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Abstract

The study of nonlinear systems has received great attention in recent years

because of the necessity of dealing with practical problems that cannot be

modelled by linear representations. Although the availability of greater

computational power and advances in the field of system identification have

allowed significant progresses towards modelling real world processes, a sys-

tematic method for understanding the systems characteristics is still an

open problem. In this context, as has been demonstrated in many stud-

ies, the extension of the well-known concept of linear Frequency Response

Function (FRF) to nonlinear systems are a significant potential solution.

The condition monitoring problem is closely associated with the analysis

of systems characteristics and can therefore be considered as part of this

scenario.

Modern industrial processes have grown significantly in both size and com-

plexity, creating the demand for automatic systems that can aid human

operators in the important task of recognising when the process is expe-

riencing malfunctions. Although this problem has been studied from the

perspective of a wide scope of disciplines, such as modelling, signal process-

ing, intelligent systems and statistical analysis, in many cases, data oriented

methods or generic problem solvers (such as neural networks) often have to

be applied. This is because complicated system behaviours are often diffi-

cult to interpret so as to associate them with possible faulty conditions.

In order to address these challenges, this thesis proposes new methods for



nonlinear system analysis in the frequency domain, and studies the applica-

tion of these new methods for solving condition monitoring problems. The

principle is based on the idea that a nonlinear system formulation can be

used to deal with situations of practical interest where nonlinear behaviour

cannot be neglected and that the frequency domain analysis approach can

be applied to conduct an in-depth study of the system properties for the

purpose of characterising systems faulty behaviours. In order to apply this

principle, several issues need to be addressed, including the evaluation of the

frequency characteristics of nonlinear systems and the generation of useful

features that allow an effective characterisation of faulty system conditions.

Motivated by these needs, the following research studies are conducted in

this thesis:

1. Development of new methods that allow an efficient extraction of

the frequency domain representations of nonlinear systems, namely,

Generalised Frequency Response Functions (GFRFs) and Nonlin-

ear Output Frequency Response Functions (NOFRFs). The thesis

first derives a comprehensive methodology that allows an efficient

and systematic extraction of GFRFs from a polynomial NARX

(Nonlinear Auto-Regressive with eXogenous inputs) model. Then

the same idea is used for addressing issues regarding the compu-

tation of NOFRFs, providing efficient algorithms that allow an

effective determination of the NORRFs in both numerical and an-

alytical forms.

2. Establishment of a condition monitoring framework based on the

new GFRFs/NOFRFs evaluation methods. This framework is

constructed over a practical background where physical knowl-

edge about the system is scarce, although process history data



is available. In this context, black-box models can be built and

the system properties can be extracted by computing the system’s

GFRFs/NOFRFs via the newly proposed methods. These func-

tions provide fundamental information for deriving useful features

that can be used for characterising faults and building effective

diagnosis systems. The effectiveness of the proposed methods has

been verified by both simulation studies and real data analysis

tests, demonstrating the advantage of the new condition monitor-

ing framework for engineering applications.

These studies significantly improve current frequency analysis methods for

nonlinear systems and, at the same time, provide effective condition moni-

toring approaches for a wide range of engineering systems.
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1

Introduction

1.1 Frequency domain analysis of nonlinear systems

In recent years, the field of nonlinear systems identification (Billings, 2013) experienced

great advances, providing a more attractive background for the design of engineering

systems that can either better remove nonlinear distortions or even benefit from non-

linear behaviours.

However, the analysis and consequent extraction of useful information from these

models still remain a great challenge. This is mainly due to the presence of nonlin-

earities, which brings difficulties to explicitly expressing the model output in terms of

the input and can also produce, in many situations, complex behaviours that usually

enforce the analysis to be carried out for particular situations, instead of a more general

framework. In the context of single input, single output systems, a particular class of

nonlinear systems that is relatively important for practical applications is the one for

which the output can be represented by a series of Volterra functionals, also known as

a Volterra series.

The Volterra series comprises an explicit description of the system output in terms

of input operators(Schetzen, 1980). This representation can be applied to nonlinear sys-

1



1. INTRODUCTION

tems where moderate nonlinear behaviour, such as harmonics and intermodulations,

can be observed (Weiner and Spina, 1980). These systems are more formally described

as fading memory systems (Boyd and Chua, 1985), which in practice means that they

are stable around the equilibrium under which the series is expanded (usually a zero

equilibrium). The array of practical systems that can be represented in this way is

relatively wide and has been reported in the literature for a broad range of disciplines,

e.g. communications (Benedetto and Biglieri, 1983; Biglieri et al., 1988), image pro-

cessing (Ramponi, 1986), biological systems (Marmarelis and Naka, 1974), neuroscience

(Joseph and Ghosh, 2003) and circuit modelling (Chen and Huang, 2009; Sakian et al.,

2011).

The components of the Volterra series (also known as functionals) are often seen as

direct extensions of the convolution operator (Schetzen, 1980), which constitutes one of

the fundamental basis for studying linear systems, both for continuous-time (CT) and

discrete-time (DT) representations. This is justified by the possibility of conducting

the analysis via a frequency domain formulation, based on the Fourier and Laplace

operators (for CT systems), for instance, where the system input-output description

is converted into an algebraic product framework, and under which the concept of

Transfer Function, also known as Frequency Response Function - FRF, is built upon.

This is a fundamental principle of many successful applications of linear systems theory,

such as automatic control, signal processing and communications. For this reason, there

is great interest in studying the Volterra series approach, as it offers the perspective of

extending this well established frequency domain framework to the nonlinear systems

scenario.

However, the main difficulty encountered in this task is that, the equivalent Volterra

series description in the frequency domain consists of a non-algebraic formulation (Lang

and Billings, 1996) that is relatively more complicated than the algebraic framework

found in linear systems. The fundamental difference is that the traditional nonlinear

2



1.1 Frequency domain analysis of nonlinear systems

systems frequency formulation is expressed in terms of multidimensional operations

whose core components are multidimensional functions, the so called Generalised Fre-

quency Response Functions - GFRFs (George, 1959). GFRFs are usually considered

as direct extensions of the FRF concept (George, 1959; Weiner and Spina, 1980) and

can provide great insight about nonlinear systems properties, as they can highlight

physical properties via unique system representations (Li and Billings, 2001; Billings

and Li, 2000). However, unlike the linear case, conducting nonlinear system analysis

via these functions is a much more laborious task. This is mainly due to two reasons:

(i) computation of GFRFs is not as trivial as in the linear case; and (ii) interpreting

system properties in terms of GFRFs is not simple because of their multidimensional

nature.

Considerable work has been done regarding the computation of the GFRFs; the

method based on orthogonal functionals (Lee and Schetzen, 1965), the variational ap-

proach (Rugh, 1981) and the probing method (Peyton Jones and Billings, 1989) are

some of the most widely used algorithms. These methods basically differ in the result-

ing representation, in which the GFRFs can be obtained in explicit nonparametric form

(Lee and Schetzen, 1965; Schetzen, 1981) or through recursive relationships, i.e. higher

order GFRFs are expressed in terms of their lower order counterparts (Marmarelis and

Naka, 1974; Peyton Jones and Billings, 1989; Jing et al., 2008). Although these proce-

dures have been well established, it is worth mentioning that they require considerable

more efforts than the usual way linear FRFs are obtained, e.g. by Fourier transforming

the model difference equation and finding the input-output ratio.

A more difficult problem though, is the systematic analysis of the system behaviours

in terms of GFRFs properties, which is mainly caused by their multidimensional char-

acteristics. Graphical approaches are difficult to apply, except for second order cases,

where the GFRFs can be displayed as surface plots. Third order cases have been stud-

ied to some extent (Yue et al., 2005a), but require large computational efforts and are

3



1. INTRODUCTION

difficult to interpret. Higher order cases are simply infeasible, since it is not possible

to graphically display such multivariate functions. Similarly, analytical approaches,

i.e. where the algebraic structure of GFRFs are analysed are also very difficult to

conduct. This is due to complexity of the GFRFs explicit algebraic form, which is

usually described as multivariate rational functions (George, 1959; Weiner and Spina,

1980), although some efforts have also been dedicated to this problem, by exploring

symbolic computations and the recursive relationships between different order GFRFs

(Yue et al., 2005b). However, as with the graphical approaches, these analytical results

are limited to low order cases, as the analysis become infeasibly complex at higher order

problems.

For this reason, researchers have proposed alternative formulations in the attempt

of studying the system properties using nonlinear FRFs which can be studied in low-

dimensional frequency spaces. In this context, significant work has been developed

in the Department of Automatic Control and Systems Engineering at the University

of Sheffield, where concepts such as Nonlinear Output Frequency Response Functions

(NOFRFs) (Lang and Billings, 2005), energy transfer filters (Billings and Lang, 2002)

and Output Frequency Response Functions (OFRFs) (Lang et al., 2007) have been

proposed.

In this research the focus will be on the NOFRFs concept. This approach has been

the object of several research studies (Lang and Peng, 2008; Peng et al., 2007a, 2011)

and can be considered as a potential tool for building a comprehensive methodology

for nonlinear system analysis in the frequency domain. One of the attractive features

of NOFRFs is their unidimensional nature, which circumvents many of the problems

observed in GFRF based analysis. However, there are several issues that remain to be

solved, in order to systematically apply NOFRFs to the analysis of practical engineering

problems. More specifically, the algorithm developed for computing NOFRFs from

a polynomial NARX model (Lang and Billings, 2005) need to be improved, so that

4



1.2 Condition monitoring of engineering systems

problems regarding numerical conditioning and truncation order specification can be

overcome. In addition, it is still not clear how NOFRFs can be used for more particular

goals, e.g. for distinguishing between different system conditions, a problem of great

relevance for engineering systems. Though this scenario has been studied to some extent

- see, for example (Peng et al., 2007b, 2011, 2007), it only has been done by considering

a small number of operating conditions (i.e. faults), so that a more in-depth analysis

need to be carried out in order to extend and validate the principles of the NOFRF

based approach to this kind of problem.

1.2 Condition monitoring of engineering systems

A problem of great relevance in modern engineering is the design of systems that au-

tomatically detect and respond to abnormal events, such as component break, degra-

dation or failure. The automatic management of these situations is relatively different

from the well established task of feedback control; it consists of efficiently detecting the

malfunctions and performing additional complex tasks that attempt to obtain the max-

imum amount of information about the event, while also providing evidences about how

these conclusions were drawn. This problem can be generally referred as fault diagnosis

(Isermann, 2006) - FD - or condition monitoring Barron (1996) - CM - where the main

focus is to determine information about the system state from measurements taken over

the period the anomalous behaviour occurred. This problem has been widely studied

in recent years due to the great impact these circumstances can have over industrial

processes, ranging from loss of plant performance to human contingencies.

FD/CM strategies have been greatly improved over the last decades, although they

need persistent improvements for being on par with the demands of large scale complex

processes of modern industry. In the context of model-based approaches, i.e. methods

that explicitly use a mathematical model for designing the diagnosis strategy, several

different methods have been proposed: parity equations, observers and system identifi-

5



1. INTRODUCTION

cation strategies (Isermann, 2006; Patton et al., 1989) are among the most popular and

have been successfully used for solving practical problems. However, in most cases, the

models used for developing the FD/CM strategies are a linear system representation.

As nonlinear behaviour is present in most of the practical situations (although it can

sometimes be safely neglected), the extension of linear FD/CM approaches to cases in

which nonlinearities (whether caused by the presence of faults or inherent from the sys-

tem own nature) cannot be neglected is a relatively difficult task Venkatasubramanian

et al. (2003c). For this reason, special techniques have been proposed, such as: statis-

tical analysis, data mining, expert systems or neural networks (Venkatasubramanian

et al., 2003a,b). However, a common issue with these approaches is that they tend to

avoid the interpretation of the system physical behaviour, ignoring features that could

be potentially used for obtaining additional insight about the fault characteristics.

In this context, a combined approach based on system identification principles and

GFRFs/NOFRFs-based analysis can be considered as a potential new FD/CM method-

ology. The principles of system identification based diagnosis (also referred as param-

eter estimation techniques) consist of postulating faults as disturbances in parameters

of a physical model. Although the physical model formulation can be used for devising

a diagnosis strategy, this research focused on investigating representative features gen-

erated directly from black-box polynomial models, which can be useful for situations

where phenomenological modelling is difficult. In this scenario, GFRFs/NOFRFs pos-

sess considerable potential for revealing system properties, as they are founded in the

frequency domain which provides an important physical background, e.g. resonance

and harmonic response. Therefore, the construction of a solid framework that allows

effective computation and systematic analysis of GFRFs/NOFRFs not only offers a

useful framework for nonlinear systems analysis, but also offers a potentially useful

approach for developing FD/CM systems for circumstances where input-output data is

abundant while process physical knowledge may be absent.

6



1.3 Aim and objectives

1.3 Aim and objectives

The aim of this research is to develop a new methodology for conducting in-depth

studies of nonlinear systems properties, based on the concepts of GFRFs and NOFRFs,

while also investigating means of applying this methodology for solving practical CM

problems. In order to achieve this, the following objectives will be pursued:

1. To conduct a short survey about nonlinear systems identification methods, in

particular, for obtaining polynomial NARX models. This is important because

it will be assumed that physical knowledge about the system is scarce, so that

a black-box modelling approach is more adequate.

2. To review the Volterra series representation of nonlinear systems, which is

the main tool for conducting frequency domain analysis of nonlinear systems.

This approach constitutes the main background for the NOFRFs formulation,

which will be the main focus of this research. .

3. To investigate the concept of NOFRFs, identify current gaps and address

these issues so that NOFRFs can be applied in practice for analysing models

obtained from real data. The most relevant issue about this problem is the

computation of NOFRFs from polynomial models, and therefore, will be of a

greater concern.

4. To develop MATLAB programs that can implement the new NOFRFs com-

putation methods.

5. To develop a systematic approach for using NOFRFs in CM problems. In this

case, it is necessary to identify key NOFRFs based features that can provide

evidences about system condition changes. This will be investigated using both

simple approaches, e.g. monitoring NOFRFs maxima, and more advanced

methods that are usually considered in CM problems, e.g. classification and

7



1. INTRODUCTION

statistical tools.

6. To test the condition monitoring methods in problems of practical interest

Therefore, it is expected that, at the end of the research, a set of new useful tools

and methodologies become available for integration of well-established nonlinear system

modelling approaches with a new GFRFs/NOFRFs based frequency analysis frame-

work, so that better studies of nonlinear systems can be achieved, with potential prac-

tical applications in many areas, especially in engineering systems condition monitoring

and fault diagnosis.

1.4 Contributions and thesis layout

The objectives of this thesis were fulfilled satisfactorily and some significant results

were obtained. In this context, the main contributions to the fields of nonlinear systems

analysis and condition monitoring can be listed as follows:

� A new methodology for extracting the recursive representation of the GFRFs

of a nonlinear system has been developed. This is presented in Chapter 3,

where useful systematic procedures based on order and kernel extraction op-

erators are presented. This result is important due to two reasons: (i) it

provides a more efficient manner of obtaining the recursive descriptions of the

GFRFs, in comparison to the probing method (Peyton Jones and Billings,

1989), which is currently the usual choice for this task; (ii) some steps of the

method can be directly applied for obtaining the so called Associated Lin-

ear Equations - ALEs (Feijoo et al., 2005), providing an important basis for

addressing the issues related to NOFRFs computation.

� In addition, the GFRF extraction procedures were implemented in MATLAB

scripts, which, together with system identification functions, constitute an

important set of tools for automated nonlinear systems analysis.

8
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� Based on ALEs extraction, two new methods for computation of NOFRFs

are presented in Chapter 4. The first one is an efficient numerical procedure

designed for dealing with very general polynomial NARX models and arbitrary

input signals. Based on linear filtering and FFT (Fast Fourier Transform)

algorithms, the new method is capable of circumventing problems observed

in the algorithm from (Lang and Billings, 2005) related to truncation order

and ill conditioned regression, providing accurate NOFRFs computations up

to any order.

� The second algorithm for NOFRF computation, also presented in Chapter 4,

is an analytical approach where NOFRFs can be obtained in rational form

and, if so desired, in terms of variable parameters, such as the driving fre-

quency of a sinusoidal input. Such representations have not been considered

in previous studies and constitute a useful result, as they can be used for de-

scribing the NOFRFs in algebraic form for a wide range of frequencies and

for better understanding the influence of unknown parameters over the system

behaviour. In order to achieve this, a new frequency convolution framework is

proposed. Based on the Residue Theorem and partial fraction expansions, this

methodology is adopted because it was verified that severe accuracy errors and

computational problems can arise in the analytical calculations, especially if

the procedures are carried out via symbolic processing. The proposed method

overcomes these difficulties, allowing a practical use of the analytical repre-

sentation of NOFRFs.

� MATLAB scripts were also produced for automating the NOFRFs extraction

processes, both in numerical and analytical formats, expanding the set of tools

for dealing with practical problems.

� Two condition monitoring algorithms based on the new system analysis tools

9
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are presented in Chapter 5. The algorithms were designed after carrying out

study cases related to nonlinear mechanical systems. The first one can be

applied to systems when noise levels are small and fault parameters (e.g. stiff-

ness, damping, impedance) are clearly defined. The approach consists of using

process history for modelling the behaviour of NOFRFs based features (e.g.

NOFRFs resonance peaks or indices based on NOFRFs energy) under different

faulty conditions, so that the fault parameters can be recovered, via function

inversion, for characterising the system condition.

� The second CM strategy can be applied to scenarios where the noise levels are

more significant and fault parameters are not clearly defined. In this circum-

stance, a classification approach can be used, in which faults are characterised

by clusters and their geometric distribution in the feature space. Features are

directly generated from NOFRFs measurements, by using dimensionality re-

duction techniques such as Principal Component Analysis - PCA - or Partial

Least Squares - PLS, so that only a small number of representative variables

is used for better interpretation of results and efficient training of automatic

classifiers.

As part of these achievements, the following research papers have been elaborated:

(Bayma and Lang, 2012) “A new method for determining the generalised frequency

response functions of nonlinear systems” was published in the IEEE Transactions on

Circuits and Systems I: Regular Papers, where the new GFRF extraction algorithm is

presented. The article (Bayma and Lang, 2014) “Fault diagnosis methodology based on

nonlinear system modelling and frequency analysis” is to be published at the 19th IFAC

World Congress, where the basic principles of the methodology described in Chapter

5 are presented with an application. The contents of Chapter 4 are currently being

considered for a future new publication.

10



1.4 Contributions and thesis layout

The remaining of this thesis consists of four chapters covering literature review,

development of new methods for the frequency domain analysis of nonlinear systems,

the application of these new methods to construct a new framework for engineering

systems CM/FD, as well as simulation and experimental studies. The contents of each

chapter are summarised as follows:

Chapter 2 offers a review of the state of the art of the Volterra series approach.

It consists of some basic ideas about how functionals are formed and a more formal

treatment about how they can be used for representing nonlinear systems. The core of

Chapter 2, though, is the frequency domain formulation in which GFRFs and NOFRFs

are introduced, with an in-depth discussion about how they can be obtained in practice.

Chapter 3 presents a fundamental result that was used throughout this research for

the development of new methods for the frequency analysis of nonlinear systems. It

consists of a new algorithm that allows obtaining the system’s GFRFs directly from

a polynomial NARX model. The result is provided in recursive form, which is similar

to other available algorithms; however, the proposed method is capable of performing

this task in a much more efficient manner, where symbolic calculations and recursive

procedures are avoided. In addition to these, the results presented in this chapter

provide a very important basis for the development of the NOFRF-based nonlinear

systems frequency domain analysis in later chapters.

In Chapter 4, a new NOFRF based approach for the frequency domain analysis

of nonlinear systems is proposed. The approach consists of building (using the re-

sults of Chapter 3) and systematically solving the system Associated Linear Equations.

Algorithms are developed for obtaining these equations from a polynomial nonlinear

difference equation model up to arbitrary order. Both numerical and analytical ap-

proaches are derived for obtaining the solutions, which provide a new and efficient way

of obtaining NOFRFs and establishing an effective new method for analysing nonlinear

systems in the frequency domain;

11



1. INTRODUCTION

In Chapter 5, a new framework for engineering system condition monitoring/fault

diagnosis is first established. This is a framework based on the idea of time-domain

modelling and frequency domain analysis where the new methods for determining

GFRFs/NOFRFs derived in chapters 3 and 4 are the very basis. The new frame-

work is then used for developing two new CM strategies, which are used for dealing

with problems where fault parameters are either well or poorly defined. The strategies

are then verified using both simulation studies and practical data analysis. After that,

a generalised CM procedure is established; the basic ideas potentially have a wide range

of practical applications

Finally, in Chapter 6, the main results are summarised and the contributions of this

research are presented. Emphasis is also given to some topics that can become future

research using the results of this thesis as a starting point.

12



2

Frequency domain approach to

nonlinear systems

2.1 Introduction

Nonlinear systems modelling and analysis received great attention in recent years due

to an increasing demand in dealing with practical phenomena of complex nature. How-

ever, because of the variety of nonlinear problems that exists and the difficulties of

establishing universal procedures for analysing general situations, nonlinear systems

are usually divided into classes for which particular strategies are developed for the

tasks of analysis and design.

The Volterra series is a classical approach to a particular, although broad class of

nonlinear systems. It can be used for describing moderate nonlinear behaviour that is

commonly observed in many practical situations, e.g. intermodulations and generation

of harmonics. The main feature of this approach is the explicit description of the

system output in terms of polynomial based representations of the input signal, which

allows some of the well established frequency domain techniques from linear systems

analysis to be extended to the nonlinear case. This can be very useful in FD/CM

13



2. FREQUENCY DOMAIN APPROACH TO NONLINEAR SYSTEMS

problems, as monitoring typical nonlinear phenomenon, such as output harmonics, is

already recognised as a consolidated technique, although it is commonly used from

a pure data-analysis perspective. In this context, a system analysis approach can

reveal further details about the situation and, therefore, constitutes a potential tool for

designing fault diagnosis systems.

This chapter is dedicated to introducing the basic aspects of this approach and

reviewing recent advances in the area, in order to present the theoretical foundation

over which the results of this research have been built.

2.2 The functional series approach

The term functional generally refers to a map between functions. However, the focus

of this work shall be narrowed to a more particular description in which functionals

can be described as natural extensions of polynomial functions, a notion originally

proposed by the Italian mathematician Vito Volterra (1959). This idea is useful in

engineering and applied mathematics because it allows developing a formal theory

for approximating operators between vectors spaces, which is important for better

understanding relationships between input and output signals.

To illustrate the basic idea, consider a multivariate polynomial function of degree

n in variables ui, i ∈ {1, . . . , k}, described as:

yn (u1, . . . , uk) =
k

∑
i1=1

. . .
k

∑
in=1

hi1,...,in ui1 . . . uin (2.1)

where the n-dimensional coefficients hi1...in are known as the kernel coefficients.

The notion of functional arises when k → ∞. In this case, the extrapolation of

(2.1) consists of replacing summations by integrals, the variables u1, . . ., uk by a single

function and the summation indices i1, . . ., in by integration variables, yielding:

yn = ∫
b1

a1
. . .∫

bn

an
hn(τ1, . . . , τn)

n

∏
i=1
u(τi)dτi (2.2)
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2.2 The functional series approach

where the intervals [ai, bi] are analogous, although more general, to the integer ranges

ip = {1, . . . , k}, where p = {1, . . . , n}. Also notice that the kernel coefficients were

replaced by a n-dimensional function hn(τ1, . . . , τn), which is called the n-th order

kernel.

In order to model memory effects and dynamical behaviour, formulation (2.2) is

usually written in a different form, where the time t is introduced and an explicit

dependence of yn(t) in terms of the past values of the input is assumed. This is

described as:

yn(t) = ∫
+∞

−∞
. . .∫

+∞

−∞
hn(τ1, . . . , τn)

n

∏
i=1
u(t − τi)dτi (2.3)

which can also be written as:

yn(t) = ∫
+∞

−∞
. . .∫

+∞

−∞
hn(t − τ1, . . . , t − τn)

n

∏
i=1
u(τi)dτi (2.4)

by using a simple change of variables. Expression (2.3) can be understood as a polyno-

mial function of the past values of the input, weighted by the kernel function for each

group of delays τ1, . . ., τn; but since the delays can assume any value on a continuous

range, this polynomial function need to be described in terms of continuous summations

(i.e. integrals), instead of discrete ones. Functional (2.3) is said to be homogeneous

with respect to u(t), because it is only formed by terms of degree n.

It is also important to notice that for n = 1, (2.3) reduces to the well known convo-

lution integral:

y1(t) = ∫
+∞

−∞
h(τ)u(t − τ) (2.5)

so that (2.3) can be viewed as a generalisation of the convolution operator.

Another interesting aspect regarding the analogy between functionals and polyno-

mials is that, according to the Stone-Weirstrass Theorem (Rudin, 1976), any single

variable continuous function f(u) can be approximated by a polynomial series:

f(u) ≈ c0 +
N

∑
n=1

cn u
n (2.6)
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2. FREQUENCY DOMAIN APPROACH TO NONLINEAR SYSTEMS

where {c0, c1, . . .} represent appropriate constants. Therefore, it is natural to conjecture

that any system operator:

y(t) =H[u(t)] (2.7)

can also be approximated by a functional series:

y(t) ≈ y0 +
N

∑
n=1

yn(t) (2.8)

where y0 is a constant and yn(t) is described as (2.3). Usually, y0 is set to 0 for

simplifying the formulation. For this reason, the Volterra series is sometimes referred

as a “Taylor series with memory” (Schetzen, 1980).

This is indeed the case, as demonstrated in (Boyd and Chua, 1985), when H rep-

resents a fading memory system. This is equivalent to saying that the system is stable

around an equilibrium point and the output does not depend on the remote past of

the input, which is the case of many practical situations. Moreover, notice that (2.3)

is nonlinear with respect to u(t) for n ≥ 2, which suggests that (2.8) can be used for

describing nonlinear systems.

The application of functionals for describing nonlinear systems received increased

attention through the works of Wiener (1958), where a theory for studying nonlinear

circuits and modelling the spectra of electroencephalograms was elaborated. Several

other studies followed Wiener’s work, including the theory of orthogonal functionals

(Lee and Schetzen, 1965) and inverse operators (Schetzen, 1976).

Functionals (2.3) and functional series (2.8) can also be defined for discrete-time

systems, which is useful for carrying out functional calculations in digital computers.

In this case, y(t) and u(t) respectively denote output and input samples, where t ∈ Z.

When H in (2.7) is fading memory, the output can be described as the series (2.8),

where functionals yn(t) are now described as:

yn(t) =
+∞
∑

τ1=−∞
. . .

+∞
∑

τn=−∞
hn(τ1, . . . , τn)

n

∏
i=1
u(t − τi) (2.9)
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The Volterra series have found many applications in a wide variety of fields, includ-

ing: nonlinear filtering and image processing (Mathews and Sicuranza, 2000; Ramponi,

1986); nonlinear circuits (Weiner and Spina, 1980), echo cancelling (Casar-Corredera

et al., 1985; Zhao et al., 2005), biological systems (Marmarelis and Naka, 1974), channel

equalisation (Karam and Sari, 1989; Carini et al., 1998), modelling of recording devices

(Hermann, 1990), among others.

2.3 Analysis in the frequency domain

System analysis based on integral transforms, e.g. the Laplace, Fourier and Z trans-

forms, is the theoretical foundation of many areas such as Control Engineering and

Signal Processing. The successful application of this theory to practical problems is

due to the possibility of transforming linear problems described in the time-domain by

the convolution integral, into an algebraic formulation in the frequency domain. Be-

cause polynomial functionals are an extension of the convolution operator, the Volterra

series approach provides the fundamental basis for extending these results for a class

of nonlinear systems.

Although similar results can be derived for other transforms, the Fourier transform

is more commonly used for formulating the frequency domain analysis of functional

series. The Fourier transform of a square integrable function x(t) is denoted as X(jξ) =

F{x(t)} and is defined as:

X(jξ) = ∫
+∞

−∞
x(t) e−jξtdt (2.10)

where ξ ∈ R is the angular frequency and j =
√
−1 is the imaginary unit. The time

domain function x(t) can always be recovered from its unique transform via the inverse

Fourier transform:

x(t) = 1

2π
∫

+∞

−∞
X(jξ) ejξtdω (2.11)
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2. FREQUENCY DOMAIN APPROACH TO NONLINEAR SYSTEMS

Consider the continuous-time case. Let Yn(jξ) denote the Fourier transform of n-th

order functional (2.3) and U(jξ) denote the Fourier transform of u(t), i.e.:

yn(t) =
1

2π
∫

+∞

−∞
Yn(jξ) ejξtdξ (2.12)

u(t) = 1

2π
∫

+∞

−∞
U(jξ) ejξtdξ (2.13)

Expressions (2.12) and (2.13) can be substituted into (2.3) for obtaining a relation-

ship between the n-th order output spectrum Yn(jξ) and the input spectrum U(jξ).

The result is found as (Lang and Billings, 1996).

Yn(jξ) = ∫
ξ=ξ1+...+ξn

Hn(jξ1, . . . , jξn)
n

∏
i=1
U(jξi)dσn,ξ (2.14)

where the integration is computed over the hyperplane ξ = ξ1 + . . . + ξn. The function

Hn(jξ1, . . . , jξn) denotes the n-dimensional Fourier transform of the n-th order kernel:

Hn(jξ1, . . . , jξn) = ∫
+∞

−∞
. . .∫

+∞

−∞
hn(τ1, . . . , τn)

n

∏
i=1
e−jξiτidτi (2.15)

Expression (2.14) is of little practical use, though, as it is relatively complicated to

compute it either numerically or in closed form, especially for large n. For this reason,

the system properties are usually studied via the analysis of functions Hn(jξ1, . . . , jξn)

or concepts derived from formulation (2.14).

2.3.1 Generalised Frequency Response Functions

Functions (2.15) are commonly known as Generalised Frequency Response Functions

(GFRFs). The term was introduced in (George, 1959) as it represents a natural ex-

tension of the well known concept of Frequency Response Function (FRF) from linear

systems theory. This can be readily seen since, for n = 1, (2.14) reduces to:

Y1(jξ) =H1(jξ)U(jξ) (2.16)

However, in contrast to the linear case, the role that the GFRFs play in the com-

position of the output spectrum for nonlinear systems is very complicated, as it re-

quires analysing multidimensional frequency spaces. For example, for the linear case
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Y (jξ) = H(jξ)U(jξ) and the support of the output spectrum Y (jξ), i.e. the frequen-

cies ξ for which ∣Y (jξ)∣ ≠ 0, is the same support of the input spectrum. This is generally

not true for the nonlinear case, which admits a much richer support, usually larger than

the input bandwidth. This has been more deeply studied in (Lang and Billings, 1997;

Wu et al., 2007), where complex algorithms for composing the output spectrum, given

an arbitrary input support, was presented.

For a time-invariant nonlinear system, the GFRFs can be used for describing system

characteristics in the frequency domain. This has been widely used in applications, e.g.

: Palumbo and Piroddi (2000) used a GFRF based procedure for studying a dam

buttress. Tang et al. (2010) used GFRFs for characterising three kinds of faults in a

rotor-bearing system. However, there are several issues with this approach, which are

due to the GFRFs multidimensional nature. For example, the realization of (2.14) is

not unique; usually, Hn(jξ1, . . . , jξn) is an asymmetric function and a permutation of

variables in (2.14) can usually be carried out without necessarily altering the value of

Yn(jξ). This basically means that the system can admit more than one asymmetric n-

th order GFRF. These ambiguities can be avoided by symmetrising the GFRFs, which

consists of replacing Hn(jξ1, . . . , jξn) in (2.14) by the symmetrical GFRF computed

from the original function as:

Hs
n(jξ1, . . . , jξn) =

1

n!
∑
Ωn

Hn(jξ1, . . . , jξn) (2.17)

where Ωn represents the set of all permutations of (ξ1, . . . , ξn). Obviously, this becomes

infeasible when n is large, as the time required for computing Hn(jξ1, . . . , jξn) for every

possible permutation of arguments becomes prohibitive.

Another notable issue with GFRF-based analysis is that graphical analysis is sel-

dom possible. In the linear case, FRF analysis via classical tools such as Bode and

Nyquist plots is useful because typical system properties such as bandwidth, resonance

frequencies and phase margin can be easily understood from graphical displays of the

FRF, which are always plane figures. For 2-nd order cases, this is still possible, as
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H2(jξ1, jξ2) can be studied via surface plots against ξ1 and ξ2, for example, although

the analysis is not as simple as in the linear case, since the composition of the out-

put spectrum has to be analysed from plane slices of the form ξ1 + ξ2 = ξ. For cases

of order 3, graphical displays become much more difficult, although some attempts of

establishing more rigorous analysis procedures have been made (Yue et al., 2005a,b).

This requires special computational procedures, but the complexity of the algorithms

make these approaches infeasible.

2.3.2 Nonlinear Output Frequency Response Functions

Because of the difficulties with the analysis of multidimensional characteristics of GFRFs,

alternative FRF concepts have been proposed. The main idea behind them is to study

the system frequency behaviours while maintaining the dimensionality of the features

low. The concept of Nonlinear Output Frequency Response Functions - NOFRFs (Lang

and Billings, 2005) was defined in this context and has been established as a potential

alternative, as it has been successfully used in several studies of both theoretical and

practical natures.

The concept of NOFRFs was initially proposed by Lang and Billings (2005) for

explaining how nonlinear systems transfer the input energy between different frequency

bands and how this phenomenon can be translated into comprehensive properties that

allow a better understanding of nonlinear systems. Based on a simple reasoning about

linear operators with input polynomial nonlinearities, the authors proposed that the

n-th order NOFRFs for continuous-time systems can be defined as:

Gn(jξ) =
F{yn(t)}
F{u(t)n}

= Yn(jξ)
Un(jξ)

(2.18)

where Yn(jξ) is defined as (2.14) and Un(jξ) represents the n-th order generalised

spectrum of the input and is defined as:

Un(jξ) = F{u(t)n} (2.19)
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In this context, the output spectrum can be written as:

Y (jξ) =
∞
∑
n=1

Gn(jξ)Un(jξ) (2.20)

For discrete-time systems, a similar formulation can also be obtained, where the

output is described as:

Y (ejω) =
∞
∑
n=1

Gn(ejω)Un(ejω) (2.21)

and Gn(ejω) is now defined as:

Gn(ejω) =
DTFT{yn(t)}
DTFT{u(t)n}

(2.22)

where DTFT{ } denotes the Discrete Time Fourier Transform, and ω denotes nor-

malised frequency.

The basic advantage of the NOFRF formulation is that the system can be studied

via a series of one dimensional FRFs, for any order of interest. This greatly simplifies

the analysis in comparison to GFRF-based analysis, which becomes more difficult to

carry out as n increases. In addition, NOFRFs possess useful properties that can be

directly derived from definitions (2.18) and (2.22). These properties are described as

follows (Lang and Billings, 2005)

(i) The output components Yn(jξ) are described in a manner similar to linear

systems

(ii) The frequency support of Un(jξ) is the same as of Yn(jξ)

(iii) Gn(jξ) is invariant to an input constant gain

Property (i) is useful for carrying out analysis in which nonlinear components are

studied separately. The algebraic product formulation allows studying properties such

as resonance and bandwidth for these higher order components in a more convenient

way.
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It is important to mention that NOFRFs are, in general, input dependent. This

can be understood as a reflection of the system nonlinear characteristics, which can

be revealed in more or less details, depending on the input used for probing the sys-

tem. This is mainly due to NOFRFs being extracted from low dimensional slices of

the GFRFs that are directly affected by the excitation. However, certain changes in

input characteristics do not produce any changes in the NOFRFs, which is the ba-

sic idea of property (iii) above. Property (iii) shows that if the NOFRFs computed

with U(jξ) = U0(jξ) produce the NOFRFs Gn(jξ), then the NOFRFs obtained with

U(jξ) = kU0(jξ) are described as Gn(jξ) as well, for any nonzero constant k.

This is the basis of an algorithm developed for estimating the NOFRFs (Lang

and Billings, 2005) from a pre-established model. The procedure consists of a linear

regression scheme that is constructed from several excitations of the form ki u(t), i ∈

{1, . . . , s}. In this circumstance, the output spectrum produced by input ki u(t) can be

described as:

Yi(jξ) =
p

∑
n=1

Gn(jξ)kni Un(jξ) (2.23)

Let:

Gn(jξ) = GRn (jξ) + jGIn(jξ) (2.24)

Un(jξ) = URn (jξ) + jU In(jξ) (2.25)

Yi(jξ) = Y R
i (jξ) + jY I

i (jξ) (2.26)

where GRn (jξ), URn (jξ) and Y R
i (jξ) respectively denote the real parts of Gn(jξ), Un(jξ)

and Yi(jξ), while GIn(jξ), U In(jξ) and Y I
n (jξ) respectively denote the imaginary parts

of Gn(jξ), Un(jξ) and Yn(jξ).

Then, (2.23) can be rewritten as:

Yi(jξ) =
p

∑
n=1

(GRn (jξ) + jGIn(jξ)) kni (URn (jξ) + jU In(jξ)) (2.27)
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yielding:

Y R
i (jξ) =

p

∑
n=1

kni (GRn (jξ)URn (jξ) −GIn(jξ)U In(jξ)) (2.28)

Y I
i (jξ) =

p

∑
n=1

kni (GRn (jξ)U In(jξ) +GIn(jξ)URn (jξ)) (2.29)

Equations (2.28)-(2.29) can be written in matrix format, which is more convenient

for the estimation scheme. To this end, let:

θ = [ GR1 (jξ) . . . GRp (jξ) GI1(jξ) . . . GRp (jξ) ]
T

(2.30)

Y R = [ Y R
1 (jξ) . . . Y R

s (jξ) ]
T

(2.31)

Y I = [ Y I
1 (jξ) . . . Y I

s (jξ) ]
T

(2.32)

and:

UR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1U
R
1 (jξ) k2

1U
R
2 (jξ) . . . kp1U

R
p (jξ)

k2U
R
1 (jξ) k2

2U
R
2 (jξ) . . . kp2U

R
p (jξ)

⋮ ⋮ ⋮ ⋮
ksU

R
1 (jξ) k2

sU
R
2 (jξ) . . . kpsU

R
p (jξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.33)

U I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1U
I
1 (jξ) k2

1U
I
2 (jξ) . . . kp1U

I
p (jξ)

k2U
I
1 (jξ) k2

2U
I
2 (jξ) . . . kp2U

I
p (jξ)

⋮ ⋮ ⋮ ⋮
ksU

I
1 (jξ) k2

sU
I
2 (jξ) . . . kpsU

I
p (jξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.34)

Therefore, the following linear relationships can be built:

⎡⎢⎢⎢⎢⎣

Y R

Y I

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

UR −U I

U I UR

⎤⎥⎥⎥⎥⎦
θ (2.35)

Usually, the system should be excited for a large number of gains ki, so that the

NOFRFs can be estimated via a least squares approach.

In practice, this algorithm can be applied after a model has been identified for the

system under study. The procedure has some issues, however, as formulation (2.23)

requires specifying the maximum order of the NOFRFs in advance. This is relatively
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problematic since it is inconsistent with other Volterra series based approaches where

the lower order functional components are not affected by their higher order coun-

terparts. In addition the construction of the regression matrices requires probing the

system different times with different inputs, demanding additional computational ef-

forts, since the system needs to be simulated for each excitation level. The most critical

issue, though, is that the gain parameters ki need to be carefully chosen. Due to the

polynomial nature of the regression terms, a poor choice of these gains can easily pro-

duce ill conditioning of the regression matrix.

There are exceptions to this rule, though. The NOFRFs become input independent

when the input is either sinusoidal, or when the kernels possess a special structure.

When the input is sinusoidal of frequency ωh, all functional components are described

by harmonic components located at kωh, k ∈ {0,±1, . . . ,±n}. In this case, the NOFRFs

only need to be evaluated at these frequencies. The continuous-time NOFRFs are found

as (Peng et al., 2007b):

Gn(j(−n + 2k)ωh) =Hn(jωh, . . . , jωh
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

,−jωh, . . . ,−jωh
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−k

) (2.36)

where Hn denotes the n-th order GFRF. Several applications have explored this form

for studying properties of particular nonlinear systems. For example: a comparison

between harmonic balance and NOFRF approaches was investigated in (Peng et al.,

2008), in terms of computation of harmonic responses in Duffing type oscillators. It

was shown that the NOFRF formulation provides a considerably simpler way of un-

derstanding higher order harmonics, even when the oscillator exhibits highly nonlinear

damping terms, although it cannot be used for describing more complicated behaviours

such as frequency jumps.

In addition, previous studies based on bilinear oscillators (Peng et al., 2007) rein-

forced the idea that the sinusoidal characteristics of nonlinear systems can be explained

by NOFRF-based representations. This study was able to provide a more systematic

understanding of sub-resonances, which is a widely used phenomenon for characterising
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cracked structures. A more in-depth study of nonlinear resonance phenomena based

on NOFRFs can also be found in (Peng et al., 2007b), in which a deep investigation

about the influence of linear damping over the nonlinear resonance characteristics was

conducted.

Sinusoidal analysis based on NOFRFs have also been used for identifying nonlinear

behaviour as source of potential system anomaly. A comprehensive general approach

was reported in (Lang and Peng, 2008), based on simplified multi degree of freedom sim-

ulation model, in which the nonlinear stiffness component can be effectively localised.

The philosophy of this approach was also tested in real applications (Peng et al., 2007a,

2011). These results suggest that the NOFRF formulation provides a suitable extension

of the FRF concept to the nonlinear case and is, therefore, a potential tool towards

the development of frequency domain techniques for addressing problems of practical

interest.

2.4 Methods for GFRF extraction

As previously shown, one important step for Volterra series based analysis is to ob-

tain the time-domain kernels or GFRFs. However, in most applications, the system

is usually not explicitly represented as a functional series, which means that the ker-

nels/GFRFs must be derived from other types of representation. This section is ded-

icated to present and briefly discuss some common methods for deriving the system

GFRFs from input-output data and difference/differential equation models, since these

are the most common forms of a priori information about the system.

Throughout this discussion, two types of GFRF representation will be considered:

parametric and non-parametric. A non-parametric representation is characterised by

a finite number of complex values of Hn(jξ1, . . . , jξn) computed at specific points of

the n-dimensional frequency space. The parametric representation, is characterised

by the description of Hn(jξ1, . . . , jξn) in terms of explicit algebraic expressions, such
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as a n-variable rational function or a recursive implicit representation, i.e. when

Hn(jξ1, . . . , jξn) is written in terms of Hk(jξ1, . . . , jξk), with k < n.

2.4.1 The variational approach

The variational method (Schetzen, 1980; Rugh, 1981) is a very simple approach that can

be applied when an input-output model is available, which can be either continuous-

time or discrete-time. It consists of algebraic steps that can be primarily implemented

as symbolical calculations, although it has been demonstrated that a purely numeric

procedure is also possible (Bayma and Lang, 2012).

The general steps can be described as follows. A continuous-time formulation will

be considered, without loss of generality. Let y′(t) be the system output when the

input is described as u(t), so that:

y′(t) =
p

∑
n=1

yn(t) (2.37)

where p is the truncation order and:

yn(t) = ∫
+∞

−∞
. . .∫

+∞

−∞
hn(τ1, . . . , τn)

n

∏
i=1
u(t − τi)dτi (2.38)

In these circumstances, if the input is replaced by Γu(t), where Γ > 0 is a constant,

the corresponding output can be described as

y(t) =
p

∑
n=1

Γn yn(t) (2.39)

Assume the system is described by the input-output differential equation:

F (φy(t),φu(t)) = 0 (2.40)

where

φy(t) = [ y(t) dy(t)
dt

. . .
dmy(t)
dtm

] (2.41)

φu(t) = [ u(t) du(t)
dt

. . .
dmu(t)
dtm

] (2.42)
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and F is a polynomial function. The variational approach consists of the following

steps:

1. Replace u(t) by Γu(t) and y(t) by (2.39) in (2.40).

2. Expand all multinomial terms that arise from the nonlinearities

3. Reorganise the left-hand side as a polynomial in Γ

4. Equate to zero all coefficients of the resulting polynomial, up to order p

5. Solve the resulting equations for components yn(t), n ∈ {1,2, . . . , p} in terms

of u(t) and determine the kernels by inspection.

It is important to notice that the artificial parameter Γ was merely introduced to

simplify the process of identifying the terms of a particular order, and the final result

should not depend on it. In practice, the introduction of this parameter is not required,

as the order of any functional can be determined directly by the number of terms in

u(t) that appear in the functional formula.

The result of step 4 above is a series of linear differential (difference, in the discrete-

time case) equations of the form (Feijoo et al., 2004):

Ayn(t) = Fn (φy(t),φu(t)) 1 ≤ n ≤ p (2.43)

where A is a linear differential operator and Fn represents an algebraic function, both

depending on the characteristics of F in (2.40). These equations are called Associated

Linear Equations (ALEs) (Feijoo et al., 2004, 2005, 2006) and play a very important

role in Volterra series based system analysis. They possess two important features that

imply in important properties about their solutions:

� The right-hand side of the n-th order ALE depends only on the input and

solutions of order less than n, i.e. they are recursive
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� The n-th order ALE is linear with respect to yn(t)

The first feature shows that ALEs can be solved in a recursive manner, i.e. by

starting from the 1-st order equation and progressively using previous solutions as n is

increased. This is similar to solving a triangular system of linear algebraic equations.

Moreover, due to linear characteristics of the ALEs, the solutions can be analytically

found using classical linear methods or in numerical format, via linear filtering tech-

niques.

In order to find the n-th order time-domain kernels, the n-th order ALE need to

be solved in terms of convolutions with the input u(t), from which the kernels are

determined via inspection. This last part is highly dependent on the circumstances

and cannot be written explicitly, unless a particular form for function F (φy(t), φu(t))

in (2.40) is used.

In order to illustrate how to use the variational approach, consider the Duffing

equation:

ÿ(t) + a ẏ(t) + b y(t) + c y(t)3 = u(t) (2.44)

Introducing the artificial gain and using p = 3 yields:

3

∑
n=1

Γnÿn(t) + a
3

∑
n=1

Γnẏn(t) + b
3

∑
n=1

Γnyn(t) + c (
3

∑
n=1

Γnyn(t))
3

= u(t) (2.45)

The cubic term can be easily expanded, yielding terms of several different orders

between 3 to 9 with respect to Γ. Most of these terms are discarded, however, as the

the analysis is only carried out up to order 3. After identifying the coefficients of Γ, Γ2

and Γ3, the following ALEs are found:

ÿ1(t) + a ẏ1(t) + b y1(t) = u(t) (2.46)

ÿ2(t) + a ẏ2(t) + b y2(t) = 0 (2.47)

ÿ3(t) + a ẏ3(t) + b y3(t) = −c y1(t)3 (2.48)
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The solution to (2.46) can be described as:

y1(t) = ∫
+∞

−∞
h1(t − τ)u(τ)dτ (2.49)

where

h1(τ) = L−1 { 1

s2 + as + b
} (2.50)

and L−1 denotes the inverse Laplace transform. Equation (2.49) is in the standard

functional form, therefore, (2.50) denotes the first order kernel.

Equation (2.47) implies that the second component will be always zero, since the

right-hand side terms vanishes. Because this is true for any input, the only possible

conclusion is:

h2(τ1, τ2) = 0 (2.51)

The solution to (2.48) can be described as:

y3(t) = −c ∫
+∞

−∞
h1(τ)y1(t − τ)3dτ (2.52)

which must be written in the standard form (2.3) so that the order 3 kernel can be

identified. This can be done through the following transformations:

y3(t) = −c ∫
+∞

−∞
h1(τ) (∫

+∞

−∞
h1(σ)u(t − τ − σ)dσ)

3

dτ (2.53)

= −c ∫
+∞

−∞
h1(τ)∫

+∞

−∞ ∫
+∞

−∞ ∫
+∞

−∞

3

∏
i=1
h1(σi)u(t − τ − σi)dσi dτ (2.54)

Applying the change of variables τi = τ + σi, i = 1, 2, 3 into (2.54), yields:

y3(t) = −c ∫
+∞

−∞
h1(τ)∫

+∞

−∞ ∫
+∞

−∞ ∫
+∞

−∞

3

∏
i=1
h1(τi − τ)u(t − τi)dτi dτ (2.55)

Rearranging the order of the integrations yields:

y3(t) = ∫
+∞

−∞ ∫
+∞

−∞ ∫
+∞

−∞
(−c ∫

+∞

−∞
h1(τ)

3

∏
i=1
h1(τi − τ)dτ)

3

∏
i=1
u(t − τi)dτi (2.56)
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Therefore, by comparing with the standard 3-rd order form, we can obtain the third

order kernel in an implicit form:

h3(τ1, τ2, τ3) = −c∫
+∞

−∞
h1(τ)

3

∏
i=1
h1(τi − τ)dτ (2.57)

Notice that the result is only partially complete, since obtaining the kernels in

explicit form requires expressing h1 in terms of elementary functions. In addition,

obtaining the GFRFs, if desired is only a matter of applying the Fourier transform to

(2.57).

Obviously the variational approach is a very laborious procedure and is not feasible

for practical purposes in this form. One way of simplifying the process is to work out all

calculations in the frequency domain, as all operations become algebraic. This can be

done using different approaches, for example the probing method (Peyton Jones and

Billings, 1989; Peyton Jones, 2007) or the Diophantine equations approach (Bayma

and Lang, 2012). Notice, however, that in both situations the GFRFs are obtained

in recursive form and extracting them in full explicit form requires additional efforts,

although simpler than those in the time-domain.

2.4.2 Orthogonal functionals

The orthogonal functionals representation (Lee and Schetzen, 1965; Schetzen, 1981;

Wiener, 1958) was introduced for dealing with two problems associated with the con-

ventional Volterra series: convergence and identification (Schetzen, 1981).

The convergence problem is related to the difficulties of finding a convergent Volterra

series representation for a given operator. This is similar to the problem that occurs

when approximating a function by conventional polynomials, as the convergence of the

series is based on conservative criteria. It is well known that this is partly alleviated by

using a basis of orthogonal functions (e.g. complex exponentials, orthogonal polyno-

mials, etc.), since series of this form converge by the mean, which is a less conservative

requirement. The orthogonal functional series plays a similar role, as the terms of the
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series are constructed to be orthogonal to each other, providing more relaxed conditions

for the convergence problem.

An orthogonal functional series is described as:

y(t) =
∞
∑
n=0

gn(t) (2.58)

where gn(t) are functionals with respect to the input u(t) that possess zero mean and

are orthogonal to each other with respect to the conventional inner product, i.e.

⟨ gm(t), gn(t) ⟩ = ∫
+∞

−∞
gm(t) gn(t)dt = 0 m ≠ n (2.59)

and when u(t) is a Gaussian white process. The functionals gn(t) are usually called

the n-th order Wiener functionals or G-functionals. The kernels associated with each

functional are called the n-th order Wiener kernel.

The G-functionals possess a structure that is similar to the ordinary Volterra func-

tionals, except that they are not homogeneous, i.e. the n-th order G-functional is

formed from Volterra functionals of order n and smaller. The basic principle for con-

structing the G-functionals is the orthogonality principle (2.59). The derivations are

relatively laborious (Schetzen, 1980) and therefore will be omitted. The G-functionals

of order up to 4 are described as:

g0(t) = k0 (2.60)

g1(t) =K1[u(t)] (2.61)

g2(t) =K2[u(t)] + k20 (2.62)

g3(t) =K3[u(t)] +K31[u(t)] (2.63)

g4(t) =K4[u(t)] +K42[u(t)] + k40 (2.64)

where

Kn[u(t)] = ∫
+∞

−∞
. . .∫

+∞

−∞
kn(τ1, . . . , τn)

n

∏
i=1
u(t − τi)dτi (2.65)
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Knp[u(t)] = ∫
+∞

−∞
. . .∫

+∞

−∞
knp(τ1, . . . , τp)

p

∏
i=1
u(t − τi)dτi (2.66)

and kn(τ1, . . . , τn) denotes the n-th order principal kernel. The secondary kernels knp

are directly derived from the corresponding principal as:

k20 = −A∫
+∞

−∞
k2(τ1, τ1)dτ1 (2.67)

k31(τ1) = −3A∫
+∞

−∞
k3(τ1, τ2, τ2)dτ2 (2.68)

k40 = 3A2∫
+∞

−∞ ∫
+∞

−∞
k4(τ1, τ1, τ2, τ2)dτ1dτ2 (2.69)

k42(τ1, τ2) = −6A∫
+∞

−∞
k4(τ1, τ2, τ3, τ3)dτ3 (2.70)

where A is the power of the Gaussian white input u(t).

The orthogonality between G-functionals of different order is also useful for dealing

with the identification problem, i.e. the process of finding the Wiener kernels kn from

input-output data. Orthogonal functionals make this process very systematic, simi-

larly to its algebraic counterpart, where series coefficients can be found in a decoupled

manner, using correlations between function observations and the basis functions of

the orthogonal expansion. The procedure consists of applying a Gaussian white signal

and correlate the response with the G-functionals in increasing order for obtaining the

kernels (Lee and Schetzen, 1965; Schetzen, 1981). More specifically, for determining

the n-th order kernel, the following steps can be applied:

1. Define the point (τ1, . . . , τn) over which the kernel will be computed

2. Compute:

dn(t) =
n

∏
i=1
u(t − τi) (2.71)

3. Use any previously determined kernels for computing:

ȳ(t) = y(t) −
n−1

∑
m=0

gm(t) (2.72)
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4. Compute the n-order Wiener kernel as

kn(τ1, . . . , τn) =
1

n!An
⟨ ȳ(t), dn(t) ⟩ (2.73)

A great advantage of this system identification procedure is that its correlation

based foundation provides some filtering features that can be useful for dealing with

noisy measurements. However, the resulting kernel representation is still multidimen-

sional, therefore, it suffers from the same fundamental problems previously discussed in

the context of Volterra kernels and their analysis. In addition, the nonparametric form

of the results is an aggravating matter, as the storage of the multidimensional points

becomes a serious issue, especially because a large number of points is required for a rea-

sonable kernel representation. This can be partly alleviated by using multidimensional

interpolation schemes in which the kernels are represented by orthogonal decompo-

sitions, such as gate functions (Schetzen, 1980) and Laguerre polynomials (Campello

et al., 2004; Schetzen, 1981), leading to a nonlinear system representation known as the

Wiener model, in which the system is decomposed as connections of linear dynamical

networks in series with no-memory polynomial nonlinearities.

The decomposition of kernels into orthogonal series is efficient because the series

coefficients rapidly decay to zero, producing a more condensed representation. However,

the multidimensional problem still exists, as the resulting orthogonal coefficients are

also multidimensional. In addition, this approach introduces a new problem, which is

the tuning of additional parameters, such as the poles of Laguerre functions, which can

only be achieved, in an optimal way, via special algorithms (Campello et al., 2004).

2.4.3 Harmonic probing

Harmonic probing refers to a group of methods in which the GFRFs are obtained from

a pre-established model. The main objective is to obtain a set of algebraic expressions

that allow computing one or more GFRFs in terms of their lower order counterparts,
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i.e. Gk as a function of Gk−1, Gk−2, . . ., G1. This yields a moderately compact rep-

resentation of the GFRFs while still allowing to compute them in explicit form, if

required.

One of the first versions of the probing algorithm for practical polynomial models

was proposed in (Peyton Jones and Billings, 1989, 1988), which was later improved in

(Peyton Jones, 2007). The GFRFs are extracted from a Nonlinear AutoRegressive with

eXogenous inputs (NARX) model, proposed in (Leontaritis and Billings, 1985) as:

y(t) =
M

∑
m=1

m

∑
p=0

K

∑
k1,kp+q=1

cp,q(k1, . . . , kp+q)
p

∏
i=1
y(t − ki)

p+q
∏
i=p+1

u(t − ki) (2.74)

The method can be derived by considering a multi-tone sinusoidal input

u(t) =
R

∑
r=1

ejωkt (2.75)

for which:

y(t) =
N

∑
n=1

R

∑
r1,rn=1

Hn(ejω1 , . . . , ejωn)ej(ω1+...+ωn)t (2.76)

Formulation (2.76) can be substituted into model (2.74), and the GFRFs can be

found by matching terms of corresponding order. The n-th order GFRF can be found

as (Peyton Jones, 2007):

Hn(ejω1 , . . . , ejωn) =
Hnu(. . .) +Hnuy(. . .) +Hny(. . .)

1 −∑Kk1=1 c1,0(k1) exp(−jω1k1 − . . . − jωnk1)
(2.77)

where:

Hnu(ejω1 , . . . , ejωn) =
K

∑
k1, kn=1

c0,n(k1, . . . , kn) exp(−jω1k1 − . . . − jωnkn) (2.78)

Hnuy(ejω1 , . . . , ejωn) =
n−1

∑
q=1

n−q
∑
p=1

K

∑
k1, kp+q=1

cp,q(k1, . . . , kp+q)Hn−q,p(ejω1 , . . . , ejωn−q)

× exp(−jωn−q+1kn−q+1 − . . . − jωp+qkp+q) (2.79)

Hny(ejω1 , . . . , ejωn) =
n

∑
p=2

K

∑
k1, kn=1

cp,0(k1, . . . , kn)Hn,p(ejω1 , . . . , ejωn) (2.80)
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Hn,p(ejω1 , . . . , ejωn) = ∑
Ω

Hγ1(wγ1) . . . Hγp(wγp) fy(wγ1 , . . . , wγp) (2.81)

fy(wγ1 , . . . , wγp) = ∑
σ

p

∏
i=1

exp (−jki∑wγi) (2.82)

and Ω represents all combinations (γ1, . . . , γp) taken from (1, . . . ,N) with repetition

and ∑γi = n; and σ represents all permutations of (γ1, . . . , γp). An alternative formu-

lation, although yielding the same results, can be found in (Jing et al., 2008).

The main disadvantage of this method is its complexity: the computation of Hn,p is

recursive and lacks an intuitive interpretation; in addition, the implementation requires

listing combinations and permutations of variables, which demands large computational

power for large n or when the number of model terms is considerable. This happens

because of how the NARX model was formulated, a problem that can be avoided by

adopting a slightly different formulation, as demonstrated in (Bayma and Lang, 2012).

2.5 Notes about nonlinear systems identification

This section is dedicated to briefly review some nonlinear systems identification basic

concepts. Although the main focus of this thesis is not about this subject, it is impor-

tant to recognise that it does play a very important role to this research, as all analysis

methods under investigation assume that a nonlinear polynomial model is available.

The general purpose of system identification is to build mathematical relationships

between measurable quantities, without necessarily using any physical insight about

how they are related. For this reason, these methods are usually called black box

modelling.

This work is mainly concerned with modelling of single input single output, discrete-

time dynamical systems, i.e. where one input and one output are related by a temporal

relationship. This can be generally described as:

y(t) = F (φy(t),φu(t)) (2.83)
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where t ∈ Z denotes the t-th sample, u(t) and y(t) respectively represent the input and

output sequences, F is an arbitrary (usually nonlinear) function and:

φy(t) = [ y(t − 1) . . . y(t −L) ] (2.84)

φu(t) = [ u(t − 1) . . . u(t −L) ] (2.85)

(2.86)

where L is the model maximum delay. Due to its recursive nature, i.e. the t-th

output sample depends on past samples, this model is usually known as Nonlinear

AutoRegressive with eXogenous inputs - NARX. In some situations, for the purpose

of improving the model prediction capabilities, it is common to include a noise signal

e(t), so that Moving Average - MA terms appear and the model is simply renamed as

NARMAX.

For the purpose of representing F , many different mathematical structures can be

used, e.g. neural networks (Haykin, 1999), wavelets (Billings and Wei, 2005; Coca and

Billings, 1999) and polynomials (Leontaritis and Billings, 1985). The polynomial for-

mulation is particularly useful for carrying out Volterra series analysis, while estimation

methods for this specific approach have been widely studied Chen and Billings (1989);

Korenberg et al. (1988); Li et al. (2013).

In this work, the general polynomial formulation will be described as:

y(t) =
M

∑
m=1

θmψm(t) + e(t) (2.87)

where e(t) denotes the modelling error and:

ψm(t) =
L

∏
l=1
y(t − l)p(m,l)u(t − l)q(m,l) (2.88)

This formulation is different from the original and usual notation adopted in other

works, for example (Chen and Billings, 1989; Billings, 2013). Though the model is still

described as a linear function of the parameters θm to be estimated, the main difference

with respect to the traditional polynomial NARX representation is that repeated terms,
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such as y(t−1)2, are explicitly described in terms of the integer parameters p(m, l) and

q(m, l). This has no particular impact for modelling purposes, but offers significant

advantages to Volterra series analysis of the model, as demonstrated in Chapters 3 and

4.

Equation (2.87) can also be written in a matrix format as:

y(t) = ψT (t)θ + e(t) (2.89)

where

ψT (t) = [ ψ1(t) . . . ψM(t) ] (2.90)

θT = [ θ1 . . . θM ] (2.91)

where entries of ψ(t) contain all terms described in (). The order in which these are

organised in vector ψ(t) is usually arbitrary, although it can exhibit some influences

over the estimation procedure (Korenberg, 1987).

Assuming N samples have been gathered, the observed data can be written as

follows:

y = Ψθ + e (2.92)

where

yT = [ y(1) . . . y(N) ] (2.93)

eT = [ e(1) . . . e(N) ] (2.94)

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(1) . . . ψM(1)
⋮ ⋮ ⋮

ψ1(N) . . . ψM(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.95)

The basic identification problem consists of estimating a parameter vector θ̂ so that

the sum of squared errors J = eTe is minimised. This classical least squares solution is

described as (Billings, 2013)

θ̂ = (ΨTΨ)−1ΨTy (2.96)
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However, this solution is usually not suitable for identifying nonlinear models such

as (2.87)-(2.88), because the number of candidate terms (i.e. columns of Ψ) is usually

large, which brings ill conditioning problems. In this context, it has been demonstrated

that it is usually of great advantage to work with (2.92) in an orthogonalised form

(Korenberg et al., 1988; Chen et al., 1988), i.e.

y =W g + e (2.97)

where

gT = [ g1 . . . gM ] (2.98)

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w1(1) . . . wM(1)
⋮ ⋮ ⋮

w1(N) . . . wM(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.99)

This formulation can be obtained in different ways, for example, via singular value

decomposition (Weisstein, 2014e), the Gram-Schimdt algorithm (Weisstein, 2014d) or

a more specialised approach (Korenberg, 1987). Orthogonality implies that:

W TW =D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d1

⋱
dM

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(2.100)

so that parameters g can be easily estimated as ĝ = D−1W Ty. Usually, the original

parameters θ can be recovered from g by a simple linear transformation. However, the

advantages of the orthogonal formulation go further beyond, as it allows the develop-

ment of valuable mechanisms that provide a way of quantifying the relevance of each

candidate term of the model, which is a useful for optimising the model structure.

In this work, two structure selection criteria were used. The Error Reduction Ratio

formulation - ERR, which was introduced in (Korenberg, 1987; Chen et al., 1988), where

it was noticed that the following relationship can be derived between the orthogonal

model and the estimation error:

1

N

N

∑
t=1
y2(t) = 1

N

N

∑
t=1

M

∑
m=1

g2
mw

2
m(t) + 1

N

N

∑
t=1
e2(t) (2.101)
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2.5 Notes about nonlinear systems identification

In (2.101), all terms are positive, so that the first term on the right-hand side

reduces the term on the left-hand side. The left-hand side term can be interpreted as

the maximum value of the squared error, since it is the value achieved by it when no

model terms are used. Based on this observation, the ERR for the i-th candidate term

can be defined as:

ERR(i) =

N

∑
t=1
g2
i w

2
i (t)

N

∑
t=1
y2(t) − 1

N
(
N

∑
t=1
y(t))

2
(2.102)

Equation (2.102) describes the relative reduction in the modelling error when the

i-th term is included, providing a metric for adding or removing new terms into the

model, and constitutes an important tool for constructing polynomial NARX models.

Another metric that can be used for selecting terms is the Predicted Residuals Sum

of Squares statistic - PRESS (Wang and Cluett, 1996). A predicted residual is the

modelling error obtained by trying to predict an output sample that was not used for

estimating the model structure and parameters. This is usually written as:

e−t(t) = y(t) − ŷ−t(t) (2.103)

where the subscript “−t” means that the t-th sample was not considered for model

construction and parameter estimation. This is considerably different from the ordinary

residuals computed as:

e(t) = y(t) − ŷ(t) (2.104)

where ŷ(t) is the prediction of the t-th sample computed from a model that was esti-

mated from a data set that included this same sample.

The PRESS statistic is obtained by computing the predicted residuals for many

samples, typically one at a time (“leave one out” strategy) and adding the squares:

PRESS =
tN

∑
t=t1

e2
−t(t) (2.105)
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PRESS can also be used as a metric for selecting model terms. It works similar

to ERR, where a term is added or excluded, depending if the associated PRESS is

smaller than a pre-specified maximum limit, although it is usually difficult to compute

it. However, it was demonstrated in (Myers, 1990) that for a linear in the parameters

model, the predicted residuals can be obtained from the ordinary residuals in a orthog-

onal forward regression scheme. The strategy is based on the orthogonal formulation

(2.97) and is called forward regression because the PRESS statistic is computed as the

model progressively increases in size. In this context, the efficient calculation of the

associated PRESS when the model contains k terms is described as:

PRESS(k) =
N

∑
t=1
e2
k,−t(t) (2.106)

e2
k,−t(t) =

ek(t)
βk(t)

(2.107)

where the ordinary residual ek(t) is described as:

ek(t) = y(t) −
k

∑
m=1

gmwm(t) (2.108)

and βk(t) is computed recursively as:

βk(t) = βk−1(t) −
wk(t)
N

∑
t=1
w2
k(t)

(2.109)

with β0(t) = 1.

This procedure greatly simplifies the adoption of PRESS as a model selection cri-

terion, allowing identification of nonlinear representations that possess, in principle,

better prediction capabilities than those constructed from ERR, since ERR is based on

ordinary residuals.

Throughout this work, both identification methods were employed for obtaining

polynomial NARX models. It is often difficult to predict which method can provide

the “best” model for a given data set, since the mechanisms yield different results de-

pending on the candidate terms used and the noise levels present in the measurements.
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2.6 Conclusions

Experience has shown that it is more effective to simply apply both methodologies and

analyse the resulting models performance using simulation, while also balancing model

complexity for further analysis purposes.

2.6 Conclusions

The Volterra series is a consolidated tool for nonlinear system analysis, as demon-

strated by the fundamental concepts introduced in this chapter and various published

works. The homogeneous polynomial functionals generalise the convolution integral

and allow the functional components to be studied in the frequency domain, provid-

ing a description about how phenomena such as harmonics and intermodulations arise.

Both continuous-time and discrete-time formulations are available, which allow the

development of important applications in various fields.

The usual route for conducting frequency analysis of nonlinear systems is based

on the so called Generalised Frequency Response Functions. However, despite notable

work based on GFRFs has been developed, many issues need to be resolved. The first

problem is how the GFRFs can be obtained from a given problem scenario. It has

been shown that this is can be done by directly using input-output data or by fitting

a model and a posterior extraction of the GFRFs from the model equations. Various

methods exist for accomplishing this task, and the main ones have been reviewed in this

chapter. This list, however, is by no means exhaustive, and several others can be found

in literature, for example: Carleman Linearization method; the variational approach

for state space models; the growing exponential approach. (Rugh, 1981), among others.

The reason why these methods were not explored in this chapter is because some of

them were not designed for dealing with discrete-time input-output representations,

while others are less efficient than the ones that were presented.

The second, and perhaps the most problematic issue with the GFRF based nonlinear

system analysis is how to extract their multidimensional features and how to use them
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2. FREQUENCY DOMAIN APPROACH TO NONLINEAR SYSTEMS

for understanding system properties. However, the large computational efforts that are

required for dealing with these problems suggest that alternative FRF formulations are

more attractive.

The concept of NOFRFs was proposed in this context and can be considered as a

potential tool towards practical nonlinear systems analysis. The properties of NOFRFs

provide a convenient background for studying nonlinear systems in the frequency do-

main, which have been attested by several application studies recently published. How-

ever, issues regarding the computation of NOFRFs from a NARX model still need to be

solved, as the currently available algorithm can present numerical conditioning prob-

lems and therefore, cannot be applied to fundamentally resolve the problems.
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3

A new algorithm for

determination of GFRFs of

nonlinear systems

3.1 Introduction

One fundamental step in classical Volterra series based system analysis is the extraction

of the time-domain kernels or, equivalently, the GFRFs. Although there are difficulties

regarding the study of these multidimensional functions, GFRF based analysis is still

very useful and commonly used in several practical problems involving analysis and

design of nonlinear systems.

This chapter presents a new result that permits the GFRFs extraction from non-

linear systems models, which were originally introduced in (Bayma and Lang, 2012).

The main result is an efficient algorithm that allows obtaining the recursive equations

for generating the GFRFs. Although the basic idea is similar to the well known prob-

ing method (Peyton Jones, 2007; Peyton Jones and Billings, 1989), the calculations

involved in the new algorithm are carried out in a different way that avoids symbolic
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processing and many other unnecessary computations. The main advantage of the new

method is that it can be used to determine the GFRFs up to any arbitrary order from

a relatively general nonlinear model in a very efficient approach. In addition, the new

method also provides an important basis for the derivation of a more effective approach

to the computation of NOFRFs of nonlinear systems in the next chapter.

3.2 Notation and basic considerations

3.2.1 Notation and definitions

The new algorithm has been designed to deal with discrete-time (DT) models and

functionals. The frequency domain transform used for representing the GFRFs in this

context is the multidimensional Z transform, which is defined, for a n-dimensional

function hn(t1, . . . , tn), as:

Hn(z1, . . . , zn) = Z{hn(t1, . . . , tn)}

=
+∞
∑
t1=0

. . .
+∞
∑
tn=0

hn(t1, . . . , tn)
n

∏
i=1
z−tii (3.1)

For simplicity, a compact notation will be used throughout the chapter for denoting

the arguments of multidimensional functions. To this end, let hn(t1, . . . , tn) be the n-th

order kernel of a DT functional yn(t), i.e.

yn(t) =
+∞
∑

τ1=−∞
. . .

+∞
∑

τn=−∞
hn(τ1, . . . , τn)

n

∏
i=1
u(t − τi) (3.2)

Then, the kernel and its corresponding Z transform will be denoted as:

hn(t1,n) = hn (t1, . . . , tn) (3.3)

Hn(z1,n) =Hn (z1, . . . , zn) (3.4)

Moreover, in many situations below, expressions involving a multidimensional term

delayed by l samples in all variables will be encountered, e.g. hn (t1 − l, . . . , tn − l). A
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compact notation will also be used in these cases, which is described as:

hn(t1,n − l) = hn (t1 − l, . . . , tn − l) (3.5)

In addition, the Z transform of (3.5) can be found as:

Z{hn(t1,n − l)} = z−l1 . . . z−ln Hn (z1,n) (3.6)

3.2.2 Considerations about functional orders

The determination of the order of functionals formed from algebraic expressions is also

of great importance, because it allows avoiding computations involving terms of higher

order. This can be done using some basic principles for finding the order of functional

terms. To this end, let D be an order extraction operator, so that, for a n-th order

functional yn(t), D[yn(t)] = n.

D-Property 1. Shifting a functional yn(t) by any delay l does not alter the functional

order, i.e.

D[yn(t − l)] = n (3.7)

D-Property 2. Let yk(t) and ym(t) be functionals of order k and m, respectively.

Then:

D[yk(t)ym(t)] = k +m (3.8)

D-Property 3. Let p ≥ 0 and l ≥ 0 be integers and yn(t) be a functional of order n.

Then:

D [yn(t)p] = np (3.9)

D [yn(t − l)p] = np (3.10)

This follows directly from properties 1 and 2.
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D-Property 4. Let:

α1(t) =
n

∏
k=1

yk(t − l)p(k) (3.11)

α2(t) =
L

∏
l=1

n

∏
k=1

yk(t − l)p(k,l) (3.12)

Then:

D [α1(t)] =
n

∑
k=1

k p(k) (3.13)

D [α2(t)] =
L

∑
l=1

n

∑
k=1

k p(k, l) (3.14)

This follows directly from D-property 3. Determining the order of functionals α1(t)

and α2(t) is important because they arise in the analysis of model (3.22) in Section

3.3, where the output is replaced by the Volterra series formulation.

3.2.3 Kernel extraction operator

In order to make the GFRF extraction procedure more systematic, we shall also consider

a kernel extraction operator K. To this end, consider an arbitrary n-th order functional

yn(t) described as:

yn(t) =
+∞
∑

t1=−∞
. . .

+∞
∑

tn=−∞
hn(t1,n)

n

∏
i=1
u(t − ti) (3.15)

The K-operator is defined as the operator that returns the kernel of a given func-

tional, i.e.

Kyn(t) = hn(t1,n) (3.16)

The K-operator has some interesting properties that are useful for the kernel/GFRF

extraction process. The derivations are relatively simple and can be carried out directly

from inspection of the functional forms (3.15).

K-Property 1. Let yn(t) and zn(t) be functionals of the same order with kernels

respectively described as hn(t1,n) and gn(t1,n). Then, for any constants c1 and c2:

K(c1 yn(t) + c2 zn(t)) = c1 hn(t1,n) + c2 gn(t1,n) (3.17)
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K-Property 2. Let yn(t) and zm(t) be functionals of order n and m, respectively,

with kernels respectively described as hn(t1,n) and gm(t1,m), then

K(yn(t) zm(t)) = hn(t1,n)gm(tn+1,n+m) (3.18)

This is proven from the functional definition and rearrangement of variables. Notice

that the order with which the arguments t1,n+m are organized is arbitrary. Therefore,

it is also acceptable to write (3.18) as:

K(yn(t) zm(t)) = hn(tm+1,n+m)gm(t1,m) (3.19)

K-Property 3. Let A be a linear time-shifting operator. Then:

K(Ayn(t)) = Ahn(t1,n) =
L

∑
l=1
al hn(t1,n − l) (3.20)

In addition:

Z{K(Ayn(t))} = A (∏ni=1 zi) Hn(z1,n) (3.21)

which follows directly from (3.6).

3.3 A new algorithm for the determination of the GFRFs

The properties of operators D and K from Sections 3.2.2 and 3.2.3 form the fundamen-

tal basis for obtaining the GFRFs from an arbitrary polynomial NARX model. The

polynomial formulation is important to this context, because it is closely related to the

polynomial nature of the functional series approach. Moreover, it is also important to

mention that the new GFRF extraction algorithm can be applied to different NARX

models (e.g. neural networks), but, in this case, the model needs to be reduced to the

polynomial form via, for example, Taylor series approximation of its nonlinearities, in

order to apply the methodology proposed in this chapter.

The principles of the procedure consist of two fundamental steps:
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1. The Volterra series formulation is substituted into the model equation and the

terms of the same order in the right and left-hand side of the model equation

are identified using the D-operator and equated for obtaining the Associated

Linear Equations;

2. The GFRFs are extracted directly from the ALEs, using the K-operator and

K-Properties 1-3

Consider the polynomial NARX model (Leontaritis and Billings, 1985):

Ay(t) = Bu(t) +
M

∑
m=1

cm
L

∏
l=1
y(t − l)p(m,l)u(t − l)q(m,l) (3.22)

where A and B are linear time-shifting operators so that:

Ay(t) = y(t) +
L

∑
l=1
al y(t − l) (3.23)

Bu(t) =
L

∑
l=1
bl u(t − l) (3.24)

and p(m, l) and q(m, l) are nonnegative integers such that

L

∑
l=1
p(m, l) + q(m, l) ≥ 2 (3.25)

It is worth mentioning that model (3.22) is slightly different from the usual formula-

tion found in (Leontaritis and Billings, 1985) and other references. The main differences

are that the linear part of model (3.22) is isolated from the nonlinear terms, and non-

linearities are described in terms of parameters p(m, l) and q(m, l), which makes the

notation of terms containing powers more explicit.

3.3.1 Determination of the ALEs

Proceeding with step 1 above requires dealing with several multinomial terms that need

to be expanded before identifying terms of a specific order, for example n. One issue,

however, is that these expansions generate terms of many different orders, including
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some that will not be used in any circumstances, constituting time-consuming and

unnecessary calculations. In order to avoid that, a more efficient procedure for finding

the ALEs is introduced as Proposition 1.

Proposition 1. The n-th order ALE of system (3.22) is described as

Ayn(t) = Bu(t) n = 1 (3.26)

Ayn(t) =
M

∑
m=1

cmψm(t) ∑
Sm

ρm φm(t) n ≥ 2 (3.27)

where

ρm = ∏Ll=1 p(m, l) !

∏Ll=1∏
Nm
k=1 r(m, l, k) !

(3.28)

ψm(t) =
L

∏
l=1
u(t − l)q(m,l) (3.29)

φm(t) =
L

∏
l=1

Nm

∏
k=1

yk(t − l)r(m,l,k) (3.30)

Nm = n −
L

∑
l=1
q(m, l) + p(m, l) + 1 (3.31)

and Sm is the set of all nonnegative integer solutions of the linear Diophantine system

Nm

∑
k=1

r(m, l, k) = p(m, l) 1 ≤ l ≤ L (3.32)

L

∑
l=1

Nm

∑
k=1

(k − 1) r(m, l, k) = Nm − 1 (3.33)

Proof. Rewrite system (3.22) as

Ay(t) = Bu(t) +
M

∑
m=1

cmFm(t) (3.34)

Fm(t) =
L

∏
l=1
y(t − l)p(m,l) u(t − l)q(m,l) (3.35)

The output can be described as a Volterra series:

y(t) =
∞
∑
k=1

yk(t) (3.36)
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Substituting (3.36) into (3.34)-(3.35), yields:

∞
∑
k=1

Ayk(t) = Bu(t) +
M

∑
m=1

cm Fm(t) (3.37)

where

Fm(t) = ψm(t)αm(t) (3.38)

ψm(t) =
L

∏
l=1
u(t − l)q(m,l) (3.39)

αm(t) =
L

∏
l=1

(
∞
∑
k=1

yk(t))
p(m,l)

(3.40)

In order to determine the n-th order ALE, it is necessary to expand (3.38), identify

all n-th order terms and equate them to those of the same order on the left-hand side

of (3.37). The n-th order terms on the left-hand side can be found by noticing that the

linear operator A does not change the order of any functional component. Therefore,

the n-th order component on the left-hand side of (3.37) is Ayn(t).

On the other hand, the products in (3.38) produce an expansion in terms of each

yk(t), spanning functionals of many different orders. The order of the first term, ψm(t)

can be found using the D-operator and its properties, yielding:

D [ψm(t)] =
L

∑
l=1
q(m, l) (3.41)

Therefore, the n-th order terms in (3.38) can be found by identifying terms of αm(t)

of order

n −
L

∑
l=1
q(m, l) (3.42)

For computing these terms, consider the multinomial expansion with respect to

yk(t), k ≥ 1:

(
∞
∑
k=1

yk(t − l))
p(m,l)

= ∑β(m, l)
∞
∏
k=1

yk(t − l)r(m,l,k) (3.43)
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where

β(m, l) = p(m, l)!
∏∞
k=1 r(m, l, k)!

(3.44)

The sum (3.43) is computed over all nonnegative integers r(m, l, k) that satisfy

∞
∑
k=1

r(m, l, k) = p(m, l)

Using (3.43), αm(t) can be expanded as:

αm(t) = ∑
L

∏
l=1
β(m, l)

∞
∏
k=1

yk(t)r(m,l,k) (3.45)

The order of any term in (3.45) can be described as:

D[
L

∏
l=1
β(m, l)

∞
∏
k=1

yk(t)r(m,l,k)] =
L

∑
l=1

∞
∑
k=1

k r(m, l, k) (3.46)

Therefore, for finding terms of the target order (3.42), it is necessary to find all integers

r(m, l, k) that satisfy:

∞
∑
k=1

r(m, l, k) = p(m, l) 1 ≤ l ≤ L (3.47)

L

∑
l=1

∞
∑
k=1

k r(m, l, k) = n −
L

∑
l=1
q(m, l) (3.48)

System (3.47)-(3.48) is known as a system of Diophantine equations (Weisstein,

2014a), because all unknowns are integers. The particular form of these equations

allow them to be further simplified by subtracting (3.48) from (3.47), for every possible

l, yielding:

L

∑
l=1

∞
∑
k=2

(k − 1) r(m, l, k) = n −
L

∑
l=1
q(m, l) + p(m, l) (3.49)

Notice that, since all r(m, l, k) are nonnegative, the main index k must satisfy:

k − 1 ≤ n −
L

∑
l=1
q(m, l) + p(m, l)

otherwise, it would not be possible to balance (3.49). Therefore,

Nm = n −
L

∑
l=1
q(m, l) + p(m, l) + 1 (3.50)
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can be used as an upper limit to all summations and products in k and system (3.47)-

(3.48) can be rewritten as (3.32)-(3.33).

Let Sm denote the set of all nonnegative solutions of (3.32)-(3.33). By taking only

the n-th order terms from the expansion of (3.38), the n-th order ALE can be written

as:

Ayn(t) =
M

∑
m=1

cmψm(t) ∑
Sm

L

∏
l=1
β(m, l)

Nm

∏
k=1

yk(t − l)r(m,l,k)

Finally, by splitting the product with respect to l and defining

ρm =
L

∏
l=1
β(m, l) = ∏Ll=1 p(m, l)!

∏Ll=1∏
Nm
k=1 r(m, l, k)!

φm(t) =
L

∏
l=1

Nm

∏
k=1

yk(t − l)r(m,l,k)

we obtain the final result, Equation (3.27).

3.3.2 Derivation of the GFRFs from the ALEs

It is now possible to continue with step 2 of the procedure, where the properties of

the K-operator can be applied to the determined ALEs for effectively obtaining the

recursive expressions for the GFRFs. This is summarized in Proposition 2

Proposition 2. The n-th order GFRF of model (3.22) is described as:

Hn(z1) =
B(z1)
A(z1)

n = 1 (3.51)

Hn(z1,n) =
1

A (∏ni=1 zi)

M

∑
m=1

cmZ{Kψm(t)} ∑
Sm

ρmZ{Kφm(t)} n ≥ 2 (3.52)
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where

Z{Kψm(t)} =
L

∏
l=1

q(m,l)+w−1

∏
i=w

z−li (3.53)

Z{Kφm(t)} =
L

∏
l=1

Nm

∏
k=1

r(m,l,k)
∏
i=1

Hk(zs,s+k−1)
s+k−1

∏
α=s

z−lα (3.54)

w = 1 +
l−1

∑
i1=1

q(m, i1) (3.55)

s = 1 +
L

∑
l=1
q(m, l) +

l

∑
i1=1

k−1

∑
i2=1

i2 r(m, i1, i2) (3.56)

and ρm and Nm are respectively described as (3.28) and (3.31), and Sm is the set of

all nonnegative integer solutions of the linear Diophantine system described as (3.32)-

(3.33).

Proof. The GFRFs can be found directly from the determined ALEs (3.26)-(3.27) by

using the properties described in Section 3.2.3 for obtaining the kernels and their cor-

responding transforms.

The case n = 1 is relatively simple, since only linear operators are involved. The

result is the system linear transfer function, which is derived from (3.26) as:

H1(z1) =
B(z1)
A(z1)

(3.57)

Applying K to (3.27) and using K-properties 1 and 2 yields:

K(Ayn(t)) =
M

∑
m=1

cmK{ψm(t)} ∑
Sm

ρmKφm(t) (3.58)

Moreover, taking the Z transform of (3.58) and using property 3, yields:

A (∏ni=1 zi)Hn(z1,n) =
M

∑
m=1

cmZ{Kψm(t)} ∑
Sm

ρmZ{Kφm(t)} (3.59)

In order to proceed, the kernel of ψm(t) will be computed first. For an arbitrary

input u(t), it is possible to write:

u(t) = ∑
v

δ(t − v)u(v) (3.60)
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where δ(t) is the unit impulse sequence:

δ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 t = 0

0 t ≠ 0
(3.61)

In this case:

Ku(t) = δ(t1) (3.62)

Since the term ψm(t), equation (3.29), can be written as:

ψm(t) =
L

∏
l=1
u(t − l)q(m,l) (3.63)

=
L

∏
l=1

q(m,l)
∏
i=1

u(t − l) (3.64)

using K-property 2 and (3.60), yields:

Kψm(t) =
L

∏
l=1

q(m,l)+w−1

∏
i=w

δ(ti − l) (3.65)

where

w = 1 +
l−1

∑
i1=1

q(m, i1) (3.66)

Notice that w depends on l and i, which is not explicitly shown for simplifying the

notation. This auxiliary index was introduced for better organising the arguments ti.

Finally, taking the Z transform of (3.65) yields:

Z{Kψm(t)} =
L

∏
l=1

q(m,l)+w−1

∏
i=w

z−li (3.67)

Using the same procedure for φm(t) (3.30) yields:

φm(t) =
L

∏
l=1

Nm

∏
k=1

yk(t − l)r(m,l,k) (3.68)

=
L

∏
l=1

Nm

∏
k=1

r(m,l,k)
∏
i=1

yk(t − l) (3.69)

Kφm(t) =
L

∏
l=1

Nm

∏
k=1

r(m,l,k)
∏
i=1

hk(ts,s+k−1 − l) (3.70)
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where:

s = 1 +
L

∑
l=1
q(m, l) +

l

∑
i1=1

k−1

∑
i2=1

i2 r(m, i1, i2) (3.71)

which, again, is an auxiliary index that has been introduced for better organising the

arguments. The Z transform of (3.70) can be obtained as:

Z{Kφm(t)} =
L

∏
l=1

Nm

∏
k=1

r(m,l,k)
∏
i=1

Hk(zs,s+k−1)
s+k−1

∏
α=s

z−lα (3.72)

Therefore, the n-th order GFRF can be obtained as:

Hn(z1,n) =
1

A (∏ni=1 zi)

M

∑
m=1

cmZ{Kψm(t)} ∑
Sm

ρmZ{Kφm(t)} (3.73)

where Z{Kψm(t)} and Z{Kφm(t)} are respectively described as (3.67) and (3.72).

Expression (3.73) is relatively complex, but provides a straightforward way for re-

cursively computing the n-th order GFRF. Notice that the formulation in terms of the

Fourier transform can be easily obtained by letting zi = ejωi , i ∈ {1, . . . , n}. In addi-

tion, results for continuous-time systems can also be obtained using basically the same

procedure, as this formulation does not change the properties of the D-operator.

In comparison to the traditional probing method described in section 2.4.3, the

new GFRF extraction algorithm presents some significant advantages. In the probing

method, the recursive expression for the n-th order GFRF is obtained via recursive

symbolic calculations described by (2.81)-(2.82), which are usually slow and provide

the results in a form that often requires additional algebraic simplifications. The new

algorithm, however, carries out the same task by converting the solutions of the Dio-

phantine system (3.32)-(3.33) directly into algebraic expressions. This is more efficient

because the solutions can be obtained via a numerical procedure (discussed in section

3.3.4) or a simple table look-up scheme, which are usually faster than symbolic process-

ing. In addition, the rules used for converting the solutions into expressions provide
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algebraic forms which are already simplified, therefore, avoiding further unnecessary

computations.

3.3.3 Implementation algorithm

Propositions 1 and 2 form the basis of a new algorithm for determining the GFRFs from

a nonlinear system NARX representation. The new method is presented as Algorithm

1 in the following.

Algorithm 1 Computation of n-th order GFRF

1. For each nonlinear term (1 ≤m ≤M):

1.1. Solve the corresponding Diophantine system (3.32)-(3.33)

1.2. Convert each solution found in step 1.1 into an algebraic term as

follows:

1.2.1. Compute ρm using (3.28)

1.2.2. Compute Z{Kψm(t)} using (3.53), (3.55)

1.2.3. Compute Z{Kφm(t)} using (3.54), (3.56)

1.2.4. Compute the product of all terms found in steps 1.2.1 to 1.2.3

and multiply the result by cm

1.3. Sum up all terms found in step 1.2

2. Sum up all terms found in step 1

3. Divide the result of step 2 by A(∏ni=1 zi)

Notice that this implementation does not require any symbolical calculations, al-

though the algorithm can be adapted for Computer Algebra Systems for obtaining the

result in this format.
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3.3.4 Solution of the Diophantine system

The most important step for obtaining the system ALEs is to solve the Diophantine

systems associated with each nonlinear term. The core of each Diophantine system

is the linear Diophantine equation (3.33), from which variables r(m, l,1) have been

eliminated. Solutions need to be found from this single equation, as it is not possible

to eliminate any further variables.

The solution of (3.33) can be found using the Euclidean algorithm (Weisstein,

2014b) for computing the greatest common divisor (GCD), which is an important

method for solving linear Diophantine equations in general. However, its implementa-

tion is usually found for a reduced number of positive variables, which requires some

modifications for the current context. On the other hand, the number of solutions

of (3.33) is always finite, which can be explored for a more computationally efficient

procedure.

The main idea is based on a more fundamental problem described as:

x + y = p (3.74)

where x ≥ 0, y ≥ 0 and p are integers. Equation (3.74) is commonly known as a partition

equation (Weisstein, 2014c). Suppose that solutions of (3.74) are represented as a two

column matrix S, where the first column represents all solution values for x and the

second column represents all solution values for y. Let ∅ denote an empty matrix,

0 = [ 0 0 ] and:

Qp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 p

1 p − 1

2 p − 2

⋮ ⋮

p 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.75)

Then, the solution matrix S of (3.74) can be found as follows:
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� If p < 0, then S = ∅

� If p = 0, then S = 0

� If p > 0, then S =Qp

Now, consider a more general partition equation:

n

∑
k=1

xk = p (3.76)

where both xk ≥ 0 and p are integers. The solution of this problem can be found by

breaking (3.76) into smaller basic partitions of form (3.74) and performing an appro-

priate combination of the solutions. To illustrate this, consider the following partition

problem:

x1 + x2 + x3 = 2 (3.77)

which can be rewritten as:

x1 + y = 2 (3.78)

x2 + x3 = y (3.79)

The solutions of (3.78) are found as:

S1 =Q2 (3.80)

Each element of the second column of (3.80) produces a different partition equation

derived from (3.79), which are described as:

x2 + x3 = 2 (3.81)

x2 + x3 = 1 (3.82)

x2 + x3 = 0 (3.83)
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The solution matrices of (3.81), (3.82) and (3.83) are respectively found as:

S21 =Q2 (x1 = 0) (3.84)

S22 =Q1 (x1 = 1) (3.85)

S23 = 0 (x1 = 2) (3.86)

Combining the solutions yield:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2

0 1 1

0 2 0

1 0 1

1 1 0

2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.87)

Notice that the general partition problem (3.76) is completely characterised by p

and n, therefore, solutions can be pre-computed and stored for future reference, using

a table look-up scheme.

In order to apply these results for solving the Diophantine system (3.32)-(3.33),

rewrite (3.33) as:

L

∑
l=1
Xl = Nm − 1 (3.88)

where

Nm

∑
k=2

(k − 1) r(m, l, k) =Xl (3.89)

The left-hand side of (3.89) can also be written as partition equations, using the

following steps:

Nm

∑
k=2

(k − 1) r(m, l, k) = r(m, l,2) + 2r(m, l,3) + . . . + (Nm − 1)r(m, l,Nm) (3.90)

=
Nm

∑
k=2

r(m, l, k) +
Nm

∑
k=3

r(m, l, k) + . . . + r(m, l,Nm) (3.91)

=
Nm

∑
i=2

Yl,i (3.92)
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where

Yl,i =
Nm

∑
k=i

r(m, l, k) (3.93)

Equation (3.93) defines a linear system with respect to r(m, l, k), described as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

0 1 . . . 1

⋮ ⋮ . . . ⋮

0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r(m, l,2)

r(m, l,3)

⋮

r(m, l,Nm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yl,2

Yl,3

⋮

Yl,Nm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.94)

whose solution is described as:

r(m, l, k) = Yl,k−1 − Yl,k 2 ≤ k ≤ Nm (3.95)

This allows obtaining the values of r(m, l, k) by first solving the partition equations

(3.89)-(3.93) and using (3.95) for recovering the main variables. The remaining original

unknowns r(m, l,1) are found from (3.32) as:

r(m, l,1) = p(m, l) −
Nm

∑
k=2

r(m, l, k) 1 ≤ l ≤ L (3.96)

Therefore, for a fixed m, 1 ≤ m ≤M , the procedure can summarised as Algorithm

2 below:

This procedure is very efficient as the computations only require logical and matrix

operations. For this reason, obtaining the ALEs for lower order cases (n ≤ 5) is relatively

fast, while higher order cases (n > 5) can demand a larger computational load, but

mainly because the number of solutions of the partition equations tend to increase at

combinatorial rates.

This result is important because it allows writing down the n-th order ALE using

the solutions of the Diophantine system instead of computing the symbolical operations

involved in the variational approach. Moreover, the Diophantine system approach

allows finding only terms of order n, avoiding unnecessary calculations that arise if the

symbolical approach is used.
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Algorithm 2 Determination of the solutions of (3.32)-(3.33)

1. Solve the partition equation with respect to Xl:

L

∑
l=1
Xl = Nm − 1 (3.97)

2. For each Xl found in step 1, solve the partition equation with respect to Yl,i:

Nm

∑
i=2

Yl,i =Xl (3.98)

3. For each Yl,i obtained in step 2, find r(m, l, k) as:

r(m, l, k) = Yl,k−1 − Yl,k 2 ≤ k ≤ Nm, 1 ≤ l ≤ L (3.99)

4. Find r(m, l,1) as:

r(m, l,1) = p(m, l) −
Nm

∑
k=2

r(m, l, k) 1 ≤ l ≤ L (3.100)

3.4 Example

For illustrating Algorithm 1, an example using a simple polynomial NARX model with

a few nonlinear terms will be used. The objective is to extract the GFRFs of order up

to three.

Consider model (3.34)-(3.35) with L = 2, M = 3, arbitrary c1, c2, c3 and:

A(z) = 1 − a2 z
−2 (3.101)

B(z) = b1 z−1 (3.102)

F1(t) = u(t − 2)2 (3.103)

F2(t) = y(t − 1)u(t − 2) (3.104)

F3(t) = y(t − 1)3 (3.105)
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The nonlinear terms F1(t), F2(t) and F3(t) are described by the parameters:

p(1,1) = 0 p(1,2) = 0 q(1,1) = 0 q(1,2) = 2 (3.106)

p(2,1) = 1 p(2,2) = 0 q(2,1) = 1 q(2,2) = 0 (3.107)

p(3,1) = 3 p(3,2) = 0 q(3,1) = 0 q(3,2) = 0 (3.108)

for which:

L

∑
l=1
p(1, l) + q(1, l) = 2 (3.109)

L

∑
l=1
p(2, l) + q(2, l) = 2 (3.110)

L

∑
l=1
p(3, l) + q(3, l) = 3 (3.111)

The first order GFRF is formed only by the linear part of the model, which is readily

found as:

H1(z1) =
B(z1)
A(z1)

= b1 z
−1
1

1 − a2 z−2
1

(3.112)

For n = 2:

N1 = 2 − 2 + 1 = 1 (3.113)

N2 = 2 − 2 + 1 = 1 (3.114)

N3 = 2 − 3 + 1 = 0 (3.115)

Therefore, only the first and second nonlinear terms contribute for the second order

GFRF. The Diophantine systems associated to these nonlinear terms are respectively
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described as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r(1,1,1) = 0

r(1,1,2) = 0

0 = 0

(3.116)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r(2,1,1) = 1

r(2,1,2) = 0

0 = 0

(3.117)

whose solutions are already explicitly described. Using (3.53)-(3.56), these solutions

are converted as follows:

Z{Kψ1(t)} = z−2
1 z−2

2 (3.118)

Z{Kφ1(t)} = 1 (3.119)

Z{Kψ2(t)} = z−2
1 (3.120)

Z{Kφ2(t)} =H1(z2) z−1
2 (3.121)

Therefore:

H2(z1, z2) =
c1 z

−2
1 z−2

2 + c2 z
−2
1 H1(z2) z−1

2

A(z1 z2)
(3.122)

For n = 3:

N1 = 3 − 2 + 1 = 2 (3.123)

N2 = 3 − 2 + 1 = 2 (3.124)

N3 = 3 − 3 + 1 = 1 (3.125)
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The Diophantine systems associated to the nonlinear terms are:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r(1,1,1) + r(1,1,2) = 0

r(1,2,1) + r(1,2,2) = 0

r(1,1,2) + r(1,2,2) = 1

(3.126)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r(2,1,1) + r(2,1,2) = 1

r(2,2,1) + r(2,2,2) = 0

r(2,1,2) + r(2,2,2) = 1

(3.127)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r(3,1,1) = 3

r(3,1,1) = 0

0 = 0

(3.128)

These systems contain a small number of variables and can be solved by inspection.

System (3.126) is clearly inconsistent, as the first two equations imply that all variables

should be zero, while the third equation suggests that at least one of them should be 1.

This means that the first nonlinear term does not contribute to the third order GFRF.

This is reasonable, as F1(t) is a pure input nonlinearity of degree 2, therefore, the only

GFRF that can be affected by it is the second order one.

System (3.127) admits only one solution, which is described as:

r(2,1,1) = 0, r(2,1,2) = 1, r(2,2,1) = 0, r(2,2,2) = 0 (3.129)

Lastly, system (3.128) does not need to be solved, as the equations are consistent

and explicitly describe the solutions.

The final step is converting the available solutions into algebraic terms. Solution

(3.129) is converted as:

Z{Kψ1(t)} = z−2
1 (3.130)

Z{Kφ1(t)} =H2(z2, z3) (3.131)
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while the term associated to system (3.128) is described as:

Z{Kψ1(t)} = 1 (3.132)

Z{Kφ1(t)} =H1(z1) z−1
1 H1(z2) z−1

2 H1(z3) z−1
3 (3.133)

Therefore, the 3-rd order GFRF can be obtained as:

H3(z1, z2, z3) =
c2 z

−2
1 H2(z2, z3) + c3H1(z1) z−1

1 H1(z2) z−1
2 H1(z3) z−1

3

A(z1 z2 z3)
(3.134)

Although the example was restricted to the 3-rd order case, the philosophy for

higher order cases is the same, where Diophantine systems are built and solved and

their solutions are converted into algebraic expressions. Notice that this systematic

procedure is very important for more realistic models, because practical data usually

yields polynomial models with several terms, which can often be more complicated

than those explored in the example. The methodology illustrated in this section can

be equally applied in these cases, providing an efficient manner of extracting GFRFs

in practical situations. For the purposes of this work and future research, the full

procedure has been implemented in MATLAB functions, allowing a more automatic

extraction of GFRFs of nonlinear systems.

3.5 Conclusions

This chapter is dedicated to report a new result regarding extraction of the GFRFs of

nonlinear systems from a NARX model. This is important in practical situations in

which a polynomial NARX model is identified from the input-output data of a nonlinear

system and system GFRFs are to be determined from the identified NARX model. The

new algorithm allows a very systematic way to deal with this situation which is more

efficient than other approaches such as the classical probing method and the parametric

characteristics approach (Jing et al., 2008). The efficiency is mainly due to the core

calculations being based on a numerical procedure, in which the main computational
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efforts are on solving a set of linear Diophantine equations. Because the form of these

equations depends on the structure of the model nonlinear terms, the solutions, in

principle, need only to be computed once for being stored and used in a table look-up

scheme. The GFRFs are then constructed via algebraic expressions that directly use

the Diophantine solutions for building the relevant algebraic expressions.

These results are useful for the general application of frequency domain methods

in nonlinear systems, including fault diagnosis problems in which the fault features

are based on the GFRF representation (Tang et al., 2010). In addition, the results

also provide an important basis for the development of new numerical and analytical

methods for computation of NOFRFs of nonlinear systems. This will be the focus of

the studies reported in the next chapter.
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New methods for computation of

NOFRFs of nonlinear systems

4.1 Introduction

Characterising frequency domain behaviour of nonlinear systems via the Volterra se-

ries approach is a powerful strategy for applications such as fault diagnosis and system

analysis and design. The algorithm presented in Chapter 4 allows a systematic and

efficient extraction of the GFRFs, the main frequency domain characteristics of non-

linear systems. However, this does not eliminate the difficulties of analysis and feature

extraction from these functions, which are inherent from their multidimensional nature.

As discussed in Chapter 3, the issues with the multidimensional frequency spaces

analysis can be avoided by using alternative FRF concepts, such as the NOFRFs.

The computation of these functions, however, need to be significantly improved as

the currently available algorithm can suffer from numerical problems and requires the

maximum order of the functional series to be specified in advance (Lang and Billings,

2005). Moreover, since a fixed probing input must be chosen a priori for carrying out

the analysis, a natural question that arises is how this signal can be chosen so that
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the resulting NOFRFs can exhibit appropriate features for achieving a specific goal, for

example, clarifying the differences and similarities between a group of faulty conditions.

In this chapter, we propose a new procedure for computing the n-th order NOFRF

directly from a polynomial NARX model, which does not suffer from numerical issues

and does not require the truncation order to be specified in advance. The basic idea

is to decouple the Volterra series components yn(t) from the output y(t), so that its

Fourier transform Yn(ejω) can be readily computed. Then, Gn(ejω) can be obtained

as the ratio between Yn(ejω), and the n-th order input spectrum Un(ejω). The general

idea for computing all NOFRFs up to order n can be described as follows:

1. Obtain the system ALEs from the polynomial NARX model up to order n

2. For a fixed input, solve the ALEs for all functional components yi(t), where

i ∈ {1, . . . , n}

3. Obtain the frequency transforms of the functional components Yi(z) = Z{yi(t)}

and of the generalised input spectrum Ui(z) = Z{u(t)i}, where i ∈ {1, . . . , n}

4. Compute the NOFRFs as the ratios Gi(z) = Yi(z)/Ui(z), where z = ejω

The efficiency of this new procedure is due to Proposition 1 from Chapter 3, which

allows the extraction of the Associated Linear Equations (ALEs) based from the system

NARX model, without requiring specifying the truncation order in advance. Once built,

the ALEs can be numerically solved for any probing input for yielding discrete-time

sequences yi(t), which can then be used in conjunction with the DFT computations for

obtaining the n-th order NOFRF as the ratio described above.

Throughout this chapter, we shall also demonstrate that the components Yi(z) can

be obtained in analytical form. Although this is a more laborious procedure, the result

can offer some potential advantages as the output can be obtained as a function of

varying parameters, which can be useful, for example, for tuning the probing input

according to diagnosis goals.
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The details of each step of the procedure above will be discussed throughout the

remaining sections of this chapter.

4.2 Derivation of ALEs from a NARX model

The extraction of the ALEs from a general polynomial NARX model was introduced in

Section 3.3.1. The advantages of this result, however, go beyond the purpose of deriving

the GFRFs, as the ALEs can also be used for obtaining the functional components.

This is the basis of the new frequency analysis framework.

Consider again the NARX model:

Ay(t) = Bu(t) +
M

∑
m=1

cm
L

∏
l=1
y(t − l)p(m,l)u(t − l)q(m,l) (4.1)

where A and B are linear time-shifting operators so that:

Ay(t) = y(t) +
L

∑
l=1
al y(t − l) (4.2)

Bu(t) =
L

∑
l=1
bl u(t − l) (4.3)

and p(m, l) and q(m, l) are nonnegative integers such that

L

∑
l=1
p(m, l) + q(m, l) ≥ 2 (4.4)

According to the results of Section 3.3.1, the ALEs of model (4.1) are described as:

Ayn(t) = Bu(t) n = 1 (4.5)

Ayn(t) =
M

∑
m=1

cmψm(t) ∑
Sm

ρm φm(t) n ≥ 2 (4.6)
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where

ρm = ∏Ll=1 p(m, l) !

∏Ll=1∏
Nm
j=k r(m, l, k) !

(4.7)

ψm(t) =
L

∏
l=1
u(t − l)q(m,l) (4.8)

φm(t) =
L

∏
l=1

Nm

∏
k=1

yk(t − l)r(m,l,k) (4.9)

Nm = n −
L

∑
l=1
q(m, l) + p(m, l) + 1 (4.10)

and Sm is the set of all nonnegative integer solutions of the linear Diophantine system

Nm

∑
k=1

r(m, l, k) = p(m, l) 1 ≤ l ≤ L (4.11)

L

∑
l=1

Nm

∑
k=1

(k − 1) r(m, l, k) = Nm − 1 (4.12)

The most important procedure for writing down the n-th order ALE for n > 1

(n = 1 is trivial) is to write down the right-hand side, since its exact form depends on

the solution of the associated Diophantine system built from the model parameters. In

order to write down the right-hand side, Algorithm 3 can be followed, for each nonlinear

term of model (4.1), i.e. m ∈ {1, . . . ,M}

This result is important because it allows writing down the n-th order ALE using

the solutions of the Diophantine system instead of computing the symbolical operations

involved in the variational approach. Moreover, the Diophantine system approach

allows finding only terms of order n, avoiding unnecessary calculations that arise if the

symbolical approach is used. Currently, ALEs are obtained via an algorithm based on

a variational approach and symbolical calculations (Feijoo et al., 2006, 2005), similar

to those carried out in the probing method.
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Algorithm 3 Derivation of the n-th order ALE

1. For 1 ≤m ≤M , compute the right-hand side terms as follows:

1.1. Build and solve the Diophantine system (4.11)-(4.12)

1.2. Convert each solution found in step 1 into an algebraic term as

follows:

1.2.1. Compute ρm using (4.7)

1.2.2. Compute ψm(t) using (4.8)

1.2.3. Compute φm(t) using (4.9)

1.2.4. Compute the product: cm ρmψm(t)φm(t)

1.3. Sum up all terms found in step 1.2

2. Sum up all terms found in step 1

4.3 Solution of the ALEs

Once the ALEs have been obtained, they can be solved for obtaining each of the

functional components, yn(t). This is possible because of the recursive and linear

nature of the equations, which is similar to that of a triangular system of linear algebraic

equations. The first order ALE is very simple and purely linear, so that, for a particular

input, y1(t) can be found by solving (4.5) using well established linear techniques. For

the n-th order ALE, where n > 1, the procedure is slightly more complicated, but can

be generally described as two main steps:

1. Compute the signal that corresponds to the right-hand side

2. Obtain yn(t) as the output of the filter whose transfer function is described

as 1/A(z) and whose input is the signal computed in step 1
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This general procedure can be carried out in two different ways, namely a numerical

or an analytical approach, each with their own advantages and disadvantages, which

are discussed in further details below.

4.3.1 Numerical approach

The numerical approach consists of finding the functional components yn(t) and rep-

resenting those as a finite sequence of samples, for instance, for t ∈ {0,1, . . . ,N}. Typi-

cally, these finite sequences are represented in a vector format, where the first element

represents the initial sample yn(0) and and last entry represents the sample of yn(t) at

the final time, denoted as yn(N). Therefore, for the numerical approach, an equivalence

between the signal yn(t) and a vector yn will be established, where

yn = [ yn(0) yn(1) . . . yn(N) ]
T

(4.13)

which, in essence, constitutes a nonparametric time-domain representation of yn(t).

In order to numerically solve the ALEs using the notation adopted above, a general

two-step procedure can be followed. The first step consists of computing the right-hand

side of each ALE. This is feasible because, the equations are solved for ascending n (the

order of the functional component) and the right-hand sides only depend on the input

and components of order less than n. When carrying out this computation, four basic

operations frequently appear:

� Time delay of a sequence: x(t − l), l > 0

� Summation between two sequences: x(t) +w(t)

� Multiplication of a sequence by a constant: cx(t)

� Multiplication between two sequences: x(t)w(t)

In terms of the vector notation, these operations can easily be implemented. To this

end, let the vector representations of sequences x(t) and w(t) respectively be denoted
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as x and w, where:

x = [ x(0) x(1) . . . x(N) ]
T

(4.14)

w = [ w(0) w(1) . . . w(N) ]
T

(4.15)

The representative vector of a sequence delayed by l samples can be obtained by

simply inserting zeros to first l entries and shifting the original N − l+ 1 samples to the

left. In other words, the vector representation of x(t − l) is described as:

xl = [ 0 . . . 0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
l

x(0) x(1) . . . x(N − l) ]
T

(4.16)

The summation between sequences and multiplication by a constant can be done

as usual vector operations from Linear Algebra. Therefore, by letting s represent the

sequence s(t) = x(t) +w(t) and z represent z(t) = cx(t), then:

s = x +w = [ x(0) +w(0) x(1) +w(1) . . . x(N) +w(N) ]
T

(4.17)

z = cx = [ cx(0) cx(1) . . . c x(N) ]
T

(4.18)

The last operation, the product between two sequences, can be described in vector

terms as the element-wise product, also known as the Hadamard product (Styan, 1973).

Therefore, by letting p be the vector notation of p(t) = x(t)w(t):

p = x ○w = [ x(0)w(0) x(1)w(1) . . . x(N)w(N) ]
T

(4.19)

The second and final step of the numerical approach consists of obtaining the vec-

tor yn by linear-filtering the right-hand side signal (obtained from the previous step)

by a system described by the transfer function 1/A(z). This can be easily done via

simulation of the filter’s difference equation using simple recurrences.

The vector notation allows the computations to run relatively faster, the resulting

representation of the functional components is in the time-domain, so that the computa-

tion of frequency-domain characteristics requires computing the Discrete Time Fourier
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Transform (DTFT) of the sequences using, for example, the Fast Fourier Transform

(FFT) algorithm. However, even after this step, the representations are still nonpara-

metric, which prevents a direct inspection of the influence of varying parameters over

the components or the overall response. This can be circumvented by computing the

responses for some sample values of the parameter and using an interpolation technique

for better understanding the effects of these changes, but at the computational cost of

solving extracting and solving the ALEs repeatedly. As it will be demonstrated in the

next section, these problems can be avoided by using an analytical approach.

4.3.2 Analytical approach

Under some circumstances, it is possible to obtain the exact analytical form of the func-

tional components, both in the time and the frequency domain. This is more restrictive

though, as it requires additional computational efforts and can only be carried out for

some types of inputs. However, there are advantages for computing the components in

this form, as some parameters of interest, such as input poles or model coefficients, can

be left as a varying parameter so their influence over the response can be studied for

design tasks.

The circumstances in which this is possible are those where the input can be de-

scribed as a linear combination of basic functions, usually shifted in time. The basic

functions are the unit impulse:

u(t) = u0(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 t ≠ 0

1 t = 0
(4.20)

and the generalised damped sinusoidal:

u(t) = tα βt cos(Ω t + θ)u1(t) (4.21)
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where ∣β∣ < 1, α ≥ 0, α ∈ Z and u1(t) is the unit step function:

u1(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 t ≥ 0

0 t < 0
(4.22)

Any linear combination of these basic functions results in frequency domain repre-

sentation described by a rational function. This is important, as the analytical approach

consists of solving frequency convolutions using the residue theorem, which is easier to

apply when all functions involved are rational.

The procedure for computing the components in an analytical form is based on

the direct application of the Z transform to the ALEs (4.5)-(4.6). The Z transform is

defined for a causal sequence x(t) as:

X(z) = Z{x(t)} =
∞
∑
t=0
x(t)z−t (4.23)

Notice that since only causal sequences are being considered, the specification of a

region of convergence is not necessary.

Consider again the ALEs (4.5)-(4.6). Applying Z and its linearity and modulation

properties yields:

A(z)Y1(z) = B(z)U(z) (4.24)

A(z)Yn(z) =
Mn

∑
m=1

cm ∑
Sm

ρmΨm(z) ⊗Φm(z) n ≥ 2 (4.25)
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where:

Ψm(z) = Z {
L

∏
l=1
u(t − l)q(m,l)} (4.26)

= z−1U(z) ⊗ ⋯ ⊗ z−1U(z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

q(m,1)

⋯ z−LU(z) ⊗⋯ ⊗ z−LU(z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

q(m,L)

(4.27)

=
L

⊗
l=1

q(m,l)
⊗
i=1

z−lU(z) (4.28)

Φm(z) = Z {
L

∏
l=1

Nm

∏
k=1

yk(t − l)r(m,l,k)} (4.29)

= z−1 Y1(z) ⊗ ⋯ ⊗ z−1 Y1(z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r(m,1,1)

⋯ z−L YNm(z) ⊗⋯ ⊗ z−L YNm(z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r(m,L,Nm)

(4.30)

=
L

⊗
l=1

Nm

⊗
k=1

r(m,l,k)
⊗
i=1

z−l Yk(z) (4.31)

and ⊗ denotes frequency convolution. Furthermore, the following notation has been

introduced:

n

⊗
i=1
Xi(z) =X1(z) ⊗ . . .⊗Xn(z) (4.32)

Notice that by carrying out the calculations in the frequency domain, the prod-

ucts on the right-hand side of ALEs for n > 1 become frequency convolutions. This

might seem to introduce unnecessary complications, since it is more intuitive to sim-

ply compute the products of the right-hand sides in the time-domain. However, there

are benefits in using a full frequency-domain approach, since obtaining Yn(z) requires

transforming the right-hand side back to the Z-domain and dividing it by 1/A(z). In

other words, the frequency convolution approach avoids alternating between time and

frequency domains.

In addition, it is always possible that, in practical computations, impulse or step

terms are introduced in lower order components. This requires additional simplifi-

cations when evaluating the right-hand sides in the time-domain. For example, the

product between two steps or two impulses need to be simplified into a single step or
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impulse, before the filtering by 1/A(z) is performed. The simplifications are relatively

less systematic than computing frequency convolutions, because, in the time-domain,

it is necessary to verify the nature of the functions and their respective delays. For ex-

ample, the product of two impulses can only be converted into a single impulse if their

delays are the same, otherwise, the result is always zero. These requirements are not

present when computing the right-hand sides using frequency convolutions, because all

delayed functions are represented in the same rational format, making the calculations

significantly more systematic than their time-domain counterpart.

The computation of Ψm(z) and Φm(z), can be carried out via a simple recursive

procedure. In order to demonstrate that, consider first the computation of ψm(t) in

the time-domain. This would require the following steps:

1. Set ψm(t) = 1, i.e. the neutral element of multiplication

2. For l ∈ {1, . . . , L} and i ∈ {1, . . . , q(m, l)} compute:

ψm(t) = ψm(t) ⋅ u(t − l)

The procedure is similar in the frequency domain, except that multiplication is

replaced by convolution, and the neutral element used in step 1 is replaced by the

equivalent transform of the neutral element in the time-domain, e.g. Z{1} = z/(z − 1),

which is equivalent to the step function. It is worth mentioning that a more natural

choice for this would be the impulse function in the frequency domain, whose time-

domain representation is a constant function for any t ∈ Z. However, because only

causal sequences are being considered, the step and a constant sequence are essentially

equivalent in this context. The step function is chosen as the neutral element because

its transform is rational, which is in agreement with the formulation of other signals

(input and functional components) considered for the analytical approach.

The procedures for computing Ψm(z) and Φm(z) can be summarised as Algorithms

4 and 5.
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Algorithm 4 Computation of Ψm(z)

1. Set Ψm(z) = z/(z − 1)

2. For l = {1, . . . , L} and i = {1, . . . , q(m, l)}, compute:

Ψm(z) = Ψm(z) ⊗ (z−lU(z))

Algorithm 5 Computation of Φm(z)

1. Set Φm(z) = z/(z − 1)

2. For l = {1, . . . , L}, k = {1, . . . , Nm} and i = {1, . . . , r(m, l, k)}, compute:

Φm(z) = Φm(z) ⊗ (z−l Yk(z))

Algorithms 4 and 5 form the core of the analytical approach, in which Yn(z) is

obtained in a closed form. By gathering together these procedures, we obtain Algorithm

6, which is the main guideline for analytically solving the ALEs in the frequency domain:

Although the background for computing the frequency domain representation of

the functionals has been established, there are some particular details regarding the

implementation that need to be discussed. This will be discussed in the next section.

4.3.3 Symbolic computational aspects of the analytical approach

The analytical approach presented in section 4.3.2 is a novel tool for analysing the

system behaviour, especially when one or more varying parameters are present in the

model equations. The main procedure for solving the ALEs requires frequency convo-

lutions, which must, however, be computed with care.

The frequency convolutions are mathematically described as complex integrals com-
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Algorithm 6 Computation of Yn(z)

1. For m = {1, . . . ,M}, compute Vm(z) as follows:

1.1. Compute Ψm(z) using Algorithm 4

1.2. Find the solution set Sm of the Diophantine system (4.11)-(4.12)

1.3. For each solution found in step 1.2:

1.3.1. Compute ρm from (4.7)

1.3.2. Compute Φm(z) using Algorithm 5

1.3.3. Compute the product ρmΦm(z)

1.4. Sum up all terms found in step 1.3.3

1.5. Using the results of steps 1.1 and 1.4, compute:

Vm(z) = cmΨm(z) ⊗∑
Sm

βmΦm(z)

2. Compute the sum of all terms found in step 1.5

3. Obtain Yn(z) by dividing the result of step 2 by A(z)

puted over closed contours. Because all transforms involved in these operations are as-

sumed to be rational functions, the evaluation of convolutions can be greatly simplified

via the Residue Theorem (Brown, 2009). However, a direct application of this result

can produce significant accuracy errors and large computational times, if the involved

transforms are used in their conventional rational form, i.e. quotients of polynomials.

This is mainly due to the computation of residues requiring symbolic operations that

rapidly grow in complexity as the order of denominators of the involved transforms

become larger, which is usually the case when dealing with ALEs. In this section, it

will be demonstrated how these problems can be avoided by adopting a partial fraction

representation of the operands.
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4.3.3.1 Frequency convolutions

Frequency convolutions are required for computing the right-hand sides of the ALEs,

in order to avoid alternating between the time and frequency domains. The main terms

that compose the ALEs right-hand sides are formed from recursive convolutions, which

are computed between two transformations at a time.

For two discrete-time signals represented as H(z) and G(z), the frequency convo-

lution between them, denoted as H(z) ⊗G(z), is defined as:

H(z) ⊗G(z) = 1

j2π
∮
C
v−1H(v)G(z/v)dv (4.33)

where C is a closed contour that encloses all poles of H(z) (Poularikas, 2000). When

both H(z) and G(z) are rational functions, the evaluation of (4.33) can be greatly

simplified using the Residue Theorem (Brown, 2009).

Residue Theorem: Let F ∶ C → C be analytic and C a closed contour in the

complex plane. Then:

∮
C
F (z)dz =

Nα

∑
i=1
RF (αi) (4.34)

where αi, i ∈ {1, . . . ,Nα}, represents poles of F (z) inside C and RF (αi) denotes the

residue of F computed at pole αi. When F (z) is a rational function, the computation

of residues is straightforward and can be carried out as:

RF (αi) =
1

(mi − 1)!
dmi−1F (z)
dzmi−1

∣
z=αi

(4.35)

where mi is the multiplicity of pole αi.

Although the Residue Theorem constitutes a prominent tool for analytically solv-

ing the ALEs, it cannot be directly used in most practical situations, because (4.35)

is essentially a symbolic operation which requires differentiation and other algebraic

calculations that easily become impractical due to computational time, depending on

how complex the operands are (i.e., depending on the degrees of numerators and de-

nominators of the rational functions). In addition, severe accuracy errors can occur, if

the operands contain elements represented in floating point notation.
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This can be avoided by representing H(z) and G(z) in partial fraction (PF) form

and exploring the linearity of the convolution operator. To this end, consider:

H(z) = Ĥ0 +
I

∑
i=1

Ĥi

(z − αi)ni
ni ∈ Z, ni ≥ 1 (4.36)

G(z) = Ĝ0 +
K

∑
k=1

Ĝi
(z − βi)mk

mk ∈ Z, mk ≥ 1 (4.37)

where Ĥi, Ĝ, αi and βk are complex numbers. Notice that a full PF representation is

being used, in contrast to the usual PF expansion of the signal divided by z, which is

a more traditional choice when dealing with the Z transform.

Using (4.36)-(4.37), H(z) ⊗G(z), can be written as:

H(z) ⊗G(z) = Ĥ0 ⊗ Ĝ0 +M1(z) +M2(z) +M3(z) (4.38)

where

M1(z) =
K

∑
k=1

Ĥ0 ⊗
Ĝk

(z − βk)mk
(4.39)

M2(z) =
I

∑
i=1
Ĝ0 ⊗

Ĥi

(z − αi)ni
(4.40)

M3(z) =
I

∑
i=1

K

∑
k=1

ĤiĜkWnimk(z) (4.41)

Wnimk(z) =
1

(z − αi)ni
⊗ 1

(z − βk)mk
(4.42)

Notice that operations have been reduced to sums of convolutions between much

simpler transforms, which is what makes this approach more efficient. Furthermore,

the term Ĥ0 ⊗ Ĝ0 in (4.38) can be simplified as:

Ĥ0 ⊗ Ĝ0 =
1

j2π
∮
C
Ĥ0 Ĝ0 v

−1dv = Ĥ0 Ĝ0 ∮
C
v−1dv (4.43)

By letting F (v) = 1/v, the result is found as:

Ĥ0 ⊗ Ĝ0 = Ĥ0 Ĝ0RF (0) = Ĥ0 Ĝ0 (4.44)
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Similarly, M1(z) can be simplified by analysing the general term of the sum (4.39).

Ĥ0 ⊗
Ĝk

(z − βk)mk
= 1

j2π
∮
C

Ĥ0 Ĝk v
mk−1dv

(z − βkv)mk
(4.45)

Let:

F (v) = vmk−1

(z − βkv)mk
(4.46)

It is observed that the only term capable of introducing a pole inside C is vmk−1,

which can only happen if mk = 0. Because it was assumed that mk > 1, we can conclude

that there are no poles inside C. Then, using the Residue Theorem yields:

Ĥ0 ⊗
Ĝk

(z − βk)mk
= 0 (4.47)

so that M1(z) = 0. Since M2(z) is essentially similar to M1(z), the same procedure

can be applied yielding a similar result, i.e. M2(z) = 0.

In order to simplify M3(z), the general term (4.42) is analysed. One issue, however,

is that the convolution:

Wnimk(z) =
1

j2π
∮
C

vmk−1dv

(v − αi)ni(z − βkv)mk
(4.48)

is difficult to solve for general values of ni and mk, in contrast to what was done for the

previous cases. This is not a serious issue though, as ni and mk are integer-valued, so

that Wnimk(z) can be pre-computed for some common pairs (ni, mk) for the purposes
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of building an efficient table look-up scheme. A few results are demonstrated below:

W11(z) =
1

z − αiβk
(4.49)

W12(z) =
αi

(z − αiβk)2
(4.50)

W13(z) =
α2
i

(z − αiβk)3
(4.51)

W21(z) =
βk

(z − αiβk)2
(4.52)

W22(z) =
2αiβk

(z − αiβk)3
+ 1

(z − αiβk)2
(4.53)

W23(z) =
2αi

(z − αiβk)3
+

3α2
i βk

(z − αiβk)4
(4.54)

W31(z) =
β2
k

(z − αiβk)3
(4.55)

W32(z) =
2βk

(z − αiβk)3
+

3αiβ
2
k

(z − αiβk)4
(4.56)

W33(z) =
1

(z − αiβk)3
+

6α2
i β

2
k

(z − αiβk)5
+ 6αiβk

(z − αiβk)4
(4.57)

Notice that the results have been converted into PF form. This is important because

terms Ψm(z) and Φm(z) in (4.25) are recursively computed, and the implementation

greatly benefits when returned data is provided in the same format as the received

data.

An important remark is that the resulting poles of Wnimk(z), in any situation, are

described as αiβk, and only differ in terms of their multiplicities. This means that

the main effect of the frequency convolution between two signals is the production

of a new set of poles that is basically the product between all poles of the two trans-

forms. This phenomenon is similar to the generation of intermodulation and harmonics,

which are usually studied in the context of the Volterra series approach. However, the

phenomenon identified here is more general, as intermodulations and harmonics are

particular cases for which the pole products are of the form ejωr , i.e. are sinusoidal

components. The described phenomenon is capable of generating, not only these steady
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state terms, but also new transient forms at the higher components, whenever ∣αi∣ < 1

and ∣βk∣ < 1.

This approach allows computing the convolution between any two transforms, given

their partial fraction forms, and, therefore, provide the basic procedure for evaluating

the right-hand sides of any ALEs in the frequency domain.

4.3.3.2 Frequency-domain filtering using PF forms

The second step required for obtaining the functional components Yn(z) is filtering the

ALE right-hand side and 1/A(z). This can be analytically done by simply comput-

ing the algebraic division between the right-hand side by A(z). However, as pointed

out before, it is important, from the computational perspective, that these operations

receive and return data in the same partial fraction form, as many of the operations

involved are performed in a recursive manner. Therefore, it is required to derive a

procedure for providing the partial fraction form of the filter output, given a partial

fraction form of the input.

This is accomplished by expanding both the filtering signal and the filter transfer

function in partial fraction form, and computing the partial fraction form of the output.

To this end, let:

H(z) = Ĥ0 +
I

∑
i=1

Ĥi

(z − αi)ni
ni ∈ Z, ni ≥ 1 (4.58)

G(z) = Ĝ0 +
K

∑
k=1

Ĝk
(z − βk)mk

mk ∈ Z, mk ≥ 1 (4.59)

and the filtering process be described as:

W (z) =H(z)G(z) (4.60)
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Then, the output can be described as:

W (z) =H(z)G(z) (4.61)

= Ĥ0 Ĝ0 +Q(z) +
I

∑
i=1

K

∑
k=1

Ĥi Ĝk
(z − αi)ni(z − βk)mk

(4.62)

Q(z) = Ĥ0

K

∑
k=1

Ĝk
(z − βk)mk

+ Ĝ0

I

∑
i=1

Ĥi

(z − αi)ni
(4.63)

Notice that the term Q(z) is already represented in a partial fraction form. There-

fore, for obtaining the desired result it is necessary to find the partial fraction form of

the third term. This is done by expanding the general term as follows:

1

(z − αi)ni(z − βk)mk
=
ni

∑
p=1

Cp

(z − αi)p
+
mk

∑
p=1

Dp

(z − βk)p
(4.64)

where coefficients Cp and Dp can be found by induction as:

Cp = (mk + ni − p − 1

mk − 1
) (−1)ni−p

(αi − βk)mk+ni−p
(4.65)

Dp = (mk + ni − p − 1

ni − 1
) (−1)mk−p

(βk − αi)mk+ni−p
(4.66)

4.4 Computation of NOFRFs

The last step of the methodology consists of obtaining the target NOFRFs, after the

functional components have been found. However, as the calculations are based on

the Z-transform but the NOFRFs are computed in terms of the DTFT, care must be

taken because the substitution z = ejω cannot always be done, e.g. when the input

is sinusoidal or a step function. This is only problematic when using the analytical

approach, so the computations will be discussed separately for the two approaches.

4.4.1 Numerical computation of NOFRFs

When computing the n-th order NOFRF using the numerical approach, the calcula-

tions are carried out using numerical sequences and DTFT evaluations via the FFT
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algorithm. In this case, the NOFRFs can be computed as

Gn(ejω) =
Yn(ejω)
Un(ejω)

(4.67)

where

Un(ejω) = DTFT{u(t)n} (4.68)

Yn(ejω) = DTFT{yn(t)} (4.69)

The resulting numerical representation consists of a set of values of Gn(ejω) for a

finite number of frequency points ω1 < ω2 < . . . < ωs(n) that belong to the frequency

support of Un(ejω), i.e.

Gn(ejω) ⇔ [ Gn(ejω1) Gn(ejω2) . . . Gn(ejωs(n)) ]
T

(4.70)

The procedure can be summarised as Algorithm 7 below.

Algorithm 7 Numerical computation of the n-th order NOFRF

1. Obtain yn(t) by numerically solving the n-th order ALE

2. Compute Yn(ejω) as the DTFT of yn(t)

3. Compute Un(ejω) as the DTFT of u(t)n

4. Obtain the support samples of Un(ejω)

5. Compute Gn(ωi) = Yn(ejωi)/Un(ejωi) where ωi belongs to the support of

Un(ejω).

Generally speaking, numerical issues are not expected from Algorithm 7. However,

attention is required because the computations need to be carried out only for the

frequency support of ∣Un(ejω)∣. When FFT is used for evaluating DTFT, a large number

of points will usually be outside the frequency support and, therefore, need to be

discarded, in order to avoid inconsistent results.
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4.4.2 Analytical computation of NOFRFs - general input

When the input signal U(z) is rational, the functional components Yn(z) obtained

through the analytical approach are also rational. This allows obtaining a closed form

representation for the NOFRFs, which can be parametrised in terms of numerator and

denominator coefficients as follows:

Gn(z) =
Yn(z)
Un(z)

= ∑
Pn
k=0 αk z

k

∑Qnk=0 βk zk
(4.71)

Notice that determining the coefficients αk and βk requires additional symbolic

calculations, since the analytical approach provides Yn(z) and Un(z) in partial fraction

forms only.

The analytical representation may be interesting in some situations, because a ra-

tional form can be simplified via pole-zero cancellation, similar to what is done with

transfer functions, allowing the NOFRFs to be analysed in terms of minimum order

rational functions. The analytical form is also more compact, as the number of numer-

ator and denominator coefficients are usually less than the number of frequency points

required for numerically representing the NOFRFs.

However, in applications such as fault diagnosis, it might be more effective to use the

actual values of Gn(ejω) at different ω rather than its parameters, as, sometimes, dif-

ferent parameters may yield NOFRFs that exhibit approximately the same behaviour,

which could lead to false alarms. In this case, the procedure for evaluating the NOFRFs

based on the analytical approach consists of using the algebraic representation of Gn(z)

for obtaining NOFRFs samples, as in (4.70). This can be carried out by using Algo-

rithm 8 below.

It is important to notice that the numerical Algorithm 7 is usually suited for most

situations as it can be applied for any input without any concerning issues. One draw-

back, however, is that if we wish to analyse the influence of varying parameters over

the system properties, Algorithm 7 needs to be reapplied for every value of the vary-
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Algorithm 8 Analytical computation of Gn(ejω) in nonparametric form

1. Obtain Yn(z) by analytically solving the n-th order ALE

2. Obtain Un(z) in analytical form

3. Compute:

Gn(z) =
Yn(z)
Un(z)

= ∑
Pn
k=0 αk z

k

∑Qnk=0 βk zk

4. Compute the NOFRF by replacing z = ejω in Gn(z) obtained in step 3

5. Evaluate Gn(ejω) for ω = {ω1, . . . , ωs(n)}

ing parameter under study. In this case Algorithm 8 is more suitable for the task,

as the components Yn(z) can be solved in terms of the varying parameter, yielding

an algebraic formula which can be rapidly evaluated for any of the parameter target

values.

It is important to mention, however, that Algorithm 8 cannot be applied for some

types of inputs, such as sinusoidal functions, because the DTFT of these signals cannot

be described in rational form. In these situations, poles over the unit circle will occur

and produce division by zero when we substitute z = ejω and evaluate the function for

several ω. For these situations, a more specific procedure should be applied, which is

discussed in the next section.

4.4.3 Analytical computation of NOFRFs - sinusoidal input

When the input u(t) is sinusoidal with normalized frequency ωh, its transform U(z)

has a pole over the unit circle at ejωh . As a consequence, the output components

Yn(z) contain rational terms described by poles at ejkωh , k ∈ {0,±1, . . . ,±n}. In this

case, Algorithm 8 cannot be directly applied because the process of substituting z = ejω
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eventually leads to division by zero. This happens due to the non-existence of the DTFT

for some signals (e.g. sinusoids), although their Z-transform, so that the substitution

z = ejω cannot be made.

This problem can be efficiently avoided by noticing that, for a sinusoidal input,

the NOFRFs can only be computed at multiple integers of the input frequency, kωh,

k = {0,±1, . . . ,±n}. In other words, the n-th order NOFRF can be computed as the

ratio between the harmonics of yn(t) and the harmonics of u(t)n. The harmonics of

any periodic signal x(t) can be easily found from its partial fraction representation as

the residue of its transform X(z) at pole ejkωh , i.e.: RX(ejkωh). Therefore, Gn(ejkωh)

can be found using Algorithm 9 below:

Algorithm 9 Analytical computation of the n-th order NOFRF for a sinusoidal input

1. Obtain Yn(z) by analytically solving the n-th order ALE

2. Obtain Un(z) in analytical form

3. For k ∈ {0, . . . , n}:

3.1. Find RYn(ejkωh)

3.2. Find RUn(ejkωh)

3.3. Compute the NOFRF as:

Gn(ejkωh) =
RYn(ejkωh)
RUn(ejkωh)

Notice that Algorithm 9 can be applied with ωh represented as a numerical value

or a symbolic quantity. The second case is more interesting because the NOFRFs can

be evaluated for several different frequencies, providing system characteristics under

different excitations. This can be considered as source of additional redundancy that

can be useful for achieving diagnosis objectives.
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4.5 Computation of harmonics and intermodulations

These new results can also be used for computing characteristics directly related to the

output, in contrast to NOFRFs based ones, which are related to functional components.

Some possibilities are computing harmonics, specific intermodulations or separating

transient from steady state components in their exact form. This can be useful for

revealing further details about system properties in various applications.

The computation of harmonics using the analytical approach allows finding func-

tions that describe how each harmonic varies with the driving input frequency. This

can be useful as the monitoring of harmonics is widely used in applications for charac-

terising nonlinear behaviour; however, this is usually carried out for a single frequency.

When a nonlinear model of the system is available, a function describing how the har-

monics vary with the input frequency can provide additional redundancy that can be

useful for characterising further system features.

The procedure for finding the harmonics is similar to Algorithm 9, except that it is

carried out for Y (z) = Y1(z) + Y2(z) + . . . + Yp(z), instead of Yn(z). The harmonics are

simply found as:

H(kωh) = RY (ejkωh) (4.72)

This idea can also be extended for finding general intermodulation response func-

tions. In this case, it is assumed that the input is represented as a sum of sinusoids:

U(z) = A0 +
r

∑
k=1

Ak
z − ejωk

(4.73)

And the intermodulation component for which ω = ω1 + . . . + ωs is found as:

I(ω) = ∑RY (ejω1+...+jωs) (4.74)

Similarly, steady state components can be distinguished from transients by sepa-

rating PF components whose poles are over the unit circle from those whose poles are

inside the circle.
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4.5.1 A note about NOFRFs

It has been observed that some particular ALEs produce situations where the NOFRFs

are input-independent and can be more directly computed. These will be investigated

in this section.

Consider an example, where a second order ALE is described as:

Ay2(t) = bu(t − 1)2 (4.75)

The usual procedure for computing G2(z) from (4.75) is obtaining Y2(z) using the

analytical approach and the partial fraction formulation, and dividing the result by the

analytical form of U2(z), which can be computed via frequency convolutions. However,

by noticing that:

Z{u(t − 1)2} = z−1Z{u(t)2} = z−1U2(z) (4.76)

the second order NOFRF can be obtained in a much simpler way as:

G2(z) =
Y2(z)
U2(z)

= b z−1

A(z)
(4.77)

It is important to notice that, in this case, the NOFRF is input independent, which

greatly simplifies the analysis. This procedure can be extended to a slightly more

general situation where several similar terms are present in the right-hand side, for

instance:

Ay2(t) = c1 u(t − 1)2 + c2 u(t − 2)2 + . . . + cp u(t − p)2 (4.78)

Notice that although all terms are nonlinear, they only differ from each other by time

shifts. Moreover, the time-shifting operation can be interchanged with the nonlinearity,

i.e., the term u(t − l)2 can be obtained

u(t)
delay
ÐÐÐ→ u(t − l)

square
ÐÐÐ→ u(t − 1)2 (4.79)

u(t)
square
ÐÐÐ→ u(t)2 delay

ÐÐÐ→ u(t − 1)2 (4.80)
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Therefore, the Z-transform of any right-hand side term of (4.78) can be obtained

as:

Z{u(t − l)2} = z−lU2(z) (4.81)

Therefore, the NOFRF can be found as:

G2(z) =
c1 z

−1 + c2 z
−2 + . . . + cp z−p

A(z)
(4.82)

which is, again, input independent. It is possible to conclude, then, that whenever the

right-hand sides of the ALEs are in the same form as on the right-hand side of (4.78),

the NOFRFs will be input independent.

Another possible situation arises from a different type of nonlinearity. For example,

let:

Ay2(t) = c1 u(t − 1)u(t − 2) (4.83)

In this case, it is difficult to establish a relationship between the Z-transform of

u(t − 1)u(t − 2) and U(z) and infer about the input independence of G2. However,

consider:

Ay2(t) = c1 u(t − 1)u(t − 2) + c2 u(t − 3)u(t − 4) (4.84)

By noticing that:

Z{u(t − 1)u(t − 2)} = z−1Z{u(t)u(t − 1)} (4.85)

= z−1U ′(z) (4.86)

Z{u(t − 3)u(t − 4)} = z−3Z{u(t)u(t − 1)} (4.87)

= z−3U ′(z) (4.88)

equation (4.84) can be rewritten in the frequency domain as:

A(z)Y2(z) = (c1 z
−1 + c2 z

−3)U ′(z) (4.89)
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for which it is reasonable to define the filter:

G′(z) = c1 z
−1 + c2 z

−3

A(z)
(4.90)

as one of the main characteristics of Y2(z). Obviously, a complete characterisation of

the response requires analysing the nonlinear effects of term u(t)u(t−1), which can be

carried out using the frequency convolution approach. Also notice that the frequency

support of u(t)u(t− l) is the same support of u(t)2, for any l. This means that dividing

Y2(z) by the transforms of either should yield a FRF with the same properties of

NOFRFs as currently defined.

The main point of these examples is that some nonlinear terms on the n-th order

ALE right-hand sides can be clustered together according to their delaying properties

and corresponding frequency representations. These clusters naturally form input-

independent FRFs that play an important role in the composition of the spectrum of

the n-th order component.

This reasoning is only possible for discrete-time systems, for which the delaying

operation can be interchanged with the nonlinearities, i.e. u(t−1)2 can be obtained as

a delay and a squaring operations, or vice-versa. This does not apply for the continuous-

time case, as this commutativity is not valid for terms based on derivatives, such as

u̇(t)2.

4.6 Continuous-time case

Most of the results presented so far have been derived for DT systems, since the main

objective of this research is to apply the developed techniques to practical DT models

obtained from system identification and input-output data. However, these results can

be extended to CT systems, which can be useful for analysing models obtained from

first principles. This will be briefly discussed in this section.

The derivation of the system ALEs for the CT case follows the same principles of
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the DT case, except for some minor differences. Usually, CT systems are represented

as differential equations, so that the CT equivalent of model (4.1) can be written as:

Ay(t) = Bu(t) +
M

∑
m=1

cm
L−1

∏
l=0

(d
ly(t)
dtl

)
p(m,l)

(d
lu(t)
dtl

)
q(m,l)

(4.91)

where

Ay(t) = d
Ly(t)
dtL

+
L−1

∑
l=0

al
dly(t)
dtl

(4.92)

Bu(t) =
L−1

∑
l=0

bl
dlu(t)
dtl

(4.93)

As can be seen, the CT representation merely replaces a l-sample delay by the l-th

order derivative of signals. Because this does not affect the properties of operator D,

the algorithm derivation and results are exactly the same and its implementation only

requires replacing delays by derivatives. Therefore, the CT-equivalent of equations

(4.5)-(4.6) can be described as:

Ayn(t) = Bu(t) n = 1 (4.94)

Ayn(t) =
M

∑
m=1

cmψm(t) ∑
Sm

ρm φm(t) (4.95)

where ρm is as described in (4.7) and:

ψm(t) =
L−1

∏
l=0

[d
lu(t)
dtl

]
q(m,l)

(4.96)

φm(t) =
L−1

∏
l=0

Nm

∏
k=1

[d
lyk(t)
dtl

]
r(m,l,k)

(4.97)

On the other hand, it is worth mentioning that a model of form (4.91) may not

be useful for analytical analysis of the ALEs, as it will be demonstrated in Section

4.7. This is due to the analytical framework that has been established being based on

partial fraction decomposition of signals, and the presence of derivatives can sometimes

compromise these forms. For this reason, it may be useful to consider an integral

formulation of model (4.91), as it is possible to guarantee that model operators will not
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alter partial fraction forms. This can be accomplished by letting:

ỹ(t) = d
Ly(t)
dtL

(4.98)

ũ(t) = d
Lu(t)
dtL

(4.99)

so that:

dly(t)
dtl

= ∫
t

0
. . .∫

τ3

0
∫

τ2

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L−l

ỹ(τ1)dτ1dτ2 . . . dt = ∆lỹ(t) (4.100)

dlu(t)
dtl

= ∫
t

0
. . .∫

τ1

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L−l

ũ(τ1)dτ1 . . . dt = ∆lũ(t) (4.101)

and (4.91) can be rewritten as:

Aỹ(t) = B ũ(t) +
M

∑
m=1

cm
L

∏
l=1

(∆lỹ(t))p(m,l) (∆lu(t))q(m,l) (4.102)

where

Aỹ(t) = ỹ(t) +
L

∑
l=1
al ∆

lỹ(t) (4.103)

B ũ(t) =
L

∑
l=1
bl ∆

lũ(t) (4.104)

The analysis of functionals order is not affected by the newly introduced operator

∆. Moreover, the form of model (4.102) is exactly the same as the DT model (4.1),

which means that the ALEs can be obtained as (4.5)-(4.6) by simply replacing u(t− l)

and yk(t− l) respectively by ∆lũ(t) and ∆lỹk(t). Obviously, when solutions are found,

the original output signal must be recovered by differentiating the signal L times, as

suggested by (4.98).

4.7 Example

To demonstrate the procedures presented in this chapter, a simple example will be

used. To this end, consider the NARX model:

Ay(t) = bu(t − 1) + c y(t − 2)2u(t − 1) (4.105)
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where b = 2, c = 5 ⋅ 10−3 and:

A(z) = (z − 0.8 − j 0.5)(z − 0.8 + j 0.5) z−2 (4.106)

Determination of the ALEs

For determining the ALEs up to order 3, the procedure is as follows. For n = 1:

Ay1(t) = bu(t − 1) (4.107)

For n = 2, J1 = 2 − 3 = −1, yielding the Diophantine system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 = 2

0 = −1
(4.108)

which is inconsistent and implies that:

Ay2(t) = 0 (4.109)

For n = 3, J1 = 3 − 3 + 1 = 1, yielding:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r(1,1,1) = 2

0 = 0
(4.110)

which has only one solution which is already explicitly described as (4.110). This

solution can be converted into the 3-rd order ALE described as:

Ay3(t) = c1 y1(t − 2)2 u(t − 1) (4.111)

Because of equation (4.109), y2(t) = 0 and the ALEs can be further simplified before

the characteristics are computed, yielding the following group of ALEs.

Ay1(t) = Bu(t) (4.112)

Ay3(t) = c1 y1(t − 2)2 u(t − 1) (4.113)
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Sinusoidal probing

The procedures presented in sections 4.4.3 will be used for computing the nonparametric

form of NOFRFs for a sinusoidal input. To this end, let u(t) be a sinusoidal sequence

of normalized frequency ωh. The NOFRFs shall be computed for 100 different values

of ωh logarithmically spaced between 10−3 and 3 ⋅ 10−1. Both analytical and numerical

approaches will be used for the purpose of validating the results, i.e.: the NOFRFs

computed via different approaches will be compared for verifying if they represent the

same result.

The analytical forms of the NOFRFs computed at the harmonics are found as:

G1(ejωh) =
2.0 ejωh

0.89 − 1.6 ejωh + ej2ωh
(4.114)

G3(ejωh) =
a0 + a1 e

jωh + . . . + a5 e
j5ωk

b0 + b1 ejωh + . . . + b8 ej8ωk
(4.115)

G3(ej3ωh) =
0.02 ej3ωh

c0 + c1 ejωh + . . . + c10 ej10ωh
(4.116)

where:

a5 = +1.4980 ⋅ 10−2

a4 = −2.3970 ⋅ 10−2

a3 = +2.0000 ⋅ 10−2

a2 = −1.1990 ⋅ 10−2

a1 = +7.4910 ⋅ 10−3

a0 = +0.0000 ⋅ 10+0

b8 = +1.0000 ⋅ 10+0

b7 = −6.5980 ⋅ 10+0

b6 = +2.0100 ⋅ 10+1

b5 = −3.6640 ⋅ 10+1

b4 = +4.3560 ⋅ 10+1

b3 = −3.4560 ⋅ 10+1

b2 = +1.7890 ⋅ 10+1

b1 = −5.5390 ⋅ 10+0

b0 = +7.9210 ⋅ 10−1

c10 = +1.0000 ⋅ 10+0

c9 = −3.2000 ⋅ 10+0

c8 = +4.3400 ⋅ 10+0

c7 = −4.4480 ⋅ 10+0

c6 = +5.9120 ⋅ 10+0

c5 = −6.9440 ⋅ 10+0

c4 = +5.4470 ⋅ 10+0

c3 = −4.1150 ⋅ 10+0

c2 = +3.8630 ⋅ 10+0

c1 = −2.5350 ⋅ 10+0

c0 = +7.0500 ⋅ 10−1

Figure 4.1 shows the comparison between the analytical and numerical calculations.

The analytical results have been plotted with a normal line, while numerical results
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are indicated with an “x” marker. It is important to mention that G3(ej3ωh) has

only been computed up to ω = 0.3π, since higher frequencies would yield third-order

harmonics that would violate the Nyquist criterion. Figure 4.1 shows that there is a

good agreement between results obtained from different methods.
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Figure 4.1: Comparison between NOFRFs computations.

Figure 4.1 also shows some interesting properties. More specifically, G3(ej3ωh)

exhibits two resonance peaks, in contrast to the single peaks observed in G1(ejωh) and

G3(ejωh), for which a single resonance peak is observed at approximately 0.09π. This is

mainly due to the system linear characteristics, which can considerably affect both first

and third order dynamics. On the other hand G3(ej3ωh) is affected only by third order

components, and admits energy transfer between different bands. This is observed

as the additional resonance peak at approximately 0.03π. This value is three times

smaller than the original resonance, which is a nonlinear phenomenon typically related

to polynomial nonlinearities. Harmonic excitations with this frequency are expected to
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generate larger third order harmonics.

Sinc probing

The impulse response is an important characteristic of linear systems, because it pro-

vides, via a single input signal, the same information obtained from multiple sinusoidal

excitations. This is not valid for nonlinear systems, since the superposition principle

is not valid and this equivalence cannot be established. However, the impulse response

transform is still an useful characteristic, since it can, in principle, describe how the

system responds to an idealised case where the input possess a very large bandwidth.

However, the nonlinear components due to an impulse excitation can sometimes

vanish for zero initial conditions, due to the particular forms of the system nonlinear-

ities. This situation is problematic because it masks the system nonlinear character-

istics, since the nonlinear components cannot be studied. This is the case of system

(4.105), which can be better understood by analysing (4.113). When the input is the

unit impulse, u(t) = δ(t) and the right-hand side term can be simplified as:

c y1(t − 2)2u(t − 1) = c y1(t − 2)2δ(t − 1)

= c y1(−1)2δ(t − 1)

= 0

since yn(t) = 0 for t < 0 and any n. In fact, for system (4.105), the right-hand sides of

all higher order ALEs (n > 1) vanish when u(t) = δ(t), yielding yn(t) = 0 and preventing

the investigation of higher order characteristics through this input.

For circumventing these difficulties, a non-ideal impulse function can be used. A

non-ideal impulse is any function that possesses a short duration and a relatively broad

and flat spectrum. One example is the sinc pulse, described as:

u(t) = sinc (2b t − 2b t0) h(t) (4.117)
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where b is the normalised bandwidth and t0 is the pulse center. The sequence h(t) is a

Hamming windowing function used for reducing frequency leakage. The sinc function

is defined as:

sinc(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sin(πx)
πx

x ≠ 0

1 x = 0
(4.118)

Notice that the n-th order NOFRF can only be reliably computed for ∣ω∣ ≤ nb, since

Un(ejω) is zero otherwise. In addition, b should be chosen so that, for the largest n, nb

does not exceed the Nyquist frequency.

The NOFRFs of system (4.105) for a 7000-sample sinc pulse were computed, using

b = 0.1π and t0 = 3500. Figure 4.2 shows the first and third order generalised spectra.

Figure 4.3 shows the magnitude of the resulting NOFRFs up to 3b = 0.3π.
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Figure 4.2: Generalised input spectra
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Figure 4.3: NOFRFs computed with sinc input

4.8 Conclusions

In this chapter, several new tools for computing NOFRFs were presented. These rep-

resent significant improvements over the previous approaches to this problem, as it is

now possible to obtain the NOFRFs directly from a polynomial NARX model, both

in numerical and analytical form, without needing to specify the truncation order in

advance.

The results presented in chapter 3 regarding the extraction of the system ALEs

were formalized, allowing a more efficient and systematic derivation of the recursive

equations from a relatively general NARX model. This is particularly useful in practical

situations where the models are obtained from real data and usually consist of several

complex polynomial terms.

It was also demonstrated that these methods allow the computation of NOFRFs in

both numerical and analytical forms. The numerical approach allows a fast computation
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for an arbitrary input. The analytical approach, on the other hand, yields NOFRFs

in rational form and, if necessary, in terms of varying parameters, such as the input

frequency or a model coefficient, so its influence over the system response can be studied

in more depth, which can be very useful for design. However, these computations can

only be carried out for inputs that possess a closed form representation in the frequency

domain, such as the impulse function and sinusoids.

The analytical computations are founded in the Residue Theorem, which allows

computing the NOFRFs using only frequency domain operations and, therefore, avoid-

ing alternating between different domains. However, when dealing with practical mod-

els with a large number of poles and nonlinear terms, the complexity of the calculations

can be considerably large, causing accuracy and processing issues. It was then demon-

strated that these problems can be alleviated by representing the transforms involved

in the frequency convolutions into their corresponding partial fraction forms. In this

way, the frequency convolutions are broken into much simpler operations which can

be efficiently solved using a table look-up scheme, allowing the computation of higher

order components in closed form.

This new set of tools provides an useful background for nonlinear systems analysis

in the frequency domain. This will be better illustrated in the next chapter, where the

applications of these new results to CM problems will be presented.

102



5

A new CM framework based on

NOFRFs

5.1 Introduction

In this chapter, the theoretical results developed so far will be applied to condition

monitoring problems. The aim is to investigate a systematic way of using NOFRFs in

practical applications. This will be pursued by studying two specific problems, in order

to identify the basic steps of the methodologies, so it can be generalised later.

The problems to be investigated are a simulated bilinear oscillator and an mechani-

cal prototype used for studying the dynamics of impact systems. The bilinear oscillator

consists of a single degree of freedom system that possesses the stiffness term described

by piecewise linear function. It can be considered as an important benchmark in nonlin-

ear systems studies, because it can exhibit both moderate (e.g. harmonics generations)

and complex behaviours (e.g. bifurcation). The study conducted in this chapter, how-

ever, is carried out in conditions where only the moderate behaviours are observed, so

that the Volterra series approach can be applied. The objective is to apply a condi-

tion monitoring philosophy in which it is assumed that the physical background about
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the system is unknown, with the exception of the measurement of a few meaningful

monitoring variables (e.g. the stiffness ratio). In this case, a black-box modelling

approach is proposed for establishing the relationship between the input and output

signals. It is also assumed that this relationship carries important physical information,

characterised by the NOFRFs, which can be used for monitoring the variations of the

monitoring parameter. It is then demonstrated that some NOFRFs based features can

indeed be used for characterising the parameter changes, as it is progressively increased.

The second application problem is concerned with a laboratory prototype used

for studying impact systems, developed by the University of Aberdeen. Under some

simplifying assumptions, the bilinear oscillator investigated in the first case study can

be seen as a simplified model of this system. However, the real prototype exhibits

some additional challenges, such as the presence of modelling errors and noise. These

circumstances make it difficult to extend the approach used in the first case study to

this second problem. In this case, a different solution was developed, in which the

system conditions to be monitored were grouped according to their similarities, i.e.

they were not viewed as individual conditions controlled by the continuous variations

of a parameters, but as cluster of similar conditions that can be characterised by a set

of features that are geometrically localised close to each other on the representative

feature space. Therefore, the task of condition monitoring is reduced to a classification

problem that consists of computing the features associated to an unknown condition

and classifying it into one of the known clusters, in order to characterise the fault

conditions.

Before the case studies are discussed in more details, some basic concepts about

condition monitoring problems will be discussed. After that, the general idea of the

methodology will be explained, followed by the case studies. The chapter is finalised

by a discussion that generalises the methodologies discussed in cases studies 1 and 2,

so that they can be applied to address more problems.
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5.2 Condition monitoring problems

As explained in Chapter 1, the need for strategies that automatically detect malfunc-

tions in engineering systems is directly related to the growth and complexity of modern

industrial processes. The aim of condition monitoring strategies is to fulfill this need,

by providing ways of anticipating malfunctions which are difficult to be detected by

human operators.

The term condition monitoring is usually employed in different engineering fields

such as mechanical and structural engineering to refer to problems where the state of

system critical components such as gears, shafts and structure materials is to be deter-

mined, often via inspection and tests, so that maintenance or repairs can be planned

in a more optimised way (Barron, 1996). In order to do this, advanced measuring

and signal processing techniques are used for identifying features that are capable of

evidencing, explaining and possibly predicting the evolution of the component condi-

tion. Such methods are being increasingly investigated because some traditional ways

of assessing structure or material condition involve invasive techniques, which is ob-

viously economically infeasible. For this reason, CM strategies are closely related to

Non-Destructive Testing (Buyukozturk et al., 2012).

Figure 5.1 shows the general strategy of traditional CM methods. In most cases,

the basic idea is to acquire output data from the process during operation and analyse

that data for finding useful features from which the process condition can be inferred.

Usually, these features are quantities derived from specialised signal processing, e.g.

statistical or spectral analysis (very common in vibration based CM), which are highly

correlated to process changes. Once the features are extracted, the CM process is

carried out, via, for instance, threshold checking or more complicated logic procedures.

This process usually requires some a priori information about the system, built from

physical knowledge or process history. For example, in some vibration based CM, some

common sources of problems are cracks or mass unbalance (Barron, 1996). In these
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Figure 5.1: Traditional CM overview

cases, the symptoms are the abnormal levels of measured vibration (more specifically,

acceleration, velocity or displacement) collected at different locations of the structure.

The fault is usually explained as changes in the structure natural frequencies, which

are greatly affected by cracks and mass unbalance; these changes tend to shift the

structure natural frequencies to locations in the same range of frequencies of external

inputs, which is what causes the large amplitudes of the structure response. This is a

typical use of a priori knowledge applied to CM solutions.

It is worth mentioning that these principles are very similar to the fault diagno-

sis (FD) scenario, in particular, approaches based on parameter estimation (Isermann,

1993). The basic idea of this methodology is illustrated in Figure 5.2. The parameter

estimation strategy is based in the principles that some fundamental physical proper-

ties of the system change when it is subject to abnormal conditions (Isermann, 2006;

Venkatasubramanian et al., 2003c), similar to what was previously discussed about nat-

ural frequencies in CM problems. Notice that this formulation about faults should not

be confused with what is used in other FD approaches in which faults are considered

as unknown inputs, e.g. in parity equations (Chan et al., 2006) and observer based

(Venkatasubramanian et al., 2003c) methods.

In some common parameter estimation FD approaches, the a priori physical knowl-

edge about the system is used to construct a physical model whose parameters (e.g.

model coefficients) are directly linked to system components. During on-line opera-

tion, these parameters are estimated and passed to the feature extraction stage. The
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Figure 5.2: Oveview of parameter estimation based FDI

features can be the error between the estimate and a pre-specified nominal value or a

more application oriented variable. Finally, the computed features are used in the FDI

- Fault Detection and Isolation stage (Venkatasubramanian et al., 2003c; Isermann,

2006). The term detection refers to the binary task of verifying if a fault occurred

or the system is working normally, while the term isolation can be interpreted as the

diagnosis itself, where additional information about the fault is determined (e.g. fault

location, severity, etc).

One important difference between CM as described in Figure 5.1 and FDI as de-

scribed in Figure 5.2 is that FDI is usually carried out in real time - e.g. using recursive

schemes (Isermann, 1993, 2005), while CM is more commonly done off-line (Barron,

1996). FDI is designed to work on-line because it is often applied to control loops, where

a quick detection of faults is important. However, a more important aspect in the FDI

scheme is that features are generated from model parameters, while in CM these are

produced directly from output measurements. In this case, system identification can

be seen as a pre-processing stage that generates primary features, i.e. model/model

parameters, from which the actual fault features are later derived. This is a reasonable

solution, since faults are assumed to possess a close relationship with the system phys-

ical properties, which should be, in principle, better observed from the model rather

than a particular set of outputs, since the model carries information about how the

system responds to a larger range of inputs.

The methodology proposed in this thesis lies in between the CM and FDI concepts
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discussed so far. The basic idea is shown in Figure 5.3. The principle is very similar

to the FDI scheme, where feature extraction is preceded by a system identification

stage. The fundamental difference, however, is that system identification is done using

a black-box polynomial NARX approach. This is useful because the physical a priori

knowledge does not need to be taken into account at this stage, making the modelling

process more systematic.

Figure 5.3: Overview of NOFRF based CM

In addition, the adoption of a nonlinear strategy allows the possibility of inves-

tigating system properties which could be difficult to observe if a linear model were

used. This is additionally supported by the feature extraction stage, which is centred

in the NOFRF approach. Once the NOFRFs based features are generated, the CM

strategy, which can be designed either from physical knowledge or process history can

be applied. The details about how this CM strategy can be developed is presented in

the next section.

5.3 General framework

In this section, a few general considerations about the new NOFRF based CM frame-

work will be discussed. The objective is to establish some problem assumption, in order

to deal with CM problems involving nonlinear systems and feature generators based on

the NOFRF approach.

For building CM system, it will be generally assumed that a detailed physical model

108



5.3 General framework

of the process is not available. This is consistent with many practical situations where

the complexity and size of the process makes such modelling assumptions prohibitive.

On the other hand, it will be assumed that input-output data is available, so that

black-box models can be constructed for investigating the system characteristics.

The next important assumption is that a collection of data sets gathered during

normal operation and under a few fault cases is available. This data form the core of

the a priori knowledge that will be used for designing/training the CM system. It will

also be assumed that, although faults are directly related to disturbances in physical

parameters (e.g. material stiffness, electrical impedance), the actual values of these

parameters are not necessarily known.

This means that each element of the a priori data set can be related to a known

system condition, but this condition might not be well defined in terms of measurable

quantities. Obviously, it is a more favourable situation if such information is available,

so that it can be used for improving the diagnosis process. This is also a relatively

reasonable assumption as it is the case of many practical situations, e.g. in crack

detection in structures, where the characteristics of the crack (such as its geometry)

not only are difficult to model, but also difficult to be quantified/measured; a similar

problem occurs in monitoring of bearings and gear boxes.

Under these assumptions, the proposed CM scheme can be designed in the following

steps: (i) identify a polynomial NARX model for each available fault case; (ii) compute

the NOFRFs from the resulting models for each fault case; (iii) derive features from

the NOFRFs that allow distinguishing between different fault cases; (iv) develop a

classification procedure or a decision logic for characterising each fault case. This

procedure is summarised in Figure 5.4.

Once the CM system has been designed, the diagnosis procedure can be conducted in

a similar manner, as shown in Figure 5.5, except that the computed features represent

an unknown system condition and need to be associated to one of the known fault
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Figure 5.4: General diagnosis system design based on the new framework

cases. This can be interpreted as a classification or pattern recognition procedure

(Theodoridis and Koutroumbas, 2008). Notice, however, that in exceptional cases

where fault parameters are well defined, the diagnosis can also be given in terms of

a continuous estimate of the faulty parameters. In this case, the problem can also

be viewed as a classification/pattern recognition procedure, although the number of

possible classes is infinite.

System
Identification

Frequency
Analysis

Feature
Extraction

Classifier/
Estimator

Single
I/O data

NARX
model

Fault featuresNOFRFs/
GFRFs

Fault class/
Parameters estimate

Figure 5.5: General diagnosis procedure based on the new framework

The proposed framework offers two fundamental features that are attractive for

practical applications:

1. The modelling procedure is based on polynomial NARX models. This is inter-

esting because it allows to expand the horizon of potential features by consid-

ering physical properties associated to nonlinear behaviour, while also making

110



5.4 Case study 1: bilinear oscillator simulation study

the modelling process more systematic, which can be useful when physical

knowledge about the process is scarce and process history data is abundant;

2. Features are computed in terms of GFRFs/NOFRFs. This is the main nov-

elty of the framework, since nonlinear FRF representation has not been much

explored in this kind of application. Nonlinear FRFs have been used in other

scenarios (Lang and Peng, 2008; Peng et al., 2007a,b,?) where it was demon-

strated that they can reveal interesting nonlinear systems’ properties that not

only cannot be studied using classical linear FRFs, but also can provide a

more in-depth background for characterising faulty behaviour.

It is important to mention that although NOFRFs are generally preferred, GFRFs

can also be used as fault features candidates (Tang et al., 2010). The new Algorithm

1 from chapter 3 makes this option more attractive, as GFRFs can be efficiently com-

puted from general NARX models. However, this is seldom recommended because the

multidimensional nature of the GFRFs makes the feature extraction process much more

difficult. For this reason, only NOFRFs were explored in this work.

In the next sections, the principles of this new CM framework will be applied to

address two CM problems. The objective is to verify the framework’s feasibility and

discuss some aspects that are important for the performance of the diagnosis system,

but are relatively context-dependent and need to be investigated according to each

particular situation.

5.4 Case study 1: bilinear oscillator simulation study

A simulation test of the CM strategy was carried out using a bilinear oscillator. This

system is largely used for modelling important phenomena regarding impact and be-

haviour of cracked structures (Peng et al., 2007). The oscillator is inherently nonlinear

and can exhibit a wide variety of nonlinear behaviour, including several types of bifur-
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cations (Wiercigroch and Sin, 1998).

The bilinear oscillator is represented by a piecewise linear differential equation de-

scribed as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ÿ(t) + c ẏ(t) + k y(t) = u(t) y(t) > 0

ÿ(t) + c ẏ(t) + k β y(t) = u(t) y(t) ≤ 0
(5.1)

In the present study, parameters c = 23.562 and k = 3.55 ⋅ 104 are assumed free

of variations. The parameter values were extracted from (Peng et al., 2007) where a

NOFRFs-based study of the bilinear oscillator was conducted. Parameter β is known as

the stiffness ratio parameter, since it describes the relative change of the linear stiffness

when the output undergoes variations from y(t) ≤ 0 to y(t) > 0. In this case study,

we shall investigate the system behaviour when β changes in the range 0.8 ≤ β ≤ 1.0.

Notice that for β = 1, the system becomes purely linear.

Variations in β can produce qualitative changes in the system nonlinear behaviour,

therefore, monitoring β is an important way of tracking the system main characteris-

tics. For example, in drilling processes, this simplified model can be used for better

understanding the efficiency of the drill with respect to the static force applied to the

rig. Attuning axial ultrasonic vibrations in the equipment is an efficient way of op-

timizing this and can be done by modelling the characteristics of the drilled material

(Wiercigroch et al., 2005, 1999), which is mainly characterised by β. Different stiffness

ratios can occur throughout the process due to different materials found by the drill,

therefore, it is important to find a way to monitor changes in β. The problem can be

formulated as a multiplicative condition monitoring situation with a single parameter.

Because of the system nonlinear characteristics, it is difficult to establish an explicit

relationship between β and the output. Therefore, a monitoring procedure based on

NOFRFs is proposed. As previously stated, the first step for designing such diagnosis

system is to obtain models for different values of β. This was done using 10 different
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values of β in the specified range and a chirp input described as:

u(t) = sin [(0.1ω0 + 1.5ω0t)t] (5.2)

where ω0 =
√
k = 188.4144 is the system linear natural frequency. Data were initially

sampled at 1000 Hertz and then down-sampled by a factor of 3. This step is usu-

ally required when the sampling period is over specified, which produces very similar

consecutive samples and compromises the model identification.

NARMAX models with maximum delay L = 4 and nonlinearities up to order 3 were

identified using the PRESS method. For the purpose of analysis, the moving average

terms are neglected yielding NARX representations. Some of these models are shown

bellow for the nonlinear cases with the smallest and largest β and the linear case. The

full set of models is presented in Appendix A

y(t) = +8.3703 ⋅ 10−06 u(t − 1)

+1.6590 ⋅ 10+00 y(t − 1)

−9.3108 ⋅ 10−01 y(t − 2)

+3.8721 ⋅ 10−02 y(t − 1)u(t − 2)

+6.4094 ⋅ 10−03 y(t − 4)u(t − 5)

−8.5746 ⋅ 10−07 u(t − 1)u(t − 3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.80 (5.3)

y(t) = +8.8783 ⋅ 10−06 u(t − 1)

+1.0634 ⋅ 10+00 y(t − 1)

−5.2897 ⋅ 10−01 y(t − 3)

+1.1440 ⋅ 10−07 u(t − 5)

+5.4534 ⋅ 10−03 y(t − 1)u(t − 2)

+1.8209 ⋅ 10−03 y(t − 3)u(t − 5)

+4.1658 ⋅ 10−06 u(t − 2)

−5.5919 ⋅ 10−08 u(t − 1)u(t − 3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.98 (5.4)
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y(t) = +1.0603 ⋅ 10+00 y(t − 1)

−5.3216 ⋅ 10−01 y(t − 3)

+1.0570 ⋅ 10−05 u(t − 1)

+3.3237 ⋅ 10−06 u(t − 3)

−8.9887 ⋅ 10−08 u(t − 5)

−1.4714 ⋅ 10−09 u(t − 1)u(t − 2)

−5.1091 ⋅ 10−07 u(t − 4)

−7.3380 ⋅ 10−10 u(t − 5).2

+1.8035 ⋅ 10−09 u(t − 2).2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 1.00 (5.5)

Notice that as β increases, not only model parameters change, but new model

terms are included. This makes model comparison via the time-domain representation a

difficult task, and justifies the use of a frequency-domain non-parametric representation

such as the NOFRFs.

Sinusoidal characteristics

The sinusoidal response characteristics of each model was investigated using Algorithm

9 described in Section 4.4.3. To this end, a sinusoidal input of frequency ωh is applied

to the models and the NOFRFs are computed and analysed as a function of ωh. The

analytical approach was used to carry out this study, since the resulting representation

is more flexible and compact.

In this study, only G1(ejωh) and G2(ej2ωh) were computed, since it was noted that

G2(0) does not add any significant information towards the monitoring goals. The

analytical form of the linear FRFs is described as:

G1(ejωh) =
B1(ejωh)
A1(ejωh)

(5.6)

where p = ejωh and polynomials A1(ejωh) and B1(ejωh) for the cases β = 0.80, β = 0.98

and β = 1.00 are obtained from identified model i the corresponding case of β as given
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below:

β = 0.80

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.3703 ⋅ 10−6 p

A1(ejωh) = p2 − 1.6590p + 0.9311
(5.7)

β = 0.98

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.8783 ⋅ 10−6 (p4 + 0.4692p3 + 0.0129 )

A1(ejωh) = p5 − 1.0634p4 + 0.5290p2
(5.8)

β = 1.00

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 1.0570 ⋅ 10−5 (p4 + 0.3145p2 − 0.0483p − 0.0085 )

A1(ejωh) = p5 − 1.0603p4 + 0.5322p2
(5.9)

The full set of polynomials for all studied cases are given in Appendix B.

For the second order NOFRFs, the general expression is similar and described as:

G2(ej2ωh) =
B2(ejωh)
A2(ejωh)

where polynomials B2(ejωh) and A2(ejωh) are now described as:

β = 0.80

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 1.4225 ⋅ 10−6 (−0.3749p11 + p10 − 0.5612p9 + 0.0377p5)

A2(ejωh) = p15 − 1.6590p14 − 0.7279p13 + 2.7522p12 − 0.6136p11

−1.5446p10 + 0.8669p9

(5.10)

β = 0.98

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 8.2181 ⋅ 10−8 (−0.0913p15 + p14 − 0.3599p12 + 0.0076p11

+0.1967p10 + 0.0923p9 + 0.0025p6)

A2(ejωh) = p19 − 1.0634p18 − 1.0634p17 + 1.6597p16 − 0.5625p14

+0.5290p13 − 0.5625p12 + 0.2798p10

(5.11)

β = 1.00

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(ejωh) = 1.8035 ⋅ 10−9 (−0.8159p13 + p12 − 0.4069p6)

A2(ejωh) = p16 − 1.0603p14 + 0.5322p10
(5.12)

and the coefficients for all cases are provided in Appendix B.

Figures 5.8 and 5.9 show the magnitude of G1(ejωh) and G2(ej2ωh) for different

input frequencies ωh and β.

A more in-depth analysis demonstrates that changes can be observed in G1(ejωh),

although they are not as significant as in G2(ej2ωh). The changes in G2(ej2ωh) occur
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Figure 5.6: G1(ejωh) for bilinear oscillator
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Figure 5.7: G2(ej2ωh) for bilinear oscillator

for all frequencies and in a relatively monotonic way. Therefore, a first investigation

about these variations was carried out using the resonance characteristics of G1(ejωh)

and G2(ej2ωh), which are shown in Figures 5.8-5.11. The resonance characteristics are
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5.4 Case study 1: bilinear oscillator simulation study

the maxima of ∣G1(ejωh)∣ and ∣G2(ej2ωh)∣ and their corresponding frequencies.

It is important to notice that G2(ej2ωh) possess an additional sub-resonance at

approximately half the linear resonance frequency. The exception is the case for which

β = 1 which is a purely linear case and no resonances can be observed in ∣G2(ej2ωh)∣,

so that the case β = 1.00 is not shown in Figures 5.8-5.11.
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Figure 5.8: Resonance frequencies of G1(ejωh)

Figures 5.8-5.9 suggest that the resonance frequencies are not appropriate monitor-

ing functions for β, since some variations in β result in no changes in these properties.

In addition, the overall change in the resonance frequencies as β changes from 0.80

to 0.98 is very small: for G1(ejωh), the total variation is 0.40; for G2(ej2ωh) the total

variation is approximately 0.15 for the first resonance and 0.3 for the second resonance.

This is problematic because such small changes can be mistaken with modelling er-

rors. In addition, the second resonance of G2(ej2ωh) possess an anomalous behaviour

at β = 0.96, where the resonance frequency decreases. This is a source of ambiguity

(i.e. two different β that generate the same resonance frequency), that should either

be avoided in practice or be used in conjunction with additional monitoring variables.
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Figure 5.9: Resonance frequencies of G2(ej2ωh)

Resonance peaks show a more favourable scenario for monitoring β, as shown in

Figures 5.10 and 5.11. The first peak of G1(ejωh) shows a strictly decreasing trend,

although it is non-smooth. However, the total variation is relatively small: approx-

imately 0.4 dB. This is reasonable though, as β is related to the system’s nonlinear

characteristics, which should be better observed from G2(ej2ωh). This is indeed the

case, as seen in Figure 5.11, which exhibits a total decrease of 8 dB in the first reso-

nance peak and 12 dB at the second resonance peak. In addition, the variations of the

resonance peaks of G2(ej2ωh) are very smooth and completely monotonic, which makes

these features ideal for monitoring β.

Based on these findings, a simple curve fitting procedure was conducted for build-

ing a 3-rd order polynomial function that can provide β from the resonance peaks

measurements. The functions were found as:

β = 0.01169 r3
1 − 0.08731 r2

1 − 0.31 r1 − 4.909 (5.13)

β = −0.0589 r3
2 − 0.1181 r2

2 − 0.2558 r2 − 5.303 (5.14)
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Figure 5.10: Resonance peaks of G1(ejωh)

where r1 and r2 denote the size of the first and second resonance peaks of G2(ej2ωh) in

dB, respectively.

Notice that the choice of the resonance peaks of the NOFRFs is relatively arbitrary

for this particular study case, since their behaviour for varying β is basically the same

for almost all other frequencies. The exceptions are frequencies below 0.02, where the

values of G2(ej2ωh) for β = 0.96 become smaller than what is observed for β = 0.98 (see

Figure 5.7), which yields an ambiguity in the monitoring function. A similar behaviour

is observed at some frequencies greater than 0.1. These results show that a complete

monitoring procedure for β can be achieved via features based on sinusoidal NOFRFs.

Notice that the analytical approach is more convenient for this investigation because

the features consisted of different NOFRFs evaluated at different input frequencies. If

these were computed from the numerical approach, the steady state response would

have to be extracted from a model simulation for each frequency, which is obviously a
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Figure 5.11: Resonance peaks of G2(ej2ωh)

more laborious procedure.

Non-sinusoidal features

An additional investigation was carried out using a more simplified approach, in which

the system is probed by a single input (instead of several sinusoids) whose energy is

more widespread over the normalised frequency range. The most natural choice for this

investigation is an ideal unit impulse:

u0(t) = δ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 t = 0

0 t ≠ 0
(5.15)

for which the energy is uniformly distributed over the whole normalised frequency

range.

The NOFRFs for this input were determined using the analytical method, yielding
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5.4 Case study 1: bilinear oscillator simulation study

the Z domain representations as follows. The first order FRF is represented as:

G1(z) =
B1(z)
A1(z)

(5.16)

where the polynomials B1(z) and A1(z), for each analysed β, are described as:

β = 0.80

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.3703 ⋅ 10−6 z

A1(z) = z2 − 1.6590 z + 0.9311
(5.17)

β = 0.98

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.8783 ⋅ 10−6 ( z4 + 0.4692 z3 + 0.0129 )

A1(z) = z5 − 1.0634 z4 + 0.5290 z2
(5.18)

β = 1.00

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 1.0570 ⋅ 10−5 ( z4 + 0.3145 z2 − 0.0483 z − 0.0085 )

A1(z) = z5 − 1.0603 z4 + 0.5322 z2
(5.19)

Notice that, as in the previous case, only a few cases were shown. The remaining

NOFRFs are shown in Appendix C

Similarly, the second order NOFRF is represented as:

G2(z) =
B2(z)
A2(z)

(5.20)

where B2(z) and A2(z) are now described as:

β = 0.80

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 3.2411 ⋅ 10−7 ( z3 + 0.1655 )

A2(z) = z5 − 1.6590 z4 + 0.9311 z3
(5.21)

β = 0.98

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 4.8417 ⋅ 10−8 ( z3 + 0.5117 )

A2(z) = z5 − 1.0634 z4 + 0.5290 z2
(5.22)

β = 1.00

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 0.0000

A2(z) = 1
(5.23)

These formulas allow a more efficient extraction of the DFT representation of the

NOFRFs, by simply letting z = ejω and evaluating the result for discrete values of ω.

The magnitudes of NOFRFs obtained in this way are shown in Figures 5.12-5.13.
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Figure 5.12: Linear FRFs for the impact oscillator
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Figure 5.13: Second order NOFRFs for the impact oscillator

122
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As in the sinusoidal case, different values of β cannot be well distinguished from the

linear FRF. Notice, however, that the magnitude trends of the second order NOFRFs

are not as monotonic as in the sinusoidal case. From Figure 5.13, we can see that they

follow a different pattern and introduce ambiguities, which are problematic as discussed

before. This can be explained from the multitone nature of the probing input, which

allows energy transfers between different bands, producing more complicated spectra

that are unsuited for the established monitoring goals.

One way to circumvent these difficulties is to use an alternative impulse function,

as discussed in Section 4.7. In this case, we adopt the windowed sinc pulse:

u(t) = 2 b sinc (2 b t − 2 b t0) h(t − t0) (5.24)

where b is the bandwidth, t0 is the pulse center and h(t) is the Hamming window. It

has been observed that the bandwidth b can be varied for yielding a more appropriate

probing signal. In this case, the NOFRFs need to be computed via the numerical

approach, Algorithm 7.

To illustrate this, the NOFRFs were computed for b = 0.05 and b = 0.08, using 300

samples of the input sequence. In order to simplify the results and generate a low

dimensional feature, the following index was computed:

I2 =
∑Ω2

∣G2(ejω)∣2

∑Ω1
∣G1(ejω)∣2

(5.25)

where Ω1 and Ω2 are the frequency supports of G1(ejω) and G2(ejω) respectively.

Due to the input characteristics, these supports basically consists of discrete fre-

quencies uniformly spaced in the intervals [0, 2πb] for Ω1 and [0, 4πb] for Ω2. The

index basically reflects the weight of nonlinearities relative to the system linear char-

acteristics. Therefore, the objective is to track the decrease of the system nonlinear

behaviour as β increases towards 1.00, where the system becomes linear.

The index was plotted against β for various bandwidth values in Figure 5.14. The

curves suggest that the optimal range for b is approximately between 0.05 and 0.08,
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where the variation of the index with β is smooth and monotonic. For b < 0.05 the

index shows non-monotonicity at β = 0.98, while for b > 0.10 the index shows a similar

undesired behaviour at β = 0.94. The case where b = 0.10 can be considered acceptable,

although the change of the index from β = 0.96 to β = 0.98 is very small, but still follows

the decreasing trend.

0.8 0.85 0.9 0.95 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Stiffness ratio

In
de

x 
(d

B
)

 

 

0.01
0.02
0.05
0.08
0.10
0.15
0.20

Figure 5.14: Index I2 for different values of the input bandwidth B

This example shows that probing the system model for specific characteristics is

not always a trivial task, especially when multiple fault cases are involved. The new

frequency analysis framework is useful in this context, because it allows optimising the

NOFRF features towards the fault isolation goals.

5.5 Case study 2: experimental impact oscillator

The simulation results of the previous section were confronted with experimental data

produced by a real prototype of the impact oscillator, built at the Centre for Applied
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5.5 Case study 2: experimental impact oscillator

Dynamics Research, School of Engineering, Kings College, Aberdeen University.

The oscillator consists of the rig originally studied in (Wiercigroch and Sin, 1998)

and later adapted in (Ing, 2008). The experimental apparatus is illustrated in Figure

5.15. The rig operates over a dynamic shaker and consists of a block of mild steel

weighting 1 kg, supported by two parallel leaf springs that permits vertical displacement

and prevents rotational motion. The lengths of the leaf springs can be varied for

adjusting the system’s primary stiffness. Large amplitude vibrations produce contact

between the mass and one or two removable spring steel beams. The gap between those

can be adjusted via extendible bolts and by changing the size of the beams. In this

form an independent control of the secondary stiffness can be achieved.

The displacement of the leaf springs at the fixed end is used as the source of displace-

ment measurement, using an eddy current probe, whose voltage-displacement charac-

teristics were experimentally determined via a specific test and a least squares fit. The

base acceleration, which can be considered as the input, is measured using accelerome-

ters. Data is sampled using a National Instruments PCI-MIO-16E-1 acquisition board

in conjunction with Labview at the rate of 2000 samples/second.

The tests were carried out for twelve stiffness ratios (β): 19.01, 20.92, 22.14, 24.36,

24.51, 26.96, 28.22, 31.24, 32.69, 34.72, 36.19, and 38.30. For each of these cases, a

sinusoidal excitation with frequency 7 Hz was applied at throughout three different

experiments. It is worth mentioning that this is not the ideal choice of excitation for

an identification experiment, but it was the only available option for the circumstances

at the time the experiments were conducted.

Data was initially smoothed using the Savitsky-Golay algorithm (Savitzky and Go-

lay, 1964) and down-sampled by a factor of 12. This was necessary as the presence

of noise and the high sample rate can compromise the identification, yielding unstable

models. One NARX model was identified for each available β, each describing the re-

lationship between the base acceleration (input) and the mass displacement (output).
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Figure 5.15: Rig prototype (by the University of Aberdeen)

Both ERR and PRESS approaches were used for this task. However, PRESS provided

models with a very reduced number of terms and inconsistent responses, which for
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5.5 Case study 2: experimental impact oscillator

this reason were discarded. ERR provided more satisfactory models, but had to be

adjusted for using pure input terms, e.g. u(t − 1), u(t − 2)2, u(t − 1)u(t − 3), etc.,

because the inclusion of output terms was often producing unstable models. In order

to improve model generalisation, each estimation was carried out by using data from

all three waveforms collected for each β. This significantly improved model prediction,

as it provided a reasonable alternative for compensating the narrow bandwidth of the

input used for the experiments. A comparison between the measured output and model

prediction is provided in Figures 5.16 and 5.17
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Figure 5.16: Steady state model prediction, β = 19.01

It is worth mentioning that obtaining satisfactory models for the system was a much

more difficult task than in the simulation case, as the obtained models were occasionally

unstable or yielded bad predictions. These difficulties can be attributed to three main

reasons:

1. Increased complexity of the system in comparison to the idealised simulation

model

2. Presence of random noise in the measurements
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Figure 5.17: Steady sate model prediction, β = 36.19

3. Narrow band excitation (sinusoid), preventing the acquirement of more de-

tailed information about the system

The list of identified models is given in Appendix D. As in the simulation case,

changing the stiffness ratio causes the model structure to change significantly, but in

a way that cannot be easily distinguished from the difference equation. The presence

of noise is an additional complication, since, in these circumstances, repeating the

identification procedure during real time operation can produce different models, even

though β might not have changed.

A preliminary analysis based on the sinc pulse (5.24) similarly to the previous sec-

tion was conducted for the identified models. As before, several different bandwidths

were tested, in the attempt of finding features that exhibit a monotonic trend. The

results of a few tests in which 0.001 ≤ b ≤ 0.15 are shown in Figure 5.18. In these

tests, an increasing trend can be observed for all indices, although it was not possible

to find a probing input that resulted on an index that behaves monotonically for all

β samples. This is mainly caused by the presence of noise, which introduces severe

variations in model structure and consequently in the NOFRFs, preventing the obser-
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vation of smooth monitoring functions based on index (5.25). This was also observed

in a previous (although not presented) simulation test in which the inclusion of noise

produced similar behaviour in the index values.
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Figure 5.18: Index computed for different input bandwidth (experimental rig)

Due to the stochastic nature of the data, a second attempt based on sinusoidal

features and statistical processing was carried out for improving the monitoring strat-

egy. As in case study 1, the objective was to obtain the NOFRFs for sinusoidal inputs

of different frequencies and use this information for deriving the monitoring proce-

dure. However, the diagnosis objectives had to be slightly shifted towards a classifica-

tion/clustering approach.

The basic idea consists of partitioning all fault cases using the k-means clustering

algorithm. Because each fault is represented by a single variable in this application,

this clustering procedure is equivalent to dividing the a priori stiffness ratio range into

small intervals. However, the clustering algorithm is a more systematic approach, since

it is more adequate for situations where faults are represented by multiple parameters.
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The diagnosis strategy consists of associating an unknown fault to one of the estab-

lished clusters, by using features derived from NOFRF data. Due to the presence of

noise, it is reasonable to consider several NOFRF frequency components in the attempt

to provide sufficient redundancy. However, using a large number of NOFRF measure-

ments brings issues for characterising and visualising the clusters. To circumvent this

problem, a new reduced set of features produced by linear transformations designed via

PCA/PLS is proposed. The resulting features are considered adequate if the features

associated to a particular cluster remain on a well defined region, with little overlap

between clusters. In this case study, both PCA and PLS approaches were computed

for verifying which one provides the best results.

PCA works as an unsupervised feature generation, in which the clustering results

are not used, while PLS directly use this information for providing feature separation.

The main objective of these techniques is to reduce the dimensionality of the original

NOFRF data for better characterising each fault cluster. The resulting features can be

considered adequate if the features associated to a particular cluster remain on a well

defined region, with small overlapping between different clusters.

The primary NOFRF features were computed by extracting the sinusoidal NOFRFs

from the models obtained for each β, and building the basic NOFRF data vector

described as:

x(β) = [ M1(ω1) . . . M1(ωs) M2(ω1) . . . M2(ωs) ] (5.26)

where

M1(ωh) = log10 ∣G1(ejωh)∣ (5.27)

M2(ωh) = log10 ∣G2(ej2ωh)∣ (5.28)

For convenience, the input frequencies ωh were logarithmically spaced in the interval

[2π ⋅ 10−4, 0.2π]. After some tests, it was noticed that a large number of points is not

able to produce significantly better features, therefore only s = 5 frequencies were used,

130



5.5 Case study 2: experimental impact oscillator

yielding ωh ∈ {0.0001π, 0.0007π, 0.0045π, 0.0299π, 0.2π}. After computing the data

vectors, the following data matrix was constructed:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(19.01)

x(20.92)

⋮

x(36.19)

x(38.30)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.29)

Because PCA and PLS work with zero mean data, the mean value of each column

of X was removed and stored for future processing. For convenience, the data matrix

with removed means was denoted as X0.

For the purposes of classification, the values of β were divided into 3 groups using

the k-means partitioning methodology. This was done using all stiffness ratios, except

β = 19.01, which was left out of the clustering procedure for serving as validation data.

The clusters were found as:

C1: 20.92 ≤ β ≤ 24.51 (5.30)

C2: 26.96 ≤ β ≤ 31.24 (5.31)

C3: 32.69 ≤ β ≤ 38.30 (5.32)

For describing the relationship between each feature (row of X0) a partition matrix

C was built. The (i, j)-th element of the partition matrix is 1 if the i-th feature

vector (row of X0) belongs to cluster j and 0 otherwise. According to the construction

of matrix X in (5.29) and the results of the k-means clustering described above, the
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partition matrix was obtained as:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.33)

Two different dimensionality reduction techniques were applied to the data matrix

X0: PCA and PLS. In both approaches, the objective is to find a transformation T

for producing a new features Z = X0 T , whose variability is concentrated in the first

few columns of Z. PCA acts as an unsupervised method, for which no clustering

information is used for determining the new features. PLS, on the other hand, can use

the partition matrix C and can be interpreted as a supervised learning procedure. It

is also interesting to notice that the PLS method offers an estimate of the class scores

(5.33), which are provided in Appendix E

The usual criterion for selecting the features is the total percentage of variance

explained by the new variables. For the PCA features, the first two PCs contain 89.6%

of the total variance while the first three PCs contain 97.4%. PLS yielded 89.3% for the

first two latent variables and 97.1 % for the first three latents, a very similar scenario.

For both alternatives the two variables option was chosen, since it is very convenient

for visualisation while still retaining about 90% of the total variance.
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5.5 Case study 2: experimental impact oscillator

The transformation matrices were found as:

T1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4522 0.2570

0.4519 0.2566

0.4413 0.2415

0.3500 0.1209

0.2541 0.0761

−0.3150 0.6421

−0.2566 0.5142

−0.1536 0.2450

−0.1099 0.0759

−0.0934 0.2167

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1370 −0.1000

0.1369 −0.0999

0.1342 −0.0960

0.1084 −0.0750

0.0779 −0.0413

−0.0836 −0.3407

−0.0702 −0.2966

−0.0395 −0.1296

−0.0233 0.0560

−0.0065 0.2027

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.34)

where T1 is the PCA transformation matrix and T2 is the PLS transformation matrix.

Notice that both possess 10 rows, 5 corresponding to the coefficients for M1(ωh) and the

other 5 corresponding to the coefficients for M2(ωh). Scatter plots of the transformed

variables Z1 =X0 T1 and Z2 =X0 T2 are respectively shown in Figures 5.19 and 5.20.

A set of boundaries between each class is shown as dashed straight lines. It is

important to notice that although the choice of boundaries is not unique, other choices

are easy to find due to the clear separable patterns the resulting features exhibit. In

this case, automatic recognition can be achieved by neural or statistical classifiers. For

the PLS features, the class regions are described as follows:

Class 1:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y + 11.1670x − 0.1255 < 0

y − 1.6908x − 0.1101 < 0
(5.35)

Class 2:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y + 11.1670x − 0.1255 < 0

y − 1.6908x − 0.1101 > 0
(5.36)

Class 3: y + 11.1670x − 0.1255 > 0 (5.37)

where x and y denote the horizontal and vertical coordinates of Figure 5.19. Similarly,
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Figure 5.19: Classification results using PLS features
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Figure 5.20: Classification results using PCA features
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5.5 Case study 2: experimental impact oscillator

the boundaries shown in Figure 5.20 are described as:

Class 1:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y + 16.9475x + 14.1582 > 0

y − 0.9286x + 2.0108 > 0
(5.38)

Class 2: y + 16.9475x + 14.1582 < 0 (5.39)

Class 3:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y + 16.9475x + 14.1582 < 0

y − 0.9286x + 2.0108 > 0
(5.40)

The PCA features are relatively well split, although there is a small overlapping

region between clusters 1 and 2. This is a reasonable intersection, as these clusters

represent adjacent intervals of β. The lack of more data prevents a more detailed

visualisation of the overlapping region, which could provide an estimate about how

frequent a misclassification in this region can occur. In practice, this problem can

be alleviated by soft partitioning the PCA clusters using, for example, fuzzy clusters.

Despite these issues, the overall characteristics of both PCA and PLS features can be

considered satisfactory, as they provide clear distinction between different cases in the

training data.

The validation case β = 19.01, labelled as cluster “0”, is also shown in Figures 5.19

and 5.20. The feature corresponding to this case was marked as a red ‘x’. Although

classifiers were not trained, the geometric arrangement of the features suggest that

β = 19.01 can be considered as belonging to cluster 1 (20.92 ≤ β ≤ 24.51), since this

is the closest cluster to the corresponding point. This is a reasonable approximation,

considering the small size of the training data. Another possible scenario is to recognise

β = 19.01 as a new kind of fault, because although cluster 1 is the closest fault pattern,

the distance to the corresponding point is relatively larger than the average distance

between the a priori points of cluster 1.

Similar results can be obtained by using other points as validation data, although

in some of them, cluster separability is deteriorated for both PLS and PCA. This can

be explained by the small number of training samples, for which a removal of a single
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template (the one that will be used as validation) can produce a significant impact in

the mean values of the data matrix, therefore introducing large displacements of the

features. Another possibility is the modelling error produced by noise and the narrow

bandwidth of the excitation, which can introduce ambiguities, as discussed before. As

previously shown, this is partly alleviated by PLS in some cases, since the learning is

supervised, although not always possible.

Despite the difficulties encountered at the realisation of the experiment, the results

presented at this section were found satisfactory. The obtained features can clearly

demonstrate that NOFRFs can be used in conjunction with well established pattern

recognition tools for producing meaningful features that allow visual interpretation

of fault clusters and can be used, in principle, for training autonomous classifiers.

In order to make the method more understandable, the procedures for training and

implementing the diagnosis system are summarised as follows.

Training procedure:

1. For each available model the sinusoidal NOFRFs Gi1(ejωh) and Gi2(ej2ωh)were

computed at the pre-specified frequencies:

ωh = {ω1, . . . , ω5}

ω1 = 0.0001π ω2 = 0.0007π

ω3 = 0.0045π ω4 = 0.0299π

ω5 = 0.2π

where i ∈ {1, . . . ,12}

2. NOFRF data vectors were constructed for each model as:

xi = [ xi1 . . . xi5 xi6 . . . xi10
]

xik =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

10 log10 ∣Gi1(ejωk)∣ k = {1, . . . , 5}

10 log10 ∣Gi2(ejωk−s)∣ k = {6, . . . , 10}
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5.5 Case study 2: experimental impact oscillator

3. The mean values for each component of x were computed:

µ = [ µ1 . . . µ10 ]

µk =
1

m

12

∑
i=1
xik

4. A zero-mean data matrix X was constructed as:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 −µ

⋮

x12 −µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5. The available values of β were partitioned into c = 3 clusters, using the k-means

algorithm;

6. A partition matrixCm×c describing the clusters was constructed, where Cij = 1

if βi is in cluster j and 0 otherwise;

7. Compute the new features using PCA/PLS and the transformation matrix T ;

8. Train a classifier using the PCA/PLS features and the partition matrix (if

required).

Diagnosis procedure:

1. Obtain a NARX model from input-output data;

2. Compute the NOFRFs G1(ejωh) and G2(ej2ωh) at the pre-specified frequencies

ωh = {ω1, . . . , ωs};

3. Build the zero-mean NOFRF vector x0 as follows:

x = [ x1 . . . xs xs+1 . . . x2s ]

xk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

10 log10 ∣G1(ejωk)∣ k = {1, . . . , s}

10 log10 ∣G2(ejωk−s)∣ k = {s + 1, . . . , 2s}

x0 = x −µ
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4. Apply the transformation matrix for finding the features z = T x0;

5. Classify the feature according to its distance to the closest cluster (or apply

the features to the classifier, if available)

5.6 Generalisation of the CM strategies

The previous sections presented direct applications of the new CM framework to par-

ticular problems. In the present section, these ideas will be discussed in more general

terms so the CM strategies can be extended for other problems.

5.6.1 Problem formulation

Consider a single-input-single-output continuous-time nonlinear system described as:

y(t) = F [u(t); p] Condition: C (5.41)

where y(t) is the output, u(t) is the input, p is a parameter vector, F is a nonlinear

operator and C is a condition label (e.g. “normal”, “fault 1”, etc.).

Faults are characterised by changes in operator F . When the parameter vector p is

well defined (i.e. it is associated to a physical or measurable system property), these

changes can be directly associated to variations in p and the CM problem basically

consists of recovering its real value. When p is not well defined, the characterisation of

faults is still possible, but needs to be done via experience and process knowledge. In

this case, each fault is identified via different conditions C.

The CM strategies are constructed for dealing with the following problem scenario:

(i) The form of functional F in (5.41) is unknown;

(ii) Sampled input-output data are available;

(iii) The input can be freely adjusted;
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(iv) Fault transients are negligible

(v) Off-line experiments under known conditions can be conducted for building a

basis of a priori knowledge.

This formulation is consistent with many practical situations in which controlled

tests can be conducted prior to system operation, so that the system behaviour under

faulty conditions can be better understood, similar to case study 2. The main limitation

is the time-independence assumption in (iv), since faults always exhibit some time

dependent characteristics as systems can transit from a normal to a faulty state at a

particular instant or over a period of time. In this case, it will be assumed that the fault

transient is fast and does not play an important role for characterising the fault itself.

This is a reasonably practical assumption in situations where the evolution of the defect

is difficult to track. For example, in structure condition monitoring, the development of

cracks over time is very difficult to observe, although the collection of data before and

after its appearance is manageable. This limitation implies a loss of information that

could be useful for estimating the time when the defect occurs, however, the problem

can be partly alleviated by periodically performing the diagnosis procedure so that a

reasonable detection window can be found.

According to the results from case studies 1 and 2, the design of the diagnosis is

mainly influenced by the noise levels/modelling errors and if the parameter vector is

well defined. Based on this assumption, two diagnosis strategies are proposed.

5.6.2 CM based on monitoring functions

This strategy is based on case study 1, where noise levels/modelling errors are small

and fault parameters are well defined (in case study 1, the stiffness ratio). A mon-

itoring function can be defined as any NOFRF-based feature x for which variations

in p produces significant changes in x. In case study 1, this was represented by the

second resonance peak of the second order NOFRF or the energy index (5.25). Using
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the problem formulation, the k-th monitoring function can be defined as:

xk = fk(p) (5.42)

where xk is the computable NOFRF feature. For CM purposes, it is better to consider

a set of monitoring functions, which can be described in vector form as:

x = f(p) (5.43)

where

x = [ x1 . . . xr ] (5.44)

f(p) = [ f1(p) . . . fr(p) ] (5.45)

Theoretically, the function f admits an inverse f−1 if f is bijective. For the uni-

variate case (p = p is a scalar), this can be easily detected by plotting the measured

NOFRF feature xk versus the measured parameter p; if the curve does not exhibit any

ambiguous points - i.e. there are no points (p1, x
1
k) and (p2, x

2
k) for which p2 ≠ p1 and

x1
k = x

2
k - then the inverse function must exist. This procedure is more difficult to follow

in the multivariate case, although the principle is the same.

When the inverse f−1 exists, its form can usually be found by applying a curve fitting

procedure, using the measured parameters p as outputs and the computed features as

inputs. The result is represented as:

p̂ = f−1(x) (5.46)

The computation of the inverse in closed form allows an efficient way of estimating

the fault parameters, as illustrated in case study 1. However, for the general case where

multiple fault parameters exist and f is nonlinear, finding the inverse in closed form is

seldom possible.

When the inverse does not exist or is difficult to compute, an alternative approach

can still be applied in the attempt to recover the fault parameters. The basic idea
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is to use additional monitoring functions (at least as many as the dimension of p)

for generating sufficient redundancy to counterbalance the ambiguities of f . Then,

the problem can be treated as a search for the roots of a system of nonlinear algebraic

equations. The procedure can be described as follows: first, a closed form representation

for the monitoring function f in (5.43) is found via curve fitting. During on-line

operation, the features x are measured and substituted in (5.43), yielding a system of

nonlinear equations. Then, special algorithms (e.g. Newton’s method) can be applied

for recovering the fault parameters p.

Notice that this is the same strategy proposed by parameter estimation techniques

(Isermann, 2005), except that it is a more general case where the process is nonlinear

and the estimation scheme is constructed in terms of NOFRF features, instead of

mapping discrete-time parameters into continuous-time parameters.

The design procedure and diagnosis implementation are summarised as Algorithms

10 and 11.

It is worth mentioning that a critical point of Algorithm 10 is step 4, in which the

NOFRF features are selected. The exact choice is highly dependent on the particular

characteristics of each problem. At the present, the selection needs to be made by trial

and error, although there are some general aspects that can be considered. This will

be discussed in more detail in Section 5.6.4.

5.6.3 Diagnosis based on fault clusters

The second strategy is based on the principle that CM can be treated as a classification

problem. This is particularly well suited for situations where the parameter vector is not

well defined and, therefore, cannot be recovered. In this case, the a priori knowledge

consists of a bank of fault cases (conditions) that share similar features that need

to be uncovered and used for grouping similar faults into fault clusters (or classes)

in the feature space. The diagnosis procedure, then, consists of fitting an unknown
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Algorithm 10 Design of CM system based on monitoring functions

1. Collect m input-output data sets and the corresponding fault parameters

2. For each parameter sample, identify a NARX model

3. For each identified NARX model, compute the NOFRFs

4. Select the NOFRF features that will be used as monitoring functions

5. If possible, plot the features versus the fault parameters and verify if the

relationship is bijective and its inverse exists

6. If the inverse function exists, apply curve fitting for finding the inverse in

closed form

7. If the inverse cannot be found, but the monitoring functions are smooth, apply

curve fitting for finding the monitoring function in closed form

Algorithm 11 CM procedure based on monitoring functions

1. Acquire input-output data

2. Identify a NARX model

3. Compute the NOFRFs and measure the target features x

4. If the inverse function was determined in closed form, obtain the estimates of

the fault parameters as p̂ = f−1(x)

5. If the inverse function was not determined, apply a numerical method for

solving x = f(((p))) with respect to p

condition into a particular established cluster provided that its corresponding features

are sufficiently close to the cluster under consideration.
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Another circumstance for which this approach is useful is when significant noise

is present at the output measurements. The noise produces random variations in the

NOFRFs computations, producing biased features that can easily be mistaken as fault-

related conditions. The strategy uses a feature generation scheme that possess some

interesting statistical properties that provide a slight reduction of the noise effects

in the resulting features. Moreover, the cluster formulation provides some additional

robustness to the diagnosis, as faults can still be recognised as one of the defined

clusters, as long as it lies sufficiently close to one of them. Therefore, this strategy can

be seen as a potential alternative to the one presented in the previous section, whenever

fault parameters is not well defined or significant noise is present.

The fault clusters are determined by grouping the known fault cases by either using a

priori knowledge or specialized clustering methods, such as the k-means algorithm. The

algorithmic approach was used in case study 2 and is relatively systematic, providing

a straightforward way for dealing with the general case in which p can be of any

dimension. However, this procedure does not need to be followed if the clusters are

known in advance, based on a priori knowledge from experienced operators. This is an

interesting situation, since the lack of accurate fault parameter values that characterise

each fault is not problematic, as the other steps of the methodology only requires the

clustering information, not the actual values of the fault parameters.

Due to the stochastic nature of the measurements, the NOFRF features associated

to each fault cluster usually need to be computed for several frequencies, since they

seldom yield comprehensible patterns that allow an appropriate selection of only a few

key NOFRF frequency components. In this case, a dimensionality reduction techniques

such as PCA or PLS can be applied for allowing a better visualisation of data and

adjusting the clusters structures, if necessary. At this final stage, the number of fault

clusters and the selected NOFRF features play an important role, and some trial and

error might be required until satisfactory PCA/PLS feature patterns can be found. The
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main results of this stage are the PCA/PLS transformation matrix and the features

associated to each fault clusters, which need to stored for comparison with real faults.

The entire design procedure is summarised as Algorithm 12, while the corresponding

diagnosis procedure is summarised in Algorithm 13.

Algorithm 12 Design of CM system based on fault clusters

1. Measure m input-output data sets and their corresponding fault parameters

2. For each fault sample, identify a NARX model

3. For each identified NARX model, compute the NOFRFs

4. Select the NOFRF measurements to be used as primary features and build

the sample data vectors xi, i = {1, . . . ,m}

5. Compute the mean values of the primary features µ

6. Compute the zero mean data vectors xi0 = xi −µ

7. Find c clusters of known faults and the corresponding partition matrix C

8. Build the data matrix X0 whose rows are vectors xi0

9. Apply PCA/PLS using X0 and C and obtain the resulting transformation

matrix T

10. Verify the consistency of the new features with respect to the cluster structure

11. Train a classifier using the new features (optional)

The main advantage of the CM algorithm 13 is that it is designed to directly deal

with situations where moderate noise can be observed in data. Moreover, because faults

are viewed as clusters, the values of the fault parameters are not essential (although

can still be used) when the fault clusters are known a priori.
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Algorithm 13 CM procedure based on fault clusters

1. Acquire input-output data

2. Identify a NARX model

3. Compute the NOFRFs

4. Build the data vector x according to the structure established at the design

stage

5. Compute the zero mean data vector as x0 = x −µ

6. Compute the fault features as z = x0 T

7. Apply the features z to the trained classifier or plot the relevant coordinates

with the pre established clusters for manual classification

When the resulting PCA/PLS features are clearly separable, they are usually easy to

interpret and do not require an autonomous classifier to be trained, which was stated in

step 11 of Algorithm 12. The main difficulties occur, when the resulting features exhibit

excessive overlapping between them, which prevents an unique association between a

unknown fault and the known clusters. This issue is application specific and a general

solution is difficult to establish, although it is possible to list some suggested guidelines

for improving the situation.

Fault overlapping is similar to the ambiguity problem observed in the monitoring

function approach. This issue can usually be improved by using additional redundancy,

which, in this case, consists of using a larger number of fault cases, so the structures

of clusters can be refined. Another option is to increase the number of fault clusters,

which can lead to a better understanding about the frontiers between each cluster.

Alternatively, the whole situation can be re-interpreted in terms of fuzzy clustering, in
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which the overlapping is quantitatively described, allowing the development of a more

flexible decision logic that may yield better classification results.

5.6.4 Basic aspects about selection of NOFRF measurements

In the methodologies described above, the process of selecting the NOFRFs plays an

important role in the design of the core elements of the CM approaches. Although

selecting the ideal NOFRF features is a problem-dependent issue, some guidelines can

still be discussed in general terms.

The basic idea in each approach is to construct a data vector x where each compo-

nent is a NOFRF measurement, such as amplitude, real part, etc. The most straight-

forward choices for the k-th component of x are described as:

xk =R [Gn(ejωi)] (5.47)

xk = I [Gn(ejωi)] (5.48)

xk = ∣Gn(ejωi)∣ (5.49)

xk = log10 ∣Gn(ejωi)∣ (5.50)

xk = ∠Gn(ejωi) (5.51)

where i ∈ {1,2, . . . , s}, s is the dimension of x, R denotes real part, I denotes imaginary

part and ∠ denotes unwrapped phase angle. Notice that many choices are available,

considering that (5.47)-(5.51) can be computed at different frequencies ω and combined

in the same data vector x.

The possibility of computing the components xi at different frequencies represents

an additional freedom for the feature design. However, it should be noticed that,

depending on the probing input used, the NOFRFs Gn(ejω) need to be computed in

different ways and also possess different interpretations.

As discussed in section 4.4, there are two cases that need to be considered: sinusoidal

and non-sinusoidal inputs. For a non-sinusoidal input, such as the unit impulse or a
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low-pass pulse such as the sinc function, the computation of the n-th order NOFRF

results in a single function defined for a range of frequencies ω, typically ω ≤ nb,

where b is the bandwidth of the low-pass input. Usually b should be chosen so that

nb is less than the Nyquist frequency. Notice that, if the input possesses a closed

form representation, Gn(ejω) can be obtained either numerically or analytically. The

numerical computation is usually preferred in this situation, as it is faster and its

accuracy is essentially equivalent to the analytical method.

In contrast, when the input is sinusoidal, Gn(ejω) can only be computed at the

super-harmonics of the input frequency ωh, so that ω can be replaced by kωh in (5.47)-

(5.51), where k ∈ {0, . . . , n}. The advantage of using a sinusoidal input is that the

NOFRFs are input-independent and carry useful system information that may be able

to provide good fault information. Usually, we will be interested in the values of

Gn(ejkωh) for various ωh, which is interpreted as probing the system with different

inputs for yielding several distinct functions. This is equivalent to computing a linear

system FRF by applying several sinusoids of different frequencies. The computation

can be carried out via the numerical method, which requires long simulations (for the

response reaching steady state) that need to conducted multiple times (one for each

value of ωh). For this reason, the analytical approach should be preferred, as the

availability of a closed formula provides great flexibility for computing the NOFRFs

at various frequencies, which is relatively useful for the design stage where we usually

need to test different ranges or number of frequency components.

In addition to directly using the NOFRF values, energy indices, such as (5.25)

introduced in case study 1 can also be used as components of the data vector x. The

general form of the indices is described as:

xk = In =
∑
Ωn

∣Gn(ejω)∣2

∑
Ω1

∣G1(ejω)∣2
(5.52)

which is a rough measure of the relative impact of nonlinearities of degree n in the
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response. In (5.52), the summations are computed for all ω ∈ Ωn, where Ωn represents

the frequency support of Gn(ejω), which is usually a sequence of frequencies easily

obtained from the DTFT analysis of the n-th order Volterra series component. It is

worth mentioning that the denominator was chosen as the energy of the linear FRF

because the linear component is usually the dominant part of the response, but different

possibilities should be considered if that is not the case. Notice, however, that these

indices contain less information than the NOFRF measurements (5.47)-(5.51), since

they average the NOFRF amplitude over all possible frequencies.

5.7 Conclusions

In this chapter, a new general CM framework based on nonlinear systems modelling

and frequency domain analysis was proposed. The framework was designed for dealing

with practical situations where nonlinear behaviour and multiplicative faults need to

be considered. The main idea consists of four basic steps: model identification, com-

putation of NOFRFs, extraction of features from the NOFRFs and fault classification

according to the obtained features. Based on this framework, two new CM strategies

were developed and successfully tested.

The first strategy is based on the concept of monitoring functions and can be ap-

plied in situations where a fault parameter is well defined and noise levels and modelling

errors are small. The basic idea is to identify NOFRF measurements, such as resonance

peaks or an energy index, that exhibit significant sensitivity to the fault parameters,

so they can be used for tracking the evolution of the defect. The diagnosis procedure

can be implemented in two different ways: by finding the inverse of the monitoring

function for directly computing the fault parameters from the NOFRF measurements;

or by numerically solving a system of nonlinear algebraic equations, built from all avail-

able monitoring functions. The choice between these two implementations depends on

how ambiguous the monitoring functions are, which directly depends on the modelling
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errors and the level of noise observed in the sensors. This method was tested by both

simulation and experimental data analysis and satisfactory results have been achieved.

The second CM methodology was introduced to deal with a more realistic scenario,

where significant noise and modelling errors are present or fault parameters are not well

defined. It consists of working with fault clusters instead of computing a continuous

estimate of the fault parameters, so that the diagnosis objective is reduced to fitting an

unknown condition into one of the a priori clusters (or defining a new one, in case none

of the clusters is sufficiently similar). The features that characterise each cluster and

system condition are designed via PCA/PLS, which provides the statistical treatment

required for dealing with the variations of NOFRF computations due to presence of

noise in output measurements. The approach was successfully tested using experimental

data analysis.

These satisfactory results demonstrate that the new framework offers a solid back-

ground for developing CM solutions. Moreover, it is worth mentioning that, despite

some similarities with system identification approaches, important novelties were in-

volved in these developments, which make them fundamentally different from the sys-

tem identification methodology; these novelties are: (i) the use of black-box nonlinear

modelling and (ii) the use of NOFRFs-based features obtained via the new algorithms

proposed in chapter 4.
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Conclusion

In this research work, new methods were developed for the analysis of nonlinear systems

in the frequency domain. Then, the CM problem was studied under a new framework

where the time-domain modelling and the new methods based on frequency domain

analysis were applied. This approach was taken due to some difficulties observed in

basic CM methodologies, after comprehensively reviewing the recent advances in the

field, with a specific focus on model-based and process history techniques. What was

observed is that there is only a small number of approaches that are capable of dealing

with systems that exhibit nonlinear behaviour and the so called multiplicative faults,

which is the case of many practical situations.

In this context, it is generally difficult to extend some of the principal model-based

techniques such as parity equations and observers to this problem scenario, basically due

to the difficulties of dealing with nonlinear models. The system identification approach,

on the other hand, is a more suited method for dealing with these issues, since it is

focused in the isolation of faults by directly identifying the physical quantities associated

to them. Although the method does not find any significant difficulties in dealing with

nonlinearities, the necessity of establishing maps between fault parameters (usually

associated to CT models) and model parameters (associated to DT representations)
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imposes a severe limitation, because this procedure requires process knowledge that is

often very difficult to obtain.

A reasonable solution to this problem, at least for the linear cases, is to monitor

the system state via frequency domain parameters such as resonance characteristics,

bandwidth etc., because whether computed from DT or CT models, the values of such

parameters should be the same. Therefore, in order to extend this approach to nonlinear

systems, a new frequency domain formulation need to be considered.

It is well established that nonlinear system analysis can be carried out via the

Volterra series approach. This methodology can be applied to the so-called fading

memory systems, which comprises a wide class of nonlinear systems of practical in-

terest. Using the Volterra series approach, several FRF concepts from linear systems

theory can be generalised, e.g. , the Generalised Frequency Response Functions, al-

though identifying key system properties that can be useful for CM is not as simple

as in the linear case. This is due to the multidimensional nature of the GFRFs, which

brings several complications to both graphical and analytical techniques. For this rea-

son, alternative nonlinear FRF concepts, such as the NOFRFs have been proposed, in

the attempt to capture the system’s essential properties while maintaining the dimen-

sionality of the frequency features low.

Despite NOFRFs have been successfully applied to practical problems and theo-

retical analysis, there are still fundamental problems related to their computation and

analysis that required investigation, which was the main focus of this work. Throughout

the research, several significant advances in this area were obtained, which altogether

comprise a new framework for carrying out practical nonlinear systems analysis in the

frequency domain and the application of the analysis to engineering systems condition

monitoring/fault diagnosis. These results have then enabled the development of new

systematic approaches to CM which has been successfully verified by both simulation

and experimental studies.
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6.1 Contributions of this research

This research produced some significant contributions both in the field of nonlinear

system frequency analysis and CM. The overall results were satisfactory, although it is

worth emphasising some particular points:

(i) A new algorithm that allows extracting the system GFRFs in a recursive

form was proposed. The method was designed for dealing with very general

nonlinear systems that may possess complicated polynomial terms. For this

reason, it is very useful for practical situations where such models are obtained

from real data by using system identification techniques.

The method can be considered as an alternative to the well known harmonic

probing method. Though both approaches provide the same result, the al-

gorithm proposed in this thesis is more efficient and comprehensible, as the

implementation does not require recursive symbolic calculations and the for-

mulas are provided in their most compact form.

In addition to providing a more effective way of determining GFRFs, the

techniques used in deriving the new algorithm also provided an important

basis for the development of a new method for determination of NOFRFs.

(ii) A new method for determination of NOFRFs of nonlinear systems was pro-

posed. The method consists of extracting the system ALEs by using an algo-

rithm that follows the same philosophy of the new GFRF extraction algorithm,

computing the Volterra series components in the frequency domain and then

evaluating the NOFRFs from the results. The advantage of this new method

is that it allows to efficiently compute the Volterra functional components and

then, the corresponding NOFRFs up to arbitrary order, without recurring to

any multidimensional calculations. In addition, the method allows obtaining

the NOFRFs in two different forms: numerical and analytical. The numer-
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ical computation allows a straightforward and general way of obtaining the

NOFRFs for any input, although it is not very efficient if an unknown param-

eter is involved or the NOFRFs need to be recomputed at different scenarios.

For these situations, the analytical approach is more convenient, as it can pro-

vide great insight into how unknown parameters can affect the NOFRFs of

nonlinear systems under study.

The new method is a significant development in NOFRF based nonlinear sys-

tem analysis, since it provides a more efficient way to compute these functions.

Using the numerical approach, NOFRFs can be computed in numerical for-

mat for any arbitrary input. Because the core of these computations are the

system ALEs, which are recursive in nature, the computation of lower order

NOFRFs is not affected by their higher order counterparts, a problem that is

very likely to occur when available methods are used.

On the other hand, the analytical approach offers a new perspective over

NOFRF-based analysis. The symbolic nature of this approach allows the

NOFRF to be determined, in terms of some unknown parameters of interest.

This can be useful for situations in which the effect of these parameters on

the NOFRF based system representation are to be investigated, for example,

for selecting optimal NOFRF features for fault classification. In addition,

for particular types of inputs, the NOFRFs can be obtained in conventional

rational form which allows, in principle, to carry out the analysis in terms of

familiar concepts such as poles and residues, further reinforcing the similarities

between FRF analysis of linear systems and NOFRF-based nonlinear system

analysis.

(iii) The new framework for condition monitoring/fault diagnosis was established.

This is a time-domain modelling and frequency domain analysis based frame-

work, where the new GFRFs/NOFRFs evaluation methods are the very basis
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of the required frequency analysis. Under the new framework, new CM ap-

proaches based on monitoring functions and faults clusters were introduced.

These can be considered as hybrid approaches, as their basic principles are

founded in model-based and process history methods. The advantage, how-

ever, is that they were designed for dealing with practical contexts, where:

(a) the only a priori knowledge available for CM design is in the form of

input-output data and fault characterisation; (b) physical knowledge about

the process is limited; (c) fault features need to be extracted from nonlinear

black box models. The novelty of the methods is in the use of NOFRF mea-

surements, which can provide a good fault discerning scenario as demonstrated

in the case studies, one of which presented substantial difficulties due to noise

and experimental circumstances. However, it is worth mentioning that the

CM design is not always straightforward, as there are many aspects that need

to be considered for finding good features, such as the probing input, the order

of the NOFRFs, what measurements to use (magnitude, phase, etc.) and the

frequencies over which the NOFRFs are computed. Although it is true that

these elements provide additional freedom to the CM design, they also intro-

duce further complexity as they need to be constantly considered throughout

the design process.

6.2 Future work

In the present study, new nonlinear systems frequency analysis methods were developed

and based on these new methods, a new CM framework and associated strategies were

proposed. However, there are many subjects that require further investigation or are

interesting subjects for future studies. Some of these are as follows:

(i) Investigate the possibility of applying the new frequency analysis framework,
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in particular the analytical approach, to other nonlinear systems studies, such

as control design. Introducing feedback into NARX models produce new

NARX models, which, although more complicated in form, can be systemati-

cally analysed using the ALE extraction algorithm. The analytical framework

provides the background for analysing the influence of controller parameters

over the response, allowing a better prediction of the nonlinear distortions and

possibly tuning controller gains for alleviating their effects.

(ii) There are also several other fields in which the Volterra series approach is

applied, such as channel equalisation, echo cancelling and analysis of neuronal

signals, which can all be investigated using the new frequency framework.

(iii) The analytical approach also provides an interesting background for developing

a new CM scheme in which faults are formulated as unknown inputs, similar

to the parity equation approach. This is due to the possibility of exactly

computing each component of the response, for example, due to a step input

(sudden fault). In this case, it is possible to derive formulas in terms of the

step amplitude that might be able to aid the fault isolation procedure.

(iv) Another issue that requires a more in-depth investigation is how to tune

NOFRF-related parameters, such as frequency components and the probing

input. In the context of CM, this is an important problem as it directly influ-

ences the separability of fault clusters. It is conjectured that using nonlinear

optimization tools can yield a better tuning of these parameters, but this needs

to be more appropriately addressed.

These are a few possible routes that can be taken from the present state of this

research. Other possibilities include the optimisation of software routines for dealing

with problems associated with a more in-depth investigation of the NOFRF concept

and relevant techniques which, as demonstrated by the work of this thesis, will have a
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wide range of potential applications
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Appendix A

NARX models for case study 1

The following polynomial NARX models were identified for the impact oscillator for

several values of stiffness ratios. Models were identified using the forward orthogonal

estimator with structure selection based on the PRESS criterion.

y(t) = +8.3703 ⋅ 10−06 u(t − 1)

+1.6590 ⋅ 10+00 y(t − 1)

−9.3108 ⋅ 10−01 y(t − 2)

+3.8721 ⋅ 10−02 y(t − 1)u(t − 2)

+6.4094 ⋅ 10−03 y(t − 4)u(t − 5)

−8.5746 ⋅ 10−07 u(t − 1)u(t − 3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.80 (A.1)

y(t) = +8.3781 ⋅ 10−06 u(t − 1)

+1.6556 ⋅ 10+00 y(t − 1)

−9.3102 ⋅ 10−01 y(t − 2)

+3.3622 ⋅ 10−02 y(t − 1)u(t − 2)

+5.7585 ⋅ 10−03 y(t − 4)u(t − 5)

−6.6151 ⋅ 10−07 u(t − 1)u(t − 3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.82 (A.2)
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y(t) = +8.3821 ⋅ 10−06 u(t − 1)

+1.6523 ⋅ 10+00 y(t − 1)

−9.3100 ⋅ 10−01 y(t − 2)

+2.8813 ⋅ 10−02 y(t − 1)u(t − 2)

+5.0720 ⋅ 10−03 y(t − 4)u(t − 5)

−5.0445 ⋅ 10−07 u(t − 1)u(t − 3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.84 (A.3)

y(t) = +8.3834 ⋅ 10−06 u(t − 1)

+1.6490 ⋅ 10+00 y(t − 1)

−9.3099 ⋅ 10−01 y(t − 2)

+2.4281 ⋅ 10−02 y(t − 1)u(t − 2)

+4.3514 ⋅ 10−03 y(t − 4)u(t − 5)

−3.8194 ⋅ 10−07 u(t − 1)u(t − 3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.87 (A.4)

y(t) = +8.6427 ⋅ 10−06 u(t − 1)

+1.0791 ⋅ 10+00 y(t − 1)

−5.2461 ⋅ 10−01 y(t − 3)

+2.2964 ⋅ 10−02 y(t − 2)u(t − 3)

+2.2879 ⋅ 10−05 u(t − 1) y(t − 5)

+4.5229 ⋅ 10−06 u(t − 2)

+1.0033 ⋅ 10−02 y(t − 1)u(t − 1)

−6.5211 ⋅ 10−07 u(t − 1)u(t − 5)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.89 (A.5)
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y(t) = +8.6459 ⋅ 10−06 u(t − 1)

+1.0747 ⋅ 10+00 y(t − 1)

−5.2566 ⋅ 10−01 y(t − 3)

+1.8164 ⋅ 10−02 y(t − 2)u(t − 3)

+4.7072 ⋅ 10−04 u(t − 1) y(t − 5)

+4.5236 ⋅ 10−06 u(t − 2)

+8.3476 ⋅ 10−03 y(t − 1)u(t − 1)

−5.3680 ⋅ 10−07 u(t − 1)u(t − 5)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.91 (A.6)

y(t) = +8.5119 ⋅ 10−06 u(t − 1)

+1.0709 ⋅ 10+00 y(t − 1)

−5.2686 ⋅ 10−01 y(t − 3)

+1.3663 ⋅ 10−02 y(t − 1)u(t − 3)

−6.4812 ⋅ 10−08 u(t − 5)

−6.1215 ⋅ 10−07 u(t − 1)u(t − 5)

+4.0332 ⋅ 10−07 u(t − 3).2

+4.6296 ⋅ 10−06 u(t − 2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.93 (A.7)

y(t) = +8.5705 ⋅ 10−06 u(t − 1)

+1.6355 ⋅ 10+00 y(t − 1)

−9.2865 ⋅ 10−01 y(t − 2)

+6.1344 ⋅ 10−03 y(t − 1)u(t − 2)

+4.8693 ⋅ 10−05 y(t − 4)u(t − 5)

−2.9044 ⋅ 10−07 u(t − 2)

−7.7364 ⋅ 10−08 u(t − 1)u(t − 4)

+3.4722 ⋅ 10−03 y(t − 3)u(t − 3)

−2.1788 ⋅ 10−07 u(t − 2)u(t − 5)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.96 (A.8)
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y(t) = +8.8783 ⋅ 10−06 u(t − 1)

+1.0634 ⋅ 10+00 y(t − 1)

−5.2897 ⋅ 10−01 y(t − 3)

+1.1440 ⋅ 10−07 u(t − 5)

+5.4534 ⋅ 10−03 y(t − 1)u(t − 2)

+1.8209 ⋅ 10−03 y(t − 3)u(t − 5)

+4.1658 ⋅ 10−06 u(t − 2)

−5.5919 ⋅ 10−08 u(t − 1)u(t − 3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 0.98 (A.9)

y(t) = +1.0603 ⋅ 10+00 y(t − 1)

−5.3216 ⋅ 10−01 y(t − 3)

+1.0570 ⋅ 10−05 u(t − 1)

+3.3237 ⋅ 10−06 u(t − 3)

−8.9887 ⋅ 10−08 u(t − 5)

−1.4714 ⋅ 10−09 u(t − 1)u(t − 2)

−5.1091 ⋅ 10−07 u(t − 4)

−7.3380 ⋅ 10−10 u(t − 5).2

+1.8035 ⋅ 10−09 u(t − 2).2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β = 1.00 (A.10)
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Appendix B

Description of sinusoidal

NOFRFs for case study 1

Sinusoidal NOFRFs up to second order were computed in analytical form for the impact

oscillator. The general expression of the linear FRF is described as:

G1(ejωh) =
B1(ejωh)
A1(ejωh)

(B.1)

where the coefficients for each β are described as:

β = 0.80

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.3703 ⋅ 10−6 p

A1(ejωh) = p2 − 1.6590p + 0.9311
(B.2)

β = 0.82

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.3781 ⋅ 10−6 p

A1(ejωh) = p2 − 1.6556p + 0.9310
(B.3)

β = 0.84

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.3821 ⋅ 10−6 p

A1(ejωh) = p2 − 1.6523p + 0.9310
(B.4)

β = 0.87

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.3834 ⋅ 10−6 p

A1(ejωh) = p2 − 1.6490p + 0.9310
(B.5)
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β = 0.89

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.6427 ⋅ 10−6 (p2 + 0.5233p)

A1(ejωh) = p3 − 1.0791p2 + 0.5246
(B.6)

β = 0.91

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.6459 ⋅ 10−6 (p2 + 0.5232p)

A1(ejωh) = p3 − 1.0747p2 + 0.5257
(B.7)

β = 0.93

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.5119 ⋅ 10−6 (p4 + 0.5439p3 − 0.0076 )

A1(ejωh) = p5 − 1.0709p4 + 0.5269p2
(B.8)

β = 0.96

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.5705 ⋅ 10−6 (p − 0.0339 )

A1(ejωh) = p2 − 1.6355p + 0.9286
(B.9)

β = 0.98

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 8.8783 ⋅ 10−6 (p4 + 0.4692p3 + 0.0129 )

A1(ejωh) = p5 − 1.0634p4 + 0.5290p2
(B.10)

β = 1.00

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(ejωh) = 1.0570 ⋅ 10−5 (p4 + 0.3145p2 − 0.0483p − 0.0085 )

A1(ejωh) = p5 − 1.0603p4 + 0.5322p2
(B.11)

where for convenience we used p = ejωh

For the second order NOFRF, the general expression is also described as:

G2(ejωh) =
B2(ejωh)
A2(ejωh)

(B.12)

where the coefficients are now described as:

β = 0.80

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 1.4225 ⋅ 10−6 (−0.3749p11 + p10 − 0.5612p9 + 0.0377p5)

A2(ejωh) = p15 − 1.6590p14 − 0.7279p13 + 2.7522p12 − 0.6136p11

−1.5446p10 + 0.8669p9

(B.13)

β = 0.82

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 1.0952 ⋅ 10−6 (−0.3468p11 + p10 − 0.5623p9 + 0.0441p5)

A2(ejωh) = p15 − 1.6556p14 − 0.7246p13 + 2.7411p12 − 0.6104p11

−1.5414p10 + 0.8668p9

(B.14)
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β = 0.84

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 8.3351 ⋅ 10−7 (−0.3155p11 + p10 − 0.5634p9 + 0.0510p5)

A2(ejωh) = p15 − 1.6523p14 − 0.7213p13 + 2.7302p12 − 0.6073p11

−1.5383p10 + 0.8668p9

(B.15)

β = 0.87

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 6.2983 ⋅ 10−7 (−0.2832p11 + p10 − 0.5646p9 + 0.0579p5)

A2(ejωh) = p15 − 1.6490p14 − 0.7180p13 + 2.7193p12 − 0.6043p11

−1.5352p10 + 0.8667p9

(B.16)

β = 0.89

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 8.0776 ⋅ 10−7 (+0.1073p12 + 0.0562p11 − 0.5616p9 + p8

+0.0001p7 − 0.4235p6)

A2(ejωh) = p15 − 1.0791p14 − 1.0791p13 + 1.6891p12 − 0.5661p10

+0.5246p9 − 0.5661p8 + 0.2752p6

(B.17)

β = 0.91

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 6.6312 ⋅ 10−7 (+0.1088p12 + 0.0569p11 − 0.5727p9 + p8

+0.0032p7 − 0.4255p6)

A2(ejωh) = p15 − 1.0747p14 − 1.0747p13 + 1.6806p12 − 0.5649p10

+0.5257p9 − 0.5649p8 + 0.2763p6

(B.18)

β = 0.93

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 2.2363 ⋅ 10−7 (+0.5200p10 − 0.6510p9 + p8 − 0.4960p6)

A2(ejωh) = p15 − 1.0709p14 − 1.0709p13 + 1.6736p12 − 0.5642p10

+0.5269p9 − 0.5642p8 + 0.2776p6

(B.19)

β = 0.96

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 3.5533 ⋅ 10−7 (+0.1480p11 − 0.2227p10 + 0.3561p9

−0.7316p8 + p7 − 0.5694p6 + 0.0012p5 − 0.0000p4)

A2(ejωh) = p15 − 1.6355p14 − 0.7069p13 + 2.6749p12 − 0.5902p11

−1.5188p10 + 0.8624p9

(B.20)
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β = 0.98

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B2(ejωh) = 8.2181 ⋅ 10−8 (−0.0913p15 + p14 − 0.3599p12 + 0.0076p11

+0.1967p10 + 0.0923p9 + 0.0025p6)

A2(ejωh) = p19 − 1.0634p18 − 1.0634p17 + 1.6597p16 − 0.5625p14

+0.5290p13 − 0.5625p12 + 0.2798p10

(B.21)

β = 1.00

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(ejωh) = 1.8035 ⋅ 10−9 (−0.8159p13 + p12 − 0.4069p6)

A2(ejωh) = p16 − 1.0603p14 + 0.5322p10
(B.22)

where p = ejωh .
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Appendix C

Description of impulsive

NOFRFs for case study 1

In Section (), the NOFRFs up to second order were analytically derived for a pure

impulse input. The analytical formulas for G1(z) and G2(z), from which the NOFRFs

are computed later, are described as follows.

For the linear FRF:

G1(z) =
B1(z)
A1(z)

(C.1)

where the polynomials B(z) and A2(z) are, for each analysed β, described as:

β = 0.80

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.3703 ⋅ 10−6 z

A1(z) = z2 − 1.6590 z + 0.9311
(C.2)

β = 0.82

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.3781 ⋅ 10−6 z

A1(z) = z2 − 1.6556 z + 0.9310
(C.3)

β = 0.84

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.3821 ⋅ 10−6 z

A1(z) = z2 − 1.6523 z + 0.9310
(C.4)

β = 0.87

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.3834 ⋅ 10−6 z

A1(z) = z2 − 1.6490 z + 0.9310
(C.5)
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β = 0.89

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.6427 ⋅ 10−6 ( z2 + 0.5233 z)

A1(z) = z3 − 1.0791 z2 + 0.5246
(C.6)

β = 0.91

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.6459 ⋅ 10−6 ( z2 + 0.5232 z)

A1(z) = z3 − 1.0747 z2 + 0.5257
(C.7)

β = 0.93

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.5119 ⋅ 10−6 ( z4 + 0.5439 z3 − 0.0076 )

A1(z) = z5 − 1.0709 z4 + 0.5269 z2
(C.8)

β = 0.96

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.5705 ⋅ 10−6 ( z − 0.0339 )

A1(z) = z2 − 1.6355 z + 0.9286
(C.9)

β = 0.98

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 8.8783 ⋅ 10−6 ( z4 + 0.4692 z3 + 0.0129 )

A1(z) = z5 − 1.0634 z4 + 0.5290 z2
(C.10)

β = 1.00

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B1(z) = 1.0570 ⋅ 10−5 ( z4 + 0.3145 z2 − 0.0483 z − 0.0085 )

A1(z) = z5 − 1.0603 z4 + 0.5322 z2
(C.11)

The second order NOFRFs are described by a similar formula:

G2(z) =
B2(z)
A2(z)

(C.12)

where B2(z) and A2(z) are now described, for each β, as:

β = 0.80

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 3.2411 ⋅ 10−7 ( z3 + 0.1655 )

A2(z) = z5 − 1.6590 z4 + 0.9311 z3
(C.13)

β = 0.82

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 2.8168 ⋅ 10−7 ( z3 + 0.1713 )

A2(z) = z5 − 1.6556 z4 + 0.9310 z3
(C.14)

β = 0.84

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 2.4151 ⋅ 10−7 ( z3 + 0.1760 )

A2(z) = z5 − 1.6523 z4 + 0.9310 z3
(C.15)

β = 0.87

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 2.0356 ⋅ 10−7 ( z3 + 0.1792 )

A2(z) = z5 − 1.6490 z4 + 0.9310 z3
(C.16)
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β = 0.89

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 1.9847 ⋅ 10−7

A2(z) = z3 − 1.0791 z2 + 0.5246
(C.17)

β = 0.91

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 1.5704 ⋅ 10−7

A2(z) = z3 − 1.0747 z2 + 0.5257
(C.18)

β = 0.93

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 5.9111 ⋅ 10−7

A2(z) = z3 − 1.0709 z2 + 0.5269
(C.19)

β = 0.96

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 5.2575 ⋅ 10−8

A2(z) = z2 − 1.6355 z + 0.9286
(C.20)

β = 0.98

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 4.8417 ⋅ 10−8 ( z3 + 0.5117 )

A2(z) = z5 − 1.0634 z4 + 0.5290 z2
(C.21)

β = 1.00

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B2(z) = 0.0000

A2(z) = 1
(C.22)
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Appendix D

NARX models for case study 2

In case study 2, a NARX model was identified for each stiffness ratio. The models are

described as follows:

For β = 19.01

y(t) ⋅ 10−4 = 0.0017u(t − 3) + 0.0128u(t − 2)u(t − 3) + 0.0002u(t − 2)

− 0.0129u(t − 2)2 + 0.4722u(t − 2)2 u(t − 3) − 0.0039u(t − 3)2

+ 0.0225u(t − 3)3 + 0.4022u(t − 1)u(t − 2)2 + 0.0152u(t − 1)u(t − 2)

− 0.2714u(t − 2)u(t − 3)2 − 0.5640u(t − 1)u(t − 2)u(t − 3) − 0.0010u(t − 1)

− 0.8994u(t − 2)u(t − 3)3 − 0.0006u(t − 1)2 − 0.2393u(t − 2)3

+ 0.4747u(t − 2)3 u(t − 3) + 0.2250u(t − 3)4 − 0.2115u(t − 1)2 u(t − 2)

+ 0.2332u(t − 1)u(t − 3)2 − 1.2259u(t − 1)u(t − 2)2 u(t − 3)

+ 0.9048u(t − 2)2 u(t − 3)2 + 1.7593u(t − 1)u(t − 2)3 − 0.8672u(t − 2)4

− 1.0231u(t − 1)2 u(t − 2)2 + 0.0515u(t − 1)3 + 0.2319u(t − 1)u(t − 3)3

− 0.0106u(t − 1)u(t − 3) + 0.1010u(t − 1)2 u(t − 3)

+ 0.0625u(t − 1)3 u(t − 3) + 0.4446u(t − 1)2 u(t − 2)u(t − 3)

− 0.2405u(t − 1)u(t − 2)u(t − 3)2 + 0.1473u(t − 1)3 u(t − 2)
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− 0.0059u(t − 1)4 + 0.0129u(t − 1)2 u(t − 3)2 (D.1)

For β = 20.92

y(t) ⋅ 10−5 = +0.0006u(t − 2)u(t − 3) − 0.0003u(t − 3)2 − 0.0012u(t − 2)2

+ 0.0024u(t − 1)u(t − 2) − 0.0043u(t − 2)u(t − 3)2

+ 0.0143u(t − 2)2 u(t − 3) − 0.0000u(t − 2) + 0.0001u(t − 3)

− 0.0057u(t − 3)3 − 0.0372u(t − 1)u(t − 2)u(t − 3)

+ 0.7744u(t − 2)u(t − 3)3 + 0.0112u(t − 1)u(t − 2)2

− 0.0016u(t − 1)u(t − 3) + 0.0242u(t − 1)u(t − 3)2 − 0.0270u(t − 3)4

− 0.0000u(t − 1) − 2.4171u(t − 2)4 + 4.9550u(t − 1)u(t − 2)3

+ 4.9258u(t − 2)3 u(t − 3) − 8.5613u(t − 1)u(t − 2)2 u(t − 3)

− 0.0038u(t − 2)3 + 0.7320u(t − 1)3 u(t − 2) − 3.3208u(t − 1)2 u(t − 2)2

− 0.6349u(t − 1)u(t − 3)3 + 0.0000u(t − 1)2 − 0.6502u(t − 1)3 u(t − 3)

+ 4.5149u(t − 1)2 u(t − 2)u(t − 3) − 0.0252u(t − 1)4

+ 4.2867u(t − 1)u(t − 2)u(t − 3)2 − 1.2910u(t − 1)2 u(t − 3)2

− 3.2601u(t − 2)2 u(t − 3)2 + 0.0004u(t − 1)3 (D.2)

For β = 22.14

y(t) ⋅ 10−5 = +0.0006u(t − 2)u(t − 3) + 0.0018u(t − 1)u(t − 2) + 0.0002u(t − 3)

+ 0.1667u(t − 2)2 u(t − 3) + 0.0001u(t − 3)2

+ 0.0130u(t − 3)3 − 0.0000u(t − 2) + 0.1426u(t − 1)u(t − 2)2

− 0.0894u(t − 2)u(t − 3)2 − 0.0009u(t − 2)2 − 0.1001u(t − 2)3

− 0.3324u(t − 2)u(t − 3)3 − 0.0016u(t − 1)u(t − 3) − 0.0001u(t − 1)

− 0.1653u(t − 1)u(t − 2)u(t − 3) − 0.7755u(t − 2)4

+ 0.0732u(t − 3)4 − 0.0000u(t − 1)2 + 0.0521u(t − 1)u(t − 3)2
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+ 0.6833u(t − 2)3 u(t − 3) + 1.5274u(t − 1)u(t − 2)3

+ 0.0069u(t − 1)3 u(t − 3) − 0.9169u(t − 1)2 u(t − 2)2

+ 0.0106u(t − 1)3 + 0.1507u(t − 1)u(t − 3)3

− 1.1412u(t − 1)u(t − 2)2 u(t − 3) + 0.1378u(t − 1)3 u(t − 2)

+ 0.4421u(t − 1)2 u(t − 2)u(t − 3) + 0.0123u(t − 1)4

− 0.0643u(t − 1)2 u(t − 2) + 0.0102u(t − 1)2 u(t − 3)2

+ 0.0336u(t − 1)2 u(t − 3) + 0.2097u(t − 2)2 u(t − 3)2

− 0.0875u(t − 1)u(t − 2)u(t − 3)2 (D.3)

For β = 24.36

y(t) ⋅ 10−5 = +0.0008u(t − 2)u(t − 3) − 0.0017u(t − 2)2 − 0.0003u(t − 3)2

+ 0.0033u(t − 1)u(t − 2) + 0.0592u(t − 2)u(t − 3)2

− 0.0025u(t − 1)u(t − 3) − 0.0733u(t − 2)2 u(t − 3) − 0.0000u(t − 2)

+ 0.0174u(t − 2)3 + 0.7037u(t − 2)u(t − 3)3 − 0.0182u(t − 3)3

+ 7.8152u(t − 1)u(t − 2)2 u(t − 3) − 0.0037u(t − 1)u(t − 2)2

− 2.6240u(t − 2)3 u(t − 3) + 0.0513u(t − 1)u(t − 2)u(t − 3)

+ 0.0001u(t − 3) − 0.0114u(t − 1)u(t − 3)2

− 4.8467u(t − 1)2 u(t − 2)u(t − 3) − 0.2222u(t − 3)4

+ 0.0066u(t − 1)3 − 1.2366u(t − 1)3 u(t − 2)

+ 1.2091u(t − 1)2 u(t − 3)2 + 0.0003u(t − 1)2 + 1.9058u(t − 2)4

+ 0.3290u(t − 1)u(t − 3)3 − 0.0206u(t − 1)2 u(t − 3)

− 0.0085u(t − 1)2 u(t − 2) + 0.3813u(t − 2)2 u(t − 3)2

+ 4.1938u(t − 1)2 u(t − 2)2 − 5.2808u(t − 1)u(t − 2)3

+ 0.9327u(t − 1)3 u(t − 3) + 0.0631u(t − 1)4 − 0.0000u(t − 1)

− 3.3217u(t − 1)u(t − 2)u(t − 3)2 (D.4)
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For β = 24.51

y(t) ⋅ 10−5 = +0.0099u(t − 2)u(t − 3) − 0.0047u(t − 2)2 − 0.3772u(t − 2)2 u(t − 3)

− 0.0034u(t − 3)2 − 0.0001u(t − 2) − 0.0641u(t − 3)3 + 0.1574u(t − 2)3

+ 0.2708u(t − 2)u(t − 3)2 + 0.0002u(t − 3) − 2.5787u(t − 2)u(t − 3)3

− 0.0054u(t − 1)u(t − 3) + 0.0029u(t − 1)u(t − 2)

+ 0.2962u(t − 1)u(t − 2)u(t − 3) − 0.1658u(t − 1)u(t − 2)2

− 3.1651u(t − 2)3 u(t − 3) + 0.5284u(t − 3)4 − 0.0008u(t − 1)4

− 0.1046u(t − 1)u(t − 3)2 − 0.0625u(t − 1)2 u(t − 3)

− 0.0027u(t − 1)3 u(t − 3) − 0.0046u(t − 1)2 u(t − 2)2

− 0.0158u(t − 1)2 u(t − 2)u(t − 3) − 0.0000u(t − 1) − 0.4612u(t − 1)u(t − 2)3

− 0.0179u(t − 1)2 u(t − 3)2 + 0.6660u(t − 1)u(t − 3)3

+ 0.0510u(t − 1)2 u(t − 2) + 0.7670u(t − 2)4 + 0.0006u(t − 1)2

− 0.0017u(t − 1)3 − 1.8407u(t − 1)u(t − 2)u(t − 3)2

+ 4.4011u(t − 2)2 u(t − 3)2 + 1.7253u(t − 1)u(t − 2)2 u(t − 3) (D.5)

For β = 26.96

y(t) ⋅ 10−3 = +0.0070u(t − 3) + 0.0031u(t − 2) − 2.3120u(t − 2)u(t − 3)2

− 0.2212u(t − 2)u(t − 3) + 0.1064u(t − 3)2 − 0.0072u(t − 1)

+ 5.8013u(t − 2)u(t − 3)3 − 2.0600u(t − 3)4

+ 8.5428u(t − 2)3 u(t − 3) + 1.8171u(t − 1)u(t − 2)2 − 0.2177u(t − 1)u(t − 2)

+ 0.1972u(t − 2)2 + 0.8885u(t − 1)u(t − 3)2

+ 0.0552u(t − 1)2 − 0.2054u(t − 1)2 u(t − 3)2 + 1.2858u(t − 1)u(t − 3)3

+ 0.0322u(t − 1)3 − 1.5084u(t − 2)3

− 9.4109u(t − 2)2 u(t − 3)2 + 0.6865u(t − 1)2 u(t − 3)

− 4.2096u(t − 1)2 u(t − 2)u(t − 3) + 0.4672u(t − 1)2 u(t − 2)2
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+ 0.0886u(t − 1)u(t − 3) + 3.2793u(t − 2)2 u(t − 3)

− 2.6453u(t − 1)u(t − 2)u(t − 3) − 4.2281u(t − 2)4 + 2.6375u(t − 1)u(t − 2)3

+ 1.4089u(t − 1)3 u(t − 3) − 0.7306u(t − 1)2 u(t − 2)

+ 0.5016u(t − 3)3 − 0.0865u(t − 1)3 u(t − 2) (D.6)

For β = 28.22

y(t) ⋅ 10−5 = −0.0037u(t − 2)u(t − 3) + 0.0044u(t − 2)2 + 0.0001u(t − 3)

+ 0.0010u(t − 3)2 + 0.0000u(t − 2)

− 0.0611u(t − 2)u(t − 3)2 + 0.0992u(t − 2)2 u(t − 3)

− 0.0497u(t − 2)3 − 0.0052u(t − 1)u(t − 2)

+ 0.0099u(t − 3)3 + 4.7870u(t − 2)3 u(t − 3)

+ 0.0521u(t − 1)u(t − 2)2 + 2.8289u(t − 2)u(t − 3)3

+ 0.0010u(t − 1)u(t − 3) + 0.0027u(t − 1)2

− 5.2450u(t − 1)u(t − 2)2 u(t − 3) − 1.2416u(t − 2)4

− 0.0001u(t − 1) − 0.4821u(t − 3)4

− 5.8287u(t − 2)2 u(t − 3)2 + 0.0327u(t − 1)u(t − 3)2

− 0.0075u(t − 1)4 + 1.5049u(t − 1)u(t − 2)3

− 0.0117u(t − 1)3 u(t − 2) + 4.7475u(t − 1)u(t − 2)u(t − 3)2

− 0.4646u(t − 1)2 u(t − 2)2 − 0.0536u(t − 1)3 u(t − 3)

− 1.2113u(t − 1)u(t − 3)3 − 0.0806u(t − 1)u(t − 2)u(t − 3)

+ 0.0086u(t − 1)2 u(t − 3) + 1.6039u(t − 1)2 u(t − 2)u(t − 3)

− 0.0121u(t − 1)2 u(t − 2) − 0.9268u(t − 1)2 u(t − 3)2

+ 0.0009u(t − 1)3 (D.7)
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For β = 31.24

y(t) ⋅ 10−5 = −0.0046u(t − 2)u(t − 3) + 0.0037u(t − 2)2 + 0.0011u(t − 3)2

+ 0.0241u(t − 2)u(t − 3)2 − 0.0302u(t − 2)2 u(t − 3)

+ 0.2369u(t − 2)u(t − 3)3 + 0.0000u(t − 2) − 0.0028u(t − 1)u(t − 2)

+ 0.0015u(t − 1)u(t − 3) + 0.0120u(t − 2)3

+ 0.0477u(t − 1)u(t − 2)u(t − 3) − 0.0396u(t − 1)u(t − 2)2

− 0.0084u(t − 3)3 − 0.0100u(t − 3)4 + 0.0010u(t − 1)2

+ 1.3070u(t − 2)3 u(t − 3) − 0.0233u(t − 1)2 u(t − 3)

− 0.9120u(t − 2)2 u(t − 3)2 + 0.2993u(t − 1)u(t − 2)u(t − 3)2

+ 0.0326u(t − 1)2 u(t − 3)2 + 0.0001u(t − 3) − 0.0001u(t − 1)

− 0.6109u(t − 2)4 − 0.0189u(t − 1)3 u(t − 2) − 0.0069u(t − 1)3

− 0.1062u(t − 1)2 u(t − 2)2 − 0.0129u(t − 1)u(t − 3)3

+ 0.0335u(t − 1)2 u(t − 2) − 0.0093u(t − 1)u(t − 3)2

+ 0.5695u(t − 1)u(t − 2)3 − 0.8752u(t − 1)u(t − 2)2 u(t − 3)

+ 0.0808u(t − 1)2 u(t − 2)u(t − 3) + 0.0217u(t − 1)3 u(t − 3)

− 0.0007u(t − 1)4 (D.8)

For β = 32.69

y(t) ⋅ 10−5 = +0.0049u(t − 2)u(t − 3) − 0.0033u(t − 2)2 − 0.0018u(t − 3)2

+ 0.0125u(t − 2)u(t − 3)2 − 0.0000u(t − 2)

+ 0.0020u(t − 1)u(t − 2) − 0.0137u(t − 2)2 u(t − 3) + 0.4312u(t − 2)u(t − 3)3

− 0.0047u(t − 1)u(t − 2)2 + 1.2730u(t − 2)3 u(t − 3)

+ 0.0038u(t − 2)3 + 0.0006u(t − 1)2 − 0.0526u(t − 3)4

− 1.1333u(t − 2)2 u(t − 3)2 + 0.0001u(t − 3) − 0.0025u(t − 1)u(t − 3)

− 0.0027u(t − 1)u(t − 3)2 − 0.0043u(t − 3)3
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− 1.5486u(t − 1)u(t − 2)2 u(t − 3) + 0.8788u(t − 1)u(t − 2)3

+ 0.0114u(t − 1)u(t − 2)u(t − 3) − 0.2351u(t − 1)u(t − 3)3

− 0.5669u(t − 2)4 + 1.0546u(t − 1)u(t − 2)u(t − 3)2

+ 0.4017u(t − 1)2 u(t − 2)u(t − 3) + 0.0018u(t − 1)4

+ 0.0092u(t − 1)3 u(t − 2) − 0.3605u(t − 1)2 u(t − 2)2

+ 0.0367u(t − 1)3 u(t − 3) − 0.0000u(t − 1) − 0.1896u(t − 1)2 u(t − 3)2

+ 0.0020u(t − 1)2 u(t − 2) − 0.0053u(t − 1)2 u(t − 3)

+ 0.0006u(t − 1)3 (D.9)

For β = 34.72

y(t) ⋅ 10−4 = +0.0031u(t − 2)u(t − 3) − 0.0053u(t − 2)2 − 0.0047u(t − 3)2

− 0.5489u(t − 2)u(t − 3)2 + 0.0121u(t − 1)u(t − 2)

+ 0.0001u(t − 2) + 1.0022u(t − 2)2 u(t − 3) + 0.9839u(t − 1)u(t − 2)2

− 1.9246u(t − 2)3 u(t − 3) + 0.0702u(t − 3)4

− 1.0977u(t − 1)u(t − 2)u(t − 3) − 0.2055u(t − 2)u(t − 3)3

+ 0.0880u(t − 3)3 + 1.1699u(t − 2)2 u(t − 3)2

+ 0.4812u(t − 1)u(t − 2)2 u(t − 3) + 0.0006u(t − 3) + 0.0007u(t − 1)2

− 0.0069u(t − 1)u(t − 3) − 0.0892u(t − 1)u(t − 2)u(t − 3)2

− 0.0005u(t − 1) + 0.1008u(t − 1)3 + 0.9197u(t − 2)4

− 1.7901u(t − 1)2 u(t − 2)2 + 0.3388u(t − 1)u(t − 3)2 − 0.6066u(t − 2)3

− 0.5206u(t − 1)2 u(t − 2)

+ 1.4171u(t − 1)2 u(t − 2)u(t − 3) − 0.2254u(t − 1)u(t − 3)3 − 0.2935u(t − 1)4

+ 0.2585u(t − 1)2 u(t − 3) + 1.2612u(t − 1)3 u(t − 2)

− 0.2985u(t − 1)2 u(t − 3)2 − 0.4868u(t − 1)3 u(t − 3) (D.10)
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For β = 36.19

y(t) ⋅ 10−5 = +0.0007u(t − 2)u(t − 3) − 0.0013u(t − 2)2 − 0.0005u(t − 3)2

+ 0.0249u(t − 2)2 u(t − 3) + 0.0000u(t − 3)

+ 0.0015u(t − 1)u(t − 2) + 0.6199u(t − 2)3 u(t − 3)

− 1.3227u(t − 1)u(t − 2)2 u(t − 3) − 0.0600u(t − 3)4 − 0.0008u(t − 1)u(t − 3)

+ 0.4314u(t − 2)u(t − 3)3 + 0.0000u(t − 2)

− 0.0276u(t − 1)u(t − 2)u(t − 3) + 0.0002u(t − 1)2 + 0.0351u(t − 1)u(t − 2)2

− 0.8944u(t − 2)2 u(t − 3)2 − 0.0082u(t − 2)u(t − 3)2

− 0.0774u(t − 1)3 u(t − 2)

+ 1.2188u(t − 1)u(t − 2)u(t − 3)2 − 0.0218u(t − 2)3 − 0.3095u(t − 1)u(t − 3)3

− 0.0185u(t − 1)2 u(t − 2) + 0.0045u(t − 1)2 u(t − 3)

+ 0.7348u(t − 1)2 u(t − 2)u(t − 3) + 0.0187u(t − 1)4

+ 0.0908u(t − 1)u(t − 2)3 − 0.3537u(t − 1)2 u(t − 3)2 − 0.0000u(t − 1)

− 0.0962u(t − 1)3 u(t − 3) + 0.0042u(t − 1)3

+ 0.0073u(t − 1)u(t − 3)2 (D.11)

For β = 38.30

y(t) ⋅ 10−5 = +0.0226u(t − 2)u(t − 3) − 0.0196u(t − 2)2 − 0.0059u(t − 3)2

+ 0.0946u(t − 2)u(t − 3)2 + 0.0000u(t − 3)

− 4.5942u(t − 2)3 u(t − 3) + 0.3743u(t − 3)4

+ 0.1188u(t − 2)3 − 2.2016u(t − 2)u(t − 3)3

+ 4.7441u(t − 2)2 u(t − 3)2 − 0.0020u(t − 1)2

− 0.0122u(t − 1)u(t − 3) + 2.3552u(t − 1)u(t − 2)2 u(t − 3)

− 1.1387u(t − 1)u(t − 2)3 − 0.1825u(t − 2)2 u(t − 3)

+ 0.0256u(t − 1)2 u(t − 2)2 + 0.0172u(t − 1)u(t − 2)
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+ 0.0065u(t − 1)3 u(t − 2) + 1.6944u(t − 2)4

+ 0.0022u(t − 1)4 + 0.4947u(t − 1)u(t − 3)3

− 0.0369u(t − 1)u(t − 3)2 + 0.0965u(t − 1)2 u(t − 2)u(t − 3)

− 0.0000u(t − 2) − 1.7380u(t − 1)u(t − 2)u(t − 3)2

+ 0.0601u(t − 1)2 u(t − 2) + 0.0000u(t − 1)

− 0.1492u(t − 1)u(t − 2)2 − 0.0314u(t − 1)2 u(t − 3)

− 0.0030u(t − 1)3 u(t − 3) − 0.0169u(t − 3)3

− 0.0069u(t − 1)3 − 0.1186u(t − 1)2 u(t − 3)2

+ 0.1503u(t − 1)u(t − 2)u(t − 3) (D.12)
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Appendix E

PLS score prediction for case

study 2

The PLS feature extraction applied to case study 2 offers an additional result, which is

an estimate of the class scores based or the partition matrix (5.33). These predictions

are computed as a simple affine function of the original NOFRF features. The predic-

tions are shown in Table E.1. The numbers in bold represent the highest score for each

case.

Table E.1 shows class score predictions, which can be used as classification criteria,

although it is not as efficient as the region analysis presented in Section 5.5. This is

due to the simplicity of the PLS linear formulation and the small number of fault cases.

In order to use the predicted scores as a classification criterion, a maximum score

principle can be applied, in which each point is assigned to the class for which the

score is highest. For example, the first case (row) β = 20.92 fits into cluster 2, since the

highest score is the second one. This approach avoids problems related to interpreting

the predicted scores, which are considerably different from the binary values of the

partition matrix (5.33).

The cluster assignment according to this maximum principle is shown in the second
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Table E.1: Predicted class scores (PLS)

β Cluster 1 Cluster 2 Cluster 3 Max. principle True cluster

20.9200 0.1373 0.7350 0.1277 2 2

22.1400 -0.1553 1.1723 -0.0171 2 2

24.3600 0.1886 0.5243 0.2872 2 2

24.5100 0.5177 0.5158 -0.0334 1 2

26.9600 0.4515 0.2271 0.3214 1 1

28.2200 0.6072 0.1937 0.1991 1 1

31.2400 0.6349 0.2674 0.0976 1 1

32.6900 0.1623 0.4255 0.4122 2 3

34.7200 0.3669 0.2092 0.4239 3 3

36.1900 -0.2769 0.0519 1.2250 3 3

38.3000 0.3658 -0.3222 0.9564 3 3

19.0100 -1.0974 2.1173 -0.0199 2 2

last column of Table E.1. In order to check these results, the assignments are compared

to the original cluster configuration (established before carrying out PLS), which is

shown in the last column of Table E.1. It can be seen that cases β = 24.51 and β = 32.69

were incorrectly assigned. Notice, however, that this error occurs by very small margins:

the score error for β = 24.51 is only 0.0019, while for β = 32.69 the error is 0.0133. This

can be considered as part of the limitations of such a simple classifier, which could be

possibly amended by using more training cases or by designing a classifier with more

degrees of freedom.
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