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Abstract

Two dimensional Rayleigh-Bénard convection in a Boussinesq fluid is the simplest

possible system that exhibits convective instability. Moreover it contains the same

basic physics as occurring in many geophysical and astrophysical systems, such as

the interiors of the Earth and the Sun. We study this ubiquitous system with

and without the effect of rotation, for stress free boundary conditions. We review

the linear stability theory of two dimensional Rayleigh-Bénard convection, deriving

conditions on the dimensionless parameters of the system, under which we expect

convection to occur. Building on this we solve the equations governing the dynamics

of the nonlinear system using a pseudospectral numerical method. This is done for

a range of different values of the Rayleigh, Prandtl and Taylor numbers. We analyse

the results of these simulations using a variety of applied mathematical techniques.

Paying particular attention to the manner in which the flow becomes unstable and

looking at global properties of the system such as the heat transport, we concur

with previous work conducted in this area. For a particular subset of parameters

studied, we find that motion is always steady. Motivated by this we develop an

asymptotic theory to describe these nonlinear, steady state solutions, in the limit

of large Rayleigh number. This asymptotic theory provides analytical expressions

for the governing hydrodynamical variables as well as predictions about the heat

transport. With only a few terms we find excellent agreement with the results of

our numerical simulations.
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Chapter 1

Introduction

1.1 Motivation

Thermal convection is a phenomenon where heat energy is transported by the bulk

movement of molecules within a fluid—a liquid or a gas. This cannot take place in

a solid, since they do not support molecular flows.

In order for convection to occur, we require the density to be inversely related to the

temperature, such that an increase in temperature leads to a decrease in density.

Furthermore, it is necessary to have hot fluid lying beneath cold fluid. The onset

of convection is governed by the Rayleigh number . As a fluid is warmed in one

region, it will expand, becoming less dense than its surroundings and thus rise due

to buoyancy. Concurrently, colder, heavier, fluid will sink in its place, due to being

more dense than its surroundings. This is the basic physical process behind thermal

convection. The induced motion can be a very efficient way in which heat can be

transported and fluid can be mixed. It is a paradigm problem for the study of fluid

instability, and an important setting for the investigation of turbulence. Indeed, the

basic convection mechanism that we have described is very simple, yet this can lead

to complex fluid behaviour, and captivating mathematical analysis.

Convection plays an important role in many geophysical and astrophysical systems,
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Chapter 1. Introduction

such as: the Earth’s core and atmosphere, inside the Sun and other stellar bodies,

and in the cores and atmospheres of planets. All of these systems have areas that

are hotter in one region than another, thus convection can be the preferred method

in which heat energy is transported from one to another. Since convection plays

such an elemental role within these systems, it is not only an interesting topic of

study, but vital in order to describe the world and, indeed, the universe in which we

live.

The simplest possible convective system, and the one that we study here, is Rayleigh-

Bénard convection (see Bénard (1900), Bénard (1901) and Rayleigh (1916)). This

contains the same basic physics as occurring in a natural geophysical or astrophysical

system, yet is much more straightforward to study, owing to the simplified geometry

and thermodynamic properties involved. It is important, however, to understand

the way in which the work presented here fits into the wider theory of geophysical

and astrophysical fluid dynamics.

1.1.1 Dynamo theory

Of particular interest is convection in the presence of an electrically conducting

fluid, as in the core of the Earth, or the Sun. This can lead to the generation of

magnetic fields, by a process known as dynamo action. It had been conjectured as

early as the 16th century that the Earth possesses a magnetic field, with the first

hypothesis of its origin put forward by Gilbert (1600). However it was not until

centuries later that Larmor (1919) conceived of the idea that this magnetic field,

and likewise that of the Sun, was maintained by dynamo action. Dynamo theory

asserts that a body may possess a self-sustaining magnetic field, generated within

an electrically conducting fluid. In geophysical and astrophysical systems, dynamos

are often driven by the effects of convection and planetary rotation. The equations

that are central to dynamo theory are the Navier-Stokes equations, governing the

evolution of the fluid velocity, and Maxwell’s equations of electromagnetism (see
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Moffatt (1978)). We are interested only in the effects of thermal convection, so at

no point in this work will we consider the effects of magnetic fields. For an overview

of dynamo theory in a variety of geophysical and astrophysical settings, one should

consult Dormy & Soward (2007).

Figure 1.1: Radial component of the magnetic field taken from a simulation of the

geodynamo. Image taken from Glatzmaier & Roberts (1995).

1.1.2 Convection in the Earth’s core

The radius of the Earth is approximately 6371km. Its interior profile has been

inferred from seismic observations and can be seen in Figure 1.2. At the centre

of the Earth is a high density metallic core, surrounded by a rocky mantle. The

core mantle boundary (CMB) that separates these regions is located approximately

3480km from the centre of the Earth. The core itself is divided into two parts: a

solid iron inner core, and a liquid outer core. The liquid outer core is thought to be

composed of molten iron, as well as lighter elements such as sulphur and oxygen (see

Gubbins & Herrero-Bervera (2007)). The inner core boundary (ICB) that separates

these regions is located approximately 1220km from the centre of the Earth. The

presence of a solid inner core and a fluid outer core was first detected by Lehmann
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Figure 1.2: The internal structure of the Earth.

(1936). Following an earthquake, seismic waves are produced that travel through

the Earth. Hence if there is an earthquake in one location, its presence will be

detected elsewhere, as a byproduct of these seismic waves.

It is conjectured that the Earth’s magnetic field is generated due to interactions

between convective motions in the liquid outer core and the background effect of

planetary rotation. For a review of the research into the theory of the geodynamo

see Fearn (2007). A natural question is: how do we know that the inner core

is convecting? Any electrically conducting fluid possesses an associated resistance

that leads to the loss of electromagnetic energy as a current flows through it, due

to conversion into heat. This is known as Ohmic dissipation. For a body such

as the Earth, this would lead to a complete decay of the magnetic field within

approximately 20,000 years (see Moffatt (1978)). This is obviously not the case,

since it is known that the Earth has possessed its magnetic field for at least 3.5

billion years (see Jacobs (1987)). Hence something must be mixing the fluid within

the outer core, and this is conjectured to be due to convective motions. Convection

is believed to be driven due to a temperature difference between the inner and

outer core. It should be noted however, that compositional, as well as thermal

convection, could be occurring. This is conjectured to be due to lighter elements,

being released from the inner core and rising due to buoyancy. A review of thermal
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and compositional convection in the Earth’s core is given by Jones (2007).

The features that define convection in the Earth’s core are its spherical geometry

and the fact that it is rotating about its axis. Analytically, convection in spherical

geometry is difficult to study, especially because of problems arising due to the

presence of the inner core. Matters can be simplified by considering full sphere

geometry (see Roberts (1968), Soward (1977) and Jones et al. (2000)). However it

has been shown by Hollerbach & Jones (1993a)/Hollerbach & Jones (1993b) that

this leads to a discrepancy in the magnetic field that is generated, so spherical

shell geometry is preferred. Analytic work is possible (see Busse & Cuong (1977)),

especially in the limit of rapid rotation, although numerical simulations are the

preferred method of study (see Zhang (1992), Dormy (1997), Tilgner & Busse (1997),

Christensen (2002) and Dormy et al. (2004)). The rapid rotation of the Earth has

a profound effect on the appearance of the convection and can be explained by

the Taylor- Proudman theorem. This asserts that motion is uniform in the same

direction of the axis of rotation (see Taylor (1917), Taylor (1922) and Proudman

(1916)). This leads to so-called Taylor columns , an example of which can be

witnessed in Figure 1.3. In order to take advantage of this behaviour, convection

can be studied under what is known as the quasi-geostrophic approximation, as

considered by Gillet & Jones (2006). They study the system in cylindrical geometry,

independent of the vertical coordinate, since this is the flow structure that is

predicted by the Taylor-Proudman theorem. This is valid outside an imaginary

region that is known as the tangent cylinder: the cylinder with radius coinciding

with that of the Earth’s inner core.

1.1.3 Convection in the Sun

The radius of the Sun is approximately 695,500km and its interior is separated into

four regions that are distinct in terms of the physical processes occurring, as can be

seen in Figure 1.4. The interior profile of the Sun is known from Helioseismology
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Figure 1.3: Contours of the axial vorticity, coloured according to the temperature,

from numerical simulations of rotating, spherical shell convection, for Taylor number

increasing from 107 to 1012 (left to right, top to bottom). Image taken from Dormy

(1997).
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(see Christensen-Dalsgaard (1988)). Like the Earth, seismic waves are present inside

the Sun that cause it to oscillate. Based on the travel times of these waves, it is

possible to infer the interior profile of the Sun. At the very centre of the Sun is the

core, with a radius of approximately 25% that of the solar radius. Here, hydrogen

nuclei collide and form helium, in a process known as nuclear fusion. As a byproduct

of this process, an enormous amount of energy is released. Outside of the core this

energy is transported by radiation, in what is known as the radiative zone. This

extends from the edge of the core to approximately 70% of the solar radius. The

final 30%, extending to the very surface of the Sun is where convection takes place,

known as the convective zone. Between the radiative zone and the convective zone is

an extremely thin layer know as the tachocline, and it is conjectured that this could

be the location in which the Sun’s magnetic field is generated (see Hughes et al.

(2007)). Fluid motions in the convective zone rapidly carry heat from the boundary

of the radiative zone to the solar surface. Fluid expands and cools as it rises, and

these convective motions are visible at the solar surface in the form of granules and

supergranules . These are the signature of convection cells on the solar surface and

are approximately 1000km and 35,000km in diameter respectively. Furthermore,

these flow features hold important consequences for the transport of magnetic flux

from the tachocline to the solar surface (see Tobias et al. (2001)).

Unlike in the case of the Earth, the Sun’s rotation does not dominate the dynamics

of the system, meaning that we do not expect the tall thin columnar flow structures

that are present in the Earth. Whilst some work has been conducted in spherical

shell geometry (see Gilman (1977), Gilman (1978a) and Gilman (1978b)), there is

a general preference for simplified planar geometry. Because there is no vertical

constraint on the flow, and since the radius of the Sun far exceeds that of the Earth,

convection is often studied in a three-dimensional plane that is tangential to the

surface of a sphere. The local effect of rotation is taken into consideration through

the governing equations and these models attempt to recreate the solar surface

features that we have already described (see Brummell et al. (1996) and Brummell

7



Chapter 1. Introduction

Figure 1.4: The internal structure of the Sun. Image taken from NASA.

et al. (1998)). An example of a numerically simulated patch of solar surface can be

seen in Figure 1.5.

1.2 Rayleigh-Bénard convection

Rayleigh-Bénard convection is the original and definitive convective fluid system.

Its geometry is very simple; that of a fluid layer, and the basic state is also very

simple; the lower boundary is maintained at a higher temperature than the upper

boundary, and the fluid is at rest. Yet this basic system provides such a bounty of

fascinating fluid behaviour and interesting mathematical analysis that it is studied

more intensely today than in its inception over a century ago. Moreover, the

basic dynamics are encapsulated within the much more complex geophysical and

astrophysical systems that we have described.

Rayleigh-Bénard convection owes its title to the pioneering scientists who first

studied it experimentally and analytically. The original experiments on a layer of

fluid heated from below were conducted by Bénard (1900) (see also Bénard (1901)).
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Figure 1.5: Vertical velocity from a three-dimensional compressible convection

simulation, with dark shades representing downflows and light shades representing

upflows. Image taken from Brummell et al. (1996).

A photograph from one of these experiments can be seen in Figure 1.6. Subsequently

Rayleigh (1916) performed a mathematical analysis of the very same system in order

to try and qualitatively reproduce the results of Bénard (1900). This work provided

the stimulus for countless other studies of convection in the past century; analytical,

numerical and experimental. As techniques and technology have improved, so has

the insight gained into this ubiquitous fluid instability. We shall now outline the

evolution of Rayleigh-Bénard convection since its original study by Bénard (1900),

highlighting some of the seminal investigations into its dynamics.

1.2.1 Theory

Much analytical work has been conducted on the dynamics of Rayleigh-Bénard

convection, in many different capacities, straddling the very breadth of applied
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Figure 1.6: A definitive photograph taken by Bénard (1900), from one of his

pioneering convection experiments, showing the pattern within a fluid layer heated

from below.

mathematics. The theory outlined by Rayleigh (1916) in order to explain the

observations of Bénard (1900) was for the idealised case of two free boundaries,

whereas the original experiment had a rigid lower boundary and a free upper

boundary. This linear stability theory predicted the value of the Rayleigh number

at which convection would onset, for a given horizontal wavenumber. Further work

was conducted, building upon the work of Rayleigh (1916), by Jeffreys (1926),

Jeffreys (1928) and Pellow & Southwell (1940), who derived results for general

boundary conditions. An astounding treatise comprising all this work was collated

and presented in an altogether clearer manner by Chandrasekhar (1961). This is

the primary text on the linear theory of Rayleigh-Bénard convection that is still

consulted today. It encompasses all aspects of plane layer convection and includes a

number of other physical effects, such as rotation, magnetic field and the composite

effect of both.

The linear theory of Rayleigh-Bénard convection gives the critical value of the

Rayleigh number at which convection onsets. Since the analysis is conducted in

terms of normal modes, this theory predicts either exponential growth or decay, and

10



Chapter 1. Introduction

gives no further insight into the dynamics after the system has become unstable.

Building on these foundations that were laid in the first half of the 20th century,

focus then turned to the introduction of nonlinearity within the system. Malkus &

Veronis (1958) conducted a nonlinear analysis of the stability of the system to finite

amplitude perturbations. This allowed them to determine under what circumstances

the system reaches a thermal equilibrium. Furthermore they were able to make

predictions about the ratio of the convective to conductive heat flux transported

through the layer: the Nusselt number. This is an important output parameter

of nonlinear convection studies, and facilitates comparison with experimental data.

This work was modified to include the effect of rotation by Veronis (1959).

An incredible body of analytical work encompassing all aspects of Rayleigh-Bénard

convection was conducted, and—a portion of it—is summarised by, Busse (1978).

Boundless are his contributions to this area of research; his work exploring both

rotating and non-rotating convection, with and without magnetic fields. Moreover,

he made vital contributions to both the existing linear theory of Rayleigh-Bénard

convection, as well as exploring new avenues in the nonlinear regime: both

analytically and numerically. For a range of boundary conditions, under varying

theoretical assumptions, he analysed the stability of the system, discovering a range

of new instability mechanisms.

Building on the nonlinear, finite amplitude instability of Rayleigh-Bénard

convection, Lorenz (1963) derived his celebrated system of equations, attempting to

model weather in the atmosphere. The Lorenz equations are the manifestation of a

three mode truncation of the equations governing two dimensional convection, when

expanded in a double Fourier series. Lorenz (1963) showed that these deterministic

equations give rise to chaotic solutions for differing values of the initial conditions

and governing parameters. Furthermore this provided a significant catalyst for the

area of research now termed Chaos theory, and has since been applied to problems

from a wide spectrum of subjects. These include geometry, biology, chemistry,

engineering, computer science, information theory and a whole range of others. For
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a detailed study of the Lorenz system, one should consult Sparrow (1982). Related

to the work of Lorenz (1963), within the realm of nonlinear dynamics, Rayleigh-

Bénard convection is one of the canonical systems in which complex spatio-temporal

patterns are formed. The Swift-Hohenberg equation (see Swift & Hohenberg (1977))

was originally derived from the equations governing Rayleigh-Bénard convection, but

is now widely used to study pattern formation in its generality. For an overview of

pattern forming systems, including ones arising in Rayleigh-Bénard convection, one

should consult Hoyle (2006).

The final analytical area in which Rayleigh-Bénard is studied, that we wish to

mention, is related to the general theory of the existence and uniqueness of the

Navier-Stokes equations. Using variational methods and energy arguments, a

common aim is to try and derive rigorous upper bounds on the Nusselt number.

This is a relevant quantity in Rayleigh-Bénard convection, and as we have seen, has

direct applications to convection in geophysical and astrophysical bodies, such as the

Earth. Developed by Malkus (1954b) in order to try and explain the findings from

his physical experiments, work is constantly evolving, developing new bounds (see

Doering & Constantin (1996), Kerswell (2000), Doering et al. (2006) and Whitehead

& Doering (2011)). Although guided by numerical and physical experimental data,

this work is entirely analytical, considering different global energy balances within

the governing equations.

1.2.2 Experiments

Whilst analytical theory is very well-adept at providing insight into the linear, or

weakly nonlinear, instability of the system, in nature many convective systems are

highly supercritical. As such, it is relevant to study Rayleigh-Bénard convection for

large thermal driving, as measured by the Rayleigh number, and experiments provide

a means for doing this. Analytical theory is not confined to a particular geometry,

since the choice is arbitrary, however experiments are ultimately three-dimensional.
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After the initial experiments on Rayleigh-Bénard convection conducted by Bénard

(1900)/Bénard (1901), and the subsequent development in theory by Rayleigh (1916)

there were several attempts to not only repeat these experiments, but confirm that

the theory was correct. Schmidt & Milverton (1935) undertook this, and although

the nonlinear system they modelled experimentally differed from the linear theory

of Rayleigh (1916) in terms of the heat transport, the actual point of onset of

instability was confirmed. Malkus (1954a) corroborated these findings, establishing

a comprehensive suite of numerical results for Rayleigh numbers up to 1010. He

made predictions about the Nusselt number scaling and the nature of the convective

turbulence. Furthermore, as we have already mentioned, this was supplemented

with an analytical theory to explain these observations (see Malkus (1954b)). In

conjunction with this, Kraichnan (1962) developed a theory in order to explain

the results of many of the experiments that had taken place. He attempted to

derive different laws for the heat transport in the turbulent convective system, as

a function of the Rayleigh number and Prandtl number. Rossby (1969) extended

the experimental techniques of others in order to incorporate the effect of rotation

within the system. Furthermore, he was able to capture detailed photographs of

some of the flows that were observed, one of which can be seen in Figure 1.7.

It should be noted that a lot of these early experiments into Rayleigh-Bénard

convection were conducted in very shallow layers of fluid. Since convection is an

inherently vertical process, in order to visualise the types of flow structures one

might expect, and really probe the dynamics of the system, experiments in much

deeper layers are necessary. With improvements in experimental techniques, and

technological advances, this was made possible towards the end of the 20th century.

In a layer nearly ten times as deep Castaing et al. (1989) studied Rayleigh-Bénard

convection at higher Rayleigh numbers than Malkus (1954a), observing consistent

scaling of the heat transport with the Rayleigh number. Furthermore, Zocchi

et al. (1990) analysed the dominant flow structures occurring in their convection

experiments in some detail. These included boundary layer waves, thermal plumes
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Figure 1.7: Vertical view of convection for different values of the Rayleigh number

and Taylor number. Image taken from Rossby (1969).
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and swirling spirals of fluid motion. The work was extended to include the effects of

rotation by Liu & Ecke (1997). Their study was much more comprehensive than, for

example, that of Rossby (1969), reaching much higher Rayleigh and Taylor numbers,

in a much deeper layer.

The most current experiments on Rayleigh-Bénard convection are almost exclusively

performed in order to develop scaling laws governing the Nusselt number and the

Reynolds number. Furthermore, with theoretical predictions of such quantities

being readily available, as we have discussed, there are many competing hypotheses.

Grossman & Lohse (2000) developed a theory in order to try and corroborate

all the different experimental results. They postulate that there exist different

regimes, where the Nusselt number scales differently, according to the values of

the Rayleigh number and the Prandtl number. Moreover, since the majority of the

convective systems that are found in nature are influenced by rotation, advances in

technology mean that nearly all modern experiments on Rayleigh-Bénard convection

incorporate this. Notable examples include the work of King et al. (2009), King et al.

(2012) and Liu & Ecke (2009).

1.2.3 Numerical simulations

Straddling the boundary between linear and weakly nonlinear theory and

experiments are numerical simulations. Furthermore, they can be applied to a range

of geometries and scenarios not easily realisable in physical experiments.

Building on his own weakly nonlinear theory Veronis (1966) devised a numerical

algorithm in order to extend his predictions about two-dimensional Rayleigh-Bénard

convection deeper into the nonlinear regime. The maximum Rayleigh number that

he was able to reach was orders of magnitudes below the physical experiments of

that time. He observed only steady state behaviour in this limited Rayleigh number

regime. This differs from experiments in the fact that they are inherently turbulent.

He was able, however, to observe how the initial convective instability saturated, in
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a nonlinear manner. Furthermore his predictions for the Nusselt number were in

line with physical experiments. Veronis (1968) extended this work to incorporate

the effect of rotation into the system, using a largely similar numerical method.

Despite noticing some similarities with the experimental work of Rossby (1969), it

was pointed out that a lot of the differences were due to the fact that two-dimensional

geometry is somewhat restrictive.

Moore & Weiss (1973) extended the work of Veronis (1966), studying non-rotating,

two-dimensional Rayleigh-Bénard convection for a much more comprehensive range

of Rayleigh and Prandtl numbers. Despite using different numerical methods, the

results from these two studies agreed at coinciding parameter values. Moore & Weiss

(1973) observed nonlinear, time-dependent instability, specifically motion that was

periodic in time. This behaviour was identical to that noticed by Krishnamurti

(1970a)/Krishnamurti (1970b) in convection experiments. Furthermore, they were

able to give a simple physical explanation of this instability and relate it to the

theoretical work of Welander (1967). They observed a Nusselt number scaling that

corroborated both the theory of Kraichnan (1962) and the experimental results of

Malkus (1954a). This work stood as a prime reference on two-dimensional Rayleigh-

Bénard convection for the remainder of the 20th century, due to the detail in which

it was studied for such a range of parameters.

The subsequent evolution of numerical simulations into two-dimensional Rayleigh-

Bénard convection was largely governed by the progress made in computing

hardware. The numerical methods developed in the mid-20th century were limited

by the numerical resolution that was able to be implemented on a given computer

architecture, the actual mathematics that they were conceived from did not change.

With the rapid development of fast, efficient computing resources in the late 20th

century, numerical algorithms were able to progress too. Notably DeLuca et al.

(1990) performed high Rayleigh number simulations of non-rotating convection,

observing new scalings of the Nusselt number, in what was termed the hard

turbulence regime. These scalings had been predicted on theoretical grounds, and
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in physical experiments previously (see Zocchi et al. (1990)). With this success,

by the time the authors came to apply their numerical method to that of rotating

convection, advances in technology had developed so rapidly that they were able to

implement a three-dimensional study (see Julien et al. (1996b)/Julien et al. (1996a)).

Despite this, Vincent & Yuen (1999)/Vincent & Yuen (2000) used similar numerical

techniques to achieve what are the highest—that we are aware of—Rayleigh number

numerical simulations of nonlinear two-dimensional Rayleigh-Bénard convection to-

date. They observed a whole regime of different behaviour that had not been

predicted on theoretical grounds. The behaviour was so turbulent that existing

theories relying on large scale energy balances were not valid, since the flow had

begun to develop on a much shorter length scale.

It is with the exponential growth in the advancement of modern computing

technology that three-dimensional Rayleigh-Bénard convection has become a more

favourable problem to simulate numerically, and for that matter, theoretically. It is

not the case that everything is known about the two-dimensional system; there is

still a wealth of insight to be gleaned. Something we shall endeavour to do here.

1.3 Thesis outline

It remains to outline the structure of the work that this thesis comprises. In Chapter

2 we present the governing hydrodynamic equations and rearrange them into various

useful forms that we shall use later in this work. Furthermore some important

consequences of these equations shall be noted. In Chapter 3 we review the linear

stability theory of Chandrasekhar (1961), which is included for completeness. In

Chapter 4 we develop an algorithm in order to perform numerical simulations of the

nonlinear equations, so that we can further probe the dynamics of the system. In

Chapter 5 we present the findings of our numerical results for both rotating and non-

rotating Rayleigh-Bénard convection, drawing comparisons with all the literature

that we have mentioned. In Chapter 6 we present an asymptotic theory designed to
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address a particular phenomenon that we observe in the numerical results of Chapter

5. In Chapter 7 we summarise all our findings, relating them to the work of the

wider geophysical and astrophysical research community. Furthermore, we indicate

potential areas of development that could be undertaken to extend our insight into

the dynamics of two-dimensional Rayleigh-Bénard convection.
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The equations governing rotating

convection

The equations governing rotating Rayleigh-Bénard convection have been derived

in significant detail by Chandrasekhar (1961), therefore we shall not repeat this

here. We shall, however, explain their origins, which lie in the conservation

of mass, momentum and energy. We shall present the equations in the most

general of circumstances, before specifying the exact problem that we wish to study

mathematically. For the specific basic state that we consider, equations will be

derived governing perturbations to this state. This involves expressing the equations

in dimensionless form, introducing several important parameters that govern the

dynamics of the system. We shall manipulate these equations into several useful

forms that will play a part within the analysis of subsequent chapters. Furthermore,

some important results stemming from the governing hydrodynamic equations shall

be presented, such as the Taylor-Proudman theorem.
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2.1 Mathematical statement

2.1.1 Continuity equation

For a fixed volume V , the total mass within the volume is given by the integral of

the density ρ ≡ ρ(x, t), which itself may be a function of both position and time

∫

V

ρ dV (2.1)

where dV = dx dy dz is a volume element. The only way the mass within V can

change in time is via fluid flowing in and out across its surface S. If dS is a surface

element of S, with associated outward-pointing, unit normal vector n̂, then the rate

of change of mass—in time—is given by

d

dt

∫

V

ρdV = −
∫

S

ρU · n̂dS, (2.2)

where U ≡ U(x, t) is the fluid velocity. Since the volume V is fixed in space, and

does not depend on time, we may differentiate inside the integral. Furthermore,

using the divergence theorem, we may turn the surface integral on the right-hand

side into a volume integral, giving

∫

V

(
∂ρ

∂t
+∇ · (ρU)

)
dV = 0. (2.3)

Since this must hold for any arbitrary volume V , we must have that

∂ρ

∂t
+∇ · (ρU) = 0. (2.4)

This is the general expression for the continuity of mass. For a fluid with constant

density, this reduces to

∇ ·U = 0, (2.5)

stating that the fluid velocity is solenoidal, or incompressible.
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2.1.2 Momentum equation

The Navier-Stokes equations are a mathematical expression of Newton’s Second law

of motion, in the context of fluid dynamics. They state that the product of the

density and fluid acceleration are equal to the net force per unit volume on a fluid

parcel as it moves within a flow. Derived by Chandrasekhar (1961), the momentum

equation is given by

ρ
∂U

∂t
+ ρ(U · ∇)U = f +∇ · σ, (2.6)

where ρ and U are the fluid density and velocity respectively that we have already

introduced. Here f is the macroscopic, or body, forcing that is exerted on a particular

fluid parcel and σ accounts for microscopic stresses internal to the fluid. Written in

tensor notation, we have

ρ
∂Ui
∂t

+ ρUj
∂Ui
∂xj

= fi +
∂σij
∂xj

, (2.7)

for i = 1, 2, 3, where the stress tensor σij represents the i’th component of stress,

on a given surface element, that has unit normal pointing in the j-direction. For all

the work considered here, we shall assume that the fluid is Newtonian, in that the

viscous stress is proportional to the rate of strain of the fluid. Mathematically this

is written

σij = −Pδij + µ

(
∂Ui
∂xj

+
∂Uj
∂xi

− 2

3

∂Uk
∂xk

δij

)
. (2.8)

The term containing P is isotropic (its magnitude is independent of direction) and

the remaining terms are anisotropic, representing the microscopic effects of viscous

forces acting on a fluid parcel. Here µ is the dynamic viscosity, and in general does

not have to be constant, although for our purposes we shall assume that it is.

In the absence of any body forcing other than that of gravity-induced

buoyancy—causing less dense fluid to rise and denser fluid to sink—the form of

our external force term is thus

fi = ρgi, (2.9)
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where g is the gravity vector. Inserting equations (2.8) and (2.9) into equation (2.7)

gives, in vector notation

ρ
∂U

∂t
+ ρ(U · ∇)U = −∇P + ρg + µ

(
∇2U +

1

3
∇ (∇ ·U)

)
. (2.10)

2.1.3 Temperature equation

The first law of thermodynamics states that energy is conserved; it may be converted

from one form to another, e.g. work to heat, but not created or destroyed. For a

detailed derivation see Chandrasekhar (1961), who presents the equations of heat

conduction as

ρ
∂

∂t
(cvT ) + ρ(U · ∇)(cvT ) = ∇ · (k∇T )− P (∇ ·U) + Φ (2.11)

where ρ, U, and P are the already-introduced fluid density, velocity and pressure.

Here T is the temperature, cv the specific heat at constant volume—the amount of

heat energy required to increase the temperature of a fixed fluid parcel by a given

amount—and k is the thermal conductivity. We shall assume that both of these

quantities are constant throughout the fluid. Φ represents the heating from the

microscopic effect of viscous dissipation and is written in terms of the fluid velocity

(see Chandrasekhar (1961))

Φ =
µ

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)2

− 2

3
µ

(
∂Uk
∂xk

)2

. (2.12)

2.2 The Boussinesq approximation

In order to simplify the equations that we have just presented, we use an important

result due to Boussinesq (1903) (see Spiegel & Veronis (1960), Chandrasekhar

(1961)). The Boussinesq approximation comprises the following assumptions: firstly,

it assumes that the depth of the fluid layer is small relative to the hydrostatic scale

heights of pressure, temperature and density. Thus it can be considered that the
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Boussinesq approximation assumes that the domain we are studying is, in this sense,

shallow. Secondly, it assumes that density fluctuations are thermal in origin, rather

than being driven by the pressure. Analogous to the anelastic liquid approximation

(see Gough (1969)), the Boussinesq approximation assumes that the flow speed is

much less than the speed of sound; here considered infinite. With this result, we

proceed by assuming that the density is constant in all terms except the buoyancy

force term in the momentum equation. We must retain a fluctuating density here

in order to account for hot fluid rising due to thermal expansion and sinking due

to gravity. We shall denote the constant density by ρ0. Setting ρ = ρ0 in equation

(2.4) gives

∇ ·U = 0, (2.13)

hence the fluid is incompressible. This has implications within the other

hydrodynamic equations. The momentum equation reads

∂U

∂t
+ (U · ∇)U = − 1

ρ0
∇P +

ρ

ρ0
g + ν∇2U, (2.14)

where ν = µ
ρ0

is the kinematic viscosity, a constant.

As well as the assumption of incompressibility, within the temperature equation

we assume that the effects of viscous dissipation, included via the Φ term, are

negligible compared to the conduction of heat (see Chandrasekhar (1961)). Thus

the temperature equation reads

∂T

∂t
+ (U · ∇)T = κ∇2T, (2.15)

where κ = k
ρ0cv

is the coefficient of thermal diffusivity.

Finally, in order to make our equation set closed, we must have an equation of state

that links the density of the fluid with the temperature. For our purposes this can

be written (see Chandrasekhar (1961))

ρ = ρ0 (1− α (T − T0)) , (2.16)

where α is the coefficient of thermal expansion and T0 is the constant temperature

at which ρ = ρ0.
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2.3 Rotation

Consider a vector a = (ax, ay, az) in a Cartesian reference frame, rotating with

constant angular velocity Ω relative to a fixed, inertial reference frame. We may

write a in the form

a = axx̂+ ayŷ + azẑ, (2.17)

where x̂, ŷ, and ẑ are fixed unit vectors in the rotating frame. The rate of change

of a within this rotating frame is given by
(
Da

Dt

)

R

=
Dax
Dt

x̂ +
Day
Dt

ŷ +
Daz
Dt

ẑ, (2.18)

since in the rotating frame, the unit vectors are fixed in length and position. In the

inertial frame, the unit vectors x̂, ŷ, and ẑ are not fixed, hence the rate of change of

a, in the inertial frame, is given by
(
Da

Dt

)

I

=
Dax
Dt

x̂ +
Day
Dt

ŷ +
Daz
Dt

ẑ (2.19)

+ ax
Dx̂

Dt
+ ay

Dŷ

Dt
+ az

Dẑ

Dt
, (2.20)

=

(
Da

Dt

)

R

+ axΩ× x̂+ ayΩ× ŷ + azΩ× ẑ, (2.21)

=

(
Da

Dt

)

R

+Ω× a, (2.22)

where we have used the fact that the rate of change of the unit vectors in time, as

observed in the inertial frame, is equal to the cross product of the unit vector and

the rotation vector (see Acheson (1990)). Now, let the vector x describe the position

of a fluid particle. Applying (2.22) to x gives
(
Dx

Dt

)

I

=

(
Dx

Dt

)

R

+Ω× x. (2.23)

The rate of change of position of a fluid particle is its fluid velocity, hence we have

UI = UR +Ω× x. (2.24)

That is, the fluid velocity in the inertial frame is equal to the fluid velocity in the

rotating frame, plus the velocity gained from the solid body rotation Ω × x. In
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the Navier Stokes equations, on the left hand side, we have the rate of change of

velocity, in an inertial frame. We need to work out what this is in a rotating frame.

Applying (2.22) to UI gives
(
DUI

Dt

)

I

=

(
DUI

Dt

)

R

+Ω×UI . (2.25)

Using equation (2.24), this gives
(
DUI

Dt

)

I

=

(
D

Dt
(UR +Ω× x)

)

R

+Ω× (UR +Ω× x), (2.26)

=

(
DUR

Dt

)

R

+Ω×
(
Dx

Dt

)

R

+Ω×UR +Ω× (Ω× x). (2.27)

Now, the second term on the right-hand side may be re-written making use of

equation (2.24), to give
(
DUI

Dt

)

I

=

(
DUR

Dt

)

R

+ 2Ω×UR +Ω× (Ω× x), (2.28)

=

(
DUR

Dt

)

R

+ 2Ω×UR − 1

2
∇
(
|Ω× x|2

)
, (2.29)

where we have re-written the final term in a more useful form. Hence the rate of

change of velocity in the inertial frame is equal to the rate of change of the velocity

in the rotating frame, plus the effects of two other terms on the right hand side.

The first term is known as the Coriolis acceleration. It is oriented perpendicular

to both the direction of rotation and fluid velocity in the rotating frame, and is

proportional to the magnitude of the velocity in the rotating frame. Hence for a

clockwise rotation vector, a fluid particle moving in a straight line in the rotating

frame will appear to be deflected to the left, when viewed in the inertial frame. The

second term is known as the centrifugal force. It is oriented away from the axis

of rotation and is proportional to the distance of a fluid particle from the axis of

rotation. Hence a fluid particle circling the axis of rotation in the rotating frame

will be pushed outwards, when viewed in the inertial frame.

Re-writing the momentum equation with these additional terms, and dropping the

subscript R, we have

∂U

∂t
+ (U · ∇)U = − 1

ρ0
∇Ptotal +

ρ

ρ0
g − 2Ω×U+ ν∇2U, (2.30)
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where we have absorbed the centrifugal force into the pressure gradient term, hence

the pressure can be thought of as a modified pressure, given by

Ptotal ≡ P − ρ0
2
|Ω× x|2. (2.31)

Note that the effects of rotation do not alter the Boussinesq approximation, and so

its validity is still justified. Furthermore, the other hydrodynamic equations remain

unaltered under these conditions.

2.4 Mathematical formulation

We consider a two-dimensional layer of fluid with depth d and horizontal extent L.

The lower boundary is maintained at a higher temperature than the upper boundary,

providing a temperature difference—the driving force of convection—of ∆T across

the layer. The side walls, located at x = 0 and x = L, are thermally insulating.

Gravity is taken to act in the negative z direction (g = −gẑ), whilst the axis of

rotation is aligned with the z axis (Ω = Ωẑ). This geometry can be seen in Figure

2.1. In our two-dimensional setup, we only allow quantities to be functions of x, z

and t: the horizontal and vertical coordinates respectively. Whilst we do not allow

any quantities to be a function of y, we do permit flows in the y-direction. This is

necessary since we have aligned the rotation axis with the z-axis and so the term

2Ω×U in equation (2.30) will have a component in the y-direction, thus driving a

flow in that direction.

2.4.1 Boundary conditions

To accompany the governing hydrodynamic equations, we must enforce a set of

boundary conditions on the fluid velocity and temperature at the upper and lower

surfaces. Convection is driven via an imposed temperature difference, ∆T , across
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Figure 2.1: Physical setup of the problem: schematic of a convective layer.

the fluid layer. The temperature satisfies the following boundary conditions

T = T0 +∆T at z = 0, (2.32)

T = T0 at z = d. (2.33)

The boundary conditions on the fluid velocity depend on the nature of the bounding

surface, and so we distinguish between stress free and no slip boundary conditions.

In either case, no fluid may cross perpendicular to the boundary, so we have the

following impermeability condition condition

U · n̂ = W = 0 on any horizontal boundary. (2.34)

Throughout this work we shall utilise the same boundary condition at both bounding

surfaces, i.e. both stress free, or both no slip.

Stress free

The stress free, or free slip, boundary condition is so named because it requires that

the tangential stress must vanish at the boundary. This allows the fluid travelling

in a direction tangential to the boundary, to move freely along it. From equation

(2.8), equating the tangential components of the stress tensor, σij , to zero, gives us
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the following

σxz = µ

(
∂U

∂z
+
∂W

∂x

)
= 0, (2.35)

σyz = µ

(
∂V

∂z
+
∂W

∂y

)
= 0. (2.36)

Since W = 0 on either boundary, for any x, there is no change in W as we go

along the boundary in the x direction. Hence the derivative of W with respect to x

vanishes, and we have the boundary conditions

∂U

∂z
= 0, (2.37)

∂V

∂z
= 0. (2.38)

Now, if we differentiate the continuity equation with respect to z, and apply the

above boundary condition, we have

∂

∂z
∇ ·U =

∂2U

∂x∂z
+

∂2V

∂y∂z
+
∂2W

∂z2
= 0 ⇒ ∂2W

∂z2
= 0. (2.39)

The z component of the vorticity is given by

ζ =
∂V

∂x
− ∂U

∂y
=
∂V

∂x
. (2.40)

If we differentiate this with respect to z we have

∂ζ

∂z
=

∂2V

∂x∂z
, (2.41)

hence, by the above boundary condition on V , we have

∂ζ

∂z
= 0. (2.42)

No slip

The no slip boundary condition is so named because it requires that fluid not be

allowed to pass along the boundary, meaning that all components of the velocity

must vanish

U = (U, V,W ) = 0. (2.43)
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SinceU = 0 on either boundary, for any x, there is no change inU as we go along the

boundary in the x direction. Hence the derivative of U with respect to x vanishes.

The continuity equation gives

∇ ·U =
∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0 ⇒ ∂W

∂z
= 0. (2.44)

The z component of the vorticity is given by equation (2.40). Since V = 0

everywhere on the boundary, its derivative with respect to x must also vanish,

giving us a boundary condition on the normal component of the vorticity

ζ = 0. (2.45)

2.4.2 Basic state

Motivated by the mathematical description of the problem we must construct a

solution that satisfies the governing hydrodynamic equations, known as a basic

state. We then perturb this basic state and study its stability to such perturbations.

It is conventional to assume that the basic state is steady—does not depend on

time—and that the fluid is at rest—no fluid velocity. Furthermore we assume that

the temperature is a function of the vertical coordinate only. We shall denote the

basic state variables with a subscript B. With no fluid velocity we have UB = 0

and so the continuity equation is trivially satisfied. The x and y components of

the momentum equation tell us that the basic state pressure is a function of z only.

The z component of the momentum equation and the temperature equation yield,

respectively

dPB
dz

= −gρB, (2.46)

d2TB
dz2

= 0. (2.47)

The first equation is an expression of hydrostatic equilibrium: the balance of pressure

gradients and gravity. The temperature equation admits a solution of the form

TB ≡ TB(z) = C1z + C0, (2.48)
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where the constants C0 and C1 are determined by application of the boundary

conditions (2.32) and (2.33). Applying these boundary conditions gives the

expression for the basic state temperature as

TB(z) = T0 +∆T
(
1− z

d

)
. (2.49)

Knowing the basic state temperature profile allows us to solve for the basic state

pressure. Using the equation of state (2.16) within the equation of hydrostatic

equilibrium (2.46) gives

dPB
dz

= −gρ0 (1− α (T − T0)) , (2.50)

= −gρ0
(
1− α∆T

(
1− z

d

))
. (2.51)

Solving this equation for the basic state pressure gives

PB = P0 − gρ0z
(
1− α∆T

(
1− z

2d

))
, (2.52)

where P0 is the constant value at z = 0.

2.4.3 Perturbation equations

We now take our basic state solutions and apply a perturbation to them. We shall

denote perturbation quantities in lower case, such that

U ≡ UB + u, T ≡ TB + θ, P ≡ PB + p.

Note that since UB = 0, this means u satisfies the boundary conditions that we

derived in Section 2.4.1. However, since the basic state temperature already satisfies

the required boundary conditions, the temperature perturbation must vanish on

both boundaries. That is

θ = 0 at z = 0 and z = d. (2.53)
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The continuity, momentum and temperature equations then read

∇ · u = 0, (2.54)

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p+ gαθẑ− 2Ω× u+ ν∇2u, (2.55)

∂θ

∂t
+ (u · ∇)θ =

∆T

d
w + κ∇2θ, (2.56)

where we have used equation (2.46) to cancel the basic state terms in the momentum

equation that are in hydrostatic equilibrium.

2.4.4 Dimensionless equations

When studying problems such as convection in geophysical and astrophysical bodies,

it is extremely difficult to create an experiment that exactly models the physical

conditions within the centre of the Earth, for example: the length scales and

temperatures required are far too large. We could however make a drastically

scaled-down experiment, or perform numerical simulations, but how would we know

that they truly represent processes occurring in the Earth? This leads us to the

concept of dynamic similarity. For different values of the parameters within the

governing equations (e.g. layer depth, temperature difference, kinematic viscosity)

we would expect different resultant flows. Crucially, it is the dimensionless groupings

of these different parameters that give rise to different flows. In expressing the

governing equations in dimensionless form, we are able to classify the type of flow

based on certain dimensionless parameters. This means that although two different

experiments may have different parameter values, we are able to compare them

like-for-like, based on the value of these dimensionless parameter couplings.

In order to express the governing equations in dimensionless form, we must choose

certain values with which to scale the different quantities. A natural length scale

of the problem is the layer depth, d. For the unit of time, we shall choose the

thermal diffusive time, d2

κ
. This is the characteristic amount of time that it takes

for a thermal anomaly to diffuse, over the length scale d. The unit of temperature is
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chosen based on the temperature difference across the layer, ∆T . Re-written with

these scalings, our variables are

x = dx̃, t =
d2

κ
t̃, u =

κ

d
ũ, θ = ∆T θ̃, p =

ρ0κ
2

d2
p̃, (2.57)

where all ˜ variables are dimensionless. Note that with the chosen length scaling

we have ∇ = 1
d
∇̃. Furthermore, this means the boundaries are located at z = 0

and z = 1 in dimensionless coordinates. Proceeding with these scalings in equations

(2.54), (2.55) and (2.56), the continuity, momentum and temperature equations

read, respectively, in dimensionless form

∇ · u = 0, (2.58)

∂u

∂t
+ (u · ∇)u = −∇p +RaPrθẑ− Ta

1

2Prẑ× u+ Pr∇2u, (2.59)

∂θ

∂t
+ (u · ∇)θ = w +∇2θ, (2.60)

where we have dropped the ˜ notation and from now on, all variables are to be

presumed dimensionless, unless otherwise stated. The dimensionless parameters are

the Rayleigh number Ra, the Prandtl number Pr and the Taylor number Ta, which

is related to the Ekman number Ek as shown. These are defined as

Ra =
gα∆Td3

κν
, Pr =

ν

κ
, Ta =

(
2Ωd2

ν

)2

= Ek−2. (2.61)

The Rayleigh number is a measure of convective driving of the system. It is a

ratio of buoyancy forces that promote convection—causing hotter, lighter fluid to

rise—and diffusive forces that negate this, causing both heat and motion to dissipate.

Increasing the Rayleigh number increases the convective driving of the system. The

Prandtl number is the ratio of the kinematic viscosity to the thermal diffusivity. For

Prandtl number greater (less) than unity, momentum will diffuse faster (slower) than

heat. The Taylor number expresses the ratio of the rotation and viscous diffusion

time scales. Increasing the Taylor number increases the rotational effects on the

system. We now need only keep track of these three dimensionless parameters and

varying these will allow us to explore all possible flow regimes. Some examples of
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realisable values of these parameters are given in the table below. Note that there is

differing opinion as to the value that diffusivities take inside the Earth’s core, since

they can be estimated on molecular or turbulent grounds, giving rise to different

estimates of the dimensionless parameters.

Ra Pr Ta

Earth’s core (molecular) 1030 1 1030

Earth’s core (turbulent) 1023 1 1018

Table 2.1: Estimates for the Rayleigh, Prandtl and Taylor number in the Earth’s

core, taken from Jones (2007).

2.4.5 Vorticity-streamfunction formulation

Though we have already derived the governing hydrodynamic equations (cf.

equations (2.58), (2.59) and (2.60)), it shall be seen later (particularly in Chapter

4) that it is convenient to express them in a different form, using the vorticity

and a streamfunction as the governing hydrodynamic variables, along with the

temperature. Beginning with the momentum equation, as written in equation (2.59),

we may re-write the (u · ∇)u term using vector identity (A.1), giving the following

∂u

∂t
+∇

(
1

2
|u|2
)
+ ω × u = −∇p+RaPrθẑ− Ta

1

2Prẑ× u+ Pr∇2u, (2.62)

where we have introduced the fluid vorticity ω = ∇ × u. Taking the curl of the

above equation renders all gradient terms zero, leaving us with

∂ω

∂t
+∇× (ω × u) = −RaPr ∂θ

∂x
ŷ − Ta

1

2Pr∇× (ẑ× u) + Pr∇2ω. (2.63)

Using vector identity (A.2), along with ω = ∇ × u and the fact that ∇ · u = 0,

allows us to re-write the terms ∇× (ω × u) and ∇× (ẑ× u) as follows

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = −RaPr ∂θ

∂x
ŷ + Ta

1

2Pr(ẑ · ∇)u+ Pr∇2ω. (2.64)
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Taking the y-component of this equation we have

∂ω

∂t
+ (u · ∇)ω = −RaPr ∂θ

∂x
+ Ta

1

2Pr
∂v

∂z
+ Pr∇2ω, (2.65)

where v and ω are the y-components of the velocity and vorticity respectively. Since

we are considering two-dimensional flows, dependent only on x and z, then via the

incompressibility condition we may introduce a streamfunction that satisfies the

following

u = −∂ψ
∂z
, w =

∂ψ

∂x
. (2.66)

Working now with the streamfunction renders explicitly solving the continuity

equation irrelevant, since any flow described by such a streamfunction is

automatically incompressible as ∂v
∂y

is also zero. Furthermore, we have that

ω = −∇2ψ. (2.67)

Hence writing the above equation in these variables we have

∂ω

∂t
+
∂ψ

∂x

∂ω

∂z
− ∂ψ

∂z

∂ω

∂x
= −RaPr ∂θ

∂x
+ Ta

1

2Pr
∂v

∂z
+ Pr∇2ω, (2.68)

or, be letting J denote the Jacobian determinant on the left-hand side, we have

∂ω

∂t
+ J(ψ, ω) = −RaPr ∂θ

∂x
+ Ta

1

2Pr
∂v

∂z
+ Pr∇2ω. (2.69)

Since this equation contains a term involving the y-component of the velocity, v, we

require an evolution equation for this quantity. Taking the y-component of equation

(2.59) will provide us with such an equation. Written in vorticity-streamfunction

variables, this gives us

∂v

∂t
+ J(ψ, v) = Ta

1

2Pr
∂ψ

∂z
+ Pr∇2v. (2.70)

In a similar manner, we may write the heat equation in the form

∂θ

∂t
+ J(ψ, θ) =

∂ψ

∂x
+∇2θ. (2.71)

It remains to specify the boundary conditions in terms of the vorticity-

streamfunction variables. From the impermeability condition we have w = 0 on
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z = 0 and z = 1. In terms of the streamfunction we have w = ∂ψ
∂x
, but requiring this

to vanish at z = 0 and z = 1 is equivalent to ψ being equal to a constant. In order

to conserve the horizontal flux through the layer, we have

∫ 1

0

udz = −
∫ 1

0

∂ψ

∂z
dz = − [ψ]10 = 0 (2.72)

and hence the constant value of the streamfunction must be the same on both

boundaries (which we may arbitrarily set to zero). If our bounding surfaces are

stress free then we require that ∂u
∂z

and ∂v
∂z

both vanish on both bounding surfaces.

Written in terms of the vorticity and using the fact that ψ is constant, allows us

to specify that the vorticity should vanish on z = 0 and z = 1. The temperature

boundary conditions remain unchanged in the vorticity-streamfunction formulation,

hence we require

ω = ψ = θ =
∂v

∂z
= 0 at z = 0 and z = 1. (2.73)

If our bounding surfaces are no-slip then we require that all components of the

velocity vanish on both boundaries and so we have two boundary conditions on the

streamfunction but none on the vorticity. In this case we require

ψ =
∂ψ

∂z
= θ = v = 0 at z = 0 and z = 1. (2.74)

2.5 Properties of rotating fluids

2.5.1 Rossby number

We have already introduced the Taylor number, accounting for the rotational driving

of the system, although this does not determine whether the system is dominated

by the rotation. Since the momentum equation is nonlinear in the velocity, it is

feasible that for high enough Rayleigh number, such a strong flow is driven that

the inertial term balances—or dominates—the rotation term. It is for this reason

that we introduce the Rossby number, a further dimensionless number that is the
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ratio of inertial forces to the Coriolis forces. Once again we use d as the length

scale of the problem but this time scale the velocity with a general velocity scale U∗.

Therefore the inertial and Coriolis forces respectively scale as (u · ∇)u ∼ U∗
2/d and

Ω× u ∼ ΩU∗, hence their ratio, the Rossby number, is given by

Ro =
U∗
dΩ

. (2.75)

The Rossby number can be thought of as the ratio of the convective turnover time,

U∗

d
, to the rotation time, 1

Ω
. For Ro ≪ 1 the Coriolis force is much greater than

inertial forces and so we expect that the flow will be dominated by the effects of

rotation. For Ro ≫ 1, since the Coriolis force is weaker than inertial forces, we

expect that the flow will not ‘feel’ the effects of rotation and thus behave like a

non-rotating flow. For Ro close to one, since the relative magnitudes of the Coriolis

force and inertial forces are comparable, it is unclear from the outset whether the

resulting flow will be rotationally influenced or not.

2.5.2 The Taylor-Proudman theorem

Within the study of rapidly rotating fluids, there is a significant theory, owing to

Proudman (1916) and Taylor (1917)/Taylor (1922). We suppose that we are in a

situation with a slow—relative to rotation—steady, velocity, in a fluid with negligible

viscosity. That is, large Taylor number, low Rossby number. To leading order the

momentum equation gives

Ta
1

2Pr ẑ× u = −∇p. (2.76)

This balance between the Coriolis force and the pressure gradient is known as

geostrophic balance. We have neglected viscosity, so this is an idealised situation,

not entirely mirrored within a natural setting. Since viscous diffusion acts on small

length scales, for example within very thin boundary layers, it is possible for the

bulk of a fluid to be held in geostrophic balance, with a departure from this state

in the boundary layer. The resulting flow is known as a geostrophic wind and is

oriented parallel to isobars: lines of constant pressure.
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Taking the curl of the above equation renders the right hand side zero, and we are

left with

Ta
1

2Pr∇× (ẑ× u) = 0, (2.77)

Using vector identity (A.2), the fact that ẑ is a constant vector, and owing to the

incompressibility of u we may transform this, to give

Ta
1

2Pr(ẑ · ∇)u = 0, (2.78)

which may be written
∂u

∂z
= 0. (2.79)

This final statement expresses, mathematically, the Taylor-Proudman theorem: that

the fluid velocity be independent of z, the vertical coordinate that is aligned with the

rotation vector. Hence any steady, large Taylor number, low Rossby number flow,

is essentially two-dimensional. Within a three-dimensional domain, the resulting

flow is composed of so-called Taylor columns; rotating columns of fluid, uniform

in vertical extent. They can be visualised in physical experiments, and are an

important feature of numerical geodynamo models. Within the Earth’s outer core,

the Rossby number is small, Ro ∼ 3 × 10−6 (see e.g. Jones (2007)), therefore

fluid velocity is small compared with rotation, and viscosity is negligible except on

small length scales. It is expected that the convection pattern in the outer core is

composed of Taylor columns, present everywhere except inside the tangent cylinder

(Rotvig & Jones (2002)).

2.5.3 The Ekman Layer

No-slip boundary conditions require that all three components of velocity vanish on

any given surface. The transition from non-zero velocity within the interior, to zero

velocity on the boundary, occurs within a very thin region know as a boundary layer.

In rotating flows, the thickness of this boundary layer is O(Ek
1

2 ) (see Greenspan

(1968)). Within the derivation of the Taylor-Proudman theorem, we said that in
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nature it was generally valid in regions away from the boundary layer. Within

the boundary layer, viscosity is not negligible, and so we must include it in the

necessary mathematical balance. In dimensionless terms, the balance within the

boundary layer is given by

Ek−1Pr(ẑ× u) = −∇p + Pr∇2u, (2.80)

where we have written the Ekman number in place of the Taylor number. Taking

the curl and double curl of this equation, and using vector identities (A.2) and (A.3)

respectively gives

−Ek−1∂u

∂z
= ∇2ω, (2.81)

Ek−1∂ω

∂z
= ∇4u. (2.82)

We stated that viscous diffusion only acts on small length scales. In this case

the small length scale is the distance over which the velocity changes from its

interior value, to zero on the boundary. This distance is measured along the

vertical coordinate, and hence derivatives in the z direction will be much larger

than horizontal derivatives. Taking this into account, the z components of the

above equations are

−Ek−1∂W

∂z
=
∂2Z

∂z2
, (2.83)

Ek−1∂Z

∂z
=
∂4W

∂z4
, (2.84)

where W and Z are the vertical components of velocity and vorticity respectively.

We may combine the above two equations, to gain a single equation for W , or Z

∂W

∂z
= −Ek2∂

5W

∂z5
, (2.85)

∂Z

∂z
= −Ek2∂

5Z

∂z5
. (2.86)

BothW and Z satisfy the same differential equation. We may integrate once, giving

W =Wint −Ek2
∂4W

∂z4
, (2.87)

Z = Zint − Ek2
∂4Z

∂z4
, (2.88)

38



Chapter 2. The equations governing rotating convection

where the constants of integration Wint and Zint refer to the interior vertical

velocity and interior vertical vorticity respectively. Since W and Z satisfy the same

differential equation, for now we will work with just one variable, say, W . The

homogeneous part of the solution satisfies

∂4W

∂z4
= − 1

Ek2
W, (2.89)

and so we propose a solution proportional to eλz, giving λ = ±(1±i)√
2Ek

. Considering

the boundary at z = 0, the two roots with ℜ(λ) > 0 are not permissible, since they

represent solutions that grow as we move from the boundary layer to the interior,

so we discard them. The remaining roots give the following solutions

W = Wint +W1 exp

(−1 + i√
2Ek

z

)
+W2 exp

(−1 − i√
2Ek

z

)
, (2.90)

Z = Zint + Z1 exp

(−1 + i√
2Ek

z

)
+ Z2 exp

(−1 − i√
2Ek

z

)
. (2.91)

Our solutions forW and Z must satisfy equation (2.83). Enforcing this and equating

coefficients of like terms allows us to work out expressions for the coefficients in the

vorticity expression, in terms of the coefficients in the velocity expression. Hence

our solutions read

W = Wint +W1 exp

(−1 + i√
2Ek

z

)
+W2 exp

(−1− i√
2Ek

z

)
, (2.92)

Z = Zint +
(1 + i)√
2Ek

W1 exp

(−1 + i√
2Ek

z

)
+

(1− i)√
2Ek

W2 exp

(−1− i√
2Ek

z

)
. (2.93)

We now wish to express the complex exponentials in the expressions above, in terms

of sines and cosines, doing so gives

W =Wint + exp

( −z√
2Ek

)(
A cos

(
z√
2Ek

)
+B sin

(
z√
2Ek

))
, (2.94)

Z = Zint + exp

( −z√
2Ek

)(
A+B√
2Ek

cos

(
z√
2Ek

)
+
B −A√
2Ek

sin

(
z√
2Ek

))
,

(2.95)

where A = W1 +W2 and B = (W1 −W2)i.

We must now apply the boundary conditions on W and Z, which are given by

W =
∂W

∂z
= Z = 0 at z = 0. (2.96)
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The first two boundary conditions tell us that A = B = −Wint and so our solutions

for W and Z read

W = Wint

(
1− exp

( −z√
2Ek

)(
cos

(
z√
2Ek

)
+ sin

(
z√
2Ek

)))
, (2.97)

Z = Zint −
√

2

Ek
Wint exp

( −z√
2Ek

)
cos

(
z√
2Ek

)
. (2.98)

It is now apparent why we referred to the constants of integration as the interior

velocity and vorticity. Looking at the above expressions, as we move away from

the boundary layer (z increasing) the exponential terms decay and we are left with

interior values. Furthermore, they satisfy our original postulate, that the boundary

layer thickness is O(Ek
1

2 ). Applying the final boundary condition gives the following

Wint =

√
Ek

2
Zint, (2.99)

which is consistent with Greenspan (1968). Furthermore, this shows that the interior

velocity is proportional to the interior vorticity. For cyclonic interior vorticity (Zint >

0) this gives Wint > 0 and so motion is directed into the interior: this is known as

Ekman pumping . For anticyclonic interior vorticity (Zint < 0) this gives Wint < 0

and so motion is directed into the boundary layer: this is known as Ekman suction.

It is these effects that intrinsically render the case of no-slip boundary conditions

more complex than the case of stress-free boundary conditions. In particular,

when performing numerical simulations—something we shall address in Chapters

4 and 5—the added complexity of the Ekman layer can be problematic. For this

reason, subsequent analysis shall be devoted only to the case of stress-free boundary

conditions.

2.6 Summary

In this chapter we presented the equations governing two-dimensional nonlinear

Rayleigh-Bénard convection and expressed them in dimensionless form. This lead

40



Chapter 2. The equations governing rotating convection

to the introduction of three dimensionless parameters: the Rayleigh, Prandtl and

Taylor numbers.

The governing equations were presented in two different ways: the ‘traditional’

formulation expressed the equations in terms of the three components of fluid

velocity u = (u, v, w) and temperature T , with boundary conditions on these

quantities, as well as the z component of the vorticity ζ . The vorticity-

streamfunction formulation expressed the equations in terms of the y component

of the vorticity ω, the streamfunction ψ, the y component of the velocity v and the

temperature T , with boundary conditions on these quantities.

It is important for the reader to distinguish between these formulations—particularly

since we have defined two vorticity quantities—since both will be used independently

in the subsequent analysis. The traditional formulation shall be used primarily in

Chapter 3 and the vorticity-streamfunction formulation in the remaining chapters.
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Chapter 3

Linear theory

In Chapter 2 we derived a set of equations governing perturbations to the

hydrodynamic variables, about a steady, stationary basic state. The basic state

temperature had a purely conducting profile, dependent on the vertical coordinate

only. Upon deriving these perturbation equations we made no assumptions about

the form or, furthermore, the magnitude of these perturbations. In this chapter we

proceed by assuming that these are small, in the sense that the nonlinear product

of any two perturbation quantities is negligible, hence we are able to linearise the

equations. We then perform a stability analysis of the system by looking at the

disturbances in terms of normal modes. We calculate the critical wavenumber and

Rayleigh number at which convection will onset, for given values of the Taylor

number and Prandtl number. Furthermore, we establish bounds on the governing

parameters, allowing us to discern when the system is unstable. We shall just

present the important results here. For a detailed review of the linear stability

of Rayleigh-Bénard convection one should consult Veronis (1959), Chandrasekhar

(1961) or Drazin & Reid (1981).
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3.1 Linearisation

We begin by recalling the equations we derived in Chapter 2, governing the evolution

of the fluid velocity u and temperature T . These are the continuity, momentum and

temperature equations given by equations (2.58), (2.59), and (2.60) respectively. As

we have already said, we shall be studying the stability of small perturbations and

so we linearise these equations. This involves ignoring the nonlinear advective terms

on the left-hand sides of equations (2.59) and (2.60). Thus we have

∇ · u = 0, (3.1)

∂u

∂t
= −∇p+RaPrθẑ− Ta

1

2Prẑ× u+ Pr∇2u, (3.2)

∂θ

∂t
= w +∇2θ, (3.3)

where we recall that w is the z-component of the fluid velocity. In order to eliminate

the pressure term we begin by taking the curl and double curl of equation (3.2), and

using vector identities (A.2) and (A.3) to transform them into the following form

∂ω

∂t
= RaPr (∇× θẑ) + Ta

1

2Pr
∂u

∂z
+ Pr∇2ω, (3.4)

∂

∂t
∇2u = RaPr

∂2θ

∂x2
ẑ− Ta

1

2Pr
∂ω

∂z
+ Pr∇4u, (3.5)

where we recall that the vorticity is given by ω = ∇ × u. We now take the

z-components of these equations, along with the temperature equation, as the

equations upon which we shall conduct our linear stability analysis. They are given

by

∂ζ

∂t
= Ta

1

2Pr
∂w

∂z
+ Pr∇2ζ, (3.6)

∂

∂t
∇2w = RaPr

∂2θ

∂x2
− Ta

1

2Pr
∂ζ

∂z
+ Pr∇4w, (3.7)

∂θ

∂t
= w +∇2θ, (3.8)

where we recall that ζ is the z-component of the vorticity given by equation (2.40)

that itself is a function of u and v—hence we do not require evolution equations for

u and v.
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3.2 Normal mode analysis

We now postulate normal mode solutions of the form

w(x, z, t) = ℜ
{
W (z)eiax+σt

}
, (3.9)

ζ(x, z, t) = ℜ
{
Z(z)eiax+σt

}
, (3.10)

θ(x, z, t) = ℜ
{
Θ(z)eiax+σt

}
. (3.11)

In the above expansions, the functions W (z), Z(z) and Θ(z) could be complex. a

is the wave number of a particular normal mode and σ is the complex eigenvalue

that shall determine the stability of the system. It is actually the real part of the

eigenvalue that determines the stability of the system. Note that for ℜ(σ) < 0, as

time evolves the solutions will decay exponentially, and hence the system is stable.

For ℜ(σ) > 0, as time evolves the solutions will grow exponentially, and hence

the system is unstable. The case ℜ(σ) = 0 characterises the point at which the

system is neither stable nor unstable, often termed marginally stable. σ can be

thought of as a bifurcation parameter, and since the stability of the system changes

at σ = 0, this is the corresponding bifurcation point. Hence there are two different

classes of instability that may occur: instability due to a purely real eigenvalue going

through zero—a direct, or ordinary bifurcation textemdash and instability due to

the real part of a complex conjugate pair of eigenvalues going through zero—a Hopf

bifurcation. The former is often termed a stationary instability and the latter is

often termed overstability, or an oscillatory instability.

With expansions of such a functional dependence on x, z and t we have the following

∂

∂t
= σ,

∂

∂x
= ia,

∂

∂z
= D, ∇2 = D2 − a2, (3.12)

where D is an operator representing differentiation with respect to z. Note that the

stress-free boundary conditions in terms of these variables are as follows

W = D2W = DZ = Θ = 0 at z = 0 and z = 1. (3.13)
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Inserting our expansions (3.9), (3.10) and (3.11) into equations (3.6), (3.7) and (3.8)

respectively give

σZ = Ta
1

2PrDW + Pr
(
D2 − a2

)
Z, (3.14)

σ
(
D2 − a2

)
W = −a2RaPrΘ− Ta

1

2PrDZ + Pr
(
D2 − a2

)2
W, (3.15)

σΘ = W +
(
D2 − a2

)
Θ. (3.16)

Rearranging the above equations so that like terms are together gives

(
D2 − a2 − σ

Pr

)
Z = −Ta 1

2DW, (3.17)

(
D2 − a2

) (
D2 − a2 − σ

Pr

)
W = a2RaΘ+ Ta

1

2DZ, (3.18)

(
D2 − a2 − σ

)
Θ = −W. (3.19)

If we evaluate equation (3.18) on the boundaries then since Θ = DZ = 0 at z = 0

and z = 1 then the right-hand side vanishes. Furthermore, on the left-hand side,

since W = D2W = 0 at z = 0 and z = 1, this tell us that D4W = 0 is also required

on the boundaries. Furthermore, it can be seen that any even-powered derivative

of W , with respect to z, will vanish on the boundaries. The solution that satisfies

these boundary conditions is given by W =W0 sin nπz. Looking at equation (3.17)

tells us that the solution for Z must be of an opposite parity to W , hence we have

Z ∼ cosnπz, whilst equation (3.19) tell us that the solution for Θ must be of the

same parity as W , hence we have Θ ∼ sin nπz also.

We seek to form an equation governing just one of the variables, hence we need to

apply the operators
(
D2 − a2 − σ

Pr

)
and (D2 − a2 − σ) to equation (3.18), yielding

(
D2 − a2

) (
D2 − a2 − σ

Pr

)2 (
D2 − a2 − σ

)
W

=a2Ra
(
D2 − a2 − σ

Pr

) (
D2 − a2 − σ

)
Θ

+Ta
1

2D
(
D2 − a2 − σ

) (
D2 − a2 − σ

Pr

)
Z (3.20)

We can now eliminate Z and Θ by using equations (3.17) and (3.19) to give an
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equation entirely in terms of W

(
D2 − a2

) (
D2 − a2 − σ

Pr

)2 (
D2 − a2 − σ

)
W

+a2Ra
(
D2 − a2 − σ

Pr

)
W + TaD2

(
D2 − a2 − σ

)
W = 0. (3.21)

Since we have justified thatW ∼ sin nπz this has the consequence thatD2 ∼ −n2π2.

Using this within equation (3.21) gives

(
n2π2 + a2

) (
n2π2 + a2 +

σ

Pr

)2 (
n2π2 + a2 + σ

)

−a2Ra
(
n2π2 + a2 +

σ

Pr

)
+ n2π2Ta

(
n2π2 + a2 + σ

)
= 0. (3.22)

Equation (3.22) is a dispersion relation that allows us to determine the eigenvalue

σ, as given by Drazin & Reid (1981). For reasons that shall become evident, at

this point we shall make a distinction between the analysis of the rotating and

non-rotating systems, beginning with the non-rotating one since it is conceptually

simpler.

3.3 No rotation

Before analysing the dispersion relation given by equation (3.22) we shall present

a general result due to Chandrasekhar (1961) and Drazin & Reid (1981). The

principle of exchange of stabilities allows us to infer from the governing equations

some specific details about the eigenvalue σ.

3.3.1 The principle of exchange of stabilities

Setting Ta = 0 in equations (3.18) and (3.19) gives the following

(
D2 − a2

) (
D2 − a2 − σ

Pr

)
W = a2RaΘ, (3.23)

(
D2 − a2 − σ

)
Θ = −W, (3.24)
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where we have in fact disregarded the equation for Z, since it is identically zero in

the non-rotating system.

We begin by multiplying equation (3.24) with the complex conjugate of Θ, denoted

Θ∗ and integrating across the fluid layer, from z = 0 to z = 1.

∫ 1

0

(
Θ∗D2Θ− (a2 + σ)|Θ|2

)
dz = −

∫ 1

0

Θ∗Wdz. (3.25)

Taking the first term on the right-hand side and integrating by parts, noting that

Θ∗ satisfies the same boundary conditions as Θ tell us

∫ 1

0

(
|DΘ|2 + (a2 + σ)|Θ|2

)
dz =

∫ 1

0

Θ∗Wdz. (3.26)

We may write this in the form

I1 + σI2 =

∫ 1

0

Θ∗Wdz, (3.27)

where the integrals I1 and I2 can be identified by inspection. Their precise form

is of no particular interest, the crucial thing is that since the integrands in I1 and

I2 are real and strictly positive, the integrals themselves will yield real and strictly

positive values. Now, turning our attention to equation (3.23), we multiply this by

W ∗, the complex conjugate of W , to give

∫ 1

0

W ∗
(
D4W −

(
2a2 +

σ

Pr

)
D2W +

(
a4 +

a2σ

Pr

)
W

)
dz = a2Ra

∫ 1

0

W ∗Θdz.

(3.28)

Now if we integrate the first term on the left-hand side by parts twice, and the second

term by parts once, using the fact that W ∗ satisfies the same boundary conditions

as W , then we have

∫ 1

0

(
|D2W |2 +

(
2a2 +

σ

Pr

)
|DW |2 +

(
a4 +

a2σ

Pr

)
|W |2

)
dz = a2Ra

∫ 1

0

W ∗Θdz.

(3.29)

Similarly we may write this in the form

I3 + σI4 = a2Ra

∫ 1

0

W ∗Θdz, (3.30)
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where the integrals I3 and I4 can once again be identified by inspection. Again, the

precise form of I3 and I4 is of no particular interest, yet congruously to I1 and I2,

since the integrands are real and strictly positive, the integrals I3 and I4 themselves

will yield real and strictly positive values. It is noteworthy that the integrals within

the right-hand sides of equations (3.27) and (3.30) are the complex conjugate of

one another. Furthermore, denoting the real and imaginary parts of the complex

eigenvalue σ by σr and σi respectively, we have

a2Ra (I1 + (σr + iσi)I2) = (I3 + (σr + iσi)I4)
∗ . (3.31)

For this equation to be satisfied, we must equate its real and imaginary parts, giving

a2Ra (I1 + σrI2)− (I3 + σrI4) = 0, (3.32)

σi
(
a2RaI2 + I4

)
= 0. (3.33)

Since I2, I4, a and Ra are all themselves positive, the only way in which the latter

equation can be satisfied is if σi is itself zero. This means that σ is purely real and

that for non-rotating convection, linear theory predicts that convection cannot set

in via a Hopf bifurcation. Furthermore, the onset of instability will occur when the

now real eigenvalue σ is equal to zero.

3.3.2 Growth rates

Setting Ta = 0 in the dispersion relation given by equation (3.22) gives

(
n2π2 + a2

) (
n2π2 + a2 +

σ

Pr

) (
n2π2 + a2 + σ

)
− a2Ra

(
n2π2 + a2 +

σ

Pr

)
= 0,

(3.34)

where we have taken out a factor of
(
n2π2 + a2 + σ

Pr

)
. Here we have lost a power

of σ and effectively reduced the order of the system. This stems from the fact that

the vorticity is identically zero within the non-rotating system. Rearranging this

equation and equating like powers of σ gives

σ2 +
(
n2π2 + a2

)
(Pr + 1)σ + Pr

(
(n2π2 + a2)

3 − a2Ra
)

(n2π2 + a2)
= 0. (3.35)
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Clearly, in order to have a root σ = 0 we require

Ra =
(n2π2 + a2)3

a2
. (3.36)

For stability, by the Routh-Hurwitz criterion, we require that all coefficients of σ

in equation (3.35) are positive. The coefficients of σ2 and σ are both positive.,

but for the constant coefficient to be positive we require that Ra is less than the

marginal value given by equation (3.36). Therefore to determine the critical Rayleigh

number—the value at which the onset of convection will occur—we must minimise

this expression over both n and a. Clearly n = 1 is the minimal non-trivial value of

n, giving

Ra =
(π2 + a2)3

a2
. (3.37)

Ra

a

0
0 1 2 3 4 5 6

500

1000

1500

2000

Figure 3.1: Plot of the Rayleigh number versus wave number for non-rotating

convection, from equation (3.37).

In order to minimise with respect to a, it is a simple matter of differentiating Ra
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with respect to a and equating the resultant derivative to zero. This gives

ac =
π√
2

≃ 2.221, (3.38)

Rac = Ra(ac) =
27π4

4
≃ 657.511. (3.39)

The roots for general σ can be found by applying the quadratic formula to the

dispersion relation (3.35), giving, for n = 1

σ =
(π2 + a2)(Pr + 1)

2


−1±



1 +
4Pr

(
Ra
Rac

− 1
)

(Pr + 1)2





1

2


 . (3.40)

Note that the onset of instability was not governed by the value of the Prandtl

number, yet the precise rate at which solutions will grow or decay does have Prandtl

number dependence.

3.4 Rotation

For non-zero Taylor number there does not exist a theory analogous to the principle

of exchange of stabilities, whereby we were able to determine that the eigenvalue

governing the stability of the non-rotating system was purely real. For rotating

convection we have to assume that in general the eigenvalues are complex.

3.4.1 Growth rates

We return to the dispersion relation for σ, given by equation (3.22). For the non-

rotating system, instability set in according to the lowest non-trivial value of n. Since

in the limit as Ta→ 0 the rotating system converges to the non-rotating system, it

is clear that we must have n = 1 here also. Enforcing this and rearranging equation

(3.22), equating like powers of σ gives

σ3 + c2σ
2 + c1σ + c0 = 0, (3.41)
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where the coefficients c0, c1 and c2 are given by

c2 =
(
π2 + a2

)
(1 + 2Pr) , (3.42)

c1 = Pr

((
π2 + a2

)2
(2 + Pr) +

π2TaPr − a2Ra

(π2 + a2)

)
, (3.43)

c0 = Pr2
((
π2 + a2

)3
+ π2Ta− a2Ra

)
. (3.44)

Guided by Chandrasekhar (1961), an important combination of the coefficients in

equation (3.41), notably c1c2− c0, is given by the Routh-Hurwitz stability criterion.

Evaluating this based on the values given by equations (3.42), (3.43) and (3.44)

gives

c1c2 − c0 = a2Pr(1 + Pr)

(
2 (1 + Pr)

a2

((
π2 + a2

)3
+
π2TaPr2

(1 + Pr)2

)
− Ra

)
. (3.45)

Clearly c2 > 0 always holds, since its constituent components are all themselves

greater than zero. In general c0 and c1 are not greater than zero, as they are

affected by the values of the other parameters. Congruously c1c2 − c0 is not always

greater than zero due to the effect of the Rayleigh number.

To begin, we shall consider Ra = 0. In this case c0, c1, c2 and c1c2 − c0 will

all be greater than zero. Since c0 > 0 this means that there is at least one

stable—negative—real root. We shall denote this by σ0 < 0. Thus equation (3.41)

can be factorised as follows

(σ − σ0)(σ
2 + 2d1σ + d0) = 0, (3.46)

with the solutions for the other roots being given by

σ = −d1 ±
√
d21 − d0. (3.47)

Expanding equation (3.46) gives

σ3 + (2d1 − σ0)σ
2 + (d0 − 2d1σ0)σ − σ0d0 = 0. (3.48)

Upon comparison with the dispersion relation given by equation (3.41) we see that

the coefficients in the two equations are related in the following manner

(2d1 − σ0) = c2, (d0 − 2d1σ0) = c1, −σ0d0 = c0. (3.49)

52



Chapter 3. Linear theory

Hence we have expressions for d0 and d1. These are given by

d0 = − c0
σ0
, d1 =

c1c2 − c0
2(c1 + σ2

0)
. (3.50)

This means that both d0 and d1 are positive and hence the solutions given by

equation (3.47) both have negative real parts. This is known as absolute stability,

since all three roots have negative real parts.

Now, as Ra is increased from zero, the values of c0 and c1c2 − c0 will decrease.

If c0 becomes zero then by equation (3.49) this means that one of σ0 and d0 has

become zero. σ0 is a real root and with d0 = 0 in equation (3.47) this also gives a

real—zero—root. Hence if c0 = 0 we will have a stationary instability .

If c1c2 − c0 becomes zero then by equation (3.50) this means that d1 has become

zero. Equation (3.47) then gives the roots as σ = ±
√
−d0. Furthermore, c1c2 and

c0 must have the same sign, in order to satisfy c1c2 − c0 = 0. Since c2 is always

positive this means that if c0 is positive (negative), then c1 is positive (negative). If

c0 is negative then that means it has already gone through zero, i.e. a stationary

instability has set in. Hence for c0 positive, c1 is positive. With d1 = 0, equation

(3.49) gives c1 = d0, hence d0 is positive also. By equation (3.47) this means that

we have a complex conjugate pair of roots with zero real part. Hence if c1c2− c0 = 0

then we will have an oscillatory instability. This behaviour is in exact accordance

with Chandrasekhar (1961) and Kloosterziel & Carnevale (2003).

3.4.2 Stationary instability

For a stationary instability, we must have c0 = 0, giving

Ra(s) =
(π2 + a2)3 + π2Ta

a2
, (3.51)

which must be minimised over a and Ta in order to find the critical Rayleigh number.

Note that if Ta = 0 then this expression reduces to that of the non-rotating case.

Hence we would expect that as the Taylor number increases, the critical Rayleigh
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number at which convection will onset will also increase. For a given value of Ta,

minimising over a will give the critical Rayleigh number for that particular Taylor

number. We achieve this by differentiating equation (3.51) with respect to a and

equating the resultant derivative to zero. This gives

2a6 + 3π2a4 = π6 + π2Ta. (3.52)

We must solve this equation for a, for a given Ta in order to find the critical wave

number. In general this is difficult to achieve analytically, so we do it numerically,

with the results being given in Table 3.1 (cf. Chandrasekhar (1961)), along with

the corresponding critical Rayleigh numbers. We can however say something in the

Ta a
(s)
c Ra

(s)
c

104 5.698 5.377× 103

105 8.626 2.131× 104

106 12.86 9.222× 104

107 19.02 4.147× 105

108 28.02 1.897× 106

Table 3.1: Critical wave number and Rayleigh number, for a given Taylor number,

for stationary rotating convection.

asymptotic limit Ta → ∞. The dominant balance in this case will be between the

sextic term on the left-hand side and the term involving the Taylor number on the

right-hand side

2a6 ∼ π2Ta. (3.53)

We can solve this to get an asymptotic solution for the wave number a. Furthermore,

using this value within the expression for the Rayleigh number, given by equation

(3.51), we can get an asymptotic solution for Ra(s) also. Hence as Ta→ ∞, we have

a(s)c ∼
(
π2

2

) 1

6

Ta
1

6 , (3.54)

Ra(s)c ∼ 3

(
π2

2

) 2

3

Ta
2

3 . (3.55)
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Figure 3.2: Plot of the Rayleigh number versus wave number for stationary rotating

convection, from equation (3.51). The curves, in order of increasing Rayleigh

number, correspond to Ta = 104, 105, 106, 107 and 108 respectively.

The Taylor-Proudman theorem told us that in the limit as Ta → ∞, the flow

would be comprised of columns of fluid aligned with the rotation axis. Since the

critical wavenumber increases as the rotation rate increases, this means that the

critical wavelength decreases. Hence the significance of the asymptotic wavenumber

relation is that at onset, convection shall take the form of tall thin columns.

3.4.3 Oscillatory instability

For an oscillatory instability, we must have c1c2 − c0 = 0, giving

Ra(o) =
2 (1 + Pr)

a2

((
π2 + a2

)3
+
π2TaPr2

(1 + Pr)2

)
. (3.56)
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Once again, in order to find the critical Rayleigh number, we must minimise this

expression over a for a given Ta and Pr. Doing this gives

2a6 + 3π2a4 = π6 +
π2TaPr2

(1 + Pr)2
. (3.57)

We solve this numerically for a and the critical values, along with the corresponding

values of the critical Rayleigh number can be found in Table 3.2 (cf. Chandrasekhar

(1961)). Again we can say something in the asymptotic limit Ta → ∞. The

Ta a
(o)
c Ra

(o)
c

104 2.542 1.761× 103

105 3.583 3.404× 103

106 5.501 1.063× 104

107 8.340 4.164× 104

108 12.45 1.794× 105

Table 3.2: Critical wave number and Rayleigh number, for a given Taylor number

at Pr = 0.1, for oscillatory rotating convection.

dominant balance in this case will be between the sextic term on the left-hand side

and the term involving the Taylor number on the right-hand side

2a6 ∼ π2TaPr2

(1 + Pr)2
. (3.58)

We can solve this to get an asymptotic solution for the wave number a. Furthermore,

using this value within the expression for the Rayleigh number, given by equation

(3.56), we can get an asymptotic solution for Ra(o) also. Hence as Ta→ ∞, we have

a(o)c ∼
(

π2Pr2

2 (1 + Pr)2

) 1

6

Ta
1

6 , (3.59)

Ra(o)c ∼ 6 (1 + Pr)

(
π2Pr2

2 (1 + Pr)2

) 2

3

Ta
2

3 , (3.60)

which is the same asymptotic scaling as in the case of a stationary instability.

Since c1c2 − c0 = 0 means that d1 = 0, and furthermore that c1 = d0 is necessarily

positive when we have an oscillatory instability, this means that by equation (3.43)
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we have

Pr

((
π2 + a2

)2
(2 + Pr) +

π2TaPr − a2Ra

(π2 + a2)

)
≥ 0. (3.61)

Using the expression for the Rayleigh number from equation (3.56) and rearranging

gives us a constraint on the Taylor number and the Prandtl number, namely

(1− Pr)Ta ≥ (π2 + a2)
3

π2
(1 + Pr) . (3.62)

Ra

a
0 1 2 3 4 5 6

103

104

105

106

7 8 9 10

Figure 3.3: Plot of the Rayleigh number versus wave number for rotating convection

at Ta = 104. The solid curve is for stationary convection and the dashed curves are

for oscillatory convection at the following values of the Prandtl number, in order of

increasing Rayleigh number: Pr = 0.1, 0.3, 0.5 and 0.7 respectively.

Equation (3.62) gives a necessary but not sufficient requirement that must be

satisfied in order that convection onset in an oscillatory manner. By looking at

this we can see that for Pr > 1 oscillatory convection is not possible, since we must

have Ta > 0. Using equations (3.51) and (3.56) we may write the following

Ra(o) = Ra(s) +
(1 + 2Pr)

a2

((
π2 + a2

)3 − π2Ta

(
1− Pr

1 + Pr

))
. (3.63)
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Hence for Pr > 1 we have Ra(o) > Ra(s) so we can deduce that Ra
(o)
c > Ra

(s)
c

and convection will therefore set in first as stationary convection; indeed we have

just shown that in this case oscillatory convection is not even possible. Further to

this we may derive a tighter upper bound on the value of the Prandtl number that

will permit oscillatory convection. Equation (3.62) reduces to an equality only at

the point of bifurcation—the point at which either one of stationary or oscillatory

convection could onset. Taking this to be so, and using the resulting expression for

the Taylor number within the sextic for a, given by equation (3.57), gives

(2− 3Pr2)a6 + 3π2(1− 2Pr2)a4 − 3π4Pr2a2 − π6 = 0, (3.64)

hence as Pr →
√

2
3
, one root a→ ∞, thus providing an upper bound on the Prandtl

number for which convection can set in via an oscillatory instability. The value of

Ta when the left and right-hand sides of equation (3.62) are equal, that depends

on the Prandtl number and the wave number, acts as dividing line between the

stationary and oscillatory regimes.

For Pr < 1 we have Ra(s) > Ra(o) (see Figure 3.3), yet this does not guarantee

that Ra
(s)
c > Ra

(o)
c , hence we cannot say which type of convection will dominate. It

is possible to determine, numerically, another dividing line which will separate this

intermediate region, where convection could be of either form, and a region whereby

convection will always be oscillatory. Following Chandrasekhar (1961) and Veronis

(1959) this will occur when Ra
(s)
c = Ra

(o)
c at wave numbers a

(s)
c and a

(o)
c —that in

general will not be equal—respectively for given values of the Taylor number and

the Prandtl number. As Ta → ∞ we derived the following asymptotic dependence

of the Rayleigh number with the Taylor number

Ra(s)c ∼ 3

(
π2

2

) 2

3

Ta
2

3 , (3.65)

Ra(o)c ∼ 6 (1 + Pr)

(
π2Pr2

2 (1 + Pr)2

) 2

3

Ta
2

3 . (3.66)

The point at which these become equal as Ta→ ∞ is the root of the equation

2Pr
4

3

(1 + Pr)
1

3

= 1, (3.67)

58



Chapter 3. Linear theory

given by

Prc = 0.6766. (3.68)

Due to the similar functional form of equations (3.51) and (3.56) we can deduce

that for Pr > Prc, Ra
(s)
c < Ra

(o)
c so convection will always be stationary. For Pr <

Prc, provided there exists an Ta that gives Ra
(o)
c < Ra

(s)
c , we will have oscillatory

convection. We are able to determine these stability boundaries numerically and

plot them in a regime diagram in (Ta, Pr) space in Figure 3.4.

Pr

0

1

102 103 104 105 106 107

0.2

0.4

0.6

0.8

Ta

Figure 3.4: Stability boundaries in (Ta, Pr) space for rotating convection. In

the top region, stationary convection is the only possibility and in the bottom

region, oscillatory convection is the only possibility. In the middle region, stationary

convection is preferred at onset, although oscillatory convection is possible.

3.5 Eigenfunction solution

We shall now produce two-dimensional plots of the hydrodynamic variables in (x, z)

space. For the sake of brevity, since the non-rotating plots are very similar, we
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present plots for the rotating system. Furthermore, we shall just do this for one

particular parameter set. As we have shown, the discernible difference in increasing

the rotation rate is to increase the critical wave number. Physically this means

that solutions will oscillate more in the horizontal direction, as the rotation rate is

increased.

We stated that the solution for the vertical velocity was W ∼ sinnπz, with the

mode n = 1 facilitating the lowest Rayleigh number. It was necessary for Θ to be of

the same parity as W and Z to be of opposite parity. Using equations (3.17), (3.18)

and (3.19), the solutions for W , Θ and Z are given by

W =W0 sin πz, (3.69)

Θ =
W0

(a2 + π2)
sin πz, (3.70)

Z =
πTa

1

2W0

(π2 + a2)
cosπz, (3.71)

where W0 is a constant determining the amplitude of the perturbations. Using the

original form of our normal mode expansions given by equations (3.9), (3.10) and

(3.11), we have

w =
(
a2 + π2

)
cos ax sin πz, (3.72)

θ = cos ax sin πz, (3.73)

ζ = πTa
1

2 cos ax cos πz, (3.74)

where we have —arbitrarily—chosen W0 = a2 + π2. In Figure 3.5 we plot these

quantities for stationary convection at Ta = 104, in a box whose length is determined

by the critical wave number. It can be seen that the flow is composed of rising and

sinking columns of fluid, that are driven by the buoyancy. These are known as

convection cells. For a larger Taylor number, in a box of the same length, the linear

eigenfunctions would be composed of more cells in the horizontal.
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Figure 3.5: Plots of (a) the normalised vertical velocity (‖w‖∞ = 42.3), (b) the

normalised vertical vorticity (‖ζ‖∞ = 314) and (c) the temperature perturbation,

for Ta = 104, P r = 1, R = Ra
(s)
c , where L = 1.10.

3.6 Summary

In this chapter we reviewed the linear stability of the system to normal mode

disturbances, guided by Chandrasekhar (1961), Veronis (1959) and Drazin & Reid

(1981). We derived conditions upon the governing dimensionless parameters: the

Rayleigh number, Ra; the Prandtl number, Pr and the Taylor number, Ta as well

as the particular wave number of a disturbance, a, that determined when instability

would manifest. This gave us the critical value of the Rayleigh number, for a

particular wave number, at which convection could occur. This was done for the
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case of no rotation, as well as the rotating system. Furthermore, we distinguished

between the type of instability at the onset of convection—stationary or oscillatory.

We computed stability conditions to determine the type of instability at the onset of

convection that were dependent on the value of the Taylor number and the Prandtl

number.
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Nonlinear numerical method

In Chapter 3 we studied the linear theory of rotating convection, revealing

information about the onset of instability in terms of normal modes. Since we really

wish to chart the nonlinear evolution of these instabilities as they progress in time, we

must solve the governing hydrodynamic equations numerically. Thus the primary

concern of this chapter is with the derivation of a suitable numerical procedure.

Using a Fourier-Chebyshev pseudospectral method allows us to transform the

continuous system of PDEs into a discrete system of matrix-vector problems that

can be efficiently solved using a computer. Spectral methods are widely used in

the area of fluid dynamics and—as well as convection—have been used to solve,

numerically, problems that include: shear flow, magnetohydrodynamic and inertial

instabilities. We shall begin by reviewing the class of numerical methods we are to

use, followed by an in-depth application to the specific problem we are looking at.
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4.1 Mathematical formulation

4.1.1 Overview

To solve the time-dependent, hydrodynamic equations we employ a Fourier-

Chebyshev, pseudospectral method, of which the constituent components outlined

in this chapter can be found within Canuto et al. (1988), Trefethen (2000), Boyd

(2001), Peyret (2002), Canuto et al. (2006) and Glatzmaier (2013). Since their

inception in the 1960s spectral methods have become one of the primary ways of

solving partial differential equations. Spectral methods were developed concurrently

with the Fast Fourier Transform algorithm of Cooley & Tukey (1965)—an algorithm

apparently known to Carl Friedrich Gauss in 1805 but published posthumously (see

Gauss (1866))—and have grown in popularity since. This is due to the subsequent

development of both computing hardware, and computing resources: in particular

fast, efficient algorithms such as FFTW (Frigo & Johnson (2005), Frigo & Johnson

(2012)) for numerically computing Fast Fourier Transforms. In rectangular domains,

spectral methods are especially powerful, achieving high levels of accuracy for

relatively low computational effort. Fourier-Chebyshev pseudospectral methods

have been used successfully in previous nonlinear two-dimensional convection studies

(see e.g. DeLuca et al. (1990)) and are also favoured in three-dimensional studies

(see e.g. Cox & Matthews (1997) and Schmitz & Tilgner (2009)).

When applying spectral methods to time-dependent, partial differential equations,

the underlying principle is to write the dependent variables as a sum of known

spatially-varying basis functions and unknown time-dependent coefficients. We then

need only work with the coefficients, solving such that they satisfy the equations

and boundary conditions. We discretise the computational domain with a grid of

coordinates and are able to interchange between the physical values of the dependent

variables (evaluated at the grid points) and their spectral representations, by suitable

spectral transformations. In particular, the Fast Fourier Transform (see Cooley &
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Tukey (1965)) and the Chebyshev transform, which is itself a manifestation of the

real-valued Fast Fourier Transform. Knowing the physical values of a dependent

variable and its spectral coefficients are equivalent, and one can be inferred from the

other.

Spectral methods are global in the sense that each basis function is defined on the

whole computational domain. Hence information at any point within the domain is

inherently linked to every other point within the domain. For this reason, we require

that the dependent variables are sufficiently smooth, i.e. they do not develop sharp

discontinuities (shocks). This is in contrast to local methods, such as finite difference

methods, where dependent variables are only non-zero over a defined subdomain. In

principle, the series expansions of our dependent variables contain an infinite number

of terms, though in practice they are truncated at some finite integer value, N , known

as the numerical resolution. Increasing N improves the accuracy of our solution,

although requires more computational effort, owing to the greater number of terms

in the expansion. Therefore it will be seen that the resolution plays a pivotal role in

our solving of the governing equations: we wish to solve the equations as accurately

as possible, in a realistic amount of time. Spectral methods demonstrate exponential

convergence, whereby the error due to truncation scales like O(e−N).

Since we have the power to choose the basis functions that comprise our spectral

expansions, differentiation is computed easily and we are able to derive spectral

analogues of the differential operators occurring in the governing partial equations,

and how these affect the spectral coefficients. The precise term pseudospectral owes

to the way in which nonlinear terms within the equations are handled. For two

dependent variables expressed as finite sums, multiplying these together requires

the use of convolution. This is a computationally expensive process so we choose

to perform all multiplication on the physical grid. Multiplication is performed in

a pointwise manner, evaluating the product of two dependent variables at each

grid point. We then calculate the spectral representation of the resulting nonlinear

product using the requisite spectral transformations. In the whole procedure
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outlined in this chapter, it is the evaluation of nonlinear terms that requires most

computational time per cycle.

4.1.2 The equations

A detailed derivation of the governing equations in the so-called vorticity-

streamfunction formulation has already been given in Chapter 2, though we will

re-state the equations to be solved numerically here, for ease of reference. Collecting

time derivatives and diffusive terms on the left-hand side and all other terms on the

right-hand side, we have

∂ω

∂t
− Pr∇2ω = −RaPr ∂θ

∂x
+ Ta

1

2Pr
∂v

∂z
− J(ψ, ω) ≡ f, (4.1)

∂θ

∂t
−∇2θ =

∂ψ

∂x
− J(ψ, θ) ≡ g, (4.2)

∂v

∂t
− Pr∇2v = Ta

1

2Pr
∂ψ

∂z
− J(ψ, v) ≡ h, (4.3)

∇2ψ = −ω (4.4)

where we have denoted by f , g and h, the right-hand sides of equations (4.1), (4.2)

and (4.3) respectively. It is in this specific form that we shall numerically solve the

equations, supplemented with the following stress-free boundary conditions

ψ = ω = θ =
∂v

∂z
= 0 at z = 0 and z = 1. (4.5)

4.1.3 Coordinate transformation

Our dimensionless set of governing hydrodynamic equations are posed on the

interval given by (x, z) ∈ [0, L] × [0, 1], where L = 2π/a and a is a wavenumber

that acts to define the aspect ratio of our domain. The Fourier-Chebyshev

pseudospectral method which we are to use, requires equations that are posed

on the interval [0, 2π] × [−1, 1]. Hence it is necessary to employ the following

coordinate transformation, in order to map our equations from the actual domain

66



Chapter 4. Nonlinear numerical method

into a computational domain, given by the following

(X,Z) = (ax, 2z − 1) ∈ [0, 2π]× [−1, 1]. (4.6)

[Note that we have introduced Z above to denote the rescaled vertical coordinate

within the computational domain. In Chapter 3 this was used to denote the vertical

velocity eigenfunction. Whilst this quantity shall not arise in the following analysis,

it is prudent to comment on this redefinition, to avoid any confusion. ] With such a

scaling, this obviously has implications when taking derivatives, hence

∇ = (∂x, ∂z) = (a∂X , 2∂Z) ⇒ ∇2 = a2∂XX + 4∂ZZ . (4.7)

4.2 Fourier series

4.2.1 Series expansion

We have already seen that the equations governing rotating convection admit

instabilities in the form of normal modes: sinusoidal disturbances to the basic

conducting state. Following on from this we expand our hydrodynamic variables in

a truncated Fourier series in the horizontal coordinate x. This has the implication

that everything is periodic in the x-direction. With this we posit

ω(X,Z, t) =

Nx−1∑

m=0

ω̂m(Z, t)e
imX + c.c., (4.8)

θ(X,Z, t) =

Nx−1∑

m=0

θ̂m(Z, t)e
imX + c.c., (4.9)

ψ(X,Z, t) =
Nx−1∑

m=0

ψ̂m(Z, t)e
imX + c.c., (4.10)

v(X,Z, t) =

Nx−1∑

m=0

v̂m(Z, t)e
imX + c.c., (4.11)

where we have used c.c. to denote the complex conjugate. Here we must recall

that X = ax, so whilst in the computational domain quantities are periodic with
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period 2π, in the actual domain, they are periodic with period 2π/a. Here Nx is

our numerical resolution in the x direction; we have Nx different terms within our

spectral expansion. We refer to the distinct m as wave numbers, wave modes, or

harmonics, since a particular m gives a particular sine or cosine.

We now sample all our variables on an evenly spaced, periodic grid, with grid values

given by

Xk =
2πk

Nx

for k = 0, 1, . . . , Nx − 1. (4.12)

Considering the vorticity for purposes of example only, since all other quantities are

treated likewise, this gives

ωk(Z, t) ≡ ω(Xk, Z, t) =

Nx−1∑

m=0

ω̂m(Z, t)e
2πimk
Nx . (4.13)

We may now infer the spectral coefficients from the above expansion by taking the

discrete Fourier transform (see Frigo & Johnson (2012), §4.8.2), given by

ω̂m(Z, t) =
1

Nx

Nx−1∑

k=0

ωk(Z, t)e
− 2πimk

Nx . (4.14)

4.2.2 Differentiation

Looking at the form of expansions (4.8)–(4.11) it is clear that if we wish to

differentiate with respect to x, this amounts to multiplying the expansion through

by a factor of iam, i.e.

∂xω(X,Z, t) =
Nx−1∑

m=0

iamω̂m(Z, t)e
imX .

Using this fact, and substituting these series expansions into the governing equations

gives

∂tω̂m − Pr
(
4∂ZZ − a2m2

)
ω̂m = f̂m, (4.15)

∂tθ̂m −
(
4∂ZZ − a2m2

)
θ̂m = ĝm, (4.16)

∂tv̂m − Pr
(
4∂ZZ − a2m2

)
v̂m = ĥm, (4.17)

(4∂ZZ − a2m2)ψ̂m = −ω̂m. (4.18)
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We have cancelled all exponential terms and dropped the summation signs for

convenience, yet it is key to remember that the above set of equations must be solved

form = 0, 1, . . . , Nx−1, along with the boundary conditions given by equation (4.5).

In our series expansion this amounts to satisfying

ω̂m(±1, t) = θ̂m(±1, t) = ψ̂m(±1, t) = ∂Z v̂m(±1, t) = 0. (4.19)

Note also, that f̂m, ĝm and ĥm are the Fourier coefficients of the right hand sides of

equations (4.1), (4.2) and (4.3) that have been computed in a point-wise manner,

on the physical grid, as described in the introduction to this chapter.

4.2.3 Aliasing

As a cautionary note, we must be aware that aliasing errors could be present due to

the pseudospectral nature of our numerical method. Aliasing occurs when periodic

functions are sampled on a finite grid, causing modes with different wave numbers

to become indistinguishable. For example, consider the functions sin x and sin 5x

when sampled five times at equispaced points in the interval [0, 2π]. Despite the

fact that sin 5x oscillates much more rapidly than sin x, when sampled on the grid

we have chosen, both functions attain the exact same values. Furthermore, both

functions will have the same spectral coefficients.

When computing Fourier transforms of—quadratic—nonlinear products, it is

conceivable that the interaction between two Fourier wave modes in our spectrum

could generate a wave mode that lies outside this spectrum. Such a wave mode would

then be aliased to a lower wave mode in our spectrum, that is still below the cut-

off provided by the numerical resolution. This would give the—false —appearance

of a more vigorously oscillating mode. There are several methods used to quell

this spurious behaviour, most notably Orszag’s 2/3 rule (see Orszag (1971)). This

involves equating to zero the coefficients of the highest third of modes, immediately

before performing a Fourier transformation from spectral to grid space. This method
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works since the quadratic interaction of any two wave modes within the spectrum

is aliased to a wave mode that is filtered out (see Boyd (2001)).

4.3 Chebyshev series

4.3.1 Properties

Convection is driven by buoyancy, so the bulk of the motion is dominated by

processes occurring in the vertical direction. Coupled with the boundary conditions

on the top and bottom boundaries, we expect that there will be thin boundary

layer regions where the temperature perturbation drops from its core value to zero

on the boundary. For this reason we must ensure that our spectral expansions

are structured such that they capture this sharp transitional behaviour, hence we

choose to expand our vertical dependence as a sum of Chebyshev polynomials, rather

than Fourier modes. Chebyshev polynomials possess the desirable property of rapid

convergence, as well as oscillating more rapidly as you approach the boundaries of

the computational domain; key in order to capture the boundary layer behaviour.

The Chebyshev polynomials of the first kind are defined, with Z ∈ [−1, 1], according

to the following recurrence relation

T0(Z) = 1, (4.20)

T1(Z) = Z, (4.21)

Tn(Z) = 2ZTn−1(Z)− Tn−2(Z) for n ≥ 2. (4.22)

Concurrently they may be defined trigonometrically as follows

Tn(Z) = cos (n arccos(Z)) for n = 0, 1, . . . (4.23)

For further properties of Chebyshev polynomials, in the framework of pseudospectral

methods, one should consult Boyd (2001).
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4.3.2 Series expansion

Thus we expand our variables as follows

ω̂m(Z, t) =
Nz+1∑

l=0

ω̂lm(t)Tl(Z), (4.24)

θ̂m(Z, t) =
Nz+1∑

l=0

θ̂lm(t)Tl(Z), (4.25)

ψ̂m(Z, t) =

Nz+1∑

l=0

ψ̂lm(t)Tl(Z), (4.26)

v̂m(Z, t) =
Nz+1∑

l=0

v̂lm(t)Tl(Z). (4.27)

Here Nz represents the numerical resolution of our spectral expansions in the z-

direction, though note that they actually comprise Nz + 2 Chebyshev polynomials,

rather than Nz. Once again we evaluate our expansions on a grid of points; the Nz

Chebyshev-Gauss-Lobatto points, defined by

Zj = cos
(2j + 1)π

2Nz

for j = 0, 1, . . . , Nz − 1. (4.28)

The Gauss-Lobatto points are actually the zeros of the Chebyshev polynomials

themselves and so possess the desirable property of clustering near the boundaries,

allowing us to resolve the boundary layer structures. It should be noted, however,

that the above set of Nz points do not include the boundary points at Z = ±1,

therefore we require two supplementary equations, in order to impose the boundary

conditions. This is the reason why our series expansions above contain Nz + 2,

rather than Nz, terms; so that we have enough terms in order to satisfy the

boundary conditions. For demonstrative purposes, sampling the vorticity on the

Gauss-Lobatto grid gives

ω̂mj(t) ≡ ω̂m(Zj, t) =
Nz+1∑

l=0

ω̂lm(t)Tl(Zj). (4.29)

Once again we may infer the spectral coefficients by taking a suitable transform: a

discrete cosine transform (see Frigo & Johnson (2012), §4.8.3), which is a real, even,
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discrete Fourier transform

ω̂lm(t) = 2

Nz+1∑

j=0

ω̂mj(t)Tl(Zj). (4.30)

4.3.3 Differentiation

Unlike the Fourier expansions used in the x direction, where differentiation just

involved multiplying through by some factor, Chebyshev expansions do not permit

such simplicity. Considering the vorticity, since the same principle applies for the

other hydrodynamic variables, we write

∂p

∂Zp
ω̂m(Z, t) =

Nz+1∑

l=0

ω̂
(p)
lm (t)Tl(Z). (4.31)

That is, we have expanded the p-th partial derivative of ω̂m(Z, t) with respect to Z

in a Chebyshev series of its own. For example, suppose that for a particular m

ω̂m(Z, t) = Z2 + 2Z + 1. (4.32)

From equation (4.22) we know that T0 = 1, T1 = Z, T2 = 2Z2−1, so the Chebyshev

expansion of (4.32) has the following coefficients

{
ω̂0m =

3

2
, ω̂1m = 2, ω̂2m =

1

2
, ω̂lm = 0 for l ≥ 3

}
. (4.33)

Explicitly differentiating equation (4.32), twice with respect to Z, gives

∂ZZ ω̂m(Z, t) = 2, (4.34)

yielding the following set of second derivative coefficients

{
ω̂
(2)
0m = 2, ω̂

(2)
lm = 0 for l ≥ 1

}
. (4.35)
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We insert our spectral expansions, given by equations (4.24)–(4.27), into equations

(4.16)–(4.18), giving

∂tω̂lm − Pr
(
4ω̂

(2)
lm − a2m2ω̂lm

)
= f̂lm, (4.36)

∂tθ̂lm −
(
4θ̂

(2)
lm − a2m2θ̂lm

)
= ĝlm, (4.37)

∂tv̂lm −
(
4v̂

(2)
lm − a2m2v̂lm

)
= ĥlm, (4.38)

(
4ψ̂

(2)
lm − a2m2ψ̂lm

)
= −ω̂lm. (4.39)

Note that we have cancelled all the Tl(zj) terms and once again dropped the

summation signs for convenience, remembering that this set of equations must be

solved for l = 0, 1, . . . , Nz + 1, m = 0, 1, . . . , Nx − 1. Finally, in terms of our series

expansions, the boundary conditions read

Nz+1∑

l=0

(±1)lω̂lm(t) =
Nz+1∑

l=0

(±1)lθ̂lm(t) =
Nz+1∑

l=0

(±1)lψ̂lm(t) =
Nz+1∑

l=0

(±1)lv̂
(1)
lm (t) = 0,

(4.40)

For a more complicated expression, containing many more terms, analytically

carrying out an explicit differentiation would be a very costly procedure. For this

reason we seek to determine the second derivative coefficients via recursion, in terms

of the known spectral coefficients. In general, the p-th derivative coefficients are to

be determined, in descending order, using the following recurrence relation due to

Boyd (2001)

cl−1ω̂
(p)
(l−1)m = ω̂

(p)
(l+1)m + 2lω̂

(p−1)
lm for l = 1, 2, . . . , Nz + 2− p, p ≥ 1 (4.41)

with the starting condition(s) ω̂
(p)
lm = 0 for l ≥ Nz + 2− p, where we have

cl =





2 for l = 0,

1 for l > 0.

(4.42)

Using the recurrence relation above, it is possible to express the p-th derivative

coefficients in terms of the original spectral coefficients via

ω̂
(p)
lm =

Nz+1∑

k=0

C
(p)
lk ω̂km, (4.43)
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for l = 0, 1, . . . , Nz + 1, m = 0, 1, . . . , Nx. This allows us to write the second

derivative coefficients in hydrodynamic equations above, in terms of the original

spectral coefficients. Furthermore, this allows us to write the final boundary

condition in equation (4.40) as

Nz+1∑

l=0

(
Nz+1∑

k=0

(±1)kC
(1)
kl

)
v̂lm = 0. (4.44)

4.4 System recombination

4.4.1 Derivation

Rather than using equation (4.43) to express the second derivative coefficients in

terms of the original spectral coefficients in equations (4.36)–(4.39) we follow the

guidance of Peyret (2002). Consider the recurrence relation in equation (4.41) above,

written with p = 1 and p = 2. This gives, respectively

cl−1ω̂
(1)
(l−1)m = el+2ω̂

(1)
(l+1)m + 2lω̂lm for l = 1, 2, . . . , Nz + 1, (4.45)

cl−1ω̂
(2)
(l−1)m = el+3ω̂

(2)
(l+1)m + 2lω̂

(1)
lm for l = 1, 2, . . . , Nz + 1, (4.46)

with

el =





1 for l ≤ Nz + 1,

0 for l > Nz + 1.

(4.47)

In the above equations, note that we have ω̂
(0)
lm ≡ ω̂lm, the original series coefficients.

Substituting l − 1 and l + 1, for l, in the p = 2 equation, respectively gives

cl−2ω̂
(2)
(l−2)m = ek+2ω̂

(2)
lm + 2(l − 1)ω̂

(1)
(l−1)m for l = 2, 3, . . . , Nz + 2, (4.48)

clω̂
(2)
lm = el+4ω̂

(2)
(l+2)m + 2(l + 1)ω̂

(1)
(l+1)m for l = 0, 1, . . . , Nz. (4.49)
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We are then able to rearrange the above equations, collecting terms of the same

order derivative, giving

⇒ ω̂
(1)
(l−1)m =

cl−2ω̂
(2)
(l−2)m − ek+2ω̂

(2)
lm

2(l − 1)
for l = 2, 3, . . . , Nz + 2, (4.50)

⇒ ω̂
(1)
(l+1)m =

clω̂
(2)
lm − el+4ω̂

(2)
(l+2)m

2(l + 1)
for l = 0, 1, . . . , Nz. (4.51)

We can now use these expressions within equation (4.45), in order to eliminate the

l − 1 and l + 1 terms

cl−1(cl−2ω̂
(2)
(l−2)m − el+2ω̂

(2)
lm )

2(l − 1)
=
el+2(clω̂

(2)
lm − el+4ω̂

(2)
(l+2)m)

2(l + 1)
+ 2lω̂lm (4.52)

for l = 2, 3, . . . , Nz + 1

Due to the range of l values, we may disregard cl−1 and cl, since they will always be

equal to one and furthermore, we notice that el+2el+4 ≡ el+4. Finally, rearranging

gives

cl−2ω̂
(2)
(l−2)m

4l(l − 1)
− el+2ω̂

(2)
lm

4l(l − 1)
− el+2ω̂

(2)
lm

4l(l + 1)
+
el+4ω̂

(2)
(l+2)m

4l(l + 1)
= ω̂lm for l = 2, 3, . . . , Nz + 1.

(4.53)

We can write the above in the following form

Plω̂
(2)
(l−2)m +Qlω̂

(2)
lm +Rlω̂

(2)
(l+2)m = ω̂lm for l = 2, 3, . . . , Nz + 1, (4.54)

where

Pl =
cl−2

4l(l − 1)
, Ql = − el+2

2(l2 − 1)
, Rl =

el+4

4l(l + 1)
for l = 2, 3, . . . , Nz + 1, (4.55)

with cl and el defined as in equations (4.42) and (4.47).

Hence if we consider the combination given by equation (4.54), we are able to

eliminate all ω̂
(2)
lm terms in favour of ω̂lm terms. In doing this, we notice that the

system can be decoupled into odd and even components, since terms at order l are

only affected by terms at order l− 2 and l+ 2. To solve for the spectral coefficients

we are going to pose the equations as a matrix-vector problem, thus in order to
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calculate the coefficients we will have to invert a matrix. Furthermore this must be

done for each variable, at every time step. Due to the aforementioned coupling, these

matrices will possess a banded structure. This is the very reason for restructuring

the equations in the way we have; banded matrices can be inverted in a more efficient

manner than full matrices.

4.4.2 Example

ForNz = 4 we have a series with 6 spectral coefficients. Using the recurrence relation

from equation (4.41) we have, for p = 1

ω̂
(1)
5m = 0 (4.56)

c4ω̂
(1)
4m = ω̂

(1)
6m + 10ω̂5m ⇒ ω̂

(1)
4m = 10ω̂5m, (4.57)

c3ω̂
(1)
3m = ω̂

(1)
5m + 8ω̂4m ⇒ ω̂

(1)
3m = 8ω̂4m, (4.58)

c2ω̂
(1)
2m = ω̂

(1)
4m + 6ω̂3m ⇒ ω̂

(1)
2m = 10ω̂5m + 6ω̂3m, (4.59)

c1ω̂
(1)
1m = ω̂

(1)
3m + 4ω̂2m ⇒ ω̂

(1)
1m = 8ω̂4m + 4ω̂2m, (4.60)

c0ω̂
(1)
0m = ω̂

(1)
2m + 2ω̂1m ⇒ ω̂

(1)
0m = 5ω̂5m + 3ω̂3m + ω̂1m. (4.61)

Applying the recurrence relation once more, with p = 2, and using the computed

values at p = 1, we are able to write the second derivative coefficients in terms of

the original series coefficients

ω̂
(2)
5m = 0 (4.62)

ω̂
(2)
4m = 0 (4.63)

c3ω̂
(2)
3m = ω̂

(2)
5m + 8ω̂

(1)
4m ⇒ ω̂

(2)
3m = 80ω̂5m, (4.64)

c2ω̂
(2)
2m = ω̂

(2)
4m + 6ω̂

(1)
3m ⇒ ω̂

(2)
2m = 48ω̂4m, (4.65)

c1ω̂
(2)
1m = ω̂

(2)
3m + 4ω̂

(1)
2m ⇒ ω̂

(2)
1m = 120ω̂5m + 24ω̂3m, (4.66)

c0ω̂
(2)
0m = ω̂

(2)
2m + 2ω̂

(1)
1m ⇒ ω̂

(2)
0m = 32ω̂4m + 4ω̂2m. (4.67)
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Thus, we may write this as




ω̂
(2)
0m

ω̂
(2)
1m

ω̂
(2)
2m

ω̂
(2)
3m

ω̂
(2)
4m

ω̂
(2)
5m




=




0 0 4 0 32 0

0 0 0 24 0 120

0 0 0 0 48 0

0 0 0 0 0 80

0 0 0 0 0 0

0 0 0 0 0 0







ω̂0m

ω̂1m

ω̂2m

ω̂3m

ω̂4m

ω̂5m




. (4.68)

It is apparent from looking at the above matrix that it possesses an upper-triangular

structure: entries on and above the main diagonal only. Using the recombination

technique we have

P2 =
c0
8

=
1

4
, Q2 = −e4

6
= −1

6
, R2 =

e6
24

= 0, (4.69)

P3 =
c1
24

=
1

24
, Q3 = − e5

16
= − 1

16
, R3 =

e7
48

= 0, (4.70)

P4 =
c2
48

=
1

48
, Q4 = − e6

30
= 0, R4 =

e8
80

= 0, (4.71)

P5 =
c3
80

=
1

80
, Q5 = − e7

48
= 0, R5 =

e9
120

= 0. (4.72)

Thus, we may write this as




0 0 0 0 0 0

0 0 0 0 0 0

1
4

0 −1
6

0 0 0

0 1
24

0 − 1
16

0 0

0 0 1
48

0 0 0

0 0 0 1
80

0 0







ω̂
(2)
0m

ω̂
(2)
1m

ω̂
(2)
2m

ω̂
(2)
3m

ω̂
(2)
4m

ω̂
(2)
5m




=




ω̂0m

ω̂1m

ω̂2m

ω̂3m

ω̂4m

ω̂5m




. (4.73)

Here it is possible to see the banded structure of the matrix: entries only on the

main diagonal and the second sub-diagonal. For a larger value of Nz there would

also be entries on the second super-diagonal.
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4.4.3 Application

Following this derivation, we now consider the proposed linear combination above,

applied to the governing equations. Using the recombination given by equation

(4.54) within equations (4.36)–(4.39) gives

∂t
(
Plω̂(l−2)m +Qlω̂lm +Rlω̂(l+2)m

)

−Pr
(
4ω̂lm − a2m2

(
Plω̂(l−2)m +Qlω̂lm +Rlω̂(l+2)m

))

= Plf̂(l−2)m +Qlf̂lm +Rlf̂(l+2)m,
(4.74)

∂t

(
Plθ̂(l−2)m +Qlθ̂lm +Rlθ̂(l+2)m

)

−
(
4θ̂lm − a2m2

(
Plθ̂(l−2)m +Qlθ̂lm +Rlθ̂(l+2)m

))

= Plĝ(l−2)m +Qlĝlm +Rlĝ(l+2)m,

(4.75)

∂t
(
Plv̂(l−2)m +Qlv̂lm +Rlv̂(l+2)m

)

−Pr
(
4v̂lm − a2m2

(
Plv̂(l−2)m +Qlv̂lm +Rlv̂(l+2)m

))

= Plĥ(l−2)m +Qlĥlm +Rlĥ(l+2)m,
(4.76)

4ψ̂lm − a2m2
(
Plψ̂(l−2)m +Qlψ̂lm +Rlψ̂(l+2)m

)

=−
(
Plω̂(l−2)m +Qlω̂lm +Rlω̂(l+2)m

)
.

(4.77)

4.5 System solution

4.5.1 Time stepping

To discretise in time, we use a hybrid, implicit-explicit, predictor-corrector time

stepping scheme. Within the predictor step, the diffusive terms on the left hand

side are treated implicitly using the Crank-Nicolson scheme, which allows the use of
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a larger timestep than if we used an explicit scheme. Unfortunately we cannot treat

the nonlinear terms implicitly, so instead we use the second order Adams-Bashforth

scheme for all the terms on the right hand side. Such a scheme can be depicted,

with τ taking the value 1/2, by

ûn+1
P − ûn

∆t
−∇2(τ ûn+1

P + (1− τ)ûn) =
1

2
(3N n −N n−1), (4.78)

where ûn+1
P is to represent the predicted value of one of our state variables and N is

to represent the nonlinear terms. It should be noted, however, that we can increase

τ in order to make the scheme more implicit. Although this sacrifices accuracy,

Hollerbach (2000) notes that it acts to enhance numerical stability and for some

of the more computationally demanding runs, this can be implemented. For the

corrector step, we use the predicted value ûn+1
P to calculate the nonlinear terms at

the n+1 time level and then use both these, and the nonlinear terms at the n level,

in a trapezoidal rule, to get a corrected ûn+1 at the n+ 1 level, i.e.

ûn+1
C − ûn

∆t
−∇2(τ ûn+1

C + (1− τ)ûn) =
1

2
(N n+1

P +N n). (4.79)

We then look at the relative size of the solutions ûn+1
P and ûn+1

C and only take

ûn+1 = ûn+1
P if the following is satisfied

|ûP − ûC |∞
|ûC|∞

≤ σe, (4.80)

where σe is a specified error tolerance. If the above cannot be satisfied, the original

values are reset, we halve the timestep ∆t and begin again by calculating ûn+1
P .

This process is continued until the constraint (4.80) is satisfied and then we take

ûn+1 = ûn+1
P and proceed to the next timestep.

Proceeding with τ = 1/2 in equations (4.74)–(4.77) we have, gathering all terms at
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the same timestep together

(
Pl +

∆tP r

2
P ′
l

)
ω̂n+1
(l−2)m +

(
Ql +

∆tP r

2
Q′
l

)
ω̂n+1
lm +

(
Rl +

∆tP r

2
R′
l

)
ω̂n+1
(l+2)m

=

(
Pl −

∆tP r

2
P ′
l

)
ω̂n(l−2)m +

(
Ql −

∆tP r

2
Q′
l

)
ω̂nlm +

(
Rl −

∆tP r

2
R′
l

)
ω̂n(l+2)m

+
3∆t

2

(
Plf̂

n
(l−2)m +Qlf̂

n
lm +Rlf̂

n
(l+2)m

)
− ∆t

2

(
Plf̂

n−1
(l−2)m +Qlf̂

n−1
lm +Rlf̂

n−1
(l+2)m

)
,

(4.81)

(
Pl +

∆t

2
P ′
l

)
θ̂n+1
(l−2)m +

(
Ql +

∆t

2
Q′
l

)
θ̂n+1
lm +

(
Rl +

∆t

2
R′
l

)
θ̂n+1
(l+2)m

=

(
Pl −

∆t

2
P ′
l

)
θ̂n(l−2)m +

(
Ql −

∆t

2
Q′
l

)
θ̂nlm +

(
Rl −

∆t

2
R′
l

)
θ̂n(l+2)m

+
3∆t

2

(
Plĝ

n
(l−2)m +Qlĝ

n
lm +Rlĝ

n
(l+2)m

)
− ∆t

2

(
Plĝ

n−1
(l−2)m +Qlĝ

n−1
lm +Rlĝ

n−1
(l+2)m

)
,

(4.82)

(
Pl +

∆tP r

2
P ′
l

)
v̂n+1
(l−2)m +

(
Ql +

∆tP r

2
Q′
l

)
v̂n+1
lm +

(
Rl +

∆tP r

2
R′
l

)
v̂n+1
(l+2)m

=

(
Pl −

∆tP r

2
P ′
l

)
v̂n(l−2)m +

(
Ql −

∆tP r

2
Q′
l

)
v̂nlm +

(
Rl −

∆tP r

2
R′
l

)
v̂n(l+2)m

+
3∆t

2

(
Plĥ

n
(l−2)m +Qlĥ

n
lm +Rlĥ

n
(l+2)m

)
− ∆t

2

(
Plĥ

n−1
(l−2)m +Qlĥ

n−1
lm +Rlĥ

n−1
(l+2)m

)
.

(4.83)

Finally, the streamfunction at the advanced time n+1 is calculated from the vorticity

at n+ 1 via

P ′
l ψ̂

(n+1)
(l−2)m +Q′

lψ̂
(n+1)
lm +R′

lψ̂
(n+1)
(l+2)m = Plω̂

(n)
(l−2)m +Qlω̂

(n)
lm +Rlω̂

(n)
(l+2)m, (4.84)

where we have introduced the following throughout

P ′
l = a2m2Pl, Q′

l = a2m2Ql − 4, R′
l = a2m2Rl. (4.85)

We must remember that the above equations need to be solved for l = 2, 3, . . . , Nz+1

and m = 0, 1, . . . , Nx − 1.
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4.5.2 Matrix-vector formation

We wish to combine the discrete expressions given in equations (4.81)–(4.84)

with their relevant boundary conditions, and express them in terms of matrix

multiplications. We have Nz + 2 spectral coefficients to be determined per

hydrodynamic variable, Nz equations coupling the spectral coefficients from inserting

our expansions in the governing equations, plus a further two equations from the

boundary conditions, thus we have Nz + 2 equations in total, for Nz + 2 unknowns,

so the system is closed. Thus we pose the following matrix-vector multiplications

L1ω̂
n+1
m = R1ω̂

n
m +

∆t

2
P
(
3f̂nm − f̂n−1

m

)
, (4.86)

L2θ̂
n+1

m = R2θ̂
n

m +
∆t

2
P
(
3ĝnm − ĝn−1

m

)
, (4.87)

L3v̂
n+1
m = R3v̂

n
m +

∆t

2
P
(
3ĥnm − ĥn−1

m

)
, (4.88)

Dψ̂n+1

m = Pω̂n+1
m . (4.89)

The matrices above all have very similar components, differing only in the boundary

conditions and the coefficients of Pl, Ql, Rl, P
′
l , Q

′
l, R

′
l. Generally, they are of the form

{Li,Ri,D,P} =





αl for k = 0, l = 0, 1, . . . , Nz + 1,

βl for k = 1, l = 0, 1, . . . , Nz + 1,

γPk + δP ′
k for k = 2, 3, . . . , Nz + 1, l = k − 2,

γQk + δQ′
k for k = 2, 3, . . . , Nz + 1, l = k,

γRk + δR′
k for k = 2, 3, . . . , Nz + 1, l = k + 2,

(4.90)

for i = 1, 2, 3. The coefficients take the following values in the following matrices

L1 : αl = 1, βl = (−1)l, γ = 1, δ =
∆tP r

2
, (4.91)

R1 : αl = βl = 0, γ = 1, δ = −∆tP r

2
, (4.92)

L2 : αl = 1, βl = (−1)l, γ = 1, δ =
∆t

2
, (4.93)

R2 : αl = βl = 0, γ = 1, δ = −∆t

2
, (4.94)
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L3 : αl =
Nz+1∑

j=0

C
(1)
jl , βl =

Nz+1∑

j=0

(−1)jC
(1)
jl , γ = 1, δ =

∆tP r

2
, (4.95)

R3 : αl = βl = 0, γ = 1, δ = −∆tP r

2
, (4.96)

D : αl = 1, βl = (−1)l, γ = 0, δ = 1, (4.97)

P : αl = βl = 0, γ = 1, δ = 0, (4.98)

for l = 0, 1, . . . , Nz + 1. Within expression (4.90) we take k to be the matrix

row index, l to be the matrix column index and recall that this set of matrix-vector

equations must be solved form = 0, 1, . . . , Nx−1. As can be seen above, the top two

rows of the matrix (corresponding to k = 0 and k = 1) enforce the relevant boundary

conditions and the remaining Nz rows are where we solve the equations. All matrix

multiplication within the numerical code is performed using the basic linear algebra

subroutines (BLAS) within LAPACK (see e.g. Anderson et al. (1999)).

The matrix D defined above, considered with Nz = 4, has entries

D =




α0 α1 α2 α3 α4 α5

β0 β1 β2 β3 β4 β5

P ′
2 0 Q′

2 0 R′
2 0

0 P ′
3 0 Q′

3 0 R′
3

0 0 P ′
4 0 Q′

4 0

0 0 0 P ′
5 0 Q′

5




. (4.99)

The banded structure of this matrix is now readily apparent. For larger Nz the

matrix size—but not structure—will change; we will only ever have entries in the

top two rows, on the main diagonal, and on the second sub- and super-diagonals.

Our problem is now reduced to one of efficiently solving the set of matrix-vector

products above, for each wavenumber m. This amounts to inverting the matrices

appearing on the left hand sides of the above equations. To do this without taking

into account any specific properties of the matrices involved, for an (Nz+2)×(Nz+2)

matrix would incur a cost proportional to N3
z operations, which must be done Nx
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times, once for each wavenumber. In the general case where we are dealing with

matrices of size (Nz+2)×(Nz+2), the actual number of filled matrix entries is given

by 5Nz+2 and the number of zeros is given by N2
z −Nz+2. For large matrices, the

number of zero entries will greatly dominate the number of non-zero entries and to

invert such a matrix without taking into account this property, would be extremely

inefficient from a computational standpoint. The first step to solving this problem

efficiently is to split the problem into two sub problems of half the original size,

by considering odd and evenly indexed entries separately (see Peyret (2002)). This

then gives us two quasi-tridiagonal matrices; entries on the main diagonal and on

the first sub and super-diagonals, plus a row containing the boundary conditions.

So long as the boundary conditions are the same at each bounding surface—both

Dirichlet, or both Neumann—it can be seen from the expressions above that the

following is true

αl + βl =





2αl for l even,

0 for l odd,

(4.100)

αl − βl =






0 for l even,

2αl for l odd,

(4.101)

thus when we split the system into odd and even components, we are able to decouple

the boundary conditions also, by taking the required combination above. Hence,

using D as an example, with Nz = 4, after splitting, we have the following matrices

Deven =




2α0 2α2 2α4

P ′
2 Q′

2 R′
2

0 p′4 Q′
4


 , (4.102)

Dodd =




2α1 1α3 2α5

P ′
3 Q′

3 R′
3

0 p′5 Q′
5


 . (4.103)

The total number of filled matrix entries has obviously remained the same, since we

have not thrown away any information, yet the number of zeros has decreased to
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1/4N2
z − 3/2Nz. Again, without utilising the specific properties of these matrices,

to invert them would still be inefficient, with a computational cost of the order N3
z

operations per wavenumber, per timestep. Without the row containing the boundary

conditions, these matrices would have a purely tridiagonal structure; in our case

they are quasi-tridiagonal. Tridiagonal matrices can be solved at an operational

cost proportional to Nz, so we seek an algorithm which can handle quasi-tridiagonal

matrices in a like manner.

4.5.3 Quasi-tridiagonal matrix solution algorithm

The efficient solution to the quasi-tridiagonal matrices presented can be computed

recursively, due to an algorithm presented by Peyret (2002). For demonstrative

purposes, since the same technique can be applied to the other equations, we shall

study the Helmholtz equation, used to determine the streamfunction. Consistent

with the notation of Peyret (2002) the system may be written as follows, for either

the even or odd components of the governing equations

piwi−1 + qiwi + riwi+1 = fi, for i = 1, . . . ,
Nz

2
− 1 (4.104)

pNz
2

wNz
2

−1 + qNz
2

wNz
2

= fNz
2

, (4.105)

c0w0 + c1w1 + . . .+ cNz
2

wNz
2

= 0, (4.106)

where p, q, r and f , are to represent the matrix entries given by equation (4.90).

Here wi is the spectral coefficient of any one of our hydrodynamic variables, for a

particular wave number, at the advanced time step: ω̂n+1
im , θ̂n+1

im , ψ̂n+1
im , v̂n+1

im , for

i = 0, . . . , Nz
2

and ci = αi + βi for i = 0, . . . , Nz
2
. The solution is written as

wi+1 = Xiwi + Yi, for i = 0, . . . ,
Nz

2
− 1. (4.107)

The coefficients Xi and Yi are also determined recursively. Inserting our postulate

(4.107) into equation (4.104) gives

piwi−1 + qiwi + ri (Xiwi + Yi) = fi, for i = 1, . . . ,
Nz

2
− 1, (4.108)
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which allows us to rearrange for

wi = − pi
(qi + riXi)

wi−1 +
fi − riYi
(qi + riXi)

for i = 1, . . . ,
Nz

2
− 1. (4.109)

Writing equation (4.107) with i ≡ i− 1 gives

wi = Xi−1wi−1 + Yi−1, for i = 1, . . . ,
Nz

2
, (4.110)

and upon comparison with equation (4.109), allows us to identify the following

Xi−1 = − pi
(qi + riXi)

, Yi−1 =
fi − riYi
(qi + riXi)

for i = 1, . . . ,
Nz

2
− 1. (4.111)

We must first calculate XNz
2

−1 and YNz
2

−1 in order to initiate the recurrence. Writing

equation (4.107) with i = Nz
2
− 1 gives

wNz
2

= XNz
2

−1wNz
2

−1 + YNz
2

−1. (4.112)

Furthermore, rearranging equation (4.105) gives

wNz
2

= −
pNz

2

qNz
2

wNz
2

−1 +
fNz

2

qNz
2

, (4.113)

and upon comparing the previous two equations we have

XNz
2

−1 = −
pNz

2

qNz
2

, YNz
2

−1 =
fNz

2

qNz
2

. (4.114)

Now that we are able to calculate Xi and Yi for i = 0, . . . , Nz
2
− 1, we may calculate

wi provided we know the initial value w0. In order to calculate this we write

wi = θiw0 + λi, for i = 0, . . . ,
Nz

2
. (4.115)

With i = 0 we may immediately identify

θ0 = 1, λ0 = 0. (4.116)

Writing equation (4.115) with i ≡ i− 1 gives

wi−1 = θi−1w0 + λi−1, for i = 1, . . . ,
Nz

2
+ 1. (4.117)
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Inserting this expression into equation (4.110) yields

wi = Xi−1 (θi−1w0 + λi−1) + Yi−1, for i = 1, . . . ,
Nz

2
, (4.118)

and upon comparison with equation (4.115) allows us to identify

θi = Xi−1θi−1, λi = Xi−1λi−1 + Yi−1, for i = 1, . . . ,
Nz

2
. (4.119)

Finally, substituting expression (4.115) into equation (4.106) gives

w0 =
g − Λ

Θ
, (4.120)

where

Θ =

Nz
2∑

i=0

ciθi, (4.121)

Λ =

Nz
2∑

i=0

ciλi. (4.122)

Thus we are now able to calculate all the wi and hence our solution is known. Using

this algorithm for the odd and even components of each variable will give us a

complete numerical solution to the hydrodynamic equations.

4.6 Testing

In order to confirm that the numerical method we have outlined in this chapter solves

the governing equations correctly and does indeed model the convective process that

it should, we have used the results of Moore & Weiss (1973) as a benchmark case.

They present results for a range of different Rayleigh and Prandtl numbers, and give

explicit values of output parameters such as the Nusselt number. Furthermore, they

include plots of the vorticity, streamfunction and temperature, against which we have

compared our results. We were able to reproduce the results of Moore &Weiss (1973)

for several chosen test cases. For low Rayleigh numbers, we agreed exactly with their

Nusselt number values, yet noted some divergence for higher Rayleigh numbers. This
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can be attributed to the fact that our calculations were performed using a spectral

method with a much higher spatial resolution than the finite difference method

used by Moore & Weiss (1973). As we noted at the beginning of this chapter,

spectral methods offer the advantage of superior accuracy over methods such as

finite differences, hence the difference is likely to be caused by under-resolution on

their part.

0 30 60 90 120 150 180
10−15

10−10

10−5

100

105

m

|ω̂m|

Figure 4.1: Example vorticity power spectrum for a well-resolved numerical

simulation.

In order to check that our solutions were adequately resolved, we looked at the

power spectrum of the spectral coefficients, versus the wavenumber. For a well-

resolved simulation, this power spectrum should decay with increasing wavenumber.

An example of this can be seen in Figure 4.1, where we show an example of the

power spectra of the vorticity for a well-resolved run. Here the power in the lowest

mode is at least a factor of 1010 greater than in the highest—a sufficient decay. In

fact, even a decay of 105 in the power spectrum is sufficient for a run to be classified

as well-resolved. All the simulations we performed exhibited at least such a decay

in their power spectrum.

In order to confirm the reliability of our results we performed simulations at the same

87



Chapter 4. Nonlinear numerical method

input parameter values, for several different—increasing—resolutions. A numerical

simulation is considered to be well-resolved and reliable at a given resolution if, when

performed at a higher resolution, the results concur. A way to compare results at

different resolutions is by looking at a time series of, for example, the kinetic energy,

EU . An example of this can be seen in Figure 4.2. After integrating for long enough

that any initial, transient behaviour has ceased, both simulations approach the same

average kinetic energy value. For all the test cases we performed, after performing

numerical simulations at a given resolution, we doubled this resolution in order to

confirm that we achieved the same results.

EU

180

12 13 14 15 16 17
6× 103

7.5× 103

t

Figure 4.2: Time series of kinetic energy for two well-resolved simulations at the same

parameter values. The numerical resolution for each run is given by [Nx × Nz] =

[256× 96] (blue) and [512× 69] (red).

Owing to all these tests, we proceed in the confidence that our numerical method

is indeed correct. Furthermore, we are able to implement these tests for any

simulations we perform, in order to confirm the reliability of the results generated.

4.7 Summary

In this chapter we presented a numerical method that will allow us to

numerically solve the equations governing nonlinear two-dimensional Rayleigh-

Bénard convection. We were primarily guided by Boyd (2001) and Peyret (2002)

in the development of the Fourier-Chebyshev pseudospectral method that we
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chose to utilise. Such methods are common in fluid dynamics, in particular in

two-dimensional convection studies (see DeLuca et al. (1990)). This method is

formulated in such a way that it can be efficiently solved using computer software

such as FFTW (see Frigo & Johnson (2005)) for performing fast Fourier transforms,

and LAPACK (see Anderson et al. (1999)) for performing matrix inversions. We

benchmarked our results against those of Moore & Weiss (1973) and performed

various checks to further confirm the reliability of our results.
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Chapter 5

Nonlinear results

To begin we shall derive some useful quantities that will allow us to characterise the

type of solutions that we see. Then we shall review the literature of nonlinear two-

dimensional Rayleigh-Bénard convection, in order to establish the void in which our

study sits. Despite being a previously well-studied problem, advances in computing

technology have meant that three, instead of two-dimensional convection is now

generally favoured.

For the nonlinear, non-rotating system, we shall study the properties of the flow at

different Prandtl numbers—something that is often overlooked, with many studies

focusing on only one value of Pr (e.g. DeLuca et al. (1990)). Where we find

unsteady solutions, a detailed bifurcation analysis will be carried out, in order to

map the route to chaos. This will not be performed for the rotating system, since in

principle the behaviour is expected to be similar. We will still highlight the nature

of the stability of solutions, just not the precise parameter values at which they

occur, instead concentrating on the effect of rotation on different properties of the

flow, such as the Nusselt number and Reynolds number scaling.
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5.1 Energy balances

The governing equations are integrated using the numerical timestepping code

outlined in Chapter 4 until a statistically steady state is reached. That is, the

solutions no longer change in time; are periodic; or, in the case of chaotic solutions,

can be averaged over a suitable period of time. In order to determine when a steady

state is reached and, furthermore, to classify results at different values of the input

parameters, we require some measure of the intensity of the flow. We would like to

classify both the thermal and kinematic properties of our results and in order to do

this, we will introduce several well-known output parameters. Although these have

been stated numerous times (see e.g. Siggia (1994) and Grossman & Lohse (2000))

they are rarely derived from first principles, and it proves an insightful task to do

so.

5.1.1 Nusselt number

The Nusselt number characterises the effectiveness of thermal convection, expressed

as the ratio of the convective plus conductive heat flux, to the conductive heat flux

in the absence of convection. The latter is given, in dimensionless units, by

1

L

∫ L

0

−∂TB
∂z

dx = 1. (5.1)

Therefore a Nusselt number of one corresponds to pure conduction and Nu > 1

characterises the effectiveness of thermal convection, at transporting heat.

To derive an expression for the Nusselt number we begin by considering the

dimensionless heat equation, governing the evolution of the total temperature

T = TB + θ
∂T

∂t
+ (u · ∇)T = ∇2T. (5.2)

We then integrate this over the partial domain A′ = [0, L]× [0, z′], where z′ ≤ 1
∫

A′

{
∂T

∂t
+ (u · ∇)T

}
dA′ =

∫

A′

∇2T dA′. (5.3)
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We wish to calculate the Nusselt number after the system has settled down to a

steady, or statistically steady state. The first term will vanish identically in the

former case, and in the latter, we may perform a time average over a suitable period

such that the first term vanishes. Hence we have

∫

A′

(u · ∇)TdA′ =

∫

A′

∇2T dA′. (5.4)

Making use of the vector identities (A.4), (A.5) and using the fact that ∇ · u = 0,

we may transform the above equation into a more usable form

∫

A′

∇ · (uT )dA′ =

∫

A′

∇ · (∇T ) dA′. (5.5)

The above is now in a suitable form so as to apply the two-dimensional divergence

theorem (Green’s theorem), which states the following

∫

A′

∇ · F dA′ =

∮

c′
F · n̂ ds, (5.6)

where c′ is the curve enclosing the surface A′, to be traversed in an anti-clockwise

manner, with outward-pointing unit normal n̂. Applying the two-dimensional

divergence theorem to our equation yields

∮

c′
uT · n̂ ds =

∮

c′
∇T · n̂ ds. (5.7)

Evaluating these line integrals gives

∫ L

0

−wT |z=0 dx+

∫ z′

0

uT |x=L dz +
∫ L

0

wT |z=z′ dx+
∫ z′

0

−uT |x=0 dz

=

∫ L

0

−∂T
∂z

∣∣∣∣
z=0

dx+

∫ z′

0

+
∂T

∂x

∣∣∣∣
x=L

dz +

∫ L

0

∂T

∂z

∣∣∣∣
z=z′

dx+

∫ z′

0

−∂T
∂x

∣∣∣∣
x=0

dz. (5.8)

The first term on the left-hand side vanishes due to the boundary conditions on the

normal component of the velocity w(z = 0) = 0. Furthermore, since all physical

quantities are periodic in the x direction, this allows us the cancel both the second

and fourth terms on the left and right-hand sides of the above, and after rearranging,

leaving us with

∫ L

0

−∂T
∂z

∣∣∣∣
z=0

dx =

∫ L

0

{
−∂T
∂z

+ wT

}∣∣∣∣
z=z′

dx. (5.9)
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If we divide the right hand side by L, to get the flux per unit length then we have an

expression for the Nusselt number, in accordance with Siggia (1994) and Grossman

& Lohse (2000)

Nu ≡ 1

L

∫ L

0

{
−∂T
∂z

+ wT

}∣∣∣∣
z=z′

dx. (5.10)

The first and second terms in equation (5.10) are the conductive and convective

heat fluxes respectively. Computationally, equation (5.9) allows us to calculate the

Nusselt number by evaluating the heat flux at the lower boundary, and thus we have

Nu ≡ 1

L

∫ L

0

−∂T
∂z

∣∣∣∣
z=0

dx. (5.11)

Next we consider the thermal energy dissipation, formed by multiplying the heat

equation by T , integrating over the whole domain A = [0, L] × [0, 1], and dividing

by the area A = L× 1 = L

1

L

∫

A

{
T
∂T

∂t
+ T (u · ∇)T

}
dA =

1

A

∫

A

T∇2T dA. (5.12)

We may transform this using vector identities (A.4) and (A.5) into the following

form

1

L

∫

A

{
1

2

∂

∂t
(T 2) +

1

2
∇ · (uT 2)

}
dA =

1

L

∫

A

{∇ · (T∇T )−∇T · ∇T}dA. (5.13)

Again, we are presuming that the system has settled down to a steady state, and

if not, a suitable time average can be performed, thus meaning that the first term

vanishes. If we apply the two-dimensional divergence theorem to the second term

on the left-hand side we have

1

2L

∫

A

∇ · (uT 2)dA =
1

2L

∮

c

uT 2 · n̂ds, (5.14)

=
1

2L

{∫ L

0

−wT 2
∣∣
z=0

dx +

∫ 1

0

uT 2
∣∣
x=L

dz

+

∫ L

0

wT 2
∣∣
z=1

dx+

∫ 1

0

−uT 2
∣∣
x=0

dz

}
. (5.15)

The first and third terms vanish since w(z = 0) = w(z = 1) = 0 and the second and

fourth terms cancel each other out due to periodicity, hence this term contributes
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nothing to the integral. If we apply the two-dimensional divergence theorem to the

first term on the right-hand side of equation (5.13) we have

1

L

∫

A

∇ · (T∇T )dA =
1

L

∮

c

T∇T · n̂ds, (5.16)

=
1

L

{∫ L

0

−T ∂T
∂z

∣∣∣∣
z=0

dx +

∫ 1

0

T
∂T

∂x

∣∣∣∣
x=L

dz

+

∫ L

0

T
∂T

∂z

∣∣∣∣
z=1

dx+

∫ 1

0

−T ∂T
∂x

∣∣∣∣
x=0

dz

}
. (5.17)

The third term vanishes since in dimensionless units, arbitrarily choosing T0 =

0—which we are free to do—gives T (z = 1) = 0 and, again, the second and fourth

terms cancel each other out, due to periodicity. We are left with

1

L

∫ L

0

−T ∂T
∂z

∣∣∣∣
z=0

dx, (5.18)

which, using the fact that in dimensionless units T (z = 0) = 1, gives us the Nusselt

number
1

L

∫ L

0

−∂T
∂z

∣∣∣∣
z=0

dx = Nu. (5.19)

Therefore, going back to equation (5.13) and rearranging, we have

Nu =
1

A

∫

A

∇T · ∇TdA = ǫT , (5.20)

where we have denoted by ǫT the globally averaged thermal dissipation rate.

Furthermore

Nu =
1

L

∫ L

0

{
−∂T
∂z

+ wT

}∣∣∣∣
z=z′

dx =
1

A

∫

A

∇T · ∇TdA, (5.21)

again, in accordance with Siggia (1994).

5.1.2 Kinetic energy dissipation

We begin with the dimensionless Navier-Stokes equations, written in the form below

∂u

∂t
+ (u · ∇)u = −∇P +RaPrT ẑ− Ta

1

2Pr(ẑ× u) + Pr∇2u, (5.22)
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that is, we haven’t cancelled out the basic state terms that are in hydrostatic balance,

instead combining them all into the pressure term so that we may work with the total

temperature T . Using vector identity (A.1) and combining the resultant gradient

term with the pressure term gives

∂u

∂t
− u× ω = −∇P +RaPrT ẑ− Ta

1

2Pr(ẑ× u) + Pr∇2u. (5.23)

We define the globally averaged kinetic energy as

EU =
1

A

∫

A

1

2
|u|2dA, (5.24)

where |u|2 = u · u. We now take the scalar product of equation (5.23) with u and

integrate over the whole domain A = [0, L]× [0, 1]. Since u is perpendicular to both

u×ω and ẑ×u, the terms involving the scalar products of these quantities will not

contribute anything to the integral, hence we have

∂EU
∂t

≡ 1

L

∫

A

1

2

∂

∂t
|u|2dA =

1

L

∫

A

{
−u · ∇P +RaPrTu · ẑ+ Pru · ∇2u

}
dA = 0.

(5.25)

The left-hand side is the time derivative of the globally averaged kinetic energy, EU ,

of the flow. Again, we presume that we are in a situation such that the system has

settled down to a (statistically) steady state, and in this case, the time derivative of

the kinetic energy will vanish, given a suitable average. Dealing with the pressure

term first, we may rewrite it using vector identity (A.4), along with the fact that

∇ · u = 0, and then apply the two-dimensional divergence theorem

− 1

L

∫

A

∇ · (uP )dA = − 1

L

∮

c

uP · n̂ds, (5.26)

= − 1

L

{∫ L

0

−wP |z=0 dx+

∫ 1

0

uP |x=L dz

+

∫ L

0

wP |z=1 dx+

∫ 1

0

−uP |x=0 dz

}
. (5.27)

The first and third terms vanish since w(z = 0) = w(z = 1) = 0 and the second and

fourth terms cancel due to periodicity in the x direction. Hence the pressure term

does not contribute to the surface average. Next we shall consider the buoyancy
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term in equation (5.25)

1

L

∫

A

RaPrTu · ẑdA =
RaPr

L

∫ 1

0

∫ L

0

wTdxdz. (5.28)

From the Nusselt number calculation, we have

Nu =
1

L

∫ L

0

{
−∂T
∂z

+ wT

}∣∣∣∣
z=z′

dx, (5.29)

and by rearranging, we have

1

L

∫ L

0

wT |z=z′ dx = Nu+
1

L

∫ L

0

∂T

∂z

∣∣∣∣
z=z′

dx. (5.30)

Having made the substitution z = z′, if we now to integrate over the variable z′,

for 0 ≤ z′ ≤ 1, we will obtain the integral over the whole domain A. Furthermore,

reversing the order of integration on the right-hand side gives

1

L

∫ 1

0

∫ L

0

wT |z=z′ dxdz′ =
∫ 1

0

Nudz′ +
1

L

∫ L

0

∫ 1

0

∂T

∂z

∣∣∣∣
z=z′

dz′dx, (5.31)

=

[
Nuz′ +

1

L

∫ L

0

Tdx

]1

0

. (5.32)

Using the fact that T (z′ = 0) = 1 and T (z′ = 1) = 0, for 0 ≤ z′ ≤ 1, we have

1

L

∫ 1

0

∫ L

0

wT |z=z′ dxdz′ = Nu− 1

L

∫ L

0

dx = Nu− 1, (5.33)

and therefore
RaPr

L

∫ 1

0

∫ L

0

wTdxdz = RaPr(Nu− 1) (5.34)

Finally we consider the third term on the right-hand side of equation (5.25). Using

index notation we may write

u · ∇2u = ui
∂2ui
∂x2j

=
∂

∂xj

(
ui
∂ui
∂xj

)
− ∂ui
∂xj

∂ui
∂xj

, (5.35)

and hence we have

Pr

L

∫ 1

0

∫ L

0

u · ∇2u dxdz =
Pr

L

∫ 1

0

∫ L

0

{
∂

∂xj

(
ui
∂ui
∂xj

)
− ∂ui
∂xj

∂ui
∂xj

}
dxdz. (5.36)

Using the two-dimensional divergence theorem on the first term on the right-hand

side gives
Pr

L

∫ 1

0

∫ L

0

∂

∂xj

(
ui
∂ui
∂xj

)
dxdz =

Pr

L

∮

c

ui
∂ui
∂xj

n̂jds, (5.37)
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where nj is the j-th component of the unit normal vector n̂. Evaluating this line

integral around our convection cell gives

Pr

L

∮

c

ui
∂ui
∂xj

n̂jds =
Pr

L

{
−
∫ L

0

(
u
∂u

∂z
+ v

∂v

∂z
+ w

∂w

∂z

)∣∣∣∣
z=0

dx

+

∫ 1

0

(
u
∂u

∂x
+ v

∂v

∂x
+ w

∂w

∂x

)∣∣∣∣
x=L

dz

+

∫ L

0

(
u
∂u

∂z
+ v

∂v

∂z
+ w

∂w

∂z

)∣∣∣∣
z=1

dx

−
∫ 1

0

(
u
∂u

∂x
+ v

∂v

∂x
+ w

∂w

∂x

)∣∣∣∣
x=0

dz

}
. (5.38)

Since ∂u
∂z

= ∂v
∂z

= w = 0 at z = 0 and z = 1 the first and third integrals vanish, and

due to periodicity the second and fourth integrals cancel. Hence we have

Pr

L

∫ 1

0

∫ L

0

u · ∇2u dxdz = −Pr
L

∫ 1

0

∫ L

0

∂ui
∂xj

∂ui
∂xj

dxdz = −PrǫU , (5.39)

where we have denoted by ǫU the globally averaged kinetic energy dissipation rate,

as defined by Siggia (1994) and Grossman & Lohse (2000). Therefore, the only two

non-zero contributions to equation (5.25) are given by equations (5.34) and (5.39).

Equating these tells us

ǫU = Ra(Nu− 1), (5.40)

hence the dissipation of kinetic energy is balanced by the energy due to the convective

driving of the flow.

5.1.3 Reynolds number

The Reynolds number, characterising the ratio of inertial to viscous forces is given

by

Re =
UL

ν
(5.41)

where U is a typical velocity and L is a typical length. In our dimensionless equations

we have scaled length with the layer depth d and time on a thermal diffusive time,

proportional to κ/d2. Hence we have

U =
κ

d
Ũ (5.42)
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Furthermore, we introduced the Prandtl number, which implies ν = κPr and so we

have

Re =
Ũ

P r
, (5.43)

where we calculate Ũ from the kinetic energy, EU , defined via equation (5.24).

5.1.4 Enstrophy

Similar to the kinetic energy, the enstrophy characterises the energy of the flow, due

to its vorticity. It is calculated, per unit volume, via the square of the vorticity,

integrated over the whole domain

E =
1

2

∫ 1

0

∫ L

0

|ω|2dxdz. (5.44)

The enstrophy accounts for the dissipation of kinetic energy due to vortex motions;

it is an important quantity in the study of turbulence (see Batchelor (1967)).

5.2 No rotation

As we saw in Chapter 3, the critical Rayleigh number required for the onset of

convection as we alter the rotation rate is different. Therefore when comparing

numerical data at different values of the Taylor number, rather than working with

the Rayleigh number directly, we will introduce the ratio of criticality, defined as

R =
Ra

Rac
. (5.45)

Furthermore, this will facilitate transparent comparison of how unstable the system

is to convective motions, for different Taylor numbers.

5.2.1 Pr = 1

In two dimensions it has been noted that convection is remarkably steady for Pr ≤ 1,

despite flows reaching Reynolds numbers of the order of 104: far above the required
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value to drive instability in, for example, pipe flow. Indeed Veronis (1966) and Curry

et al. (1984) observed no oscillatory solutions in the range of Rayleigh numbers

they studied and DeLuca et al. (1990) and Vincent & Yuen (1999) obtained steady

solutions up to Ra = 108. The largest Rayleigh number reached here is of the order

of 107 and at this Rayleigh number, as suspected, the flow is still steady. Due to

the constraints placed on time and resources, with the numerical algorithm devised

in Chapter 4, it was not practical to attempt to achieve a higher Rayleigh number

here. In many ways it is just as interesting attempting to understand precisely why

solutions are so persistently stable (something that shall be addressed in Chapter

6). The highest Rayleigh numbers reached in two-dimensional convection—that we

are aware of—are by Vincent & Yuen (2000): up to Ra = 1014. In this paper

they describe the characteristics of the different regimes that are encountered as the

Rayleigh number is increased. These can be seen schematically in Figure 5.1.

Figure 5.1: Schematic drawing showing the development in the style of plumes

ranging from steady-state plumes for low Rayleigh number O(105) to the turbulent

regime where branching of plumes takes place at global Ra greater than 1010. Taken

from Vincent & Yuen (2000).
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For Pr = 1 the highest Rayleigh number that we were able to achieve was R ≤ 105,

or Ra ≤ 6.57 × 107. Hence by Figure 5.1 we are still within what Vincent & Yuen

(2000) describe as the steady-state regime. It is possible to enter the other regimes

by varying the values of the Prandtl number and the Taylor number, as shall be

seen in subsequent sections. Now however, we shall seek to outline the behaviour of

the steady-state regime and classify its defining characteristics.
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Figure 5.2: Contour plots of (a) the normalised vorticity (‖ω‖∞ = 222), (b) the

normalised streamfunction (‖ψ‖∞ = 14) and (c) the total temperature, for Ta = 0,

Pr = 1, R = 10, with resolution [512 × 96]: exhibition of a steady-state, six-cell

solution.

For a long time it was thought that the specific horizontal form of the convection

pattern was optimal in the sense that it maximised the convective heat transport (see

Malkus (1954b)), however in a steady state the convection pattern is not uniquely

determined solely by the governing parameters, but also the initial conditions, as
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reported by Ogura (1971). Indeed we have witnessed convection patterns that give

rise to a convective heat transport that is not optimal. Hence for the same parameter

values, there could be a range of different valid convection patterns, dependent on

the initial conditions used. This is an inherent manifestation of the fact that we are

dealing with nonlinear equations.
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Figure 5.3: Contour plots of (a) the normalised vorticity (‖ω‖∞ = 2824), (b) the

normalised streamfunction (‖ψ‖∞ = 255) and (c) the total temperature, for Ta = 0,

Pr = 1, R = 500, with resolution [1024×128]: exhibition of a steady-state, four-cell

solution.

We started our numerical simulations from a set of infinitesimal random initial

conditions. This way the system was not influenced by a predetermined length

scale: perturbations grew with whichever horizontal wave number was preferential.

We maintained a fixed box length of L = 2π. For low Ra it is found that the

dominant wave number is three, hence we see a six-cell convection pattern, as can be
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seen in Figure 5.2. As the Rayleigh number is increased it seems that the preferential

wave number decreases, first to two (see Figure 5.3) and finally one (see Figure 5.4).

This is in contrast to the linear theory of Chapter 2 which predicts that the most

unstable—linear—wave number should increase with increasing Rayleigh number.

All of these plots are characterised by rising and sinking convective plumes, and

thermal boundary layer regions located close to the top and bottom boundaries; the

temperature dropping from its value within the core of the convection cell, to one

on the bottom boundary and zero on the top boundary.
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Figure 5.4: Contour plots of (a) the normalised vorticity (‖ω‖∞ = 18253), (b)

the normalised streamfunction (‖ψ‖∞ = 1944) and (c) the total temperature, for

Ta = 0, Pr = 1, R = 10000, with resolution [1024 × 128]: exhibition of a steady-

state, two-cell solution.

As the Rayleigh number increases, it can be seen by looking at the evolution between

Figures (5.2), (5.3) and (5.4), that the thickness of the convective plumes and also
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the thermal boundary layers, decreases. The dynamics of the entire system are

controlled via this boundary layer behaviour. It is revealing to look at plots of

the horizontally-averaged temperature profile versus the vertical coordinate, as the

Rayleigh number is altered, to see how the boundary layer thickness decreases as

Ra is increased. This is shown in Figure 5.5. Looking at the mean temperature

profile, we see that as the Rayleigh number is increased the temperature becomes

isothermal in the bulk of the layer, taking the value T = 1
2
, and sharply changes

within the boundary layer to attain its boundary value.
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Figure 5.5: Mean temperature profile as a function of z for R = 10 (dotted line),

R = 500 (dashed line) and R = 10000 (solid line), for (a) Pr = 1 and (b) Pr = 10.

We noted that as the Rayleigh number was increased, the number of cells in the

horizontal decreased. Figure 5.6 shows the progression in terms of the dominant

wave number as a function of Rayleigh number. It can be seen that the system

does indeed progress to the largest permissible length scale as the Rayleigh number

is increased. This is not to say that for a given Rayleigh number, patterns with a

different horizontal wave are not possible. Moreover, it is the case that the basin

of attraction of a solution with dominant wavenumber md is greater than that of a

solution with another wavenumber (see Strogatz (2000)). This means that as time

evolves the system will tend to the solution with wavenumber md. As we said, in
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general md → 1 as Ra → ∞, however this is not a definite rule. For example in

Figure 5.6, for Ra ≃ 1.3 × 105, Pr = 10, there is a solution with md = 3 despite

the fact that solutions at much lower values of Ra have already made the transition

from md = 3 to md = 2. This behaviour is typical of a nonlinear system. In a box of

length 2π, the smallest permissible wave number is m = 1. In a wider box, it is to

be expected that the dominant wave number will tend to the smallest permissible

allowed.

Note that in all the steady state contour plots viewed here, the solutions possess the

following rotational symmetry

ω(x, z, t) = ω (π − x, 1− z, t) , (5.46)

ψ(x, z, t) = ψ (π − x, 1− z, t) , (5.47)

T (x, z, t) = 1− T (π − x, 1− z, t) . (5.48)

That is to say, if
{
ω(x, z, t), ψ(x, z, t), T (x, z, t)

}
is a solution of the system of

equations given by

∂ω

∂t
+
∂ψ

∂x

∂ω

∂z
− ∂ψ

∂z

∂ω

∂x
= −RaPr∂T

∂x
+ Pr∇2ω, (5.49)

∂T

∂t
+
∂ψ

∂x

∂T

∂z
− ∂ψ

∂z

∂T

∂x
= ∇2T, (5.50)

∇2ψ = −ω, (5.51)

and the boundary conditions ω = ψ = 0, T = 1 at z = 0 and ω = ψ = T = 0 at z =

0, then
{
ω = ω̃(π − x, 1 − z, t), ψ = ψ̃(π − x, 1− z, t), T = 1− T̃ (π − x, 1− z, t)

}

is also a solution. This can be seen by putting such a solution into the governing

equations and noting that

∂

∂t

{
ω, ψ, T

}
=

∂

∂t

{
ω̃, ψ̃,−T̃

}
, (5.52)

∂

∂x

{
ω, ψ, T

}
=

∂

∂x

{
− ω̃,−ψ̃, T̃

}
, (5.53)

∂

∂z

{
ω, ψ, T

}
=

∂

∂z

{
− ω̃,−ψ̃, T̃

}
, (5.54)

∇2
{
ω, ψ, T

}
= ∇2

{
ω̃, ψ̃,−T̃

}
. (5.55)
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Furthermore, in Figure 5.5(a) it can be seen that the horizontally averaged

temperature satisfies the symmetry condition

T̄ (z) = 1− T̄ (1− z). (5.56)

Ra

1

2

3

101 102 103 104 105 106 107

md

Figure 5.6: Dominant horizontal wave number md, versus Rayleigh number, with

Pr = 1 (circles) and Pr = 10 (squares).

5.2.2 Route to chaos for Pr = 10

As we have already stated, often only one Prandtl number is studied—the general

preference being for Pr = 1. We have chosen to study Pr = 10 also, to allow for

comparison between the two cases. It is found that for R < 49.50, the system always

settles down to a steady state. The preferential horizontal wave number is three,

giving rise to a six cell pattern that is identical in form to the case for Pr = 1,

hence we do not show it here. The progression of the dominant horizontal wave

number versus Rayleigh number can be seen in Figure 5.6. As Ra increases, even

for Pr = 10, the system always seems to prefer the largest scale allowable in the box.

Furthermore, even though there is a distinction for lower Ra, as it is increased, the
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mean temperature profile mimics that for Pr = 1. Note that the mean temperature

profiles shown in Figure 5.5 are calculated at a particular moment in time, hence

for a time-dependent solution, they are not symmetric about the line z = 1
2
.

At R = 49.50 the steady state undergoes a Hopf bifurcation leading to the creation of

a periodic orbit that is of infinitesimal amplitude and only exists for a small window

of Rayleigh number space. The periodic orbit corresponds to a fluid parcel moving

in a loop around the interior of the convection cell. This initial bifurcation preserves

the symmetry given by equation (5.56). Hence the fluid parcel moving from the

bottom left corner to the top right corner of the convection cell is equivalent to it

moving from the top right corner back to the bottom left corner, in order to complete

the loop.

At R = 49.80 the system undergoes a period-doubling bifurcation. This secondary

bifurcation breaks the symmetry given by equation (5.56). Hence the fluid parcel

moving from the bottom left corner to the top right corner of the convection cell is no

longer equivalent to it moving from the top right corner to the bottom left corner of

the convection cell. The fluid parcel must complete one whole loop, taking twice the

amount of time as the original oscillation, thus the name period doubling bifurcation.

In Figure 5.7 we have plotted the temperature field at various points in time for one

of these period doubled oscillatory solutions. It is clear that physically the periodic

orbit amounts to a lateral motion of the upward and downward convective plumes;

the plumes swaying from side to side. This feature was also noticed by Moore &

Weiss (1973) and Lennie et al. (1988), in their numerical studies of convection, and

Krishnamurti (1970a)/Krishnamurti (1970b) in physical convection experiments.

A detailed explanation of this instability shall be put forward in the following

section. A very revealing way to portray the nonlinear dynamics of the system

is to plot trajectories in a three-dimensional energy, or phase space. The Nusselt

number, kinetic energy and enstrophy are all time-dependent output parameters of

our numerical simulations. Therefore plotting them against one another can tell

us about the time dependent behaviour of the system. For example, if the system
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Figure 5.7: Contour plots of the total temperature at subsequent moments in time,

for Ta = 0, Pr = 10, R = 52, with resolution [512 × 96]: exhibition of a period-

two, oscillatory, six-cell solution. The dimensionless time period of the oscillation is

≃ 0.04.
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settles down to a steady state after a period of transient growth, these parameters

will attain a constant value for all subsequent time. In phase space this corresponds

to the trajectory converging to a fixed point. If the behaviour of these parameters

is periodic in time, then within the three-dimensional (EU , Nu, E) phase space any

trajectory starting at a particular point will return to that point after one time

period, forming a closed loop known as a periodic orbit. Likewise, the parameters

could be periodic with more than one period. For example if we had a period-two

point then the phase space trajectory would perform two loops before returning to

its initial point. For a chaotic system any trajectory in phase space will not tend

to, or diverge from, any set point, instead following a random path for all time.

In the plots that will follow, although we shall plot trajectories in the three-

dimensional space described above, for display purposes we shall project this into

the (EU , Nu) plane. A further thing do is construct a Poincaré section through the

trajectory (see Guckenheimer & Holmes (1997) or Strogatz (2000)). This amounts

to taking a slice through the trajectory at a constant value of one of the parameters,

here the enstrophy. Hence for a period-m orbit, there should be 2m distinct clusters

of points. The period-two point mentioned above can be seen in Figure 5.8, where

we can clearly see that there are four clusters in the Poincaré section, corresponding

to two loops and hence four crossings of the plane enstrophy=constant.

As the Rayleigh number is increased, the period-two orbit grows in amplitude until

R = 55, when it becomes unstable. The amplitude has reached a critical value

whereby the trajectory is no longer able to return to the same point in phase space

after completing two loops. Instead it winds around the surface of a torus in a

helical manner, only returning to the same point in phase space after completing

one toroidal loop. In the terminology of dynamical systems, this is known as a two-

torus and can be visualised in Figure 5.9. The Poincaré section consists of two rings

of points, which displays the path of the trajectory around the torus more clearly.

As the Rayleigh number is increased further, the amplitude of the orbit around the

torus also increases.
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Figure 5.8: (a) two-dimensional projection of (EU , Nu, E) trajectory onto (EU , Nu)

plane with 1.06 × 105 ≤ E ≤ 1.13 × 105 and (b) corresponding Poincaré section at

E = 1.09× 105, for R = 52, Pr = 10: exhibition of a period-two orbit.
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Figure 5.9: (a) two-dimensional projection of (EU , Nu, E) trajectory onto (EU , Nu)

plane with 1.07 × 105 ≤ E ≤ 1.25 × 105 and (b) corresponding Poincaré section at

E = 1.17× 105, for R = 55, Pr = 10: exhibition of a two-torus.
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At R = 56 the system undergoes a further bifurcation, with the introduction

of another period of oscillation. This causes the trajectory on the two-torus to

become unstable, no longer able to return to the same point in phase space after

completing one toroidal loop. Instead the trajectory evolves along the strange

attractor shown in Figure 5.10. The structure of the attractor somewhat resembles

that of the two-torus, since the trajectory has a ‘memory’ of its existence. Whilst

the trajectory on the attractor is seemingly chaotic, it is nonetheless always confined

to its surface. The remnant structure of the two-torus still wields enough influence

over the trajectory as to keep its motion in phase space bounded. We are confident

that this behaviour is independent of the particular initial conditions chosen, since

we have integrated for long enough that all transient behaviour has ceased.
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Figure 5.10: (a) two-dimensional projection of (EU , Nu, E) trajectory onto (EU , Nu)

plane with 1.34 × 105 ≤ E ≤ 1.57 × 105 and (b) corresponding Poincaré section at

E = 1.46× 105, for R = 68, Pr = 10: exhibition of quasi-periodicity.

This type of behaviour is known as quasi-periodicity . The trajectory continues to

evolve in such a manner, as the Rayleigh number is increased, until R = 71, when

the strange attractor finally loses stability. At this point the amplitude of the orbit

has become so large that it has broken free from the attractor, unable to return
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to a point on its surface. The trajectory now has no preferred path and wanders

randomly around phase space, as can be seen in Figure 5.11. This behaviour is

known as chaos . There is no way to predict, based on the location of the trajectory

in phase space at a particular moment in time, how it will evolve for subsequent

time. An example flow pattern for R > 71 can be seen in Figure 5.12. Notice that

the coherent cell-like structure has been lost and the spontaneous break up of the

convective plumes is now visible. This fits in with the schematic picture of chaos

from Vincent & Yuen (2000).
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Figure 5.11: (a) two-dimensional projection of (EU , Nu, E) trajectory onto (EU , Nu)

plane with 1.31 × 105 ≤ E ≤ 2.11 × 105 and (b) corresponding Poincaré section at

E = 1.77× 105, for R = 100, Pr = 10: exhibition of chaos.

This transition to chaos that we have described is similar to one put forward by

Newhouse et al. (1978) known as the Ruelle-Takens-Newhouse route to chaos . The

additional frequency introduced into the system that causes the two-torus to go

unstable is enough to set about an unavoidable transition to chaotic behaviour.

This is in contrast to the period-doubling route to chaos, where successive period

doubling bifurcations eventually saturate the system with innumerable different

frequencies, resulting in chaotic behaviour. Indeed Curry (1978) noticed a similar
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phase transition to the one we described here. That is, an initial Hopf bifurcation,

followed by successive period doubling bifurcations that lead to motion on a torus,

that in turn give way to a strange attractor. Curry (1978) did not use numerical

simulations, instead studying a 14 mode truncated system of ordinary differential

equations, similar to the Lorenz equations.
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Figure 5.12: Contour plots of (a) the normalised vorticity (‖ω‖∞ = 1252), (b) the

normalised streamfunction (‖ψ‖∞ = 89) and (c) the total temperature, for Ta = 0,

Pr = 10, R = 100, with resolution [256× 96]: exhibition of a chaotic solution.

For R > 71 the behaviour of the system is incredibly unpredictable. Despite the

emergence of chaotic solutions, as we have mentioned, it seems that the system

can spontaneously relapse into stable and periodic states. This was discovered

entirely unintentionally, and it seems that these solutions are rather difficult to track

numerically, with solutions rapidly switching between steady and unsteady branches

in phase space. An example of such a scenario can be viewed in Figure 5.13, where
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the trajectory in phase space forms a closed trefoil knot. Indeed, there is no saying

how high the Rayleigh number would have to be, or even if such a Rayleigh number

exists, where a consistent sort of behaviour is reached. This intermittent behaviour is

consistent with another competing theory that explains the route to chaos, known as

the Pomeau-Manneville scenario (Pomeau & Manneville (1980)). In this scenario

the system is characterised by bursts of chaotic behaviour out of quasi-periodic

states, themselves remnants of unstable periodic orbits. As the driving is increased,

the system is pushed so far away from the unstable periodic orbit that chaos ensues.

It is entirely plausible that this is the scenario in which we find ourselves, as opposed

to a Ruelle-Takens-Newhouse type situation.
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Figure 5.13: (a) two-dimensional projection of (EU , Nu, E) trajectory onto (EU , Nu)

plane with 7.40 × 107 ≤ E ≤ 7.78 × 107 and (b) corresponding Poincaré section at

E = 7.60× 107, for R = 7000, Pr = 10: exhibition of spontaneous order.

5.2.3 Physical instability mechanism

The oscillatory behaviour that we observed in the numerical simulations is caused

due to a warm blob of fluid being released from the lower, warm boundary layer, and
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the time it takes for the fluid blob to travel around the convective cell, returning to

the same point, corresponds to the period of oscillation. By symmetry, the emission

of a warm blob from the lower boundary layer necessitates the emission of a cold

blob from the upper boundary layer. Welander (1967) conducted a simplified study

of the motion described above by considering convection within a closed loop of

fluid (later known as the Welander loop). The temperature gradient required to

drive convection is imposed by having a positive heat flux at a point on the bottom

of the loop and a negative heat flux at a point on the top of the loop. The model

variables are the temperature within the loop and the flow speed along the loop, with

the stability being governed by two dimensionless parameters that are akin to the

Rayleigh number and Prandtl number. It is found that for the correct parameters,

such a system supports oscillatory solutions, with warm and cold blobs traversing

the fluid loop.

It is crucial to note that this behaviour was only observed for Pr > 1, where

momentum diffusivity dominates thermal diffusivity. Hence, as the hot blob

traverses the convection cell it does not shed sufficient heat so as to be absorbed

into the ambient fluid and so it maintains its identity. Once it has completed

one full cycle, the blob is again refreshed by the warm lower boundary layer,

ready to complete another orbit of the cell. This means that the warm fluid blob

rushes quickly past the cold upper boundary layer, and slowly past the warm lower

boundary layer. Although the nature of the instability is thermal in origin, this

asymmetry in the time spent near each boundary layer means that there must be a

coupling with the momentum equation. At Pr > 1 the vorticity in the rising plume

is balanced by the horizontal gradient of the temperature, so any warm thermal

anomaly also induces a positive vortex anomaly. This build-up of vorticity in the

rising plume induces a horizontal flow that is oriented in opposite directions above

and below the vortex anomaly, causing the rising plume to be locally sheared. This

accounts for the waving of the plumes that we saw. By symmetry an identical

process occurs in the cold sinking plume, with a negative vortex anomaly.
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For Pr ≤ 1, thermal diffusivity is equal to, or dominates, momentum diffusivity.

Hence any warm fluid blob emitted from the lower boundary layer sheds a sufficient

amount of heat that its identity does not persist as it traverses the cell.

5.2.4 Nusselt number scaling

Convection is studied since it plays a part in many interesting and important

geophysical and astrophysical settings. It is therefore of interest to simulate

what happens at parameter values realistic to these environments—for example,

convection at a Rayleigh number comparable to that of the Earth’s core. These

parameter values are often extreme and thus out of reach of even the most

sophisticated numerical codes, using the greatest computer resources available. A

common aim in the research community, therefore, is to derive scaling laws. The

hope is that behaviour observed at lower parameter values may be extrapolated to

these computationally out-of-reach regimes, in order to say something about the

behaviour there.

For non-rotating convection, the key input parameters are the Rayleigh number

and the Prandtl number, and the key output parameters are, most importantly, the

Nusselt number and also the Reynolds number. We wish for expressions such as

Nu ≡ Nu(Ra, Pr), or more specifically, Nu ∼ RaαPrβ, with the exponent α being

particularly sought-after. Using arguments from mixing length theory the value of

α = 1
3
was derived (see Kraichnan (1962) for a detailed discussion). It is assumed

that in the interior of the fluid both the temperature and velocity vary over the same

length scale, known as the mixing length scale. This is the characteristic length scale

over which a buoyant parcel of fluid at a characteristic temperature is accelerated

by a characteristic velocity, before its thermal energy is dissipated. At the top and

bottom boundaries of the domain it is assumed that there exist thermal boundary

layers of thickness δ, where most of the drop in temperature occurs, with all the

heat being transported by conduction. Hence the ratio of the conductive heat flux
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across the boundary layer, to the conductive heat flux across the whole layer, or,

the Nusselt number, is given by

Nu ≈
κ∆T
2δ
κ∆T
d

=
d

2δ
. (5.57)

It is assumed that the boundary layer Rayleigh number is close to its critical

value—similar to that of linear stability theory—hence we have

gα∆Tδ3

2κν
≈ 103. (5.58)

We may now eliminate δ between these two expressions to give

Nu ≈ 0.04Ra
1

3 . (5.59)

For a long time this exponent was favoured in both numerical (see Veronis (1966) and

Moore & Weiss (1973)) and physical experiments (see Malkus (1954a)). The internal

velocity and temperature are obtained by balancing the inertial and buoyancy terms

in the momentum equation. In dimensional variables we have

(u · ∇)u ≃ gαθẑ. (5.60)

The mixing length scale is given by the depth of the convective layer, d, and d
U∗

is a

typical turnover time, where U∗ is a typical velocity. Denoting a typical temperature

by T∗, we have
U2
∗
d

≃ gαT∗. (5.61)

The convective heat flux, H∗, is the amount of thermal energy carried over the

mixing length, by the fluid velocity. It is given by

H∗ ≃ U∗T∗, (5.62)

hence we are able to determine the typical velocity and temperature

U∗ = (gαH∗d)
1

3 , T∗ =

(
H2

∗
gαd

) 1

3

. (5.63)

Note that this result was also derived by Deardorff (1970), giving rise to the

terminology Deardorff velocity and Deardorff temperature.
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With advances in physical experimental techniques, higher Rayleigh numbers were

able to be reached. This led to a subsequent favour for α = 2
7
, as observed by

Castaing et al. (1989). As computational resources improved too, this scaling

relationship was also observed in numerical simulations by DeLuca et al. (1990)

(see also Kerr (1996)), and led to the notion of a hard turbulence regime, where

one observes such behaviour. For an overview encompassing all such early theory,

one can consult Shraiman & Siggia (1990), or Siggia (1994) for a more in-depth

discussion. As computational resources were improved further still Vincent & Yuen

(2000) were able to observe the α = 1
2
dependence in their extremely high Rayleigh

number simulations. Further to this Whitehead & Doering (2011) derived a rigorous

upper bound of α = 5
12

which would seem to refute all previous arguments, as well as

the results of Vincent & Yuen (2000). Within all these competing scaling theories,

there is a fundamental question of exactly what role—if any—the horizontal aspect

ratio, and more importantly the boundary layers play at very high values of the

Rayleigh number. The aspect ratio of Vincent & Yuen (2000) was 3 for their two-

dimensional convection study. Despite being half that of this study, it is still greater

than many early convection simulations. Kraichnan (1962) states that for very large

Ra one might expect that the boundary layers would become unstable to shear

instabilities. Indeed Vincent & Yuen (2000) noticed that for Ra > 1012 there was

severe degradation of the boundary layers.

From a theoretical standpoint Grossman & Lohse (2000) present what they deem

a unifying theory of convection, that corroborates not only numerical but physical

experimental results. Their theory does not offer one such Nusselt number scaling,

for all values of the Rayleigh number and the Prandtl number, instead offering

different scaling laws in different areas of the (Ra, Pr) parameter space. Moreover,

they posit that there could exist hybrid scaling laws that straddle the boundaries

between these different regimes, for example the linear combination of α = 1
3
and

α = 1
4
is conjectured to mimic the behaviour of an α = 2

7
exponent. These hybrid

scaling laws could offer an explanation as to the differing exponents observed in
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both numerical and physical experimental results. The different scaling regimes are

determined based on the relative thicknesses of the viscous and thermal boundary

layers, controlled by the value of the Prandtl number, whose effects had often been

neglected in such theory, with all focus being on the Rayleigh number exponent.

Furthermore, distinctions must be made between whether dissipation is primarily

occurring in the boundary layer, or the core of the convection cell. Again this raises

the question of exactly what role the boundary layers play in the limit of very large

Ra.

Nu

Ra

100

101

102

102 103 104 105 106 107 108

Figure 5.14: Nusselt number scaling for non-rotating convection, with Pr = 1

(circles) and Pr = 10 (squares). The line has exponent 1
3
.

Although the difference between 1
3
and 2

7
may seem negligible, if these scaling laws

are to be used in order to extrapolate to parameter regimes realisable in nature, the

resultant disagreement in Nusselt number can be several orders of magnitude. It is

for this reason that there is such debate as to the precise values of the exponents.

In Figure 5.14 we have plotted the Nusselt number from our numerical simulations

versus the Rayleigh number. It can be seen that all values scale according to the law
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Nu ∼ Ra
1

3 . This is to be expected, since the range of Rayleigh numbers that we have

studied are all within the soft turbulence regime (see DeLuca et al. (1990) and Kerr

(1996)). The distinct branches in Figure 5.14 correspond to different wavenumber

flow patterns.

5.2.5 Reynolds number scaling

Recall that the average dimensionless kinetic energy dissipation rate is related to

the Rayleigh number and Nusselt number via

ǫU = Ra(Nu− 1) ≡ Raf , (5.64)

where we define Raf to be the flux Rayleigh number, and recall that the kinetic

energy dissipation was given by equation (5.39). Following Schmitz & Tilgner (2009),

we approximate the kinetic energy dissipation as

ǫU ∼ (RePr)2

l2c
, (5.65)

where lc is the dimensionless, characteristic length scale over which the kinetic energy

is dissipated. We can rearrange this to get an expression for the Reynolds number

Re ∼
Ra

1

2

f lc

Pr
, (5.66)

which may be evaluated once we have chosen a suitable length scale. For non-

rotating convection we expect convection to develop on the scale of the box, hence

we have that the Reynolds number scales as follows

Re ∼
Ra

1

2

f

Pr
. (5.67)

This scaling can be seen in Figure 5.15, where we note that the agreement is

excellent. Furthermore, using Nu ∼ Ra
1

3 within equation (5.67) gives

Re ∼ Ra
2

3

Pr
, (5.68)

120



Chapter 5. Nonlinear results

which is in accordance with the numerical results of Moore & Weiss (1973) and the

simple boundary layer analysis of Robinson (1967) that was developed to describe

steady state convection cells.
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Figure 5.15: Reynolds number scaling for non-rotating convection, with Pr = 1

(circles) and Pr = 10 (squares).

5.3 The effect of rotation

The earliest notable numerical study of two-dimensional convection was conducted

by Veronis (1968), seeking to reproduce the experimental observations made by

Rossby (1969) (work conducted for H.T. Rossby’s PhD, awarded in 1966, but

not published in a journal until 1969). Albeit for low Rayleigh numbers and

rotation rates, this work still charted the nonlinear instability mechanism and its

saturation. Despite this achievement, there was little subsequent work conducted

on rotating, two-dimensional convection, the favour being for three-dimensional
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convection instead. Somerville & Lipps (1973) also attempted to reproduce the

observations of Rossby (1969), but using a three-dimensional numerical method.

In three space dimensions there are additional processes, such as the Kuppers Lortz

instability (see Kuppers & Lortz (1969)), whereby convection rolls become unstable

and change their orientation provided the rotation rate is high enough. This has been

observed in both numerical (see Clever & Busse (1978)) and physical (see Li & Ecke

(1993)) experiments. Further work was devoted to studying rotating convection in

geometries more suitably mimicking those found in nature, such as Busse’s rotating

annulus (see Busse (1978)).

With advances in experimental techniques and computer hardware, the majority

of subsequent work on rotating convection has been conducted in three space

dimensions. Notable numerical studies include those of Julien et al. (1996b)/Julien

et al. (1996a) and more recently Julien et al. (2012). The latter presents a set of

asymptotically reduced equations that are valid in the limit of small Rossby number

(large rotation rates), in order to study the influence of rotation on the system,

even for large Rayleigh number. The overwhelming majority of recent numerical

and experimental studies of rotating convection have been concerned with deriving

scaling laws governing various measures of the dynamics of the system, for example

the Nusselt number. This is something we shall address in a subsequent section.

Rotating convection is governed by three dimensionless input parameters: the

Rayleigh number, the Prandtl number and the Taylor number. The Rayleigh number

controls the thermal driving of the system, whilst the Taylor number controls the

rotational driving. The ratio of these two competing effects can be measured by

defining what is known as the convective Rossby number , Ro∗, which can be thought

of as the ratio of a typical convective turnover time, tconv = d
U∗

, to a rotation

time, trot =
1
2Ω
. Balancing the advection term and the buoyancy term within the

momentum equation gives (see Julien et al. (1996b))

U2
∗ = gα∆Td, (5.69)

122



Chapter 5. Nonlinear results

and hence

Ro∗ =
trot
tconv

=

√
gα∆T

4Ω2d
. (5.70)

Expressed in terms of the dimensionless parameters of the system, we have

Ro∗ =

√
Ra

TaPr
, (5.71)

with Ro∗ ≃ 1 marking the point at which the relative magnitudes of the buoyancy

force and the rotation force are equal. Studying numerical runs with differing values

of Ra, Pr, and Ek, but similar values of Ro∗ will facilitate comparison of runs where

the type of driving—be it rotation or buoyancy—is the same. The parameter regime

that we have studied is given by

{
Ra ≤ 108, 104 ≤ Ta ≤ 108, P r = 1 and 10

}
, (5.72)

with the precise simulation values shown in Figure 5.16. The critical Rayleigh

numbers and wavenumbers for the onset of convection can be found in Table 3.2

of Chapter 3. As in the non-rotating case we maintain a fixed box length of L =

2π for all simulations. Since we expect that as the Taylor number is increased,

the preference will be for tall thin columnar convection, this box length should be

adequate enough to resolve the flows that arise. Furthermore, it is wider than that

used by Moore & Weiss (1973), DeLuca et al. (1990) and Vincent & Yuen (1999).

5.3.1 Horizontal length scale

For the non-rotating system it was seen that as the Rayleigh number was increased,

the general preference of the system was for a larger horizontal length scale—the

largest allowable in the computational box. Furthermore, instability from steady

convection was only present for Pr = 10. The linear theory of rotating convection

told us that as the Taylor number is increased, the critical wave number is also

increased. We were able to derive an asymptotic relation to determine the critical

wave number in terms of the Taylor number, namely ac ∼ Ta
1

6 .
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Figure 5.16: Numerical simulations performed: convective Rossby number as a

function of Rayleigh number for Ta = 104 (red), Ta = 105 (yellow), Ta = 106

(green), Ta = 107 (light blue) and Ta = 108 (dark blue), with Pr = 1 (circles) and

Pr = 10 (squares).

In Figure 5.17 we have plotted the dominant wave number from our nonlinear

simulations versus the Taylor number, at the onset of convection. It can be seen quite

clearly that this does follow the asymptotic law proposed. The Taylor-Proudman

theorem told us that in the limit as Ta→ ∞, the flow should become invariant in the

vertical direction, leading to tall thin columnar convection—a very short horizontal

length scale. Thus we expect competition between the relative effects of buoyancy

and rotation, seeking to govern the horizontal length scale of the system, hence the

introduction of the convective Rossby number. The form of the convection for large

Taylor number, at onset, can be seen in Figure 5.18, whereby the rotational influence

over the flow is readily apparent and the columnar structure is quite striking. Of

course the linear scaling is only formally valid at onset, and says nothing about the

nonlinear development of the flow as the Rayleigh number is increased.
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Figure 5.17: Dominant wave number versus Taylor number, at the onset of

convection, from numerical simulations, with Pr = 1 (circles) and Pr = 10

(squares). The solid line represents the asymptotic law from linear theory, given

by equation (3.54).

In Figure 5.19 we have plotted the dominant wavenumber from our numerical

simulations versus the convective Rossby number. It can be seen that for Ro∗ < 1, at

a given Taylor number and Prandtl number, the system seems to develop according

to the wave number chosen at onset, or a larger wave number still. Increasing

the Rayleigh number at a fixed Taylor number—increasing the convective Rossby

number—eventually causes the effect of buoyancy to dominate over rotation, and

so a progression to a smaller dominant wavenumber, and hence larger horizontal

length scale, is observed. This seems to occur in a transitional region in the vicinity

of Ro∗ = 1. As Ro∗ is increased further still, any notion of rotational influence is lost,

with the system returning to a preferred large length scale, as in the non-rotating

system.
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Figure 5.18: Contour plots of (a) the normalised vorticity (‖ω‖∞ = 2958), (b) the

normalised streamfunction (‖ψ‖∞ = 7) and (c) the total temperature, for Ta = 107,

Pr = 10, R = 3 (Ra = 1.2441× 106), with resolution [1024× 128]: exhibition of tall

thin columnar convection.

In Figure 5.20 we plot the mean temperature profile as a function of height, for

various Taylor numbers, at each Prandtl number, for a fixed Rayleigh number.

Increasing the Taylor number at fixed Rayleigh number and Prandtl number

amounts to decreasing the convective Rossby number. It can be seen in both Prandtl

number cases that rotation relaxes the gradient of the mean temperature curve in

the middle of the convective layer. As the convective Rossby number is increased

the temperature approaches an isothermal profile, as in the non-rotating case, for

both values of the Prandtl number. At the lowest rotation rate, the distinguishing

feature between Pr = 1 and Pr = 10 is the magnitude of the overshoot at the

transition from the core of the layer to the boundary layer—this being greater in
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the Pr = 1 case. Note that as in the non-rotating system, the mean temperature

plots are taken at a particular moment in time, hence the asymmetry about the line

z = 1
2
in some cases.
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Figure 5.19: Dominant wave number versus convective Rossby number, for Ta = 104

(red), Ta = 105 (yellow), Ta = 106 (green), Ta = 107 (light blue) and Ta = 108

(dark blue), with Pr = 1 (circles) and Pr = 10 (squares).

5.3.2 Flow development

The discussion so far has concerned the development of the horizontal length scale,

due to the competing effects of the buoyancy and rotational forces acting on the

system, yet we have not mentioned anything about the stability of the system as

the Rayleigh number is increased. It does not seem that there is a law governing the

values of the input parameters at which the system is expected to become unstable.

There are however, a few choice observations to be noted.
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Figure 5.20: Mean temperature profile as a function of z, with Ra ≃ 5 × 106 for

Ta = 104 (red), Ta = 105 (yellow), Ta = 106 (green), Ta = 107 (light blue) and

Ta = 108 (dark blue), for (a) Pr = 1 and (b) Pr = 10.

Beginning with Ta = 104, the lowest rotation rate implemented, and Pr = 1, only

steady solutions were found for the range of Rayleigh numbers considered. This is

the only such Taylor number where this was the case. Looking at Figure 5.19 it can

be seen that in this case (red circles) the convective Rossby number is consistently

above unity, hence the system does not feel the effects of rotation, even at onset. The

flow develops as if it were non-rotating, eventually evolving on the largest length

scale allowable. Furthermore, the structure of the flow is cellular, as in the non-

rotating system, hence we have not shown an example here. It can be seen in Figure

5.20(a) that there is a sharp transition in the mean temperature (red curve) near

the boundaries, owing to the cellular flow structure.

Increasing the Taylor number to 105, but maintaining Pr = 1 (yellow circles) means

that the convective Rossby number is slightly below unity at onset. Solutions are

initially steady but become unsteady for 1.22 ≤ Ro∗ ≤ 1.30, coinciding with a

drop in the dominant horizontal wave number from nine to six. The flow still

appeared to have a remnant cellular appearance, with chaotic wavy plumes similar

to the instability in the non-rotating system. As the Rayleigh number—and also the
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convective Rossby number—is increased the system once again begins to relinquish

any appearance of rotational constraint, with the dominant wavenumber decreasing.

This has the effect of not only causing the system to evolve on a larger horizontal

length scale, but to re-stabilise, with the flow returning to a purely cellular structure.

This is the only such case of this behaviour that we have noted.

For all other combinations of Ta and Pr, for the range of Ra studied, it can be seen

by looking at Figure 5.19 that the convective Rossby number is always below unity at

onset, and in some cases never becomes greater than it. In all these cases, the system

was found to be steady for an initial range of Rayleigh numbers but after becoming

unsteady they never re-stabilised. This is despite the fact that the convective Rossby

number attains similar values to those that re-stabilised for Ta = 105—for Ta = 106

at least. For higher Taylor numbers, if the Rayleigh number was increased in order

to establish a convective Rossby number greater than unity, we would not expect to

see any re-stabilisation. Even if the system can enter a buoyancy-dominated regime,

the Rayleigh number will be sufficiently high as to have brought about unsteady

behaviour anyway. Instability manifests itself via a similar sequence as presented in

the non-rotating system. That is, the emergence of time-periodic flows associated

with thermal blob-type instabilities and wavy plumes are the first departure from

cellular convection that are realised. In the non-rotating system this instability was

caused due to a thermal anomaly in the boundary layer, that in turn induced a

build up of vorticity in the rising plume. In the rotating system, this vorticity is

enhanced due to the background rotation, leading to a further destabilising effect

within the rising plume. This behaviour is consistent with that noted by Julien et al.

(1996a) in their three-dimensional numerical simulations of rotating convection. A

typical visualisation of such an instability can be seen in Figure 5.21. There is

a remnant cellular appearance to the flow and the temperature field still consists

of plume-like structures. Furthermore, concentrations of intense vorticity can be

seen within the rising plumes. After the system has become unsteady, the precise

structure of the turbulent flows that are generated differs greatly, dependent on the
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Figure 5.21: Contour plots of (a) the normalised vorticity (‖ω‖∞ = 1.5 × 104),

(b) the normalised streamfunction (‖ψ‖∞ = 136) and (c) the total temperature,

for Ta = 105, Pr = 10, R = 100 (Ra = 2.131 × 106), with resolution [512 × 96]:

exhibition of an unstable plume solution.

amount of dominance the rotation has on the system. Thus we can have chaotic

large scale flows where the effect of rotation is minimal, as can be seen in Figure

5.22, and chaotic flows that still possess a great amount of rotational constraint, as

can be seen in Figure 5.23. Note that these two particular flows are for a similar

Rayleigh number, and the same Prandtl number, but with a factor of 102 difference

in Taylor number. Hence there is roughly a factor 10 difference in the convective

Rossby number. In Figure 5.22 it can be seen that there is a strong, large scale

flow in the interior of the layer. Weak, coherent vortical structures are present

in the interior, corresponding to regions where the temperature is approximately

isothermal, whilst intense concentrations of vorticity are located within the rising
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and descending plumes. This is in contrast to Figure 5.23 where the vorticity is

more evenly distributed throughout the layer, and no large scale flow is present. In

both cases, the vorticity attains similar values in the plumes. The defining features

of both of these plots are how thin the thermal boundary layers are, and the intense

concentrations of vorticity within the rising and descending plumes. Again, this is

due to background rotation amplifying the local production of vorticity within the

plumes. Based on the schematic in Figure 5.1 it is clear that both of these solutions

fall into the turbulent regime, classified by the branching of thermal plumes due

to disruptions in the boundary layer. Furthermore, the flows shown in Figures ??

and 5.23 are similar to those of Julien et al. (1996b) in their three-dimensional

simulations.
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Figure 5.22: Contour plots of (a) the normalised vorticity (‖ω‖∞ = 1.3 × 105), (b)

the normalised streamfunction (‖ψ‖∞ = 3107) and (c) the total temperature, for

Ta = 106, Pr = 1, R = 1000 (Ra = 9.222 × 107), with resolution [1024 × 128]:

exhibition of a large-scale chaotic solution.
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Figure 5.23: Contour plots of (a) the normalised vorticity (‖ω‖∞ = 1.39 × 105),

(b) the normalised streamfunction (‖ψ‖∞ = 558) and (c) the total temperature,

for Ta = 108, Pr = 1, R = 50 (Ra = 9.485 × 107), with resolution [1024 × 128]:

exhibition of a rotationally constrained chaotic solution.

5.3.3 Nusselt number scaling

With the addition of rotation, we must also consider the fact that the scaling

relationship could be dependent on the Ekman number, hence we have Nu ∼
RaαPrβTaγ . Early numerical and experimental studies of rotating convection

seemed to favour both α = 1
3
and α = 2

7
—dependent on the boundary conditions—as

in the non-rotating case (see Julien et al. (1996b)/Julien et al. (1996a) and Liu &

Ecke (1997)). Subsequent numerical simulations have almost unanimously reached

the conclusion that α = 2
7
is the preferred Rayleigh number scaling exponent (see
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Schmitz & Tilgner (2009), King et al. (2009) and King et al. (2013)). However,

there is not yet a consensus as to the correct values of β and γ, particularly the

effect that the rotation has on the system. It is an open problem to determine the

values of the governing parameters at which there is a transition from rotationally-

dominated to buoyancy-dominated regimes. Once again there is fervent debate

as to the role—if any—played by boundary layers. In particular the role of the

Ekman layer, for convection with no-slip boundary conditions. As we have seen

in the numerical results presented here, increasing the Rayleigh number for a fixed

Ekman number results in the loss of all rotational dominance, and the flow mimics

that of the non-rotating flow. This has the implication that the Nusselt number

scaling relationship should also collapse to that of the non-rotating case for large

Ra. We introduced the convective Rossby number, measuring the relative effects

of buoyancy and rotation. For a long time it was thought that Ro∗ ≃ 1 marked

the transition between rotationally-dominated and buoyancy-dominated regimes,

however this has since come under some scrutiny. In a comprehensive series of

numerical experiments, Schmitz & Tilgner (2009) (see also Schmitz & Tilgner (2010)

for no-slip boundary conditions, for direct comparison with King et al. (2009)) find

that a suitable combination of the Reynolds, Ekman and Prandtl numbers can

predict when this transition occurs. Their simulations are performed with stress-

free boundary conditions, so their theory is not dependent on the existence of an

Ekman layer. In contrast to this, via a series of numerical and physical experiments

with no-slip boundary conditions, King et al. (2009) (see also King et al. (2012) and

King et al. (2013)) argue that it is the boundary layers themselves that dictate the

Nusselt number scaling relationship and furthermore the influence of rotation upon

the flow. In the asymptotically reduced equations of Julien et al. (2012), even for

no-slip numerical calculations they assume that the role of the Ekman layer is a

passive one, and that it is a global force balance that leads to the transition from

rotationally-dominated to buoyancy-dominated regimes. Liu & Ecke (2009) did not

come to any definite conclusion as to how the boundary layer affects the Nusselt

number scaling in their series of physical experiments, so it remains to be seen if
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a consensus can be reached on the matter. Indeed, given the analysis provided by

Grossman & Lohse (2000) for the non-rotating system, it is realistic to expect that

there is no one-size-fits-all scaling law. In Figure 5.24 we have plotted the Nusselt

number from our numerical simulations versus the Rayleigh number, for all Prandtl

and Taylor numbers considered, in a similar manner to Schmitz & Tilgner (2009)

and King et al. (2009). Furthermore, we have included the non-rotating values for

comparison.

Nu

Ra

100

101

102

102 103 104 105 106 107 108

Figure 5.24: Nusselt number versus Rayleigh number for Ta = 0 (black), Ta = 104

(red), Ta = 105 (yellow), Ta = 106 (green), Ta = 107 (light blue), and Ta = 108

(dark blue), with Pr = 1 (circles) and Pr = 10 (squares). The upper line has

exponent 1
3
whilst the lower line has exponent 2

7
.

The results that seem to scale with Ra
1

3 are those with zero rotation, or at lower

rotation rates, however even these lower Ta results corresponded to runs where the

rotational dominance over the flow was minimal. Recall that in these runs, the onset

of convection was characterised by a preferential wavenumber, then as the Rayleigh

number was increased we observed a transition to large scale convection. In steady

134



Chapter 5. Nonlinear results

cases we observed a purely cellular convection pattern but even in time-dependent

cases there was an amount of cellular dominance and intermittent periods of steady

behaviour. This would seem to suggest that a large scale cellular flow pattern

is somehow optimal for the heat transport, at least for the range of parameters

considered here.

The results that seem to scale with Ra
2

7 are those at higher rotation rates. In all

these runs, convection was found to be unsteady, whether the flow was rotationally

dominated or not. The flow developed in a fully turbulent manner and we witnessed

chaotic plumes with no cellular structure at all. This is encouraging to see, as it is

conjectured that the transition from the 1
3
to 2

7
scaling regime occurs once the flow

has become fully turbulent (see Castaing et al. (1989) and DeLuca et al. (1990)).

Obviously as Ra is increased, one would expect these large scale cellular-type flows

to break up and develop in a fully turbulent manner. It would be interesting to

see how this affected the Nusselt number scaling. Furthermore, these large scale

cellular flows are a definite manifestation of the fact that our system is only two

dimensional. In three dimensions, the additional instabilities that we have already

mentioned would certainly lead to a break-up of these flows.

5.3.4 Reynolds number scaling

In order to calculate the Reynolds number scaling for the rotating system, we need

to choose a suitable length scale to use within equation (5.66). In the limit as

Ta → ∞, at onset, we expect that lc ∼ Ta−
1

6 . Furthermore, King et al. (2013)

note that this scaling is to be expected in the rotationally-dominated regime, where

there is a balance between the Coriolis force and the horizontal diffusion of vorticity

within the interior of the domain. In dimensionless variables we have

Ta
1

2Pr
∂v

∂z
≃ Pr∇2ω. (5.73)

It is assumed that the z derivative of the velocity on the left-hand side is proportional

to the box height (equal to unity in dimensionless variables), whilst the right-hand
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side is dominated by horizontal gradients, therefore we have

Ta
1

2U∗ ≃
U∗
l3c
. (5.74)

Rearranging this gives the required expression lc ∼ Ta−
1

6 . In Figure 5.25 we plotted

the dominant horizontal wavenumber—which is inversely proportional to a length

scale—in our numerical simulations versus the Taylor number, identifying the scaling

md ∼ Ta
1

6 . For large Taylor numbers it can be seen that the agreement is quite

good, regardless of the value of the Rayleigh number. For low Taylor numbers, as

the Rayleigh number is increased, the dominant horizontal wavenumber attains an

order one value regardless. These were the runs where the rotational dominance over

the flow was minimal, hence we might expect some disagreement for lower Taylor

numbers at high Rayleigh number.

Ta

100

101

102

103 104 105 106 107 108 109

md

Figure 5.25: Dominant wavenumber versus Taylor number for Ta = 104 (red),

Ta = 105 (yellow), Ta = 106 (green), Ta = 107 (light blue), Ta = 108 (dark blue),

with Pr = 1 (circles) and Pr = 10 (squares). The solid line is proportional to Ta
1

6 .
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Proceeding with this scaling regardless and using equation (5.66), we have that the

Reynolds number scales as follows

Re ∼
Ra

1

2

f

Ta
1

6Pr
. (5.75)

Furthermore, this is the same scaling as seen by Schmitz & Tilgner (2009) in their

three-dimensional simulations.
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Figure 5.26: Reynolds number scaling for Ta = 104 (red), Ta = 105 (yellow),

Ta = 106 (green), Ta = 107 (light blue), and Ta = 108 (dark blue), with Pr = 1

(circles) and Pr = 10 (squares).

This scaling can be seen in Figure 5.26, where we note that the agreement is

excellent, even for lower Taylor numbers. For these runs, where the flow was

not rotationally dominated, we noted that the Nusselt number versus Rayleigh

number scaling was steeper than in the rotationally dominated regime. Within

equation (5.75) the relative effect of an increased Nusselt number for lower Taylor

numbers compensates for the lack of agreement between the dominant wavenumber
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and the Taylor number. This provides an explanation for why equation (5.75) is

seemingly still valid even for lower Taylor numbers. To our knowledge, this is the

first demonstration that this particular three-dimensional scaling law also holds in

the two-dimensional system.

5.4 Summary

In this chapter we presented the results of our numerical simulations, analysing

the behaviour of the system as the governing input parameters were altered. A

composite approach was taken to this analysis—looking at the physics of the

convective flows generated; analysing the nonlinear behaviour of the system, utilising

techniques from dynamical systems theory; and attempting to classify the results

into different scaling regimes, based on certain output parameters of our simulations.

This approach is unique in the sense that previous studies into two-dimensional

Rayleigh-Bénard convection have viewed the problem from only one such angle—the

current focus being to derive scaling laws (see King et al. (2013)). Furthermore, that

we have studied the behaviour for two different Prandtl numbers is also somewhat

novel: in high Rayleigh number studies (see DeLuca et al. (1990) and Vincent &

Yuen (1999)) Pr is typically fixed and only unsteady behaviour is found. In being

limited to a lower range of Rayleigh numbers, we were able to distinguish between

behaviour at different Prandtl numbers, and attempt to explain this behaviour.

For the non-rotating system, at Pr = 1, we found only steady solutions for the range

of Rayleigh numbers considered. This is consistent with the findings of DeLuca et al.

(1990) and Vincent & Yuen (1999). For Pr = 10, we found time-dependent solutions

and described the possible routes to chaos of the system, noting similarities with

the findings of Curry (1978). Furthermore, we outlined a physical explanation for

the instability that led to this behaviour. In the non-rotating system, independent

of the solution—be it steady, periodic or chaotic—there was a general preference for

convection to develop on a large length scale as the Rayleigh number was increased.
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We found the following scaling laws for the Nusselt and Reynolds numbers

Nu ∼ Ra
1

3 , (5.76)

Re ∼ Ra
1

2

f Pr
−1, (5.77)

in accordance with the studies of Moore & Weiss (1973) and DeLuca et al. (1990).

In the rotating system we noticed that providing the buoyancy driving was stronger

than the rotational driving, as measured by the convective Rossby number, Ro∗, then

a large length scale was preferred, as in the non-rotating system. In both regimes

we found heavily time-dependent behaviour, with flows varying greatly based on

whether they were buoyancy or rotation-dominated. We found the following scaling

laws for the Nusselt and Reynolds numbers

Nu ∼ Ra
1

3 for buoyancy-dominated flows, (5.78)

Nu ∼ Ra
2

7 for rotation-dominated flows, (5.79)

Re ∼ Ra
1

2

f Ta
− 1

6Pr−1. (5.80)

The latter two are consistent with the findings of Schmitz & Tilgner (2009) and

King et al. (2009), in their three-dimensional studies. That the Rayleigh number

exponent is larger in the buoyancy-dominated regime is due to the fact that these

solutions were, on the whole, steady. As the Rayleigh number is increased further

we would expect these solutions to become time-dependent, and the exponent to

resemble that of the rotation-dominated regime.
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Asymptotic theory

Guided by the numerical simulations in Chapter 5, we present an asymptotic theory

in order to describe the large Rayleigh number, steady state solutions, observed for

Pr = 1, in the non-rotating system. We treat separately the different dynamically

important regions of the convection cell. With only two term asymptotic expansions

in the bottom boundary layer and rising plume we are able to replicate many of

the quantitative features of steady state cellular convection. Furthermore these

expansions are matched at the corner region. This analysis furnishes us with an

asymptotic relation of both the core vorticity value and the Nusselt number, in terms

of the Rayleigh number. For large Rayleigh number, we noted that the preference

of the system was to develop on a long horizontal length scale. Here the horizontal

wave length is the only input parameter needed, for a given Rayleigh number.
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6.1 Introduction

6.1.1 Motivation

We wish to derive analytical, mathematical expressions for the steady state solutions

that we observed in the large Rayleigh number numerical simulations carried out

in Chapter 5, for Pr = 1. The solution for the vorticity and temperature was

characterised by extremely narrow boundary layer regions around the core of the

convection cell, inside which both the vorticity and temperature were approximately

constant. Such a solution can be viewed in Figure 6.1, where we have plotted the

vorticity, streamfunction and temperature from one of our high Rayleigh number

numerical simulations. Note that the numerical simulation was performed in a box

of length 2π, yet here we have just shown one of the convection cells. Due to

the symmetry of the system in a steady state, it is sufficient to analyse a single

convection cell only. Along with this we have plotted the vertical profiles of these

three governing variables at a given horizontal location. This makes apparent our

statement that the vorticity and temperature were constant in the core of the

convection cell. It can be seen that the streamfunction is smooth everywhere, and

that in the core of the convection cell the flow is laminar. Furthermore, this has

the implication that both the vorticity and the temperature are constant along the

core streamlines. Despite this, these laminar solutions are in fact strongly nonlinear,

differing greatly from any asymptotic solution coming from weakly nonlinear theory

(see Veronis (1966)).

As the Rayleigh number was increased we showed that the thickness of the boundary

layer regions decreased, meaning the area we have described as the core of the

convection cell increased—a key property that our asymptotic solutions must

replicate. Further to arriving at an analytical expression valid in the limit of large

Rayleigh number, we would like to use our results in order to derive an asymptotic

relation for the Nusselt scaling that we discussed in Chapter 5. For the steady state
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simulations at Pr = 1 we observed an exponent of 1
3
, in line with the ‘classical’

prediction. This is a further feature that we would like our asymptotic solutions

to impart. As well as the core, we can subdivide the convection cell into different

dynamically important regions. We make a distinction between the upper and lower

boundary layers and the rising and sinking plumes. These boundary layers and

plumes meet at corner regions—areas that will require subtle treatment in order to

ensure continuity as we pass from one region to another. We expect there to be

different dominant balances within the governing equations in each of these distinct

areas, owing to the inherent short length scales, and hence large gradients, involved.

 

 

 

 

 

 

x

x

x

z

z

z

z

z

z ω
‖ω‖

∞

ψ
‖ψ‖

∞

T

0
0

0
0

0
0

0
0

0
0

0
0

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

-1

-1

0.5

π

π

π
ω(π/2,z)
‖ω‖∞

ψ(π/2,z)
‖ψ‖∞

T (π/2, z)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.1: Contour plots/vertical profiles at x = π/2 of (a)/(d) the normalised

vorticity (‖ω‖∞ = 18253), (b)/(e) the normalised streamfunction (‖ψ‖∞ = 1944)

and (c)/(f) the total temperature, for Ta = 0, Pr = 1, R = 10000: solutions that

were computed numerically in Chapter 5.
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One of the first attempts to describe the steady state convection cells that we

have witnessed was performed by Robinson (1967). Whilst the treatment of the

convection cell core is handled in an identical manner to how we present here,

the boundary layer analysis differs somewhat in the approximations made. The

treatment of the corner region, and the overall procedure, however, is similar.

A seminal development in the study of strongly nonlinear Rayleigh-Bénard

convection was undertaken by Roberts (1979) in the limit of infinite Prandtl number.

This followed from his treatment of convection from a heated strip (see Roberts

(1977)). In the infinite Prandtl number limit the advective terms in the momentum

equation are considered negligible. Asymptotic expressions for the velocity and

temperature are derived in the boundary layers and plumes, with the core motion

being determined from the streamfunction, as the solution of a biharmonic equation.

In the boundary layers and plumes the temperature is the solution of a one-

dimensional, parabolic heat diffusion-type equation, when transformed using Von

Mises—streamfunction—coordinates. Here the streamfunction is used as the

coordinate normal to the boundary and is supplemented by a transverse coordinate

that is proportional to the boundary velocity. This heat equation is solved with the

periodicity requirement that motion be repeated after one cycle of the convection

cell. This solution also provides an asymptotic relation for the Nusselt number

dependence on the Rayleigh number and the cell width. Furthermore, an accurate

treatment of the corner region is also presented.

Following on from Roberts (1979), Jimenez & Zufiria (1987) perform a semi-

analytical treatment of the problem for infinite Prandtl number but with constant

heat flux, rather than constant temperature, boundary conditions. Their equations

are initially scaled with the Raleigh number, assuming an a priori Nusselt number

exponent of 1
3
in the Rayleigh number scaling. They formulate an integral equation

for the cell-edge temperature distribution and address the corner region in some

detail. Using this they are able to determine, asymptotically, the Nusselt number

proportionality constant in the Rayleigh number scaling. Succeeding this Chini
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(2008) performed a very similar analysis in the framework of both Langmuir

circulation and Rayleigh-Bénard convection but for finite Prandtl number. The

methodology is extremely similar to Jimenez & Zufiria (1987) in that an integral

equation for the cell-edge temperature distribution is required to be solved. Finally,

this work is extended by Chini & Cox (2009) in the framework of constant

temperature boundary conditions, in a very similar manner. This work is heavily

numerical and does not address the corner region in significant detail. Nonetheless,

the solutions determined replicate their own numerical simulations of the nonlinear

equations accurately. We wish to follow on from Chini & Cox (2009) but address

the problem in a more analytical way, obviating the need for complex numerical

procedures.

6.1.2 Mathematical formulation

z

x

1

0
π
k

cell core

bottom boundary layer

rising
plume

corner

Figure 6.2: Physical setup of the problem: schematic of a convective cell, displaying

the convection cell core, bottom boundary layer, rising plume and adjoining corner

region.

We wish to describe, mathematically, the type of steady state solutions as seen in

Figure 6.1. The required dimensionless equations governing the dynamics of the
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system are given by

u
∂ω

∂x
+ w

∂ω

∂z
= −RaPr∂T

∂x
+ Pr∇2ω, (6.1)

u
∂T

∂x
+ w

∂T

∂z
= ∇2T, (6.2)

∇2ψ = −ω, (6.3)

where u = −∂ψ
∂z

and w = ∂ψ
∂x

are the x and z components of the velocity respectively.

It is useful to rescale these equations, to furnish us with a parameter upon which

we can base our asymptotic theory. Our numerical simulations of non-rotating

convection in Chapter 5 exhibited the following scaling law

Re ∼ Ra
2

3Pr−1 providing Nu ∼ Ra
1

3 as Ra→ ∞. (6.4)

This is equivalent to the dimensionless velocity scaling with Ra
2

3 . Applying this

scaling within equations (6.1), (6.2) and (6.3) gives

u
∂ω

∂x
+ w

∂ω

∂z
= −ǫPr∂T

∂x
+ ǫ2Pr∇2ω, (6.5)

u
∂T

∂x
+ w

∂T

∂z
= ǫ2∇2T, (6.6)

∇2ψ = −ω. (6.7)

This equation set is valid in the limit as Ra→ ∞, or equivalently, ǫ→ 0, where

ǫ ≡ Ra−
1

3 . (6.8)

In Figure 6.1 there is a rising plume located at x = 0. This means that the velocity

is such that u is negative in the bottom boundary layer and w is positive in the

rising plume. The corresponding boundary conditions for equations (6.5), (6.6) and

(6.7) are given by

ψ = 0, ω= 0, T = 1 at z= 0, (6.9)

ψ = 0, ω= 0, T = 0 at z= 1. (6.10)
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The solutions shown in Figure 6.1 possess the following rotational symmetry

ω(x, z, t) = ω
(π
k
− x, 1− z, t

)
, (6.11)

ψ(x, z, t) = ψ
(π
k
− x, 1− z, t

)
, (6.12)

T (x, z, t) = 1− T
(π
k
− x, 1− z, t

)
, (6.13)

where k is a wavenumber defining the aspect ratio of the cell, with k = 1 in Figure

6.1. Due to this symmetry, the top and bottom boundary layers are mathematically

equivalent, as are the rising and sinking plumes. Hence we only need to address

the dynamics in—arbitrarily—the bottom boundary layer and rising plume, as

well as the adjoining corner region. The geometry of the problem is described in

Figure 6.2, where we have labelled the dynamically important regions that we shall

study. Furthermore, this symmetry gives us the following conditions on the lateral

boundaries

ψ = 0, ω= 0,
∂T

∂x
= 0 at x = 0, (6.14)

ψ = 0, ω= 0,
∂T

∂x
= 0 at x=

π

k
. (6.15)

6.2 Convection cell core

Following the work of Chini & Cox (2009), first we address the behaviour within the

core of the convection cell.

6.2.1 Temperature

Written in terms of the streamfunction, the temperature equation (cf. equation

(6.6) is given by
∂ψ

∂x

∂T

∂z
− ∂ψ

∂z

∂T

∂x
= ǫ2∇2T. (6.16)

We begin by integrating this equation over the area enclosed by a core streamline
∫

Aψ

(
∂ψ

∂x

∂T

∂z
− ∂ψ

∂z

∂T

∂x

)
dAψ = ǫ2

∫

Aψ

∇2TdAψ. (6.17)
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In the core of the convection cell, away from the boundary layers and plumes, we

assume that the temperature depends smoothly upon the streamfunction, i.e. T ≡
T (ψ). With this in mind we have

∂ψ

∂x

∂T

∂z
− ∂ψ

∂z

∂T

∂x
=
∂ψ

∂x

∂T

∂ψ

∂ψ

∂z
− ∂ψ

∂z

∂T

∂ψ

∂ψ

∂x
= 0, (6.18)

hence we have

ǫ2
∫

Aψ

∇2TdAψ = 0. (6.19)

Using the fact that ∇2T = ∇ · (∇T ) and applying the divergence theorem to

transform this equation gives

ǫ2
∮

Cψ

∇T · n̂dl = 0, (6.20)

where n̂ is a outward-pointing unit normal vector to the closed streamline Cψ and

dl is an infinitesimal line element. Using the fact that T ≡ T (ψ) this means

ǫ2
∮

Cψ

∂T

∂ψ

∂ψ

∂n
dl = 0, (6.21)

which can be written as

ǫ2T ′(ψ)ΓCψ = 0, (6.22)

where ΓCψ is the non-zero circulation around the closed streamline Cψ. This last

equation tells us that the temperature is constant everywhere in the core of the

convection cell. Due to the boundary conditions on the temperature, by symmetry,

we must have T ∼ Tc =
1
2
in the core of the convection cell.

6.2.2 Vorticity

Written in terms of the streamfunction, the vorticity equation (cf. equation (6.5))

is given by
∂ψ

∂x

∂ω

∂z
− ∂ψ

∂z

∂ω

∂x
= −ǫPr∂T

∂x
+ ǫ2Pr∇2ω. (6.23)

Once again we integrate this over the area enclosed by a core streamline
∫

Aψ

(
∂ψ

∂x

∂ω

∂z
− ∂ψ

∂z

∂ω

∂x

)
dAψ = ǫPr

∫

Aψ

(
−∂T
∂x

+ ǫ∇2ω

)
dAψ. (6.24)
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In the core of the convection cell, away from the boundary layers and plumes, we

know that the temperature is given by T ∼ Tc and hence the first term on the right-

hand side vanishes. Furthermore, we assume that the vorticity depends smoothly

upon the streamfunction, i.e. ω ≡ ω(ψ). With this in mind we have

∂ψ

∂x

∂ω

∂z
− ∂ψ

∂z

∂ω

∂x
=
∂ψ

∂x

∂ω

∂ψ

∂ψ

∂z
− ∂ψ

∂z

∂ω

∂ψ

∂ψ

∂x
= 0, (6.25)

hence we have

ǫ

∫

Aψ

∇2ωdAψ = o(ǫm), (6.26)

for any positive integer m. In an identical matter to how we proceeded for the core

temperature, we derive the following equation

ǫω′(ψ)ΓCψ = o(ǫm). (6.27)

This last equation tells us that, to within exponentially small corrections in ǫ, the

vorticity is constant everywhere in the core of the convection cell, given by ω ∼ ωc.

Unlike for the temperature, there is no a priori method for ascertaining the value

ωc, it must be determined as part of the —asymptotic—solution to the problem.

6.2.3 Streamfunction

Since the vorticity is approximately constant in the core of the convection cell,

taking the value ωc, the streamfunction in the core of the convection cell satisfies

the following

∇2ψc = −ωc. (6.28)

We are able to solve this Poisson equation analytically for the core streamfunction

ψc subject to the boundary conditions ψc(0, x) = ψc
(
π
k
, z
)
= ψc(x, 0) = ψc(x, 1) = 0.

Due to the boundary conditions at x = 0 and x = π
k
it is clear that a Fourier-Sine

series in x is necessary, hence we postulate that the solution be of the form

ψc(x, z) =

∞∑

n=1

ψn(z) sin nkx. (6.29)
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Inserting this into equation (6.28) gives

∞∑

n=1

(
ψ′′
n − n2k2ψn

)
sin nkx = −ωc. (6.30)

In order to calculate the coefficients ψn we multiply this equation by sinmkx and

integrate from x = 0 to x = π
k
, hence we have

∫ π
k

0

∞∑

n=1

(
ψ′′
n − n2k2ψn

)
sinmkx sin nkxdx = −

∫ π
k

0

ωc sinmkxdx. (6.31)

For non-trivial solutions we require that n = m and furthermore that m be odd. In

this case we have

ψ′′
m −m2k2ψm = −4ωc

πm
. (6.32)

The solution to this equation is given by

ψm = Am coshmkz +Bm sinhmkz +
4ωc

πm3k2
. (6.33)

Applying the boundary conditions ψm(x, 0) = ψm(x, 1) = 0 gives

ψm =
4ωc

πm3k2

(
1− coshmkz +

(coshmk − 1) sinhmkz

sinhmk

)
,

=
4ωc

πm3k2

(
1− coshmk

(
z − 1

2

)

cosh mk
2

)
, (6.34)

where in order to derive the final equation we have made use of the identity

tanh mk
2

= coshmk−1
sinhmk

. Hence the solution for the interior streamfunction is given

by

ψc =

∞∑

n=1

4ωc
πn3k2

sinnkx

(
1− coshnk

(
z − 1

2

)

cosh nk
2

)
, (6.35)

for n odd. Following Chini & Cox (2009), to allow us to match the core

streamfunction onto its counterpart within the bottom boundary layer and rising

plume, we perform Taylor expansions of the core streamfunction at the perimeter

of the cell core. Hence, to match with the streamfunction in the bottom boundary

layer we have

ψc(x, z) ∼ z

∞∑

n=1

4ωc
πn2k

tanh
nk

2
sin nkx (6.36)
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as z → 0+ and to match with the streamfunction in the rising plume we have

ψc(x, z) ∼ x

∞∑

n=1

4ωc
πn2k

(
1− cosh nk

(
z − 1

2

)

cosh nk
2

)
, (6.37)

as x→ 0+.

6.3 Bottom boundary layer

In the bottom boundary layer, since there is a sharp transition in the temperature,

as we go from the boundary into the core of the convection cell, gradients in the

vertical direction are much larger than in the horizontal direction. With this, we

rescale the vertical coordinate in terms of the small parameter ǫ, giving

zbl =
z

ǫ
. (6.38)

The asymptotic expansion of the governing hydrodynamical variables, that is valid

within the bottom boundary layer, and matches with the core values, is then given

by

T (x, z) ∼ Tc + Tbl(x, zbl) +O(ǫ), (6.39)

ω(x, z) ∼ ωc + ωbl(x, zbl) +O(ǫ), (6.40)

ψ(x, z) ∼ ǫψbl(x, zbl) +O(ǫ2). (6.41)

In the bottom boundary layer, by definition of the streamfunction, we have that

the horizontal velocity must satisfy u = −∂ψbl
∂zbl

. In order to match with the core

streamfunction expression given by equation (6.36), we have

ψbl(x, zbl) = zblu(x), (6.42)

where, by comparison with equation (6.36), we have

u(x) = −
∞∑

n=1

4ωc
πn2k

tanh
nk

2
sinnkx. (6.43)
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This expression is dominated by the n = 1 mode, and it is instructive to take only

this component, although in principle we could proceed with any number of modes.

Hence the tangential velocity in the bottom boundary layer is given by

U(x) = −λ sin kx, (6.44)

with

λ =
4ωc
πk

tanh
k

2
. (6.45)

The continuity equation then tells us that in the boundary layer

∂U

∂x
+
∂w

∂zbl
= 0 ⇒ w = −zbl

∂U

∂x
= λkzbl cos kx. (6.46)

Hence in the bottom boundary layer, using asymptotic expansions (6.39), (6.40)

and (6.41) within the rescaled temperature equation (cf. equation (6.6)), gives, to

leading order

U
∂Tbl
∂x

− zbl
∂U

∂x

∂Tbl
∂zbl

=
∂2Tbl
∂z2bl

. (6.47)

This must be solved for Tbl subject to the following boundary and infinity conditions

Tbl =
1

2
at zbl = 0, (6.48)

Tbl → 0 as zbl → ∞. (6.49)

Note that any expression for Tbl must be an odd function, since we require it to be

symmetric with respect to rotations of π. A solution possessing these properties is

Tbl =
1

2
erfc(s) +

∞∑

n=1

αn(x)s
ne−s

2

, (6.50)

≡ 1

π
1

2

∫ ∞

s

e−ŝ
2

dŝ+

∞∑

n=1

αn(x)s
ne−s

2

, (6.51)

for n odd, where s is given by

s = zblg
− 1

2

bl (x). (6.52)

The function gbl modulates the thickness of the bottom boundary layer and must

be determined as part of the solution to the problem, along with the functions

αn(x). In principle we will truncate the above expansion after a finite number of
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terms. Indeed, with just two terms it will be shown that the resulting solution is

remarkably accurate. For such an expansion we have

∂s

∂x
= −1

2
zblg

− 3

2

bl

dgbl
dx

= −1

2
sg−1

bl

dgbl
dx

, (6.53)

∂s

∂zbl
= g

− 1

2

bl . (6.54)

Hence the required partial derivatives are given by

∂Tbl
∂x

=
1

2π
1

2

sg−1
bl

dgbl
dx

e−s
2

+
∞∑

n=1

{
dαn
dx

sn +
1

2

(
2sn+2 − nsn

)
αng

−1
bl

dgbl
dx

}
e−s

2

, (6.55)

∂Tbl
∂zbl

= −g
− 1

2

bl

π
1

2

e−s
2

+
∞∑

n=1

(
nsn−1 − 2sn+1

)
αng

− 1

2

bl e
−s2, (6.56)

∂2Tbl
∂z2bl

=
2g−1

bl

π
1

2

se−s
2

+
∞∑

n=1

(
4sn+2 − (4n+ 2)sn + n(n− 1)sn−2

)
αng

−1
bl e

−s2 .

(6.57)

Using the fact that zbl = sg
1

2

bl, we use these expressions within the following equation

U
∂Tbl
∂x

− sg
1

2

bl

∂U

∂x

∂Tbl
∂zbl

=
∂2Tbl
∂z2bl

. (6.58)

Truncating our series expansion at n =M allows us to equate coefficients at different

orders of sne−s
2

. Equating terms proportional to sM+2e−s
2

gives

dgbl
dx

+
2

U

∂U

∂x
gbl =

4

U
. (6.59)

An integrating factor for this equation is given by U2, hence we have

d

dx

[
U2gbl

]
= 4U. (6.60)

Using the approximation U = −λ sin kx, we gain the following expression for gbl

gbl =
4

kλ

(
A1 + cos kx

sin2 kx

)
, (6.61)

where A1 is a constant of integration to be determined. Looking at the terms arising

from expressions (6.55), (6.56) and (6.57) when inserted into equation (6.58) that
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are proportional to se−s
2

but independent of n, we see that they too satisfy equation

(6.59) and hence may be cancelled. It is key that they do in fact satisfy this equation,

or we would have a contradictory expression for the function gbl. Finally, equating

terms that are proportional to sne−s
2

gives

U
dαn
dx

+
(
αn−2 −

n

2
αn

)
g−1
bl U

dgbl
dx

+ (2αn−2 − nαn)
∂U

∂x

= (4αn−2 − (4n+ 2)αn + (n+ 2)(n + 1)αn+2) g
−1
bl . (6.62)

We may once again use equation (6.59) to cancel various terms, leaving us with

dαn
dx

+
2(n+ 1)

Ugbl
αn =

(n+ 2)(n+ 1)

Ugbl
αn+2. (6.63)

For U = −λ sin kx and gbl given by equation (6.61), an integrating factor for this

equation is given by (A1 + cos kx)
n+1

2 , hence we have

d

dx

[
(A1 + cos kx)

n+1

2 αn

]
= −k(n + 2)(n+ 1)

4
(A1 + cos kx)

n−1

2 sin kxαn+2. (6.64)

This differential equation for αn cannot be solved unless we first know αn+2. For

n =M , αn = 0 for n > M , hence we have

d

dx

[
(A1 + cos kx)

M+1

2 αM

]
= 0. (6.65)

Thus we may solve this equation, arriving at the following solution for αM

αM =
kM

(A1 + cos kx)
M+1

2

, (6.66)

where kM is a constant of integration to be determined. Now, letting n =M − 2 in

equation (6.64) gives

d

dx

[
(A1 + cos kx)

M−1

2 αM−2

]
= −kM(M − 1)

4
(A1 + cos kx)

M−3

2 sin kxαM , (6.67)

but we have an expression for αM , hence

d

dx

[
(A1 + cos kx)

M−1

2 αM−2

]
= −kM(M − 1)kM sin kx

4 (A1 + cos kx)2
. (6.68)

We are able to solve this equation, giving the following expression for αM−2

αM−2 = − M(M − 1)kM

4 (A1 + cos kx)
M+1

2

+
kM−2

(A1 + cos kx)
M−1

2

, (6.69)
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where kM−2 is a constant of integration to be determined. Thus in knowing the

expression for αM , we are able to find the solutions to equation (6.64) recursively.

The M − n’th term is given by

αM−n =
n∑

m=0

(−4)
m−n

2 (M −m)! kM−m(
n−m
2

)
!(M − n)! (A1 + cos kx)

M+1−m
2

, (6.70)

where m and n are even and N is odd. Hence the solution in the bottom boundary

layer is given by

Tbl =
1

2
(1 + erfc(s)) +

N−1∑

n=0

n∑

m=0

(−4)
m−n

2 (N − 1−m)! kN−1−ms
N−1−ne−s

2

(
n−m
2

)
!(N − 1− n)! (A1 + cos kx)

N−m
2

, (6.71)

where m and n are even and we have redefined M ≡ N − 1 so that N is even, and

s is given by

s = zblg
− 1

2

bl (x) ≡ k
1

2λ
1

2 zbl sin kx

2 (A1 + cos kx)
1

2

. (6.72)

With N = 2 the solution is given by

Tbl =
1

π
1

2

∫ ∞

s

e−ŝ
2

dŝ +
k1se

−s2

(A1 + cos kx)
. (6.73)

6.4 Rising plume

In the rising plume, since there is a sharp transition in the temperature, as we

go from the plume into the core of the convection cell, gradients in the horizontal

direction are much larger than in the vertical direction. With this, we rescale the

horizontal coordinate in terms of the small parameter ǫ, giving

xpl =
x

ǫ
. (6.74)

The asymptotic expansion of the governing hydrodynamical variables, that is valid

within the rising plume, and matches with the core values, is then given by

T (x, z) ∼ Tc + Tpl(xpl, z) +O(ǫ), (6.75)

ω(x, z) ∼ ωc + ωpl(xpl, z) +O(ǫ), (6.76)

ψ(x, z) ∼ ǫψpl(xpl, z) +O(ǫ2). (6.77)
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In the rising plume, by definition of the streamfunction, we have that the vertical

velocity must satisfy w =
∂ψpl
∂xbl

. In order to match with the core streamfunction

expression given by equation (6.37), we have

ψpl(xpl, z) = xplw(z), (6.78)

where, by comparison with equation (6.37), we have

w(z) =

∞∑

n=1

4ωc
πn2k

(
1− coshnk

(
z − 1

2

)

cosh nk
2

)
. (6.79)

This expression is dominated by the n = 1 mode, and it is instructive to take only

this component, although in principle we could proceed with any number of modes.

Furthermore, we choose to express the velocity in a simpler trigonometric form,

to simplify the forthcoming analysis. Hence the tangential velocity in the bottom

boundary layer is given by

W (z) = λ sinπz, (6.80)

with λ given by equation (6.45). The continuity equation then tells us that in the

rising plume

∂u

∂xpl
+
∂W

∂z
= 0 ⇒ u = −xpl

∂W

∂z
= −λπxpl cosπz. (6.81)

Hence in the rising plume, using asymptotic expansions (6.75), (6.76) and (6.77)

within the rescaled temperature equation (cf. equation (6.6)), gives, to leading

order

−xpl
∂W

∂z

∂Tpl
∂xpl

+W
∂Tpl
∂z

=
∂2Tpl
∂x2pl

. (6.82)

This must be solved for Tpl subject to the following boundary and infinity conditions

∂Tpl
∂xpl

= 0 at xpl = 0, (6.83)

Tpl → 0 as xpl → ∞, (6.84)

Note that any expression for Tpl must be an even function, since we require it to

be symmetric about the plume centreline at xpl = 0. A solution possessing these

properties is

Tpl =

∞∑

n=0

βn(z)s
ne−s

2

, (6.85)
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for n even, where s is given by

s = xplg
− 1

2

pl (z). (6.86)

The function gpl modulates the thickness of the rising plume and must be determined

as part of the solution to the problem, along with the functions βn(z). In principle

we will once again truncate the above expansion at a finite value n = N , say. With

just N = 2 it will be shown that the resulting solution is remarkably accurate. For

such an expansion we have
∂s

∂xpl
= g

− 1

2

pl . (6.87)

∂s

∂z
= −1

2
zg

− 3

2

pl

dgpl
dz

= −1

2
sg−1

pl

dgpl
dz

, (6.88)

Hence the required partial derivatives are given by

∂Tpl
∂xpl

=

∞∑

n=0

(
nsn−1 − 2sn+1

)
βng

− 1

2

pl e
−s2 , (6.89)

∂2Tpl
∂x2pl

=

∞∑

n=0

(
4sn+2 − (4n+ 2)sn + n(n− 1)sn−2

)
βng

−1
pl e

−s2, (6.90)

∂Tpl
∂z

=

∞∑

n=0

{
dβn
dz

sn +
1

2

(
2sn+2 − nsn

)
βng

−1
pl

dgpl
dz

}
e−s

2

, (6.91)

Using the fact that xpl = sg
1

2

pl, we use these expressions within the following equation

−sg
1

2

pl

∂W

∂z

∂Tpl
∂xpl

+W
∂Tpl
∂z

=
∂2Tpl
∂x2pl

. (6.92)

Truncating our series expansion at n = N allows us to equate coefficients at different

orders of sne−s
2

. Equating terms proportional to sN+2e−s
2

gives

dgpl
dz

+
2

W

∂W

∂z
gpl =

4

W
. (6.93)

An integrating factor for this equation is given by W 2, hence we have

d

dz

[
W 2gpl

]
= 4W. (6.94)

Using the fact that W = λ sin πz, we gain the following expression for gpl

gpl =
4

πλ

(
A2 − cos πz

sin2 πz

)
, (6.95)
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where A2 is a constant of integration to be determined. Equating terms that are

proportional to sne−s
2

gives

(2βn−2 − nβn)
∂W

∂z
+W

dβn
dz

+
(
βn−2 +

n

2
βn

)
g−1
pl W

dgpl
dz

= (4βn−2 − (4n+ 2)βn + (n+ 2)(n+ 1)βn+2) g
−1
pl (6.96)

We may use equation (6.93) to cancel various terms, leaving us with

dβn
dz

+
2(n+ 1)

Wgpl
βn =

(n+ 2)(n+ 1)

Wgpl
βn+2. (6.97)

For W = λ sin πz and gpl given by equation (6.95), an integrating factor for this

equation is given by (A2 − cos πz)
n+1

2 , hence we have

d

dz

[
(A2 − cosπz)

n+1

2 βn

]
=
π(n+ 2)(n+ 1)

4
(A2 − cosπz)

n−1

2 sin πzβn+2. (6.98)

This differential equation for βn cannot be solved unless we first know βn+2. For

n = N , βn = 0 for n > N , hence we have

d

dz

[
(A2 − cosπz)

n+1

2 βn

]
= 0. (6.99)

Thus we may solve this equation, arriving at the following solution for βN

βN =
lN

(A2 − cosπz)
N+1

2

, (6.100)

where lN is a constant of integration to be determined. Now, letting n = N − 2 in

equation (6.98)

d

dz

[
(A2 − cosπz)

N−1

2 βN−2

]
=
πN(N − 1)

4
(A2 − cos πz)

N−3

2 sin πz βN , (6.101)

but we have an expression for βN , hence

d

dz

[
(A2 − cosπz)

N−1

2 βN−2

]
= −πN(N − 1)lN sin πz

4 (A2 − cosπz)2
. (6.102)

We are able to solve this equation, giving the following expression for βN−2

βN−2 = − N(N − 1)lN

4 (A2 − cosπz)
N+1

2

+
lN−2

(A2 − cos πz)
N−1

2

, (6.103)
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where lN−2 is a constant of integration to be determined. Thus in knowing the

expression for βN , we are able to find the solutions to equation (6.98) recursively.

Hence the N − n’th term is given by

βN−n =

n∑

m=0

(−4)
m−n

2 (N −m)! lN−m
(
n−m
2

)
!(N − n)! (A2 − cosπz)

N+1−m
2

, (6.104)

where m, n are N are all even. Hence the solution in the bottom boundary layer is

given by

Tpl =

N∑

n=0

n∑

m=0

(−4)
m−n

2 (N −m)! lN−ms
N−ne−s

2

(
n−m
2

)
!(N − n)! (A2 − cos πz)

N+1−m
2

, (6.105)

where m, n are N are all even, and s is given by

s = xplg
− 1

2

pl (z) ≡ π
1

2λ
1

2xpl sin πz

2 (A2 − cos πz)
1

2

. (6.106)

With N = 2 the solution is given by

Tpl =

(
l0

(A2 − cos πz)
1

2

− l2

2 (A2 − cosπz)
3

2

)
e−s

2

+
l2s

2e−s
2

(A2 − cosπz)
3

2

. (6.107)

6.5 Corner region

Close to the corner at (0, 0), the boundary layer and plume thicknesses are O(ǫ
1

2 ),

and we may write the streamfunction as

ψ ∼ ǫxz, (6.108)

in accordance with Jimenez & Zufiria (1987). This means that the velocity

components close to the corner are given by

u = −ǫx, w = ǫz. (6.109)

The temperature equation therefore reads

−ǫx∂T
∂x

+ ǫz
∂T

∂z
= ǫ2∇2T. (6.110)
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We shall introduce a new streamline coordinate system (ψ, ζ) with

ψ = ǫxz, ζ =
ǫ

2

(
z2 − x2

)
. (6.111)

In this coordinate system ψ picks out a particular streamline and ζ gives

the corresponding location along that streamline. Hence given this coordinate

transformation we have

∂

∂x
= ǫz

∂

∂ψ
− ǫx

∂

∂ζ
(6.112)

∂

∂z
= ǫx

∂

∂ψ
+ ǫz

∂

∂ζ
. (6.113)

Using this within equation (6.110) gives

∂T

∂ζ
= ǫ

(
∂2T

∂ζ2
+
∂2T

∂ψ2

)
. (6.114)

Hence, to leading order we have
∂T

∂ζ
= 0. (6.115)

This means that within the corner region diffusion is negligible, implying that

the temperature is constant on the streamlines of the flow as we go round the

corner. This has important consequences for the matching that we shall perform in

the following section in order to determine the—currently unknown—constants of

integration.

6.6 Matching conditions

6.6.1 The general case

In general we are furnished with N + 3 constants of integration that we are to

determine. For any value of N , we always have A1 and A2 that are located in

the expressions for gbl and gpl given by equations (6.61) and (6.95) respectively.

Furthermore there are N
2
values of kn arising in equation (6.71) and N

2
+1 values of
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ln arising in equation (6.105) that are unknown. Hence we require N + 3 equations

relating these constants in order to determine them. The first equation is obtained

by specifying Tpl =
1
2
at z = 0. Looking at equation (6.105) it is clear that the only

non-zero contribution occurs when n = N , hence we require

β0(0) =
1

2
. (6.116)

Using the expression for β0 given by equation (6.104) with n = N , this amounts to

satisfying
N∑

m=0

(−4)
m−N

2 (N −m)! lN−m
(
N−m

2

)
! (A2 − 1)

N+1−m
2

=
1

2
. (6.117)

Equation (6.115) told us that to leading order, within the corner region, diffusion

was negligible. This means that the solution in the boundary layer matches onto

the solution in the plume as we pass through the corner region. Furthermore, this

has the implication that each moment of the temperature can be matched as we

go from the bottom boundary layer to the plume. Since we are able to write the

velocity in terms of a streamfunction: u = −∂ψ
∂z

or w = ∂ψ
∂x
, in either the bottom

boundary layer or the rising plume, we define the p-th moment of temperature as

M (p) =

∫ ∞

0

ψp (T − Tc) dψ, (6.118)

for p = 0, 1, . . . , N
2
. The remaining N + 2 conditions are obtained by specifying

that the first N
2
+ 1 moments match as we go from the bottom boundary layer into

the rising plume, and from the rising plume into the top boundary layer. All the

required integrals are able to be computed analytically.

In the bottom boundary layer we have

M
(p)
bl =

∫ ∞

0

ψpblTbldψbl, (6.119)

for p = 0, 1, . . . , N
2
. Using U = −∂ψbl

∂zbl
and zbl = sg

1

2

bl we are able to rewrite this as

M
(p)
bl (x) =

∫ ∞

0

(
−Ug

1

2

bl

)p+1

Tbls
pds, (6.120)
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for p = 0, 1, . . . , N
2
. Noting that U and gbl are functions of x only, and using the

expression for Tbl from equation (6.71) we have

M
(p)
bl (x) =

(
−Ug

1

2

bl

)p+1
∫ ∞

0

(
1

2
erfc(s) +

N−1∑

n=0

αN−1−n(x)s
N−1−ne−s

2

)
spds, (6.121)

for p = 0, 1, . . . , N
2
, and N and n both even. This can be written

M
(p)
bl (x) =

(
4λ (A1 + cos kx)

k

) p+1

2

(
Jp

π
1

2

+
N−1∑

n=0

αN−1−n(x)IN−1−n+p

)
, (6.122)

for p = 0, 1, . . . , N
2
, and N and n both even, where the values of the integrals In and

Jn are given by equations (B.10) and (B.15) respectively, in Appendix B. Due to

the symmetry of the system, the p-th moment in the top boundary layer is given by

M
(p)
tbl (x) = −M (p)

bl

(π
k
− x
)
. (6.123)

In a similar manner we are able to derive an expression for the p-th moment in the

rising plume. This is given by

M
(p)
pl (z) =

(
4λ (A2 − cosπz)

π

) p+1

2
N∑

n=0

βN−n(z)IN−n+p, (6.124)

for p = 0, 1, . . . , N
2
. Hence the remaining N + 2 matching conditions come from

satisfying

M
(p)
bl (0) =M

(p)
pl (0), (6.125)

−M (p)
bl

(π
k

)
=M

(p)
pl (1), (6.126)

for p = 0, 1, . . . , N
2
, and N and n both even. Using equations (6.122) and

(6.124), along with the expressions for αn and βn from equations (6.70) and (6.104)
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respectively, these conditions are given by

Jp

π
1

2k
p+1

2

(A1 + 1)
p+1

2 +
1

k
p+1

2

N−1∑

n=0

n∑

m=0

(−4)
m−n

2 (N − 1−m)! IN−1−n+p kN−1−m
(
n−m
2

)
!(N − 1− n)! (A1 + 1)

N−1−m−p

2

=
1

π
p+1

2

N∑

n=0

n∑

m=0

(−4)
m−n

2 (N −m)! IN−n+p lN−m
(
n−m
2

)
!(N − n)! (A2 − 1)

N−m−p

2

, (6.127)

− Jp

π
1

2k
p+1

2

(A1 − 1)
p+1

2 − 1

k
p+1

2

N−1∑

n=0

n∑

m=0

(−4)
m−n

2 (N − 1−m)! IN−1−n+p kN−1−m
(
n−m
2

)
!(N − 1− n)! (A1 − 1)

N−1−m−p

2

=
1

π
p+1

2

N∑

n=0

n∑

m=0

(−4)
m−n

2 (N −m)! IN−n+p lN−m
(
n−m
2

)
!(N − n)! (A2 + 1)

N−m−p

2

(6.128)

for p = 0, 1, . . . , N
2
, and N , n and m all even.

6.6.2 The case N = 2

With N = 2 we have five constants of integration that we are to determine: A1, A2,

k1, l0 and l2. To do this we must obtain five equations governing these coefficients.

The first equation is obtained by specifying Tpl =
1
2
at z = 0, hence by equation

(6.116) we have
l0

(A2 − 1)
1

2

− l2

2 (A2 − 1)
3

2

=
1

2
. (6.129)

Using equations (6.127) and (6.128) we are able to derive expressions for the zero-th

order and first order moments in the bottom boundary layer and the rising plume.

Matching these moments gives the following set of equations

(A1 + 1)
1

2 +
π

1

2k1

(A1 + 1)
1

2

= π
1

2k
1

2 l0, (6.130)

−(A1 − 1)
1

2 − π
1

2k1

(A1 − 1)
1

2

= π
1

2k
1

2 l0, (6.131)

(A1 + 1)

2
+ π

1

2k1 =
2l0k

π
(A2 − 1)

1

2 +
l2k

π(A2 − 1)
1

2

, (6.132)

−(A1 − 1)

2
− π

1

2k1 =
2l0k

π
(A2 + 1)

1

2 +
l2k

π(A2 + 1)
1

2

. (6.133)
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Once we have determined these five constants, we will possess two-term asymptotic

series for the temperature in the bottom boundary layer and rising plume. It is

possible to combine these equations, eliminating three of the variables, leaving two

equations for—arbitrarily—A1 and A2. These are given by

(A1 + 1)

2
−
(
A2

1 − 1
) 1

2 +
k

π
(A2 − 1) =

4k
1

2

π
3

2

(A2 − 1)
1

2

(
(A1 + 1)

1

2 − (A1 − 1)
1

2

)
,

(6.134)

−(A1 − 1)

2
+
(
A2

1 − 1
) 1

2 +
k

π

(A2 − 1)
3

2

(A2 + 1)
1

2

=
4k

1

2

π
3

2

A2

(A2 + 1)
1

2

(
(A1 + 1)

1

2 − (A1 − 1)
1

2

)
.

(6.135)

It is possible to combine these final two equations, giving an expression

for—arbitrarily—A1 in terms of A2

A1 =




32
(
A2 + (A2

2 − 1)
1

2

)
− kπ(A2 − 1)2

16
(
A2 + (A2

2 − 1)
1

2

)





1

2

, (6.136)

however we have been unsuccessful in using this to yield a usable equation to

determine A2; we must solve the system numerically. For the solution shown in

Figure 6.1 the wavenumber is given by k = 1. Solving the system in this case gives

the following values of the coefficients

{
A1 = 1.4133, A2 = 1.1546, k1 = −0.56342, l0 = 0.51376, l2 = 0.098059

}
.

(6.137)

The computed solution with these coefficient values can be seen in Figure ??.

6.7 Energy balances

6.7.1 Determining ωc asymptotically

In the asymptotic expansions for the temperature in the bottom boundary layer and

the rising plume, occurring within the scaled boundary layer coordinate, s, is the
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parameter ωc: the core value of the vorticity. In order to specify the temperature

solution fully, we must determine its value.

The momentum equation, written in terms of the vorticity and streamfunction is

given by
∂ψ

∂x

∂ω

∂z
− ∂ψ

∂z

∂ω

∂x
= −ǫPr∂T

∂x
+ ǫ2Pr∇2ω. (6.138)

It is possible to estimate the core vorticity asymptotically by considering the global

energy balance. We multiply the above equation by ψ and integrate over the whole

domain

∫ 1

0

∫ π
k

0

(
∂ψ

∂x

∂ω

∂z
− ∂ψ

∂z

∂ω

∂x

)
ψdxdz =

∫ 1

0

∫ π
k

0

(
−ǫPr∂T

∂x
+ ǫ2Pr∇2ω

)
ψdxdz.

(6.139)

Considering the left hand side of the above equation, we integrate the terms by

parts, the first with respect to z and the second with respect to x, giving

∫ 1

0

∫ π
k

0

∂ψ

∂x

∂ω

∂z
ψdxdz =

∫ π
k

0

{[
∂ψ

∂x
ψω

]1

0

−
∫ 1

0

(
∂ψ

∂x

∂ψ

∂z
+

∂2ψ

∂x∂z
ψ

)
ωdz

}
dx

∫ 1

0

∫ π
k

0

∂ψ

∂z

∂ω

∂x
ψdxdz =

∫ 1

0

{[
∂ψ

∂z
ψω

]π
k

0

−
∫ π

k

0

(
∂ψ

∂x

∂ψ

∂z
+

∂2ψ

∂x∂z
ψ

)
ωdx

}
dz.

(6.140)

The boundary terms vanish due to the boundary conditions at the cell edge and the

remaining terms cancel if we rearrange the order of integration in one of the terms,

hence, after rearranging, we have

∫ 1

0

∫ π
k

0

∂T

∂x
ψdxdz = ǫ

∫ 1

0

∫ π
k

0

ψ∇2ωdxdz. (6.141)

On the right hand side we integrate the terms by parts; the x derivative with respect

to x and the z derivative with respect to z, giving

∫ 1

0

∫ π
k

0

ψ∇2ωdxdz =

∫ 1

0

{[
ψ
∂ω

∂x

]π
k

0

−
∫ π

k

0

∂ψ

∂x

∂ω

∂x
dx

}
dz (6.142)

+

∫ π
k

0

{[
ψ
∂ω

∂z

]1

0

−
∫ 1

0

∂ψ

∂z

∂ω

∂z
dz

}
dx. (6.143)
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Once again the boundary terms vanish due to the boundary conditions and we are

left with

∫ 1

0

∫ π
k

0

ψ∇2ωdxdz = −
∫ 1

0

∫ π
k

0

∂ψ

∂x

∂ω

∂x
dxdz −

∫ π
k

0

∫ 1

0

∂ψ

∂z

∂ω

∂z
dzdx. (6.144)

Integrating by parts again, the first term with respect to x and the second term

with respect to z yields

∫ 1

0

∫ π
k

0

ψ∇2ωdxdz = −
∫ 1

0

{[
∂ψ

∂x
ω

]π
k

0

−
∫ π

k

0

∂2ψ

∂x2
ωdx

}
dz (6.145)

−
∫ π

k

0

{[
∂ψ

∂z
ω

]1

0

−
∫ 1

0

∂2ψ

∂z2
ωdz

}
dx. (6.146)

Once again the boundary terms vanish due to the boundary conditions. Reversing

the order of integration in one term and combining the integrals gives

∫ 1

0

∫ π
k

0

ψ∇2ωdxdz =−
∫ 1

0

∫ π
k

0

−
{
∂2ψ

∂x2
+
∂2ψ

∂z2

}
ωdxdz (6.147)

=−
∫ 1

0

∫ π
k

0

ω2dxdz. (6.148)

Hence we have

−
∫ 1

0

∫ π
k

0

∂T

∂x
ψdxdz = ǫ

∫ 1

0

∫ π
k

0

ω2dxdz. (6.149)

The left hand side expresses the rate at which buoyancy torque does work on the

cellular flow in a steady state and it is balanced, on the right hand side, by the

rate at which kinetic energy is dissipated by viscous forces, that is, the enstrophy.

The leading order contribution to the enstrophy comes from the vortex core, where

we have ω ∼ ωc. The leading order contribution to the energy production on the

left hand side occurs within the vertical plume. This is because gradients in x are

largest within this region. Hence we have

−2ǫ

∫ 1

0

∫ ∞

0

∂Tpl
∂xpl

ψpl dxpldz ∼
πǫ

k
ω2
c . (6.150)

We shall re-write this equation in terms of the plume coordinate s = xplg
− 1

2

pl . In the

rising plume we have ψ = λsg
1

2

pl sin πz and Tpl is given by equation (6.107), hence
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we have

−2ǫ

∫ 1

0

∫ ∞

0

∂Tpl
∂xpl

ψpldxpldz =− 2ǫ

∫ 1

0

∫ ∞

0

λsg
1

2

pl sin πz

(
−2l0s

(A2 − cosπz)
1

2

+
3l2s

(A2 − cosπz)
3

2

− 2l2s
3

(A2 − cosπz)
3

2

)
e−s

2

dsdz.

(6.151)

The first and second terms are proportional to I2 and the third term is proportional

to I4. The values of I2 and I4 are given by equation (B.11) in Appendix B, as π
1
2

4

and 3π
1
2

8
respectively, hence the second and third terms cancel, leaving

−2ǫ

∫ 1

0

∫ ∞

0

∂Tpl
∂xpl

ψpldxpldz = 2ǫ

∫ 1

0

λg
1

2

pl sin πz

(
π

1

2 l0

2 (A2 − cosπz)
1

2

)
dz. (6.152)

With gpl given by equation (6.95) this gives

−2ǫ

∫ 1

0

∫ ∞

0

∂Tpl
∂xpl

ψpldxpldz = 2ǫλ
1

2 l0. (6.153)

Recall that λ was a coefficient that we put in our definition of the tangential velocity

components and the corresponding streamfunction. Using the expression for λ given

by equation (6.45), equations (6.150) and (6.153) give

ωc ∼
(
16l20k

π3
tanh

k

2

) 1

3

. (6.154)

Note that this relation is independent of ǫ—as it should be—since we have been

working with a rescaled set of equations. With the Rayleigh number specified,

the only free parameter we have is the wavenumber k, hence it is natural that ωc

in equation (6.154) is a function of k. For direct comparison with our numerical

results in Chapter 5, we must multiply equation (6.154) by a factor of ǫ−2, or,

Ra
2

3 . In Figure 6.3 we have plotted the asymptotically computed values of ωc versus

the corresponding values from our steady state, nonlinear numerical simulations at

Pr = 1, for all the Rayleigh numbers we studied. As can be seen, the agreement is

excellent.

With ωc now given by equation (6.154), we are able to work out a precise expression

167



Chapter 6. Asymptotic theory

Ra

101

102

102

103

103

104

104

105

105 106 107 108

ωc

Figure 6.3: Core vorticity versus Rayleigh number comparison. The red circles are

taken from steady state numerical simulations at Pr = 1 and the blue circles are

taken from the asymptotic theory.

for λ, originally given by equation (6.45), as

λ =
4ωc
πk

tanh
k

2
∼
(
1024l20
π6k2

tanh4 k

2

) 1

3

. (6.155)

It is this expression that we use in the solutions for Tbl and Tpl given by equations

(6.73) and (6.107) respectively.

6.7.2 Nusselt number

The expression for the Nusselt number that we derived in Chapter 5 is given by

equation (5.11)

Nu =
k

π

∫ π
k

0

− ∂T

∂z

∣∣∣∣
z=0

dx. (6.156)

Since the above expression evaluates the temperature derivative on the bottom

boundary, we use our expression for the temperature in the bottom boundary layer,
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given by equation (6.73). Hence we have

Nu = −k
π

∫ π
k

0

(
1

π
1

2

+
k1

(A1 + cos kx)
1

2

)
g
− 1

2

bl dx. (6.157)

Using the expression for gbl from equation (6.61) we have

Nu =
k

3

2λ
1

2

2π

∫ π
k

0

(
sin kx

π
1

2 (A1 + cos kx)
1

2

− k1 sin kx

(A1 + cos kx)
3

2

)
dx. (6.158)

Finally, evaluating this integral gives

Nu =−k
1

2λ
1

2

π

[
(A1 + cos kx)

1

2

π
1

2

+
k1

(A1 + cos kx)
1

2

]π
k

0

, (6.159)

=
k

1

2λ
1

2

π

(
(A1 + 1)

1

2 − (A1 − 1)
1

2

π
1

2

+ k1
(A1 − 1)

1

2 − (A1 + 1)
1

2

(A1 − 1)
1

2 (A1 + 1)
1

2

)
. (6.160)

Using the expression for λ given by equation (6.155) we have

Nu ∼
(
1024l20k

π12
tanh4 k

2

) 1

6

(
(A1 + 1)

1

2 − (A1 − 1)
1

2

π
1

2

+k1
(A1 − 1)

1

2 − (A1 + 1)
1

2

(A1 − 1)
1

2 (A1 + 1)
1

2

)
. (6.161)

Note that like ωc, this relation is also independent of ǫ, since we rescaled the original

equations. We stated that the asymptotic theory was valid providing Nu ∼ Ra
1

3 , in

accordance with the ‘classical’ scaling law that we presented in Chapter 5. For direct

comparison with our numerical results in Chapter 5, we must multiply equation

(6.161) by a factor of ǫ−1, or, Ra
1

3 . In Figure 6.4 we have plotted the asymptotically

computed values of Nu versus the corresponding values from our steady state,

nonlinear numerical simulations at Pr = 1, for all the Rayleigh numbers we studied.

As can be seen, the agreement is excellent, with the asymptotic prediction capturing

the different scaling branches corresponding to different wavenumber patterns.
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Figure 6.4: Nusselt number versus Rayleigh number comparison. The red circles

are taken from steady state numerical simulations at Pr = 1 and the blue circles

are taken from the asymptotic theory.

6.8 Solutions

It remains to plot the solutions for the temperature in the bottom boundary layer

and the rising plume, as given by equations (6.73) and (6.107) respectively. This is

done in Figure 6.5 and should be compared with the corresponding plots in Figure

6.1. It can be seen that both the asymptotic bottom boundary layer and rising

plume temperature solutions agree qualitatively with the numerically computed

temperature in both of those regions. Further to this, in Figure 6.6, we have plotted

the vertical profile of the temperature, from both the numerical simulations and the

asymptotic theory. The asymptotic expansion adequately captures the overshoot as

we transition from the bottom boundary layer into the core of the convection cell.

It is to be noted that these solutions took a matter of seconds to compute, whereas

solving the fully nonlinear equations took several hours.
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Figure 6.5: Contour plots of (a) the total boundary layer temperature and (b)

the total plume temperature, computed using the asymptotic theory, for Ta = 0,

Pr = 1, R = 10000.
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Figure 6.6: Vertical profile at x = π
2
of the total boundary layer temperature; the

blue line is taken from the asymptotic theory and the red line is taken from the

numerical simulations, for Ta = 0, Pr = 1, R = 10000.
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6.9 Summary

In this chapter we presented an asymptotic theory capable of describing the steady

state solutions of Chapter 5, for non-rotating convection. The foundations of this

theory were built upon the work of Jimenez & Zufiria (1987) and Chini & Cox

(2009), however our technique relies less on complex numerical procedures. The

novelty of this asymptotic theory is in its relative simplicity over its predecessors.

Furthermore, it is hoped that it can provide a natural starting point for addressing

the time-dependent behaviour exhibited in Chapter 5, with a view to describing this

mathematically.

First, we rescaled the system of equations in terms of the small parameter ǫ, related

to the Rayleigh number via ǫ = Ra−
1

3 . We used ǫ as the basis for our asymptotic

theory, equating terms at the same order. We performed asymptotic expansions

of the governing hydrodynamical variables in both the bottom boundary layer

and the rising plume. With only two terms in these expansions we were able to

accurately predict the value of the core vorticity, ωc, and Nusselt number, Nu,

finding excellent agreement with the numerical results of Chapter 5. Furthermore,

the vertical temperature profile predicted by our asymptotic theory was in excellent

quantitative agreement with that of the numerical simulations.

Building on this, we attempted to perform the same analysis but with three terms in

our expansions. In principle, this is possible, although we encountered some issues

in solving the required set of seven simultaneous equations.
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Conclusions

7.1 Discussion

In this thesis we have studied nonlinear Rayleigh-Bénard convection, in two

dimensional geometry, with and without rotation about the vertical axis, subject

to stress free boundary conditions.

We began by presenting the equations governing the dynamics of the system and

posing them in a dimensionless form. This furnished us with three dimensionless

parameters: the Rayleigh number, Ra, the Prandtl number, Pr, and the Taylor

number, Ta. Before studying the nonlinear equations in full, we first looked

at their linear counterparts. Using normal mode analysis we were able to solve

the equations analytically, in a plane layer of unbounded horizontal extent. The

resulting linear theory allowed us to work out the critical Rayleigh number at which

the onset of convection would take place, for a given horizontal wavenumber and

Taylor number. The effect of rotation was to increase this critical Rayleigh number,

therefore delaying the onset of convection. The distinguishing flow feature of rotating

convection, that linear theory told us, was the preference for tall thin columns, with

the horizontal length scale decreasing with increasing Taylor number. For rotating

convection only, the stability of the system could change via a direct bifurcation
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or a Hopf bifurcation. We analysed both cases and, furthermore, derived stability

boundaries in (Ta, Pr) space outlining when convection will onset at either type of

bifurcation. This is all work that has been previously undertaken by Chandrasekhar

(1961).

Subsequent investigation was devoted to changing the values of the dimensionless

parameters and seeing how this shaped the nonlinear evolution of the system. It was

necessary to solve the governing equations numerically, so a suitable algorithm was

devised in order to do this. We made the assumption of periodicity in the horizontal

direction, allowing us to express the hydrodynamic variables in terms of Fourier

series. We coupled this with a Chebyshev expansion in the vertical coordinate,

giving a spectral representation of the variables (see Peyret (2002)). Sampling the

equations on a discrete grid and calculating nonlinear terms in a pseudospectral

manner allowed us to pose the solution to the system in terms of a set of matrix-

vector problems. The numerical algorithm was devised so as to take particular

advantage of the structure of these matrices, allowing them to be solved in an

efficient manner. We made use of the FFTW (see Frigo & Johnson (2012)) and

MKL (see IntelR© (2012)) software libraries in order compute spectral transforms

and matrix inversions respectively.

The nonlinear algorithm that was developed allowed us to conduct a comprehensive

survey of the {Ra, Pr, Ta} parameter space. Our interest was focused on what

the effects were on the resultant nonlinear flows, in particular their form and

structure, how these were affected by the temporal stability of the system and

what implications these held for global properties of the system such as the Nusselt

number and Reynolds number scaling. It was found that for the non-rotating

system, for Pr = 1, the system was steady for all values of the Rayleigh number

considered: here Ra ≤ 108. This was consistent with the observations of DeLuca

et al. (1990) and Vincent & Yuen (1999). Furthermore, as the Rayleigh number was

increased, the horizontal length scale that dominated was the largest allowable in

the computational box. These solutions were characterised by their robust cellular
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structure and strikingly thin thermal boundary layers and plumes.

For Pr = 10 the system became time-dependent—specifically periodic in time—due

to an instability whose origins were thermal. We addressed the nature of this

instability from the point of view of nonlinear dynamical systems theory. We charted

the phase space evolution of the system, finding subsequent bifurcations at similar

parameter values to Curry (1978). After an initial Hopf bifurcation, there was a

period doubling bifurcation, followed by a transition to motion on a two-torus in

phase space. The breakdown of this torus led to quasi-periodicity and eventually

chaos. Whilst we noted that, like Curry (1978), this behaviour was symptomatic

of a Ruelle-Takens-Newhouse route to chaos (Newhouse et al. (1978)), we observed

intermittent windows of steady behaviour. This led to the belief that route to chaos

was more in line with the theory of Pomeau & Manneville (1980). Indeed, concluding

the precise manner in which a nonlinear system evolves to chaos is particularly

difficult, as noted by Glendinning (2005). This is especially so when numerically

solving a system of PDEs rather than ODEs. The actual physical effect of the

instability, on the solutions of the system, was to cause lateral motion of the upward

and downward welling plumes. This was also noticed by Moore & Weiss (1973)

in their numerical simulations and Krishnamurti (1970a)/Krishnamurti (1970b) in

physical experiments. The basic dynamics of the instability can be explained by a

much simpler model of convection within a closed loop, due to Welander (1967).

It was found that the Nusselt number scaled with the Rayleigh number with

an exponent of 1
3
, independent of the value of Pr. This is consistent with the

numerical simulations of Moore & Weiss (1973) and the classical theory summarised

by Kraichnan (1962). Whilst we did not witness a scaling with an exponent of 2
7
,

this is due to the fact that the Rayleigh number was consistently below the required

value in the hard turbulence regime (see DeLuca et al. (1990)), where the 2
7
scaling

is conjectured to appear.

For the rotating system it was found that, after the initial convective instability

predicted by linear theory, increasing the rotation rate had a destabilising effect on
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the system. We charted the parameter space dynamics by considering the value of

the convective Rossby number, Ro∗. Some steady solutions were found for lower

rotation rates, with Ro∗ > 1, though generally instability prevailed. As predicted

by linear theory, for large values of Ta, at the onset of convection, the horizontal

length scale was very short. As the Rayleigh number, and hence the convective

Rossby number was increased, we noticed that the preference was for the length

scale to increase. Furthermore, the form of the solutions for large Rayleigh number

was consistent with the hard turbulence solutions of Vincent & Yuen (2000). Due

to the number of simulations performed, to facilitate comparison of all runs, we

concentrated on the global properties of the system. For simulations at lower

rotation rates, where we found steady solutions, the Nusselt number scaled with

the Rayleigh number with an exponent of 1
3
, as in the non-rotating case. All

other—unsteady—solutions were found to scale with the Rayleigh number with

an exponent of 2
7
, as noted by Julien et al. (1996b). This transition in scaling

is undoubtedly due to the transition from the soft to hard turbulent regime, with

the rotation acting as a catalyst for physical instability in two dimensions. For both

the rotating and non-rotating systems, the Reynolds number was found to scale

with flux Rayleigh number and the Prandtl number, in a like manner to that put

forward by King et al. (2013). The length scale differed between the two cases, with

non-rotating convection evolving on the scale of the box, and the length scale of

rotating convection being governed by the value of the Taylor number.

Motivated by the remarkably steady nature of the nonlinear solutions found, even for

large values of the Rayleigh number, at Pr = 1, we sought to develop an asymptotic

theory capable of reproducing such solutions. Furthermore, it was hoped that this

would offer a natural extension in order to explain the instability mechanism at

Pr = 10. We were motivated by similar work on the structure of cellular convection

by Roberts (1979), Jimenez & Zufiria (1987) and Chini & Cox (2009) but wanted

to rely less on complicated numerical techniques, instead hoping for an analytical,

asymptotic expansion.
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We treated the temperature and vorticity as constant in the core of the convection

cell, allowing us to solve for the core streamfunction analytically. By symmetry, and

due to the boundary conditions, the core value of the temperature was discernible,

taking the value 1
2
. The core value of the vorticity, however, was a priori unknown

and played a role in all subsequent asymptotic solutions. From the analytically

known core streamfunction we were able to derive expressions for the velocities in the

bottom boundary layer and rising plume. This allowed us to solve the steady state

temperature equation in these dynamically important regions, yielding a solution

valid in the asymptotic limit of large Rayleigh number. We studied the behaviour

of the system in the corner region, justifying that the role of the corner, to leading

order, was passive. Both Jimenez & Zufiria (1987) and Chini (2008) came to the

same conclusion about the corner region in similar studies. This had the implication

that solutions should match as we transition from the bottom boundary layer to the

rising plume, through the corner region, and likewise from the rising plume to the

upper boundary layer. Moreover, this analysis furnished us with a natural set of

constraints to place upon our solutions, demanding that moments of the temperature

were continuous as we transition through the corner region. With this closure in

place we were able to determine the various constants of integration that had arisen

through solution to the governing equations.

The agreement between our asymptotic expansions with only two terms, and our

fully nonlinear solutions from numerical simulations was excellent. Even with the

inclusion of more terms in the asymptotic expansions, we showed that the system is

always closed, and consistent, for any finite truncation value. The inclusion of more

terms does not make the problem conceptually harder, it just requires the matching

of higher order moments in the corner region, leading to more equations for more

constants of integration. Solving these algebraic equations will always be faster than

performing nonlinear numerical simulations, by many orders of magnitude. The

required inputs of the asymptotic theory are the Rayleigh number, and a particular

wavenumber governing the horizontal wavelength of the desired solution.
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Using our asymptotic expansion for the temperature allowed us to calculate the

value of the core vorticity by considering the global energy balance in the momentum

equation: the production of vorticity due to buoyancy in the plumes, in equilibrium

with the dissipation of vorticity, or enstrophy. This was shown to scale with the

Rayleigh number with an exponent of 2
3
, and we were also able to determine the

scaling pre-factor. This relation was shown to be in excellent agreement with the

values coming from numerical simulations. Furthermore, the asymptotic theory gave

rise to the Nusselt number scaling with the Rayleigh number with an exponent of

1
3
, and once more we were able to determine the scaling pre-factor; again this was

shown to be in excellent agreement with the numerical simulations.

Two-dimensional Rayleigh-Bénard convection is limited in the sense that in

a geophysical or astrophysical setting, there are three spatial dimensions.

Nevertheless, the work presented here can still provide an insight into processes

occurring in the natural world. In particular, the asymptotic theory of Chapter 6

is applicable to coherent structures found in convecting bodies such as the Earth

and Sun, as well as those found in physical convection experiments—plumes are

ubiquitous in such systems. In understanding the coupling between the boundary

layers, plumes and the core of a convection cell, predictions can be made about

thermal properties such as the Nusselt number. Within the context of the Earth,

for example, it is believed that convection is responsible for transporting a significant

proportion of heat from the ICB to the CMB (see Jones (2007)). Understanding

this process is key to explaining the persistence of the Earth’s magnetic field.

7.2 Development and further work

As with any body of work, it is natural to elucidate the extensions that could improve

and advance the ideas put forward.

The {Ra, Pr, Ta} parameter regime studied here was limited by the achievable
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resolution of the numerical algorithm presented in Chapter 4. By achievable, we

mean the highest resolution possible that allowed a typical well-resolved numerical

simulation to be executed in a realistic amount of time. For non-rotating convection

at Pr = 1, even our highest Rayleigh number simulation did not exhibit time

dependent behaviour. In order to reach higher Rayleigh numbers, and witness the

breakdown of cellular convection, we would need to increase the numerical resolution.

Furthermore, for our rotating convection studies, the highest Taylor number that we

reached was modest in terms of what is currently achievable in numerical simulations

and physical experiments (see King et al. (2013)). Again, this would require an

increased resolution in order to reach higher Taylor numbers. Thus to open up more

extreme parameter regimes, some modifications to the numerical algorithm would

have to be implemented.

Most importantly, by parallelising the numerical algorithm, we would be able to

take advantage of computer architectures with a large number of cores. Within

the framework of the numerical algorithm presented here, this would be easily

accomplished. Since we expanded the horizontal dependence in terms of Fourier

series, we were required to repeat the same actions for every wavenumber in our

expansion, at every timestep. This provides a natural partition, whereby if we were

to modify the algorithm, we would perform these actions simultaneously, clustering

a set of wavenumbers on each core available. The only inter-dependence of these

wavenumbers arises when computing nonlinear terms, pseudospectrally, in physical

space. Here we would still have to utilise only one core. Nonetheless, the partitioning

mentioned would speed the code up, proportional to the number of cores used.

Another natural extension would be to study the same system but in three space

dimensions. This would be more realistic, and facilitate not only comparison with

other three-dimensional numerical studies, but physical experiments. The robust

nature of the steady, cellular solutions found in non-rotating convection at Pr =

1 is an inherent two-dimensional effect. In three dimensions a transition to an

unsteady flow pattern would take place at a much lower value of Ra (see Kerr
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(1996)). Furthermore, investigations into the dependence of the Nusselt number on

the Rayleigh number could be more transparently compared with the existing theory

of Grossman & Lohse (2000). In order to do this, the numerical algorithm would

have to be modified to account for a third spatial dimension. The easiest way to

implement this would be to assume periodicity in the third—horizontal—direction;

applying a Fourier expansion in that variable. This would furnish us with another

set of wavenumbers, requiring the solution of a matrix-vector problem for each, at

each timestep. Furthermore, this could also be combined with the parallelisation

procedure described above, in order to accelerate the algorithm when implemented

on multi-core computer architectures.

The asymptotic theory that we have presented has only been used to describe the

steady state solutions at Pr = 1. Due to time constraints we were not able to pursue

other avenues of study, using this theory as a platform. It is hoped, however, that

without much conceptual change, the theory could easily be extended to facilitate

the study of further interesting problems. We would like to try and describe,

mathematically, the time-dependent solutions that we witnessed for non-rotating

convection at Pr = 10. However these solutions occurred for R = 50, which is not

particularly high, meaning that the validity of our asymptotic theory is limited. For

example, the boundary layer structure was not strikingly narrow, and the solution

was not dominated by its core contribution. A more relevant study would be to find

an example of the same time-dependent behaviour, but at a lower Prandtl number.

The hope is that this would require a higher Rayleigh number before the presence of

instability, meaning that solutions would be in the asymptotic regime. For example,

having modified the numerical algorithm in the manner described above, this could

be achieved for Pr = 1. It is expected that the physical instability mechanism that

we presented in Chapter 4 would remain the same. Armed with this understanding

of the instability would allow us to equilibrate the correct terms within the governing

equations. Although the instability is thermal in origin, it induces a vorticity

anomaly in the rising plume that needs to be addressed mathematically. This
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requires extending the theory to incorporate kinematic effects coming from the

momentum equation. We believe that the vorticity can be expanded in a like manner

to the temperature, and the momentum equation can be addressed similarly.

What is clear is that there is still much work to be done in order to fully

understand the dynamics of two-dimensional Rayleigh-Bénard convection. As with

any investigative study, answering one question leads to the posing of another—if

not more.
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A Vector identities

For any vector fields a and b, and any scalar functions f and g, we have the following

1

2
∇ (a · a) ≡ ∇

(
1

2
|a|2
)

= a× (∇× a) + (a · ∇)a, (A.1)

∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b, (A.2)

∇× (∇× a) = ∇ (∇ · a)−∇2a, (A.3)

∇ · (af) = f (∇ · a) + (a · ∇) f, (A.4)

∇2f = ∇ · (∇f) , (A.5)

∇ · (a× b) = b · (∇× a)− a · (∇× b) . (A.6)
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B Integral relations

A frequently occurring integral in Chapter 6 is given by

In =

∫ ∞

0

sne−s
2

ds. (B.7)

Using integration by parts we have

In =

[
−1

2
sn−1e−s

2

]∞

0

+
n− 1

2

∫ ∞

0

sn−2e−s
2

ds, (B.8)

where the boundary term is zero, hence

In =
n− 1

2
In−2, for n ≥ 2. (B.9)

It is possible to use this recursion relation to calculate the value for any n. Hence

we have

In =






2−(
n+2

2 )(n− 1)!! π
1

2 for n even,

2−(
n+1

2 )(n− 1)!! for n odd.

(B.10)

This is also given by Abramowitz & Stegun (1965) in §7.4.4 and §7.5.5. Some values

that we will require are given by

I0 =
π

1

2

2
, I1 =

1

2
, I2 =

π
1

2

4
, I3 =

1

2
, I4 =

3π
1

2

8
. (B.11)

A second integral that we are required to evaluate is given by

Jn =
π

1

2

2

∫ ∞

0

snerfc (s)ds =

∫ ∞

0

sn
(∫ ∞

s

e−ŝ
2

dŝ

)
ds. (B.12)

Using integration by parts we have

Jn =

[
sn+1

n+ 1

∫ ∞

s

e−ŝ
2

dŝ

]∞

0

+
1

n+ 1

∫ ∞

0

sn+1e−s
2

ds (B.13)

where the boundary terms is zero and by comparison with equation (B.9) we note

that the remaining term is equivalent to In+1, hence we have

Jn =
1

n + 1
In+1 for n ≥ 0. (B.14)
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Using equation (B.10) we are able to write this as

Jn =





2−(
n+2

2 )(n− 1)−1 n!! for n even,

2−(
n+1

2 )(n− 1)−1 n!! π
1

2 for n odd.

(B.15)

Some values that we will require are given by

J0 =
1

2
, J1 =

π
1

2

8
. (B.16)
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