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Abstract 

Non-coding RNAs (ncRNAs) are nucleic acids that do not code for protein. Rather, they 

have evolved highly specialised secondary structures and catalytic mechanisms that 

place them at the heart of regulating gene expression. The function of ncRNAs is often 

mediated or dependent on their interactions with RNA binding proteins. The study of 

both the structure and function of these proteins is crucial for understanding the 

biological role of the protein-RNA complexes. 

In this thesis, the structure and function of two RNA binding proteins: Lin28 and 

dihydrouridine synthase C (DusC) were investigated using X-ray crystallography and 

biophysical techniques. In both systems, the specific recognition of target molecules is 

important for function. The aim of the study was therefore to use structural and 

functional data to elucidate the molecular basis of these protein-RNA interactions. There 

are three main findings: (1) specific recognition of microRNAs by Lin28 is dependent 

on the interaction of the Zinc Knuckle domain of the protein with a 3’ GGAG motif; (2) 

non-specific, electrostatic interactions between the cold-shock domain of Lin28 and 

RNA suggest a transcriptome scanning mechanism for recognising Lin28 targets; and 

(3) modification of specific nucleotide positions within tRNA by DusC is dependent on 

the orientation in which the tRNA is bound, which is determined by minor changes in 

the protein structure.  

These findings have helped to elucidate the mechanisms, and hence biological functions, 

of these RNA binding proteins. Both proteins have been previously associated with 

cancer. Through greater understanding of the molecular basis of these protein-RNA 

interactions, the production of novel therapeutic agents can be informed, which can help 

to combat disease. This data will therefore aid future efforts to treat and prevent the 

cancers caused by the aberrant actions of these RNA binding proteins.  
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Chapter 1  : Introduction 

RNA is a highly versatile biomolecule, well adapted for its roles in the cell. It is 

composed of a sequence of nucleotides, each formed from a nucleobase (canonically A, 

U, C or G), a ribose sugar and a phosphate. Whilst chemically simplistic compared to 

the diversity of the 20 standard amino acid side-chains, these components allow RNA to 

fulfil several biological roles more efficiently than their protein counterparts. 

The presence of bases that can form complementary hydrogen bonds to the bases of both 

RNA and DNA molecules means that RNA can easily recognise particular sequences in 

a specific manner.  What sets RNA apart from DNA, however, is the 2' OH group of the 

ribose sugar, which is absent in deoxyribose. Whilst this group makes RNA less stable 

than DNA, it greatly expands its catalytic repertoire. In addition, in contrast to DNA, 

which forms the stable double helix structure, RNA is often single stranded, and folds 

into complex tertiary structures. These structures can influence the catalytic properties 

of an RNA molecule and enable it to fulfil a variety of roles in the cell. 

Messenger RNA, or mRNA, is one form of RNA. mRNA is transcribed from DNA and 

its sequence of bases encodes a polypeptide chain. This is known as coding RNA, and 

contrasts from non-coding RNA (ncRNA) that is transcribed, but not translated into a 

polypeptide. The ability of ncRNAs to recognise specific mRNA and DNA molecules, 

combined with their diverse range of structures and the ability to perform catalytic 

functions, means they are ideal for both regulating and effecting the processes of 

transcription and translation in the cell.  

1.1.1 ncRNAs as regulators: miRNAs 

Discovered in 1993 in C. elegans,[1] microRNAs (miRNAs) are perhaps the best known 

of all the non-coding RNAs. They are short ~22nt segments of RNA that post-

transcriptionally repress the expression of their target genes. The genomic origins of 

miRNA are diverse, with some being found at distinct genomic loci, some present in 

clusters and others found in the introns of mRNA transcripts [2]. 
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1.1.1.1 miRNA biogenesis 

The biogenesis of miRNAs is a multi-step process (Fig. 1.1). In the first step, primary 

miRNAs (pri-miRNAs) are produced. Pri-miRNAs are long transcripts containing one 

or multiple miRNA sequences and are transcribed by RNA polymerase II [3], but can 

also refer to the mRNA transcripts in the case where the miRNA sequence is located 

within an intron [4, 5].  dsRNA hairpin segments within the pri-miRNA are then 

recognized by the DGCR8 component of the microprocessor complex, [5, 6] and are 

released from the pri-miRNA following cleavage by the Drosha RNaseIII enzyme, 

which constitutes the second part of the microprocessor [2, 5]. These ~60-70nt hairpins 

are called precursor, or pre-miRNAs and are exported from the nucleus to the cytoplasm 

via the Exportin5 transport receptor protein [2, 5].  

Once in the cytoplasm, the pre-miRNAs are recognized by the Dicer complex. In 

mammals, this consists of the Dicer RNaseIII type enzyme, in complex with two other 

proteins: PACT and TRBP, which are important in generating Dicer specificity [5]. The 

Dicer enzyme recognizes the double stranded region of the pre-miRNA and cleaves it, 

removing a region known as the terminal loop, and resulting in an RNA duplex ~22nt in 

length, with the 5’phosphate and ~2nt 3’ overhang that is the signature of the RNaseIII 

type enzymes [2, 5, 7]. This duplex consists of the mature miRNA in complex with its 

antisense strand, which is called the miRNA* [2, 5].  

The miRNA* seems to be peeled away from the miRNA and degraded, and so the 

current model of miRNA silencing involves the separation of this duplex, where the 

miRNA is loaded into the RNA Induced Silencing Complex, or RISC (although in some 

cases the miRNA* might also be functional) [2, 8].  The RISC contains several proteins 

with the key effector being a member of the Argonaute family of proteins. The function 

of the miRNA in the RISC then is to act as a target specifier – directing the RISC 

towards the mRNAs which are to have their expression repressed [2].  
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Figure 1.1: The biogenesis of mammalian miRNAs.  

Pri-miRNAs are transcribed from DNA by PolII and cleaved by the drosha component of the microprocessor 

to produce pre-miRNAs. The pre-miRNA is then exported to the cytoplasm from the nucelous to be cleaved by 

Dicer. The strands of the mature miRNA duplex are separated by a helicase and one of the strands loaded into 

the RISC. This targets the RISC to various mRNAs which prevents their translation. miRNA is coloured in 

red, miRNA* is coloured in blue, and the terminal loop region is coloured in black.  Adapted from Bartel 

(2004). 
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1.1.1.2 The effect of miRNAs on gene expression 

The prevention of translation by the RISC can take three forms: direct cleavage of 

mRNA, inhibition of translation by the ribosome, or mRNA destabilization and 

degradation [2, 9, 10]. It is thought that the method of post-transcriptional repression 

chosen by the cell is dependent on the degree of complementarity between the miRNA 

and target mRNA sequence [2]. Plant miRNAs often have perfect complementarity 

between their miRNAs and target mRNA sequences and mRNA cleavage is mediated by 

an Argonaute protein [11]. In animals, however, the degree of complementarity is low, 

and usually confined to a 7-8nt region of the miRNA called the seed region [5, 10], 

which defines both the targets and family of the miRNA [12]. For animals, the most 

common methods adopted are translational repression and mRNA destabilization [12].  

In the translational repression method, the prevailing model is that once a miRNA 

loaded RISC (miRISC) is bound to the 3’untranslated region (UTR) of the target 

mRNA, it is then able to also bind the 5’ 7-methylguanosine cap. This occurs through its 

AGO2 Argonaute protein, which displays some similarity with the eIF4E eukaryotic 

translation initiation factor. In such a system, the miRISC would therefore prevent the 

translation initiation complex from forming, and hence prevent the translation of the 

RNA. Although this model is appealing, it is possible that the miRISC could also 

interfere at other stages of translation, either instead of, or in tandem with, this process 

[10].   

In contrast, the exact mechanism used by the miRISC to destabilize and degrade mRNA 

is not known. Binding of the miRISC leads to deadenylation of the mRNAs, which 

allows them to be degraded by the exosome, but how the miRISC causes this is not 

clear. It is possible that binding of the miRISC to the 5’ cap could disrupt the normally 

circular structure of the mRNA, which would make the 3’ poly(A) tail more likely to 

degrade, but the order in which the different mechanisms of miRISC based repression 

occur has not been elucidated [10]. 
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1.1.1.3 Biological consequences 

The advantage to the cell of the miRNA system of gene expression control is in its 

versatility. As mentioned above, only the 7-8nt seed sequence is important in defining 

the target of a miRNA, and so each miRNA has a vast number of potential targets [12, 

13]. In addition, the effect of a miRNA on its targets is modest [14], and to ensure 

effective repression, multiple miRNA target sites are needed per mRNA [10, 12]. The 

result of this is that miRNAs can be used to fulfill multiple regulatory functions in the 

cell. One such function is that of a switch, where a miRNA has a strong effect on the 

target mRNA. Here, the production of the miRNA can be used to “turn off” the 

expression of a gene. This is the classical view of miRNA function, but if the miRNA is 

already present, such thinking can lead to an alternate view, whereby a miRNA could 

act as a “failsafe”, providing a redundant level of protection against the expression of a 

particular gene, which is not meant to be expressed at a given time. miRNAs can also 

act as a “tuning” system. By only reducing the expression levels of protein from a 

particular gene by a small amount, a miRNA can help to optimize the quantities of 

protein in a cell to ensure maximum efficiency [12]. miRNAs are therefore powerful 

regulators of gene expression, and their ability to target multiple mRNAs can place them 

at the centre of complex regulatory networks, resulting in numerous important biological 

outcomes. This function is due to the properties of RNA; the ability of a miRNA to 

“read” the sequences of multiple mRNAs allows it to help decode the transcriptome for 

the RISC proteins, and thus control gene expression at a post-transcriptional level.  

1.1.2 ncRNAs as regulator: long ncRNAs 

There are currently two classes of ncRNA that are known to influence gene expression 

at the transcriptional level: lncRNAs and piRNA [15]. Long non-coding RNAs 

(lncRNAs) are defined as transcripts above 200 nucleotides in length that do not encode 

a functional protein and are known to control gene expression levels through a variety of 

different mechanisms [16, 17].  
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Perhaps the best-known lncRNA is the Xist RNA, which has been well studied due to its 

role in X chromosome inactivation (Fig. 1.2) [17-20]. Female mammals possess two X 

chromosomes, one maternal and one paternal, and, in order to control the levels of gene 

dosage, one of these two chromosomes is randomly inactivated [21, 22]. Present on the 

X chromosomes is a region known as the X inactivation centre (Xic), from which 

several important lncRNAs, including Xist, are transcribed. [22-24] Basal levels of Xist 

are found spread throughout the nucleus [25], and are countered by another lncRNA, 

Tsix, which is transcribed from the antisense strand of the Xist gene [26-28]. At the 

beginning of X Chromosome Inactivation (XCI), the expression of Tsix RNA is 

downregulated from the X chromosome that is to become inactive (Xi) [28]. Tsix RNA 

is therefore lost from the future Xi, but still present on the future Xa [28]. This allows a 

short RNA transcript of the Repeat A region of Xist, known as RepA, to be transcribed. 

This in turn recruits the polycomb complex, PRC2, to methylate the histones of the Xist 

promoter on the future Xi chromosome [29, 30], allowing it to be activated by the 

developmentally timed lncRNA known as Jpx, which causes an upregulation of Xist. 

[29-31] The Xist transcripts are also able to bind PRC2 through the Repeat A motif they 

contain, [30] but in order to enable the silencing of the X chromosome genes, this 

protein:RNA complex must be tethered to the target sequence [25]. This is achieved by 

the binding of a downstream site on the DNA by the YY1 protein, which is able to bind 

to both DNA and RNA, and so is able to tether the Xist/PRC2 complex co-

transcriptionally to the Xic site. This nucleation step then allows further Xist/PRC2 

silencing complexes to spread across the chromosome and hence prevent gene 

expression from the now inactive X chromosome by an as-yet undiscovered mechanism. 

Alternative sites then cannot be bound by Xist/PRC2 complexes, because they either 

lack the presence of YY1, or because they are prevented from interacting by Tsix [25].  
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Figure 1.2 Mechanism of X-chromosome inactivation by Xist lncRNA.  

(a) RepA-PRC2 is prevented from binding chromatin by the Tsix lncRNA. (b) During XCI, Tsix is lost from Xi 

and RepA-PRC2 methylates the Xist promoter, allowing its activation by Jpx. (c) and (d) Xist lncRNA binds 

PRC2 and is tethered to Xi by YY1. (e) Further Xist/PRC2 complexes spread along Xi in cis, resulting in 

methylation of Xi. Xa remains unaffected as its YY1 site is blocked by Tsix. Expression from Xi is therefore 

silenced through this mechanism. From Jeon et al. (2011)  
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Other lncRNAs are also known to act as tethers and recruit polycomb complexes to 

other genes, epigenetically silencing them [15, 17]. One problem a cell faces is in 

ensuring that only a specific allele or locus is targeted by the silencing machinery. The 

properties of lncRNA make it ideally suited to this task. While a protein must first exit 

the nucleus and be translated, and can only recognize short segments of DNA that may 

be present multiple times within a genome; RNA may hybridize with DNA co-

transcriptionally, and retain its positional information. In addition, the length of the 

lncRNA allows for some mobility even while the RNA is tethered, and hence enables it 

to recruit proteins to its tethering site [17]. In this manner, a lncRNA can recruit histone 

methylation proteins to a specific site in the genome, and ensure epigenetic silencing.   

1.1.3 ncRNAs as regulators: piwi-associated ncRNAs 

Piwi-associated ncRNAs, also known as piRNAs, are another class of ncRNAs that can 

influence the epigenetic state of target genes. They are only found in germline cells, and 

cells located nearby, and are known to play a vital role in protecting the germline from 

transposable elements [15, 32]. In Drosophila, this is achieved at the post-transcriptional 

level through what has been dubbed the “ping-pong” mechanism [32, 33] (Fig. 1.3). 

Briefly, piRNA clusters which contain antisense transposon sequences are transcribed 

and bound by the Piwi clade of Argonaute proteins, which are then targeted to sense 

transcripts of the corresponding transposon, that are, in turn, cleaved by the protein. The 

resultant sense RNA is then bound by Ago3, another Piwi clade protein, which again 

cleaves the RNA. This sense complex can then bind another piRNA cluster transcript 

and cleave it in the same way, and thus produce more piRNAs. Through such a method, 

therefore, transposon mobility can be prevented by a positive amplification loop.  

Mammalian piRNAs repress transposon mobility by an alternative method. The piwi 

clade proteins in mice are known as MIWI, MIWI2 and MILI. MIWI is expressed in the 

pachytene stage of meiosis, but its function is currently unknown [15, 34]. MIWI2 and 

MILI, on the other hand, are expressed in the pre-pachytene stage [34], where the 

majority of bound piRNAs correspond to transposon sequences [35]. These proteins also 

use the ping-pong mechanism of amplification, but in addition are able to prevent 
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transposon mobility by transcriptional gene silencing [15, 34]. Here, although the exact 

molecular mechanism of silencing remains unknown [15, 32], a link has been 

established to the DNT3A and DNT3B DNA methyltransferase enzymes [34]. It has 

therefore been postulated that the MIWI2 and MILI proteins use the piRNAs generated 

from transposon mRNA transcripts to guide them towards the genomic loci encoding 

these transcripts through base pairing interactions [15]. Once bound, the complexes 

could repress the expression of these elements by recruiting DNA methylases to these 

regions. It is also speculated that there could be an interaction between these complexes 

and histone methylating proteins which would also help to silence the transposable 

elements [15, 32].  
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Figure 1.3: Ping-Pong mechanisms of piRNA mediated genome defence. 

(a) In mammals, MILI uses an RNA  derived from transposon transcripts to target a piRNA. The piRNA is 

cleaved, and the cleaved piRNA segments used to target MIWI2 to transposon mRNA. This mRNA is then also 

cleaved and the cleaved portion used by MILI to start a new round of the cycle. MIWI2 can also use the 

cleaved piRNA to direct DNA methylation of transposon genes. (b) In flies, a similar mechanism is used with 

the Piwi clade proteins AUB, PIWI and AGO3 in place of MILI and MIWI2. Adapted from Aravin et al. 

(2008) 
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The advantage of using RNA as a defence mechanism against these transposable 

elements is in its flexibility. The major challenges faced by cells in preventing the 

genomic instability caused by such elements are that they can be diverse in sequence, 

and must be distinguished from endogenous genes. The elegance of this piRNA system 

is that it targets transposons based on one of their major defining properties – their 

mobility within a genome. Once a transposon has inserted itself within a piRNA cluster, 

it is targeted by the silencing machinery at multiple levels of gene expression. The ping-

pong mechanism of amplification removes the transposon mRNA by cleavage whilst at 

the same time enhancing the effect of the piRNA machinery. The direction of methylase 

enzymes towards the loci encoding the transposons then provides a longer-term solution 

for preventing their mobility, by silencing their transcription. piRNAs and their 

associated proteins therefore form an immune system which is able to defend the 

germline against the destabilizing action of these mobile elements [32].  

1.1.4 ncRNAs as a defence mechanism: CRISPRs and crRNAs 

Prokaryotes and archaea have also developed a system of using ncRNAs as a defence 

mechanism. crRNAs are transcribed from Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR) loci, and act as a defence against infection by foreign 

DNA. CRISPR loci consist of a leader sequence followed by a series of direct repeats 

20-50bp in length separated by unique spacer sequences  [36, 37]. These spacer 

sequences originate from foreign plasmids and phages that the organism has previous 

encountered, and act as a genetic “memory bank” [37] of previous infections. The 

CRISPR system is therefore often referred to as an RNA mediated adaptive immune 

system [37]. 

The mechanism of CRISPR mediated immunity has three stages (Fig. 1.4), each 

mediated by Cas (CRISPR associated) proteins, whose genes are often found adjacent to 

CRISPR loci. The three stages are: (1) integration of genetic information into the 

CRISPR locus; (2) biogenesis of crRNAs; and (3) disruption of targets. In addition, 

there are three different types of CRISPR-Cas system which must complete these 

processes, known as types I, II and III. The differences between these systems is mainly 
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due to the different Cas proteins involved in each stages, and organisms often utilize 

more than one type of CRISPR-Cas system [36].  

 

Figure 1.4: General mechanism of CRISPR-Cas system. 

(1) When foreign DNA (from a plasmid or bacteriophage) is inserted into a bacterium that contains the 

CRISPR-Cas system, it is incorporated as a new spacer between two repeat sequences at the 5’ end of the 

CRISPR locus. (2) The CRISPR locus is transcribed as a long RNA. (3) The RNA transcript is cleaved either 

by Cas proteins or RNaseIII enzymes to produce the short crRNAs, which are comprised of the spacer region 

and parts of the flanking repeat regions. (4) Target interference is mediated by Cas proteins, which are guided 

to the DNA targets via base pairing between the crRNA and the target DNA. This occurs as the spacer region 

of the crRNA is complementary to the target, but the flanking repeat regions are not.  

 In the first stage, a short segment of foreign DNA is inserted into the CRISPR locus. 

Although this occurs in all CRISPR-Cas systems, it has only been demonstrated 

experimentally for the type II system. In this system, new sequences are integrated at the 

start of the CRISPR locus near the leader sequence. The repeat sequence is duplicated 
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for each new DNA segment added in order to conserve the architecture of the CRISPR 

locus. The integration of DNA into the CRISPR locus is dependent on Cas7 for type II 

systems. It is not currently known which Cas proteins provide this function in type I and 

type III systems, but several studies have suggested Cas1 and Cas2 as potential 

candidates [36]. 

The activity of the CRISPR-Cas system is dependent on crRNAs. A long RNA 

transcript is first produced from the CRISPR locus, which is cleaved in the middle of 

each repeat section to produce the short ~60nt crRNAs corresponding to the spacer 

sequences flanked by the remnants of the repeat segments. The Cas protein responsible 

for this cleavage in type I and III systems is the Cas6e endoribonuclease, although it is 

currently unknown which Cas protein is responsible for cleavage in type II systems. 

Recent evidence has suggested a role for RNaseIII in crRNA processing, implying that it 

may act as an extra host-dependent factor responsible for crRNA biogenesis. 

Alternatively, it has been shown that Cas9 is required in vivo for crRNA processing, 

although its precise enzymatic role has yet to be defined [36].  

Following their biogenensis, the crRNAs associate with other Cas proteins to form large 

RNPs, and guide them towards target foreign DNA. These are recognised through base-

pairing interactions between the crRNA and either the sense or antisense strand of the 

target DNA [36]. The efficiency of this base-pairing interaction is dependent on the 

binding of a high affinity site on the 5’ end of the spacer sequence, which acts similarly 

to the seed sequence of miRNAs [36, 38] (discussed in Section 1.1.1.2). Once the target 

has been recognised and bound by the RNP, both DNA strands are cleaved, preventing 

any further activity [36]. Crucially, this cleavage is dependent on the degree of 

complementarity between the crRNA and the target DNA. This is important for 

distinguishing between self and non-self DNA. The spacer region of the crRNA will be 

complementary to both the foreign DNA and the spacer in the CRISPR locus, but the 

remnants the flanking repeat regions will only be complementary to the CRISPR spacer. 

Full complementarity protects against cleavage by the Cas proteins, and so only the 

foreign DNA will be cleaved [39]. The CRISPR-Cas system therefore resembles both 
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the miRNA system - where base-pairing between an ncRNA and target is facilitated 

through the use of a seed sequence and leads to target selection and interference - and 

the piRNA  system - where ncRNA acts as a defence against harmful nucleic acid 

species. As in the eukaryotic systems, the ability of crRNAs to recognise their targets 

through base-pairing interactions, and hence guide the effector Cas proteins to these 

targets, is important for their function.  

1.1.5 ncRNAs in mRNA processing 

Although not directly linked to regulation of gene expression, another type of ncRNA, 

small nuclear RNAs (snRNAs), do play a role in the processing of mRNA transcripts. 

After transcription, mRNAs must be capped, spliced and polyadenylated before their 

export to the cytoplasm [40]. The splicing process, that is, removing certain introns from 

the mRNA sequence, is catalysed by a dynamic molecular machine called the 

spliceosome. The spliceosome has many constituent parts, including a highly 

changeable array of proteins, involving five protein:snRNA complexes called snRNPs 

as the major components [41, 42]. Namely, these are U1, U2, U4/U6 and U5, which 

each contain a snRNA, seven Sm proteins and varying numbers of proteins that are 

specific for each snRNP.    

In order to remove an intron, the spliceosome must catalyse two transesterification 

reactions, leading to the removal of a lariat intron, and the ligation of the 5’ and 3’ exons 

[41]. The canonical mechanism by which the spliceosome achieves this is as follows 

(Fig. 1.5): (1) U1 snRNP binds the 5' splice site, while protein factors interact with the 

branch site (BS) and poly-pyrimidine tract (PPT) to form what is known as the E 

complex. (2) The U2 snRNP then binds to the BS to form the A complex. (3) The 

U4/U6.U5 tri-snRNP then attaches to form the B complex, or pre-catalytic spliceosome. 

(4) Rearrangements in the spliceosome structure result in the destabilization of the U1 

and U4 snRNPs, which dissociate, allowing the spliceosome to adopt the active form of 

the B complex. (5) Catalysis of the first transesterification reaction is initiated by the 

interaction of the Prp2 RNA helicase with the spliceosome, which results in the C 

complex. (6) The C complex then catalyses the second transesterification reaction to 
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complete splicing. (7) The spliceosome components dissociate and rearrange before 

taking part in another splicing reaction [42].  
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Figure 1.5: Overview of the splicing mechanism. 

The U1 snRNP binds the 5' splice site of a pre-mRNA, forming the E complex. The U2 snRNP then binds the 

BS, forming the A complex. The U4/U6.U5 tri-snRNP then binds to form the pre-catalytic spliceosome, known 

as complex B. A rearrangement then takes place: U1 and U4 are destabilised and dissociate, forming the active 

B complex. The Prp2 RNA helicase interacts wih the active B complex and facilitates the first catalytic step, 

resulting in the C complex. This complex catalyses the second step, forming the spliced mRNA, an intron lariat 

and the free U2, U5 and U6 snRNPs. Extra protein factors that facilitate each of these steps are highlighted 

next to the arrows depicting the progression from each step to the next. Adapted from Will and Luhrman 

(2010) 
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Whilst the large number of protein factors involved are key components of the 

spliceosome and its function, the role of RNA in facilitating splicing resides mainly in 

its ability to form base pairs, and adopt a large range of different conformations [42]. 

Base pairing is important for enabling U1 snRNPs to recognize the 5’ splice site, and in 

allowing U2 to bind to the BS. Upon U2 binding, the branch point adenine is bulged out 

from the duplex, which primes the 2’ hydroxyl group for the first catalytic step. Base 

pairing contacts also help to stabilize the U4/U6 snRNP complex, and the reorganization 

of the hydrogen bonding network upon the U4/U6.U5 tri-snRNP binding of the A 

complex causes U6 to base pair with the 5’ splice site, resulting in the displacement of 

U1 from this site, and its subsequent destabilization [41, 42]. The U2/U6 interaction is 

also dynamic, and it is possible that the base pairing interactions that dictate the 

conformations adopted by these snRNPs change during splicing [42]. With these factors 

in mind, it is clear that the properties of RNA are crucial in determining the dynamic 

nature and function of the spliceosome.  

1.1.6 rRNA and tRNA: The RNA components of translation 

The final role of ncRNAs in the cell are as components of the translation machinery, the 

ribosomal (r)RNAs and the transfer (t)RNAs. The ribosome is the molecular machine 

responsible for catalyzing the synthesis of polypeptide chains; it is composed of a 

mixture of rRNA and protein, with rRNA as the major component. It contains three 

tRNA-binding sites, named A,P and E for aminoacyl, peptidyl and exit. The extension 

of the polypeptide chain is catalysed by the progression of the ribosome across the 

mRNA transcript, with the aminoacyl-tRNA:mRNA complexes cycling through the 

different sites, each promoting a different stage of the reaction. The role of rRNA in this 

process is two-fold; it ensures fidelity of the tRNA:mRNA interaction and also acts as a 

catalyst. The catalytic function of the rRNA in this case is in positioning the α-amino 

group of the amino acid bound by the A site tRNA in such a way as to prime its reaction 

with the carboxy group of the tRNA-bound amino acid located in the P site [43].  
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1.1.6.1 rRNA as a determinant of fidelity 

rRNA also has a major role in determining the fidelity of translation. The functional 

challenge facing the ribosome is that the difference in energy between cognate and non-

cognate mRNAs is very small, and fidelity is of critical importance, as a mistranslation 

of the mRNA could result in an inactive protein. To overcome this challenge, the 

ribosome contains several nucleotides that help to distinguish between Watson-Crick, 

and non-Watson-Crick base pairs between the codon and anticodon.  

The structure of the Thermus thermophilus small ribosomal subunit shows three 

nucleotides that change conformation upon the binding of tRNA in the A site. These 

nucleotides interact with the minor groove of a double stranded helical segment that 

forms between the codon and anticodon and form a hydrogen bonding network. 

Importantly, for the first two nucleotides, these interactions can only take place in the 

presence of a cognate Watson-Crick base pair, irrespective of which type of base pair it 

is (i.e. A-T, C-G). This is not the case for the third “wobble” position, explaining the 

lack of specificity at this position. This mechanism, along with an additional 

“proofreading” mechanism whereby non-cognate tRNAs are more likely to dissociate 

during the accommodation step of translation, explains how the ribosome maintains 

translation fidelity [43]. As before, it is due to the structural and chemical properties that 

RNA possesses.  

1.1.6.2 The role of tRNA in translation 

The major advantage of using RNA as the means of amino acid transfer to the ribosome 

is in its ability to decode the codon sequence through specific Watson-Crick base pairs 

to ensure that only the correct amino acid can be incorporated into a polypeptide chain 

at a particular position. In addition, there are numerous stabilising RNA:RNA 

interactions that take place between the ribosome and the tRNA [43].   

In order to function correctly, tRNA must adopt a complex tertiary structure so that it 

can be recognized both by the ribosome and also the aminoacyl-tRNA synthetase 
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enzymes. The secondary structure of tRNA is often presented as a classical “cloverleaf” 

consisting of three stem loops and the acceptor stem (Fig. 1.6), that are each 

characterized by a particular sequence motif. The four arms of the tRNA cloverleaf are 

thus named the CCA acceptor stem, the Dihyrouridine loop (D-loop), the anticodon 

stem loop and the TΨC loop. 

 

 

Figure 1.6: Secondary structure of tRNAphe. 

Modified nucleotides are depicted as follows: 4 = 4-thiouridine, D = dihydrouridine, P = Pseudouridine, * = 2-

methylthio-N6-isopentenyladenosine, X = 3-(3-amino-3-carboxypropyl)uridine, T= 5-methyluridine.  
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1.1.6.3 Structural features of tRNAs 

The acceptor stem contains the 5’ and 3’ termini of the tRNA. The 3’ terminus is longer 

than the 5’ by four nucleotides, ending in the conserved CCA motif [44]. The terminal 

adenine of this motif is the site of amino acid coupling to the tRNA by the aminoacyl-

tRNA synthetase enzymes [45], hence why this arm is called the acceptor stem.  At the 

opposite end of the tRNA is the anticodon stem loop, which contains the trio of bases 

used to specifically recognise the codon sequence in the mRNA.  

 

 

Figure 1.7: The crystal structure of unmodified tRNAphe.  

This structure shows the classical "L-shaped" tertiary structure, with the relevent arms highlighted. Adapted 

from Byrne et al. (2010). 
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The other two arms are named after the modified nucleotides that feature prominently in 

their sequences, namely dihydrouridine in the D-loop and pseudouridine (Ψ) in the TΨC 

loop. The tertiary structure of tRNA adopts a highly folded L-shape (Fig. 1.7) rather 

than the cloverleaf structure and in order to form this structure several non-canonical 

RNA:RNA interactions must form. The modification of tRNA nucleotides can alter the 

local properties of the structure, and, although modifications do not significantly alter 

the overall structure of tRNA, their presence has several structural implications that help 

to optimize the biological performance of the tRNAs [46-48]. Consequently, tRNA 

molecules are the most heavily modified of all the RNA types [44, 49-51].  

1.1.7 RNAs as controllers and mediators of transcription 

What has been shown in this section, therefore, is that RNA is a very adaptable 

molecule that is well suited to fulfilling a wide variety of roles in the cell. The fact that 

RNA has an OH group at the C2’ position instead of H as in DNA, means it is more 

chemically active, and can more readily take part in catalytic processes. In addition, the 

ability of RNA to “read” both DNA and other RNA sequences through base pairing 

interactions enable it to not only serve useful purposes during translation by providing 

sequence fidelity to the process, but also act as a decoder for the more chemically 

diverse proteins, which can then perform their functions in a sequence specific manner. 

Finally, the ability of RNAs to hydrogen bond to themselves, sometimes with the 

assistance of nucleobase modifications, enables them to adopt a range of complex 

structures, which further diversifies their usefulness as catalytic entities within the cell.  

1.2 RNA-binding proteins are key components of RNA mediated gene 

expression control 

Many RNA molecules interact with and are controlled by proteins that bind them and 

influence their structure, stability and function. For example, neither the lncRNAs nor 

piRNAs can complete their functions without the action of the PRC2 methylation 

complex, which is composed of protein. Without the action of the microprocessor, Dicer 

and RISC protein complexes, miRNAs could neither exist nor influence gene expression 
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levels.. Without the proteins that comprise the snRNPs of the spliceosome, or those 

present in the ribosome, the core processes of transcription and translation could not 

take place. The CRISPR-Cas system requires several different Cas proteins as effectors 

at each stage of its mechanism. Finally, for tRNAs to function, both aminoacyl-tRNA 

synthetase and nucleotide modification enzymes need to be present. With such a range 

of functions that need to be completed, RNA binding proteins must have evolved with a 

variety of RNA recognition, binding and catalytic structural domains. This section is 

therefore devoted to examining how the structures of RNA binding domains are adapted 

toward their various functions.  

1.2.1 Structural principles of RNA binding proteins 

1.2.1.1 RNA is bound by the action of several forces 

RNA is composed of three elements: phosphate groups, ribose sugars, and nucleobases. 

Binding of a protein to RNA is often the result of a mixture of both specific and non-

specific interactions. Specific interactions take the form of a hydrogen bonding network 

formed between the amino acids of a protein and the RNA bases, where the hydrogen 

bonds are dependent on the existence of a particular base at that position. If this base is 

not present, an incomplete hydrogen bonding network will form and binding will be 

weaker.  Non-specific interactions can be roughly subdivided into three types: 

hydrophobic stacking interactions between the RNA bases and aromatic amino acids in 

the protein, hydrogen bonds between the protein and the sugar-phosphate backbone of 

the RNA, and electrostatic interactions between the negatively charged phosphate 

groups in the RNA backbone and positively charged amino acids in the protein. These 

interactions are important as they can allow a protein to recognize the shape and 

structure of the RNA, and can be used to strengthen complexes either in addition to 

sequence specific contacts, or in cases where it is more important to bind a certain RNA 

fold rather than a specific sequence.  
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1.2.1.2 RNA Binding Proteins exploit modularity 

Whilst the variety of RNA binding protein (RBP) functions would imply a similar 

diversity in structure, there are relatively few types of RNA binding domain. How then, 

is it possible to generate the structural diversity needed to bind such a wide range of 

RNA substrates, each with different sequences, lengths and structures? To fulfill their 

functions, RBPs exploit a property called modularity – using combinations of RNA 

binding domains to create an extended binding surface which can have different 

properties without the need for evolving new types of domain (Fig. 1.8). Evolutionarily 

this is advantageous as new RBPs can be created easily by gene duplication, resulting in 

different RNA binding surfaces with different functions [52]. In addition, most RNA 

binding domains can only recognise a short segment of RNA, thereby limiting both 

specificity and affinity. By using several RNA binding domains at once, the protein can 

increase both of these factors by extending the length of RNA that can be recognized 

[52, 53]. The structural examination of RBPs therefore involves determining which 

classes of RNA binding domains they contain, and how these link together in order to 

create the RNA binding surface.  

 
Figure 1.8: RNA Binding Proteins exploit modularity for multiple effects. 

(a) Combining two RNA binding domains with a flexible linker allows longer or more distal sites to be 

recognised by the RBP. (b) RNAs can be made to adopt certain topologies upon RBP binding. (c) Binding of 

multiple domains can allow other modules in the protein to be positioned properly. (d) The RNA binding 

domains can help determine target specificity for enzymatic domains. RNA is shown as lines with red binding 

sites, RNA binding domains as blue elipses, and other protein domains as orange shapes. Adapted from Lunde 

et al. (2007). 
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1.2.1.3 Importance of the linker regions in RBPs 

The tethering of several RNA binding domains together places emphasis on the linker 

regions, which, although not necessarily involved in binding, do serve important 

functions in creating the RNA binding surface. Primarily, it is the length of the linker 

region which produces these effects. A longer flexible linker region between two RNA 

binding domains allows them to accommodate a wider range of targets, whereas shorter, 

less flexible linkers are more suited to providing an extended RNA binding platform 

[52, 53]. In addition to this, the linker regions can also greatly influence the affinity of 

an interaction. Here, the tethering of a second domain to the first limits its radius of 

movement, and so can increase its effective concentration in the area surrounding an 

RNA once the first domain is bound, increasing the affinity of the interaction compared 

to that of the two free domains. This is highly dependent on the length of the linker, 

such that at 60 residues there is little difference between the multidomain protein and the 

individual domains, but at shorter lengths will lead to increases in affinity compared to 

the free domains [52-54].   Finally, the above two effects assume the linker is flexible, 

but linker regions can also become ordered upon RNA binding, and participate in the 

interaction [52, 53].  

1.2.2 RNA Binding Domains: RNA Recognition Motif (RRM) 

The RRM (also referred to as the RNA Binding Domain, RBD, or Ribonucleoprotein 

Domain, RNP) is the most ubiquitous type of RNA binding domain found in higher 

vertebrates and adopts a β1α1β2β3α2β4 fold, where the four β strands stack against the two 

α helices. Single stranded RNAs are preferred and the RNA binding surface of this 

domain is on the β sheet face. In this mode, a typical RRM can bind between 2 and 8 

nucleotides using a series of aromatic residues found in the first and third β strands, 

which stack with the 5’ and 3’ nucleotides (Fig. 1.9). In addition, between one and three 

connecting loops are also involved and are critical in allowing the interaction to take 

place. As the binding site size is small, RRMs are often modified slightly, either with 

extensions to the N or C termini, or by the inclusion of a linker region.  They are also an 

excellent example of the modularity described above: RRMs are often found in tandem, 
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where short linkers allow them to extend their RNA binding surface and increase the 

affinity of the protein for the RNA by providing extra interactions between the two 

components [55, 56]. Thus, as described above, multiple weak interactions can be 

combined to bind to longer or differently shaped RNA binding partners with high 

affinity and specificity. This therefore makes the RRM highly adaptable and able to 

recognise a wide range of targets making them well adapted to their use in proteins 

involved in mRNA processing and transport [57].  

 

 

 

1.2.3 RNA Binding Domains: Cold-Shock Protein Domain (CSD) 

Another common RNA binding domain is the CSD, which is named after the cold shock 

proteins originally discovered in bacteria. These proteins were found to act as single 

stranded RNA binding proteins [58], preventing mRNA from misfolding in cold 

conditions and allowing translation to proceed [58-60]. Eukaryotic homologues contain 

the CSD, but instead use its ssRNA binding activity to achieve different functions via 

alternate mechanisms [61].  

Figure 1.9: Examples of tandem RRM domains recognising RNA substrates. 

The β1α1β2β3α2β4 fold is visible in each case, and the ssRNA can be seen to bind across the surface of the β 

sheets, with extra interactions provided from the loop regions of the protein. Long sequences, or multiple sites, 

can be bound by the tandem RRMs. (a) shows the Sxl  protein’s RRM1 and 2 in complex with a 

UGUUUUUUUU oligonucleotide (PDB: 1BZF), (b) is the Hrp1 protein’s RRM1-RRM2 in complex with 

UAUAUAU RNA (PDB: 2CJK), (c) is of the PABP protein’s RRM1-RRM2 binding AAAAAAAA RNA (PDB: 

1CVJ) and (d) is the RRM3-RRM4 of the PTB  protein in complex with a poly-pyrimidine tract oligonucleotide 

(PPT) (PDB: 2EVZ). Adapted from Muto and Yokoyama (2012).   
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The CSD adopts the OB fold, and forms a characteristic β-barrel structure, constructed 

from five β-strands  [61, 62]. A 1.78Å crystal structure of the cold shock protein CspB 

from Bacillus subtilis shows how CSDs bind their RNA targets by analysing the binding 

of the protein to dT6 (hexa-thymidine, Fig.1.10). The CspB binding surface consists of a 

preformed hydrophobic binding platform composed of aromatic residues surrounded by 

positively charged residues. Phenylalanine side chains stack in between the nucelobases 

of the dT6, while a hydrogen bonding network forms between basic and polar side 

chains from around the hydrophobic platform and nucleobase groups. Replacement of 

hydrophobic residues with alanine resulted in 55-190 fold increases in Kd. In contrast, 

replacing the polar residues resulted in either no increase, or a smaller, 12-fold increase 

in Kd. High concentrations of salt do not disrupt the CspB-dT6 interaction. These data 

therefore indicate that the CspB-Nucleic Acid interaction is largely hydrophobic in 

nature [63]. This suggests that the positively charged residues found around the 

platforms help to overcome the repulsion caused by the negatively charged nucleotides 

Figure 1.10: Ribbon diagram of CspB from B.subtilis, in complex with hexathymidine. 

Protein is shown in blue with interacting sidechains shown in orange cylinders. Hexathymidine is shown in 

yellow cylinders. The DNA is bound through both stacking interactions and hydrogen bonds (dashed lines). A 

second symmetry related CspB/dT6 complex is shown in the top right to depict the interactions of T6 and T5 

with the protein. Residue numbers are shown, along with the nucleotide numbers in italics. PDB code: 2ES2 
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encountering the acidic CspB [64]. This binding activity can be utilized by eukaryotic 

proteins which employ the CSD in functions such as regulation of transcription, mRNA 

export and stability, splicing and miRNA biogenesis [61].  

1.2.4 RNA Binding Domains: Zinc Fingers (ZnF) 

One of the best-known nucleic acid binding domains is the ZnF. The classical ZnF was 

initially discovered in transcription factors and they have been well characterised as 

DNA binding domains [65], although they also bind RNA [66].  The classical ZnF 

contains a β hairpin and an α helix, with a Zinc atom tetrahedrally coordinated by a 

variation on a motif of cysteins and histidines e.g. CCCC, CCHH, CCHC or CCCH 

[66], although  the term has been used to describe any small domain stabilised by a Zinc 

atom [67]. 

There are therefore many folds that can be described as ZnFs, with a large variety of 

structures [67]. Correlated with this is the large array of functions that ZnFs take part in; 

many are found in transcription factors, but other examples include the YY1 protein 

involved in XCI (Section 1.1) and the retroviral nucleocapsid proteins [68].  

The HIV-1 nucleocapsid protein contains two tandem CCHC type Zinc Knuckles (ZnK) 

and binds the third of four stem loops (SL3) in the unspliced Ψ RNA during retroviral 

genome recognition and packaging [69] (Fig. 1.11). Binding is achieved through the 

placement of an alpha helix of the protein into the major groove of the RNA helix. 

Exposed guanosine bases of the GGAG tetraloop of the SL3 are incorporated into 

hydrophobic clefts formed by residues from each of the two ZnKs. Hydrogen bonding 

interactions also take place between the residues of the ZnK and the exposed guanosines 

of the tetraloop in a manner reminiscent of Watson-Crick base pairing, generating 

specificity. Also present are various basic residues that can form either hydrogen bonds 

or electrostatic contacts with the phosphodiester bonds of the RNA. It should be noted, 

however, that this mechanism of binding differs greatly from CCHH type Zinc Fingers 

often found in eukaryotic transcription factors, which normally bind mainly through side 

chains of residues found in alpha helices [69-71]. The ZnF family is therefore both 
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structurally and functionally diverse, and once again use modularity to assist in binding 

their targets [67, 68]. 

 

 

1.2.5 RNA Binding Domains: Double Stranded RNA Binding Domain (dsRBD) 

The classical dsRBD differs from the above domain types in that it is mainly non-

specific in nature and is used to differentiate between RNAs based on their structure 

rather than their sequence [52, 72]. The general architecture of the protein is of an 

α1β1β2β3α2 structure where the N and C terminal α helices pack against the three 

stranded antiparallel β sheet. 16bp of dsRNA is then recognized by three regions of the 

protein (Fig. 1.12). In the first region, the N terminal α helix interacts with the minor 

groove of the RNA and forms direct and water mediated hydrogen bonds to bases and 

the 2’ OH ribose groups. In the second region, a protein loop interacts with the adjacent 

minor groove, resulting in the formation of more hydrogen bonds. Finally, in the third 

region, the C terminal α helix bridges across the major groove of the RNA, with several 

amino acids forming a further hydrogen bonding network. For this interaction to take 

G 

G 

A 

G 

Figure 1.11: Solution structure of the HIV-1 nucleocapsid protein. 

Zinc Knuckles bound to the GGAG RNA tetraloop of the SL3 stem loop recognition element of the ψ site. RNA 

is shown in yellow and protein in blue, with Zn2+ ions depicted as grey spheres. PDB code 1A1T. 
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place, the major groove of an RNA double helix must be recognised. Similarly, the 

hydrogen bonds between the protein and the 2’OH of the ribose sugars in the other two 

regions mean that the dsRBD binds only dsRNA and not dsDNA. The majority of 

hydrogen bonds in this case are between the protein and the sugar-phosphate backbone, 

and contacts with bases tend to be water mediated and so not sequence specific. In such 

a way therefore, the dsRNA is perfectly adapted to recognizing dsRNA in a non-specific 

manner [72, 73], and multiple dsRBDs can be used to specify for particular dsRNA 

structure types [52]. This function of dsRBDs is exploited by a variety of proteins for 

different cellular roles including RNA deaminase enzymes, viral defense proteins [74], 

the tRNA modification enzyme hDus2L [75, 76], as well as by TRBP and Dicer in 

miRNA biogenesis as described above (Section 1.1.4.1) [74].  
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Figure 1.12: Crystal structure of the dsRBD from the Xlrbpa2 protein, in complex with dsRNA.  

All three regions of the domain are visible in blue, and the domain interacts with 2 successive minor grooves of 

the dsRNA (yellow). Direct hydrogen bonds between the protein and RNA are depicted as dashed lines. 

Interacting protein side chains are coloured by atom and shown as sticks. Regions 1 and 2 can be seen 

contacting the minor grooves of the dsRNA whilst region 3 is inserted within the major groove. PDB code 

1DI2. 

 

1.2.6 The importance of RNA binding protein structure 

Several key types of RNA binding domain highlight the importance of protein structure 

with regards to the biological function of the protein:RNA complexes in gene expression 

systems. By combining several of these domains, RBPs can recognise a myriad of 

targets and perform a large variety of functions. Due to the flexibility of RNA as a 

mediator of gene expression, this structural and functional diversity of RBPs is critical 

for allowing them to interact with and either facilitate or regulate the actions of the 

different types of both coding and non-coding RNA.  
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To understand the structure/function of RBPs, this thesis will focus on two different 

RBPs: the Lin28 miRNA binding protein and the DusC (Dihydrouridine synthase C) 

tRNA modification protein.   

1.3 Lin28: A Master Regulator of Gene Expression 

One well studied RNA binding protein is the eukaryotic Lin28 protein. Highly 

conserved throughout both vertebrates and invertebrates, Lin28 (or Lin-28 in C. 

elegans) is composed from a unique combination of RNA binding domains: an N 

terminal cold-shock domain and two tandem retroviral type CCHC Zinc Knuckles 

(forming the ZnK domain), connected through a flexible linker region [77] (Fig. 1.13). 

Its best studied function is as a regulator of miRNA biogenesis, where it prevents the 

maturation of the let-7 family of miRNAs [78-81], however recently Lin28 has been 

shown to be a master regulator of gene expression, with an alternative role in mRNA 

binding and regulatory function [78]. Lin28 roles in multiple biological processes 

including embryonic development, maintenance of pluripotency and tumour formation 

and growth [82].  

 

 

Figure 1.13: Domain structure of human Lin28A and Lin28B. 

Each protein consists of one Cold Shock Domain (CSD) and two tandem Zinc Knuckles in the ZnK domain, 

connected by a flexible linker region. The major difference between the paralogs is the extended C-terminus 

present in hLin28B. Adapted from Piskounova et al. (2011). 
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1.3.1 The Lin28/let-7 axis 

1.3.1.1 The let-7 family of miRNAs 

Let-7 was first discovered in C. elegans where its mutation was lethal to developing 

worms, and since then has been intensively studied due to its important developmental 

roles, where its expression is largely correlated with the differentiation state of the cells 

it is present in [83, 84]. The let-7 family of miRNAs in humans consists of 13 miRNAs 

related through their seed sequences, which are highly conserved throughout both 

vertebrates and invertebrates [84] (Fig. 1.14). In addition to its role in cellular 

differentiation, let-7 miRNAs also target several potent oncogenes, notably the RAS 

proteins K-RAS, N-RAS and H-RAS; MYC, and HMGA2. This gives let-7 miRNAs an 

additional function as a tumour suppressor and maintenance of phenotype [83].   

 

 

Figure 1.14: Secondary structure of the human pre-let-7g. 

The lowest energy structure as predicted by MFOLD is shown. 
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1.3.1.2 Lin28 blocks let-7 maturation 

The Lin28/let-7 interaction was discovered as a protein that bound agarose beads 

conjugated to pre-let-7g incubated with P19 embryonic carcinoma cell extracts [79]. 

This protein was Lin28, whose homologues had been previously shown to be important 

in the development of C. elegans [77] as well as several other processes [85, 86], 

mirroring the action of let-7 miRNAs [83]. Further experiments revealed that expression 

of Lin28 correlated with a block in let-7 processing, and demonstrated that Lin28 was 

responsible for binding to the let-7 miRNAs during their biogenesis and preventing their 

maturation [79, 80, 87]. Intriguingly, Lin28 protein is itself downregulated by let-7 

miRNAs through binding sites on its 3’UTR [88]. Therefore, Lin28 and let-7 are part of 

a double negative feedback loop, where expression of one lowers the expression of the 

other, and each has the opposite biological effect. This led to the establishment of the 

concept of a Lin28/let-7 axis, where different phenotypic effects would be exhibited 

depending on whether let-7 or Lin28 was dominant in a particular cell at a moment in 

time [78, 82, 89].  

The detailed mechanism of Lin28 protein’s function has been elucidated in mammalian 

cells (Fig. 1.15). The two mammalian paralogues of Lin28, Lin28A and Lin28B, were 

found to inhibit let-7 biogenesis by two distinct mechanisms [81]. Lin28A is mainly 

found in the cytoplasm, where it can interact with the pre-let-7 miRNA (Fig 1.14). Once 

bound, a terminal uridyl transferase (TUTase), either TUT4 (Zcchc11) or TUT7 

(Zcchc6) [90-92], is recruited to the complex and adds ~14 uracil nucleotides to the 

3’end of the let-7 [93]. The addition of these uracils then signals for the degradation of 

the let-7 pre-miRNA by the Dis3L2 nuclease [94, 95], thereby preventing the cleavage 

of the precursor miRNA by Dicer to form mature let-7 miRNAs. In contrast, Lin28B is 

found in the nucleolus, due to the presence of localization signals in its C terminal and 

inter-domain sequence (Fig. 1.13). This enables it to bind to the pri-let-7 transcripts and 

sequester them in the nucleolus, and so no interaction with the microprocessor can occur 

[81]. If the primary transcript is not cleaved, no maturation step occurs and thus mature 

let-7 levels are downregulated. Through these mechanisms, the two Lin28 paralogs 
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prevent mature let-7 miRNA production, resulting in increased let-7 target gene 

expression [96].  

 

 

 

 

1.3.1.3 Biological consequences of Lin28 expression: Pluripotency 

Lin28 expression is associated with the maintenance of pluripotency, a function it 

performs by utilizing both let-7 dependent and independent mechanisms [97]. Lin28 is 

pri-
let-7 

Figure 1.15: The differential roles of Lin28A and B in the inhibition of let-7 biogenesis. 

Lin28B is localised to the nucleolus and prevents cleavage of the primary miRNA transcript by the 

microprocessor. In contrast, Lin28A is cytoplasmic, and directs the uridylation and subsequent degradation of 

the pre-let-7. If neither paralog is expressed, the miRNA undergoes biogenesis as normal. Adapted from 

Piskounova et al. (2011).  
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thus one of four factors that can be used to generate induced pluripotent stem cells (iPS 

cells) [86], where it acts by accelerating the reprogramming process [98].  

1.3.1.4 Biological consequences of Lin28 expression: Misregulation 

Pluripotent cells have the capacity to self-renew indefinitely unlike normal somatic 

cells, a property also found in cancer cells. Lin28 regulates pluripotency and is found to 

be aberrantly expressed in ~15% of all cancers and is associated with tumour 

aggressiveness and advanced stage disease [99], and so has a key role in maintaining the 

tumour. This concept of pluripotency links Lin28 to the cancer stem cell (CSC) model 

of tumorigenesis. In human ovarian tumour samples, Lin28 expression was found to 

correlate with the proportion of ALDH1 (a marker of CSCs) positive cells within a 

tumour population [100], and Lin28B was found to be necessary for lung CSC 

proliferation and growth [101]. A potential model for Lin28’s misregulation in CSCs is 

that aberrantly expressed/constitutively active oncogenes induce expression of Lin28A 

[102, 103] or Lin28B [103, 104], reducing mature let-7 levels. The reduction in let-7 

induces further oncogenes, including Lin28, and inhibiting let-7 induced differentiation, 

hence the cell would revert to a less differentiated, self-renewing, stem-cell like state 

[99]. These CSCs are essential for the growth of the tumour according to the CSC 

hypothesis [105].  

1.3.1.5 Biological consequences of Lin28 in Development  

Lin28 was first discovered as a heterochronic gene in C. elegans, and so is required for 

the proper development of the organism [77]. In addition Lin28 has been shown to be 

important in determining the developmental timing and growth of both mice [106] and 

humans [107, 108], as well as in other metazoa [109, 110]. Lin28 can bind both 

miRNAs and mRNAs and has been shown to have a role in cellular development 

through both let-7 dependent and independent mechanisms. Lin28 regulates the 

development of primordial germ cells from embryonic stem cells by removing the let-7 

mediated suppression of the Blimp1 transcription factor [111]. Overexpression of Lin28 

in chondrocytes resulted in impaired proliferation through downregulation of let-7, 
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leading to skeletal growth defects in mice. This observation demonstrated that 

suppression of Lin28 is important for allowing normal skeletal development, which 

requires mature let-7 miRNAs be present in order to downregulate the expression of 

their target genes [112]. Expression of Lin28 is also important for enabling the 

differentiation of myoblasts into myotubules through the stabilisation of IGF-2 mRNA 

[113]. 

The role of the Lin28/let-7 axis is more complicated in neuronal development. Lin28 is 

required for the Sox2 dependent proliferation of neuronal precursor cells (NPCs). This 

occurs through repression of let-7 biogenesis. Expression of let-7 in these cells prevents 

NPC proliferation and neuronal differentiation, therefore Lin28 expression allows NPC 

proliferation, as well as differentiation towards a neuronal cell type [114]. In addition, 

constitutive expression of Lin28 in P19 embryonic carcinoma cells differentiated down 

a neuronal-glial lineage resulted in blockage of glial differentiation and promotion of 

neuronal differentiation. A CSD was not required for blockade of gliogenesis, whereas 

the ZnK domain was required for both functions. The Lin28 dependent upregulation in 

the expression of several genes involved in neuronal differentiation was observed before 

the block in let-7 biogenesis. It was therefore concluded that Lin28 is able to promote 

neuronal differentiation through a let-7 independent pathway. Inhibition of gliogenesis 

correlated with the block in let-7 biogenesis, although it could not be determined 

whether gliogenesis is let-7 dependent [115]. The Lin28/let-7 axis is therefore an 

important factor in the development of various different cell types, although currently 

there is no clear general model of how the expression of Lin28 or let-7 results in 

particular cell types. It is likely that the outcome of Lin28 or let-7 expression is 

dependent on its cellular context.  

1.3.1.6 Biological consequences of Lin28 in Metabolism and Tissue Regeneration 

The role of the Lin28/let-7 axis in metabolic regulation comes through control of 

glucose uptake. Lin28 expression in adult mice was associated with insulin sensitivity, 

glucose tolerance and resistance to diabetes, whereas induction of let-7 led to the 

opposite effect [116]. The mechanism behind the link between Lin28/let-7 and diabetes 
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is still not entirely clear [117], but it is known to be mediated by the Insulin-PI3K-

mTOR pathway [116]. 

Lin28 is also involved in wound healing and tissue regeneration. It was observed that 

transgenic mice with a doxycycline inducible Lin28A increased levels of hair regrowth, 

digit repair and pinnal (ear) tissue regeneration, indicating that Lin28 might regulate the 

wound repair process. This was found to occur through let-7 dependent and independent 

mechanisms, and partly through molecular bioenergetics [118]. In addition, Lin28 has 

been shown to be required for retinal regeneration after injury in Zebrafish [119]. Lin28 

in the retina was found to be regulated by the Ascl1a transcription factor, and induced 

the dedifferentiation of Müller glial cells by reducing let-7 levels and thus increasing the 

expression of regeneration and pluripotency genes that were repressed by the miRNA.  

The biological functions of Lin28 are key and act on numerous different systems and 

tissues in the body. It is therefore of biological and clinical significance to comprehend 

the molecular mechanisms of Lin28 structure and function in detail in order to further 

our understanding of its role in these systems, and also aid in the design of inhibitors 

that may help to prevent or at least mitigate the effects of aberrant Lin28 expression in 

cancer. To this end, the induction of let-7 either artificially [99] or through the use of 

drugs [120, 121], results in suppression of cancerous phenotypes and implies that an 

appropriate Lin28 inhibitor could be clinically useful in helping to treat aggressive 

cancers.  

1.3.2 Lin28 Structures 

Three-dimensional structures of Lin28 on its own, and in complex with a nucleic acid 

have been determined. Three sets of structures have been documented to date in the 

literature: (1) Mouse Lin28A in complex with let-7d, let-7f-1 and let-7g [122], (2) The 

CSD of Xenopus Lin28B on its own and in complex with hexa- and hepta-thymidine, as 

well as the apo human Lin28B CSD [123], and (3) the solution structure of the ZnK 

domain of the human Lin28A [124].  
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1.3.2.1 Complexes of mLin28A with preE-let-7 miRNAs 

Structures containing both domains were reported previously [122]. By truncating the 

interdomain linker of the mouse Lin28A protein, co-crystals of the protein with the preE 

segments of three let-7 family members: let-7d, let-7f-1 and let-7g were obtained that 

diffracted to 2.9Å, 2.8Å and 2.0Å respectively. The preE, or pre-element, is analogous 

to the terminal loop that Lin28 had already been shown to interact with [80].  

The structural data, in combination with biochemical data, demonstrated that the 

separate domains of Lin28 (CSD and ZnK) contact two separate ssRNA sites of the 

miRNA. The CSD binds to the stem loop of the preE segment whilst the ZnK domain 

interacts with a conserved GGAG motif present on the 3’ of the preE (Fig. 1.16), in 

agreement with the results of previous biochemical studies [92].  

 

 

 

Figure 1.16: Lin28 interacts with two independent regions of let-7 miRNAs.  

The cartoon model shows that the CSD (blue) contacts the loop region whilst the ZnK domain (green) interacts 

with the single stranded GGAG motif. The two domains are connected by a flexible linker region, which could 

allow them to recognise different length RNA sequences. The crystal structure is shown in a box at the bottom 

left of the figure. Adapted from Nam et al. (2011) 
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The interactions of the CSD with the preE loop showed that the loop wraps around a 

protrusion from the surface of the CSD in what is described as a “necktie” [122]. The 

bases of the loop are inserted into several hydrophobic pockets in the CSD where they 

stack against aromatic amino acid side chains (Fig. 1.17). In addition, a hydrogen 

bonding network exists between the bases and the protein. It was proposed that this 

system of hydrogen bonds, as well as steric factors within the pocket, define an ideal 

binding substrate of sequence NGNGAYNNN, where N is any nucleotide and Y is any 

pyrimidine [122].   
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Figure 1.17: Interactions of the CSD with the terminal loop of let-7 miRNAs. 

RNA bases are coloured as follows: A in blue, C in red, U in orange and G in green, with the CSD in white 

ribbons, and oxygen and nitrogen atoms of the side chains depicted in red and blue respectively. The RNA is 

bound by a mixture of stacking and hydrogen bonding interactions, which are detailed in below each structure, 

with stacking residues represented in green and residues forming hydrogen bonds shown in red. For each 

nucleotide position, the top line represents base contacts and the bottom line corresponds to interactions with 

the sugar-phosphate backbone. The secondary structure of each miRNA crystallised is also shown. Adapted 

from Nam et al. (2011). 
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The ZnK domain utilizes a vast hydrogen bonding network to maximize its interaction 

with a small motif [122]. The residue Y140 also makes a key interaction here by 

stacking in between the final A and G bases, resulting in a distinctive kink in the RNA 

structure (Fig. 1.18). It is of note that the conformation of the ZnK domain of Lin28 is 

highly divergent from that of the HIV nucleocapsid protein mentioned previously [69], 

and is likely to be unique to Lin28 [122].  

 

 

 

There are several other intriguing observations in these initial structures. The first is that 

the crystal structures formed domain swapped dimers, where each Lin28 molecule 

contacts two preE-let-7 miRNAs, to form a 2:2, protein:RNA complex. AUC 

Figure 1.18: Interactions of the ZnK domain with let-7 miRNAs.  

RNA nucleotides G and A are shown in green and blue respectively, cysteine residues as yellow spheres, 

histidines residues as cyan spheres, and zinc ions as grey spheres. Below, the hydrogen bonding interactions 

(red) and stacking interactions (green) are displayed. The residue Y140 can be seen to make a stacking 

interaction in this figure, and induce a distinctive kink in the RNA backbone. Adapted from Nam et al. (2011). 
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experiments showed however that the complex should be monomeric, and so the 

proposed structure of the 1:1 complex was partly generated by modelling [122]. In 

addition to this, the conformation of the let-7g RNA seen in the crystal structures was 

not the most energetically stable secondary structure predicted to form by MFOLD 

[125], implying that the Lin28 either alters the RNA conformation, or preferentially 

binds one conformation over the other. Finally, the results of NMR relaxation 

experiments proved that the linker region between the two Lin28 domains is flexible, 

which would allow Lin28 to bind a range of substrates with different length. A final 

important conclusion is that binding of Lin28 to the preE-let-7 miRNA in the mode 

described in the paper would occlude the binding of Dicer to the full pre-let-7 miRNA, 

and hence prevent its maturation [122], presumably in conjunction with the other 

mechanisms mentioned previously [81]. 

1.3.2.2 Structures of the Lin28B CSD  

Further structural data on Lin28 came from the structure of the CSD [123], from the 

Xenopus Lin28B protein, solved in the apo form and in complex with hexa-/hepta-

thymidine segments of DNA. In addition, the structure of the human Lin28B CSD was 

also determined.  The rationale for co-crystallising with the short poly-dT nucleotides 

came from previous studies of the bacterial CspB [63], and from biochemical analysis, 

that showed preferential binding to these types of oligonucleotide [123].  

The structures of the human and Xenopus apo CSDs were determined to 1.95Å and 

1.06Å respectively, and revealed that, similar to the bacterial CspB mentioned earlier, 

the domain adopted the β5 barrel characteristic of the OB fold, containing a hydrophobic 

nucleic acid-binding surface [123]. This binding site is surrounded by polar and 

positively charged residues, giving the protein an amphipathic character due to the 

negatively charged surface on the opposing face of the protein. These structural 

characteristics make the Lin28 CSD more similar to the bacterial cold shock proteins, 

rather than their eukaryotic homologues. There was very high similarity between the 

human and Xenopus CSD crystal structures, which were almost identical with a 

backbone Cα atom RMSD of 0.2Å [123].  
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These structures revealed in depth how the Lin28B CSD is able to bind nucleic acids 

using this pre-formed platform. The DNA nucleotide bases point inwards to stack inside 

various hydrophobic pockets within the CSD [123], similar to the mLin28A structures 

[122]. The first nucleobase of the dT7 oligomer formed a 3 membered stacking 

interaction with F77 and the second T nucleobase. As well as taking part in this stack, T-

2 was found inside a pocket defined by the residues Q69, V42, F40 and R78. The R78 

then makes a total of 3 hydrogen bonds to T-2, causing it to be specifically recognized, 

with the addition of a water mediated hydrogen bond between the T-2 and G76.The 

interactions between the CSD and T-3 are not discernible from this structure as it 

contacts another CSD in the asymmetric unit, occupying binding site 2. T-4 is mainly 

bound by stacking interactions, while T-5 is specifically hydrogen bonded by F97 and 

S93. Finally, T-6 is recognized through hydrogen bonds to K38 and W39 and T-7 is also 

stabilized by stacking interactions (Fig. 1.19) [123].  

 

 

 

Figure 1.19: The CSD of Lin28B binds dT7. 

The electostatic surface of the protein is displayed as a range from -10kT (red) to +10kT (blue), and the 

oligonucleotides can be seen to bind across the protein surface. A, B and C show detailed close ups of the 

interactions of each of the three binding subsites, where the majority of contacts are formed through hydrogen 

bonding and stacking interactions between protein side chains and the bases of the DNA. Adapted from Mayr 

et al. (2011) 
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The structures presented in this report, alongside other biochemical data, therefore 

indicated the preference of the CSD for poly-pyrimidine oligonucleotides, as well as 

suggesting a lack of sequence specificity for let-7 RNAs [123]. Overall, the structural 

data supported the model of Lin28-RNA interaction described previously [122].  

1.3.2.3 Structure of the ZnK domain 

In addition to the above structure, a solution structure of the human Lin28 ZnK domain 

bound to an AGGAGAU oligoribonucleotide was reported [124]. Here, the individual 

zinc knuckles comprising the ZnK domain were seen to adopt distorted β-hairpin 

structures, with Zinc ions co-ordinated by CCHC residues, and a proline rich linker 

between them. In this structure, the second zinc knuckle interacts with the 5’A and G, 

whereas the first zinc knuckle makes contacts with the following G and A. Both G 

nucleobases are recognized specifically through hydrogen bonds between the Waston-

Crick edge and the backbone amide groups of residues Y140, A149 and V171, and the 

carbonyl groups of R138 and K160. Stacking interactions were also observed for these 

bases, as well as for A1 (Fig. 1.20). This, in combination with mutational analysis, led 

to the proposal that the Lin28 ZnK domain specifically recognizes a NGNNG motif 

present within let-7 terminal loop segments [124].  
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1.3.3 Let-7 independent functions of Lin28 

As mentioned in Section 1.3.1, several of Lin28’s biological functions have been 

ascribed to let-7 independent pathways. Recently, there has been an influx of data on 

Lin28’s function as an mRNA binding protein, and how it is able to influence 

translation, showcasing its importance as a master regulator of gene expression in the 

cell [78].  

1.3.3.1 Translation Stabilisation 

The first pieces of evidence that described Lin28’s mRNA binding function came from 

studies that showed the association of Lin28 with polysomes in the cell, implying that 

Lin28 is able to associate with actively translating mRNAs [126]. Subsequently, various 

studies showed Lin28 binding to the mRNA transcripts of IGF-2 [113], Oct4 [127], 

Figure 1.20: Solution structure of the Lin28 ZnK domain bound to AGGAGAU RNA. 

(a) Overall structure shows the zinc ions as purple spheres. More detailed views showing hydrogen bonding 

networks can be seen in (b) and (c) for ZnK2 and ZnK1 respectively. Adapted from Loughlin et al. (2011)  
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Histone H2A [128], Cyclins A and B and cdk4 [129], and stabilizing their translation. 

The exact mechanism of binding is still unclear, although several reports postulate the 

idea of a Lin28 Response Element [127, 128, 130, 131], or LRE. Although there was no 

obvious consensus sequence present in the LRE’s that seems to define Lin28 binding, a 

small structural motif, consisting of a bulged adenine nucleotide flanked by two G-C 

base pairs, was found to be conserved between the mRNA secondary structures, and its 

mutation caused a drop in the affinity of Lin28 for the Oct4 LRE, and also prevention of 

translation stabilization in vivo [130]. Once bound, Lin28 recruits RNA helicase A 

(RHA) which is the key factor in Lin28 mediated translational stabilization [132]. How 

the RHA fulfills this function is still being debated, but it could either be due to removal 

of mRNA secondary structures [132] or the disruption of miRNA bound RISC 

complexes targeting the mRNA, hence resulting in the relief of miRNA mediated 

translational repression [133, 134].   

1.3.3.2 mRNA targets of Lin28 

Recently, attempts have been made to quantify the number of Lin28 mRNA targets. The 

first of these observed Lin28s interaction with over 6000 RNAs in both embryonic stem 

cells and in somatic cells overexpressing Lin28. Intriguingly, many of these transcripts 

were those of RNA binding proteins, especially those involved in regulating splicing 

(e.g FUS/TLS, hnRNP F etc.). Further experiments confirmed that both Lin28A and 

Lin28B were involved directly in stabilizing the translation of these splice factor genes. 

Intriguingly, in contrast to the results mentioned above, this study found that the GGAG 

motif, known to be important in let-7 miRNA binding, was the motif that specified 

Lin28 binding to these mRNAs, and that Lin28 binding was enriched in both exons and 

3’UTR regions of these transcripts. Additionally, the interaction of Lin28 with several 

non-let-7 pre-miRNAs was also observed [135].  

A second study revealed more information about the Lin28A/mRNA interaction using a 

similar cross-linking immunoprecipitation/sequencing assay (CLIP-seq), this time by 

immunoprecipitating Lin28A/RNA complexes from mouse embryonic stem cells [136]. 

Again, Lin28 was seen to interact with a large number of mRNAs, which were 
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determined to be the major target, as well as miRNAs, and that the GGAG motif was 

significantly enriched, signifying its importance as the Lin28 binding site. In contrast to 

the previous study however, this report observed that Lin28 was suppressing, rather than 

stabilizing the translation of the bound mRNAs, by preventing the association of them 

with the ribosome. Even more surprisingly, several pieces of evidence revealed that the 

majority of Lin28 targets were mRNAs targeted to the endoplasmic reticulum (ER), 

where the Lin28A appeared to localize. It was therefore concluded that Lin28s mRNA 

binding function was to suppress the translation of ER targeted mRNAs [136]. 

The results of a third study correlated more with those of the first. Using another CLIP-

seq based technique the stabilization of mRNAs was seen as the major effect of Lin28A 

or Lin28B induction in HEK293K cells [137]. In this study, Lin28A was observed to 

bind and regulate ~1800 mRNA transcripts compared to ~3800 for Lin28B. Of these 

mRNA targets, the most frequently targeted were those involved in nuclear processing, 

cell cycle genes, splice factors and RBPs. Intriguingly, these results differed from both 

of the above reports as, although some Lin28 binding sites contained the GGAG motif, 

the most common motif was AYYHY, where Y is any pyrimidine and H is a C,U or A 

nucleotide [137]. 

Therefore, Lin28 binds and regulates the translation of a large number of mRNA targets, 

amongst other types of RNA. There is still, however, much debate over the exact 

functions, mechanisms, targets and binding sites that are recognised by Lin28.  

1.4 Dihydrouridine Synthase Enzymes Bind and Modify Specific 

uridines in tRNA 

RNA binding proteins are involved in modifying specific nucleotide positions in tRNA 

molecules. One such group of enzymes is known as the Dihydrouridine Synthases 

(Dus), which are responsible for the modification of uracil to dihydrouridine [138].  
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1.4.1 The dihydrouridine modification 

Dihyrdouridine (see Section 1.1.5.3) is one of the most common tRNA modifications 

and is mostly present in the D-loop of tRNA, which takes its name from the abundance 

of this modified nucleoside [44, 49]. In bacteria, uracil bases at positions 16, 17, 20 and 

20a can be modified to dihydrouridine, whereas in yeast positions 20b and 47 can also 

be targeted by the enzyme [44, 49].  

 

 

The conversion of uracil to dihydrouridine occurs through the reduction of the C5-C6 

double bond (Fig. 1.22), which results in two key changes to the local tRNA structure 

[139]. The first of these effects is that after the reduction of this double bond, the base is 

no longer planar, and so can no longer take place in any stabilizing stacking interactions. 

Secondly, the presence of the dihydrouridine base shifts the preferred conformation of 

the ribose sugar from the C3’ endo conformation to the C2’ endo conformation, which is 

inherently more flexible [139]. The overall effect of this modification, therefore, is to 

increase the flexibility of the local tRNA structure, which can facilitate the formation of 

tertiary interactions and helps to “fine tune” the overall structure of tRNA  [139]. This is 

in contrast to several other nucleotide modifications that increase the stability of the 

local tRNA structures, with the differences in abundance being seen in both 

thermophillic and psychrophillic bacteria, where the other modifications [140] and 

dihydrouridine [141] are seen in increased relative amounts respectively.  

Figure 1.21: Reduction of uridine to dihydrouridine.  

The modification takes place across the C5-C6 double bond, through the addition of two hydrogen atoms. (Dr. 

Rob Byrne, Antson group). 
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1.4.2 Dus Structure and Function 

1.4.2.1 Dus Enzyme Mechanism 

The function of the Dus enzymes is therefore to catalyse the reduction of the C5-C6 

double bond. The mechanism for this reaction has come from both biochemical studies 

in yeast [142] and also from structural studies on the Dus from T. thermophilus [143]. In 

this mechanism, the key components are a conserved cysteine residue, and an FMN 

prosthetic group, which together define the active sites of the enzymes [142, 144]. 

Initially, a hydride from N5 of the reduced FMN attacks C6 of the uracil to be modified. 

This causes C5 to become a nucleophile and attack the distal hydride of the active site 

cysteine, resulting in dihydrouridine and oxidized FMN [142, 143], which must then be 

regenerated by NADPH [142] (Fig. 1.23). 

 

 

  

Figure 1.22: General reaction mechanism of Dus enzymes.  

The hydride of N5 of the FMN attacks C6 of the active site uracil. This causes the electrons of the double bond 

to transfer to C5, which then attacks the distal hydride of the active site residue C93. This results in an oxidised 

FMN co-factor, as well as the dihydrouridine product.  From Ryder et al. (2009). 
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1.4.2.2 The Problem of Specificity 

The functional problem that the Dus enzymes face was highlighted upon the discovery 

that each enzyme had different, non-overlapping, modification position specificity – as 

in each would specifically only modify certain uracil positions in the tRNA structure 

[138].  In yeast, these specificities have been determined with proteins Dus1p, Dus2p, 

Dus 3p and Dus4p modifying positions U16/17, U20, U47 and U20a/b respectively 

[145]. For bacteria however, where the Dus family consists of DusA, DusB and DusC 

enzymes [144], only the specificity of DusA has so far been elucidated, which is for the 

U20 position [138]. How then do the Dus enzymes specifically recognise and modify 

uridines at only one or two positions of multiple tRNA molecules with divergent 

sequences [44, 49]? 

The Dus enzymes contain a common catalytic core consisting of a TIM barrel domain. 

Several Dus enzymes, including the human hDus2L protein, also contain an extra 

dsRBD. However, although sequence alignments reveal that there are differences in the 

predicted secondary structures of the different enzymes, it is not possible to account for 

the different specificities of these enzymes from sequence alone [144].  

1.4.2.3 Structures of Dus Enzymes 

To date, there exist three crystal structures of Dus enzymes: the T. maritima Dus [146], 

the Dus from T. thermophilus [143] and the DusC enzyme from E. coli [147]. Of these, 

the T. thermophilus (Tt) structure is the most enlightening as structures of both the 

unbound and tRNA
phe

 bound states are available (Fig. 1.24).  

The TtDus consists of the TIM barrel catalytic domain with the FMN prosthetic group 

bound in the centre, in addition to an extended C-terminal helical domain [143]. 

Examination of the surface of the protein revealed a positively charged groove, in which 

the D, TΨC and anticodon stems of the tRNA sit. To stabilize the complex, a hydrogen 

bonding network is formed between the protein and the aforementioned segments of 
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RNA, so that it is held in such a way so that the substrate uracil (in this case U20) is 

positioned into the active site to stack on top of the isoalloxanthine ring of the FMN.  
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There are, however, two anomalies in this structure. First, a covalent bond is formed 

between the active site cysteine and the dihydrouridine of the co-purified substrate 

tRNA [143], which indicates that the enzyme here is inactive, and so may represent a 

non-native state. Second, the existence of a region of “mystery density” present in the 

active site, which could not be assigned to any of the buffer components [143]. This 

density also appeared in the structure of the E. coli DusC enzyme [108]. Although it was 

proposed that this density corresponds to an as-yet unidentified co-factor, and that it is 

this co-factor which is the major determinant of position specificity in the Dus enzymes, 

N-terminal Domain Helical Domain 

a 

b c

Figure 1.23: Crystal structure of Thermus thermophilus dihydrouridine synthase.  

(a) Ribbon diagram of the unbound TtDus (PDB code: 3B0P), with the N-terminal and helical domains 

highlighted. FMN is shown as cylinders, coloured by atom type (b) The electrostatic surface of the TtDus 

reveals a positively charged groove, into which the tRNAphe binds, as shown in (c, PDB code: 3B0V). The 

surface is coloured from red (-1V) to blue (+1V). tRNA is shown in green. 
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until this factor is identified and the density assigned, no definitive conclusions can be 

reached as to how position specificity is generated in the Dus enzymes.  

1.4.2.4 Clinical Relevance of the Dus Enzymes 

Whilst the biochemical function of the Dus enzymes is now known, the evolutionary 

advantage their presence confers to an organism is subtle, as an E. coli strain with all 

three Dus enzymes deleted showed no obvious growth defects [138]. Intriguingly 

though, a link between hDus2L expression and cancer has been seen in humans [75]. In 

this study, the increased expression of hDus was correlated with increased 

dihydrouridine levels, and with non-small cell lung cancer (NSCLC) tumour growth and 

poor prognosis. This implies that studies of Dus enzymes could have clinical 

significance, as hDus2 inhibitors could be potentially used to prevent or reduce tumour 

growth. However, at this stage it remains to be seen whether further links between Dus 

expression and cancer exist, and what is the exact mechanism by which Dus promotes 

carcinogenesis.  

1.5 Outstanding Questions 

1.5.1 The Structure/Function Relationship of Lin28 

There are a number of unanswered questions and contradictions in the literature about 

the Lin28 protein. One of the major problems has been the determination of an accurate 

affinity of Lin28 towards let-7 miRNA. Results in the literature vary over a 10,000 fold 

range, from between 0.15nM [148] to 2.1µM [80] for binding of Lin28A to pre-let-7g. 

This problem could be related to the uncertainty about the stoichiometry of the 

Lin28/let-7 complex. Stoichiometries of 1:1 [122], 2:1 [123, 137, 148] and 3:1 [137] of 

Lin28 per let-7 RNA have been reported.  

Following on from this, there is a debate about the relative importance of the two 

domains – chiefly as to whether they are equally important for binding [122], or whether 

they perform different functions, for example with the CSD as the major determinant of 

affinity, and the ZnK as the determinant of specificity [123]. This also feeds in to the 
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need for more evidence for the current mechanisms of Lin28’s binding to both let-7 

miRNAs, and to target mRNAs. Additionally, the novel targets [92, 135-137] of Lin28 

will need to be experimentally verified and characterized.   

Finally, one of the key questions that remains to be answered is that, if Lin28 has such a 

vast array of RNA targets (mRNA, miRNA and others), how does it recognise them 

specifically and efficiently out of the entire transcriptome? The GGAG binding segment, 

which, as mentioned several times previously, appears to be critical for Lin28 binding, is 

rather short, and so there must be mechanisms in place in order to ensure Lin28 only 

specifically recognizes the RNA sequences that it must bind. As this site is so small, an 

additional question is how Lin28 is able to efficiently search through the transcriptome 

in order to find such sites within a reasonable timeframe. These are currently the most 

important questions that need to be resolved in order to further the understanding of the 

molecular mechanisms used by Lin28 to achieve its plethora of biological functions. 

Answers to these questions are necessary for advancing the different fields in which 

Lin28 fulfils a vital role, and also in aiding the development of clinically relevant 

inhibitors that could ameliorate the negative carcinogenic and diabetic effects of 

aberrant Lin28 expression.   

1.5.2 Determinants of Dus Enzyme Specificity 

From a structural perspective, the challenge the Dus enzymes face is huge: using the 

same protein fold, they recognise only one or two specific uridines on multiple tRNA 

molecules, where each is structurally similar, but not identical, and diverges 

significantly in sequence. We know so far that the Dus enzymes contain a conserved 

catalytic domain fold, and the catalytic mechanism appears to be conserved not only 

between bacterial enzymes, but between bacteria and yeast. The question that remains, 

therefore, is how do Dus enzymes recognise and modify specific uracil positions across 

tRNAs, and modify them using a conserved mechanism without changing their overall 

fold? The answer to this question will bring insights into how these enzymes function, 

which could potentially be significant in the treatment of NSCLC.  
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1.6 Aims 

The aims of this thesis are to delineate the mechanisms that determine the specificity of 

the human Lin28 and E. coli DusC RNA binding proteins toward their target RNA 

sequences. The main approach used in this thesis combines X-ray crystallography with 

several biochemical and biophysical techniques. The results of these studies should 

answer some of the outstanding questions about these systems, where the generation of 

target specificity is of great importance for function. In addition, the misregulation of 

both systems has been implicated in disease, and so relevant molecular details are 

relevant to human health. 
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Chapter 2 : Materials and Methods 

2.1 Molecular Cloning 

2.1.1 PCR 

The polymerase chain reaction (PCR) is used to amplify specific DNA sequences from a 

larger context. To conduct a PCR reaction, several components are needed: a 

thermostable DNA polymerase, an appropriate buffer solution which contains 

magnesium ions, the template DNA containing the sequence to be amplified, and two 

short DNA oligonucleotides complementary to the regions that flank the sequence to be 

amplified, which are called the forward and reverse primers. Primer design is of utmost 

importance for performing a successful PCR, as they determine where the polymerase 

will begin its activity. In addition, they can be designed to contain extra “adaptor” 

elements, for example a restriction enzyme site, which may aid in future cloning steps. 

Poor primer design can lead to non-specific amplifications, or no amplification at all 

[149].  

A typical PCR has three stages. In the first stage, high temperature (≥92°C) is used to 

melt the double stranded DNA, producing two single strands. The next stage is repeated 

through multiple cycles depending on how much product is required. First, a high 

temperature is used to melt the dsDNA. The reaction mix is then cooled to ~5°C below 

the melting temperature of the primers, which allows them to anneal to the DNA 

strands. The selection of this temperature is critical for determining the specificity of the 

amplification. Finally, the reaction mix is heated to 72°C, the optimum temperature for 

polymerase activity, in order to extend the primers. After several of these amplification 

cycles, a final extension is then used in order to allow the completion of all ongoing 

reactions [149]. 

The necessity for the polymerase to be thermostable comes from the high temperatures 

required to denature the double stranded DNA. Two types of polymerase are used in 
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these reactions, non-proofreading polymerases, such as Taq polymerase, and 

proofreading polymerases, such as Pfu polymerase. The difference here lies in whether 

the enzyme contains an exonuclease domain, which can sense when an incorrect 

nucleotide has been incorporated and remove it, resulting in higher fidelity amplification 

[150].  

2.1.1.1 Standard PCR 

In this project, standard PCRs were conducted using Phusion
©

 proofreading polymerase, 

which consists of a Pfu type polymerase fused with a processivity enhancing domain for 

increased speed and fidelity [142]. Each reaction had a total volume of 20μL composed 

of: 20units Phusion Polymerase (N.E.B), 0.31mM dNTPs, 1-5ng/μL template DNA, 1x 

Phusion Buffer (N.E.B) and 0.5μM forward and reverse primers, topped up with MilliQ 

water. For this PCR, the following cycling conditions were used: 

1. Initial denaturation, 98°C, 3min 

2. Denature, 98°C, 30s 

3. Anneal, 50-60°C, 45s 

4. Extension, 72°C, 30s/kb to be amplified 

5. Repeat steps 2-4 25 times 

6. Final extension, 72°C, 10min 

7. Hold at 4°C 

Products were checked by agarose gel electrophoresis (see Section 2.1.7). To linearise 

the vector by PCR, the same mix and program was used, but the primers were designed 

to amplify the vector outside of the multiple cloning site.  

2.1.1.2 Mutagenesis PCR 

For mutagenesis, the above protocol for PCR by proofreading polymerase was adapted. 

Firstly, overlapping primers of ~30nt in length were designed for the 5’ and 3’ strands 

which were identical to the plasmid sequence apart from the desired mutation. In 
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addition, 3% DMSO was added to the reaction mix. Other than these additions, the same 

mixture and PCR program was followed as in the general case. Before transformation, 

samples were incubated at 37°C for 1 hour with 1μL of 20000 units/mL Dpn1 enzyme 

(N.E.B), to digest template DNA.  

2.1.1.3 Colony PCR 

To check whether transformed bacteria contained the plasmid of interest, colony PCR 

was performed. Typically, the reaction mix with a total volume of 50μL  comprised: 

0.025μL units of DreamTaq polymerase (Fermentas), 0.25mM dNTPs, 1x DreamTaq 

buffer (Fermentas), one colony and 0.2μM forward and reverse primers, made up to the 

total volume with MilliQ water. The program used for amplification was: 

1. Initial denaturation, 95°C, 3min 

2. Denature, 95°C, 30s 

3. Anneal, 50-60°C, 45s 

4. Extension, 72°C, 1 min/kb to be amplified 

5. Repeat steps 2-4 25 times 

6. Final extension, 72°C, 10min 

7. Hold at 4°C 

Products were then checked by agarose gel electrophoresis (see Section 2.1.7).  

2.1.2 Standard Ligation 

To generate constructs, it is necessary to insert DNA sequences generate by PCR into 

vectors containing the factors needed for replication of the DNA and expression of the 

protein. This can be done either through ligation-dependent, or ligation-independent 

means (Section 2.1.3). In the ligation dependent pathway, two steps are necessary. First, 

both the insert and the vector (plasmid DNA in this project) must be digested with 

restriction enzymes in order  to generate complementary “sticky ends” [151]. They must 

then be mixed together in an appropriate ratio, and joined through the action of a DNA 
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ligase enzyme. The new plasmid can then be amplified by transforming bacteria. It can 

then be purified, and used for further applications.  

2.1.2.1 Restriction Digests 

Standard restriction digests were performed in 10μL total volumes. The appropriate 

amount of DNA was digested with 0.5μL of each restriction enzyme (5-10 units in 

total), supplemented with 100μg/mL of BSA and 1μL of a 10X N.E.B buffer, where 

each enzyme would have maximum activity. Volumes were adjusted to 10μL using 

MilliQ water. Once prepared, the solution was mixed using a vortexer, and incubated at 

37°C for 1hr. 

2.1.2.2 Ligation  

Ligations were performed in a 10μL volume, with a three-fold molar excess of purified 

insert, against the gel purified vector (Section 2.1.6). DNA was ligated in 10μL reaction 

volumes comprised 3 units of T4 ligase enzyme and 1x T4 ligase buffer from Fermentas 

and the volume adjusted to the total using MilliQ water. The solution was then 

incubated overnight at 16°C. 5μL was then used to transform 50μL of competent E. coli 

cells (see Section 2.1.8). 

2.1.3 In-Fusion


 Cloning 

In some cases, the In-Fusion


 system of ligation independent cloning (Clontech) was 

used to prepare constructs. In this system, vector was first linearized by PCR, as 

described above. The vector sample was then digested for 1 hour at 37°C using 1μL of 

20000 units/mL Dpn1 restriction enzyme (N.E.B) to remove template DNA.  The insert 

was then prepared using regular PCR, with primers designed to contain an identical 

15bp sequence to the linearized vector. Both insert and vector were purified using PCR 

purification and gel purification respectively (Section 2.1.6). The insert and vector 

sequences were then mixed in a molar ratio calculated by the Clontech In-Fusion molar 

ratio calculator, along with 2μL 5x In-Fusion enzyme premix from Clontech, and made 
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up to a final volume of 10μL with MilliQ water. The mix was then heated to 50°C for 15 

minutes, and 5μL used to transform competent XL-10 Gold E. coli cells for plasmid 

amplification. 

2.1.4 Sequencing  

Sequencing reactions were performed by GATC-Biotech. Samples were prepared to 

contain between 30 and 100ng total of purified plasmid DNA. Sequencing was 

performed in a total volume of 20μL, and using universal primers provided by the 

company.  

2.1.5 Plasmid Purification 

Transformed E. coli cloning strain bacteria were used to inoculate 5mL volumes of LB 

media, supplemented with a relevant antibiotic, and grown overnight at 37°C. The cells 

were harvested by centrifuging the culture at full speed in a desktop centrifuge. Plasmids 

were then purified using QIAGEN miniprep kits, according to the manufacturer’s 

protocol.  

2.1.6 Gel and PCR Purifications 

Purification of digested vectors from agarose gels, and of PCR products was performed 

using with the appropriate kits from QIAGEN, and conducted according to the 

manufacturer’s protocol.  

2.1.7 Agarose Gel Electrophoresis 

It is important to monitor the steps involved in producing a particular construct. The 

most effective way of doing this is to use gel electrophoresis – whereby molecules are 

separated on the basis of their size, shape and charge. Due to the phosphate groups of 

the DNA backbone, all DNA molecules will be negatively charged, and thus migrate 

from a negative electrode to a positive one when an electric field is applied. By placing 
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DNA inside a porous gel, the larger DNA fragments will migrate more slowly than the 

smaller fragments, which can fit more effectively inside the pores of the gel, and so the 

different lengths can be separated when an electric field is applied across the gel. By 

using an intercalating dye, such as SYBRsafe or ethidium bromide, the DNA species 

can then be observed using UV light. It is important to note that several factors other 

than size can also affect DNA migration, such as supercoiling, and these factors must be 

taken into consideration when analyzing results [152].  

Gels were prepared by dissolving solid agarose (Sigma) to a final concentration of 1% 

w/v in 1x TAE buffer and adding SYBRsafe dye (Invitrogen) to a final concentration of 

0.5x. The gel was then left to set at room temperature. Samples were mixed with 

Novagen 6x DNA Gel Loading Buffer at 1x, and loaded into the wells of the gel, which 

was placed in a gel tank filled with 1x TAE buffer. Electrophoresis was conducted using 

a constant voltage of 120V for ~45min. The results were visualized using a Syngene 

bioimager with transilluminator.  

50x TAE buffer (1L): 242g TRIS-HCl, 100mL 0.5M EDTA (pH 8.0), 57.1mL Glacial 

Acetic Acid. 

2.1.8 Transformation of Bacterial Cells 

In order to efficiently amplify constructed plasmids, and also to allow the proteins 

encoded by such plasmids to be expressed, they must first be used to transform relevant 

E. coli strains which contain the additional factors necessary for either process. The 

heat-shock method of transformation was used in each case.  

Bacterial cloning strains used in this project are: DH5α, XL1-blue and XL10-gold. 

Protein Expression strains used were: BL-21 (DE3) pLysS, B834 (DE3), Rosetta (DE3) 

pLysS and Rosetta2 (DE3). Each strain was chemically transformation competent and 

was thawed on ice for 15 minutes from storage at -80°C. Once thawed, 1-5μL of DNA 

corresponding to masses of 1-100ng, were added to the cells, which were left to incubate 

on ice for 30 minutes. Following this, cells were heat-shocked at 42°C for 1 minute, 
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before being cooled on ice for a further 5 minutes. 150μL of LB medium was then 

added to the suspension, which was then incubated for 1hr at 37°C with shaking. The 

cells were then spread onto agar plates supplemented with the relevant antibiotic, and 

left to grow overnight at 37°C.  

2.2 Protein Production and Purification 

Protein expression was controlled by the lac inducible system in all cases. In this 

system, promoters are placed under the control of a lac operator site, to which the lac 

repressor protein will bind and prevent transcription (and subsequent translation). 

Addition of the lactose analog, IPTG (Isoproyl-β-D-thiogalactoside), which cannot be 

metabolized, will prevent the repressor from binding the operator, and thus de-repress 

the expression of the recombinant protein encoded by the plasmid [153].  

The timing of induction is important for obtaining maximal yields of protein. If induced 

too early, such as in the lag phase, cells will focus expressing the construct rather than 

growth, and, if induced too late, such as in the stationary phase, cells will be limited by 

the resources available to them. It is therefore useful to compromise and induce during 

the log phase, usually when the optical density (OD) of the culture is roughly 0.6.  

Some expression strains contain extra elements to increase the efficiency of protein 

production. If the expression strain transformed have a DE3 positive genotype, and the 

construct used for transformation encodes a T7 promoter upstream of the sequence to be 

expressed, then the T7 RNA polymerase will transcribe this sequence rather than the E. 

coli RNA polymerase. In this case, addition of IPTG induces the expression of the T7 

polymerase, which in turn will transcribe the recombinant gene sequence. As the T7 

polymerase is more efficient than the endogenous enzyme, the expression level of the 

construct will be increased. In addition, only the recombinant gene is under the control 

of the T7 promoter so the T7 polymerase will only transcribe this gene. Therefore, the 

recombinant gene does not have to compete against other sequences for transcription by 

the polymerase [153].  
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In addition to the DE3 element, some bacterial expression strains contain the pLysS 

plasmid, which encodes the T7 lysozyme. This inhibits T7 RNA polymerase until 

induction and hence provides tighter control over when constructs are expressed. 

Rosetta expression strains contain another plasmid that encodes tRNAs that recognise 

codons not frequently used by E. coli, and so increase the translation efficiencies of 

sequences containing these codons. The choice of both plasmid and expression strain are 

therefore key decisions when attempting to produce high yields of recombinant proteins 

[153].  

2.2.1 Expression Testing 

2.2.2 Protein Overexpression 

BL-21 (DE3), pLysS, B834 (DE3), Rosetta (DE3), pLysS and Rosetta2 (DE3) strains 

were used to express constructs. 5mL of LB medium supplemented with a relevant 

antibiotic, was inoculated with a transformed colony, and grown overnight at 37°C. 

60μL of overnight culture was then used to inoculate 3mL of LB medium supplemented 

with the relevant antibiotic. These cultures were grown at 37°C till OD600 ~0.6 when 

they were induced with IPTG at a final concentration of 1mM. After induction, the 

cultures were grown for either 4 hours at 37°C, or overnight at 16°C. 1mL samples of 

culture were taken before induction and after expression and centrifuged at maximum 

speed in a bench top centrifuge. The supernatant was removed, and the cell pellet 

resuspended in 100μL of test buffer. The sample was then sonicated using 3x 0.8s pulses 

at full power, and a 10μL sample taken for SDS-PAGE analysis. The remainder of the 

sample was centrifuged at maximum speed in a bench top centrifuge and a 10μL sample 

removed from the supernatant to analyse the soluble protein fraction by SDS-PAGE. 

E. coli expression cells (B834/Rosetta2) were transformed with the relevant construct. 

Selected colonies were grown in small culture volumes (10 or 50mL) in LB media with 

relevant antibiotic overnight at 37°C. 10-12.5mL of overnight culture was then used to 

inoculate 750ml of LB media supplemented with relevant antibiotic. These larger 

cultures were grown to an OD600 of ~0.6 when they were induced with 1mM IPTG. 
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After induction, cultures were grown overnight at 16°C. Finally, cells were harvested by 

centrifugation at 5000 x g and either stored at -20°C or used immediately for 

purification.  

2.2.3 Standard Purification Procedure 

Once proteins have been overexpressed, it is necessary to purify them from endogenous 

E. coli proteins. Therefore, techniques are chosen that separate out proteins based on 

their chemical properties, such as size, shape and charge.  

The initial stage in a purification is usually affinity chromatography, as it is an efficient 

way to remove many contaminants from the sample in one step.  Proteins are often 

conjugated to a tag that will bind specifically, but reversibly, to a stationary phase. 

Immobilized protein can then be washed with buffer to remove weakly bound 

contaminants before elution. In this way, the lysate can be selectively depleted of the 

protein of interest, which is then further purified from any remaining contaminants by 

other methods, such as size exclusion chromatography (gel filtration), which retards the 

motion of smaller species, enabling the separation of proteins based on their size and 

shape.  

Standard His tagged proteins were purified as follows. Cell pellets were resuspended in 

lysis buffer with the addition of 0.5μg/μL leupeptin, 0.7μg/μL pepstatin and 1mM 

AEBSF as protease inhibitors. The solution was then left at 4°C for ~20 minutes. To 

lyse the cells, the solution was sonicated at 16μm amplitude for 30s, before a 2-minute 

rest on ice to prevent heating of the sample. To clear the lysate of cellular debris, the 

sample was centrifuged at maximum speed in a Sorvall centrifuge, SS34 rotor, for 50 

minutes. A 5mL HisTrap column (GE Healthcare) was then equilibrated using 5 column 

volumes (CV) of MilliQ water, followed by 2CV of Elution buffer, and 5CV lysis 

buffer. The lysate was then loaded onto the column using a peristaltic pump at a low 

flow rate and the flow through collected. The column was then attached to an Äkta 

FPLC purifier, and the column washed with 6CV lysis buffer. A gradient of elution 
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buffer, from 0-100% over 11CV was then applied to the column and elution of the 

protein detected using UV absorbances at 260 and 280nm.  

Fractions containing the protein of interest were then checked by SDS-PAGE and  

concentrated using Amicon concentrators with a relevant molecular weight cut-off 

(MWCO, usually either 10kDa or 30kDa) to a final volume of <0.5mL. A gel filtration 

column, containing either superdex S75 or S200 resin as the stationary phase (GE 

Healthcare), was then equilibrated in gel filtration buffer. The sample was applied to this 

column and eluting protein again detected by 260nm and 280nm UV absorption. 

Appropriate fractions were again tested by SDS-PAGE and concentrated, before flash-

freezing small aliquots in liquid nitrogen and storing at -80°C. 

To produce several of the proteins in this study, this protocol was modified. For more 

details, see Chapter 3.  

Lysis Buffer: 50mM TRIS-HCl pH 7.5, 250mM NaCl, 20mM Imidazole, 2mM DTT 

Elution Buffer: 50mM TRIS-HCl pH 7.5, 250mM NaCl, 500mM Imidazole, 2mM DTT 

Gel Filtraion Buffer: 10mM TRIS-HCl pH 7.5, 250mM NaCl, 2mM DTT 

2.2.4 SDS-PAGE 

SDS-PAGE was used to monitor purification processes. Unlike DNA, proteins have no 

standard charge and their shapes have more variation. To overcome this problem, 

sodium dodecyl sulphate (SDS), along with a reducing agent such as β-mercaptoethanol 

or DTT, is added to the samples, which are subsequently boiled. This causes the proteins 

to denature, and the negatively charged SDS then associates with the polypeptide 

proportionally to the length of the polypeptide chain. This results in denatured, 

negatively charged polypeptides which can then migrate through a gel (in this case 

composed of polyacrylamide) towards the positive electrode when an electric field is 
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applied. The polypeptides migrate at speeds proportional to their size and charge and so 

will separate out, and can be visualized by using protein sensitive dyes.  

Most SDS-polyacrylamide (SDS-PAGE) gels use a discontinuous buffer system to 

improve resolution. A porous “stacking” gel sits atop a less porous “resolving” gel, each 

containing a different buffer composition, which also differs from that of the running 

buffer that the gel is placed into. In the buffer system used in this study, the chloride 

ions of the gel buffers migrate more quickly through the stacking gel, with the glycine of 

the running buffer trailing behind, and the protein samples in the middle of the two. At 

the boundary between the stacking gel and the resolving gel, the polypeptides become 

stacked, and are present in high concentration within a thin region. At this position, the 

pH of the buffer system also changes and causes the glycine to ionize and enter the 

resolving gel at the same speed as the chloride ions, and the two migrate together.  The 

protein samples are then free to migrate through the stacking gel as a continuous band in 

a zone of constant voltage, and thus be separated based on their size [154].  

Stacking gels were produced by mixing 3.2mL MilliQ water with 1.3mL stacking 

buffer, 0.5mL 30% acrylamide, 25μL 10% APS and 8μL TEMED, as well as 10μL 

0.01% w/v Bromophenol blue for visualization of the gel.  Resolving gels were made to 

12.5% and were composed of 3.2mL MilliQ water, with 2.5mL resolving buffer, 4.2mL 

30% acrylamide, 75μL 10% APS and 8μL TEMED. The set gels were placed in a gel 

tank filled with gel running buffer. Samples were mixed with SDS sample buffer, heated 

to 98°C for 5 minutes, centrifuged at maximum speed in a benchtop centrifuge for 1 

minute and added to the gel wells by pipette. Electrophoresis was performed using a 

constant voltage of 200V for ~50min. Protein bands were detected by staining the 

resolving gel with hot coomassie blue staining solution for 1-2 minutes, before washing 

with water, and left in hot destain solution overnight. The gels were then imaged using a 

Syngene Bioimager.   

4x Sample Buffer (10mL): 1.2mL 0.5M TRIS-HCl (pH 6.8), 2mL 10% SDS, 1mL 50% 

glycerol, 1mL 0.5M  0.1% w/v Bromophenol blue, 1mL 0.5M β-mercaptoethanol, 

4.8mL deionised water.  
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Stacking Gel Buffer: 0.5M TRIS-HCl (pH 6.8), 0.4% SDS 

Resolving Gel Buffer: 1.5M TRIS-HCl (pH 8.8), 0.4% SDS 

Gel Running Buffer (500mL): 125mL 4x Running Buffer Mix, 370mL deionized water, 

5mL 10% SDS 

4x Running Buffer Mix (10L): 576g Glycine, 120g TRIS-HCl,  

Staining Solution (1L): 250mL Propan-2-ol, 100mL Glacial acetic acid, 650mL 

deionised water, 2g Coomassie Brilliant Blue R dye.  

Destain Solution (5L): 250mL Propan-2-ol, 350mL Glacial acetic acid. 

2.2.5 Native PAGE 

Native poly-acrylamide gels were made to 10% by mixing 3.3mL 30% acrylamide with 

2.5mL 5x TB buffer, ~75μL 10% APS, 8μL TEMED and 4.1mL MilliQ water. The gel 

was paced in a gel tank filled with 0.5x TB buffer. Samples were supplemented with 

10% glycerol and added into the wells by pipette. Electrophoresis was conducted by 

using a constant voltage of 80V for between 80 minutes and 2 hours. During this time, 

the gel tank and buffer system were cooled using a flow of water. To visualize nucleic 

acid bands, the gel was first placed in a solution containing 50mL 0.5x TB buffer 

supplemented with 2μL 10mg/mL Ethidium Bromide and left to stain for 20 minutes. 

The gel was then washed with deionized water, and imaged using UV light in a Syngene 

Bioimager with transilluminator. Following this, protein bands were visualized by 

staining the resolving gel with hot coomassie blue staining solution (see Section 2.2.4) 

for 1-2 minutes, before washing with water, and left in hot destain solution (see Section 

2.2.4) overnight. The gels were then imaged using a Syngene Bioimager.  

5x TB buffer (1L): 54g TRIS-HCl, 27.5g Boric Acid. 
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2.3 Biochemical Methods: Differential Scanning Fluorimetry 

Differential Scanning Fluorimetry (DSF), also called the Thermofluor assay, uses 

changes in the fluorescence intensity emitted from a dye to measure protein unfolding. 

The basis for this fluorescence change is due to the change in environment of the dye. 

The dye of choice for these experiments is called SYPRO® orange, which has the best 

signal to noise ratio. Its fluorescence is quenched in an aqueous environment, but 

increases greatly in a hydrophobic environment. This means that, when a protein unfolds 

with increasing temperature and the hydrophobic core is exposed, the dye can associate 

with these hydrophobic regions. This results in an increase in fluorescence intensity at 

the maximal emission wavelength. Therefore, protein unfolding with temperature can be 

measured as a function of the increase in fluorescence intensity at 610nm, which is the 

emission maximum of the SYPRO
®
 orange dye. The experiment can be conducted in a 

Q-PCR machine, which can both change the sample temperature, and conduct the 

fluorescence measurements. This means that samples can be prepared either in standard 

PCR tubes, or in 96-well plates [155].  

The most useful property to obtain from these experiments is the melting temperature of 

the protein (Tm), which provides information about the stability of the protein as it is the 

point at which the concentrations of folded and unfolded protein are equal. The binding 

of a ligand to protein tends to cause an increase in the Tm, in a manner dependent upon 

the concentration of the ligand, and also the affinity of the protein for the ligand [155, 

156]. Therefore, ligand binding can be measured as a function of the increase in melting 

temperature of the protein when ligand is added in identical conditions. It is important to 

note, however, that it is difficult to make comparisons of the affinity between different 

ligands based solely on the change in Tm, as different modes of binding will produce 

different ΔTms due to the different relative contributions of the entropic and enthalpic 

factors that govern the stability of the complex. Similarly, the same change in melting 

temperature could be obtained by different binding mechanisms. Therefore, ligands 

bound with similar affinity might result in different ΔTms, and ligands bound with 

different affinities might be bound with similar ΔTms [155].  
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The Tm can be defined either by the midpoint of the fitted curve, or by the inflection 

point. The curves produced in DSF experiments are most often fit to the Bolzmann 

equation (Equation 1) in order to determine the Tm, which in this case is equal to both 

the midpoint of the curve, and the inflection point. However, a better fit to the curves 

can be obtained by introducing an extra parameter, known as the asymmetry factor c, 

into the equation, which was then called the sigmoid-5 equation (Equation 2) [157]. In 

this equation, the Tms derived from the inflection point and midpoint were found to be 

different, with the inflection point determination returning higher values. The DSF 

curves produced in this study were fitted to the sigmoid-5 equation  [157] using the 

freely available MTSA program for the Matlab software package (Mathworks), and the 

Tms reported here correspond to the Tm values defined by the inflection point.   

Equation 1:            
       

    
    

  
 

Where γ(T) is the fluorescence at a particular temperature, min is the minimum 

fluorescence value and max is the maximum fluorescence value. Tm is the melting 

temperature of the protein and a is the Hill slope of the curve. 

Equation 2:            
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Where the parameter values are the same as in Equation 1, with the addition of the 

asymmetric operator c. In this case, the inflection point is defined by Equation 3. 

Equation 3:    

          
 

 
  

2.4 Biochemical Methods: Fluorescence Anisotropy 

Fluorescence anisotropy uses linearly polarized light to provide information on how 

quickly a particular fluorophore is rotating in solution. For the study of biomolecular 
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interactions, the fluorophore is attached onto a particular component, such as a protein 

or synthetic RNA. Vertically polarized light, with a wavelength similar to the maximum 

excitation wavelength of the fluorophore, is then used to excite the fluorophore. The 

fluorophore will then emit polarized light in the same direction, the insensity of which 

can be measured by passing the emitted light through a vertical polarizer before 

detection. However, the fluorophore and attached molecule will rotate and tumble in 

solution, due to Brownian motion, and this alters the orientation of the emitted light, 

meaning it becomes depolarized. The property anisotropy (r) is therefore defined as the 

ratio of the intensity of polarized light in the vertical direction, compared to the total 

light intensity. The total light intensity is measured by using a vertical polarizer for 

excitation of the fluorophore, and a horizontal polarizer for the emission detector. 

Anisotropy is therefore mathetically defined in Equation 4: 

Equation 4:  

  
       

        
 

where Ivv is the emission intensity using vertical polarisers for both excitation and 

emission, Ivh is the emission intensity when using a vertical polarizer for excitation and a 

horizontal polarizer for emission. Here, the total light intensity is defined as Ivv+2Ivh to 

account for the intensity of light in all three axes (x, y and z), where the two horizontal 

axes are symmetrical [158].  

The anisotropy term is useful for biochemical applications as in a dilute, non-viscous 

solution, its defining property is how quickly the molecule is rotating in solution. This is 

itself dependent on the size and shape of the fluorophore, so that a fluorescently tagged 

RNA on its own will have a lower anisotropy than the same RNA when bound by a 

bulky protein. A complex which has a larger mass and radius will rotate more slowly in 

solution, so it will cause less depolarization and have a higher anisotropy reading – that 

is, the vertically polarized component will be larger relative to the total light intensity 

for the complex compared to the free fluorescent ligand. Therefore, binding can be 
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studied as a function of the increase in the anisotropy of the fluorescent component 

when the concentration of the non-fluorescent component is increased [158].  

There are two instrumental setups that can be used to measure anisotropy, known as the 

L-format (Fig. 2.1) and T-format (Fig. 2.2) setup. These are named after the paths the 

excitation and emission waves travel, so that in an L-format the emission intensities are 

measured perpendicular to the direction of the incoming excitation beam, with the T-

format looking similar but with the addition of an extra detector on the opposite side of 

the spectrometer to the first emission detector. In the L-format, only one intensity can be 

measured at a time, and so the polarizers are automated to move between vertical and 

horizontal positions. In this case, an extra factor, called the G factor, has to be 

introduced to account for differences in instensity caused by the different transmission 

effecicences of the horizontal and vertical polarizer orientations. The G factor can be 

defined as such: 

Equation 5:    

          

so that it is calculated using the ratio of horizontally and vertically polarized light 

intensities when the excitation beam is horiztonally polarized. This horizontal excitation 

lies in the direction of measurement, and so anisotropy will not be seen and any 

discrepancies between the vertical and horizontal emission intensities must be due to 

differences between the transmission efficiencies in each orientation. For an L-format 

spectrometer, the anisotropy Equation 4 must be modified to account for this variance, 

and so in practice is defined as shown [158]: 

Equation 6:    

  
        

         
 



 

Chapter 2 

88 

 

 

 

For T-format spectrometers, no polarizer movement is needed, and so it is not necessary 

to involve the G factor. Instead, it is important to ensure that the gain on each emission 

detector is set accurately. The gain of each channel is therefore calibrated against the 

free fluorophore, and set so that the polarization (which is related to anisotropy) of the 

free fluorophore is equal to a previously determined value (e.g. 35mP for Fluorescein).  

 

Veritcal Emission/ 

Horizontal Emission 

 

Vertical Excitation 

Vertical Emission 

Horizontal Emission 

Vertical Excitation 

Figure 2.2: Top down view, T-format spectrometer.  

The sample is shown in the cuvette in the centre. The excitation laser source is shown on the left as a circle. 

Light directions are depicted as arrows, and polarizer conformations noted. 

Figure 2.1 Top down view, L-format spectrometer.  

The sample is shown in the cuvette in the centre. The excitation laser source is shown on the left as a circle. 

Light directions are depicted as arrows, and polarizer conformations noted. 
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2.4.1 Data Fitting 

The fluorescence anisotropy experiments result in ligand binding curves where the 

anisotropy increases with protein concentration until the binding is saturated and 

maximal binding is achieved (Bmax). In order to describe the affinity of ligand binding, 

a property called the dissociation constant (Kd) is often calculated. The Kd of an 

interaction is the ratio of the product of the concentrations of the individual components 

of a complex to the concentration of the complex at equilibrium; and by extension is 

also the ratio of the rate of the reverse reaction (complex dissociation) over the forward 

reaction (complex formation) so that for the system: 

[ ]   [ ]   [  ] 

where species A and B interact in a 1:1 stoichiometric ratio to produce complex AB, 

Equation 7:              
[ ][ ]
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where Ka is the association constant, the reciprocal of Kd. The total amount of A in a 

particular experiment ( [AT]) is present in both bound AB and unbound A states so that 

Equation 8:                      [  ]  [ ]   [  ] 

and so the bound fraction of A can be defined by combining Equations 7 and 8 to show: 

Equation 9:           
[  ]
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If the total concentration of B is in a large excess of A, [Bfree ] ≈ [Btotal]. In such a system 

therefore, the curve obtained from a binding experiment can be fit by Equation 10, 

where y is equal to the fraction of bound ligand. 

Equation 10:              
     [ ]

   [ ]
 

kfor 

krev 
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where y is the fraction bound when the concentration of protein is equal to [x] and Bmax 

is value at which all free ligand is bound (where the curve plateaus) [159]. To accurately 

fit data from a fluorescence anisotropy experiment, an extra term must be introduced as 

the minimum anisotropy (that of the free fluorescent ligand), is not zero. This results in 

a modified form of Equation 10, shown below: 

Equation 11:                     
             [ ]

   [ ]
 

The anisotropy, y, is directly related to the fraction of ligand bound, Amax is the 

maximum anisotropy and Amin the minimum anisotropy. The values of Kd, Amax and 

Amin can be obtained by fitting this equation to the data by non-linear regression using 

an appropriate software package.  

One problem with Equation 11 is that it does not take into account the difference 

between [Btotal] and free [B]which may make it non-ideal for accurately fitting data and 

deducing Kd values from experimental data. Using the same principle as in Equation 8, 

we can substitute [B] for [BT]. From this equation a quadratic equation can be derived 

which more accurately describes the system in question [159]:  

Equation 12:             [  ]   [  ]  [  ]     [  ]  [  ][  ]     

Therefore: 

Equation 13:  [  ]  
( [  ] [  ]     √ [  ] [  ]       [  ][  ])

 
 

Similarly to Equation 10, this equation can then be further modified by the addition of 

several other parameters that take into account properties in the fluorescence anisotropy 

system. Initially, both sides are divided by [AT], to obtain the fraction of bound 

fluorescent ligand. Next, the term Amin, which reflects the anisotropy of the free ligand, 

is introduced as it is a non-zero value.  This term allows the fit to start from the first data 

point, which will have the minimum y value. The whole equation is then relativized by 
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introducing the maximum anisotropy value, Amax. This results in the below equation, 

where [AT] is referred to as c, [BT] is referred to as [x], and y is equal to the anisotropy at  

[x], which is related to the fraction of bound ligand: 

Equation 14:                    
(   [ ]     √   [ ]        [ ])

  
 

Equation 14 was used for the final data fitting procedures to produce accurate fits of the 

data. It is important to note, however, that this equation only applies to complexes with 

1:1 stoichiometry, and does not take into account multiple binding sites. 

2.5 Biochemical Methods: SEC-MALLS 

The oligomeric state of a protein:RNA complex can be determined from the molecular 

mass, which is measured using size-exclusion chromatography, coupled to a multiple 

angle laser light scattering array (SEC-MALLS).  

SEC-MALLS determines molecular weight by measuring how light responds when 

interacting with macromolecules. An incident light wave will scatter when encountering 

a macromolecule, where the intensity of the scattering at a particular scattering angle is 

proportional to the molecular weight of the species [160]. In addition, the intensity is 

proportional to concentration of scattering entities in solution, i.e. the more molecules in 

solution, the greater the amount of scattering [161]. As molecules move in solution by 

Brownian motion, scatterers that are not joined together (as in, moving together in 

solution) will scatter waves which are out of phase with each other, meaning the 

intensity is less than completely additive. Conversely, when two molecules are joined in 

a higher order state, such as a dimer or aggregate, their waves will be coherent and 

scatter in phase, making their intensities additive. Therefore, for a given concentration 

of macromolecule, higher order oligomeric states will scatter light to an intensity that is 

multiple of the intensity of the monomer, equivalent to the oligomeric state, so a dimer 

will have scattered light of twice the intensity as the monomer [161]. Once it is known 

how a species refracts light (known as the specific differential refractive index, or dn/dc 
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value, 0.186 for proteins [162]), its concentration (gained by refractometry 

measurements) and the light scattering intensities at different angles, the molecular 

weight of the species can be deduced [163]. This is done by fitting the results to the 

Rayleight-Debye-Gans equation adapted by Zimm [160, 163] using the ASTRA 

software package [163].  

Equation 15:   
   

      
 

 

      
       

Here, c is concentration of the species, Mw the average molecular weight of the species, 

P(θ) the angular dependence of the scattered light, A2 is the second virial coefficient in 

the virial expansion of osmotic pressure (which accounts for non-ideal solutions) and 

R(θ,c) the excess Rayleigh ratio at an angle θ and concentration c, which is directly 

proportional to the amount of extra intensity of the light scattered by the species over the 

solute. K* represents a constant  [160, 163] defined as shown: 

Equation 16:                
          

where Na is Avogadro’s number, n0 is the refractive index of the solvent and λ0 is the 

wavelength of the incident light in a vacuum. 

The role of the size exclusion column in SEC-MALLS experiment is therefore to 

separate molecules based on their size before each fraction reaches the MALLS 

instrumentation. This is useful as if multiple species enter the detector together, the 

reading is for the average molecular weight (as detailed in Equation 17). Therefore the 

elutant species are separated out into peaks containing molecules of similar sizes and 

shapes. The sample purity and resolution of separation are therefore of utmost 

importance for acquiring accurate results.  

Another factor which must be considered is which dn/dc value is chosen for molecular 

weight determination [160]. Whilst there are set values for protein and nucleic acids, the 

exact values for protein-nucleic acid complexes will be different as they are a mix of 
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these two species and so will have an intermediate dn/dc value, dependent on the 

relative sizes and stoichiometries of the components in the complex.  

2.6 Structural Methods: X-ray Crystallography 

Due to accuracy of structural information, X-ray crystallography is often the method of 

choice in structural biology. When molecules arranged in a crystal lattice are illuminated 

with an X-ray beam, the X-rays will be scattered by the electrons surrounding each 

atom. This is known as diffraction [164].  

Scattering of X-ray photons can occur either coherently or incoherently. In coherent 

scattering, once the photon has been absorbed by the atom, another photon of the same 

wavelength and frequency is emitted. Conversely, in incoherent scattering, several lower 

energy photons (i.e. lower frequency, longer wavelength) are released instead. This can 

cause the release of energy in the molecule, which damages it [164].   

In a 3D crystal lattice, the molecules are arranged in a repetitive fashion. The unit cell is 

the space containing the minimum number of atoms from which the entire crystal can be 

built by translational repetition. Moving along the crystal by the entire length of one of 

the edges of the unit cell will result in a unit cell that is indistinguishable from the one 

seen before the movement took place. The edges of the unit cell in real space are given 

the dimensions a,b and c [164].  

There are therefore planes within the lattice where the points from each unit cell are 

equivalent, called Bragg planes. The position of these lattice planes are denoted by the 

miller indices h, k and l, one for each dimension a, b and c. The integer value of each 

index is a fraction of an edge of the unit cell, so that h = 1 is the lattice plane between 

unit cells, h = 2 is the lattice plane which bisects the unit cell axis a in half, h = 3 is the 

lattice plane that cuts the unit cell axis a into thirds, etc [164].  

The angles at which the waves diffracted from a set of lattice planes are all in phase are 

related to the distance between the different planes and the wavelength of the incident 
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beam. The Bragg equation (Equation 17) shows that for the scattered waves to be in 

phase, the path difference between the waves scattered from each lattice plane must be 

an integer (n) number of wavelengths (λ), and so the scattering angle θ will change 

depending on the distance (d) between the planes (Fig. 2.3) [164]: 

Equation 17:                   

 

 

 

Waves that diffract from atoms on the Bragg planes will scatter completely in phase, 

and atoms located half way between the planes will scatter completely out of phase, 

cancelling out the scattered beam. Atoms in other positions between the planes will 

scatter X-rays out of phase by an amount dependent on the distance between the atom 

and the nearest plane. The phase of the scattered wave therefore contains information on 

the position of atoms within the planes [165].  

When the conditions for diffraction from a particular set of Bragg planes are met, then 

diffraction is multiplied, as each plane scatters in phase, and a reflection can be 

visualized on a detector. Reflections are referred to by the miller indices of the Bragg 

planes from which the wave that produced the spot diffracted [165].  

dh,k,l d2h,2k,2l 

 

  

θ 

Figure 2.3: Diagram representing Bragg’s law, which relates the path length and scattering angle from 

difference lattice planes to a whole number of wavelengths.  

Here, lattice planes are spaced either h,k,l or 2h,2k,2l apart. The difference in path length between the lattice 

planes is a whole number of wavelengths, meaning the scattering angle changes depending on the distance, d, 

between the planes, according to Equation 17.  
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The phase difference between the incident wave and the diffracted wave is dependent on 

the dot product of the vector describing the position of a set of electrons (r) relative to 

the origin, and the diffraction vector (s), which lies perpendicular to the Bragg planes 

and is equal to 1/d. This makes the phase difference equal to 2πs∙r (Fig 2.4) [165].  
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Figure 2.4: Definition of the diffraction vector, s.  

The vector describing the incident X-ray is termed k0, with a magnitude of 1/λ, which diffracts from the Bragg 

planes with an angle of θ to give a beam vector of k with the same magnitude. A wave diffracting from electron 

r between the planes will have the incident vector k0∙r and the diffracting wave vector k∙r. The phase difference 

between is -2π(k0∙r - k∙r) which equals 2π(k - k0)∙r. If s = k - k0, then the phase difference is 2πs∙r. s lies 

perpendicular to the Bragg planes and has a magnitude of 1/d, where d is the spacing between the Bragg 

planes. 

 

Each diffracted wave can be described by a structure factor, which is a complex number 

containing information on the amplitude and phase of the wave. The structure factor that 

would define diffraction from a single electron, at position r [165] is as follows: 

Equation 18:                          [      ] 

where the diffracted wave has an amplitude of 1e and a phase of 2πis∙r. For multiple 

electrons present at different points within a set of planes, the equation is extended as 

follows for j electrons [165]: 

Equation 19:                 ∑    [       ]  
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By considering the positions of the electrons within the Bragg planes as a continuous 

function, known as electron density, the above equation can be modified  [165] as such: 

Equation 20:          ∫          
   [      ]    

This structure factor represents the fourier transform of the electron density within a set 

of Bragg planes [165]. In order to determine the position of electron density within a 

unit cell, it is useful to think in terms of reciprocal space [166]. The unit cell in 

reciprocal space is defined by axes taking the form of the three diffraction vectors that 

result from the Bragg planes in real space. a* is perpendicular to planes b and c, b* is 

perpendicular to ac and c* is perpendicular to ab. The unit cell axis a* is the diffraction 

vector from the 1 0 0 planes and its length is the reciprocal of the distance between each 

set of bc planes. In reciprocal space, the diffraction vector, s [166], is defined as: 

Equation 21:                   

Where h, k and l are the miller indices of the Bragg planes. In this system, for the 

reflection h,k,l = 1 0 0, s = a*, etc. In terms of real space, a position in the unit cell can 

be defined by fractions of the unit cell axes in three dimensions [166], as follows: 

Equation 22:                

where x, y and z are fractional distances and a, b and c are the real space axes of the unit 

cell. It follows that the vector product of s and r [166] is: 

Equation 23:                                 

This can be simplified  [166] to: 

Equation 24:                  
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By incorporating this into the structure factor equation above (Equation 20), the 

relationship between electron density and its position in terms of fractional unit cell 

coordinates can be established [166]: 

Equation 25:           ∫             
   [             ]       

The structure factor can also be described in atomic terms with the atomic scattering 

factor, f [166]. This factor describes the scattering amplitude of different atoms and is 

dependent on the Bragg angle of the X-ray beam, and the atomic number of the atom 

[167]. The structure factor in atomic terms is described below for the j
th

 atom [166]: 

Equation 26:             ∑            [   (           )] 

Simplifying this equation, for a reflection hkl, the structure factor is described [164] as: 

Equation 27:             |    |        [     ] 

where |Fhkl| is the amplitude of the wave and Φhkl is the phase. The distribution of 

electron density across the unit cell can then be determined by the summation of 

all observed structure factors  [164] as follows: 

Equation 28:           
 

 
∑             [              ]    

where V is the volume of the unit cell. Electron density is calculated for each 

coordinate, defined by X,Y and Z, in the unit cell, These coordinates are defined in 

Equation 31 [164]: 

Equation 29:                           

However, due to the position of the crystal relative to the beam, not all planes will be in 

the diffracting position. It is therefore necessary to rotate the crystal in order to measure 

the intensity of all possible reflections so that the electron density map can be 
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calculated, and 3D model built [164]. As all unit cells that are being exposed contribute 

to the diffraction, the few molecules that have radiation damage and regions of disorder 

will be averaged out by the intact ordered regions within the crystal (providing they are 

in excess).  

2.6.1 The Phase Problem 

The major problem facing crystallographers is that information about relative phases of 

individual reflections cannot be experimentally measured. Therefore, phases must be 

determined by alternate methods in order to produce an electron density map. This can 

be done either by using the anomalous scattering of heavy metal atoms, or by using 

information from similar protein molecules for which structures have already been 

determined, in a process known as molecular replacement [164].  

Once an estimate of the phases has been obtained, a model can be built. However, as the 

model is an interpretation of the electron density map, it may not be entirely accurate 

and must be checked and corrected. Therefore, an inverse Fourier transform is 

calculated from the model, so that the calculated structure factor amplitudes (from the 

model, |Fcalc|, |Fc|) can be compared to those derived experimentally from the diffraction 

experiment (|Fobs|, |Fo|). There are two types of electron density maps used for model 

building: the Fo-Fc map, known as the difference density, which is used for identifying 

features observed but not present in the model (or vice-versa) and the 2Fo-Fc map which 

is calculated using experimental amplitudes |Fo| with the addition of the Fo-Fc difference 

for reducing bias. This is necessary as phase information is derived from the model, 

rather than the experimental data, and so the 2Fo-Fc map is used to strengthen the effect 

of the observed data.  In practice, these maps are calculated with the use of additional 

weighting terms, to further reduce bias from model derived phases [164]. 

Once a first model has been built, it must be refined. During this process positions of the 

atoms in the structure are altered to minimize the difference between Fo and Fc while at 

the same time minimising difference between model’s geometrical parameters (such as 

interatomic distances and angles) and their ideal values. This then further improves the 
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calculated phases, and hence the electron density map, which in turn allows a more 

accurate model to be built. The progress of refinement is monitored by calculating R 

(Equation 30) and Rfree (Equation 31) factors [164], shown below: 

Equation 30:     
∑ ||  | |  ||   

∑ |  |   
 

 

Equation 31:         
∑ ||  | |  ||        

∑ |  |        
 

The R factor represents the average difference between the observed and calculated 

structure factor amplitudes as a fraction of an average amplitude. This factor gives an 

estimate of the total amount of error in the model. If the model was completely random, 

the R-factor would be expected to be higher than 0.5. Fully refined models usually have 

R factors of <0.25. A problem with the R factor is that it does not take the bias of the 

model into account, in that, although the refinement process minimizes differences 

between Fo and Fc, it does not directly minimize difference between the true and 

calculated positions of atoms. The Rfree factor is therefore a more useful measure for 

validating models. Typically ~1000 reflections are omitted from the refinement so that 

they do not participate in the process of minimizing the Fo-Fc difference. These omitted 

reflections are used exclusively for calculating the Rfree. The Rfree can therefore be used 

as an unbiased indicator of the validity of the refinement process [164].  
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2.7 RNA sequences and secondary structures 

 

 

Figure 2.5: Sequence alignments of the full human pre-let-7g sequence with the sequences used in this study. 

Fully conserved nucleotides are highlighted in red. The conserved GGAG motif is highlighted by green 

triangles in the first alignment. 

 

Figure 2.6: Lowest energy secondary structure of human pre-let-7g as predicted by MFOLD. 
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Figure 2.7: Two lowest energy secondary structures of P2 let-7g as predicted by MFOLD. 

 

Figure 2.8: Two lowest energy secondary structures of preE-let-7g as predicted by MFOLD. 

The fluorescent variant of this sequence had a 5' conjugated fluorescein fluorophore. 

 

Figure 2.9: Two lowest energy secondary structures of tpreE-let-7g as predicted by MFOLD. The C of the 5' 

terminus was mutated from a G present in the wild-type sequence to strengthen the stem region. 
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Figure 2.10: Two lowest energy secondary structures of let-7gΔ5 as predicted by MFOLD. 

 

Figure 2.11: Two lowest energy secondary structures of let-7gmut as predicted by MFOLD. 

 

Figure 2.12: Two lowest energy secondary structures of dlet-7gΔ5 as predicted by MFOLD. 
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Figure 2.13: Secondary structures of let-7-A1 (top), let-7d (middle) and let-7e (bottom) oligonucleotides used in 

this study as predicted by MFOLD. Each is derived from the human pre-miRNA sequence and the two lowest 

energy structures are shown for each.  
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Figure 2.14: Two lowest energy secondary structures of let-7i as predicted by MFOLD. 

 

 

Figure 2.15: Sequence alignment of the full human pre-mir-363 sequence with the sequences used in this study.  

Fully conserved nucleotides are highlighted in red.  
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Figure 2.16: Two lowest energy secondary structure of human pre-mir-363 as predicted by MFOLD. 

 

Figure 2.17: Two lowest energy secondary structures of mir363 as predicted by MFOLD.  

The fluorescent variant of this sequence had a 5' conjugated fluorescein fluorophore. 

 

Figure 2.18: Two lowest energy secondary structures of mir363 as predicted by MFOLD. 

The fluorescent variant of this sequence had a 5' conjugated fluorescein fluorophore. 
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Chapter 3 : Preparation and Purification of Stable 

Recombinant Lin28 Proteins                                                                                                                                                                                                                                                                        

3.1 Introduction 

To answer the outstanding questions about the structure and function of Lin28, and to 

understand molecular interactions of Lin28 with RNA, structural and biochemical data 

are needed. These approaches require milligram quantities of protein. The aim of this 

chapter is to describe the development of methods that enable the production of Lin28 

protein in large quantities, for use in biochemical assay systems, as well as for the 

determination of the structure of Lin28/nucleic acid complexes by X-ray 

crystallography. 

3.1.1 Recombinant Lin28 proteins aggregate due to non-specific DNA 

contamination 

This section briefly describes experiments performed by Dr. Oleg Kovalevskiey (Antson 

group, unpublished data), revealing the challenges of producing recombinant Lin28 

protein. Initially, Lin28 was expressed from a standard pET28(a) vector in E. coli cells 

and purified by Ni
2+

 immobilized metal affinity chromatography (IMAC). Lin28 

fractions were heavily contaminated with nucleic acid, as determined by the high 

A260/A280 UV absorbance ratio, and eluted in the void volume of a gel filtration column, 

which demonstrated the protein was forming high molecular weight aggregates 

complexed non-specifically with nucleic acid. The same effect was seen with Lin28TT 

truncated termini protein (residues 37-180). The CSD (residues 37-113) could not be 

produced in a soluble form. In contrast the ZnK domain (residues 137-180) did not 

aggregate, and could be purified by Ni
2+

 IMAC/gel filtration. This implies the 

aggregation seen with the full length and truncated Lin28 proteins occurs through the 

CSD. However, gel shift analysis showed no binding of the ZnK to the let-7g terminal 

loop segment. In addition, it could not be determined if the Zn
2+

 ions responsible for the 

fold of the domain were still bound, and so this protein was not deemed suitable for 

further study.  
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Therefore, in order to purify Lin28, nucleic acid would have to be removed. Multiple 

buffer conditions were tested; the concentration of NaCl in the IMAC wash buffer was 

varied, different reducing agents and detergent were added, but nucleic acid remained 

bound in each case. It was then attempted to remove nucleic acid by denaturing and 

refolding the protein. However, dialysis of the purified Lin28 aggregates against buffers 

containing stepwise dilutions of 8M urea resulted in a final protein sample that could not 

bind the let-7g terminal loop RNA, suggesting the protein did not refold correctly. 

To test whether the bound nucleic acid was RNA or DNA, aggregates were probed by 

digestion with RNase free DNaseI, and samples analysed by agarose gel. A smear, 

rather than the high molecular weight band previously seen was observed only following 

digestion with DNaseI. This suggested the nucleic acid causing the aggregation was 

DNA rather than RNA.  

Lin28TT aggregates were then immobilized on Ni
2+

 beads, and incubated with DNaseI. 

Almost no Lin28 protein was eluted, indicating that it is not stable without the presence 

of bound nucleic acid. New strategies were therefore needed to produce sufficient 

quantities of pure Lin28, which would have to take into account three factors: the 

removal of non-specifically bound nucleic acid, the stability of the protein in the 

absence of nucleic, and the maintenance of the integrity of the ZnK domain, which 

could lose bound Zn
2+

 ions, potentially leading to unfolding.  

3.1.2 Large affinity tag fusions can aid protein production 

His-tags are often used to purify recombinant proteins, as they allow simple IMAC 

purification, and, due to their small size, do not tend to interfere with biochemical assays 

or crystallization [168]. Therefore, it is not always necessary to cleave the tag after 

purification. This is advantageous as cleavage can be challenging [169]. In contrast, 

large affinity tags such as glutathione-S-transferase (GST) and maltose binding protein 

(MBP) are often cleaved, as the flexible linker that connects the protein and tag can 

interfere with crystal growth, or, in the case of an NMR approach, make the protein too 

large for structural studies [168].  
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The major advantage of fusion to a large affinity tag is the increase in solubility 

conferred to the passenger protein when conjugated to the C terminus of the tag. It has 

been suggested this effect is due to the recruitment of chaperones to the affinity tag as it 

is translated, which subsequently interact with the passenger protein, stabilizing its 

translation [168, 169]. Large affinity tags have therefore been demonstrated to be 

effective for producing soluble, active passenger proteins [170, 171].  

In addition, large affinity tags can assist in obtaining protein crystals for structural 

analysis. The structures of MBP and GST are known, and it is possible that replicating 

the conditions used in their crystallization could also drive the crystallization of the 

passenger protein, providing it is small enough not to hinder the crystallization process. 

Additionally, the availability of these structures allows fusion protein structures to be 

solved by molecular replacement. In order to take advantage of these properties 

however, the interprotein linker must first be removed or made ridged in order to limit 

the flexibility of the fusion protein, as otherwise this could interfere with crystallization 

[168].  

3.1.3 GST Fusion Proteins 

The GST affinity tag sequence is from the parasite Schistosoma japonicum. The 

biological function of GST protein is to attach the glutathione tripeptide (GSH) to 

electrophilic toxins, preventing damage to the organism. The 2.4Å structure of the 

protein has been determined (Fig. 3.1a), and reveals two subunits of a short αβ N 

terminal domain linked to a larger α helical C terminal domain through a 6-residue 

linker region, arranged in a dimer. The dimer interface is formed by a narrow, 40 Å 

groove lined with polar residues and dominated by two salt bridges between D77/R89 

and E51/R136. Several hydrophobic contacts also stabilize this interaction [172].  
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Figure 3.1: Ribbon diagrams of GST protein alone and a GST fusion with another protein.  

(a) The structure of GST from S.japonicum, The monomers of the dimer are shown in yellow and green. The C 

termini used for fusions are highlighted. PDB code: 1UA5. (b) Structure of a GST fusion with a dynein motor 

domain. The GST dimer is coloured as in (a), with the fused C terminal dynein domains coloured in gold and 

sea-green. PDB code: 4AKG.   
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The majority of GST fusion protein structures are fusions with small domains, as these 

can fit into the gaps between adjacent GST molecules in the crystal [173], but the 

structure of the motor domain of dynein fused to GST demonstrates that this technique 

could also aid the crystallisation of larger proteins (Fig. 3.1b) [174]. Fusing Lin28 or its 

domains to GST could therefore be advantageous. Fusion proteins could be purified by 

glutathione affinity chromatography, which would eliminate the possibility of Ni
2+ 

exchanging with the bound Zn
2+

 ions of the ZnK domain during IMAC, leading to the 

unfolding of the domain. Additionally, the increased solubility conferred by GST may 

assist in keeping the proteins in solution after removal of nucleic acids. Finally, GST 

may act as a driver of crystallization. Furthermore, the structure could be solved by 

molecular replacement with GST. 

3.1.4 MBP Fusion Proteins 

Compared with other affinity tags, MBP has been demonstrated to have a better success 

rate in solubilizing challenging proteins [170, 175] and as a driver of crystallization 

[168]. E. coli MBP is comprised of two globular domains (Fig. 3.2): the N terminal 

domain, and the C terminal domain, which is subdivided into the C1 and C2 domains. 

Both the N and C terminal domains have a central core composed of a 5-stranded β 

sheet with two α helices on one side and three on the other. The two domains are 

separated by a groove, and residues from both domains are required to form the maltose 

binding site. In contrast to GST, MBP is monomeric [176].  
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Figure 3.2: Ribbon diagram of E. coli MBP with bound maltose.  

The N-terminal domain is in blue, the C-terminal domain is in red, and other residues are in grey. Bound 

maltose (sticks) is coloured by atom. PDB code: 1ANF. 

The first structure of an MBP fusion protein was of the ectodomain of the gp21 protein, 

a transmembrane protein involved in human T-cell leukaemia virus type 1 (HTLV1) 

pathogenicity [177]. The purification and crystallization of gp21 had proven 

challenging, as it had low solubility when expressed in E. coli. Fusion of the gp21 

ectodomain with MBP resulted in large quantities of soluble protein. However, crystals 

only grew when the interdomain linker was truncated to three alanine residues, which 

were chosen to stabilize the connection between the MBP C-terminal α-helix and the 

initial helix of gp21. In addition, several charged residues at the MBP C-terminus were 

mutated, to avoid charge-charge repulsion upon trimerization of gp21 [178].  From these 

crystals, the structure was determined to a resolution of 2.5Å  by molecular replacement 

with MBP  [177] (Fig. 3.3a). Importantly, the oligomerisation of gp21 was not inhibited 

by this fusion [177, 178] so biologically relevant conclusions could be made from the 

structure of the fused construct.  
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Figure 3.3: Structures of MBP several fusion proteins.  

(a) Structure of MBP-gp21. The fusion proteins form a trimer through the gp21 passenger protein. gp21 

subunits are coloured in blue and purple. (b) Structure of the MBP-SarR dimer, with SarR coloured in blue 

and purple. (c) Structure of the MBP-MATa1 protein, with MATa1 coloured in purple. MBP proteins are 

coloured in different shades of green and linker regions in red. N and C termini are labelled. Adapted from 

Smyth et al. 2003.  

a 

b 

c 
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Similarly, the structure of SarR, a transcription factor from S. aureus, was also obtained 

through fusion with MBP through a truncated linker [179] (Fig 3.3b). The SarR formed 

a homodimer, and the structure could again be solved by molecular replacement with 

MBP to a resolution of 2.3Å.  

Fusion with MBP was essential for producing crystals of MATa1 protein from yeast, 

which is part of a heterodimer that binds DNA [180]. It was necessary to obtain the 

structure of MATa1 in the absence of DNA and MATa2 (the second part of the 

heterodimer), but no crystals could be obtained, and the levels of protein expression 

were low (0.8mg/L). Fusion with MBP through a five alanine linker, with mutation of 

the charged C terminal MBP residues as before [178], increased protein expression 

levels by a factor of ~38, and greatly increased the chance of crystal formation [180]. 

The structure was solved at 2.1Å and 2.3Å resolution by molecular replacement with 

MBP (Fig. 3.3c).  

These results suggest that the fusion of Lin28 or its domains to MBP could increase 

initial expression levels in E. coli, and maintain protein solubility during purification. If 

the linker region is truncated, the MBP tag could also act as a facilitator of 

crystallisation, and allow structure determination by molecular replacement with MBP.  
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3.2 Materials and Methods 

3.2.1 Cloning and Plasmids: pGP constructs 

GST-Lin28 fusion proteins were produced from a modified pGEX-6p-3 vector (see Fig. 

3.4). Initially, a second BamHI restriction site was introduced by site directed 

mutagenesis at position 894, and the plasmid digested at both sites, purified by agarose 

gel electrophoresis, and ligated with T4 DNA ligase. This removed the DNA sequence 

corresponding to the cleavable linker region in the protein, so that constructs produced 

from this vector have a short, uncleavable linker. The plasmid was named pGP (pGEX 

Prepared). 

The Lin28 sequences were generated by the PCR amplification of a synthetic, codon 

optimized sequence encoding Lin28A from Homo sapiens (accession number: 

NP_078950.1, GeneArt
®

), spanning residues 1-209 for the full length construct, and 

residues 37-180 for the truncated termini (TT) construct. These sequences and the pGP 

vector were then digested by BamHI and either XhoI or SalI restriction enzymes, and 

ligated with T4 DNA ligase to produce the final GST tagged contructs.  
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Figure 3.4: Construction of the GST tagged Lin28 fusion proteins. 

(a) The original pGEX-6p-3 plasmid containing the GST tag. (b) An extra BamH1 restriction site was 

introduced by site directed mutagenesis (c) The fragment between the two BamH1 sites was removed and the 

plasmid ligated. (d) The codon optimized Lin28 sequence amplified by PCR was inserted between the BamH1 

and Sal1 sites to produce the final construct, which on induction would produce the GST-Lin28ATT fusion 

protein. 

 

3.2.2 Cloning and Plasmids: pMBP Constructs 

The plasmid encoding the His-MBP-4A-Lin28TT fusion protein was produced from the 

pETFF_2 vector provided by the York Technology Facility. The sequence encoding 

residues 32-187 of Lin28A from Homo sapiens (accession number: NP_078950.1, 

GeneArt
®
) was amplified by PCR from the synthetic, codon optimized DNA sequence. 

The pETFF_2 vector was linearized by PCR and purified by agarose gel electrophoresis. 

The Lin28 sequence could be inserted into the pETFF_2 vector using the InFusion® 

system and the product transformed into E. coli. 

b a c 

d 
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3.2.3 Cloning and Plasmids: His Tagged Construct 

The plasmid encoding the His-Lin28TT protein was previously prepared by Dr. Elena 

Blagova (Antson group). Briefly, a synthetic, codon-optimised DNA sequence 

corresponding to the Lin28A protein from Homo sapiens (accession number: 

NP_078950.1) was produced by GeneArt
®
, and the sequence spanning residues 37-180 

amplified by PCR and subcloned into a YSBL LIC- vector by Ligation Independent 

Cloning (LIC). 

3.2.4 Protein Expression 

Plasmids encoding Lin28 constructs were transformed into E. coli expression cells. His-

tagged and GST fusion plasmids were transformed into the B834 (DE3) expression 

strain, whereas the His-MBP-4A-Lin28TT encoding plasmid was transformed into the 

Rosetta2 (DE3) expression strain. Expression of the proteins proceeded as detailed in 

Chapter 2. For MBP tagged constructs the LB media was supplemented with 50μM 

ZnCl2. 

3.2.5 GST Fusion Protein Purification 

Cell pellets were resuspended in Lysis Buffer (50mM TRIS pH 7.5, 2M NaCl, 0.5% 

Polyethylenimine (PEI), 10% sucrose, 2mM DTT) and lysates were prepared as detailed 

in Chapter 2.  

Next, to precipitate DNA, the sample was diluted 4x using Salt Free Buffer (50mM 

TRIS pH 7.5, 0.5% Polyethylenimine (PEI), 10% sucrose, 2mM DTT). This reduced the 

NaCl concentration to 500mM and precipitated the DNA/PEI. The lysate was then 

clarified by centrifugation at 26892xg in a Sorvall centrifuge, SS34 rotor, for 50 

minutes.  

To remove excess PEI, solid ammonium sulphate was added slowly at 4°C to a final 

concentration of 60% saturation. The protein precipitate was then collected by 

centrifugation at 26892xg in a Sorvall centrifuge, SS34 rotor, for 50 minutes. The pellets 
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were then resuspended in 50mM TRIS pH 7.5, 150mM NaCl, 10% w/v sucrose and the 

UV absorbance checked to determine if nucleic acid had been removed. The solution 

was then applied to 2x 1mL GSTrap columns (GE Healthcare) that had been connected 

in tandem and pre-equilibrated in the same buffer, using a peristaltic pump connected in 

such a way so that the flow through was reapplied to the column. This setup was then 

left at 4°C overnight. Subsequently, the columns were washed with 8 column volumes 

of the same buffer to elute non-specifically bound proteins. The GST fusion proteins 

were then eluted using buffer containing 50mM TRIS pH 8.5, 150mM NaCl, 2mM 

DTT, 10% w/v sucrose and 50mM GSH. The presence of the eluted protein was then 

verified using the Bradford assay, as GSH absorbs within in the UV region.  

Finally, protein containing solutions were pooled and concentrated before being loaded 

on to a S75 10/30 (GST-CSD) or 26/60 (GST-Lin28A/GST-Lin28ATT) gel filtration 

column (GE Healthcare) equilibrated in 10mM TRIS pH 7.5, 500mM NaCl, 5% sucrose 

and 2mM DTT. The presence of the protein was checked by SDS-PAGE, with relevant 

fractions pooled, concentrated and flash frozen in liquid nitrogen for storage at -80°.  

3.2.6 Purification of MBP tagged proteins 

Cell pellets were resuspended in lysis buffer containing 50mM TRIS pH 7.5, 150mM 

NaCl, 2mM -mercaptoethanol, 50μM ZnCl2 and 20mM imidazole. The cell lysate was 

then prepared as described in Chapter 2, and applied at 4°C to a 5mL HisTrap column 

that had been charged with Zn
2+

 ions.   

The column was washed at a flow rate of 0.1-0.2mL/min with buffer containing 50mM 

MES pH 6.0, 1M NaCl, 2mM -mercaptoethanol, 50μM ZnCl2 and 20mM imidazole at 

4-6°C overnight (~16hrs). Proteins were eluted from the column with a buffer 

containing 50mM MES pH 6.0, 1M NaCl, 2mM -mercaptoethanol, 50μM ZnCl2 and 

500mM imidazole. Fractions were checked by SDS-PAGE and those containing MBP 

fusion proteins pooled and concentrated using 30kDa MWCO concentrators (Amicon).  
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The concentrated eluate was then applied to either a S200 10/30 (His-MBP-4A-

Lin28ATT) or 16/60 (His-MBP-4A-Lin28ATT/His-MBP-4A-CSD) gel filtration 

column (GE Healthcare) equilibrated with buffer containing10mM MES pH6, 1M NaCl, 

2mM -mercaptoethanol and 50μM ZnCl2. Fractions containing MBP fusion proteins 

were pooled and concentrated using 30kDa MWCO concentrators (Amicon). Finally, 

samples were dialysed using a slide-a-lyzer (Pierce) against 2x500mL of buffer 

containing 10mM TRIS pH7.5, 150mM NaCl, 50μM ZnCl2 and 2mM -

mercaptoethanol for the His-MBP-4A-Lin28ATT fusion protein. In the case of the His-

MBP-4A-Lin28ACSD protein, samples were desalted following gel filtration, resulting 

in a final buffer composition of 10mM MES pH6, ~100mM NaCl, 2mM -

mercaptoethanol, 50μM ZnCl2. The protein was then aliquoted, flash frozen in liquid N2, 

and stored at -80°. 

3.3 Results 

3.3.1 Purification of GST-Lin28 Fusion Proteins 

Fusions of Lin28 with GST were generated in order to produce sufficient quantities of 

protein for structural and biochemical analysis. Three constructs were produced, with 

Lin28 fused to GST (residues 1-213) through a single serine linker: GST-Lin28A with 

Lin28A residues 1-209, GST-Lin28TT with Lin28A residues 37-180, and GST-CSD 

with Lin28A residues 37-113.Testing the expression of the GST-CSD fusion protein in 

different bacterial expression strains, as well as at different temperatures, revealed the 

protein was optimally expressed in B834 E. coli cells overnight at 16C. However, 

during a standard purification protocol (GSH affinity column/analytical gel filtration, 

Fig 3.5), only one high molecular weight species was observed, eluting in the void 

volume of the gel filtration column (Fig. 3.5 b,c). Analysis of this fraction by SDS-

PAGE revealed that the major species was GST-CSD, but the A260/A280 ratio of the 

sample was very high, indicating the presence of nucleic acid contaminants. Hence it 

was concluded that, in standard conditions, GST-CSD forms high molecular weight 

aggregates due to non-specific nucleic acid contamination.  
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To prevent this, the aggregated sample was applied to the column again in the presence 

of 1M NaCl. The aggregates were somewhat disrupted, revealing an extended curve on 

the gel filtration profile, but with a high A260/A280 ratio (Fig. 3.5d), indicating that 

nucleic acids had not been removed.  

 

Figure 3.5: Purification of GST-CSD fusion proteins 

(a) SDS-PAGE analysis of fractions eluting from the GSTrap affinity column. Fractions from lanes 4-6 were 

pooled and applied to the analytical gel filtration column shown in (b). (b) gel filtration elution profile of GST-

CSD sample. (c) SDS-PAGE analysis of gel filtration fractions. (d) gel filtration elution profile of GST-CSD 

protein from sample 1 shown in (b) ran in a high salt buffer. Fractions from this gel filtration were too low in 

concentration to visualise by SDS-PAGE. 
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Polyethyleneimine (PEI) is a positively charged compound that binds nucleic acid and 

precipitates it from solution. Cells expressing GST-Lin28ATT were divided up and 

resuspended in buffer solutions containing 0.5M, 1M and 2M NaCl concentrations. Each 

of these aliquots was then further subdivided and different concentrations of PEI added 

to each. Lin28 remained in solution at all concentrations of salt and PEI. The 0.4% PEI 

samples were then desalted by buffer exchange and purified by glutathione affinity. The 

resulting eluates all contained Lin28, but concentrations determined by the Bradford 

assay were much higher than expected from the intensity of the bands seen by SDS-

PAGE. This indicated that PEI was still present, as it strongly interacts with the 

Bradford reagent.  

An optimized procedure was then developed. E. coli expressing GST-Lin28ATT were 

pelleted by centrifugation and resuspended in buffer containing 2M NaCl and 0.5% PEI 

and lysed by sonication. No precipitate appeared as PEI does not bind nucleic acid in 

high salt conditions. Therefore, the solution was diluted in a similar buffer without 

NaCl, until the total NaCl concentration was equal to 0.5M. During the dilution, a 

cloudy white precipitate appeared, and was removed by centrifugation. To remove the 

excess PEI, solid ammonium sulphate was added to 60% saturation. This precipitates 

out all proteins in solution, and the precipitate was collected by centrifugation and 

resuspended in fresh buffer, to produce a protein solution free from the presence of PEI. 

GST-Lin28TT protein remained in solution (Fig. 3.6a) with a UV absorbance of 

A260/A280 ratio ~0.7, showing nucleic acid contaminants had been removed from the 

sample.  

GST-Lin28ATT could then be purified from this solution by glutathione affinity 

chromatography followed by preparative gel filtration, which results in a single major 

peak eluting after the void volume (Fig. 3.6 b,c,d). The fractions containing this peak 

were pooled, concentrated and frozen in liquid N2 for storage. This procedure was hence 

able to remove nucleic acid by disrupting the aggregates and precipitating out the 

contaminants in a two-step process prior to the protein purification steps, and, therefore, 

was used to purify GST-Lin28A (Fig. 3.7) in a similar fashion. 
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Figure 3.6: Purification of GST-Lin28ATT fusion proteins 

(a) SDS-PAGE analysis of the precipitation steps used to remove nucleic acid from the GST-Lin28ATT sample. 

PS – PEI supernatant, PP – PEI pellet, AP – ammonium sulphate pellet, AS – ammonium sulphate 

supernatant. (b) SDS-PAGE analysis of fractions eluting from the GSTrap affinity column. Fractions from 

lanes 3-8 were pooled and applied to the preparative gel filtration column shown in (c). (c) gel filtration elution 

profile of GST-Lin28ATT sample. (d) SDS-PAGE analysis of gel filtration fractions.  
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Figure 3.7: Purification of GST-Lin28A fusion proteins 

(a) SDS-PAGE analysis of the precipitation steps used to remove nucleic acid from the GST-Lin28ATT sample. 

PS – PEI supernatant, AP – ammonium sulphate pellet, AS – ammonium sulphate supernatant. (b) SDS-PAGE 

analysis of fractions eluting from the GSTrap affinity column. Fractions from lanes 3-8 were pooled and 

applied to the preparative gel filtration column shown in (c). (c) gel filtration elution profile of GST-Lin28A 

sample. Elution fractions were analysed by SDS-PAGE shown in (d).  
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3.3.2 Purification of His-MBP-4A-Lin28A proteins 

The GST fusion proteins were useful for initial biochemical tests on Lin28 (see Chapter 

4), but were not optimal for in depth functional investigation. The GST tag necessary for 

maintaining the stability of Lin28 both throughout the precipitation protocol and in the 

absence of nucleic acids, forms a dimer, which limited the use of the fusion protein in 

testing the affinity and oligomeric states of Lin28 complexes. Additionally, as the 

precipitation protocol is a harsh procedure, it could not be determined if the ZnK 

domain was still intact with both Zn
2+

 ions still bound by the protein. Therefore, a new 

method was developed for removing nucleic acid, and a series of MBP tagged fusion 

proteins were produced, which would be more appropriate for biochemical analysis of 

Lin28. An N terminal His tag was added to facilitate purification due to the low affinity 

of MBP for amylose, which limits the effectiveness of purification by affinity 

chromatography [169]. 

Two constructs were generated: His-MBP-4A-Lin28ATT, containing Lin28A residues 

32-187 fused to His-MBP (residues 25-396) through a four alanine linker, and His-

MBP-4A-Lin28ACSD, which contained residues 32-127 of Lin28A fused to MBP in the 

same way.  

Initial expression tests revealed that His-MBP-4A-Lin28ATT (Lin28TT) proteins were 

optimally expressed in Rosetta2 E. coli cells, grown at 16°C overnight. After expression 

in a large scale culture, a standard purification (Ni
2+

 IMAC/gel filtration, Fig. 3.8) of the 

Lin28TT protein was attempted. As with previous constructs, only large aggregates 

could be seen by analytical gel filtration, with a high A260/A280 ratio indicating the 

presence of nucleic acid contaminants (Fig. 3.8 b,c).  
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Figure 3.8: Purification of His-MBP-4A-Lin28ATT. 

(a) SDS-PAGE analysis of the fractions eluting from the Ni2+ IMAC column. T = Total soluble protein, FT = 

column flow-through (unbound protein). Fractions from lanes 5-9 were pooled and applied to the analytical gel 

filtration column shown in (b). (b) Elution profile  from gel filtration column. Elution fractions were analysed 

by SDS-PAGE, shown in (c).  
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To combat this, the purification procedure was modified. The protein was expressed in 

LB media supplemented with 50μM ZnCl2. Following harvesting, the cells were 

resuspended in a mild buffer containing 50mM TRIS pH 7.5 and 150mM NaCl, and 

lysed by sonication. The lysate was then applied to a HisTrap column charged with Zn
2+

 

ions. The column was then washed with buffer containing 1M NaCl in pH6 buffer at a 

low flow rate overnight (~16hrs). This successfully removed the bound nucleic acid; 

when Lin28 was eluted and applied to a preparative gel filtration column, only one 

major peak was observed which had a low A260/A280 ratio of ~0.7 (Fig. 3.9).  

To maintain the integrity of the ZnK domain, media and all buffers were supplemented 

with 50μM ZnCl2. In addition, the use of the Zn
2+ 

IMAC meant that the protein could 

still be purified via its His tag but no Ni
2+

 ions form the column could replace the Zn
2+

 

in the ZnK domain. All steps were performed at temperatures of between 4-6°C to keep 

the protein stable throughout the process. 

This procedure produced stable, nucleic acid-free Lin28 fusion proteins in sufficient 

quantities for biochemical and structural investigation. His-MBP-4A-Lin28ACSD 

(CSD) protein could also be purified by this method (Fig. 3.10).  
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Figure 3.9: Purification of His-MBP-4A-Lin28ATT with long salt wash step. 

(a) SDS-PAGE analysis of the fractions eluting from the Zn2+ IMAC column. T = Total soluble protein, FT = 

column flow-through (unbound protein), W = Wash sample eluting during long salt wash step. Fractions from 

lanes 5-11 were pooled and applied to the preparative gel filtration column shown in (b). (b) Elution profile 

from gel filtration column. Elution fractions were analysed by SDS-PAGE, shown in (c). The box denotes 

fractions pooled and used for downstream applications.  
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Figure 3.10: Purification of His-MBP-4A-CSD. 

(a) SDS-PAGE analysis of the fractions eluting from the Zn2+ IMAC column. T = Total soluble protein, FT = 

column flow-through (unbound protein). Fractions from lanes 4-9 were pooled and applied to the preparative 

gel filtration column shown in (b). (b) Elution profile from gel filtration column. Elution fractions were 

analysed by SDS-PAGE, shown in (c). The box denotes fractions pooled and used for downstream applications. 
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3.3.3 Substitution Method for generating Lin28:nucleic acid complexes 

Another method was developed allowing the quick output of pure, non-aggregated 

Lin28/nucleic acid complexes. A His-Lin28A-TT (residues 37-180) construct with an 

uncleavable His-tag was found to express well in BL-21 cells at 37C for 4 hours (Dr. 

Elena Blagova, Antson group). A large-scale culture of these cells was grown and 

expression of the protein induced. Harvested cells were lysed by sonication and purified 

by Ni
2+

 IMAC (Fig. 3.11a). Eluted His-Lin28A-TT was then split into two parts. One 

part was applied to an analytical gel filtration column (Fig. 3.11b), whilst let-7gΔ5 RNA 

was added in a 1:1 molar ratio to the other part. The resulting mixture was concentrated, 

and left overnight at 4°C before application to the same analytical gel filtration column 

(Fig. 3.11c). The results showed that His-Lin28A-TT without added nucleic acid formed 

solely high molecular weight aggregate species, which elute at void volume (Fig. 

3.11b), as before. However, when the RNA was added, an extra peak eluted much later 

than the aggregates (Fig. 3.11c). The high A260/A280 ratio confirmed that nucleic acid 

was present in this fraction and SDS-PAGE revealed the only protein component was 

His-Lin28A-TT (Fig. 3.11d). Therefore, the specific RNA oligonucleotide is able to 

compete off the non-specifically bound nucleic acid contaminants to produce a smaller 

nucleic acid containing fraction, likely corresponding to a specific protein:RNA 

complex.  

To further investigate this effect, unbound His-Lin28A-TT was concentrated and 

mir363, let-7i and dT20 oligonucleotides were added in 1:1 molar ratios, with samples 

left to incubate overnight at 4°C and loaded onto the analytical gel filtration column. 

Again, peaks corresponding to protein/nucleic acid complexes were observed for each 

oligonucleotide (Fig. 3.12 a,b,c). The substitution method therefore generates 

Lin28/nucleic acid complexes with non-fusion Lin28 proteins, in a stable and 

reproducible way. This technique enables the quick output of such complexes from 

purification directly into crystal screening.   
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Figure 3.11: Purification of His-Lin28A-TT and its complex let-7g produced by the substitution method. 

(a) SDS-PAGE analysis of the fractions eluting from the Ni2+ IMAC column. T = Total soluble protein. 

Fractions from lanes 3-9 were pooled and applied to the analytical gel filtration columns shown in (b) and (c). 

Gel filtration elution profiles of protein only (b) and the protein/let-7g mix (c) are shown, and eluting fractions 

analysed by SDS-PAGE in (d).  
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Figure 3.12: Purification of His-Lin28A-TT/nucleic acid complexes generated by the substitution method.  

Gel filtration elution profiles of His-Lin28A-TT when mixed with mir363 (a), dT20 (b) and let-7i (c) 

oligonucleotides (b) are shown, and eluting fractions analysed by SDS-PAGE in (d).  
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3.4 Discussion 

Purifying recombinant Lin28 is a challenging procedure for three reasons: (i) the 

aggregation caused by strong binding of nucleic acid contaminants, (ii) the instability of 

the protein in the absence of nucleic acid and (iii) the difficulty in keeping the ZnK 

domain intact. Each purification procedure must contain strategies to account for each of 

these effects.  

3.4.1 Nucleic acid contaminants can be removed or replaced 

The interaction between Lin28 and the nucleic acid contaminants is reversible in certain 

conditions, as it is at least partially electrostatic in nature; using high salt concentrations 

can disrupt the aggregates. Once a portion of the nucleic acid is unbound, it can either be 

removed by precipitation, or washed off with buffer. Alternatively, the addition of 

oligonucleotides that Lin28 binds allows complexes to form that are of lower molecular 

weight than the non-specific aggregates and thus can be purified by gel filtration. One 

caveat of this approach is that it is yet to be confirmed whether or not these peaks 

correspond to specific complexes between Lin28 and the added oligonucleotide. The 

fractions comprising these peaks will therefore need to be analyzed by native gel and 

SEC-MALLS. If a specific complex is formed, the substitution method provides another 

approach for removing non-specific nucleic acid contaminants from purified Lin28. 

Therefore, three purification approaches were developed in total: the precipitation 

protocol used to produce the GST fusion proteins, the method involving a long wash 

with high salt buffer used to purify the MBP fusion proteins, and the nucleotide 

substitution method used in the purification of His-Lin28A-TT, where non-specific 

nucleic acid is competed off with specific oligonucleotides. 

3.4.2 Fusion of Lin28 to large affinity tags increases solubility and stability 

Removing the nucleic acid is the most challenging step, as the Lin28/nucleic acid 

complex is highly stable. However, reversing this interaction often involves harsh 

methods that could destabilize the ZnK domain, and the protein appears to be unstable 

in the absence of bound nucleic acid. 
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The fusion of MBP or GST to Lin28 provides multiple advantages [168]. The 

expression levels and solubility of fusion proteins are higher, resulting in increased 

yields of protein. Additionally, the tag stabilizes the protein both throughout the 

purification procedure, and once nucleic acid has been removed. The large affinity tag 

also increases the molecular weight of the relatively small Lin28 protein, which allows 

the fusion proteins to be used in techniques such as fluorescence anisotropy and SEC-

MALLS, where a relatively large difference in mass between binding partners is needed 

for obtaining high quality data. Finally, if crystals were obtained, the structure could be 

determined by molecular replacement with the relevant tag, as has been done previously 

[168, 173, 174, 177, 179, 180]. Therefore, the fusion proteins described are highly 

appropriate for investigating the structure and function of Lin28 proteins.  

The oligonucleotide substitution technique does not remove nucleic acid, and so there is 

never a point where Lin28 is unbound, meaning stability can be maintained even 

without conjugation to a large affinity tag.  

3.4.3 Maintenance of ZnK domain integrity 

It is difficult to ascertain if the ZnK domain remains folded after purification. The fold is 

stabilised by bound Zn
2+

 ions that are coordinated by the CCHC motif of each zinc 

knuckle subdomain [122, 124] Depending on how tightly Zn
2+

 ions are bound, it may be 

important to ensure availability of Zn
2+

 ions, whilst avoiding competing buffer 

components that may disrupt Zn
2+ 

binding.
 
This maximizes the probability of retention 

of these ions by the ZnK domain during purification. 

Each of the three purification procedures takes this into account. Purification of the 

MBP fusion proteins involved an IMAC stage that could potentially result in the 

exchange of bound Zn
2+ 

ions for Ni
2+ 

ions attached to the column. To prevent this, a 

HisTrap column with chelated Zn
2+ 

ions instead of Ni
2+ 

was used. This ensured that any 

Zn
2+ 

exchanged could only be replaced by Zn
2+

. In addition, every buffer was 

supplemented with ZnCl2 to provide an excess of Zn
2+ 

ions in case any were lost from 

the protein during purification. This problem was eliminated in the purification of the 
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GST fusion proteins, as GSH affinity chromatography is instead of Ni
2+

 IMAC, 

preventing the exchange of Ni
2+

 ions with the Zn
2+

 ions of the ZnK domain. In the 

course of nucleotide substitution procedure, it is possible that, because Lin28 molecules 

were bound to nucleic acid, Zn
2+

 ions were unlikely to dissociate from the protein. This 

should prevent the exchange of Zn
2+

 ions with Ni
2+

 ions from the column during Ni
2+

 

IMAC.  

The choice of reducing agent in the buffer is also an important factor. It has been shown 

that DTT can co-ordinate Zn
2+

 and inhibit proteins that rely on bound Zn
2+

 ions to 

perform their functions [181]. Buffers used in the purification of the MBP fusion 

proteins therefore contained 2mM β-mercaptoethanol as a reducing agent instead of 

DTT.  

In conclusion, this chapter presents three alternative strategies for purifying stable 

recombinant Lin28 proteins that are free from nucleic acid contamination. Each of these 

strategies takes into account the three challenges detailed above, that must be overcome 

in order to produce uncontaminated Lin28. The proteins produced by the above methods 

resulted in homogeneous preparations suitable for structural and biophysical analysis.  
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Chapter 4 : Determinants of Lin28 Specificity 

4.1 Introduction 

Lin28 binds primary and precursor sequences of the let-7 family of miRNAs and 

prevents their biogenesis [79]. Through this process, the mRNA targets of let-7 are no 

longer repressed by the miRNA, and their expression is upregulated. Three let-7 targets, 

K-Ras, c-Myc and HMGA2, are potent oncogenes, and so the aberrant expression of 

Lin28 is associated with cancer [99]. The elucidation of the molecular mechanisms 

Lin28 uses to recognise and bind let-7 RNA could therefore inform the development of 

novel therapeutic agents that could combat disease.  

In the prevailing mechanism, Lin28 and its paralog Lin28B prevent let-7 biogenesis by 

two distinct pathways [81].  Lin28 enhances the uridylation of precursor let-7 sequences 

by the terminal-U transferase enzyme Zcch11 [91-93], and is localised mainly to the 

cytoplasm [81]. The paralogs are highly similar in sequence, and biochemically 

interchangeable [92]. However, in contrast to Lin28A, Lin28B is localised to the 

nucleolus [81]. This is due to nuclear and nucleolar localisation signals in the Lin28B 

sequence. Lin28B was found to directly bind pri-let-7g in vitro by gel shift assay, with 

an apparent Kd of 0.5nM, close to the Kd of 0.6nM for the interaction of this RNA with 

Lin28A. However, RNA immunoprecipitation (RIP) of HeLa cells revealed that pri-let-

7g is enriched in Lin28B extracts to a much greater extent than Lin28A extracts, and 

showed greater accumulation when Lin28B was transiently expressed rather than 

Lin28A. In addition, co-immunoprecipitation did not detect interaction between 

Zcchc11 and Lin28B. It was observed, however, that the microprocessor complex 

responsible for pri-let-7 maturation and cleavage could not enter the nucleolus. 

Therefore, it was concluded that Lin28 would bind pre-let-7 RNAs in the cytoplasm and 

recruit Zcchc11 to uridylate the RNA [81], signalling for its degradation by the Dis3L 

[95] nuclease, whereas Lin28B would bind and sequester pri-let-7 transcripts in the 
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nucleolus, and prevent them from being cleaved by the microprocessor complex. By 

these two mechanisms, the biogenesis of let-7 miRNAs is inhibited [81].  

4.1.1 Affinities of Lin28/let-7 interactions 

Initially, interaction between Lin28 and let-7 RNA was characterized by gel shift 

analysis. His-Lin28 was expressed in E. coli BL-21 cells, and purified by standard 

procedures, and bound to pre-let-7g in a 50mM TRIS pH 7.6 buffer, including 100mM 

NaCl, 30μg yeast tRNA extract and β-mercaptoethanol as the reducing agent. Lin28 

protein was mixed with pre-let-7g RNA, and a Kd of 2.1μM was deduced when the 

single site ligand binding equation (See Chapter 2, Equation 10) was fit to the data. This 

value compared to the 1.5μM Kd obtained with only the terminal loop of the miRNA 

(Fig. 4.1), and no binding was seen to the mature miRNA duplex. A conserved cytosine 

(C45 in human pre-let-7g) was identified within the terminal loop sequence which, 

when mutated to alanine, reduced the affinity of Lin28 for this sequence 20-fold, 

without altering the structure of the RNA. Both domains of Lin28 were necessary for 

binding. Therefore, it was concluded that Lin28 would bind the let-7 terminal loop 

though the conserved cytosine [80].  

  



Chapter 4 

 

137 

 

 

 

 

Figure 4.1: Secondary structure of the human pre-let-7g miRNA as predicted by MFOLD. The terminal loop 

segment is highlighted in blue. 

Both pri- and pre-let-7 sequences contain the terminal loop. The 3500-fold difference in 

affinity between the reported Kd for the pre-let-7g interaction and that observed for the 

pri-let-7g interaction (see above section), was ascribed to the addition of the yeast tRNA 

to the buffer used to determine the Lin28/pre-let-7g Kd [81].  

Further gel shift analysis resulted in Kd’s of 0.15 and 0.13nM for the binding of full-

length and terminal loop sequences of let-7g by mouse Lin28. Binding reactions were 

conducted in a solution containing 50mM TRIS pH 7.6, with 50mM NaCl, 10% 

glycerol, 0.05% NP-40 alternative detergent and 2mM DTT. Recombinant Lin28 in this 

case was expressed in BL-21 E. coli and purified by affinity to GSH resin, where it was 

washed and incubated with 5 units/mL S7 nuclease before elution and further 

purification by gel filtration. The binding data in this study were fit to a variant of 

Equation 10 containing a Hill term that accounts for multiple co-operative binding 
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events. A Hill coefficient of ~3 was calculated, which implies co-operative binding of 

up to three Lin28 molecules per let-7 terminal loop. In this case, it was determined that a 

G-rich bulge at the 5' end of the terminal loop (Fig. 4.3) was critical for Lin28 binding 

[148]. 

This G-rich bulge had enhanced levels of protection when human pre-let-7g was bound 

by Lin28 and digested with RNase enzymes implying this site is bound by Lin28. The 

affinity of the interaction was measured by gel shift, and Kd values of 0.88μM for pre-

let-7g and 1.1μM for the terminal loop region were deduced when data were fit to 

Equation 10. The buffer used in this experiment containined 50mM TRIS pH 7.6 

100mM NaCl, 0.07% β-mercaptoethanol, 1mM Mg(OAc)2 and 12.5μg yeast tRNA. The 

protein used for analysis was a GST-Lin28 fusion, expressed in E. coli BL-21 cells. The 

RNAse protection assay also revealed that the structure of pre-let-7g melted upon Lin28 

binding, suggesting Lin28 is able to modify the secondary structure of bound RNA 

sequences [112]. 

4.1.2 Lin28/Lin28B induce changes in pre-let-7 secondary structures 

Further evidence supporting the ability of Lin28 to melt RNA hairpin structures came 

from the study of the CSD of XtrLin28B [123]. His-tagged Lin28B/CSD/ZnK constructs 

were expressed in E. coli, and purified by Ni
2+

/Zn
2+

 affinity chromatography. After 

elution from the affinity column, the His-tag was cleaved by TEV protease and the 

proteins further purified by heparin column and gel filtration. 10μM ZnSO4 was present 

in all buffers [123]. 

Affinity measurements revealed the preferential binding of heptameric single stranded 

polypyrimidine oligonucleotides by the XtrLin28B CSD [123]. DNA oligonucleotides 

were bound, with the optimal sequence of GTTTTTT. Kds of 12nM and 26nM were 

determined for this interaction by fluorescence titration and ITC respectively. This 

compared to 35nM for GUUUUUU and 13nM for GUCAUAC RNA oligonucleotides. 

This sequence was taken from the pre-let-7f terminal loop and the binding affinity 
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measured by ITC in a solution containing 20mM TRIS pH 8, 60mM KCl. This 

demonstrated the limited sequence specificity of the CSD, and revealed its site size of 

~7nt [123], comparing with the 9-11nt loops bound in the mLin28/preE-let-7 crystal 

structures [122].   

Binding of the ZnK domain only to AAGGAGAA and AAGGUGAA RNA 

oligonucleotides resulted in deduced Kd values of 45nM and 32nM respectively by ITC. 

No binding could be observed when this motif was mutated to AAAAAAAA [123].  

The affinity of the XtrLin28B protein, containing both the CSD and ZnK domains but 

with truncated N- and C- termini, towards Xtr-pre-let-7f, was determined by gel shift 

assay [123], and returned a Kd of 1.6μM. Equation 10 with the Hill term added was used 

to fit the data, and showed that the binding of this protein was co-operative with a Hill 

coefficient of 2.3, implying that ~2 molecules of Lin28B are binding per let-7f sequence 

[123].  

A fluorescence quenching assay was then performed, which showed that binding of the 

XtrLin28B and its CSD could remodel the terminal loop of the Xtr-pre-let-7f [123]. In 

contrast, the ZnK domain on its own could not. Kinetic measurements then revealed that 

the full-length protein binds this loop in two phases – an initial fast step followed by a 

slower step. The CSD on its own produced only a monophasic curve, and only the fast 

step was observed. Therefore, it was concluded that the CSD of Lin28B binds first, and 

rearranges, or melts, the pre-let-7f terminal loop (Fig. 4.2). This exposes the GGAG 

motif, which is initially inaccessible to the ZnK domain, thus allowing the ZnK to bind. 

As the binding of Lin28B molecules is cooperative, it was suggested that the 

remodelling may be facilitated by a second Lin28B molecule [123].   
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Figure 4.2: Binding of Xtr-let-7g by XtrLin28B proceeds via a remodelling of the RNA structure. 

Adapted from Mayr et al. (2012). 

4.1.3 Sequential addition of three Lin28 molecules per let-7 terminal loop 

Recent data have observed up to three Lin28 molecules binding the terminal loop of pre-

let-7g. Gel shift analysis demonstrated the presence of three different binding sites 

within the pre-let-7g terminal loop sequence: the G-rich bulge, internal loop (iloop) and 

tetraloop (Fig. 4.3). Binding of Lin28 to the terminal loop sequence gave a Kd of 

0.13nM and a Hill coefficient of ~3, indicating that three Lin28 molecules were bound 

cooperatively. Mutations in any of these regions did not greatly decrease the affinity of 

Lin28 towards the RNA, and high affinity, 1:1 binding was observed with each region 

separately [182]. Similarly to the results of the XtrLin28B binding study [123], the CSD 

of human Lin28 was observed to melt the terminal loop sequence by two different 
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biophysical assays. In contrast to that study, however, the ZnK domain was seen to bind 

with higher affinity to the terminal loop than the CSD alone. The formation of the 3:1 

complex was also dependent on the concentration of protein used in the gel shift assay 

such that the higher order stoichiometries were only visible at higher protein 

concentrations [182].  

 

Figure 4.3: Secondary structure of the human pre-let-7g miRNA as predicted by MFOLD. The three proposed 

Lin28 binding sites are shown in boxes. 

A model was proposed (Fig. 4.4) whereby a Lin28 molecule initially binds the G-rich 

bulge region, with the 5' GGAG motif bound by the ZnK domain. Binding of the CSD 

melts the stem of the terminal loop, and exposes the second 3' GGAG motif, facilitating 

the binding of a second Lin28 molecule through its ZnK domain. A third Lin28 

molecule can then associate with the region in between the two sites by binding through 
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its CSD only. This then causes the Lin28 bound to the first site to relocate the position 

of its CSD on the RNA. Similar findings were observed with other let-7 family 

members, and it was suggested this is the general mechanism for Lin28 binding to 

miRNA sequences [182].  

 

Figure 4.4: Binding of the pre-let-7g terminal loop by Lin28.  

The ZnK domain of the first Lin28 molecule binds the 5' GGAG motif, and the CSD binds at a proximal 

location. This melts the stem loop exposing the 3'GGAG to be bound by the ZnK domain of a second Lin28 

molecule, with its CSD binding nearby. The CSD from a third Lin28 molecule then binds, prompting a 

rearrangement of the CSD in the first molecule. Adapted from Desjardins et al. (2014).  

 

4.1.4 Remaining questions 

The mechanism by which Lin28 interacts with miRNA sequences is gradually becoming 

clearer. However, the observations of the stoichiometries and affinities of Lin28/let-7 

complexes detailed above are highly variable. The affinity measurements for the 

Lin28/pre-let-7g interaction differ by ~10000-fold. The stoichiometries reported  for  

Lin28/B complexes with let-7 sequences also encompass 1:1  [122, 183], 2:1  [123, 137, 

148] and 3:1 [148, 182] states.  

This variation is likely due to differences in the experimental conditions used in each 

study, as well as differences in how the proteins under investigation were produced. As 
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discussed in the previous chapter, Lin28 expressed in E. coli cells is heavily 

contaminated with nucleic acid, and the production of stable, nucleic acid free Lin28 

protein is non-trivial. Most of the studies involved expressing Lin28 in E. coli cells 

without sufficient precautions for removing nucleic acid and maintaining the presence of 

Zn
2+

 ions in the ZnK domain during purification. The differences in the reported 

affinities could therefore be due to differences in the protein samples used, rather than 

other factors, such as the addition of yeast tRNA to the sample buffer, as suggested 

previously [81]. In addition, only the study of the XtrLin28B protein involved 

quantitative biophysical measurements in addition to gel shift analysis. Whilst useful 

insights can be gained by gel shift analysis, image interpretation introduces problems 

not encountered by quantitative techniques. The binding equation used to determine the 

Kd is also critical for obtaining accurate data; a simplistic one-site binding model may 

not accurately describe the data for a system where multiple interactions take place. A 

key goal is therefore to accurately determine the affinities and stoichiometries of 

Lin28/let-7 complexes, in order to elucidate and refine the binding mechanism.  

Lin28 is able to recognise many RNA sequences through the GGAG motif [136, 137]. 

This is a short motif compared to the size of the whole transcriptome. This poses the 

question of how Lin28 is able to specifically recognise and bind the subset of mRNA 

and miRNA target sequences out of the entire transcriptome through such a short motif 

in an efficient manner.  

The fusion proteins produced in the previous chapter could be purified in high yields, 

and were stable and free from nucleic acid contaminants. This makes them amenable for 

biochemical analysis. Therefore, to address the questions of Lin28 specificity, affinity 

and stoichiometry, these fusion proteins will be probed using quantitative biophysical 

techniques.  
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4.2  Materials and Methods 

4.2.1 DSF 

DSF experiments were conducted using a Stratagene Mx300SP qPCR system (Agilent 

Technologies) and strips of 8, 200μL PCR tubes. GST or GST tagged protein was 

diluted to 0.5mg/ml in the buffer containing 10mM TRIS pH7.5, 150mM NaCl, 2mM 

DTT, 10% w/v sucrose, and 1x SYPRO
®
 orange dye. 15 μL of the diluted protein was 

then mixed with 15 μL of the same buffer, or buffer and a 1.5x molar excess of 

nucleotide, and vortexed briefly, followed by a 1 minute centrifugation at 865 x g. 

Fluorescence readings were then taken at 492/610nm excitation/emission wavelengths 

every minute (corresponding to peaks of 517/585nm for SYPRO
®
 orange), with a 

temperature increase of 1°C/min. The resultant curves were then analysed in MATLAB 

using the MTSA program [6] to find the inflection point of the curve, equivalent to the 

average melting temperature of the proteins in solution, either free or in complex. In the 

cases where more than one inflection point was present, only the data points 

corresponding to a single transition curve were used in the analysis.  

4.2.2 Fluorescence Anisotropy: GST fusion proteins 

Fluorescently-labelled oligonucleotides were ordered from either Dharmacon (RNA) or 

MWG (DNA). Nucleic acid was synthesized with a 5’ fluorescein (RNA) or FITC 

(DNA) tag for use in the fluorescence anisotropy experiments. Each oligonucleotide was 

diluted to 50nM in a 500μL volume of 10mM TRIS pH7.5, 150mM NaCl and 5% 

sucrose, in a quartz cuvette. Fluorescence was measured using a HORRIBA Jobin Yvon 

fluorimeter with polarizers aligned in an “L” format, with both sets of polarizers 

alternating between horizontal and vertical positions to produce a total of 4 

measurements (VV, VH, HV, HH). Anisotropy was calculated according to Equation 6 

(see Chapter 2). The RNA was then titrated with small aliquots of protein at a range of 

concentrations. Dissociation constants were calculated by non-linear regression analysis 
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using the GraphPad Prism
®

 software package according to Equation 14, with c 

constrained to 50 to reflect the 50nM concentration of fluorescent nucleotide. 

4.2.3 Fluorescence Anisotropy: MBP fusion proteins 

MBP tagged proteins were added to different concentrations in 200μL solutions in a 96 

well black plate containing a buffer solution and 20nM fluorescent nucleotide. The 

buffer consisted of 20mM TRIS pH 7.5, 100mM NaCl, 10mM β-mercaptoethanol, 

50μM ZnCl2 and 0.01% Tween20. Fluorescence readings were obtained with a BMG 

POLARstar Optima plate reader, with polarizers mounted in a “T” format for 

simultaneous reading of vertically and horizontally polarized light. Anisotropy was then 

calculated according to Equation 6 (see Chapter 2). Dissociation constants (Kd) were 

then calculated by non-linear regression analysis using the GraphPad Prism
®
 software 

package with one of the following equations. For situations where the Lin28 is in a 1:1 

complex with the target nucleic acid, the standard quadratic binding equation was used 

(Equation 14, Chapter 2). In some cases, the two binding sites of Lin28 were (given the 

assumptions mentioned below) equivalent. In these cases, attempting to fit a two-site 

equation to the data would cause the variables to become co-dependent, indicating the 

equation is over-parameterized. Equation 14 could be fit to the data well, however and 

any distinction between the affinities for each binding site could not be seen in the data. 

In most cases, the value of c was constrained to 20, reflecting the 20nM concentration of 

fluorescent nucleotide used in each well. Outliers were identified and removed 

automatically by the software package using the ROUT (Robust regression and Outlier 

removal) method [184]. Statistical values were calculated automatically by the 

regression software. All fits and residual plots are shown in Figures A1-9 and values 

determined by non-linear regression, as well as fitting statistics, are shown in Tables 

A1-4 (see Appendix).   
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4.2.4 SEC-MALLS 

A Biosep SEC S3000 column (Phenomenex) pre-equilibrated with buffer was connected 

to a Dawn Helios II 18-angle light-scattering detector (Wyatt Technology). Lin28 

samples were diluted to 2 mg/ml (~30-40μM) in the same buffer, or buffer combined 

with oligonucleotide. The eluting species were detected by measuring the UV 

absorbance at 280 nm, the concentration of the species was determined using an Optilab 

rEX refractometer (Wyatt Technology) and a refractive index increment of 0.18 mL/g 

was used for calculation of the molecular weight. For GST tagged proteins, a running 

solution contained 10mM TRIS pH 7.5, 500mM NaCl, 2mM DTT and 5% sucrose was 

used. For MBP tagged proteins, the running solution contained 20mM TRIS pH 7.5 and 

250mM NaCl. 

4.3 Results 

4.3.1 GST-Lin28A is stabilised by let-7 miRNAs in vitro 

DSF was used to determine whether GST fusion proteins interact with let-7 sequences. 

Full-length GST-Lin28 and constructs with truncated termini were mixed with SYPRO
®
 

orange dye and their melting curves were measured. A bi-phasic shift was observed for 

the protein on its own, with the first phase corresponding to the melting of Lin28 at 

37°C and the second corresponding to the melting of GST at 52°C (Fig. 4.5a). When 

mixed in a 1:1 molar ratio with P2 let-7g RNA (see Chapter 2), the GST-Lin28 proteins 

had a monophasic shift with a melting temperature of ~52°C. The shift in melting 

temperature of the Lin28 curve from 37°C to 52°C implies that the Lin28 portion of the 

protein is being stabilised by the RNA in a manner consistent with binding. GST on its 

own does not bind let-7 RNA [112]. The experiments were repeated with other preE-let-

7 family members: let-7a1, let-7d and let-7e (Fig. 4.5b). Shifts from 37°C to 52°C were 

seen, demonstrating that GST-Lin28 fusion proteins are stabilised by let-7 miRNAs in a 

manner consistent with binding. 
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Figure 4.5: GST-Lin28TT is stabilised by miRNA segments in vitro.  

(a) DSF melting curves show increased fluorescence intensity of the SYPRO® orange dye with temperature for 

the GST and GST-Lin28TT proteins, as well as the GST-Lin28TT/let-7g complex. The increased melting 

temperature of the Lin28/P2 let-7g mix is consistent with binding. (b) Melting temperatures of the fusion 

protein alone and when mixed with let-7 family miRNAs.  
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4.3.2 GST-Lin28A is stabilised by non-let-7 RNA and DNA oligonucleotides in a 

manner consistent with binding 

DSF experiments were then repeated with a sequence derived from the terminal loop of 

the human mir-363 miRNA (mir363, see Chapter 2). mir-363 had been shown  

previously to be  a potential binding partner of Lin28, as it contained a GGAG motif that 

was conserved throughout vertebrates, but in contrast to the let-7 miRNAs did not 

stimulate much uridylation activity when bound by Lin28 [92]. In addition its 

expression was found to be positively upregulated by Lin28 in Xenopus tropicalis by 

gene array experiments and binding to both native and recombinant XtrLin28 was 

observed by gel shift (Warrender et al. unpublished data). The results show that when 

mixed with mir363, the melting temperature of Lin28 shifts from 37°C to 52°C (Fig. 

4.5b) similarly to the let-7 family RNA segments. This behaviour is consistent with 

binding.   

The binding of Lin28 to other oligonucleotides was then probed by DSF. poly-T DNA  

sequences between 6 and 20 nucleotides in length were mixed with GST-Lin28TT. A 

step-wise increase in stability was seen with the increase in length of the oligonucleotide 

(Fig. 4.6a). The shift demonstrates that Lin28 is stabilised upon addition of poly-T DNA 

oligonucleotides in a manner consistent with binding, and correlates with the observed 

behaviour of the CSD of XtrLin28B [123].  

To investigate differences between RNA and DNA sequences, poly-U RNA 

oligonucleotides were tested in the same way (Fig. 4.6b). Again, a step-wise increase in 

stability with the increasing length of RNA oligonucleotide was seen, although the Tm 

values calculated for each length were lower than for the poly-T sequences. No 

interaction could be observed between the dye and nucleic acids in the absence of 

protein (Fig. 4.6c). Therefore, Lin28 is stabilised by both non-let-7 RNAs and poly-

pyrimidine oligonucleotides in a manner consistent with binding. 
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Figure 4.6: Lin28 is stabilised by nucleic acid segments of different length in a manner consistent with binding.  

Melting temperatures obtained by DSF show Lin28 is stabilised by poly-pyrimidine DNA (a) and poly-U RNA 

(b) segments of different lengths. (c) DSF experiments conducted with nucleic acids in the absence of protein 

show no increase in fluorescence with temperature. 
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4.3.3 Affinity of GST-Lin28 towards nucleic acids 

To further investigate the binding of nucleic acids by Lin28, fluorescently labelled preE-

let-7g RNA was titrated with increasing concentrations of GST-Lin28ATT, and binding 

analysed by fluorescence anisotropy (Fig. 4.7).  Anisotropy increased up to a plateau 

reached at a protein concentration of ~400nM. The data were fit with Equation 14 

resulting in a deduced Kd of 145.8 ± 25.2nM. The binding of GST-Lin28A was then 

tested with preE-let-7g and mir363 RNA oligonucleotides with data fit in each case by 

Equation 14, resulting in deduced Kd’s of 156.8 ± 15.2nM and 21.4 ± 5.7nM 

respectively.  Binding of GST-Lin28A was then tested with a variant of the mir363 

oligonucleotide where the GGAG motif was mutated to AAAA (mir363(AAAA)). Data 

were fit with Equation 14, resulting in a deduced Kd of 68.7 ± 16.1nM. The ZnK domain 

is not able to bind to an AAAA motif [123] and so these results demonstrate that Lin28 

will bind non-specific RNA sequences through its CSD. However, on examination, each 

binding curve is not an ideal fit, with R
2
 values ≤0.98. This suggests that the single site 

binding equation may not fully describe the data.   
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Figure 4.7: Fluorescence anisotropy analysis of GST fusion protein/RNA interactions.  

Measurements were performed using preE-let-7g with GST-Lin28A (a) and GST-Lin28A-TT (b), as well as 

GST-Lin28A with mir363 (c) and mir363(AAAA) (d) RNA oligonucleotides.  Outlying points omitted during 

fitting are highlighted in red.  

 

4.3.4 Oligomeric state of the GST-Lin28A/let-7 complex 

The oligomeric state the GST-Lin28/let-7 complexes was then determined by SEC-

MALLS. Initially, the GST tag on its own was analysed (Fig. 4.8a). Although the 

molecular weight was variable across the UV peak, the elution profile was symmetrical. 

The average molecular weight of the peak was 49kDa, corresponding to the expected 

45kDa of a dimeric GST proteins. GST-Lin28A was then applied to the column in the 
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same conditions. Here, the average molecular weight was determined to be 94kDa, 

which compared with the expected 95kDa of a dimeric GST-Lin28A (Fig. 4.8b).  

tpreE-let-7g RNA (see Chapter 2) was then mixed in a 1:1 molar ratio with the protein 

and applied to the column. Again, though the molecular weight profile was variable, the 

average molecular weight was observed to be 113kDa (Fig. 4.8c). This corresponds to a 

single GST-Lin28A dimer, of 95kDa, plus two tpreE- let-7g molecules, each of 9.5kDa, 

to make a total expected molecular weight of 114kDa. 
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Figure 4.8: SEC-MALLS analysis of GST and GST fusion proteins.  

Elution profiles of standalone GST (a) GST-Lin28 (b) and an equimolar mix of GST-Lin28 and tpreE-let-7g 

(c). 
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Therefore, it was observed that GST and GST-Lin28A form dimers, and that for each 

GST-Lin28A dimer, two molecules of RNA were bound. This corresponds to a 1:1 

Lin28:RNA binding stoichiometry. However, due to the complications involved in 

determining the stoichiometries and affinities of Lin28/RNA complexes with proteins 

dimerised through their GST tags, work with the GST-fusion proteins was suspended.  

4.3.5 Determination of the oligomeric state of His-MBP-4A-Lin28ATT 

To ascertain the suitability of the MBP fusion protein for binding studies, the oligomeric 

states of the unbound protein and its complexes with RNA were investigated. SEC-

MALLS results demonstrated that the MBP tag on its own formed monomers, with the 

major elutant species of molecular weight 43.4kDa, comparing to an expected size of 

42.2kDa for a monomeric state (Fig. 4.9a). The major species in the Lin28TT and CSD 

protein samples were also monomeric, with masses of 64.7kDa and 51.5kDa comparing 

to expected values of 59.4kDa and 52.7kDa respectively (Fig 4.9 b,c).  
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Figure 4.9: SEC-MALLS analysis of MBP and MBP fusion proteins.  

The elution profiles of standalone MBP (a) His-MBP-4A-Lin28TT (b) and His-MBP-4A-CSD (c) fusion 

proteins are shown. (d) Overlay of the A280 absorbance of the elution peaks for the proteins used in this study. 

The average molecular weights determined for tpreE-let-7g and mir363 RNA, as well as 

dT29 DNA were similar to the expected values. All three species have molecular 

weights of ~10kDa and were observed to be 11.1kDa, 11.4kDa and 10.1kDa molecules 

respectively.  
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4.3.6 RNA-free Lin28 exists in equilibrium between active monomeric and 

aggregated states 

All SEC-MALLS elution profiles of Lin28TT or CSD proteins contained an extended 

peak corresponding to species with large molecular weights. By overlaying the A280 

absorbances of the complexes with their individual components (Fig 4.9d, 4.10), it can 

be seen that the size of this peak is dependent on the amount of nucleic acid initially 

added to the sample, where the unbound protein has the highest absorbance peak at this 

position. 

The addition of nucleic acid to the protein sample causes the size of the high molecular 

weight peak to decrease. This implies that the protein that comprises this peak is active 

Lin28TT/CSD. This peak is of a greater molecular weight than the free protein, and is 

also present in the unbound protein sample, and so demonstrates that free Lin28 exists in 

equilibrium between monomeric and aggregated states. The disruption of these 

aggregates by the addition of nucleic acids shows that aggregation does not inhibit the 

activity of Lin28. In addition, the breadth of the peak implies that there is no fixed size 

of these aggregates and that their molecular weights are variable. This phenomenon was 

observed in both the truncated termini and CSD fusion proteins, suggesting the 

aggregation is due to the CSD, rather than the ZnK domain. 
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Figure 4.10: Elution profiles of Lin28TT/RNA complexes from SEC-MALLS. 

A280 absorbance traces are overlaid from 1:1 and 2:1 protein:RNA molar ratio mixes, as well as the unbound 

Lin28TT or CSD proteins and the free nucleic acid. The profiles of complexes generated with tpreE-let-7g and 

mir363 with Lin28TT (a, b) and CSD proteins (c, d) respectively are depicted. 

4.3.7 Lin28 complexes with preE-let-7g in a 1:1 stoichiometry 

The affinity of the MBP-Lin28 fusion proteins for preE-let-7g RNA was investigated 

using fluorescence anisotropy (Fig. 4.11a). Equation 14 was fit to the data and a Kd of 

38.8 ± 3.0nM was deduced. No binding was observed towards the His-MBP tag on its 

own, demonstrating that the Lin28 portion of the fusion protein is active (Fig. 4.12).  
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Figure 4.11: Affinity and Stoichiometry of Lin28/let-7g complexes. 

(a) Fluorescence anisotropy change of preE-let7g when titrated with Lin28TT. (b) and (c) show SEC-MALLS 

elution profiles of the major complex peaks observed when Lin28TT is mixed with tpreE-let-7g in 1 and 2 fold 

molar excesses respectively. 
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Figure 4.12: Fluorescence anisotropy of MBP/RNA and Lin28TT/Fluorescein mixes.  

No major change in anisotropy could be seen when His-MBP protein was added to preE-let-7g (a) or mir363 

(b) RNA at 100mM NaCl. (c) no major change in anisotropy was observed when Lin28TT was added to free 

fluorescein at 250mM NaCl. 
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The stoichiometry of the complex was then determined by SEC-MALLS. Lin28TT was 

mixed with tpreE-let7g in equimolar amounts as well as with a 2-fold molar excess of 

protein. Molecular weights of 71.5kDa and 70.6kDa were observed (Fig. 4.11 b,c),  

corresponding to a 1:1 binding stoichiometry of Lin28 to let-7, which would have an 

expected molecular weight of 68.4kDa. Therefore, the Lin28TT fusion protein is active, 

and binds the let-7 terminal loop sequence with high affinity in a 1:1 stoichiometric 

ratio. 

4.3.8 Lin28 binds the terminal loop of the pre-mir363 miRNA 

mir363 RNA was found to interact with GST-Lin28 fusion proteins. The binding of this 

sequence by the MBP fusion proteins was determined by fluorescence anisotropy, with 

data fit by Equation 14. High affinity binding of this sequence (Kd = 16.6 ± 1.9nM) by 

the Lin28TT protein was observed (Fig. 4.13a).  

The stoichiometry of the Lin28TT/mir363 complexes was then determined by SEC-

MALLS. A 1:1 binding stoichiometry was observed, with molecular weights of 72.7kDa 

and 77.5kDa obtained (Fig. 4.13 b,c) for equimolar and 2-fold protein excess mixtures 

respectively, compared to an expected size of 68.1kDa for a 1:1 binding stoichiometry. 

The weight of the complex in the excess of protein was larger than expected due to the 

presence of a minor shoulder at a lower elution volume than the main complex peak, 

which resulted in a higher average reading.  
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Figure 4.13: Affinity and Stoichiometry of Lin28TT/mir363 complexes. 

(a) Anisotropy change of mir363 when mixed with different concentrations of Lin28TT. (b) and (c) show SEC-

MALLS chromatograms of the major complex peaks observed when Lin28TT is mixed with mir363 in 1 and 2 

fold molar excesses respectively. 
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4.3.9 The Lin28 ZnK domain is required for high affinity, 1:1 binding 

The stoichiometries of the CSD protein with both tpre-let7g and mir363 were then 

investigated. Surprisingly, in both cases the CSD complexes formed had molecular 

weights intermediate between 1:1 and 2:1 stoichiometries, with weights of 76.6kDa and 

80.3kDa for 1 and 2 fold molar excesses of protein to RNA respectively for tpre-let7g 

(Fig. 4.14 a,b), and 74.8kDa and 85.2kDa for mir363 (Fig. 4.14 c,d). These compared to 

expected 1:1 and 2:1 molecular weights of ~61kDa and ~114kDa. This suggests that the 

two stoichiometric states exist in equilibrium with each other.  

To calculate Kd values for the interactions of the CSD with RNA, Equation 14 was fit to 

the data with the following assumptions. Each RNA has two single stranded regions of 

>7nt available, in the loop region and the 3’ end. This is known to correspond to the 

binding site size of the CSD from structural data [122, 123]. It was therefore assumed 

that the maximum binding density of each nucleic acid would be two CSD molecules, 

and that each site would be recognized equally and independently by the CSD. In 

addition, it was assumed the equilibrium between the active aggregate and monomeric 

forms of Lin28 was not rate limiting, and would not interfere with RNA binding. While 

it is possible that there are differences between the binding sites, or that binding of one 

CSD affects the other, no distinction could be seen in the data and more complex models 

were over-parameterised, with co-dependent variables. Therefore, the data had to be fit 

with the simpler model defined by Equation 14, which is possibly inappropriate for 

describing this system. The Kd values calculated were 181.5 ± 12.3nM for the 

CSD/preE-let-7 interaction and 76.2 ± 7.3nM for the CSD/mir363 interaction (Fig. 4.14 

e,f). This demonstrated that the CSD alone can bind these sequences, but that the ZnK 

domain is necessary for high affinity, 1:1 binding.  
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Figure 4.14: Affinities and stoichiometries of CSD/RNA complexes.  

SEC-MALLS elution profiles of the major complex peak resulting from 1 and 2 fold molar excesses of CSD to 

tpreE-let-7g are shown in (a) and (b), and with mir363 in (c) and (d). (e) and (f) represent the changes in 

anisotropy of preE-let-7g and mir363 RNAs when mixed with different concentrations of CSD protein. 
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4.3.10 Lin28 non-specifically binds GGAG mutant sequences  

To further investigate the effect of the ZnK interaction with RNA, binding of Lin28TT 

to the mir363(AAAA) sequence was tested.  Two peaks of average molecular weights 

122.9kDa and 84.1kDa were observed when the RNA was mixed in an equimolar ratio 

with the Lin28TT protein (Fig. 4.15a), compared to expected sizes of ~128kDa and 

~68kDa for 2:1 and 1:1 binding stoichiometries. The two peaks therefore likely 

correspond to 2:1 and an intermediate stoichiometry respectively. When mixed with a 2 

fold molar excess of protein (Fig. 4.15b), only one peak of 120.8kDa could be seen, 

indicating that all of the RNA was bound in 2:1 protein:RNA complexes.  
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Figure 4.15: Stoichiometry and affinity of Lin28TT/mir363(AAAA) complexes. 

(a) and (b) show SEC-MALLS elution profiles of the major complex peaks observed when Lin28TT is mixed 

with mir363(AAAA) in 1 and 2 fold molar excesses respectively. (c) shows the A280 absorbance traces from 1 

and 2-fold protein:RNA molar ratio mixes, as well as the protein and mir363 RNA on their own. (d) shows the 

change in anisotropy of mir363(AAAA) RNA when mixed with different concentrations of Lin28TT protein. 

Outlying points excluded from data fitting are highlighted in red. 

Equation 14 was then used to determine the affinity of the interaction, which had a Kd of 

3.8 ± 5.4nM (Fig. 4.15d). The stoichiometry of the CSD alone with the mir363(AAAA) 

RNA was also determined to be intermediate between 2:1 and 1:1 (Fig. 4.16 a,b), with 

an dissociation constant of 54.7 ± 6.1nM (Fig. 4.16d), indicating that the CSD behaves 

similarly to all nucleic acids regardless of the presence of a GGAG sequence.  



Chapter 4 

 

166 

 

 

 

Figure 4.16: Stoichiometry and affinity of CSD/mir363(AAAA) complexes.  

(a) and (b) show SEC-MALLS elution profiles of the major complex peaks observed when CSD is mixed with 

mir363(AAAA) in 1 and 2 fold molar excesses respectively. (c) shows the A280 absorbance traces from 1 and 2-

fold protein:RNA molar ratio mixes, as well as the protein and mir363 RNA on their own. (d) shows the change 

in anisotropy of mir363(AAAA) RNA when mixed with different concentrations of CSD protein. 

4.3.11 Non-specific Lin28/RNA complexes are highly sensitive to salt concentration 

Non-specific protein-RNA complexes often form through electrostatic interactions. To 

investigate the specificity of the Lin28/RNA interactions, fluorescence anisotropy 

experiments were repeated with varying amounts of salt in the buffer. Kd’s were 

determined using Equation 14. The Log10 of each Kd was plotted against the Log10 of 

the salt concentration in the buffer, to make the results easily comparable (Fig. 4.17).  
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Figure 4.17: Influence of salt concentration on the affinity of Lin28 towards RNA.  

 Log-Log plot of Kd vs salt concentration for the interaction of Lin28TT or CSD with preE-let-7g, mir363 and 

mir363(AAAA). 

The Kd of the interaction between Lin28TT and either preE-let-7g or mir363 did not 

vary greatly with increases in salt concentration, with linear regression gradients of -

0.19 and -0.18 respectively. This implies that these interactions do not have a strong 

electrostatic component. In contrast, the interaction with the mir363(AAAA) was highly 

sensitive to the ionic strength of the buffer solution, with a linear regression gradient of 

1.86, and Kd increasing steeply in solutions with the higher ionic strength.  

Similarly, the dissociation constants of the CSD/RNA interactions were also sensitive to 

the ionic strength of the buffer solution, to the extent that very little binding could be 

seen above concentrations of 250mM NaCl. The affinity of the CSD/preE-let-7g 
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interaction was less dependent on salt concentration than for the mir363 and 

mir363(AAAA) sequences, with regression gradients of 1.21, 1.85 and 2.15 for preE-

let7g, mir363 and mir363(AAAA) respectively. However, the affinities of both the 

CSD/preE-let-7g and CSD/mir363 interactions were more sensitive to changes in the 

ionic strength of the buffer solution than the affinities of the Lin28TT/preE-let-7g and 

Lin28TT/mir363 interactions. This suggests that the interaction of the CSD domain 

alone with the RNA oligonucleotides has a greater electrostatic component than the 

interaction of the Lin28TT protein, which contains both CSD and ZnK domains, with 

the same RNA. Finally, the gradients of the linear regressions corresponding to the CSD 

interactions with the mir363 sequences were similar to that with the full-length protein 

with the mir363(AAAA). This means the variation of Kd with changes in the ionic 

strength of the buffer occurs similarly for the Lin28TT/mir363(AAAA), CSD/mir363 

and CSD/mir363(AAAA) interactions. Each of these interactions therefore has a similar 

electrostatic component, and suggests that only the CSD is binding mir363(AAAA) in 

the case of the Lin28TT protein. 

4.3.12 Lin28 binds dT29 in a maximum 2:1 stoichiometry 

GST-Lin28 fusion proteins were bound to DNA sequences (see Section 4.3.2). To 

further investigate differences between specific and non-specific binding of Lin28, the 

stoichiometries of MBP-Lin28 fusion proteins in complex with dT29 were tested by 

SEC-MALLS. Lin28 will not bind specifically to any sequence elements in this 

oligonucleotide and so the stoichiometry of the complex will reflect how many Lin28 

molecules can bind per oligonucleotide on average, and what the site size of the CSD is. 

Equimolar and 2-fold protein excess mixtures of Lin28TT and dT29, as well as CSD 

and dT29, were analysed by SEC-MALLS (Fig 4.18). For the Lin28TT protein, three 

peaks were seen in the equimolar mix, of molecular weights 139.9kDa, 100.8kDa and 

73.2kDa, which likely correspond to 2:1, intermediate equilibrium and 1:1 protein:RNA 

stoichiometric complexes, respectively. When the protein was added in excess, two 
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peaks of molecular weight 138.4kDa and 95.9kDa could be observed, corresponding to 

a 2:1 protein:RNA stoichiometry and an intermediate equilibrium state respectively.   
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Figure 4.18: SEC-MALLS analysis of Lin28TT complexes with dT29 prepared in different molar rations. 

(a) Protein-RNA complexes were mixed in 1:1 (a) and 2:1 (b) ratios. (c) Elution profiles (A280 absorbance) for 

each complex and for protein and DNA.  
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For the CSD protein, regardless of the molar ratios in the mixture, only one major peak 

corresponding to a 2:1 complex could be seen, with average molecular weights of 

127.7kDa and 123.1kDa for the equimolar and 2-fold protein excess mixtures 

respectively (Fig. 4.19).  
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Figure 4.19: SEC-MALLS analysis of CSD complexes with dT29 prepared in different molar rations. 

(a) Protein-RNA complexes were mixed in 1:1 (a) and 2:1 (b) ratios. (c) Elution profiles (A280 absorbance) for 

each complex and for protein and DNA. 
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For a sequence 29nt in length, therefore, the maximum binding density was two Lin28 

proteins per oligonucleotide. The data imply that only the CSD is binding the DNA, as 

the binding density is equivalent for both the Lin28TT and CSD proteins. Site sizes for 

the CSD have been postulated to be between 7-11 [122, 123] nucleotides in length. For a 

2:1 stoichiometric ratio, this would result in a combined binding site of 14-22nt, which 

correlates with the results seen here, as extra space between the proteins is needed to 

avoid steric hindrance. This could account for the extra seven nucleotides not directly 

bound by the CSD.  

4.3.13 Lin28 binds let-7 mutant sequences  

To determine the effect of the GGAG motif on the binding of preE-let-7 sequences by 

Lin28, the let-7mut sequence was used (see Chapter 2). Mutation of the GGAG to 

AAAA, as in the mir363(AAAA) sequence, would result in changes to the secondary 

structure of the miRNA, and so results would not be easily comparable. Instead, the 3' 

terminus of the tpreE-let-7g sequence was truncated, in order to produce a shorter RNA 

consisting of only the let-7g loop, with no GGAG sequence present. SEC-MALLS 

analysis was conducted with equimolar and  2-fold protein excess mixtures of Lin28TT 

and let-7gmut and returned average molecular weight readings of 75.6kDa and 72.3kDa 

respectively (Fig. 4.20 a,b), corresponding to an expected 1:1 molecular weight of 

67.9kDa. This implies the formation of a 1:1 stoichiometric complex.   



Chapter 4 

 

174 

 

 

Figure 4.20: Interaction between Lin28TT and let-7gmut RNA. 

 SEC-MALLS elution profiles of Lin28TT mixed with let-7gmut in 1- (a) and 2-(b) fold molar ratios. (c) 

Elution profiles (A280 absorbance) for each complex and for standalone protein and RNA. (d) Anisotropy of 

preE-let-7g when mixed with different concentrations of Lin28TT(2) protein in 100mM NaCl. (e) Fluorescence 

anisotropy change of let-7gmut when mixed with different concentrations of Lin28TT(2) protein in 100mM 

NaCl. Anisotropy changes for the same interaction are shown in (e) and (f) at 250mM and 500mM NaCl 

concentrations respectively. (h) Fluorescence anisotropy change of let-7gmut when mixed with different 

concentrations of CSD protein in 100mM NaCl. 



Chapter 4 

 

175 

 

 

Affinity measurements were made using Lin28TT protein prepared by Dr.Vladimir 

Levdikov (Antson Group) using the protocol described in Chapter 3, Section 3.3.2. This 

protein will be referred to as Lin28TT(2). This protein preparation bound preE-let-7g 

~2.3 times as strongly as the original Lin28TT sample (Fig. 4.20d) with a Kd of 16.9 ± 

2.2nM compared to 38.8 ± 3.0nM . 

The binding of the let-7gmut RNA by Lin28TT(2) was then investigated (Fig. 4.20e). 

Data were fit by Equation 14, resulting in a deduced Kd of 13.1 ± 2.8nM. However, the 

adjusted R
2 

of this fit was relatively low (0.9614) suggesting that the model may not 

fully describe the data.  

The experiments were repeated at 250mM and 500mM NaCl (Fig. 4.20 f,g). At 250mM 

and 500mM NaCl, the curves appeared sharper and had lower Amax values. Equation 

14 was fit to each set of data and Kd values of 0.69 ± 0.24nM and 4.77 ± 0.58nM were 

deduced respectively.  

For the CSD protein, SEC-MALLS revealed that equimolar and 2-fold protein excess 

mixtures of CSD and let-7gmut had average molecular weights of 61.0kDa and 60.1kDa 

(Fig. 4.21), which also correspond to 1:1 stoichiometries, with an expected molecular 

weight of 61.2kDa. The value of the dissociation constant was then probed by 

fluorescence anisotropy. Data were fit by Equation 14, resulting in a deduced Kd of 

178.7 ± 26.4nM (Fig. 4.20h). At higher salt concentrations very little binding activity 

could be seen, and no further conclusions could be made.  
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Figure 4.21: SEC-MALLS analysis of CSD complexes with let-7gmut prepared in different molar rations. 

(a) Protein-RNA complexes were mixed in 1:1 (a) and 2:1 (b) ratios. (c) Elution profiles (A280 absorbance) for 

each complex and for protein and RNA. 
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4.3.14 Lin28 binds short let-7gΔ5 DNA oligonucleotides  

To examine differences in binding between RNA and DNA sequences, a short DNA 

oligonucleotide with an equivalent sequence to that of let-7gΔ5 (see Chapter 2) which 

forms the same predicted hairpin secondary structure, was mixed with Lin28TT and 

binding measured by fluorescence anisotropy. The assay was conducted at two salt 

concentrations: 100mM and 500mM, with Lin28TT(2). The data obtained at 100mM 

NaCl (Fig. 4.22a) were fit by Equation 14. This resulted in a deduced Kd of 54.1 ± 7.5 

nM. However, similarly to the let-7gmut results, the curve fit with a relatively low 

adjusted R
2 

of 0.9648, suggesting that the model used may not fully describe the data. At 

500mM NaCl (Fig.4.22b), the curve appeared sharper with a lower Amax, and data 

were fit by Equation 14 to obtain a Kd of 2.1 ± 0.4nM. The binding of this short DNA 

sequence is very similar to that of the let-7gmut sequence, where the curve becomes 

sharper and flatter with increased salt concentration.  

 

Figure 4.22: Fluorescence anisotropy analysis of Lin28TT(2) interaction with let-7gΔ5 DNA.  

The analysis was performed in 100mM NaCl (a) and 500mM NaCl (b). 
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4.4 Discussion 

4.4.1 Specific Lin28 complexes interact with high affinity in a 1:1 binding 

stoichiometry 

Multiple stoichiometries have been reported for Lin28/RNA complexes [122, 123, 137, 

148]. The results presented within this chapter demonstrate that if both domains of 

Lin28 are present, as well as the GGAG motif, the terminal loop sequence of let-7g will 

be bound with nanomolar affinity, in a 1:1 ratio. The observation that Lin28B proteins 

bind pre-let-7g miRNAs in a 1:1 stoichiometry provides support for this conclusion 

[183]. Disrupting either of these factors will cause extra Lin28 molecules to associate 

with the RNA through their CSDs, and cause the complex to become more sensitive to 

the ionic strength of the buffer. 

The mir-363 miRNA was identified as a potential binding partner of Lin28, as it 

contained a GGAG motif that was conserved throughout vertebrates and present on the 

3' strand. Interestingly, it did promoted very little uridylation activity when bound by 

Lin28 relative to let-7a-1 [92]. In contrast to let-7 miRNAs, it was observed that in 

Xenopus tropicalis, knockdown of Lin28 was correlated with a decrease in mature mir-

363 by gene array and was binding of this sequence by recombinant and endogenous 

XtrLin28 was observed by gel shift analysis (Warrender et al. unpublished data). The 

results here show that the mir363 sequence containing the terminal loop of this miRNA 

is specifically bound by Lin28. Similar to the let-7 sequence tested, mir363 was bound 

with nanomolar affinity and in a 1:1 stoichiometry. In addition the Lin28TT protein 

bound with stronger affinity than the CSD on its own, and was resistant to changes in 

the ionic strength of the buffer, implying that the ZnK domain specifically binds the 

GGAG motif through a hydrogen bonding network. This, in combination with the 

previous findings detailed above, suggests that although mir363 is a target of Lin28, the 

biological outcome of this binding may be different to that of the let-7 miRNAs. 
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4.4.2 The in vitro binding mechanism is dependent on the length of the nucleic 

acid 

SEC-MALLS results revealed that complexes of Lin28 with the short let-7gmut and 

dlet-7gΔ5 formed at 1:1 stoichiometries, and can be fit with Equation 14, yet in low salt 

concentrations the curves fit relatively poorly. It is likely that this is due to a gradual 

increase in anisotropy seen at higher protein concentrations in both cases. Upon 

inspection of the data it can be seen that increasing the salt concentration prevents this 

increase in anisotropy, so the data instead show a sharp curve. It is possible that this 

curve corresponds to the interaction of the CSD with the loop of the sequence. If this is 

the case, then the RNA will not have a sufficiently long 3' end to accommodate a second 

Lin28/CSD molecule. Similarly, if the GGAG in the DNA sequence is inaccessible, then 

it will also be too short to fully accommodate another Lin28 molecule. Therefore, the 

anisotropy increase might correspond to a weak interaction between a second Lin28 

molecule with a Lin28/nucleic acid complex. Alternatively, complexes of Lin28 with 

these shorter oligonucleotides may have a greater tendency to form aggregate species at 

higher protein concentrations in low ionic strength solutions, which would also explain 

the gradual increases in anisotropy observed in the low salt experiments.  

For the let-7gmut RNA sequence, it is surprising Lin28 interacts more strongly with the 

shorter mutant sequence than the wild-type sequence. The shorter sequence can only 

form one of the two alternative structures that can be adopted by the wild-type sequence. 

Lin28 melts open the more highly structured RNA conformation, enabling it to bind 

[123]. It is possible, therefore, that the affinity of the CSD for this sequence might be 

increased as it could readily bind the loop without having to melt it. However, the 

observation that the CSD alone interacts with the let-7gmut RNA much more weakly 

than two domain protein suggests that this is unlikely to be the case, and that instead 

there is some interaction taking place between the ZnK domain and the mutant RNA. 

Further data will be required to fully explain these results and characterise the 

interaction of Lin28 with these shorter RNA oligonucleotides. 
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The DNA sequence used is identical to that used to solve the structure of the 

mLin28/let-7g complex [122]. Lin28TT should therefore be able to contact the GGAG 

motif. If this motif is bound by the ZnK domain, then the binding would be expected to 

be similar to that of the Lin28TT/preE-let-7g interaction. The protein construct used for 

obtaining the crystal structure was truncated by removal of residues from the 

interdomain linker. It is therefore possible that the Lin28TT protein used in this study is 

too long to effectively interact with the GGAG motif of the shorter sequence, causing its 

binding to resemble that of the let-7gmut sequence. In addition, the sequence is 

composed of DNA rather than RNA, which may influence the binding in unknown 

ways.   

The binding experiments with both the let-7gmut and dlet-7gΔ5 oligonucleotides were 

performed using the Lin28TT(2) protein. As this sample was from a different batch as 

that which was used for previous binding experiments it is, however, possible that the 

anomalies described above are due to differences in the preparation of each protein 

sample, rather than a more general feature of Lin28’s binding activity towards shorter 

oligonucleotides. Support for this hypothesis can be found in the observation that the 

Lin28TT(2) protein bound more strongly to preE-let-7g than the original Lin28TT 

protein, which suggests differences between the two samples.  

4.4.3 The binding of the Lin28 CSD has an electrostatic component 

Lin28 interacts with miRNAs through its two domains [122]. Initially, the CSD of Lin28 

binds to the single stranded region of the terminal loop of a miRNA. It has been 

suggested that a melting process could then facilitate the exposure and following 

interaction of the conserved GGAG motif with the ZnK domain [123, 124]. The 

structures of mLin28A in complex with let-7 family miRNA sequences [122], and of the 

XtrLin28B CSD domain [123], show binding of the CSD to the extruded terminal 

through stacking interactions formed between the nucleobases of the RNA and aromatic 

amino acid side chains from a preformed hydrophobic binding platform present on the 
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surface of the CSD. In tandem, the ZnK domain bind the GGAG motif through a 

hydrogen bonding network, with a stacking interaction formed between the side chain of 

Y140 and the bases of the final A and G of the motif.  

The results highlight the importance of a previously unreported electrostatic component 

to the interaction. The sensitivity of the CSD to the ionic strength of the buffer implies 

that residues within this domain are forming electrostatic contacts with the negatively 

charged phosphate groups of the RNA in addition to the hydrophobic stacking 

interactions reported previously. The structure of the CSD homologue, CspB from 

B.subtilis  [63, 64], contains a preformed hydrophobic binding platform surrounded by 

positively charged residues, which are thought to be important in attracting the 

negatively charged nucleic acid binding partners. In the CSD of Lin28A, many of these 

basic residues are conserved, with twice as many R,H and K residues found in the 

matching Lin28A sequence by alignment. Therefore, it is clear that there is a strong 

electrostatic component to the interaction between the CSD of Lin28A and nucleic 

acids, and explaining why the binding of the CSD only protein is sensitive to salt 

concentration.   

Previous studies of Lin28’s interaction with let-7g sequences were conducted in low 

ionic strength buffers (50-100mM NaCl) [80, 81, 122, 124, 148, 182]. The sensitivity of 

this interaction to salt concentration goes some way towards explaining the variation in 

the reported Kd values. Additionally, differences in the ways the proteins used in these 

studies were prepared could lead to differences in their affinity towards RNA. The MBP 

fusion proteins used here are highly suitable for the investigation into the interaction 

between Lin28 and its RNA binding partners, and the fluorescence anisotropy assay 

employed allows accurate, quantitative affinity measurements to be deduced.  

4.4.4 The ZnK domain acts as an anchor in Lin28 binding 

The absence of the ZnK/GGAG interaction, through mutation of either protein or RNA, 

results in higher protein:RNA stoichiometries as multiple CSDs bind the sequence.  
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CSD binding is non-specific and dominated by electrostatic forces, and takes place at 

one of two different sites on the RNA. The observation of intermediate stoichiometries 

suggests the CSD/RNA/CSD complexes exist in equilibrium and so each CSD/RNA 

complex is transient. When ZnK/GGAG binding occurs, a 1:1 complex forms, which is 

insensitive to increases in ionic strength. These results suggest that the ZnK domain acts 

as an anchor to keep the CSD bound in a particular position, whilst preventing the 

association of further CSDs with sequences of this length (Fig. 4.23).  
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Figure 4.23: Specific and non-specific interactions of Lin28 with RNA. 

Lin28 molecules are represented as cylinders, which correspond to CSDs, and circles, which represent zinc 

knuckles.(a) The Lin28 CSD is attracted to the mir363 RNA. The ZnK domain recognises the GGAG motif and 

binds, which is followed by binding of the CSD to the loop region of the RNA. (b) The CSD only construct is 

attracted to the RNA sequence and binds the loop region. The single stranded 3ˈ region containing the GGAG 

motif is then bound by a second CSD molecule. This complex exists in equilibrium with its components. (c) The 

CSD of a Lin28 molecule is attracted to the mir363(AAAA) RNA. The ZnK domain cannot bind as no GGAG 

motif is present. The loop region is then bound by the CSD of one Lin28 molecule while the single stranded 3ˈ 

region is bound by a second Lin28 molecule, giving rise to a 2:1 complex, which exists in equilibrium with its 

components.  
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The observation of sequential binding of Lin28 molecules to the let-7g terminal loop 

supports this model [182]. The tpreE-let-7g sequence used here is shorter and contains 

only two of the three identified binding sites – the internal loop and GNRA tetraloop, 

and only one GGAG motif. This explains why a maximum stoichiometry of 2:1 is seen. 

It is possible that in longer sequences, higher protein:RNA stoichiometries could form, 

the specificity of such interactions would depend on whether extra GGAG binding sites 

were available. The use of SEC-MALLS in this study provides a quantitative measure of 

complex stoichiometry, which differentiates the results presented here from previous 

work [182]. 

These results suggest that, in the cell, Lin28 can use its CSD to effectively sample the 

transcriptome through transient electrostatic associations and increase the local 

concentration of ZnK domains around the RNA, increasing the likelihood of locating the 

short GGAG motif. The ZnK would bind this motif, and tether the CSD to the RNA, 

where it would interact with single stranded RNA elements and form a stable complex. 

Depending on the structure and sequence of the RNA, melting and the association of 

further Lin28 molecules could then occur. Future work will therefore need to 

concentrate on Lin28’s interaction with the transcriptome in cells, in order to confirm 

this hypothesis.   
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Chapter 5 : Structure and Mechanism of Dihyrdouridine 

Synthase C from E. coli 

5.1 Introduction 

Specificity of the dihydrouridine synthase family of enzymes towards particular uridines 

in tRNA is important for normal cell functioning. As mentioned in Chapter 1, the 

dihydrouridine modification is commonly found at positions 16, 17, 20 and 20a of the 

D-loop of tRNA sequences as well as positions 20b and 47 in human and yeast [185]. 

The conservation of dihydrouridine at these positions suggests its importance in 

modifying the properties and structure of tRNA. One of the expected effects of the 

dihydrouridine modification is to locally increase the flexibility of the tRNA structure. 

This occurs through the prevention stacking interactions, as the base is no longer planar, 

and by converting the preferred ribose conformation from the C3’ endo to C2’ endo 

form, which is inherently more flexible [186]. It was postulated that the clustering of 

dihydrouridine nucleotides around the D loop allows the formation of the conserved 

G18-Ψ55 and G19-C56 tertiary base pairs.  

Therefore, the exact positioning of dihydrouridine within the tRNA structure is 

important, but tRNA molecules differ in sequence, as well as in length [185] (Fig. 5.1). 

Dus enzymes have non-overlapping functions and are specific towards certain uracil 

positions in the tRNA [138]. Therefore, Dus enzymes must non-specifically bind all 

tRNA sequences containing uracil at the target position, and specifically modify a 

particular position within each molecule. 
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Figure 5.1: Sequence alignment of EcDusC tRNA substrates and non-substrates.  

Mature E. coli tRNA sequences were separated into two groups by the presence or absence of D at position 16 

and aligned. The consensus row shows the most common nucleoside at each position. Figure courtesy of 

Dr.Rob Byrne (Antson group).  
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Although the structure of the Thermus thermophilus Dus is available in tRNA bound 

and unbound states [187], it was not clear which factors define the enzymes specificity 

towards particular uridines of tRNA,, as protein:RNA complex structures with alternate 

specificities had not yet been determined. In addition, the position specificities of the E. 

coli enzymes were unknown, except that DusA is able to modify position 20 [138].  It 

was difficult to draw solid conclusions from the structure of the TtDus:tRNA
phe

 complex 

[187], due to the covalent bond formed between the active site Cys residue and D20 of 

the tRNA, questioning whether the TtDus was active and whether the tRNA molecule 

was trapped in a natural way.  

5.1.1 Factors definining position specificity in ArcTGT 

In archaea, position G15 of the D loop in many tRNA sequences is modified to 7-

formamidino-7-deazaguanosine, known as Archaeosine, through a 7-cyano-7-

deazaguanine intermediate, called preQ0. G15 is modified to preQ0 through the ArcTGT 

(Archaeosine tRNA-transglycosylase) enzyme, which cleaves the N-glycosidic bond of 

G15, then reforms the bond with free preQ0 base [188]. Structurally, this reaction is 

challenging, as G15 is buried within the core of the tRNA and is involved in a tertiary 

base pair with C48 of the variable loop. ArcTGT is highly specific for this base, but 

does not recognise any other part of the tRNA molecule [189].  

The 3.3Å structure of P. horikoshii ArcTGT in complex with tRNA
val 

 (Fig. 5.2a) 

demonstrates how this reaction takes place, and which factors define specificity towards 

this single position [190]. ArcTGT forms a homodimer [191]. The dimer binds two 

tRNA
val

 molecules, with each tRNA bound by both subunits [190]. The structure of the 

ArcTGT did not change considerably upon binding tRNA, whereas the tRNA underwent 

a significant change in conformation, adopting the λ conformation instead of the classic 

L-shape. In the λ conformation, nucleotides U8-22 of the D arm form an extended 

structure, while the remainder of the D-stem forms a helix with the variable loop, called 

the DV helix (Fig. 5.2b) [190].  
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Figure 5.2: ArcTGT binds the λ conformation of tRNA.  

(a) Stereo view of the crystal Structure of ArcTGT with tRNAval. Two tRNA molecules are bound, with each 

contacted by both subunits of the ArcTGT dimer. Relevant regions are labelled. (b) Comparison of the λ form 

of tRNAval with the L-form of yeast tRNAphe. Nucleotides of the D arm and the DV helix are coloured in red. 

Secondary structures are shown alongside 3D models with the DV helix surrounded by a box. Adapted from 

Ishitani et al. (2003).  

Subunit A interacts with the acceptor stem through electrostatic contacts formed 

between the phosphates of the tRNA and basic residues found in the C3 domain of 

ArcTGT, known as the PUA (PseudoUridine synthase and Archaeosine TGT) domain 
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[190], which is widely found in tRNA modification enzymes [192]. These interactions 

allow the PUA domain to bind to the 5’ end of the tRNA acceptor stem, while the 3’ end 

is recognised by electrostatic interactions between tRNA phosphates and basic residues 

in a β sheet of the C2 domain. This allows ArcTGT to accurately position itself onto the 

tRNA [190].  

Nucleotides 8-13 of the extruded loop of the λ form tRNA are bound in the cleft 

between the two ArcTGT subunits through interactions between the tRNA phosphates 

and polar residues from both subunits. Subunit B forms hydrogen bonds to the 2-amino 

groups of G9 and G10 but does not interact with the bases of other nucleotides in this 

region. A14 and U16 are then bound in hydrophobic pockets of the catalytic domain, 

and the substrate G15 buried deep within [190], held in place by the backbones of S98 

and F99, as well as the S98 sidechain [191].   

The PUA and C2 domains of subunit A bind the acceptor stem of the tRNA through non 

base specific contacts, which positions the catalytic domain of subunit B so that it binds 

to the extruded region of the λ form tRNA. Non-specific hydrogen bonds are formed to 

the backbone atoms of this region, allowing the enzyme to count the number of 

nucleotides up to U13, where the next three nucleotides are buried in hydrophobic 

pockets and G15 is inserted into the active site of the enzyme, where it is modified. 

Position specificity of the ArcTGT enzyme is therefore maintained through a base 

counting mechanism, facilitated by a rearrangement of the tRNA structure, and the PUA 

domain of the protein. 

5.1.2 Factors determining position specificity in Pseudouridine Synthases 

Pseudouridine (Ψ) is a common nucleotide modification of uracil that stabilises RNA 

sequences by introducing a new hydrogen bond donor group in place of C5, as well as 

enhancing stacking interactions in single and double stranded RNAs [193]. The 

modification occurs through the isomerisation of uracil nucleotides present in RNA 

sequences and is catalysed by five families of enzymes: RluA, RsuA, TruA, TruB and 

TruD [194].  These enzymes have a common core consisting of an eight stranded mixed 
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β sheet intersected by a catalytic cleft adjacent to several helices and loops. One of these 

loops contains the universally conserved aspartate residue responsible for catalysis, and 

it is likely that all pseudouridine synthases have the same catalytic mechanism [194]. 

The range of substrate nucleotide positions modified by pseudouridine synthases is 

diverse, and includes both tRNA and rRNA sequences [194]. As the pseudouridine 

synthases all have a common core, substrate specificity must be generated by other 

means. As many tRNAs contain Ψ at several positions, the structural problem faced by 

pseudouridine synthases is similar to that faced by the Dus enzymes, where a specific 

position must be recognised in a non-specific context.  

5.1.2.1 TruB 

TruB is the pseudouridine synthase that modifies position U55 to Ψ in tRNA; a 

modification found in the majority of tRNA molecules. Recognition of this base is 

challenging, as it is present within the folded core of the tRNA due to a long range base 

pair between U55 and  a nucleotide of the D-loop, so the tRNA must be opened to allow 

modification of this residue [195].   

The structure of TruB in complex with a synthetic RNA corresponding to the T stem 

loop (TSL), revealed the mechanism of substrate access and recognition. A base flipping 

mechanism is used to access U55 as the bases of nucleotides 55, 56 and 57 are extruded 

from the helical stack they usually form in tRNA (Fig. 5.3a) by the conserved H43 and 

its neighbouring amino acids.  The “thumb” domain of the protein closes in on the TSL 

during binding and forces H43 to stack underneath the universal A58:U54 reverse 

Hoogsteen basepair in a conformation stabilised by a hydrogen bonding network (Fig. 

5.3b). This insertion prevents the stacking of U55 under this pair (Fig. 5.3 c,d), and so 

the base flips out of the TSL helix into the active site cavity, which is inaccessible to 

solvent, thus sequestering the substrate in close proximity to the active site aspartate. 

Modelling U55 into the structure, which uses 5-fluorouracil in place of U55, showed 

that an active site tyrosine forms a stacking interaction with U55. This prevents the 

intermediate detached nucleobase from rotating in the active site, ensuring efficient 
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catalysis [195]. TruB catalyses Ψ modification equally in both tRNA
phe

 and T-arm  

segments [196], and superposition of tRNA
phe

 with the TSL in the crystal structure 

revealed few steric clashes or contacts [195], and so it is likely that the recognition 

mechanism observed in this structure is also true for full tRNA molecules. 
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Figure 5.3: Structure of TruB in complex with TSL segment. 

(a) Ribbon diagram of the complex. Protein is shown in blue, with grey segments highlighting characteristic 

TruB family elements. The TSL is coloured in orange, apart from the U54:A58 reverse Hoogsteen basepair 

(magenta) and the substrate nucleotide 55 (red). The position of the TSL sequence within yeast tRNAphe is 

shown alongside the structure.  (b) Superposition of the TruB bound TSL with the corresponding RNA 

segment from tRNAphe (green), aligned by C1' atoms excluding nucleotides 55, 56 and 57, which are flipped 

out upon TruB binding. (c) H43 (blue) displaces nucleotide 55 from its original position under the reverse 

Hoogsteen basepair. (d) In tRNAphe, G18 makes contact with nucleotide 55. (c) and (d) show the differences in 

the TSL structure upon TruB binding. Adapted from Hoang and Ferré-D’Amaré (2001).  
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5.1.2.2 TruD 

The recognition mechanism used by TruD  has not been established [194]. TruD 

modifies position U13 of the tRNA D loop, which is present in the core structure of the 

tRNA, and so is inaccessible without rearrangement of the tRNA. The tRNA-free 

structure of TruD reveals two domains: a catalytic domain, and a αβ insertion domain 

which is not homologous to any known fold. The catalytic domain displays homology to 

the catalytic segments of two other members of the pseudouridine synthase family of 

enzymes, TruA and TruB. The conserved catalytic aspartate lies in the active site cleft of 

TruD, which is formed between the two domains. An active site phenylalanine, which is 

conserved in the TruD subfamily enzymes, corresponds to the conserved active site 

tyrosine residue found in TruB, suggesting conservation of the base flipping mechanism 

of nucleotide recognition. However, docking of tRNA into the active site cleft between 

the TruD domains implies that it is more likely that TruD binds the λ form of tRNA 

[197], as seen in the ArcTGT structure [190]. In this form, the extended D-loop would 

lie along the active site cleft and the insertion domain would stabilise the conformation. 

It is possible that L-form tRNA could be accommodated by the active site cleft of the 

enzyme, as its structure is flexible, but U13 would still be inaccessible in this case [197].  
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5.1.2.3 TruA 

TruA catalyses the modification of U38-40 located in the anticodon stem loop (ASL). It 

differs from TruB and TruD as it forms a homodimer. tRNA
leu 

was bound by both 

subunits, with the ASL positioned in the active site cleft that forms at the dimerization 

interface between the N terminal domain of one subunit, and the C terminal domain of 

the second subunit. The substrate nucleotide is therefore positioned close to the active 

site aspartate, which resides in the active site cleft. The conformations of both protein 

and tRNA in the complex and in their standalone states do not differ significantly. The 

tRNA is bound to the protein through hydrophobic interactions with the bases, and 

hydrogen bonding contacts with the sugar-phosphate backbone of the elbow connecting 

the D and T stem loops. Molecular dynamics simulations, in combination with the 

structural data, then revealed that the substrate nucleotide is flipped into the active site 

with the assistance of an active site arginine residue [198]. 
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Figure 5.4: Model of nucleotide recognition by TruA.  

TruA initially binds the elbow of the tRNA in a non-sequence specific manner, which maintains the flexibility 

of the ASL but positions it close to the active site. Arg58 then helps to bend the ASL through an intermediate 

stage, before the flipped out conformation is formed, resulting in nucleotide modification. Each position, 38-40, 

can be sampled through the intermediate and, as the ASl is flexible, any U in these positions can be modified by 

TruA. Adapted from Hur and Stroud, (2007). 

Any tRNA, regardless of sequence, can therefore be recognised by the TruA dimer, as 

the overall positioning of the tRNA in the complex is determined by non-sequence 

specific contacts to a conserved fold adopted by all tRNAs. The ASL is thus positioned 

in the active site cleft in such a manner that it remains flexible in the enzyme/tRNA 

complex. It can then adopt one of two conformations, with bases 38-40 either stacked or 

flipped out, and these bases will be sampled by TruA during one or more binding 

events. Due to the size of the active site, any base can be accommodated, but only uracil 

bases have the correct chemistry to be modified by the enzyme. In such a way, three 

different positions can be recognised and specifically modified by TruA in all tRNA 

sequences (Fig. 5.4).  
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5.1.3 E. coli DusC is specific for position U16 

Recent work by Dr.Rob Byrne and Dr.Fiona Whelan (Antson group) identified which 

particular uridine of tRNA
phe

 is modified by E. coli DusC. A reverse transcriptase assay, 

which extends a primer across unmodified tRNA
phe

 until terminated by the presence of 

dihyrouridine, showed the enhancement of termination at position 17 in tRNA that had 

been incubated with wild-type DusC, but not with mutant DusC
C98A

, where the active 

site cysteine was mutated to alanine. This indicated that DusC was modifying position 

U16, and so terminating the chain at position 17.  

This result was confirmed by analytical size exclusion chromatography (SEC) and gel 

shift assays where DusC
C98A

 was seen to form a stable complex with tRNA
phe

, but not 

with tRNA
cys

, which does not contain D at position 16 in any of its mature sequences. 

tRNA
trp

, which contains D at positions 16 and 17 in its mature sequence, also formed a 

complex with DusC
C98A

, but was not seen to bind by gel shift analysis. These results 

indicate that DusC specifically modifies position 16, and possibly 17, of the D loop of 

tRNA. 
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5.1.4 DusC uses an alternate mechanism of substrate selectivity 

However, it was still not known how DusC recognised tRNA, and how specificity 

towards particular uridine positions within tRNA was generated. The mechanisms used 

by ArcTGT and the pseudouridine synthases to modify certain nucleotide positions 

suggested specificity towards particular nucleotides is generated through either 

rearrangement of the tRNA structure, or a nucleotide flipping mechanism. In each case, 

recognition involves an auxiliary domain, e.g. the PUA domain of ArcTGT, the thumb 

domain of TruB, or the insertion domain of TruD. In some cases, like TruA, recognition 

is assisted through dimerization. The structures of DusC [147] and TtDus [187] showed 

no such structural features, and instead a mechanism involving an unknown co-factor 

was proposed [147]. Therefore, structural data on the complex of DusC with tRNA was 

needed in order to fully elucidate the mechanism by which position specificity is 

generated in Dus family enzymes.  
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5.2 Materials and Methods 

5.2.1 Plasmids and RNA 

Plasmids encoding EcDusC C98A mutant protein and E. coli tRNA
phe

 were produced by 

Dr.Fiona Whelan (Antson group) and Dr.Andrey Konevega (Max Planck Institute for 

Physical Biochemistry, Göttingen) respectively.   

5.2.2 Protein Purification 

DusC
C98A

 protein was produced by James Stowell (Antson group) (Fig. 5.5). Briefly, the 

protein was overexpressed in Rosetta2 E. coli cells at 37°C after induction with 1mM 

IPTG at 0.6 OD600. Cells were resuspended in 20mM TRIS pH 7.5, 500mM NaCl, 

20mM Imidazole, 2mM DTT buffer supplemented with an EDTA-free protease cocktail, 

and lysed by sonication. The insoluble fraction was removed by centrifugation and the 

soluble fraction purified by Ni
2+

 IMAC. The elution fractions were concentrated and 

buffer exchanged into 20mM TRIS pH 7.5, 50mM NaCl, 5mM DTT and purified by 

anion exchange chromatography. The His tag was then removed by digestion overnight 

with thrombin, and the cleaved DusC
C98A

 protein purified by a second Nickel affinity 

column. The protein was then further purified by Size-Exclusion chromatography to be 

stored at -80°C in 20mM TRIS pH 7.5, 100mM NaCl, 5mM DTT.  

tRNAphe was purified by Dr.Andrey Konevega (Max Planck Institute for Physical 

Biochemistry, Göttingen) . 
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Figure 5.5: Purification of EcDusCC98A 

(a) SDS-PAGE analysis of the fractions eluting from the Ni2+ IMAC column. T = Total soluble protein, FT = 

column flow-through (unbound protein), W = Wash fraction. Fractions from lanes 7-12 were pooled and 

applied to the monoQ anion exchange column shown in (b). (b) SDS-PAGE analysis of the fractions eluting 

from the anion exchange column. L = Sample loaded onto column. Fraction from lanes 6-11 were pooled and 

applied to the gel filtration column shown in (c). (c) Elution profile from gel filtration column. Elution fractions 

were analysed by SDS-PAGE, shown in (d). Experiments performed by James Stowell (Antson group). 

 

5.2.3 Crystallization 

The DusC
C98A

-tRNA
phe

 complex was formed by mixing DusC
C98A

 and tRNA
phe

 in a 1:1 

molar ratio, following buffer exchange of the protein into a solution containing 100 mM 

MgCl2 and 10 mM HEPES-NaOH pH 7.0 using a 0.5 mL Vivaspin 10 kDa MWCO 

concentrator. The resulting complex was at a final protein concentration of 7.5 mg mL
-1 

(approximately 200 µM complex). Crystals were produced by hanging drop vapour 
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diffusion at 20°C and grew over the course of three days. 1 µL of the complex was 

mixed with 1 µL of the reservoir solution containing 100 mM HEPES pH 7.0, 200 mM 

MgCl2, 10 mM MnCl2 and 11% w/v PEG 6K and equilibrated over 1 mL of reservoir. 

Before flash-cooling in liquid nitrogen, crystals were transferred into a solution 

containing 100 mM HEPES pH 7.0, 150 mM MgCl2, 10 mM MnCl2, 18% w/v PEG 6K 

and 15% v/v glycerol. 

5.2.4 Structure Determination 

X-ray data were collected at Diamond Light Source (Didcot, United Kingdom). Two 

data sets were collected from a single crystal of the DusC
C98A

-tRNA
phe

 complex at two 

different wavelengths: 0.9795 Å data for structure refinement and longer-wavelength 

data (1.300 Å) for identification of Mn
2+

 using anomalous differences. After integration 

with XDS [199] , the data were imported into the CCP4 suite [200] for subsequent tasks. 

The data were analysed with Pointless, scaled with Aimless [201] and the resulting 

intensities were converted to amplitudes with cTruncate (Table 1). 

The structure of the complex was determined by molecular replacement with Phaser 

using the structures of DusC (PDB code 4BFA) and unmodified tRNA
phe

 (PDB code 

3L0U). Three molecules each of DusC
C98A

 and tRNA
phe

 were found in the asymmetric 

unit and these were rebuilt and refined using isotropic atomic B factors and 21 TLS 

groups identified by TLSMD [202]. Toward the end of model building and refinement, 

water molecules were added using ARP/WARP. [203] Mg
2+

 ions were identified as 

peaks above 6 σ in the mFo-DFc difference electron density maps where coordinating 

distances were in agreement with those expected for Mg
2+

 ions. Similarly, FMN 

molecules were built into positive density in the mFo-DFc electron density maps that 

corresponded to the FMN cofactor in the structure of DusC. To identify Mn
2+

 ions 

within the structure, the data collected at a wavelength of 1.300 Å were analysed by 

ANODE [204] and inspection of the resulting anomalous difference map revealed the 

locations of three Mn
2+

 ions, one per molecule of tRNA, that were subsequently 

included in the refinement. The final model contains three DusC
C98A

-tRNA
phe 

complexes, three molecules of FMN, 24 Mg
2+

 ions, 3 Mn
2+

 ions and 608 water 
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molecules. The DusC and tRNA
phe

 models are complete except for amino acids 100-105 

(chains A-C), 313-315 (chain B) and 315 (chain C) and nucleotides 75-76 (chain D), 1-

2, 70-76 (chain E) and 72-76 (chain F).  

Molecular interfaces were analyzed with PISA. [205] The geometry of all models was 

assessed by MolProbity [206]. RNA backbone geometry was improved using RCrane 

[207]. Figures were created with ccp4mg [208]. Additional superpositions were 

performed in ProSMART [209] by Dr.Rob Byrne (Antson group). Multiple sequence 

alignments were created with Clustal Omega [210] and ESPript [211]. 

  



Chapter 5 

 

202 

 

Table Error! No text of specified style in document.1: Crystallography statistics for DusCC98A/tRNAphe structure 

   Data 

Collection 

  

 

Wavelength  (Å) 0.9795 

 

Space Group C 2 2 21 

 

a, b, c (Å) 

100.585, 176.8950, 

238.4130 

 

Resolution (Å) 49.26-2.10 (2.14-2.10) 

 

Number of Reflections 

 

 

Total 556847 (28446) 

 

Unique 123558 (6073) 

 

Completeness (%) 99.9 (100) 

 

Multiplicity 4.5 (4.7) 

 

<I/σ(I)> 15.7 (1.7) 

 

Rmerge 0.061 (0.999) 

 

Rpim 0.033 (0.522) 

 

Wilson B factor (Å
2
) 37.2 

Refinement 

  

 

Resolution (Å) 49.26-2.10 

 

Number of Reflections 

 

 

Working  122260 

 

Free 1242 

 

Rwork 18.8% 

 

Rfree 22.1% 

 

Mean B factor (Å
2
) 25.8 

 

Geometry 

 

 

RMSD Bond Lengths 0.008 

 

RMSD Bond Angles 1.22 

 

Ramachandran plot (%) 

 

 

Favoured 97.87 

 

Alowed 2.13 
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Table 2: Analysis of DusCC98A/tRNAphe geometry by MolProbity webserver [206]. 

 

5.3 Results 

5.3.1 Structure of DusC-tRNA
phe

 complex 

In order to elucidate the mechanism of DusC binding and catalysis, a stable complex of 

C98A mutant enzyme with E. coli tRNA
phe

 was prepared and diffraction quality crystals 

of this complex were obtained. The best crystals belonged to the orthorhombic space 

group C2221 and diffracted to a resolution of 2.1Å. The structure was solved by 

molecular replacement and refined to a Rwork/Rfree of 18.8/22.1%. Three copies of the 

complex were found in the asymmetric unit (Fig. 5.6). Protein chains A,B and C were 

highly similar to each other, superimposing with a maximum RMSD of 0.3Å over 1164 

main chain atoms (residues 5-300), as were tRNA chains D,E and F, with a maximum 

RMSD of 0.6Å over 792 backbone atoms (nucleotides 4-69).  
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Several magnesium ions were also present in the structure: tRNA chain D containing 

five ions clustered around the D and TΨC loops; chain E containing five ions found 

mainly throughout the anticodon stem; and chain F containing six spread out throughout 

the tRNA structure (Fig. 5.7a). In addition, three manganese ions were identified using 

the anomalous difference maps, with one ion found per tRNA chain, always in the same 

position adjacent to the D loop (Fig. 5.7b). As MnCl2 was present in the crystallization 

buffer, it is likely that the manganese ions came from there. In addition, although 

crystals could be grown in the absence of manganese, the diffraction quality was poorer, 

indicating that the presence of manganese was important for high quality crystal 

packing.  
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Figure 5.6 Asymmetric unit of the DusCC98A:tRNAphe complex.  

Protein/RNA chains A/D, B/E and C/F are depicted in blue, red and yellow respectively.  

  



Chapter 5 

 

206 

 

Figure 5.7: Metal ion binding in the EcDusCC98A:tRNAphe complex.  

(a) Superposition of the three tRNA chains present in the unit cell of the complex (cyan, gold and burgundy). 

Bound magnesium ions are shown as spheres coloured according to chain, and one manganese ion is shown for 

each molecule (blue, yellow and red). (b) Uncommon co-ordination of magnesium by the N7 atom of a 

nucleotide base. The co-ordination distance is very similar to water (pink crosses) coordination. Electron 

density from the 2mFo-DFc map is shown contoured at 1σ. 

In the structure, the N-terminal TIM barrel catalytic domain contacts the D-stem loop, 

whilst the C-terminal recognition domain mainly interacts with the D stem loop and the 



Chapter 5 

 

207 

 

TΨC stem loop. In contrast, the anticodon and acceptor stem loops point away from the 

enzyme and are not contacted. The result of this interaction is to insert uracil 16 into the 

active site of the enzyme, to place it in a stacking interaction with the plane of the FMN 

(Fig. 5.8a).  
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Figure 5.8: Structure of the DusCC98A:tRNAphe complex.  

(a) tRNAphe (yellow ribbon) bound to DusCC98A (blue ribbon) (left) rotated 90° about the y-axis (right) with 

substrate target residue U16 (yellow sticks) and cofactor FMN (green sticks) indicated. (b) Stereo view of the 

active site with electron density from the 2mFo-DFc nucleotide omit map contoured at 3σ (blue); tRNA (yellow, 

numbering in italics); side-chains (green); FMN (white), waters (red spheres) and enzyme side-chains (green 

sticks). (c) Schematic of residues hydrogen bonded to tRNA through side-chains (solid lines), protein backbone 

(dashed lines) and water mediated (dotted lines).  
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Binding of the tRNA by the protein results in a buried surface area of ~1057Å
2
. In total, 

26 hydrogen bonds are formed between the DusC and tRNA
phe

, out of which only four 

are made to RNA bases (Fig. 5.8 b,c). Two of the four hydrogen bonds are to the active 

site uracil, U16, one to C17 and another to the fully conserved C56. The remaining 22 

hydrogen bonding interactions are comprised of 7 water mediated interactions and 

hydrogen bonds to the sugar-phosphate backbone atoms in the tRNA. The majority of 

these hydrogen bonds form between the protein and the D loop, but several also form 

between the recognition domain of the protein and the TΨC loop. This region also 

contains one of the four specific hydrogen bonds, which forms between the side chain of 

K274 and the O2 carbonyl group of C56, which is located in the elbow of the tRNA. 

There are no significant conformational changes that take place in the DusC structure 

upon binding, which can be seen by comparison with the structure of tRNA-free protein 

(PDB code 4BFA), which superimposes with an RMSD of 0.5 Å (1152 main chain 

atoms, residues 5-300). The most prominent difference is in the active site loop 

(residues 98-107), which becomes disordered upon binding tRNA. This loop is 

disordered in one of the two protein molecules in the tRNA-free structures and may be 

inherently flexible. This could be advantageous for the enzyme, as the flexibility of the 

loop may allow tRNA molecules with different length D-loops to dock without 

hindrance.  

Similarly, the structure of the tRNA does not change significantly upon binding (Fig. 

5.9a), with the RMSD between the bound and unbound (3L0U) tRNAs being 2.3 Å (792 

backbone atoms, nucleotides 4-69). Here, differences are mainly in the D loop with the 

largest differences being found for the active site nucleotides U16 and C17 (Fig. 5.9b).  
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Figure 5.9: Comparison of bound and standalone tRNAphe.  

(a) Superposition of EcDusC bound (blue) and unbound tRNAphe (purple, 3l0u). (b)A close-up image of the D-

loop (defined by a box in (a)) shows remodeling of residues neighbouring the target residue U16. 

 

These comparisons therefore suggest that DusC-tRNA
phe

 complexes form through rigid-

body docking of the two molecules followed by induced fit, where small conformational 

adjustments take place around the active site of the protein and D loop of the tRNA.  
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5.3.2 Recognition and modification of U16 by DusC 

Examination of the active site reveals that the U16 nucleotide has been inserted to stack 

above the FMN co-factor. The proposed reaction mechanism for the Dus enzymes 

involves a transfer of hydride from the N5 atom of FMN onto the C6 atom of the 

substrate uridine followed by a transfer of a proton from Sγ of C98 onto the C5 atom of 

the substrate uridine [142]. Due to the position of the U16 relative to the rest of the 

active site, it is likely that the modification process follows the same mechanism for 

DusC, and that U16 is the base that would be modified in the wild-type enzyme. This 

correlates well with the results showing U16 as the base that is specifically recognised 

by DusC.  

U16 is bound in the active site through direct hydrogen bonds between the side chains of 

Y176 and N95, which are both highly conserved throughout the DusC subfamily, and 

the O2 and O4 oxygen atoms of carbonyl groups of the base. In addition, a water-

mediated hydrogen bond also forms between the N5 endocyclic amine group of the 

base, and the highly conserved residues R141 and H168, which were previously found 

to be essential for DusA activity [212] (Fig. 5.10). The water molecules that take part in 

this interaction occupy a region of electron density that was previously unassignable, 

and assumed to be an unidentified co-factor [187] (3B0U and 3B0V). Although the 

difference density maps indicate that there could potentially be another two water 

molecules present, further refinement suggests that these sites have only partial 

occupancy, and that there is no evidence for an additional co-factor.  
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Figure 5.10: Difference density in the active site of EcDusC.  

Previously unidentified positive difference density in the active site of other Dus enzymes is present in the 

active site of EcDusC 2Fo-Fc map contoured at 1 (blue) and Fo-Fc map contoured at 4 (green and red). The 

density and refinement suggest that it is due to the presence of two water molecules (red spheres). Also shown 

are FMN (green sticks), target uracil U16 (cyan sticks), and active site side-chains (green sticks). 

The neighbouring nucleotide, C17, is also bound in the active site forming a direct 

hydrogen bonding interactions between its N4 exocyclic amine group and the side chain 

of Y279, as well as through water mediated hydrogen bond between the N3 imine group 

and the side chain of R225. In all E. coli tRNA sequences with D at position 16, position 
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17 is either a C or U, and it is clear from the hydrogen bonding network that U could be 

bound in the same position as C if it was present instead.  

5.4 Discussion 

5.4.1 Comparison with the TtDus structures 

Comparison of the position-16 specific DusC structures with the position-20 specific 

TtDus structures reveals how the enzymes are able to maintain specificity for different 

nucleotide positions. Examination of the unbound DusC structure (PDB code 4BFA) 

with the unbound TtDus structure shows that the proteins adopt a highly similar fold 

with RMSD’s of 2.0 Å (212 Cα atoms) and 2.5 Å (42 Cα atoms) for the catalytic and 

recognition domains, respectively (Fig. 5.11a). In the structure of the TtDus-tRNA
phe

 

complex, however, the tRNA substrate is rotated by ~160° relative to the EcDusC
C98A

-

tRNA
phe

 complex structure, allowing U20 to be inserted into the active site instead of 

U16 (Fig. 5.11b).  
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Figure 5.11: Comparison of EcDusC and TtDus and their complexes with tRNAphe.  

(a) The structure of EcDusC coloured according to the distance between atom pairs after superposition with 

TtDus by ProSMART alignment. Figure courtesy of Dr.Rob Byrne, Antson group. (b) Superposition of the 

enzymes within their respective tRNA complexes reveal that tRNA (yellow ribbon) is  bound with a ~160° 

rotation by the E. coli enzyme (blue surface) relative to TtDus:tRNAphe (green ribbon). (c) Superposition of 

FMN (white) shows that the position of enzyme substrate target residues U16 (yellow)/U20 (green) is invariant 

in the active site of both complexes EcDusC (light blue) and TtDus (pale green), respectively. 
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The cause of this rearrangement is due to differences in the distribution of charges on 

the surface of each enzyme. The DusC enzyme surface contains a positively charged, 

“L-shaped” groove into which the tRNA slots (Fig. 5.12a), contrasting with the surface 

of the TtDus enzyme which has a cylindrically shaped groove (Fig. 5.12b), causing the 

tRNA to dock in the opposite orientation. tRNA molecules are thus prevented from 

binding in the alternative orientation due to mismatching charges between the 

phosphates of the tRNA backbone and the protein side-chains.  

Next, sequence alignments of position-16 specific DusC subfamily members (Fig. 5.13) 

and position-20 specific DusA subfamily members (Fig. 5.14) (sequences selected by 

Dr.Rob Byrne, Antson group) were generated to investigate whether the pattern of 

charges was conserved throughout subfamily members (Fig. 5.15). Several putative, 

subfamily specific “hotspots” were identified, which define the orientation of the tRNA 

on the surface of the enzyme (Fig. 5.12 c,d).  
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Figure 5.12: Structural features that determine specificity in Dus enzymes.  

The electrostatic surface potential was calculated using unbound enzyme and rendered for the tRNAphe 

complex (blue, positive; red, negative) for (a) EcDusC and (b) TtDus. Specific residues proposed to determine 

tRNA binding orientation (spheres) by (c) EcDusC (recognition domain, blue; enzyme core, white) and (d) 

TtDus(recognition domain pale green; enzyme core, white). EcDusC 'Hot-spots' are circled in black; lettering 

corresponds to subsequent figures (e, f and g).  (e), (f) and (g) Illustrate the molecular interactions between 

EcDusC and tRNAphe highlighted in (a). (h) Superposition of the catalytic domains of EcDusC (blue) and TtDus 

(pale green) reveals a high level of structural conservation, with a change in relative disposition of the 

recognition domain. 
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Figure 5.13: Sequence alignment of DusC type enzymes from homologues with 30-50% sequence identity. 

Sequences selected by Dr.Rob Byrne, Antson group. The secondary structure of EcDusC is shown, and DusC 

putative 'hotspot' residues are highlighted (blue stars). Blue triangles denote the position of the active site loop.  
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Figure 5.14: Sequence alignment of DusA type enzymes from homologues with 30-50% sequence identity. 

Sequences selected by Dr.Rob Byrne, Antson group. The secondary structure of TtDus is shown, and DusA 

specific residues are highlighted (red stars). The conserved 7-reside βα6 insert is highlighted by green triangles. 
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Figure 5.15: Sequence alignment of Dus enzymes from subfamilies DusA, DusB and DusC. 

Regional conservation (red background, white text) and similarity (red text) are shown. DusC putative 

hotspots are shown as blue stars and DusA putative hotspots as red stars. The conserved 7-reside βα6 insert is 

highlighted by green triangles. 

In the position-16 specific enzymes, three putative hotspots were found: (i) K274/R295 

(Fig. 5.12e), (ii) G10/R272 (Fig. 5.12f) and (iii) R35/S106/G107 (Fig. 5.12g). In 

comparison, the hotspots identified in the position-20 specific enzymes were K97, K175 

and R290/R293 corresponding to residues T102, E173 and K282/D285 respectively in 

the DusC protein. In the first set, residues K274/R295 of the recognition helix interact 

with the TΨC loop of the substrate tRNA. These residues form hydrogen bonds with the 

phosphate group of C56 as well as the previously mentioned hydrogen bond with the 

pyrimidine ring of C56. The second set, consisting of the G10/R272 pair, binds the 

centre of the D loop, which directly interacts with the phosphate group of U20 and 

makes further contacts with G19 and U20 through water-mediated hydrogen bonds. In 

the final set, the 5' end of the D loop is bound via hydrogen bonding interactions 

between the R35/S106/G107 triplet, which contact the phosphate of G15 and the O3′ 

ribose atom of G14. It is important to note that in this group, however, S106 and G107 

are not fully conserved throughout the DusC subfamily. 
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In conjunction with these putative hotspots, the relative displacement of the recognition 

domains of the two proteins also acts as a determinant of specificity. Compared to the 

TtDus enzyme, the recognition domain of DusC is raised by ~10Å (Fig. 5.12h), closing 

the cylindrical groove between the two domains, and so preventing the binding of the 

substrate tRNA in the TtDus orientation. Additionally, small deletions and insertions in 

the Dus sequences, notably insertion of residues 168-175 (TtDus numbering) in position 

20-specific enzymes, could further contribute to defining the position specificity of Dus 

enzymes. The determinants of specificity in Dus enzymes are therefore amino acid 

hotspots on the surface of the enzyme, and variation in relative displacement of the 

recognition domain, which together define the orientation of bound tRNA and hence 

which uracil is positioned to access the active site for modification.  

5.4.2 Alternate tRNA sequences can be accommodated by induced fit 

The crystal structure also clarifies how DusC is able to modify U16 in tRNAs that lack a 

strong consensus sequence in the regions contacted by the enzyme. First, plasticity in 

the active site, owing to flexibility of the active site loop, could serve to accommodate 

variations in the D loop lengths, sequences and overall tertiary structures of tRNA 

substrates [185, 213]. Multiple non-sequence specific interactions, involving hydrogen 

bonds to sugar-phosphate backbone, serve to stabilise complex formation. 

Consequently, it is expected that DusC modifies a wide range of tRNA substrates, in 

agreement with the observation that mature E. coli tRNA sequences containing 

dihydrouridine at position 16 lack a strong consensus sequence, especially in the regions 

of the D and TΨC stem-loops contacted by DusC [185]. Second, this binding mode is 

insensitive to the length of the variable loop, which is exposed and does not interact with 

the enzyme. This would therefore allow DusC to modify tRNAs with elongated variable 

loops, such as tRNA
Leu

 in E. coli [185]. Third, DusC selects for fully-folded tRNA 

through both the interactions described above, and by specific recognition of C56 in the 

elbow region. Although previous studies demonstrated that Dus enzymes have 

significantly lower activity against unmodified tRNA than partially modified tRNA 

[142, 187], the structures of DusC and TtDus do not implicate specific recognition of 

any residues typically modified in mature tRNA. Instead,the preference for partly 



Chapter 5 

 

222 

 

modified tRNAs is more likely due to the fact that these modifications stabilise the L-

shaped conformation of tRNA, and hence may increase the affinity of enzyme binding 

[214]. It is interesting to note that specific recognition of the G19-C56 base pair has also 

been reported for TruA, which is only able to act on a fully-folded tRNA and 

consequently acts as a ‘tertiary structure checkpoint’ [198]. As a result, the final stages 

of tRNA maturation are delayed until the tRNA has adopted the L-shaped conformation. 

5.4.3 Evolution of Dus Specificity 

Dihydrouridine synthases that modify uridines at different positions belong to 

paralogous groups of sequences that appeared as a result of gene duplication [144]. It is 

now clear that the same protein fold can provide the basis for a duplicated gene to 

become position 16- or 20-specific, without addition of auxiliary domains [138, 145]. 

Specificity is generated by the introduction of three ‘hot spots’ containing polar and 

charged residues that define docking of tRNA in a specific orientation. Binding is 

assisted by positional adjustments of the C-terminal recognition domain. Additional 

variations in the length of exposed protein loops serve to further increase affinity 

towards particular orientations of substrate tRNAs. 

It is possible that an ancestral dihydrouridine synthase was able to bind tRNA in several 

alternative orientations. Differentiation of Dus subfamilies may have proceeded by 

mutations at putative “hotspots” which favored docking of tRNA in a specific 

orientation, facilitating modification of evolving sequences of tRNA that derived 

evolutionary benefit from modification at specific position(s). 

This evolutionary pathway would give rise to the observations here – that in addition to 

the active site residues necessary for catalysis, the DusA and DusC subfamilies contain 

specifically conserved charged residues that determine the orientation of the tRNA on 

the enzyme surface, and hence constrain substrate specificity to the uracil that is 

positioned for insertion into the active site. 
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5.4.4 Comparisons with other tRNA modification enzymes 

Other tRNA modification enzymes use different strategies for generating nucleotide 

specificity than DusC by including extra structural features. TruB [195], TruD [197], 

and ArcTGT [190] contain extra domains which confer position specificity whereas in 

TruA, specificity is generated by the formation of a dimeric state [198]. 

Structural data on position 16- (these results) and position 20-specific [187] Dus 

subfamilies reveal a different mechanism by which positional specificity can be 

conferred. In these enzymes, clusters of residues conserved in each family (‘hotspots’) 

guide docking of the substrate tRNA in a specific (and completely different) orientation. 

Interaction with the tRNA is facilitated by positional adjustments of the C-terminal 

‘recognition’ domain. In the case of DusC, tRNA recognition is further assisted by 

induced fit adjustments in both the conformation of the D loop of tRNA and an 

opposing flexible segment (residues 100-108) in DusC. The relative simplicity of the 

Dus mechanism therefore represents a novel addition to the recognition strategies used 

by tRNA modifying enzymes.  

While the currently identified Dus enzymes of archaea and bacteria consist of a ‘core 

region’, comprising just the TIM-barrel and recognition domains, a number of 

eukaryotic Dus enzymes have additional RNA domains linked to the core. In humans, 

for example, putative Zn-fingers are present in the C-terminus of Dus1 and the N-

terminus of Dus3, while Dus2 contains a C-terminal double stranded RNA binding 

motif [144]. The tRNA recognition roles played by these domains have not been 

investigated to date, yet their presence is intriguing, given that adaptation of the core 

region appears to be sufficient in archaea and bacteria to target all positions of 

dihydrouridine incorporation within the D loop. It is therefore possible that eukaryotic 

Dus enzymes determine modification position specificity through a combination of the 

mechanism presented here, and the mechanisms used by other nucleotide modification 

enzymes which involve auxiliary RNA binding domains. 
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Chapter 6 : Discussion 

The primary focus of this study was to examine the strategies used by RNA binding 

proteins for generating specificity towards their target sequences, and how the specific 

and non-specific recognition of RNA by protein influences their function. In this regard, 

the RNA binding proteins Lin28 and DusC were investigated. In both cases, the 

specificity of the protein:RNA interactions was known to be important for biological 

function, but  relatively little was known about how specificity was generated in each 

case. To elucidate the mechanisms used by these proteins to recognize their targets, both 

structural biology and biochemical techniques were employed. 

Being composed of ribonucleotides and having a negative charge, an RNA 

oligonucleotide is capable of making multiple specific and non-specific interactions with 

protein molecules. Electrostatic contacts from charged amino acid side chains in the 

protein can help to guide the phosphate backbone around the surface of the protein by 

either attraction or repulsion. Hydrogen bonding contacts are often crucial in complex 

formation, and could be either specific or non-specific depending on whether they are 

formed with RNA bases or sugar-phosphate backbone. Hydrophobic stacking 

interactions between the RNA bases and the aromatic side chains of several amino acids 

can also form, which can again be non-specific, or semi-specific if the protein utilizes 

specifically sized hydrophobic binding pockets which for example, might only 

accommodate pyrimidines.  

6.1.1 Specific and non-specific interactions are used in the Lin28 and DusC 

mechanisms of RNA binding.  

Both the Lin28 and DusC proteins are likely to use a combination of both specific and 

non-specific interactions at different points in their binding mechanisms. Within the cell, 

Lin28 must recognize a multitude of different RNA targets of varying structure and 

sequence, united only by the small GGAG motif. As demonstrated in Chapter 4, Lin28 

first employs non-specific electrostatic contacts in order to sample the available nucleic 

acid sequences until it finds one containing the GGAG motif, which is recognized by 
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specific hydrogen bonding interactions between the RNA and the ZnK domain of the 

protein. The ZnK domain then acts as an anchor and facilitates the binding of the CSD 

through a mixture of non-specific stacking interactions, and base specific hydrogen 

bonds. By utilizing such a mechanism, it can be speculated that Lin28 is able to increase 

its efficiency in recognizing RNA target sequences.  

For DusC, one specific uracil must be recognized at the same position on all tRNA 

molecules that contain it, regardless of differences in sequence and D-loop lenth. It is 

not surprising then, that, as shown in Chapter 5,  the majority of the contacts formed 

between the protein and RNA are hydrogen bonding interactions between protein side 

chains and the phosphate or ribose moieties of the RNA. In this system, tRNAs must 

again be first recognized non-specifically by electrostatic forces in order to dock the 

tRNA in specific orientation at the positively charged surface. Following this, U16 can 

be positioned in the active site using a specific hydrogen bonding network. In addition, 

the flexibility of the active site loop allows tRNAs to bind regardless of the different D-

loop lengths. It can therefore be seen, once again, that the protein (DusC) employs a 

mixture of non-specific and sequence specific interactions to fulfil its biological role. 

6.1.2 Lin28 and DusC use modularity to create an extended RNA binding surface 

In Chapter 1, the idea that RNA binding proteins exploit modularity in order to create 

their RNA binding surfaces was discussed. This strategy can be seen in the way both the 

Lin28 and DusC proteins bind their targets.  

The two domains of Lin28 are connected by a flexible linker region, and it has been 

speculated that this could be important for the recognition of targets of varying lengths 

[122]. Both domains are variants of classical RNA binding domains, but arranged 

together in a unique combination. These domains recognize target miRNA species 

through two different motifs of the miRNA; a structural motif in the case of the 

CSD/loop interaction, and a sequence motif in the case of the ZnK/GGAG interaction. 

By retaining flexibility between the two domains, different RNA binding surfaces can 

be created that can recognize RNAs with different sizes and shape. This is likely to 
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facilitate Lin28’s biological function by allowing it to recognize a wide variety of 

different RNAs. 

DusC is not composed of classical RNA binding domains, and there is no evidence to 

suggest the linker between the N-terminal catalytic domain and the C-terminal 

recognition domain is flexible. However, the tethering of these two domains defines a 

distinctive surface.  The shape of this surface is different depending on the relative 

displacement of the domains, as can be seen from the comparison of DusC and TtDus 

structures (Fig. 5.12h). The evolution of the divergent positively charged hotspots then 

defines specificity for binding tRNA in a particular orientation. As the mechanisms of 

both the DusC and TtDus are thought to be the same, it is the subtle changes in the 

structure of the RNA binding proteins that confers the completely different specificities 

of the two enzymes. Thus, by altering their surface properties (but not folds), these RNA 

binding proteins are able to bind the same tRNA substrate in completely different 

orientations, resulting in alternate specificities.  

In conclusion, the structural and biophysical data presented here show that the control of 

substrate specificity is determined by the structural properties of proteins, which utilize 

the chemical properties of RNA in order to alternately recognize RNA through specific 

and non-specific means. This careful control of specificity towards RNA targets allows 

both Lin28 and DusC to fulfil their biological functions efficiently.  
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6.1.3 Future work: Lin28 

Further structural work is needed to fully understand Lin28’s interaction with nucleic 

acids. The structure of a Lin28/mir363 complex would be informative as it would 

demonstrate whether Lin28 binds this RNA in the same manner as let-7 miRNAs. In 

addition, it would be useful to obtain structures of Lin28 in complex with slightly longer 

RNA sequences and longer constructs of Lin28 in order to visualize a more complete 

structure. However, such structural information could be challenging to produce due to 

the flexibility of both the RNA and the protein, especially if the CSD/RNA interaction is 

transient. 

Following the results presented here, it would be informative to perform single molecule 

experiments to investigate how Lin28 interacts with RNA in time. Recent studies of the 

bacterial EcoRV restriction enzyme and human oxoguanine DNA glycosylase 1 

(hOgg1) have used total internal reflection fluorescence microscopy (TIRFM) to analyse 

systems where a DNA binding protein interacts with an oligonucleotide both 

specifically and non-specifically [215, 216]. This technique involves illuminating a 

sample with incident light at such an angle as to achieve total internal reflection. This 

generates a small evanescent field that can illuminate fluorophores in a very small area, 

allowing single molecules to be visualized [217]. In both of the above reports, a length 

of DNA was immobilized, and single protein molecules were observed translocating 

across the DNA by “sliding” and “jumping” mechanisms. These mechanisms occur 

through non-specific interactions between the protein and DNA as the protein searches 

for a specific binding site. In each case, the experiments were repeated at different salt 

concentrations [215, 216]. For hOgg1, increasing the salt concentration did not greatly 

alter the diffusion coefficient, implying a sliding mechanism [215]. In contrast, EcoRV 

uses a combination of sliding and jumping mechanisms. At higher salt concentrations 

the amount of time spent associated with the DNA decreased, but the distribution of 

jump distances remained the same. These data imply that, for this protein, the jumping 

mechanism is favoured over the sliding mechanism in higher ionic strength solutions 

[216].  
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Similar approaches could be used for measuring non-specific, salt dependent interaction 

of Lin28 with RNA. In Chapter 4, it was discussed that Lin28 may use it’s CSD to scan 

the transcriptome for binding sites, and use the ZnK domain to bind to specific RNA 

sequences. A long RNA sequence (mRNA or pre-miRNA) could be immobilized on a 

slide. Lin28 with a conjugated fluorophore could then be added and examined by 

TIRFM. The amount of time that Lin28 spends interacting with RNA sequences that 

either contain or do not contain the GGAG sequence could then be measured. These 

data could be obtained at different ionic strengths. The results would reveal how 

multiple single molecules of Lin28 interact with long RNA sequences, the kinetics of 

the association, and whether Lin28 can use “jumping” or “sliding” mechanisms to scan 

RNA target sequences.  

6.1.4 Further work: Dihydrouridine synthases 

The mechanism used by DusC to modify uridine at position-16 of tRNA is now known. 

However, data obtained previously in YSBL by Dr. Rob Byrne and Dr. Fiona Whelan 

did not identify whether position 17 could also be modified by DusC. It would therefore 

be useful to obtain two mutated variants of tRNA
trp

, which was shown to be bound by 

DusC. This tRNA has U at position 16 and 17. tRNA
trp

 with U16/C17 and C16/U17 

would allow biochemical  investigation into whether DusC could modify both positions. 

If DusC can modify position 17, then the corresponding protein-tRNA complex could be 

structurally characterised, possibly using the same crystallization conditions as 

described in Chapter 5 for the DusC
C98A

/tRNA
phe

 complex.  

It is now known that DusA modifies position 20, and that DusC modifies position 16 

(and possibly also position 17). The position specificity of DusB, however, remains 

unknown. It would be useful to perform electromobility shift assays, followed by the 

reverse transcriptase assay, mentioned in Chapter 5 (5.1.3). This would inform which 

tRNAs could be bound by DusB and which positions are modified by it. Structural 

investigations could then begin. The comparison of tRNA-bound DusC, DusB and 

TtDus (homologous to DusA), would provide a complete picture of how position 

specificity is generated by bacterial Dus enzymes.  
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Finally, a structural investigation of eukaryotic Dus enzymes would be highly 

informative. The hotspots described in Chapter 5 are not conserved in the eukaryotic 

enzymes, and in addition they contain extra domains. The mechanism for generating 

position specificity in bacterial enzymes is therefore unlikely to be conserved in the 

eukaryotic enzymes. The human hDus2 enzyme has been implicated in non-small cell 

lung cancer. Investigation of its structure and functional mechanism would therefore be 

of medical importance.  

6.1.5 Conclusion 

The study of protein/RNA interactions is challenging. Proteins can interact both 

specifically and non-specifically with nucleic acids and many modular proteins 

composed of multiple domains are intrinsically flexible. This makes them capable of 

adjusting or even significantly changing the positions of their domains in response to the 

environment and/or interaction with nucleic acids. In addition, RNAs are flexible and 

often unstable, and predicting their secondary and tertiary structures could be a non-

trivial task. The factors can make producing appropriate binding models for fitting 

biophysical data difficult. Furthermore, production of recombinant protein constructs 

composed of multiple domains can also be complicated, slowing down progress in 

obtaining diffracting crystals for structural analysis. Future work will likely take 

advantage of modern techniques that are actively being developed, such as single 

molecule methods, and improvements in electron microscopy. These approaches allow 

visualization of single molecules and are therefore very informative and useful for the 

development of more accurate models. Electron microscopy is not limited to fully 

ordered species, and so as technology improves the resolution of this technique, it could 

become a more appropriate tool for the structural investigation of these interactions. 

What is clear, however, is that it will be the combination of both structural and 

functional studies that will help to elucidate protein/RNA interactions and the associated 

mechanisms that underpin many fundamental processes in biology.    
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Appendix: Non-linear regression fits and statistics 

 

Figure A1: Analysis of interactions between GST tagged proteins and RNA by fluorescence anisotropy.  

Changes in anisotropy when GST-Lin28A-TT and GST-Lin28A are added to preE-let7g, mir363 and 

mir363(AAAA) RNAs are shown, fit by Equation 14. Residuals from each fit are shown beneath each curve. 

Outlying points excluded from data fitting are shown in red. 
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Figure A2: Analysis of the Lin28TT/preE-let-7g interaction at different ionic strengths by fluorescence 

anisotropy.  

Changes in anisotropy when Lin28TT is added to preE-let-7g RNA in increasing ionic strength conditions are 

shown fit by Equation 14. Residuals from each fit are shown beneath each curve. Outlying points excluded 

from data fitting are shown in red. 
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Figure A3: Analysis of the Lin28TT/mir363 interaction at different ionic strengths by fluorescence anisotropy.  

Changes in anisotropy when Lin28TT is added to mir363 RNA in increasing ionic strength conditions are 

shown fit by Equation 14. Residuals from each fit are shown beneath each curve. Outlying points excluded 

from data fitting are shown in red. 
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Figure A4: Analysis of the Lin28TT/mir363(AAAA) interaction at different ionic strengths by fluorescence 

anisotropy.  

Changes in anisotropy when Lin28TT is added to mir363(AAAA) RNA in increasing ionic strength conditions 

are shown fit by Equation 14. Residuals from each fit are shown beneath each curve. Outlying points excluded 

from data fitting are shown in red. 
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Figure A5: Analysis of the CSD/preE-let-7g interaction at different ionic strengths by fluorescence anisotropy.  

Changes in anisotropy when CSD is added to preE-let-7g RNA in increasing ionic strength conditions are 

shown fit by Equation 14. Residuals from each fit are shown beneath each curve. Outlying points excluded 

from data fitting are shown in red. 



 

235 

 

 

Figure A6: Analysis of the CSD/mir363 interaction at different ionic strengths by fluorescence anisotropy.  

Changes in anisotropy when CSD is added to mir363 RNA in increasing ionic strength conditions are shown fit 

by Equation 14. Residuals from each fit are shown beneath each curve. Outlying points excluded from data 

fitting are shown in red. 
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Figure A7: Analysis of the CSD/mir363(AAAA) interaction at different ionic strengths by fluorescence 

anisotropy.  

Changes in anisotropy when CSD is added to mir363(AAAA)  RNA in increasing ionic strength conditions are 

shown fit by Equation 14. Residuals from each fit are shown beneath each curve.  
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Figure A8: Analysis of the interactions of preE-let-7g amd let-7gmut RNA with Lin28TT(2) and CSD at 

different ionic strengths by fluorescence anisotropy.  

The change in anisotropy when Lin28TT(2) is added to preE-let-7g is shown, followed by the changes in 

anisotropy when added to let-7gmut in increasing ionic strength conditions, with data fit by Equation 14. 

Finally, the change in anisotropy when CSD is added to let-7gmut RNA is shown, with data fit by Equation 14.  

Residuals from each fit are shown beneath each curve, except for the CSD/let-7gmut interaction, where they 

are shown to the side.    



 

238 

 

 

 

Figure A9: Analysis of the Lin28TT(2)/dlet-7g∆5 interaction at different ionic strengths by fluorescence 

anisotropy.  

Changes in anisotropy when Lin28TT(2) is added to dlet-7g∆5 DNA in conditions containing 100mM and 

500mM NaCl are shown, with data fit by Equation 14. Residuals from each fit are shown beneath each curve.  
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Table A1: Non-linear regression fit values and statistics for GST fusion proteins. 

Normality tests for residuals are passed if P > 0.05. 
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Table A2: Non-linear regression fit values and statistics for Lin28TT interactions. 

Normality tests for residuals are passed if P > 0.05. 

P
ro

te
in

 
R

N
A

B
u
ff
e

r 
S

a
lt 

C
o

n
c
e

n
tr

a
ti
o

n
E

q
u
a

ti
o

n
A

m
in

S
td

. 
e

rr
o

r
D

e
p

e
n
d

a
n
c
y

A
m

a
x

S
td

. 
e

rr
o

r
D

e
p

e
n
d

a
n
c
y

c
S

td
. 
e

rr
o

r
D

e
p

e
n
d

a
n
c
y

K
d

S
td

. 
e

rr
o

r
D

e
p

e
n
d

a
n
c
y

L
in

2
8

T
T

le
t-

7
g

1
0

0
m

M
1

4
3

5
.1

3
.2

0
.4

1
2

7
1

.6
2

.9
0

.5
2

2
0

.0
-

-
3

8
.8

3
.0

0
.6

7

2
5

0
m

M
1

4
5

4
.1

1
.6

0
.3

7
2

6
8

.4
1

.5
0

.5
2

2
0

.0
-

-
4

0
.6

1
.9

0
.6

6

5
0

0
m

M
1

4
5

8
.2

1
.8

0
.3

7
1

6
6

.6
1

.3
0

.4
3

2
0

.0
-

-
1

8
.2

1
.9

0
.6

0

7
5

0
m

M
1

4
6

6
.8

1
.1

0
.4

0
1

4
9

.2
1

.0
0

.4
9

2
0

.0
-

-
3

5
.5

2
.9

0
.6

5

m
ir

3
6

3
1

0
0

m
M

1
4

5
3

.6
4

.1
0

.3
6

2
6

4
.8

3
.0

0
.4

4
2

0
.0

-
-

1
6

.6
1

.9
0

.6
0

2
5

0
m

M
1

4
8

0
.5

3
.1

0
.2

8
2

7
2

.2
2

.0
0

.4
2

2
0

.0
-

-
7

.5
0

.9
0

.5
5

5
0

0
m

M
1

4
7

8
.3

1
.8

0
.3

2
2

1
5

.2
1

.1
0

.3
7

2
0

.0
-

-
8

.0
0

.8
0

.5
3

7
5

0
m

M
1

4
8

8
.6

1
.6

0
.3

5
2

0
8

.2
1

.1
0

.4
0

2
0

.0
-

-
1

2
.4

1
.1

0
.5

7

m
ir

3
6

3
(A

A
A

A
)

1
0

0
m

M
1

4
5

8
.4

-
-

2
6

2
.5

3
.1

2
0

.4
2

2
0

.0
-

-
1

0
.1

3
1

.3
5

8
0

.4
2

2
5

0
m

M
1

4
6

8
.6

2
.0

0
.3

7
2

7
2

.8
1

.5
0

.4
6

2
0

.0
-

-
1

9
.7

1
.1

0
.6

2

5
0

0
m

M
1

4
7

9
.6

1
.5

0
.4

0
2

3
0

.6
1

.4
0

.5
1

2
0

.0
-

-
4

0
.8

2
.5

0
.6

6

7
5

0
m

M
1

4
9

2
.2

0
.9

0
.4

1
2

2
4

.2
2

.8
0

.8
1

2
0

.0
-

-
2

2
1

.9
1

4
.8

0
.8

5

P
ro

te
in

R
N

A
B

u
ff
e

r 
S

a
lt 

C
o

n
c
e

n
tr

a
ti
o

n
E

q
u
a

ti
o

n
A

d
j R

2
S

u
m

 o
f 
S

q
u
a

re
s

N
o

rm
a

lit
y 

T
e

s
t 
P

-v
a

lu
e

N
o

rm
a

lit
y 

T
e

s
t 
P

-v
a

lu
e

N
u
m

b
e

r 
o

f 
P

o
in

ts
O

u
tli

e
rs

D
'A

g
o

s
ti
n
o

-P
e

a
rs

o
n

S
h
a

p
ir

o
-W

ilk
s

u
s
e

d
 f
o

r 
fi
t

L
in

2
8

T
T

p
re

E
-l
e

t-
7

g
1

0
0

m
M

1
4

0
.9

9
0

6
2

2
2

5
0

.8
7

0
.2

7
3

6
0

2
5

0
m

M
1

4
0

.9
9

7
5

4
7

5
0

.3
8

0
.2

0
3

3
3

5
0

0
m

M
 

1
4

0
.9

8
9

3
5

2
0

0
.7

9
0

.6
7

3
3

0

7
5

0
m

M
 

1
4

0
.9

9
2

3
2

2
0

0
.5

1
0

.2
7

3
3

0

m
ir

3
6

3
1

0
0

m
M

1
4

0
.9

8
4

7
2

7
2

5
0

.5
5

0
.8

2
3

3
0

2
5

0
m

M
1

4
0

.9
8

9
4

1
5

8
4

0
.7

0
0

.9
9

3
5

1

5
0

0
m

M
 

1
4

0
.9

9
3

3
4

9
7

0
.4

8
0

.2
0

3
3

0

7
5

0
m

M
 

1
4

0
.9

9
3

4
3

8
4

0
.7

9
0

.9
2

3
3

0

m
ir

3
6

3
(A

A
A

A
)

1
0

0
m

M
1

4
0

.9
7

9
2

4
1

7
8

0
.5

0
0

.0
9

3
6

0

2
5

0
m

M
1

4
0

.9
9

6
0

6
9

5
0

.0
9

0
.0

2
3

5
1

5
0

0
m

M
 

1
4

0
.9

9
5

5
4

2
6

0
.7

5
0

.6
9

3
3

0

7
5

0
m

M
 

1
4

0
.9

9
5

1
2

0
0

0
.3

1
0

.1
8

2
9

1



 

241 

 

 

Table A3: Non-linear regression fit values and statistics for CSD protein interactions. 

Normality tests for residuals are passed if P > 0.05. 
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Table A4: Non-linear regression fit values and statistics for interactions between MBP fusion proteins and 

preE-let-7g/let-7gmut RNA and dlet-7g∆5 DNA. 

Normality tests for residuals are passed if P > 0.05. 
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List of Abbreviations 

AUC  Analytical Ultracentrifugation 

CSD  Cold Shock Domain 

CV  Column Volumes 

DMSO  Dimethyl Sulfoxide 

DSF  Differential Scanning Fluorimetry 

dsRBD  Double-stranded RNA Binding Domain 

DTT  Dithiothreitol 

Dus  Dihydrouridine Synthase 

FMN  Flavin Mononucleotide 

GSH  Glutathione (reduced) 

GST  Glutathione-S-transferase 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

IMAC  Immobilized Metal Affinity Chromatography 

IPTG  Isopropyl-β-D-1-thiogalactopyranoside 

LB  Luria-Bertani growth medium 

lncRNA  Long non-coding RNA 

LRE  Lin28 Response Element 

MBP  Maltose Binding Protein 

miRNA  microRNA 

mRNA  Messenger RNA 

MWCO  Molecular Weight Cut Off 

ncRNA  Non-coding RNA 

PAGE  Polyacrylamide Gel Electrophoresis 
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PCR  Polymerase Chain Reaction 

PEI  Polyethyleneimine 

piRNA  Piwi-interacting RNA 

PolII  RNA polymerase II 

PreE  The pre-element, or terminal loop of a microRNA 

Pre-miRNA Precursor microRNA 

Pri-miRNA Primary microRNA 

RBP  RNA Binding Protein 

RISC  RNA Induced Silencing Complex 

RRM  RNA Recognition Motif 

rRNA  Ribosomal RNA 

SDS  Sodium Dodecyl Sulphate 

SEC  Size Exclusion Chromatography 

SEC-MALLS Size Exclusion Chromatography-Multiple Angle Laser Light 

Scattering 

snoRNA  Small Nucleolar RNA 

snRNA   Small Nuclear RNA 

snRNP   Small Nuclear Ribonuclear particle 

TEMED Tetramethylethylenediamine 

TRIS   tris(hydroxymethyl)aminomethane 

tRNA   Transfer RNA 

ZnK   Zinc Knuckle 
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