form is not known. The total system energy 𝐸 is 

equal to the expectation value of the Hamiltonian operator, and 𝐸 is also 

clearly time-independent by virtue of the variable separation shown in 

equation (2.6): 

𝐸 =  𝛹 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁 , 𝑡   𝐻 (𝑅  1, … , 𝑅  𝐼 , … , 𝑅  𝑀)  𝛹 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁 , 𝑡   

=   𝜓 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁   𝑒
𝑖𝐸𝑡
ħ 𝑒

−𝑖𝐸𝑡
ħ 𝐻 (𝑅  1, … , 𝑅  𝐼 , … , 𝑅  𝑀)  𝜓 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁   

=  𝜓 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁   𝐻 (𝑅  1, … , 𝑅  𝐼 , … , 𝑅  𝑀)  𝜓 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁  ,                              (2.8) 

where Dirac notation has been adopted. The key point of this discussion, 

made manifestly clear by the final line of equation (2.8), is that under the 

BOA, the only quantum-mechanical quantities on which the total system 

energy 𝐸 now depends are the spatial coordinates of the electrons, 

𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁. The problem of a time-dependent system of 𝑁 + 𝑀 quantum-

mechanically-interacting electrons and nuclei has therefore been reduced to 

a time-independent problem of 𝑁 quantum-mechanically interacting 

electrons. Note that spin coordinates have been omitted from 𝜓 in this 

simple analysis to keep the notation simple, but should be regarded as 

implicit throughout the entire chapter. 

   To make the notation less verbose, the nuclear coordinate-dependence of 

𝐻  and the electron coordinate-dependence of 𝜓 are now omitted except 

where needed, and the following simplifying notation is adopted: 

𝑇 = − 
𝛻𝑖

2

2
𝑖

,                                                                                                                      (2.9) 
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𝑉 𝑒𝑥𝑡 = − 
𝑍𝐼

 𝑟 𝑖 − 𝑅  𝐼 𝑖 ,𝐼

,                                                                                                    (2.10) 

𝑉 𝑖𝑛𝑡 =
1

2
 

1

 𝑟 𝑖 − 𝑟 𝑗  𝑖≠𝑗

,                                                                                                      (2.11) 

and 

𝐸𝐼𝐼 =
1

2
 

𝑍𝐼𝑍𝐽

 𝑅  𝐼 − 𝑅  𝐽  𝐼≠𝐽

,                                                                                                      (2.12) 

so that equation (2.8) can be written explicitly but more compactly as 

𝐸 =  𝜓  𝐻   𝜓 =  𝜓  𝑇 + 𝑉 𝑒𝑥𝑡 + 𝐸𝐼𝐼 + 𝑉 𝑖𝑛𝑡   𝜓 

=   𝜓  𝑇 + 𝑉 𝑒𝑥𝑡 + 𝑉 𝑖𝑛𝑡   𝜓 + 𝐸𝐼𝐼                                                          (2.13) 

Equation (2.13) shows that the total energy 𝐸 of a given system of electrons 

and nuclei could be known, if only 𝜓 could be found, because the terms 𝑇 , 

𝑉 𝑒𝑥𝑡 , 𝐸𝐼𝐼 and 𝑉 𝑖𝑛𝑡  are already known.  At this level of theory, the electronic 

states are the only states which require a quantum mechanical description in 

the form of a wavefunction, and the choices of subscript in the chosen 

notation in (2.10) and (2.11) reflect this redirected focus on the electrons 

only: 𝑉 𝑒𝑥𝑡  is the Coulomb potential external to the electrons created by the 

nuclei. 𝑉 𝑖𝑛𝑡  is the potential created amongst the electrons themselves, or 

internally. Note that the comparatively trivial Coulomb nucleus-nucleus term 

𝐸𝐼𝐼, being the only purely classical term, is the only term which does not take 

the form of an operator and therefore can be known by merely specifying the 

nuclear coordinates 𝑅  𝐼 without needing to solve for 𝜓. The terms 𝑇  and 𝑉 𝑖𝑛𝑡  

depend only on the electronic coordinates 𝑟 𝑖  and are common to all possible 

systems: they are universal. That is, they always take the same form in all 

problems. In contrast, the nuclear-nuclear interaction energy 𝐸𝐼𝐼 and the 

external potential operator 𝑉 𝑒𝑥𝑡  both depend on (in addition to 𝑟 𝑖) the nuclear 

coordinates 𝑅  𝐼 which are adjustable parameters, so 𝑉 𝑒𝑥𝑡  and 𝐸𝐼𝐼 are unique 

to each system in that they both depend on the chosen arrangement of the 

atomic nuclei. Once the nuclear coordinates 𝑅  𝐼 are chosen and fixed, the 

terms 𝑉 𝑒𝑥𝑡  and 𝐸𝐼𝐼 then make the Hamiltonian 𝐻  unique to that particular 
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system. In this sense, 𝑉 𝑒𝑥𝑡  and 𝐸𝐼𝐼 completely determine the Hamiltonian 𝐻  

and also the corresponding ground state energy 𝐸. It is important to note 

that the converse is not true: if just the ground state energy 𝐸 of a system is 

known, then the Hamiltonian 𝐻  cannot necessarily be determined. This is 

obvious; there are many different arrangements of nuclei and electrons 

which can have the same total energy, but any one given arrangement of 

nuclei and electrons can only have one total energy. 

   So, what is known about the wavefunction 𝜓(𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁) describing the 

𝑁 interacting electrons? Unfortunately, despite the simplifications introduced 

so far, 𝜓 is almost always a prohibitively difficult solution to find analytically 

for realistic systems. One notable analytic solution is the H atom, for which 𝜓 

can be found analytically, although the H atom is of course not a many-body 

problem. Shortly after the development of the foundations of quantum 

mechanics in the late 1920's, the first serious step towards applying the 

theory to many-electron systems was made by Hartree8 in 1928. Hartree 

showed that Schrödinger's equation can be approximately solved for a 

system of many electrons by treating the interactions between the electrons 

as an external potential experienced independently by each of the electrons. 

In this sense, the electrons are regarded in Hartree's approach as effectively 

non-interacting. The only requirement is that the external potential 

experienced by each and every electron must be self-consistent for all 

electrons in the system, which, in the absence of an analytic solution, 

demands a numerical approach. (This technique is revisited in detail in 

section 2.4.) In 1930, Slater pointed out9 that Hartree's problem can be 

solved by variational minimisation of a trial wavefunction. The variational 

method, being a longstanding cornerstone of classical mechanics, placed 

Hartree's method onto more firm theoretical footing. Also, in a different 

paper,10 Slater showed that the wavefunction of a general system of non-

interacting electrons can be written as a totally antisymmetric determinant of 

single-particle wavefunctions, a Slater determinant, where each of those 

constituent wavefunctions corresponds directly to each non-interacting 

electron. Fock11 then published the first explicit example of calculations 

applied to many electron atoms using Hartree's approach with fully 

antisymmetric determinant wavefunctions as suggested by Slater. The 
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method used by Fock11 is now generally referred to as the Hartree-Fock 

method (HF). By writing the electronic wavefunction 𝜓 as a Slater 

determinant (but neglecting spin for this simple example) of non-interacting 

electron wavefunctions, the total wavefunction in HF theory automatically 

satisfies antisymmetric exchange symmetry required of fermions by Fermi-

Dirac statistics. For example, the wavefunction representing a two-electron 

system can be written as 

𝜓 𝑟 1, 𝑟 2 =
1

 2
 𝜒1 𝑟 1 𝜒2 𝑟 2 − 𝜒1 𝑟 2 𝜒2 𝑟 1  =

1

 2
 
𝜒1 𝑟 1 𝜒2 𝑟 1 

𝜒1 𝑟 2 𝜒2 𝑟 2 
             (2.14) 

where the wavefunctions 𝜒1 and 𝜒2 are two single-particle states and the 
1

 2
 

normalises 𝜓. If the positions of these two states are now exchanged, so 

that 𝑟 2 ↔ 𝑟 1 (or equivalently, if the states are relabelled using 𝜒1 ↔ 𝜒2) we 

obtain 

𝜓 𝑟 2, 𝑟 1 =
1

 2
 
𝜒1 𝑟 2 𝜒2 𝑟 2 

𝜒1 𝑟 1 𝜒2 𝑟 1 
 =  − 𝜓 𝑟 1, 𝑟 2                                                        (2.15) 

It is clear that the two-electron wavefunction 𝜓, when written in this way, 

satisfies the demand that it be antisymmetric under exchange of its two 

constituent particle wavefunctions 𝜒1 and 𝜒2. It is also easy to see that 𝜓 

satisfies the Pauli exclusion principle: suppose now that the two constituent 

wavefunctions are exactly the same, so that 𝜒1 = 𝜒2, then we obtain 𝜓 = 0. 

This of course means that the probability of observing the two electrons in a 

superposed state is zero. These ideas are easily implemented in 𝑁-electron 

systems by expressing 𝜓 in the form suggested by Slater: 

𝜓 𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁 ; 𝜎1, … , 𝜎𝑖 , … , 𝜎𝑁 =
1

 𝑁!
 
𝜒1 𝑟 1, 𝜎1 ⋯ 𝜒𝑁 𝑟 1, 𝜎1 

⋮ ⋱ ⋮
𝜒1 𝑟 𝑁 , 𝜎𝑁 ⋯ 𝜒𝑁 𝑟 𝑁 , 𝜎𝑁 

         (2.16) 

where  𝜎𝑖  labels the spin states of each electron. Despite the merits of the 

HF approach, it fails to fully account for electron correlation which originates 

from the individual Coulomb interactions amongst the individual electrons. 

This means that it can fail to predict material properties which depend 

sensitively on electron correlation, such as van der Waals interactions. In 

order to improve the accuracy of HF theory, one must deviate from the 

simpler Slater determinant form of the wavefunction in equation (2.16). 
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Approaches of this type are generally called post-Hartree-Fock theories. 

They include Møller–Plesset perturbation theory12 proposed in 1934, 

coupled-cluster approaches which use techniques from quantum field theory 

as originally suggested by Čížek in 1966,13 and configuration interaction 

techniques developed by Langhoff and Davidson14 in 1974 and further 

developed by Pople et al. in 1987.15 These approaches are known to be 

computationally very expensive, but they can be very accurate and are 

sometimes used in areas of computational chemistry where the number of 

electrons involved is quite small. However, in order to broaden the appeal of 

the quantum mechanical theory of electrons to larger problems in materials 

science, a slightly different approach is called for. 

   Probably the most successful and influential approximation to the quantum 

mechanical theory of many electrons of the 20th century is DFT, first properly 

formalised in 1964/1965 by Hohenberg, Kohn and Sham.1,2 Between them, 

they showed that accounting for electron exchange and correlation can be 

achieved by recasting the problem of finding 𝜓(𝑟 1, … , 𝑟 𝑖 , … , 𝑟 𝑁), which 

depends on 3𝑁 coordinates, as the alternative problem of finding the total 

electron density 𝑛 𝑟  , which is a simple scalar field and only depends on 3 

coordinates. The electron density of a system of 𝑁 electrons is equal to the 

expectation value of the electron density operator 𝑛 (𝑟 ), where the operator is 

defined as 

𝑛  𝑟  =  𝛿(𝑟 − 𝑟 𝑗 )

𝑁

𝑗 =1

.                                                                                                     (2.17) 

The electron density 𝑛 𝑟   at a point 𝑟  is the expectation value of the electron 

density operator: 

𝑛 𝑟  ≝  𝜓 𝑛  𝑟   𝜓  

=  𝜓∗ 𝑟 1, 𝑟 2, … , 𝑟 𝑁   𝛿 𝑟 − 𝑟 𝑗  

𝑁

𝑗 =1

 𝜓 𝑟 1, 𝑟 2, … , 𝑟 𝑁 𝑑3𝑟1𝑑
3𝑟2 …𝑑3𝑟𝑁 

=   𝜓∗ 𝑟 1, 𝑟 2, … , 𝑟 𝑁  𝛿 𝑟 − 𝑟 𝑗   𝜓 𝑟 1, 𝑟 2, … , 𝑟 𝑁 𝑑3𝑟1𝑑
3𝑟2 …𝑑3𝑟𝑁

𝑁

𝑗 =1

 

http://scitation.aip.org/content/contributor/AU0727295
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=  𝜓∗ 𝑟 , 𝑟 2, … , 𝑟 𝑁  𝜓 𝑟 , 𝑟 2, … , 𝑟 𝑁  𝑑3𝑟2𝑑
3𝑟3 …𝑑3𝑟𝑁−1𝑑

3𝑟𝑁 

    +  𝜓∗ 𝑟 1, 𝑟 … , 𝑟 𝑁  𝜓 𝑟 1, 𝑟 … , 𝑟 𝑁  𝑑3𝑟1𝑑
3𝑟3 …𝑑3𝑟𝑁−1𝑑

3𝑟𝑁 

    + ⋯ 

    +  𝜓∗ 𝑟 1, 𝑟 2 … , 𝑟   𝜓 𝑟 1, 𝑟 2 … , 𝑟   𝑑3𝑟1𝑑
3𝑟2 …𝑑3𝑟𝑁−1                                        (2.18) 

In order to arrive at the last equality in equation (2.18), the property of delta 

functions that for some function 𝛷(𝑟 ),   𝛷(𝑟 ) 𝛿 𝑟 − 𝑟 ′ 𝑑3𝑟 = 𝛷(𝑟 ′), was used 

to remove one of the integrals from each of the 𝑁 terms. Each one of these 

𝑁 remaining terms consists of 𝑁 − 1 integrals over all space, and each is 

clearly a function of 𝑟 . The first of these terms is the probability density of 

finding the first electron (and only the first electron) at point 𝑟 . The second 

term is the probability density of finding the second electron at point 𝑟 . Since 

electrons are indistinguishable by wavefunction antisymmetry, these two 

probabilities must be exactly equal. Therefore, we can simply write the sum 

of all of these terms as 𝑁 times the first term; that is, the probability of finding 

any one of the 𝑁 electrons at point 𝑟  is equal to the 𝑁 times the probability 

density of finding the first electron - the chosen reference electron - at point 

𝑟 . The electron density 𝑛 𝑟   can therefore be written as 

𝑛 𝑟  = 𝑁  𝜓∗ 𝑟 , 𝑟 2, … , 𝑟 𝑁 𝜓 𝑟 , 𝑟 2, … , 𝑟 𝑁  𝑑3𝑟2𝑑
3𝑟3 …𝑑3𝑟𝑁 .                              (2.19) 

The first of many specific advantages of trading the difficult electronic 

wavefunction 𝜓 for the much more simple object 𝑛 𝑟   is that, like the 

nucleus-nucleus interaction term from the Hamiltonian, the external potential 

quantum mechanical operator 𝑉 𝑒𝑥𝑡  can be converted into a classical term. 

This can be easily shown using Coulomb's law applied to the discrete array 

of positive point charges representing the nuclei and the continuous and 

negatively-charged electron density field 𝑛 𝑟  . At a general point in space, 𝑟 , 

the nuclei create a classical Coulomb potential given by 

𝑉𝑒𝑥𝑡  𝑟  = − 
𝑍𝐼

 𝑟 − 𝑅  𝐼 𝐼

,                                                                                               (2.20) 
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so that the total energy associated with the Coulomb interaction of the 

continuous charge distribution  𝑛 𝑟   with the nuclei is found by integrating all 

of the infinitesimal contributions to the total energy over all infinitesimal 

volume elements 𝑑3𝑟: 

 𝑉𝑒𝑥𝑡  𝑟  𝑛 𝑟  𝑑3𝑟 = −  
𝑍𝐼𝑛 𝑟  

 𝑟 − 𝑅  𝐼 
𝑑3𝑟

𝐼

                                                               (2.21) 

The total system energy from equation (2.13) can therefore be simplified 

further to 

𝐸 =  𝜓  𝑇 + 𝑉 𝑖𝑛𝑡   𝜓 +  𝑉𝑒𝑥𝑡  𝑟  𝑛 𝑟  𝑑3𝑟 + 𝐸𝐼𝐼                                                        (2.22) 

This is indeed much more simple because the only two terms which still 

require operator forms are the two universal terms, 𝑇  and 𝑉 𝑖𝑛𝑡 . The other two 

terms - those which uniquely determine the Hamiltonian - are now just 

classical terms. The primary simplifications to the Hamiltonian required for 

DFT to be formally introduced are now complete.  Firstly though, a basic 

explanation of functionals is worthwhile, as it will aid understanding in the 

following sections. 

2.2 What actually is a functional anyway? 

   Let us briefly return to absolute basics and define a function to start with, 

using the electron density function 𝑛 𝑟   as the example. The physical unit of 

𝑛 𝑟   is eÅ-3 in three spatial dimensions, or electronic charge units per unit 

volume. In 𝑝 spatial dimensions (where 𝑝 = 3 in virtually all realistic materials 

science applications), the function 𝑛(𝑥1, 𝑥2, … , 𝑥𝑝 ) is a rule for converting a 

discrete set of input quantities 𝑥1, 𝑥2, … , 𝑥𝑝  (positions in Euclidian space) to a 

single output quantity. If the input variables all have their values changed by 

infinitesimal amounts 𝑑𝑥1, 𝑑𝑥2,... 𝑑𝑥𝑝 , then the function output value changes 

by an amount given by 

𝑑𝑛 =
𝜕𝑛

𝜕𝑥1
𝑑𝑥1 +

𝜕𝑛

𝜕𝑥2
𝑑𝑥2 + ⋯ +

𝜕𝑛

𝜕𝑥𝑝
𝑑𝑥𝑝                                                                   (2.23) 

The particular set of values which the quantities 𝑥1 , 𝑥2, … , 𝑥𝑝  can take which 

produces the smallest possible output value of 𝑛 is called the global 
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minimum of the function 𝑛(𝑥1, 𝑥2 , … , 𝑥𝑝). At the global minimum of any 

function 𝑛(𝑥1, 𝑥2, … , 𝑥𝑝), it is always true that 

𝑑𝑛 = 0                                                                                                                                (2.24) 

In general, any point on the function at which 𝑑𝑛 = 0 is called a stationary 

point, which includes the global minimum, local minima, local maxima and 

points of inflection. At a minimum, changes 𝑑𝑥1, 𝑑𝑥2,... 𝑑𝑥𝑝  will always result 

in an increase in the value of the function 𝑛. Figure 2.1 shows an example 

function 𝑛(𝑥1, 𝑥2) in 2 dimensions. By specifying the values of the two inputs 

𝑥1 and 𝑥2 (specified by a vector 𝑟 ) and thereby picking a point on the image, 

one (and only one) value of 𝑛 is found, evaluated using the colour scale. 

A functional of the electron density, 𝐹(𝑛(𝑥1, 𝑥2, … , 𝑥𝑝)), is essentially the 

same as a function, except in that it is a rule for converting infinitely many 

input quantities to a single scalar output quantity, where these input 

quantities are the infinitely many different values of the continuous function 

𝑛(𝑥1, 𝑥2, … , 𝑥𝑝). The notation 𝐹(𝑛(𝑥1, 𝑥2, … , 𝑥𝑝)) does not mean "𝐹 evaluated 

using the single input quantity 𝑛, where 𝑛 is the value of the function 

𝑛(𝑥1, 𝑥2, … , 𝑥𝑝) at the point (𝑥1, 𝑥2, … , 𝑥𝑝)". Rather, it means "𝐹 evaluated 

using an infinite number of input quantities, where this range of input 

quantities is all of the possible values of the function 𝑛(𝑥1, 𝑥2, … , 𝑥𝑝) over all 

points (𝑥1, 𝑥2 , … , 𝑥𝑝)". To understand this, see Figure 2.2 which shows the 

electron density field 𝑛(𝑥1, 𝑥2) from Figure 2.1 partitioned into small squares 

of width 𝑑𝑥1 and height 𝑑𝑥2. (Allow the function 𝑛 to be exactly zero at all 

points beyond the borders of the image, so that these points do not 

contribute anything further to the total electron density.) Consider the mean 

value of the electron density in each of these squares. Let the mean electron 

density in the square which is located in the 𝑖th square along the 𝑥1 axis and 

the 𝑗th square along the 𝑥2 axis be denoted 𝑛 𝑖 ,𝑗 . We could then define a 

function, let us call it 𝑓, whose output value has physical units of, say, 

energy, where this output energy depends on the set of discrete input 

quantities 𝑛 𝑖 ,𝑗 , and therefore write 𝑓 = 𝑓(𝑛 −∞,−∞, … , 𝑛 𝑖𝑗 , … , 𝑛 ∞,∞). By allowing 

the squares to become vanishingly small and infinitely dense, so that 

𝑑𝑥1  → 0 and 𝑑𝑥2  → 0, the squares degenerate to an infinite set of distinct 
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points, and so the input quantities on which the function 𝑓 depends become 

the infinitely many different values of the continuous function 𝑛(𝑥1, 𝑥2). 

 

 

Figure 2.1. The electron density field is a single-valued function of 𝑟 . 

 

 

 

Figure 2.2. The input variables of a functional 𝐹.  

They can be regarded as all possible values of the continuous function 

𝑛(𝑥1, 𝑥2). In the left panel, the mean electron density in each square 
can be regarded as the discrete set of input parameters of some 

function 𝑓. If the size of each of the squares is allowed to vanish to 
make an infinitely dense grid, then each square degenerates to a point, 

and in this limit, the discrete input parameters to the original function 𝑓 

become the infinitely many values of the continuous function 𝑛(𝑥1, 𝑥2), 
and therefore become the infinitely many input variables of the 

functional 𝐹. 
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Figure 2.3. The difference between 𝑑𝑛 and 𝛿𝑛.  

(a) 𝑑𝑛 is the change in the value of the fixed function 𝑛 at two close and 
different points in the field. (b) 𝛿𝑛 is a change in the overall shape of the 
field at all points in space. (c) 𝛿𝐹 is the change in the total energy in 

response to a change in the overall density distribution 𝛿𝑛. 𝐹 is 

generally a very complicated function of 𝑛 in realistic problems. The 
curve in (c) shows that 𝐹 is single-valued in 𝑛. 
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At this limit, the function 𝑓 formally becomes a functional 𝐹 and is denoted 

𝐹(𝑛 𝑥1, 𝑥2 ). When the function 𝑛 𝑥1, 𝑥2  is given as the input to the 

functional 𝐹, the functional 𝐹 gives an energy value as its output. (This last 

statement is written with the benefit of hindsight. It has not actually been 

proved from the information so far presented in this thesis that such a 

functional 𝐹 can be defined. It will be proved with the second Hohenberg-

Kohn theorem in section 2.3.) 

   The reader is now reminded of the meaning of equation (2.23): Equation 

(2.23) shows (in the 2D case) that if infinitesimal changes 𝑑𝑥1 and 𝑑𝑥2 are 

made to the inputs 𝑥1 and 𝑥2 of the function 𝑛(𝑥1, 𝑥2), then a small change 

d𝑛 in the value of the function 𝑛 is observed. If such a change is made, then 

of course nothing happens to the functional 𝐹(𝑛(𝑥1, 𝑥2)). This is because the 

changes 𝑑𝑥1 and 𝑑𝑥2 simply amount to moving from one point to another in 

the electron density distribution without actually changing the function 

𝑛(𝑥1, 𝑥2). To observe an infinitesimal change in the functional, 𝛿𝐹, the 

function 𝑛(𝑥1, 𝑥2) must itself be changed over all space. This change in the 

electron density is denoted 𝛿𝑛(𝑥1, 𝑥2) and it is clearly a function because one 

must account for all of the points in space to fully account for changes in the 

overall appearance of the distribution. Assuming now that the overall 

appearance of the electron density has now changed by an amount 𝛿𝑛, 

there is a corresponding change in the total energy functional, equal to 𝛿𝐹. 

The rate at which the total energy 𝐹 changes with respect to small changes 

in the entire distribution 𝛿𝑛(𝑥1, 𝑥2) is called the functional derivative of 𝐹 and 

is written as 
𝛿𝐹

𝛿𝑛 𝑥1 ,𝑥2 
. We are now ready to define this infinitesimal change in 

the total energy, 𝛿𝐹, with respect to changes in the electron density 

𝛿𝑛(𝑥1, 𝑥2): 

𝛿𝐹 =  
𝛿𝐹

𝛿𝑛 𝑥1, 𝑥2 
𝛿𝑛 𝑥1, 𝑥2  𝑑𝑥1𝑑𝑥2                                                                     (2.25) 

This is the generalisation (in 2D) of the sum seen in equation (2.23) for the 

case of a function. Since 𝐹 depends on the value of 𝑛 at all points in space, 

the changes made to 𝑛 must be integrated over all points in space. Figures 

2.3 (a) and (b) show the difference of a change in the density 𝑑𝑛 in response 

to the changes 𝑑𝑥1 and 𝑑𝑥2, and a change in the total density 𝛿𝑛 in response 
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to a change in the function 𝑛 over all space. In analogy with equation (2.24), 

it is always true at all stationary points that 

𝛿𝐹 = 0.                                                                                                                               (2.26) 

   Earlier in this section, it was stated that a functional is a rule for converting 

an input function (electron density) to an output value (energy). However, 

nothing has yet been said about what this rule actually is. To re-establish 

some sense of physicality and to understand why this discussion on 

functionals is relevant to problems of electrons and nuclei in quantum 

mechanics, formal DFT is now introduced in the form of the Hohenberg-

Kohn theorems1 and Kohn-Sham equations.2 

2.3 Hohenberg-Kohn theorems 

Let the particular case of the electron density 𝑛 𝑟   in the quantum 

mechanical ground state be denoted 𝑛0 𝑟  . The first Hohenberg-Kohn (HK) 

theorem makes the following claim: 

 The ground state electron density 𝑛0 𝑟   uniquely determines the 

external potential 𝑉𝑒𝑥𝑡  𝑟   up to a constant 

Essentially what this means is that if a ground state electron density field 

𝑛0 𝑟   is known, there can only possibly be one corresponding arrangement 

of nuclei. The converse is also true: for a known arrangement of nuclei, there 

is only one possible ground state electron density 𝑛0 𝑟  . There is therefore a 

one-to-one mapping between the ground state electron density 𝑛0 𝑟   and 

the external potential 𝑉𝑒𝑥𝑡  𝑟  . Here's the proof. 

   Consider two different arrangements of nuclei, i.e. two different external 

potentials 𝑉𝑒𝑥𝑡
(1)

 and 𝑉𝑒𝑥𝑡
(2)

, each of which (along with 𝐸𝐼𝐼
(1)

 and 𝐸𝐼𝐼
(2)

) completely 

determines its respective Hamiltonian: 

𝐻  1 = 𝑇 + 𝑉 𝑖𝑛𝑡 + 𝑉 𝑒𝑥𝑡
(1)

+ 𝐸𝐼𝐼
 1 

                                                                                      (2.27) 

𝐻  2 = 𝑇 + 𝑉 𝑖𝑛𝑡 + 𝑉 𝑒𝑥𝑡
(2)

+ 𝐸𝐼𝐼
 2 

                                                                                      (2.28) 

Also consider 𝜓0
 1 

, the ground state eigenstate of 𝐻  1 , and 𝜓0
 2 

, the ground 

state eigenstate of 𝐻  2 . Since 𝜓0
 1 

 and 𝜓0
 2 

 are eigenstates of 𝐻  1  and 𝐻  2  
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respectively, they both satisfy the Schrödinger equation, and so the 

corresponding ground state energies 𝐸0
(1)

 and 𝐸0
(2)

 are equal to the 

expectation values of their respective Hamiltonians: 

𝐸0
 1 

=  𝜓0
 1 

 𝐻  1  𝜓0
 1 

  

         =  𝜓0
 1 

 𝑇 + 𝑉 𝑖𝑛𝑡  𝜓0
 1 

 +  𝑉𝑒𝑥𝑡
(1) 𝑟  𝑛0

(1) 𝑟  𝑑3𝑟 + 𝐸𝐼𝐼
 1 

                                 (2.29) 

𝐸0
 2 

=  𝜓0
 2 

 𝐻  2  𝜓0
 2 

  

        =  𝜓0
 2 

 𝑇 + 𝑉 𝑖𝑛𝑡  𝜓0
 2 

 +  𝑉𝑒𝑥𝑡
(2) 𝑟  𝑛0

(2) 𝑟  𝑑3𝑟 + 𝐸𝐼𝐼
 2 

                                  (2.30) 

Let us now make an assumption: let us assume that the two different 

potentials 𝑉𝑒𝑥𝑡
(1) 𝑟   and 𝑉𝑒𝑥𝑡

(2) 𝑟   give rise to the same ground state electron 

density 𝑛0 𝑟  , such that 

𝑛0
(1) 𝑟  = 𝑛0

(2) 𝑟  = 𝑛0 𝑟  ,                                                                                           (2.31) 

so that equations (2.29) and (2.30) can be written as 

𝐸0
 1 

=  𝜓0
 1 

 𝑇 + 𝑉 𝑖𝑛𝑡  𝜓0
 1 

 +  𝑉𝑒𝑥𝑡
(1) 𝑟  𝑛0 𝑟  𝑑

3𝑟 + 𝐸𝐼𝐼
 1 

,                                   (2.32) 

and 

𝐸0
 2 

=  𝜓0
 2 

 𝑇 + 𝑉 𝑖𝑛𝑡  𝜓0
 2 

 +  𝑉𝑒𝑥𝑡
(2) 𝑟  𝑛0 𝑟  𝑑

3𝑟 + 𝐸𝐼𝐼
 2 

.                                   (2.33) 

𝜓0
 1 

 is the ground state wavefunction of 𝐻  1 , so it must be true that 

𝐸0
(1)

=  𝜓0
 1 

 𝐻  1  𝜓0
 1 

 <  𝜓0
 2 

 𝐻  1  𝜓0
 2 

 ,                                                            (2.34) 

because applying 𝐻  1  to any wavefunction which is not its ground state 

wavefunction 𝜓0
 1 

 must, by definition, produce some energy eigenvalue 

which is greater than its ground state energy 𝐸0
(1)

. By combining equations 

(2.27) and (2.28), the Hamiltonian 𝐻  1  can be written in terms of 𝐻  2  as 

follows: 

𝐻  1 = 𝑇 + 𝑉 𝑖𝑛𝑡 + 𝑉 𝑒𝑥𝑡
 1 

+ 𝐸𝐼𝐼
 1 

 

         = 𝑇 + 𝑉 𝑖𝑛𝑡 + 𝑉 𝑒𝑥𝑡
 2 

+ 𝐸𝐼𝐼
 2 

+  𝑉 𝑒𝑥𝑡
 1 

+ 𝐸𝐼𝐼
 1 

 −  𝑉 𝑒𝑥𝑡
 2 

+ 𝐸𝐼𝐼
 2 
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         = 𝐻  2 +  𝑉 𝑒𝑥𝑡
 1 

+ 𝐸𝐼𝐼
 1 

 −  𝑉 𝑒𝑥𝑡
 2 

+ 𝐸𝐼𝐼
 2 

 ,                                                         (2.35) 

so that inequality (2.34) can be written as 

𝐸0
 1 

<  𝜓0
 2 

 𝐻  1  𝜓0
 2 

  

         =  𝜓0
 2 

 𝐻  2 + 𝑉 𝑒𝑥𝑡
 1 

− 𝑉 𝑒𝑥𝑡
 2 

 𝜓0
 2 

 + 𝐸𝐼𝐼
 1 

− 𝐸𝐼𝐼
 2 

 

         = 𝐸0
(2)

+   𝑉𝑒𝑥𝑡
(1) 𝑟  − 𝑉𝑒𝑥𝑡

(2) 𝑟   𝑛0 𝑟  𝑑
3𝑟 + 𝐸𝐼𝐼

 1 
− 𝐸𝐼𝐼

 2 
                            (2.36) 

Now, by identical reasoning with which inequality (2.34) was written, the fact 

that 𝜓0
 2 

 is the ground state wavefunction of 𝐻  2 , but not the ground state of 

𝐻  1 , can be used to write 

𝐸0
(2)

=  𝜓0
 2 

 𝐻  2  𝜓0
 2 

 <  𝜓0
 1 

 𝐻  2  𝜓0
 1 

 ,                                                            (2.37) 

which, again, by combining equations (2.27) and (2.28), results in 

𝐸0
 2 

<  𝜓0
 1 

 𝐻  2  𝜓0
 1 

  

         =  𝜓0
 1 

 𝐻  1 + 𝑉 𝑒𝑥𝑡
 2 

− 𝑉 𝑒𝑥𝑡
 1 

 𝜓0
 1 

 + 𝐸𝐼𝐼
 2 

− 𝐸𝐼𝐼
 1 

 

         = 𝐸0
(1)

+   𝑉𝑒𝑥𝑡
(2) 𝑟  − 𝑉𝑒𝑥𝑡

(1) 𝑟   𝑛0 𝑟  𝑑
3𝑟 + 𝐸𝐼𝐼

 2 
− 𝐸𝐼𝐼

 1 
                            (2.38) 

Inequalities (2.36) and (2.38) can then be added to give 

𝐸0
 1 

+ 𝐸0
 2 

 < 𝐸0
(1)

+ 𝐸0
(2)

,                                                                                            (2.39) 

which is clearly absurd. Therefore, the premise - equation (2.31) - is false! It 

follows that it is impossible for two distinct external potentials 𝑉𝑒𝑥𝑡
(1)

 and 𝑉𝑒𝑥𝑡
(2)

 to 

correspond to the same total ground state electron density 𝑛0 𝑟  . Therefore, 

if 𝑛0 𝑟   is known, 𝑉𝑒𝑥𝑡  is known. 

The second Hohenberg-Kohn theorem states the following:  

 For any external potential 𝑉𝑒𝑥𝑡 , the total energy of a system can be 

always expressed as a universal functional of the electron density, 

𝐸 𝑛 𝑟   . The ground state energy is the global minimum of the 

functional 𝐸 𝑛 𝑟   , and is located at 𝐸 𝑛0 𝑟   . 
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The functional can be written as 

𝐸 𝑛 𝑟   =  𝑉𝑒𝑥𝑡  𝑟  𝑛 𝑟  𝑑3𝑟 + 𝐹 𝑛 𝑟   + 𝐸𝐼𝐼 .                                                     (2.40) 

Equation (2.40) should be compared with equation (2.22). The second 

Hohenberg-Kohn theorem effectively states that the two remaining quantum 

mechanical operator terms 𝑇 + 𝑉 𝑖𝑛𝑡  from equation (2.22) can also be 

expressed as functionals of the electron density 𝑛 𝑟  : 

 𝜓 𝑇  𝜓 = 𝑇 𝑛 𝑟   ,                                                                                                        (2.41) 

 𝜓 𝑉 𝑖𝑛𝑡  𝜓 = 𝐸𝑖𝑛𝑡  𝑛 𝑟   ,                                                                                               (2.42) 

where 𝑇 𝑛 𝑟    is the functional for the total kinetic energy of a system of 𝑁 

interacting electrons, 𝐸𝑖𝑛𝑡  𝑛 𝑟    gives the total energy of these electron-

electron interactions, and 𝐹 𝑛 𝑟   = 𝑇 𝑛 𝑟   + 𝐸𝑖𝑛𝑡  𝑛 𝑟   . Equation (2.40) 

therefore reads 

𝐸 𝑛 𝑟   = 𝑇 𝑛 𝑟   + 𝐸𝑖𝑛𝑡  𝑛 𝑟   +  𝑉𝑒𝑥𝑡  𝑟  𝑛 𝑟  𝑑3𝑟 + 𝐸𝐼𝐼 .                            (2.43) 

The second Hohenberg-Kohn theorem can be proved quite trivially as 

follows. Consider two systems: systems (a) and (b) with different ground 

state electron densities 𝑛0
(a)  𝑟   and 𝑛0

(𝑏) 𝑟  . By virtue of the first Hohenberg-

Kohn theorem, it immediately follows that 𝑛0
(𝑎) 𝑟   must correspond to only 

one unique ground state wavefunction 𝜓0
 𝑎 

, external potential 𝑉𝑒𝑥𝑡
(𝑎)

, 

Hamiltonian 𝐻  𝑎  and energy 𝐸0
 𝑎 

, and similarly that 𝑛0
(𝑏) 𝑟   must correspond 

to only one unique 𝜓0
 𝑏 

, 𝑉𝑒𝑥𝑡
(𝑏)

, 𝐻  𝑏  and 𝐸0
 𝑏 

. Since 𝜓0
 𝑎 

 and 𝜓0
 𝑏 

 are 

necessarily different, it must be true that 

𝐸0
 𝑎 

=  𝜓0
 𝑎 

 𝐻  𝑎  𝜓0
 𝑎 

  

         = 𝑇  𝑛0
(𝑎) 𝑟   + 𝑉𝑖𝑛𝑡  𝑛0

(𝑎) 𝑟   +  𝑉𝑒𝑥𝑡
(𝑎) 𝑟  𝑛0

(𝑎) 𝑟  𝑑3𝑟 + 𝐸𝐼𝐼
(𝑎)

 

         <  𝜓0
 𝑏 

 𝐻  𝑎  𝜓0
 𝑏 

  

         = 𝑇  𝑛0
(𝑏) 𝑟   + 𝑉𝑖𝑛𝑡  𝑛0

(𝑏) 𝑟   +  𝑉𝑒𝑥𝑡
(𝑎) 𝑟  𝑛0

(𝑏) 𝑟  𝑑3𝑟 + 𝐸𝐼𝐼
(𝑎)

                 (2.44) 
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by exactly the same reasoning used for inequalities (2.34) and (2.37). Note 

that the nuclear terms 𝑉𝑒𝑥𝑡
(𝑎)

 and 𝐸𝐼𝐼
(𝑎)

 on both sides of inequality (2.44) are the 

same. Put simply, what inequality (2.44) shows is that if the electron density 

from system (a) were replaced with the electron density from system (b) 

without changing the arrangement of the nuclei, then the total energy of the 

resultant system would be higher. Thus, for system (a), any electron density 

which differs from its ground state density 𝑛0
(𝑎) 𝑟   results in a system energy 

which is greater than 𝐸0
 𝑎 

. Therefore, it follows that 𝐸0
 𝑎 

 is indeed the ground 

state energy and that finding the ground state density 𝑛0
(a)  𝑟   is a sufficient 

condition to know the global minimum of the total energy functional 𝐸. 

   In conclusion, the consequence of the two Hohenberg-Kohn theorems is 

that every single term which contributes to the total energy takes the form of 

a functional of the electron density 𝑛 𝑟  . The 3𝑁-dimensional problem of 

finding the ground state electron wavefunction 𝜓 has therefore been further 

reduced to the 3-dimensional problem of finding the ground state total 

electron density 𝑛0. This shows the extremely important status of the 

electron density in DFT. 

2.4 The Kohn-Sham equations 

   The obvious next task is to determine the form of the functionals 𝑇 𝑛 𝑟    

and 𝐸𝑖𝑛𝑡  𝑛 𝑟   . Unfortunately, the exact forms are not known. The incredibly 

lucrative approach used by Kohn and Sham is to recast the entire problem 

as a non-interacting theory, building on the original idea of Hartree's8 idea in 

1928 of converting interacting theories to non-interacting theories via an 

effective external potential. Kohn and Sham's thinking is best illustrated by 

carefully rewriting the expression for the total energy functional (2.43) and 

inspecting the newly written terms. This is explained now in two steps, the 

first of which relates to 𝑇 𝑛 𝑟    and the second of which relates to 

𝐸𝑖𝑛𝑡  𝑛 𝑟   . 

   Firstly, let the total electron density 𝑛 𝑟   be expressed explicitly in quantum 

mechanical form once again by expressing it as the sum of the densities of 

some system of 𝑁 non-interacting wavefunctions: 
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𝑛 𝑟  =   𝜑𝑖 𝑟   𝜑𝑖 𝑟   

𝑁

𝑖=1

,                                                                                              (2.45) 

where the wavefunctions 𝜑𝑖(𝑟 ) are orthonormal: 

 𝜑𝑖(𝑟 ) 𝜑𝑗 (𝑟 ) = 𝛿𝑖 ,𝑗                                                                                                        (2.46) 

where 𝛿𝑖 ,𝑗  is the Kronecker delta. The wavefunctions 𝜑𝑖(𝑟 ) are the Kohn-

Sham wavefunctions. The choice of (2.45) and (2.46) is entirely deliberate 

and has a clear physical motivation: note that the total density here could be 

represented as the trace of an 𝑁 × 𝑁 matrix, where the term in the 𝑖th row 

and 𝑖th column is  𝜑𝑖(𝑟 ) 𝜑𝑖(𝑟 ) , but where all off-diagonal terms are zero; that 

is, there are no terms of the form  𝜑𝑖(𝑟 ) 𝜑𝑗 (𝑟 )  by orthonormality. The form 

of (2.45) therefore shows explicitly that the wavefunctions 𝜑𝑖(𝑟 ) are non-

interacting. 

   By virtue of the second HK theorem. the total kinetic energy of these 𝑁 

non-interacting Kohn-Sham states - found using the usual kinetic energy 

operator from equation (2.9) - can be written as a functional of the electron 

density: 

−
1

2
  𝜑𝑖(𝑟 ) 𝛻2 𝜑𝑖(𝑟 ) 

𝑁

𝑖

= 𝑇𝑆 𝑛 𝑟                                                                            (2.47) 

This should be compared with 𝑇 𝑛 𝑟    from equation (2.41); the case of the 

total kinetic energy of the 𝑁-electron wavefunction 𝜓. 

   Secondly, let us define the Hartree term.8 The Hartree term is the classical 

expression for the total Coulomb energy arising from the interaction of each 

and every infinitesimal volume element of a continuous charge distribution 

with each and every other infinitesimal volume element of that same 

distribution: 

𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒  𝑛 𝑟   =
1

2
 

𝑛 𝑟  𝑛 𝑟 ′ 

 𝑟 − 𝑟 ′ 
𝑑3𝑟𝑑3𝑟′                                                                 (2.48) 

Expressed another way, the Hartree term shows what the total electron-

electron interaction energy would be if the electrons amounted to nothing 

more than a continuous charge distribution fully characterised by Coulomb's 

law. If this were true, then one could write 𝐸𝑖𝑛𝑡  𝑛 𝑟   = 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒  𝑛 𝑟   . In 
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reality, the quantum mechanical effects of electron exchange and correlation 

are not accounted for by the Hartree term. The Hartree term is therefore a 

useful reference object, because it can considered as the classical 

component of the total internal electronic interaction energy 𝐸𝑖𝑛𝑡 , which can 

be subtracted to leave the purely quantum mechanical component. 

   From this perspective, it should now be clear why the exchange-correlation 

functional, 𝐸𝑋𝐶 𝑛 𝑟   , is defined as follows: 

𝐸𝑋𝐶 𝑛 𝑟   =  𝑇 𝑛 𝑟   − 𝑇𝑆 𝑛 𝑟    +  𝐸𝑖𝑛𝑡  𝑛 𝑟   − 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒  𝑛 𝑟             (2.49) 

The exchange-correlation functional 𝐸𝑋𝐶  is the difference between the true 

kinetic energy of the electronic wavefunction 𝜓 and that of all of the KS 

orbitals 𝜑𝑖 , and the difference between the interaction energy of a purely 

classical charge density field, and that of the true quantum-mechanical 

electron system, both added together. In addition to this, let us also adopt 

the term 𝐸𝑒𝑥𝑡  𝑛 𝑟    to denote the energy associated with the Coulomb 

interaction between the nuclei and 𝑛 𝑟  : 

𝐸𝑒𝑥𝑡  𝑛 𝑟   =  𝑉𝑒𝑥𝑡  𝑟  𝑛 𝑟  𝑑3𝑟                                                                                 (2.50) 

The expressions from (2.49) and (2.50), can now be substituted into the 

expression for the total energy functional 𝐸 𝑛 𝑟    in equation (2.43) to get: 

𝐸 𝑛 𝑟   = 𝑇𝑆 𝑛 𝑟   + 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒  𝑛 𝑟   + 𝐸𝑋𝐶 𝑛 𝑟   + 𝐸𝑒𝑥𝑡  𝑛 𝑟   + 𝐸𝐼𝐼 .      (2.51) 

Let us now review the physical interpretation of each of the terms in equation 

(2.51). The first term is the total kinetic energy of the Kohn-Sham orbitals; 

not the kinetic energy of the 𝑁-electron wavefunction 𝜓. The second term is 

the classical Coulomb contribution to the electron-electron interaction 

energy. The third term is the sum of i) the quantum mechanical component 

of the electron-electron interaction energy and ii) the difference between the 

kinetic energies of the Kohn-Sham orbitals and that of the true 𝑁-electron 

system. The last two terms are unchanged from equation (2.43); they only 

depend on the nuclei. Besides the BOA, the accuracy of DFT as a predictive 

theory is influenced only by what form 𝐸𝑋𝐶  takes. In Kohn and Hohenberg's 

paper, for the case where the density 𝑛 𝑟   is slowly-varying with 𝑟 , the 
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exchange-correlation energy functional 𝐸𝑋𝐶 𝑛 𝑟    was expressed as the 

following integral over all space: 

𝐸𝑋𝐶 𝑛 𝑟   ≈  𝑛 𝑟  εXC (𝑛 𝑟  )d3r,                                                                            (2.52) 

where εXC (𝑛 𝑟  ) is the exchange-correlation energy density. Equation (2.52) 

is the general form of the local density approximation (LDA) devised by 

Hohenberg and Kohn. For cases where 𝑛 𝑟   has more significant gradients 

in space, 𝐸𝑋𝐶  can readily be expressed as a power series (of which equation 

(2.52) is the first term) in gradients of the density 𝑛 𝑟  : 

𝐸𝑋𝐶 𝑛 𝑟  , ∇𝑛 𝑟   =   𝑛 𝑟  εXC
(1)

 𝑛 𝑟   d3r +    ∇𝑛 𝑟   2εXC
 2 

d3r  +  …             (2.53) 

Such forms of 𝐸𝑋𝐶  are generally referred to as generalised gradient 

approximations (GGA). Note the similarity of equation (2.52) - the energy of 

exchange and correlation - to that of equation (2.21) for the energy of the 

interaction between the density 𝑛 𝑟   and external nuclear Coulomb potential 

𝑉𝑒𝑥𝑡  𝑟  . The form of equation (2.52) exposes a very important conceptual 

shift: even though the true physical nature of εXC (𝑛 𝑟  ) is ultimately rooted in 

the quantum-mechanical aspects of the electron-electron interactions, it is 

regarded in KS theory as one component of an effective external potential 

experienced by the total electron density 𝑛 𝑟  , and in turn, each and every 

one of the 𝑁 KS orbitals 𝜑𝑖 . The energy 𝐸𝑋𝐶  can therefore be viewed on the 

same footing as 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒  and 𝐸𝑒𝑥𝑡 . The sum of these three terms is therefore 

the total potential energy associated with the density 𝑛 𝑟  , and therefore 

their functional derivative with respect to the total 𝑛 𝑟   is the total potential: 

𝛿

𝛿𝑛 𝑟  
 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒  𝑛 𝑟   + 𝐸𝑋𝐶 𝑛 𝑟   + 𝐸𝑒𝑥𝑡  𝑛 𝑟     

=  
𝛿

𝛿𝑛 𝑟  
 

1

2
 

𝑛 𝑟  𝑛 𝑟 ′ 

 𝑟 − 𝑟 ′ 
𝑑3𝑟𝑑3𝑟′ +  𝑛 𝑟  εXC  𝑛 𝑟   d3r +  𝑉𝑒𝑥𝑡  𝑟  𝑛 𝑟  𝑑3𝑟  

=  
𝛿

𝛿𝑛 𝑟  
   

1

2

𝑛 𝑟 ′ 

 𝑟 − 𝑟 ′ 
𝑑3𝑟′ + εXC  𝑛 𝑟   + 𝑉𝑒𝑥𝑡  𝑟   𝑛 𝑟  𝑑3𝑟 

=  
𝛿

𝛿𝑛 𝑟  
  𝑉𝐾𝑆 𝑛 𝑟    𝑛 𝑟  𝑑3𝑟,                                                                                 (2.54) 
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where the total integrand in square brackets is defined as the total Kohn 

Sham potential: 

𝑉𝐾𝑆 𝑛 𝑟   ≝  
1

2

𝑛 𝑟 ′ 

 𝑟 − 𝑟 ′ 
𝑑3𝑟′ + εXC  𝑛 𝑟   + 𝑉𝑒𝑥𝑡  𝑟  .                                         (2.55) 

The total energy functional can now be rewritten in the form: 

𝐸 𝑛 𝑟   = 𝑇𝑆 𝑛 𝑟   +  𝑉𝐾𝑆 𝑛 𝑟   𝑛 𝑟  𝑑3𝑟 + 𝐸𝐼𝐼                                               (2.56) 

   Now reconsider the explicit KS wavefunction expression for 𝑇𝑆 𝑛 𝑟    in 

equation (2.47). By design, it is a sum of familiar kinetic energy operator 

expectation values. Its kinetic energy operator −
1

2
𝛻2 only acts, like all 

normal operators in linear algebra, on the terms to the right, i.e.  |𝜑𝑖(𝑟 )  but 

not   𝜑𝑖 𝑟  |  . It is therefore fairly straightforward to see that if  𝑇𝑆 𝑛 𝑟    were 

to be differentiated with respect to  𝜑𝑖 𝑟  |  , the resultant term would be of the 

form −
1

2
𝛻2  |𝜑𝑖(𝑟 ) . This is of course a very familiar term: it is a kinetic energy 

operator applied to an eigenstate. This alludes to the task ahead, which is to 

evaluate the functional derivative of 𝐸 𝑛 𝑟    with respect to the KS 

eigenstates  𝜑𝑖 𝑟  |   and attempt to determine the form of the resulting 

Hamiltonian. 

   Consider once again equation (2.45): the total density is equal to the sum 

of the modulus squares of the individual KS wavefunctions 𝜑𝑖 , i.e. 𝑛 𝑟  =

  𝜑1𝜑1
∗+. . +𝜑𝑖𝜑𝑖

∗+. . +𝜑𝑁𝜑𝑁
∗  d3r. Thus, we are free to consider the functional 

derivative of the total energy functional 𝐸 𝑛 𝑟    with respect to any one of 

the 𝜑𝑖  or 𝜑𝑖
∗ states. The functional 𝐸 can therefore be written in the much 

more revealing form as a functional whose arguments are the 𝑁 KS 

eigenstates and their 𝑁 complex conjugates, so that we can write 𝐸 𝑛 𝑟   =

𝐸 𝜑1, 𝜑1
∗, … , 𝜑𝑖 , 𝜑𝑖

∗, … , 𝜑𝑁 , 𝜑𝑁
∗  . By that reasoning, the same must apply for 𝑇𝑆 

and 𝑉𝐾𝑆, so that 𝑇𝑆 = 𝑇𝑆 𝜑1, 𝜑1
∗, … , 𝜑𝑖 , 𝜑𝑖

∗, … , 𝜑𝑁 , 𝜑𝑁
∗   and 

𝑉𝐾𝑆 = 𝑉𝐾𝑆 𝜑1, 𝜑1
∗, … , 𝜑𝑖 , 𝜑𝑖

∗, … , 𝜑𝑁 , 𝜑𝑁
∗  . 

   Let us set the functional derivative of 𝐸 with respect to the complex 

conjugate of one of the KS states, say, the 𝑘th state, equal to zero with a 

view to finding the minimum: 
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𝛿𝐸

𝛿𝜑𝑘
∗ =

𝛿

𝛿𝜑𝑘
∗  𝑇𝑆 +  𝑉𝐾𝑆𝑛 𝑟  𝑑3𝑟 + 𝐸𝐼𝐼 = 0                                                           2.57  

Equation (2.57) alone does not fully constrain the problem: for example, 

setting 𝑛 𝑟  = 0 everywhere is a stationary point, but a trivial and unhelpful 

solution. For the general case, the constraint that the total number of 

electrons 𝑁 =  𝑛 𝑟  𝑑3𝑟 is constant, or 𝛿𝑁 = 0, needs to be enforced. This 

can be achieved by requiring that the variation of  𝑛 𝑟  𝑑3𝑟 with respect to 

variations in the total density 𝑛 𝑟   be equal to zero: 

𝛿𝑁

𝛿𝑛 𝑟  
=

𝛿

𝛿𝑛 𝑟  
 𝑛 𝑟  d3r = 0,                                                                                     2.58  

So, the global minimum of 𝐸 𝑛 𝑟    can be found, avoiding trivial solutions, 

by imposing the constraint of fixed 𝑁 by using the method of Lagrange 

multipliers, which is achieved by writing  

𝛿

𝛿𝜑𝑘
∗  𝐸 𝑛 𝑟    − 𝜉𝑘   𝑛 𝑟  d3r − 𝑁  = 0                                                            2.59  

and attempting to solve for  |𝜑𝑖(𝑟 ) , where 𝜉𝑘  is the Lagrange multiplier. Note 

the 𝑘 subscript on 𝜉𝑘 . It signifies the fact that it is the Lagrange multiplier 

which results from minimisation with respect to 𝜑𝑘
∗ . One could have just as 

well sought to minimise with respect to any one of the 𝑁 complex conjugate 

KS states. The explicit wavefunction expressions for the kinetic energy 

functional 𝑇𝑆 and total 𝑛 𝑟   - equations (2.47) and (2.45) - can be substituted 

into equation (2.59), so that it reads: 

0 =
𝛿

𝛿𝜑𝑘
∗  𝐸 𝑛 𝑟    − 𝜉𝑘   𝑛 𝑟  d3r − 𝑁   

    =
𝛿

𝛿𝜑𝑘
∗  −

1

2
  𝜑𝑖 𝑟  |    𝛻2|𝜑𝑖 𝑟    

𝑁

𝑖

+  𝑉𝐾𝑆 𝑛 𝑟   𝑛 𝑟  𝑑3𝑟

− 𝜉𝑘     𝜑𝑖 𝑟   𝜑𝑖 𝑟   

𝑁

𝑖=1

d3r − 𝑁 + 𝐸𝐼𝐼                                   2.60  

Some simplifications are in order. Firstly, note that curly brackets have been 

used in the kinetic term in order to show that the expression 𝛻𝑖
2  |𝜑𝑖 𝑟    

should be considered as a single term because 𝛻𝑖
2 acts on  |𝜑𝑖 𝑟   , whereas 
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 𝜑𝑖 𝑟  |  is independent of the 𝛻𝑖
2 operator. It is therefore easy to see that the 

derivative of the kinetic term with respect to the state 𝜑𝑘
∗  (or in Dirac 

notation,  𝜑𝑖 𝑟  |  ) reduces down to a single term: 

𝛿

𝛿𝜑𝑘
∗  −

1

2
  𝜑𝑖 𝑟  |    𝛻2|𝜑𝑖 𝑟    

𝑁

𝑖

 = −
1

2
𝛻𝑘

2  |𝜑𝑘 𝑟                                                 2.61  

where the only term which survives is the term 𝑖 = 𝑘 by virtue of the 

orthonormality condition from equation (2.46). Secondly, the Lagrange 

multiplier term can also be simplified by appealing to orthonormality in the 

same way: 

𝛿

𝛿𝜑𝑘
∗  −𝜉𝑘     𝜑𝑖 𝑟   𝜑𝑖 𝑟   

𝑁

𝑖=1

d3r − 𝑁  = −𝜉𝑘
 |𝜑𝑘 𝑟                                     2.62  

where 
𝛿

𝛿𝜑𝑘
∗  𝜉𝑘𝑁 = 0 was used. Also of course,  

𝛿𝐸𝐼𝐼

𝛿𝜑𝑘
∗ = 0.                                                                                                                             2.63  

Equation (2.60) therefore reduces to 

0 = −
1

2
𝛻2  |𝜑𝑘 𝑟   +

𝛿

𝛿𝜑𝑘
∗  𝑉𝐾𝑆 𝑛 𝑟   𝑛 𝑟  𝑑3𝑟  − 𝜉𝑘

 |𝜑𝑘 𝑟                                2.64  

The chain rule and the explicit expression for 𝑛 𝑟   from (2.45) can now be 

used to deal with the 𝑉𝐾𝑆 term: 

𝛿

𝛿𝜑𝑘
∗  𝑉𝐾𝑆 𝑛 𝑟   𝑛 𝑟  d3r 

=  
𝛿

𝛿𝑛 𝑟  
 𝑉𝐾𝑆 𝑛 𝑟   𝑛 𝑟  d3𝑟 

𝛿𝑛 𝑟  

𝛿𝜑𝑘
∗  

= 𝑉𝐾𝑆 𝑛 𝑟   
𝛿𝑛 𝑟  

𝛿𝜑𝑘
∗  

= 𝑉𝐾𝑆 𝑛 𝑟    |𝜑𝑘 𝑟                                                                                                            2.65  

The final step in equation (2.65),  
𝛿𝑛 𝑟  

𝛿𝜑𝑘
∗ =  |𝜑𝑘 𝑟   , was achieved through 

orthonormality once again: 
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𝛿𝑛 𝑟  

𝛿𝜑𝑘
∗  =

𝛿

𝛿𝜑𝑘
∗   𝜑𝑖 𝑟   𝜑𝑖 𝑟   

𝑁

𝑖=1

=
𝛿

𝛿𝜑𝑘
∗  𝜑𝑘 𝑟   𝜑𝑘 𝑟   =  |𝜑𝑘 𝑟   .                     2.66  

Equation (2.64) therefore reads: 

 −
1

2
𝛻2 + 𝑉𝐾𝑆  |𝜑𝑘 𝑟   = 𝜉𝑘

 |𝜑𝑘 𝑟                                                                             2.67  

This is a single particle Schrödinger equation! The kinetic and potential 

terms −
1

2
𝛻2 and 𝑉𝐾𝑆 add together to give the Kohn-Sham effective 

Hamiltonian 𝐻𝐾𝑆 , of which  |𝜑𝑘 𝑟    is clearly an eigenstate, and where the 

Lagrange multiplier 𝜉𝑘  clearly can be interpreted as the energy eigenvalue of 

the state  |𝜑𝑘 𝑟   . An identical procedure can therefore be carried out for all 

other 𝑘 values, to give a system of 𝑁 independent equations: 

 −
1

2
𝛻2 + 𝑉𝐾𝑆  |𝜑𝑖 𝑟   = 𝜉𝑖

 |𝜑𝑖 𝑟                     𝑖 = 1, … , 𝑁                                     2.68  

Equations (2.68) are the Kohn-Sham equations. They are the foundation of 

all DFT. Solving them requires only that the total density 𝑛 𝑟   be consistent 

with the Kohn Sham potential 𝑉𝐾𝑆. This is achieved numerically in practice 

via successive iterations on the form of 𝑛 𝑟   following an initial sensible 

guess, until the density field 𝑛 𝑟   and 𝑉𝐾𝑆 are self-consistent. For this 

reason, this manner of solving the KS equations is called the self-consistent 

field method (SCF). 

2.5 Periodicity 

   A very large branch of materials science is concerned with crystalline 

materials, in which the atomic nuclei are arranged in regular periodic arrays. 

Periodicity represents a huge simplification, because attention can be 

confined to one unit cell of such a periodic array without sacrificing much 

information about the system, allowing calculations which are applied only to 

a finite volume to shed light on an effectively infinite amount of material. 

Crystalline materials used in engineering applications are almost always far 

bigger than the periodic unit cells of which they are made, so exploiting 

periodicity is a critical ingredient in the extension of computationally-

demanding microscopic quantum mechanical calculations to macroscopic 
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scales. Under periodicity, the surface of the crystal is not defined. However, 

the Born-von Karman boundary conditions state6 that in crystalline materials 

of all but nanoscale size, the surface effects are negligible and can be 

justifiably ignored. Furthermore, the periodic framework is such an incredibly 

effective approach that even non-periodic systems, such as low-dimensional 

materials (chapters 3 and 5) and surfaces (chapter 4) are very often 

modelled under periodic boundary conditions. See section 2.8 for some 

examples. Thus despite the title of this thesis, periodicity in 3D is one of its 

central themes. The goal of this section is therefore to rewrite the KS 

equations (2.68) under periodic boundary conditions. 

   Consider an infinite crystal with Bravais lattice vectors 𝑅   given by  

𝑅  = 𝑛1𝑎 1 + 𝑛2𝑎 2 + 𝑛3𝑎 3,                                                                                              2.69  

where 𝑎 1, 𝑎 2 and 𝑎 3 are the basis vectors of the periodic unit cell and 𝑛1, 𝑛2 

and 𝑛3 are integers. The ground state electron density 𝑛0 and its 

corresponding, consistent KS potential 𝑉𝐾𝑆 must be periodic functions which 

share the periodicity of the crystal, so that we can write 

𝑛0 𝑟  = 𝑛0 𝑟 + 𝑅   ,                                                                                                          2.70  

and 

𝑉𝐾𝑆 𝑟  = 𝑉𝐾𝑆 𝑟 + 𝑅   ,                                                                                                      2.71  

where the explicit dependence of 𝑉𝐾𝑆 on 𝑛 𝑟   is dropped in favour of just 𝑟 . It 

is worth noting that since 𝑉𝐾𝑆 is periodic, the KS Hamiltonian is also periodic 

because of the universality of the kinetic term. Since 𝑉𝐾𝑆 is periodic, it can be 

expressed as a plane wave series expansion (as can 𝑛): 

𝑉𝐾𝑆 𝑟  =  𝑉𝐺 

𝐺 

𝑒𝑖𝐺  ∙ 𝑟                                                                                                       2.72  

where 𝑉𝐺  are the coefficients of the Fourier mode 𝑒𝑖𝐺  ∙ 𝑟  corresponding to 

wavevector 𝐺 . Since 𝑉𝐾𝑆 𝑟  = 𝑉𝐾𝑆 𝑟 + 𝑅   , we can write 

𝑉𝐾𝑆 𝑟 + 𝑅   =  𝑉𝐺 

𝐺 

𝑒𝑖𝐺  ∙  𝑟 +𝑅   =  𝑉𝐺 

𝐺 

𝑒𝑖𝐺  ∙ 𝑟 𝑒𝑖𝐺  ∙ 𝑅  = 𝑉𝐾𝑆 𝑟  𝑒
𝑖𝐺  ∙ 𝑅                      

                                                                                                   ⇒ 𝑒𝑖𝐺  ∙ 𝑅  = 1                   2.73  
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This implies 𝐺  ∙  𝑅  = 2𝜋𝑚 for all possible Bravais lattice translations 𝑅   

defined in equation (2.69), where 𝑚 is any integer. The most general way to 

satisfy this is to write 𝐺  as a linear combination of vectors  𝑏  𝑖  which satisfy 

𝑎 𝑖 ∙ 𝑏  𝑗 = 2𝜋𝛿𝑖 ,𝑗 , as such: 

𝐺 = 𝑚1𝑏  1 + 𝑚2𝑏  2 + 𝑚3𝑏  3,                                                                                            2.74  

where 𝑚1, 𝑚2 and 𝑚3 are integers. 𝐺  ∙  𝑅   therefore reads 

𝐺  ∙  𝑅  =  𝑛1𝑎 1 + 𝑛2𝑎 2 + 𝑛3𝑎 3 ∙  𝑚1𝑏  1 + 𝑚2𝑏  2 + 𝑚3𝑏  3  

           = 2𝜋 𝑛1𝑚1 + 𝑛2𝑚2 + 𝑛3𝑚3 ,                                                                         2.75  

where the sum of products of integers in the final set of brackets is clearly 

the integer 𝑚. The set of all possible points 𝐺  is the reciprocal lattice. 

   Equations (2.70) and (2.71) show that the density and KS potential are 

invariant under Bravais lattice translation operations. The effect of applying 

this translation operator to any function of space is to translate the argument 

of the function from 𝑟  to the point 𝑟 + 𝑅  . The resultant eigenvalue reveals the 

amount by which the value of the function at 𝑟  differs from its value at 𝑟 + 𝑅  . 

Let us consider such an operator, call it 𝑇  𝑅   , and apply it to some KS 

eigenstate 𝜑 𝑟   with a view to determining the resulting eigenvalue. Let the 

eigenvalue, which may generally depend on the chosen translation 𝑅  , be 

denoted 𝑓𝑅  , so that 

𝑇  𝑅    |𝜑 𝑟   =  |𝜑 𝑟 + 𝑅    = 𝑓𝑅  
 |𝜑 𝑟   .                                                                      2.76  

The magnitude of 𝑓𝑅   must be equal to 1. If not, then  |𝜑 𝑟 + 𝑅     is 

unconstrained, and can become arbitrarily large, or zero, at arbitrarily large 

translations 𝑅  . Expressed another way, 𝜑 𝑟   must be a bounded function of 

𝑟 . Now consider a second, different translation 𝑇  𝑅  ′ , where 𝑅  ′ is also a 

Bravais lattice vector. Two translations in succession can be written as a 

single translation, and they are commutative, so we can write 

𝑇  𝑅   𝑇  𝑅  ′ = 𝑇  𝑅  ′ 𝑇  𝑅   = 𝑇  𝑅  + 𝑅  ′                                                                      2.77  

which means that  

𝑇  𝑅   𝑇  𝑅  ′  |𝜑 𝑟   = 𝑇  𝑅    𝑓𝑅  ′
 |𝜑 𝑟    = 𝑓𝑅  ′𝑓𝑅  

 |𝜑 𝑟    
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                                   = 𝑇  𝑅  + 𝑅  ′  |𝜑 𝑟   = 𝑓𝑅  ′ +𝑅  
 |𝜑 𝑟                                             2.78  

which implies that 

𝑓𝑅  ′𝑓𝑅  =  𝑓𝑅  ′ +𝑅  .                                                                                                                 2.79  

So 𝑓𝑅   must depend on 𝑅  , it must have unit magnitude so that 𝜑 is bounded, 

and it must satisfy equation (2.79). The most general way to write 𝑓𝑅   which 

satisfies all of these conditions is to force it to lie on the unit circle in the 

complex plane, so that 

𝑓𝑅  = 𝑒𝑖𝑞   ∙ 𝑅                                                                                                                            2.80  

where 𝑞  is some vector inserted to make the exponent a scalar whilst 

retaining the dependence of 𝑓𝑅   on 𝑅  . Equation (2.76) therefore reads: 

 |𝜑 𝑟 + 𝑅    = 𝑒𝑖𝑞   ∙ 𝑅   |𝜑 𝑟                                                                                                2.81  

Equation (2.81) shows that the wavefunction in a crystal at point 𝑟 + 𝑅   can 

be different from the wavefunction at point 𝑟  by a phase difference 𝑞  ∙  𝑅  . 

Thus, generally speaking, 𝜑 𝑟  ≠ 𝜑 𝑟 + 𝑅    and so it doesn't respect the 

lattice periodicity. Note that, currently at least, there are no restrictions on 

the form of the vector 𝑞 . The Born-von Karman cyclic boundary conditions,6 

which are not derived or proved here, can be imposed in order to constrain 

the possible values of 𝑞 . Consider a very large but finite supercell consisting 

of a periodic 𝑁1 × 𝑁2 × 𝑁3 array of unit cells within an infinite crystal. The 

Born-von Karman boundary conditions state that the phase of a 

wavefunction in this infinite crystal must respect the periodicity of the 

nominal supercell along each of the three directions parallel to the unit cell 

lattice vectors, such that 

𝜑 𝑟 + 𝑁𝑖𝑎 𝑖 = 𝜑 𝑟  ,            𝑖 = 1,2,3.                                                                          2.82  

So, equation (2.82) adds the constraint that the wavefunction's phase 

difference 𝑞  ∙  𝑅   must also conform to some periodicity, but this periodicity 

can be on a length scale which is far greater than the unit cell periodicity of 

the crystal itself, and that of the cell-periodic functions  𝑛0 and 𝑉𝐾𝑆. By 

substituting the boundary condition (2.82) into equation (2.81), the phase 



- 51 - 

difference between the wavefunction at 𝑟  and at 𝑟 + 𝑁𝑖𝑎 𝑖  is forced to be 

zero, giving 

𝜑 𝑟 + 𝑁𝑖𝑎 𝑖 = 𝑒𝑖𝑁𝑖𝑞   ∙ 𝑎  𝑖𝜑 𝑟  = 𝜑 𝑟  ,                                                                          2.83  

implying that 𝑒𝑖𝑁𝑖𝑞   ∙ 𝑎  𝑖 = 1, which results in 

𝑁𝑖𝑞  ∙  𝑎 𝑖 = 2𝜋𝑙𝑖                                                                                                                  2.84  

where 𝑙𝑖  is an integer, currently unconstrained, and labelled with 𝑖 in 

subscript to signify its correspondence to the boundary condition imposed 

along the direction 𝑎 𝑖 . The vector 𝑞  can always be written as some linear 

combination of the reciprocal lattice vectors  𝑏  𝑖 : 

𝑞 = 𝑥1𝑏  1 + 𝑥2𝑏  2 + 𝑥3𝑏  3                                                                                                 2.85  

where the  𝑥𝑖  are numbers to be determined, not necessarily integers. 

Choosing to express 𝑞  in terms of the basis vectors  𝑏  𝑖  is the obvious 

choice, because the reciprocal lattice relation 𝑎 𝑖 ∙ 𝑏  𝑗 = 2𝜋𝛿𝑖 ,𝑗  can be 

immediately used to simplify equation (2.84) by filtering out the components 

of 𝑞  which are perpendicular to 𝑎 𝑖  and therefore do not contribute anything. 

For the boundary condition along the direction 𝑎 𝑖, equation (2.84) therefore 

gives: 

𝑁𝑖 𝑥1𝑏  1 + 𝑥2𝑏  2 + 𝑥3𝑏  3 ∙ 𝑎 𝑖 = 𝑁𝑖 2𝜋𝑥𝑖 = 2𝜋𝑙𝑖  

                                                                             ⇒ 𝑥𝑖 =
𝑙𝑖
𝑁𝑖

, 𝑖 = 1,2,3.                  2.86  

Thus, the range of possible values of the vector 𝑞  under the Born-von 

Karman boundary conditions is restricted to only those where the  𝑥𝑖  take 

the values specified in (2.86). Let this particular set of vectors be denoted 𝑘  , 

so that  

𝑘  =
𝑙1

𝑁1
𝑏  1 +

𝑙2

𝑁2
𝑏  2 +

𝑙3

𝑁3
𝑏  3                                                                                             2.87  

Equation (2.81) can therefore be stated in terms of a wavefunction which 

respects the boundary conditions by writing 

𝜑𝑘   𝑟 + 𝑅   = 𝑒𝑖𝑘   ∙ 𝑅  𝜑𝑘  
 𝑟  ,                                                                                              2.88  
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where the KS eigenstate has a 𝑘   in subscript to denote correspondence to a 

particular 𝑘   vector. This is Bloch's theorem.16 It states that the amount by 

which the wavefunction at point 𝑟  can differ from that at 𝑟 + 𝑅   is a 

multiplicative phase factor 𝑒𝑖𝑘   ∙ 𝑅  , where the vectors 𝑘   are restricted to the 

discrete set of values given by equation (2.87). Even though generally 

𝜑𝑘  
 𝑟  ≠ 𝜑𝑘   𝑟 + 𝑅   , the density 𝑛 𝑟   is still periodic, because the complex 

phase factor in 𝜑 always cancels out upon evaluating quantities of the form 

𝜑𝜑∗ to construct 𝑛 𝑟  . Bloch's theorem (2.88) can be written in alternative 

manner. Consider the function 

𝑢𝑘  
 𝑟  = 𝑒−𝑖𝑘   ∙ 𝑟 𝜑𝑘  

 𝑟  .                                                                                                     2.89  

𝑢𝑘  
 𝑟   has the periodicity of the lattice: 

𝑢𝑘   𝑟 + 𝑅   = 𝑒−𝑖𝑘   ∙  𝑟 +𝑅    𝜑𝑘   𝑟 + 𝑅   = 𝑒−𝑖𝑘   ∙ 𝑟  𝜑𝑘  
 𝑟  = 𝑢𝑘  

 𝑟  .                            (2.90) 

Because 𝑢𝑘  
 𝑟   is a cell-periodic function, it can  be expressed as a plane 

wave expansion over all possible reciprocal lattice vectors, i.e. 𝐺  vectors, 

like the KS potential from (2.72): 

𝑢𝑘  
 𝑟  =  𝑐𝐺 

𝐺 

𝑒𝑖𝐺  ∙ 𝑟 ,                                                                                                     (2.91) 

The wavefunction 𝜑𝑘  
 𝑟   can therefore be written as 

𝜑𝑘  
 𝑟  = 𝑒𝑖𝑘   ∙ 𝑟 𝑢𝑘  

 𝑟  =  𝑐𝐺 +𝑘  

𝐺 

𝑒𝑖 𝐺 +𝑘    ∙ 𝑟 .                                                               (2.92) 

It can be seen that all information about the allowed 𝑘   vectors is contained 

within the reciprocal lattice unit cell, or equivalently, the first Brillouin zone 

(BZ). This is because any wavevector 𝑘  ′ which lays outside the first BZ is 

equivalent to a vector 𝑘   which does lay within the first BZ, as long as 𝑘   and 

𝑘  ′ are related by any reciprocal lattice vector 𝐺 . Consider two such 

wavevectors which differ by any reciprocal lattice vector 𝐺 , such that 

𝐺 = 𝑘  ′ − 𝑘  . Then, using equation (2.80), and the fact that 𝑒𝑖𝐺  ∙ 𝑅  = 1, 

𝑓𝑅  = 𝑒𝑖𝑘   ∙ 𝑅  = 𝑒𝑖𝐺  ∙ 𝑅  𝑒𝑖𝑘   ∙ 𝑅  = 𝑒𝑖 𝐺 +𝑘    ∙ 𝑅  = 𝑒𝑖𝑘  ′  ∙ 𝑅  .                                                   (2.93) 
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Thus, by considering translations at wavevector 𝑘  ′ , no new information is 

gained from that which is gained by considering translations at wavevector 

𝑘  . All wavevectors 𝑘  ′  which are related to 𝑘   by any combination of reciprocal 

lattice vectors 𝐺  are therefore redundant, and our attention can be confined 

to just the 𝑘   vectors which lay within the reciprocal unit cell, or equivalently 

the first BZ. As a result of this, the values of the integers 𝑙1, 𝑙2 and 𝑙3 from 

equations (2.86) and (2.87) can be restricted to the range 0 ≤ 𝑙𝑖 < 𝑁𝑖 . 

(Values which exceed 𝑁𝑖  give 𝑘   vectors which extend outside the reciprocal 

unit cell.) Having imposed this restriction, it is therefore easy to see that the 

total number of allowed 𝑙𝑖  values equals 𝑁𝑖 , and therefore that the total 

number of unique 𝑘   vectors within the reciprocal unit cell (first BZ), equals 

𝑁1𝑁2𝑁3. Thus, the number of allowed 𝑘   vectors within the first BZ equals the 

number of unit cells in the supercell. 

   This is an important result, because it means that any intensive property of 

a crystal, (e.g. the energy per unit cell, 𝐸) which is determined by some 

function such as the electron density 𝑛 𝑟  =   𝜑𝑖 ,𝑘  
 𝑟   𝜑𝑖 ,𝑘  

 𝑟   𝑁
𝑖=1 , can be 

found by calculating 𝑛 𝑟   for each and every occupied 𝑘   state, and then 

dividing the sum of these values by 𝑁1𝑁2𝑁3, i.e. an average over the BZ: 

𝑛 𝑟  =
1

𝑁1𝑁2𝑁3
   𝜑𝑖 ,𝑘   𝜑𝑖 ,𝑘   

𝑁

𝑖=1𝑘  (𝐵𝑍)

                                                                             2.94  

where each of the 𝑁1𝑁2𝑁3 𝑘   vectors within the sum exists within the first BZ, 

and 𝑁 is the total number of KS states per unit cell. Now let us consider the 

limit as 𝑁1, 𝑁2, 𝑁3 → ∞, i.e. the limit at which the nominal supercell becomes 

infinitely large. As the limit is approached, the grid of all possible 𝑘   vector 

endpoints within the BZ becomes an increasingly dense mesh which 

approaches a continuum. At the limit, the range of possible 𝑘   values 

becomes the countably infinite set of possible 𝑘   states corresponding to the 

countably infinite number of possible integer values which 𝑙1, 𝑙2 and 𝑙3 can 

take. Equation (2.94) then becomes an integral over the BZ: 
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𝑛 𝑟  =
1

𝛺𝐵𝑍
   𝜑𝑖 ,𝑘  

 𝑟   𝜑𝑖 ,𝑘  
 𝑟   

𝑁

𝑖=1𝛺𝐵𝑍

𝑑3𝑘                                                                   2.95  

where 𝛺𝐵𝑍  is the volume of the first BZ and 𝑑3𝑘 are the infinitesimal 𝑘-space 

volume elements integrated over the volume 𝛺𝐵𝑍 . 

   Like the modes of any Fourier series, the plane wave basis functions  

𝑒𝑖𝐺  ∙ 𝑟  form an orthonormal set, so that integrals of their products are zero for 

all cases except those in which the 𝐺  vectors are equal: 

 𝑒−𝑖𝐺′      ∙ 𝑟 𝑒𝑖𝐺  ∙ 𝑟 

𝛺𝑐𝑒𝑙𝑙

𝑑3𝑟 = 𝛿𝐺 ′ ,𝐺                                                                                        (2.96) 

where 𝛺𝑐𝑒𝑙𝑙  is the Wigner-Seitz cell volume, related to its corresponding 

reciprocal cell volume, and therefore to 𝛺𝐵𝑍 , by 𝛺𝑐𝑒𝑙𝑙 =
 2𝜋 3

𝛺𝐵𝑍
. Also, clearly, 

the orthonormality relation (2.96) is unchanged if identical 𝑘   vectors are 

added to the pertinent 𝐺  vectors: 

 𝑒−𝑖  𝐺′     +𝑘   ∙ 𝑟 𝑒𝑖 𝐺 +𝑘    ∙ 𝑟 

𝛺𝑐𝑒𝑙𝑙

𝑑3𝑟 =  𝑒−𝑖𝐺′      ∙ 𝑟 𝑒𝑖𝐺  ∙ 𝑟 

𝛺𝑐𝑒𝑙𝑙

𝑑3𝑟 = 𝛿𝐺 ′ ,𝐺                            (2.97) 

Having shown this, it is helpful at this point to adopt Dirac notation for the 

Fourier mode basis functions to reduce the verbosity of the notation of the 

reasoning that follows, so that 

 |𝐺 + 𝑘 ≝ 𝑒𝑖 𝐺 +𝑘    ∙ 𝑟                                                                                                         (2.98) 

and so that (2.97) can be written as 

  𝐺 ′ + 𝑘 𝐺 + 𝑘 

𝛺𝑐𝑒𝑙𝑙

𝑑3𝑟 =   𝐺 ′  𝐺 

𝛺𝑐𝑒𝑙𝑙

𝑑3𝑟 = 𝛿𝐺 ′ ,𝐺                                                   (2.99) 

It is also helpful to adopt a corresponding operator notation for the KS 

Hamiltonian: 

𝐻 𝐾𝑆

≝ −
1

2
𝛻2 + 𝑉 𝐾𝑆 .                                                                                                       (2.100) 
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Using this notation, the plane wave expansion over 𝐺  vectors of the 𝑖th KS 

wavefunction from (2.92) can be written as 

 |𝜑𝑖 ,𝑘  
 𝑟   =  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

 |𝐺 + 𝑘                                                                                     (2.101) 

and it can be substituted into the KS equations (2.68) to obtain: 

𝐻 𝐾𝑆  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

 |𝐺 + 𝑘 = 𝜉𝑖  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

 |𝐺 + 𝑘                                                         (2.102) 

These KS equations (2.102) can be subjected to a Fourier transform now by 

multiplying from the left by the bra vector  𝐺 ′ + 𝑘|  , where 𝐺 ′  can be any 

reciprocal lattice vector, and then integrating over the Wigner Seitz cell using 

the orthonormality property (2.97). It is a good idea to carry this procedure 

out for both sides of equation (2.102) separately. Firstly, the 𝜉𝑖   side: 

   𝐺 ′ + 𝑘|  𝜉𝑖  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

 |𝐺 + 𝑘  𝑑3𝑟

𝛺𝑐𝑒𝑙𝑙

= 𝜉𝑖  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

  𝐺 ′ + 𝑘 𝐺 + 𝑘 𝑑3𝑟

𝛺𝑐𝑒𝑙𝑙

 

                                                                            = 𝜉𝑖  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

𝛿𝐺 ′ ,𝐺  

                                                                            = 𝜉𝑖𝑐𝑖 ,𝐺 ′ +𝑘                                            (2.103) 

So, only the 𝐺 ′ = 𝐺  term in the sum survives due to orthornormality. The 𝐻 𝐾𝑆  

side of the KS equations (2.102), multiplied by  𝐺 ′ + 𝑘|   and integrated over 

𝛺𝑐𝑒𝑙𝑙 , become 

   𝐺 ′ + 𝑘|  𝐻 𝐾𝑆  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

 |𝐺 + 𝑘  

𝛺𝑐𝑒𝑙𝑙

𝑑3𝑟 

                    =  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

    𝐺 ′ + 𝑘|   −
1

2
𝛻2 + 𝑉 𝐾𝑆 |𝐺 + 𝑘  𝑑3𝑟

𝛺𝑐𝑒𝑙𝑙

.              (2.104) 

It is best to simplify the −
1

2
𝛻2 and 𝑉 𝐾𝑆 components in equation (2.104)  

separately. The kinetic term gives 

 𝑐𝑖 ,𝐺 +𝑘  

𝐺 

   𝐺 ′ + 𝑘|   −
1

2
𝛻2 |𝐺 + 𝑘 𝑑3𝑟

𝛺𝑐𝑒𝑙𝑙
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                              =  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

  𝐺 ′ + 𝑘 
1

2
 𝐺 + 𝑘   

2
 𝐺 + 𝑘 𝑑3𝑟

𝛺𝑐𝑒𝑙𝑙

 

                              =  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

 𝐺 + 𝑘   
2

2
  𝐺 ′ + 𝑘 𝐺 + 𝑘 𝑑3𝑟

𝛺𝑐𝑒𝑙𝑙

 

                              =  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

 𝐺 + 𝑘   
2

2
𝛿𝐺 ′ ,𝐺  

                              =
𝑐𝑖 ,𝐺 ′ +𝑘  

2
 𝐺 ′ + 𝑘   

2
.                                                                         (2.105) 

The potential term can be dealt with by using the Fourier expansion (2.72) 

and placing a double prime on its Fourier modes to distinguish them from 𝐺  

and 𝐺 ′ so that 𝑉𝐾𝑆(𝑟 ) =  𝑉𝐺 ′′𝐺 ′′ 𝑒𝑖𝐺 ′′  ∙ 𝑟 , and to then use orthonormality as 

above. It is actually most revealing to revert to the exponential notation as in 

(2.97) for the Fourier modes in this case. Using this notation from the second 

line onwards, the potential term simplifies as follows: 

 𝑐𝑖 ,𝐺 +𝑘  

𝐺 

   𝐺 ′ + 𝑘|  𝑉 𝐾𝑆|𝐺 + 𝑘 𝑑3𝑟

𝛺𝑐𝑒𝑙𝑙

 

=  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

 𝑒−𝑖  𝐺 ′ +𝑘   ∙ 𝑟 

𝛺𝑐𝑒𝑙𝑙

  𝑉𝐺 ′′

𝐺 ′′

𝑒𝑖𝐺 ′′  ∙ 𝑟  𝑒𝑖  𝐺 +𝑘   ∙ 𝑟 𝑑3𝑟 

=  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

 𝑉𝐺 ′′

𝐺 ′′

  𝑒−𝑖  𝐺 ′ −𝐺  ∙ 𝑟 

𝛺𝑐𝑒𝑙𝑙

𝑒𝑖𝐺 ′′  ∙ 𝑟 𝑑3𝑟  

=  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

 𝑉𝐺 ′′

𝐺 ′′

𝛿(𝐺 ′ −𝐺 ),𝐺 ′′  

=  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

𝑉𝐺 ′ −𝐺                                                                                                           (2.106) 

Thus, the only non-zero terms of the potential occur when the vectors 𝐺  and 

𝐺 ′ differ by no more than any reciprocal lattice vector 𝐺 ′′ , so that the 

coefficients 𝑉𝐺 ′′  can be written as 𝑉𝐺 ′ −𝐺 . 
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   By substituting the simplified terms from (2.103), (2.105) and (2.106) into 

the KS equations (2.102), we obtain 

𝑐𝑖 ,𝐺 ′ +𝑘  

2
 𝐺 ′ + 𝑘   

2
+  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

𝑉𝐺 ′ −𝐺 = 𝜉𝑖𝑐𝑖 ,𝐺 ′ +𝑘                                                    (2.107) 

Finally, the notation of (2.107) can be made a bit more compact by 

reinserting the kinetic term into a sum over 𝐺  vectors with an appropriate 

Kronecker delta matrix, i.e. by writing it as the penultimate expression in 

(2.105), so that the entire Hamiltonian in (2.119) can be contained within a 

summation over 𝐺 , so that (2.119) reads: 

  
 𝐺 + 𝑘   

2

2
𝛿𝐺 ′ ,𝐺 + 𝑉𝐺 ′ −𝐺  𝑐𝑖 ,𝐺 +𝑘  

𝐺 

= 𝜉𝑖𝑐𝑖 ,𝐺 ′ +𝑘                                                     (2.108) 

This is the reciprocal space representation of the KS equations under 

periodic boundary conditions. Their form is very similar to their direct space 

representation from (2.68). The effect of expressing the problem in a 

periodic potential in reciprocal space has been to replace the problem of 

evaluating the KS wavefunctions 𝜑𝑖  and KS potential 𝑉𝐾𝑆 with the problem of 

evaluating their Fourier coefficients 𝑐𝑖 ,𝐺 +𝑘   and 𝑉𝐺 ′ −𝐺 . It can be seen that the 

Hamiltonian takes the form of a square matrix where the number of elements 

is equal to the square of the number of distinct 𝐺  vectors in the sum. Being 

the experimental observables, the 𝑁 eigenvalues 𝜉𝑖  are unaffected by the 

Fourier transformation. There is an infinite number of possible 𝑘   vectors 

within the BZ, and an infinite number of possible 𝐺  vectors over the entire 

crystal in reciprocal space, so solving equations (2.108) requires some 

sensible constraints to make the problem a finite one. The conventions for 

this are now explained. 

2.6 Practical calculations: finite plane wave basis set 

It was shown in equation (2.95) that the electron density 𝑛 𝑟   is found by 

integrating over all 𝑘   vectors inside the BZ. When using computers to 

calculate integrals, numerical integration is used. It is a very fortunate fact 

that the wavefunctions 𝜑 vary slowly with changing 𝑘  ,6 so that the integral in 
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(2.94) can be accurately calculated numerically with as an average over a 

discrete set of 𝑘   vectors, instead of the countably infinite number of possible 

𝑘   vectors in the BZ, so that we can write 

𝑛 𝑟  =
1

𝛺𝐵𝑍
   𝜑𝑖 ,𝑘  

 𝑟   𝜑𝑖 ,𝑘  
 𝑟   

𝑁

𝑖=1𝛺𝐵𝑍

𝑑3𝑘 

          ≈
1

𝛺𝐵𝑍
   𝜑𝑖 ,𝑘  

 𝑟   𝜑𝑖 ,𝑘  
 𝑟   

𝑁

𝑖=1𝑘  

                                                                         2.109  

where the sum over 𝑘   only includes a particular set of 𝑘   vectors, or a k 

points grid, chosen to sample the BZ. In order to determine whether the k 

points sample is representative of all possible k points in the BZ, the function 

of interest, 𝑛 𝑟  , and resultant properties such as the total energy per unit 

cell, must be converged with respect to increasing numbers of k points in the 

sum. This can be expressed alternatively as converging the energy with 

respect to decreasing distances between adjacent k points in reciprocal 

space, the k point spacings. 

   In this thesis, the scheme of Monkhorst and Pack17 is used, where the k 

points grid is regular, and defined as the set of points laying at the endpoints 

of the vectors 

𝑘  𝑝𝑟𝑠 = 𝑢𝑝𝑏  1 + 𝑢𝑟𝑏  2 + 𝑢𝑠𝑏  3                                                                                         2.110  

with 

𝑢𝑝 =
2𝑝 − 𝑞 − 1

2𝑞
, 𝑢𝑟 =

2𝑟 − 𝑞 − 1

2𝑞
, 𝑢𝑠 =

2𝑠 − 𝑞 − 1

2𝑞
,    

𝑝, 𝑟, 𝑠 = 1, … , 𝑞.                                                                                                              2.111  

The coefficients 𝑢𝑝 , 𝑢𝑟  and 𝑢𝑠 are just fractional coordinates along the 

reciprocal lattice vector directions, so the grid is very easy to visualise. The k 

point spacings along the reciprocal lattice direction 𝑏  1 is given by 

 𝑢𝑝+1 − 𝑢𝑝 𝑏  𝑖 =  
2(𝑝 + 1) − 𝑞 − 1

2𝑞
−

2𝑝 − 𝑞 − 1

2𝑞
 𝑏  𝑖 =

𝑏  𝑖
𝑞

 ≝  𝑠𝑖                  2.112  
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Figure 2.4. A regular 4 × 4 Monkhorst Pack k points grid defined in a 2 
dimensional hexagonal lattice. 

The black points are the k points, the red points are the reciprocal 
lattice points, and the blue region is the first BZ. The red cell is the 

region within which the fractional coordinates 𝑢𝑝 , 𝑢𝑟  and 𝑢𝑠 lay. It can 

be seen that the k points which lay within the red cell but outside the 1st 
BZ have periodic equivalent points which are inside the BZ but outside 
the red cell. Hence, the number of grid points within the reciprocal unit 
cell equals the number in the BZ. 

 

The k point spacings 𝑠𝑖  are measured in units of (distance)-1. They are the 

first of the two basis set parameters used throughout this thesis. Figure 2.4 

shows a regular Monkhorst Pack grid of k points in 2 dimensions for a 

hexagonal reciprocal space unit cell (graphene, for example) and 

corresponding BZ, with 𝑞 = 4. 
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Figure 2.5. The kinetic energy cutoff circle in 2 dimensions for a reciprocal 
hexagonal lattice. 

The red points are the set of all possible reciprocal lattice points 

𝐺 = 𝑚1𝑏  1 + 𝑚2𝑏  2 as seen in Figure 2.4. The wavefunctions can be 
represented as a Fourier series whose wavevector modes 

corresponding to vectors 𝐺  laying within the cutoff circle radius  𝐺 𝑚𝑎𝑥  , 

where 𝐺  vectors whose magnitude exceeds  𝐺 𝑚𝑎𝑥   are excluded from 

the series. 

    

   The other essential approximation used in numerical evaluation of the 

density and related quantities is to set a maximum possible magnitude for 

the 𝐺  vectors in the plane wave expansions of the wavefunction and 

potential. The Fourier components with the largest 𝐺  vectors represent the 

highest energy contributions to the wavefunction and potential, where the 

sharpest features are captured by these highest energy modes. The periodic 

features of the wavefunction and potential can always be captured to a 

satisfactory level of accuracy by truncating the plane wave expansion, so as 
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to exclude Fourier modes whose 𝐺  vectors exceed a given maximum 

magnitude  𝐺 𝑚𝑎𝑥  : 

𝜑𝑘  
 𝑟  ≈  𝑐𝐺 +𝑘  𝑒

𝑖 𝐺 +𝑘    ∙ 𝑟 

 𝐺 𝑚𝑎𝑥  

𝐺 

                                                                                    (2.113) 

The 𝐺  vector cutoff magnitude does not discriminate against any particular 

reciprocal space direction (unlike the k points sampling grid, whose density 

can be tailored to individual directions if desired), so the allowed 𝐺  vectors 

lay within the cutoff sphere of radius  𝐺 𝑚𝑎𝑥   in reciprocal space. Figure 2.5 

shows a schematic example, again for the 2 dimensional hexagonal 

reciprocal lattice. The cutoff sphere radius, like the k points grid density, is a 

basis set parameter, and so the system energy needs to be converged with 

respect to it. 

   It is clear that the kinetic energy operator applied to the 𝑖th KS eigenstate 

gives  

−
1

2
𝛻2   𝑐𝑖 ,𝐺 +𝑘  𝑒

𝑖 𝐺 +𝑘    ∙ 𝑟 

 𝐺  < 𝐺 𝑚𝑎𝑥  

  

                       =   
1

2
 𝐺 + 𝑘   

2
𝑐𝑖 ,𝐺 +𝑘  𝑒

𝑖 𝐺 +𝑘    ∙ 𝑟 

 𝐺  < 𝐺 𝑚𝑎𝑥  

                                        (2.114) 

The energies of the largest 𝐺  vector modes in the sum are therefore slightly 

less than or equal to 
1

2
 𝐺 𝑚𝑎𝑥 + 𝑘   

2
. These modes correspond to the 

wavevectors whose endpoints lay just within the cutoff circle radius in Figure 

2.5. The largest kinetic energy that any mode can possibly have is therefore 

1

2
 𝐺 𝑚𝑎𝑥 + 𝑘   

2
, and is denoted throughout this thesis as 𝐸𝑐𝑢𝑡 : 

𝐸𝑐𝑢𝑡 =
1

2
 𝐺 𝑚𝑎𝑥 + 𝑘   

2
.                                                                                                  (2.115) 

This is the kinetic energy cutoff, measured in units of energy. It is the second 

basis set parameter against which the total system energy needs to be 

converged for accurate calculations to be performed. In Figure 2.5, there are 

89 reciprocal lattice points which lay within the cutoff circle, so the 
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corresponding Hamiltonian in (2.108) would become an 89 × 89 matrix. 

Truncating the Fourier series expansions using the kinetic energy cutoff 

(2.115) and taking averages only over selected k points within the BZ with k 

point spacings (2.112) makes the basis set finite, allowing for calculations to 

be performed numerically on computers. The total energies of the systems 

studied throughout chapters 3, 4 and 5 are all converged with respect  to 

these parameters. 

2.7 Practical calculations: pseudopotentials 

   The other widely used simplification in modern electronic structure 

methods is the pseudopotential method. The rigorous theory behind 

pseudopotentials is not covered in this thesis, but the characteristics of the 

pseudopotentials used in calculations presented in the later chapters are 

briefly discussed. The motivation behind the pseudopotential method is 

reducing the computational cost of solving the KS equations for 𝑁 Kohn 

Sham eigenstates by neglecting states which are closely bound to the 

nuclei, defined as the core states, and accounting only for those which are 

not closely bound, the valence states. This is achieved by replacing the 

external potential of the bare nuclei 𝑉𝑒𝑥𝑡  𝑟   with a weaker, ionic potential 

𝑉𝑝𝑠 𝑟  , which treats the nuclei as ions of lesser overall charge, each of which 

produces a spherically-symmetric potential experienced only by the valence 

states. Unlike the bare nuclear external potential 𝑉𝑒𝑥𝑡  𝑟  , the pseudopotential 

𝑉𝑝𝑠 𝑟   is not uniquely determined by the electron density, and can take a 

variety of different forms. In this modified regime, the KS wavefunctions are 

modified to become pseudowavefunctions, 𝜑𝑖
𝑝𝑠 𝑟  . The 

pseudowavefunctions obey the orthonormality condition, just like their all-

electron counterparts from equation (2.46): 

 𝜑𝑖
𝑝𝑠 𝑟   𝜑𝑗

𝑝𝑠 𝑟   = 𝛿𝑖 ,𝑗                                                                                                 (2.116) 

The corresponding KS pseudo-Hamiltonian (in direct space) reads: 

 −
1

2
𝛻2 + 𝑉𝐾𝑆

𝑝𝑠  |𝜑𝑖
𝑝𝑠 𝑟   = 𝜉𝑖

𝑝𝑠  |𝜑𝑖
𝑝𝑠 𝑟                                                                    (2.117) 

with 
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𝑉𝐾𝑆
𝑝𝑠 =  

1

2

𝑛𝑝𝑠  𝑟 ′ 

 𝑟 − 𝑟 ′ 
𝑑3𝑟′ + εXC  𝑟  + 𝑉𝑝𝑠 𝑟                                                               (2.118) 

where the Hartree contribution is integrated over the valence electron 

density 𝑛𝑝𝑠  only. 

   In the context of this discussion, it is useful to remind the reader of the 

analytic solution to the single-electron Schrödinger equation for the H atom. 

The solutions for the time-independent single electron states 𝜓 𝑟   in a 

spherically-symmetry external nuclear potential can be straightforwardly 

separated into radial and angular components, so that they can be written as 

𝜓𝑛 ,𝑙,𝑚 𝑙
 𝑟  = 𝜓𝑛 ,𝑙 𝑟 𝑌𝑙,𝑚 𝑙

 𝜃, 𝜙 =
𝜙𝑛 ,𝑙 𝑟 

𝑟
𝑌𝑙 ,𝑚 𝑙

 𝜃, 𝜙                                            2.119  

where 𝑛, 𝑙 and 𝑚𝑙  are the usual labels denoting the principal quantum 

number, angular momentum quantum number and magnetic quantum 

number respectively, 𝑌𝑙 ,𝑚 𝑙
 𝜃, 𝜙  are the purely angular-dependent spherical 

harmonics, 𝜓𝑛 ,𝑙 𝑟  is the purely radial component of 𝜓𝑛 ,𝑙 ,𝑚 𝑙
 𝑟  , 𝜙𝑛 ,𝑙  is given 

by 𝜙𝑛 ,𝑙 = 𝑟𝜓𝑛 ,𝑙, and 𝑟, 𝜃 and 𝜙 are spherical coordinates where 𝑟 =  𝑟  . 

   Since each KS equation is a single-electron equation, a similar approach 

of resolving the wavefunction into angular and radial components can be 

used for a single, isolated multi-electron atom with a spherical potential. In 

the case of a fully-occupied outer electron shell, a closed-shell atom,  the 

pseudowavefunctions 𝜙𝑝𝑠 𝑟  and KS potential 𝑉𝐾𝑆
𝑝𝑠

 have spherical symmetry 

and can be resolved into angular and radial components in a manner similar 

to that shown for the H atom solutions in equation (2.119), with the only 

conceptual difference being that the external potential needs to be 

calculated self-consistently along with 𝑛 𝑟  . Open-shell atoms are more 

difficult, and require a careful treatment in terms of multiplets of the total 

angular momentum because 𝑉𝐾𝑆
𝑝𝑠

 does not have spherical symmetry.6 

Fortunately however, a method due to Slater18 shows how to express all 

open-shell calculations in terms of 𝑟 only, by appealing to symmetries of the 

angular momentum multiplets. The full details are not given here, but the key 

point is that all single-atom calculations can be reduced to purely radial 

terms. Let the radial component of a KS pseudoeigenstate be denoted  

𝜙𝑝𝑠 𝑟 , and that of the all-electron KS eigenstate be 𝜙 𝑟 . 
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   Norm-conserving pseudopotentials and ultrasoft pseudopotentials are 

used in this thesis. Norm-conserving pseudopotentials must satisfy five 

criteria, as shown by Hamann, Schluter and Chiang (HSC).19 

1. The all-electron eigenvalues 𝜉𝑖  and pseudoeigenvalues 𝜉𝑖
𝑝𝑠

 must be the 

same: 𝜉𝑖 = 𝜉𝑖
𝑝𝑠

. 

2. The radial component of the all-electron wavefunction 𝜙 𝑟  and 

pseudowavefunction 𝜙𝑝𝑠 𝑟  must agree beyond the core radius, 𝑟𝑐 , such that 

 𝜙 𝑟  𝑟≥𝑟𝑐 =  𝜙𝑝𝑠  𝑟  𝑟≥𝑟𝑐
. 

3. The norm - or integrated electron density - of the radial component of the 

pseudowavefunction within the core radius must equal that of the all-electron 

wavefunction, such that  𝜙𝑝𝑠 𝑟 𝜙𝑝𝑠
∗  𝑟 𝑑

𝑟<𝑟𝑐
𝑟 =  𝜙 𝑟 𝜙∗ 𝑟 

𝑟<𝑟𝑐
𝑑𝑟. 

4. The logarithmic derivative of the all-electron wavefunction and that of the 

pseudowavefunction must be equal at, and beyond, the core radius, such 

that  
𝑑

𝑑𝑟
 𝑙𝑜𝑔  𝜙𝑝𝑠 𝑟    

𝑟≥𝑟𝑐

=  𝑑
𝑑𝑟

 𝑙𝑜𝑔 𝜙 𝑟    
𝑟≥𝑟𝑐

. 

5. The derivative with respect to variations in the eigenvalue 𝜉 of the 

logarithmic derivative must be equal beyond the core radius for both 

wavefunctions, giving 
𝑑

𝑑𝜉
 𝑑
𝑑𝑟

 𝑙𝑜𝑔  𝜙𝑝𝑠 𝑟    
𝑟≥𝑟𝑐

=  𝑑
𝑑𝜉𝑖

𝑑

𝑑𝑟
 𝑙𝑜𝑔 𝜙 𝑟    

𝑟≥𝑟𝑐

. 

Norm-conserving pseudopotentials are widely used because of their 

accuracy and transferability. A sketch illustrating a norm-conserving 

pseudowavefunction, all-electron wavefunction, pseudopotential and bare 

nuclear potential is given in Figure 2.6.  

   Ultrasoft pseudopotentials were devised by Vanderbilt20 and are a variant 

on norm-conserving pseudopotentials, but with the important difference that 

the the integrated charge density of the ultrasoft pseudowavefunction within 

the core radius can differ from that of the all-electron pseudowavefunction, 

but where they still must agree outside the core radius. The result is that the 

pseudowavefunctions violate the norm-conservation condition, but with the 

significant practical advantage that they can be constructed so that they 

have smaller second derivatives with respect to 𝑟. 
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Figure 2.6. All-electron wavefunction and potential compared with pseudo-
wavefunction and pseudopotential. 

Both potentials and both wavefunctions are the same beyond the core 

radius 𝑟𝑐 , but can differ within the core radius. 

 

Smaller second derivatives means the resulting function has less abrupt 

peaks and troughs. In this sense, they are "softer" than norm-conserving 

pseudopotentials, and they are much softer than the very "hard" all-electron 

wavefunction, which has fast changes in amplitude with changing 𝑟 within 

the core radius as illustrated in Figure 2.6. The consequence of this is that a 

lower cut off energy 𝐸𝑐𝑢𝑡  can be used when representing the 

pseudopotentials and wavefunctions in a plane-wave basis set because the 

sharpest features are sufficiently represented with the lower frequency 

Fourier modes, thus improving the efficiency of the calculation. 
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2.8 Non-periodic systems under periodic boundary 

conditions 

Even though infinite periodicity is imposed in all 3 dimensions in periodic 

DFT calculations, it is an extremely effective method of modelling structures 

of lower dimensionality, such as surfaces and interfaces (2D), line defects 

such as steps and edge dislocations (1D) and point defects like interstitials, 

substitutions and vacancies (0D). It is also an effective way to model non-

periodic structures such as molecules or just single atoms. The basic 

requirement in all cases is that appropriately chosen regions of free vacuum 

space are included in the periodic cells, such that the non-periodic or low-

dimensional system of interest is simulated effectively as if the periodic 

boundary conditions were not imposed at all. Figure 2.7 shows an example 

for a surface calculation of TiO2 rutile and a benzene molecule. In the strict 

technical sense, all such simulations are simulations of exotic bulk materials, 

and all calculated properties are bulk properties. The "surface energies" 

calculated in chapter 4, for example, are really just differences between the 

energies of various exotic bulk unit cells. Similarly, the "binding energies" of 

metal atoms on graphene calculated in chapter 3 are strictly just the 

quantities obtained when comparing the energies of three exotic bulk 

material unit cells. The vast majority of calculations carried out in this thesis 

are of this type. Approximations of this type, supercell approximations, work 

so well that it is entirely sensible to use terminology which is conventionally 

used for the non-periodic system being simulated. One very important 

exception is the class of systems which have a net electrostatic dipole, 

which can be problematic under PBC because the surface is undefined, and 

so require correction schemes. An overview of the issue of electric dipoles 

under PBC is given in section 3.2.4 and encountered directly in calculations 

described in section 3.3.1. Chapter 3, which follows shortly, contains a 

detailed description of the procedure for designing the supercell sizes and 

dimensions required for modelling adatoms on graphene - a 2D material with 

0D defects - under 3D periodic boundary conditions. Plane-wave DFT with 

Vanderbilt ultrasoft pseudopotentials is used throughout chapter 3. 
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Figure 2.7. Ball-and-stick representations of periodic and non-periodic 
systems modelled under periodic boundary conditions.  

(a) Conventional bulk TiO2 rutile unit cell. (b) Isolated benzene 
molecule modelled as an exotic bulk material consisting of benzene 
molecules with vacuum space. (c) A TiO2 rutile (110) surface modelled 

as an exotic bulk material. In (a), the lattice vectors 𝑎 , 𝑏   and 𝑐  are 
written in lower case to signify that they correspond to a normal bulk 

cell, whereas in (b) and (c), the bulk lattice vectors are written as 𝐴 , 𝐵   

and 𝐶  to signify that they are simulating a non-bulk system. There is no 
technical difference between them. 

 

2.9 Concluding remarks 

   This chapter has explained the basic theory required for the following 

chapters, but has barely begun to convey the enormity and diversity of 

modern DFT research which is a very broad and active research field at the 

time of writing. The method of actually applying the SCF minimisation 

approach to solve the KS equations using computer algorithms has not been 

covered in this chapter, and neither have any of the related tasks which build 

upon the theoretical foundation of SCF minimisation, such as searching for 
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energetic saddle points to find chemical reaction transition states or using 

the Hellmann-Feynman theorem21,22 to calculate residual forces on the 

nuclei following an SCF minimisation. The huge subject of nonlinear 

optimisation algorithms and intelligent searching schemes used in modern 

DFT codes has also not been explored. 

   In the absence of an analytical solution to the many-body problem, DFT 

provides an extremely practical and remarkably accurate way of studying 

real materials. It can be very successfully applied to systems of hundreds, 

and increasingly, thousands of atoms, and is vastly more efficient than the 

post-Hartree-Fock methods mentioned in section 2.1. At the other extreme, it 

is significantly less efficient than classical materials simulations based on 

molecular dynamical force fields, where simulations involving tens or 

hundreds of thousands of atoms are routine. Besides the practical issues of 

computational efficiency, DFT can be limited in the more serious and 

fundamental sense that it can completely fail to simulate certain well-

understood and well-defined physical phenomena. One example is van der 

Waals interactions, which arise from the long-ranged coupling of regions of 

electron density which have a permanent and/or induced electrostatic dipole, 

along with higher order multipole moments. Despite their remarkable 

successes in accurately predicting many material properties, LDA and GGA 

type functionals both fail to accurately simulate van der Waals forces. Such 

forces can be the dominant contribution to interactions between molecules 

and between adsorbates and surfaces. This state of affairs has prompted 

much of current research to become focused on developing particular forms 

of the exchange-correlation functional, 𝐸𝑋𝐶 , designed to suit to particular 

classes of materials or to simulate particular physical phenomena. The most 

notable example for the case of van der Waals interactions is the total 

energy functional of Dion and Rydberg et al.23-25 which accounts for non-

local van der Waals effects in a seamless fashion, with the total energy 

functional being the starting point.  Alongside this, van der Waals correction 

schemes have also been designed by Grimme26, Jureĉka et al.27 and 

Tkatchenko and Scheffler28 (TS) to be used in conjunction with local and 

semi-local functionals. Long-ranged van der Waals interaction terms are 

dominated by 1  𝑟  6  terms because the potential of a dipole scales as 
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1  𝑟  3 , so dipole-dipole interactions scale as 1  𝑟  6 , plus higher order 

multipole terms. Because of this, the common feature of all these correction 

schemes is the addition of 𝐶6  𝑟  6 -type terms to the total energy where 𝐶6 

are the coefficients whose values determine the strength of the various 

interatomic pairwise interactions. The Grimme26 and TS28 schemes are both 

used in this work. They differ slightly in that the coefficients in the Grimme 

scheme are parameterised according to empirical reference data, whereas 

in the TS scheme they are determined using a self-consistent field approach. 

Both schemes are approximations since they neglect all higher order 

interaction terms beyond pairwise interactions. The key point is that DFT has 

many great strengths but also some significant limitations, and choices must 

be made when doing calculations. As a consequence of this, it has become 

the responsibility of theoretical modellers to motivate the choice of 

functional, along with any correction schemes, when using DFT. In 

summary, DFT is most effectively deployed for systems for which hundreds 

of atoms are sufficiently many to build the structures of interest, where the 

required level of theory extends well into the quantum regime, but where the 

capabilities of the chosen functional at simulating relevant phenomena is 

well understood. The remainder of this thesis is devoted to applying modern 

DFT to some current problems in materials science and nanotechnology. 
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Chapter 3: Mobility of metal adatoms on graphene 

Graphene could form the basis of future nanoelectronic devices. One line of 

enquiry in this field is the issue of contacting graphene to metals with a view 

to providing an interface with existing electronics. To begin to investigate 

whether this may be a real possibility, a theoretical investigation into the 

basic interaction between graphene and metals is conducted in this chapter. 

3.1 Abstract 

Recently published aberration-corrected scanning transmission electron 

microscopy (STEM) images have shown that metal atoms evaporated onto 

graphene by chemical vapour deposition (CVD) are only ever observed at 

edge sites and contaminated regions, but not on the pristine regions of 

graphene. It was hypothesised from these observations that metal adatoms 

are very mobile on graphene at room temperature and therefore quickly 

migrate randomly across the lattice until they bind to more energetically-

favourable edge sites by the time the samples reach the microscope. To test 

this hypothesis, plane-wave DFT calculations have been used to optimise 

the structures of Al, Au and Cr atoms on the adsorption and edge sites of 

monolayer, bilayer and trilayer graphene, and their energies and bonding 

characters have been compared. Migration energy barriers between the 

adsorption sites were then calculated. It was found that Al, Au and Cr atoms 

form very weak bonds at the adsorption sites but form strong chemical 

bonds at the edge sites, and the migration activation barriers were all found 

to be very small: within an order of magnitude of 𝑘𝐵𝑇 at 𝑇 = 300 K, where 𝑘𝐵 

is Boltzmann's constant. It has been concluded from these calculations and 

the STEM observations that metal adatoms undergo random thermal 

diffusion on graphene at room temperature until they bind with edge and 

defect sites, thus verifying the original hypothesis. 
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3.2 INTRODUCTION 

3.2.1 Recent theoretical studies of graphene-metal systems 

   The original synthesis of graphene29 has subsequently sparked worldwide 

attention owing to its potential to revolutionise many areas of industry. 

Nanoelectronics is one such promising area, in which interfacing graphene 

via metal adatom/cluster contacts is a recurring theme30-36. This area of 

research is still developing and the consequences of particular dopants on 

the electronic properties of graphene are still being investigated. Widespread 

implementation of graphene-based electronics will therefore involve 

developing a more detailed understanding of metal-graphene interactions on 

a fundamental level. To this end, many theoretical studies using density 

functional theory (DFT) have already emerged which present predictions of 

binding energies and relaxed structures of various metal adatoms and 

clusters on pristine single layer graphene37-52 and on graphene defect 

structures53-59. Potential contacting applications will depend very much on 

the metal used because vacancy formation energies can be greatly reduced 

by certain dopants. In 2010, Karuoi et al.59 predicted that a Ni substrate 

assists graphene in healing its vacancy defects. In contrast, Boukhvalov and 

Katsnelson54 predicted in 2009 that Fe, Ni and Co adatoms dramatically 

reduce vacancy formation energies in graphene, destroying it in the process. 

In this latter study Au atoms were predicted to have almost no effect on 

graphene vacancy formation energies, thus preserving its strength. 

Recently, electron microscopy observations were made of nanoscale holes 

being etched into pristine regions of graphene by various metal adatoms 

with the exception of Au for which no etching process was seen to occur.60 

   Trends have emerged regarding the preferred binding sites for metal 

adatoms on graphene at absolute zero. Recent DFT studies39,42-44 predict 

that transition metals generally adsorb at the hollow (H) site (see Figure 3.3).  

Au atoms have been predicted to adsorb preferentially to the atop (A) 

site39,44,45. It can be easy to erroneously conclude from these studies that 

one would expect stable and static configurations for these adatoms to exist 

on the basis of the local energetic minima predicted by geometry 

optimisation calculations at absolute zero. However, the calculated absolute 
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difference in binding energy between adsorption sites is often very small, so 

it is sensible to suggest from these studies alone that the activation barriers 

for adatom migration are also small; small enough that the perturbing effects 

of room temperature, T ~ 300 K, cause certain metal adatoms to be highly 

mobile on graphene at room temperature42,44,57. Indeed, many of these 

studies state, either directly or indirectly, that metal adatoms migrate on 

pristine regions of graphene.39,42-46,51,55,57 In particular, in the work of Yazyev 

et al.51, the migration energy barrier for a Co adatom was calculated 

explicitly using a transition state scheme and found to be 0.4 eV. This is not 

an insignificant barrier, which suggests that Co migrates slowly, or not at, all 

on graphene. The underlying concern with results of this type is that the 

accuracy of such energy values can vary significantly depending on the level 

of theory used in the calculations. Indeed, it is clear from published results 

that adatom binding energies are very sensitive to the exchange correlation 

functional used. To illustrate this, Table 3.1 shows binding energies of a 

single Au adatom on pristine single layer graphene taken from some recent 

ab-initio DFT studies.37,38,40,45,46,53 

Table 3.1. Recently published DFT-calculated Au adatom/graphene binding 
energies on the 3 high symmetry adsorption sites of single layer 
graphene.  

Negative binding energies signify that the configurations are stable, as 
per equation (3.1). 

Binding energy, Eb, of Au adatom on pristine single layer graphene / eV.  

All values quoted to 3 d.p. unless otherwise specified 

XC 

Functio-

nal 

LDA GGA PBE GGA PBE van der Waals-corrected 

{correction scheme used} 

Author Atop (A) Bridge 

(B) 

Hollow 

(H) 

Atop (A) Bridge 

(B) 

Hollow 

(H) 

Atop (A) Bridge (B) Hollow (H) 

37
Lima - - - -0.410 - - - - - 

53
Tang - - - -0.075 - - - - - 

38
Ding -0.77 

(2d.p.) 

- -0.50 

(2d.p.) 

-0.16 

(2d.p.) 

- -0.16 

(2d.p.) 

- - - 

40
Varns &   

Strange 

-0.79 

(2d.p.) 

-0.74 

(2d.p.) 

-0.52 

(2d.p.) 

- - - - - - 

45
Chan - - - -0.096 -0.089 -0.085 - - - 

46
Amft -0.732 -0.698 -0.451 -0.099 -0.081 no bond -0.385 

{Dion et 

al.
23-25

} 

-0.886 

{Grimme
26

} 

-0.314 

{Dion et al.
 

23-25
} 

-0.881 

{Grimme
26

} 

-0.322 

{Dion et al.
 

23-25
} 

-0.870 

{Grimme
26

} 
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The local density approximation (LDA) functional is well known to 

significantly overbind compared to the generalised gradient approximation 

as parametrised by Perdew, Burke and Ernzerhof61 (GGA PBE). This is 

evident from the values shown in Table 3.1. Despite the widespread success 

of the GGA PBE functional, it fails to accurately simulate non-local 

correlation effects which dominate in many biological and chemical systems. 

These systems are characterised by weak long-ranged interactions between 

instantaneous multipoles occurring in the electron density, collectively and 

commonly referred to as van der Waals forces. The total energy functional of 

Dion and Rydberg23-25 accounts for non-local correlations in the form of van 

der Waals interactions, but this was not used. The GGA PBE functional fails 

to simulate interlayer interactions in graphite and multilayer graphene, 

thereby making non-corrected GGA functionals inappropriate for modelling 

involving structural relaxation of the systems in this chapter. GGA-type van 

der Waals correction schemes for implementation into DFT codes have been 

designed by Grimme26, Jureĉka et al.27 and Tkatchenko and Scheffler28 (TS). 

These correction schemes allow for new insight to be gained into possible 

surface physisorption bonding mechanisms between graphene and metal 

adatoms; an effect which is impossible to probe with the native LDA and 

GGA PBE functionals employed in virtually all DFT studies so far published. 

Moreover, van der Waals-corrected DFT sheds light on the graphene-metal 

interaction, not least because physisorption may be involved, but also 

because many laboratory synthesis methods produce samples containing 

regions which are multilayered60,62-65,67,68,69 and are therefore graphitic in 

character. To my knowledge, only two ab-initio DFT studies, by Amft et al.46 

and Ming et al.66 , have incorporated non-local correlation effects with 

graphene/graphite-metal adatom systems. Amft et al.46 used the GGA-type 

correction scheme of Grimme26 and the non-local van der Waals functional 

of Dion and Rydberg23-25 on single layer graphene/metal systems, and their 

values shown here in Table 3.1 aptly demonstrate the drastic effect of 

including these interactions. 
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3.2.2 Electron microscopy studies of graphene-metal systems 

   Whilst theoretical studies of graphene-metal systems are ubiquitous, the 

first significant experimental insight of this system that has recently emerged 

is from a series of images recently published by collaborators60,67,68,69 using 

aberration-corrected scanning transmission electron microscopy (AC STEM) 

at 60 keV, examples of which are presented in Figure 3.1. In these studies, 

high angle annular dark field (HAADF) imaging was used to produce images 

which clearly showed suspended monolayer graphene membranes 

consisting of pristine regions along with defective and hydrocarbon-

contaminated regions, onto which various metal adatoms had been 

evaporated. As Figure 3.1 shows, Au and Al atoms are observed exclusively 

at edge sites on the perimeters of etched holes or are clustered at 

hydrocarbon-contaminated regions.  

 

Figure 3.1. STEM HAADF images at 60 keV showing preferential binding of 
metal atoms to edge defects, hydrocarbon-contaminated regions and 
metal clusters.  

(a) Monolayer graphene sheet with hole, onto which a 2Å layer of Al 
was evaporated. Al atoms are seen only at edge sites and in clusters 
near the hole. (b) Monolayer graphene sheet with bilayer and trilayer 
regions onto which a 5Å layer of Au gold was evaporated. Individual Au 
atoms and Si contaminants (of less bright contrast) clearly bind 
preferentially to edge sites. The pristine regions of the lattice are 
completely devoid of adatoms in both cases. 

 

No metal adatoms were ever observed on these samples; only metals bound 

at edge sites, defect sites and contaminated regions. A sample of variable 

thickness consisting of monolayer and multilayer regions and evaporated 



- 75 - 

with Au was also prepared. By following the method of Eberlein et al.70, 

collaborators used electron energy loss spectra (EELS) to identify the 

monolayer, bilayer and trilayer regions unambiguously for this sample. The 

remaining regions were collectively identified as consisting of 4 or more 

layers. A very small number of isolated Au adatoms were found momentarily 

on the pristine regions of this sample, but only on areas whose thickness 

could be unambiguously identified as 4 or more layers. By using the 

approximate proportionality of the image intensity to the square of the atomic 

number, Z, the adsorption positions of these Au adatoms were determined, 

and found to be consistently at atop sites. In these studies it was speculated 

that the graphene-metal binding energy may be significantly higher for 

thicker samples on account of the van der Waals-type contribution from the 

sublayers. It was also speculated that all metal adatoms were very mobile on 

all samples and had migrated to defective and contaminated regions, 

presumed to be more stable, before the samples were characterised in the 

microscope. The immediate implication from these observations is that 

fabrication of stable metal-graphene layer-upon-layer type interfaces is 

unlikely to be possible from this particular synthesis method. However, it 

cannot be said that in-plane metal-graphene interfaces should be ruled out. 

Indeed, one group has very recently, and very significantly, succeeded in 

synthesising free-standing atomically-thin Fe films in graphene holes.71 Thus 

it appears that atomically-thin, truly 2D, in-plane metal-graphene interfaces 

are a real possibility. It is important to rationalise all of these observations in 

theoretical terms in order to identify methods by which metal/graphene 

systems may be manipulated to fabricate nanostructures for potential 

deployment in future devices, so the work carried out in this project finds its 

relevance in providing this foundational theoretical understanding. 

   The first aim of this chapter is to use van der Waals-corrected DFT to 

predict the binding energy of selected metal adatoms at the high symmetry 

sites of pristine regions of graphene, and at the most commonly observed 

monolayer edge defects, in order to compare the energetic stability of these 

regions. The second aim is then to investigate adatom mobility on the 

pristine substrates by directly sampling the energy landscape corresponding 

to intermediate configurations between high symmetry adsorption sites in 
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order to locate the transition state saddle points and thus evaluate the 

migration activation barriers. The van der Waals corrections will produce 

explicit and original evidence of how adatom binding energy and mobility 

changes with increasing graphene substrate thickness, if at all. To my 

knowledge, this is the first DFT study of a multilayer graphene-metal 

interaction to make a direct comparison with STEM data, the first study to 

calculate adatom migration barriers on both monolayer and multilayer 

graphene (real STEM specimens consist of multilayer regions in addition to 

single layers), and also the first such study to incorporate the van der Waals 

correction scheme of Tkatchenko and Scheffler28. In addition, the apparent 

lack of agreement in the fixing of atomic positions during geometry 

optimisation calculations is addressed, a discussion of which now follows. 

 

3.2.3 Long-ranged lattice perturbations 

   The essence of the approximation with graphene adsorption studies is 

attempting to simulate the asymptotic flatness and stiffness of graphene far 

from the adsorbate, whilst accounting for the fact that adsorbate-induced 

lattice perturbations can be long-ranged, all under the constraints of finite 

supercell sizes dictated by the efficient use of shared computing 

architectures. (Real graphene is known to have ripples under typical 

laboratory conditions72,73, but these effects are neglected here as the period 

of these oscillations is relatively large.) 

Lambin et al.74 recently demonstrated that for the case of nitrogen 

substitutional dopants in graphene with the LDA functional, the calculated 

local density of states differs significantly for 9 × 9 and 10 × 10 supercells. 

Although adatom-induced lattice perturbations are likely to be smaller than 

those of substitutional dopants, the convergence of adatom binding energy 

should ideally be tested with supercell size, or the error due to the use of 

finite supercell sizes should at least be estimated. Some tests were carried 

out using the LDA functional with 4 × 4 supercells with Au and Cr adatoms 

placed in the centre, in which all carbon atoms were relaxed. It was found 

that out-of-plane lattice perturbations were significant at the supercell 

boundaries far from the adatom in response to the localised puckering near 
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the adatom. This raises the question of whether such undulating structures 

are a physically meaningful simulation of graphene at all. Also, there is no 

well-defined way of measuring the distance of the adsorbate above the 

graphene plane in these systems. Despite it being something of an artifice, it 

is advocated in this thesis that fixing the positions of selected carbon atoms 

far from the adatom is a pragmatic way to simulate the stiffness and flatness 

of pristine graphene far from the adsorbate, but only if the supercells used 

are large enough to account for lattice perturbations to a justifiable level of 

energy convergence. 

   Further on the issue of fixing atomic positions, there appears to be no 

general consensus on the issue of which atomic positions should be 

fixed.The opportunity is taken now to list the conventions used in recently 

published studies to illustrate the disparity, and then suggest a simple 

guiding principle for future studies. In the study by Sargolzaei and Gudarzi41, 

the positions of the adatom and the first nearest-neighbour carbon atoms 

were relaxed, with all other carbon positions fixed. Ding et al.38 state that 

they allowed all atomic positions to relax in the direction normal to the 

graphene plane, but it is unclear whether they also allowed for in-plane 

relaxations. Tang et al.53 allowed all atoms in the calculation to relax in all 

directions. Amft et al.46 appear to have used the still different method of 

fixing the positions of the adatom and the carbon atoms on the supercell 

perimeter, whilst all other carbon positions were allowed to relaxed. Nakada 

et al.42 used yet another method and allowed all atoms to relax except for 

just one carbon atom far from the adatom, with the adatom only allowed to 

relax in the z (vacuum) direction. Whilst these different choices may or may 

not result in negligible differences in calculated binding energies for a given 

supercell size, most of them can introduce the easily avoidable idiosyncrasy 

of breaking the symmetry of the system. This is illustrated in Figure 3.2 

which shows a 32 atom graphene monolayer supercell and the atop 

adsorption site (A) indicated with a red cross in the centre of the supercell. 

The C atoms on the supercell perimeter are indicated in blue to signify that 

their positions are fixed, whilst all remaining C atoms indicated in black are 

allowed to relax. 
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Figure 3.2. Symmetry-breaking caused by fixing atoms on the supercell 
perimeter without appealing to lattice symmetries.  

(a) The lattice environment experienced by the adatom along directions 

𝑟 3 is different to that along 𝑟 1 and 𝑟 2, despite these directions being 
crystallographically equivalent. (b) The resulting 2-fold rotational 
symmetry of the unfixed carbon sublattice and (c) the 2-fold rotational 
symmetry of the fixed carbon sublattice about the axis passing through 
the adsorption site. 

 

By fixing the atoms indicated, the lattice environment encountered along the 

directions 𝑟 1 and 𝑟 2 is not the same as that along the direction 𝑟 3, despite the 

fact that these three directions are all supposed to be crystallographically 

equivalent. In fact, the resulting sublattices consisting of fixed and unfixed C 

atoms each have 2-fold rotational symmetry about the adsorption site as 

shown in Figure 3.2 (b) and (c), in contradiction with the 3-fold rotational 

symmetry of the complete lattice about the adsorption site. To restore the 

symmetry and create an environment for the adatom which is unbiased, C 

atoms are selected to be fixed in the supercells so that i) C atoms which are 

fixed form a sublattice which shares the rotational symmetry of the complete 

lattice about the axis passing through the adsorption site of interest and ii) all 

of the remaining unfixed C atoms form a sublattice which shares the 

rotational symmetry of the complete lattice about that same axis. This is 

illustrated in Figures 3.14 and 3.15. 

3.2.4 Binding sites, binding energy and dipole corrections 

   For the pristine regions, attention is confined to the high symmetry points 

lying at the vertices of the symmetry-reduced Wigner-Seitz cells of the single 

and multilayer systems as indicated in Figure 3.3 (a) and (b). For lattice 

edges, the boundaries separating irreducible regions of the “zigzag” and 
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“armchair” edges indicated in Figure 3.3 (c) and (d) are considered for the 

monolayer case for each of the 3 metals tested.  

 

Figure 3.3. The high symmetry adsorption sites located at the vertices of the 
symmetry-reduced Wigner Seitz cell boundaries.  

(a) single layer graphene and (b) 2+ layer graphene, for which AB 
stacking is assumed. In the multilayer case, the top layer is represented 
by small black balls and sticks and the sublayer is represented by large 
grey balls and sticks. (c) & (d) The high symmetry binding sites of the 
monolayer armchair edge and zigzag edge considered in this chapter. 

 

The binding energy 𝐸𝑏  at site 𝑋 - where 𝑋 takes the value 𝑋 = 𝐴, 𝐴1, 𝐴2 , 𝐵, 𝐻 

for adsorption sites, or 𝐶1, 𝐶2, 𝑍1, 𝑍2 for edge defect sites as appropriate - is 

defined in the conventional way as the difference in enthalpy of the 

composite system supercell and that of the sum of the two isolated system 

supercells: 

𝐸𝑏 𝑋 = 𝐸𝐶+𝑚 𝑋 − 𝐸𝑚 − 𝐸𝐶                                                                                         (3.1) 

where 𝐸𝐶+𝑚  is the TS-corrected enthalpy of the geometry-optimised 

graphene / metal supercell and 𝐸𝑚  and 𝐸𝐶 are the TS-corrected enthalpies of 

the isolated metal and geometry-optimised graphene supercells respectively. 
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Note that because two metal atoms are present in the edge site supercells, 

the value of 𝐸𝑏  must be divided by two for these cases. (See Figure 3.16.) 

   One subtle but essential physical ingredient which can interfere with 

adsorption calculations is that of electrostatic polarity under periodic 

boundary conditions (PBC). A well-known difficulty which dates back to 

classical electrostatics is that the polarisation of an ionic crystal can depend 

on the definition of the (neutral) bulk unit cell if no explicit reference is made 

to the surface conditions. This has been explained in the context of ab initio 

calculations by Makov and Payne75. Under the constraints of PBC, the 

crystal is infinite so the surface is undefined. Thus, with no surface cell to 

cancel out the spurious potential produced from unphysical interactions 

between periodic images of multipole moments in neighbouring supercells, 

the dipole moment of a neutral polar system can depend on the location of 

the supercell boundaries, or equivalently, on the placement of the system 

within the supercell. This positional-dependence of the energy arises 

because of electron density overlapping with the cell boundary in the 

direction of the polarity, thus making the total cell dipole sensitive to the 

placement of the system. Metal adatom-graphene systems, especially 

adsorption configurations, tend to be polar in the vacuum direction owing to 

the charge transfer associated with the metal-carbon bond. Hence, it is 

essential that the systems are placed in the centre of the vacuum slab far 

from the supercell boundary at each end of the vacuum so as to ensure that 

the charge density is zero across this boundary. Various dipole correction 

schemes and studies of the subject have been published76-82. In this chapter 

the self-consistent electrostatic dipole correction scheme of Neugebaueur 

and Scheffler76 as implemented in CASTEP83 is used to ensure that the input 

files satisfy the condition of zero charge density at the extremities of the 

vacuum slab. 

3.3 METHOD 

3.3.1 Basis set parameters 

   Two van der Waals-corrected cell-optimised geometry optimisation 

calculations were carried out on the bulk graphite unit cell using the plane 
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wave density functional theory code CASTEP83 with the GGA PBE 

functional61, Vanderbilt ultrasoft pseudopotentials20 and an initially extremely-

converged basis set. The TS van der Waals correction scheme28 as 

implemented in84 CASTEP was used for the first calculation and the Grimme 

scheme26 for the second. The fully-optimised Grimme-corrected final 

interlayer spacing was found to be 3.27 Å (3 s.f.), whereas the TS-corrected 

interlayer spacing was found to be 3.32 Å (3 s.f.); considerably closer to the 

experimentally measured85 value of 3.35 Å (3 s.f.). On the basis of this 

result, the TS correction scheme was selected for all subsequent 

calculations. 

    TS-corrected GGA PBE total energy calculations were then carried out to 

numerically converge the binding energy, 𝐸𝑏 , of the two-layer graphene-

metal systems shown in Figure 3.4 (d) (with a 24 Å vacuum) with respect to 

the kinetic energy cutoff 𝐸𝑐𝑢𝑡  and the k-point spacings 𝑠𝑖 , where 𝑖 = 1,2,3 

denotes correspondence to the reciprocal lattice vector 𝑏𝑖 . The binding 

energies 𝐸𝑏  were converged by varying the two basis set parameters 𝐸𝑐𝑢𝑡  

and 𝑠𝑖  independently. Firstly, in order to converge 𝐸𝑏  with respect to the 

cutoff energy 𝐸𝑐𝑢𝑡 , the energies of supercells identical to the form shown in 

Figure 3.4 (d) were calculated using fixed and regular 7 × 7 × 1 Monkhorst-

Pack17 k points grids. To ensure that these binding energies were truly 

independent of the k-points sampling, they were obtained by calculating the 

energies of the isolated metal atom, isolated graphene structure and 

metal+graphene structure in the exact locations and in a supercell with 

exactly the same lattice vectors as that shown in Figure 3.4 (d). This of 

course means that any artefacts relating to the k-sampling in the choice of 

supercell cancels out to expose the convergence of all energies with respect 

to 𝐸𝑐𝑢𝑡  only. The convergence of the total supercell energies is plotted in 

Figures 3.5 and 3.6, and that of the binding energies in Figure 3.7. On the 

basis of these calculations, the kinetic energy cutoff 𝐸𝑐𝑢𝑡  was fixed at  

𝐸𝑐𝑢𝑡 = 550 eV for all subsequent calculations. 
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Figure 3.4. Periodic cells used for basis set. 

(a) Fully optimised graphene unit cell with relaxed lattice parameters in 
red. Atoms and bonds are represented by balls and sticks respectively. 
(b) Fully optimised multilayer graphene unit cell, as in (a). To aid 
visualisation, the atoms and bonds of the first sublayer are represented 
with large grey balls and sticks, and those of the top layer with small 
black balls and sticks. The second sublayer is not indicated owing to 
the assumed AB stacking structure (c) Isolated metal atom cubic 
supercell. The lattice parameters shown indicate the smallest supercell 
size required to decouple all intercellular metal-metal interactions (d) 

Graphene + metal supercell spanning 2 × 2 unit cells. The lattice 
parameters shown indicate the vacuum thicknesses required to 
decouple intercellular interactions along the vacuum direction only. 
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Figure 3.5. Monotonic convergence of total supercell energies with 
increasing kinetic energy cut off for graphene and metal-graphene 
systems.  

All energies are negative, indicating net stability of the systems in 
question. 
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Figure 3.6. Monotonic convergence of total supercell energies with 
increasing kinetic energy cut off: metal atoms. 
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Figure 3.7. Convergence of binding energies with kinetic energy cut off. 

Left panels: The binding energies clearly converge to finite values. 
These binding energies were calculated in initially guessed 
configurations without optimising the geometry, which is why some (Au 
and Cr) are positive, indicating energetic unfavourability. Despite the 
geometry not being optimised, these tests are sufficient to determine 
the required cut off energy. Right panels: The amounts by which the 
successive values on the left panels change with increasing cut off 

energy. Beyond 𝐸𝑐𝑢𝑡  = 550 eV, all residual variations are within about ± 
0.0001 eV for Au and Al and ± 0.0006 eV for Cr. 
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   Following this, the same supercells were then used to converge the total 

supercell energies and binding energy 𝐸𝑏  with respect to the k-point 

spacings in the graphene plane in a similar manner to the procedure just 

described for 𝐸𝑐𝑢𝑡 . In-plane k-point spacings are particularly important in 

graphene: fine convergence is required to capture any subtle behaviour that 

may be occurring at the Dirac points. The results of these tests are shown in 

Figures 3.8, 3.9 and 3.10.  

 

Figure 3.8. Non-monotonic convergence of total supercell energies with 
decreasing in-plane k point spacings: graphene and metal-graphene 
systems.  

One of the Cr + graphene calculations could not be made to converge 
which is one data point is missing. 
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Figure 3.9. Non-monotonic convergence of total supercell energies with 
decreasing in-plane k point spacings for the metal atoms.  

All three metal energies converge quite rapidly, especially Au and Cr. 
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Figure 3.10. Convergence of binding energies with decreasing in-plane k 
point spacings.  

Note that the energies converge towards similar values to those in the 
left panels of Figure 3.7.  

 

 

 

 



- 89 - 

The out-of-plane k point spacings along the reciprocal vacuum direction are 

conceptually slightly different to the in-plane spacings. If the vacuum lattice 

parameter in direct space is sufficiently large that the intercellular layer-layer 

interactions are zero, then the variation in the total energy with respect to 

increasing k points in the reciprocal vacuum direction will also be zero, 

meaning that a single k point in this direction is sufficient. This is because 

the bands along the reciprocal vacuum direction are completely flat and 

discrete from one another, so any extra k points along this direction will 

simply be sampling the same energy level. It was confirmed with some 

representative supercells used in this study that this is indeed true; all bands 

showed no variation in energy with position in reciprocal space, i.e. the 

bands along the relevant path of the band structure plot were completely flat. 

It will be stated later in this chapter that 2 k points were used along the 

vacuum direction for the adsorption supercells, and this is merely because 

the point just explained was not properly understood at the time these 

calculations were carried out. Of course, this has no bearing on the validity 

of the calculation outputs because this lack of insight amounted to nothing 

more than redundant oversampling. All spacings 𝑠𝑖  were subsequently 

picked such that they always satisfied 𝑠𝑖 < 0.035 Å
−1

 for all remaining 

calculations. Regular Monkhorst Pack grids were used throughout. 

   The TS / Grimme bulk lattice parameter validation test described earlier 

was then repeated with this basis set and both correction schemes were 

verified to produce the same interlayer spacings as before. The TS 

correction scheme was then chosen along with the established basis set 

parameters 𝐸𝑐𝑢𝑡 = 550 eV and 𝑠𝑖 < 0.035 Å
−1

 for all subsequent calculations 

in the chapter. 

3.3.2 Preliminary structure optimisation 

   Having converged the basis set parameters, the monolayer, bilayer and 

trilayer graphene unit cells were then fully optimised respect to bond lengths, 

vacuum thicknesses and layer spacings using geometry optimisation 

calculations. The energy of isolated metal atom supercells and the binding 

energy of composite graphene/metal systems were converged with 

increasing supercell size in order to determine the required supercell 
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dimensions for each system studied in this chapter. This procedure is now 

described. 

   The single layer graphene unit cell shown in Figure 3.4 (a) was 

constructed, whose initial in-plane lattice vectors 𝑎 1𝑙
(𝑖)

 and 𝑏  1𝑙
(𝑖)

 were left 

unconstrained and both set initially at the experimentally-measured85 bulk 

graphite value of 2.471 Å. This unit cell was then duplicated, and the 

vacuum-direction lattice vector 𝑐 1𝑙
(𝑖)

 was fixed at magnitudes increasing in 1 Å 

increments from  𝑐 1𝑙
(𝑖)

 =  2Å, … , 16 Å inclusive, to make a total of 15 unit 

cells. In all of these, the carbon layer was placed in the centre of the vacuum 

slab at fractional coordinate 0.5 𝑐 1𝑙
(𝑖)

 . A geometry optimisation calculation 

was carried out on each of these, in which the atomic positions and lengths 

 𝑎 1𝑙
(𝑖)

  and  𝑏  1𝑙
(𝑖)

  were relaxed, all unit cell angles were fixed, and  𝑐 1𝑙
(𝑖)

  was 

fixed at the value appropriate to each case. The fully-optimised TS-corrected 

enthalpies were plotted against the vacuum thickness  𝑐 1𝑙
 𝑖   to serve two 

purposes. Firstly, to identify the smallest value of  𝑐 1𝑙
 𝑖   for which the 

undesired inter-cellular interlayer interaction in the vacuum direction had 

converged to zero. This value of  𝑐 1𝑙
 𝑖   was named  𝑐 1𝑙  and identified as 

 𝑐 1𝑙 = 12 Å. Secondly, it served to calculate the carbon-carbon bond lengths 

as optimised using the particular choice of functional, along with the 

corresponding optimised values of  𝑎 1𝑙
(𝑖)

  and  𝑏  1𝑙
(𝑖)

 . These values were 

named  𝑎 1𝑙  and  𝑏  1𝑙  respectively, and recorded at values  𝑎 1𝑙 =  𝑏  1𝑙 =

2.469 Å (4 𝑠. 𝑓. ). A similar procedure was then repeated for the case of 2 

layer and 3 layer graphene on the multilayer unit cell shown in Figure 3.4 (b), 

in which the top carbon layer was placed at the centre of the vacuum similar 

to above. From similarly designed geometry optimisation calculations, the 

minimum required vacuum thicknesses for the 2 and 3 layer cases,  𝑐 2𝑙  and 

 𝑐 3𝑙 , were identified as  𝑐 2𝑙 = 16 Å and  𝑐 3𝑙 = 20 Å. The relevant data is 

plotted in Figure 3.11. The corresponding in-plane lattice parameters were 

found to be  𝑎 2𝑙 =  𝑏  2𝑙 = 2.467 Å (4 s. f. ) and  𝑎 3𝑙 =  𝑏  3𝑙 = 2.466 Å (4 s. f. ), 
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and the corresponding optimised interlayer spacings were found to be 

𝑑𝑠(2𝑙) = 3.360 Å (4 s. f. ) and 𝑑𝑠(3𝑙) = 3.354 Å (4 s. f. ). 

 

Figure 3.11. Convergence of graphene supercell energies to determine 
vacuum spacing required to decouple intercellular graphene-graphene 
interactions along the vacuum direction. 

 

   Next, vacuum-filled cubic supercells were constructed containing a metal 

atom placed directly in the centre as shown in Figure 3.4 (c). Each supercell 

had lattice parameters fixed at values of  𝐴 𝑚  =  𝐵  𝑚  =  𝐶 𝑚   with 𝑚 = 𝐴𝑢, 𝐴𝑙,

𝐶𝑟 as appropriate, with  𝐴 𝑚   increasing (along with  𝐵  𝑚   and  𝐶 𝑚  ) in 1Å 

increments from 2 Å to 15 Å inclusive, to make a total of 14 × 3 = 42 cubic 

supercells. TS-corrected total energy calculations were carried out for each, 

and the supercell energies were converged with respect to the supercell size 

in order to decouple the intercellular metal-metal interactions. The minimum 

supercell size required to satisfy the decoupling condition all metals was 

identified as  𝐴 𝑚  =  𝐵  𝑚  =  𝐶 𝑚  = 10 Å. The data from this procedure is 

plotted in Figure 3.12. 
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Figure 3.12.  The changes in energy between successive total supercell 
energy calculations of a single metal atom in cubic supercells.  

All metal-metal interactions are converged to within 0.01 eV by a side 
length of 10 Å. 

 

   The supercell shown in Figure 3.4 (d) was then constructed by forming a 

2 × 2 array of the fully-optimised single graphene layer unit cells shown in 

Figure 3.4 (a). The supercell lattice vectors were fixed at values 𝐴 1𝑙 ,𝑚 = 2𝑎 1𝑙  

and  𝐵  1𝑙 ,𝑚 = 2𝑏  1𝑙, and the vacuum-direction lattice parameter 𝐶 1𝑙 ,𝑚
(𝑖)

was 

initially fixed at magnitudes increasing in 1Å increments from  𝐶 1𝑙,𝑚
(𝑖)

 =

6 Å, … , 27 Å inclusive, to make 22 supercells. Into each of these 22 

supercells, a metal atom of species 𝑚 = 𝐴𝑢, 𝐴𝑙, 𝐶𝑟 was placed 2 Å directly 

above the central carbon atom as indicated in Figure 3.4 (d) by the red 

cross, thus creating a total of 22 x 3 = 66 supercells. In each one of these 

supercells, the carbon layer was fixed at the centre of the vacuum at 

fractional coordinate 0.5 𝐶 1𝑙 ,𝑚
(𝑖)

 , and TS-corrected total energy calculations 

were carried out to converge intercellular interactions in the direction 𝐶 1𝑙 ,𝑚
(𝑖)

 to 

zero. The smallest value of  𝐶 1𝑙 ,𝑚
(𝑖)

  for which the energy plots were deemed 

to have converged for all metals was named  𝐶 1𝑙 ,𝑚   and identified as 

 𝐶 1𝑙 ,𝑚   = 20 Å. The convergence of the single layer graphene+metal 

energies with vacuum spacings is plotted in Figure 3.13. 
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Figure 3.13.  The convergence of metal adatom + single layer graphene 
total supercell energy with vacuum thickness.  

For all three metals, the total energies change by no more than 0.005 
eV upon extension of the vacuum thickness from 20 Å to 27 Å. The 
dipole correction scheme was not used for any of these calculations. 

 

A similar procedure (over a shorter range of distances) was repeated for the 

2 and 3 layer cases using the optimised interlayer spacings determined 

above. The top carbon layer was again fixed at the centre of the vacuum and 

the corresponding required vacuum thicknesses were found to be  𝐶 2𝑙 ,𝑚   =

24 Å and  𝐶 3𝑙 ,𝑚   = 27 Å. The self-consistent electrostatic dipole correction 

scheme of Neugebaueur & Scheffler76 was used to verify that any unphysical 

intercellular dipole-dipole interactions were zero for the vacuum thicknesses 

chosen. 

   3 single layer supercells were constructed from 3 × 3, 4 × 4 and 5 × 5 

arrays of the fully relaxed unit cells from Figure 3.4 (a), whose vacuum-

direction lattice vector 𝐶 1𝑙  fixed at the value 𝐶 1𝑙  = 20 Å in all cases. This 

vacuum thickness was chosen so as to meet the requirements of the 

individual convergence tests just described; i.e.  𝐶 1𝑙 =   𝐶 1𝑙 ,𝑚  >  𝑐 1𝑙 . A 

metal atom of species m was placed 2 Å above the central carbon atom for 

each of these 3 supercells, with 𝑚 = 𝐴𝑢, 𝐴𝑙 and 𝐶𝑟 as appropriate, thereby 
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producing a total of 3 × 3 = 9 supercells. TS-corrected total energy 

calculations were carried out for these 9 systems and the total energy was 

plotted against supercell size for each metal to identify the minimum size 

required to decouple all intercellular adatom interactions. The 5 × 5 

supercells with lattice parameters  𝐴 1𝑙 =  𝐵  1𝑙 = 5 𝑎 1𝑙  were deemed 

sufficient for this purpose. It was also verified that this choice satisfied the 

intercellular metal-metal convergence requirement established above since 

 𝐴 1𝑙 >   𝐴 𝑚  . No similar test of in-plane supercell sizes for multilayer + metal 

systems was carried out owing to the extensive computational cost involved. 

Supercell sizes of 5 × 5 unit cells were used for 2 and 3 layer cases, with 

 𝐴 2𝑙 =  𝐵  2𝑙 = 5 𝑎 2𝑙  and  𝐶 2𝑙 = 24 Å for the 2 layer system and   𝐴 3𝑙  =

 𝐵  3𝑙 = 5 𝑎 3𝑙  and  𝐶 3𝑙 = 27 Å for the 3 layer system, with the top carbon 

layer once again placed in the centre of the vacuum. Measures taken to 

estimate the error in the calculated binding energies due to lattice 

perturbations under relaxation and the limited size of the 5 × 5 supercells are 

outlined in section 3.3.3. 

   For the monolayer edge binding supercells, graphene edge slab/vacuum 

supercells akin to those shown in Figure 3.16 were prepared, in which metal 

atoms of species 𝑚 = 𝐴𝑢, 𝐴𝑙, 𝐶𝑟 were placed initially at each end of the slab 

in the graphene plane as indicated by the red crosses at an initial distance of 

2 Å from the nearest C atom(s). For the zigzag edge slabs, a series of 

geometry optimisation calculations was carried out in order to converge the 

total relaxed TS-corrected system enthalpy with respect to the slab width 

𝐴 1𝑙 ,𝑧𝑖𝑔𝑧𝑎𝑔 , and the slab thickness + vacuum thickness, whose sum is denoted  

𝐵  1𝑙,𝑧𝑖𝑔𝑧𝑎𝑔 . The intercellular layer spacings were fixed at the value  𝐶 1𝑙  =

20 Å, thus satisfying the test described earlier. The total binding energy was 

deemed to have converged for arrays of 5 × 8 of the appropriate unit cells for 

sites 𝑍1 and 𝑍2. In an identical manner, an array of 5 × 7 appropriate unit 

cells for sites 𝐶1 and 𝐶2 was deemed sufficient. The vacuum thickness in 

both cases was set at 20 Å. Recent work has suggested possible 

reconstruction at graphene edges,86 however this extra detail was not 

deemed necessary for the primary message of this chapter. Also, under 

typical laboratory conditions, it is not unlikely that H passivation takes place 
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at the edge sites resulting in another slight discrepancy between the 

theoretical models and the laboratory samples. Detecting the presence of H 

at the edge sites using STEM is almost impossible because the scattering is 

too small. In order to avoid complicating matters by including H passivation 

into the models in the absence of any actual experimental evidence, this 

aspect of the system was also neglected in the analysis presented here. 

 

3.3.3 Binding energy calculations 

   For the adsorption sites, the 3 monolayer graphene supercells shown in 

Figure 3.14 (a) - (c) were built, and a metal atom of species 𝑚 = 𝐴𝑢, 𝐴𝑙, 𝐶𝑟 

was placed into the centre of each supercell at an initial distance of 2 Å 

above the graphene sheet, to make nine supercells. The positions of the 

carbon atoms indicated in blue were fixed along all directions, and the 

positions of the adatom and carbon atoms indicated in black were allowed to 

relax in all directions. 2 and 3 layer versions of the four types of multilayer 

supercells shown in Figure 3.15 (a) - (d) were then constructed in an 

identical fashion for each of the three metals 𝑚 = 𝐴𝑢, 𝐴𝑙, 𝐶𝑟, to make 24 

more supercells. The carbon atom positions were fixed in the multilayer 

cases by simply applying the reasoning used for the monolayer cases 

independently to each carbon layer. All lattice parameters were fixed at the 

values indicated in Figures 3.14 and 3.15. For the edge defect sites, 4 

supercells like those shown in Figure 3.16 were used, one for each of the 4 

edge sites, whose lattice parameters were all fixed, and in which all atomic 

positions were relaxed with the metal atom placed 2 Å from the nearest 

carbon atom(s). These were duplicated into 3 copies, one set for each metal, 

to make 12 supercells. To curtail the risk of any of these systems failing to 

relax into an energetic minimum as a consequence of initial high symmetry, 

all systems were created with P1 symmetry and all symmetry finders were 

disabled. In addition to this, each metal atom was then offset from its initial 

site by 0.01 Å in the x direction. 
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Figure 3.14. The 3 single layer supercells before geometry optimisation 
used for the adatom + graphene systems for (a) site A, (b) site B and 
(c) site H.  

In all cases, carbon atoms whose positions are fixed are represented in 
blue and those whose positions are relaxed are represented in black. 
The corresponding unfixed and fixed sublattices are displayed to the 
right, in which the green lines show boundaries between segments of 
which are equivalent by virtue of rotational symmetry about the axis 
passing through the adsorption site represented by the green dot in the 

centre. The red cross denotes the initial adatom location.  𝑎 1𝑙 =  𝑏  1𝑙 =

2.469 Å (3 d. p.),  𝐴 1𝑙 =  𝐵  1𝑙 = 5 𝑎 1𝑙 = 12.303 Å (3 d. p.) and  𝐶 1𝑙 =

 𝑐 1𝑙 = 20 Å. See Figure 3.3 for nomenclature on adsorption sites. 

 

Without actually doing further calculations, it is not easy to estimate how 

much the binding energies of these configurations may change if the other 

constraint schemes38,41,42,46,53 were used instead; the essential requirement 

in all cases is that the supercells are sufficiently large to account for lattice 

perturbations to a reasonable degree of accuracy. The constraint scheme 

presented here finds its merit in the sense that it removes the artificial 

symmetry-breaking influence of periodic boundary conditions, allowing for 
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the shallow energetic minima associated with weakly-bound adatoms to be 

reliably identified. 

   The plane wave DFT code CASTEP83 was then used with the TS van der 

Waals correction implementation84 and Vanderbilt ultrasoft 

pseudopotentials20 to carry out spin-polarized geometry optimisation 

calculations for each of these 45 supercells. Valence states incorporated 

were 2s2 2p2 for C, 5d10 6s1 for Au, 3s2 3p6 3d5 4s1 for Cr and 3s2 3p1 for Al. 

To satisfy the k-points spacings convergence criterion, 𝑠𝑖 < 0.035 Å−1, 

determined in section 3.3.1., a regular and uniformly-weighted 3 × 3 × 2 

Monkhorst-Pack17 grid of 9 k-points was used to sample the Brillouin zone 

for the migration supercells illustrated in Figure 3.17 and the adsorption 

supercells in Figures 3.14 and 3.15. For the edge binding supercells 

illustrated in Figure 3.16, a 1 × 2 × 2 k points grid was used. For each series 

of self-consistent field (SCF) cycles used for the electronic minimisation, the 

exit criterion was imposed that the change in total electron energy between 

successive SCF cycles be converged to within 5 × 10−7eV. For the geometry 

optimisation, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimisation 

algorithm87-91 was used with the following three convergence criteria: i) that 

the maximum force on all atoms be less than 0.01 eVÅ
−1

, ii) that the 

maximum change in position for all atoms between successive BFGS steps 

be less than 5 × 10−4 Å and iii) that the maximum change in the total system 

enthalpy between successive BFGS steps be less than 5 × 10−6 eV per 

atom. The final TS-corrected enthalpies of these relaxed structures were 

then recorded as the values of 𝐸𝐶+𝑀 𝑋  for insertion into equation (3.1). 
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Figure 3.15. The multilayer input supercells for (a) site A1, (b) site A2 (c) site 
B, and (d) site H.  

The top carbon layer is represented by small balls and sticks, and the 
first sublayer is represented by large balls and sticks. No further 
sublayers are indicated owing to the assumed AB stacking structure. 
Fixed top layer and sublayer C atoms are blue and light green 
respectively. Unfixed top layer and sublayer C atoms are coloured 
black and grey respectively. As in Figure 3.14, the red cross denotes 
the initial adatom location. As in Figure 3.14, the unfixed and fixed 
sublattices are shown below their corresponding supercell, divided into 
segments which are equivalent by rotational symmetry about the axis 

passing through the adsorption site.  𝑎 2𝑙 =  𝑏  2𝑙 = 2.467 Å (3 d. p.), 

 𝐴 2𝑙 =  𝐵  2𝑙 = 5 𝑎 2𝑙 = 12.293 Å (3 d. p.),  𝐶 2𝑙 =  𝑐 2𝑙 = 24 Å,  𝑎 3𝑙 =

 𝑏  3𝑙 = 2.466 Å (3 d. p.),  𝐴 3𝑙  =  𝐵  3𝑙 = 5 𝑎 3𝑙 = 12.290 Å (3 d. p.) and 

 𝐶 3𝑙 =  𝑐 3𝑙 = 27 Å.  
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*The B site in (c) is the only site for which the rotational symmetry of 
the first sublayer (and also therefore the complete lattice) is 1-fold. For 
this case, C positions were fixed on the supercell perimeter on the first 
sublayer in preference to some other arbitrary selection resulting in 1-
fold symmetry, resulting in the 2-fold fixed sublattice rotational 
symmetry shown. See Figure 3.3 for nomenclature on adsorption sites. 

 

 

Figure 3.16. Example supercells used for metal binding to monolayer edges 
with accompanying unit cells. 

 𝐴 1𝑙 ,𝑧𝑖𝑔𝑧𝑎𝑔   = 8 𝑎 1𝑙  ,  𝐵  1𝑙,𝑧𝑖𝑔𝑧𝑎𝑔  = 5 3 𝑎 1𝑙 +  20 Å,  𝐴 1𝑙 ,𝑎𝑟𝑚𝑐 𝑎𝑖𝑟   

= 5 3 𝑎 1𝑙   and  𝐵  1𝑙,𝑎𝑟𝑚𝑐 𝑎𝑖𝑟  = 7 𝑎 1𝑙 +  20 Å. 

 

 

Figure 3.17. Example supercells used for migration activation barrier 
calculations. 

 (a) 𝐻 → 𝐵 → 𝐻 trajectory used for Cr and Al on the monolayer (b) 

𝐴1 → 𝐵 → 𝐴2 trajectory used for Au. 
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The values 𝐸𝑀 and 𝐸𝐶 were then calculated for insertion into equation (3.1), 

and the following measures were taken to exploit k-point error cancellation. 

Firstly, to evaluate the quantities 𝐸𝑀, the 45 final relaxed structure files were 

duplicated, and the copies were imported back into the visualisation 

software. All of the carbon atoms were then deleted, leaving just the metal 

atom(s) left in its final position in each case, and a spin-polarized TS-

corrected total energy calculation was then performed for each of these 45 

isolated metal atoms to evaluate the quantity 𝐸𝑀 for each supercell 

separately. To evaluate the quantities 𝐸𝐶 in equation (3.1) for the adsorption 

energies, the spin-polarized TS-corrected isolated graphene energies were 

calculated using the initial input supercells (i.e. pre-geometry optimisation), 

from which the metal atom was deleted in each case. For the edge site 

binding energies, the isolated graphene edge structures were fully relaxed to 

obtain spin-polarized TS-corrected enthalpy values 𝐸𝐶. No reconstructions of 

any graphene edges were observed, although this is unsurprising because 

the energy barrier that needs to be overcome for such a reconstruction to 

occur is likely to be missed by geometry optimisation algorithms, which, by 

design, search downhill in the energy landscape. These values were 

substituted into equation (3.1) to give the relaxed structure binding energies 

𝐸𝑏 𝑋 , which are plotted in Figure 3.18. 

   In order to estimate the error in the final values of adsorption binding 

energies owing to adatom-induced lattice perturbations, the binding energies 

of three fully relaxed 8 × 8 supercells were calculated; one for each metal. 

The binding energies for Al and Cr agreed with those of the 5 × 5 supercells 

up to a maximum discrepancy of 0.018 eV and 0.024 eV respectively, with a 

slightly larger maximum discrepancy of 0.056 eV recorded for the case of 

Au. In common with the 5 × 5 supercells, the puckering of the graphene 

lattice near the adatom was very small in all cases. Besides a weak positive 

(and probably incidental) correlation of these binding energy discrepancies 

with the adatoms' atomic masses, there is no obvious way to rationalise 

these discrepancies without carrying out a more exhaustive range of energy 

vs. supercell size calculations. Nevertheless, these tests confirmed that 

whilst the calculated binding energies were likely to be somewhat 

underestimated owing to the limited supercell sizes employed in this study, 
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the lattice perturbations for the adatoms studied were not significant enough 

to have an overriding influence on the main conclusions. 

 

 

Figure 3.18. The calculated binding energy for metal atoms adsorbed on the 
pristine substrates and bound at monolayer edge sites.  

The energetic ordering of the adsorption sites is seen to remain the 
same for increasing thicknesses. See Figure 3.3 for nomenclature of 
binding sites. 

 

3.3.4 Migration energy calculations 

   Using the adsorption binding energy results of the next section, the 

migration pathways 𝐻 → 𝐵 → 𝐻 on all substrates were identified as obvious 

candidates for initial guesses of the lowest energy adatom diffusion 

pathways for Cr and Al, along with the paths 𝐴 → 𝐵 → 𝐴  (𝐴1 → 𝐵 → 𝐴2) on 

the monolayer (multilayer) substrates for Au. These paths were nominated 

because they comprise sites which give the lowest combination of binding 

energies which can be joined by a path traversing the entire unit cell. The 

established linear/quadratic synchronous transit (LST/QST) scheme of 
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Halgren and Lipscomb92 for determining reaction pathways, as modified to 

include conjugate gradient refinements and generalised to include periodic 

systems by Govind et al.93 and implemented in CASTEP was used to locate 

the transition state configurations and thus evaluate the adatom migration 

activation barriers associated with these paths. The reactant and product 

states were first obtained by carrying out ultrafine geometry optimisation 

calculations with the pertinent adatoms at the path endpoints as indicated for 

the supercells illustrated in Figure 3.17. The reaction trajectory joining these 

reactant and product states was initially guessed by using the LST 

interatomic distance interpolation scheme,92 and the midpoint of this 

trajectory was used as the intermediate state to define the initial three-point 

QST pathway. A series of conjugate gradient minimisations and QST cycles 

were carried out from this point to locate the energy saddle point until the 

root mean square (RMS) of all atomic forces were converged to within 

0.05 eVÅ
−1

. All other calculation input parameters were the same as in 

section 3.3.2. The resulting energy barriers are tabulated in Table 3.3. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Binding energies and bond distances 

   All metal adatoms and edge atoms settled onto the sites they were initially 

placed into, confirming that local energy minima exist for all configurations 

studied. The calculated binding energies 𝐸𝑏  corresponding to the fully 

optimised configurations are tabulated in Table 3.2 and plotted in Figure 

3.18. Figure 3.19 shows total electron density slices for Au adsorbed onto 

monolayer and trilayer graphene, and bound to the monolayer edge sites 𝐶1, 

𝐶2, 𝑍1 and 𝑍2. For all adsorption states for all metals, structural perturbations 

to the graphene lattice were small, as Figure 3.19 shows for the case of Au.  
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Figure 3.19. Electron density images showing the difference in bonding 
character between adsorption and edge sites for Au.  

(a) Cross section of the total electron density field shown in colour units 

of electrons / Å3 for Au at adsorption site A for the fully relaxed 
monolayer. (b) Corresponding trilayer image, showing Au at site A1. 
The cross sections shown intersect the graphene along the “armchair” 
direction, thus showing the carbon-carbon bonds for comparison. The 
bonding character is seen to be consistent with physisorption in both 
cases, though a slightly more substantial bond is evident for the trilayer 
case. Au atom binding to the edge sites (c) Z1 (d) Z2 (e) C1 and (f) C2. 
Clear and substantial regions of electron density are observable in all 
four cases, consistent with a covalent metal carbide bond.  See Figure 
3.3 for nomenclature of binding sites. 
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The adsorption bonding character is seen to be consistent with 

physisorption. The increased adsorption energy for the trilayer case is 

evident from the smaller Au-graphene surface distance and the increased 

electron density between the Au and the binding carbon atom. In contrast, 

the binding energies at monolayer edge sites are much higher than the 

adsorption energies in all cases, confirming that these defect sites are much 

more stable, consistent with collaborators' STEM observations. These 

results are clearly supported by Figure 3.19, which shows a substantial 

region of electron density in between the C and Au at the edge sites, which 

warrants interpretation as a substantially stronger covalent chemical bond. 

   In Table 3.2, three distances are tabulated for the adsorption calculations: 

i) the distance(s) along the binding direction(s) from the adatom to the 

nearest carbon atoms (1 for sites 𝐴, 𝐴1 and 𝐴2, 2 for site 𝐵 and 6 for site 𝐻) 

ii) the distance along the z direction from the adatom to the nearest carbon 

atom(s) and iii) the distance along the z axis from the adatom to the fixed 

carbon atoms of the top layer. The difference between the latter two of these 

three distances is equal to the amount by which the top graphene layer had 

puckered out-of-plane. These puckering distances are all small, indicating 

that all metal adatoms do little to interfere with the structural integrity of the 

lattice. The binding energies are seen to significantly increase for increasing 

layer numbers for all of the metals tested, adding credibility to the notion that 

the van der Waals interaction with the sublayers accounts for a significant 

proportion of the metal-graphene binding energy in real laboratory samples.  

For each and every adsorption site and metal studied, the energy difference 

between the 2 and 3 layer cases is smaller than the difference between the 

1 and 2 layer cases. This certainly seems like an intuitive result and it 

suggests that the binding energy converges towards that of the bulk graphite 

(0001) surface as the thickness is increased beyond 3 layers. Further 

calculations for higher numbers of graphene layers could be carried out to 

predict the thickness required to recover the behaviour of the bulk graphite 

(0001) surface, although it may be wise to resort to using symmetry finders 

to make such calculations computationally efficient, depending on the 

scaling behaviour of the code used. 
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Table 3.2. (Ad)atom binding energies metal-carbon distances associated 
with the fully relaxed structures.  

The differences between values in the two rightmost columns indicate 
the graphene lattice puckering distance in each adsorption case. 
Distances which are identical by definition are highlighted in grey pairs. 
See Figure 3.3 for nomenclature of binding sites. 

Metal / 

graphene 
system 

Site Binding energy, 

Eb / eV 
(3 d.p.) 

Distance from metal 

(ad)atom to nearest carbon 
atom(s) along bond 

direction(s) / Å (3 d. p.) 

Distance along z axis from 

metal adatom to nearest  
carbon atom(s) 

 / Å (3 d. p.) 

Distance along z axis from 

metal adatom to fixed top 
layer carbon atoms 

 / Å (3 d. p.) 

Au 

1 layer 

adsorption 

sites 

A -0.380 3.082 3.082 3.095 

B -0.378 3.291 3.215 3.217 

H -0.367 3.700 3.421 3.408 

2 layer 

adsorption 
sites 

A1 -0.539 3.008 3.008 3.025 

A2 -0.543 2.671 2.671 2.741 

B -0.536 3.283 3.207 3.209 

H -0.522 3.665 3.383 3.379 

3 layer 

adsorption 

sites 

A1 -0.604 2.739 2.739 2.817 

A2 -0.612 2.712 2.712 2.775 

B -0.605 3.233 3.156 3.159 

H -0.590 3.650 3.366 3.360 

1 layer 
edge sites 

C1 -2.937 2.125 - - 

C2 -1.284 2.154 - - 

Z1 -5.950 2.171 - - 

Z2 -6.003 2.004 - - 

Cr 

1 layer 

adsorption 

sites 

A -0.518 2.309 2.309 2.332 

B -0.529 2.369 2.260 2.274 

H -0.542 2.509 2.056 2.063 

2 layer 

adsorption 

sites 

A1 -0.697 2.305 2.305 2.318 

A2 -0.704 2.298 2.298 2.309 

B -0.715 2.366 2.257 2.264 

H -0.738 2.503 2.049 2.048 

3 layer 
adsorption 

sites 

A1 -0.786 2.294 2.294 2.310 

A2 -0.790 2.289 2.289 2.301 

B -0.803 2.354 2.241 2.253 

H -0.832 2.483 2.025 2.020 

1 layer 

edge sites 

C1 -3.485 2.036 - - 

C2 -3.090 1.942 - - 

Z1 -6.181 1.827 - - 

Z2 -6.252 1.893 - - 

Al 

1 layer 

adsorption 
sites 

A -1.121 2.287 2.287 2.251 

B -1.150 2.357 2.246 2.245 

H -1.269 2.573 2.127 2.135 

2 layer 
adsorption 

sites 

A1 -1.411 2.280 2.280 2.230 

A2 -1.409 2.282 2.282 2.240 

B -1.435 2.359 2.249 2.225 

H -1.582 2.578 2.135 2.133 

3 layer 

adsorption 
sites 

A1 -1.555 2.281 2.281 2.232 

A2 -1.552 2.282 2.282 2.222 

B -1.578 2.359 2.250 2.226 

H -1.724 2.580 2.137 2.133 

1 layer 

edge sites 

C1 -3.564 2.002 - - 

C2 -3.539 1.892 - - 

Z1 -8.280 1.976 - - 

Z2 -7.095 1.935 - - 

 

   A further important conclusion of the results is that the absolute difference 

in binding energy between the A1, A2, B and H adsorption sites remains 

unchanged for the various studied thicknesses. This is evident from the 

energy trends in Figure 3.18, in which it can be seen that the 2 layer and 3 
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layer data points for a given metal are all approximately related by a rigid 

translation along the energy axis. So despite the proportional contribution of 

the sublayers to the total binding energy being very significant, the energetic 

ordering of the adsorption sites is actually predicted to be independent of the 

thickness. This indicates that at absolute zero, the short-range carbon-metal 

binding occurring on the top layer takes precedence over the van der Waals 

contribution from the sublayers, giving rise to static configurations for which 

the energetically favoured adsorption site is unchanged, irrespective of how 

thick the sample is. 

 

3.4.2 Mobility of metal adatoms 

   Despite the prediction that stable configurations exist for all metals and 

sites at 0 𝐾, this is in contrast to the published STEM observations60,67-69 at 

room temperature, 𝑇 ~ 300 𝐾. It is now argued that the migration activation 

barrier calculations summarised in Table 3.3 strongly support the notion that 

thermal effects cause the adatoms to be mobile along in-plane directions. 

Room temperature corresponds to a thermal energy of 𝑘𝐵𝑇 = 0.026 eV (3 d. 

p.), where kB  is the Boltzmann constant. The equipartition theorem of 

statistical mechanics states that for every spatial degree of freedom 

possessed by a particle, there exists a contribution of 𝑘𝐵𝑇 2  to its average 

thermal energy. The metal atoms can be considered to be confined to the 

2D graphene lattice, so they therefore have two degrees of freedom and a 

corresponding average thermal energy of 𝑘𝐵𝑇. The magnitude of the metal-

carbon binding energy in all cases is much larger than 𝑘𝐵𝑇 at room 

temperature, so an argument based on thermal bond breaking cannot be 

invoked to account for the continual absence of adatoms on clean regions. 

However, the migration activation barriers presented in Table 3.3 for the 

case of monolayer substrates at 0 𝐾 are well below 𝑘𝐵𝑇 for Au and Cr at 

𝑇 ~ 300 𝐾, indicating that these adatoms are likely to be extremely mobile on 

all the substrates studied at room temperature. For Al, the activation barriers 

are between 0.166 and 0.197 eV (3 d. p.), within one order of magnitude of 

𝑘𝐵𝑇. This suggests that Al adatoms are likely to migrate at a slower rate than 

Au and Cr, although the barrier is nonetheless trivially small. The results 
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predict that lattice edge sites would result in significantly stronger adatom 

binding than the pristine, clean regions of the lattice. This is demonstrated 

very clearly by recent collaborators' STEM observations presented in Figure 

3.1. It is noteworthy that one recent study94 used DFT to predict binding 

energies of Au atoms at different types of edge site to be between 3.1 eV 

and 6.4 eV, in good agreement with the values here. 

Table 3.3. Calculated migration barriers for Au, Cr and Al on the lowest 
energy migration pathways on pristine monolayer, bilayer and trilayer 
graphene. 

Adatom Substrate Path Migration barrier ΔE / 
eV  (3.d.p.) 

Au 1 layer A → B → A 0.007 
 

2 layer 
A1 → B → A2 0.008 

A2 → B → A1 0.024 
 

3 layer 
A1 → B → A2 0.019 

A2 → B → A1 0.025 

 

Cr 1 layer H → B → H 0.022 

2 layer H → B → H 0.021 

3 layer H → B → H 0.022 

 

Al 1 layer H → B → H 0.166 

2 layer H → B → H 0.178 

3 layer H → B → H 0.197 

 

Thus, it is concluded that all adatoms in the samples in Figure 3.1 had 

migrated across the clean regions of the lattice into more stable defective or 

contaminated regions within a short timeframe as a result of the statistical 

inevitability associated with perturbing thermal effects at 𝑇 ~ 300 K. This 

migration occurred because of the small adatom migration barriers for 

samples of all thicknesses. 

 

3.4.3 Possible effects of the electron beam 

   The effect of the STEM electron beam on the experimental specimens also 

needs to be considered. A very small number of Au atoms were observed by 

STEM on clean regions of four or more layers thickness some time after 

deposition of the adatoms. Whilst the published STEM images confirm that 

the beam does little or nothing to affect the integrity of the graphene itself at 

60 keV, it is necessary to rationalise the circumstances whereby single 

metals were observed on clean regions of graphene. In most instances, 

regardless of specimen thickness and the metal species, the adatoms exist 
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as clusters at defected or hydrocarbon contaminated regions of the sample. 

This can be understood by the high mobility of the adatoms, and the greater 

energetic stability of adatom binding at these sites. It is conjectured that in 

cases where Au atoms were observed by STEM on clean thicker regions60, 

the beam may have displaced these Au atoms from clusters in the more 

stable regions during the scanning process. Considerations based on a 

recent quantitative study of beam damage in graphene95 could be used to 

test these remarks. This is not to suggest that the possibility of knock-on 

damage in the microscopy experiments, local heating effects (which are 

arguably negligible96) or the temporary localised accumulation of negative 

charge around the beam are not also recognised. These effects were not 

however explicitly considered in this study. In summary, it is considered that 

migration effects are the pivotal reason why adatoms are not generally 

observed on clean graphene regions, with electron beam knock-on effects 

being a secondary consideration. Indeed, the beam itself is attributed as a 

possible reason for the observation of single Au atoms on clean regions due 

to displacement effects. 

3.5 CONCLUSIONS 

   DFT calculations have been presented for the binding energy of Au, Al and 

Cr atoms bound at graphene edge sites and adsorbed on monolayer, bilayer 

and trilayer graphene using the van der Waals-correction scheme of 

Tkatchenko and Scheffler28 for the first time. The contribution to the total 

binding energy from graphene sublayers was predicted to be very 

significant, although the edge binding energies were found to be 

substantially higher for all atoms in all cases. Migration activation barriers for 

these adatoms on monolayer, bilayer and trilayer graphene were then 

calculated and shown to be smaller than or within one order of magnitude of 

𝑘𝐵𝑇 at room temperature in all cases, implying that these adatoms are 

extremely mobile on graphene at room temperature. It was concluded from 

this that graphene samples doped with Au, Cr and Al should be seen to be 

completely devoid of these dopants on the pristine regions, with the dopants 

binding preferentially to the edge defect sites. This was shown to be in 

striking agreement with the STEM data presented in Figure 3.1 of this study, 
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along with recently published STEM observations60,67-69. Additionally, a brief 

review of atomic position fixing conventions adopted in recently published 

calculations was presented, and a simple guiding principle based on lattice 

symmetries was suggested for future studies. The case has been made that 

this constraint scheme is arguably an improvement over published constraint 

schemes on the grounds that it eliminates the problem of symmetry-

breaking, allowing for local energetic minima - often very shallow for 

adatoms on substrates - to be unambiguously identified. 
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Chapter 4: Steps on the TiO2 rutile (110) surface 

 

"God made the bulk, but surfaces were invented by the Devil." 

Wolfgang Pauli 

 

 

Surface science is a persistently important area of materials science, and 

defects are an inevitable component of any material surface. In particular, 

step defects comprise a significant proportion of many solid material 

surfaces. The atomic arrangements and free energies of steps can 

significantly influence the overall surface chemistry of a material, so gaining 

a proper understanding of steps is an important part of surface 

characterization. The energy of a step can be calculated within a density 

functional theory (DFT) periodic slab/vacuum supercell framework by 

calculating the total surface energy of a high-index slab which simulates 

terraces bound by the steps of interest, and then extracting the component 

of this total high-index surface energy which is solely attributable to the step. 

However, for certain materials, such as TiO2 rutile, there is a severe difficulty 

associated with this approach. For TiO2 rutile, it is well known that surface 

energies calculated using DFT slab models converge in a very slow and 

oscillatory manner with increasing slab thickness. This is really just a 

consequence of the fact that slabs of computationally practical size are 

effectively thin films, and are therefore afflicted with slowly decaying surface-

surface interactions. This oscillation occurs because the electron orbitals in 

the ground state hybridize differently depending on whether the slab in 

question has an even number or an odd number of oxide layers in it. This 

makes it very difficult to reliably extract the step energy from a high-index 

slab because the step energy is very small compared to the total surface 

energy of the slab, and yet this surface energy depends very sensitively on 

the slab chemical formula. A new and improved method is therefore called 

for, and this chapter presents the development and application of such a 
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method to the (110) surface of TiO2 rutile in detail. In principle, it can be 

applied to any crystalline surface. 

4.1 Abstract 

In this chapter, a systematic new approach has been developed to reliably 

calculate the energies of step defects and step-step interaction energies on 

general crystalline solid surfaces. It has been argued that existing and widely 

published statistical approaches to evaluating surface energies based on 

linear regression can be dangerously misleading for some materials and 

should generally be avoided in favour of the new method presented here. 

The method has been applied to the TiO2 rutile (110) surface and the 

calculated step energies have been used to predict island shapes which 

show strong agreement with islands observed in published scanning 

tunneling microscopy (STM) data. 

4.2 INTRODUCTION 

4.2.1 The importance of steps on TiO2 

The surface science of TiO2 is of persistent and widespread interest in 

materials science because of the many industrial applications which exploit 

its properties as a photocatalyst97, including bactericidal coatings98-100, air 

and water purification101,102 and photo-induced superhydrophilic surfaces.103-

105 Alongside technological motivations, TiO2 surfaces are of interest in the 

geosciences because step defects are thought to act as bonding sites for 

organic molecules in aqueous solutions providing a possible basis for the 

origins of primordial life.106-111 The (110) surface of the rutile phase is 

particularly important because rutile is the most abundant macroscopic 

phase of TiO2 and the (110) surface is the most stable surface of this 

phase,112,113 comprising the majority of the total surface area in laboratory 

samples. STM studies114-118 have emerged since the early 1990’s which 

invariably show that extended step defects comprise a very significant 

proportion of the overall surface area of rutile (110). Thus, a proper 

understanding of steps on the atomic level is crucial in moving towards a 

complete characterisation of this extremely important system, which has in 
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many ways become the archetypal representative for transition metal oxide 

surfaces. The surface of metal oxides is where many of the physical and 

chemical processes of interest to existing and emerging technologies takes 

place, and the specific atomic configurations of step structures can have a 

very significant effect on the surface chemistry of metal oxides and their 

affinity for bonding with adsorbates.112 This is especially true for crystalline 

nanoparticles on which steps are likely to dominate the surface morphology. 

Theoretical studies of the energy and structure of steps therefore present 

opportunities to not only optimise existing metal oxide surface processes but 

also to predict surface-adsorbate bonding processes to be exploited for new 

technologies. 

 

4.2.2 Existing studies of steps on TiO2 

In published STM studies114-118 of vacuum-annealed rutile (110) surfaces, 

terraces bound by extended step defects running almost exclusively along 

the  11 1  and  001  directions are observable, where the surface roughness 

is seen to decrease with higher annealing temperatures. Among these 

studies, Onishi et al.116 was the first to discover a new surface phase of 

highly organised “double-strand rows” after annealing at 1150 K, although 

that phase is not considered here. These studies have also shown that the 

vacuum-annealing preparation process for rutile (110) samples creates a 

small concentration of O vacancies and so these samples are slightly 

substoichiometric in O. In this chapter, the case of stoichiometric models is 

focused on in common with conventional surface energy calculations. This is 

because attempts to calculate surface energies for non-stoichiometric 

selections of binary compounds immediately result in an a priori conflict with 

the definition of surface energy itself. A detailed discussion of O 

substoichiometry on rutile (110) samples is given in section 4.4.6. Despite 

these STM studies showing that steps are clearly extended along well-

defined crystallographic directions, the exact atomic arrangement along the 

steps is difficult to determine theoretically with certainty. The difficulty is that 

the annealing or cleaving process may provide the energetic perturbations 

required for surface atoms to overcome local reconstruction activation 
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barriers and relax into a configuration which cannot be obtained by cleaving 

the bulk structure. However, Martinez et al.119 at Aarhus University recently 

harnessed the predictive power of a genetic algorithm with density functional 

theory (DFT) to tackle this difficulty for  11 1  and  001  type steps on rutile 

(110).  

 

Figure 4.1. The edge of a terrace island bound by  001 - and  11 1 -direction 
step structures on the stoichiometric (110) surface of TiO2 rutile. 

The structures  001 𝑇𝑖 ,  001 𝑂,  11 1  and  11 1 𝑅, are the lowest energy 
stoichiometric structures theoretically predicted by Martinez et al.119 

The extra TiO2 units of the  11 1 𝑅 structure are depicted in purple and 
dark grey to signify that their positions do not correspond to frozen bulk 
truncations. The surface atoms are labelled according to their 
coordination numbers. For example, 5f-Ti refers to a five-fold 
coordinated Ti atom. 

 

By sampling a large number of candidate step structures on a stoichiometric 

(451) slab, the most stable atomic arrangement which they recovered for 

 11 1  steps is found to be not obtainable from a bulk truncation, but is 

instead formed by adding an extra TiO2 unit to the surface cell, a structure 

which they coined  11 1 𝑅. Their study clearly demonstrates the importance 

of exhaustive structure searching methods in the characterisation of 

annealed surfaces. The most energetically stable  001  step structures that 

they recovered were two stoichiometric bulk-truncated terminations, both of 

which are considered in this study. The two most stable  11 1 -type steps and 

 001 -type steps are illustrated in Figure 4.1. In their study, they calculated 

total supercell energies which reveal the overall stability of vicinal surfaces. 
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However, the individual energetic components of high-index surfaces can 

not be extracted from such comparisons of total supercell energy. 

 

4.2.3 Step energy calculations are difficult because of quantum 

size effects 

Theoretical calculations of the properties of material surfaces using periodic 

slab models of computationally practical size are often strongly influenced by 

quantum size effects (QSE).120-133. For the case of TiO2 rutile (110), Bredow 

et al.131 showed that dominant QSE exist in the form of alternating modes of 

Ti 3d and O 2p electronic orbital hybridisation caused by the alternating 

odd/even number of oxide layers in slabs of increasing thickness.131 All 

ground-state material properties are derived from the electron density in DFT 

calculations, so Bredow's paper is significant because it is indicative of the 

very general and widespread issue of dealing with QSE when modelling any 

surface property for materials in which QSE are strong. It is well established 

from published DFT calculations that TiO2 rutile surface energies120,121-124, 

126,132,133, surface vacancy formation energies123,125,126 and other surface 

energetic properties such as molecular adsorption energies127-130 all 

converge in a slow and oscillatory way with increasing slab thickness. This 

general situation means that calculating step energies accurately using high-

index surfaces using slab models is difficult. This is because the step energy 

is tiny compared to the surface energy, and the surface energy (itself tiny 

compared to total supercell energies) is very sensitive to the choice of slab 

structure. 

4.2.4 Linear fitting methods 

   There is one commonly used statistical method of estimating surface 

energies which has been used in the literature120,134-137, which is to plot the 

total energies of increasingly large slab/vacuum supercells against the 

number of atoms or formula units in the slab, and to then use linear 

regression to draw a best fit line and interpret the small positive intercept of 

this best fit line as the surface energy at infinite slab thickness. It is 

absolutely critical that this approach is avoided for materials in which surface 

energies converge in a slow and oscillatory manner with increasing slab 
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size, such as TiO2 rutile. For such systems, this method can give vastly 

different intercepts depending on which slab energy data points are chosen 

to be included in the fit, and therefore vastly different estimates of the 

surface energy. This is a philosophically unacceptable state of affairs. The 

"surface energy" cannot be allowed to depend so dramatically on the 

arbitrary choice of which slab energies are included in the data range. If this 

fitting approach is used on high-index surface slabs with the intention of 

extracting the tiny and extremely sensitive energies of steps, it fails 

spectacularly, and for the same reason. Alongside this obvious practical 

limitation, it is also argued that using a linear fitting approach in this context 

has some questionable underlying assumptions because it fails to properly 

recognize surface energy oscillations in TiO2 rutile as a non-random, 

reproduceable and physically significant manifestation of alternating 

configurations of electron density, as already explained by Bredow et al.,131 

and instead wrongly treats them as random deviations from a linear trend 

characterised by a Gaussian distribution. From a practical point of view, it is 

worth noting that linear fitting methods work without problems for materials in 

which surface energies can easily be fully converged with slab thickness 

(such as metals) as long as the unconverged surface energies from the very 

thinnest slabs are not included in the fit. There are examples in the literature 

of robust uses of linear fitting on ledge energies138,139 (step + interaction 

energy), linear fitting on high-index surface energies140, and direct extraction 

of step energies from vicinal slabs141,142, where, in all cases, it was ensured 

that total surface energies were fully converged at the slab thicknesses 

used. Remarkably, the Aarhus group143 independently published their own 

method for calculating step energies, and also applied it to steps on TiO2 

rutile, only 65 days after the method in this chapter was published. They took 

a practical approach to overcoming the difficulties with linear fitting by simply 

applying a linear fit to the total energies of unrelaxed slabs, for which it is 

known that the surface energy oscillations decay much more quickly.132 This 

group also noted that linear fitting would only work on fully relaxed slabs of 

intractable size. The difficulty with systems like TiO2 rutile is that linear fitting 

techniques can be misleading, and the "brute force" approach of using 

arbitrarily large slabs does not work because of the very long-ranged nature 
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of surface-surface interactions. In Appendix B, it is shown explicitly that the 

linear fitting approach is flawed using example data from this chapter, and a 

nonlinear fitting method, along with a discussion of its own limitations, is 

offered as an alternative. 

   Despite the apparent hindrance of QSE to slab calculations for systems 

like TiO2, the slow convergence of surface energies with slab sizes actually 

constitutes a rich source of data which has apparently not yet been exploited 

in any published articles. In this article, a new systematic approach to 

extracting the energies of steps is demonstrated which fully uses this data to 

cross-check and make robust what is otherwise a potentially unreliable 

method. In order that the suggested methodology be open to scrutiny and 

improvement, and for the sake of reproducibility, the elementary details are 

laid out in section 4.2.5. This methodology is then applied to the rutile (110) 

surface using DFT and the calculated step energies are used to predict 

island shapes as a function of slab thickness for comparison with published 

STM images showing terrace islands on this surface. The atomic 

configuration difficulty described above is tackled by focusing on the lowest 

energy step structures recently predicted by Martinez et al.119; specifically, 

the two most stable structures along the  11 1  direction and the two most 

stable structures along the  001  direction, shown in Figure 4.1. A similar 

notation is adopted for the step energies as those used in 2006 for the case 

of steps on TiO2 anatase (101) by Gong et al.,136 from which much of the 

inspiration for this project originated. In their study, the authors calculated 

the energies of steps theoretically using supercells with DFT. However, the 

authors of this study used linear fitting to obtain their surface energies, and 

comprehensive technical details of their methodology and data analysis 

were not provided, so it is unclear whether they encountered any difficulties 

relating to QSE, and how they handled them if so. 

 

4.2.5 Methodology 

To calculate the energies of steps and their interactions, high-index vicinal 

surfaces with Miller indices (𝑘𝑙) which lie at a small angle 𝜃𝑘𝑙  to the (110) 

plane are modelled. For a vicinal surface, the total surface energy per unit 
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area (of the plane (𝑘𝑙)), 𝛾𝑘𝑙 , can be expressed in the form used by Gong et 

al.136: 

𝛾𝑘𝑙

𝑐𝑜𝑠𝜃𝑘𝑙
= 𝛾110 +

𝛽

𝑑𝑘𝑙
+

𝑞

𝑑𝑘𝑙
3 ,                                                                                     (4.1) 

where 𝛾110  is the surface energy per unit area of a pristine (110) terrace, 𝛽 is 

the energy per unit length along an isolated step, 𝑞 is the interaction 

constant representing the strength of the step-step interaction and 𝑑𝑘𝑙  is the 

step-step seperation distance measured in the (110) plane.  

 

 

Figure 4.2. Cartoon illustrations of the physical features corresponding to 
the terms in equation (4.1). 

(a) A pristine low-index semi-infinite terrace surface. (b) A low-index 
semi-infinite surface with a single isolated step. The contours illustrate 

the strain field created by the step. The width of the step is given by 𝑤, 
and is a well-defined quantity in the non-atomistic continuum solid 
surface model illustrated here. (c) A high-index semi-infinite stepped 
surface, where the terraces are the same terraces as in (a) and (b). (d) 
A stepped surface modelled under PBC. The total surface energy is 
now given by the terrace, step and step-interaction terms plus 
contributions resulting from the interactions between opposing surfaces 
within the same supercell. The vacuum gap must be large enough that 
surfaces cannot interact across the supercell boundaries. 

 

Note the important distinction between these elastic step-step interactions 

associated with strain, and the entirely different step-step repulsion 
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associated with the presence of kinks due to configurational entropy at non-

zero temperature.144-146 Note also that this equation can be applied to any 

low-index surface; not just (110). In the general case, 𝜃𝑘𝑙  denotes the angle 

between the low-index plane of interest and the relevant high-index plane 

(𝑘𝑙). The notation used by Gong et al.136 is adopted for the terrace, step 

and step-step interaction terms for consistency. By writing the interaction 

term in the form 𝑞 𝑑3 , the ~ 1 𝑑2  interaction potential of Marchenko and 

Parshin147 (MP) derived from the general surface stress tensor for continuum 

solids has provisionally been adopted. 

   Each term in equation (4.1) can be understood by referring to Figure 4.2 

which gives simplistic illustrations of the surface features from which the 

terms originate. Let the total surface free energy attributable to the region of 

material contained within the surface cell drawn in black in Figures 4.2 (a), 

(b) and (c) be denoted 𝜀 (eV). In Figure 4.2 (a), the total surface energy 

within the box is attributable to the existence of the terrace and is simply 

given by ε = εt, where εt is the terrace energy. In Figure 4.2 (b), a single 

isolated step of width 𝑤 is shown on an otherwise pristine terrace as shown 

in 4.2 (a). The contour lines illustrate the strain field created by the step. The 

total surface energy is ε = εt + εs , where εs  is the step free energy 

contribution. The total surface energy of the box drawn on the high-index 

semi-infinite stepped surface in Figure 4.2 (c) now includes a step interaction 

term in the form of overlapping strain fields emanating from adjacent steps, 

so is given by ε = εt + εs + εss , where εss  is the step-step interaction energy. 

There are two important points which must be understood if equation (4.1) is 

to be validly applied to atomistic stepped surface models. Firstly, equation 

(4.1) is applicable to semi-infinite surfaces, i.e. where only one surface is 

defined, and makes no account of surface-surface interactions encountered 

in slab models in which the two opposing surfaces are only separated by a 

few atomic layers. Figure 4.2 (d) illustrates such a typical stepped slab 

system under PBC. Therefore, when attempting to apply equation (4.1) to 

slab models, it is necessary to converge all surface energy quantities with 

respect to increasing slab thickness to try to eliminate the influence of 

surface-surface interactions. Secondly, the width of the step, 𝑤, must ideally 

be significantly smaller than the step-step distance 𝑑𝑘𝑙 , so that 𝑤 ≪ 𝑑𝑘𝑙 . If 
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this condition is not satisfied, then the assignment  of the terms from 

equation (4.1), designed for a simplistic continuum surface, to the more 

complicated arrangements of atoms on an atomistic surface, becomes 

invalid. This is one of the difficulties of this method, and the extent to which 

the small step width approximation is valid for the atomistic models 

considered in this chapter is assessed in the later sections. 

   Consider a semi-infinite atomistic vicinal surface like that illustrated in 

Figure 4.3, in which the supercell lattice vectors 𝐴  and 𝐵   lie in the high-index 

plane (𝑘𝑙) with 𝐵   lying parallel with the step, and in which 𝐶  is understood 

to extend infinitely far into the bulk material. Let the total surface free energy 

per supercell, 𝜀𝑘𝑙  (eV), be expressed as the sum of three contributing 

components: 𝜀𝑡 , the free energy of a (110) terrace region, 𝜀𝑠, the free energy 

of the step structure and 𝜀𝑠𝑠, the energy associated with the strain field due 

to step-step interactions. The approximation that the step is of insignificant 

width is used so that the surface area of the (110) terrace region per 

supercell, 𝑆′, is given by the projection of the area 𝑆 =  𝐴   𝐵   𝑠𝑖𝑛𝜃𝐴𝐵  onto the 

(110) plane with 𝑆′ = 𝑆𝑐𝑜𝑠𝜃, where 𝜃 is the angle subtended by the high-

index plane with the (110) plane, and 𝜃𝐴𝐵  is the angle subtended by the 

lattice vectors 𝐴  and 𝐵  . Since the lattice vector 𝐵   lies parallel with the step, 

the step-step distance 𝑑 measured perpendicular to the steps and lying in 

the (110) plane is found by finding the projection of the vector 𝐴  onto the 

(110) plane, 𝐴 𝑝 = 𝐴 𝑐𝑜𝑠𝜃, and then extracting the magnitude of the 

component of 𝐴 𝑝  which is perpendicular to 𝐵   by multiplying 𝐴 𝑝  by 𝑠𝑖𝑛𝜃𝐴𝐵 . 

The general expression for the step spacing is therefore 𝑑 =  𝐴  𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝐴𝐵 . 

The inverse square MP147 step-step interaction potential can then be used to 

write 𝜀𝑠𝑠 =
𝑈

𝑑2
, where 𝑈 is some interaction constant to be found. By 

combining all of these considerations with some straightforward 

manipulations, the total surface energy per unit area of the (𝑘𝑙) plane, 𝛾𝑘𝑙  

(eVÅ-2),  can be written as 

𝛾𝑘𝑙 =
𝜀𝑘𝑙

𝑆
=

𝜀𝑡 +  𝜀𝑠 +  𝜀𝑠𝑠

𝑆
= 𝑐𝑜𝑠𝜃  

𝜀𝑡

𝑆′
+

𝜀𝑠

𝑑 𝐵   
+

𝑈

𝑑3 𝐵   
 .                                   (4.2) 
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Figure 4.3. Ball-and stick model of a semi-infinite periodic (430) surface of 

TiO2 rutile, consisting of (110) terraces and  001 𝑇𝑖  steps.  

The region shaded in transparent blue with white borders lies in the 

(110) plane and has area 𝑆′, equal to the projection of the area 

𝑆 =  𝐴 × 𝐵    onto the (110) plane. The step-step distance 𝑑 lies in the 

(110) plane and perpendicular to 𝐵  . Equation (4.2) can be readily 
applied to the semi-infinite surface illustrated here, but care must be 
taken when applying it to slab models because the opposing surfaces 
of double-ended slabs interact over a long range. 

 

The term 
𝜀𝑡

𝑆′
 is identified as the (110) terrace surface energy per unit area, 

𝛾110  (eVÅ-2), and 
𝜀𝑠

 𝐵   
 as the energy per unit length along the step, 𝛽 (eVÅ-1). 

The term 
𝑈

 𝐵   
 is also identified as a constant representing the strength of the 

step-step interaction which is named 𝑞 (eVÅ) in order to recover equation 

(4.1). The form of equation (4.1) knows nothing of atoms, so it is a 

macroscopic equation and can only be validly applied to atomic step 

structures as long as the small step width approximation holds. The extent to 

which this approximation is valid for the atomic step structures studied in this 

thesis is evaluated throughout sections 4.4.1 to 4.4.5 inclusive. 

   By using stoichiometric slab/vacuum supercells, numerical values for 𝛾𝑘𝑙  

can be calculated using DFT in the conventional way by evaluating the 

difference between the geometry-optimised supercell energy and that of the 

corresponding quantity of bulk material: 
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𝛾𝑘𝑙  𝑚 =
1

2𝑆
 𝐸𝑘𝑙  𝑚 − 𝑚

2 𝐸𝐵 ,                                                                              4.3  

where 𝐸𝐵 is the energy of the Ti2O4 bulk rutile unit cell, 𝐸𝑘𝑙  is the geometry-

optimised total energy of a stoichiometric and symmetric TimO2m 

slab/vacuum supercell whose lattice vectors 𝐴  and 𝐵   lie in the high-index 

plane (𝑘𝑙) and 2𝑆 is the total surface area per (symmetric and double-

ended) supercell, given by 𝑆 =  𝐴 × 𝐵   . The essential requirement for 

substituting surface energies calculated using equation (4.3) into the semi-

infinite surface energy equation (4.1) is that the slab thickness be 

systematically increased until the resultant energies are converged so that 

surface-surface interactions are accounted for. The dependence of 𝛾𝑘𝑙  on 

the slab chemical formula TimO2m is emphasised by writing 𝛾𝑘𝑙 = 𝛾𝑘𝑙  𝑚 . 

To create a structurally consistent set of high-index slabs, a convention is 

chosen whereby the number of layers in a given slab, 𝐿, is defined in terms 

of 𝑚 and so 𝐿 is therefore used as the independent variable. 

By calculating the surface energy per unit area, 𝛾𝑘𝑙 , of three progressively 

higher index slab/vacuum supercells of 𝐿 layers thickness using equation 

(4.3), and then substituting these values into equation (4.1), a system of 

three linear simultaneous equations is obtained whose solutions are 𝛾110 (𝐿), 

𝛽(𝐿) and 𝑞(𝐿). For example, (341), (451) and (561) slabs of 𝐿 layers 

thickness hosting the  11 1  step can be used to yield the surface energy per 

unit area values 𝛾341 𝐿 , 𝛾451 𝐿  and 𝛾561 𝐿 , which can then be substituted 

into equation (4.1) along with the corresponding step spacings 𝑑341 , 𝑑451 , 

𝑑561  and vicinal surface misorientation angles 𝜃341 , 𝜃451  and 𝜃561  taken 

directly from the supercell dimensions. The resulting system of three linear 

simultaneous equations written in matrix form is 

 

𝛾341 (𝐿) 𝑐𝑜𝑠𝜃341 

𝛾451 (𝐿) 𝑐𝑜𝑠𝜃451 

𝛾561 (𝐿) 𝑐𝑜𝑠𝜃561 
 =  

1 𝑑341
−1 𝑑341

−3

1 𝑑451
−1 𝑑451

−3

1 𝑑561
−1 𝑑561

−3

  

𝛾110 (𝐿)
𝛽(𝐿)
𝑞(𝐿)

 ,                                           (4.4) 

and the solutions are 

𝛾110 𝐿 =  
𝑑𝑒𝑡 𝐺(𝐿)

𝑑𝑒𝑡 𝐷
,           𝛽 𝐿 =   

𝑑𝑒𝑡 𝐵(𝐿)

𝑑𝑒𝑡 𝐷
,          𝑞 𝐿  =   

𝑑𝑒𝑡 𝑄(𝐿)

𝑑𝑒𝑡 𝐷
,            4.5  
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where 𝐷 is the matrix from equation (4.4) and 𝐺(𝐿), 𝐵(𝐿)  and 𝑄(𝐿) are 

matrices identical to 𝐷 but whose first, second and third columns 

respectively have been replaced with the column vector of high-index 

surface energies from the left-hand side of equation (4.4), as per Cramer’s 

determinant rule. This process can then be repeated for increasingly thick 

slabs of higher 𝐿, where the slabs' chemical formulae are increased 

according to a prescribed arithmetic rule, thereby exposing the behaviour of 

𝛾110 (𝐿), 𝛽(𝐿) and 𝑞(𝐿) with increasing 𝐿 individually and consistently. The 

oscillatory behaviour of 𝛾𝑘𝑙 (𝐿) with increasing 𝐿 propagates through to the 

solutions 𝛾110 (𝐿), 𝛽(𝐿) and 𝑞(𝐿) so they also oscillate with increasing slab 

thickness and depend sensitively on 𝐿. The significant advantage of this 

approach is that the solutions 𝛾110 (𝐿) can be cross-checked, for each and 

every value of 𝐿, with values calculated directly and separately using (110) 

slabs. These directly calculated values are denoted 𝛾 110 𝐿 . The residual 

differences 𝛾110 𝐿 − 𝛾 110 𝐿  over the full range of 𝐿 can then be analysed in 

order to determine whether the terrace component of the total high-index 

surface energy has been consistently extracted while naturally accounting 

for quantum size effects, therefore leaving the remaining step energies and 

interaction energies open to self-contained analysis. Expressed another 

way, it allows one to determine whether the macroscopic ~ 1 𝑑2  MP 

interaction potential accurately captures the true energetics of the atomistic 

slab models. This is important, because whilst the MP interaction potential 

appears to have been adopted by Gong et al.136 and is frequently assumed 

and observed in the literature148-151, there are also many instances in the 

literature152-157 where atomic step-step interaction energies for various 

material surfaces have been observed or suggested to deviate from the 

~1 𝑑2  behaviour due to atomistic effects. 

4.3 METHOD 

4.3.1 Basis set, exchange correlation functional, bulk reference 

state and vacuum thickness 

The plane wave density functional theory code CASTEP83 was used with the 

GGA PBE exchange correlation functional61 and Vanderbilt ultrasoft 
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pseudopotentials20 to converge the total energy of the bulk TiO2 rutile unit 

cell with respect to the k point spacings 𝑠𝑖  (where 𝑖 denotes correspondence 

to the reciprocal vector 𝑏  𝑖) and the kinetic energy cutoff 𝐸𝑐𝑢𝑡 , where each 

was varied independently. This procedure yielded basis set values satisfying 

𝑠𝑖 < 0.035Å
−1

 and 𝐸𝑐𝑢𝑡  = 400 eV, which were then used along with the GGA 

PBE functional for all subsequent calculations in the chapter. Following this, 

a cell-optimised geometry optimisation calculation was carried out on the 

bulk unit cell with P42/mnm symmetry imposed, in which the atomic forces 

were converged to within 0.01 eVÅ
−1

. This stringent tolerance on the bulk 

cell was motivated by the high sensitivity of 𝛾𝑘𝑙  to the value of 𝐸𝐵 in 

equation (4.3). The bulk unit cell lattice parameters were recorded as 

 𝑎  = 4.644 Å (3 d. p.) and  𝑐  = 2.976 Å (3 d. p.), in good agreement with the 

experimentally measured158 quantities  𝑎  𝑒𝑥𝑝 = 4.594 Å (3 d. p.) and 

 𝑐  𝑒𝑥𝑝 = 2.969 Å (3 d. p.). A three layer stoichiometric and symmetric (110) 

slab/vacuum Ti6012 supercell was then built, whose surface-plane lattice 

vectors were fixed at values derived directly from the optimised bulk cell, and 

for which the vacuum thickness was fixed at magnitudes increasing in 1 Å 

increments from 3 Å to 12 Å inclusive, to make a total of 10 supercells. The 

geometry-optimised system energy was calculated for each, and a minimum 

vacuum thickness of 10 Å was identified in order to decouple all intercellular 

interactions along the vacuum direction. In all cases, the slab was placed in 

the centre of the vacuum. 

 

4.3.2 Slab calculations 

For the  001 𝑇𝑖  step structure, (210), (320) and (430) slabs of 3,..., 10 layers 

(𝐿 = 3, . . , 10) and P 1 2/m 1 symmetry were built to make a total of 8 × 3 =

24  slabs on which the terminations were cleaved manually to produce (110) 

terraces bounded by the  001 𝑇𝑖  steps. This procedure was repeated for the 

 001 𝑂 structure to make 24 more slabs, also of P 1 2/m 1 symmetry. For the 

 11 1  and  11 1 𝑅 steps, (341), (451) and (561) slabs of 3,..., 10 layers 

(𝐿 = 3, . . ,10) and P1  symmetry were built to make 24 × 2 = 48 further slabs. 

For the  11 1 𝑅 slabs, the extra TiO2 units were added manually to each end. 
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Alongside these vicinal surfaces, 8 increasingly-thick symmetric and 

stoichiometric (110) slabs of 3,..., 10 layers were built for the consistency 

check. The total set of input files thus consisted of 104 slab/vacuum 

supercells. The projections onto the (110) plane of the supercells are shown 

in Figure 4.4. For each and every one of these 104 supercells, the surface-

plane lattice vectors, 𝐴 𝑘𝑙  and 𝐵  𝑘𝑙  were fixed at values derived directly from 

the optimised bulk lattice parameters  𝑎  = 4.644 Å (3 d. p.) and  𝑐  =

2.976 Å (3 d. p.) as appropriate to each case. The surface-normal lattice 

vector 𝐶 𝑘𝑙  was fixed at a value such that the vacuum thickness always 

equalled or exceeded 10 Å and the crystal lattice was re-oriented with 

respect to the Cartesian coordinate system so that 𝐶 𝑘𝑙  was always aligned 

with the 𝑧 axis. 

 

Figure 4.4. Top-down views of the projection of the high-index supercells 

onto two terraces of a semi-infinite (110) surface bounded by (a)  001 𝑂 

(b)  001 𝑇𝑖  (c)  11 1  and (d)  11 1 𝑅 steps. 

The extra TiO2 units of the  11 1 𝑅 structure are depicted in purple and 
dark grey as in Figure 4.1. The distance measurements lying in the 

(110) plane indicated with black arrows are the step-step spacings 𝑑𝑘𝑙  

and the step height in all cases is  2 𝑎  . The supercells used in the 
corresponding DFT calculations were built double-ended with vacuum 
slabs in the infinite periodic regime like those illustrated in Figure 4.5. 
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Figure 4.5. Side views of the set of 24 supercells used for the  001 𝑂 step 
using ball and stick representation.  

All supercells have inversion symmetry about the centroid located at 
fractional coordinates (0.5, 0.5, 0.5), indicated in each supercell with 
the blue cross. The two steps on the opposing ends of every slab in the 
entire set of input files are consistently located either i) directly opposite 
each other along the direction [110], for L = even cases , or ii) opposite 
each other along the direction [110], up to a discrepancy of a single unit 
cell for L = odd cases. This is indicated by the black dotted lines joining 
the opposing steps for the supercells shown. 
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To maintain structural consistency, all high-index slabs were built such that 

the step on the top end of each slab was made to be situated directly 

opposite the step on the bottom end along the direction perpendicular to the 

(110) plane (up to a discrepancy of a bulk unit cell due to the AB stacking 

structure) as illustrated for the case of the  001 𝑇𝑖  step in Figure 4.5. This 

structural convention was encoded arithmetically in terms of the slabs' 

chemical formulae and summarised in Table 4.1. CASTEP83 was then used 

with the GGA PBE functional61 and Vanderbilt ultrasoft pseudopotentials20 to 

carry out a geometry optimisation calculation on these 104 supercells in 

which all atomic positions were allowed to relax in all directions. For each 

series of self-consistent field (SCF) cycles used for the electronic 

minimisation, the exit criterion was imposed that the change in total electron 

energy between successive SCF cycles be less than 5 × 10−7 eV three 

times in succession.  

Table 4.1. The convention used to define the number of layers, 𝐿, in terms of 

the number of TiO2 units, 𝑚.  

For example, a 6 layer (320) slab hosting a  001 𝑇𝑖  step on each end 
has chemical formula Ti31O62. By using this convention, all four sets of 
slabs were structurally consistent with each other as exemplified in 
Figure 4.5. 

Step Slab  

Miller index 

Number of layers, 𝐿, defined by chemical formula 𝑇𝑖𝑚𝑂2𝑚  

Even 𝐿 Odd 𝐿 

 001 𝑇𝑖  (210) 𝑇𝑖3𝐿+1𝑂2 3𝐿+1  𝑇𝑖3𝐿+2𝑂2 3𝐿+2  

(320) 𝑇𝑖5𝐿+1𝑂2 5𝐿+1  𝑇𝑖5𝐿+2𝑂2 5𝐿+2  

(430) 𝑇𝑖7𝐿+1𝑂2 7𝐿+1  𝑇𝑖7𝐿+2𝑂2 7𝐿+2  

 001 𝑂 (210) 𝑇𝑖3𝐿+1𝑂2 3𝐿+1  𝑇𝑖3𝐿+2𝑂2 3𝐿+2  

(320) 𝑇𝑖5𝐿+1𝑂2 5𝐿+1  𝑇𝑖5𝐿+2𝑂2 5𝐿+2  

(430) 𝑇𝑖7𝐿+1𝑂2 7𝐿+1  𝑇𝑖7𝐿+2𝑂2 7𝐿+2  

 11 1  (341) 𝑇𝑖7𝐿+3𝑂2 7𝐿+3  𝑇𝑖7𝐿+2𝑂2 7𝐿+2  

(451) 𝑇𝑖9𝐿+2𝑂2 9𝐿+2  𝑇𝑖9𝐿+3𝑂2 9𝐿+3  

(561) 𝑇𝑖11𝐿+3𝑂2 11𝐿+3  𝑇𝑖11𝐿+2𝑂2 11𝐿+2  

 11 1 𝑅 (341) 𝑇𝑖7𝐿+5𝑂2 7𝐿+5  𝑇𝑖7𝐿+4𝑂2 7𝐿+4  

(451) 𝑇𝑖9𝐿+4𝑂2 9𝐿+4  𝑇𝑖9𝐿+5𝑂2 9𝐿+5  

(561) 𝑇𝑖11𝐿+5𝑂2 11𝐿+5  𝑇𝑖11𝐿+4𝑂2 11𝐿+4  
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Figure 4.6. The physical reason for the oscillations in the energetic 
components plotted in Figures 4.8, 4.9 and 4.10: thickness-dependent 
alternating configurations of electron density. 
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(a) Ball and stick models of (a) 4 layer and (b) 5  layer (110) slabs with 
electron density slices passing through 5f-Ti surface atoms. (c) Ball and 

stick model of a 4 layer (210) /  001 𝑂 slab, (d) a 5 layer (210) /  001 𝑂 

slab. (e) Side view of a 5 layer (451) /  11 1 𝑅 slab. (f) Ball and stick 

model of (f) 4 layer (451) /  11 1 𝑅 slab and (g) 5 layer (451) /  11 1 𝑅 
slab. In all ball and stick models, Ti atoms are illustrated in grey and O 

in red. For the  11 1 𝑅 models, the extra Ti atoms are shown in dark 
grey, and the extra O in purple. (h) Electron density slices from (a) - (f) 
in units of electrons / Å3. For slices 1 and 2, the interlayer distances 
between the 4th/5th and 5th/6th atomic layer from the top are quite 
different. The interlayer distances from slices 3 and 5, and from slices 4 
and 6 in the (210) slabs show similar traits. In slices 7 and 8, the 
regions I/I', II/II' and III/III' are outlined where slab thickness-dependent 
alternating modes of electron density are most evident. As in Figure 
4.1, selected surface atoms are labelled according to their coordination 
numbers. 

 

For the geometry optimisation, the low memory159 Broyden–Fletcher–

Goldfarb–Shanno (LBFGS) optimisation algorithm87-91 was used with the 

following 3 exit criteria: i) that the maximum force on all atoms be less than 

0.03 eVÅ
−1

, ii) that the maximum change in position for all atoms between 

successive LBFGS steps be less than 10−3 Å and iii) that the maximum 

change in the total system energy between successive LBFGS steps be less 

than 10−5 eV per atom. 

   The total electron density slices of the fully relaxed slabs were then 

examined, some of which are presented in Figure 4.6. The 96 fully-optimised 

supercell energies 𝐸𝑘𝑙  were inserted as appropriate with the bulk energy 𝐸𝐵 

into equation (4.3) to yield the surface energy per unit area of the high index 

surface for each slab, 𝛾𝑘𝑙 (𝐿), and these values were plotted against 𝐿 in 

Figure 4.7 and tabulated in Table 4.2. These values were then substituted as 

appropriate into equation (4.4), and the resulting systems of simultaneous 

equations were solved to find the solutions 𝛾110 (𝐿), 𝛽(𝐿) and 𝑞(𝐿) with 

increasing 𝐿 for each of the four steps as explained in section 4.2.5. For 

each step, the solutions 𝛾110 𝐿  were plotted against the 𝛾 110 (𝐿) values 

calculated directly using the (110) slabs in Figure 4.8 for the consistency 

check, along with the residuals 𝛥𝛾110 𝐿 = 𝛾110 𝐿 − 𝛾 110 (𝐿). The solutions 

𝛽(𝐿) and 𝑞(𝐿) were plotted in Figures 4.8 and 4.9 respectively and tabulated 

in Table 4.2. 
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4.4 RESULTS AND ANALYSIS 

4.4.1 Initial remarks 

All 104 slabs relaxed into a configuration corresponding to an energetic 

minimum. It can be seen from the total electron density slices in Figure 4.6 

that the interlayer interactions (and interlayer distances) depend critically on  

 

Figure 4.7. The convergence of surface energy per unit area with slab 
thickness.  

Despite the clear oscillations due to alternating modes of electron 
density, the surface energies clearly converge to finite values. In all but 

a few 𝐿 = 3 cases, higher index surfaces have lower surface energy 
per unit area. 
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the number of layers in the slab. The dominant electronic orbitals which 

contribute to this effect are Ti 3d and O 2p states, which was confirmed for 

all of the slabs with angular momentum-resolved density of states plots and 

orbital density plots. This is exactly what was observed and explained in 

detail for the case of TiO2 rutile (110) slabs by Bredow et al.131 Electron 

density slices 1 and 2 shown in Figure 4.6 (h) for (110) slabs look virtually 

identical to those presented by Bredow et al. The high-index surface 

energies 𝛾𝑘𝑙  𝐿  plotted in Figure 4.7 display oscillatory convergence with 

increasing 𝐿. This is the direct consequence of the alternating configurations 

of electron density as seen in Figure 4.6. It is also the physical reason why 

the method of using linear regression to estimate the surface energy from 

the intercept of a plot of total supercell energies against 𝑚 is unsuitable for 

the case of TiO2 rutile, or indeed any material in which surface-surface 

interactions are strong. It is emphasised at this point that the oscillations in 

Figure 4.7 are not merely a consequence of artificial aspects of the 

calculation; in particular, the different k points sampling grid used for the 

calculation of the bulk unit cell energy, 𝐸𝐵, from that of each total supercell 

energy, 𝐸𝑘𝑙 . This was verified directly by calculating values of 𝐸𝐵 using new 

(and substantially larger) bulk unit cells for selected slabs, where the lattice 

parameters of these bulk cells were systematically chosen so that the k point 

sampling grids in each case was identical to that of the corresponding 

slab/vacuum supercell.  The resulting surface energies were the same to 7 

significant figures and showed identical oscillations. This confirms, for the 

avoidance of any doubt, that the different sampling grid used for the bulk cell 

is of no consequence, and moreover that the basis set used throughout all 

these calculations is robust and fully converged. It can be seen that these 

oscillations propagate through to the solutions 𝛾110 , 𝛽 and 𝑞 plotted in 

Figures 4.8, 4.9 and 4.10 respectively, and the magnitude of the residual 

oscillations in these solutions is large compared to the values themselves. 

The 𝛾110 , 𝛽 and 𝑞 solutions were then substituted appropriately back into the 

high-index surface energy equation (4.1), and both sides were multiplied by 

𝑐𝑜𝑠𝜃𝑘𝑙  and then multiplied by the total slab surface area 2𝑆 = 2 𝐴 × 𝐵    in 

each case to obtain the total surface energy 𝜀𝑘𝑙  of each high-index slab 

resolved into terrace, step and step-interaction components. These total 
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surface energy components were plotted in Figures 4.11 and 4.12 against 

slab thickness. Currently, ab initio calculations are generally impractical for 

supercells exceeding the size of those used in this study, and so to draw 

comparisons between the solutions 𝛾110 , 𝛽 and 𝑞 with experimental 

observations of laboratory samples of finite but macroscopic thickness, one 

must rely on an extrapolation of the plots along the direction +𝐿 towards 

𝐿 → ∞. This demonstrates the challenge involved with calculating accurate 

step energies for macroscopically thick crystals. There is also a small 

statistical uncertainty in the fully optimised supercell energies 𝐸𝑘𝑙  which 

originates from the finite tolerances used in the geometry optimisation. This 

uncertainty is common to the  11 1 ,  11 1 𝑅,  001 𝑇𝑖  and  001 𝑂 systems.  

 

 

Figure 4.8. Layer-by-layer cross-check.  

Left panel: The convergence of the (110) terrace energy per unit area 
for the four steps, compared with the values calculated directly using 

(110) slabs. Right panel: The residual differences 𝛥𝛾110 𝐿 = 𝛾110 𝐿 −
𝛾 110 (𝐿) which show the validity of applying equation (1) to the atomistic 
supercells used. 

 



- 132 - 

 

Figure 4.9. The convergence of step energy per unit length with increasing 
slab thickness for the four steps studied.  

Despite the large oscillations in the solutions, it is quite clear that the 

 11 1 𝑅 step is the most stable. 

 

The  11 1  and  11 1 𝑅 slabs are substantially lower in symmetry than those 

of the  001 𝑇𝑖  and  001 𝑂 systems, so this source of uncertainty is likely to 

be more severe for these systems. The reader is referred to Appendix A for 

a discussion of these sources of statistical uncertainty. Note that the values 

𝛾 110 (𝐿) agree well with published calculations.120,132,133 
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Figure 4.10. The convergence of the step-step interaction constant with 
increasing slab thickness for the four steps studied.  

Despite the large oscillations in the plot, the  001 𝑂 and  001 𝑇𝑖  steps 

clearly have the weakest interactions, and the  11 1 𝑅 step has the 
strongest interactions. 
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Figure 4.11 The total surface energy of the  001 𝑇𝑖  and  001 𝑂 slabs 
resolved into terrace, step and step-step interaction components. 

In all cases, the terrace energy is the dominant component of the total 
surface energy, with the step-step interaction energy contributing the 
least.  
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Figure 4.12 The total surface energy of the  11 1  and  11 1 𝑅 slabs resolved 
into terrace, step and step-step interaction components. 

The terrace energy dominates in all systems, with the step-interaction 
energy generally being the smallest component at largest L. In the 

(341)/ 11 1 𝑅 systems, the step interaction energy is only just larger 
than the step energy at the largest values of L. This shows that the 
trend of the interaction energy being the smallest component is 

preserved across the whole data set, even for the (341)/ 11 1 𝑅 slabs 
for which the small step width approximation is comparatively poor. 
Surface-surface interactions clearly have an overriding influence on the 
data at smaller L. 
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Table 4.2. The (110) terrace surface energy per unit area, step energy per 
unit length and step-step interaction constant on the four vicinal surface 
types. 

 

 

4.4.2  𝟎𝟎𝟏 𝑻𝒊 and  𝟎𝟎𝟏 𝑶 steps 

The 𝛾110  solutions extracted from the  001 𝑇𝑖  and  001 𝑂 systems show 

excellent agreement with the  𝛾 110  values which suggests that the 𝑞 𝑑3  

interaction term in equation (4.1) was a good guess. This result shows that 

the (110) terrace component of the total high-index surface energy has been 
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accurately extracted for the  001 𝑇𝑖  and  001 𝑂 steps for all slab thicknesses, 

leaving the corresponding solutions 𝛽(𝐿) and 𝑞(𝐿) open to physical analysis. 

Martinez et al.119 suggested from their total supercell energy calculations 

that the  001 𝑇𝑖  and  001 𝑂 steps were very similar in energy. Figure 4.9 

shows that the step energies per unit length are likely to converge towards 

about 𝛽 = 0.10 ± 0.02 eVÅ
−1

 for both steps as 𝐿 → ∞, where these precision 

uncertainties have been estimated by merely examining the plots around the 

region 𝐿 = 9,10. They are indeed therefore very similar, at least up to 𝐿 = 10, 

and so this suggests that both structures may be likely to occur on laboratory 

samples in equal proportions. Diebold observed some instances of 

reconstructions on  001 -type steps117 on annealed rutile (110) and this 

observation could perhaps be due to symmetry breaking caused by a 

stalemate in the formation of the energetically very similar  001 𝑇𝑖  and 

 001 𝑂 steps. The  001 𝑇𝑖  and  001 𝑂 structures clearly have very weak 

interactions with themselves, indicating that both structures induce a 

negligible strain field throughout the surface region of the crystal. The 

residual variations in the 𝑞 solutions are of magnitude ~ 1 eVÅ. It can be 

seen in Figure 4.11 that these 𝑞 values correspond to a total interaction 

energy per supercell which lies well within the range ±0.1 eV, implying a 

negligibly weak step-step interaction. These interaction energies are 

substantially smaller than all step and terrace energies, confirming that the 

series used in equation (4.1) is convergent. With regards these variations, it 

is not possible to reliably rule out the possible intrinsic sources of (small) 

uncertainty in the DFT calculations, including the slabs relaxing into 

metastable minima and the statistical uncertainty of the final energy values 

owing to the finite energy change tolerance of 10−5 eV per atom. It is 

therefore concluded that the interaction energies of the  001 𝑇𝑖  and  001 𝑂 

steps are zero to the level of precision attainable from these calculations. 

 

4.4.3  𝟏𝟏 𝟏  and  𝟏𝟏 𝟏 𝑹 steps: general comments 

Steps extended along the directions  11 1  comprise the vast majority of all 

step defects on rutile (110), so determining which of these two structures is 

the most energetically stable is of particular interest. The solutions 𝛾110  
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extracted from the  11 1  and  11 1 𝑅 systems recover the oscillatory manner 

of convergence but they display some slight deviations from the 𝛾 110  data. 

The corresponding sets of supercells used for these two systems have 

identical dimensions, and they differ only in that they contain different 

arrangements of atoms at the steps. Therefore, besides considerations 

relating to the small uncertainty resulting from the geometry optimised 

energy values, the distinct behaviour of these two systems is completely 

attributable to the two distinct steps. The task at hand therefore is to attempt 

to itemise and disentangle the factors of physical origin in order to try and 

explain the discrepancies and gain an indication of the true energies of these 

steps. In the following two sections, the data for the  11 1 𝑅 step and  11 1  

step are discussed seperately. Firstly,  11 1 𝑅: 

 

4.4.4  𝟏𝟏 𝟏 𝑹 step: detailed analysis 

The trend in the residual differences 𝛥𝛾110  for the  11 1 𝑅 step show that the 

𝛾110  values are a very slight overestimation of 𝛾 110  for the thickest slabs and 

severe underestimation of 𝛾 110  for the 𝐿 = 3 slabs. Two possible contributing 

factors of physical origin have been identified: i) interactions between 

neighbouring steps which were not accounted for by equation (4.1), and 

which may themselves depend on 𝐿 in a non-simple way, and ii) surface-

surface interactions between steps on opposing surfaces of the slab which 

also depend non-trivially on 𝐿. Both of these factors are likely to be making 

significant contributions to the true interaction energy and therefore 

producing a systematic error resulting in overvaluations and undervaluations 

of the 𝛾110 solutions. 

   The obvious candidate for the origin of atomistic contributions to the 

interaction between neighbouring steps is the set of (341) slabs with the 

 11 1 𝑅 step. The small step width approximation is less well founded for 

these systems, which can be appreciated by referring to Figure 4.4 (d) which 

shows that the width of the step structure is significant compared to the size 

of the lower (110) terrace region. This is in contrast to the  001  systems for 

which the approximation is clearly a good one. In fact, there is an indication 

with the data available in Figure 4.8 that interactions between step on 
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opposing surfaces of the slab are likely to be the dominating factor, 

especially at small 𝐿. Observe the differences between 𝛾110 (𝐿) and 𝛾 110 (𝐿) at 

𝐿 = 3: both the  11 1 𝑅 and the  11 1  systems produce values of 𝛾110 (3) 

which are very large underestimates of 𝛾 110 (3). The sets of  11 1 𝑅 and  11 1  

slabs at 𝐿 = 3 of course have different steps, but they have small surface-

surface distances in common. Furthermore, in the higher 𝐿 range 𝐿 = 7, 

...,10, the agreement between 𝛾110  and 𝛾 110  for the  11 1 𝑅 step is quite good. 

The residuals 𝛥𝛾110  at large 𝐿 are just about small enough to be plausibly 

accounted for by the intrinsic uncertainties in the supercell energies. The 

indication therefore is that choosing the 𝑞 𝑑3  interaction term in equation 

(4.1) results in an accurate simulation of the interactions between  11 1 𝑅 

steps, but only once surface-surface interactions have been decoupled at 

large slab thicknesses. The instances where 𝛽 is predicted to be negative 

(𝐿 = 3, 5) indicate that equation (4.1) fails for the purposes of extracting the 

energetics of neighbouring steps because of the significant influence of 

surface-surface step interactions in the thinner slabs. 

In summary, Figure 4.9 shows that 𝛽 for the  11 1 𝑅 step on macroscopically 

thick samples is likely to fall approximately within the range 𝛽 = 0.07 ± 0.02 

eVÅ
−1

 for 𝐿 → ∞, and Figure 4.10 similarly shows that these steps on vicinal 

surfaces exhibit a repulsive interaction consistent with a positive interaction 

constant 𝑞 falling in the range of about 4 ± 2 eVÅ as 𝐿 → ∞. 

 

4.4.5  𝟏𝟏 𝟏  step: detailed analysis 

Now observe the 𝛾110  solutions for the  11 1  step: some variation remains, 

but each and every one of the 8 solutions 𝛾110  is undervalued compared to 

𝛾 110 . Surface-surface interactions are probably making major contributions at 

small 𝐿 due to the clear disagreement of 𝛾110 (3) with  𝛾 110 (3) as explained in 

the previous section. However the underestimation of the value of 𝛾110  at 

𝐿 = 10 value is probably too large for intrinsic the uncertainty in the supercell 

energy to be a plausible cause. Besides the possibility of an unlikely and 

spurious cancellation of other unconsidered factors, this indicates that 

atomistic interaction terms may be contributing to the interaction energy for 
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the  11 1  step, resulting in a systematic error originating from the false 

assumption that the step interaction is completely described by a term of the 

form 𝑞 𝑑3 . To provide an approximate indication of what the true overall 

interaction scaling behaviour is, equation (4.1) was rewritten with an 

interaction term of the form 𝑞 𝑑𝑝  and successive iterations on the value of 𝑝 

were carried out to minimise the sum of the squares of the residual 

differences between the solutions 𝛾110 (𝐿) and the values 𝛾 110 (𝐿) over the 

range 𝐿 = 7, . . ,10. This range was chosen in a basic attempt to try and filter 

out surface-surface interactions. The best fit result was 𝑝 = 2.14 (3 s. f.), 

consistent with an overall step-step interaction energy which scales as 

1 𝑑1.14 . (This was then cross-checked by carrying out the same procedure 

on the  11 1 𝑅 data, and the result was 𝑝 = 3.13, implying an overall 

interaction energy scaling behaviour of ~ 1 𝑑2.13  which is in good agreement 

with the originally nominated ~ 1 𝑑2  MP interaction potential.) The 

corresponding values of 𝛽 for  11 1  with this 𝑞 𝑑2.14  interaction term 

remained relatively unchanged and were still substantially larger than those 

from the  11 1 𝑅 system. Therefore, no pivotal implications for the theoretical 

probing of STM images emerge from this because the  11 1 𝑅 step is still 

implied to be vastly energetically favourable. 

 

4.4.6 Comparison with published STM data 

In Figure 4.13, STM data from Martinez et al.114  is reproduced which shows 

the annealed rutile (110) surface. Alongside this, a series of 2D Wulff 

constructions with increasing 𝐿 is presented in which two island 

morphologies have been assumed: i) a (110) terrace bound by  11 1  steps 

and  001 𝑇𝑖  steps and ii) a (110) terrace bound by  11 1 𝑅 steps and  001 𝑇𝑖  

steps. By drawing vectors from a common origin whose directions are 

perpendicular to the step in question and whose lengths are drawn in 

proportion to the corresponding 𝛽 values, the island shapes predicted to 

occur on the surface as a function of increasing slab thickness can be 

directly compared with the island seen in the STM image. An island of 

unquestionable similarity on an annealed rutile (110) sample was also 

observed by Diebold et al.117 It is evident that the island shape predicted with 



- 141 - 

a  11 1 / 001 𝑇𝑖  morphology is inconsistent with the observed island shape 

for all values of 𝐿. 

 

 

Figure 4.13. Experimental scanning tunnelling electron microscopy data.  

(a) Terrace island shapes predicted using Wulff constructions in 2 

dimensions using the 𝛽(𝐿) values (𝐿 = 3, . . ,10) plotted in Figure 4.9 

assuming a (110) terrace bound by i)  001 𝑇𝑖  with  11 1  steps and ii) 
 001 𝑇𝑖  with  11 1 𝑅 steps. (b) Terrace island on rutile (110) surface 
(circle I.) observed using STM carried out in a UHV chamber at 120 - 
140 K in constant current mode with a tunneling voltage of 

approximately + 1.25 V. An instance of an apparent  11 0 -type step is 
indicated in circle II. (c) Further features of the island not accounted for 
by this work. The kinks labeled 1 - 10 and their locations relative to 
each other show the apparent chirality of the island, and the possibility 

of  11 0 -type edges existing on the island. STM image reproduced from 
Ref. 114 with kind permission of S. Wendt. 

 

In contrast, the  11 1 𝑅/ 001 𝑇𝑖  morphology (or indeed  11 1 𝑅/ 001 𝑂, which 

are not drawn but look very similar)  produces an island shape which 

converges quite convincingly to that seen in experiments114,116,117 by 
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approximately 8 layers thickness and beyond. The predictions are clearly 

less reliable for slab thicknesses of less than about 7 layers. This 

demonstrates the predictive power of the methodology and adds credibility 

to the existence of the  11 1 𝑅 step structure on laboratory samples. 

Instances which included negative 𝛽 values for one or both steps (3 and 5 

layer cases) were not included in the Wulff constructions. 

   It is clear that there are features on the surface shown in Figure 4.13 (b) 

which are not predicted or accounted for by the level of theory presented in 

this chapter. It is necessary to review these features to validate any claims of 

correspondence between theory and experiment, and also to try to anticipate 

how this approach may be refined. Firstly, by basing this approach on 

surface energies calculated via reference to a stoichiometric bulk state as in 

equation (4.3), any deviations from stoichiometry have not been accounted 

for. It is well established114-118 that the ion sputtering / high-temperature 

vacuum-annealing preparation process causes rutile (110) samples to 

become slightly reduced, with the creation of a small but non-zero 

concentration point defects in the form of bridging oxygen vacancies on the 

surface and Ti interstitials in the bulk of the sample. The O vacancies are 

widely believed to significantly affect the surface chemistry of rutile (110) 

compared to stoichiometric surfaces due to the resultant under-coordinated 

surface Ti atoms at these vacancy sites. Such vacuum-annealed samples 

typically show O vacancy coverages of about 2 - 12% depending on the 

preparation conditions.160 The exact physical process which causes the 

vacancies to appear during annealing is not known, although molecular 

desorption experiments combined with STM have been used to characterise 

these defects161 and shed new light on their origin.162 It is also well known 

that surface vacancies are healed by exposing the sample to O2, although, 

depending on the temperature and partial O2 pressure, this process is 

usually accompanied by further adsorption of O to surface 5f-Ti sites163 and 

the appearance of additional O-based surface adstructures.117,160,164,165 It is 

worth mentioning that there is one STM study which apparently shows a 

perfectly stoichiometric rutile (110) surface.166 Despite the sensitive 

dependence of the surface structure on the preparation conditions, the fact 

that the surface vacancies are healed upon exposure to O2 confirms that the 
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stoichiometric surface is energetically favourable over O-reduced surfaces 

as one might reasonably expect. 

Alongside surface O vacancies, the influence of bulk Ti interstitials on the 

appearance of the (110) surface must also be considered. Investigations into 

the behaviour of Ti interstitials and their implications for the surface 

chemistry of rutile are still ongoing,159,167 and it is not yet entirely clear 

whether Ti interstitials located in the bulk of the material have any significant 

consequences for the energetic stability of step structures occurring on the 

surface. There is recent evidence which suggests that bulk Ti interstitials do 

not influence (110) terraces in a significant way: In a recent study by 

Bechstein et al.,167 the Ti interstitial defect formation energy was calculated 

at (110) terrace sites and found to be 1.2 eV higher than the formation 

energy at bulk Ti interstitial sites. This suggests that for mostly flat (110) 

samples, like that shown in Figure 4.13 (b), Ti interstitials are likely to quickly 

diffuse away from the surface and into the bulk of the material. O vacancies 

are therefore likely to be the dominant form of point defects which contribute 

to the overall surface chemistry on (110) terraces with low step density. 

However, it is not completely clear as to whether Ti interstitials are repelled 

by steps in the same way as they are by (110) terraces. In Bechstein’s 

article,167 it was theoretically predicted that for rutile surfaces with a high 

step density, Ti interstitials are more stable at  11 1 𝑅 step sites than they are 

at bulk sites by about 0.5 eV. This prediction was then used to argue in 

favour of a mechanism by which O-deficient strand structures extended 

along  001  directions are formed during annealing on high-index surfaces, 

where Ti interstitials migrate to the surface to form the strands, with the 

 11 1 𝑅 steps as their exit points. This was corroborated with STM data which 

showed a rutile (771) surface of high step density after annealing at about 

900 K, where strand structures extended along  001  directions were seen to 

be protruding from the steps. A mostly flat (110) surface was shown in the 

same article, in which only a tiny number of such strand structures were 

seen. The authors argued quite plausibly that more building material is 

available on surfaces with a high step density due to the larger proportion of 

undercoordinated surface atoms, which explains the propensity of highly-

stepped surfaces to form such strands. In addition to this, it is also 
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speculated in this thesis that the net diffusion tendencies of Ti interstitials 

from the surface may also be a question of the competition between the 

repulsive influence of (110) terraces and the attractive influence of steps, 

and therefore dependent on step density as well as temperature. With slowly 

decaying surface-surface interactions, gaining a fuller picture of the 

energetic landscape and migration pathway barriers for Ti interstitials is not 

likely to be a trivial task using a DFT approach. Full DFT calculations of Ti 

interstitial migration paths and preferred binding sites as a function of 

surface roughness would require supercells which are currently prohibitively 

large, especially for surfaces of low step density. Nevertheless, the good 

agreement of the stoichiometric theoretical models used here with 

experimentally observed slightly nonstoichiometric samples suggests that 

the O vacancies and Ti interstitials can be regarded as an artefact of the 

annealing process which otherwise have no effect on overall island shapes. 

   Secondly, on visual inspection, it appears that the left and right edges of 

the island are bevelled by  11 0 -type steps, where the corresponding kinks 

are labelled 2, 4, 7 and 9 in a rudimentary sketch in Figure 4.13 (c). Another 

instance of an apparent  11 0 -type structure is highlighted in the smaller of 

the two circled regions in Figure 4.13 (b). The apparent  11 0 -like features 

seen on the island are tiny; no more than 2 bright Ti rows in extent, or 4 

atoms. Because of the periodic boundary conditions used in the calculations 

in this chapter, the simulated steps are infinitely long. This means that these 

calculations do not account for subtleties such as the free energy of kinks, 

their interactions among themselves and with steps, and the atomic structure 

of kinks. This therefore means that the step energies can only reliably be 

compared to steps which are of appreciable length in STM images, at least 

for the purposes of using Wulff constructions. It is therefore doubtful that an 

infinitely long  11 0 -type step under periodic boundary conditions would be 

representative of the  11 0 -like structure which is only 4 atoms wide, the 

atomic configuration and energy of which will be largely determined by the 

fact that at least 2 of these atoms must form bonds with the two adjoining 

steps. It is also worth pointing out that the island observed by Diebold et 

al.117 did not exhibit these apparent  11 0 -type steps. In any case, the  11 0 -

like features comprise a negligible proportion of the total population of steps 
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across the whole image and so they were deemed too insignificant to 

warrant further investigation. 

   Thirdly, the island habit has an apparent chirality, in that the kinks labelled 

3 and 8 (or equivalently, 2, 4, 7 and 9) are not located exactly opposite each 

other along the direction  001 . This chirality is also quite apparent in 

Diebold’s image.117 The main comment to be made on this is that the Wulff 

construction is a scheme for predicting the habit of crystals in the 

macroscopic regime, whereas the island is microscopic in size. It is known 

that the bright rows observed with STM correspond to the 5-fold coordinated 

Ti atoms and the dark rows are bridging O atoms166 (see Figure 4.1). With 

close inspection of the lower terrace from the STM image of Figure 4.13 (b), 

it can be verified that the island spans no more than about 15 such rows, 

and therefore 15 surface cells. Given that the island’s entire extent is only 

one order of magnitude larger than the size of one of its irreducible surface 

cell component parts, and that no account has been made of the possible 

atomic arrangements at the kinks, it is entirely plausible that the 

experimentally observed island habit at such microscopic scales is subject to 

aliasing of this kind, resulting in kinks 3 and 8 being misaligned by one or 

two unit cells. It is also unsurprising due to initial small and random 

configurational perturbations almost certainly being present in the initial 

growth environment. Fourthly, no accounts of the energetic contributions of 

the kinks or step-step interactions were accounted for by the Wulff 

constructions. 

4.5 CONCLUSIONS 

A DFT/supercell methodology for calculating the terrace free energy per unit 

area, step free energy per unit length and step-step interaction energy of 

high-index vicinal surfaces of crystalline solids using slab models has been 

presented. The slow oscillatory convergence of the individual energetic 

components (terrace, step and step-step interactions) of vicinal surfaces with 

increasing slab dimensions due to QSE has been demonstrated for the case 

of TiO2 rutile. For such systems in which QSE are strong, it has been argued 

that using a statistical linear fit of total slab energy against increasing slab 
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size is an unreliable and misleading approach to calculating surface 

energies, and therefore an unreliable way of evaluating the energies of 

steps. For this reason, it is argued instead that step energies and step 

interaction energies should all be individually plotted against slab size and 

checked for consistency via a layer-by-layer cross-check of the low-index 

terrace surface energy, calculated separately using the appropriate low-

index slabs. This method has been applied to two  11 1 -direction steps and 

two  001 -direction steps on the rutile (110) surface using DFT with the GGA 

PBE functional, following published STM studies114-118 which have 

repeatedly shown that step defects are extended solely along the directions 

 11 1  and  001 . The specific atomic arrangements of the steps studied were 

those recently predicted to be the most energetically stable overall by 

Martinez et al.119 The two  001 -direction steps,  001 𝑇𝑖  and  001 𝑂, were 

found to be very similar in energy and so it was concluded that these two 

structures are likely to occur on laboratory samples with approximately equal 

probability. The  11 1 𝑅 structure was found to be significantly more stable 

than the  11 1  structure. 2D Wulff constructions were used with the 

theoretically calculated step energies to show that the shape of islands with 

 11 1 𝑅 steps compare well with STM data, whereas the shape of an island 

with  11 1  steps does not stand up to experimental evidence. 
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Chapter 5: Ordering of substitutional N dopants in graphene 

5.1 Abstract 

Recent electronic structure studies of substitutional N-doped graphene have 

shown that the energetic and electronic properties depend sensitively on 

how the dopants are arranged.168,169 This has led to suggestions that the 

band structure of graphene could be systematically manipulated by tailoring 

the arrangements of N dopants according to various superlattice and 

sublattice arrangements. Using the hybrid exchange-correlation functional of 

Heyd, Scuseria and Ernzerhof (HSE)170, Park et al.169 predicted that when 

two nearby N dopants are placed in the same sublattice, a non-zero band 

gap results at the Dirac point, whereas no such band gap is created for two 

nearby dopants placed in different sublattices. In addition to these recently 

published theoretical suggestions, experimental STM3,4 and STEM5  studies 

have recently emerged which show an apparent tendency for N dopants to 

be mainly observed in only one of the two carbon sublattices. A 

representative illustration is given here in Figure 5.1. This is very significant 

because successful fabrication of potential graphene-based devices which 

derive their functionality from sublattice/superlattice dopant configurations, 

as alluded to by Park et al.169, would rely on the ability to harness 

energetically favourable processes resulting in the desired dopant 

arrangements. This is also interesting from a purely scientific point of view 

because it suggests that currently unidentified physical effects might be 

influencing their distribution.   To try to identify any possible physical causal 

factors which may be causing N dopants to collect into the same sublattice 

during fabrication, spin-polarised density functional theory (DFT) calculations 

have been performed of the total energies of substitutional N-N 

configurations over an exhaustive range of initial spin states using a range of 

exchange-correlation functionals. 
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Figure 5.1. A ball-and-stick illustration of substitutional nitrogen dopants in 
graphene, with nitrogen indicated in blue. In this example, 5 out of 7 of 
the dopants lay in the same sublattice. 

 

At the rather coarse level of precision achieved in the calculations so far 

performed, all results for all functionals over all spin states used show that N 

dopants experience no significant energetic advantage by existing in one 

particular sublattice. In fact, the configurations in which the nitrogen atoms 

are in different sublattices are found to be consistently and slightly 

energetically favourable. This suggests, but by no means proves, that the 

experimental observations might be attributable to a phenomenon which is 

unrelated to the intrinsic energetics of the various configurations. At the end 

of the chapter, current ideas for refining the calculations and advancing the 

project are outlined. 
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5.2 INTRODUCTION 

5.2.1 Experimental observations and suggested theoretical 

investigations 

 

Tuning the band gap in graphene using substitutional dopants to create n-

type and p-type semiconductors is currently one of the most important 

objectives in graphene research. n-type modified graphene containing 

substitutional N dopants has recently been synthesised using various 

techniques and observed using atomic-scale STM3,4 and STEM.5 One very 

interesting peripheral observation from these studies is that when many N 

substitutional atoms are visible in the same image and on the same grain, 

the majority of them are often found to be occupying sites in only one of the 

two carbon sublattices. Specifically, see Figure S6 from Ref. 3, Figures 2c 

and S3 from Ref. 4, and Figure 4b from Ref. 5. 

   In Figure S6 from Ref. 3, there are 9 substitutional nitrogen dopants in total 

in the image, 8 of which lay in the same sublattice. In Figure 2c from Ref. 4, 

there appear to be 13 identifiable N dopants which all lay in the same 

sublattice (although the authors claim that there are 14 in total). In Figure 4b 

from Ref. 5, 5 out of the 5 dopants are in the same sublattice. In Figure S3 

from Ref. 4 (which has two panels), the ratios are less drastic: 13 / 23 and 

27 / 39 N dopants lay in the same sublattice in the two images shown. 

However, the visual evidence from Figure S3 of Ref. 4 strongly suggests that 

N dopants do apparently show sublattice ordering at short range (which the 

authors acknowledge), giving rise to “domains” in which an apparent 

sublattice preference occurs. At the time of writing, two collaborators (Q. M. 

Ramasse, D. Kepaptsoglou) are not completely convinced that such 

domains exist. Given the currently limited amount of experimental data, this 

is an entirely reasonable point of view. Another important question is 

whether these ratios are statistically representative of the population of all 

dopants over the entire grain of the sample in each case. This question is 

very difficult to answer. A self-contained theoretical approach could shed 

new light on this situation, which is the motivating premise of this chapter. 
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   One way to try to identify whether a specific phenomenon may be 

responsible is to use DFT. The challenge faced by any practitioner of DFT 

when approaching a new problem is to motivate the choice of XC functional 

used in the calculations. For systems in which the phenomenon which 

contributes to a particular aspect of the observed behaviour is not properly 

understood or even identified, a sensible approach is to use many 

functionals at progressively higher levels of theory, and compare the results. 

Doped semiconductors, by design, are characterised by unpaired electrons 

or holes. With this conventional wisdom, the probable existence of unpaired 

spins originating from the N dopants in the ground state is declared as a 

possible origin of the observed effect. This initially leads to the hypothesis 

that the tendency of substitutional N dopants to collect into one carbon 

sublattice is caused by a significant energetic advantage associated with 

particular lattice configurations caused by long-ranged interactions between 

the unpaired spins from the N dopants. Interactions in the form of long-

ranged ferro- or antiferromagnetic spin orderings are investigated using the 

LDA, PBE, HSE170 and sX-LDA171 functionals over an exhaustive range of 

spin states. However, all of the results of these calculations indicate that the 

hypothesis is false; no energetic advantage of collective sublattice binding 

was found to emerge from any of these investigations. This theoretical 

evidence suggests either that the apparently observed effect might emerge 

during fabrication, that effects unrelated to magnetism may be significant, or 

that the published experimental data gives an incomplete picture. 

5.3 METHOD 

5.3.1. Basis set and computational considerations 

The purpose of this chapter is to compare the energetic stability of various 

configurations of N dopants in graphene using 6 × 6 supercells. The figure of 

merit, therefore, is the difference between total energies of supercells 

containing the relevant configurations. For this purpose, the plane-wave 

density functional theory code CASTEP83 was used with norm-conserving 

pseudopotentials19 to converge the differences between total spin-polarized 

energies of two C6N2 2 × 2 supercells, designed to resemble the 6 × 6 
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supercells used in the full calculations, with respect to the plane-wave kinetic 

energy cutoff, 𝐸𝑐𝑢𝑡 , and Monkhorst-Pack k-points grid17 spacings, 𝑠𝑖 . Density 

mixing was used for the electronic minimisation in all cases for these 2 × 2 

supercells, and all systems were treated as metallic by using variable 

electronic occupancies when finding the ground state. It was found that the 

relevant energy differences changed by no more than 0.021 eV upon 

increasing the cutoff energy from 540 eV to 800 eV for all four functionals 

and two dopants, and 𝐸𝑐𝑢𝑡  was fixed at 𝐸𝑐𝑢𝑡 = 540 eV for all subsequent 

calculations. The other limitation in the precision of the energies in this 

chapter originates from the k points grid. In a plane wave basis set, the 

hybrid functional HSE and the non-local functional sX-LDA require an 

enormous amount of computer memory which scales non-linearly with the 

number of k-points. Upon decreasing the in-plane k-point spacings from 

0.078 Å
−1

 down to 0.039 Å
−1

 (by increasing the number of k-points with fixed 

supercell size), supercell energy differences were found to consistently differ 

by no more than ± 0.1 eV with identical k-points sampling on the supercells 

shown in Figure 5.2 (b) for the six functionals. Figure 5.2 (a) shows this 

energy convergence. A k points grid of a single gamma point was therefore 

selected for use in all 6 × 6 supercell calculations, corresponding to in-plane 

k-point spacings of 𝑠𝑖 = 0.078 Å
−1

 (3 d. p.). This means that all energies 

calculated using the same functional can be reliably compared up to a 

precision of ± 0.1 eV, but finer comparisons within this energy range should 

be treated with caution. To ensure that this level of precision was 

maintained, all supercells to be used in the full calculations were fixed at P1 

symmetry. This choice of P1 symmetry is a very important step in optimizing 

the precision, because any given pair of supercells containing two dopant 

atoms rarely have the same lattice symmetries, and imposing symmetry 

operators usually changes the k-points sampling. Using a single gamma 

point with P1 symmetry therefore facilitates identical k-points sampling 

across all supercells, resulting in reliable comparisons of total supercell 

energies. It was found that the alternative approach of using a finer k-points 

grid and restoring lattice symmetry operators does not provide a practical 

advantage; the extra computational cost associated with using more than 

one k-point is much greater than that incurred by disabling the symmetry 
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finders and using a single gamma point, and the resultant precision is less 

consistent and more difficult to determine.  

 

 

Figure 5.2. Convergence of supercell energy differences with k points 
sampling.  

(a) The convergence of the difference in total energy of two supercells 
with different configurations of two nitrogen dopants. (b) The two 
supercells used. In both cases, the initial spin value of N was set at 

1µ𝐵, and that of N' was -1µ𝐵. 

 

For the pristine graphene unit cells, the required vacuum thickness  𝐶   and 

unit cell lattice parameters  𝑎   were then evaluated for the four functionals (in 

that order, and using finer k-spacings for these calculations only). For all four 

functionals, the total system energy changed by no more than 0.03 eV upon 

extension of the vacuum thickness from 8 Å to 13 Å. The vacuum was fixed 

at  𝐶  = 8 Å. As expected, the relaxed lattice parameters  𝑎   were found to 

depend on the functional. The results were  𝑎  𝐿𝐷𝐴 = 2.457 Å,  𝑎  𝑃𝐵𝐸 =

2.456 Å,  𝑎  𝐻𝑆𝐸 = 2.431 Å and  𝑎  𝑠𝑋−𝐿𝐷𝐴 = 2.442 Å, all to 3. d. p. 

 

5.3.2. Calculation details: Single N dopant 

6 × 6 graphene supercells were constructed, in which the C atom in the 

centre was substituted for a N atom. Unlike the calculations from the 2 × 2 

supercells, the electronic minimisations were performed on all 6 × 6 systems 

using the ensemble DFT172 (EDFT) approach rather than density mixing. 

The EDFT approach, which is much slower, was resorted to because it was 
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found to be significantly more stable with respect to total energy 

convergence for these larger supercells. The sX-LDA calculations proved to 

be particularly difficult to converge using density mixing for the 6 × 6 systems 

in some, but not all cases, with no apparent predictability. One of the 

disadvantages of using EDFT is that magnetic moments cannot be assigned 

to individual atoms; only to the entire supercell. P1 symmetry was retained 

during all electronic minimisations, in which the initial total magnetic moment 

of the supercell was set at the 3 initial values, −1,0, +1 (in units of Bohr 

magnetons, µ
𝐵
. With the 4 functionals, this resulted in a total of 12 

calculations. This range of initial magnetic moments was used in order to 

significantly increase the likelihood of reaching the spin-polarized ground 

state by distinguishing between local and global minima. The supercell 

lattice parameters  𝐵   =  𝐴  = 6 𝑎   were fixed in each case according to the 

unit cell lattice parameters derived using the relevant functionals in the 

previous section. Because of the vast computational cost incurred with the 

hybrid and non-local functionals, no structural relaxation was allowed to 

occur; only the electronic minimizations were performed. This approach was 

taken to allow for valid comparison of the results found using different 

functionals, despite full geometry optimisation being well within the practical 

reach of the vastly more efficient LDA and PBE functionals. The relative total 

supercell energies - calculated relative to the final energy of the initial-zero-

spin calculation for each functional - were tabulated in Table 5.1, along with 

the root mean square (RMS) of the residual inter-ionic forces and final total 

magnetic moments. 

 

5.3.3. Calculation details: Two N dopants 

6 × 6 supercells of chemical formula C70N2 were prepared, in which the site 

A0 was always occupied by a substitutional N atom, and in which a C atom 

laying at one of the 15 sites A1, ..., A7 (sublattice A), B1, ..., B9 (sublattice 

B), as shown in Figure 5.3, was substituted for a second N atom, thus 

resulting in 15 unique C70N2 configurations. In a similar manner to the single 

dopant calculations described in the previous section, the total magnetic 

moment of each of these 15 supercells was set at three initial values: 
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µ
𝐵

= −2,0, +2, to make 45 calculations for each of the 4 functionals. 

CASTEP was used to carry out EDFT electronic minimizations for all 180 

supercells.  

 

 

Figure 5.3. The irreducible Wigner-Seitz cell, whose boundaries are 
indicated in red, of the 6x6 supercell showing all unique locations for 
the second substitutional N dopant.  

The periodic supercell boundaries are indicated in black. The first N 
dopant is located at site A0, and there are 15 unique possible locations 
for the second N dopant, labelled A1 - A7 and B1 - B9, where A and B 
distinguish between the two carbon sublattices. The blue shaded region 
indicates the irreducible Wigner-Seitz cell. Sites denoted (A1), (A4) and 
(A2) are equivalent to sites A1, A4 and A2 respectively by symmetry. 

 

The notation is used where, for example, A5(+2) refers to the A2 

configuration supercell whose total initial magnetic moment is µ
𝐵

= +2. The 

inspiration behind the choices of  −2,0, +2 for the initial value of µ
𝐵
 is that 

these values would constitute the range of total initial magnetic moments 

obtained if all possible combinations µ
𝐵

= ±1 were applied to the two N 
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dopants. The relative total energies of the final electronically-minimized 

configurations were resolved into the two sublattices A and B and initial spin 

states and plotted against N-N distance in Figure 5.5. The dependence of 

the final energies on the final total magnetic moments of these 

configurations were plotted in Figure 5.6. 

5.4 RESULTS 

5.4.1. Single N dopant: initial remarks 

The PBE, HSE and sX-LDA calculations all converged to states with 

magnetic moments whose absolute magnitudes are very close to 1µB , each 

of which can be reliably interpreted as corresponding to one unpaired 

electronic spin state. In contrast, the LDA calculations predict no significant 

magnetic moment at all. In the opinions of two collaborators (K. Refson and 

B. Montanari) the discrepancy between the final LDA and PBE magnetic 

states is an unusual and surprising result which should be investigated 

further. Another pressing remark to be made is that the HSE results are 

highly suspect. The HSE functional is the only functional to predict that 

states with different final magnetic moments (+1.000 µ
𝐵
 (3 d.p.) and -1.000 

µ
𝐵
 (3 d.p.)) have final energies which differ by over 0.5 eV. This is a rather 

peculiar result and casts doubt on these particular results. If these HSE 

calculations are indeed robust, then it follows that they have arrived at two 

non-equivalent energy minima despite having arrived at states whose 

magnetic moment is of identical magnitude, which would require an unusual 

explanation. 

   Generally, there is no correlation between the initial dopant magnetic 

moment and magnitude of the final total magnetic moment, or its sign. This 

immediately exposes the sensitivity of the final ground state spin 

configuration to the chosen functional and initial spin state, and therefore 

reiterates the importance of using many functional over a range of spin 

states and comparing the results. 

   The residual inter-ionic forces are all small and approximately the same. 

This confirms that the unit cell lattice parameters derived in section 5.3.1 
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from the unit cell geometry optimisations were all calculated precisely, and 

more importantly, that the significant extra computational cost of optimising 

the structures to minimise the residual forces would probably be unlikely to 

change the relative total supercell energies significantly, although of course 

this cannot be guaranteed. 

   Examples of the spin density fields taken from the four calculations with 

initial magnetic moment of +1µB  are shown in Figure 5.4. The strongest clue 

which relates to preferential sublattice binding is that the spin density shows 

a clear and dramatic asymmetry with respect to the two carbon sublattices. 

Note the different colour scales applicable to each panel; the sublattice 

asymmetry with respect to spin is predicted to be very subtle by the LDA, 

moderate by PBE and HSE, and comparatively dramatic by sX-LDA.  

Table 5.1. Single N dopant: final magnetic moments, energies and forces. 

Substitutional 

dopant 

XC 

Functional 

Initial total 

magnetic  

moment / µ𝐵  

Final total 

magnetic  

moment / 

µ𝐵   
 (3 d. p.) 

Relative 

total 

energy / eV  

(3 d. p.) 

RMS  

forces / eVÅ
-

1
  

(3 d. p.) 

 

 

 

 

 

 

 

N 

 

LDA 

+1  0.037 0.000 0.256 

0 -0.022 ≝ 0 0.256 

-1 -0.033 0.000 0.256 

 

 

PBE 

 

+1 -0.978 0.000 0.260 

0 -0.976 ≝ 0 0.260 

-1 -0.977 0.000 0.260 

 

 

HSE 

+1  1.000 +0.005 0.309 

0  0.999 ≝ 0 0.301 

-1 -1.000 +0.516 0.310 

 

 

sX-LDA 

+1  1.000 0.000 0.251 

0 -1.000 ≝ 0 0.251 

-1  1.000 0.000 0.251 
 

 

The common theme with the spin density distributions shown in Figure 5.4 is 

the dramatic asymmetry with respect to the two carbon sublattices. The 

LDA, HSE and sX-LDA plots show that an excess of up spin has delocalised 

across the sublattice in which the N dopant lies, where an excess of down 

spin has delocalised across the other sublattice. The PBE plot shows the 

opposite. Note the very different values used on the four colour scales. If 
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these colour plots are made absolutely comparable, then the only plot which 

shows any significant sublattice spin density alternation is the sX-LDA plot, 

with slight alternation visible for HSE, and nothing at all visible for the LDA 

and PBE plots. Beyond this, it is clear that there is further detail in the spin 

fields which requires further investigation. For example, there is one 

significant qualitative difference which can immediately be identified between 

the spin field found using the sX-LDA functional and those from the LDA, 

PBE and HSE functionals. Observe the sX-LDA field from Figure 5.4 (d): all 

carbon nuclei lying in the N dopant’s sublattice have an approximately equal 

accumulation of spin on them. In contrast, in the LDA, PBE and HSE spin 

fields from Figures 5.4 (a), (b) and (c), two thirds of all of the carbon nuclei 

which lie in the same sublattice as the N dopant have more spin localised on 

them than the other one third of all of the carbon nuclei from that sublattice.  

 

 

Figure 5.4. Spin density slices showing sublattice asymmetry for (a) LDA, 
(b) PBE, (c) HSE and (d) sX-LDA. 

In all supercells, the blue vertex in the centre denotes the location of N 
nucleus, and the white and black vertices denote carbon sublattices A 
and B respectively. In all cases, the majority of the excess spin has 
delocalised away from the dopant and onto the carbon sublattices. All 
spin density slices are located 0.376 Å above the graphene plane. The 
plots are not absolutely comparable because of the different colour 
scales except at zero density. 
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There is therefore a clear asymmetry with respect to the spin distribution 

even within the one sublattice occupied by the N dopant for the LDA, PBE 

and HSE calculations. This distribution forms a pattern of its own, so the 

dopant sublattice therefore can be further divided into its own sublattices. In 

all cases, the carbon nuclei lying in the different sublattice to that of the N 

dopant have an equal accumulation of spin on them, so no such division into 

further sublattices appears to be occurring for this sublattice. In summary, 

this evidence suggests that finite size effects due to the limited supercell size 

may be affecting the spin distribution patterns; it would perhaps be 

unsurprising if the patterns form a trend with supercell size. 

 

5.4.2. Two N dopants: there is no apparent intrinsic energetic 

advantage to N dopants collecting in one sublattice 

   Figure 5.5 shows the relative final energies and final spins of all of the two-

dopant configurations and functionals studied, resolved into the two 

sublattices and initial total spin states. In all cases, the highest energy state 

was found to be a B1 configuration, so the energies of these configurations, 

as found using the appropriate functional, were selected as the reference 

energy to which all other supercell energies found using that same functional 

are compared.  

   The HSE results, like those from the single dopant case, require careful 

further investigation, because they appear to consistently suggest that the 

systems whose initial spin configurations are equivalent by spin-exchange 

symmetry have arrived at significantly different locations in the energy 

landscape. In particular, note the bottom left panel of Figure 5.6 which 

shows that the states with a final positive magnetic moment are significantly 

more stable than those with zero and negative moments. The corresponding 

relative HSE energies in Figure 5.5 show this dramatic energy asymmetry 

with respect to the initial magnetic moments. 
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Figure 5.5. Relative total energies of the various configurations resolved into   
sublattices A and B. 

The HSE results with zero and positive initial spins are highly suspect 
and likely to be affected by a bug. 

 

At the time of writing this thesis, it is not entirely clear exactly what kind of 

investigation should be carried out to try to understand this. It should be 

noted that a bug in spin-polarised HSE was discovered in versions of 

CASTEP prior to version 7.0.1, which was announced on 3rd December 

2013. This bug was found to affect the ability of the electronic minimiser to 

locate the ground state. However, these calculations were carried out using 

CASTEP 7.0.1, and so are not affected by this particular bug. As a simple 

diagnostic, the spin-polarised ground state of a single H atom was calculated 

using the HSE functional using initial magnetic moments of µ
𝐵

= ±1. This is 

a sensible test to carry out because, as long as the final spin states are 

equal and opposite, the corresponding total energies must of course be 
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identical by spin-exchange symmetry. It was found that the calculation with 

initial moment µ
𝐵

= +1 converged to a total energy of -13.6 eV (3 s. f.) and a 

final spin of +1µ
𝐵

 as expected. However, the µ
𝐵

= −1 calculation was found 

to consistently fail to converge with repeated attempts using density mixing 

and EDFT, which, given the simplicity of the H atom, is very strong evidence 

that a bug still exists in the code for the case of the spin-polarised HSE 

functional. It must be concluded that the HSE calculations of all but positive 

initial magnetic moment are very likely to be invalid and should be discarded, 

which is a very plausible explanation for the unusual HSE results. 

   The second key observation from these plots is that there is no energetic 

favourability to the configurations in which the two N dopants occupy the 

same sublattice. In fact, the most stable configurations tend to be those in 

which the second N lay in sublattice B. Thus, despite the strong and long-

ranged sublattice spin-asymmetry which characterises the electronic 

environment around a single N dopant as shown in Figure 5.4, the 

apparently-observed tendency of N dopants to collect into one sublattice 

cannot be attributed to the intrinsic energies of the various substitutional N 

configurations, at least to the level of theory presented here. This might, or 

might not, be different if 5x5 or 7x7 supercells were used. 

   There is another interesting point: the relative energies of the A and B 

sublattice configurations predicted by the LDA and PBE functionals are 

extremely similar (i.e. the top two panels of Figure 5.5 have very similar 

trends), but the final magnetic moments predicted by these two functionals 

are very different, as seen in Figure 5.6. Therefore, the widespread 

energetic preference for the B configurations, as seen in all panels in Figure 

5.5, is not due to magnetism. This suggests other possibilities like charge 

effects. A systematic investigation of the dependence of the Mulliken and 

Hirshfeld charge populations on supercell size would perhaps shed more 

light on this. 

   In addition, it is clear that the plots show a repulsive N-N interaction which 

decays quickly beyond 4 Å of separation. All LDA and PBE energies are 

seen to be independent of the initial spins, showing that no metastable spin-

polarized electronic states exist within or near the range of the initial spin 
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values studied. The same can be said for the sX-LDA data with the 

exception of configuration A3 - which has the smallest N-N distance of all the 

A sublattice configurations - for which one metastable state appears to have 

been found about 0.6 eV above that arrived at in the other two A3 

calculations. 

 

 

Figure 5.6. Final magnetic moments of the various configurations resolved 
into sublattices A and B. 

All LDA results show negligible final spin, whereas PBE, HSE and sX-
LDA show significant final magnetic moments. The HSE results require 
further investigation because they apparently suggest that the states 
with an excess of up spin are energetically favourable over those with 
an excess of down spin, which suggests either a very unusual energy 
landscape, or, more likely, a bug in the code. 
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   To summarise, the results of the calculations presented in this chapter, 

and the implications that they have for the current pool of experimental 

observations, are not yet properly understood. Many possible factors still 

need to be ruled out before more robust conclusions can be reached. More 

precisely converged calculations are required, and the intended next steps 

are briefly outlined in section 5.5.  

5.5. Proposed improvements to this project 

The theoretical evidence so far gathered throughout this chapter can be 

used to inform the ways in which this project can be advanced. The first 

notable point is that the magnetic states predicted by the LDA and PBE 

functionals are markedly different, so a fuller survey of the results predicted 

by the other semi-local functionals over a larger range of initial spin states 

may shed more light on the system. Alongside the PBE parameterisation of 

the GGA, the revised PBE (rPBE) parameterisation of Hammer, Hansen and 

Norskov,173 the parameterisation of Perdew et al. for atoms, molecules, 

solids, and surfaces174 (PW91), the GGA for solids of Wu and Cohen175 

(WC) and the “PBE for solids” (PBEsol) of Perdew et al.176 will be used to 

carry out single dopant geometry optimisation calculations at increasingly 

large supercell sizes such as 5x5, 6x6,..., 12x12. These are all semi-local 

functionals and so are quite computationally practical. Including geometry 

optimisation allows for long-ranged lattice perturbations to be assessed. In 

addition, the consequences of using density mixing and assigning the initial 

spins to the N dopant, and of using EDFT and assigning the initial spin to the 

entire supercell, will be assessed. The final Mulliken spin and charge 

populations of the N dopant and the C atoms in the fully optimised systems, 

and the total final magnetic moments of the supercells, will offer more 

information than that which is currently available. If the scenario should 

occur that trends are obtained for some functionals but not others, then this 

would pave the way for a systematic cross-examination of the results 

whereby a unique feature of one functional may be found to be responsible 

for the trend, or lack of, which may shed light on the basic underlying 

physics. Based on some initial calculations, there is already strong evidence 
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that finite size effects due to the supercell size are playing a role. The data 

from these preliminary investigations is tabulated in Table 5.2. 

Table 5.2 Preliminary single N dopant calculations carried out to try to 
identify themes which could be influencing the results. 

Finite size effects due to supercell size appear to be playing a role. For 
example, the N dopant Mulliken populations for the PBE calculations 
seem to depend on whether 5x5 or 6x6 supercells are used. 

Supercell 

size 

electronic 

minimis-

ation 

method 

XC initial 

spin 
Final energy/eV 

(not geometry-

optimised) 

(9 d. p.) 

N atom final 

Mulliken 

population 

final magnetic 

moment  

/ 𝜇𝐵 (5 d. p.) 

modulus of final 

magnetic moment 

(5 d. p.) 

k 

points 

grid 

charge spin 

 

 

 

 

 

 

5x5 

 

 

 

 

 

 

density 

mixing 

 

LDA 

+1 -7874.622334522 -0.29 0.03 0.38837 0.47203 Γ 

0 -7874.614929909 -0.29 0.00 -0.00491 0.00601 Γ 

-1 -7874.622341246 -0.29 -0.03 -0.38872 0.47248 Γ 

 

PBE 

 

+1 -7899.046000085 -0.28 0.08  0.97322 1.46456 Γ 

0 -7899.045988264 -0.28 0.08 0.97309 1.46200 Γ 

-1 -7899.046000182 -0.28 -0.08 -0.97322 1.46446 Γ 

 

HSE 

+1 -7890.411692603 -0.34 0.09 1.00011 2.48187 Γ 

0 -7890.411849805 -0.34 0.09 1.00006 2.48989 Γ 

-1 -7889.889020245 -0.34 -0.09 -0.99987 2.44644 Γ 

 

sX-

LDA 

+1 -7884.162906756 -0.44 0.02 1.00097 27.2731 Γ 

0 -7884.160428829 -0.44 -0.02 -0.99958 27.2638 Γ 

-1 -7884.150730743 -0.44 -0.02        -0.95568 27.1249 Γ 

 

 

 

 

 

 

6x6 

 

 

 

 

 

 

 

density 

mixing 

 

LDA 

+1 -11289.58506555 -0.27 0.00 0.02433 0.05058 Γ 

0 -11289.58505357 -0.27 0.00 -0.00747 0.01569 Γ 

-1 -11289.58507815 -0.27 0.00 -0.03224 0.06709 Γ 

 

PBE 

 

+1 -11324.68852917 -0.27 -0.01  0.97191 5.45911 Γ 

0 -11324.68863378 -0.27 0.01 -0.97409 5.46136 Γ 

-1 -11324.68861832 -0.27 0.01 -0.97390 5.46152 Γ 

 

HSE 

+1 not performed - - - -  

0 -11313.42118013 -0.32 -0.01 2.92276 4.07697 Γ 

-1 -11312.53089238 -0.32 0.00 -0.99977 8.42361 Γ 

 

sX-

LDA 

+1 not performed - - - -  

0 not performed - - - -  

-1 not performed - - - -  

 

 

 

 

 

 

5x5 

 

 

 

 

 

 

EDFT 

 

 

 

LDA 

+1 not performed - - - -  

0 not performed - - - -  

-1 not performed - - - -  

 

PBE 

 

+1 not performed - - - -  

0 not performed - - - -  

-1 not performed - - - -  

 

HSE 

+1 not performed - - - -  

0 not performed - - - -  

-1 not performed - - - -  

 

sX-

LDA 

+1 -7884.177778918 -0.44 0.02  1.00000 27.3360 Γ 

0 -7884.177778914 -0.44 0.02  1.00000 27.3360 Γ 

-1 -7884.177778827 -0.44 -0.02 -1.00000 27.3372 Γ 

 

 

 

 

 

 

6x6 

 

 

 

 

 

 

 

EDFT 

 

 

 

LDA 

+1 -11289.58509690 -0.27 0.00  0.03657 0.07532 Γ 

0 -11289.58506750 -0.27 0.00 -0.02157 0.04469 Γ 

-1 -11289.58508921 -0.27 0.00 -0.03335 0.06806 Γ 

 

PBE 

 

+1 -11324.68669671 -0.27 0.01 -0.97846 5.30088 Γ 

0 -11324.68686510 -0.27 0.01 -0.97579 5.33712 Γ 

-1 -11324.68721144 -0.27 0.01 -0.97689 5.36019 Γ 

 

HSE 

+1 -11313.09967766 -0.32 0.00  0.99999 7.38326 Γ 

0 -11313.10438967 -0.33 -0.01  0.99909 7.23237 Γ 

-1 -11312.59801970 -0.32 0.00 -0.99999 6.98535 Γ 

 

sX-

LDA 

+1 -11305.41781677 -0.43 0.02 1.00000 38.6458 Γ 

0 -11305.41781677 -0.43 -0.02 -1.00000 38.6458 Γ 

-1 -11305.41781672 -0.43 0.02 1.00000 38.6445 Γ 
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Similarly precise calculations could be carried out using a range of hybrid 

functionals using Gaussian-like basis functions, which is a more efficient 

approach than using a plane-wave basis set, especially considering that the 

majority of the supercells used consist of vacuum space. The energies 

obtained so far have all been obtained at a relatively coarse level of 

precision, so a renewed emphasis on stringent convergence will be used for 

the new calculations.   Alongside single dopant calculations, configurations 

involving 2 or 3 N dopants could be systematically investigated. Using 3 

dopants is likely to give rise to a very large number of unique configurations, 

however, especially for the larger supercells. A more systematic approach 

based on dopant concentration or mean N-N distance, or even a more 

rigorous group-theory approach could be employed. No multiple-dopant 

calculations will be carried out until the single dopant calculations described 

above have been completed and fully analysed. 

   In summary, the objective at this stage is to examine the consequences of 

using a particular functional more closely by using a wide range of 

functionals with a much higher level of precision. The information gathered 

will be used to inform the subsequent investigations of this project. 
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Chapter 6: Concluding remarks 

  In this chapter, the key achievements of the projects presented in this 

thesis are summarised. 

   In chapter 3, the behaviour of metal adatoms on graphene substrates was 

explained theoretically using DFT. When the STEM images shown in Figure 

3.1 were originally obtained, it was not fully understood exactly why the 

metals appeared at defects, contaminated regions and edge sites, but not on 

the pristine lattice regions. One of the biggest barriers to properly 

understanding what was being observed in the images was not knowing the 

energy landscape experienced by an adatom at the various bonding sites on 

graphene, or indeed whether energy barriers associated with adatoms' 

motion across the lattice were playing a role. Before this investigation was 

carried out, speculations were centred mainly on the thickness of the 

underlying substrate, and the possibility that metal adatoms might form 

stable bonds on thicker substrates owing to extra contributions to the binding 

energy from van der Waals interactions with the deeper sublayers. What this 

investigation has demonstrated is that van der Waals interactions from 

sublayers do indeed have a major influence on the total binding energy, but 

that this is not responsible for the phenomena seen in the microscope. To 

the best of my knowledge, this information was completely new at the time of 

publication. It has been shown that Cr, Al and Au adatoms (and probably 

other chemically similar metals) evaporated onto graphene by CVD are likely 

to diffuse on multilayered graphene substrates at room temperature, even on 

those of different thicknesses, due to the migration energy barriers being 

both i) small, and ii) relatively unaffected by substrate thickness. It is 

certainly fair to say that the calculations carried out in this project were 

inspired by previously published calculations,37-52 but they also significantly 

build on these published works. One specific advancement of this project 

over these previously published works was the explicit calculation of 

migration barriers of the adatoms considered. Transition state calculations of 

adatom migration barriers on graphene are apparently rare in the literature; 

only the work of Yazyev et al.51 was found during the literature review, in 



- 166 - 

which the migration barrier for Co was calculated. It is certainly quite 

reasonable to anticipate from the binding energies in Figure 3.18 alone that 

the migration barriers between these sites are extremely small, simply 

because the energy differences are small. However, by going one step 

further in this thesis and calculating these barriers directly, the qualitative 

argument for adatom migration based on energy barrier estimates - a 

suggestion made in previous studies39,42-46,55,57 - has been advanced to a 

quantitative argument based on the precisely and explicitly calculated 

barriers tabulated in Table 3.3. This is new information regarding the 

energetic environment experienced by metal adatoms on graphene which 

did not exist before this project was published. Nevertheless, credit is very 

much due to the authors of these studies39,42-46,55,57 despite the absence of 

actual energy barrier calculations, because they all clearly identified the 

phenomenon of adatom migration. Another important remark is that many of 

these published studies repeatedly used phrases like "atom X prefers to 

adsorb at site Y" in their abstracts. This project has placed fresh emphasis 

on the fact that phrases of this sort have the potential to be quite misleading 

because they can easily lead to incorrect interpretations of metal adatoms 

on graphene being static and stably bonded at room temperature. The 

continued emphasis on random thermal migration at room temperature 

inferred from theory and seen directly in collaborators' experiments helps to 

clarify current understanding of the behaviour of metals on graphene. 

Alongside this, to the very best of my knowledge, the idea of fixing substrate 

carbon atom positions according to the lattice symmetries (see Figures 3.14 

and 3.15) and investigating the effects of varying substrate thickness with 

van der Waals corrections had not been published elsewhere at the time this 

project was published in April 2013. As for the original aim of investigating 

possibilities of interfacing graphene to metal contacts, the primary 

conclusion of this project is that CVD of single metal atoms is unlikely to be 

the synthesis technique of choice for building metal-graphene interfaces. 

Other synthesis methods may well result in different behaviour. Indeed, the 

study by Zhao71 mentioned in chapter 3 which shows the first images of a 

freestanding 2-D Fe film in a graphene hole is a potentially very significant 

demonstration that building 2-D interfaces may be the most feasible 



- 167 - 

approach. Looking forward in a general sense, much of nanotechnology 

relies on the passive manipulation of physical matter on the microscopic 

level by means of harnessing energetically favourable processes under 

controlled conditions. Preferential edge-site binding of adatoms on graphene 

substrates, or 2D materials in general, is one such process which could 

perhaps be exploited in contexts such as patterned nanoscale devices, 

systematic edge-decoration of 2D nanoribbons and other nanoscale 

constructions where site-dependent bonding tendencies are an important 

ingredient in the fabrication process. 

   In chapter 4, a new method was developed to reliably calculate the 

energies of step defects and step-step interaction energies on crystalline 

solid surfaces. The work presented in this chapter is useful from the 

perspective of theoretical methods development because it highlights the 

potentially misleading nature of existing published methods and provides a 

basis for more robust investigations into the energies of steps in nanoscale 

systems in which the interactions between opposing surfaces are strong. 

Having conducted a very thorough literature search, it can be said with a 

high degree of confidence that, for systems in which surface energies 

converge slowly with slab thickness, this method should be used in favour of 

all previously published methods because it is significantly more robust. 

Before this project was published, the only serious attempt at ab initio 

calculation of step and step interaction energies was the Nature Materials 

paper by Gong et al.136, which makes use of linear regression to evaluate 

high-index surface energies; a method which has been shown in this thesis 

to have the potential to be seriously misleading. (Once again, it should be 

emphasised that this does not necessarily invalidate Gong's results, 

because explicit details of their methodology was not given.) In section 4.2.4 

and appendix B.1 of this thesis, it has been argued directly that the linear 

fitting method is flawed for TiO2 rutile surface energies, so the fact that the 

Aarhus group143 has also independently identified this same difficulty adds a 

great deal of credibility to the arguments given in this thesis. They did not 

account for step-step interaction energies in their method, but their step 

energies and consequent island shape agree well (see Figure 8 from their 

paper) with those predicted in this project, which is good evidence that both 
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methods are robust. The long-term impact of the method developed in 

chapter 4 is likely to depend on the importance of the systems for which it 

may find application. As it stands, this method can currently be reliably 

applied to high-index macroscopic surfaces, i.e. high-index flat crystal facets 

with steps, or truly high-index vicinal facets. Having applied this method to 

TiO2 rutile (110), the agreement of the island shape with STM data has 

strongly suggested that the method works, and it has added credibility to the 

existence of the atomic arrangements used in the model on the real 

laboratory sample. Further lines of enquiry could attempt to start focusing on 

how to extend this method to nanoparticle surfaces, taking into account the 

surface curvature on the nanoscopic/mesoscopic scale. Nanoparticle-based 

technologies are becoming increasingly important in emerging fields of 

engineering, so it is easy to see where the motivation lies for such a method. 

It must be conceded that accounting for nanoparticle surface curvature 

would be quite a serious challenge under periodic boundary conditions, but 

the method developed in chapter 4 is certainly an improvement over 

published methods of step energy calculation. In contrast to nanoparticles, 

this method could of course be immediately applied to the case of high-index 

vicinal films, although these are rather more exotic entities which have not 

found such widespread application as nanoparticles. In summary, the 

method developed throughout chapter 4 makes a significant new 

contribution to theoretical methods in surface science, and also contributes 

to the overall characterisation of the extremely important system that is the 

(110) surface of TiO2 rutile. 

   In chapter 5, current progress on an investigation into the viability of 

systematically doping graphene with substitutional nitrogen atoms in only 

one carbon sublattice was presented. Despite being incomplete, it is 

apparent from the investigations conducted so far that there is unlikely to be 

a significant energetic advantage to nitrogen dopants collecting into one 

particular sublattice. Specifically, there is apparently very little dependence 

of the energy trends on the exchange-correlation functional used. Moreover 

these trends predicted by all functionals appear to unanimously imply that 

the pairs of substitutional dopants studied are more stable when laying in 

different sublattices. As it stands, the greatest source of uncertainty in this 
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data is the possibility that finite size effects may be significantly influencing 

the trends. The main robust and significant conclusion drawn from the 

investigations so far is that magnetic effects appear to not be playing any 

role at all, because while final magnetic moments depend sensitively on the 

functional, the energy trends do not. Clear trends do appear to be present in 

the relative total energies plotted Figure 5.5, which is indicative of some 

underlying effect, although it cannot be ruled out as a calculation artifice and 

so cannot currently be identified, even if it is physically meaningful. In 

summary, the progress in chapter 5 sheds significant light on how to 

proceed with the project, but from the information so far obtained in this 

thesis, it must be concluded that no clear implications for graphene-based 

technologies exploiting patterned-doping of nitrogen are clearly identifiable 

at the time of writing. 
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Appendix A : Uncertainty analysis for data in chapter 4 

A.1 Statistical uncertainty in step energies 

   For a large geometry optimisation problem, there is a degree of uncertainty 

in the value of the final energy. For most purposes, this uncertainty is 

ignored because it is small. However, the  𝛾110 , 𝛽 and 𝑞 values are quite 

sensitive to the slab/vacuum supercell energies 𝐸𝑘𝑙  and so it is wise to carry 

out an uncertainty analysis. This is difficult to do analytically because it is 

highly unlikely that a repeated optimisation of a given supercell would yield a 

distribution of final energies characterised by a Gaussian curve. The 

optimisation algorithm searches for the variationally lowest energy state so 

one might expect an asymmetric distribution with an abrupt lower bound on 

the energies. One major source of uncertainty is that of systems becoming 

trapped in configurations corresponding to local metastable energetic 

minima which lie close to or even far from the global minimum. Also, the 

specification of finite tolerances introduces systematic errors into the 

distribution. Nevertheless, it is easy to calculate how sensitive 𝛾110 , 𝛽 and 𝑞 

are to changes in the supercell energies 𝐸𝑘𝑙 , which is now shown. 

   Consider three high-index supercells of 𝐿 layers thickness with total 

surface areas 2𝑆1, 2𝑆2 and 2𝑆3 and step-step distances 𝑑1, 𝑑2 and 𝑑3. 

Suppose that these supercells and a bulk unit cell are optimised to give 

energies 𝐸1, 𝐸2, 𝐸3 and 𝐸𝐵. Suppose then that these optimisations are 

repeated identically to obtain energies 𝐸1
′ , 𝐸2

′  and 𝐸3
′  and 𝐸𝐵

′ , where any 

differences between the two sets of results are denoted as 𝛿𝐸1 = 𝐸1
′ − 𝐸1, 

𝛿𝐸2 = 𝐸2
′ − 𝐸2, 𝛿𝐸3 = 𝐸3

′ − 𝐸3 and 𝛿𝐸𝐵 = 𝐸𝐵
′ − 𝐸𝐵 . The corresponding 𝛾110  

and 𝛾′110  solutions are 

𝛾110 =
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  𝛾′110 =
1
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,                                                    (A. 2) 

and the absolute difference between the two solutions is 𝛿𝛾110 = 𝛾′110 − 𝛾110 , 

given by 

𝛿𝛾110 =
1
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.                                                (A. 3) 

By similar reasoning, 
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1
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  𝛿𝑞 =
1
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.                                                         𝐴. 5  

To gain a sense of the order of magnitude of the quantities 𝛿𝛾110 , 𝛿𝛽, and 

𝛿𝑞, a three layer Ti26O52 (341) slab/vacuum supercell with the  11 1 𝑅 step 

was optimised to an energetic minimum four times with identical input 

parameters to those listed in the method. The four final energies were 

−64513.033697 eV, −64513.034118 eV, −64513.031639 eV, and 

−64513.033121 eV, all to 6 decimal places. The range of this sample is 

2.489 × 10-3 eV (3. d. p.), or about 3 × 10-5 eV per atom. For the sake of 

example, let us prescribe an uncertainty of ± 1.5 × 10-5 eV per atom for all 

supercell energies. The bulk unit cell was also optimised repeatedly, but the 

range was found to be < 10-6 eV due to the comparatively stringent 
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tolerances used and so 𝛿𝐸𝐵 = 0 is used. Let us now consider the worst case 

scenario and borrow the dimensions and total atom numbers from the 

biggest slabs of lowest symmetry: the 10 layer  11 1 𝑅 Ti74O148 (341), 

Ti94O188 (451) and Ti114O228 (561) slabs. Let us denote their energies 𝐸341 , 

𝐸451  and 𝐸561  respectively, to produce numerical values for 𝛿𝐸341 , 𝛿𝐸451  and 

𝛿𝐸561 . Using the nominated uncertainty range of ± 1.5 × 10-5 eV per atom, 

this gives 𝛿𝐸341= ± 3.33 × 10-3 eV, 𝛿𝐸451 = ± 4.23 × 10-3 eV and 𝛿𝐸561 = ± 

5.13 × 10-3 eV. The functions 𝛿𝛾110 , 𝛿𝛽 and 𝛿𝑞 each depend on the three 

variables 𝛿𝐸341 , 𝛿𝐸451  and 𝛿𝐸561  and so can't be straightforwardly plotted, so 

instead they are tabulated in Table A.1 with all possible combinations of the 

upper and lower limits of 𝛿𝐸341 , 𝛿𝐸451  and 𝛿𝐸561  to show the upper and lower 

limits of the intervals within which 𝛿𝛾110 , 𝛿𝛽 and 𝛿𝑞 lie. For this particular 

case, the maximum deviations are 𝛿𝛾110 𝛾110 = ±  2.7%, 𝛿𝛽 𝛽 = ±  12.3% 

and 𝛿𝑞 𝑞 = ±  14.5%, which are significant, but not pivotal to the 

conclusions. 
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Table A.1. The sensitivity of 𝛾110 , 𝛽 and 𝑞 to changes in supercell energy.  

The instances where 𝛾110 , 𝛽 and 𝑞 change the most are indicated in 
bold type. 

 

Solutions taken from 10 layer 
 11 1 R  slabs 

Hypothetical supercell energy 
changes 

Resultant changes to 𝛾110 , 𝛽 and 𝑞 

𝛾110   
/ eVÅ-2 
(3 d. p.) 

𝛽  
/ eVÅ

-1
 

(3 d. p.) 

𝑞  
/ eVÅ 

(3 d. p.) 

𝛿𝐸341   
/ eV 

(3 d. p.) 

𝛿𝐸451   
/ eV 

(3 d. p.) 

𝛿𝐸561  
/ eV 

(3 d. p.) 

𝛿𝛾110  
/ eVÅ

-2
 

(3 d. p.) 

𝛿𝛽  
/ eVÅ

-1
 

(3 d. p.) 

𝛿𝑞  
/ eVÅ 

(3 d. p.) 

 

 

 

 

 

2.505 
 × 10-2 

 

 

 

 

 

 

 

9.111 
 × 10-2 

 

 

 

 

 

 

 

3.599 

 

 

+ 3.330 
 × 10

-3
 

+ 4.230 
× 10

-3
 

+ 5.130 
 × 10

-3
 

0.234  
× 10

-4
 

0.000  
× 10

-2
 

0.000
 

− 3.330 
 × 10

-3
 

+ 4.230 
× 10

-3
 

+ 5.130 
 × 10

-3
 

− 4.973 
 × 10

-4
 

0.849 
 × 10

-2
 

− 0.319 

+ 3.330 
 × 10

-3
 

− 4.230  
× 10

-3
 

+ 5.130 
 × 10

-3
 

6.628 
 × 10

-4
 

− 1.186 
 × 10

-2
 

0.520 

+ 3.330 
 × 10

-3
 

+ 4.230  
× 10

-3
 

− 5.130 
 × 10

-3
 

− 1.421 
 × 10

-4
 

0.337 
 × 10

-2
 

− 0.201 

+ 3.330  
× 10

-3
 

− 4.230  
× 10

-3
 

− 5.130  
× 10

-3
 

4.973  
× 10

-4
 

− 0.849 
 × 10

-2
 

0.319 

− 3.330  
× 10

-3
 

+ 4.230  
× 10

-3
 

− 5.130 
 × 10

-3
 

− 6.628 
 × 10

-4
 

1.186 
 × 10

-2
 

− 0.520 

− 3.330 
 × 10

-3
 

+ 4.230  
× 10

-3
 

+ 5.130  
× 10

-3
 

1.421 
 × 10

-4
 

− 0.337 
 × 10

-2
 

0.201 

− 3.330 
 × 10

-3
 

− 4.230  
× 10

-3
 

− 5.130 
 × 10

-3
 

− 0.234 
 × 10

-4
 

0.000 
 × 10

-2
 

0.000 
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Appendix B : Statistical fitting methods for surface energies 

B.1  Using linear regression to evaluate surface energies is 

flawed 

One commonly employed method of calculating surface energies is to plot 

the total energies of slabs of increasing size against 𝑚, and then to use a 

linear regression fit to identify the intercept of the best fit line as the total 

surface energy 2𝑆𝛾. This approach is potentially very misleading if used in 

situations where the surface energy (as calculated for individual slabs using 

equation (4.3) - see main text) converges in a slow oscillatory way with 

increasing slab thickness. To illustrate the point, the total supercell energies 

𝐸𝑘𝑙  from the (430) /  001 𝑇𝑖   slabs in Figure B.1 are now plotted along with 

their corresponding surface energies 2𝑆𝛾𝑘𝑙  as found using equation (4.3). 

Consider a set of 𝑀  slab/vacuum supercells of increasing size, labelled 

1, . . , 𝑖, . . 𝑀 . By calculating the total energy of the 𝑖𝑡  slab, 𝐸𝑖 , one then 

subtracts the (negative) energy of the corresponding quantity of bulk 

material,  𝑚𝑖  2  𝐸𝐵, to obtain the total (positive) surface energy of that slab, 

2𝑆𝛾𝑖 . Expressed another way, the total slab energies 𝐸𝑖  are related to their 

corresponding surface energies, 2𝑆𝛾𝑖, by a linear shear transformation in the 

positive direction along the energy axis: 

 
𝑚𝑖  2 
𝐸𝑖  

 =  
1 0
𝐸𝐵 1

   
𝑚𝑖  2 
2𝑆𝛾𝑖

 .                                                                                       B. 1  

If this shear transformation is applied to the best fit line, then its gradient is 

changed, but not its intercept. This of course means that fitting a straight line 

to 𝐸𝑖  plotted against 𝑛𝑖  gives exactly the same intercept as fitting a straight 

line to 2𝑆𝛾𝑖  plotted against 𝑚𝑖 . Therefore, these two methods of estimating 

the surface energy are entirely equivalent. The intercept from either of the 

two best fit lines in Figure B.1 give the same estimate of the surface energy, 

since the two best fit lines are related by the shear matrix and therefore have 

the same intercept. There is clearly nothing linear about the trend of 2𝑆𝛾𝑖  

with increasing 𝑚𝑖  in Figure B.1, and one could barely justify using the "best 
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fit" line shown. The best fit line for the 𝐸𝑖  data clearly gives a very good 

estimate of the gradient (i.e. an estimate of the bulk energy, 𝐸𝐵), however 

the point is that even an excellent estimate of the bulk energy can still 

produce an intercept which is a poor estimate of the surface energy. This is 

because the intercept is tiny compared to the values 𝐸𝑖 .  

 

 

Figure B.1. The flawed nature of evaluating surface energy using a linear fit 
of supercell energies against slab size.  

Left panel: Total supercell energies plotted against supercell size with 
best fit line. Right panel: Supercell surface energies plotted against 
slab size with corresponding best fit line. The two "best fit" lines give 
the same estimate of the surface energy because they share the same 
intercept. 

 

 

The fact that the estimate of the surface energy is poor is made particularly 

obvious by observing that for the data shown, the intercept is about 5.3 eV, 

whereas with the surface energy data points 2𝑆𝛾𝑖 are quite clearly 

converging to the region of around 4.1 eV. There are three main sources of 

motivation behind this extensive discussion. Firstly, the linear fitting 

approach is based on the false premise that the data points 2𝑆𝛾𝑖  are merely 

a series of measurements of some linear trend subject to random errors 

characterised by a Gaussian distribution, which is a required assumption in 

regression models. In fact, the oscillatory behaviour of the surface energies 

is a physically meaningful, reproduceable, and predictable (in principle) 

manifestation of alternating modes of electron density configurations. The 
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linear fitting approach therefore effectively discards 𝑀  precise and physically 

insightful surface energy values, 2𝑆𝛾𝑖, in favour of one poorly estimated 

surface energy value obtained via an intercept. Secondly, there is generally 

no guarantee that selectively omitting data points at small 𝑚 does in fact 

completely remove the bias in the calculated intercept. Thirdly,  if the linear 

fitting method is used to calculate the surface energies of high-index slabs, it 

can potentially give very inaccurate predictions of the energies of steps. If 

the data points 2𝑆𝛾𝑖  oscillate significantly, then the intercept of the "best fit" 

line also oscillates greatly depending on how many data points and indeed 

which data points are included in the fit. Some examples of this are shown in 

Table B.1.The instability shown in Table B.1. then propagates through to the 

solutions 𝛾110 , 𝛽 and 𝑞 if they are evaluated by using intercept-derived 

values 𝛾𝑘𝑙 , and these solutions are very sensitive to the intercepts used. In 

particular, 𝛽 and 𝑞 are very small compared to the total surface energy, and 

they can change by an order of magnitude upon making the most minor of 

alterations to the data range across which the regression is applied. 

Table B.1. The dependence on the chosen data range of the intercept of a 
linear fit of total slab energies against the number of atoms.  

The resultant intercept varies dramatically depending on which data 
points are included in the fit, so the intercept cannot reliably be 
interpreted as the surface energy. 

Slab size 

(TimO2m) 

Total supercell 

energy 𝐸𝑘𝑙 / eV 

Data range used for linear regression 
 

                  included in fit                               not included in fit 
 

  3 layer (Ti23O46) -57068.4036       

  4 layer (Ti29O58) -71959.2572       

  5 layer (Ti37O74) -91810.0404       

  6 layer (Ti43O86) -106699.8280       

  7 layer (Ti51O102) -126551.1090       

  8 layer (Ti57O114) -141440.4900       

  9 layer (Ti65O130) -161291.9740       

10 layer (Ti71O142) -176181.1710       

 

Resultant intercept (3 d. p.) 

 

6.299 eV 

 

6.452 eV 

 

3.439 eV 

 

3.937 eV 

 

5.461 eV 

 

3.677 eV 

 

B.2  A nonlinear alternative 

   Let us consider odd- and even-layered slabs as physically distinct 

systems, where the total calculated surface energy of a slab consists of a 

component due to the surface alone, 𝛾, and a component due to surface-
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surface interactions which decays exponentially with increasing slab 

thickness: 

𝛾↓ 𝑥 = 𝛾 + 𝑎𝑒−𝐵𝑚 ,                                                                                                         (𝐵. 2) 

𝛾↑ 𝑥 = 𝛾 − 𝑐𝑒−𝐷𝑚 ,                                                                                                         (𝐵. 3) 

where 𝑎, 𝐵, 𝑐, 𝐷 and 𝛾 are all free parameters to be evaluated and 𝑚 is the 

number of formula units (which is proportional to slab thickness). These two 

functions are sketched in Figure B.2.  

 

 

Figure B.2. Supercell slab energies plotted against increasing supercell size 

with a sketch of the best fit functions 𝛾↑ 𝑚  and 𝛾↓ 𝑚 . 

 

Correspondingly, the 𝑀  data points 𝛾𝑖  (𝑖 = 1, . . 𝑀 ) can be split into two 

groups: those on the descending branch, 𝛾𝑗
↓ (𝑗 = 1, . . 𝑃), and those on the 

ascending branch, 𝛾𝑘
↑ (𝑘 = 1, . . 𝑄). Two nonlinear regression procedures can 

be carried out, whereby the free parameters 𝑎, 𝐵, 𝑐, 𝐷 and 𝛾 are optimised so 

that the function 𝛾↓(𝑚) is the best fit to the 𝛾𝑗
↓ points and 𝛾↑(𝑚) is the best fit 
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to the 𝛾𝑘
↑ points. To simplify this process, equations (B.2) and (B.3) can be 

rearranged and then linearised by taking natural logarithms of both sides: 

ln 𝛾↓ − 𝛾 =  ln𝑎 − 𝐵𝑥,                                                                                                  (𝐵. 4) 

ln 𝛾 − 𝛾↑ = ln𝑐 − 𝐷𝑥,                                                                                                  (𝐵. 5) 

By adopting the notation 𝛤↓(𝑚) = ln 𝛾 − 𝛾↓(𝑚)  and 𝛤↑(𝑚) = ln 𝛾↑(𝑚) − 𝛾  

and writing ln𝑎 = 𝐴 and ln𝑐 = 𝐶, the simple linear form is obtained: 

𝛤↓(𝑚) = 𝐴 − 𝐵𝑚,                                                                                                            (𝐵. 6) 

𝛤↑(𝑚) = 𝐶 − 𝐷𝑚.                                                                                                            (𝐵. 7) 

The corresponding data points 𝛾𝑗
↓ and 𝛾𝑘

↑ can also be subjected to this 

linearisation, giving rise to the transformed data points 𝛤𝑗
↓ and 𝛤𝑘

↑: 

𝛤𝑗
↓ = ln 𝛾𝑗

↓ − 𝛾                                                                                                                (𝐵. 8) 

𝛤𝑘
↑ = ln 𝛾 − 𝛾𝑘

↑                                                                                                                (𝐵. 9) 

Note that at this point, 𝛾 is still a free parameter which has not yet been 

evaluated, so the numerical values of the data points 𝛤𝑗
↓ and 𝛤𝑘

↑ are 

undetermined despite the values 𝛾𝑗
↓ and 𝛾𝑘

↑ being known. The data points 𝛤𝑗
↓ 

and 𝛤𝑘
↑ can nevertheless be treated as measured values of the quantities 

modelled by the functions 𝛤↓(𝑚) and 𝛤↑(𝑚). The task at hand therefore is to 

minimise the sum of the squared residuals between the "measured" values 

𝛤𝑗
↓ and the values predicted by the model at the corresponding value of 𝑚,  

𝛤↓ 𝑚𝑗  = 𝐴 − 𝐵𝑚𝑗 , and similarly for 𝛤𝑘
↑. The total sum of squared residuals 

over both branches of the plot is therefore: 

𝛴 =   𝛤𝑗
↓ − 𝐴 + 𝐵𝑚𝑗  

2
𝑃

𝑗 =1

+    𝛤𝑘
↑ − 𝐶 + 𝐷𝑚𝑘 

2
.

𝑄

𝑘=1

                                            (𝐵. 10) 

There are five free parameters and five corresponding conditions required to 

minimise 𝛴: 

∂𝛴

∂𝐴
= 0,

∂𝛴

∂𝐵
= 0,

∂𝛴

∂𝐶
= 0,

∂𝛴

∂𝐷
= 0,

∂𝛴

∂𝛾
= 0.                              (𝐵. 11) 
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It is easiest to deal with the 𝐴, 𝐵, 𝐶 and 𝐷 conditions first and then enforce 

the 𝛾 condition afterwards. By evaluating these first four derivatives and 

setting their values to zero, a system of four linear simultaneous equations is 

obtained: 

∂𝛴

∂𝐴
= 2   𝛤𝑗

↓ − 𝐴 + 𝐵𝑚𝑗  

𝑃

𝑗=1

 −1 = 0                                                                      (𝐵. 12) 

∂𝛴

∂𝐵
= 2   𝛤𝑗

↓ − 𝐴 + 𝐵𝑚𝑗  

𝑃

𝑗 =1

 𝑚𝑗  = 0                                                                      (𝐵. 13) 

∂𝛴

∂𝐶
= 2   𝛤𝑘

↑ − 𝐶 + 𝐷𝑚𝑘 

𝑄

𝑘=1

 −1 = 0                                                                     (𝐵. 14) 

∂𝛴

∂𝐷
= 2   𝛤𝑘

↑ − 𝐶 + 𝐷𝑚𝑘 

𝑄

𝑘=1

 𝑚𝑘 = 0                                                                    (𝐵. 15) 

With some minor simplifications, these can be written in matrix form: 

 

 
 
 
 
 
 
 
 
 
 

 𝛤𝑗
↓

𝑃

𝑗 =1

 𝛤𝑗
↓𝑚𝑗

𝑃

𝑗 =1

 𝛤𝑘
↑

𝑄

𝑘=1

 𝛤𝑘
↑𝑚𝑘

𝑄

𝑘=1  

 
 
 
 
 
 
 
 
 
 

=

 

 
 
 
 
 
 
 
 
 
 

𝑃 − 𝑚𝑗

𝑃

𝑗 =1

0 0

 𝑚𝑗

𝑃

𝑗=1

− 𝑚𝑗
2

𝑃

𝑗 =1

0 0

0 0 𝑄 −  𝑚𝑘

𝑄

𝑘=1

0 0  𝑚𝑘

𝑄

𝑘=1

−  𝑚𝑘
2

𝑄

𝑘=1  

 
 
 
 
 
 
 
 
 
 

 

𝐴
𝐵
𝐶
𝐷

                    (𝐵. 16) 

The expressions for 𝐴, 𝐵, 𝐶 and 𝐷 can then be found using Cramer's 

determinant rule: 
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𝐴 =

 

 

 𝛤𝑗
↓𝑃

𝑗 =1 − 𝑚𝑗
𝑃
𝑗 =1 0 0

 𝛤𝑗
↓𝑚𝑗

𝑃
𝑗=1 − 𝑚𝑗

2𝑃
𝑗=1 0 0

 𝛤𝑘
↑𝑄

𝑘=1 0 𝑄 − 𝑚𝑘
𝑄
𝑘=1

 𝛤𝑘
↑𝑚𝑘

𝑄
𝑘=1 0  𝑚𝑘

𝑄
𝑘=1 − 𝑚𝑘

2𝑄
𝑘=1

 

 

 

 

𝑃 − 𝑚𝑗
𝑃
𝑗=1 0 0

 𝑚𝑗
𝑃
𝑗=1 − 𝑚𝑗

2𝑃
𝑗=1 0 0

0 0 𝑄 −  𝑚𝑘
𝑄
𝑘=1

0 0  𝑚𝑘
𝑄
𝑘=1 −  𝑚𝑘

2𝑄
𝑘=1

 

 

,                              

𝐵 =

 

 

𝑃  𝛤𝑗
↓𝑃

𝑗=1 0 0

 𝑚𝑗
𝑃
𝑗 =1  𝛤𝑗

↓𝑚𝑗
𝑃
𝑗 =1 0 0

0  𝛤𝑘
↑𝑄

𝑘=1 𝑄 − 𝑚𝑘
𝑄
𝑘=1

0  𝛤𝑘
↑𝑚𝑘

𝑄
𝑘=1  𝑚𝑘

𝑄
𝑘=1 − 𝑚𝑘

2𝑄
𝑘=1

 

 

 

 

𝑃 − 𝑚𝑗
𝑃
𝑗 =1 0 0

 𝑚𝑗
𝑃
𝑗 =1 − 𝑚𝑗

2𝑃
𝑗 =1 0 0

0 0 𝑄 − 𝑚𝑘
𝑄
𝑘=1

0 0  𝑚𝑘
𝑄
𝑘=1 − 𝑚𝑘

2𝑄
𝑘=1

 

 

, 

𝐶 =

 

 

𝑃 − 𝑚𝑗
𝑃
𝑗=1  𝛤𝑗

↓𝑃
𝑗 =1 0

 𝑚𝑗
𝑃
𝑗=1 − 𝑚𝑗

2𝑃
𝑗 =1  𝛤𝑗

↓𝑚𝑗
𝑃
𝑗=1 0

0 0  𝛤𝑘
↑𝑄

𝑘=1 −  𝑚𝑘
𝑄
𝑘=1

0 0  𝛤𝑘
↑𝑚𝑘

𝑄
𝑘=1 −  𝑚𝑘

2𝑄
𝑘=1

 

 

 

 

𝑃 − 𝑚𝑗
𝑃
𝑗=1 0 0

 𝑚𝑗
𝑃
𝑗 =1 − 𝑚𝑗

2𝑃
𝑗 =1 0 0

0 0 𝑄 −  𝑚𝑘
𝑄
𝑘=1

0 0  𝑚𝑘
𝑄
𝑘=1 −  𝑚𝑘

2𝑄
𝑘=1

 

 

,             

 

𝐷 =

 

 

𝑃 − 𝑚𝑗
𝑃
𝑗=1 0  𝛤𝑗

↓𝑃
𝑗 =1

 𝑚𝑗
𝑃
𝑗=1 − 𝑚𝑗

2𝑃
𝑗=1 0  𝛤𝑗

↓𝑚𝑗
𝑃
𝑗=1

0 0 𝑄  𝛤𝑘
↑𝑄

𝑘=1

0 0  𝑚𝑘
𝑄
𝑘=1  𝛤𝑘

↑𝑚𝑘
𝑄
𝑘=1

 

 

 

 

𝑃 − 𝑚𝑗
𝑃
𝑗 =1 0 0

 𝑚𝑗
𝑃
𝑗 =1 − 𝑚𝑗

2𝑃
𝑗 =1 0 0

0 0 𝑄 − 𝑚𝑘
𝑄
𝑘=1

0 0  𝑚𝑘
𝑄
𝑘=1 − 𝑚𝑘

2𝑄
𝑘=1

 

 

.                                          𝐵. 17  

Let us rewrite these in a more compact notation: 
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𝐴 =
𝑑𝑒𝑡𝑀𝐴(𝛾)

𝑑𝑒𝑡 𝑀
, 𝐵 =

𝑑𝑒𝑡𝑀𝐵(𝛾)

𝑑𝑒𝑡 𝑀
,   

𝐶 =
𝑑𝑒𝑡𝑀𝐶(𝛾)

𝑑𝑒𝑡 𝑀
, 𝐷 =

𝑑𝑒𝑡𝑀𝐷(𝛾)

𝑑𝑒𝑡 𝑀
                                                                         (𝐵. 18) 

where 𝑀 is the matrix from (B.16) and the 𝛾 in brackets indicates 

dependence on 𝛾. These can be substituted back into the sum of squared 

residuals expression, which now looks like 

𝛴 =   𝛤𝑗
↓ −

𝑑𝑒𝑡𝑀𝐴(𝛾)

𝑑𝑒𝑡 𝑀
+

𝑑𝑒𝑡𝑀𝐵(𝛾)

𝑑𝑒𝑡 𝑀
𝑚𝑗 

2𝑃

𝑗 =1

+    𝛤𝑘
↑ −

𝑑𝑒𝑡𝑀𝐶(𝛾)

𝑑𝑒𝑡 𝑀
+

𝑑𝑒𝑡𝑀𝐷(𝛾)

𝑑𝑒𝑡 𝑀
𝑚𝑘 

2
𝑄

𝑘=1

.                                (𝐵. 19) 

The 
∂𝛴

∂𝛾
= 0 condition then reads: 

   
−1

𝛾𝑗
↓ − 𝛾

 −
∂

∂𝛾
 
𝑑𝑒𝑡𝑀𝐴

𝑑𝑒𝑡 𝑀
 +

∂

∂𝛾
 
𝑑𝑒𝑡𝑀𝐵

𝑑𝑒𝑡 𝑀
 𝑚𝑗 

𝑃

𝑗 =1

+     
−1

𝛾𝑗
↓ − 𝛾

 −
∂

∂𝛾
 
𝑑𝑒𝑡𝑀𝐶

𝑑𝑒𝑡 𝑀
 +

∂

∂𝛾
 
𝑑𝑒𝑡𝑀𝐷

𝑑𝑒𝑡 𝑀
 𝑚𝑘 

𝑄

𝑘=1

 = 0.   (𝐵. 20) 

It is difficult to solve for 𝛾 analytically, but easy to solve numerically by 

carrying out successive iterations on the value of 𝛾. The initial guess of 𝛾 

must be larger than all values of 𝛾𝑘
↑ and smaller than all values of 𝛾𝑗

↓ 

otherwise the quantities ln 𝛾𝑗
↓ − 𝛾  or ln 𝛾 − 𝛾𝑘

↑  are undefined. Within this 

range, there is always a solution for 𝛾. i.e. there is always an asymptote 

which lies in between the two branches but does not intersect them. 

B.3  Application: merits and limitations 

 

This fitting procedure is now carried out on the data presented in Table B.2 

and the best fit functions 𝛾↓ 𝑚  and 𝛾↑ 𝑚  are plotted in Figure B.3 along 

with the data points 𝛾𝑗
↓ and 𝛾𝑘

↑. The two functions converge towards the 

asymptote 𝛾 = 0.030076 eVÅ-2 (6 d. p.), which is the desired number. 
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Figure B.3. Supercell slab energies plotted against increasing supercell size 

with optimised best fit functions 𝛾↑ 𝑚  and 𝛾↓ 𝑚 . 

 

   This method could potentially be useful because it provides a formal 

method for deciding on the value of 𝛾 from a given plot of slowly-converging 

surface energy data points. This is especially important if the convergence is 

slow for the largest computationally-practical slabs. The most severe 

limitation of this method is that there is no clear physical justification for 

writing 𝛾↑ 𝑚  and 𝛾↓ 𝑚  as decaying exponential functions. The method can 

be easily repeated using hyperbolae, and probably many other arbitrary 

functions which can always be made to fit. Also, it is not clear how to decide 

on confidence regions for the optimised parameters, because the deviations 

of the data points from the fitted functions are unlikely to be characterised by 

a Gaussian distribution. 
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Table B.2. Supercell energies calculated using CASTEP divided into two 

branches. 

Surface energy data 

 

System 

 

 

mj 

 

mk 

Supercell 

energy, 

𝐸𝑗  / eV 

(4 d. p.) 

Supercell 

energy, 

𝐸𝑘  / eV 
(4 d. p.) 

Bulk energy 

per formula 

unit, 𝐸𝐵 / eV 
(4 d. p.) 

Surface 

area, 2𝑆  
/ Å2 

(4 d. p.) 

Surface 

energy, 

2𝑆𝛾𝑗
↓ / eV 

(4 d. p.) 

Surface 

energy, 

2𝑆𝛾𝑘
↑ / eV 

(4 d. p.) 

Surface energy 

per unit area, 

𝛾𝑗
↓ / eVÅ-2 

(4 d. p.) 

Surface energy 

per unit area, 

𝛾𝑘
↑ / eVÅ-2 

(4 d. p.) 
 

 

TiO2 

rutile 

(430) 

slabs 

23  -57068.2976  -2481.4804 137.7513 5.7508  0.0417  

 29  -71959.1617 -2481.4804 137.7513  3.7689  0.0274 

37  -91810.0026  -2481.4804 137.7513 4.7709  0.0346  

 43  -106699.7690 -2481.4804 137.7513  3.8867  0.0282 

51  -126551.0880  -2481.4804 137.7513 4.4106  0.0320  

 57  -141440.4450 -2481.4804 137.7513  3.9358  0.0286 

65  -161291.9760  -2481.4804 137.7513 4.2477  0.0308  

 71  -176181.1380 -2481.4804 137.7513  3.9679  0.0288 

Results of best fit analysis 

 
Parameter 

 
Optimised value (6 d. p.) 

𝑎 / eVÅ
-2

 0.051145 

𝐵 0.064635 

𝑐 / eVÅ
-2

 0.004291 

𝐷 0.017784 

𝛾 / eVÅ
-2

 0.030076 

 

 

 

 

 

 

 

 

 

 

 

 


