Computer Methods for Identifying Significant Features in Protein Sequences

David Neil Perkins

Submitted in accordance with the requirements for the degree of Doctor of Philosophy

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

> The University of Leeds Department of Biochemistry and Molecular Biology September 1994

BOOK HAS BEEN WATER DAMAGED

Abstract

The research described in this thesis can be easily and conveniently separated under two broad headings, the definition of discriminating motif sets for protein families and software development. In this instance the phrase motif set refers to a combination of features in the amino acid sequences of a family of proteins that is diagnostic of family membership and therefore has predictive value in identifying new family members.

Under the first heading, a number of sets of motifs are described in detail while a number of others are included as an appendix in a format compatible with the PRINTS motif database. All these studies involved the multiple alignment of protein sequences extracted from the database and the use of database scanning techniques. From these motif sets it has been possible to identify new members of protein families and they may also supply valuable information for the exploration of the possible function and structure of the protein families.

A number of sequence analysis software packages are also described. They include both novel software and also the reworking of old algorithms with additions to make them more efficient, more useful for modern requirements and to fix existing problems. In the former category, new sequence alignment programs have been developed which integrate structural information (if any is available) with sequence and physicochemical properties. A number of programs are also discussed that allow the display and manipulation of a variety of sequence parameters, such as hydropathy and positional variability, which are very useful tools for motif definition. All these programs are written in C and the majority make use of the X/Motif programming libraries, where appropriate, and are available on a variety of different hardware platforms.

The ADSP system has also been rewritten to make it more efficient and it has been ported to the UNIX operating system to make it more accessible to a larger number of users.

Acknowledgements

I should like to thank my supervisors, Prof. A.C.T. North and Prof. J.B.C. Findlay, for allowing me to continue at my own pace. Thanks to Jasbinder Singh and Don Akrigg for the maintenance of the computer systems essential to this work and also to the MRC for providing the funding.

I am also indebted to the following people;

Dr T.K Attwood and Dr A.J. Bleasby for all the advice and encouragement they have given and the late Dr. I. Haneef for helpful discussions.

Dr A.K.H. Holzenburg for his advice and allowing me to work with him at the Lawrence Berkeley Laboratories.

All the friends and colleagues in the department who have put up with me during the past few years, particularly Drs S.S.B. Glover, E.A. Yates and A. Rashid. Also thanks to A. Rachedi for many useful discussions.

Dominic Steele for his help with the final stage of this thesis.

I am especially grateful to my parents and Dr. K.D. Parker for their help and understanding during my time in Leeds.

Table of Contents

đ

Al	stract	I
Ac	knowledgements	II
Ta	ble of contents	III
1	Introduction	
	1.2 Databases for molecular biology research	1
	1.2.1 NEWAT database	1
	1.2.2 NBRF/PIR databases	2
	1.2.3 SWISS-PROT	2
	1.2.4 GenBank nucleic acid database	2
	1.2.5 Protein Data Bank	3
	1.2.6 Non-Redundant composite databases	3
	1.3 Manipulation of sequence information	5
	1.4 Motif concepts	6
	1.5 Use of sequence identity and similarity motifs	9
	1.5.1 LUPES	9
	1.5.2 Dictionary of sequence motifs	10
	1.5.3 Consensus template alignments	10
	1.5.4 Consensus patterns	11
	1.5.5 PROSITE	11
	1.5.6 Profile analysis	13
	1.5.7 Primary sequence patterns from sets of related protein sequ	iences.13
	1.5.8 Flexible patterns	13
	1.5.9 SCRUTINEER	14
	1.5.10 ADSP	14
	1.6 Secondary structure prediction	15
	1.6.1 Chou-Fasman	16
	1.6.2 Garnier-Osguthorpe-Robson	15
	1.6.3 Pattern recognition methods	16
	1.7 Further applications of sequence analysis	16
	1.8 Conclusion	
	1.9 References	17
		21
2 N	aterials and methods used for motif definition	• • • • • • • • • • • <i>&</i> I.

		22
	2.1 The OWL database	
	2.2 Sequence alignment	23 28
•	2.3 Motif selection	20
	2.4 Database scanning	29
	2.5 Comparison of Hitlists	52
	2.6 Graphical interpretation of the final motif files	33
	2.7 Consensus motifs and motif variability	36
	2.8 Conclusion	38
	2.9 References	38
3(C-type lysozymes	40
	3.1 Summary	40
	3.2 Introduction	40
	3.3 Motif definition	42
	3.3.1 Lactalbumin discriminators	42
	3.3.2 C-type lysozyme discriminators	45
	3.3.3 Super-family discriminators	49
	3.4 Individual sequence analysis using the converged lactalbumin,	
	C-type lysozyme and super-family motifs	53
	3.5 Discussion	60
	3.6 Conclusion	65
	3.7 References	65
4 F	Proton symport/antiport proteins	68
	4.1 Summary	68
	4.2 Introduction	68
	4.3 Motif definition	70
	4.3.1 Sugar transporters	70
	4.3.2 Full family	75
	4.4 Discriminator efficiency	78
	4.5 Discussion	83
	4.6 Conclusion	87
	4.7 References	88
50	hanter Five	90
-	5.1 Introduction	90

.

5.2 Programming details	
5.3 Diagon plots	
5.4 Amino acid physicochemical properties	
5.4.1 Hydropathy	94
5.4.2 Positional variability	
5.4.3 Solvent accessible area	
5.4.4 Flexibility	
5.4.5 Garnier-Osguthorpe-Robson	
5.5 Motif positional variability and consensus sequence	
5.6 PRINTS database scanning	
5.7 References	
5 VISTAS	
6.1 Summary	
6.2 Introduction	
6.3 VISTAS and ALIGN programming details	
6.4 Internal organisation of data	
6.5 Using VISTAS	
6.5.1 VISTAS, ALIGN and XALIGN default files	
6.5.2 Running VISTAS	
6.5.3 Mouse menus	
6.5.3.1 Rotate x,y and z	
6.5.3.2 Translate x and y	
6.5.3.3 Negative and positive	
6.5.3.4 Clip	
6.5.3.5 Scale	
6.5.3.6 Colours	
6.5.3.7 Display	
6.5.3.8 Lights	
6.5.3.9 Line width	
6.5.3.10 Printer	
6.5.3.11 Matrix	
6.5.3.12 Ligand	
6.5.3.13 Quit	

÷

6.5.4.1 Amino acid properties126
6.5.4.2 Display motifs
6.5.4.3 Scanning procedures129
6.5.4.4 Sequence manipulations131
6.5.4.1 Alignment navigation131
6.5.4.4.2 Insert/delete gaps131
6.5.4.4.3 Write sequence set
6.5.4.4.4 Write part of sequence set
6.5.4.4.5 Write identity matrix
6.5.4.4.6 Add sequences
6.5.4.4.7 Delete sequences
6.5.4.4.8 Swap sequences133
6.5.4.4.9 Goto residue
6.5.4.4.10 Find motif
6.5.4.4.11 Make group133
6.5.4.4.12 Groups on/off
6.5.4.4.13 Reset group134
6.5.4.4.14 Add to group134
6.5.4.4.15 Sequence editor
6.5.4.4.16 Define anchor point
6.5.4.4.17 Reset anchor point134
6.5.4.4.18 Select ruler sequence134
6.5.4.4.19 Alignment ruler135
6.5.4.4.20 Goto end135
6.5.4.4.21 Goto start
6.5.4.5 Graph display
6.5.4.5.1 Graph on/off
6.5.4.5.2 Reset colours
6.5.4.5.3 White background
6.5.4.6 Follow
6.5.4.7 Select motifs
6.5.4.8 Plot 137
6.5.4.9 Store Motifs
6.6 ALIGN and XALIGN
6.7 Comparison with other software

÷

6.7.1 CAMELEON	141
6.7.2 Integrated structure and sequence displays	
6.8 Comparison of sequence alignment and editing programs	
6.8.1 MANALIGN	
6.8.2 HOMED	
6.8.3 MASE	
6.8.4 MALIGNED	
6.8.5 LINEUP	
6.8.6 SOMAP	
6.9 Conclusions from comparisons	
6.10 Conclusion	
6.11 References	

ż

List of Appendices

A Colour sequence alignments	
A1.1 Lactalbumin alignment	
A1.2 Lysozyme alignment	
A1.3 Super family alignment	
A2.1 Sugar transporter alignment	
A2.2 Super family alignment	

B Final motifs and key to database codes	161
B1.1 Lactalbumin motifs and key to database codes	
B1.2 Lysozyme motifs and key to database codes	
B1.3 Super family motifs and key to database codes	
B2.1 Sugar transporter motifs and key to database codes	
B2.2 Super family motifs and key to database codes	

C Example entries from the PRINTS database	
C1 Annexin	
C2 ATP synthase alpha and beta chains	
C3 Na/K ATPase	
C4 GTP binding elongation factors	
C5 Cytosine specific methyltransferases	

V	Ш	
•	***	

C6 Ferredoxin	
D Amino acid notation and alignment colours	

List of figures and tables

Ż

4.7 Individual sequence analysis with the final super family motifs	
5.1 Stages of discriminator definition	90
5.2 XDIAGON residue groupings	92
5.3 Example XDIAGON output	93
5.4 Example XHYDRO output	
5.5 Example XMOTVAR output	100
5.6 Example motif file with CON output	
5.7 Example FEAT output	102
5.8 Example XPRINTS output	104
6.1 Initial VISTAS session	114
6.2 Representation of the menu invoked by the right mouse button	115
6.3 VISTAS display modes	119
6.4 Sequence alignment coloured by positional variability	122
6.5 Ligand display modes	124
6.6 Menu invoked by the left mouse button	125
6.7 VISTAS motifs submenu	128
6.8 VISTAS session with a graph window displayed	136
6.9 VISTAS session with a PLOT window displayed	138
6.10 XALIGN display	

÷

Chapter One Introduction

Proteins are amongst the most important and diverse of all the macromolecules needed to sustain life. They perform a multitude of functions within the cell, from structural support to the catalysis of essential biochemical reactions. The majority of the information available for the study of proteins is derived from amino acid composition and biochemical studies, with only a relatively small number of three-dimensional structures being known. With recent advances in DNA sequencing techniques and the advent of the Human Genome Mapping project (and other genomic studies of various organisms such as yeast) the amount of new sequence information becoming available is sure to outstrip structural information by many orders of magnitude. Indeed even at the present time when such projects are still at fairly early stages the number of protein sequences known is very much larger than the number of three dimensional structures solved. Therefore, as the information supplied by the sequence of a protein is often the only clue to possible function and structure, sequence analysis techniques and software are very useful tools.

1.2 Databases for Molecular Biology Research

When a protein or DNA sequence has been established they are, in the majority of cases, deposited in one or more sequence databases; the most notable of these databases are discussed below.

1.2.1 NEWAT Database

This database was originally compiled as a supplement to the Atlas of Protein Sequence and Structure (Dayhoff, M.O. (1978)) and also as a resource that would be useful for examining protein relationships. The sequences were collected from literature surveys and a number of programs are available to manipulate and interrogate the data. The database is divided into six sections based on taxonomic classifications and protein function and was most notably used to demonstrate a link between platelet derived growth factor and a viral oncogene (Wheatfield, M.D. et al.

1

(1983)). This database was enlarged by Doolittle (1981) who also removed some of the redundant sequences.

1.2.2 NBRF/Protein Information Resource (PIR) Databases

The NBRF (Orcutt, B.C. et al. (1983)) has been collecting and collating protein sequence information for a number of years using literature searches to identify new sequences. A number of programs are also distributed with the database, the most notable being the Protein Sequence Query (PSQ) program which is used to interrogate the database. The database is split into three sections. PIR1 includes those sequences that have been classified into families based on sequence similarity and have annotated database entries, sequences in PIR2 have annotation only while PIR3 includes unverified sequence entries.

1.2.3 SWISS-PROT

Sequence data in the SWISS-PROT database is derived from three different sources, these being the NBRF/PIR database, translation of entries from the EMBL nucleotide sequence database and from literature surveys (Bairoch, A. et al. (1991)). SWISS-PROT is distinguished from other databases by the amount of annotation that is included with each entry, for instance similarities to other sequences, diseases associated with the protein, domains and sites and post-translational modifications. The annotations for each of the sequence entries are updated regularly using both information provided by literature searches and also by external experts. As redundancy of sequence information is reduced to a minimum and the annotation is of such a high quality the SWISS-PROT database is, at present, the highest priority source database for the compilation of the OWL composite database. The SWISS-PROT database is also used to produce the PROSITE pattern database described below.

1.2.4 GenBank Nucleic Acid Database

The GenBank database is a computer based collection of all the published RNA and DNA sequences along with the appropriate biological annotation (Burks, C. et al. (1985)). The sequences are entered into the databases by both direct submissions from molecular biologists and as the result of literature searches. The entries are divided into a number of taxonomical classes, for instance primates and invertebrates. The PGtrans protein sequence database is a translated version of the GenBank database, a computer algorithm developed by Claverie and Sauvaget (1985) is used for the translation. A translated version of GenBank is also used to build the OWL composite protein sequence database.

1.2.5 Protein Data Bank

This database is a computer based archival file for macromolecular structures (Bernstein, F.C et al. (1977)). Structures submitted by various research groups are entered into the database using a standard format and a number of FORTRAN programs for the manipulation of the data are also distributed along with the database. The protein sequences from the three dimensional protein structures present in this database have been collated into a sequence database known as NRL_3D (Namboodiri., K. et al. (1989)).

1.2.6 Non-Redundant Composite Databases

As sequences often appear in a number of different databases and sometimes may even appear more than once in the same database with both the protein and translated nucleic acid sequence being present, a number of non-redundant composite databases have been developed which are derived from a number of source databases. All the sequence data described in this thesis has been derived from the OWL protein sequence database (which is described in detail in the following chapter), the largest and most rigorously defined composite protein sequence database know to the author. Claverie and Bricault (1986) have also described a composite database, PseqIP, but this has fewer source databases.

Figure 1.1 illustrates the present size of the databases described above.

Version
83
40
40
40
1986 release
28
14

Figure 1.1 - The present size of the more notable sequence databases. The values on the y-axis refers to the number of sequence entries in each database.

1.3 Manipulation of Sequence Information

A large amount of research effort has been applied to the field of sequence analysis as the potential benefits of a useful system are enormous. For instance if a motif is devised for a particular ligand binding site this information may be applied to drug design to improve the binding abilities for this ligand. Sequence analysis may also provide an insight into the function and structure of newly sequenced proteins. The commercial and academic opportunities of such work is potentially very great. In addition, sequence information may be useful in aiding the investigation of structure-function relationships and sequence similarity is very important when modelling protein structures, as are motifs which describe particular combinations of secondary structure elements.

As described above, sequence data is plentiful and increasingly easy to determine experimentally. There are a number of ways a biologist may exploit this information. Perhaps the most straightforward of these is to search for global similarities between a sequence of interest (a probe sequence) and the database sequences. A number of programs have been written for such a task, the most notable being FASTA (Pearson, W.R. and Lipman, D.J. (1988)), BLAST (Altschul, S.F. et al. (1990)) and SWEEP (Akrigg, D. et al. (1992)). These programs are based on the initial work of Needleman and Wunsch (1970).

While such global searches may produce invaluable information, often interesting similarities may be hidden by the rest of the sequence. For instance, it is known that there are three sequence segments that are involved in the binding of GTP and GDP (Dever, T.E. et al. (1987)). These three segments have a total length of fourteen residues, therefore global searches may not indicate that a probe sequence may bind GTP as the rest of the sequence may be dissimilar, ie the signal to noise ratio is very low. A method is therefore required that can represent the important structural and functional information (henceforth referred to as sequence features) contained within the primary structure of a protein. These regions of the sequence that are characteristic of a particular protein family are know as motifs.

Also, as the growth of databases is rapid, there is an increasing need to make the data more manageable. This may be achieved using databases of conserved motifs instead of whole sequences or by clustering database sequences into broad families.

This latter process has been carried out using both classical sequence similarity calculations (Gonnet, G.H. et al. (1992)) and also by the application of novel mathematical techniques (van Heel, M. (1991)).

In both these cases, database searches with sequences of unknown structure and function are faster and generally produce less noise when comparisons are made with groups of motifs or proteins rather than individual sequence database entries as many fewer comparisons are required. For instance SWEEP takes a number of hours to compare an 'unknown' lysozyme sequence with the full OWL database, whereas just a few seconds is needed to identify the sequence as a lysozyme using a database of motifs and software written by the author. Unfortunately it will be a considerable time before motifs are available for all the known protein families, although the number of entries in both the PROSITE and PRINTS databases are increasing rapidly and database clustering techniques may relieve the problem to some extent. If the suggestion that there are only around 1000 to 2000 protein families (Chothia, C. (1992)) is found to be true, the problems are not insurmountable.

1.4 Motif Concepts

Using the scheme devised by Hodgman (1989) there are three basic types of motifs and thus three general methods for their definition and comparison with database sequences. These are described below.

1) The first of these, sequence similarity, is perhaps of the most relevance to this thesis. In this case the actual residue identity of each position in the motif is compared with the database sequences, when a motif has been derived from a multiple sequence alignment then usually some method is applied to take into account the frequencies of residue types at each position in a motif. More distant sequence relationships may also be detected if this technique is used in conjunction with one of the many matrices of amino acid substitutions that are available. Figure 1.2 illustrates the different methods that may be used to represent this type of motif.

6

1.2a

GHVDSGKST GHVDSGKST GAGESGKST GAVDHGKST GAGGVGKSA GAGGVGKSA GAGGVGKSA GHIDHGKST GHVDHGKTT GPGGVGKSA GHVDHGKTT GDQSSGKSS GRSNAGKSS AHIDAGKTT AHIDAGKTT

1.2b

All the motifs and patterns shown above describe one of the three sequence segments that have been shown to be responsible for the binding of GTP. Figure 1.2a illustrates a simple type one motif. Figure 1.2b shows a motif which consists of aligned segments from a number of proteins aligned by the author - such a motif may be described as a motif set or feature, compound features consist of two or more of these types of motif. Figure 1.2c shows the equivalent PROSITE pattern.

2) Computer plots of amino acid properties. Protein sequence motifs may also be defined by examining graphs of amino acid properties. For instance hydropathy plots can indicate the location of transmembrane segments and hydrophobic moment plots (Eisenberg, D. et al. (1982)) may be used to elucidate the amphiphilic nature of a sequence segment. Examples of motifs defined by the author using such methods are described in later chapters.

3) Helical Wheels. This method involves the projection of a protein sequence onto a representation of an alpha-helix. Using this technique it is possible to identify amphiphilic regions of a sequence, although it probably belongs more in the realm of secondary structure prediction rather than motif definition. An example of a helical wheel is shown in figure 1.3 (Donnely, D. et al. (1993)).

[AG] - x(4) - G - K - [ST]

1.2C

Figure 1.3 - A helical wheel of of one of the putative transmembrane segments of the human multidrug resistance protein.

1.5 Use of Sequence Identity and Similarity Motifs

As stated above, the sequence similarity approach is more relevant to the work carried out by the author. A number of software packages have been developed using this approach, some of the more notable and relevant being described in detail below.

1.5.1 LUPES (Leeds University Protein Engineering Software)

This software system takes as input motif files and then presents this information as weight matrices. The rows and columns that make up these matrices represent positions in the motif and residue frequencies respectively. Each element in the matrix thus represents the weight for a particular residue type at each location in a motif, initially this value is calculated using the motif file alone although LUPES allows a user to modify the weight interactively and even negative weights can be assigned if desired. While such manual intervention has been criticised by a number of workers because of the subjective element it introduces there may be some cases, albeit probably only a limited number, where such a technique may be useful. A program contained within the LUPES package, MEGASCAN, is then used to compare a sequence database with the weight matrix, output is produced in the form of a list of matches with the highest scoring sequences at the top of the list. Other scanning methods are also available including SPACESCAN in which the relative spacing between residue types is taken into account and NLWSCAN which uses groups of 2 and 3 residues for scanning the database.

A database of motifs derived using the LUPES system has been compiled (the Features Database) which is interrogated using the SYBIL program (Bleasby, A.J., Nicholson, R. personal communication). This has now been superseded to a large extent by the PRINTS database described below.

1.5.2 Dictionary of Sequence Motifs

Ogiwara A. et al. (1992) have devised an automatic method for the identification of conserved motifs that are exclusive to functionally related proteins. As an initial step, all the proteins within a family (the NBRF/PIR superfamily classification is used to define a family) are scanned for short motifs that are well conserved and exclusive to the group of interest. When these unique (or almost unique) motifs have been located, they are converted into peptide sentences which represent the multiple motifs and their separation (this is analogous to the concept of an ADSP Compound Feature which is described below). A consensus peptide sentence is then produced. This procedure was used to define motifs that characterise over 50% of the superfamilies within the PIR 26.0 database. The initial reliance on the NBRF/PIR superfamily classification, described above, may however limit the usefulness of this system.

1.5.3 Consensus Template Alignment

A pattern-matching procedure has been devised (Taylor, W.R. (1986)) based on fitting templates to a protein sequence, allowing certain structural constraints to be applied to the identified patterns. Templates are initially defined using an alignment of protein sequences with known structure and are further refined by adding the sequences of related proteins of unknown structure. The conserved sections of these alignments are then chosen to create templates, each position in the template is assigned a property such as a residue type or hydrophobicity. Thus a template may contain information regarding absolute amino acid identity in addition to the physicochemical properties of residues. The sequences used in the initial alignment are given as input to the SETEM program which identifies the initial templates. FITEM fits the templates to a database of sequences, those sequences that are successfully fitted are included in the initial alignment and another cycle carried out until no new sequences are identified. The final templates produced by this iterative method are known as the search templates. These search templates were shown by Taylor to identify the conserved features in known immunoglobulin and related sequences but not in other non-immunoglobulin sequences.

1.5.4 Consensus Patterns

The programs (MOTIF and PATTERN) described by Cockwell and Giles (1989) are used to compare user-defined motifs with a database of test sequences using a special method to represent motifs and are designed for the application and refinement of motifs rather than their initial definition. If more than one residue is allowed at a particular position then square brackets are used, a caret symbol (^) indicates that a residue type is not allowed at a particular position, X allows any residue type at a position while dots are used to restrict motif searches to the N or C terminus of a protein. A motif defined using this notation is illustrated below.

E[QN]A^S.

Thus E is the first residue, the second may be Q or N then A while the last residue must not be S. The dot at the end of the motif indicates that searching should be confined to the C-terminus of a protein. The authors also describe patterns which are made up of a number of motifs together with their relative spacings.

1.5.5 PROSITE

This is a very large database of motifs (or patterns) that, at the present release, contains 926 patterns (Bairoch, A.). The motifs are grouped into broad categories, for example patterns which relate to domains and enzymes, and are represented in a format similar to the one used by Cockwell and Giles as described above. Entries are derived as a result of literature searches, the motifs described are then tested using the SWISS-PROT database to see if tuning is required. If the latter is found necessary then the pattern is modified by increasing its length to make it more specific. Although the PROSITE database is widely used there are some entries which seem to this author to be of little value, for example some patterns are only three residues long so the chance of random matches is significant.

An example PROSITE entry (in this case for the lipocalin family) is shown in figure 1.4.

LIPOCALIN; PATTERN. PS00213; APR-1990 (CREATED); DEC-1991 (DATA UPDATE); OCT-1993 (INFO UPDATE). Lipocalin signature. $[DENG] - x - [DENQGSTARK] - x(0, 2) - [DENQARK] - [LIVFY] - {CP} - G - {C} - W - [FYWLRH] - {CP} - {CP} - {C} - {C} - W - [FYWLRH] - {CP} - {CP} - {C} - {C} - W - [FYWLRH] - {CP} - {CP} - {C} - {C$ ×[LIVMTA]. /RELEASE=26,33329; /TOTAL=82(82); /POSITIVE=49(49); /UNKNOWN=0(0); /FALSE_POS=33(33); /FALSE_NEG=11(11); /TAXO-RANGE=??E??; /MAX-REPEAT=1; P02763, A1AG_HUMAN, T; P19652, A1AH_HUMAN, T; P06911, ERBP_RAT, T; P05090, APD_HUMAN ,T; P23593, APD_RAT , T; P09465, APHR_CRISP, T; P09464, BBP_PIEBR , T; P07360, CO8G_HUMAN, T; P80007, CRA2_HOMGA, T; , T; P00305, ICYA_MANSE, T; Q00630, ICYB_MANSE, T; P02760, HC_HUMAN P02754, LACB_BOVIN, T; P02755, LACB_BUBAR, T; P13613, LACB_EQUAS, T; P19647, LACA_EQUAS, T; P02756, LACB_CAPHI, T; P02758, LACB_HORSE, T; P07380, LACA_HORSE, T; P21664, LACA_FELCA, T; P04119, LACB_PIG, T; , T; P11588, MUP1_MOUSE, T; P02757, LACB_SHEEP, T; P02761, MUP_RAT P11589, MUP2_MOUSE, T; P11590, MUP4_MOUSE, T; P11591, MUP5_MOUSE, T; P02762, MUP6_MOUSE, T; P04939, MUPM_MOUSE, T; P80188, NGAL_HUMAN, T; P11672, NGAL_MOUSE, T; P07435, OBP_BOVIN , T; P08937, OBP_RAT T; P06910, OLFA_RANPI, T; P22057, PGHD_RAT, T; P09466, PP14_HUMAN, T; P15399, PBAS_RAT , T; P08938, PURP_CHICK, T; P21760, QSP_CHICK , T; P18902, RETB_BOVIN, T; P02753, RETB_HUMAN, T; Q00724, RETB_MOUSE, T; P27485, RETB_PIG , T; P06912, RETB_RABIT, T; P04916, RETB_RAT , T; P06172, RETB_XENLA, T; P24774, RET1_ONCMY, T; P24775, RET2_ONCMY, T; Q01584, LIPO_BUFMA, T; P04938, MUP8_MOUSE, P; P07361, A1AG_MOUSE, N; P21350, A1AG_MUSCR, N; P21352, A1AH_MUSCR, N; P25227, A1AG_RABIT, N; , N; P80029, CRC1_HOMGA, N; P11944, LACB_MACGI, N; P02764, A1AG_RAT P30152, NGAL_RAT , N; P31025, VEGP_HUMAN, N; P20289, VEGP_RAT , N; P20462, LALP_MACEU, N; 2APD; 1BBP; 1RBP; 1MUP; 1BRP; 1BRQ; PDOC00187;

Figure 1.4 - An example PROSITE entry, in this case the pattern for the lipocalin family of proteins. The actual pattern is shown towards the beginning of the entry, the codes (for example A1AG_HUMAN) relate to entries in the SWISS-PROT database. This example also shows a large number of false positives (ie proteins which match with the pattern but are not members of the lipocalin family), indicating that this particular pattern does not possess a significant degree of discriminating ability.

1.5.6 Profile Analysis

The authors (Gribskov, G. et al. (1987)) describe a system designed to detect distantly related proteins using a position specific scoring table which they refer to as a profile. An alignment of sequences is initially prepared using structural information (if any is available) which is then used, along with the Dayhoff mutational data matrix, to construct a profile based on both residue identity and their relative substitution values. Gap penalties may also be applied to the profile if desired. The profile is then compared with test sequences using a modified form of the dynamic programming algorithm (The dynamic programming algorithm is a recursive procedure that attempts to produce the best alignment possible between two sequences). The authors have demonstrated the efficiency of their programs using the globin fold as an example, although in situations where no structural information is available or sequence similarity is low the technique may be of less use.

1.5.7 Primary Sequence Patterns from Sets of Related Protein Sequences

This method (Smith, R.F. and Smith, T.F. (1990)) involves calculating the pairwise similarity of a set of sequences to generate a tree (dendrogram). This tree is then decomposed by replacing the node connecting the two most similar termini until only a single common pattern remains. A pattern is produced at each node by applying the dynamic programming algorithm to align the pair of sequences or patterns connected by each node. The authors have used this technique to produce a library of patterns for homologous protein families in the NBRF/PIR database.

1.5.8 Flexible Patterns

This technique derives patterns from a multiple alignment of sequences, each pattern contains information regarding conserved residues and also the number of gaps between each residue (Barton, G.F. and Sternberg, M.J.E. (1990)). The dynamic programming algorithm is then used to align these patterns with test sequences. The authors have demonstrated that a pattern derived from an alignment of seven globins was able to discriminate for all the the globins in the NBRF/PIR database.

1.5.9 SCRUTINEER

Scrutineer (Sibbald, P.R. and Argos, P. (1990)) is an interactive package that is designed to search for motifs in the SWISS-PROT and SeqDb databases. It has the capability to search for strings of amino acids with a number of possible identities in each position, variable length motifs and can take into account the physicochemical properties associated with amino acids. In addition, Scrutineer may also be used to search databases with aligned motifs. A number of these scanning methods may also be combined in one search but; in contrast to the ADSP system described below, Scrutineer is only really a useful tool when motifs have already been defined.

1.5.10 ADSP

This system is the most relevant to this thesis as all the discriminating motif sets that are described by the author have been defined using the ADSP algorithms (Attwood, T.K. and Parry-Smith, D.J. (1992)). In addition most of the software written by the author has been written with the intention of extending and interfacing to the algorithms of ADSP. The system incorporates a powerful method for characterising and predicting the occurrence of protein families and sub-families. It is also entirely objective as sequence information alone is used for the definition of motifs, pre-existing structural and functional information is not required in contrast to some of the other methods described above. A good sequence alignment is needed initially, from this alignment conserved motifs are identified and written to files. These files are then used to scan a protein sequence database iteratively. The motifs defined for a protein family are known collectively as compound features. A more detailed description of the implementation and application of the ADSP algorithms is given in the following chapter.

A large number of motif sets have been defined using the ADSP system, many of which have been incorporated into the PRINTS database. This database not only contains the relevant motifs but also includes a large amount of other information such as references and commentaries on each entry. The PRINTS database is interrogated using SMITE (Bleasby, A.J. personal communication) and also many of the programs written by the author offer powerful interfaces to PRINTS.

1.6 Secondary Structure Prediction

The fact that proteins may spontaneously renature indicates that all the information required for folding is also contained within the amino acid sequence, although in a few cases specialised enzymes known as chaperonins have been shown to be involved in this process. The methods described above may be used to devise sequence motifs that describe particular structural conformations but, in addition, there is also a separate branch of sequence analysis that attempts to deal with structure prediction. Although not of direct relevance to most of the work described in this thesis, three of the most widely used techniques are described briefly below for the sake of completeness.

1.6.1 Chou-Fasman

This technique (Chou, P.Y. and Fasman, G.D. (1974)) was originally designed to be used without access to a computer, although many computer based applications are now available. The method calculates a moving average of values that indicate the propensity of a residue to adopt one of three conformations, ie alpha helix, beta strand or turn. The values used are initially calculated from the observed frequencies of a given residue type to be found in a particular secondary structure. Normalisation is then carried out by calculating the frequency of occurrence by chance. Various rules designed by the authors are then used to attempt to define the exact ends of the secondary structure elements. These rules appear to be rather arbitrary and are perhaps the major drawback of the method.

1.6.2 Garnier-Osguthorpe-Robson

The method of Garnier et al. (1978) is more sophisticated than that described above in that its background lies in the application of information theory, despite this the method is also easier to code for a computer. The algorithm described by the authors involves calculating the secondary structure propensities by taking into account the eight residues preceding and following the residue of interest, a window length of 17 is thus used. The authors also describe the use of Decision Constants to improve the accuracy of prediction for proteins that are composed of almost entirely one sort of secondary structure. This method is probably the most widely employed of the available secondary structure prediction methods and it's efficiency may also be increased by using alignments instead of single sequences.

1.6.3 Pattern Recognition Methods

In addition to the above widely used algorithms which are based on the observed frequencies of the occurrence of a particular residue type in each secondary structure conformation, a number of secondary structure prediction techniques are available that use pattern searching methods such as that described by Lim (1974). This method searches for local hydrophobicity patterns which correspond to those expected with secondary structure elements of an amphiphillic nature. For instance, such an alpha helix could be expected to have a hydrophobic or hydrophillic residue approximately every 3.5 residues. The problem with such techniques is that they rely on the secondary structure elements to be amphiphillic, which may not always be the case.

1.7 Further Applications of sequence analysis

Another area of sequence analysis that has become increasingly important is the use of sequence alignment programs and motifs to define probes for use with DNA libraries when attempting to isolate the nucleic acid sequences of similar proteins. Using such techniques, the author has been involved with designing probes to isolate and sequence the lipoxygenase gene from Tomatoes. Thus not only does the field of sequence analysis offer an invaluable insight into the study and exploitation of proteins, it may also be used to increase the amount of sequence data available.

1.8 Conclusion

A number of important conclusions can be drawn from the above review of sequence analysis procedures:

1) There is an abundance of sequence information that threatens to overwhelm both users and the algorithms that manipulate this data, therefore software for the definition of motifs is a very important tool for making sequence information more manageable.

2) There is a relative shortage of structural information, sequence data is often the only means of deducing the possible structure and function of a protein. Also in those cases when structural information is available as much data should be extracted as possible, the VISTAS program described in a later chapter is designed to facilitate this by integrating structural and sequence data.

The first section of this thesis is concerned with the detailed description of a number of motifs defined by the author, a number of others that have been entered in the PRINTS database are also included as an appendix. Chapter three describes the use of motifs that give clues to the possible ligand binding properties of some members of a protein family while chapter four illustrates the use of motifs to identify new members of a family. A number of other motifs defined by the author are shown in appendix C. Later chapters will describe software written by the author with the specific intention to produce user-friendly, yet powerful, tools for sequence analysis.

1.9 References

Akrigg, D., Attwood, T.K, Bleasby, A.J., Findlay, J.B.C., North, A.C.T., Maughan, N.A., Parry-Smith, D.J, Perkins, D.N. SERPENT - an information storage and analysis resource for protein sequences. CABIOS 8 (1992) pp295-296

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool. J. Mol. Biol. 215 (1990) pp403-410

Attwood, T.K., Parry-Smith, D.J., ADSP - a new package for computational sequence analysis. CABIOS 8 (1992) pp451-459

Bairoch, A., PROSITE: a Dictionary of Protein Sites and Patterns. University of Geneva.

Bairoch, A., Boeckmann, B., The SWISS-PROT protein sequence data bank. Nucleic Acids Res. 19 (1991) pp2247-2249

Barton, G.J., Sternberg, M.J.E., Flexible Protein Sequence Patterns; A Sensitive Method to Detect Weak Structural Similarities. J. Mol. Biol. 212 (1990) pp389-402

Berstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M., The protein databank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 112 (1977) pp535-542

Burks, C., Fickett, J.W., Goad, W.B., Minoru, K., Lewitter, F.I, Rindomw, W.P, Swindell, C.D., Tung, C., Bilosky, H.S., The GenBank nucleic acid sequence database. CABIOS 1 (1985) pp225-233

Chothia, C., One thousand families for the molecular biologist. Nature 347 (1992) pp543-544

Chou, P.Y., Fasman, G.D., Prediction of Protein Conformations. Biochemistry 13 (1974) pp212-245

Claverie, J.M., Bricault, L., PseqIP: a nonredundant and exhaustive protein sequence data bank from four major existing collections. Proteins 1 (1986) pp60-65

Claverie, J.M, Sauvaget, I., A new protein sequence data bank. Nature 318 (1985) pp19

Cockwell, K.Y., Giles, I.G., Software Tools for Motif and Pattern Scanning: Program descriptions including a Universal Sequence Reading Algorithm CABIOS 5 (1989) pp227

Dayhoff, M.O (ed.), Atlas of Protein Sequence and Structure (1978), National Biomedical Research Foundation, Washington D.C., USA.

Dever, T.E, Glynias, M.J., Merrick, W.C., GTP binding domains: Three consensus sequence elements with distinct spacing. Proc. Natl. Acad. Sci. (USA) 84 (1987) pp1834-1818

Donnelly, D., Overington, J.P., Ruffle, S.V., Nugent, J.H.A., Blundell, T.L. Modeling alpha-helical transmembrane domains - the calculation and use of substitution tables for lipid-facing residues. Protein Sci. 2 (1993) pp55-70

Doolittle, R.F., Similar amino acid sequences: chance or common ancestry ? Science 214 (1981) pp149-159 Eisenberg, D., Weiss, R.M., Terwilliger, T.C., The Helical hydrophobic moment: a measure of the amphiphillicity of a helix. Nature **299** (1982) pp371-374

Garnier, J., Osguthorpe, D.J, Robson, B. Analysis of the Accuracy and Implications of Simple Methods for Predicting the Secondary Structure of Globular Proteins. J. Mol. Biol. 120 (1978) pp97-120

Gonnet, G.H., Cohen, M.A., Benner, S.A, Exhaustive matching of the entire protein sequence database. Science 256 (1992) pp1443-1445

Gribskov, M., McLachlan, A.D., Eisenberg, D. Profile Analysis: Detection of Distantly Related Proteins. Proc. Natl. Acad. Sci. (USA) 84 (1987) pp4355-4358

Hodgman, T.C., The Elucidation of Protein Function by Sequence Motif Analysis. CABIOS 5 (1989) pp1-13

Lim, V., Algorithms for prediction of alpha-helical and beta structural regions in globular proteins. J. Mol. Biol. 80 (1974) pp873-894

Namboodiri, K., Pattabiramam, N., Lowrey, A., Gaber, B., George, D.G., Barker, W.C., NRL_3D: A sequence structure database, PIR Newsletter 8 (1989)

Needleman, S.B., Wunsch, C.D., A general method applicable to the search for similarities in the amino acid sequences of two proteins. J. Mol. Biol. 48 (1970) pp443-453

Ogiwara, A., Uchiyama, I., Seto, Y., Kanehisa M., Construction of a Dictionary of Sequence Motifs that Characterise Groups of Related Proteins. Protein Engineering 5 (1992) pp479-488

Orcutt, B.C., George, D.G., Dayhoff, M.O., Protein and Nucleic Acid Sequence Database Systems. Ann. Rev. Biophys. Bioeng. 12 (1983) pp419-441

Pearson, W.R., Lipman, D.J., Improved tools for biological sequence comparison. Proc. Antl. Acad. Sci. (USA) 85 (1988) pp2444-2448 Sibbald, P.R., Argos, P., Scrutineer: a computer program that flexibly seeks and describes motifs and profiles in protein sequence databases. CABIOS 6 (1990) pp279-288

Smith, R.F., Smith, T.F., Automatic Generation of Primary Sequence Patterns from Sets of Related Protein Sequences. Proc. Natl. Acad. Sci. (USA) 87 (1990) pp118-122

Taylor, W.R., Identification of Protein Sequence Homology by Consensus Template Alignment. J. Mol. Biol. 188 (1986) pp233-258

Van Heel, M, A new family of powerful multivariate statistical sequence analysis methods. J. Mol. Biol. 220 (1991) pp877-887

Wheatfield, M.D., Scrace, G.T, Whittle, N., Stroobant, P., Johnsson, A., Wasteson, A., Westermark, B., Heldin, C.H., Huang, J.S., Deuel, T.F., Platelet-derived growth-factor is struturally similar to the putative transforming protein P28sis of Simian sarcoma virus. Nature 304 (1983) pp35-39

Chapter Two Materials and Methods used for Motif Definition

The initial section of this thesis will describe the definition of a number of sets of discriminating motifs. All of these studies used the same methodology and algorithms, which are described below. Most of the programs used are either updated and rewritten ADSP routines or new routines, in both cases written in portable C by the author. Figure 2.1 shows a flow diagram illustrating the process of motif definition using the ADSP based system, these algorithms and methods are described in more detail below.

Figure 2.1 Motif definition system flow diagram

2.1 The OWL Database

The OWL database is a largely non-redundant database produced from a number of source databases (Bleasby, A.J. and Wootton, J.C. (1990)). At the moment these source databases are SWISS-PROT, NBRF/PIR, GenBank and NRL_3D. The nucleic acid entries from the GenBank database are translated using software written at Leeds before inclusion. All the sequences from the source databases are compared with each other and those sequences which are identical or have only trivial mis-matches are discarded. This process is carried out by assigning priorities to databases, the sequence from the source database with the highest priority being preferentially retained. This priority is mainly dependent on the quality and the amount of information given for each sequence entry, currently the SWISS-PROT database has the highest priority. The only redundant sequences found in the OWL database are from the NRL_3D database which is retained in its entirety to aid the interface to the Brookhaven (PDB) structural database. The OWL database is updated at regular intervals (approximately every three months) and is the largest and most up to date composite database available, the current version (23.2) containing over 83,000 sequence entries (over 26,000,000 residues). Figure 2.2 shows the rapid growth of the OWL database from version 1.1 to the present day while figure 2.3 shows the proportion of the total number of sequences derived from each source database.

The OWL database consists of a number of files. These include binary indexing files, which are used by application programs to quickly find the location of a particular sequence or text string, and also ASCII files which contain the sequence entries and entry descriptions. The sequences in the database are stored in the NBRF/PIR format, ie each entry has :-

>P1;DATABASE_CODE Short description SEQUENCE_HERE_IN_SINGLE_LETTER_CODE *

Figure 2.2 - The growth of the OWL database from version 1 (May 1988) to version 23 (March 1994). The x-axis represents the database version while the y-axis illustrates the number of sequence entries.

Database	Number of sequences	Number of residues
PIR1 (v. 40)	261	1651
PIR2 (v. 40)	11499	2677032
PIR3 (v. 40)	10424	2976511
SWISS-PROT (v. 28)	35998	12495819
NRL_3D (v. 14)	2722	484598
GenBank (v.83.0)	22768	7292381

figure 2.3 - The contribution of the source databases to OWL version 23.2

2.2 Sequence Alignment

A good, accurate alignment is essential as a first step for the definition of discriminating motifs. While automatic alignment techniques, such as CLUSTALV (Higgins, D.G. et al. (1992)), allow the production of objective alignments where the similarity of sequences is low these alignments are usually very poor and therefore manual alignment is then the preferred method. Automatic alignments are also usually very inefficient when sequences of differing lengths are used and often insert an inordinate number of gaps in attempts to optimise an alignment, although they may however provide a useful starting alignment which can be improved manually.

Although manually aligning sequences introduces a degree of subjectivity, if the alignment is incorrect in the region of the motif selected for the database scan, this inaccuracy is easily detected by examining the results of the database searches.

A number of manual alignment methods are available, some of these are reviewed in a later chapter of this thesis. Of particular relevance to sequence analysis at Leeds are SOMAP (Parry-Smith, D.J. and Attwood, T.K. (1991)), MANALIGN and also two new alignment programs written by the author (ALIGN and XALIGN) which will be described in a later section of this thesis. In the case of ALIGN and XALIGN, colour blocks are used as standard to facilitate the alignment of sequences which have low homology and also to ensure the highest possible accuracy. Colour alignments are also available from SOMAP on a limited number of character cell terminals.

A small section of an alignment of ATP synthase c subunits is shown in figure 2.4 along with the corresponding alignment coloured by residue type. This alignment, initially produced using CLUSTALV and refined manually, illustrates how much easier areas of homology may be identified using colour sequence alignments rather than simple monochrome representations. It has been suggested that these proteins have two transmembrane segments (Fragar, D. et al. (1994)), these are easily identified using the colour alignment as hydrophobic residues are coloured grey.
ATPL_RHORU ----DAEAAKMIGAGLAAIGMIGSGIGVGNIWANLIATVGRNPAAKST ATPL_BACME -----ASAIAIGLAALGAGIGNGLIVSKTIEGTARQPEARGT ATPL_ECOLI ------AAAVMMGLAAIGAAIGIGILGGKFLEGAARQPDLIPL ATPH_SPIOL -----AAGLAVGLASIGPGVGQGTAAGOAVEGIARQPEAEGK ATPL_PROMO -----AASAVGAGAAMIAGIGPGVGQGYAAGKAVESVARQPEAKGD ATPL_SULAC -----FEGLNIGAGLAIGLAAIGAGVAVGMAAAAGIGVLTERRD----ATPL_BACFI -----GAAIAAGLAAVAGAIAVAIIVKATIEGTTROPELRGT ATPL_VIBAL -----AVGIIVGLASLGTAIGFALLGGKFLEGAARQPEMAPM ATPL_RHORU VELYGWIGFAVTEAIALFALVVALILLFAA ATPL_BACME LTSMMFVGVALVEALPIIAVVIAFMVQGK ATPL_ECOLI LRTQFFIVMGLVDAIPMIAVGLGLYVMFAVA ATPH_SPIOL IRGTLLLSLAFMEALTIYGLVVALALLFANPFV ATPL_PROMO IISTMVLGQAIAESTGIYSLVIALILLYANPFVGLLG ATPL_SULAC MFGTILIFVAIGEGIAVYGILFAVLMLFGKF ATPL_BACFI LQTLMFIGVPLAEAVPIIAIVISLLILF ATPL_VIBAL LQVKMFIIAGLLDAVPMIGIVIALLFTFANPFVGQLG ATPL_RHORU ATP synthase c - Rhodospirillum rubrum ATPL_BACME ATP synthase c - Bacillus megaterium ATPL_ECOLI ATP synthase c - Escherichia coli ATPH_SPIOL ATP synthase c - Spinach ATPL_PROMO ATP synthase c - Propionigenium modestum ATPL_SULAC ATP synthase c - Sulfolobus acidocadarius ATPL_BACFI ATP synthase c - Bacillus firmus ATPL_VIBAL ATP synthase c - Vibrio alginolyticus

Figure 2.4 - An alignment of ATP synthase c proteins. The equivalent colour alignment produced using the SOCOL programme (Parry-Smith, D.J. personal communication) is shown on the following page. The key to the colours used is shown in appendix D.

2.3 Motif Selection

After the sequence alignment has been prepared, it can be examined manually for the areas of highest conservation. This process can also be carried out by producing graphs of the positional variability of alignments using programs written by the author which will be described in a later section of this thesis. When these areas have been identified, motifs can be selected and written to a file, a typical motif file is shown in figure 2.5. As can be seen, a motif is written to the file from each sequence in the alignment. These files are then submitted to a database scanning routine.

> % from XALIGN Motif number 1 12 ADWVCLAQHESN AEWICIIFHMSG ANWVCMAEYESN GNWVCAAKFESN GNWVCAAKYESN GNWVCAANYESG GNWVCAANYESS GNWVCAARYESN GNWVCVAKFESN LEWTCVLFHTSG PEWVCTAFHTSG PEWVCTTFHTSG SEWICTLFHTSG SNWVCLVENESG

Figure 2.5 - A typical motif file, in this case derived from an alignment of *a*-lactalbumins and *c*-type lysozymes.

2.4 Database Scanning

For the definition of the motifs described in the following chapters the SCAN program was used. The score for each position in a motif is calculated from the residue frequency of the original motif files and in all cases this was the single positional frequency rather than that based on pairwise separation. The scoring method is illustrated below.

If there were three sequences in an alignment then a typical motif file might contain the following motifs :-

VFGRCELAAA IFERCELAAI FFERCELAII

This motif set is slid along a test sequence derived from the database. If the residue at position one in the test sequence is V then the score for that position is :-

Number of times V occurs in the motif file / number of motifs

In this case the score would be 33%. An arginine residue at position four would thus score 100% and so on.

The top scoring regions from all the test sequences in the database are output in the form of a hitlist, which is ordered with the highest scoring sequences in the upper regions of the file. Each entry in the hitlist (a hit) consists of the protein name, the position in the sequence where the motif matches and the score. A typical (although much shortened) hitlist is shown in figure 2.6.

Motif database scanning program V1.0, written by D.N. Perkins : Thu Jun 23 00:34:40 1993 Created on Database scanned : db\$ow1 Motif : dsk\$21:[bmb5dnp.lipox]lipox1_1.mot : 1 from 4 Motif number Sequences checked : Fragments excluded Number of sequences : 62836 Number of residues : 22369156 Scanning method : novel FROM SCORE NAME TO SEQUENCE 1) 100.00 LOX2_PEA 366 - 382 WMTDEEFAREMLAGVNP 2) 100.00 LOX3_PEA 362 - 378 WMTDEEFAREMLAGVNP 3) 100.00 LOX3_SOYBN 358 - 374 WMTDEEFAREMLAGVNP 99.43 LOX1_SOYEN 340 - 356 WMTDEEFAREMIAGVNP 4) 99.43 LCLIPOX 5) 366 - 382 WMTDEEFAREMIAGVNP 6) 98.30 LOX2_SOYBN 369 - 385 WMTDEEFAREMVAGVNP 95.45 LOXB_PHAVU 247 - 263 7) WMTDEEFARETIAGVNP 95.45 LOXX_SOYEN 364 - 380 WMTDEEFAREVIAGVNP 8) 95.45 GMU04526 364 - 380 WMTDEEFAREVIAGVNP 9) 10) 94.89 LOXA_PHAVU 363 - 379 WMTDEEFGREMLAGVNP 11) 90.91 LOX2_ORYSA 356 - 372 WMTDDEFAREILAGVNP 12) 83.96 GMU04785 339 - 355 WMTDEEFARETIAGLNP 13) 77.21 ATHLIPOXY 360 - 376 WRTDEEFAREMLAGLNP 14) 50.40 ATHATLO 394 - 410 WLRDDEFARQTLAGLNP 15) 28.28 TRH6_ECOLI 5 - 21 EMTDEEIAAAMEAFDLP 1 LOX2_PEA SEED LIPOXYGENASE-2 - PISUM SATIVUM (GARDEN PEA). SEED LIPOXYGENASE-3 - PISUM SATIVUM. 2 LOX3_PEA 3 LOX3_SOYEN SEED LIPOXYGENASE-3 - GLYCINE MAX (SOYBEAN). 4 LOX1_SOYBN SEED LIPOXYGENASE-1 - GLYCINE MAX (SOYBEAN). LCLIPOX NCBI gi: 467565 - Lens culinaris 5 LCLIPOX 6 LOX2_SOYBN SEED LIPOXYGENASE-2 - GLYCINE MAX (SOYBEAN). 7 LOXB_PHAVU LIPOXYGENASE (FRAGMENT) - PHASEOLUS VULGARIS. 8 LOXX_SOYBN SEED LIPOXYGENASE - GLYCINE MAX (SOYBEAN). 9 GMU04526 GMU04526 NCBI gi: 436169 - Glycine max 10 LOXA_PHAVU LIPOXYGENASE - PHASEOLUS VULGARIS. 11 LOX2_ORYSA LIPOXYGENASE L-2 - ORYZA SATIVA (RICE). 12 GMU04785 GMU04785 NCBI gi: 439857 - Glycine max ATHLIPOXY NCBI gi: 289203 - Arabidopsis thaliana 13 ATHLIPOXY 14 ATHATLO ATHATLO putative; - Arabidopsis thaliana 15 TRH6_ECOLI TRAH PROTEIN. - ESCHERICHIA COLI.

Figure 2.6 - A shortened hitlist produced by the SCAN program

SCAN also includes a system of modified scanning which produces a hitlist with a greater portion of true positive hits in the upper parts of each list. If a residue in the test sequence matches with any residue in the motif set, then a counter is incremented by one. If there is no match the counter retains its value. This counter value is then multiplied by the total score for the entire motif.

For instance with the following motif set :-

	v	F	G	R	С	E	L	Α	A	A
	I	F	E	к	С	E	I	А	A	I
•	F	F	E	К	С	E	I	v	I	I
Highest attainable score at position Total is 7.33, counter value is 10	.33	1	.66	.66	1	1	.66	.66	.66	.66
part of test sequence	v	F	D	R	с	Е	L	v	A	A
	ł	1		I	I	I	1	I	. 1	I
counter value	1	2	2	3	4	5	6	7	8	9
End counter value is therefore 9.										
score for normal frequency scanning	g is		5.3	33 / 1	.0 (5	3.39	%)			
score for modified scanning techni	ique	is	(5.3	3 x	9) /	' (7.	33 x	10)	(65 .	.44%)

The score produced by the modified database scanning method is greater as it takes into account the number of positions matched as well as the simple residue frequency score. In the case above, a large number of residues in the test segment contribute to the score, thus this value is higher.

As the ADSP method of motif definition is iterative (described below), then a number of database searches may be needed before the final motif sets are defined. In practice, this means that at least two scanning operations are carried out for each motif set.

A new version of the SCAN program has been written by the author which allows the use of the techniques described here along with the application of substitution matrices and simple statistics. The user may select an option from this new program that outputs score frequencies allowing other statistical approaches to be applied if desired. The new SCAN program is much more portable, being successfully compiled and run on a number of platforms and is also substantially faster than the previous program, the greatest increase in speed being on Silicon Graphics platforms where the time taken for a typical search of the OWL database (version 23.0) was reduced from over eight hours to under thirty minutes.

The new SCAN program also may be used to scan any nucleic acid or protein sequence database which conforms to the NBRF/PIR file format, for example GenBank.

2.5 Comparison of Hitlists

The COMPARE program is used to analyse the hitlist files produced by the database scanning programs as manual analysis of such files would be very time consuming, tedious and prone to error. Attempts had been made to port the VMS version of COMPARE (Parry-Smith, D.J (1990)) from the original ADSP system to UNIX platforms, but this was largely unsuccessful. Therefore, a complete rewrite was undertaken by the author which resulted in a much more efficient and portable program. This routine uses the dynamic memory allocation facilities provided by the C programming language to ensure the maximum efficiency of machine usage, allowing a large number of long files to be analysed, limited only by the memory of the host machine rather than fixed array bounds. The new COMPARE also allows for the manipulation of the statistical data produced by the SCAN program.

COMPARE allows a large number of hitlists (restricted only by the memory capacity of the machine used) to be checked for identical sequences codes. A file is then produced, the Compound Feature Index (or CFI), which contains a table illustrating the number of hitlists a particular sequence is found in. Another file, the LIS file, may also be produced which gives a more detailed representation of the results as the matching motif from the database sequences are also shown. Figure 2.7 illustrates a typical CFI. The sequences must be found in the correct order, ie motif one must be nearer the N-terminus than motif two, and must not be overlapping otherwise COMPARE will discard the entry from the hitlist files.

The sequences which are shown to match with all the motifs (or features) used to scan the database are considered to be the true set of hits. The motifs from this true set are written to new motif files by the COMPARE program and are then used to scan the database again to produce more hitlists. The new hitlists are again analysed with COMPARE and if any extra sequences are shown to match with all the motifs then these are added to the motif files and another database scan carried out. This process is repeated until no new sequences are evident in the true set. In this way the motifs originally selected are refined in an iterative and objective manner with no user input. The weighting value for a particular residue type is defined only by the sequence data present in the database and not by manual intervention as in a number of other sequence analysis methods such as MEGASCAN from the LUPES package. Compound Feature Table

4	3	2
GBAKSHUMAN	GBI2\$BOVIN	YOR1\$PVX
GBAKSRAT	CHKCPS1	PVXX3
GBI1\$BOVIN		
GBI1\$RAT		
GBI2\$HUMAN		
GBI2\$MOUSE		
GBI2\$RAT		
GBT2\$BOVIN		
GBA0\$BOVIN		
GBA0\$HUMAN		
GBA0\$RAT		
DROGPAMA		
DROGPAMB		
DROGPAS1		
GBAS\$BOVIN		
GBAS\$CRILO		
GBAS\$HUMAN		
GBAS\$MOUSE		
GBAS\$RAT		
DROSTIMG		
MUSGTPAMU		
GBT1\$BOVIN		
GBT1\$HUMAN		
RGBOGA		
GBA0\$XENLA		
S02785		
GBA2\$DICDI		
DDIGA1A		
HUMGNAZ		
RATGXA		
GBA1\$YEAST		
YSTSCG1A		
GBA2\$YEAST		
ARF\$BOVIN		
ARF\$YEAST		
BOVARF		
Compound Feat	ture Index	
41 36 36 36	36	
31 1 2 2	1	
21 2 0 2	0	
+		
1 1 2 3	4	

Figure 2.7 A typical Compound Feature Index (CFI) produced by the COMPARE program, in this case for four motifs derived from G protein α chains. The sequences on the far left of the table match with all motifs, those on the far right match with only two motifs. The table at the bottom of the CFI indicates how many sequences match with each motif.

The number of the motif matched is shown on the bottom line of the table (in this case 1 to 4). The column of figures to the left of the table shows the number of motifs matched while the numbers in the table itself show which motifs are matched by the sequence

codes.

34

COMPARE also allows the user to determine whether the initial motifs are flawed and need redefining, for instance if a large number of sequences that are know members of the family being studied are shown to be only partial matches. However, database entries which are only fragments of the whole sequence will be shown to be partial matches so some vigilance is required. Also, the user should be very wary of motifs if a sequence that is shown to match with all motifs initially is then found to be only a partial match after the next database scan.

After the final database scan, a motif set with good discriminating efficiency should show that all true hits match with all the motifs in the set, no hits in the lower columns of the CFI and the only hits in the two feature column should be attributable to noise (assuming more than two motifs are used initially).

The COMPARE program additionally allows the use of distance criteria, the user supplying the maximum number of residues allowable between each motif. This option is useful for reducing the amount of noise in a hitlist but should be used with caution to ensure that true hits are not excluded.

2.6 Graphical Interpretation of the Final Motif Files.

The PLOT program has also been totally rewritten by the author to allow greater portability and efficiency. The original version required a complicated input file which had to be edited each time it was used, whereas the new versions take only command line parameters. The GKS library was used to produce graphical output from the original program which meant that the program could only be run on machines with an appropriate licence and was also VMS specific. The new version of PLOT uses the standard X11 and Motif libraries and is written in portable C. The author has also written a version that uses the GL graphics libraries which takes advantage of the extra graphics capabilities of Silicon Graphics machines.

The postscript drivers used by the new PLOT were also written by the author, in contrast to the previous version which used the GKS drivers, allowing greater flexibility.

The PLOT program takes the motif files produced by the final database search and then scans a single sequence using either the modified scoring technique described above or simple residue frequency scoring. The graph produced shows all the motifs on a single screen or sheet of paper, the areas of the test sequence which have a high degree of similarity to the motifs are indicated by peaks in the graph. Some idea of the discriminating efficiency of the motifs may also be obtained as good motifs should show clearly defined peaks of maximum value, whereas poor motifs show only poorly defined peaks.

PLOT is also particularly useful for quickly identifying similarities between new database sequence entries and existing motifs, such as those contained within the PRINTS database. Other methods of manipulating the motif information contained in the PRINTS database is described in a later chapter. Typical output from the PLOT program is shown in figure 2.8.

2.7 Consensus Motifs and Motif Variability

These programs are useful tools for extracting information from motif files and also for making data from large motif sets more manageable. They are discussed fully in a later chapter of this thesis.

Figure 2.8 - Typical Postscript output from the XPLOT program. This example shows an elongation factor scanned with motifs defined by the author. The x-axis represents the residue number while the percentage score for each motif is shown on the y-axis.

2.8 Conclusion

The ADSP and related algorithms are a proven and reliable method for the definition of discriminating motifs (Attwood, T.K et al. (1991), (1993), (1994), Flower, D.R. et al. (1991)). Although an initial alignment is produced manually, objectivity is not compromised as any errors in the alignment will become obvious as the study proceeds. In contrast to many other systems, no user manipulation of the 'weights' or propensities for a particular residue type at a particular motif position is allowed, these values being defined by the sequence data alone.

While the ADSP system, as originally written, has largely been superseded by the programs described above and in later chapters of this thesis, most of the core algorithms have been retained with minor alterations.

2.9 References

Attwood, T.K., Eliopoulos, E.E., Findlay, J.B.C., Multiple sequence alignment of protein families showing low homology: a methodological approach using database pattern-matching discriminators for G-protein-linked receptors. Gene **98** (1991) pp153-159

Attwood, T.K., Findlay, J.B.C., Design of a discriminating fingerprint for G-protein-coupled receptors. Protein Engineering 6 (1993) pp167-176

Attwood, T.K., Findlay, J.B.C., Fingerprinting G-protein coupled receptors. Protein Engineering 7 (1994) pp195-203

Bleasby, A.J, Wootton, J.C., Construction of validated, non-redundant composite protein sequence databases Protein Eng. 3 (1990) pp153-155

Flower, D.R., North, A.C.T., Attwood, T.K., Mouse oncogene protein 24p3 is a member of the lipocalin protein family. Biochem. Biophys. res. comm. 180 (1991) pp69-74

Fraga, D., Hermolin, J., Oldenburg, M., Miller, M.J., Fillingame, R.H., Arginine 41 of the subunit c of Escherichia coli H⁺-ATP synthase is essential in binding and coupling of F1 to F0. J. Biol. Chem. **269** (1994) pp7532-7537

Higgins, D.G., Bleasby, A.J., Fuchs, R., CLUSTALV: improved software for multiple sequence alignment. CABIOS 8 (1992) pp189-191

Parry-Smith, D.J. Algorithms and data structures for protein sequence analysis. Thesis (1990), University of Leeds

Parry-Smith, D.J., Attwood, T.K., SOMAP: a novel interactive approach to multiple protein sequence alignment. CABIOS 7 (1991) pp233-235

.

Chapter 3 C-type Lysozymes

3.1 Summary

Three sets of composite motifs have been assembled for c-type lysozyme, lactalbumin and super-family definition (in this case super-family refers to the set of sequences that is composed of all the c-type lysozymes and lactalbumins). An important region for discrimination was shown to be found in the calcium binding section of the lactalbumin sequences. From scans of the OWL protein sequence database, the diagnostic capacity of these motifs was confirmed as all sequences of the correct type were identified. Seventeen lactalbumin sequences were eventually used to construct the lactalbumin composite motifs, sixty-two c-type lysozyme sequences were used to create the final c-type lysozyme motifs and a total of eighty-one sequences were used for the super-family diagnostic motifs.

3.2 Introduction

Lysozymes are ubiquitous enzymes that have been isolated from the different organs or secretions of organisms as diverse as vertebrates, invertebrates, phages, and bacteria. Much of the early lysozyme data was collected from birds, including hen egg-white lysozyme which was the first enzyme structure to be elucidated (Blake, C.C.F. et al. (1965)). This family of lysozymes is discussed in this chapter and is known as chicken-type (or c-type) lysozymes although they have now been characterised in many other animals besides birds, for instance insects and mammals (Jolles, P. and Jolles, J. (1984)). The c-type lysozyme super-family is, however, distinct from the goose-type and T4 phage lysozyme families.

Lactalbumins have been shown to possess strong sequence and three-dimensional structural similarities to the c-type lysozymes and are thought to have evolved from a common ancestor (Nitta, K. and Sugai, S. (1989)). The intron-exon constitution of their respective genes are also virtually identical (Kumagi, I. et al. (1992)) lending support to this theory. The high degree of similarity between the primary structures means that the c-type lysozyme and lactalbumin families provide an excellent protein family for the validation of a sequence analysis technique as efficient and effective algorithms should ideally be able to distinguish not only the whole super

40

family from the other database sequences but also lysozyme from lactalbumin sequences.

Despite the similarities mentioned above lysozyme and lactalbumin perform very different biological roles, although it is thought that there may be some similarity between their respective ligands. Lysozyme is responsible for the lysis of bacterial cell walls by catalysing the hydrolysis of the beta-1,4 glycosidic linkage between N-acetyl-D-glucosamine and n-acetyl-D-muramic acid in polysaccharides, they thus function as the first line of host defence against bacterial infection. In addition to this role, lysozyme has also been recruited as a digestive enzyme in a number of species such as cattle, deer and colombine monkey. The enzymes from these animals share a number of properties not shown in other lysozymes, ie a low optimum pH and resistance to pepsin. It is thought that these enzymes degrade the cell walls of bacteria in the gut, making the cell contents available for digestion (Irwin D.M and Wilson, A.C. (1989)).

In contrast to lysozyme, lactalbumin is found only in mammary glands and comprises fifteen percent of the total protein content of human milk. Here, this protein plays an important part in the production of lactose by modulating the carbohydrate binding properties of beta-galactosyltransferase in the lactating mammary gland through a protein-protein interaction, the resulting complex catalyses the addition of galactose to glucose to produce lactose. Lactalbumins have also been shown to be able to bind calcium, whereas this property is absent from the vast majority of lysozymes. It has been suggested that lactalbumin diverged from an ancestral lysozyme and that this involved the development of this calcium binding ability. It is uncertain when the gene duplication event which led to the development of lactalbumin from lysozyme occurred, some authors suggest that the event occurred before the divergence of birds and mammals (Prager, E.M. and Wilson, A.C. (1988)) while other data indicates the divergence was more recent (Shewale, J.G. et al. (1984)).

3.3 Motif Definition

To create motifs with which to scan the OWL database, a number of multiple alignments of protein sequences were prepared. Within both the lactalbumin and lysozyme families homology is relatively high and so the alignment process was quite straightforward. In the case of the lysozymes, twelve sequences were used to create a multiple alignment (figure A.1.1). Eleven sequences featured in the lactalbumin multiple alignment (figure A.1.2). For the definition of the super-family motifs an alignment of six lysozymes and six lactalbumins (ie a total of twelve sequences) was produced (figure A.1.3). Plots of the alignments were produced, coloured by positional variability, and examined for the regions of highest conservation.

After the first database scans, compound feature indices were produced by examining hitlists of one hundred for the lactalbumin discriminators, one hundred and fifty for the lysozyme discriminators and a hitlist of two hundred for the super-family discriminators. All hitlists had distance criteria applied which involved the use of a program which calculates the relative distance between motifs from the initial alignment. This technique removes the noise from the two features column of the compound features index, ie the signal to noise ratio is improved.

3.3.1 Lactalbumin Discriminators

Six motifs (figure 3.1) were selected from the most conserved sections of the lactalbumin alignment and used to scan the OWL sequence database. The first iteration produced seventeen sequences that matched with all six motifs. Eleven of these sequences had been used to create the original motifs. The appropriate motifs from the six additional sequences were added to the initial motif files and another database scan was carried out. The second scan showed seventeen sequences in the six features column, indicating that convergence had been reached as no extra sequences were found.

These seventeen sequences were found to be all the lactalbumin sequences contained within the OWL protein sequence database (version 9.0). The final Compound Feature Index is shown in figure 3.2. A number of lysozymes were also shown to match with two or three motifs.

Panda	Would 1	Motif 2	Motif 3	Motif 4
<u>FORG</u>	MOLIL +	FUTCOVDTENTS	HSSNICNISC	KFLDDDLTDD
LABU I CI ADONICIO	EVFRELKDLKGIGGVSEFEWV	FHTSCIDIEALV	HESNICHISC	KFLDDDLTDD
LCASBOVIN	EVFRELKDLKGIGGVSLFEWV	FHECODEONIA	HERNICNISC	KFLDDDLTDD
LAGT	EVFORLEDLEDIGGVSLFEWV	FHISGIDIQALV	HERNICHISC	KFLDDDLTDD
LCAŞCAPHI	EVFORLKDLKDYGGVSLPEWV	FRISGIDIQAIV	HSRNICHISC DCDNICCISC	KELDDDLTDD
LAHO	ELSEVLKSMDGYKGVTLPEWI	FINCONDOCTIV	PSRNICGISC	KELDDDLTDD
LCABSHORSE	QLSQVLKSMDGYKGVTLPEWI	FHINSGIDTOTIV	PSRNICGISC	KELDDELADD
LART2	EVSHALEDMDGYEGVSLPEWT	FHISGIDTEASV	ESENICOISC	KELDDELADD
LART	EVSHAIEDMDGYQGISLLEWT	FHISGYDSQAIV	ESENICDISC	KFLODGL TOD
LACM	KLSDELKDMNGHGGITLAEW1	FHMSGYDTETVV	QSRNICDISC	KFLDDDLIDD
LARB	ELTEKLKELDGYRDISMSEWI	FHISGLDIKITV	QSKNICDTPC	NELDONLIDD
LAKGAW	QASQILKEHGMDKVIPLPELV	FHISGLSTQAEV	VANSVCGILC	KELDDDTTDD
				
Pcode	Motif 5 Motif 6			
LABO	VGINYWLAH CSEKLDQWLC			
LCASBOVIN	VGINYWLAH CSEKLDQWLC			
lagt	VGINYWLAH CSEKLDQWLC			
lcașcaphi	VGINYWLAH CSEKLDQWLC			
LAHO	EGIDYWLAH CSEKLEQWLC			
LCAB\$HORSE	EGIDYWLAH CSEKLEQWLC			
LART2	KGINYWLAH CSEKLEQWRC			
LART	KGIDYWKAH CSEKLEQWRC			
LACM	EGIDYWLAH CSEKLEQWQC			
LARB	EGIDHWLAH CSENLEQWVC			
LAKGAW	EGLGYWKAH CLEDLDOWRC			
	-			
LABO	Alpha-lactalbumin -	- Bovine		
lcașbovin	Alpha-lactalbumin	precursor - B	ovine	
lagt	Alpha-lactalbumin	- Goat		
lcașcaphi	Alpha-lactalbumin	precursor - G	oat	
LAHO	Alpha-lactalbumin	- Horse		
LCAB\$HORSE	Alpha-lactalbumin]	b and c - Hor	se	
LART2	Alpha-lactalbumin	(version 2) -	Rat	
LART	Alpha-lactalbumin	- Rat		
LACM	Alpha-lactalbumin	- Arabian cam	el	
LARB	Alpha-lactalbumin	- Rabbit		
LAKGAW	Alpha-lactalbumin	- Red-necked	wallaby	

Figure 3.1 - The initial lactalbumin motifs.

,

and the second second

Compound Feature Index 3.2 (VAX/VMS version) D J Parry-Smith T K Attwood November-1990

17 codes involving 6 features
0 codes involving 5 features
0 codes involving 4 features
5 codes involving 3 features
8 codes involving 2 features

Compound Feature Table

6	5	4	3	2
LAGT			LYCSEQUA	S LZPY
LCA\$CAPHI			LYC\$HORS	E LZQJEC
LCA\$BOVIN			LYC1\$PIG	LZQJEB
LCA\$SHEEP			LYC2\$PIG	LZUH
LABO			LYC3\$PIG	LZRT
LAHU				LZBA
LAHO				LZDK3
LCAB\$HORSE				LZOVE
LAGP				
LACM				
LCASPAPCY				
EZEC228				
GPILACTAL				
LART2				
LART				
LARB				

Compound Feature Index 6| 17 17 17 17 17 17 5| 0 0 0 0 0 0 4| 0 0 0 0 0 0

LAKGAW

4	0	0	0	U	0	Q	
31	5	0	5	5	0	0	
21	7	0	8	1	0	0	
+-							
ł	1	2	3	4	5	6	

Figure 3.2 - The final compound feature index produced by the lactalbumin motifs. The motifs from and descriptions of all these sequences is shown in appendix B.1.1.

3.3.2 C-type Lysozyme Discriminators

Six motifs were selected from the most conserved regions of an alignment of twelve lysozyme sequences (figure 3.3). After the first iteration, sixty-two sequences were shown to display all six motifs. New files were prepared that contained all the motifs from these sequences and another iteration carried out. The second database search showed no extra sequences indicating that convergence had been reached.

These sixty-two sequences consisted of all the complete c-type lysozyme sequences in version 11.0 of the OWL composite database. Lactalbumin sequences where shown as a sub-family in the two features column of the final Compound Feature Index (figure 3.4).

Pcode	Motif 1	Motif 2	Motif 3
LZCH	VFGRCELAAAMKRHGLDN	KFESNFNTQATNR	PGSRNLCNIPC
LZQJEC	VFGRCELAAAMKRHGLDN	KFESNFNSQATNR	PGSRNLCNIPC
LZQJEB	VFGRCELAAAMKRHGLDN	KFESNFNSQATNR	PGSRNLCNIPC
N\$2HFLY	VFGRCELAAAMKRHGLDN	KFESNFNTQATNR	PGSRNLCNIPC
NSBLYM	VFGRCELAAAMKRHGLDN	KFESNFNTQATNR	PGSRNLCNIPC
LZDK3	VYERCELAAAMKRLGLDN	NYESSFNTQATNR	PRAKNACGIPC
LZOVE	IYKRCELAAAMKRYGLDN	RYESNYNTQATNR	PGTKNLCHISC
LZBA	IFERCELARTLKRLGLDG	KWESDYNTQATNY	PGAVNACHISC
LZBO	VFERCELARTLKKLGLDG	KWESSYNTKATNY	PNAVDGCHVSC
N\$1LZ1	VFERCELARTLKRLGMDG	KWESGYNTRATNY	PGAVNACHLSC
LYC1\$PIG	VYDRCEFARILKKSGMDG	KWESDFNTKAINR	PKAVNACHISC
Pcode	Motif 4	Motif 5 1	lotic 6
LZCH	SALLSSDITASVNCAK NO	GMNAWVAWR NRCK	GTDVQAWIRG
LZQJEC	SALLSSDITATVNCAK N	GMNAWVAWR NRCK	GTDVHAWIRG
LZQJEB	SALLSSDITATVNCAK B	GMNAWVAWR NRCK	GTDVQAWIRG
N\$2HFLY	SALLSSDITASVNCAK D	GMNAWVAWR NRCK	GTDVQAWIRG
N\$3LYM	SALLSSDITASVNCAK N	GMNAWVAWR NRCK	GTDVQAWIRG
LZDK3	SVLLRSDITEAVKCAK D	GMNAWVAWR NRCK	GTDVSRWIRG
LZOVE	SALMGADIAPSVRCAK D	GMNAWVAWR KHCK	GTDVSTWIKD
LZBA	NALLQDNITDAVACAK Q	GIRAWVAWR NHCQ	NRDVSQYVQG
LZBO	SELMENDIAKAVACAK Q	GITAWVAWK SHCR	DHDVSSIVEG
N\$1LYZ	SALLQDNIADAVACAK Q	GIRAWVAWR NRCQ	NRDVRQIVQG
LYC1\$PIG	KVLLDDDLSQDIECAK Q	GIKAWVAWR THCQ	NKDVSQYIRG
LZCH	Lysozyme c precurse	or - Chicken	
LZQJEC	Lysozyme c - Calif	ornia quail	
LZQJEB	Lysozyme c - Commo	n bobwhite	
n\$2hFLY	Lysozyme c - Chick	en	
N\$3LYM	Lysozyme c - Hen e	gg	
LZDK3	Lysozyme c III - D	uck	
LZOVE	Lysozyme c - Plain	chachalaca	
LZBA	Lysozyme c - Baboo	n	
LZBO	Lysozyme c 2 - Bov	rine	
N\$1LYZ	Lysozyme c - Hen e	gg white	
N\$1LZ1	Lysozyme c - Human	L	
LYC1\$PIG	Lysozyme c I - Pig	ſ	

Figure	3.3		The	cir	initial	lvsozvme	motifs
rigure	J.J	•	і пе	SLL	mmai	193029110	

Compound Feature Index 62 codes involving 6 features 0 codes involving 5 features 0 codes involving 4 features 0 codes involving 3 features 17 codes involving 2 features Compound Feature Table 5 4 LZCH N\$1LYMA N\$1LYMB N\$1LYZ N\$1LZHA N\$1LZHB N\$2HFMY N\$2LYM N\$2LYZ N\$2LZH N\$2LZT N\$3HFMY N\$3LYM N\$3LYZ N\$4LYZ N\$5LYZ NS6LYZ NS7LYZ N\$8LYZ S05657 NS2HFLY !LCOT JT0526 EZEC462 N\$1LZ2 LYC\$MELGA N\$2LZ2 EZEC471 LZQJEC LZQJEB LZFER EZEC470 LZUH EZEC465 EZEC466

6

LZQJE

LAGT LCAŞCAPHI LCA\$SHEEP LAHU LCAB\$HORSE LABO LCASBOVIN LCASPAPCY N\$1ALC LAHO LAKGAW LAGP GPILACTAL LCA\$PIG LACM LART

LARB

2

3

(Continued on the next page)

Compound Feature Table

5

LZDK3 LZDK LZTK LZOVE LZBA LZHU HUMLSZA N\$1LZ1 LYC\$RABIT HUMLYZ LYC\$PREEN LYCP\$MOUSE LYCM\$MOUSE LYC3\$PIG LYC1\$PIG LZRT BOVLSZ3A LZBO LYC\$AXIAX LYC\$SHEEP BOVLSZ1A LYC2\$PIG LYC\$BOVIN LYC\$EQUAS LYC\$HORSE LZPY

6

Compound Feature Index ------61 62 62 62 62 62 62 0 0 0 0 0 0 51 0 0 0 0 0 0 41 0 0 0 0 0 31 0 0 0 0 16 17 21 1 -------+---2 3 4 5 6 1 1

Figure 3.4 The final lysozyme compound feature index. The descriptions of and motifs from all these sequences is shown in appendix B.1.2.

4

2

3

3.3.3 Super-family Discriminators

Six motifs were defined from an initial alignment of twelve sequences comprising representatives of both lactalbumins and lysozymes (figure 3.5). These lysozyme c super-family discriminators produced eighty-one sequences in the six feature column after the first iteration. All these sequences were members of the super-family. New motif files were produced and another database scan carried out. This iteration produced no additional sequences, therefore convergence had been reached.

The eighty-one sequences shown to match with all six motifs were found to be all the complete lysozyme and lactalbumin sequences in the OWL database (version 11.0). Only one sequence was shown to match with two motifs. Figure 3.6 shows the final Compound Feature Index (CFI) produced.

		Watte 2	Motif 3	Motif 4
Pcode	Motif 1	MOULL &	STOYOULOINSRWWCND	NLCNIPCSAL
LZQJEB	FGRCELAAAMK	YSLGIWVCAA	STDYCVLOINSRWWCND	NLCNIPCSAL
LZUH	FGRCELAAAMK	YSLOWVCAR	KTEVCLEOINNKMWCRD	NICGISCDKF
LAHO	FTKCELSEVLK	VILPEWICIT	STDYGIFOINSKWWCND	DGCHVSCREL
LYC\$BOVIN	FERCELARTLK	VSLANWICII	STDYGILOINSRWWCND	NLCNIPCSAL
!LCOT	YGRCELAAAMK	YSLGINWVCAA	STETIGIEQINSKI WCVS	NICDTPCENF
LARB	LTRCELTEKLK	ISMSEWICTE	STEVEL FOI SNALWCKS	NICDITCDKF
LCA\$PAPCY	FTKCELSQNLY	TALPELICIM	CUDACTEOINERVWOND	NACHISCKVL
LYC3\$PIG	YDRCEFARILK	VSLANWVCLA	STETCLEOINNKIWCKD	NICNISCDKF
LCA\$SHEEP	LTKCEAFQKLK	VSLPEWVCTA	CEDVOTEOTNCKVWCND	NACNINCSKL
LZPY	IPRCELVKILR	KTVANWVCLV	STETICIEOISNRDWCKE	NICDISCDKF
LART2	FTKCEVSHAIE	VSLPEWICVL	MEYGIEOISNDGWCAE	SVCGILCSKF
LAKGAW	YRKCQASQILK	IPLPELVCIM	MEIGIFQISHDenen	Breeze
	Motif E	Mot	tif 6	
PCODE	LSSDITATION	ARKTY CMNAW	VAWRNRC	
LZQUED	OSSDITATANC	AKKIV CMNAW	VAWRKHC	
LZON	LDDDLTDDVMC	AKKIL GIDYW	LAHKPLC	
LAHO	MENDIAKAVAC	ARKID GIDI	VAWKSHC	
LYCSBOVIN	LSSDITASING	ANTIV CHIAW	VAWRNRC	
ITCOL		ARRIV GRINAN	T,AHKPLC	
LARB	LODDITODIAC	AMAIL GIDIN	TAHKALC	
LCASPAPCI	LDDDLSODIEC	ARAIL GIDI	NAWKAHC	
LYC3SPIG		AKRVV GINA	JI.AHKALC	
LCASSHEEF	RDDNIADDIOC	AKKIL GINI	NAWKKYC	
LZPY	LODFLADDIVC	AKKIA GUIF	JT.AHKPMC	
LART2		AKKIV GINIV	WAHETFC	
LAKGAW	LUDUIIDDIE(AKKIL GLGIV		
TRATER	Lysozyme c	- Common be	obwhite	
	Lysozyme c	- Helmeted	guineafowl	
	Alpha-lacta	albumin - H	orse	
LANO	Lvsozvme c	precursor	- Bovine	
	Lvsozvme -	Coturnix		
I LCOI	Alpha-lact	albumin - R	abbit	
	Alpha-lact.	albumin - Y	ellow Baboon	
LCASPARCI	Lvsozvme c	$-3 - \text{Pi}\alpha$	•••	
LICISLIC	Alpha-lact	albumin nra	cursor - Sheep	
LCASSREE	INSOZVME C	- Digeon	¥ == 7 °	
LZPY	Alpha-lact	albumin (ve	rsion 2) - Rat	
LART2	Alpha-lact	alphmin (ve	ed-necked wallaby	
LAKGAW	AThua-race	α = Dumin = R		

Figure 3.5 - The six initial super-family motifs

Compound Feature Index 81 codes involving 6 features 0 codes involving 5 features 0 codes involving 4 features 0 codes involving 3 features 1 code involving 2 features Compound Feature Table 3 4 5 6 LZCH N\$1LYMA N\$1LYMB N\$1LYZ N\$1LZHA NS1LZHB N\$2HFLY N\$2HFMY N\$2LYM N\$2LYZ NS2LZH N\$2LZT N\$3HFMY N\$3LYM N\$3LYZ NS4LYZ N\$5LYZ N\$6LYZ N\$7LYZ N\$8LYZ JT0526 I LCOT LZQJEC LZQJEB EZEC471 S05657 LYC\$MELGA NS2LZ2 LZFER EZEC462 N\$1LZ2 LZUH EZEC470 LZDK3 LZDK EZEC465 EZEC466 LZOVE LZQJE LYC\$RABIT LZBA LZTK LYC\$PREEN

(Continued on the next page)

51

2

LYC\$SALGA

Compound Feature Table

5

.

6

......

4

3

2

. LZHU N\$1LZ1 HUMLSZA HUMLYZ LYCM\$MOUSE LZRT LYCP\$MOUSE LYC1\$PIG LYC3\$PIG LYC2\$PIG LZBO BOVLSZ3A LYC\$EQUAS LYC\$SHEEP BOVLSZ1A LYC\$HORSE LCA\$SHEEP LAGT LCA\$CAPHI LYC\$BOVIN LYC\$AXIAX LCA\$BOVIN LAHO LCA\$PIG LABO LZPY EZEC228 LAHU LCAB\$HORSE LART2 LCA\$PAPCY NS1ALC LARB LART LACM LAKGAW LAGP GPILACTAL Compound Feature Index --------------

6 81 81 81 81	. 81 81
51 0 0 0 0) 0 0
41 0 0 0 0) 0 0
31 0 0 0 0	0 0
21 1 1 0 (0 0
+	
1 1 2 3	4 5 6

Figure 3.6 - the final CFI produced after the second database scan. The motifs from and the descriptions of all these sequences is shown in appendix B.1.3.

3.4 Individual Sequence Analysis Using the Converged Lactalbumin, C-type Lysozyme and Super-Family Motifs

The final motif files produced by the iterative process were then used to scan individual sequences, the results were plotted using the XPLOT program written by the author and described in the previous chapter. This process allows the graphical illustration of the diagnostic efficiency of the selected motifs. The x-axis of each graph shows the residue number while the percentage score for each motif is shown on the y-axis.

Figure 3.7 shows the lactalbumin motifs used to scan c-type lysozyme and lactalbumin sequences. All the motifs are clearly shown in the lactalbumin sequences whereas the c-type lysozyme sequences achieve a relatively low score.

Figure 3.8 illustrates lactalbumin and c-type lysozyme sequences scanned with the c-type lysozyme motifs. The c-type lysozyme sequences show very high scores for all the motifs. In contrast, the scores for the lactalbumin sequences are relatively low for all or most of the discriminating motifs.

Figure 3.9 shows the super-family motifs used to scan individual c-type lysozyme and lactalbumin sequences. As can be seen, both c-type lysozyme and lactalbumin sequences score highly for these discriminators.

Figure 3.7a Individual lactalbumin sequences scanned with the final converged lactalbumin motifs

Figure 3.7b Lysozyme sequences scanned with the final lactalbumin motifs. Note the higher degree of similarity between the horse lysozyme and motif four. This is discussed later in this chapter.

Figure 3.8a Lysozyme sequences scanned with the final lysozyme motifs

Figure 3.8b Lactalbumin sequences scanned with the converged lysozyme motifs

Figure 3.9a Lactalbumin sequences scanned with the converged super-family motifs

Figure 3.9b Lysozyme sequences scanned with the converged super-family motifs

3.5 Discussion

From figures 3.7 to 3.9 above it can be seen that the motifs chosen are very efficient discriminators for the appropriate sequences. The clear cut-off in each of the compound feature indices also indicates good discriminating power. Thus, each set of motifs are highly diagnostic for its own family and also show the other as a related sub-family.

The super-family compound feature index (figure 3.6) shows only one sequence in the two features column, the lysozyme sequence from the Rainbow Trout (LYC\$SALGA) which matches with motifs one and two. The other four motifs are not seen in this sequence as it is a fragment.

In the case of the c-type lysozyme discriminators, seventeen lactalbumin sequences were shown as a sub-family which share two of the six selected motifs (figure 3.4). The proteins shown in the two feature all matched with motif four. Sixteen of the seventeen also matched with motif three while one sequence (the lactalbumin from Red-Necked Wallaby, database code LAKGAW) matched with motif one. Motifs two, five and six thus appear to have the greatest discriminating efficiency as no lactalbumins matched with these motifs.

With the lactalbumin motifs, the issue of sub family is slightly more involved. As figure 3.2 shows, a number of c-type lysozyme sequences are shown in the two features column but some also appear in the three feature column. The lysozyme sequences in the three feature column all show motif four along with motifs one and three. The lysozyme sequences shown in the two features all match with motifs one and three, apart from pigeon lysozyme (LZPY) that matches with motifs three and four.

Chachalaca lysozyme	ALMGADIAPS	Conventional
Chicken lysozyme	ALLSSDITAS	lysozymes
Donkey lysozyme	KLLDDNIDDD	
Horse lysozyme	KLLDENIDDD	Calcium binding
Pig lysozyme	VLLDDDLSQD	lysozymes (including
Pigeon lysozyme	KLRDDNIADD	pig sequence)
Bovine lactalbumin	KFLNNDLTNN	
Rabbit lactalbumin	NFLDDNLTDD	Lactalbumins
Rat lactalbumin	KFLDDELADD	
Human lactalbumin	KFLDDDITDD	
	<u>†</u> ††	

Asp residues involved in calcium binding

Figure 3.10 Lactalbumin motif four. The bovine lactalbumin sequence includes Asn residues that are probably mis-identified Asp residues.

Figure 3.10 shows lactalbumin motif four from a number of c-type lysozyme and lactalbumin sequences. It can be seen that the horse, pig, donkey, and pigeon sequences are much more similar to the lactalbumin sequences than the other lysozyme sequences. In the lactalbumins the section of the sequence shown in figure 3.9 has been shown to be the region that is involved with the binding of calcium. The binding site was deduced using high resolution X-ray structure analysis (Stuart D.I. et al. (1986)) and was shown to consist of three aspartic acid residues (Residues 82, 87 and 88 using human lactalbumin sequence numbering). It was first suggested that the calcium bound to lactalbumin stabilised the structure, but recently it has been claimed that calcium controls the release of lactalbumin from the golgi membrane and that the pattern of ion binding may also affect the catalytic properties of the lactose synthetase complex.

In the case of horse lysozyme, the similarity with lactalbumins is at a functional level as this protein has been shown to be able to bind calcium (Nitta K. et al. (1987)). This functional similarity is also true of the Donkey lysozyme (Godovac-Zimmerman J. et al (1988)). Pigeon lysozyme also has been shown to have the ability to bind calcium (Nitta, K. et al. (1988)), and matches with motif four, but is less similar to the N-terminal region of the lactalbumins and thus lacks motif one.
The calcium binding site in the pig lysozymes (Jolles, J. et al. (1989)) is not as highly conserved and appears to be partially formed or destroyed as all three of the pig lysozyme sequences lack the second of the aspartic acid residues which have been shown to be involved in conferring the ability to bind calcium (this residue being replaced by a glutamine residue), although it is plain that these sequences share a higher similarity with lactalbumins than the other lysozymes in this region of the sequence. However, horse lysozyme which has the ability to bind calcium has an aspartic acid residue that is conserved in all the lactalbumins replaced by a glutamic acid residue in motif four indicating a possible exchangeability between the two types of acid residue and it may also be possible that the glutamine residue in the pig sequences has been wrongly identified as all three pig lysozymes were sequenced by the same laboratory at the same time. Such an example of possible mis-sequencing is seen in a bovine lactalbumin (database code EZEC228) where all three of the important aspartate residues are identified as asparagines. The sequencing authors describe all three pig sequences as conventional lysozymes (ie not of the same class as the horse milk and other calcium binding lysozymes), although they also mention that the pig lysozymes share few properties in common with the other ruminant stomach lysozymes being studied. All three pig sequences, however, do have the three conserved aspartic acid residues in the region of the calcium binding site which are also seen in almost all lactalbumins but not in any other lysozymes. In addition, the three pig lysozymes are all found in the stomach where calcium binding may be important to stabilise the structure in a harsh acid, protease rich environment. Other lysozymes which are found in the stomach do not show calcium binding properties although it is known that the pig stomach lysozymes have different properties than the ruminant stomach sequences, for instance the highest concentrations of the pig enzymes are found in the posterior stomach rather than the anterior stomach as in the case of the deer and cattle stomach lysozymes. It has also been postulated that the pig stomach lysozymes have a different role in that they protect against bacterial infection from the faeces that pigs sometimes eat as well as liberating the bacterial cell contents for digestion.

More recently, lysozyme mutants have been prepared which have the ability to bind calcium with a binding site similar to a EF-hand structure, these proteins having enhanced structural stability (Inaka K. et al. (1991)). These sequences also match with motif four. The bound calcium has been shown to enhance the structural stability of the protein and the mutant lysozymes were also shown to be more resistant to protease digestion (Kuroki, R. et al. (1989)).

The backbone of the other non-calcium binding lysozymes is similar to that of lactalbumins in the calcium binding region, but the side chains are generally radically different and are less well conserved. This is shown in figure 3.11 which illustrates the positional variability of the calcium binding region of lysozymes, calcium binding lysozymes and lactalbumins. The plot clearly shows that the degree of sequence conservation in this region of lysozyme sequences is at a much lower level than that of the lactalbumins, while the calcium binding lysozymes represent 'a half-way house' between the two. In this study a similarity matrix based on the superimposition of three-dimensional protein structures was used (Risler, J.L. et al. (1988)) lower values indicate a higher degree of conservation. When the positional variability residues for the _______ entire motif are summed and then divided by the number of residues the following values are produced, further illustrating the higher degree of conservation shown by the lactalbumins in this region of the sequence. The number of different residues at each position in the motif divided by the length of the motifs is also shown :-

	Similarity matrix	Different residues / length of motif	
1) Lysozyme	5.71	3.60	
2) Horse/Donkey/Pig/Pigeon lysozyme	es 5.18	1.70	
3) Lactalbumin	1.01	1.50	

(In the case of the similarity score, 0 indicates total conservation, a value of 50 indicates the lowest degree of conservation. For the identity score, a value of 1 would be attained by a completed conserved motif, a value of 20 would indicate that the motif has no conserved positions.)

Figure 3.11 The positional variability of the lactalbumin calcium binding motif from lysozymes (top), calcium-binding lysozymes (middle) and lactalbumins (bottom). The higher bars indicate the more variable residues, residue number is on the x-axis.

In addition to the c-type lysozymes described above there are other classes of lysozymes which have been reported to show some similarity in their three-dimensional structures (Gutter et al. (1983)), these being the bacteriophage T4 type and goose type lysozymes. The author has produced alignments and carried out some sequence analysis with the latter type but, as so few sequences are available, this could not be profitably extended. The study carried out by the author described above however did not show any sequence similarity between the different types of lysozyme suggesting that the classes may have arisen by the process of convergent evolution, ie that there is no common ancestor.

Weaver et al. (1985), however, suggest that the structural similarity is too great for convergent evolution and that there must have been some distant common ancestor, although they admit that this theory is not supported by the sequence evidence or the intron-exon organisation of the appropriate genes.

3.6 Conclusion

This study has shown that the ADSP method of sequences analysis is a useful technique, in that it has the ability to distinguish between the lysozymes and lactalbumins. This efficiency is even more emphasised when the similarity of c-type lysozyme and lactalbumin sequences is considered.

In addition to validating the technique used to create discriminating motifs, the study has drawn attention to the similarity between the calcium binding region of lactalbumin sequences and similar areas of some c-type lysozyme sequences. In the case of all of these lysozymes, apart from the pig proteins, this similarity has been confirmed as the ability to bind calcium has been demonstrated experimentally. These motifs may thus be of use not only to predict new members of the lactalbumin and lysozyme families but also to identify those lysozyme sequences that possess possible calcium binding properties.

3.7 References

Blake, C.C.F., Koenig, D.F., Mair, G.A., North, A.C.T., Phillips, D.C., Sarma, V.R., Structure of hen egg-white lysozyme, A three-dimensional fourier synthesis at 2 angstroms resolution. Nature (1965) 206 pp757 Godovac-Zimmerman J., Conti A., Napolitano L., The primary structure of Donkey (*Equas asinus*) c-type lysozyme contains the Ca(II) binding site of alpha lactalbumin. Biol. Chem. **369** (1988) pp1109-1115

Gutter M.G., Weaver, L.H., Matthews, B.W., Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes ? Nature 303 (1983) pp828-831

Inaka K., Kuroki R., Kikuchi M., Matsushima M., Crystal Structures of the apoand holomutant human lysozymes with an introduced calcium binding site. J. Biol. Chem. 266 (1991) pp20666-20671

Irwin D.M., Wilson A.C., Multiple cDNA sequences and the evolution of bovine stomach lysozyme. J. Biol. Chem. 264 (1989) pp11387-11393

Jolles J., Jolles P., Whats new in lysozyme research - always a model system, today as yesterday. Mol. Cell. Biochem. 63 (1984) pp165-189

Jolles J., Jolles P., Bowman B.H., Prager E.M, Stewart C., Wilson A.C., Episodic evolution in the stomach lysozymes of ruminants. J. Mol. Evol. 28 (1989) pp528-535

Kumagi, I., Takeda, S., Miura, K.I., Functional conversion of the homologous proteins alpha-lactalbumin and lysozyme by exon exchange. Proc. Natl. Acad. Sci USA (1992) 89 pp5887-5891

Kuroki R., Taniyama Y., Seko C., Nakamura H., Kikuchi M., Ikehara M., Design and creation of a calcium binding site in human lysozyme to enhance structural stability. Proc. Natl. Acad. Sci. 86 (1989) pp6903-6907

Nitta, K., Sugai, S., The evolution of lysozyme and alpha-lactalbumin. Eur. J. Biochem. 182 (1989) pp111-118

Nitta, K., Tsuge, H., Shimazaki, K., Sugai, S., Calcium-binding lysozymes. Biol. Chem. Hoppe-Seyler 369 (1988) pp671-675

Nitta K., Hideaki T., Shintaro S., Shimazaki K., The calcium binding property of equine lysozyme FEBS Letters 223 (1987) pp405-408

Prager, E.M., Wilson, A.C., Ancient origin of lactalbumin from lysozyme: Analysis of DNA and amino acid sequences. J. Mol. Evol. 27 (1988) pp326-335

Risler, J.L., Delorme, M.O., Delacroix, H., Henaut, A., Amino acid substitutions in structurally related proteins, a pattern recognition approach. J. Mol. Biol. 204 (1988) pp1019-1029

Shewale J.G., Sinha S.K., Brew K., Evolution of alpha-lactalbumins. J. Biol. Chem. 259 (1984) pp4947-4956

Stuart D.I., Acharya K.R., Walker N.P.C., Smith S.G., Lewis M., Phillips D.C., alpha-lactalbumin possesses a novel calcium binding loop. Nature 324 (1986) pp84-87

Weaver, L.H., Grutter, M.G., Remington, S.J., Gray, T.M., Isaacs, N.W., Matthews, B.W., Comparison of goose-type, chicken-type, and phage-type lysozymes illustrates the changes that occur in both amino acid sequence and three-dimensional structure during evolution. J. Mol. Evol. **21** (1985) pp97-111

Chapter Four Proton Symport/Antiport proteins

4.1 Summary

Two sets of composite motifs have been defined for this large and varied family. Five motifs were found to be good discriminators for those proteins responsible for sugar uptake while two motifs were found to be diagnostic of a wide range of symporters/antiporters with functions such as conferring antibiotic resistance and sugar transport across the cell membrane. Checks of the OWL protein sequence database confirmed that the sugar transporter motifs had identified all the known sequences in the family. In the case of the full symport/antiport family all known members of the family, with one exception, were found along with several new additions. Forty nine sugar transporters featured in one of the final motif sets, while seventy six sequences made up the final motif sets for the full family. Both studies were carried out using version 19.0 of the OWL protein sequence database.

4.2 Introduction

Owing to its essentially lipid character the cell membrane represents an effective barrier to the passage of hydrophilic molecules, therefore transport mechanisms play a vital role in the maintenance of the cell environment as they allow the influx of essential substrates consumed during cell growth and replication and maintain the ionic balance of the cell. The efflux of molecules also allows the cell to dispose of potentially toxic end metabolites.

Cells have developed three main methods of selective transport, ie molecules may diffuse down a concentration gradient (facilitated diffusion), be coupled to the concentration gradient of another ion (cotransport) or molecule transport may be driven by an energy dependent process (active transport). In all three cases, conformational change is thought to be the basic mechanism of transport (Walmsley, A.R. (1988)). Cotransporters have been shown to couple molecule transport with a number of different ion species, for instance sodium and potassium. The majority of the proteins described in this study link the transport of molecules with the movement of protons, a process first suggested by Mitchell (1963). The proton gradient used to drive the uptake or efflux of molecules is produced by respiration or by the hydrolysis of ATP.

Those proteins which provide for the influx of molecules are known as symports as both the proton and molecule travel into the cell. Antiports catalyse the efflux of molecules, in this case the proton travels in the opposite direction to the molecule. The mammalian erthyrocyte glucose transport proteins described in this study, however, accumulate glucose in a facillitative manner. This is possible as the metabolic rate of red blood cells is great enough to ensure a very favourable concentration gradient (Walmsley, A.R. (1988)). Other members of this family may also work in a similar manner as all the proteins concerned are yet to be fully characterised. The majority of those family members that are found in eukaryotes probably operate in a facillitative manner. These proteins are known as uniports as only one molecule is transported.

As carbohydrates provide the main source of energy for a cell, sugar transport systems are very widespread. In mammals there are tissue specific glucose transporters that are members of this family, for instance GLUT 1 is found in red blood cells, GLUT 2 in the liver (the organ with the most crucial role in maintaining the correct blood sugar level), GLUT 3 in the brain and GLUT 4 which is found in insulin sensitive tissues (Kayano, T. et al. (1988)).

In addition to animals, sugar symporters from this family are very widespread being found in plants, fungi and also prokaryotes (Henderson, P.J.F et al. (1992)). Members of this family are also involved with the transport of citrate and alpha-ketoglutarate, both of these molecules are Krebs cycle intermediates.

The similarity between these eukaryote and prokaryote proteins is too great to be explained by convergent evolution and it is thought that the ancient ancestral protein was present in an organism that predates the divergence of the two groups (Maiden, M.C.J et al. (1987)). In addition to their roles in nutrient uptake, the antiport proteins of this family are responsible for the antibiotic resistance properties seen in some microorganisms (Levy, S.B. (1992)). This diverse subset of proteins catalyse the efflux of such molecules as quinolone, tetracycline, methylenomycin, antiseptics and other drugs as well as aminotriazole and cycloheximide from yeast cells. The antiport proteins are thus of great medical significance.

4.3 Motif Definition

4.3.1 Sugar Transporters

Two alignments were produced to provide motif sets for these studies. In the case of the sugar transporters, sixteen sequences were aligned as shown in appendix A.2.1. This alignment was relatively easy to produce using a colour sequence alignment package, even though some sequences have quite low similarity.

. * • .**

It has been suggested that these proteins have twelve putative transmembrane regions (Mueckler, M. et al. (1985)) so a hydropathy plot was produced from this alignment to identify the probable transmembrane segments. These areas seem to be the most conserved whereas parts of the intracellular loops appeared to be generally only conserved across subsets of the family.

Five motifs were selected (figure 4.1), these being from regions of the sequences thought to contain the transmembrane segments. Motif one corresponds to putative transmembrane segment one, motif two corresponds to transmembrane segment four, motif three to transmembrane segment five, motif four to segment ten and motif five corresponds to transmembrane segment eleven. Figure 4.2 shows a hydropathy plot with the locations of the five motifs indicated. A hitlist length of six hundred was used when comparing the five hitlists produced by the database scan. After the first iteration, forty eight sequences were shown to match with all the motifs. The extra motifs were added to the motif sets and another iteration carried out. The second compound feature index showed forty nine sequences that matched with all five motifs. New motif sets were prepared and another database scan carried out. This showed no extra sequences that matched with all the motifs indicating that convergence had been reached.

The final Compound Feature Index is shown in Figure 4.3. Distance criteria was applied to the final compound feature index to remove noise from the two features column. This distance criteria was defined using the initial alignment to ensure the required degree of objectivity.

			and the 2
Pcode	Motif 1	Motif 2	MOULI S
GAL2_YEAST	GFMFGWDTSTI	FIGRIISGLGVGGIAVLCPM	VSCYQLMITAGIFLOIDUGL
RATGLTP	SFQFGYDIGVI	IAGRSVSGLYCGLISGLVPM	GTLLQLGITVGIIISQ1200
MAL6_SACCA	LIQEGYDTAIL	AVGQALCGMPWGCFQCLTVS	TTYSNLCWIFGQLFAAGIT
LACP_KLULA	ATMQGYDGALM	IGGRWFVAFFATIANAAAPT	AGLYNTLWSVGSIVAAPST
SNF3_YEAST	GFLFGYDTGLI	IVGRVISGIGIGAISAVVPL	ISTYQWAITWGLLVSSAV5Q
ARAE_ECOLI	GLLFGLDIGVI	IAARVVLGIAVGIASYTAPL	ISMYQLMVTLGIVLAFLSDI
GTR1_MOUSE	SLQFGYNTGVI	ILGRFIIGVYCGLTTGFVPM	GTLHQLGIVVGILIAQVFGL
QAY_NEUCR	SCMIGYDSAFI	IAGRVLAGIGVGGASNMVPI	VGIYELGWQIGGLVGFWINI
GTR4_MOUSE	SLQFGYNIGVI	ILGRFLIGAYSGLTSGLVPM	GTLNRLAIVIGILVAQVLGL
GTR5_HUMAN	SFQYGYNVAAV	IISRLLVGICAGVSSNVVPM	GVVPQLFITVGILVAQIFGL
HUP1_CHLKE	GLLLGYDNGVT	IVGRVLLGFGVGLGSQVVPQ	NIGYQLFVTIGILIAGLVNY
CIT1_ECOLI	FFLFGFYATYI	LVGRLLQGFSAGVELGGVSV	SASQQVAIVVAALIGYGLNV
CIT_KLEPN	FFLFGFYATYI	LIGRLLOGFSAGAELGGVŠV	SGSQQVAIMVAAAMGFALNA
CITA_SALTY	FFLFGFYATYI	LLGRLLQGFSAGVELGGVSV	SASQQVAIVVAALIGYSLNI
LEID2TRA	PLLYGYNLGFV	FVARIVLGFPLGWQSITSSH	GTLFQVSVSTGIFVTSFFGL
PRO1_LEIEN	GSLNGYSIGFV	IVGRFVIGLFLGVICVACPV	GVMFQVFTTLGIFVAALMGL
Pcode	Motif	4 Moti:	5
GAL2_YEAST	NCMIVFTCFYI	CYATTWAPVAWV AESFPLRY	TKSKCM
RATGLTP	YVSMTAIFLEV	SFFEIGPIPIPFF REWFTQI	VRPGAI
MAL6_SACCA	MGSGALLMVVA	FYNLGIAPVVFC SEMPSSR	LRTKTI
LACP_KLULA	NGALVFIYLFG	TESEAFTPMQSM TEVSTNL	TRSKAQ
SNF3 YEAST	KVMIAFICLET	AAFSATWGGVVWV AELYPLG	VRSKCT
ARAE ECOLI	WLSVGMTMMCT	AGVAMSAAPVVWI SEIQPLK	CRDFGI
GTR1 MOUSE	YLSIVAIFGEV	AFFFUCPGPIPWF AELFSQG	PRPAAI
OAY NEUCR	IAAIFFFYLWT	AFYTPSWNGTPWV SEMFDQN	TRSLGQ
GTRA MOUSE	YVSIVAIFGEV	AFFFICEOFIPWF AELFSQG	PRPAAM
OTR5 HUMAN	YISIVCVISVV	TCHAL COSPIPAL TEIFLOS	SRPSAF
WTIP1 CHLKE	SGILAVICIET	SCRAWSWGPMGWL SEIFTLE	TRPAGT
CTT1 ECOLI	FTRMTLVLLWE	SEFECMUNICAMUA TEVMPVY	VRTVGF
OTT KLEPN	FLMMLSVT.LWT	SETVORYNGAMTP TEIMPAE	VRVAGF
CITA SALTY	FTRMTLVLLWE	SPIIGMINGAMIA TEVMPVY	VRTVGF
TETD2TRA	GIAITGIATET	ALVENOUCDOEVV VDVFPES	FRPIGS
DEIDILEIEN	GVAITGILLET	CEEVOUGPCYVV ODMFPPS	FRPRGA
PROI_22220		LGFEVCVGPCIIV QUIL	
CALL YEAST	Galactose n	Armongo - Veast	
DAMOLTP	Glucose tra	ermease - rease	
WATE SACCA	Maltose ner		
MALO_DACON	Low-affinit	mease - jeast	- Yeast
CACP_RECENT	High-affini	y glucose transporte	r SNF3 - Yeast
SNES_ILAUT	Arabinose-n	cy glucose transporte	
ARAE_ECULI	Glucose tra	none symport - least	
GTRI_MOUSE	Ouinate tra	nsporter protein - no	Crassa
QAY_NEUCK	Quinace tra	Naporter - Neurosporo	CIUDDU
GTK4_MOUSE	Clucose tra	nsporter - Mouse	
GTR5_HUMAN	Gincole cia	Aneporter - Human	kessleri
HOLI CHPKE	nexuse cour	ton sumporter - Chioreila	
CITI_ECOLI	Cluate-pro	ton symport - E. Col.	lle preumoniae
CIT_KLEPN	Citrate-pro	ton symport - Klebsle	alla tymbimurium
CITA_SALTY	Citrate-pro	nenortan - Saimone	and cypitmatian
LEID2TRA	GIUCOSE LIA	nsporter - Leisnmänia	a uunovanii Aabmania armiottii
PRO1_LEIEN	Probable tr	ansport protein - Le:	Ishmania enrielle

Figure 4.1 - The five motifs defined for the sugar transport and related proteins

Figure 4.2 The location of the five motifs with regard to the twelve putative transmembrane segments. The x-axis represents residue number while the hydropathy value is indicated on the y-axis. Parts of the graph above the dotted line indicate significantly hydrophobic segments (on the scale defined by Engelman et al. (1986)). The sequence used for the graph is GTR1_RAT (Rat type 1 glucose transporter).

49 codes involving 5 features, 1 code involving 4 features, 0 codes involving 3 features, 11 codes involving 2 features

5

÷ . 1

Compound Fe	eature Tab	1e	
5	4	3	2
GTR1 BOVIN	GTR1 PIG		STMBAHBRP
GTR1 HIMAN			KGTP_ECOLI
S09705			TCR1_ECOLI
GTRA WIMAN			ECOTN10
COD1 DADIO			HYIN PSESS
GIRI_RADII			VOLM PHV
GIRI_RAI			FCOPNT1
GIR4_RAI			DNTTR FCOLT
GIRI_MOUSE	7.4.	•	c1049541
ASUSIU			CTVCITCR
GTR4_MOUSE			STICTTCA
GTR5_CHICK			STICTICA
A41/51			
GTR3_HUMAN			
GTR2_HUMAN			
GTR2_RAT			
S05319			
GTR2_MOUSE			
RATGLTP			
STP1_ARATH			
TOBMST1			
SNF3_YEAST			
HUP1_CHLKE			
CHLHUP1G			
A40538			
B40538			
VSCHXT4A			
XYLE ECOLI			
HXT2 YEAST			
RAGI KLULA			
x39728			
CLCP SYNY3			
CAL2 VEAST			
GAD2_1			
ATHOIRS ATHOIRS			
GTR5_HOMAN			
GLF_ZIMO			
LEIDITRA			
QAY_NEUCR			
S108238			
PRO1_LEIEN			
ARAE_ECOLI			
QUTD_ASPNI			
LEID2TRA			
CIT1_ECOLI			
CIT2_ECOLI			
CITA_SALTY	3		
CIT_KLEPN		Figi	ure 4.3 The fi
MALS VEACT	•	for	the sugar tran
		codes	and the full m
LACP_KLULA			+-+- j 446 M

Com	oour	nd I	reat	ure	e Inde	x
51	49	49	49	49	49	
41	0	1	1	1	1	
31	0	0	0	0	0	
21	4	7	6	3	3	
+						
l	1	2	3	4	5	

Figure 4.3 The final Compound Feature index for the sugar transporters. The key to the database odes and the full motifs are shown in appendix B.2.1

4.3.2 Full Family

For the full family discriminators an alignment of twenty two sequences, including some symport and antiport proteins, was produced as shown in figure A.2.2. All the transmembrane sections that had a relatively high degree of similarity were used to scan the database, but only two motifs were shown to have discriminating ability. Of these two motifs, motif one corresponds to transmembrane segment four while motif two corresponds to transmembrane segment five (figure 4.4). As only two motifs were shown to have discriminating ability, the ADSP technique had to be extended as the COMPARE module used to produce compound feature indices is only really of use with three motifs or more. With only two motifs there is the strong possibility that 'noise', in the form of randomly matched motifs, would appear in the compound feature indices. Therefore a distance criteria was imposed after each database scan, so not only must motifs match with a sufficiently high score but they must also be in the correct region of the sequence. To maintain the objectivity of the study, this distance criteria was set using the initial alignment as a template. Motifs from the amino acid transporters from E. coli, S. typhimurium and P. aeruginosa were also removed as hydropathy plots indicated that the motifs were located in the wrong transmembrane segments, these proteins are the membrane channel components of their respective periplasmic binding protein-dependent systems (Nazos, P.M. et al. (1986)) and are probably unrelated.

A hitlist length of eight hundred and fifty was used for the comparison of the hitlists. After the first iteration, seventy one sequences were shown to match with both motifs. The additional motifs were added to the initial motif sets and another database scan carried out. This iteration added five more additional sequences making a total of seventy six sequences. After the third database scan seventy six sequences were shown to match with all motifs, the lack of any additional sequences indicated that convergence had been reached. Figure 4.5 shows the final Compound Feature Index.

Motif 2 Pcode Motif 1 RAG1_KLULA QYFIGRIISGLGVGGITVLSP SCYQLMITFGIFLGYCTNYGTK ATR1_YEAST FFIISRAFQGLGIAFVLPNVL SFVGAMAPIGATLGCLFAGLIG GTR1_RAT MLILGRFIIGVYCGLTTGFVP TLHQLGIVVGILIAQVFGLDSI GTR5_HUMAN LIIISRLLVGICAGVSSNVVP VVPQLFITVGILVAQIFGLRNL ARAE_ECOLI MLIAARVVLGIAVGIASYTAP SMYQLMVTLGIVLAFLSDTAFS QAY_NEUCR PIIAGRVLAGIGVGGASNMVP GIYELGWQIGGLVGFWINYGVN SNF3_YEAST LLIVGRVISGIGIGAISAVVP STYQWAITWGLLVSSAVSQGTH M22563381 AIVVFRVLQGLFGALMQPSAL GVVGASTAAGPIIGGLLVQHVG LLVLARFGQGAGEALSLPAAM SVASVGLVLGFLLSGVITOLFS S19863 CITA_SALTY LVLLGRLLQGFSAGVELGGVS ASQQVAIVVAALIGYSLNITLG CIT_KLEPN LVLIGRLLQGFSAGAELGGVS GSQQVAIMVAAAMGFALNAVLE VLYIGRIVAGITGATGAVAGA ACFGFGMVAGPVLGGLMGGFSP JQ1479 TCR1_ECOLI MLYLGRLLSGITGATGAVAAS ASFGLGLIAGPIIGGFAGEISP TCR_BACST LLIMARFIQGAGAAAFPALVM SIVAMGEGVGPAIGGMIAHYIH STMBAHBRP VLIAARLVQGFSLGGEYGAAT SFQYVASSVGHILAGLSTLAAS PRO1_LEIEN VLIVGRFVIGLFLGVICVACP VMFQVFTTLGIFVAALMGLALG VLVACRVVAALANAGFLAVAL SGTTVATVAGVPGGSLLGTWLG S18593 GTR1_HUMAN MLILGRFIIGVYCGLTTGFVP TLHQLGIVVGILIAQVFGLDSI QLIAARACMGVSGAAVLPSTL ASVGFALGIGPVTGGILLAHFW s18539 VFLGLRILQACGASACLVSTF SMLAMVPAVGPLLGALVDMWLG J01201 VLLVTRIVGALANAGFLAVAL GGVTIACVVGVPGGALLGELWG s21395 MLTAARFLQGGLGALMIPQGL PAIGLGAVLGPIVAGFLVDADL B40046 RAG1_KLULA Glucose transporter - Kluyveromyces lactis (Yeast) ATR1_YEAST Aminotriazole resistance protein - Yeast GTR1_RAT Glucose transporter protein, type 1 - Rat GTR5_HUMAN Glucose transporter, type 5 - Homo sapiens (Human) ARAE_ECOLI Arabinose-proton symport - Escherichia coli QAY_NEUCR Quinate transporter - Neurospora crassa SNF3_YEAST Glucose transporter - Saccharomyces cerevisiae M225633S1 tmcA protein - Streptomyces glaucescens Lincomycin resistance protein - Streptomyces licolnensis S19863 CITA_SALTY Citrate-proton symport - Salmononella typhimurium CIT_KLEPN Citrate-proton symport - Klebsiella pneumoniae Tetracycline resistance protein - Escherichia coli JQ1479 TCR1_ECOLI Tetracycline resistance protein - Escherichia coli TCR_BACST Tetracycline resistance protein - B. stearothermophilus STMBAHBRP STMBAHBRP ORF3 - Streptomyces hygroscopicus PRO1_LEIEN Probable transport protein (LTP) - Leishmania enriettii Chloramphenicol resistance protein - Streptomyces lividans s18593 GTR1_HUMAN Glucose transporter protein, type 1 - Homo sapiens s18539 actVA-1 protein - Streptomyces coelicolor CmlA protein - Pseudomonas sp. JQ1201 Chloramphenicol resistance protein - Rhodococcus fascians s21395 Tetracycline resistance homolog - Streptomyces coelicolor B40046

Figure 4.4 The initial motifs used to define the super-family motifs

76 codes involving 2 features

Compound Feature Table

2 GTR4_HUMAN CIT2_ECOLI GTR5_HUMAN MMR_STRCO GLCP_SYNY3 TCR1_ECOLI GTR1_BOVIN GTR1_HUMAN GTR1_MOUSE GTR1_PIG GTR1_RABIT GTR1_RAT S09705 A30310 GTR4_MOUSE GTR4_RAT GTR3_CHICK A41751 HUP1_CHLKE CHLHUP1G GTR3_HUMAN SNF3_YEAST GTR2_HUMAN GTR2_MOUSE GTR2_RAT S05319 RATGLTP STP1_ARATH TOBMST1 ATHSTP4 s22742 QAY_NEUCR TCR1_BACSU PRO1_LEIEN TCR_BACST TCR_STRAG TCR_STRPN RAG1_KLULA A39728 YSCHXT4A GAL2_YEAST JQ0383 HXT2_YEAST ARAE_ECOLI TCR2_BACSU TCR_STAAU QQSABT CIT_KLEPN CITA_SALTY QUTD_ASPNI S108238 🕳

CIT1_ECOLI ECOTN10 XYLE_ECOLI STMBAHBRP S19863 RATCGAT TCR3_ECOLI JQ1479 TCR2_ECOLI ACCPCAOP3 min GLF_ZYMMO RATSVAT B40046 A39705 QACA_STAAU ATR1_YEAST LEID2TRA S18539 S108506 YSACYHR BMR_CANAL M225633S1 S21395 S18593 JQ1201

> 21 76 76 --+----1 1 2

Figure 4.5 - The final Compound Feature Index for the super-family motifs. The key to the database codes and the full motifs are shown in appendix B.2.2 4 e *

ť.

÷,

C

- - - 1

÷.,

4.4 Discriminator efficiency

To demonstrate the effectiveness of the discrimination provided by the final motif sets, individual sequences were scanned. Figure 4.6 illustrates a number of sugar transport proteins scanned with the sugar transporter motifs. As can be seen, peaks appear in regions of the sequence that match a particular motif. The height of these peaks and the fact that they appear in the correct spacing indicate a high discrimination efficiency. Another transmembrane protein, in this case the cystic fibrosis conductance regulator, is also shown as a control to illustrate how poorly unrelated sequences score. This protein is a particularly useful control as it also contains twelve putative transmembrane segments.

The same procedure was carried out for the super-family motifs. Again the cystic fibrosis conductance regulator was used as a control. The three members of the family are shown to score well, while the control protein matches only poorly (Figure 4.7).

The discriminating efficiency of the motifs selected is thus confirmed by these graphs, as true sequences show high scores while the control sequence scores poorly.

Figure 4.6a Sugar transport sequences scanned with the final sugar transporter motifs

Figure 4.6b - Individual sequences scanned with the sugar transporter motifs. The lower graph is included as a control.

Figure 4.7a The super-family motifs used to scan individual sequences

Figure 4.7b Individual sequences scanned with the final super-family motifs. The lower graph is included as a control.

4.5 Discussion

Figures 4.6 and 4.7 indicate the strong discriminating efficiency of the selected motifs, in that members of the family score highly while non-members do not. In the case of the sugar transporters, all the sequences known to belong to the family were shown in the final compound feature index.

One sequence, database code GTR1_PIG (pig GLUT1) is shown in the four features column. This sequence has a truncated N terminus so lacks motif one. In the two features column a number of other sequences are also shown. These include other proton antiport/symports, ie STMBAHBRP (Streptomyces hygroscopicus ORF3 transport protein), KGTP_ECOLI (E. coli alpha-ketoglutarate permease), TCR1_ECOLI and ECOTN10 (E. coli tetracycline resistance protein). The other proteins are also membrane proteins but are not thought to be members of this family, ie HYIN PSESS (indoleacetamide hydrolase from Pseudomonas syringae), VGLM_PHV (Prospect Hill virus M polyprotein), S1049541 (Polysulphide reductase chain c) and ECOPNT1 and PNTB_ECOLI (both E. coli transhydrogenases). This latter sequence was further examined to check whether there was any significant relationship between this protein and the sugar transporters, a significantly hydrophilic C-terminal region suggested that any similarity was at a low level. Also shown in the two features column are the sequences STYCITCA and STYCITCB (Citrate/Sodium symport proteins from Salmonella dublin and Salmonella pullorum respectively), both of these sequences match with motifs two and four.

All these sequences, apart from PNTB_ECOLI, ECOPNT1, VGLM_PHV, and S1049541, match with motif two which is the first of the hydrophobic segments. The two related permeases also match with motif five, while both tetracycline resistance proteins also match with motif three.

A comparison between the PROSITE codes (Bairoch, A.) SUGAR_TRANSPORT_1 and SUGAR_TRANSPORT_2 and the final compound feature index for the sugar transporters (Figure 4.3) suggests that the motifs selected are more efficient than the PROSITE patterns. While the patterns have a large number of false positives and some false negatives, this is not true of the motifs used in this study. The PROSITE patterns do, however, suggest that the

83

sequences PH84_YEAST (Yeast phosphate transporter), R137_YEAST (Yeast metabolite transporter) and KGTP_ECOLI (alpha ketoglutarate transporter from *E. coli*) are members of the sugar transport family while the results presented here show these sequences as members of the symport/antiport super-family, but not as part of the sugar transporter subset. This may be due to the PROSITE pattern being too flexible to restrict true matches to the sugar transporter subset of sequences while being too flawed to include the large range of sequences shown in the super family. A number of sequences are also shown in this study that do not appear in the PROSITE pattern description, LEID1TRA and LEID2TRA (glucose transporters from *Leishmania donovani*) being two examples. However, some of these may not be shown in the patterns because the PROSITE database is compiled using the smaller subset of sequences found in SWISS-PROT rather than the composite OWL protein sequence database.

With the full antiport/symport, one known member of the family was not shown in the final hitlists (MAL6_YEAST - Yeast maltose permease). This sequence lacks the conserved arginine residue in motif one shown in the other members of the family, this residue being exchanged for a asparagine. In addition, a number of previously identified family members were only shown to match with motif one. These sequences were database codes KGTP_ECOLI (alpha-ketoglutarate permease from *E. coli*), PH84_YEAST (Yeast phosphate transporter), R137_YEAST (Yeast probable metabolite transporter), NORA_STAA (quinolone resistance protein from *S. aureus*), BICA_ECOLI (*E. coli* bicyclomycin resistance protein), LEID1TRA (*Leishmania donovani* glucose transport protein), LACP_KLULA (*Kluyveromyces lactis* lactose permease), the myo-insitol transporters from yeast (database codes A40538 and B40538) and the multidrug resistance protein from *E. coli* (database code EMRB_ECOLI).

Distance criteria was imposed after every database scan during this study as only two motifs were selected. Using this method, in addition to the use of the hydropathy plots mentioned above, it was found that all noise (ie false hits) were removed from the motif sets but all the true hits were retained. As mentioned previously, these distance rules were derived from the initial alignment and were not user-defined to ensure objectivity.

Examination of the final compound feature index for the super-family motifs shows the wide occurrence of these proton symport/antiport proteins across a range of organisms from eukaryotes to prokaryotes and from animals to plants. They perform a particularly large number of functions including sugar transport and the efflux of antibiotics leading to drug resistance. A number of sequences are also shown in figure 4.5 that were not previously reported to be members of this family. These include the Nicotiana tabacum monosaccharide transporter (database code TOBMST1) (Sauer, N. et al. (1992)), the methylenomycin A resistance protein from Bacillus subtilis (database code S22742) (Putzer, H. et al. (1992)), and the tetracenomycin C resistance protein from Streptomyces glaucescens (database code M225633S1) (Guilfoile, P.G. and Hutchinson, C.R. (1992)). In addition the rat amine transporters, database codes RATCGAT and RATSVAT, are shown in the final compound feature index. These proteins are responsible for the ATP-dependent accumulation of biogenic amine neurotransmitters into the secretory organelles of neurons and a number of other cells (Erikson, J.D. et al. (1992)). At the time of this study, these proteins were also new to this family and have since been confirmed by other workers (Henderson, P.J.F personal communication, Linial, M. (1993)). Also shown to match with both motifs is the Candida maltosa cycloheximide resistance protein (database code YSACHRA) which the sequencing authors claimed had no significant similarity with any other database sequences (Sasnauskas, K. et al. (1992)) and also a putative transport protein from Acinetobacter calcoaceticus. In the case of the former sequence this similarity has also been confirmed by other workers.

The two studies have also drawn attention to the fact that the fourth and fifth putative transmembrane regions seem to be very significant, as both are quite well conserved across the whole family (particularly the fourth transmembrane segment which contains a conserved arginine residue). This suggests that they have a major structural or functional role in the protein. Other workers have also suggested that the N-terminal region is involved with the basic function of the protein while the C-terminal region is involved in specificity (Rouch, D.A. et al. (1990)).

The study described above which was limited to the sugar transporters also suggests this may be true. In this case, motifs two and three were selected from the fourth and fifth transmembrane segments while motifs one, four and five were from the first, tenth and eleventh transmembrane regions respectively. These latter two motifs may have a role in the specificity of the sugar transporters as experimental data from inhibitor and photo-affinity labelling techniques have also suggested that the sugar binding sites are located in the C-terminal region of the proteins (Baldwin, S. and Henderson, P.J.F. (1989)). The sequences shown in the two features column that are members of the family all match with motif two (the fourth transmembrane segment) and one other of the motifs, demonstrating the commonality of the fourth transmembrane segment. Motif one (derived from transmembrane segment one) also may have an important structural and or functional role as it is conserved only across the sugar transporters.

It has also been suggested that the symmetrical nature of the proposed structure of these proteins may be due to gene duplication (Rubin, R.A. et al. (1990)), ie each protein is composed of two copies of the same six membrane spanning regions. While there are some repeats to be seen, the PESPRY motif being particularly noticeable in the hydrophilic loop between the sixth and seventh putative transmembrane segment and in the C-terminus of some sugar transporters, sequences generally appear only once in the hitlists produced for each motif. If duplication had occurred, it would be expected that each sequence would appear twice in the hitlists, once for the N-terminus and once for the C-terminus. This suggests that the second set of six membrane spanning segments are either not simple repeats of the first, or that the degree of similarity between the two has become significantly lower over evolutionary time. If the latter is the case, the results above suggest that the N-terminus of the protein has remained the most conserved while the C-terminus has possibly evolved for different substrate specifities as the motifs that are conserved over the whole family are from the n-terminal region.

A number of transport proteins have also been shown to have hydropathy profiles that are very similar to that of the proteins described here in that they appear to have twelve transmembrane regions. Probably the best known of these is the LACY lactose transporter from *E. coli*, which was the first proton symport to be well characterised. Some authors have suggested that this protein is a member of the family described in this chapter (albeit with only slight similarity) (Marger, M.D. and Saier, M.H. (1993)), while others have found no evidence for its

86

inclusion (Bairoch, A., Griffith, J.K. et al. (1992)). During the course of this study LACY was not shown in any of the hitlists produced by the database scans which suggests that there are at least two families of proteins which have similar transport mechanisms. The results presented here suggest that these two families probably evolved by the process of convergent evolution, ie there was no common ancestor protein.

4.6 Conclusion

This research has indicated that the fourth and fifth transmembrane segments probably have a crucial structural or functional role as they are are relatively well conserved across the whole family. This is especially true of the fourth putative transmembrane segment.

In the case of the sugar transporter subset, the results suggest that the tenth and eleventh transmembrane regions also have an important function, this is supported by biochemical evidence as the sugar binding site has been shown to be in this region of the sequence. It may be also be possible, as these comprise almost all of the symporter subset of this family, that these regions of the sequence may also have a role in defining whether a protein is an antiporter or a symporter as they do not appear to be conserved in the antiporters. The same may also be true for transmembrane segment one.

It is also clear from the results described above that this family of transporters is very diverse and widespread being present in both prokaryotes and eukaryotes, a number of new members are also identified extending the family further.

The hitlists produced for each motif indicate that the C-terminal region is probably not a simple repeat of the N-terminus, if there was an ancestral gene duplication then the sequence similarity has decreased over evolutionary time and is now imperceptible in most family members.

4.7 References

Bairoch, A. PROSITE database, University of Geneva

Baldwin, S., Henderson, P.J.F., Homologies between sugar transporters from eukaryotes and prokaryotes. Ann. Rev. Physiol. **51** (1989) pp459-471

Engelman, D.M., Steitz, T.A., Goldman, A., Identifying non-polar transbilayer helices in amino acid sequences of membrane proteins. Ann. Rev. Biophys. & Biophys. Chem. 15 (1986) pp321-353

Erickson, J.D., Eiden, L.E., Hoffman, B.J., Expression of a reserpine-sensitive vesicular monoamine transporter. Proc. Natl. Acad. Sci. USA 89 (1992) pp10993-10997

Griffith, J.K., Baker, M.E., Rouch, D.A., Page, M.G.P., Skurray, R.A., Paulsen, I.T., Cahter, K.F., Baldwin, S.A., Henderson, P.J.F, Membrane transport proteins: implications of sequence comparisons. Curr. Opin. Cell Biol. 4 (1992) pp684-695

Henderson, P.J.F., Baldwin, S.A., Cairns, M.T., Bambos, M., Charalambous, H., Dent, C., Gunn, F., Liang, W., Lucas, V.A., Martin, G.E., McDonald, T.P., McKeown, B.J., Muiry, J.A.R., Petro, K.R., Roberts, P.E., Shatwell, K.P., Smith, G., Tate, C.G., Sugar-cation symport systems in bacteria. Int. Rev. Cytol. 137 (1992) pp149-207

Guilfoile, P.G., Hutchinson, C.R., Submitted to EMBL data library, February 1992

Kayano, T., Fukumoto, H., Eddy, R.L., Fan, Y., Byers, M.G., Shows, T.B., Bell, G.I., Evidence for a family of human glucose transporter like proteins. J. Biol. Chem. 263 (1988) pp15245-15248

Levy, S.B., Active Efflux Mechanisms for Antimicrobial Resistance, Antimicrob. Agents and Chemotherapy 36 (1992) pp695-703

Linial, M., Vesicular transporter joins the major facilitator superfamily (MFS). TIBS letters 18 (1993) pp248-249 Maiden, M.C.J., Davies, E.O., Baldwin, S.A., Moore, D.C.M, Henderson, P.J.F, Mammalian and bacterial sugar transport proteins are homologous. Nature 325 (1987) pp641

Marger, M.D., Saier, M.H., A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. TIBS 18 (1993) pp13-20

Mitchell, P., Molecule, group and electron translocation through natural membranes. Biochem. Soc. Symp 22 (1963) pp142-169

Muekler, M., Caruso, C., Baldwin, S.A., Panico, M., Blench, I., Morris, H.R., Allard, W.J., Lienhard, G.E., Lodish, H.F., Sequence and Structure of a Human Glucose Transporter. Science 22 (1985) pp941-945

Nazos, P.M., Antonucci, T.K., Landick, R., Oxender, D.L., Cloning and characterisation of livH, the structural gene encoding a component of the leucine transport system in *Escherichia coli*. J. of Bacteriol. **166** (1986) pp565-573

Putzer, H., Gendron, N., Grunberg-Manago, M. Submitted to GenBank data bank, June 1992

Rouch, D.A., Cram, D.S., DiBerardino, D., Littlejohn, T.G., Skurray, R.A., Efflux mediated antiseptic resistance gene qacA from *Staphylococcus aureus*: common ancestry with tetracycline and sugar transport proteins. Molec. Microbiol. **4** (1990) pp2051-2062

Rubin, R.A, Levy, S.B., Heinrikson, R.L., Kezdt, F.J., Gene duplication in the evolution of the two complementing domains of gram-negative bacterial tetracycline efflux proteins. Gene 87 (1990) pp7-13

Sasnauskas, K., Jomantiene, R., Lebediene, E., Lebedys, J., Januska, A., Janulaitis, A., Cloning and sequence analysis of a Candida maltosa gene which confers resistance to cycloheximide. Gene 116 (1992) pp105-108

Sauer, N., Stadler, R. Submitted to EMBL data library, June 1992.

Walmsley, A.R., The dynamics of the glucose transporter, TIBS 13 (1988) pp226-231

Chapter Five

5.1 Introduction

During the course of the research described in this thesis it became necessary to develop software which, while not being directly connected to the database scanning procedures, was essential for the definition of discriminating motifs or for sequence alignment. This chapter describes the most pertinent of these programs while figure 5.1 illustrates their place in the sequence analysis scheme.

5.2 Programming Details

All the programs described were written in C and are portable across most platforms but in Leeds are generally only available on VAX, Silicon Graphics and SUN clusters. Where applicable, graphics displays are produced using the standard X and Motif libraries, although versions of some programs are also available that take advantage of the advanced graphics capabilities of the GL library found on Silicon Graphics machines. Postscript output in monochrome and colour is produced from drivers written by the author. The individual programs with example output are described below.

5.3 Diagon Plots

The simplest, yet probably the most useful, way of comparing two sequences is to compare every residue from one sequence with every residue from the other, then plotting this data in the form of a two-dimensional array of points (a Diagon plot). Stretches of residues that are common to both sequences are represented by diagonal lines on this plot, insertions and deletions are indicated by offsets from the main diagonal. These plots are particularly useful when initially aligning two sequences and give an indication of how many gaps and where the gaps should be inserted into each sequence. XDIAGON produces such diagon plots for both nucleic acid and protein sequences.

When the user initiates the XDIAGON program, a prompt is produced asking for two sequence names. These may be files (in NBRF/PIR format) or database codes, in the latter case the sequence is extracted directly from the OWL database (Bleasby, A.J., personal communication). The whole length of the sequences may be compared, or the user may define the start and end residues of the segment of interest, XDIAGON has the ability to produce square or rectangular graphs reducing the inherent distortion in the plot when one sequence is much longer than the other.

A number of different comparison methods are also available, these being reduced alphabet, identities, MDM78 (Dayhoff, M.O. (1978)) and user defined. If the reduced alphabet option is selected then residues are grouped together and individual residues within each group are treated as being identical, for instance both aspartic acid and glutamic acid are of the same group (Figure 5.2 illustrates the full residue groupings used). This option is particularly useful when sequences have very low similarity. The identity option only generates a point if the individual residues being compared are identical while the MDM78 option uses a substitution matrix with a user-defined threshold level of similarity to generate points. In addition to the MDM78 matrix, the user-defined option allows the user to supply a matrix of their choice.

Asp (D), Glu (E)	- Acidic group
Cys (C)	- Cysteine
Pro (P)	- Proline
Gly (G)	- Glycine
Ala (A), Ile (I), Leu (L), Met (M), Val (V)	- Hydrophobic group
Asn (N), Gln (Q), Ser (S), Thr (T)	- Polar group
Phe (F), Trp (W), Tyr (Y)	- Aromatic group
His (H), Lys (K), Arg (R)	- Basic group

Figure 5.2 XDIAGON residue groupings. Those residues in the same group are treated as being identical for the reduced alphabet option.

A windowing facility is also included within XDIAGON to reduce the noise in a plot. For instance if a window length of ten residues is specified with a stringency of four, points are only plotted if there are at least four other residue matches from the section of sequence five residues either side of the position being compared. The stringency and window values are often very difficult to define optimally, a stringency that is too high will result in possibly interesting data being missed while a stringency that is too low will allow noise to mask data. To overcome this problem, the author has developed a colour option for XDIAGON. The user defines the window length, then all the points in that window are plotted in a colour dependent on how many matches were found in the window. If the default colours are used, then red is used for points in windows where there are a lot of matches through to blue which is used to plot points with only a small number of matches within the window. The number of colours and the actual colours used may be defined by the user if desired. Figure 5.3 illustrates a colour diagon plot produced by the self comparison of the human multidrug resistance protein, the regions of similarity (red and yellow) are easily identifiable from the noise which is coloured blue. Normally when a sequence is compared with itself a single line on the main diagonal is produced but, as the sequence used for figure 5.3 has internal repeats, there are also lines shown offset from the main diagonal.

Figure 5.3 A XDIAGON plot illustrating the self-comparison of the human multidrug resistance protein.

5.4 Amino Acid Physicochemical Properties.

Many properties that are inherent in protein sequences may be of use when initially selecting motifs from a sequence alignment, particularly in those situations where no three-dimensional structure of the proteins of interest is know. These include hydropathy measurements that allow the putative transmembrane segments and core regions of protein sequences to be identified with reasonable confidence and secondary structure propensities. XHYDRO allows a number of graphs (up to a maximum of four) to be plotted on the same sheet of paper or screen so that properties can be related easily to each other. The program takes as input either a file name or database code. If the file contains multiple, pre-aligned sequences, then the whole alignment is used to calculate the desired properties. Other programs are available that plot amino acid properties (for example Mandler, J. (1988)), but these tend to be limited by little portability, poor hard copy facilities, usually only take a single sequence as input rather than an alignment and have a limited number of graph types. The types of graph that can plotted by XHYDRO were carefully chosen to extract the maximum possible useful information from a sequence or alignment and are described below, Figure 5.4 shows typical XHYDRO output.

5.4.1 Hydropathy.

Hydrophobic interactions are a major factor in the structural stability of proteins since the interactions between non-polar residues and water are so unfavourable there is a strong tendency for these residues to aggregate together at the core of the molecule in globular proteins or to cluster in the hydrophobic environment of the membrane in the case of membrane transport proteins. In both cases, especially the latter, hydropathy plots are particularly useful in determining the possible structure of a protein, for instance hydropathy plots may indicate how many putative transmembrane segments a protein may have. In some cases similar hydropathy plots may also indicate whether two proteins are structurally related even though their sequence homology may be very low or non-existent, as in the case of the

E. coli lactose transporter and human erthyrocyte glucose transporter mentioned in an earlier chapter. Also, as these transmembrane segments are so crucial to the structure of channels, they are very often the most conserved regions in a sequence alignment. There is some debate about which hydropathy scale is most appropriate in a given situation (Crimi, M. and Esposti, M. D. (1991)), therefore a number of different scales are provided as described below. All the hydropathy options utilise a windowing algorithm to reduce the amount of noise in the final graphs.

i) Eisenberg hydropathy scale (Sweet R.M. and Eisenberg, D. (1983)). This is a consensus scale derived from five other scales, the most notable being the scale defined by Wolfenden et al based on the vapour pressures of side chain analogues and the scale of Janin which was derived by counting the buried and exposed residues in globular proteins. A window length of nine residues is used.

ii) Kyte and Doolittle scale (Kyte, J. and Doolittle, R.F. (1982)). The hydropathy scale described by the above authors was based on an amalgam of data derived from experimental measurements of the free energy of transfer between various phases along with some intuitive adjustment of the final values when these were contradictory. A window length of twenty is used rather than that suggested by the authors as this has been shown to be the most effective for identifying transmembrane segments.

ii) Transmembrane hydropathy scale (Engelman, D.M. et al. (1986)). This scale was specifically designed to identify the transmembrane sections of proteins and takes into account the specific conditions that occur in an α -helical polypeptide in a low dielectric environment, for example the water-accessible surface area of each residue type in such a conformation. The resultant hydrophobicity values are generally the first choice of the author of this thesis when studying possible membrane proteins, although if transmembrane sequences do exist that are of beta conformation the scale may be less useful due to the way it was initially calculated.

5.4.2 Positional Variability.

This option allows for the identification of the most conserved parts of a sequence alignment (by comparing every residue at a particular position with every other residue at that position), these regions being the segments of the alignment most suitable for database searching. Most of the widely used substitution matrices are based on observations made from sequence alignments which may give biased results as distantly related sequences are often difficult to align, therefore it was decided to use a matrix derived from the superimposition of three-dimensional structures (Risler J.L. et al. (1988)) as the default, although this can be changed as desired by the user. To produce this matrix, Risler et al. superimposed the three-dimensional structures from eleven protein families and if the c-alpha atoms from each chain were less than 1.2 angstroms apart at a particular position the appropriate amino acids were considered to be substitutable by the other. This matrix has been shown by Risler et al. to produce more accurate alignments of distantly related proteins than other widely used matrices. If only this option is selected, then XHYDRO displays the graph as a histogram otherwise the positional variability is displayed as a normal graph, the positions with the highest values being the most variable.

5.4.3 Solvent Accessible Area.

This option utilises a scale derived from measuring the mean solvent accessible surface area of each of the residue types in twenty three folded proteins (Rose, G.D. et al. (1985)). This option may be used in conjunction with the hydropathy scales as it has been demonstrated that those residues that have the highest solvent accessible surface area are the most hydrophilic, hydrophobic residues tending to have low solvent accessible surface area values. A window length of five residues is used to reduce the noise in the final plot.

5.4.4. Flexibility.

The dynamic properties of a protein are essential for its function, for instance in substrate recognition and in conformational changes after substrate binding. The amino acid residues that are located in the most mobile regions of a protein are generally the most hydrophilic and have the smallest volumes (so are less likely to be involved in interactions with surrounding residues). The scale used (Ragone, R. et al. (1989)) takes advantage of these properties and is designed to identify the most flexible residues in an amino acid sequence. Plots produced using this scale where shown by those authors to be very similar to the appropriate graphs of B factors, indicating a high degree of accuracy. A window length of ten residues is used, rather than five as suggested by the authors, to reduce the amount of noise in a plot.

5.4.5 Garnier-Osguthorpe-Robson Secondary Structure Prediction.

Although secondary structure prediction techniques tend to be notoriously unreliable, the Garnier-Osguthorpe-Robson (GOR) technique (Garnier, J. et al. (1978)) is generally considered to be amongst the more accurate and may be useful in a number of situations, for instance if a user needed to select the putative alpha-helical segments of a sequence as motifs. The GOR algorithm is based on moving sixteen-residue, overlapping windows along the test sequence and calculating the propensity for the possible conformations of a particular residue type at a particular location in this window. XHYDRO has the ability to produce a secondary structure prediction using an alignment as well as a single sequence, the accuracy of the prediction has been shown to be improved if the former is used (Thornton, J.M. et al. (1991), Zvelebil, M.J. et al. (1987)). The graph produced displays the propensities for the four possible conformations as lines drawn in different colours.

Figure 5.4 XHYDRO output from an alignment of lysozyme and lactalbumin sequences. The top graph shows the Eisenberg hydropathy graph while the bottom graph shows positional variability.

5.5 Motif Positional Variability and Consensus Sequence

These two programs were written to aid the visualisation and manipulation of the sequence information contained within large motif files of the format described in chapter two.

XMOTVAR displays the positional variability of a number of motifs on the same screen or piece of paper in the form of a coloured histogram or ordinary graph, the residues showing the lowest and highest degrees of conservation are thus easily identified. The variability can be calculated either by using a substitution matrix (the matrix defined by Risler et al. (as described above) is the default, although this can be changed by the user) or by simply counting the number of different residue types at each position. This program is especially useful for identifying those residues that contribute the most to the discriminating efficiency of a motif set and also for refining motifs during the iterative database scanning process as variable residues near the ends of a motif may be identified and removed. Example output from this program is shown in figure 5.5.

CON also takes a list of motif file names as input and then produces a consensus sequence from each motif. This program is useful for converting motif files into PROSITE-style patterns and also for reducing the data contained in large motif files into a more manageable format. An example motif file and CON output is shown in figure 5.6.

lac_casite.mot	
CDITCDKFLD	
CGISCDKFLD	
CDITCDKFLD	*****
CGISCDKFLD	1) Motif = lac_casite.mot
CGISCNKFLD	[C] [D G N] [I] [S T] [C] [D N] [K] [F L] [L] [D]
CDISCDKFLD	************
CNISCDKFLD	
CDISCDKLLD	

Figure 5.6 illustrates a sample motif file (derived from nine lactalbumin sequences) on the left with corresponding CON output on the right. The square brackets in the CON output delimit each residue position.

Figure 5.5 Typical output from the XMOTVAR program.

5.6 PRINTS Database Scanning

When the motif sets have been verified and checked then they are ultimately entered into the PRINTS database. There exists a special interrogation language for this database (SMITE) which allows users to view PRINTS entries but there was still a need for a algorithm which compared a test sequence with all the motifs in the features database, the FEAT program fulfils this need. FEAT initially prompts the user for a sequence file name or database code. As very large numbers of sequences can be processed the file name given may be that of a large database such as OWL, FEAT is therefore a useful tool for the rapid identification of any new member of a family whose discriminating motifs exist in the PRINTS database and may also be of use in updating the PRINTS database with each new release of the OWL sequence database. The scanning method is user-defined and may be novel or simple (see chapter two), the user can also select other parameters such as allowing motifs to overlap or which PRINTS database entries are to be checked. Figure 5.7 illustrates typical FEAT output.

Sequence code is >P1;LYC_BOVIN sequence number = 1 Sequence length is 147 residues Motif = 1 Motif length = 11 Code = LYSLACT Sequence = FERCELARTLK Position = 20 to 30 Score = 94.98%

Motif = 2 Motif length = 13 Code = LYSOZYME Sequence = KWESSYNTKATNY Position = 50 to 62 Score = 91.73%

(Continued on the next page)

```
Motif = 3
Motif length = 17
Code = LYSLACT
Sequence = STDYGIFQINSKWWCND
Position = 68 to 84
Score = 98.12%
```

```
Motif = 4

Motif length = 16

Code = LYSOZYME

Sequence = RELMENDIAKAVACAK

Position = 99 to 114

Score = 70.44%
```

```
Motif = 5
Motif length = 10
Code = LYSOZYME
Sequence = QGITAWVAWK
Position = 120 to 129
Score = 85.81%
```

```
Motif = 6
Motif length = 12
Code = LYSLACT
Sequence = GITAWVAWKSHC
Position = 121 to 132
Score = 88.26%
```

Figure 5.7 The output produced by searching the PRINTS database (version 4) with the sequence LYC_BOVIN (Bovine lysozyme).

The figure above indicates that the bovine lysozyme has significant similarity with two entries in the PRINTS database, ie LYSOZYME and LYSLACT (lysozyme-c super-family motifs). FEAT allows the user to specify a PRINTS database entry to search, therefore it would be possible to examine each of these two entries separately in more detail.

The author has also written a Xlib/Motif based version of the PRINTS database scanning program which produces PLOT output to graphically illustrate how well each matching motif scores. This program has the ability to extract and write to a file motifs from the PRINTS database allowing a user to manipulate this data further if desired. Example output from this program is shown in figure 5.8.

Figure 5.8 Output from XPRINTS. In this case the sequence of sheep rhodopsin was given as input.

5.7 References

Crimi, M., Esposti M.D., Structural predictions for membrane proteins: the dilemma of hydropathy scales. TIBS 16 (1991) pp119

Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington D.C., U.S.A.

Engelman D.M., Steitz, T.A., Goldman, A. Identifying non-polar transbilayer helices in amino acid sequences of membrane proteins. Ann. Rev. Biophys. & Biophys. Chem. 15 (1986) pp321-353

Garnier, J., Osguthorpe, D.J, Robson, B. Analaysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. **120** (1978) pp97-120

Kyte, J., Doolittle, R.F., A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157 (1982) pp105-132

Mandler, J. Hystruc - Hydropathy and secondary structure prediction. CABIOS 4 (1988) pp309

Ragone, R., Facchiano, F., Facchiano, A., Facchiano, A.M., Colonna, G. Flexibility plot of proteins. Protein Engineering 2 (1989) pp497-504

Risler J.L., Delorme M.O., Delacroix H., Henaut A. amino acid substitutions in structurally related proteins, a pattern recognition approach. J. Mol. Biol. 204 (1988) pp1019-1029

Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H., Zehfus, M.H., Hydrophobicity of amino acid residues in globular proteins. Science 229 (1985) pp834-838 Sweet, R.M., Eisenberg D., Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure. J. Mol. Biol. 171 (1983) pp479-488

Thornton, J.M., Flores, T.P., Jones, D.T., Swindells, M.B., Prediction of progress at last. Nature 354 (1991) pp105-106

Zvelebil, M.J., Barton, G.J., Taylor, W.R., Stemberg, M.J.E. Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J. Mol. Biol. **195** (1987) pp957-961

Chapter 6 VISTAS

6.1 Summary

This chapter will describe the methodology and the use of the VISTAS package written by the author, along with mention of the related programs ALIGN and XALIGN.

6.2 Introduction

The pre-existing sequence analysis software at Leeds was not only tied to a VMS cluster, but in the authors opinion was very user unfriendly as several different programs were required to perform relatively simple procedures. Users were also required to edit a number of files for input to each routine. With the availability of modern workstations it is possible to produce very user friendly and powerful programs for sequence analysis and this is the avenue the author decided to pursue, although at an early date it was decided that any source code produced was to be made as portable as possible. In fact the only restrictions to portability are related to the graphics libraries used. This portability issue will be discussed later.

During the research of protein sequence motifs, it was noticeable that there was very little interface between multiple sequence alignments and the increasing amount of structural information that was becoming available. For instance, it would be useful to display sequence motifs on the three-dimensional structure of a protein, if one was available. Also, in some cases it would be very informative to select motifs from specific areas of structure, for example all the alpha structure regions or the active site of a protein. Other information, such as positional variability and secondary structure prediction, may be invaluable during motif definition but, to the authors knowledge, there was no package available that integrated the display of these properties with multiple sequence alignments and three-dimensional structures in an interactive way. The VISTAS and ALIGN programs were written to answer all of these needs, ie the integration of structural information when available, a high degree of user-friendliness and the ability to take into account a number of other alignment properties such as hydropathy. In fact, as will be described below, the VISTAS and ALIGN systems integrate all the functions an average user would require in a single mouse driven package, keyboard input being required only for defining file names and a small number of other actions.

6.3 VISTAS and ALIGN Programming Details

Both programs are written in C and both use the GL graphics libraries. These graphics libraries are only available at the present time on SUN and Silicon Graphics machines, but OpenGL may become the de facto three-dimensional graphics language being supported on a large number of platforms such as MicroSoft Windows and Digital ALPHA machines. Porting from GL to OpenGL is a reasonably easy process, the author already has a GLX/Motif version of VISTAS at a late stage of development. There is also a version of ALIGN (known as XALIGN) written using the standard Xlib/Motif libraries which compiles and runs, with no alteration to the source code, on VAX/VMS, ALPHA/VMS, Silicon Graphics and SUN platforms. There is no reason to believe that this would not be true of any platform which supports X/Motif.

Although, as stated above, GL is not available on every machine in Leeds, the software has been carefully written so that graphics calls are isolated from other sections of the code. It is thus a relatively simple process to retain the vast majority of the source code while just replacing the drawing routines, linking in the correct object files. This avenue is being pursued with PEX based graphics routines being developed.

VISTAS and ALIGN are written in a very modular way, thus aiding debugging and also allowing the application of extra algorithms without the need to alter large sections of source code. The modules are compiled separately and are then linked together to produce a final executable image. Currently VISTAS consists of nine and a half thousand lines of C (excluding comment lines), and ALIGN has almost six thousand lines of code (excluding comments). However, as ALIGN and VISTAS share some routines there are some fourteen thousand lines of unique C in total for the two packages.

In conclusion, though the use of some graphics libraries may restrict the portability of an application to other platforms, with careful planning this may be overcome. In the author's opinion, both ALIGN and VISTAS are written in such a way that made the porting of ALIGN to XALIGN relatively easy.

6.4 Internal organisation of data

The two main types of data which VISTAS must manipulate are those related to structural and sequence information. Data for the c-alpha display of a protein is maintained in a pre-defined three-dimensional array corresponding to the scaled x, y and z coordinates of the protein. The data required to draw the van der Waals and full-bond representation of a protein is stored in a linked list, each structure being assigned when needed using the dynamic memory allocation facilities of the C programming language. The types of structure used by VISTAS for storing this data are shown below :-

```
/* Structure for van der Waals data */
struct {
    float coords[3]; /* scaled X,Y,Z coordinates */
    float dia; /* diameter of sphere to be drawn */
    int res_col; /* index value for atom-type colour */
    int col; /* index value for residue/property colour */
    v_w *next; /* pointer to next structure in list */
    } v_w;
```

The VISTAS and ALIGN programs maintain sequence data in pre-defined structures rather than linked lists. While this may be wasteful of memory and apply limits to the length and number of sequences that may be used as input it allows the program to very quickly locate selected sequences and residues without having to move along a linked list.

While the memory used should present no problems on modern machines, the author intends to modify the sequence data structures of VISTAS and ALIGN to conform to that used by the XALIGN program. In the case of the latter a large array of pointers to structures is used, the structures and pointers being initialised only when needed. Using this system of data management it is possible to maintain a compromise between program efficiency and memory usage.

6.5 Using VISTAS

The next section of this chapter will be in the form of a user-guide, which is probably the best method to describe the software. VISTAS will be discussed first, then XALIGN and ALIGN will be mentioned.

6.5.1 VISTAS, ALIGN and XALIGN Defaults Files

VISTAS uses a number of default files, the locations of which are defined by environment variables so that the program is not limited to a particular directory configuration. Users may copy these files to their own directories and modify them at will or supply alternative files.

These files are :-

1) A file containing residue colouring information (SOM_COL environment variable). This file contains the colours to be used for a particular residue type in an alignment or structure display in the standard RGB format. A typical entry in this file would be :-

A 150 150 150

In this case all alanine residues would be coloured dark grey.

The following template is used for the default file :-

- a) Hydrophobic residues grey (A,I,L,M,V).
- b) Acidic residues red (D,E).
- c) Cystine/cysteine residues yellow (C).
- d) Basic residues blue (H,K,R).
- e) Aromatic residues purple (F,Y,W).
- f) Proline and glycine brown (P,G).
- g) Polar residues green (T,S,N,Q).

These colours are used for all the sequence alignments coloured by residue type in this thesis and were originally defined by Dr. T.K. Attwood.

2) Colour information for calculation routines (DIV_TXT environment variable). This file contains the colour information and divisions to be used when colouring an alignment or structure by a calculated property such as hydropathy or positional variability. The divisions may be dynamic, in this case the user simply supplies a number of colours in the standard RGB format and the program divides the range of calculated values by this number. Fixed divisions may also be specified, where a colour is assigned to a particular range of values. The default file uses dynamic range definition for all the calculated physicochemical properties apart from positional variability which has defined colours for particular values.

3) Colour information for postscript output (PS_COL environment variable). This file contains the residue type colours used for the postscript output of alignments in the standard RGB format. By default, these colours are the same as those used for the colour alignment and structure but may be changed independently by the user.

4) Positional variability data (VAR_DATA environment variable). This file contains the substitution matrix defined by Risler et al. (1988) with the values normalised to a range from zero to one hundred. This file is usually transparent to the user, but redefining VAR_DATA allows different substitution matrices to be used.

5) Secondary structure prediction data (GAR_DATA environment variable). Another file usually transparent to the user, this file contains the secondary structure propensity data as described by Garnier-Osguthorpe-Robson (1987).

6) PRINTS database indexing file (PRINTS_NAME environment variable). This file contains the code and a line of description for each entry in the PRINTS database. In addition, the file contains the offset from the beginning of the PRINTS database for each entry allowing VISTAS to rapidly locate the appropriate motif information.

When used on a VMS platform XALIGN uses the same file identifiers, but in this case these are logicals rather than environment variables.

6.5.2 Running VISTAS

When the user types in the command VISTAS, an optional logo is displayed. This may be disabled by resetting the LOGO environment variable to a null value. Pressing the middle mouse button begins the program proper.

The user is then prompted for a number of input files. The underlined text below represents the prompts supplied by the computer.

Enter PDB file name of structure to be displayed (return for default) >

This prompt is repeated until an existing PDB file name is given or the default taken. The default structure to display is defined by the environment variable PDB_DEF. The structure file must be in a format which conforms to the PDB standard.

Molecule identifier (A is the default) >

Here, the user enters the chain identifier of the structure within the PDB file. The default is to extract chain A from the file. Any ligands in the PDB file will also be read by the program.

Enter name of file containing motif information >

The motif information file contains the residue positions of the start and end of a motif along with the colour in which it is to be displayed (in RGB format). Pressing return without a file name produces the next prompt, the menu options relating to motifs are greyed out until motifs are selected from within the

program.

Enter name of file containing sequence alignment >

The user should enter the name of a NBRF/PIR format file containing a sequence alignment. In the case of VISTAS and ALIGN, a maximum of five hundred sequences may be read at one time. XALIGN uses dynamic memory allocation because of its wider range of platforms, with the maximum number of sequences being limited by the memory available on the machine being used. If no alignment is specified then VISTAS will extract the sequence from the PDB file given at the first prompt. If a file name is given, then the following prompt is produced :-

Enter code of the sequence that corresponds to the 3D structure >

Here the user should give the name of the sequence in the alignment whose structure is displayed. This is necessary as VISTAS needs to be able to take into account the number of gaps in the sequence when applying the colouring subroutines.

Number of sequences to display (default is 10) >

The user can specify the number of sequences to be displayed in the sequence alignment window, the default being ten. A maximum of twenty is allowed for VISTAS as a structure window also has to be displayed. ALIGN has a dynamic maximum number of displayed sequences, the program interrogates the host machine for the screen size and then calculates the largest window that can be displayed.

Enter name of file containing residue colours >

If the default is taken at this prompt, then the SOM_COL environment variable is interrogated for the path of the colour file described above. The user may supply the name of a personalised file if required

Enter colour information file >

The default is the file defined by the DIV_TXT environment variable. Again the user may supply a different file if desired.

When all the file names have been given and checked by the program a window is opened up on the screen for the display of the structure. The user can specify the size and location of this window by the manipulation of the mouse, although the window always retains a predefined width to height ratio to ensure that the protein is displayed in a sensible manner. After the structure window has been sized, the sequence alignment window is produced. This may be placed anywhere on the screen by the user, but the size is fixed and cannot be altered. The same is true of the window produced by ALIGN, but the XALIGN sequence alignment window may be resized at will with dynamic vertical and horizontal scroll bars allowing the user to move around the work area. A typical VISTAS screen at a beginning of a session is shown in figure 6.1

Figure 6.1 A typical VISTAS session

6.5.3 Mouse Menus

Right Mouse Button

The program is almost entirely mouse driven. The right mouse button brings up the graphics menu, which provides functions to manipulate the structure display window. A menu item is selected by releasing the right mouse button over the required option. Pressing the left mouse menu brings up the functions menu. This deals with the manipulation of the sequence alignment, the calculation of various physicochemical properties and the interface to other programs. Selections from this menu are made by pressing the right mouse button over the required option. A representation of the menu displayed when the right button is pressed is shown in figure 6.2. Each menu option is described below in detail.

Main Menu

Submenu

Figure 6.2 A representation of the menu invoked by the right mouse button

6.5.3.1 Rotate x,y and z

These options control the rotation of the structure displayed in the graphics window. It was decided to use such control rather than mouse dragging to allow finer control of the structure orientation. MIDAS is an example of a program which uses mouse dragging to rotate and place structures, it being quite a difficult and protracted procedure to get the structure in the desired position. Unfortunately, the standard GL library uses post-multiplication of translation matrices as standard which means that the axis of rotation and translation are retained from the displayed object rather than the screen. This means that a rotation of ninety degrees around the x axis would make subsequent rotations around the y axis appear to be around the z axis. This can be overcome by forcing the program to pre-multiply the translation matrices as illustrated by the C routines below :-

/* Initialise matrices (4x4 arrays) */
Matrix temp,compound_matrix;

pushmatrix(); /* Push down matrix stack, leaving a copy of matrix at the top */
loadmatrix(temp); /* Load matrix on stack */
rotate(); /* Rotate structure */

multmatrix(compound_matrix); /* premultiply matrices */
getmatrix(compound_matrix); /* Get copy of matrix */
popmatrix(); /* Pop matrix stack */

When a particular rotation option is chosen, the structure rotates around the selected screen axis until the middle mouse button is pressed.

6.5.3.3 Translate x and y

These options control translations on the specified axis. The translation continues until the middle mouse button is pressed.

6.5.3.3 Negative and Positive

These options control the direction of translation and rotation around a particular axis. A negative rotation rotates the displayed structure in a anti-clockwise direction and translates to the bottom left of the screen. Positive translations and rotations occur in the opposite direction.

6.5.3.4 Clip

This option allows the user to clip parts of the displayed structure. The direction of clip is controlled by the negative/positive menu option above. Again, clipping continues until the middle mouse button is pressed.

6.5.3.5 Scale

When this option is selected, a submenu is displayed. This allows the user to increase or decrease the size of the displayed structure. The initial clipping planes are set at a very wide range, allowing the user to greatly magnify a particular region of a structure. Scaling continues until the middle mouse button is pressed. An option in this submenu also allows the user to increase or decrease the size of spheres used in the ball and stick displays described later. If the structure is not displayed using spheres, these latter options are greyed out.

6.5.3.6 Colours

This option brings up a submenu with options for different colouring algorithms. Residue colouring colours the structure and alignment according to residue type, the colour values being defined in the file referred to by the environment variable SOM_COL. Dummy colouring simply colours the alignment and structure with a repeating red-green-blue pattern and atom colours colour the structure only with atom-specific colours.

6.5.3.7 Display

This submenu is probably the most important controlled by the right mouse button. One of the options allows the user to select the method used to display the structure, at the moment modes available are C-alpha trace, skeletal, C-alpha spheres with bonds, full spheres with bonds, space filling and space filling with dots. Examples of all these display modes are shown in figure 6.3. A ribbon display will also be added when time allows. The retain colour and colour options in this submenu allow the user to switch the colouring algorithms for the structure and or sequence displays on and off. Using these it is possible to display, for instance, the structure coloured by residue type with the sequence alignment coloured by some physicochemical property.

The colour motifs option allows the user to colour the structure and sequence according to the motifs selected, if no motifs have been selected this option is greyed out.

The background options allows the manipulation of the colours for the structure window background. Options supplied are plain orange, gouraud shaded orange, black and user defined. This latter option allows users to enter their own choice of gouraud shaded colours for the background.

Figure 6.3a VISTAS display modes

Figure 6.3b VISTAS display modes

120

6.5.3.8 Lights

The GL library allows the programmer to specify a number of lighting properties to be used when displaying an object, for instance ambient and specular lights. With the proper use of these parameters it is possible to give the illusion that a displayed object is made of a particular material. This submenu allows a user to select a material or to toggle the lighting on and off. The materials currently available are plastic (three types), steel, glass, brass, pewter, silver, gold, plaster, bronze and rubber. While most of these are largely cosmetic they allow the customisation of displays and the transparency offered by the glass material may be useful in identifying atom types behind the front of the display.

While lighting models provide a three dimensional impression they are particularly processor intensive, so the option to switch lighting off is also provided. Space filling models displayed with dots are also easier to interpret with no lighting.

6.5.3.9 Line Width

This submenu controls the width of the lines drawn to represent bonds, which can be increased or decreased at will.

6.5.3.10 Printer

VISTAS provides hardcopy facilities for all the windows it displays, controlled by this submenu. The structure display window, graph display and plot display are saved to files in the Silicon Graphics RGB format, while the sequence alignment is in postscript. The use of the RGB file format allows the incorporation of screen displays into Explorer documents, an option unlikely to be required for sequence alignments. If it is found to be necessary to convert RGB files into postscript, Silicon Graphics have provided an appropriate utility in the form of the TOPS program. When the alignment option is selected from the menu, the user is prompted for an output file name and also a file containing the colour information for particular residue types if appropriate. The path for this latter file is provided by the PS_COL environment variable, but the user can specify a personalised file if required. Part of a sequence alignment produced by VISTAS and coloured by positional variability is shown in figure 6.4.

LCA PAM	TERESCIENCE - DADGYOCTST TERECVIENESG-Y
LAPTO	TERMY CUTTERS TE DMDCVRCUST PEWPCVLEHTSG-Y
LCA MACRO	TO YAY CONFORT F BHCMDEVIET BELVCUMENTSG-I
LABO	POT THE CHARTER THE ADDRESS OF THE A
LCA PARTM	TOT THE CUT THEY SA . BL DOWN DT ON OFWIT OUT THEY SG - I
LVC2 HVACE	TO THE COLLEGE DEPENDENT OF THE SCREET
ASOTAA	REPTROBLY OF TRACE OF THE DURING WENNESSEN
AJO/44	KRETECGIVUEBRRIGFEDETINGIVAVCLVERID
LIC_EQUAS	KVFSKCELAHKIKAQAMDGFGGYSLAWAVCMADI JUM
LIC_HORSE	KVFSKCELAHKIKAQEMDGBGGYSLANWVCMAE TAP
LYCI_PIG	KAADECERSKT DYV2001DEEKCA2191MAACTWARP
LYCZ_PIG	KAADECEBERT TEVES GUD ARE AAMAACTUK MED -
LYC3_PIG	KAADECEEVET PREZEMBARGAZI VUMACTVERPM
LYCM_MOUSE	KVYERCEFART LKRNGMAGYYGVSLADWVCLAQHESN 1
LYCP_MOUSE	KAANE CETYET PRENGWDGARGARTYDMACTYOHR 20-1
N\$TLYZ	KVFGRCELAAAMKRHGLDNYKGYSLGNWVCAAKFESN-P
MACLYS	RIFERCELARTDKRLGLDGYRGISLANWVCLARWESN-Y
LYC_HUMAN	KVFERCELARTLERLGMDGYRGISLANWMCLAKWESG-Y
AGMLYS	KIFERCELARTLERLGLDGYRGISLANWVCLAKWESG-Y
A34277	KVFERCELARTLEKLGLDGYKGVSLANWLCLTKWESS-Y
LYC_BOVIN	KVFERCELARTLKKLGLDGYKGVSLANWLCLTKWESS-Y
F34277	KVFERCELARTLKKLGLDGYKGVSLANWLCLTKWESS-Y
LYC_CHICK	KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAARFESN-F
CHKLYS1	KVFGRCELAAAMKRHGLDNYRGYSLGNWVCVAKFESN - F
LYC1_ANAPL	KVYSRCELAAAMKRLGLDNYRGYSLGNWVCAANYESG-F
LYC_MELGA	KVYGRCELAAAMKRIGIDNYRGYSIGNWYCAAKFESN-F
LYC_PHACO	KVYGRCELAAAMKRMGLDNYRGYSLGNWYCAAKFESN - F
LYC_CHRAM	KVYGRCELAAAMKRLGLDNYRGYSLGNWYCAAKEESN-F
LYC3_ANAPL	KVYERCELAAAMKRIGLDNYRGYSLGNWVCAANVESS-F
N\$1LZ2	KVYGRCELAAAMKRLGLDNYRGYSLGNWYCAAKERSN-F
LYC LOPLE	KVYGECELAAAMKRIGLDNYRGYSLGNWYCAARVESN-E
LYC PAVCR	KVYCECETALAMKRIGLDNYRGYSLGNWYCAANERSN-F
LYS SYRRE	KVYCHCHT A AMKRIGLDNYRGY SLGNWYCA AN FRON - F
LYC LOPCA	EVERPORT A AMERIGLDNYRGY SL GNWYCA AN FRON - F
LYC NUMME	KVEGROPT NAMERIGLDNYRGY SLGNWYCA AF FEGN-F
LYC COLVI	EVERPORTA A MKRHGLDNYRGY SLGNWYCA AK FEGN-F
T.ZIIH	EVER DOT A A MERIGLDNYRGY SLGNWYCA AFFE ON - F
g05657	EVER DORT A A MERIGLDNYRGY SLGNWYCAAE FROM - F
NT OFFICY	EVER DOWN AND THE OWNER ON SLEWWYCA AN PROM
TYC ORTVE	TTYPE CHARACTERY GLDNYR GY ST GNWYCA AD YD CM
TYC COLLT	TO TOT OTHER TO THE REPORT OF THE OTHER TO
DIC_CODD1	RUNDER CHEVILLIR RIGHT GYRGVSLANWYCLAWWRCD F
STOCED	KUNT CHARTER DUCKSGYVGVSLADWVCLAOUTON
LYC_RAI	ATTERCEPARTING HOUSE CUST AND CLAURE SHIT
SIUU47	AVIDACEPART LINASOTICS OF CUST ANALY CLARANS SHIT
LYC_AXIAX	AVPERCELART IKEDGUDGTEG VALUTURICUTIKNESD I
E35558	KVFERCELARTIKELGUDUTKOVULANNE CLITKWESS I
H35558	KVPERCELARTIKELGILUGIKOVDIAIVAL LIIKWESD I
LYC_SHEEP	AVE AR CELARTIKELGUDGINGVALANWLCUTKWESS-I
LZBO	AVELACELARTIKKUGLUGIKGVBLANWLCLTKWESB-1
LYC_PAPAN	ALPERCELARTIKRIGIDGIKGIJLANWVCLARWESD-I
LYC_PREEN	ALPER CELARTIKKLGLDGYKGVSLANWVCLAKWESG-I
LYC_RABIT	KLYERCELARTIKKLGLDGYKGVSLANWECLAKWESS I
F35558	KVNERCEDARTEKKLGLDDYKGVSLANWECLTKWESG-Y

Figure 6.4 Part of an alignment of lysozyme and α lactalbumin sequences coloured by positional variability. White indicates totally conserved residues, blue well conserved through green and yellow to red which indicates the most variable residues.

6.5.3.11 Matrix

The matrix submenu allows the manipulation of the translation and rotation matrices used for the structure display. These can be written to files when a structure is in the required orientation and can be read at a later date when the program is restarted. Another option in this submenu allows the translation and rotation matrix to be restored to its initial state. Matrix files contain five lines, the first four lines are the 4x4 translation matrix while the fifth line represents the x, y and z axis translation values and scale value.

6.5.3.12 Ligand

Selecting the ligand option produces a submenu which allows the ligand display to be switched on and off as desired and also the ligand display mode to be defined. Three options are allowed, these being stick, space filling and double space filling. This latter option displays the double van der Waals radii of the ligand atoms which, when combined with the skeletal display, allows the identification of possible close contacts. Figure 6.5 illustrates the different ligand display modes. When no ligand is present, all these options are greyed out.

The display of ligands is a useful feature as it allows the identification of the residues involved in interactions with other molecules, these residues can then be selected using the options described below and used to search the sequence database.

6.5.3.13 Quit

This menu option quits the program immediately and returns the user to the computer's operating system.

Figure 6.5 Ligand display modes

6.5.4 Left Mouse Button

The left mouse button controls those functions not linked directly to the structure window and within which lies VISTAS main strength. Figure 6.6 shows a stylised diagram of the menus invoked by pressing the left mouse button, these are described below.

Main Menu

Submenu

Calculate positional variability	-> alignment/motifs
Calculate Garnier-Robson	
Calculate solvent accessible area	
Calculate flexibility	
Calculate hydropathy	> Scale to use
Display motifs	-> Motif submenu
scanning procedures	SWEEP etc.
Sequence manipulations	-> Sequence submenu
Graph display	-> On/off, colours
Follow	-> Window to use
Select motifs	-> Window to use
Plot	> On/off, colours
Store motifs	→ Save, colour

Figure 6.6 The menu invoked by the left mouse button

6.5.4.1 Amino Acid Properties

As more thorough descriptions of the following properties are given in the previous chapter, the algorithms and scales used will only be discussed briefly here.

Positional Variability

The positional variability of an alignment can be calculated either from the alignment displayed or from motif files. This latter option allows the user to display a manageable alignment while displaying data from a very large number of sequences. When the motif file option is selected, the user is prompted for a file which contains the list of motif file names. The positional variability is calculated by comparing every residue at a particular position with every other residue at that position, the similarity values are taken from the substitution matrix defined by Risler et al. (1988). This matrix may be replaced by redefining the environment variable VAR_DATA. When the values have been calculated, the alignment and structure are coloured using the information from the file defined by the DIV_TXT environment variable. When motif files are used only those areas of the alignment that correspond to a particular motif are coloured by positional variability, the rest of the alignment is coloured cyan.

Garnier-Osguthorpe-Robson Secondary Structure Prediction

This option uses the Garnier-Osguthorpe-Robson (1978) algorithm to predict the possible secondary structure of the sequence alignment. The sequence alignment and structure are then coloured by the four possible structural conformations, ie turn, coil, alpha and beta. While secondary structure prediction is notoriously unreliable, the use of an alignment does produce more accurate results and it can be informative to compare the results with the known structure. With ALIGN and XALIGN, this option is more worthwhile as it is the only indication of secondary structure and it may be useful to be able to select motifs from, for instance the putative transmembrane helices of a membrane transport protein.

Solvent Accessible Area

The scale used by this option was derived from measuring the mean solvent accessible surface area of each of the residue types in twenty three folded proteins (Rose, G.D. et al. (1985)). This option is designed to be used in conjunction with

the hydropathy scales as it has been demonstrated that those residues that have the highest solvent accessible surface area are the most hydrophilic. A window length of five residues is used.

Flexibility

This option allows the identification of those residues of a sequence or sequence alignment that are the most flexible (Ragone, R. et al. (1989)). The scale used exploits the fact that the residues most likely to be found in such regions are generally the most hydrophilic and have the smallest volumes. A window length of ten residues is used.

Hydropathy

This submenu contains three options, each one a different hydropathy scale. The Kyte and Doolittle (1982) method uses a window length of twenty residues, the Eisenberg (Sweet, R.M. and Eisenberg, D. (1983)) method a nine residue window and the transmembrane method (Engelman, D.M. et al. (1986)) a window length of twenty. These algorithms, especially the latter, are very useful for detecting the possible transmembrane regions in proteins where no three-dimensional structure is available. The whole alignment is used to calculate the hydropathy values, not just a single sequence, and the sequence alignment and structure are coloured according to the information from the file defined by the DIV_TXT environment variable.

6.5.4.2 Display Motifs

When this option is selected a separate menu is produced, invoked by the left mouse button, which displays the active motifs and also whether the display of these motifs is switched on or off. The user toggles a motif on or off by pressing the right mouse button when the cursor is over the required menu option, the part of the structure which corresponds to the motif is then displayed as appropriate. The display may be produced in any of the possible modes, for instance space filling. A separate menu was used for the control of motif displays as, while being a little more confusing than when integrated with the main menus, the number of active motifs is dynamic and the full menus would need to be refreshed after each operation. Figure 6.7 illustrates the display of a number of lysozyme motifs along with the motif menu.

Figure 6.7 A VISTAS session illustrating the use of the motif submenu.

6.5.4.3 Scanning Procedures

One of the most powerful features of VISTAS, ALIGN and XALIGN are the direct interfaces to a number of other programs which allow a user to perform the whole process of motif definition and database scanning in a seamless manner. The following programs are available from this menu :-

1) SWEEP (Akrigg, D. et al. (1988)) and FASTA (Pearson, W.R. and Lipman, D.J. (1988)) global sequence searching programs. The user may either pass a sequence selected from the alignment window or give a database code. A number of prompts are then produced requiring more information, such as the database to search. VISTAS submits the FASTA or SWEEP job as a background process when all the prompts have been answered, a log file is produced for any information passed back by the machine. SWEEP searches the sequence database with the given sequence by considering matches from the database to the whole length of the probe sequence and also to overlapping sub-sequences of the probe sequence. FASTA uses a technique based on producing dot-plots of the probe and database sequences, areas of similarity being shown as diagonal lines on such a plot. The final similarity score between the two sequences is calculated by joining these regions.

2) SCAN. The motifs selected by the user from VISTAS, ALIGN or XALIGN can be submitted directly to the motif database scanning routine described in chapter two. The user is prompted for information, for instance the scoring method to be used, then the SCAN job is submitted as a background process. A log file is produced for any computer generated messages.

3) COMPARE. This is the same algorithm as described in chapter two and allows the analysis of hitlists produced by database scans with motifs. This option, together with SCAN, allows the user to define motifs, scan the database, analyse hitlists and refine motifs all within the same program with no file editing required. Again prompts are produced for the user to provide the appropriate parameters to COMPARE. 4) SMITE and DELPHOS (Akrigg, D. et al. (1988)). SMITE is the PRINTS database interrogation language. The PRINTS database contains motifs which discriminate for specific protein families in a similar manner to the entries in the PROSITE database. DELPHOS is the OWL sequence database query language. Both SMITE and DELPHOS are run in a separate window, the main VISTAS program pauses until the user leaves the query software being used by typing "quit".

5) PRINTS database scanning. All the motifs that are defined at Leeds are entered, after a rigorous checking procedure, into the PRINTS database. This is similar in concept to the PROSITE database but contains a more thorough description of each entry, some examples of PRINTS database entries are shown in appendix C. VISTAS allows the user to scan the entire database or just a named entry. The results are then presented to the user, who may add the motifs to the display list of motifs and write new motif files if desired. In contrast to the other programs described above, the PRINTS database scanning module is an integral part of VISTAS and is linked in to produce the final executable image.

The scanning procedures submenu also contains two options which allow the manipulation of the motif lists used by the display and database scanning routines. The clear motif list option removes all the present motifs while the write motif list option writes the names of all the active motifs to a file, the name of which is defined by the user. This file can then be used as input for other sequence analysis programs.

6.5.4.4 Sequence Manipulations

In addition to the structure display and database scanning options, VISTAS has a very powerful sequence alignment and editing capability superior to many packages produced purely for this purpose alone. At the present only manual alignment is supported, although automatically aligned sequences can be imported. The author intends to introduce a hybrid automatic and manual alignment system where the user may fix parts of the alignment while the rest of the sequences are aligned automatically. Automatic alignment alone, while producing objective output, tends to be limited by a number of factors, for instance if the sequences to be aligned are not of similar lengths large numbers of gaps are often inserted.

6.5.4.4.1 Alignment Navigation

If the alignment is large, the sequence window will only display part of the alignment. The 'r' key scrolls the alignment a complete window (100 residues) to the right while the 'R' key scrolls the alignment to the right by 10 residues. The 'L' and 'l' keys perform similar functions but scroll to the left. The 'd' key scrolls the alignment down a complete screen while pressing 'D' scrolls the window 5 sequences down. The 'u' and 'U' keys are used for scrolling the alignment up by similar amounts.

6.5.4.4.2 Insert/Delete gaps

When this option is selected gaps may be introduced into a sequence by moving the mouse pointer to the desired position and then pressing the right mouse button. Pressing the left mouse button deletes gaps at the cursor position. Single or multiple gaps may be inserted, the number can be user-defined by pressing the 'i' or 'I' keys to produce a prompt. The gaps algorithm makes extensive use of the C string handling functions which, while being inherently slow, are much faster than updating a sequence in memory one residue at a time.

6.5.4.4.3 Write Sequence Set

After selecting this option the user is prompted for a file name. All the sequences present in the alignment, including any gaps, are then written to this file using the standard NBRF/PIR format.

.

6.5.4.4.4 Write Part of the Sequence Set

After selecting this option the user defines the beginning and end of the section of the sequence alignment required by clicking on the right mouse button when the cursor is in the correct position. A file name prompt is then displayed. Only the selected section of the alignment is written to the specified file allowing the user to discard unwanted sections of the alignment. This option is particularly useful in those situations where some sequences in the alignment have long unwanted leader sequences.

6.5.4.4.5 Write Identity Matrix

When this option has been selected, the beginning and end residues of the appropriate section of the alignment are defined by clicking on the right mouse button when the cursor is in the correct positions. After responding to the file name prompt, the frequencies of the residue types at each position is then written in the form of a matrix.

6.5.4.4.6 Add Sequences

When this menu option is selected, a prompt is produced which requests a file name or database code. VISTAS first checks the user's directory for the file and, if this search is unsuccessful, then checks the OWL database index files for a protein of the given name. If a file name is given, that file must contain sequences in the NBRF/PIR format. When the file has been located or the sequence extracted from the OWL database the user then clicks on the right mouse button when the cursor is in the position in the alignment where the sequence or sequences are to be inserted. This whole procedure, from prompt to selecting the insertion position, is repeated until the middle mouse button is pressed allowing multiple sequence additions.

6.5.4.4.7 Delete Sequences

After selecting this option the uses clicks on the right mouse button when the cursor is over the chosen sequence which is then removed from the alignment. Pressing the middle mouse button leaves the sequence deletion mode.

6.5.4.4.8 Swap Sequences

The two sequences whose positions in the alignment are to be swapped are selected by clicking on the right mouse button when the mouse cursor is in the required positions. Again, pressing the middle mouse button returns the user to the main menus.

6.5.4.4.9 Go to Residue

After selecting this option, the user is prompted for a residue number. The alignment is then redisplayed with the selected residue being in the first column of the alignment window.

6.5.4.4.10 Find Motif

The user is first prompted for a motif which is entered from the keyboard. The sequence to be searched is then selected using the cursor and the right mouse button. A fuzzy search is carried out, the highest scoring segments from the selected sequence being displayed to the user. If required, the user can then reset the display so that the first residue of the highest scoring segment is in the first column of the alignment window. Pressing the middle mouse button returns to the main menus.

6.5.4.4.11 Make Group

Sequences from the alignment may be grouped together so that an insertion or deletion in one group member produces a similar insertion or deletion in all the other group members, thus making the alignment process much less time-consuming and tedious. The sequences to be grouped are selected by pressing the right mouse button when the cursor is in the required position. More sequences may be added to a group until the middle mouse button is pressed, when the names of the sequences in the group are displayed in the same colour in the alignment window.

6.5.4.4.12 Groups On/Off

A sequence group may be toggled on or off by pressing the right mouse button when the cursor is over any member of the required group. When a group is switched off, the members of that group are treated as individuals and insertions and deletions are not mirrored in the other group members.
6.5.4.4.13 Reset Group

A sequence group may be reset by pressing the right mouse button when the cursor is over any member of the desired group. This option removes the group from the computer's memory and none of the group functions then apply to the former members.

6.5.4.4.14 Add to Group

This option allows new members to be added to a predefined group. The group is first selected by pressing the right mouse button when the cursor is over any member of the desired group, then the sequences to be added are selected in a similar manner. Pressing the middle mouse button returns to the main menus.

6.5.4.4.15 Sequence Editor

When this option is selected, the user defines the residue or residues to be changed by positioning the cursor in the appropriate place and then pressing the right mouse button. The user is then prompted for the residue or string of residues to replace the previous sequence. This option is particularly useful for studying the effects of mutations on secondary structure prediction.

6.5.4.4.16 Define Anchor Point

An anchor point allows the user to insert or delete gaps but retain a particular part of the alignment intact, gaps are inserted and deleted either side of the anchored sequence to ensure that it stays in the same position.

6.5.4.4.17 Reset Anchor Point

This option removes any anchor points, gaps subsequently being inserted or deleted in the normal fashion.

6.5.4.4.18 Select Ruler Sequence

The user may select the sequence that is used to define the ruler that is displayed at the bottom of the alignment window. This sequence is selected by pressing the right mouse button when the cursor is the required position. The sequence name is then coloured blue to aid identification and the residue numbers displayed on the ruler relate to that particular sequence, gaps being disregarded. This option allows the easy identification of particularly significant residues, for instance it would be straightforward for a user to locate residue Ser 134 in a sequence even if that sequence contained a large number of gaps.

6.5.4.4.19 Alignment Ruler

When this option is selected the residue numbers displayed on the ruler relate to the whole alignment including all the gaps.

6.5.4.4.20 Go to End

After this menu option has been selected, the user selects a particular sequence with the cursor and right mouse button. The alignment is then redisplayed, with the last residue of the selected sequence being in the first column of the alignment window.

6.5.4.4.21 Go to Start

This option is identical to that described above except that the first residue of the selected sequence is displayed in the first column of the sequence display.

6.5.4.5 Graph Display

Another feature of VISTAS is the ability to display physicochemical properties in an interactive manner both by colour coding the sequence and structure and also by displaying the data as a graph in a separate window. The graph display submenu allows the user manipulation of this graph display, the individual options being described below.

6.5.4.5.1 Graph On/Off

The graph display may be switched on and off as desired by the use of these menu options. When the graph window is produced the size is fixed so that a correct aspect ratio is retained. To the right of the graph window is a colour bar which indicates the value ranges represented by the colours used for the structure and alignment displays. A typical graph window is shown in figure 6.8.

6.5.4.5.2 Reset Colours

This option is used to reset the graph display after the Follow options (described below) have been used.

6.5.4.5.3 White Background/Orange Background

The background colour of the graph display may be changed as desired.

Figure 6.8 A VISTAS session with a graph window displayed, in this case showing the positional variability of an alignment of lysozymes and α lactalbumins.

6.5.4.6 Follow

The Follow submenu allows the integration of sequence, structure, graph and plot windows. The user selects a segment or a single residue from any of the displayed windows by pressing the right mouse button when the cursor is at the appropriate positions, the corresponding areas of the other displays are then indicated. For instance if part of the protein structure is selected, the segment of the sequence alignment that corresponds to this region is coloured red while the appropriate parts of the graph and plot windows are indicated by dotted lines. Pressing the middle mouse button returns to the main menus.

6.5.4.7 Select Motifs

This sub menu allows motifs to be selected from any of the display windows. The user selects the desired region of the window by pressing the right mouse button on the beginning and end of the segment and is then prompted for a file name. The corresponding motif from the sequence alignment is then written to a file for use with the database scanning or general motif manipulation algorithms. This option makes it easy for users to select particular areas of secondary structure, for instance all the alpha helices, or the active site from the structure display and then scan the database with these sequence motifs. The graph display is also useful as users may, for instance, select the significantly hydrophobic sections. The motifs selected may be used to scan the sequence database without leaving the program by selecting the appropriate option from the Scanning Procedures submenu described above.

6.5.4.8 Plot

This submenu interfaces to the PLOT routine mentioned in earlier chapters, the output is then displayed in a separate window. PLOT uses the motifs that the user has previously defined, if no motifs have been selected then the Plot submenu is greyed out and is non-selectable. If the Plot from Alignment option is selected then the user must define the sequence to be used by pressing the right mouse button when the cursor is at the correct position. The Plot from Database option first prompts the user for a protein name, the sequence is then extracted directly from the OWL database. The Close plot window option removes the PLOT window, as with the graph display the background colour for the PLOT window may be changed. Figure 6.9 illustrates a VISTAS session with a PLOT window.

Figure 6.9 A VISTAS session with a PLOT window displayed.

6.5.4.9 Store Motifs

This option allows the user to save the predefined motifs in memory before clearing the motif list. The Colour motifs option from this submenu then colours the structure and alignment using the presaved motif definitions and the present motif definitions, the areas of overlap being coloured red. This option is useful when comparing the output from two PRINTS database searches.

1 10

×

6.6 ALIGN and XALIGN

Both these programs contain the options described above with the exception of those specifically concerned with the manipulation of the structure display window. These programs were written to account for the majority of situations when a structure that corresponds to the sequences being aligned is not yet available. As mentioned above, XALIGN makes use of the Xlib/Motif programming libraries and therefore has a user-interface that conforms to the Motif standard with pulldown rather than popup menus. XALIGN also has the ability to produce helical wheel displays. A typical XALIGN session is shown in figure 6.10.

Figure 6.10 A XALIGN session with a graph window and a helical wheel displayed

6.7 Comparison With Other Software

Only two software packages are known to the author that have a similar range of functions to VISTAS and these are described below. Other relevant sequence alignment and sequence editing programs are also discussed.

6.7.1 CAMELEON

This package (Oxford Molecular (1990)) allows the user to display two sequences and, if desired, the three-dimensional structure of one of them. The Gascuel-Golmard (1988) secondary structure prediction algorithm has been implemented along with routines to display a number of properties (for instance hydropathy) and to identify regions of similarity between the two sequences. CAMELEON is basically the program described by Morris (1988) with the addition of a simple c-alpha display. VISTAS has numerous advantages over the CAMELEON software. For instance VISTAS allows the manipulation of large alignments rather than single sequences and also allows the tertiary structure to be displayed in a number of different modes instead of just the simple c-alpha stick display of CAMELEON. The biggest advantages offered by VISTAS however are the routines which allow the integration of the sequence and structure displays along with the direct access to the database scanning and interrogation programs. In contrast, CAMELEON provides no interface to sequence databases and the structure display only allows simple translations and rotations rather than full sequence-structure interactions.

6.7.2 Integrated Structure and Sequence Displays

This package (Schnobel, R. (1991)) was written for SUN machines and allows the display of a sequence alignment and tertiary structure. The package allows the translation and rotation of the three-dimensional structure and a user may also redefine the colours used for each residue type. The structure and sequence displays are integrated, in that selecting a part of the sequence will lead to the appropriate part of the tertiary structure to be highlighted and vice-versa. A side-by-side stereo mode is also available for the three-dimensional structure display. This package is designed only for the visualisation of data and includes none of the database and amino acid property exploration routines of VISTAS. 6.8 Comparison of Sequence Alignment and Editing Programs.

As stated above, VISTAS has very powerful sequence alignment and editing capabilities. A number of the sequence alignment and sequence editing packages known to the author are described below to provide a comparison with the VISTAS program.

6.8.1 MANALIGN

1

This is perhaps the simplest of all the packages to be discussed as it was written specifically to be used on any terminal type, therefore no screenmode features could be included. This program is part of the LUPES package which was developed at Leeds (Akrigg, D. et al. (1988)). A maximum of ten sequences are displayed as lines of ASCII characters and gaps may be inserted by choosing an option from the menu, the latter is displayed as the last line on the terminal screen. A disadvantage with this system is that the top of the sequence alignment is lost as the screen scrolls to accommodate the menu. Symbols are used to display residue similarities between each sequence. MANALIGN performs a useful purpose as it can be run on any terminal screen, but as it lacks a screenmode any comparison with programs such as VISTAS and ALIGN are unhelpful.

6.8.2 HOMED

In contrast to MANALIGN, HOMED (Stockwell P.A. and Petersen, G.B. (1987)) allows sequences to be edited and listed in parallel as a screenmode display is used. This display is based on the EDT and KED text editors found on computers with VMS operating systems as the authors contend that as most users are familiar with text editors it is simple to use a sequence alignment program that behaves in a similar manner. Later versions are based on the EMACS editor found on machines running the UNIX operating system (Stockwell, P.A. (1988)). On a VAX computer HOMED may be used to edit up to 50 sequences, each with a maximum of 10240 residues. The program generates a consensus sequence showing the predominant residue type at each position in an alignment and also displays the residue type ('oily' or polar).

6.8.3 MASE

MASE (Faulkner, D.V and Jurka, J. (1988)) is designed to run on machines running the Berkeley UNIX (BSD) operating system and provides full-screen displays on a number of terminal types including VT100 compatibles. The number of sequences that the program can manipulate is limited only by the amount of memory available on the host machine. MASE has a number of basic operating modes (ie cursor movement and pattern searching, sequence modifications, window manipulations, output and sequence analysis) all directed by keyboard input. In this instance sequence analysis refers to functions such as the computation of consensus sequences and identity matrices. MASE also has a facility which allows particular residue types to be highlighted which aids the alignment of multiple sequences.

6.8.4 MALIGNED

MALIGNED (Clark, S.P. (1992)) is a sequence alignment and editing tool designed to run on VAX/VMS systems and a maximum of 199 sequences can be aligned at any one time. This program is again based on the VAX EDT editor and has a display that is designed to assist in aligning multiple sequences by variously highlighting residues. The simplest of these highlighting modes shows the most abundant residue type at a particular position in the primary highlight (bold), the second most abundant in the secondary highlight (intermediate), and the third most abundant residue type in tertiary highlight (least bold). Less frequent residue types have no highlight. MALIGNED also allows the user to group residue types, eg aromatic, and then uses these groups to perform highlighting instead of individual residue types. In addition, consensus sequences may be produced.

6.8.5 LINEUP

LINEUP is part of the GCG package produced at the University of Wisconsin (Devereux, J. et al. (1984)) and is a screenmode multiple alignment editor. A maximum of thirty sequences may be displayed at one time and a consensus sequence can also be produced, although it is not possible to display similarities between each sequence. Also, only limited pattern searching routines are available. LINEUP runs on both VMS and UNIX systems and requires a VT52 or compatible terminal.

6.8.6 SOMAP

SOMAP (Parry-Smith, D.J. and Attwood, T.K. (1991)) is a screenmode sequence alignment editor that was developed as part of the ADSP software package. Extensive use is made of the C curses library allowing rudimentary menus to be displayed, although all input is keyboard-based. SOMAP has no internal limitation on the number or length of the sequences to be aligned, the only constraint being the available memory on the host machine. A number of display options are available, simple sequences, sequences with similarities and a colour display. The colour display is perhaps the most useful features of SOMAP, although it is only available on the VAX/VMS version. Screen scrolling and update is also rather slow in any display mode. Comprehensive pattern searching routines are supported along with the ability to output alignments in a format suitable for monochrome laser printing. A post-processing program is available to produce hard copy of colour alignments from SOMAP output.

6.9 Conclusions from Comparisons

It may be noted that almost all the packages described above are limited to a particular platform, usually VMS, and have only a limited number of features. The sequence alignment part of the VISTAS and ALIGN packages were designed to incorporate as many functions as possible without appearing to be confusing to potential users while XALIGN allows complete portability, the X/Motif interface being consistent across all platforms means that the operating system is transparent to the user while using the program. Of the above software only SOMAP has a colour display which is an invaluable aid to sequence alignment, this facility is taken further in VISTAS and ALIGN by allowing the interactive colouring of alignments by various amino acid properties as well as residue type. VISTAS and ALIGN are also the only sequence alignment programs known to the author that are almost completely mouse driven, keyboard input being limited as much as possible (mainly just for filename definition).

6.10 Conclusion

It is the authors belief that VISTAS and ALIGN provide a rich functionality coupled with ease of use and that the VISTAS package address the issue of integrating primary, secondary and tertiary structure along with physicochemical measurements in a rational and user-friendly manner. VISTAS provides all the options a biologist would require to perform a sequence analysis study and is almost totally mouse driven. It can also be used as a tool for displaying the results of a sequence study, relating the sequence information produced to the structural information via the PRINTS and in due course, PROSITE database interfaces.

6.11 References

Akrigg, D., Bleasby, A.J., Dix, N.I.M, Findlay, J.B.C., North, A.C.T., Parry-Smith, D.J., Wootton, J.C., Blundell, T.L., Gardner, S.P., Hayes, F., Sternberg, M.J.E., Thornton, J.M., Tickle, I.J., A protein sequence/structure database. Nature 335 (1988) pp745-746

CAMELEON software package, Oxford Molecular Ltd. (1990)

Clark, S.P., MALIGNED: A multiple sequence alignment Editor. CABIOS 8 (1992) pp535-538

Devereux, J., Haeberli, P., Smithies, O., A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12 (1984) pp387-395

Engelman, D.M., Steitz, T.A., Goldman, A., Identifying non-polar transbilayer helices in amino acid sequences of membrane proteins. Ann. Rev. Biophys. & Biophys. chem. 15 (1986) pp321-353

Faulkner, D.V., Jurka, J., Multiple aligned sequence editor (MASE). TIBS 13 (1988) pp321-322

Garnier, J., Osguthorpe, D.J., Robson, B., Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120 (1978) pp97-120

Gascuel, O., Golmard, J.L., A simple method for predicting the secondary structure of globular proteins - implications and accuracy. CABIOS 4 (1988) pp357-365

Kyte, J., Doolittle, R.F., A simple method for displaying the hydrophathic character of a protein. J. Mol. Biol. 157 (1982) pp105-132

Morris, G.M., The matching of protein sequences using colour intrasequence homology. J. Mol. Graph. 6 (1988) pp135-142

Parry-Smith, D.J., Attwood, T.K., SOMAP: A novel interactive approach to multiple sequences alignment. CABIOS 7 (1991) pp233-235

Pearson, W.R., Lipman, D.J., Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. 85 (1988) pp2444-2448

Rangone, R., Facchiano, F., Facchiano, A., Facchiano, A.M., Colonna, G., Flexibility plot of proteins. Protein Engineering 2 (1989) pp497-504

Risler, J.L., Delorme, M.O., Delacroix, H., Henaut, A. Amino acid substitutions in structurally related proteins, A pattern recognition approach. J. Mol. Biol. 204 (1988) pp1019-1029

Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H., Zehus, M.H., Hydrophobicity of amino acid residues in globular proteins. Science 229 (1985) pp834-838

Schnobel, R. Integrated displays of aligned amino acid sequences and protein strutures. CABIOS 7 (1991) pp341-346

Stockwell, P.A. HOMED: A Homologous sequence editor. TIBS 13 (1988) pp322-324

Stockwell, P.A., Petersen, G.B., HOMED: A homologous sequence editor. CABIOS 3 (1987) pp37-43

Sweet, R.M., Eisenberg, D., Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure. J. Mol. Biol. 171 (1983) pp479-488

Appendix A

Sequence alignments used to define the motifs described in chapters three and four. Alignments were initially prepared using XALIGN, the SOCOL program was used to produce colour hard copy (Parry-Smith, D.J. personal communication). The key to the colours used for the alignments is shown in appendix D.

A.1.1 Initial alignment of lysozymes

76
LZCH N\$1LYM1 N\$1LYM1 N\$2HFL3 LZQJEB LZQJEB LZQJEC LZQJEC LZDK3 N\$1LZ11 LZDK3 LZDK3 LZBO LZDVE LZOVE

	III	110			F				in the second	GIE	
71:									10	e	
	IS	2	5					5	5	SST	
	0		20		2 6			HS S	TN	6	
	IN	Z	N	TN	TH	TA		P	SN	an	
1:	INR	HN	HN.	NIC I		LIN IN	AT N I	IN	ANT.	INT	
	FAC	No.	B	R					NAC	RO	
	ITN	IN	EN	SN				TIM			
**	SINE		EN S	SNE			9 6	10		F	
	EE	9	9	S a					İP	IE	
.5.	AK	A	NA								NULL N
**	CA	S	Q	3	38	3 {	3]{	38	Sξ	5
	VIII	MAN	NM	2 M				2 1			
	Te	B	50	0	D I		H			DE	
41	SZ	S	S	KS I	2		מי			D D	2
••	(RG	R	RG	B B	D	Dir	<u>Dik</u>	D	2	DIN	2
	NIC	NO	N	N	2	4	DIL	Dt	9	2	D
	GIL	6	B	6						3	3
.1	ERH	E	RH	RH	H	2		2	N		3
	AMA	AM	IMI	MM	M		<u>ب</u>				
	AA	AA	AA	AAJ		A	3		R		H
	E.	国				E C					
••	IRC	GR	BRC	RC	RO	N.	No.	R.	2	R.	No.
2	VBI	NP(VF(VEC	ME		HAN				
	E	X	M	X	X		Z		2	2	
	AI	i	i			1		1		1	1
	BI	I	i	i	İ.	į.	i		i.	į.	
LL			ł	ł		İ.	i	1	i	i	i
	D.L.	1	1		1	1	1	1	1	1	1
	H	i	i	i	i	i	i.	i.	i	i.	i
	: 8			-	Ì	i	İ.	i	i	i	i
					- 1	1	1	1		1	
	IRS	i	i	į	1	1	1	1	1	1	
5	MRS		1	i	8	ł	1	1	ł		i
F	MRS					1	1		1		i
-	MRS				1		1	1	-		i
F	MRS	LM	13		1			DId	1		i
F	MRS	L'WM1	HFT.3	UEB	UEC		LZ11	DISPIG	-	WE	E
F	Z.CH MPS	LMX11S	IS2HFT.3	ZOJEB			4\$1LZ11	LYC1\$PIG			

148

76a6	NDG CAEROEDVANSY GIL CSEFT DD TTDD IE CARKITOLEELE WAHER CLEDUO NC NRW CKSSEFPESENT OD IS OKTODELAD IVCAKIVAL KGID WKAHRPMCSERLEG REPEABALW PALMSETEVE NRD CYENQEVESENT OD IS OKTODELAD IVCAKIVAL KGID WKAHRPMCSERLEG REPEABALW PALMSETEVE NRD CYENQEVESENT OD IS OKTODELAD IVCAKILDE VGIN WAHRPMCSERLEG REPEABALW PALMSETEVE NRT CVSRONPOSKNI OD CREATED IVCAKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETEVE NRT CVSRONPOSKNI OD CREATED IVCAKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETEVE NRT CVSRONPOSKNI OD CREATED IVCAKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETEVE NRT CVBDOPHSRNI OT CORFILID OT CARKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETEVE NRT CVBDOPHSRNI OT CORFILID OT CARKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETEVE NRT CVBDOPHSRNI OT CORFILID OT CARKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETEVE NRT CVBDONPHSRNI ON IS OKTOD DI MOVKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETEVE NRT CVBDONPHSRNI ON IS OKTOD DI MOVKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETEVE NRT CVBDONPHSRNI ON IS OKTOD DI MOVKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETEVE NRT CVBDONPHSRNI ON IS OKTOD DI MOVKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETENTER NRT CVBDONPHSRNI ON IS OKTOD DI MOVKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETENTER NRT CVBDONPHSRNI ON IS OKTOD DI MOVKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETENTER NRT CVBDONPHSRNI ON IS OKTOD DI MOVKILDE VGIN WAHRPACSERLEG REPEABALW PALMSETENTER NRT CVBDONPHSRNI ON IS OKTOD DI MOVKILDE VGIN WAHRPACSERLEG REPEABALW
	Lakgaw Lart Lart Lart Larb Larb Larb Larb Lcaşbovtn Lcabşhorse Laho Lacm

LACM

LART2 LCA\$SHEEP LAHO LCA\$PAPCY LCA\$PAPCY LAKGAW LARB LARB LYC3\$PIG LYC3\$PIG LYC3\$PIG LYC3\$PIG LYC3\$PIG LYC3\$PIG LZCY LYC\$POVIN

LCVI-

SHAT

ACT

AHA

MMSFVST.LIVGIT

TOTIVININ

TSGVDTOATV

5

TSST

VCT

ICAA

CAA

LAAAN

ITSC/D

TEASVI

LART2 LCA\$SHEEP LAHO LAHO LCA\$PAPCY LARB LARB LARB LARB LARB LAC3\$PIG LARB LAC9 LARB 1LC0T LZDY LZDY LZDY LZDY

A.2.1 Sugar transporter and related proteins. For brevity, the extreme N and C-termini of some sequences have been removed

NP I P I P P P P P P P P P P P P P P P P
H H H H K K K K K K K K K K K K K K K K
A H D D D D A A M D A D D D D H A
R R R R R R R R R R R R R R R R R R R
G A G G G G G G G G G G G G G G G G G G
THE REPORT OF TH
EHA A A A A A A A A A A A A A A A A A A
C A A A A A A A A A A A A A A A A A A A
S N N N N N N N N N N N N N N N N N N N
LV HANNE MAN
O Y R R R R R R R R R R R R R R R R R R

GAL2\$YFAST RATGLTP RATGLTP MAL6\$SACCA LACP\$KLULA SNF3_YFAST ARAE\$ECOLI MUSGLUTFN QAY\$NEUCR QAY\$NEUCR QAY\$NEUCR QAY\$NEUCR GTR4\$MOUSE HUP1\$CHLKE ZTEC3 CTTA_SALTY LEID2TRA PRO1\$LETEN

*: 276: 286: 296: . RVPLGLCPA STIMIGALITVPESPRIT PHILSISRIPAALOPAILPPPRSPMI KLPUALORIWPLPLAVGLELAPESPMI	RIPICION PELVCIONI LE PERTI RIPICION SSFIAICM FLPESPR PANGEVIAL PAVILI ILLV FLPUSPR PLAISVI FIPALIOCIAL PRESPRI FLAISVI FIPALIOCIAL PRESPRI FLAISVI FIPALIOCIAL PRESPRI	PLILIALITVI PALLIQUILLI PUSER U PLILIGLITSVPAALQUILLI PUSER U RUSUGLAAAPGATH LGSLVLPESPN U RTPH FIGMITPLI VLPRSLQBUEA U	RIPHFICONTIPLITVLRSLOETEALL ROGLVSVSTLLSTVVFLPL-TTWOG
5::::::246::::::256:::::266:::: OIMITAGIFIGICINYGTKSYSNSVO OIGITIVGITISOILGIONSGNVNDV	NITL ISVESTVRA STVGINKNEPNSSKA NTL ISVESTVRA STVGINKNEPNSSKA O M TVGILVSSAVSOGTHARNDASS OLMVTI G TVLA TLSDTA BS SGNL	NRLALVI GILVAQVI GLESMI GTATL NPQLETTVG ILVAQVI GLESMI GTATG NQLEVTI GILLAGLVNYAVEDWENGG SQVALVVAALI GYGLNVTLGEDE ISEWG	SOUVALIMVAAAMGE ALINAVILEPSALS DWG SOUVALVVAALIGYSLNITTIGHDALSENG AQVSVSTGIEVVTSFFGLVIGNTIQVDAASNANTM AQVETTIGIEVVAAIMGLALGOSIERDHDGDOKVM
226:::::23 RGILVSC RGAAGIL	LRGAUGLI LRGAISS VRGKMISS LRGALGLI	VRGRUVE LRGALGU LRGALGV HRGMLNI NRGF TISMOSA	RKGF VTSMOSG NKGF VTSMOSG HAKTTGT

GAL2\$YEAST RATGLTP MAL6\$SACCA LACP\$KLULA SNF3_YEAST ARAE\$ECOL1 MUSGLUTRN QAY\$NEUCR GTR4\$MOUSE HUMGLUT5 HUP1\$CHLKE ZTEC3 CIT\$KLEPN CITA_SALTY LEID2TRA PRO1\$LEIEN

361	
-OABT DLIWAGI EARLAGNAS -OABT DLIWAGI EARLAGNAS -LOBITOLIWAGI EARLAGNAS -LOBITOLIWAGI EARLAGNAS -LOBITOBSOKEBARTELITITI 	
301	ARRHHLA MROVBAT

GAL2\$YEAST RATGLTP MAL6\$SACCA LACP\$KLULA SNF3_YEAST ARAE\$ECOLI MUSGLUTRN QAY\$NEUCR QAY\$NEUCR GTR4\$MOUSE HUMGLUT5 HUP1\$CHLKE ZTEC3 CIT\$KLEPN CIT\$KLEPN CIT\$KLEPN CIT\$KLEPN CIT\$KLEPN CIT\$KLEPN CIT\$KLEPN CIT\$KLEPN CIT\$KLEPN

GTR4\$MOUSE HUP1\$CHLKE CITA SALTY PRO1\$LEIEN SNF3 YEAST ARAEŞECOLI LACP\$KLULA GAL2SYEAST MAL6\$SACCA **QAY\$NEUCR** CIT\$KLEPN MUSCLUTRN HUMGLUT5 LEID2TRA RATGLTP ZTEC3

71::::::481::::::481::::::501::::::501::::::521:::::522:: SSKGAGNCMLVETCEVIECVATIWAPVAWVITAESFELRVKSKCMALASASNWV MSVVSMTALELVSEFEICPIELEFECVRWFTQIMRPGALVCVATLOWV			IL PRAVASCITAVICI FISCIA S (CPMCMLI PSETI FILETIR PACTAVAVGNEL) 	SDKATSGIAITIGIAIFIALWESPFEMNICAMVAALTEVWEVVETVESLAF-STAT SDKATSGIAITIGIAIFIALWENGVEPC VULAVDVEPESFEFIGSSITVEVNE I KLEAKNEVALTGITLETLIETLEFILGEEVCVEPC VULTODMEPESFEREGASFTOVAOFI
451:::::461:::::47] MVI ASVGVIRL NPHC-KSOPS: AVEMSLVLVLLDKEIV	LIGLSI CTAR REKTKI NE TVALVGCSLKUVAA TLVLGY CLMOFDNGTA	AVIMITALALAREN BU MULICALIKIADEGSUKABDAK ATIMIVALILALERVEA	MILTIGVVIAIRIANCIDPL TWEVMWILTAAP	THE WEIGHT PUTTAR

GAL2\$YEAST RATGLTP MAL6\$SACCA LACP\$KLULA SNF3_YEAST ARAE\$ECOL1 MUSGLUTRN QAY\$NEUCR GTR4\$MOUSE HUD1\$CHLKE ZTEC3 CTT\$KLEPN CTTA_SALTY LEID2TRA PRO1\$LETEN

SNF3_YEAST GTR4\$MOUSE HUP1\$CHLKE GAL2\$YEAST LACP\$KLULA MAL6\$SACCA ARAESECOLI CITA SALTY PRO1\$LEIEN **QAY\$NEUCR** MUSCLUTRN CIT\$KLEPN HUMGLUT5 LEID2TRA RATCLTP ZTEC3

A.2.2 Proton symport/antiport sequences. Only the section of the alignment from putative transmembrane segments 3 to 6 is shown.

1.11.11.11.11.11.11.11.11.11.11.11.11.1	SVGLEVNREGRANSMIRMINIAR VOAVAAVE
ATR1_YEAST RAG1_KLULA GTR5_HUMAN GTR5_HUMAN ARAE_ECOLI S24752 SNF3_YEAST SS24752 SNF3_YEAST S24752 SNF3_YEAST CTTA_SALTY TO CTTA_SALTY TO CTTA_SALTY TO CTTA_SALTY TO S27687 TO S27677 TO S27677 TO S27677 TO S276777 TO S276777 TO S27677777777777777777777777777777777777	GTR1_RAT

		HDALSBAGURIPHICCMITELITVLERSL HSPHILAALLNIVTELVVMEN GGGWRSVELINUVELMAGCLVAVVLV GGGWRSVELINELIGVAVIVGAVLL RAT AFLGTGMTAASAAMF	STILLIPMITTITVPETMKLI HAP PAAALNGINTITCET RAS NEVVLISAPAVAAIMAS RAJINAVLISAPAVAAIMAS RAJINAVLISAPAVAAIMAS SIRDHDGDOKVMAROGICVSSTLFSLILTVVIGI SIRDHDGDOKVMAROGICVSSTLFSLILTVVIGI
76::::::86::::::96:::::106::: GIERNIVISEVGAMAPIGATIGCIEAGLIC- KHLRGILVSCYQIMITEGIELGYCTNYGTK- NNLRGALGVVPQLEITVGILVAQIEGLANI- NNLRGALGSMYCHMATIGILYAQIEGLANI-	TAPPOGVERLASVASVGLVI GFLISCVTTOLES- KSLRGATISVASVGLVI GFLISCVTTOLES- PGKLMMAT GTWS-GVVGASTAAGPTT GGLLVOHVC- PGRRALESSPOI -VASSVGHTLAGLSTLAASOTSC- PGRRGETTSIOS -GSOOVATINVAAMGFALNAVTE-	PGNKGFTISMOS – ASOOVALIVVAALI GYSLNITH G- ASORVANFGNLG – ASFGLGLIAGFTI GGFAGEISF I RERPKALGI VA – ASVGFALGI GEVTIGGTI.LAHIV PKETAAAFGAFG – PAI GLGAVLGFIVAGFLVDADL GREESNVI VG1L GSMLANVPAVGFLLGALVDM/LG GDERAAHFGFMS – ACFGFGWVAGFLLGALVDM/LG	RENEGRAFCLIC - SIVANGEGVGPAIGGMIAHMIH GDERARHEGEMS - ACFGFGMVAGEVLGGLMGGFSF ADMKGFAISVIL - CGVTIACVVGVFGGLLGELMC ADKOGFALAVIL - SGITVAIVACVFGVFGGLLGELWC PAVKGRLV GIVELGQIGGLVGFNINVGVV PAVKGRLV GIVELGQIGGLVGFNINVGVV PAVKGRLV TLAQUETUGIGIALGO TALKGALC TLAQUETUGILIAGVFGLDSI
ATR1_YEAST RAG1_KLULA GTR5_HUMAN ARAE_ECOLI	S24752 SNF3_YEAST S27687 E47031 CIT_KLEPN	CITA_SALTY TCR1_ECOLI S18539 B40046 JQ1201 JQ1201 JQ1479	TCR_BACST TCR3_ECOLI S25183 CMLR_STRLI QAY_NEUCR PRO1_LEIEN GTR1_RAT

160

Appendix B

The final motif sets and key to the sequences shown in chapters three and four. The numbers shown after the motifs indicate the number of residues from the Nterminus and the number of residues from the previous motif respectively.

B.1.1 Final lactalbumin motifs

LAGT	Alpha-lactalbumin -	Goat		
LCASCAPHI	ALPHA-LACTALBUMIN F	RECURSORC - Goat		
LCASSHEEP	ALPHA-LACTALBUMIN F	RECURSOR - Sheep		
LCASBOVIN	ALPHA-LACTALBUMIN F	RECURSOR - Bovine		
LAHU	Alpha-lactalbumin F	recursor - Human		
LABO	Alpha-lactalbumin -	Bovine		
LAHO	Alpha-lactalbumin -	Horse		
lcab\$horse	ALPHA-LACTALBUMIN H	3 AND C - Horse		
lca\$papcy	ALPHA-LACTALBUMIN -	Yellow baboon		
LAGP	Alpha-lactalbumin H	precursor - Guinea	pig	
LACM	Alpha-lactalbumin .	- Arabian camel		
GPILACTAL	GPILACTAL pre-alpha	a-lactalbumin - Ca	via porce	llus
EZEC228	ALPHA-LACTALBUMIN	- Bovine		
LART2	Alpha-lactalbumin	(version 2) - Rat		
LART	Alpha-lactalbumin	(version 2) - Rat		
LARB	Alpha-lactalbumin	- Rabbit		
LAKGAW	Alpha-lactalbumin	- Red-necked walla	rpà	
LYCSEQUAS	LYSOZYME C - Donke	Y		
LYCSHORSE	LYSOZYME C - Horse			
LYC1\$PIG	LYSOZYME C-1 - Pig			
LYC2\$PIG	LYSOZYME C-2 - Pig			
LYC3\$PIG	LYSOZYME C-3 - Pig			
Database V	ersion - OWL9.0			
motif 1			7	7
EVFRELKDLK	GYGGVSLPEWV	LABO	26	26
EVFRELKDLK	GYGGVSLPEWV	LCASBOVIN	7	7
EVFRELKDLK	GYGGVSLPEWV	EZEC228	26	26
ELSQLLKDID	GYGGIALPELI	LAHU	7	7
EVFQKLKDLK	DYGGVSLPEWV	LAGT	26	26
EVFQKLKDLK	DYGGVSLPEWV	LCASCAPHI	20	26
EAFQKLKDLK	DYGGVSLPEWV	LCA\$SHEEP	20	7
ELSEVLKSMD	GYKGVTLPEWI	LAHO	7	7
QLSQVLKSMD	GYKGVTLPEWI	LCAB\$HORSE	7	7
ELSQNLYDID	GYGRIALPELI	LCA\$PAPCY	7	7
EVSHAIEDMD	GYEGVSLPEWT	LART2	26	26
ALSHELNDLA	GYRDITLPEWL	LAGP	20	20
ALSHELNDLA	GYRDITLPEWL	GPILACTAL	26	20
KLSDELKDM	GHGGITLAEWI	LACM		26
EVSHALEDME	GYQGISLLEWT	LART	26	7
ELTEKLKELD	GYRDISMSEWI	LARB	7	. 7
QASQILKEHO	MDKVIPLPELV	LAKGAW	7	•

			2
<u>MOULT 2</u> FHTSCYDTEAIV	LABO	31	с С
FHISGIDIEALV	LCA\$BOVIN	50	2
FUTCONDENTV	EZEC228	31	3
FUTSCIDICALV	LAHU	50	3
FUTCOVDTOATV	LAGT	31	2
FUTSCYDTOAIV	lcașcaphi	50	2
FUTCOVDTOAIV	LCASSHEEP	50	2
FUSSCYDTOTIV	LAHO	31	2
FHNSCYDTOTIV	LCAB\$HORSE	31	י ר
FHTSGYDTOAIV	LCASPAPCY	31	د ۲
FHTSGYDTEASV	LART2	31	ა ი
FHISGYDTOAIV	LAGP	50	د د
FHISGYDTOAIV	GPILACTAL	50	2
FHMSGYDTETVV	LACM	31	2
FHTSGYDSQAIV	LART	50	<u>з</u>
FHTSGLDTKITV	LARB	31	3
FHISGLSTQAEV	LAKGAW	31	3
••••			
motif 3		68	25
HSSNICNISC	LABO	87	25
HSSNICNISC	LCASBOVIN	68	25
HSSNICNISC	EZEC228	87	25
QSRNICDISC	LAHU	68	25
HSRNICNISC	LAGT	87	25
HSRNICNISC	LCA\$CAPHI	87	25
HSRNICNISC	LCA\$SHEEP	68	25
PSRNICGISC	LAHO	68	25
PSRNICGISC	LCAB\$HORSE	68	25
QSRNICDITC	LCA\$PAPCY	68	25
ESENICDISC	LART2	87	25
QSRNICDISC	LAGP	87	25
QSRNICDISC	GPILACTAL	68	25
QSRNICDISC	LACM	87	25
ESENICDISC	LART	68	25
QSKNICDTPC	LARB	68	25
VANSVCGILC	LAKGAW		
motif 4			1
	LABO	79	1
	LCASBOVIN	98	1
KFLDDDLTNN	EZEC228	79	1
KFLNNDDITDD	LAHU	98	1
	LAGT	79	1
KFLDDDLTDD	LCA\$CAPHI	98	1
KFLODDLTDD	LCA\$SHEEP	98	1
KFLOODLTDD	LAHO	79	1
KELDDDLIDD	LCAB\$HORSE	79	1
KFLDDDLIDD	LCA\$PAPCY	79	1
KFLDDDIIDD	LART2	79	1
KFLDDELADD	LAGP	98	1
KLLDDDLTDD	GPILACTAL	98	1
	LACM	98	1
KFLDDDLTDD	LART	98	1
KFLDDELADD	LARB	79	1
NFLDDNLTDD	LAKGAW	79	T
KFLDDDITDD			

motif 5			10
VGINYWLAH	LABO	99	10
VGINYWLAH	LCA\$BOVIN	118	10
VGINYWLAH	EZEC228	99	10
KGIDYWLAH	LAHU	118	10
VGINYWLAH	LAGT	99	10
VGINYWLAH	LCAȘCAPHI	118	10
VGINYWLAH	LCA\$SHEEP	118	10
EGIDYWLAH	LAHO	99	10
EGIDYWLAH	LCAB\$HORSE	99	10
KGIDYWIAH	LCASPAPCY	99	10
KGINYWLAH	LART2	99	10
KGIDYWLAH	LAGP	118	10
KGIDYWFAH	GPILACTAL	118	10
EGIDYWLAH	LACM	99	10
KGIDYWKAH	LART	118	10
EGIDHWLAH	LARB	99	10
EGLGYWKAH	LAKGAW	100	11
motif 6			
CSEKLDQWLC	LABO	111	3
CSEKLDQWLC	LCA\$BOVIN	130	3
CSEKLDQWLC	EZEC228	111	3
CTEKLEQWLC	LAHU	130	3
CSEKLDQWLC	LAGT	111	3
CSEKLDQWLC	LCAȘCAPHI	130	3
CSEKLDQWLC	LCASSHEEP	130	3
CSEKLEQWLC	LAHO	111	3
CSEKLEQWLC	LCAB\$HORSE	111	3
CTEKLEQWLC	LCASPAPCY	111	3
CSEKLEQWRC	LART2	111	3
CSDKLEQWYC	LAGP	130	3
CSDKLEQWYC	GPILACTAL	130	- 3
CSEKLEQWQC	LACM	111	3
CSEKLEQWRC	LART	130	3
CSENLEQWVC	LARB	111	3
CLEDLDQWRC	LAKGAW	112	3

B.1.2 Final lysozyme motifs

LZCH	Lysozyme	с	prec	curse	or -	Chic	:ken
NSILYMA	Lysozyme	ch	ain	A -	Hen	egg	white
NSILYMB	Lysozyme	ch	ain	B -	Hen	egg	white
NSILYZ	Lysozyme	-	Hen	egg	whit	:e	
NS1LZHA	Lysozyme	ch	ain	Α-	Hen	egg	white
N\$1LZHB	Lysozyme	ch	ain	в -	Hen	egg	white
N\$2HFMY	Lysozyme	-	Chio	cken			
N\$2LYM	Lysozyme	-	Hen	egg	whit	te	
N\$2LYZ	Lysozyme	-	Hen	egg	whi	te	
N\$2LZH	Lysozyme	-	Hen	egg	whi	te	
N\$2LZT	Lysozyme	-	Hen	egg	whi	te	
N\$3H FM Y	Lysozyme	-	Hen	egg	whi	te	
N\$3LYM	Lysozyme	-	Hen	egg	whi	te	
N\$3LYZ	Lysozyme	-	Hen	egg	whi	te	
N\$4LYZ	Lysozyme	-	Hen	egg	whi	te	
N\$5LYZ	Lysozyme	-	Hen	egg	whi	te	
N\$6LYZ	Lysozyme	-	Hen	egg	whi	te	
N\$7LYZ	Lysozyme	-	Hen	egg	whi	te	

•

	Mar and the		
N\$8LYZ	Lysozyme - Hen egg white		
S05657	Lysozyme c - Chicken		
N\$2HFLY	Lysozyme c - Chicken		
LCOT	LYSOZYME - COTUTITX		
JT0526	Lysozyme c - Indian pearowi		
EZEC462	LYSOZYME - Turkey		
N\$1LZ2	Lysozyme - Turkey egg white		
lyc\$melga	LYSOZYME C PRECURSOR - TURRey		
N\$2LZ2	Lysozyme - Turkey egg white		
EZEC471	LYSOZYME - Bobwnite quali		
LZQJEC	Lysozyme c - California quali		
LZQJEB	Lysozyme c - Common Dobwille		
LZFER	Lysozyme c precursor - King-necked pheasanc		
EZEC470	LYSOZYME - Guinea nen		
LZUH	Lysozyme c - Heimeted guinearowi		
EZEC465	LYSOZYME II - Kaki duck		
EZEC466	LYSOZYME - Duck III		
LZQJE	Lysozyme c - California quari		
LZDK3	Lysozyme c III - Duck		
LZDK	Lysozyme c precursor - Duck		
LZTK	Lysozyme c precursor - fulkey		
LZOVE	Lysozyme c - Plain Chacharaca		
LZBA	Lysozyme - Baboon		
LZHU	Lysozyme - Human		
HUMLSZA	Lysozyme precursor - Homo sapiens		
N\$1LZ1	Lysozyme - Human		
LYCSRABIT	LYSOZYME C - Rabbit		
HUMLYZ	HUMLYZ lysozyme - Artificial gene		
LYCSPREEN	LYSOZYME C - Hanuman Tangui		
LYCP\$MOUSE	LYSOZYME C - Mouse		
LYCM\$MOUSE	LYSOZYME C - Mouse		
LYC3\$PIG	LYSOZYME C-3 - Pig		
LYC1\$PIG	LYSOZYME C-1 - Pig		
LZRT	Lysozyme - Rat		
BOVLSZJA	lysozyme 3a precursor - Bos caurdo		
LZBO	Lysozyme c 2 - Bovine		
LYCSAXIAX	$\frac{1}{2} \frac{1}{2}	LYCSSHEEP	LISOZIME C IA TO 48 - Sheep
BOVLSZIA	IVSOZYME IA precursor - Doo onation		
LYC25PIG	LISOZIME C-2 - Pig		
LYCSBOVIN	LISOZIME C PRECURSOR - BOVING		
LYCŞEQUAS	$\frac{1}{1} \frac{1}{2} \frac{1}$		
LYCSHORSE	$\frac{1}{1002} = \frac{1}{1000}$		
LZPY	PASOSAme C - LIGGOU		
Database	Version - OWL11.0		

motif_1 VFGRCELAAAMKRHGLDN VFGRCELAAAMKRHGLDN VFGRCELAAAMKRHGLDN VFGRCELAAAMKRHGLDN VFGRCELAAAMKRHGLDN VFGRCELAAAMKRHGLDN VFGRCELAAAMKRHGLDN	LZCH LZQJEC LZQJEB LZUH EZEC470 EZEC471 S05657 N\$1LYMA	20 2 2 2 2 2 2 2 2 2 2 2	20 2 2 2 2 2 2 2 2
---	--	---	--

			•
VEODODI ANAMERICI.DN	NSILYMB	2	2
VECECET AN AMKRHGLDN	N\$1LYZ	2	2
VECECET A AMKEHGLDN	N\$1LZHA	2	2
VECECEL AN AMKEHGLDN	NSILZHB	2	2
VECROET AN AMERICIAN	NS2HFLY	2	2
VECROET A AMERICANO	NS2HFMY	2	2
VECROET AN AMERICIDN	N\$2LYM	2	2
VECOCET A AMERICIAN	NS2LYZ	2	4
VECRCELAAAMKRHGLDN	NS2LZH	2	2
VEGROELAAMKRHGLDN	NS2LZT	2	2
VEGROELAAMKRHGLDN	NS3HFMY	2	2
VEGROELAAMKRHGLDN	NS3LYM	2	2
VEGROELAAAMKRHGLDN	NS3LYZ	2	2
VFGRCELAAMKRHGLDN	NS4LYZ	2	2
VEGRCELAAAMKRHGLDN	NS5LYZ	2	2
VFGRCELAAAMKRHGLDN	NS6LYZ	2	2
VEGRCELAAAMKRHGLDN	NS7LYZ	2	2
VEGRCELAAAMKRHGLDN	NS8LYZ	2	2
VYGRCELAAAMKRHGLDN	LCOT	2	2
VYGRCELAAAMKRLGLDN	LYCSMELGA	20	20
WGRCELAAAMKRLGLDN	JT0526	2	2
WGRCELAAAMKRLGLDN	EZEC462	2	2
WGRCELAAAMKRLGLDN	NS1LZ2	2	2
WGRCELAAAMKRLGLDN	N\$2LZ2	2	2
WERCELAAAMKRLGLDN	LZDK3	2	2
WGRCELAAAMKRMGLDN	LZFER	20	20
WGRCELAAAMKRHGLDK	LZOJE	20	20
WSRCELAAAMKRLGLDN	LZDK	20	20
TVSRCELAAAMKRLGLDN	EZEC465	2	2
WORCELAAAMKRLGLDN	EZEC466	2	2
VIGRCELAAAMKRLGLBB	LZTK	20	20
TYKECELAAAMKRYGLDN	LZOVE	2	2
VEFECELARTLKRLGMDG	LZHU	2	2
VFERCELARTLKRLGMDG	HUMLSZA	20	20
VFERCELARTLKRLGMDG	HUMLYZ	3	3
VFERCELARTLKRLGMDG	NS1LZ1	2	2
VFERCELARTLKKLGLDG	LZBO	2	2
VFERCELARTLKKLGLDG	LYCSBOVIN	20	20
VEERCELARTLKKLGLDG	BOVLSZIA	20	20
VFERCELARTLKKLGLDG	BOVLSZ3A	20	20
VEERCELARTLKELGLDG	LYCSAXIAX	2	2
VFERCELARTLKELGLDG	LYCSSHEEP	2	2
VFERCELARTLKRLGLDG	LZBA	2	2
TEEPCELARTLKKLGLDG	LYCSPREEN	2	2
IF ENCEL AR ILKRNGMDG	LYCPSMOUSE	20	20
TYFECELARTLKKLGLDG	LYC\$RABIT	2	20
WERCEFARTLKRNGMAG	LYCM\$MOUSE	20	20
VYDRCEFARILKKSGMDG	LYC1\$PIG	2	2
WYDRCEFARILKKSGMDG	LYC2\$PIG	2	⊿ ົ
VYDRCEFARILKKSGMDG	LYC3\$PIG	2	2
TYERCEFARTIKRNGMSC	LZRT	2	2
VESKOFT AHKI KAOEMDO	LYC\$EQUAS	2	2
VESKCELAHKI.KAOEMDO	LYC\$HORSE	2	2
DIPRCELVKILRRHGFE	G LZPY	2	-

ι

<u>motif 2</u>		51	13
KFESNFNTQATNR	LZCH	33	13
KFESNFNSQATNR	LZQJEC	22	13
KFESNFNSQATNR	LZQJEB	33	13
KFESNFNSQATNR	LZUH	33	13
KFESNFNSQATNR	EZEC470	22	13
KFESNFNSQATNR	EZEC471	22	13
KFESNFNTQATNR	S05657	22	13
KFESNFNTQATNR	NŞILYMA	22	13
KFESNFNTQATNR	NŞILYMB		13
KFESNFNTQATNR	NŞ1LYZ	23	13
KFESNFNTQATNR	N\$1LZHA	33	13
KFESNFNTQATNR	N\$1LZHB	33	13
KFESNFNTQATNR	N\$2HFLY	33	13
KFESNFNTQATNR	N\$2HFMY	33	13
KFESNFNTQATNR	N\$2LYM	22	13
KFESNFNTQATNR	N\$2LYZ	22	13
KFESNFNTQATNR	N\$2LZH	33	13
KFESNFNTQATNR	N\$2LZT	22	13
KFESNFNTQATNR	N\$3HFMY	22	13
KFESNFNTQATNR	N\$3LYM	22	12
KFESNFNTQATNR	N\$3LYZ	22	13
KFESNFNTQATNR	N\$4LYZ	22	12
KFESNFNTQATNR	N\$5LYZ	22	12
KFESNFNTQATNR	N\$6LYZ	33	13
KFESNFNTQATNR	N\$7LYZ	33	13
KFESNFNTQATNR	N\$8LYZ	33	13
KFESNFNTQATNR	!LCOT	55	12
KFESNFNTHATNR	LYC\$MELGA	22	12
KFESNFNTHATNR	JT0526	33	12
KFESNFNTHATNR	EZEC462	22	12
KFESNFNTHATNR	N\$1LZ2	22	13
KFESNFNTHATNR	N\$2LZ2	33	13
NYESSFNTQATNR	LZDK3	51	13
KFESNFNTGATNR	LZFER	51	13
KFESBFBTZATBR	LZQJE	51	13
NYESGFNTQATNR	LZDK	33	13
NYESSFNTQATNR	EZEC465	23	13
NYESGFNTQATNR	EZEC466	51	13
KFZSNFNTHATNR	LZTK	33	13
RYESNYNTQATNR	LZOVE	22	13
KWESGYNTRATNY	LZHU	55	13
KWESGYNTRATNY	HUMLSZA	34	13
KWESGYNTRATNY	HUMLYZ	22	13
KWESGYNTRATNY	N\$1LZ1	33	13
KWESSYNTKATNY	LZBO	55	13
KWESSYNTKATNY	LYC\$BOVIN	51	13
KWESSYNTKATNY	BOVLSZIA	51	13
KWESSYNTKATNY	BOVLSZJA	22 21	13
KWESSYNTKATNY	LYCSAXIAX	22	13
KWESSYNTKATNY	LYCSSHEEP	22	13
KWESDYNTQATNY	LZBA	22	13
KWESGYNTEATNY	LYCSPREEN	55 E 1	13
QHESNYNTRATNY	LYCPSMOUSE	10	13
KWESSYNTRATNY	LYCSRABIT	55 E1	13
QHESNYNTRATNY	LYCMSMOUSE	10	13
KWESDFNTKAINR	LYC1\$PIG	دز	

.

KWECDENNIKATNI	LYC2SPIG	33	13
KWESDENTKAINH KWESNENTRAINH	LYC3SPIG	33	13
OUESNENTKATNY	LZRT	33	13
VECHININARNY	LYCSEOUAS	33	13
ELENTINIKATING	LYCSHORSE	33	13
LI LONFNTRAFNG	LZPY	33	13
RHESGYRTTAPNN			
motif 3			24
PGSRNLCNIPC	LZCH	88	24
PGSRNLCNIPC	LZQJEC	70	24
PGSRNLCNIPC	LZQJEB	70	24
PGSRNLCNIPC	LZUH	70	24 24
PGSRNLCNIPC	EZEC470	70	24
PGSRNLCNIPC	EZEC471	70	24
PGSRNLCNIPC	S05657	70	24
PGSRNLCNIPC	N\$1LYMA	70	24
PGSRNLCNIPC	N\$1LYMB	70	24
PGSRNLCNIPC	NŞ1LYZ	70	24
PGSRNLCNIPC	N\$1LZHA	70	24
PGSRNLCNIPC	N\$1LZHB	70	24
PGSRNLCNIPC	N\$2HFLY	70	24
PGSRNLCNIPC	N\$2HFMY	70	24
PGSRNLCNIPC	N\$2LYM	70	24
PGSRNLCNIPC	N\$2LYZ	70	24
PGSRNLCNIPC	N\$2LZH	70	24
PGSRNLCNIPC	N\$2LZT	70	24
PGSRNLCNIPC	N\$3HFMY	70	24
PGSRNLCNIPC	N\$3LYM	70	24
PGSRNLCNIPC	N\$3LYZ	70	24
PGSRNLCNIPC	N\$4LYZ	70	24
PGSRNLCNIPC	N\$5LYZ	70	24
PGSRNLCNIPC	N\$6LYZ	70	24
PGSRNLCNIPC	N\$7LYZ	70	24
PGSRNLCNIPC	N\$8LYZ	70	24
PGSRNLCNIPC	!LCOT	70	24
PGSKNLCNIPC	LYC\$MELGA	88	24
PGSRNLCNIPC	JT0526	70	24
PGSRNLCNIPC	EZEC462	70	24
PGSRNLCNIPC	N\$1LZ2	70	24
PGSKNLCNIPC	N\$2LZ2	70	24
PRAKNACGIPC	LZDK3	70	24
PGSKNLCHIPC	LZFER	88	24
PGSRBLCBIPC	LZQJE	88	24
PRSKNACGIPC	LZDK	88	24
PGSKNACGIPC	EZEC465	70	24
PGSKNACGIPC	EZEC466	70	24
PGSKBLCBIPC	LZTK	88	24
PGTKNLCHISC	LZOVE	70	24
PGAVNACHLSC	LZHU	71	25
PGAVNACHLSC	HUMLSZA	89	25
PGAVNACQLSC	HUMLYZ	72	25
PGAVNACHLSC	N\$1LZ1	71	25
PNAVDGCHVSC	LZBO	71	25
PNAVDGCHVSC	LYC\$BOVIN	89	25
PNAVDGCHVSC	BOVLSZ1A	89	25
PNAVDGCHVSC	BOVLSZJA	89	25
PNAVDGCHVAC	LYC\$AXIAX	71	
··			

.

•	T VCCCUFED	71	25
PNAVDGCHVSC	LYCSSHELP	71	25
PGAVNACHISC	LZBA	71	25
PGAVDACHISC	LYCSPREEN	89	25
PRSKNACGINC	LYCPSMOUSE	71	25
PRAVNACHIPC	LYCSRABIT	89	25
PRAVNACGINC	LYCMSMOUSE	69	23
PKAVNACHISC	LYC1SPIG	69	23
PKAVNACHISC	LYC2\$PIG	07 71	25
PKAVNACHISC	LYC3\$PIG	71	25
PRAKNACGIPC	LZRT	71	24
RSSSNACNIMC	LYC\$EQUAS	70	24
RSSSNACNIMC	LYC\$HORSE	70	24
RGSKNACNINC	LZPY	70	43
motif 4		00	٥
SALLSSDITASVNCAK	LZCH	99	0
SALLSSDITATVNCAK	LZQJEC	01 01	0
SALLSSDITATVNCAK	LZQJEB	81	0
SALQSSDITATANCAK	LZUH	81	0
SALQSSDITATANCAK	EZEC470	81	U
SALLSSDITATVNCAK	EZEC471	81	U
SALLSSDITASVNCAK	S05657	81	0
SALLSSDITASVNCAK	NS1LYMA	81	0
SALLSSDITASVNCAK	NSILYMB	81	0
SALLSSDITASVNCAK	NSILYZ	81	0
SALLSSDITASVNCAK	NS1LZHA	81	0
SALLSSDITASVNCAK	NS1LZHB	81	U
SALLSSDITASVNCAK	NS2HFLY	81	0
SALLSSDITASVNCAK	NS2HFMY	81	0
SALLSSDITASVNCAK	NS2LYM	81	0
SALLSSDITASVNCAK	NS2LYZ	81	0
CALLSSDITASVNCAK	N\$2LZH	81	0
CALLSSDITASVNCAK	NS2LZT	81	0
CALLSSDITASVNCAK	NS3HFMY	81	0
CALLSSDITASVNCAK	NS3LYM	81	0
CALLSSDITASVNCAK	NS3LYZ	81	0
CALLSSDITASVNCAK	N\$4LYZ	81	0
SALLSSDITASVNCAK	N\$5LYZ	81	0
SALLSSDITASVNCAK	NS6LYZ	81	0
SALLSSDITASVNCAK	N\$7LYZ	81	0
SALLSSDITASVNCAK	NS8LYZ	81	0
SALLSSDITASVNCAK	ILCOT	81	0
SALLSSDITASVNCAK	LYCSMELGA	99	0
SALLSSDITASVNCAK	JT0526	81	0
SALLSSDITASVNCAK	EZEC462	81	0
SALLSSDITASVNCAK	N\$1L72	81	0
SALLSSDITASVNOLU	N\$21.72	81	0
SALLSSDITASVACAK	LZDK3	81	0
SVLLRSDITEAVICAL	LZFER	99	0
SALLSSDITASVNCAR	LZOJE	99	0
SALLSSBITASVBCAR	LZDK	99	0
SVLLRSDITEAVRCAR	EZECASE	81	0
SVLLRSDITEAVRCAK	FZECASS	81	0
SVLLRSDITEAVRCAK		99	0
SALLSSBITASVBCAK	LZOVE	81	0
SALMGADIAPSVRCAK		82	0
SALLQDNIADAVACAK	<u>11600</u>	100	0
SALLODNTADAVACAK	NUMESZA		

	LITMI V7	83	0
SALLQDNIADAVACAK	NS11.71	82	0
SALLQDNIADAVACAK	1780	82	0
SELMENDIAKAVACAK	LVCSBOVIN	100	0
RELMENDIAKAVACAK	BOVI.SZ1A	100	0
SELMENEIAKAVACAK	BOVISZIA BOVI 5733	100	0
SELMENDIAKAVACAK	T VOCATAX	82	0
SELMENNIDKAVTCAK	LICOMIN	82	0
SELMENNIAKAVACAK	1723	82	0
NALLQDNITDAVACAK	LUDA I VOCDREEN	82	0
SALLQNNIADAVACAK	LICOPROLIN	100	0
SALLQUUTTAATQCAK	LICEPARTT	82	0
SDLLKDDITQAVACAK	LICSNULL	100	· 0
SALLQDDITAAIQCAR	LICHISHOUL	80	0
KVLLDDDLSQDIECAK	LICISTIC	80	0
KVLLDDDLSQDIECAR	LYCZGPIC	82	0
KVLLDDDLSQDIECAR		82	0
SALLQUUITQAIQCAR	LZRI	81	0
SKLLDDNIDDDISCAR	LYCSEVOILS	81	0
SKLLDENIDDISCAK	LYCSHORDE	81	Ō
SKLRDDNIADDIQCAK	LZPY		-
motif 5		121	6
NGMNAWVAWR	LZCH	103	6
NGMNAWVAWR	LZQJEC	103	6
BGMNAWVAWR	LZQJEB	103	6
BGMNAWVAWR	LZUH	103	6
DGMNAWVAWR	EZEC470	103	6
DGMNAWVAWR	EZEC471	103	6
DGMNAWVAWR	S05657	103	6
NGMNAWVAWR	N\$1LYMA	103	6
NGMNAWVAWR	N\$1LYMB	103	6
NGMNAWVAWR	N\$1LYZ	103	6
NGMNAWVAWR	N\$1LZHA	103	6
NGMNAWVAWR	N\$1LZHB	103	6
DGMNAWVAWR	N\$2HFLY	103	6
NGMNAWVAWR	N\$2HFMY	103	6
NGMNAWVAWR	N\$2LYM	103	6
NGMNAWVAWR	N\$2LYZ	103	6
NGMNAWVAWR	N\$2LZH	103	6
NGMNAWVAWR	N\$2LZT	103	6
NGMNAWVAWR	N\$3HFMY	103	6
NGMNAWVAWR	N\$3LYM	103	6
NGMNAWVAWR	N\$3LYZ	103	6
NGMNAWVAWR	N\$4LYZ	103	6
NGMNAWVAWR	N\$5LYZ	103	6
NGMNAWVAWR	NŞ6LYZ	103	6
NGMNAWVAWR	N\$7LYZ	103	6
NGMNAWVAWR	N\$8LYZ	103	6
HGMNAWVAWR	!LCOT	105	6
NGMNAWVAWR	LYC\$MELGA	103	6
NGMNAWVAWR	JT0526	103	6
DGMNAWVAWR	EZEC462	103	6
DGMNAWVAWR	N\$1LZ2	100 TO3	6
NGMNAWVAWR	N\$2LZ2	103	6
DGMNAWVAWR	LZDK3	103	6
DGMNAWVAWR	LZFER	121	6
HGMNAWVAWR	LZQJE	121	-
	6 50%	121	6
----------------	------------	-------	--------
DGMNAWVAWR		103	6
DGMNAWVAWR		103	6
DGMNAWVAWR	EZEC400	121	6
BGMBAWVAWR		103	6
DGMNAWVAWR	LZOVE	104	6
QGIRAWVAWR		122	6
QGIRAWVAWR	HUMLSZA	105	6
QGIRAWVAWR	HUMLYZ	104	6
QGIRAWVAWR	NŞILZI	103	5
QGITAWVAWK	LZBO	121	5
QGITAWVAWK	LYCSBOVIN	101	5
QGITAWVAWK	BOVLSZIA	121	5
QGITAWVAWK	BOVLSZJA	103	5
QGITAWVAWK	LYCSAAIAA	103	5
QGITAWVAWK	LYCSSREEF	104	6
QGIRAWVAWR	LZBA	104	6
QGIRAWVAWR	LYCSPREL	122	6
QGIRAWVAWR	LYCPSMOODL	104	6
QGIRAWVAWR	LYCSRADII	122	6
QGIRAWVAWR	LYCMSMOUSE	102	6
QGIKAWVAWR	LYCISPIG	102	6
LGVKAWVAWR	LYC2SPIG	104	6
QGIKAWVAWK	LYC35PIG	104	6
QGIRAWVAWQ	LZRT	103	Ğ
KGMSAWKAWV	LYCSEQUAS	103	6
KGMSAWKAWV	LYCSHORSE	103	6
RGLIPWVAWA	LZPY		-
motif 6		. 101	0
NRCKGTDVQAWIRG	LZCH	112	0
NRCKGTDVHAWIRG	LZQJEC	110	0
NRCKGTDVQAWIRG	LZQJEB	112	0
KHCKGTDVRVWIKG	LZUH	112	0
KHCKGTDVRVWIKG	EZEC470	113	0
NRCKGTDVQAWIRG	EZEC471	113	0
NRCKGTDVQAWIRG	S05657	112	0
NRCKGTDVQAWIRG	N\$1LYMA	112	0
NRCKGTDVQAWIRG	N\$1LYMB	112	0
NRCKGTDVQAWIRG	N\$1LYZ	113	0
NRCKGTDVQAWIRG	N\$1LZHA	113	0
NRCKGTDVQAWIRG	N\$1LZHB	112	Ő
NRCKGTDVQAWIRG	N\$2HFLY	112	0
NRCKGTDVQAWIRG	N\$2HFMY	113	0
NRCKGTDVQAWIRG	N\$2LYM	113	ů n
NRCKGTDVQAWIRG	N\$2LYZ	113	0
NRCKGTDVQAWIRG	N\$2LZH	112	Ő
NRCKGTDVQAWIRG	N\$2LZT	113	Ő
NRCKGTDVQAWIRG	N\$3HFMY	112	Ő
NRCKGTDVQAWIRG	N\$3LYM	112	0
NRCKGTDVQAWIRG	N\$3LYZ	113	ň
NRCKGTDVQAWIRG	N\$4LYZ	113	0
NRCKGTDVQAWIRG	N\$5LYZ	113	õ
NRCKGTDVQAWIRG	N\$6LYZ	113	0
NRCKGTDVOAWIRG	N\$7LYZ	113	0
NRCKGTDVOAWIRG	N\$8LYZ	113	0
NRCKGTDVNAWIRG	!LCOT	113	0
NRCKGTDVHAWIRG	LYC\$MELGA	131	•

			Λ
NRCKGTDVHAWIRG	JT0526	113	0
NRCKGTDVHAWIRG	EZEC462	113	ň
NRCKGTDVHAWIRG	N\$1LZ2	113	õ
NRCKGTDVHAWIRG	N\$2LZ2	113	0
NRCKGTDVSRWIRG	LZDK3	113	0
KHCKGTDVNVWIRG	LZFER	131	0
NRCKGTDVNAWIRG	LZQJE	131	0
NRCRGTDVSKWIRG	LZDK	131	0
NRCRGTDVSKWIRG	EZEC465	113	0
NRCRGTDVSKWIRG	EZEC466	113	0
NRCKGTBVHAWIRG	LZTK	131	0
KHCKGTDVSTWIKD	LZOVE	113	0
NRCQNRDVRQYVQG	LZHU	114	0
NRCQNRDVRQYVQG	HUMLSZA	132	0
NRCQNRDVRQYVQG	HUMLYZ	115	0
NRCQNRDVRQYVQG	N\$1LZ1	114	0
SHCRDHDVSSYVEG	LZBO	113	0
SHCRDHDVSSYVEG	LYC\$BOVIN	131	0
SHCRDHDVSSYVEG	BOVLSZIA	131	0
SHCRDHDVSSYVQG	BOVLSZ3A	131	0
SHCRGHDVSSYVEG	LYC\$AXIAX	113	0
SHCRDHDVSSYVEG	LYC\$SHEEP	113	0
NHCQNRDVSQYVQG	LZBA	114	0
NHCQNKDVSQYVKG	LYC\$PREEN	114	0
TQCQNRDLSQYIRN	LYCP\$MOUSE	132	0
NHCQNQDLTPYIRG	LYC\$RABIT	114	0
AHCONRDLSQYIRN	LYCM\$MOUSE	132	0
THCQNKDVSQYIRG	LYC1\$PIG	112	0
AHCQNKDVSQYIRG	LYC2\$PIG	112	0
AHCQNKDVSQYIRG	LYC3\$PIG	114	0
RHCKNRDLSGYIRN	LZRT	114	0
KHCKDKDLSEYLAS	LYC\$EQUAS	113	0
KHCKDKDLSEYLAS	LYC\$HORSE	113	0
KYCQGKDLSSYVRG	LZPY	113	0

B.1.3 final super-family motifs

NSIALC	Alpha-Lactalbumin - Baboon milk
LCASPIG	ALPHA-LACTALBUMIN - Pig
LAGT	Alpha-lactalbumin - Goat
LCA\$CAPHI	ALPHA-LACTALBUMIN PRECURSORC - Goat
lcașsheep	ALPHA-LACTALBUMIN PRECURSOR - Sheep
LCA\$BOVIN	ALPHA-LACTALBUMIN PRECURSOR - Bovine
LAHU	Alpha-lactalbumin precursor - Human
LABO	Alpha-lactalbumin - Bovine
LAHO	Alpha-lactalbumin - Horse
LCAB\$HORSE	ALPHA-LACTALBUMIN B AND C - Horse
LCASPAPCY	ALPHA-LACTALBUMIN - Yellow baboon
LAGP	Alpha-lactalbumin precursor - Guinea pig
LACM	Alpha-lactalbumin - Arabian camel
GPILACTAL	GPILACTAL pre-alpha-lactalbumin - Cavia porceilus
EZEC228	ALPHA-LACTALBUMIN - Bovine
LART2	Alpha-lactalbumin (version 2) - Rat
LART	Alpha-lactalbumin (version 2) - Rat
LARB	Alpha-lactalbumin - Rabbit
LAKGAW	Alpha-lactalbumin - Red-necked wallaby
LZCH	Lysozyme c precursor - Chicken
N\$1LYMA	Lysozyme chain A - Hen egg white

Lysozyme chain B - Hen egg white N\$1LYMB Lysozyme - Hen egg white N\$1LYZ Lysozyme chain A - Hen egg white N\$1LZHA Lysozyme chain B - Hen egg white N\$1LZHB Lysozyme - Chicken N\$2HPMY Lysozyme - Hen egg white N\$2LYM Lysozyme - Hen egg white N\$2LYZ Lysozyme - Hen egg white N\$2LZH Lysozyme - Hen egg white NS2LZT Lysozyme - Hen egg white n\$3h**pm**y Lysozyme - Hen egg white N\$3LYM Lysozyme - Hen egg white N\$3LYZ Lysozyme - Hen egg white N\$4LYZ Lysozyme - Hen egg white N\$5LYZ Lysozyme - Hen egg white NŞ6LYZ Lysozyme - Hen egg white N\$7LYZ N\$8LYZ Lysozyme - Hen egg white Lysozyme c - Chicken s05657 NS2HFLY Lysozyme c - Mouse LCOT LYSOZYME - Coturnix Lysozyme c - Indian peafowl JT0526 EZEC462 LYSOZYME - Turkey Lysozyme - Turkey egg white N\$1LZ2 LYC\$MELGA LYSOZYME C PRECURSOR - Turkey Lysozyme - Turkey egg white NS2LZ2 LYSOZYME - Bobwhite quail EZEC471 Lysozyme c - California quail LZQJEC Lysozyme c - Common bobwhite LZQJEB Lysozyme c precursor - Ring-necked pheasant LZFER EZEC470 LYSOZYME - Guinea hen Lysozyme c - Helmeted guineafowl LZUH EZEC465 LYSOZYME II - Kaki duck EZEC466 LYSOZYME - Duck III Lysozyme c - California quail LZQJE Lysozyme c III - Duck LZDK3 Lysozyme c precursor - Duck LZDK Lysozyme c precursor - Turkey LZTK Lysozyme c - Plain chachalaca LZOVE Lysozyme - Baboon LZBA Lysozyme - Human LZHU HUMLSZA Lysozyme precursor - Homo sapiens Lysozyme - Human N\$1LZ1 LYCSRABIT LYSOZYME C - Rabbit HUMLYZ lysozyme - Artificial gene HUMLYZ LYCSPREEN LYSOZYME C - Hanuman langur LYCP\$MOUSE LYSOZYME C - Mouse LYCM\$MOUSE LYSOZYME C - Mouse LYC3SPIG LYSOZYME C-3 - Pia LYC1\$PIG LYSOZYME C-1 - Pig Lysozyme - Rat LZRT BOVLSZ3A lysozyme 3a precursor - Bos taurus Lysozyme c 2 - Bovine LZBO LYC\$AXIAX LYSOZYME C 1 AND 2 - Axis deer LYC\$SHEEP LYSOZYME C 1A TO 4B - Sheep BOVLSZIA lysozyme 1a precursor - Bos taurus LYC2\$PIG LYSOZYME C-2 - Pig LYC\$BOVIN LYSOZYME C PRECURSOR - Bovine

LYC\$EQUASLYSOZYME C-DonkeyLYC\$HORSELYSOZYME C-HorseLZPYLysozyme c-Pigeon

Database version - OWL11.0

motif 1			
FGRCELAAAMK	LZCH	21	21
FGRCELAAAMK	LZQJEC	3	3
FGRCELAAAMK	LZQJEB	3	3
FGRCELAAAMK	LZUH	3	3
FGRCELAAAMK	EZEČ470	3	3
FGRCELAAAMK	EZEC471	3	3
FGRCELAAAMK	S05657	3	3
FGRCELAAAMK	N\$1LYMA	3	3
FGRCELAAAMK	N\$1LYMB	3	3
FGRCELAAAMK	NSILYZ	3	3
FGRCELAAAMK	NSILZHA	3	3
FGRCELAAAMK	N\$1LZHB	3	3
FGRCELAAAMK	N\$2HFLY	3	3
FGRCELAAAMK	N\$2HFMY	3	3
FGRCELAAAMK	N\$2LYM	3	3
FGRCELAAAMK	N\$2LYZ	3	3
FGRCELAAAMK	N\$2LZH	3	3
FGRCELAAAMK	N\$2LZT	3	3
FGRCELAAAMK	N\$3HFMY	3	3
FGRCELAAAMK	N\$3LYM	3	3
FGRCELAAAMK	NŞ3LYZ	3	3
FGRCELAAAMK	N\$4LYZ	3	3
FGRCELAAAMK	N\$5LYZ	3	3
FGRCELAAAMK	N\$6LYZ	3	3
FGRCELAAAMK	N\$7LYZ	3	3
FGRCELAAAMK	N\$8LYZ	. 3	3
YGRCELAAAMK	LZQJE	21	21
YGRCELAAAMK	LZFER	21	21
YGRCELAAAMK	LZTK	21	21
YGRCELAAAMK	LYC\$MELGA	21	21
YGRCELAAAMK	JT0526	3	3 2
YGRCELAAAMK	EZEC462	3	3 3
YGRCELAAAMK	!LCOT	3	2 2
YGRCELAAAMK	N\$1LZ2	3	3 2
YGRCELAAAMK	N\$2LZ2	3	3 2
YERCELAAAMK	LZDK3	3	3 21
YSRCELAAAMK	LZDK	21	3
YSRCELAAAMK	EZEC465	с С	2
YKRCELAAAMK	LZOVE	с Э	2
YQRCELAAAMK	EZEC466	3	3
FERCELARTLK	LZHU	3	3
FERCELARTLK	LZBA	2	3
FERCELARTLK	LZBO	2	3
FERCELARTLK	LYCŞAXIAX	5 01	21
FERCELARTLK	LYCSBOVIN	21	3
FERCELARTLK	LYCSPREEN	5	3
FERCELARTLK	LYC\$SHEEP	5	21
FERCELARTLK	BOVLSZIA	21	21
FERCELARTLK	BOVLSZJA	21	21
FERCELARTLK	HUMLSZA	21	2+

-

			Δ
FERCELARTLK	HUMLYZ	4	3
FERCELARTLK	N\$1LZ1	2	3
YERCELARTLK	LYCŞRABIT	3	21
YNRCELARILK	LYCP\$MOUSE	21	3
FSKCELAHKLK	LYCSEQUAS	3	3
FSKCELAHKLK	LYC\$HORSE	3	2
YERCEFARTLK	LZRT	3	21
YERCEFARTLK	LYCM\$MOUSE	21	2
YDRCEFARILK	LYC1\$PIG	3	, j
YDRCEFARILK	LYC2\$PIG	3	נ ר
YDRCEFARILK	LYC3\$PIG	3	3
FTKCELSQVLK	lcașpig	3	3
FTKCELSQLLK	LAHU	22	22
FTKCELSEVLK	LAHO	3	3
LTRCELTEKLK	LARB	3	3
FTKCELSQNLY	LCA\$PAPCY	3	3
FTKCELSQNLY	N\$1ALC	3	3
FTKCQLSQVLK	LCAB\$HORSE	3	3
FTKCKLSDELK	LACM	3	3
LTKCEVFRELK	LABO	3	3
LTKCEVFRELK	LCA\$BOVIN	22	22
LTKCEVFRELK	EZEC228	3	3
LTKCEVFQKLK	LAGT	3	3
LTKCEVFQKLK	LCA\$CAPHI	22	22
LTKCEAFQKLK	LCA\$SHEEP	22	22
IPRCELVKILR	LZPY	3	3
FTKCEVSHAIE	LART	22	22
FTKCEVSHAIE	LART2	3	3
YRKCQASQILK	LAKGAW	3	3
LTKCALSHELN	LAGP	22	22
LTKCALSHELN	GPILACTAL	22	22
motif 2			
YSLGNWVCAA	LZCH	41	9
VSLGNWVCAA	LZOJEC	23	9
VSLGNWVCAA	LZOJEB	23	9
VSLGNWVCAA	LZUH	23	9
VSLGNWVCAA	EZEC470	23	9
VSLGNWVCAA	EZEC471	23	9
VSLGNWVCAA	S05657	23	9
VSLGNWVCAA	NSILYMA	23	9
VSLONWVCAA	NSILYMB	23	9
VELONWVCAA	NSILYZ	23	9
VSLONWVCAA	NSILZHA	23	9
I SLONWICZA	NSILZHB	23	9
VSLONWVCAA	NS2HFLY	23	9
VST CNTAT/CAA	N\$2HFMY	23	9
VSI CNM/CAA	N\$2LYM	23	9
YSI CNUT/CAA	N\$2LYZ	23	9
I STOUMA CUU	N\$2LZH	23	9
VSI Cherticy y	N\$2LZT	23	9
	N\$3HFMY	23	9
T OT CHERICAR	N\$3LYM	23	9
	NS3LYZ	23	9
I SLGNWVCAA	N\$4LYZ	23	9
I SLGNWVCAA	NS5LYZ	23	9
Y SLGNWVCAA	NSKI.V7.	23	9
YSLGNWVCAA	MAONIA		

		22	9
YSLGNWVCAA	N\$7LYZ	23	9
YSLGNWVCAA	N\$8LYZ	23	9
YSLGBWVCAA	LZQJE	41	9
YSLGNWVCAA	LZFER	41	9
YSLGNWVCAA	LZTK	41	9
YSLGNWVCAA	LYC\$MELGA	41	9
YSLGNWVCAA	JT0526	23	9
YSLGNWVCAA	EZEC462	23	9
YSLGNWVCAA	!LCOT	23	9
YSLGNWVCAA	N\$1LZ2	23	9
YSLGNWVCAA	N\$2LZ2	23	9
YSLGNWVCAA	LZDK3	23	9
YSLGNWVCAA	LZDK	41	9
YSLGNWVCAA	EZEC465	23	9
YSLGNWVCAA	LZOVE	23	9
YSLGNWVCAA	EZEC466	23	9
ISLANWMCLA	LZHU	23	9
ISLANWVCLA	LZBA	23	9
VSLANWLCLT	LZBO	23	9
VSLANWLCLT	LYCSAXIAX	23	9
VSLANWLCLT	LYCSBOVIN	41	9
VSLANWVCLA	LYCSPREEN	23	9
VSLANWLCLT	LYCSSHEEP	23	9
VSLANWLCLT	BOVLSZIA	41	9
VSLANWLCLT	BOVLSZ3A	41	9
MSLANWMCLA	HIMLSZA	41	9
TSLANWMCLA	HIMLYZ	24	9
TSLANWMCLA	N\$11.7.1	23	9
USLANWMCLA	LYCSRABIT	23	9
VILLADWVCLA	LYCPSMOUSE	41	9
VCLANWVCMA	L VCSFOILAS	23	9
Y SLANWVCMA	TYCEHODEE	23	9
YSLANWVCLA	I 7DT	23	9
VSLADWVCLA	LYCMSMOUSE	41	9
VSLADWVCLA		23	9
VSLAWVCLA	LYC2SPIG	23	9
VSLAWVCLA	LYCZSPIC	23	9
TOTOFWICTI	LCASPIC	21	7
TILPENICT	T.AHII	40	7
IALPEDICTI	LAHO	21	7
VILPENICIL	LARR	21	7
ISMSENICIE	LCASPADCY	21	7
IALPELICIM	NS1ALC	21	7
IALPELICIM	LCARSHOPEE	21	7
VTLPEWICII	LACM	21	7
ITLAEWICII	LABO	21	7
VSLPEWVCII	LCASBOUTM	40	7
VSLPEWVCTT	EZEC228	21	7
VSLPEWVCTT	LAGT	21	7
VSLPEWVCTA	LCASCAPHT	40	7
VSLPEWVCTA	LCASSHEED	40	7
VSLPEWVCTA	L.Z.PY	23	9
KTVANWVCLV	LART	40	7
ISLLEWTCVL	t APTO	21	7
VSLPEWTCVL	TAKCAW	21	7
IPLPELVCTM		40	7
ITLPEWLCII		*0	7
ITLPEWLCII	GPILACTAL	40	

motif 3			68	17
STDYGILQINSRWWCND	LZCH		50	17
STDYGVLQINSRWWCND	LZQJEC		50	17
STDYGVLQINSRWWCND	LZQJEB		50	17
STDYGVLQINSRWWCND	LZUH		50	17
STDYGVLQINSRWWCND	EZEC470		50	17
STDYGVLQINSRWWCND	EZEC4/1		50	17
STDYGILQINSRWWCDN	505657		50	17
STDYGILQINSRWWCND	NŞILYMA		50	17
STDYGILQINSRWWCND	NŞILYMB	·	50	17
STDYGILQINSRWWCND	NŞ1LYZ	a i	50	17
STDYGILQINSRWWCND	N\$1LZHA	Ϋ́ι,	50	17
STDYGILQINSRWWCND	N\$1LZHB		50	17
STDYGILQINSRWWCND	N\$2HFLY		50	17
STDYGILQINSRWWCND	N\$2HFMY		50	17
STDYGILQINSRWWCND	N\$2LYM	•	50	17
STDYGILQINSRWWCND	N\$2LYZ		50	17
STDYGILQINSRWWCND	N\$2LZH		50	17
STDYGILQINSRWWCND	N\$2LZT		50	17
STDYGILQINSRWWCND	N\$3HFMY		50	17
STDYGILQINSRWWCND	N\$3LYM		50	17
STDYGILQINSRWWCND	N\$3LYZ		50	17
STDYGILQINSRWWCND	N\$4LYZ		50	17
STDYGILQINSRWWCND	N\$5LYZ		50	17
STDYGILQINSRWWCND	N\$6LYZ		50	17
STDYGILQINSRWWCND	N\$7LYZ		50	17
STDYGILQINSRWWCND	N\$8LYZ		50	17
STBYGILZIBSRWWCBB	LZQJE		68	17
STDYGILQINSRWWCND	LZFER		68	17
STBYGILZIBSRWWCBB	LZTK		68	17
STDYGILQINSRWWCND	LYC\$MELGA		68	17
STDYGILQINSRWWCND	JT0526		50	17
STDYGILQINSRWWCDN	EZEC462		50	17
STDYGILQINSRWWCND	!LCOT		50	17
STDYGILQINSRWWCDN	N\$1LZ2		50	17
STDYGILQINSRWWCND	N\$2LZ2		50	17
STDYGILEINSRWWCDN	LZDK3		50	17
STDYGILQINSRWWCDN	LZDK		50	17
STDYGILEINSRWWCDN	EZEC465		50	17
STDYGILQINSRWWCND	LZOVE		50	17
STDYGILEINSRWWCDN	EZEC466		50	10
STDYGIFQINSRYWCND	LZHU		51	10
STDYGIFQINSHYWCND	LZBA		51	10
STDYGIFQINSKWWCND	LZBO		51	19
STDYGIFQINSKWWCDD	LYC\$AXIAX		51	10
STDYGIFQINSKWWCND	LYC\$BOVIN		69	10
STDYGIFQINSRYWCNN	LYC\$PREEN		51	19
STDYGIFQINSKWWCND	LYC\$SHEEP		51	18
STDYGIFQINSKWWCND	BOVLSZ1A		69	19
STDYGIFQINSKWWCND	BOVLSZ3A		69	19
STDYGIFOINSRYWCND	HUMLSZA		69	19
STDYGIFOINSRYWCND	HUMLYZ		52	18
STDYGIFOINSRYWCND	N\$1LZ1		51	18
STDYGIFOINSRYWCND	LYC\$RABIT		51	18
STDYGIFOINSRYWCND	LYCP\$MOUSE		69	18
SYDYGLEOLNSKWWCKD	LYC\$EQUAS		51	19
SSDYGI FOI NNKWWCKD	LYC\$HORSE		51	10

(77)/07	1.7.8ጥ	51	18
STDYGIFQINSRYWCND	LYCMSMOUSE	69	18
STDYGIFQINSRYWCND	LYCISPIG	49	16
STDIGIFUINSRIWUND	LYC2SPIG	49	16
STDYCIECINGRYWCND	LYC3SPIG	51	18
STEVCI FOINIKI WCRD	LCASPIG	47	16
STEVELEOISNKLWCKS	LAHU	66	16
KTEYGLFOINNKMWCRD	LAHO	47	16
STEYGIFOINSKLWCVS	LARB	47	16
STEYGLFOISNALWCKS	LCASPAPCY	47	16
STEYGLFQISNALWCKS	N\$1ALC	47	16
KTEYGLFEINNKMWCRD	LCAB\$HORSE	47	16
NREYGLFQINNKIWCRD	LACM	47	16
STEYGLFQINNKIWCKN	LABO	47	16
STEYGLFQINNKIWCKD	LCA\$BOVIN	66	16
STDYGLFQINNKIWCKN	EZEC228	47	16
STEYGLFQINNKIWCKD	LAGT	47	16
STEYGLFQINNKIWCKD	LCA\$CAPHI	66	10
STEYGLFQINNKIWCKD	LCASSHEEP	66	10
SRDYGIFQINSKYWCND	LZPY	50	1/
STEYGLFQISNRNWCKS	LART	66	10
STEYGLFQISNRDWCKE	LART2	47	10
NKEYGIFQISNDGWCAE	LAKGAW	41	16
HKEYGLFQINDKDFCES	LAGP	66 66	16
HKEYGLFQINDKDFCDS	GPILACTAL		10
motif 4		00	-
NLCNIPCSAL	LZCH	92	/
NLCNIPCSAL	LZQJEC	74	7
NLCNIPCSAL	LZQJEB	74	,
NLCNIPCSAL	LZUH	74	7
NLCNIPCSAL	EZEC470	74	7
NLCNIPCSAL	EZEC471	74	7
NLCNIPCSAL	S05657	74	7
NLCNIPCSAL	N\$1LYMA	74	.7
NLCNIPCSAL	N\$1LYMB	74	7
NLCNIPCSAL	NŞILYZ	74	7
NLCNIPCSAL	NŞILZHA	74	7
NLCNIPCSAL	NŞILZHB	74	7
NLCNIPCSAL	NŞZHFLY	74	7
NLCNIPCSAL	N\$2HFMY	74	7
NLCNIPCSAL	NŞZLYM NGQLYG	74	7
NLCNIPCSAL	NŞZLYZ NGƏL RU	74	7
NLCNIPCSAL	NŞZLZH Ngəl 700	74	7
NLCNIPCSAL	NŞZLZT NÇZHENOV	74	7
NLCNIPCSAL	NÇ 21 VM	74	7
NLCNIPCSAL	NÇJI V7	74	7
NLCNIPCSAL	NSALV7	74	7
NLCNIPCSAL	NS5LY7	74	7
NLCNIPCSAL	NS6LY7	74	7
NLCNIPCSAL	N\$7LY7	74	7
NLCNIPCSAL	NS8LYZ	74	7
NLCNIPCSAL	LZOJE	92	7
BLCBIPCSAL	LZFER	92	7
NLCHIPCSAL	LZTK	92	7
BLUBIPCSAL	LYCSMELGA	92	7
NLCNIPCSAL			

	TO0506	74	7
NLCNIPCSAL	JT0540 B7EC462	74	7
NLCNIPCSAL		74	7
NLCNIPCSAL	1001 NC1172	74	7
NLCNIPCSAL	N31622	74	7
NLCNIPCSAL		74	7
NACGIPCSVL		92	7
NACGIPCSVL		74	7
NACGIPCSVL	EZEC405	74	7
NLCHISCSAL		74	7
NACGIPCSVL	EZEC400	75	7
NACHLSCSAL	LZHU	75	7
NACHISCNAL	LZBA	75	7
DGCHVSCSEL	LZBO	75	7
DGCHVACSEL	LYCSAATAA	03	7
DGCHVSCREL	LYCSBOVIN	75	7
DACHISCSAL	LYCSPREEN	75	7
DGCHVSCSEL	LYCSSHEEF	93	7
DGCHVSCSEL	BOVLSZIA	93	7
DGCHVSCSEL	BOVLSZJA	93	7
NACHLSCSAL	HUMLSZA	76	7
	HUMLY 2	75	.7
	NSILZI	75	. 7
NACHIPCSDL	LYCSRABIT	93	, 7
NACGINCSAL	LYCPSMOUSE	74	6
NACNIMCSKL	LYCSEQUAS	74	6
NACNIMOSKL	LYCSHORSE	75	7
NACGIPCSAL	LZRT	93	7
NACGINCSAL	LYCMSMOUSE	73	7
NACHISCRVE	LYCISPIG	73	7
NACHISCKVL	LYC2\$PIG	75	7
NACHISCAVE	LYC3SPIG	70	6
NICGISCORF	LCASPIG	90	7
NICDISCORF	LAHU	71	7
NICGISCORF	LAHO	71	7
NICUTPCENE	LARB	71	7
NICDITCORF		71	7
NICDITCDRF	NÇIALC I CARÊNORGE	71	7
NICGISCNEF	LCABSHURSE	71	7
NICDISCORF	LACM	71	7
NICNISCORF		90	7
NICNISCORF	ECASBOVIN	71	7
NICNISCORF		71	7
NICNISCORF	LAGI	90	7
NICNISCDKF	TCYCALLE	90	7
NICNISCURF	ICASSNEEP I 7 DV	74	7
NACNINCSKL		90	7
NICDISCURF	LARTO	71	7
NICDISCURF	LAKCAW	71	7
SVCGILCSKF	LACP	90	7
NICDISCORL	GPTLACTAL	90	7
NICDISCDKL	GEILACIAL		
Motif 5			٥
LSSDITASVNCAKKIV	LZCH	102	0
LSSDITATVNCAKKIV	LZQJEC	84	ő
LSSDITATVNCAKKIV	LZQJEB	84	0
QSSDITATANCAKKIV	LZUH	84	•

			. 0
QSSDITATANCAKKIV	EZEC470	8	<u>4</u> 0
LSSDITATVNCAKKIV	EZEC471	8	4 0
LSSDITASVNCAKKIV	S05657	8	4 0
LSSDITASVNCAKKIV	NŞILYMA	8	4 0
LSSDITASVNCAKKIV	NŞ1LYMB	8	4 0
LSSDITASVNCAKKIV	NŞILYZ	8	4 0
LSSDITASVNCAKKIV	NŞILZHA	8	4 V
LSSDITASVNCAKKIV	NŞILZHB	8	4 0
LSSDITASVNCAKKIV	NŞZHFLY	8	,4 0
LSSDITASVNCAKKIV	N\$2HFMY	۲ م	14. U
LSSDITASVNCAKKIV	N\$2LYM	5	
LSSDITASVNCAKKIV	NŞZLYZ		
LSSDITASVNCAKKIV	N\$2LZH	2	<u>34</u> 0
LSSDITASVNCAKKIV	N\$2LZT	8	
LSSDITASVNCAKKIV	NŞ3HFM1	3 	54 U
LSSDITASVNCAKKIV	NŞ3LYM	((54, V 54 Å
LSSDITASVNCAKKIV	NS3LYZ		54 <u></u> V
LSSDITASVNCAKKIV	NS4LY2		54 <u></u> V
LSSDITASVNCAKKIV	N\$5LYZ		54 · V
LSSDITASVNCAKKIV	NSELYZ		54 U DA A
LSSDITASVNCAKKIV	N\$7LYZ		54L U DA A
LSSDITASVNCAKKIV	N\$8LYZ	•	242 V 100 0
LSSBITASVBCAKKIV	LZQJE		102 0
LSSDITASVNCAKKIV	LZFER		102 0
LSSBITASVBCAKKIA	LZTK		102 0
LSSDITASVNCAKKIA	LYCŞMELGA		84 0
LSSDITASVNCAKKIV	JT0526		84 0
LSSDITASVNCAKKIA	EZEC462		84 0
LSSDITASVNCAKKIV	!LCOT		84 0
LSSDITASVNCAKKIA	N\$1LZ2		84 0
LSSDITASVNCAKKIA	N\$2LZ2		84 0
LRSDITEAVRCAKRIV	LZDK3		102 0
LRSDITEAVRCAKRIV	LZDK		84 0
LRSDITEAVRCARRIV	EZEC465		84 0
MGADIAPSVRCAKRIV	LZOVE		84 0
LRSDITEAVRCARRIV	EZEC466		85 0
LQDNIADAVACARRVV	LZHU		85 0
LQDNITDAVACAKRVV	LZBA		85 0
MENDIAKAVACARRIV	LZBO		85 0
MENNIDKAVICARQIV	LYCŞAXIAX		103 0
MENDIAKAVACARHIV	LYCŞBOVIN		85 0
LONNIADAVACAKRVV	LYCSPREEN		85 0
MENNIAKAVACAKHIV	LYCSSHEEP		103 0
MENEIAKAVACAKQIV	BOVLSZIA		103 0
MENDIAKAVACAKHIV	BUVLSZJA		103 0
LODNIADAVACARRVV	HUMLSZA		86 0
LODNIADAVACARRVV	HUMLIZ		85 0
LQDNIADAVACAKRVV	NŞILZI IVCÇBADIM		85 0
LKDDITQAVACAKRVV	LICSKABIT		103 0
LQDDITAAIQCARRVV	LICESMOUSE		84 0
LDDNIDDDISCAKKVV	LYCSHOPCE		84 0
LDENIDDDISCAKRVV	LICONURSE LICON		85 0
LQDDITQAIQCAKRVV	LUNI I VCM¢MOUCH		103 0
LQDDITAAIQCAKRVV	TVC1CDTO		83 0
LDDDLSQDIECAKRVV	TACJOLIC TACJOLIC		83 0
LDDDLSQDIECAKRVV	TACSEDIO PICTÓLIO		85 0
LDDDLSODIECAKRVV	PICIÓLIC		

			80	0
	LDDDLTDDDMCAKKIL	LCASPIG	100	0
	LDDDITDDIMCAKKIL		81	0
	LDDDLTDDVMCAKKIL		81	0
	LDDNLTDDVKCAMKIL		81	0
	LDDDITDDIMCAKKIL	LCASPAPCI NCLAIC	81	0
	LDDDITDDIMCAKKIL	NOTALC CODCUODEE	81 81	0
	LDDDLTDDVMCAKKDL	LCABSHORSE	81	0
	LDDDLTDDKMCAKKIL	LACM	91	0
	LDDDLTDDIMCVKKIL	LABO	100	0
	LDDDLTDDIMCVKKIL		91	0
			81	0
	LDDDLTDDIVCARKIL	LAGI	100	Ō
		LLASCHTEP	100	0
	LDDDLTDDIVCARKIL		84	0
	RDDNIADDIQCARRIA		100	0
	LDDELADDIVCARKIV		81	0
		LARTZ	81	0 0
		LAKGAN	100	0
			100	0
•	PDDP1DD1WCvKVIP	GPILACIAL		
	Motif 6		100	
	GMNAWVAWRNRC	LZCH	122	4
	GMNAWVAWRNRC	LZQJEC	104	4
	GMNAWVAWRNRC	LZQJEB	104	4
	GMNAWVAWRKHC	LZUH	104	4
	GMNAWVAWRKHC	EZEC470	104	4
	GMNAWVAWRNRC	EZEC471	104	4
	GMNAWVAWRNRC	S05657	104	4
	GMNAWVAWRNRC	N\$1LYMA	104	4
	GMNAWVAWRNRC	N\$1LYMB	104	4
	GMNAWVAWRNRC	N\$1LYZ	104	4
	GMNAWVAWRNRC	N\$1LZHA	104	ч <u>н</u> Л
	GMNAWVAWRNRC	N\$1LZHB	104	₩ 4
	GMNAWVAWRNRC	N\$2HFLY	104	- -
	GMNAWVAWRNRC	N\$2HFMY	104	4
	GMNAWVAWRNRC	N\$2LYM	104	4
	GMNAWVAWRNRC	N\$2LYZ	104	4
	GMNAWVAWRNRC	N\$2LZH	104	4
	GMNAWVAWRNRC	N\$2LZT	104	4
	GMNAWVAWRNRC	N\$3HFMY	104	4
	GMNAWVAWRNRC	N\$3LYM	104	4
	GMNAWVAWRNRC	N\$3LYZ	104	4
	GMNAWVAWRNRC	N\$4LYZ	104	4
	GMNAWVAWRNRC	N\$5LYZ	104	4
	GMNAWVAWRNRC	NŞ6LYZ	104	4
	GMNAWVAWRNRC	N\$7LYZ	104	4
	GMNAWVAWRNRC	NŞ8LYZ	122	4
	GMNAWVAWRNRC	LZQJE	122	4
	GMNAWVAWRKHC	LZFER	100	4
	GMBAWVAWRNRC	LZTK	100	4
	GMNAWVAWRNRC	LYCSMELGA	10/	4
	GMNAWVAWRNRC	JTU526	104	4
	GMNAWVAWRNRC	EZEC46Z	104	4
	GMNAWVAWRNRC		104	а А
	GMNAWVAWRNRC	NŞILZZ	104	т А
	GMNAWVAWRNRC	N\$2LZ2	104	*

			104	4
GMNAWVAWRNRC	LZDK3		104	4
GMNAWVAWRNRC	LZDK		122	4
GMNAWVAWRNRC	EZEC465		104	4
GMNAWVAWRKHC	LZOVE		104	4
GMNAWVAWRNRC	EZEC466		104	- -
GIRAWVAWRNRC	LZHU		105	
GIRAWVAWRNHC	LZBA		105	2
GITAWVAWKSHC	LZBO		104	2
GITAWVAWKSHC	LYC\$AXIAX		104	د د
GITAWVAWKSHC	LYC\$BOVIN		122	5
GIRAWVAWRNHC	LYC\$PREEN		105	4
GITAWVAWKSHC	LYC\$SHEEP	*	104	3
GITAWVAWKSHC	BOVLSZIA		122	3
GITAWVAWKSHC	BOVLSZJA		122	3
GIRAWVAWRNRC	HUMLSZA		123	4
GIRAWVAWRNRC	HUMLYZ		106	4
GIRAWVAWRNRC	N\$1LZ1		105	4
GIRAWVAWRNHC	LYC\$RABIT		105	4
GIRAWVAWRTQC	LYCP\$MOUSE		123	4
GMSAWKAWVKHC	LYC\$EQUAS		104	4
GMSAWKAWVKHC	LYC\$HORSE		104	4
GIRAWVAWQRHC	LZRT		105	4
GIRAWVAWRAHC	LYCM\$MOUSE		123	4
GIKAWVAWRTHC	LYC1\$PIG		103	4
GVKAWVAWRAHC	LYC2\$PIG		103	4
GIKAWVAWKAHC	LYC3\$PIG		105	4
GIDYWLAHKALC	LCA\$PIG		99	3
GIDYWLAHKALC	LAHU		119	3
GIDYWLAHKPLC	LAHO		100	3
GIDHWLAHKPLC	LARB		100	3
GIDYWIAHKALC	LCASPAPCY		100	3
GIDYWIAHKALC	NSIALC		100	3
GIDYWLAHKPLC	LCABSHORSE		100	3
GIDYWLAHKPLC	LACM		100	3
GINYWLAHKALC	LABO		100	3
GINYWLAHKALC	LCASBOVIN		119	3
GINYWLAHKALC	EZEC228		100	3
GINYWLAHKALC	LAGT		100	3
GINYWLAHKALC	LCASCAPHI		119	3
GINYWLAHKALC	LCASSHEEP		119	3
GLTPWVAWKKYC	LZPY		104	4
GIDYWKAHKPMC	LART		119	3
GINYWLAHKPMC	LART2		100	3
CLGYWKAHETFC	LAKGAW		101	4
GIDYWLAHKPLC	LAGP		119	3
CIDYWFAHKPLC	GPILACTAL		119	3
OTDINI UTWO				

B.2.1 Sugar transporter final motifs

GTR1_BOVIN GLUCOSE TRANSPORTER PROTEIN I - Bovine GTR1_HUMAN GLUCOSE TRANSPORTER PROTEIN I - Homo sapiens Glucose transport protein - Mouse S09705 GTR4_HUMAN GLUCOSE TRANSPORTER IV - Homo sapiens GTR1_RABIT GLUCOSE TRANSPORTER PROTEIN I - Rabbit GTR1_RAT GLUCOSE TRANSPORTER PROTEIN I - Rat GTR4_RAT GLUCOSE TRANSPORTER IV - Rat GTR1_MOUSE GLUCOSE TRANSPORTER PROTEIN 1 - Mouse Glucose transport protein GT1 - Mouse **A**30310 GTR4_MOUSE GLUCOSE TRANSPORTER IV - Mouse GTR3_CHICK GLUCOSE TRANSPORTER III - Chicken Glucose-transport protein 3 - Mouse **A41751** GTR3_HUMAN GLUCOSE TRANSPORTER-LIKE PROTEIN - Human GTR2_HUMAN GLUCOSE TRANSPORTER PROTEIN, LIVER - Human GTR2_RAT GLUCOSE TRANSPORTER PROTEIN, LIVER - Rat Glucose transport protein, hepatic - Mouse s05319 GTR2_MOUSE GLUCOSE TRANSPORTER PROTEIN, LIVER - MOUSE RATGLTP RATGLTP LOCUS RATGLTP - Rattus norvegicus STP1_ARATH GLUCOSE TRANSPORTER (SUGAR CARRIER) - Mouse-ear cress TOBMST1 LOCUS TOBMST1 - Nicotiana tabacum TOBMST1 SNF3_YEAST HIGH-AFFINITY GLUCOSE TRANSPORTER SNF3 - Baker's yeast HUP1_CHLKE H(+)/HEXOSE COTRANSPORTER - Chlorella kessleri CHLHUPIG CHLHUPIG LOCUS CHLHUPIG - Chlorella kessleri Myo-inositol transporter IRT1 - Yeast A40538 Myo-inositol transporter IRT2 - Yeast B40538 YSCHXT4A YSCHXT4A LOCUS YSCHXT4A - Saccharomyces cerevisia XYLE_ECOLI XYLOSE-PROTON SYMPORT - Escherichia coli HXT2_YEAST HIGH-AFFINITY GLUCOSE TRANSPORTER HXT2 - Yeast RAG1_KLULA LOW-AFFINITY GLUCOSE TRANSPORTER - Kluyveromyces lactis Hexose transport protein HXT1 - Yeast A39728 GLCP_SYNY3 GLUCOSE TRANSPORT PROTEIN - Synechocystis sp. GAL2_YEAST GALACTOSE TRANSPORTER - Yeast Galactose permease - Yeast JQ0383 ATHSTP4 LOCUS ATHSTP4 - Arabidopsis thaliana ATHSTP4 GTR5_HUMAN GLUCOSE TRANSPORTER, SMALL INTESTINE - Human GLF_ZYMMO GLUCOSE FACILITATED DIFFUSION - Zymomonas mobilis LEIDITRA LEIDITRA LOCUS LEIDITRA - Leishmania donovani QAY_NEUCR QUINATE TRANSPORTER - Neurospora crassa s108238 putative hexose transporter - Trypanosoma brucei PRO1_LEIEN PROBABLE TRANSPORT PROTEIN - Leishmania enriettii ARAE_ECOLI ARABINOSE-PROTON SYMPORT - Escherichia coli QUTD_ASPNI QUINATE PERMEASE - Aspergillus nidulans LEID2TRA LEID2TRA LOCUS LEID2TRA - Leishmania donovani CIT1_ECOLI CITRATE-PROTON SYMPORT - E. coli CIT2_ECOLI CITRATE-PROTON SYMPORT - E. coli CITA_SALTY CITRATE-PROTON SYMPORT - Salmonella typhimurium CIT_KLEPN CITRATE-PROTON SYMPORT - Klebsiella pneumoniae MAL6_YEAST MALTOSE PERMEASE - Baker's yeast LACP_KLULA LACTOSE PERMEASE - Kluyveromyces lactis (yeast) GTR1_PIG GLUCOSE TRANSPORTER PROTEIN I (FRAGMENT) - Pig

Database version - OWL19.0

Motif 1			4.5
GFLFGYDTGVI	LEID1TRA	13	13
SFOFGYDIGVI	GTR2_HUMAN	21	21
SFOFGYDIGVI	GTR2_MOUSE	21	21
SFOFGYDIGVI	GTR2_RAT	21	21
SFOFGYDIGVI	S05319	21	21
SFOFGYDIGVI	RATGLTP	21	21
SFOFGYNTGVI	GTR3_HUMAN	21	21
SFOFGYNTGVI	A41751	21	21
SLOFGYNTGVI	GTR1_BOVIN	23	23
SLQFGYNTGVI	GTR1_HUMAN	23	23
SLQFGYNTGVI	GTR1_MOUSE	23	23
SLQFGYNTGVI	GTR1_RABIT	23	23
SLQFGYNTGVI	GTR1_RAT	23	23
SLQFGYNTGVI	GTR3_CHICK	22	22
SLQFGYNTGVI	S09705	23	23
SLQFGYNTGVI	A30310	23	23
SLQFGYNIGVI	GTR4_HUMAN	35	35
SLQFGYNIGVI	GTR4_MOUSE	37	37
SLQFGYNIGVI	GTR4_RAT	35	35
GFLFGYDTGLI	SNF3_YEAST	108	108
GFMFGYDTGYI	A40538	97	97
GFMFGYDTGYI	B40538	123	123
GLLFGYDTAVI	XYLE_ECOLI	21	21
GLLFGLDIGVI	ARAE_ECOLI	33	33
GLLFGYDSAVI	GLF_ZYMMO	21	21
GFLFGFDTAVI	GLCP_SYNY3	28	28
GFIFGWDTGTI	A39728	75	75
GFVFGWDTGTI	HXT2_YEAST	67	67
GFVFGWDTGTI	RAG1_KLULA	74	74
GFVFGWDTGTI	YSCHXT4A	82	82
GLIFGYDIGIS	STP1_ARATH	34	34
GLIFGYDIGIS	TOBMST1	34	34
GFMFGWDTSTI	GAL2_YEAST	82	82
GFMFGWDTSTI	JQ0383	82	82
GLIFGYDLGIS	ATHSTP4	34	34
GLLLGYDNGVT	HUP1_CHLKE	38	38
GLLLGYDNGVT	CHLHUP1G	38	38
SCMIGYDSAFI	QAY_NEUCR	32	34
SCMIGYDSAFI	QUTD_ASPNI	32	32
FFLFGFYATYI	CIT1_ECOLI	28	<u>∠8</u> 29
FFLFGFYATYI	CIT2_ECOLI	28	20 21
FFLFGFYATYI	CITA_SALTY	31	31
FFLFGFYATYI	CIT_KLEPN	44	44
GTLNGYVIGYV	S108238	47	47
PLLYGYNLGFV	LEID2TRA	49	47
GSLNGYSIGFV	PRO1_LEIEN	55	29
SFOYGYNVAAV	GTR5_HUMAN	29	110
LIQEGYDTAIL	MAL6_YEAST	110	83
ATMQGYDGALM	LACP_KLULA	83	
Motif 2		0.9	74
LVSRVIVGLAIGISSATIPV	LEIDITRA	155	123
IAGRSISGLYCGLISGLVPM	GTKZ_HUMAN	154	122
IAGRSVSGLYCGLISGLVPM	GTKZ_MOUSE	153	121
IAGRSVSGLYCGLISGLVPM	GTRZ_KAT	154	122
IAGRSVSGLYCGLISGLVPM	202313	<u> </u>	

		153	121
IAGRSVSGLYCGLISGLVPM	RAIGLIP CED 2 WIND N	121	89
ILGRLVIGLFCGLCTGFVPM	GTR3_HUMAN	121	89
ILGRLLIGIFCGLCTGFVPM	A41/DI OMD1 DOVIN	123	89
ILGRFIIGVYCGLTTGFVPM	GTRI_BOVIN	123	89
ILGRFIIGVYCGLTTGFVPM	GTRI_HOMAN	123	89
ILGRFIIGVYCGLTTGFVPM	GIRI_MOUSE	123	89
ILGRFIIGVYCGLTTGFVPM	GIRI_RABII	123	89
ILGRFIIGVYCGLTTGFVPM	GIRI_RAI	122	89
IIGRFIIGLFCGLCTGFVPM	SOOTOS	122	89
ILGRFIIGVYCGLTIGFVPM	30310	123	89
ILGRFIIGVYCGLTIGFVPM	CTRA HIMAN	120	93
ILGRFLIGAYSGLTSGLVPM	GTRA MOUSE	1/1	93
ILGRFLIGAYSGLTSGLVPM	GTR4 RAT	139	93
ILGRFLIGAYSGLTSGLVPM	SNF3 YEAST	199	80
IVGRVISGIGIGAISAVVPL	A40538	183	75
AVGRLIMGFGVGIGSLIAPL	B40538	209	75
AAGRLINGFGVGIGSLISPL	XYLE ECOLI	130	98
VIIRIIGGIGVGLASMLSPM	ARAE ECOLT	116	72
	GLF ZYMMO	120	88
CFFRFLAGLGIGVVSTLTPT	GLCP SYNY3	111	72
TLANCE COLORADA COM	A39728	170	84
FIGRIISCHOVGGIIVLSPM	HXT2 YEAST	162	84
FIGRIISCHGVGGIAVLSPT	RAG1 KLULA	169	84
FIGRIISCLOVGGITVLSPM	VSCHXT4A	177	84
FIGRIISGEGVGGIAVLSPM	STP1 ARATH	137	92
IVGRILLGEGIGFANQAVPL	TOBMST1	137	92
IVGRIDDEL GIGFANQSVPL	GAL2 YEAST	177	84
FIGRIISCLOVGGIAVLCPM	100383	177	84
FIGRIISGEGVGGIAVLCPM	ATHSTP4	136	91
	HUP1 CHLKE	140	91
IVGRVHHGIGVGHGSQVVPQ	CHLHUP1G	141	92
	OAY NEUCR	128	85
	OUTD ASPNI	124	81
YGGRVLAGIOVGRODNICFI	CITI ECOLI	118	79
LVGREDQCI DIGVELCGVSV	CIT2 ECOLI	118	79
LVGREDQCI DICCULCOVEV	CITA SALTY	121	79
LLGREDGET EIGEVEV	CIT KLEPN	134	79
CTORULICICS COM	s108238	179	121
CIGRVBICLE COLOURS COLORISCH	LETD2TRA	209	149
FVARIVLOITLOW	PRO1 LEIEN	217	151
TCRITVGICAGVSSNVVPM	GTR5 HUMAN	129	89
NCONLCGMPWGCFOCLTVS	MAL6 YEAST	205	84
AVGOALCONTRATIANAAAPT	LACP KLULA	170	76
IGGRWI VIII I III III III			
Motif 3			74
IVLNNLFLTGGQFVAAGFTA	LEID1TRA	98	14
GTFHOLAIVTGILISQIIGL	GTR2_HUMAN	189	14 1/
GTLHOLALVTGILISQIAGL	GTR2_MOUSE	188	14
GTLHOLALVTGILISQIAGL	GTR2_RAT	187	1 <u>4</u>
GTLHOLALVTGILISQIAGL	S05319	188	14
GTLLOLGITVGIIISQILGL	RATGLTP	187	14
GTLNOLGIVVGILVAQIFGL	GTR3_HUMAN 1	55	14
GTLNOLGIVVGILVAQIFGL	A41751	155	14
GTLHOLGIVVGILIAQVFGL	GTR1_BOVIN	157	14
GTLHOLGIVVGILIAQVFGL	GTR1_HUMAN	157	14
GTLHOLGIVVGILIAQVFGL	GTR1_MOUSE	157	

		157	14
GTLHQLGIVVGILIAQVFGL	GTR1_RABIT	157	14
GTLHQLGIVVGILIAQVFGL	GTR1_RAT	157	14
GTLNQLGIVVGILVAQIFGL	GTR3_CHICK	150	14
GTLHQLGIVVGILIAQVFGL	S09705	157	14
GTLHQLGIVVGILIAQVFGL	A30310	172	14
GTLNQLAIVIGILIAQVLGL	GTR4_HUMAN	175	14
GTLNRLAIVIGILVAQVLGL	GTR4_MOUSE	170	14
GTLNQLAIVIGILVAQVLGL	GTR4_RAT	1/3	14
ISTYQWAITWGLLVSSAVSQ	SNF3_YEAST	233	14
TVINSLWLTGGQLVAYGCGA	A40538	217	14
TVINSLWLTGGQLIAYGCGA	B40538	243	14
VSFNQFAIIFGQLLVYCVNY	XYLE_ECOLI	164	14
ISMYQLMVTLGIVLAFLSDT	AKAE_ECULI	150	14
VSGQQMAIVTGALTGYIFTW	GLF_2IMMO	104	14
GSLQQLAIVSGIFIALLSNW	SUCP_SINIS	140	14
VSCYQVMITLGIFLGYCTNF	AJJ/20 UVTO VENCT	204	14
VSFYQLMITLGIFLGYCTNY	PAC1 KLULA	203	14
VSCYQLMITFGIFLGYCTNY	VSCHXT4 A	203	14
VSCYQLMITLGIFLGYCTNY	CODI ARATU	171	14
NIGFQLSITIGILVAEVLNY	MORMST1	171	14
NLGFQLSITIGILVANVLNY	TODADII	211	14
VSCYQLMITAGIFLGYCTNY	TOUSS	211	14
VSCYQLMITAGIFLGYCTNY	amusmp4	170	14
NNGFQVALIFGIVVATIINY	MINDIFE CHLKE	174	14
NIGYQLFVTIGILIAGLVNY	AUFT_CHERE	175	14
NIGYQLFVTIGILIAGLVNY	ONY NEUCR	162	14
VGIYELGWQIGGLVGFWINY	OUT ASPNT	158	14
VGVYELGWQIGGVVGFWINY		156	18
SASQQVAIVVAALIGYGLNV	CITI_ECOLI	156	18
SASQQVAIVVAALIGYGLNV		159	18
SASQQVAIVVAALIGYSLNI	OTT KLEPN	172	18
SGSQQVAIMVAAAMGFALNA	C11_RDD11	213	14
GVLFQVFTTLGIMLAAMLGL	SIUSZURA	243	14
GTLFQVSVSIGIFVISFFGL	DEIDZING	251	14
GVMFQVFTTLGIFVAALMGL	OTE HIMAN	163	14
GVVPQLFIIVGILVAQIFGL	WALE YEAST	239	14
TTYSNLCWIFGQLFAAGIMK	TACE KLULA	204	14
AGLYNTLWSVGSIVAAFSTY	LACP_RED.		
Motif 4		340	188
GLFLALLAVFLALIAFGIGCIPWV	CEIDING CEIDING	398	189
YVSMIAIFLEVSFELGPGPIPWF	GTR2_MOUSE	397	189
YVSMTAIFLFVSFFEIGPGPIPWF	GIRZ_MOULL	396	189
YVSMTALFLEVSFFEIGPGPIPWF	C15319	397	189
YVSMTAIFLEVSFFEIGPIPIPF	DAMGLTP	396	189
YVSMTAIFLFVSTELCOCTIE	CTP3 HIMAN	364	189
FVCIGALLVFVAFFEIGPGPIPWE	3/1751	364	189
FVCIVALLIIVAFFEIGEGPIPWF	GTR1 BOVIN	366	189
YLSIVAIFGFVAITEVOPOPIPWF	GTR1 HUMAN	366	189
YLSIVAIFGFVAFTEVGPGPIPWF	GTR1 MOUSE	366	189
ILSIVAIRGEVAFFDOOLOUW	GTR1 RABIT	366	189
YLSIVAIFGFVAFFEVOLOGPIPWF	GTR1 RAT	366	189
ILSIVALIGIVALI ETCOCPIPWE	GTR3 CHICK	363	187
YISIVATEGEVALE LIGEGE TENT	S09705	366	189
YLSIVAIFGFVAFFEVGPGPIPWF	A30310	366	189
ILSIVAIFGFVAFFEVGFGFILWI	GTR4 HUMAN	382	189
YVSIVAIFGFVAFFEIGPGF1PMP	01114_11018111		

			189
YVSIVAIFGFVAFFEIGPGPIPWF	GTR4_MOUSE	384	189
YVSIVAIFGFVAFFEIGPGPIPWF	GTR4_RAT	110	196
KVMIAFICLFIAAFSATWGGVVWV	SNF3_YEAST	445	208
IVIIVFIIVFAAFYALGIGTVPWQ	A40538	445	208
IVIIVFIIVYAAFYALGIGTVPWQ	B40538	370	186
IVALLSMLFYVAAFAMSWGPVCWV	XYLE_ECOLI	359	189
WLSVGMTMMCIAGYAMSAAPVVWI	ARAE_ECOLI	261	187
VLPLASVLLYIAVFGMSWGPVCWV	GLF_ZYMMO	270	205
IIALVTANLYVFSFGFSWGPIVWV	GLCP_SINIS	370	202
NCMIVFACFYIFCFATTWAPIAYV	437/40 HVM2 VEXCM	420	202
NVMIVFTCLFIFFFAISWAPIAYV	HATZ_IEAST	410	204
NCMIVFACFYIFCFATTWAPIAYV	KAGI_KLULA VCCUVTAN	447	202
NCMIVFTCFYLFCFATTWAPIPFV		200	197
IVVVTFICIYVAGFAWSWGPLGWL	TORMET1	386	195
IVVVIFICVYVAGFAWSWGPLGWL	CAL2 VEAST	433	202
NCMIVFTCFYIFCYATTWAPVAWV	.TO0383	433	202
NCMIVFTCFYIFCYATTWAPVAWV	1000000 100000	386	196
NLIVALICIYVAGFAWSWGPLGWL	HUP1 CHLKE	390	196
SGILAVICIFISGFAWSWGPMGWL	CHI.HIIP1C	391	196
SGILAVICIFISGFAWSWGPMGWL	ONV NELICE	393	211
IAAIFFFYLWTAFYTPSWNGTPWV	OUTO ASPNT	389	211
IAAIFFFYLWTAFYTPSWNGTPWV	CTT1 ECOLT	328	152
FTRMTLVLLWFSFFFGMYNGAMVA	CIT2 FCOLI	328	152
FTRMTLVLLWFSFFFGMYNGAMVA	CITA SALTY	331	152
FTRMTLVLLWFSFFFGMYNGAMVA	CIT KLEPN	344	152
FLMMLSVLLWLSFIYGMYNGAMIP	c108238	399	166
GVATIGIALFIAAFEFGVGSCFFV	TETD2TRA	436	173
GIAIIGIAIFIALYEMGVGPCFYV	DEIDZINGI DRO1 LEIEN	438	167
GVAITGILLFILGFEVCVGPCYYV	CUBS HIMAN	374	191
YISIVCVISIVIGHALGPSPIPAL	WATE VEAST	456	197
MGSGALLMVVAFFYNLGIAPVVFC	TACP KLULA	428	204
NGALVFILLGGIFSFAFTPMQSM			
Motif 5		366	2
GEIFPTHLRTSAA	LEIDITRA	124	2
AEFFSQGPRPAAL	GTR2_HUMAN	424	. 2
AEFFSQGPRSTAL	GTR2_MOUSE	423	2
AEFFSQGPRPTAL	GTR2_RAT	422	2
AEFFSQGPRPTAL	S05319	423	2
REWFTQIWRPGAI	RATGLTP	200	2
AELFSQGPRPAAM	GTR3_HUMAN	390	2
AELFSQGPRPAAI	A41751	390	2
AELFSQGPRPAAI	GTR1_BOVIN	392	2
AELFSQGPRPAAI	GTR1_HUMAN	392	2
AELFSQGPRPARI	GTR1_MOUSE	392	2
AELFSQGPRPAAV	GTR1_RABIT	302	2
AELFSQGPRPAAV	GTR1_RAT	290	2
AELFSQGPRPAAM	GTR3_CHICK	202	2
AELFSQGPRPAAI	\$09705	202	2
AELFSQGPRPARI	A30310	392	2
AELFSQGPRPAAM	GTR4_HUMAN	400	1
AELFSQGPRPAAM	GTR4_MOUSE	407	2
AELFSQGPRPAAM	GTR4_RAT	400	2
AELYPLGVRSKCT	SNF3_YEAST	475	1
SELFPQNVRGIGT	A40538	410 104	1
SELFPQNVRGVGT	B40538	470 206	2
SEIFPNAIRGKAL	XYLE_ECOLI	220	

SETOPLECEDECT		ARAE ECOLI	385	2
SEMEDECTICARM		GLE ZYMMO	387	2
CEMENNIZ TO X X X		GLCP SYNY3	396	2
SECEDI DUVEROM		A39728	452	2
		HYTO VEACT	444	2
CECUDI DIWOYAM		DAC1 VINIA	453	2
SESTPLRVKGKAM		VCCUV77A	459	2
SETFPLRVKSKCM		CUDI ADAMU	4.55	2
SEIFPLEIRSAAQ		SIPI_ARAIN	419 410	2
SEIFPLEIRSAAQ		TOBMSTI	412	2
AESFPLRVKSKCM		GAL2_YEAST	459	4
AESFPLRVKSKCM		JQ0383	459	2
SEISPLEIRSAAQ	÷	ATHSTP4	412	2
SEIFTLETRPAGT		HUP1_CHLKE	416	2
SEIFTLETRPAGT		CHLHUP1G	417	2
SEMFDQNTRSLGQ		QAY_NEUCR	419	2
SEMFDPTVRSLAQ		QUTD_ASPNI	415	2
TEVMPVYVRTVGF		CIT1_ECOLI	354	2
TEVMPVYVRTVGF		CIT2_ECOLI	354	2
TEVMPVYVRTVGF		CITA_SALTY	357	2
TEIMPAEVRVAGF		CIT_KLEPN	370	2
ODLFPPSFRPKGG		S108238	425	2
VDVFPESFRPIGS		LEID2TRA	462	2
ODMFPPSFRPRGA		PRO1_LEIEN	464	2
TEIFLQSSRPSAF		GTR5_HUMAN	400	2
SEMPSSRLRTKTI		MAL6_YEAST	482	2
TEVSTNLTRSKAO		LACP_KLULA	454	2

B.2.2 Super-family motifs

GTR4_HUMAN GLUCOSE TRANSPORTER, INSULIN-RESPONSIVE - Human GTR1_BOVIN GLUCOSE TRANSPORTER PROTEIN I - Bovine GTR1_HUMAN GLUCOSE TRANSPORTER PROTEIN - Human GTR1_MOUSE GLUCOSE TRANSPORTER PROTEIN - MOUSE GTR1_PIG GLUCOSE TRANSPORTER PROTEIN (FRAGMENT). - Pig GTR1_RABIT GLUCOSE TRANSPORTER PROTEIN - Rabbit GTR1_RAT GLUCOSE TRANSPORTER PROTEIN - Rat S09705 Glucose transport protein - Mouse Glucose transport protein GT1 - Mouse A30310 GTR4_MOUSE GLUCOSE TRANSPORTER - Mouse GLUCOSE TRANSPORTER - Rat GTR4_RAT GTR3 CHICK GLUCOSE TRANSPORTER TYPE 3 - Chicken Glucose-transport protein 3 - Mouse A41751 HUP1_CHLKE H(+)/HEXOSE COTRANSPORTER. - Chlorella kessleri CHLHUP1G LOCUS CHLHUP1G - Chlorella kessleri CHLHUP1G GTR3_HUMAN GLUCOSE TRANSPORTER-LIKE PROTEIN - Human SNF3_YEAST HIGH-AFFINITY GLUCOSE TRANSPORTER SNF3 - Baker's yeast GTR2_HUMAN GLUCOSE TRANSPORTER PROTEIN, LIVER - Human GTR2_MOUSE GLUCOSE TRANSPORTER PROTEIN, LIVER. - Mouse GLUCOSE TRANSPORTER PROTEIN, LIVER. - Rat GTR2_RAT Glucose transport protein, hepatic - Mouse S05319 RATGLTP LOCUS RATGLTP - Rattus norvegicus RATGLTP STP1_ARATH GLUCOSE TRANSPORTER - Mouse-ear cress TOBMST1 LOCUS TOBMST1 - Nicotiana tabacum TOBMST1 ATHSTP4 LOCUS ATHSTP4 - Arabidopsis thaliana ATHSTP4 Methylenomycin A resistance protein - Bacillus subtilis S22742 QAY_NEUCR QUINATE TRANSPORTER - Neurospora crassa TCR1_BACSU TETRACYCLINE RESISTANCE PROTEIN - Bacillus subtilis PRO1_LEIEN PROBABLE TRANSPORT PROTEIN (LTP) - Leishmania enriettii

TCR_BACST TETRACYCLINE RESISTANCE - Bacillus stearothermophilus TCR_STRAG TETRACYCLINE RESISTANCE - Streptococcus agalactiae TCR_STRPN TETRACYCLINE RESISTANCE - Streptococcus pneumoniae RAG1_KLULA LOW-AFFINITY GLUCOSE TRANSPORTER - Kluyveromyces lactis Hexose transport protein HXT1 - Yeast A39728 YSCHXT4A YSCHXT4A LOCUS YSCHXT4A - Saccharomyces cerevisia GAL2_YEAST GALACTOSE TRANSPORTER - Saccharomyces cerevisiae Galactose permease - Yeast JQ0383 HXT2_YEAST HIGH-AFFINITY GLUCOSE TRANSPORTER HXT2 - Yeast ARAE_ECOLI ARABINOSE-PROTON SYMPORT - Escherichia coli TCR2_BACSU TETRACYCLINE RESISTANCE PROTEIN - Bacillus subtilis TCR_STAAU TETRACYCLINE RESISTANCE PROTEIN - Staphylococcus aureus Hypothetical protein B-295 - Staphylococcus aureus QQSABT CIT_KLEPN CITRATE-PROTON SYMPORT - Klebsiella pneumoniae CITA_SALTY CITRATE-PROTON SYMPORT - Salmononella thyphimurium QUTD_ASPNI QUINATE PERMEASE - Aspergillus nidulans putative hexose transporter - Trypanosoma brucei S108238 CIT1_ECOLI CITRATE-PROTON SYMPORT - E. coli CIT2_ECOLI CITRATE-PROTON SYMPORT - E. coli GTR5_HUMAN GLUCOSE TRANSPORTER, SMALL INTESTINE - Human MMR_STRCO METHYLENOMYCIN A RESISTANCE - Streptomyces coelicolor GLCP_SYNY3 GLUCOSE TRANSPORT PROTEIN. - Synechocystis sp. TCR1_ECOLI TETRACYCLINE RESISTANCE PROTEIN - Escherichia coli ECOTN10 coding sequence - Escherichia coli ECOTN10 XYLE_ECOLI XYLOSE-PROTON SYMPORT - Escherichia coli STMBAHBRP STMBAHBRP ORF3 - Streptomyces hygroscopicus Lincomycin resistance - Streptomyces lincolnensis S19863 RATCGAT RATCGAT LOCUS RATCGAT - Rattus norvegicus TCR3_ECOLI TETRACYCLINE RESISTANCE PROTEIN - Escherichia coli Tetracycline resistance protein - Escherichia coli JQ1479 TCR2_ECOLI TETRACYCLINE RESISTANCE PROTEIN - Escherichia coli ACCPCAOP3 putative transport protein Acinetobacter calcoaceticus GLF_ZYMMO GLUCOSE FACILITATED DIFFUSION - Zymomonas mobilis RATSVAT LOCUS RATSVAT - Rattus norvegicus RATSVAT Tetracycline resistance - Streptomyces coelicolor B40046 Multidrug resistance protein - Bacillus subtilis A39705 QACA_STAAU ANTISEPTIC RESISTANCE PROTEIN - Staphylococcus aureus ATR1_YEAST AMINOTRIAZOLE RESISTANCE PROTEIN - Yeast LEID2TRA LOCUS LEID2TRA - Leishmania donovani LEID2TRA actVA-1 protein - Streptomyces coelicolor s18539 resistance to cycloheximide - Candida maltosa S108506 YSACYHR LOCUS YSACYHR - Candida maltosa YSACYHR BMR_CANAL BENOMYL/METHOTREXATE RESISTANCE - Candida albicans M22563351 export pump-tetracenomycin C - Streptomyces glaucescens Chloramphenicol resistance - Rhodococcus fascians S21395 Chloramphenicol resistance - Streptomyces lividans S18593 CmlA protein - Pseudomonas sp. JQ1201

Database version - OWL19.0

Motif 1

MLILGRFLIGAYSGLTSGLVP	GTR4_HUMAN	137	101
MLILGRFIIGVYCGLTTGFVP	GTR1_BOVIN	121	121
MLILGRFIIGVYCGLTTGFVP	GTR1_HUMAN	121	121
MLILGRETIGVYCGLTTGFVP	GTR1_MOUSE	121	121
MLILGREITGVYCGLTTGFVP	GTR1_PIG	80	80
MLILGRETTGVYCGLTTGFVP	GTR1_RABIT	121	121

MLILGRFIIGVYCGLTTGFVP	GTR1_RAT	121	121
MLILGRFIIGVYCGLTTGFVP	S09705	121	101
MLILGRFIIGVYCGLTTGFVP	A30310	121	121
ILILGRFLIGAYSGLTSGLVP	GTR4_MOUSE	139	107
ILILGRFLIGAYSGLTSGLVP	GTR4_RAT	137	137
MLIIGRFIIGLFCGLCTGFVP	GTR3_CHICK	120	120
MLILGRLLIGIFCGLCTGFVP	A41751	119	119
MLIVGRVLLGFGVGLGSQVVP	HUP1_CHLKE	138	138
MLIVGRVLLGFGVGLGSQVVP	CHLHUP1G	139	139
MLILGRLVIGLFCGLCTGFVP	GTR3_HUMAN	119	119
LLIVGRVISGIGIGAISAVVP	SNF3_YEAST	197	197
LIIAGRSISGLYCGLISGLVP	GTR2_HUMAN	153	153
LIIAGRSVSGLYCGLISGLVP	GTR2_MOUSE	152	152
LIIAGRSVSGLYCGLISGLVP	GTR2_RAT	151	151
LIIAGRSVSGLYCGLISGLVP	S05319	152	152
LIIAGRSVSGLYCGLISGLVP	RATGLTP	151	151
MLIVGRILLGFGIGFANQAVP	STP1_ARATH	135	135
MLIVGRILLGFGIGFANQSVP	TOBMST1	135	135
MLLIGRILLGFGVGFANQSVP	ATHSTP4	134	134
MLIAGRLIQGIGAALFMPSSL	S22742	107	107
PIIAGRVLAGIGVGGASNMVP	QAY_NEUCR	126	126
ILILARFIQGIGAAAFPALVM	TCR1_BACSU	105	105
VLIVGRFVIGLFLGVICVACP	PRO1_LEIEN	215	215
LLIMARFIQGAGAAAFPALVM	TCR_BACST	105	105
LLIMARFIQGAGAAAFPALVM	TCR_STRAG	105	105
LLIMARFIQGAGAAAFPALVM	TCR_STRPN	105	105
QYFIGRIISGLGVGGITVLSP	RAG1_KLULA	167	167
QYFIGRIISGLGVGGITVLSP	A39728	168	168
QYFIGRIISGLGVGGIAVLSP	YSCHXT4A	175	175
QYFIGRIISGLGVGGIAVLCP	GAL2_YEAST	175	175
OYFIGRIISGLGVGGIAVLCP	JQ0383	175	175
QYFIGRIISGMGVGGIAVLSP	HXT2_YEAST	160	160
MLIAARVVLGIAVGIASYTAP	ARAE_ECOLI	114	114
ILIFGRLVQGVGSAAFPSLIM	TCR2_BACSU	105	105
ILIFGRLVQGVGSAAFPSLIM	TCR_STAAU	105	105
ILIFGRLVQGVGSAAFPSLIM	QQSABT	105	105
LVLIGRLLQGFSAGAELGGVS	CIT_KLEPN	132	132
LVLLGRLLQGFSAGVELGGVS	CITA_SALTY	119	119
LIYGGRVLAGIGVGAGSNICP	QUTD_ASPNI	122	122
ALCTGRVLIGLGVGILCSVCP	S108238	177	1//
LVLVGRLLQGFSAGVELGGVS	CIT1_ECOLI	116	116
LVLVGRLLQGFSAGVELGGVS	CIT2_ECOLI	116	107
LIIISRLLVGICAGVSSNVVP	GTR5_HUMAN	127	116
TLIAARLVQGAGAALFMPSSL	MMR_STRCO	116	100
DFIFWRVLGGIGVGAASVIAP	GLCP_SYNY3	109	109
MLYLGRLLSGITGATGAVAAS	TCR1_ECOLI	96	90
MLYLGRLLSGITGATGAVAAS	ECOTN10	96	129
EFVIYRIIGGIGVGLASMLSP	XYLE_ECOLI	128	120
VLIAARLVQGFSLGGEYGAAT	STMBAHBRP	124	121
LLVLARFGQGAGEALSLPAAM	S19863	121	189
LLFVARTLQGIGSSFSSVAGL	RATCGAT	189	98
VLYIGRIVAGITGATGAVAGA	TCR3_ECOLI	98	90
VLYIGRIVAGITGATGAVAGA	JQ1479	98	90
ILYAGRIVAGITGATGAVAGA	TCR2_ECOLI	98	126
SLVIFRFLTGIGLGAAMPNAT	ACCPCAOP3	126	118
IFCFFRFLAGLGIGVVSTLTP	GLF_ZYMMO	118	125
FLLIARSLOGIGSSCSSVAGM	RATSVAT	185	702

		122	132
MLTAARFLQGGLGALMIPQGL	B40046	134	96
MLFISRMLGGISAPFIMPGVT	A39705	109	109
FVIAIRFLLGIAGALIMPTTL	QACA_STAAU	163	163
FFIISRAFQGLGIAFVLPNVL	ATRI_YEAST	207	207
VLFVARIVLGFPLGWQSITSS	LEID2TRA	207	114
QLIAARACMGVSGAAVLPSTL	518539	103	193
GLSVLRVIAGFFAAPALSTGG	5108506	103	193
GLSVLRVIAGFFAAPALSTGG	ISACIHK DVD CDVD	209	209
GLCILRFLGGFFASPCLATGG	BMR_CANAL	209	116
AIVVFRVLQGLFGALMQPSAL	M22363351	110	93
VLLVTRIVGALANAGFLAVAL	521395	93	93
VLVACRVVAALANAGFLAVAL	518593	93	104
VFLGLRILQACGASACLVSTF	501201	104	101
Motif 2			
TLNQLAIVIGILIAQVLGLESL	GTR4_HUMAN	174	16
TLHQLGIVVGILIAQVFGLDSI	GTR1_BOVIN	158	16
TLHQLGIVVGILIAQVFGLDSI	GTR1_HUMAN	158	16
TLHQLGIVVGILIAQVFGLDSI	GTR1_MOUSE	158	16
TLHQLGIVVGILIAQVFGLDSI	GTR1_PIG	117	16
TLHQLGIVVGILIAQVFGLDSI	GTR1_RABIT	158	16
TLHQLGIVVGILIAQVFGLDSI	GTR1_RAT	158	16
TLHQLGIVVGILIAQVFGLDSI	S09705	158	16
TLHQLGIVVGILIAQVFGLDSI	A30310	158	16
TLNRLAIVIGILVAQVLGLESM	GTR4_MOUSE	176	16
TLNQLAIVIGILVAQVLGLESM	GTR4_RAT	174	16
TLNQLGIVVGILVAQIFGLEGI	GTR3_CHICK	157	16
TLNQLGIVVGILVAQIFGLDFI	A41751	156	16
IGYQLFVTIGILIAGLVNYAVR	HUP1_CHLKE	175	16
IGYQLFVTIGILIAGLVNYAVR	CHLHUP1G	176	16
TLNQLGIVVGILVAQIFGLEFI	GTR3_HUMAN	156	16
STYQWAITWGLLVSSAVSQGTH	SNF3_YEAST	234	16
TFHQLAIVTGILISQIIGLEFI	GTR2_HUMAN	190	16
TLHQLALVTGILISQIAGLSFI	GTR2_MOUSE	189	16
TLHOLALVTGILISQIAGLSFI	GTR2_RAT	188	16
TLHOLALVTGILISQIAGLSFI	S05319	189	16
TLLOLGITVGIIISQILGLDNS	RATGLTP	188	16
IGFQLSITIGILVAEVLNYFFA	STP1_ARATH	172	16
LGFOLSITIGILVANVLNYFFA	TOBMST1	172	16
NGFOVAIIFGIVVATIINYFTA	ATHSTP4	171	16
ALVSAASALGPFIGGVLVQLAG	S22742	149	21
GIYELGWQIGGLVGFWINYGVN	QAY_NEUCR	163	16
SLVAMGEGVGPAIGGMVAHYIH	TCR1_BACSU	146	20
VMFOVFTTLGIFVAALMGLALG	PRO1_LEIEN	252	16
STVAMGEGVGPAIGGMIAHYIH	TCR_BACST	146	20
STVAMGEGVGPAIVGMIAHYIH	TCR_STRAG	146	20
SIVAMGEGVGPAIGGMIAHYIH	TCR_STRPN	146	20
SCYOLMITFGIFLGYCTNYGTK	RAG1_KLULA	204	16
SCYOVMITLGIFLGYCTNFGTK	A39728	205	16
SCYOLMITLGIFLGYCTNYGTK	YSCHXT4A	212	10
SCYOLMITAGIFLGYCTNYGTK	GAL2_YEAST	212	16
SCYOLMITAGIFLGYCTNYGTK	JQ0383	212	16
SFYOLMITLGIFLGYCTNYGTK	HXT2_YEAST	197	16
SMYOLMUTLGIVLAFLSDTAFS	ARAE_ECOLI	151	00 T0
SIVALCECLOPSIGGIIAHYIH	TCR2_BACSU	146	20
SIVALGEGLGDSIGGIIAHYIH	TCR_STAAU	146	20
SIVALGEGLGPSTGGIIAHYIH	QQSABT	146	20

GSOOVA TMUAA AMGFALNAVLE	CIT_KLEPN	173	20
ASOOVATIVAAATIGI	CITA_SALTY	160	20
GVYELGWOIGGVVGFWINYGVD	QUTD_ASPNI	159	10
VI. FOVETTI GIMLA MIGLILD	S108238	214	16
ASOOVA TWUAAL TOYGL NVTLG	CIT1_ECOLI	157	20
ASOOVATVVAALIGYGLNVTLG	CIT2_ECOLI	157	20
ASQU'RIV VALIGICERT DE L	GTR5_HUMAN	164	16
ATVATESCI OPTVCCI MVSAFG	MMR_STRCO	158	21
SLOOLATUSGIETALLSNWFIA	GLCP_SYNY3	146	16
ASTGLCLIAGPIIGGFAGEISP	TCR1_ECOLI	136	19
ASPOLOLINOPTICOFICEISP	ECOTN10	136	19
SENOED TIEGOLI VYCVNYETA	XYLE_ECOLI	165	16
SFOYVACCUCHTLAGI STLAAS	STMBAHBRP	161	16
SVASVGLULGFLLSGVITOLES	S19863	161	19
CGLALGLI.VGAPFGSVMVEFVG	RATCGAT	231	21
ACEGEGMVAGPVLGGLMCGESP	TCR3_ECOLI	138	19
ACEGEGMVAGPVLGGLMCGESP	JQ1479	138	19
ACEGVGMVAGPVAGGLIGATSI	TCR2_ECOLI	138	19
CGYNLGMAIGGFISSWLTDAFG	ACCPCAOP3	167	20
SGOOMAIVTGALTGY I FTWILL A	GLF_ZYMMO	155	16
CGLAMGVLVGPPFGSVLVFFVG	RATSVAT	227	21
PAIGLGAVLGPIVAGELVDADL	B40046	173	20
CYMSAAISTGFI IGPGI GGFLA	A39705	133	16
TASSIGAVEGPIIGGALLEOFS	QACA_STAAU	151	21
AMAPIGATLGCLFAGI.IGTEDP	ATR1_YEAST	206	22
TLFOVSVSTGIFVTSFFGLVLG	LEID2TRA	244	16
ASVGFALGIGPVTGGILLAHFW	S18539	155	20
CVWSIFAVAGPSIGPLIGAAVT	S108506	230	16
CWSIFAVAGPSIGPLICAAVI	YSACYHR	230	16
AWSLGAVCGPSFGPFFGSTLT	BMR_CANAL	246	16
CINICASTAAGPIIGGLLVOHVG	M225633S1	157	20
COVITACVVGVPGGALLGELWG	S21395	134	20
COTTVATVAGVPGGSLL GTWL G	s18593	134	20
CMT AMVPAVGPLLGALVDMMLG	J01201	146	21
Shineresses	₩ 2 = -		

Appendix C

Example entries from the PRINTS database

C.1 ANNEXIN COMPOUND(7) D. N. PERKINS 1/5/1991 ANNEXINS

1. BARTON, G.J., NEWMAN, R.H., FREEMONT, P.S., CRUMPTON, M.J. Amino acid sequence analysis of the annexin super-gene family of proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 198 749-760 (1991)

2. GEISOW, M.J. Annexins-forms without function but not without fun. TIBTECH 9 180-181 (1991)

The annexins are a family of proteins that have the abillity to bind both membranes and phospholipids. These functions are both calcium dependant [1]. The role of the annexins has not yet been determined precisely, although they have been shown to be associated with regulating the membrane cytoskeleton, inhibition of phospholipase C and also to act as anti-coagulants [2]. There are eleven distinct types of annexin, each type has a primary sequence consisting of four or eight repeats of a conserved 61 residue segment. The ability to bind calcium and phospholipids is thought to reside in these repeat regions while it has been suggested that the N terminal domain is responsible for the functional specificity of each protein.

Twelve sequences were initially aligned and from this seven motifs were selected. Motifs one and two describe the first repeat while motifs three, four and five describe the first half of three further repeats. Two iterations were required using OWL version 11.0 at which point a true set of twenty eight sequences was shown to match with all the motifs.

SUMMARY INFORMATION

28	codes	involving	7	elements
0	codes	involving	6	elements
0	codes	involving	5	elements
0	codes	involving	4	elements
0	codes	involving	3	elements
0	codes	involving	2	elements

COMPOUND FEATURE INDEX ------28 28 28 28 28 71 28 28 0 0 0 0 0 61 0 0 0 0 0 0 0 0 51 0 0 0 0 0 0 0 4 0 0 0 0
 31
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
---------------2 3 4 5 6 7 | 1 True positives: ANX2SCHICK LUMS36 LUHU36 LUBO36 ANX1SCAVCU ! LPCH LUHU A35600 ANX4\$BOVIN HUMP68 ANX4\$PIG ANX6\$HUMAN S01786 ANX3\$RAT ANX1\$RAT ANX6SMOUSE ANX4\$HUMAN ANX1\$MOUSE HUMCBPE A29250 anx5\$rat ANX3 \$HUMAN ANX5\$CHICK ANX5\$HUMAN ANX8\$HUMAN HUMSNEXIN ANX1\$COLLI DROANNX Calpactin I heavy chain - Human LUHU36 Calpactin I heavy chain - Bovine LUBO36 Calpactin I heavy chain - Mouse LUMS36 ANNEXIN II (LIPOCORTIN II) - Chicken ANX2\$CHICK Calpactin I heavy chain - Mouse A35600 Calpactin I heavy chain - Human LUHU LIPOCORTIN - Human !LPCH ANNEXIN I (LIPOCORTIN I) - Guinea Pig ANX1\$CAVCU ANNEXIN IV (LIPOCORTIN IV) (ENDONEXIN I) - Bovine ANX4\$BOVIN HUMP68 p68 - Homo sapiens HUMP68 ANNEXIN IV (LIPOCORTIN IV) (ENDONEXIN I) - Pig ANX4\$PIG ANNEXIN VI (LIPOCORTIN VI) - Human ANX6\$HUMAN ANNEXIN I (LIPOCORTIN I) (CALPACTIN II) - Rat ANX1\$RAT ANNEXIN VI (LIPOCORTIN VI)(PROTEIN III) - Mouse ANX6\$MOUSE Calcium-binding protein p68 - Mouse S01786 ANNEXIN III (LIPOCORTIN III) - Rat ANX3\$RAT Lipocortin III - Rat A29250 HUMCBPE calelectrin - Homo sapiens HUMCBPE ANNEXIN IV (LIPOCORTIN IV) (ENDONEXIN I) - Human ANX4\$HUMAN ANNEXIN I (LIPOCORTIN I) (CALPACTIN II) - Mouse ANX1\$MOUSE ANNEXIN V (LIPOCORTIN V) (ENDONEXIN II) - Chicken ANX5\$CHICK ANNEXIN V (LIPOCORTIN V) (ENDONEXIN II) - Human ANX5\$HUMAN ANNEXIN V (LIPOCORTIN V) (ENDONEXIN II) - Rat ANX5\$RAT ANNEXIN III (LIPOCORTIN III) - Human ANX3 \$HUMAN ANNEXIN VIII (VASCULAR ANTICOAGULANT) - Human ANX8\$HUMAN HUMSNEXIN synexin - Homo sapiens HUMSNEXIN ANNEXIN I (LIPOCORTIN I) - Pigeon ANX1\$COLLI DROANNX annexin X - Drosophila melanogaster DROANNX

SCAN HISTORY

OWL11_0 2 100 NSINGLE

INITIAL MOTIF-SETS

23

43 matif 1

motif 1 KTKGVDEVTIVNILTNRSNAQRQ KTKGVDEVTIINILTNRSNEQRQ TVKGVDEATIIDILTKRNNAQRQ MVKGVDEATIIDILTKRNNAQRQ KGIGTDEATIIDIVTHRSNAQRQ KGIGTDEETILKILTSRNNAQRQ KGIGTNEQAIIDVLTKRSNTQRQ KGFGTDEQEIIDVLVGRSNQQRQ RGIGTDEKMLISILTERSNAQRQ KGLGTDEDAIINVLAYRSTAQRQ KGEGTDEOAIVDVVANRSNDORQ	LUHU36 ANX2\$CHICK ANX1\$CAVCU LUHU ANX6\$MOUSE ANX5\$CHICK ANX8\$HUMAN DROANNX ANX3\$HUMAN ANX3\$HUMAN ANX4\$BOVIN HUMSNEXIN	46 56 55 376 29 35 29 32 27 177	46 46 55 376 29 35 29 32 27 177
KGLGTDEDAIINVLAYRSTAQRQ	ANX4\$BOVIN	27	27
KGFGTDEQAIVDVVANRSNDQRQ	HUMSNEXIN	177	177
TAKGVDEATIIDIMTTRTNAQRP	ANX1\$COLLI	51	51

ANNEXIN2

17			
motif 2	TITTTO	86	17
LKSALSGHLETVILGLL	LUHUSO	00	17
LKSALSGHLEAVILGLL	ANX2SCHICK	80	17
1.KKALTGHLEEVVLALL	ANX1\$CAVCU	96	17
LKKALTGHLEEVVLALL	LUHU	95	17
TVSEISGDLARLILGLM	ANX6\$MOUSE	416	17
- YCELTGKFETLMUSLM	ANX5\$CHICK	69	17
LKSELICIT LIVIIM	ANX8\$HUMAN	75	17
LKSELSOKI EKELVALM	DROANNX	69	17
LKDLSGHFEHLMVALV	ANX3 \$HUMAN	72	17
LKGDBSCH ENTRALV	ANX4\$BOVIN	67	17
LKSELSON DEVIDORM	HUMSNEXIN	217	17
LKSELSGNMEEDTLALF MKRVLKSHLEDVVVALL	ANX1\$COLLI	91	17

ANNEXIN3

-	-
~	-

22			
motif 3	t TUTIS 6	113	10
LKASMKGLGTDEDSLIEIICSR	LONOSO	112	10
I.KAAMKGLGTDEDTLIEIICSR	ANX2SCHICK	113	10
T DA AMKGLGTDEDTLIEILVSR	ANX1\$CAVCU	123	10
LRAMKOLGTDEDTLIEILASR	LUHU	122	10
	ANX6SMOUSE	443	10
LKKAMEGAGIDERIDIEIDAIR	ANTYSSCHICK	96	10
LKHAIKGAGINEKVLIEILASR	ANADOULLOU	102	10
LHDAMKGLGTKEGVIIEILASR	ANX8SHOMAN	102	10
I HAAMAGIGTEEATLVEILCTK	DROANNX	90	10
LIAADA CTNEDALTETLTTR	ANX3 SHUMAN	99	10
LKKSMKGAGINEDALILIASP	ANTYASBOVIN	94	10
LRKAMKGAGTDEGCLIEILASK	MULT CNEY IN	244	10
LRKAMQGAGTQERVLIEILCTR	HUMSNERIN	110	10
LRACMKGHGTDEDTLIEILASR	ANX1\$COLL1	110	10

ANNEXIN4

~	7
4	1
_	

motif 4 LYDAGVKRKGTDVPKWISIMTERSVPH LYDAGVKRKGTDVPKWINIMTERSVPH LYEAGERRKGTDVNVFITILTTRSYSH LYEAGERRKGTDVNVFNTILTTRSYPQ IADTPSGDKTSLETRFMTVLCTRSYPH	LUHU36 ANX2\$CHICK ANX1\$CAVCU LUHU ANX6\$MOUSE	197 197 206 205 531	62 62 61 61 66
--	---	---------------------------------	----------------------------

LEBACH WHONDERWEITILGTRSVSH	ANX5SCHICK	179	61
LYANGELKWGTDEETFIIIDOINSVON	ANX8 SHUMAN	186	62
LYAAGEKIRGIDEMKFIIIDOINOIN	DROANNX	180	62
LYSAGEARLGIDEEVFINTILLCLRSFPO	ANX3 SHUMAN	182	61
LYRAGENRWGTDEDRFIEIDCERCT Q	ANX4SBOVIN	177	61
LYEAGERRWGIDEVRF HIV DODRATING	HUMSNEXIN	327	61
LYDAGEGREGIDESCHNMIDAINSI Q	ANX1SCOLLI	201	61
LYEAGEQRAGIDINGFVIVBIALOII	• • • • • • • • • • • • • • • • • • • •		
ANNEXIN5			
27			
motif 5	· · · · · · · · ·		52
MKGKGTRDKVLIRIMVSRSEVDMLKIR	LUHU36	277	55
MKGKGTRDKVLIRIMVSRCEVDMLKIK	ANXZŞCHICK	2//	55
MKGAGTRHKALIRIMVSRSEIDMNDIK	ANXIŞCAVCU	286	55
MKGVGTRHKALIRIMVSRSEIDMNDIK	LUHU	285	53
MKGAGTDEKTLTRVMVSRSEIDLLNIR	ANX6SMOUSE	911	53
MKGAGTDDDTLIRVMVSRSEIDLLDIR	ANX5SCHICK	259	53
MKGAGTRDGTLIRNIVSRSEIDLNLIK	ANX8SHUMAN	200	53
MNGAGTDDATLIRIIVSRSEIDLETIK	DROANNX	260	53
LKGIGTDEFTLNRIMVSRSEIDLLDIR	ANX3 SHUMAN	262	53
MKGLGTDDDTLIRVMVSRAEIDMLDIR	ANX4\$BOV1N	457	53
MKGAGTDDSTLVRIVVTRSEIDLVQIK	HUMSNEXIN	407	53
MKGFGTQHRDLIRIMVSRHEVDMNEIK	ANXIŞCOLLI	280	52
ANNEXING			
16			
motif 6			
FEKRKYGKSLYYY100	LUHU36	305	1
FERRYGKSLYYFIOO	ANX2\$CHICK	305	1
WOKMYGISLCOAILD	ANX1\$CAVCU	314	1
TYOKMYGISLCOAILD	LUHU	313	1
FILEKYDKSLHOAIEG	ANX6\$MOUSE	639	1
FFEKNFAKSLYQMIOK	ANX5\$CHICK	287	1
HEKKMYGKTLSSMIME	ANX8\$HUMAN	294	1
FFFRIVNRTLHSAVVD	DROANNX	288	1
FEKKHYGYSLYSAIKS	ANX3 \$HUMAN	290	1
NEKELYGKSLYSFIKG	ANX4\$BOVIN	285	1
MEAOMYOKTLGTMIAG	HUMSNEXIN	435	1
YYKKMYGISLCQAIMD	ANX1\$COLLI	308	1
ANNEXIN			
15			
motif /	T.UHU36	321	0
DTKGDYQKALLILCG	ANY2SCHICK	321	0
DTKGDYQRALLNLCG	ANY 1 SCAVCU	330	0
ETKGDYEKILVALCG	LUHU	329	0
ETKGDYEKILVALCG	ANTYGSMOUSE	655	0
DTSGDFMKALLALCG	ANYSSCHICK	303	0
DTSGDYRKALLLLCG	ANYSCHIMAN	310	0
DTSGDYKNALLSLVG	TPANNX	305	1
ETSGDYKRALTALLG	ANTY 2 CUIMAN	306	0
DTSGDYEITLLKICG	AIVASSIONAL	301	0
DTSGDYRKVLLILCG	MINE ODE VIII	451	0
DTSGDYRRLLLAIVG	HUMSNEAIN	204	0
ELKGGYETILVALCG	ANXISCOULI	J47	

ANNEXIN1			
23			
motif 1		276	376
KGIGTDEATIIDIVTHRSNAQRQ	ANX6\$MOUSE	3/0	377
KGIGTDEATIIDIVTHRSNAQRQ	S01786	3//	276
KGLGTDEDTIIDIITHRSNVQRQ	ANX6\$HUMAN	376	277
KGLGTDEDTIIDIITHRSNVQRQ	HUMCBPE	377	211
KGLGTDEDTIIDIITHRSNVQRQ	HUMP68	377	3//
KGIGTDEKTLINILTERSNAQRQ	ANX3 SRAT	33	33
KGIGTDEKTLINILTERSNAQRQ	A29250	33	33
KTKGVDEVTIVNILTNRSNAQRQ	LUHU36	46	46
KTKGVDEVTIINILTNRSNEQRQ	ANX2\$CHICK	46	46
MVKGVDEATIIDILTKRNNAORQ	LUHU	55	55
MVKGVDEATIIDILTKRNNAORQ	! LPCH	56	56
TVKGVDEATIIDILTKRNNAORO	ANX1\$CAVCU	56	56
MVKGVDEATIIDILTKRTNAORO	ANX1\$MOUSE	55	55
MVKGVDEATIIDILTKRTNAORO	ANX1\$RAT	55	55
KTKGVDEVTIVNILTNRSNVORO	LUMS36	46	46
KTKGVDEVTIVNILTNRSNFORO	LUBO36	46	46
KGMGTDEETILKILTSENNAORO	ANX5\$CHICK	29	29
KCLGTDEDSILNLLTARSNAORO	ANX5\$RAT	27	27
WTKGVDEVTIVNILTNESMUOPO	A35600	46	46
VCLGTDEES ILTILTSPSNAOPO	anx5\$human	28	28
KGLOTDEDA I INVLAVRSTAORO	ANX4\$BOVIN	27	27
KGLGIDEDHILINVLAIKSIAQKQ WGIGTNEOAIIDVLTKRSNTORO	ANX8\$HUMAN	35	35
RGIGINEQUITEVEIRRSNIQRQ	ANX3\$HUMAN	32	32
RGIGIDERADISILIERSNAQRQ	ANX4\$PIG	27	27
KGLGIDEDAIISVLAYRSTAORO	DROANNX	29	29
KGFGTDEQEIIDVLVGRSNQQRQ	ANX4 SHUMAN	27	27
KGLGTDEDAIISVLAYRNTAQRQ	ANX1SCOLLI	51	51
TAKGVDEATTIDIMTTRINAQRP	HIMSNEXIN	177	177
KGFGTDEQAIVDVVANRSNDQRQ	normation		
ANNEXIN2			
17			
motif 2	ANTYCOMOLISE	416	17
LKSEISGDLARLILGLM	ANA05100000	417	17
LKSEISGDLARLILGLM	SUITO	116	17
LKSEISGDLARLILGLM	ANXOSHOMAN	417	17
LKSEISGDLARLILGLM	HUMCBPE	417	17
LKSEISGDLARLILGLM	HUMPOO	41/	17
LKGDLSGHFEHVMVALI	ANXJŞRAT	75	17
LKGDLSGHFEHVMVALI	A29250	15	17
LKSALSGHLETVILGLL	LUHU36	00	17
LKSALSGHLEAVILGLL	ANX2SCH1CK	00	17
LKKALTGHLEEVVLALL	LUHU	95	17
LKKALTGHLEEVVLALL	1 LPCH	96	17
LKKALTGHLEEVVLALL	ANX1\$CAVCU	96	17
LRKALTGHLEEVVLAML	ANX1\$MOUSE	95	17
LKKALTGHLEEVVLAML	ANX1\$RAT	95	17
LKSALSGHLETVILGLL	LUMS36	86	17
LKSALSCHLETVILGLL	LUBO36	86	17
LKSELTCKEETI MVSLM	ANX5\$CHICK	69	17
MKSEI TOKEEKI. IVALM	ANX5\$RAT	67	17
THOELIGKT ENDIT:	225 600	86	17

86

68

17

A35600

ANX5\$HUMAN

FINAL MOTIF-SETS

LKSALSGHLETVILGLL

LKSELTGKFEKLIVALM

LKSELSGNFEQVILGHH		69	17
LKDELGGKFEDVIVGLM	DROANNX	63	17
LKSELSGNFEQVIVGMM	ANX4\$HUMAN	67	17
MKRVLKSHLEDVVVALL	ANX1\$COLLI	91	17
LKSELSGNMEELILALF	HUMSNEXIN	217	17
ANNEXIN3			
22			
motif 3			
LKKAMEGAGTDEKTLIEILATR	ANX6\$MOUSE	443	10
LKKAMEGAGTDEKTLIETLATR	S01786	444	10
LKKAMEGAGTDEKALIETLATR	ANX6\$HUMAN	443	10
LKKAMEGAGTDEKALIETLATR	HUMCBPE	444	10
LKKAMEGAGTDEKALIETLATR	HUMP68	444	10
IKKSMRCMGTDEDTLIFILTTE	ANX3\$RAT	100	10
TKKSMRCMGTDEDTUILIEITK	A29250	100	10
LANGAGIGEDEDIDIDIDITA	LUHU36	113	10
LRASHIGLGTDEDSLIETICSR	ANX2SCHICK	113	10
LKAMKGIGTDEDTETETICSK	LUHU	122	10
LRAAMGEGIDEDILIEILASR	!LPCH	123	10
LRAAMGEGIDEDILIEILASR	ANX1SCAVCU	123	10
LRAAMAGLGIDEDTLIEILVSR	ANX1 SMOUSE	122	10
LRGAMAGLGIDEDTLIEILTTR	ANXISRAT	122	10
LRAAMKGLGTDEDTLIEILTTR	LUMS36	113	10
LKASMKGLGTDEDSLIEIICSR	LUBO36	113	10
LKASMKGLGTDEDSLIEIICSR	ANTYESCHICK	96	10
LKHAIKGAGTNEKVLTEILASR	ANAJŞCHICK	94	10
LKHALKGAGTDEKVLTEIIASR	AIN JOINT	113	10
LKASMKGLGTDEDSLIEIICSR	ASSOU	115	10
LKHALKGAGTNEKVLTEIIASR	ANXSSHUMAN	95	10
LRKAMKGAGTDEGCLIEILASR	ANX4\$BOVIN	100	10
LHDAMKGLGTKEGVIIEILASR	ANX8SHUMAN	102	10
LKKSMKGAGTNEDALIEILTTR	ANX3 SHUMAN	99	10
LRRAMKGAGTDEGCLIEILASR	ANX4SPIG	94	10
LHAAMAGIGTEEATLVEILCTK	DROANNX	96	10
LORAMKGAGTDEGCLIEILASR	ANX4 SHUMAN	94	10
LBACMKGHGTDEDTLIEILASR	ANX1\$COLLI	118	10
LRKAMQGAGTQERVLIEILCTR	HUMSNEXIN	244	10
ANNEX IN4			
27			
motif 4	ANTYESMOUSE	531	66
IADTPSGDKTSLETKFMTVLCTRSTPH	S01786	532	66
IADTPSGDKTSLETKFMIVLCIRSIPH	SULVOU	531	66
IADTPSGDKTSLETRFMTILCTRSYPH	ANAGSHOPPAR	532	66
IADTPSGDKTSLETRFMTILCTRTYPH	HUMDES	532	66
IADTPSGDKTSLETRFMTILCTRSYPH	HUMPOO	192	61
LYDAGEKKWGTDEDKFTEILCLRSFPQ	ANXSSRAT	103	61
LYDAGEKKWGTDEDKFTEILCLRSFPQ	A29250	107	62
LYDAGVKRKGTDVPKWISIMTERSVPH	LUHU36	107	62
LYDAGVKRKGTDVPKWINIMTERSVPH	ANX2\$CHICK	131	<u>د ا</u>
LYEAGERRKGTDVNVFNTILTTRSYPQ	LUHU	205	<u>دا</u>
LYEAGERRKGTDVNVFNTILTTRSYPQ	! LPCH	206	۲0 ۲
LYEAGERRKGTDVNVFITILTTRSYSH	ANX1\$CAVCU	206	21
LYEAGERRKGTDVNVFTTILTSRSFPH	ANX1\$MOUSE	205	01

LKSELSGNFEQVILGMM

LKSELSGKFERLIVALM

LKGDLSGHFEHLMVALV

LKSELSGNFEQVILGMM

ANX4\$BOVIN

ANX8\$HUMAN

ANX3\$HUMAN

ANX4\$PIG

17

17

17

17

17

.

67

75

72

LYEAGEREKGTDVNVFNTILTTRSYPH	ANX1\$RAT	205	61
LYDAGVKRKGTDVPKWISIMTERSVCH	LUMS36	197	62
LYDAGVKRKGTDVPKWISIMTERSVCH	LUBO36	197	62
LFRAGELKWGTDEETFITILGTRSVSH	ANX5\$CHICK	179	61
LFQAGELKWGTDEEKFITILGTRSVSH	ANX5\$RAT	177	61
LYDAGVKRKGTDVPKWISIMTERSVCH	A35600	197	64
LFQAGELKWGTDEEKFITIFGTRSVSH	ANX5\$HUMAN	178	61
LYEAGEKKWGTDEVKFLTVLCSRNRNH	ANX4\$BOVIN	177	62
LYAAGEKIRGTDEMKFITILCTRSATH	ANX8\$HUMAN	186	62 21
LYKAGENRWGTDEDKFTEILCLRSFPQ	ANX3 SHUMAN	182	61
LYEAGEKKWGTDEVKFLTVLCSRNRNH	ANX4SPIG	177	61
LYSAGEAKLGTDEEVFNRIMSHASFPQ	DRUANNA ANY A CHIMANI	177	61
LYEAGEKKWGTDEVKFLTVLCSRNRNH	ANA STUMAN	201	61
LYEAGEQKKGTDINVFVTVLTARSIPH	HIMSNEYIN	327	61
LYQAGEGRLGTDESCFNMILATRSFPQ	HOUDNEATH	527	01
ANNEY TNS			
27			
motif 5			
MKGAGTDEKTLTRVMVSRSFIDLINIR	ANX6\$MOUSE	611	53
MKGAGTDEKTLTRVMVSRSEIDLLNIR	S01786	612	53
MKGAGTDEKTLTRIMVSRSEIDLLNIR	ANX6\$HUMAN	611	53
MKGAGTDEKTLTRIMVSRSEIDLINIR	HUMCBPE	612	53
MKGAGTDDKTLTRIMVSRSEIDLLNIR	HUMP68	612	53
LKGAGTDEFTLNRIMVSRSEIDLLDIR	ANX3\$RAT	263	53
LKGAGTDEFTLNRIMVSRSEIDLLDIR	A29250	263	53
MKGKGTRDKVLIRIMVSRSEVDMLKIR	LUHU36	277	53
MKGKGTRDKVLIRIMVSRCEVDMLKIK	ANX2\$CHICK	277	53
MKGVGTRHKALIRIMVSRSEIDMNDIK	LUHU	285	53
MKGVGTRHKALIRIMVSRSEIDMNDIK	!LPCH	286	53
MKGAGTRHKALIRIMVSRSEIDMNDIK	ANX1\$CAVCU	286	53
MKGAGTRHKALIRIMVSRSEIDMNEIK	ANXISMOUSE	285	53
MKGAGTRHKTLIRIMVSRSEIDMNEIK	ANXIŞRAT	285	53
MKGKGTRDKVLIRIMVSRSEVDMLKIR	LUMS36	211	53
MKGKGTRDKVLIRIMVSRSEVDMLKIR	LUBO36	211	53
MKGAGTDDDTLIRVMVSRSEIDLLDIR	ANX5SCHICK	253	53
MKGAGTDDHTLIRVIVSRSEIDLFNIR	ANXSSRAI	237	53
MKGKGTRDKVLIRIMVSRSEVDMLKIR	ASSOUU	277	53
MKGAGTDDHTLIRVMVSRSEIDLFNIR	ANXSSHOMAN	250	53
MKGLGTDDDTLIRVMVSRAEIDMLDIR	ANX45BOVIN	257	53
MKGAGTRDGTLIRNIVSRSEIDLNLIK	ANXOSHUMAN	262	53
LKGIGTDEFTLNRIMVSRSEIDLLDIR	ANASSHOTA	257	53
MKGLGTDDNTLIRVMVSRAEIDMMDIR	ANNA	260	53
MNGAGTDDATLIRIIVSRSEIDLETIK	ANTY A CHIMAN	257	53
MKGLGTDDNTLIRVMVSRAEIDMLDIR	ANY 1 SCOLLT	280	52
MKGFGTQHRDLIRIMVSKREVDMUEIK	HIMSNEX IN	407	53
MKGAGTDDSTLVRIVVIRSEIDLVQIR	RONDIN		
A NAMES TAIG			
ANNEXING			
notif f			
FETERVOKSLHOAIEG	ANX6\$MOUSE	639	1
EFIFKYDKSLHOAIEG	S01786	640	1
EFIEKYDKSLHOAIEG	ANX6\$HUMAN	639	1
EFIEKYDKSLHOATEG	HUMCBPE	640	1
EFIEKYDKSLHOATEG	HUMP68	640	1
EFKKHYGOSLYSAIOS	ANX3\$RAT	291	1

	120250	291	1
EFKKHYGCSLYSAIQS		305	1
EFKRKYGKSLYYYIQQ	LUNUJU	305	1
EFKRKYGKSLYYFIQQ	AWAZŞCHICK	313	1
FYQKMYGISLCQAILD		314	1
FYQKMYGISLCQAILD		314	1
YYQKMYGISLCQAILD	ANXISCAVCO	213	1
FYQKKYGISLCQAILD	ANAISMOUSE	213	1
FYQKKYGIPLCQAILD	ANALŞKAL	205	1
EFKRKYGKSLYYYIQQ	LUMS30	305	1
EFKKKYGKSLYYYIQQ	LUBUSO	303	1
EFRKNFAKSLYQMIQK	ANADŞCHICK	201	1
EFRKNFATSLYSMIKG	ANASSRAT	205	1
EFKRKYGKSLYYYIQQ	AJJOUU ANYECUMAN	202	1
EFRKNFATSLYSMIKG	ANZJOHAN	200	1
NFKRLYGKSLYSFIKG		205	1
HFKKMYGKTLSSMIME	ANXO SHUMAN	234	1
EFKKHYGYSLYSAIKS	ANASSHOMAN	290	1
NFKRLYGKSLYSFIKG	ANA45PIG	200	1
EFERIYNRTLHSAVVD	DROANNA	200	1
HFKRLYGKSLYSFIKG	ANX4 SHUMAN	200	1
YYKKMYGISLCQAIMD	ANAISCOLLI	300	1
MFAQMYQKTLGTMIAG	HUMSNEXIN	435	1
NATEY INT			
15 motif 7			
DTCCDFMKALLALCG	ANX6\$MOUSE	655	0
DISCOFMENDIALO	S01786	656	0
DISCOFLICATION	anx6\$human	655	0
DISCOFLKALLALCG	HUMCBPE	656	0
DISCOFLKALLALCG	HUMP68	656	0
DISCOVETVLLKICG	ANX3\$RAT	307	0
DISCOVETVLLKICG	A29250	307	0
DISCOMMENDATION	LUHU36	321	0
DTRGDIQUALLINLCG	ANX2\$CHICK	321	0
DTRGDIQRALLALCG	LUHU	329	0
ETRODIERILVALCO	! LPCH	330	0
ETRODIERILVALCO	ANX1SCAVCU	330	0
ETRODIERILVALCO	ANX1 SMOUSE	329	0
ETRODIERIEVALCO	ANX1SRAT	329	0
ETKGDYEKILVALCG	LUMS36	321	0
DTKGDYQKALLILEG	LUBO36	321	0
DTKGDYQKALLILCG	ANX5SCHICK	303	0
DTSGDYRKALLBLCG	ANX5SRAT	301	0
DTSGDYKKALLDLCG	A35600	321	0
DTKGDYQKALLILCG	ANXSSHUMAN	302	0
DTSGDYKKALLLLCG	ANYASBOVIN	301	0
DTSGDYRKVLLILCG	ANYRCHIMAN	310	0
DTSGDYKNALLSLVG	ANY 2 CHIMAN	306	0
DTSGDYEITLLKICG	AIVAS SHOTTA	301	0
DTSGDYRKVLLILCG		305	1
ETSGDYKRALTALLG	DRUMINA	301	0
DTSGDYRKVLLVLCG	ANA4 STOPPAN	324	0
ELKGGYETILVALCG		/51	0
DTSGDYRRLLLAIVG	HUMSNEXIN	401	•

C.2 ATP sythases alpha and beta subunits COMPOUND(6) D.N. PERKINS 1/6/1991 FO-F1 ATP SYNTHASES

1. FUTAI, M., NOUMI, T., MAEDA, M., ATP synthase (H+-atpase): Results by combined biochemical and molecular biological approaches.

ANN. REV. BIOCHEM. 58 10541-10550 (1989)

2. AL-SHAWI, M.K., PARSONAGE, D., SENIOR, A.E. Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli.

J. BIOL. CHEM. 4402 265 (1990)

3. WALKER, J.E., SRASTE, M., RUNSWICK, M.J., GAY, N.J. Distantly related sequences in the alpha and beta subunits of ATP synthase, myosin, kinases and other ATP requiring enzymes and a common nucleotide binding fold.

EMBO JOURNAL 1 945-951 (1982)

ATP synthase catalyses the production of ATP from ADP and orthophosphate and consists of two components; the hydrophobic FO complex and the hydrophillic F1 complex. Both these complexes also consist of a number of subunits [1]. The alpha and beta chains of the F1 complex have the ability to bind both ATP and ADP. The alpha chain is thought to be involved with the regulation of ATP synthase activity whereas the beta chain contributes to the catalytic site [2]. Vacuolar ATPase is responsible for the acidification of a variety of intracellular compartments and the 60kD and 70kD subunits of these proteins show sequence similarity with the alpha and beta chains of F0-F1 ATP synthase.

Twelve sequences were used in the initial alignment, these being both alpha and beta subunits. From this alignment six motifs were selected and used to scan the OWL database. Motif two was derived from the region of the sequence shown to be responsible for the binding of ATP/ADP [3]. This region is conserved in a number of ATP binding families such as myosin and protein kinases and is also seen in GTP/GDP binding proteins, although there is now debate on the relative importance of this motif. The other five regions were chosen because of their high homology. Two iterations were required before convergence was reached. One sequence, database code RICCPCTB, was found to match with only four of the selected features. This protein is a mitochondrial beta and epsilon unit pseudogene derived from rice and shares little homology in the C to the terminus region with the other ATP synthases due mistranslation of the nucleic acid sequence. The other sequences shown to match with two features include one ATP binding protein (PR16\$YEAST, PRP16 protein from yeast), the other proteins appear to constitute noise.

SUMM	ARY IN	IFORM	ATION							
76 0 1 0 5	codes codes code codes codes	invo invo invo invo invo invo invo	olving olving olving olving olving	6 5 4 3 7 2	featur featur featur featur featur	es es es es				
COMP	OUND F	FEATU	RE INI)EX						
61	76	76	76	76	76	76				
51	0	0	0	0	0	0				
41	1	1	1	1	. 0	õ				
31	0	2	0	1	3	1				
21	1		2	T						
+-	1	2	3	4	5	6				
True	posit	ives:				7243	260		ATPBSBOVIN	
WHITC	PAIPD	NT	ATPB	SYE/	AST	PWBS	BM		ATP2\$MAIZE	
ATPB	CNTCD	IN T.	ATPB	SRA'	1. 1.	HUM	TPFIB		HUMATPSY2	
ATP2	SNICP.	Δ	DUNIT	ŞTH. D	EPS	ATP	SANASP		PWSPB	
ATPE	STICE:	r.	PWIN1 BETA	ם חמיתי		PWB)B		ATPB\$RHORU	
ATPE	SSYNP	6		SCV	TT.V	ATP)\$HELAN	1	ATP0\$MAIZE	
ATEL	SNTCP	L	ΔΤΡΩ	SOF	NRT	ATP)\$ORYSA	`	ATP0\$PEA	
ATEV	SWHEA	T	PEAM	чор 11	4	!F1.	AB		ATPA\$RHORU	
ATE	SBACF	R	PWEC	B	7	ATP	A\$BOVIN	I	ATPA\$RAT	
DOVI	TPSYN	1	A302	45		ATP	AŞANASE	>	PWLVA	
2002 2002	SXENL	A	ATPA	SYE	AST	ATP	BŞVIBAL	د	PWRZA	
A114 አጥቦ/	ASWHEA	T	ATPA	\$PE	A	ATP	AŞMAIZE	2	PWNTA	
ልጥP/	ASSYNP	6	ATPA	\$SP	IOL	ATP	A\$RHOBI		ATPASBACME	
attp:	ASTHEP	3	ATP/	\$EC	OLI	ATF	A\$VIBAI		PWECA	
SYN	MTATPA	A	MTPH	3\$SU	LAC	VAI	2\$NEUCH	ર	VAT2SYEAST	
A31	487		VAT2	2\$AR	ATH	MES	ATPAB1	_	VATISDAUCA	
VAT	2\$HUMA	N	MESA	ATPA	B	MTE	ASSULA	2	VATISNEUCR	
VAT	1\$YEAS	ST								
WHT	CPATPI	3	A	TP s	ynthas	se bet	a subu	nit	- Triticum aestivum	
ATP	BŞYEAS	ST	A	TP S	SYNTHAS	SE BE	TA CHAL	N -	soursor - Yeast	
A24	260		A'	TP s	synthas	se bei	a chai	n pr N -	ecursor - reade	
ATP	B\$BOV	IN	A	TP S	SYNTHAS	SE BE	TA CHAL	N N -	BOVINE	
ATP	B\$HUM	AN	A	TP S	SYNTHAS	SE BE	FA CHAI	N -	Rat	
ATP	B\$RAT		A	TP 2 mp	SYNTHAS	SE BE	lA CHAI	n -	Racillus megaterium	•
PWB	SBM		A	mp (synchas	Se De Se De	DA CHAI	'N. M	TTOCHONDRIAL - Maize	
ATP	2\$MAI	ZE	A .	15 3 77 0 7	SANTRA: STNTRA:	שם שכ ייזים שכי	та спат	N. M	ITOCHONDRIAL - Tobacco	0
ATF	2\$NIC	PL	A	י ביי. תיים ו	STNTRA: SVNMUX	שם שנ קם קס	TA CHAI	N -	bacterium PS3	
ATF	PB\$THE	P3	A	1 E	TOFTS .	JE DE Dut	F1_hets	n pre	cursor - Homo sapiens	
HUM	1ATPFI	B	н ~	י סייים י סייים	svntha	so ho	ta subi	nit.	- Homo sapiens	
HUM	ATPSY	2	A 7	י די י מיתיי	SYNTHA	SE RF	TA CHAI	IN -	Sweet potato	
ATE	PBŞIPO	BA	A	י דגי די סי	vnthas	e bet	a chair	n - C	Common tobacco	
PWN	ITB		1.	ຼະ ວຸ . ຫນ	SYNTHA	SE RE	TA CHAI	IN -	Anabaena sp.	
ATI	PB\$ANA	SP	P -	ULL.	evntha	se be	ta cha	in -	Spinach chloroplast	
PWS	SPB		F	VI.E	21.101.0	~~~~~			-	

	CUNTERNE	BETA	_
ATP	SININASE	DEIA	
ATP	synthase	beta	S
ATP	synthase,	mito	c
ATP	SYNTHASE	BETA	С
ATTP	SYNTHASE	BETA	С
አጥዖ	SYNTHASE	BETA	C
~++			
ATP	SYNTHASE	ALPH	•
	OLD TOTA OF	AT DU	Λ

٠

ATPRSRHOBL	ATP SYNTHASE BETA - Rhodopseudomonas blastica
BEIATED	ATP synthase beta subunit - Bacillus IIImus
PWBOB	ATP synthase, mitochondrial - Bovine
ATPRSRHORU	ATP SYNTHASE BETA CHAIN - Rhodospiriliam rabian
ATTPRSSYNP6	ATP SYNTHASE BETA CHAIN - Synechococcus sp.
ATTPRSCYTLY	ATP SYNTHASE BETA CHAIN - Cytophaga lytica
ATTDOCHELAN	ATP SYNTHASE ALPHA CHAIN - Common sunflower
ATPOSMAIZE	ATP SYNTHASE ALPHA CHAIN - Maize
ATPOSNICPL	ATP SYNTHASE ALPHA CHAIN - Tobacco
ATPOSOENBI	ATP SYNTHASE ALPHA CHAIN - Oenothera biennis
ATPOSORYSA	ATP SYNTHASE ALPHA CHAIN - Rice
ATPOSPEA	ATP SYNTHASE ALPHA CHAIN - Garden pea
ATPOSWHEAT	ATP SYNTHASE ALPHA CHAIN - Wheat
DEAMTE14	PEAMTF14 F-1-ATPase alpha subunit - Pisum sativum
IF1AB	F1 ATPASE, BETA SUBUNIT - E. coli
ATPASRHORU	ATP SYNTHASE ALPHA CHAIN - Rhodospirillum rubrum
ATPBSBACFR	ATP SYNTHASE BETA CHAIN - Bacteroides fragilis
PWECB	ATP synthase beta chain - Escherichia coli
ATPASBOVIN	ATP SYNTHASE ALPHA CHAIN - bovine
ATPASRAT	ATP SYNTHASE ALPHA CHAIN - Rat
BOVATPSYN	alpha subunit ATP synthase isoform - Bos taurus
A30245	ATP synthase alpha chain precursor - Bovine
ATPASANASP	ATP SYNTHASE ALPHA CHAIN - Anabaena sp.
DWIVA	ATP synthase alpha chain - Liverwort
ATTPASXENLA	ATP SYNTHASE ALPHA CHAIN - African clawed frog
ATPASYEAST	ATP SYNTHASE ALPHA CHAIN - Yeast
ATTPBSVIBAL	ATP SYNTHASE BETA CHAIN - Vibrio alginolyticus
nwRZA	ATP synthase alpha chain - Rice chloroplast
ATPASWHEAT	ATP SYNTHASE ALPHA CHAIN - Wheat
ATPASPEA	ATP SYNTHASE ALPHA CHAIN - Garden pea
ATPASMAIZE	ATP SYNTHASE ALPHA CHAIN - Maize
ATEACTED	ATP synthase alpha chain - Common tobacco
AMPASSYNP6	ATP SYNTHASE ALPHA CHAIN - Synechococcus sp.
ATPASSPIOL	ATP SYNTHASE ALPHA CHAIN - Spinach
ATTRAST	ATP SYNTHASE ALPHA - Rhodopseudomonas blastica
ATTASBACME	ATP SYNTHASE ALPHA CHAIN - Bacillus megaterium
ATPACTHEP3	ATP SYNTHASE ALPHA - Thermophilic bacterium PS-3.
ATTACECOLI	ATP SYNTHASE ALPHA CHAIN - E. COLL
ATTACTOR	ATP SYNTHASE ALPHA CHAIN - Vibrio alginolyticus
AIFAVIO	ATP synthase alpha chain - Escherichia coli
PWECK CUDMTATPAA	ATP synthase alpha subunit - Artificial gene
SINHIALIO	ATPASE BETA CHAIN - Sulfolobus acidocaldarius
MIPBODOLICE MIPBODOLICE	VACUOLAR ATP SYNTHASE 57 KD - Neurosporra crassa
VAT25NDOOL	VACUOLAR ATP SYNTHASE SUBUNIT B - Baker's yeast
VA1291	*H+-transporting ATP synthase B chain - Yeast
MATTO CARATH	VACUOLAR ATP SYNTHASE 57 KD - Mouse-ear cress
MEGATPAR1	ATPase beta subunit - Methanosarcina Darkeri
VATI CDAUCA	VACUOLAR ATP SYNTHASE 69 KD SUBUNIT - CARROI
WATTS CHIMAN	VACUOLAR ATP SYNTHASE 58 KD SUBUNIT - Human
MEGATDAR	ATPase alpha subunit - Methanosarcina parkers
MEDALERU MEDACCIILAC	MEMBRANE ATPASE - Sulfolobus acidocaldarius
MART CNETTOP	VACUOLAR ATP SYNTHASE 67 KD - Neurosporra Class
VALIQNEUCK	VACUOLAR ATP SYNTHASE CATALYTIC SUBUNIT A
ANTI ŽI PADI.	

SCAN HISTORY

OWL11_()	2	0	NSINGLE

INITIAL MOTIF-SETS			
 کست 1			
15			
LD mobif 1			
	ATPBSYEAST	168	168
	ATPASBOVIN	190	190
QTGIKAVDSLVPIGR	PWLVB	148	148
ETGIKVVDLLAPYRR	ATP2SNICPL	213	213
VTGIKVVDLLAPYQR	MTPRSSIILAC	133	133
QTGISAIDGLNSLLK	VAT2SHIMAN	162	163
QTGISPIDVMNSIAR	MTDASSII AC	203	211
LTGIRVLDTVFPIAK	MILAGOULAC AMDA CMA TAT	1/0	1/8
QTGLIAIDSMIPIGR	MIFAQUALZE MARQUALZE	150	152
STGVSAIDTMNSIAR	VAI291EASI MECAMDADI	100	100
QTGISTIDGTNTLVR	MESATPABI	120	120
VTGMRILDGLFPVAK	MESATPAB	200	206
LTGQRVLDALFPSVL	VATIŞDAUCA	230	230
	•		
ATP2			
20			
motif 2			
GGKIGLFGGAGVGKTVFIOE	ATPB\$YEAST	183	0
GORELIIGDRQTGKTSIAID	ATPA\$BOVIN	205	0
GGKIGLFGGAGVGKTVLIME	PWLVB	163	0
CGKIGLFGGAGVGKTVLIME	ATP2\$NICPL	228	0
CSKITDLSGSGLPANTIAAO	MTPB\$SULAC	148	0
CONTRIFSAAGLPHNEIDDO	VAT2\$HUMAN	178	0
CONT I POPPOS KINT OC	MTPA\$SULAC	226	0
CGTAATIOTIOSCHIVILQS	ATPASMAIZE	163	0
GOKEDIIODAQIONIAVAID	VAT2SYEAST	167	0
GOKIPIPSASGLEHNEIALO	MESATPAB1	143	0
GOKLPITSASGEFINEIALQ	MESATPAB	221	0
GGTAAIPGPFGSGKTV1QQS	TATI SDAUCA	245	0
GGTCAIPGAFGCGRTVISQA	VALLUDITO	-	
ATP3			
14			
motif 3			
FSVFAGVGERTREG	ATPBSYEAST	214	11
YCIYVAIGQKRSTV	ATPA\$BOVIN	243	18
VSVFGGVGERTREG	PWLVB	194	11
FSVFAGVGERTREG	ATP2\$NICPL	259	11
AVALEAAIGVRYDEA	MTPB\$SULAC	182	14
ATVEAAMGVNMETA	VAT2\$HUMAN	220	22
MINUCCGERGNEM	MTPASSULAC	254	8
TOTAVATGORASSV	ATPASMAIZE	193	10
	VAT2SYEAST	209	22
SIVFAMGUNDEIA	MESATPAB1	177	14
AVVFAAMGIINEEA	MESATPAB	249	8
IVVYIGCGERGNEM	VATI SDAUCA	273	8
TVVYVGCGERGNEM	VAIIŞDAGGA		
ATP4			
23			
motif 4			26
QMNEPPGARARVALTGLTIAEYF	ATPB\$YEAST	254	20
TASDAAPLQYLAPYSGCSMGEYF	ATPA\$BOVIN	278	41

OMNEPPGARMRVGLTALTMAEYF	PWLVB	236	28
OMNEPPGARARVGLTGLTVAEHF	ATP2\$NICPL	302	29
LANDPPSLKILTPKTALTLAEYL	MTPB\$SULAC	217	21
LANDPTIERIITPRLALTTAEFL	VAT2\$HUMAN	255	21
TSNMPVAARESSIYVGVTMAEYF	MTPA\$SULAC	296	28
MADSPATLOYLAPYTGAALAEYF	ATPA\$MAIZE	228	21
LANDPTIERIITPRLALTTAEYL	VAT2\$YEAST	244	21
LADDPAVERIVTPRMALTAAEYL	MESATPAB1	212	21
TSNMPVAAREASVYTGITIAEYY	MESATPAB	291	28
TSNMPVAAREASIYTGITIAEYF	VAT1\$DAUCA	318	31
ATP5			
23			
motif 5	· · · · · · · · · · · · · · · · · · ·		
RIPSAVGYOPTLATDMGLLQERI	ATPBSYEAST	307	30
RPPGREAYPGDVFYLHSRLLERA	ATPASBOVIN	330	29
RMPSAVGYQPTLSTEMGTLQERI	PWLVB	289	30
RIPSAVGYQPTLATDLGGLQERI	ATP2\$NICPL	355	30
EVPGRGGYPGYMYTDLATIYERA	MTPB\$SULAC	270	30
EVPGRRGFPGYMYTDLATIYERA	VAT2\$HUMAN	308	30
EMPAEEGFPSYLPSRLAEYYERA	MTPA\$SULAC	348	29
RPPGREAYLGDVFYLHSRLLERA	ATPA\$MAIZE	280	29
EVPGRRGYPGYMYTDLSTIYERA	VAT2\$YEAST	297	30
EIPGRRGYPGYMYTDLATLYERA	MESATPAB1	265	30
EMPGEEGYPAYLSARLAEFYERA	MESATPAB	343	29
EMPADSGYPAYLAARLASFYERA	VAT1\$DAUCA	370	29
ATP6			
17			
motif 6			
LGIYPAVDPLDSKSRLL	ATPBSYEAST	3/5	45
KGIRPAINVGLSVSRVG	ATPASBOVIN	402	49
KGIYPAVDPLDSTSTML	PWLVB	357	45
LGIYPAVDPLDSTSRML	ATP2SNICPL	423	45
KGIYPPINVLMSLSRLM	MTPB\$SULAC	340	47
ROIYPPINVLPSLSRLM	VAT2\$HUMAN	378	47
ARHYPAINWIQGFSAYV	MTPASSULAC	423	52
AGIRPAINVGISVSRVG	ATPA\$MAIZE	352	49
KGIYPPINVLPSLSRLM	VAT2\$YEAST	367	47
KGTYPPINVLPSLSRLM	MESATPAB1	335	47
PRHFPAINWLNSYSLYK	MESATPAB	416	50
RKHFPSVNWLISYSKYS	VAT1\$DAUCA	445	52
FINAL MOTIF-SETS			
 ATP1			
15			
motif 1			100
OTGIKAVDSLVPIGR	ATPA\$BOVIN	190	190
OTGIKAVDSLVPIGR	ATPASRAT	180	180
OTGIKAVDSLVPIGR	ATPA\$XENLA	191	191
OTGIKAVDSLVPIGR	BOVATPSYN	190	190
OTGIKAVDSLVPIGR	A30245	190	190
ETGTKVVDLLAPYAR	ATPB\$YEAST	168	168
ETGTKWUDLLAPYAR	A24260	166	166
ETGIKUVDLLAPYRR	PWLVB	148	148
ETGTKVVDLLAPYRR	PWZMB	150	150

FTGTKINDLLAPYER
EIGIKVVDLLAPIRK
EIGIKVVDLLAPYRR
ETGIKVVDLLAPYRR
ETGIKVVDLLAPYRR
ETGIKVVDLLAPYRR
QTGIKAIDSLIPIGR
QTGLKAVDSLVPIGR
QTGLKAVDSLVPIGR
QTGLKAVDSLVPIGR
OTGLKAVDSLVPIGR
OTCIKATDALVPIGR
OTGINATDALVEIGN
UIGIKAIDALVPIGK
VIGIKVVDLLAPIQR
VTGIKVVDLLAPYQR
ETGIKVVDLLTPYRR
QTGLKAVDALVPIGR
VTGIKVVDLLAPYAK
VTGIKVVDLLAPYAK
VTGIKVVDLLAPYAK
VTGIKVVDLLAPYAK
VTGIKVVDLLAPYAK
TATKVVDLLAPYIK
EIGTERVUDLLAPYIK
ETGINUTLAPYER
EIGIEVVDEMIRICP
OTGYKAVDSMIFIGK
QTGYKAVDSMIPIGR
ETGIKVVDLLAPIII
ETGIKVIDLLAPYRQ
ETGIKVVNLLAPYRR
VTGIKVIDLLAPYSK
OTGITAIDSMIPIGR
VTGDKVVDLLAPYAK
ETGIKVIDLMCPFAR
OTGYKSVDSMIPIGR
ATGLKAVDAMIPIGR
OTTAIDAMIPIGR
DELLEPYSK
FIGINVIDEE PIGR
QIGLIAIDSMIPIGR
QTGLIAIDSMILLOR
QTGLIAIDSMIFIGR
QTGLIAIDSMIPIGR
QTGLIAIDSMIPIGR
QTGLIAIDSMIPIGR
VTGIKVIDLIAPYTK
ETGIKVIDLMCPFAK
LTGYKIVDSMLPIGR
FTGIKVIDLIEPYAK
OTGLTATDAMTPVGR
FTOURUIDI TODEAK
OBOLO TOOL NGLI D
VIGISAIDGLNSLLK
SIGISAIDTMNSIAR

PWBHB	150	150
PWRZB	150	150
ATPRSCHLRE	150	150
ATTRSTPORA	148	148
ATT DUT ODA	150	150
AIFBOREA	150	150
RICCPCTA	150	150
WHTCPATPB	150	1 4 7
ATPAŞRHORU	147	14/
ATPOSHELAN	149	149
ATPO\$MAIZE	149	149
ATPO\$NICPL	149	149
ATP0\$OENBI	149	149
ATP0\$ORYSA	149	149
ATPO\$PEA	149	149
ATPO\$WHEAT	149	149
PEAMTF14	149	149
ATPASBACME	147	147
ATPASTHEP3	147	147
ATP2SMATZE	206	206
ATT 20MALDD	213	200
ATEZONICED	140	213
ATPBŞANASP	104	140
ATPASYEAST	104	184
ATPBŞBOVIN	184	184
ATPBSHUMAN	184	184
ATPBŞRAT	184	184
HUMATPFIB	194	194
HUMATPSY2	184	184
PWBSBM	136	136
ATPB\$THEP3	136	136
PWNTB	150	150
PWECA	147	147
ATPASECOLI	147	147
DELYDD	134	134
AMDRESVNDA	140	140
ALLASSING	150	150
PWSPD	123	133
ATPBSRHOBL	1/9	149
ATPASANASP	124	134
PWBOB	100 T28	129
!F1AB	120	1 4 7
ATPA\$VIBAL	147	147
ATPA\$RHOBL	147	14/
ATPA\$SYNP6	148	148
ATPBSBACFR	135	135
PWLVA	148	148
PWNTA	148	148
PWRZA	148	148
AMDASMATZE	148	148
ATPASIA	148	148
ATEASTOR	148	148
ATPASWIEAT	120	130
ATPBSRHORU	100	128
PWECB	128	120
SYNMTATPAA	150	120
ATPB\$CYTLY	134	134
ATPASSPIOL	148	148
ATPB\$VIBAL	127	127
MTPB\$SULAC	133	133
VAT2\$NEUCR	142	142

.
QTGISTIDVMNSIAR QTGISPIDVMNSIAR LTGIRVLDTVFPIAK STGVSAIDTMNSIAR	VAT2\$ARATH VAT2\$HUMAN MTPA\$SULAC VAT2\$YEAST	149 163 211 152	149 163 211 152
ATP2			
20			
motif 2			

GORELIIGDROTGKTSIAID
GORELIIGDROTGKTSIAID
GORELIIGDROTGKTSIAID
GQRELIIGDRQTGKTSIAID
GQRELIIGDRQTGKTSIAID
GGKIGLFGGAGVGKTVFIQE
GGKIGLFGGAGVGKTVFIQE
GGKIGLFGGAGVGKTVLIME
GORELIIGDROTGKTAVILD
GORELIIGDROTGKTAIAID
CORELIIGDRQTGKTAIAID
GORELIIGDROTGKTAIAID
GORELIIGDRQTGKTAIAID
CORELIIGDRQTGKTAIAID
CORELIIGDRQTGKTAIAID
CORELIIGDRQTGKTAIAID
GORELIIGDRQTGKTAIAID
GORELIIGDRQTGKTSVAID
GORELIIGDRQTGKTSVAID
CGKIGLFGGAGVGKTVLIME
GGKIGLFGGAGVGKTVLIME
CGKIGLFGGAGVGKTVIMME
GORELIIGDRQTGKTAVALD
GGKIGLFGGAGVGKTVLIME
CCKIGLFGGAGVGKTVLIME
CCKIGLFGGAGVGKTVLIME
CCKIGLFGGAGVGKTVLIME
CCKIGLFGGAGVGKTVLIME
CCKIGLFGGAGVGKTVLIQE
CCKIGLEGGAGVGKTVLIQE
CCKIGLEGGAGVGKTVLIME
COPELIGDROTGKTRLAID
COPELIGOROTGKTALAID
CCVICLEGAGVGKTVLIQE
CONTOL ECGAGVGKTVLIQE
CONTOL ECCACYGKTVLIME
CONTOL ECCACYCKTVLIOE
CODET TTODPOTCKTAIAID
CONTOL FOOD CVCKTVFIME
CCKNOL ECODONCKWVNMME
COPEL TROPPOTOWNI.ATD
GAVERITICOKOIGVINNULL

ATPA\$BOVIN	205	0
ATPA\$RAT	195	0
ATPA\$XENLA	206	0
BOVATPSYN	205	0
A30245	205	0
ATPB\$YEAST	183	0
A24260	181	0
PWLVB	163	0
PWZMB	165	0
PWBHB	165	0
PWRZB	165	0
ATPB\$CHLRE	165	0
ATPB\$IPOBA	163	0
ATPB\$PEA	165	0
RICCPCTA	165	0
WHTCPATPB	165	0
ATPA\$RHORU	162	0
ATP0\$HELAN	164	0
ATPO\$MAIZE	164	0
ATPO\$NICPL	164	0
ATP0\$0ENBI	164	0
ATP0\$ORYSA	164	0
ATPO\$PEA	164	0
ATPO\$WHEAT	164	0
PEAMTF14	164	0
ATPA\$BACME	162	0
ATPA\$THEP3	162	0
ATP2\$MAIZE	221	0
ATP2\$NICPL	228	0
ATPB\$ANASP	155	0
ATPA\$YEAST	199	0
ATPB\$BOVIN	199	0
ATPB\$HUMAN	199	0
ATPB\$RAT	199	0
HUMATPFIB	209	0
HUMATPSY2	199	0
PWBSBM	151	0
ATPB\$THEP3	151	0
PWNTB	165	0
PWECA	162	0
ATPASECOLI	162	0
BFIATPD	149	0
ATPB\$SYNP6	155	0
PWSPB	165	0
ATPB\$RHOBL	148	0
atpa\$anasp	164	0 A
PWBOB	149	0
!F1AB	143	0
ATPAŜVIBAL	162	0

	ATPASSHORI.	162	0
GORELIIGDROTGKTAVALD	ATPASSYNP6	163	0
GORELI IGDROTGKTATATO	ATPBSBACFR	150	0
CORRECTOR CONSTRUCTION	PWLVA	163	0
CORFLITCDROTCKTAVATD	PWNTA	163	0
GORELI IGDROTGRIAVAID	PWRZA	163	0
GORELI I GDROTGKTAVAID	ATPASMAIZE	163	0
	ATPASPEA	163	0
GORELI IGDROTGKTAVATD	ATPASWHEAT	163	0
GOREDI I GDRUIGKTAVATD	ATPBSRHORU	145	0
GGKVGLFGGAGVGKIVLIQE	PWECB	143	0
	SYNMTATPAA	165	0
GORELIVGDROIGKITIAID	ATPBSCYTLY	149	0
COREL TROPOTOKENNAME	ATPASSPIOL	163	0
GOREDI IGDRUIGNIAVAID	ATPBSVIBAL	142	0
CENTEDI CECEL PANTI A AO	MTPB\$SULAC	148	0
CONTREST OF PHNETADO	VAT2 SNEUCR	157	0
CONTRIPSANGLE INCLARD	VAT2SARATH	164	0
GORIFLE SANGLE INVELAAO	VAT2 SHUMAN	178	0
GORIFIFSARODEINNEIARO	MTPASSULAC	226	0
GGTAAIPGPFGSGAIVTLQS	VAT2SYEAST	167	0
GOVILLEADORLEADO			-
ATP3			
14			
motif 3			
YCIYVAIGQKRSTV	ATPASBOVIN	243	18
YCIYVAIGQKRSTV	ATPASRAT	233	18
YCIYVAIGQKRLTD	ATPASXENLA	244	18
YCIYVAIGQKRSTV	BOVATPSYN	243	18
YCIYVAIGQKRSTV	A30245	243	18
FSVFAGVGERTREG	ATPBSYEAST	214	11
FSVFAGVGERTREG	A24260	212	11
VSVFGGVGERTREG	PWLVB	194	11
VSVFGGVGERTREG	PWZMB	196	11
VSVFGGVGERTREG	PWBHB	196	11
VSVFGGVGERTREG	PWRZB	196	11
VSVFAGVGERTREG	ATPB\$CHLRE	196	11
VSVFGGVGERTREG	ATPB\$IPOBA	194	11
VSVFGGVGERTREG	ATPB\$PEA	196	11
VSVFGGVGERTREG	RICCPCTA	196	11
VSVFGGVGERTREG	WHTCPATPB	196	11
FCVYVAVGQKRSTV	ATPA\$RHORU	201	19
YCVYVAIGQKRSTV	ATPO\$HELAN	203	19
YCVYVAIGQKRSTV	ATPO\$MAIZE	203	19
YCVYVAIGQKRSTV	ATPO\$NICPL	203	19
YCVYVAIGQKRSTV	ATP0\$0ENBI	203	19
YCVYVAIGQKRSTV	ATP0\$ORYSA	203	19
YCVYVAIGQKRSTV	ATPO\$PEA	203	19
YCVYVAIGOKRSTV	ATP0 \$WHEAT	203	19
YCVYVAIGOKRSTV	PEAMTF14	203	19
VCTYVAIGOKESTV	ATPA\$BACME	192	10
ICTYVAIGOKESTV	ATPA\$THEP3	192	10
FSVFAGVGERTREG	ATP2\$MAIZE	252	11
FSVFACVCFRTREG	ATP2\$NICPL	259	11
VSVFACVCFRTRFG	ATPB\$ANASP	186	11
YCVYVAVGORPETV	ATPA\$YEAST	237	18
YSVEJCUCEDEDEC	ATPB\$BOVIN	230	11
- SALVGAGEVIVER			

٠

·

	ATTRCHIMAN	230	11
YSVFAGVGERTREG	ATPRSRAT	230	11
YSVFAGVGERTREG	HIMATPETR	240	11
YSVFAGVGERTREG	HUMATPSY2	230	11
YSVFAGVGERTREG	PWRSBM	182	11
	ATTERSTHERS	182	11
	DWNTTR	196	11
VSVFGGVGERTREG	DWECA	192	10
KCIYVAIGQKASTI	ATTASECOLT	192	10
KCIYVAIGQKASTI	RETATON	190	11
ISVFAGVGERTREG	ATTERSTO	196	11
VSVFGGVGERTREG	DWCDB	100	11
VSVFGGVGERTREG		170	11
YSVFAGVGERTREG	ΑΤΓΟΟΛΠΟΒΟ	10/	10
VCVYVAIGQKASTV	DWDOB	194	11
YSVFAGVGERTREG	FWDOD	174	11
YSVFAGVGERTREG	ATTDA CUTTAT.	100	10
FSIYVAIGQKASTI	ATTASVIDAD ATTASVIDAD	202	20
YCVYVAIGQKRSTV	ATTASANUDD	102	20
ICVYVAIGQKASSV	ATTASSINTO	193	10
FSVFAGVGERTREG	AIPDŞBACIN	101	10
VCVYVAIGQKASSV	PWLVA	100	10
ICVYVAIGQKASSV	PWINTA	102	10
ICVYVAIGQRASSV	PWKZA	102	10
ICVYVAIGQRASSV	ATPAŞMATZE	102	10
VCVYVAIGQKASSV	ATPASPEA	102	10
ICVYVAIGQRASSV	ATPAŞWHEAT	176	10
YSVFAGVGERTREG	ATPBSRHORU	174	11
YSVFAGVGERTREG	PWECB	1/4	11
YCVYVGIGQKKSSI	SYNMIATPAA	200	15
LSVFAGVGERTREG	ATPBSCYTLY	100	11
ICVYVAIGQKASSV	ATPASSPIOL	173	10
LSVFAGVGERTREG	ATPBSVIBAL	1/3	11
AVVFAAIGVRYDEA	MTPB\$SULAC	182	14
SIVFGAMGVNLETA	VAT2\$NEUCR	203	26
AIVFAAMGVNMETA	VAT2\$ARATH	210	20
AIVFAAMGVNMETA	VAT2\$HUMAN	220	<i>44</i>
VVIYVGCGERGNEM	MTPASSULAC	254	22
SIVFAAMGVNLETA	VAT2\$YEAST	209	44
ATP4			
23			
motif 4	ANDACBOVIN	278	21
TASDAAPLQYLAPYSGCSMGEYF	ATPASOUTIN	268	21
TASDAAPLQYLAPYSGCSMGEYF	ATPASIAL DODICYENT.A	270	12
TASDAAPLQYLAPYSGCSMGEYF	ATPASAENUA	278	21
TASDAAPLQYLAPYSGCSMGEYF	BOALLSIN	278	21
TASDAAPLQYLAPYSGCSMGEYF	AJVES	254	26
QMNEPPGARARVALTGLTIAEYF	ATPESIERSI	252	26
QMNEPPGARARVALTGLTIAEYF		236	28
QMNEPPGARMRVGLTALTMAEYF	PWLVB	230	28
QMNEPPGARMRVGLTALTMAEYF	PWZMB	230	20
QMNEPPGARMRVGLTALTMAEYF	PWBHB	438	20
QMNEPPGARMRVGLTALTMAEYF	PWRZB	238	20
QMNEPPGARMRVALTALTMAEYF	ATPBSCHLRE	238	28
GQNEPPGARMRVGLTALTMAEYF	ATPBSIPOBA	235	27
QMNEPPGARMRVGLTALTMAEYF	ATPB\$PEA	238	28
QMNEPPGARMRVGLTALTMAEYF	RICCPCTA	238	28

QMNEPPGARMRVGLTALTMAEYF	WHTCPATPB	238	28
TASEPAPLQFLAPYTGCTMGEFF	ATPA\$RHORU	236	21
TASDPAPLQFLAPYSGCAMGEYF	ATPOSHELAN	238	21
TASDPAPLQFLAPYSGCAMGEYF	ATPOȘMAIZE	238	21
TASDPAPLQFLAPYSGCAMGEYF	ATPOŞNICPL	238	21
TASDPAPLQFLAPYSGCAMGEYF	ATPOŞOENBI	238	21
TASDPAPLQFLAPYSGCAMGEYF	ATPOŞORYSA	238	21
TASDPAPLQFLAPYSGCAMGEYF	ATPOSPEA	238	21
TASDPAPLQFLAPYSGCAMGEYF	ATPOŞWHEAT	238	21
TASDPAPLQFLAPYSGCAMGEYF	PEAMTF14	238	21
SASQPAPLLFLAPYAGVTMGEEF	ATPAŞBACME	227	21
SASQPAPLLFLAPYAGVAMGEYF	ATPASTHEP3	227	21
QMNEPPGARARVGLTGLTVAEHF	ATP2\$MAIZE	295	29
QMNEPPGARARVGLTGLTVAEHF	ATPZSNICPL	302	29
QMNEPPGARMRVGLSGLTMAEYF	ATPBŞANASP	217	17
TASEAAPLQYLAPFTAASIGEWF	ATPAŞYEAST	272	21
QMNEPPGARARVALTGLTVAEYF	ATPBSBOVIN	271	27
QMNEPPGARARVALTGLTVAEYF	ATPBSHUMAN	271	27
QMNEPPGARARVALTGLTVAEYF	ATPBŞRAT	2/1	27
QMNQPPGARARVALTGLTVAEYF	HUMATPFIB	281	27
QMNQPPGARARVALTGLTVAEYF	HUMATPSY2	2/1	27
QMNEPPGARQRVALTGLTMAEYF	PWBSBM	217	21
QMNEPPGARMRVALTGLTMAEYF	ATPBSTHEP3	217	21
QMNEPPGARMRVGLTALTMAEYF	PWNTB	238	28
TASESAALQYLARMPVALMGEYF	PWECA	227	21
TASESAALQYLARMPVALMGEYF	ATPAȘECOLI	227	21
OMNEPPGARMAVALSGLTMAEHF	BFIATPD	215	21
OMNEPPGARMRVGLSALTMAEHF	ATPBSSYNP6	228	28
OMNEPPGARMRVGLTALTMAEYF	PWSPB	238	28
OMNEPPGARARVALTGLTLAEQF	ATPB\$RHOBL	221	28
GASEPATLQFLAPYTGATIAEYF	ATPASANASP	229	21
OMNOPPGARARVALTGLTVAEYF	PWBOB	221	27
OMNOPPGNRLRVALTGLTMAEKF	!F1AB	209	21
SASESAALQYLAPYAGCAMGEYF	ATPA\$VIBAL	221	21
TASDPAPMQFLAPFSGTAIGEFF	ATPA\$RHOBL	237	21
NASEPATLQYLAPYAGAAIAEYF	ATPA\$SYNP6	228	40
OMNEPPGARASVALSGLTVAESF	ATPB\$BACFR	243	40
TANSPATLQYLAPYTGAALAEYF	PWLVA	228	21
TADSPATLQYLAPYTGAALAEYF	PWNTA	228	21
MADSPATLQYLAPYTGAALAEYF	PWRZA	228	21
MADSPATLQYLAPYTGAALAEYF	atpa\$maize	228	21
TADSPATLQYLAPYTGAALAEYF	ATPA\$PEA	228	21
MADSPATLQYLAPYTGAALAEYF	ATPA\$WHEAT	228	21
OMNEPPGARARVALAGLTQAEYF	ATPB\$RHORU	217	27
OMNEPPGNRLRVALTGLTMAEKF	PWECB	209	21
TAAOSASLOFIAPYTGCAIAEFY	SYNMTATPAA	235	21
OMNEPPGARARVALSGLTIAEYF	ATPB\$CYTLY	242	48
TADSPATLOYLAPYTGAALAEYF	ATPASSPIOL	228	21
OMNEDBONRLRVALTGLTMAERF	ATPB\$VIBAL	215	28
LANDODSLKILTPKTALTLAEYL	MTPB\$SULAC	217	21
LANDOWIERITTPRLALTTAEYY	VAT2SNEUCR	238	21
LANDPITERITIPRIALTTAEYL	VAT2SARATH	245	21
LANDPTIERTITERTATION ALTTAEFL	VAT2SHUMAN	255	21
TENDETIERITIERITIERITIERITIERITIERITIERITIE	MTPASSULAC	296	28
I DIMPLY AAKESSII VOVITALEIT	VAT2SYEAST	244	21
LANDPTIERITTPRDADITADIT	· · · · · · · · · · · · · · · · · · ·		

ATP5			
23			
motif 5		220	29
RPPGREAYPGDVFYLHSRLLERA	ATPAŞBOVIN	330	20
RPPGREAYPGDVFYLHSRLLERA	ATPASRAT	320	29
RPPGREAYPGDVFYLHSRLLERA	ATPAŞXENLA	322	22
RPPGREAYPGDVFYLHSRLLERA	BOVATPSYN	330	20
RPPGREAYPGDVFYLHSRLLERA	A30245	330	30
RIPSAVGYQPTLATDMGLLQERI	ATPBŞYEAST	307	20
RIPSAVGYQPTLATDMGLLQERI	A24260	305	30
RMPSAVGYQPTLSTEMGTLQERI	PWLVB	289	30
RMPSAVGYQPTLSTEMGSLQERI	PWZMB	291	20
RMPSAVGYQPTLSTEMGSLQERI	PWBHB	291	20
RMPSAVGYQPTLSTEMGSLQERI		291	30
RMPSAVGYQPTLATEMGGLQERI	ATPOQUELKE	291	20
RMPSAVGYQPTLSTEMGYLQERI	ATPBŞIPUBA	200	20
RMPSAVGYQPTLGTEMGTLQERI	ATPESPEA	291	30
RMPSAVGYQPTLSTEMGSLQERI	MUTCPCTA	291	30
RMPSAVGYQPTLSTEMGSLQERI	WHICPATPB	291	30
RPPGREAFPGDVFYLHSRLLERA	ATPASRHORU	200	29
RPPGREAFPGDVFYLHSRLLERA	ATPOSHELAN	290	29
RPPGREAFPGDVFYLHSRLLERA	ATPOŞMAIZE	290	29
RPPGREAFPGDVFYLHSRLLERA	ATPOŞNICPL	290	29
RPPGREAFPGDVFYLHSRLLERA	ATPUŞOENBI	290	29
RPPGREAFPGDVFYLHSRLLERA	ATPOŞORYSA	290	29
RPPGREAFPGDVFYLHSRLLERA	ATPOŞPEA	290	29
RPPGREAFPGDVFYLHSRLLERA	ATPOSWHEAT	290	29
RPPGREAFPGDVFYLHSRLLERA	PEAMTF14	290	29
RPPGREAYPGDVFYLHSRLLERA	ATPASBACME	279	29
RPPGREAYPGDIFYLHSRLLERA	ATPA\$THEP3	279	29
RIPSAVGYQPTLATDLGGLQERI	ATP2\$MAIZE	348	30
RIPSAVGYQPTLATDLGGLQERI	ATP2\$NICPL	355	30
RMPSAVGYQPTLGTDVGQLQERI	ATPB\$ANASP	270	30
RPPGREAYPGDVFYLHSRLLERA	atpaşyeast	324	29
RIPSAVGYQPTLATDMGTMQERI	ATPB\$BOVIN	324	30
RIPSAVGYOPTLATDMGTMOERI	atpb\$human	324	30
RTPSAVGYQPTLATDMGTMQERI	ATPB\$RAT	324	30
RIPSAVGYQPTLATDMGTMQERI	HUMATPFIB	334	30
RTPSAVGYQPTLATDMGTMQERI	HUMATPSY2	324	30
PMPSAVGYQPTLATEMGQLQERI	PWBSBM	270	30
PMPSAIGYOPTLATEMGQLQERI	ATPB\$THEP3	270	30
PMPSAVGYOPTLSTEMGSLOERI	PWNTB	291	30
PPPGREAFPGDVFYLHSRLLEML	PWECA	279	29
PPPGREAFPGDVFYLHSRLLERA	ATPA\$ECOLI	279	29
PMPSAVGYOPTLATEMGQLQERI	BFIATPD	267	29
PMPSAVGYOPTLGTDVGQLQERI	ATPB\$SYNP6	281	30
PMPSAVGYOPTLSTEMGSLQERI	PWSPB	291	30
RIFERVEYOPTLATDMGQLQERI	ATPB\$RHOBL	274	30
RIFSAVOLED	ATPASANASP	281	29
RIPCOLATION	PWBOB	274	30
RIPSAVGIQI I EMGVLQERI	!F1AB	261	29
RMPSAVGIOFILIERA	ATPASVIBAL	279	29
RFFGREAF FGDVI VENELLERS	ATPASRHOBL	289	29
RFGREAIFGDVFTLHSRLLERA	ATPASSYNP6	280	29
REFERENCE AND AND AND AND AND AND AND AND AND AND	ATPBSBACFR	300	34
KMPSAVGYQPTLATENGALYZ	PWLVA	280	29
RPPGREAYPGDVFYLHSKUDEKA	DWNTA	280	29
RPPGREAYLGDVFYLHSKLLERA	E MIN TW		

RPPGREAYPGDVFYLHSRLLERA	PWRZA	280	29
RPPGREAYLGDVFYLHSRLLERA	ATPA\$MAIZE	280	29
RPPGREAYPGDVFYLHSRLLERV	ATPA\$PEA	280	29
RPPGREAYPGDVFYLHSRLLERA	ATPA\$WHEAT	280	29
RIPSAVGYQPTLATDMGALQERI	ATPB\$RHORU	270	30
RMPSAVGYQPTLAEEMGVLQERI	PWECB	261	29
RPLGREAFPGDVFYAHSRLLERA	SYNMTATPAA	287	29
RMPSAVGYQPTLATEMGAMQERI	ATPB\$CYTLY	299	34
RPPGREAYPGDVFYLHSRLLERA	ATPA\$SPIOL	280	29
RMPSAVGYQPTLAEEMGVLQERI	ATPB\$VIBAL	267	29
EVPGRGGYPGYMYTDLATIYERA	MTPB\$SULAC	270	30
EVPGRRGFPGYMYTDLSTIYERA	VAT2\$NEUCR	291	30
EVPGRRGYPGYMYTDLATIYERA	VAT2\$ARATH	298	30
EVPGRRGFPGYMYTDLATIYERA	VAT2\$HUMAN	308	30
empaeegfpsylpsrlaeyyera	MTPASSULAC	348	29
EVPGRRGYPGYMYTDLSTIYERA	VAT2\$YEAST	297	30
ATP6			
17 motif 6			
KGIRPAINVGLSVSRVG	ATPA\$BOVIN	402	49
KGIRPAINVGLSVSRVG	ATPA\$RAT	392	49
KGIRPAINVGLSVSRVG	ATPA\$XENLA	394	49
KGIRPAINVGLSVSRVG	BOVATPSYN	402	49
KGIRPAINVGLSVSRVG	A30245	402	49
LGIYPAVDPLDSKSRLL	ATPB\$YEAST	375	45
LGIYPAVDPLDSKSRLL	A24260	373	45
KGIYPAVDPLDSTSTML	PWLVB	357	45
KGIYPAVDPLDSTSTML	PWZMB	359	45
KGIYPAVDPLDSTSTML	PWBHB	359	45
KGIYPAVDPLDSTSTML	PWRZB	359	45
KGIYPAVDPLESTSTML	ATPBSCHLRE	359	45
KGIYPAVDPLDSTSTML	ATPBSIPOBA	350	40
KGIYPAVDPLDSTSTML	ATPESPEA	359	45
KGIYPAVDPLDSTSTML	RICCPUTA	359	40
KGIYPAVDPLDSTSTML	WHICPATPB	353	40
KGIRPAVNVGLSVSRVG	ATPASKHORU	360	49
RGIRPAINVGLSVSRVG	ATPOSHELAN	262	49
RGIRPAINVGLSVSRVG	ATPUŞMALZE	304	427
RGIRPAINVGLSVSRVG	ATPOSNICPL	302	49
RGIRPAINVGLSVSRVG	ATPUŞUENBI	302	49
RGIRPAINVGLSVSRVG	ATPUSORISA	304	49
RGIRPAINVGLSVSRVG	ATPUSPEA	304	49
RGIRPAINVGLSVSRVG	ATPUŞWHEAT	362	49
RGIRPAINVGLSVSRVG	PEAMIFIG	302	49
SGVRPAINAGLSVSRVG	AUPASEACHE	351	49
SGVRPAINAGLSVSRVG	ATPASIALS	116	45
LGIYPAVDPLDSTSRML	ATPZSMATZE	423	45
LGIYPAVDPLDSTSRML	ATPZONICIE	338	45
KGIYPAVDPLGSTSTHL	ATED ATED CT	396	49
KGIRPAINVGLSVSKVG	ATTATION	202	45
LGIYPAVDPLDSTSKIM	λτοάζηιμαν	392	45
LGIYPAVDPLDSTSKIM	VLLDAIIOPERV MILDAIIOPERV	392	45
LGIYPAVDPLDSTSKIM	UIMATDETE	402	45
LGIYPAVDPLDSTSKIM	TOTALL TO	392	45
LGIYPAVDPLDSTSRIM	DURCOM	338	45
	2 11 2 2 2 11		

MGIYPAVDPLASTSRAL

		_	
MGIYPAVDPLVSTSRAL	ATPB\$THEP3	338	45
KGIYPAVDPLDSTSTML	PWNTB	359	45
AGIRPAVNPGISVSRVG	PWECA	362	60
AGIRPAVNPGISVSRVG	ATPA\$ECOLI	362	60
MGIYPAVDPLASTSRAL	<pre> BFIATPD</pre>	335	45
KGIYPAVDPLDSTSTML	ATPB\$SYNP6	349	45
KGIYPAVDPLDSTSTML	PWSPB	359	45
LGIYPAVDPLDSTSRLM	ATPB\$RHOBL	342	45
AGIRPAVNPGISVSRVG	ATPA\$ANASP	353	49
LGIYPAVDPLDSTSRIM	PWBOB	342	45
LGIYPAVDPLDSTSRQL	!F1AB	329	45
AGVRPAVDPGISVSRVG	ATPA\$VIBAL	362	60
OGIRPAVNTGLSVSRVG	ATPA\$RHOBL	361	49
SGLRPAINVGISVSRVG	ATPA\$SYNP6	352	49
LGIYPAVDPLESTSRIL	ATPB\$BACFR	368	45
AGIRPAINVGISVSRVG	PWLVA	352	49
SGIRPAINVGISVSRVG	PWNTA	352	49
AGIRPAINVGISVSRVG	PWRZA	352	49
AGIRPAINVGISVSRVG	ATPA\$MAIZE	352	49
AGIRPAINVGISVSRVG	ATPA\$PEA	352	49
AGIRPAINVGISVSRVG	atpa\$wheat	352	49
LGIYPAVDPLDSTSRAL	ATPB\$RHORU	338	45
LGIYPAVDPLDSTSROL	PWECB	329	45
KGIRPAVNAGSSVSRVG	SYNMTATPAA	359	49
LGIYPAVDPLDSTSRIL	ATPB\$CYTLY	367	45
AGIRPAINVGISVSRVG	ATPA\$SPIOL	352	49
MGLYPAIDPLDSTSRML	ATPB\$VIBAL	335	45
VCTYPPINVLMSLSRLM	MTPB\$SULAC	340	47
PCTYPPINVLPSLSRLM	VAT2\$NEUCR	361	47
POTYPPINVLPSLSRLM	VAT2\$ARATH	368	47
POTYPPINVLPSLSRIM	VAT2\$HUMAN	378	47
ADUVDAINWIOGFSAVV	MTPA\$SULAC	423	52
VOTVPPINVLPSLSRLM	VAT2\$YEAST	367	47
VOT			

C.3 NAKATPASE

COMPOUND(9) D.N. PERKINS 15/10/1991 E1-E2 SODIUM/POTASSIUM ATPASE

1. SHULL, G.E., LINGRELL, S.B. Molecular cloning of the rat stomach ATPase. JOURNAL OF BIOLOGICAL CHEMISTRY 261 pp16788 (1986)

2.Sweadner, K.J., Isozymes of the Na⁺/K⁺-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 988 pp185

3. WALKER, J.E., SRASTE, M., RUNSWICK, M.J., GAY, N.J. Distantly related sequences in the alpha and beta subunits of ATP synthase, myosin, kinases and other ATP requiring enzymes and a common nucleotide binding fold. EMBO JOURNAL 1 pp945 (1982)

This compound feature describes the alpha chains of the E1-E2 sodium/potassium transporting ATPases which catalyse the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. All of these proteins are located in the cell membrane and appear to consist of seven or eight transmembrane helices. The ion transport that these proteins mediate creates the electrochemical gradient which provides the energy for the active transport of various nutrients. Potassium transporting ATPases are also responsible for the production of acid in the stomach as protons and potassium ions are exchanged [1]. The Na-K ATPase consists of two subunits, alpha and beta [2]. The alpha chains contain the ATP binding site and are commonly referred to as the catalytic subunit.

Eight sequences were initially aligned and from this nine motifs were selected. Motif four corresponds to the phosphorylation site while motif five describes the ATP binding site [3]. The other seven motifs were derived from the putative transmembrane helices which were located using a consensus hydropathy plot of the alignment. Two iterations were required until convergence, at which point all the appropriate sequences in the OWL database were found to match with all nine features. One sequence, database code B27180 (a rat sodium/potassium transporting ATPase), was shown to match with only eight of the motifs. This sequence lacks the seventh probable trans-membrane helix adjacent to the C terminal (motif nine). In the four feature column two codes are found, !SPDOC and SPDON. These two codes describe the C and N terminus of the sodium/potassium transporting ATPase from ovine kidney. !SPDOC matches with motifs one to four, while !SPDON shows motifs six to nine. This family of proteins is a subset of the E1-E2 cation transporting atpases, members of this super family were seen to match with the two features (motifs four and five) derived from the ATP binding domain and the phosphorylation site. Also shown to match with two features (motifs two and three) was the sequence JU0341 (rat intercellular adhesion molecule-1). This protein is not related to the E1-E2 atpases and can be considered as noise.

SUMMARY INFORMATION

21	codes	involving	9	elements
1	codes	involving	8	elements
0	codes	involving	7	elements
0	codes	involving	6	elements
0	codes	involving	5	elements
2	codes	involving	4	elements
0	codes	involving	3	elements
24	codes	involving	2	elements

COMP	OUND	FEATU	RE IN	IDEX							
. .	• •	••	0.1	21	21	21	21	21	21		
91	21	21	21	21	21 1	21	1	1	0		
81	1	. 1	· 1	0	0	ō	Ō	0	0 0		
71	0	0	0	ň	õ	Õ.	Ő	Õ	0		
61	0	0	0	Õ	õ	0	Ő	Ō	0		
51	U. 1	. 1	1	1	ō	1	1	1	1		
	<u> </u>	0	Ô	0	0	0	0	0	0		
21	ñ	1	1.	23	23	0	0	0	0		
+-										•	
1	1	2	3	4	5	6	7	8	9		
True	posit	:ives:							2 (71) 1 1	1 A	
ATN1	\$RAT		ATN	1\$HOR	SE	ATN:	35FIG NTDN 71	5	HIM	ATTOVIA	
ATN1	\$SHE	EP	ATN	3\$HUM	AN	N TTNI	31582. 3883m	5	234/	17A	
ATN1	.\$PIG	- 77	A27	180		AIN. ATN	ASTOR	~a	ATN	ASDROME	
ATNI	SCHIC	-K	ATN	2\$RAT		ATH	ASPIG	~	ATH	ASHUMAN	
ATNA	CONT.	5A.	HUM	ATPGG							
ATHA	19VA1										
True B271	posit 180	ives:	cod	es in	volvi	ng ei	ght e	lemen	ts		
5 M 11	ילפאת		~	ODTIM		SSIUM	ATPA	SE AL	PHA-1	CHAIN - Ra	at
AINI	SHOR	SE	с 0			SSIUM	ATPA	SE AL	PHA-1	CHAIN - Ho	orse
AIN	SPIG		5			SSIUM	ATPA	SE AL	PHA-3	CHAIN - Pi	ig
AIN-	SHUM	AN	S		I/POTZ	ASSIUM	I ATPA	SE AL	PHA-1	CHAIN - Hu	ıman
ATN:	1SSHE	EP	S	ODIUM	I/POT	ASSIUM	і атра	SE AL	PHA-1	CHAIN - Sh	neep
ΔTN	3 SHUM	AN	S	ODIUN	I/POT	ASSIUM	I ATPA	SE AL	JPHA-3	CHAIN - Hu	ıman
HIM	ATPA2	3	N	la+, K+	- AT	Pase C	ataly	tic s	subuni	t - Homo se	apiens
HUM	ATPK1	4	L	ocus	HUMA'	PPK14	1047	bp -	Homo	sapiens	
ATN	1\$PIG		S	ODIUN	1/ POT	ASSIUN	1 ATPA	SE AI	JPHA-1	CHAIN - P	lg Deb
A27	180		N	la+/K+	-tra	nsport	ing A	TPase	e alph	a-1 chain ·	- Rat
ATN	3\$RAT		S	SODIUN	1/ POT.	ASSIU	A ATPA	SE AI	JPHA-3	G CHAIN - R	ac Uuman
A34	474		M	la+/K+	-tra	nsport	ting A	TPase	e alpr	na chain - 1	numan biskop
ATN	1\$CHI	CK	S	SODIUN	1/POT	ASSIU	M ATP	ASE AI	LPHA-1	CHAIN = C	at
ATN	2\$RAT	1	S	SODIU	1/POT	ASSIU	M ATP	ASE AI	LPHA-4	Electric	a. Rav
ATN	ASTOR	CA	S	SODIU	1/POT	ASSIU	M ATP	ASE A	LPHA -	- Elecciic	it Flv
ATN	AŞDRO	ME	5	SODIU	1/POT	ASSIU	M ATP	ASE A	LFRA (I DUX	_ Brine ehr	imp
ATN	AŞART	SA	-	SODIU	1/POT	ASSIU	M ATP	ASE A	ырпа . ио.	- prime sur	****E*
HUM	ATPGG	;	H	IUMATI	PGG (H+ +	K+)-A'	TLAZ6	ם – הטו 1/ זאד ג	ASTRIC) -	Pig
ATH	A\$PIC	;]	POTAS	SIUM	ATPAS	E ALP	па сп. из си	ати (С ати (С	GASTRIC) -	Human
ATH	A\$HU№	IAN	1	POTAS	STOW	ATPAS	E ALP	па сп из си	ATN ((GASTRIC) -	Rat
ATH	IA\$RA]	5]	POTAS	SIUM	ATPAS	E ALP	па сп атрае	a al ni	ha-2 chain	- Rat
B27	180		1	Na+/K	+-cra	nspor	ting .	ni ras	a arbi		

SCAN HISTORY

OWL12_1 2 50 NSINGLE

INITIAL MOTIF-SETS

ATPASE1			
15			
motif 1		63	93
LLWIGAILCFLAYGI	ATNJSHUMAN	101	101
LLWIGALLCFLAYGI	DWCHNA	101	101
LLWIGAVLCFLAYGI	A WORKA	103	103
LLWTGAILCFLAYGI	AINASIONCA ATNI SCHICK	101	101
LLWIGSLLCFLAYGI	ATNASDROME	119	119
LLWIGAILCFVAYSI	ATNAŠARTSA	80	80
LLWIGSILCFIAYTM LMWVAAAICLIAFAI	ATHA\$PIG	113	113
ATPASE2			
21			
motif 2	5 (T) 12 C 111 15 4 5 KT	120	12
LYLGIVLAAVVIITGCFSYYQ	MAMUNÇ ENTA TA do Civita	120	12
LYLGIVLAAVVIVTGCFSYYQ	DWCHMA	128	12
LYLGVVLSAVVIITGCFSYYQ	δωνιστικά Στιστά	130	12
LYLGVVLSTVVIITGCFSYYQ	ATNAS TORCA ATNI SCHTCK	128	12
LYLGVVLAAVVIITGCFSYYQ	ATNISCHICK	146	12
LYLGIVLSAVVIVTGVFSYYQ	ATNASOROMI	107	12
LYLGLALLFVVIMIGCFAYYQ LYLALALIAVVVVTGCFGYYQ	ATHASPIG	140	12
ATPASE3			
23			
motif 2			
LITGVAVFLGVSFFILSLILGYT	ATN3 SHUMAN	284	143
LITGVAVFLGVSFFVLSLILGYS	ATN2\$RAT	292	143
TITGVAVFLGVSFFILSLILEYT	PWSHNA	292	143
TITGVAVFLGVSFFILSLILGYT	ATNASTORCA	294	143
LITGVAVFLGVSFFILSLILEYT	ATN1\$CHICK	292	143
LITGVAVFLGVTFFVIAFILGYH	ATNASDROME	309	142
IITAMAVSLAAVFAVISFLYGYT	ATNAŞARTSA	271	143
IIAGLAILFGATFFIVAMCIGYT	ATHASPIG	304	143
ATPASE4			
22			
	ATN3 SHUMAN	357	50
	ATN2\$RAT	365	50
LGSTSTICSDKTGTLTONRMTV	PWSHNA	365	50
LGSTSTICSDATGTLTONEMTV	ATNASTORCA	367	50
LGSTSTICSDRTGTLTONRMTV	ATN1SCHICK	365	50
LGSTSTICSDRTGTLTONRMTV	ATNASDROME	382	50
LGSTSTICSDKTGTLTONRMTV	ATNASARTSA	344	50
LGSTSVICSDKTGTLTQNRMTV	ATHASPIG	377	50
ATPASE5			
19			
motif 5		105	116
LVMKGAPERILDRCSTILL	ATN3 SHUMAN	470	115
LVMKGAPERILDRCSTILV	ATNZŞKAT	504	116
LVMKGAPERILDRCSSILI	PWSHNA	203	115
LVMKGAPERILDRCSTILL	ATNASTORCA	504	116
LVMKGAPERILDRCDSILI	ATNISCHICK	503	116
LVMKGAPERILERCSTIFI	ATNAŞDROME	520	

·		480	114
LVMKGAPERILERCSTILI	ATNASARISA	515	116
LVMKGAPERVLERCSSILI	AINASLIG		
ATPASE6			
22			
motif 6		777	263
ITPFLLFIMANIPLPLGTITIL	ATNISHUMAN	701	263
ITPFLLFIIANIPLPLGTVTIL	ATNZSRAT	704	263
ITPFLIFIIANIPLPLGTVTIL	PWSHINA	705	263
ITPFLVFIIANVPLPLGTVTIL	ATNASTORCA	705	263
ITPFLIFIIANIPLPLGTCTIL	ATNISCHICK	100	203
ISPFLASILCDIPLPLGTVTIL	ATNASDROME	702	203
LSPFLMYILFDLPLAIGTVTIL	ATNASARTSA	702	203
LTPYLIYITVSVPLPLGCITIL	ATHAŞPIG	/9/	205
ATPASE7			
21			
motif 7	3 m 10 4	044	45
YGQIGMIQALGGFFSYFVILA	ATN3 SHUMAN	844	45
YGQIGMIQALGGFFTYFVILA	ATN2\$RAT	851	45
YGQIGMIQALGGFFTYFVIMA	PWSHNA	852	45
YGQIGMIQALGGFFSYFVILA	ATNASTORCA	853	45
YGQIGMIQALGGFFTYFVIMA	ATN1SCHICK	852	45
YGQIGMIQAAAGFFVYFVIMA	ATNASDROME	869	45
YGQIGVMQAFGGFFTYFVIMG	ATNAŞARTSA	827	43
YFQIGAIQSFAGFTDYFTAMA	ATHAŞPIG	864	45
ATPASE8			
21			
motif 8			
FTCHTAFFVSIVVVQWADLII	ATN3 SHUMAN	906	41
FTCHTAFFASIVVVQWADLII	ATN2 SRAT	913	41
FTCHTAFFVSIVVVQWADLVI	PWSHNA	914	41
YTCHTSFFVSIVIVQWADLII	ATNASTORCA	915	41
FTCHTAFFVSIVVVQWADLII	ATN1\$CHICK	914	41
VTCHTAFFISIVVVQWADLII	ATNASDROME	931	41
VTCHTAFFISIVIVQWTDLII	ATNASARTSA	889	41
YTCYTVFFISIEMCQIADVLI	ATHA\$PIG	926	41
ATPASE9			
25			
motif 9		040	13
KNKILIFGLFEETALAAFLSYCPGM	ATNJSHUMAN	047	13
KNKILIFGLLEETALAAFLSYCPGM	ATNZSKAT	049	13
KNKILIFGLFEETALAAFLSYCPGM	PWSHNA	040	13
KNKILIFGLFEETALAAFLSYTPGT	ATNASTORCA	947	13
KNKILIFGLFEETALAAFLSYCPGM	ATNISCHICK	940	13
RNWALNFGLVFETVLAAFLSYCPGM	ATNASDROME	202	12
KNGTLNFALVFETCVAAFLSYTPGM	ATNAŞARTSA	923	14
RNRILVIAIVFQVCIGCFLCYCPGM	ATHASPIG	961	τ
FINAL MOTIF-SETS			
ATPASE1			
15			
motif 1	ATN1SHORSE	101	101
LLWIGAILCFLAYGI	–		

	ATN1SPIG	101	101
LLWIGAILCFLAYGI	ATN1SRAT	103	103
	ATN3 SHUMAN	93	93
	ATN3SPIG	101	101
	ATN3 SRAT	93	93
	HUMATPA23	93	93
	HUMATPK14	95	95
	A27180	103	103
	A34474	101	101
LLWIGALLCFLAIGI	ATN1 SHUMAN	103	103
LINICALLOFIAISI	ATN2\$RAT	101	101
LIWIGALLCFLAIGT	PWSHNA	101	101
LLWTGATLCFLAYGI	ATNA\$TORCA	103	103
LIWIGALLCEVAYST	ATNA\$DROME	119	119
LIWIGSLICFLAYGI	ATN1\$CHICK	101	101
LIWIGSTLCFIAYTM	ATNA\$ARTSA	80	80
LMWVAAATCLIAFAI	ATHA\$PIG	113	113
LMWVAAATCLIAFAI	ATHA\$RAT	112	112
LMWVAAATCLIAFAI	A35292	114	114
ATPASE2			
21			
motif 2		100	
LYLGVVLSAVVIITGCFSYYQ	ATN1SHORSE	128	12
LYLGVVLSAVVIITGCFSYYQ	ATNIŞPIG	128	12
LYLGVVLSAVVIITGCFSYYQ	ATN1ŞRAT	130	12
LYLGIVLAAVVIITGCFSYYQ	ATNSSHUMAN	120	12
LYLGVVLSAVVIITGCFSYYQ	ATNSSPIG	120	12
LYLGIVLAAVVIITGCFSYYQ	ATNSSRAT	120	12
LYLGIVLAAVVIITGCFSYYQ	HUMATPAZS	120	12
LYLGIVLAAVVIITGCFSYYQ	HUMATPAIA	120	12
LYLGVVLSAVVIITGCFSVVQ	A2/100	128	10
LYLGVVLAAVVIVTGCFSYYQ		130	12
LYLGVVLSAVVIITGCFSYYQ	ATNISHUMAN	128	12
LYLGIVLAAVVIVTGCFSYYQ	AINZONAL	128	12
LYLGVVLSAVVIITGCFSYYQ		130	12
LYLGVVLSTVVIITGCFSYYQ	ATINASIONE	146	12
LYLGIVLSAVVIVTGVFSYYQ	ATNASOROME	128	12
LYLGVVLAAVVIITGCFSYYQ	ATNISCHICK	107	12
LYLGLALLFVVIMTGCFAYYQ	ATNASARISA	140	12
LYLALALIAVVVVTGCFGYYQ	ATTACTIC	139	12
LYLALALIAVVVVTGCFGYYQ	A10457041	141	12
LYLAIALIAVVVVIGCFGYYQ	A) JUJE		
2002 CF3			
ATPASES			
25 motif 3			
MOULL J TITCUAVELGVIETILSLILEYT	ATN1 \$HORSE	292	143
TTEVAVELOVSFFILSLILEYT	ATN1\$PIG	292	143
I TTOUNVELOVSFFILSLILEYT	ATN1\$RAT	294	143
I TTOWNYFLOVSFFILSLILGYT	ATN3 \$HUMAN	284	143
TTOVAVELOVSFFILSLILEYT	ATN3\$PIG	292	143
I TTEVAVELOVSFFILSLILGYT	ATN3 \$RAT	284	143
I TTOVAVELOVSFFILSLILGYT	HUMATPA23	284	143
I TTOUNUFLOUSFFILSLILGYT	HUMATPK14	286	143
LITCUAVELOVSFFILSLILEYT	A27180	294	143
LITGVAVELOVSFEVLSLILGYS	A34474	292	143

IITGVAVFLGVSFFILSLILEYT	ATN1 \$HUMAN	294	143
LITGVAVFLGVSFFVLSLILGYS	ATN2\$RAT	292	143
IITGVAVFLGVSFFILSLILEYT	PWSHNA	292	143
IITGVAVFLGVSFFILSLILGYT	ATNASTORCA	294	140
LITGVAVFLGVTFFVIAFILGYH	ATNA\$DROME	309	142
LITGVAVFLGVSFFILSLILEYT	ATN1\$CHICK	292	140
IITAMAVSLAAVFAVISFLYGYT	ATNASARTSA	271	145
IIAGLAILFGATFFIVAMCIGYT	ATHASPIG	304	140
IIAGLAILFGATFFVVAMCIGYT	ATHAŞRAT	303	142
IIAGLAILFGATFFIVAMCIGYT	A35292	305	747
ATPASE4			
22			
motif 4		265	F 0
LGSTSTICSDKTGTLTQNRMTV	ATNISHORSE	305	50
LGSTSTICSDKTGTLTQNRMTV	ATNISPIG AMMIADAM	305	50
LGSTSTICSDKTGTLTQNRMTV		207	50
LGSTSTICSDKTGTLTQNRMTV		365	50
LGSTSTICSDKTGTLTQNRMTV	AINSSPIG	357	50
LGSTSTICSDKIGTLTQNRMTV	HIMATDA23	357	50
LGSTSTICSDKIGTLTQNRMTV	HIMATOK14	359	50
LGSTSTICSDRIGTLTQNRMTV	A27180	367	50
LGSTSTICSDATGTLTQNRMTV	A34474	365	50
LGSTSTICSDKIGILIQNRMTV	ATN1 SHUMAN	367	50
LGSISTICSDRIGTLTQNRMTV	ATN2\$RAT	365	50
	PWSHNA	365	50
COTSTICSDETGTLTONRMIN	ATNASTORCA	367	50
LGSID COLLEGICATION COLLEGICATICATICATICATICATICATICATICATICATICAT	ATNA\$DROME	382	50
COTSTICSDETGTLTONEMTY	ATN1\$CHICK	365	50
LGSTSTICSDKTGTLTONRMTV	ATNAŞARTSA	344	50
LOSTSVICSDKTGTLTONRMTV	ATHA\$PIG	377	50
LGSTSVICSDKTGTLTQNRMTV	ATHA\$RAT	376	50
LGSTSVICSDKTGTLTQNRMTV	A35292	378	50
ATPASE5			
19 			
TARCAPERILDRCSSILL	ATN1\$HORSE	503	116
LYMKGAPERILDRCSSILI	ATN1\$PIG	503	116
INMKGAPERILDRCSSILL	ATN1\$RAT	505	116
LYMKGAPERILDRCSTILL	ATN3 \$HUMAN	495	116
LVMKGAPERILDRCTSILI	ATN3\$PIG	503	116
LVMKGAPERILDRCATILL	ATN3 \$RAT	495	116
LVMKGAPERILDRCSTILL	HUMATPA23	495	116
LVMKGAPERILDRCSTILL	HUMATPK14	497	116
LVMKGAPERILDRCSSILL	A27180	505	116
LVMKGAPERILDRCSTILV	A34474	502	115
LVMKGAPERILDRCSSILL	ATN1 \$HUMAN	505	110
LVMKGAPERILDRCSTILV	ATN2\$RAT	502	112
LVMKGAPERILDRCSSILI	PWSHNA	503	115
LVMKGAPERILDRCSTILL	ATNASTORCA	504	116
LVMKGAPERILERCSTIFI	ATNASDROME	520	116
LVMKGAPERILDRCDSILI	ATN1\$CHICK	503	114
LVMKGAPERILERCSTILI	ATNAŞARTSA	480 E1E	116
LVMKGAPERVLERCSSILI	ATHASPIG	213	

		F 1 <i>A</i>	116
LVMKGAPERVLERCSSILI	ATHASRAT	514	116
IVMKGAPERVLERCSSIII	A35292	510	
ATPASE6			
22			
motif 6			262
ITPFLIFIIANIPLPLGTVTIL	ATN1\$HORSE	785	263
ITPFLIFIIANIPLPLGTVTIL	ATN1\$PIG	785	263
ITPFLIFIIANIPLPLGTVTIL	atn1\$rat	787	263
ITPFLLFIMANIPLPLGTITIL	atn3 \$human	777	263
ITPFLIFIIANIPLPLGTVTIL	ATN3\$PIG	785	263
ITPFLLFIMANIPLPLGTITIL	atn3\$rat	777	263
ITPFLLFIMANIPLPLGTITIL	HUMATPA23	777	263
ITPFLLFIMANIPLPLGTITIL	HUMATPK14	779	263
ITPFLIFIIANIPLPLGTVTIL	A27180	787	263
ITPFLLFIIANIPLPLGTVTIL	A34474	784	263
ITPFLIFIIANIPLPLGTVTIL	atn1 \$human	787	263
ITPFLLFIIANIPLPLGTVTIL	ATN2\$RAT	784	263
ITPFLIFIIANIPLPLGTVTIL	PWSHNA	785	263
ITPFLVFIIANVPLPLGTVTIL	ATNA\$TORCA	786	263
1SPFLASILCDIPLPLGTVTIL	ATNA\$DROME	802	263
TTPFLIFIIANIPLPLGTCTTL	ATN1\$CHICK	785	263
LSPFLMYILFDLPLAIGTVTTL	ATNA\$ARTSA	762	263
T.TPYLIYITVSVPLPLGCTTTI	ATHA\$PIG	797	263
LTPYLIYITVSVPLPLGCTTTI.	ATHA\$RAT	796	263
LTPYLIYITVSVPLPLGCITIL	A35292	798	263
ATPASE7			
21			
motif 7			
YGOIGMIQALGGFFTYFVILA	ATN1\$HORSE	852	45
YGOIGMIQALGGFFTYFVILA	ATN1\$PIG	852	45
YGOIGMIQALGGFFTYFVILA	ATN1 SRAT	854	45
VGOIGMIQALGGFFSYFVILA	ATN3 \$HUMAN	844	45
VGOIGMIQALGGFFTYFVILA	ATN3\$PIG	852	45
VGOIGMIQALGGFFSYFVILA	ATN3 \$RAT	844	45
VGOIGMIQALGGFFSYFVILA	HUMATPA23	844	45
VCOIGMIQALGGFFSYFVILA	HUMATPK14	846	45
VCOTGMIOALGGFFTYFVILA	A27180	854	45
VCOLGMIOALGGFFTYFVILA	A34474	851	45
VCOIGMIOALGGFFTYFVILA	atn1\$human	854	45
VCOIGMIOALGGFFTYFVILA	ATN2\$RAT	851	45
VCOIGMIOALGGFFTYFVIMA	PWSHNA	852	45
VCOIGMIOALGGFFSYFVILA	ATNASTORCA	853	45
YGOIGHIQAAAGFFVYFVIMA	ATNA\$DROME	869	45
YCOICMICALGGFFTYFVIMA	ATN1\$CHICK	852	45
YGQIGHIQ	ATNA\$ARTSA	827	43
VTOICALOSFAGETDYFTAMA	ATHASPIG	864	45
YFOIGAIOSFAGFADYFTAMA	ATHA\$RAT	863	45
YFQIGAIQSFAGFTDYFTAMA	A35292	865	45
ATPASE8			
21			
motif 8			∆1
FTCHTAFFVSIVVVQWADLVI	ATN1 SHORSE	914	41
FTCHTPFFVTIVVVQWADLVI	ATN1SPIG	914	41
FUCUURA DEVICE TARAJOWADLVI	atn1\$rat	916	

FTCHTAFFVSIVVVOWADLII	ATN3 \$HUMAN	906	41
FTCHTAFFVSIVVVQWADLVI	ATN3\$PIG	914	41
FTFHTAFFVSIVVVOWADLII	ATN3\$RAT	906	41
FTCHTAFFVSIVVVOWADLII	HUMATPA23	906	41
FTCHTAFFVSIVVVQWADLII	HUMATPK14	908	41
FTCHTAFFVSIVVVQWADLVI	A27180	916	41
FTCHTAFFASIVVVOWADLII	A34474	913	41
FTCHTAFFVSIVVVQWADLVI	ATN1 \$HUMAN	916	41
FTCHTAFFASIVVVQWADLII	ATN2\$RAT	913	41
FTCHTAFFVSIVVVQWADLVI	PWSHNA	914	41
YTCHTSFFVSIVIVQWADLII	ATNASTORCA	915	41
YTCHTAFFISIVVVQWADLII	ATNA\$DROME	931	41
FTCHTAFFVSIVVVQWADLII	ATN1\$CHICK	914	41
YTCHTAFFISIVIVQWTDLII	ATNA\$ARTSA	889	41
YTCYTVFFISIEMCQIADVLI	ATHA\$PIG	926	41
YTCYTVFFISIEMCQIADVLI	ATHA\$RAT	925	41
YTCYTVFFISIEVCQIADVLI	A35292	927	41
ATPASE9			
25			
motif 9		0.4.0	
KNKILIFGLFEETALAAFLSYCPGM	ATNISHORSE	948	13
KNKILIFGLFEETALAAFLSYCPGM	ATN1\$PIG	948	13
KNKILIFGLFEETALAAFLSYCPGM	ATN1ŞRAT	950	13
KNKILIFGLFEETALAAFLSYCPGM	ATN3 SHUMAN	940	13
KNKILIFGLFEETALAAFLSYCPGM	ATN3SPIG	948	13
KNKILIFGLFEETALAAFLSYCPGM	ATN3SRAT	940	13
KNKILIFGLFEETALAAFLSYCPGM	HUMATPAZ3	940	13
KNKILIFGLFEETALAAFLSYCPGM	HUMATPK14	942	13
KNKILIFGLFEETALAAFLSYCPGM	A27180	950	13
KNKILIFGLLEETALAAFLSYCPGM	A344/4	947	13
KNKILIFGLFEETALAAFLSYCPGM	ATNISHUMAN	950	13
KNKILIFGLLEETALAAFLSYCPGM	ATN2 SRAT	947	13
KNKILIFGLFEETALAAFLSYCPGM	PWSHNA	948	13
KNKILIFGLFEETALAAFLSYTPGT	ATNASTORCA	949	13
RNWALNFGLVFETVLAAFLSYCPGM	ATNASDROME	965	13
KNKILIFGLFEETALAAFLSYCPGM	ATN1SCHICK	948	13
KNGTLNFALVFETCVAAFLSYTPGM	ATNAŞARTSA	923	1.4
RNRILVIAIVFQVCIGCFLCYCPGM	ATHASPIG	961	14
RNRILVIAIVFQVCIGCFLCYCPGM	ATHASRAT	960	14

C.4 ELONGATION COMPOUND(5) D.N. PERKINS 1/6/1991 ELONGATION FACTORS

RNKILVIAIVFQVCIGCFLCYCPGM

1. LEBLANC, D.J., LEE, L.N., TITMAS, B.M., SMITH, C.J., TENOVER, F.C. Nucleotide sequence analysis of tetracycline resistance gene tetO from Streptococcus mutans DLS. JOURNAL OF BACTERIOLOGY 170 3618-3626 (1988)

A35292 962

14

2. DEVER, T.E., GLYNIAS, M.J., MERRICK, W.C., GTP binding domain: three consensus sequence elements with distinct spacing. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE USA 84 1814-1818 (1987) 3. BAULDAUF, S.L., MANHART, J.R., PALMER, J.D. Differrent fates of the chloroplast tufa gene following its transfer to the nucleus in Green algae.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE USA 87 pp5317-5321 (1990)

This family of proteins consists of elongation factors which promote the GTP-dependant binding of aminoacyl tRNA to the A site of ribosomes during protein biosynthesis and catalyse the translocation of the protein chain being synthesised from the A site of the ribosome to the P site. All of these proteins are relatively similar in the vicinity of the C-terminus and a composite discriminator from this region has been assembled. Other proteins which are highly homologous to elongation factors are also show to match with all five features including the nodulation Q protein from Rhizobium melioti, bacterial tetracycline resistance proteins [1] and the omnipotent supressor protein 2 from yeast

An alignment of twelve sequences was prepared and from this five motifs were selected. Motifs one, three, and five correspond to the three GTP binding concensus segments [2] while the other motifs were selected because of their high homology across the family. Convergence was reached after three iterations when all the GTP binding elongation factors present in the OWL database were shown to match with all the motifs. One elongation factor was found to match with only four of the features. This sequence, database code EFTU\$COLOB, from Coleochaete orbicularis, is quite different from the other elongation factors and is probably no longer functional [3]. Also found to match with four features were initiation factors, all of these proteins lack motif two. A single initiation factor was found in the three feature column and two fragments of elongation factors were found to match with only two motifs (database codes EZEC195 and !EFAS). Of the other sequences in the two features column, twenty one are GTP binding proteins, one is an ATP binding protein and the other sequences are unrelated and constitute noise.

SUMM	ARY	INFOR	ATIO	N		
68 7 1 35	code code code code	es inv es inv es inv es inv	volvin volvin volvin volvin	ng 5 ng 4 ng 3 ng 2	elem elem elem	ents ents ents ents
COMPO		FEATU	JRE II	NDEX		
51	68	68	68	68	68	
41	7	0	7	7	7	
31	1	0	1	1	0	
21	9	19	13	13	16	_
	1	2	3	4	5	-

True positives: codes showing seven motifs EFTU\$COLOB

			4	had to be		
EFSS1A	Elongation	factor	l alpha (nain - j	Brine :	shrimp
EF12\$DROME	ELONGATION	FACTOR	1-ALPHA -	Fruit	fly	
EF1ASARTSA	ELONGATION	FACTOR	1-ALPHA -	Brine	shrimp	
EF1A\$APIME	ELONGATION	FACTOR	1-ALPHA -	- Honeyb	ee	
EF1A\$DICDI	ELONGATION	FACTOR	1-ALPHA -	• Slime :	mold	
EF1A\$HUMAN	ELONGATION	FACTOR	1-ALPHA -	- Human		
A32684	Elongation	factor	1 alpha d	chain -)	Rabbit	
FFBY1A	Elongation	factor	1-alpha <i>I</i>	A - Yeas	t	
FF1A\$CANAL	ELONGATION	FACTOR	1-ALPHA -	- Yeast		d from
FF10\$XENLA	ELONGATION	FACTOR	1-ALPHA ·	- Africa	n Clawe	a rrog
FF11\$DROME	ELONGATION	FACTOR	1-ALPHA ·	- Fruit	fly	
FF11SRHIRA	ELONGATION	FACTOR	1-ALPHA ·	- Rhizom	ucor ra	acemosus
EF12SRHIRA	ELONGATION	FACTOR	1-ALPHA ·	- Rhizom	ucor ra	acemosus
EF13SRHIRA	ELONGATION	FACTOR	1-ALPHA	- Rhizom	ucor ra	acemosus
c08058	Elongation	factor	- Mucor	circinel	loides	
DE12SXENLA	ELONGATION	FACTOR	1-ALPHA	- Africa	n claw	ed frog
EF12QUE	ELONGATION	FACTOR	1-ALPHA	- Africa	n claw	ed frog
EFISCHER	Elongation	factor	-1 alpha-0	chain -	Xenopu	s laevis
XELEP ZENLA	ELONGATION	FACTOR	1-ALPHA	- Africa	n claw	ed frog
EFILACTHECE	ELONGATION	FACTOR	1-ALPHA	- Thermo	coccus	celer
EFIASIMOUSE	ELONGATION	FACTOR	1-ALPHA	- Mouse		
EFIASHOUL	ELONGATION	FACTOR	1-ALPHA	- Mouse-	ear cr	ess
EFIASAR	ELONGATION	FACTOR	TU - Hal	obacteri	um mar	ismortui
EFTUSHALL-	SHREF1A5 E	F-1 alp	ha - Arte	mia sali	na	
SHREFIND	ELONGATION	FACTOR	1-ALPHA	- Tomato)	
EFIASLICE	ELONGATION	FACTOR	1-ALPHA	- Eugler	na grac	ilis
EFIASEOGON	ELONGATION	FACTOR	TU - Ast	asia lor	nga	
EFTUSASILO	ELONGATION	FACTOR	- Sulfol	obus aci	idoc a ld	larius
EFIASSULAC	FLONGATION	FACTOR	TU - Met	hanococo	us var	nielii
EFTUŞMETVA	FLONGATION	FACTOR	TU - Mou	Se-ear (Tess	
EFTUŞARATH	ELONGATION	FACTOR	TU - Cva	nonhore	narado	xa
EFTU\$CYAPA	ELONGATION	factor	- Euglen	a ana ci	Jarauc Na chl	oroplast
EFEGT	ELONGAUTON	FACTOR		a yracı.		.01091000
EFTUŞANANI	ELONGATION	FACTOR		CYSTIS I	niquiar	13 :-b-matii
EFTU\$CHLRE	ELONGATION	FACIOR	10 - Chi	amydomo	nas rei	Innarucii

EFTUŞSPIPL	ELONGATION FACTOR TU - Spirulina platensis
EFTU\$THEMA	ELONGATION FACTOR TU - Thermotoga maritima
EFECT	Elongation factors Tu - Escherichia coll
EFTU\$THETH	ELONGATION FACTOR TU - Thermus aquaticus
TTHTUF	elongation factor Tu - Thermus thermophilus
EFTUŚMICLU	ELONGATION FACTOR TU - Micrococcus luteus
EFBYT	Elongation factor Tu, mitochondrial - Yeast
EFTUŚMYCGE	ELONGATION FACTOR TU - Mycoplasma genitalium
1ETU	ELONGATION FACTOR TU - Escherichia coli
EFTUŚMYCGA	ELONGATION FACTOR TU - Mycoplasma gallisepticum
EFGSECOLI	ELONGATION FACTOR G - Escherichia coli
A28513	Elongation factor G - Escherichia coli
TETM\$STRFA	TETRACYCLINE RESISTANCE - Streptococcus faecalis
EFG\$ANANI	ELONGATION FACTOR G (EF-G) - Anacystis nidulans
EFG\$MICLU	ELONGATION FACTOR G (EF-G) - Micrococcus luteus
EFG\$THETH	ELONGATION FACTOR G (EF-G) - Thermus aquaticus
TETOŚCAMJE	TETRACYCLINE RESISTANCE - Campylobacter jejuni
STATETOSM	Tetracycline-resistance - Staphylococcus mutans
TETM\$UREUR	TETRACYCLINE RESISTANCE - Ureaplasma urealyticum
STATETM	STATETM tetM - Staphylococcus aureus
EF2\$DICDI	ELONGATION FACTOR 2 (EF-2) - Slime mold
EFG\$SPIPL	ELONGATION FACTOR G (EF-G) - Spirulina platensis
EF2\$DROME	ELONGATION FACTOR 2 (EF-2) - Fruit fly
EF2\$HALHA	ELONGATION FACTOR 2 - Halobacterium halobium
EF2\$CRIGR	ELONGATION FACTOR 2 (EF-2) - Chinese hamster
EF2\$HUMAN	ELONGATION FACTOR 2 (EF-2) - Human
EF2\$MESAU	ELONGATION FACTOR 2 (EF-2) - Golden hamster
EF2\$RAT	ELONGATION FACTOR 2 (EF-2) - Rat
EF2SMETVA	ELONGATION FACTOR 2 - Methanococcus vannielii
MUSELF2PSA	pseudo-elongation factor 2 - Mus musculus
RVECLA	lepA protein - Escherichia coli
SUP2SYEAST	OMNIPOTENT SUPPRESSOR PROTEIN - Yeast
NODOSRHIME	NODULATION PROTEIN Q - Rhizobium meliloti
FFECSB	Elongation factor selB - Escherichia coli
FETUSCOLOB	ELONGATION FACTOR TU - Coleochaete orbicularis
SCAN HISTORY	
OWT.11 0 3 26	0 NSINGLE
TNITIAL MOTIF-SE	ETS
ET ONGATION1	
untif 1	
MUTCHVDSGKST	EFSS1A 9 9
NICTICHVDHGKTT	EFTU\$CHLRE 14 14
NTWICHVDSGKST	EF1A\$ARTSA 8 8
NIVVIGHVDUGKST	EF2\$HUMAN 21 21
MMSVTAHVDHGKST	EF2\$MESAU 21 21
NUCTICHUDHCKTT	1ETU 13 13
CI INITOMIDECKET	EF1A\$EUGGR 9 9
	BVECLA 6 6
NESTTURINGROT	EFECSB 2 2
	EFG\$SPIPL 12 12
NIGIAANIDAGATI	EFGSTHETH 14 14
NIGIAAHIDAGKIT	SUP2SYEAST 262 262

ELONGATION3			
11			
motif 3			
TIIDAPGHRDF	EFSS1A	88	11
TIIDAPGHRDF	EF1A\$ARTSA	87	11
AHVDCPGHADY	EFTU\$CHLRE	78	11
NLIDSPGHVDF	EF2\$HUMAN	101	27
NLIDSPGHVDF	EF2\$MESAU	101	27
AHVDCPGHADY	1ETU	62	11
TIIDAPGHRDF	EF1A\$EUGGR	88	11
NFIDTPGHVDF	BVECLA	74	16
GFIDVPGHEKF	EFECSB	54	12
NIIDTPGHVDF	EFG\$SPIPL	78	11
NIIDTPGHVDF	efg\$theth	80	11
TILDAPGHKMY	SUP2\$YEAST	341	11
ELONGATION4			
12			
motif 4			5
TGTSQADCAVLI	EFSSIA	104	5
TGTSQADCAVLI	EF1A\$ARTSA	103	5
TGAAQMDGAILV	EFTU\$CHLRE	94	
AALRVTDGALVV	EF2\$HUMAN	117	5
AALRVTDGALVV	EF2\$MESAU	117	5
TGAAOMDGAILV	1ETU	78	5
TGTSOADAAVLV	EF1A\$EUGGR	104	5
RSLAACEGALLV	BVECLA	90	5
AGVGGIDHALLV	EFECSB	70	5
RSMRVLDGVIAV	EFG\$SPIPL	94	5
RSMRVLDGAIVV	EFG\$THETH	96	5
GGASQADVGVLV	SUP2\$YEAST	357	5
ELONGATION5			
10			
motif 5			
LIVGVNKMDS	EFSS1A	148	32
LIVGVNKMDS	EF1A\$ARTSA	147	32
VVVFLNKEDQ	EFTU\$CHLRE	131	25

.

9			
motif 2	EECC1 A	68	45
ERGITIDIA	EFSSIA EE1 ACARTCA	67	45
ERGITIDIA	EF IASANISA FETTISCHI.BF	58	30
ARGITINTA	EF2SHUMAN	65	30
ERCITIKST	EF2SMESAU	65	30
AGITINTS	1ETU	42	15
ERCITIDIA	EF1A\$EUGGR	68	45
ERGINIKAQ	BVECLA	49	29
KRGMTIDLG	EFECSB	33	17
ERGITITAA	EFG\$SPIPL	58	32
ERGITITAA	EFG\$THETH	60	32
NDGKTIEVG	SUP2 SYEAST	321	45

ELONGATION2

			24
PVLMMNKMDR	EF2\$HUMAN	153	24
PVLMMNKMDR	EF2\$MESAU	153	24
IIVFLNKCDM	1ETU	115	20
MIVATNKFDD	EF1ASEUGGR	148	34
VVPVLNKIDL	BVECLA	126	24
LTVALTKADR	EFECSB	107	25
RIAFINKMDR	EFG\$SPIPL	130	24
RIAFANKMDK	EFGŞTHETH	132	24
MVVVVNKMDD	SUP2SYEAST	401	32
FINAL MOTIF-SETS	<u>.</u> · · ·		
ELONGATION1			
motif 1			
NUVICHUDSCKST	EFSS1A	9	9
NIVUGHUDSGKST	EF10SXENLA	9	9
NIVVIGHVDSGKST	EF11SDROME	9	9
NIVVIGHVDSGKST	EF12SDROME	9	9
NIVVIGHVDSGKST	EF12\$XENLA	9	9
NIVVIGHVDSGKST	EF13SXENLA	2	2
NIVVIGHVDSGKST	EF1ASAPIME	9	9
NTVVIGHVDSGKST	EF1ASARATH	9	9
NIVVIGHVDSGKST	EF1ASARTSA	8	8
NIVVIGHVDSGKST	EF1ASHUMAN	9	9
NIVVIGHVDSGKST	EF1ASMOUSE	9	9
NIVIGHVDSGKST	SHREF1A5	9	9
NIVIGHVDSCKST	A32684	4	4
NIVIGHUDACKST	FF1ASDICDI	12	12
NIVVIGHVDAGKSI	EFEGT	14	14
NIGIIGHVDHCKTT	EFBYT	50	50
NIGIIGHVDHCKTT	FFTUSANANI	14	14
NIGTIGHVDHGKTT	EFTUSARATH	81	81
NIGIIGNUDHGKII	FFTUSASTLO	14	14
NIGIIGNUDHCKTT	FFTUSCHLRE	14	14
NIGTIGHVDHGKTT	FFTUSCYAPA	14	14
NIGTIGHVDHCKTT	FETTISMICLU	14	14
NIGTIGHVDHCKTT	FETTISSPIPL	14	14
NIGTIGHVDAGATT	FF11SXENLA	12	12
NIVIIGHVDSGKSI	DELASTHECE	9	9
NIVFIGHVDAGKST	FFBY1A	9	9
NVVVIGHVDSGKST	DI DI DI DI DI DI DI DI DI DI DI DI DI D	9	9
NVVVIGHVDSGKSI	DE12SRHTRA	9	9
NVVVIGHVDSGKST	EF12SRHIRA	9	9
NVVVIGHVDSGKST	EF13SCANAL	9	9
NVVVIGHVDSGKST	S08058	9	9
NVVVIGHVDSGKST	FFECT	14	14
NVGTIGHVDHGKTT	DEDU	14	14
NVGTIGHVDHGKTT	EF105INDIN TUTHTUF	14	14
NVGTIGHVDHGKTT	1 571	13	13
NVGTIGHVDHGKTT		2	8
NLIVIGHVDHGKST	EFIA3SUDAC	0	ğ
SIVVIGHVDSGKST	ELINDIICEO	5 1 A	14
NIGTIGHIDHGKTT	ADLEDIYLY	Т.Я	
KIVVIGHVDSGKST	<u>XELEFIALA</u>	У П	, 7
NLAIIGHVDHGKST	EFTUŞRALMA	1	, 1
NMSVIAHVDHGKST	EF2SCRIGR	21	21
NMSVIAHVDHGKST	EF2\$DROME	21	21

.

NMSVIANUDHCKST EF2SHUANN 21 21 NMSVIANUDHCKST EF2SMESAU 21 21 NVGTIGHUDGKST EFTUSTHEMA 14 14 NVGTIGHUDGKT EFTUSTHEMA 14 14 NVGTIGHUDGKTT EFTUSMECCE 14 14 NVGTIGHUDGKTT EFTUSMETVA 9 9 NIGVLANUDACKTT TETMSSTRFA 5 5 NIGVLANUDACKTT TETMSUREUR 5 5 NIGVLANUDACKTT FASEUGR 9 9 NIGVLANUDACKTT EF1ASEUGR 9 1 NIGVLANUDACKTT FASEUGR 5 5 NIGULANUDACKTT EF1ASEUGR 5 5 NIGIAANUDACKTT EF2SHALHA 23 23 NIGIAANUDACKTT EFGSANANI 12 12 NIGIAANUDACKTT EFGSANANI 12 12 NIGIAANUDACKTT EFGSANANI 12 12 NIGIAANUDACKTT EFGSANANI 12 12 NIGIAANUDACKTT EF				
NMSVIANUDHGRST EF2SMESAU 21 21 NMSVIANUDHGRST EF2SRAT 21 21 NMSVIANUDHGRST EFTUSTNEWA 14 14 NMSVIANUDHGRT EFTUSTNEWA 14 14 NMSVIANUDHGRT EFTUSMETVA 9 9 NIGVLANUDAGRT TETMSSTRFA 5 5 NIGVLANUDAGRT TETMSSTRFA 5 5 NIGVLANUDAGRT TETMSUREUR 5 5 NIGVLANUDAGRT EF1ASEUGGR 9 9 NIAILAHUDAGRT EFTOSCAME 5 5 NIGUAHUDAGRT EFTOSCAME 5 5 NIGIAHUDAGRT EFTOSCAME 5 5 NIGIAHUDAGRT EFTOSCAMI 12 12 NIGIAAHUDAGRT EFGSANNI 12 12 NIGIAAHUDAGRT EFGSMICLU 10 10 NIGIAAHUDAGRT EFGSMICLU 10 11 NIGIAAHUDAGRT EFGSMICLU 10 11 NIGIAAHUDAGRT EFGSMICLU	NMSVIAHVDHGKST	EF2\$HUMAN	21	21
NMSVIANUDHERST EF2SRAT 21 21 NVGTIGHIDHGRST EFTUSTHEMA 14 14 NVGTIGHIDHGRT EFTUSTHEMA 14 14 NVGTIGHIDHGRT EFTUSTHEMA 14 14 NVGTIGHIDHGRT EFTUSTTERA 5 5 NIGVLANUDAGRTT TETMSUREUR 5 5 NIGVLANUDAGRTT TETMSUREUR 5 5 NIGVLANUDAGRTT EF2SHALHA 23 23 NLGILANUDAGRTT EF2SHALHA 23 23 NLGILANUDAGRTT TETOSCAMJE 5 5 NLGILANUDAGRTT EF2SHALHA 23 23 NLGILANUDAGRTT EFGSKARTH 12 12 NIGIAAHIDAGRTT EFGSANANI 12 12 NIGIAAHIDAGRTT EFGSPILL 12 12 NIGIAAHIDAGRTT EFGSPILL 12 12 NIGIAAHIDAGRTT EFGSPILL 12 12 NIGIAAHIDAGRTT EFGSPILL 12 12 NIGIAAHIDAGRTT	NMSVIAHVDHGKST	EF2\$MESAU	21	21
NVGTIGHIDHGRST EFTUSTHEMA 14 14 NMSUTANUDHGRTT EFTUSTHEMA 14 14 NVGTIGHIDHGRTT EFTUSTHEMA 14 14 NVAFIGHUDHGRTT EFTUSMYCGE 14 114 NVAFIGHUDAGRTT TETMSJREPA 5 5 NIGVLAHUDAGRTT TTETMSJREPA 5 5 NIGVLAHUDAGRTT EFTUSMYCGE 5 5 NIGVLAHUDAGRTT EFTUSTETM 5 5 SLVUIGHUDSGRST EFTASEUGGR 9 9 NIAIJAAHUDAGRTT TETOSCAMJE 5 5 NLGILAHUDAGRTT EFTUSTETOSM 5 5 NLGILAHUDAGRTT EFTUSTETOSM 5 5 NLGILAHUDAGRTT EFGSANANI 12 12 NIGIAAHIDAGRTT EFGSEOLI 11 11 NIGISAHIDAGRTT EFGSMICLU 10 10 NIGISAHIDAGRTT EFGSMICLU 10 10 NIGISAHIDAGRTT SUP2SYEAST 262 262 ELONGATION2 9 motif 2 EGGITIDIA EFI1SDROME 68 45 ERGITIDIA EF11SDROME 68 45 ERGITIDIA EF12SXENLA 63 45 ERGITIDIA EF12SXENLA 63 45 ERGITIDIA EF12SXENLA 63 45 ERGITIDIA EF12SROME 68 45 ERGITIDIA EF12SROME 68 45 ERGITIDIA EF12SROME 68 45 ERGITIDIA EF12SROME 68 45 ERGITIDIA EF12SROME 68 45 ERGITIDIA EF12SROME 68 45 ERGITIDIA EF12SROME 68 45 ERGITIDIA EF12SROME 68 45 ERGITIDIA EF13SXENLA 61 45 ERGITIDIA EF13SXENLA 61 45 ERGITIDIA EF13SXENLA 61 45 ERGITIDIA EF13SXENLA 61 45 ERGITIDIA EF13SXENLA 63 45 ERGITIDIA EF143SARATH 68 45 ERGITIDIA EF143ARATSA 67 4	NMSVIAHVDHGKST	EF2\$RAT	21	21
NMSUIAHUDHGKTTEP2\$DICDI2121NVAFIGHUDHGKTTEFTUSMICGE1414NVAFIGHUDAGKSTEFTUSMICGE1414NVAFIGHUDAGKSTEFTUSMICGE1414NIGVLAHUDAGKTTTETMSUREUR55NIGVLAHUDAGKTTTETMSUREUR55NIGVLAHUDAGKTTEF1A\$EUGGR99NIAILAHUDAGKTTEF2SHALHA2323NLGILAHUDAGKTTEF2SHALHA2323NLGILAHUDAGKTTEF2SHALHA2323NLGILAHUDAGKTTEFCSS22NIGAAHIDAGKTTEFG\$ANANI1212NIGIAAHIDAGKTTEFG\$ANANI1212NIGIAAHIDAGKTTEFG\$SHEFH1414NIGIAAHIDAGKTTEFG\$SHEFH1414NIGIAAHIDAGKTTEFG\$NECLI1111NIGIAAHIDAGKTTEFG\$NECLU1010NIGIAHIDAGKTTEFG\$NECLU1010NIGIAHIDAGKTTEFG\$NECLU1010NIGIAHIDAGKTTEFG\$NECLU6845ERGITIDIAEF10\$XENLA6845ERGITIDISEF10\$XENLA6845ERGITIDISEF11\$DROME6845ERGITIDISEF12\$ZENLA6845ERGITIDIAEF12\$ZENLA6845ERGITIDIAEF13\$ARTSA6745ERGITIDIAEF13\$ARTSA6745ERGITIDIAEF13\$ARTSA6745ERGITIDIAEF13\$ARTSA6745<	NVGTIGHIDHGKST	EFTU\$THEMA	14	14
NVGTIGHIDHGKTT EFTUSMYCGE 14 14 NVAFIGHUDAGKTT EFTUSMETVA 9 9 NIGVLAHVDAGKTT TETMSUREUR 5 5 SIVUGHAVDAGKTT TETMSUREUR 5 5 SIVUGHAVDAGKTT EFIASEUGGR 9 9 NIALAAHVDHGKTT EFTSALAA 23 23 NIALAAHVDHGKTT EFTSALAA 23 23 NIALAAHVDAGKTT TETOSCAMJE 5 5 NIGULAHVDAGKTT TETOSCAMJE 5 5 NIGILAHUDAGKTT EFTSALAA 23 23 NIGILAHVDAGKTT EFTSALAA 23 23 NIGILAHUDAGKTT EFTSSEN 5 5 NIGILAHUDAGKTT EFGSSEN 2 2 2 NIGIAAHIDAGKTT EFGSSEN 2 2 2 NIGIAHIDAGKTT FI 2 2 NODQSRHIME 2 2 2 ENGITIDIA EFI 2 2 EGGTTIDIA EFI 2 2	NMSVIAHVDHGKTT	EF2\$DICDI	21	21
NVAFIGNUDAGKST EFTUSMETVA 9 9 NIGVLAHVDAGKTT TETMSUREUR 5 5 NIGVLAHVDAGKTT TETMSUREUR 5 5 SLVVIGHVDGKTT TETMSUREUR 5 5 SLVVIGHVDGKTT EF1ASUGGR 9 9 NIAIAAHVDAGKTT TTETOSCAMJE 5 5 NIGULAHVDAGKTT TTETOSCAMJE 5 5 NIGILAHVDAGKTT TTETOSCAMJE 5 5 NIGILAHVDAGKTT EF1SILAHIDHGKST BUECLA 6 6 IIATAGHVDHGKTT EFGSSNINI 12 12 NIGIAAHIDAGKTT EFGSSNINI 12 12 SLIFMGHVDAGKST SU22YEAST 262 262 EHVSHLHVDHGKST MUSELF2PSA 46 46 NMGICAHIAGKTT EFGSMICLU 10 NIGISAHIDAGKTT EFGSMICLU 10 NIGISAHIDAGKTT A28513 11 11 SLIFMGHVDAGKST SU22YEAST 262 262 EHVSHLHVDHGKST MUSELF2PSA 46 46 SMGICAHIAHGKTT EF13SRENUA 23 23 RFITCGSVDDGKST NODQ\$RHIME 26 26 ELONGATION2 9 motif 2 ERGITIDIA EF13SRENLA 68 45 ERGITIDIS EF10\$XENLA 68 45 ERGITIDIS EF12\$XENLA 68 45 ERGITIDIS EF13\$XENLA 68 45 ERGITIDIS EF14\$XENLA 58 30 ARGITINTA EFTU\$XANNI 58 30 AR	NVGTIGHIDHGKTT	EFTU\$MYCGE	14	14
NIGULAHVDAGKTT TETMSURFFA 5 5 NIGULAHVDAGKTT TETMSURFFA 5 5 NIGULAHVDAGKTT STATETM 5 NIGULAHVDAGKTT STATETM 5 NIGULAHVDAGKTT EF1A\$EUGGR 9 NIAILAAHVDHGKTT EF1A\$EUGGR 9 NIAILAAHVDAGKTT TETOSCAMJE 5 NIGILAHVDAGKTT TETOSCAMJE 5 NIGILAHVDAGKTT STATETOSM 5 NIGILAHVDAGKTT EF0SSP17 NIGIAAHDAGKTT EF0SSP17 NIGIAHDAGKTT EF0SSP17 NIGIAHDAGKTT EF0SSP17 NIGIAHDAGKTT EF0SSP17 NIGIAHDAGKTT A28513 11 NIGISAHDAGKTT NEF2SMT7 NIGICAHIAHGKTT EF2SMT7 NOQ\$RHIME 26 26 ELONGATION2 9 motif 2 ERGITIDIA EF10SXENLA 68 45 ERGITIDIA EF11SDROME 68 45 ERGITIDIA EF12SDROME 68 45 ERGITIDIA EF12SDROME 68 45 ERGITIDIA EF12SDROME 68 45 ERGITIDIA EF12SMENLA 61 45 ERGITIDIA EF12SMENLA 61 45 ERGITIDIA EF13SARATH 68 45 ERGITIDIA EF14SARATH 68 45 ERGITIDIA EF14SARATH 68 45 ERGITIDIA EF14SARATH 68 45 ERGITID	NVAFIGHVDAGKST	EFTU\$METVA	9	9
NIGULARVDAGKTT TETMSUREUR 5 5 NIGULARVDAGKTT STATETM 5 SLVVIGHVDGGKST EFIASEUGGR 9 9 NIAIAAHVDGKTT TETOSCAMJE 5 SLVIGHVDGKTT TETOSCAMJE 5 NLGILARVDAGKTT TETOSCAMJE 5 NLGILARVDAGKTT TETOSCAMJE 5 NLGILARVDAGKTT EFISSANANI 12 NIGIAAHDAGKTT EFFSS 2 NIGIAAHDAGKTT EFGSANANI 12 NIGIAAHDAGKTT EFGSANANI 12 NIGIAAHDAGKTT EFGSSPIPL 12 NIGIAAHDAGKTT EFGSSPIPL 12 NIGIAAHDAGKTT EFGSSPIPL 12 NIGIAAHDAGKTT EFGSSNICU 10 NIGISAHDAGKTT EFGSYCLU 10 NIGISAHDAGKTT SUP2YEAST 262 HVSHLHVDHCKST MUSELF2PSA 46 46 MGICAHIAHGKTT EFISSINA 68 45 ERGITIDIA EF1SSINA 61 45 ERGITIDIA EF1SSINA 63 45 ERGITIDIA EF1SSINA	NTGVLAHVDAGKTT	TETM\$STRFA	5	5
NIGVLANVDAGKTT STATETM 5 5 SLVVIGHVDGKST EF1A\$EUGGR 9 9 NIALAAHVDAGKTT EF2SHALHA 23 23 NIGLLANVDAGKTT TTETOSCAMJE 5 5 NIGILAHVDAGKTT TTETOSCAMJE 5 5 NFSIIAHIDHGKST BVECLA 6 6 6 ILATAGHVDKKTT EFCSMAINI 12 12 NIGIAAHIDAGKTT EFGSSPIPL 12 12 NIGIAAHIDAGKTT EFGSSPIPL 12 12 NIGIAAHIDAGKTT EFGSTHETH 14 14 NIGISAHIDAGKTT BEFSSIA 68 455 EHVSHLHVDHCKST MUSELF2PSA 46 46 NMGICAHIAHGKTT EF2SMETVA 226 26 ELONGATION2 9 motif 2 ERGITIDIA EF1SDROME 68 45 ERGITIDIA EF1SSRILA 61 45 ERGITIDIA EF1SSRILA 68 45 ERGITIDIA EF1SSRILA 68 45 ERGITIDIA EF1SSRILA 68 45 ERGITIDIA EF1SSRILA 68 45 ERGITIDIA EF1SSRILA 68 45 ERGITIDIA EF1SSRILA 68 45 ERGITIDIA EF1SSRILA 68 45 ERGITIDIA EF1SSRILA 68 45 ERGITIDIA EF1SSRILA 68 45 ERGITIDIA EF1SSRILA 71 45 ARGITINTA EFFUSARATH 125 30 ARGITINTA EFFUSA	NTGVLAHVDAGKTT	TETM\$UREUR	5	5
SLVVIGHVDSCKST EF1A\$EUGGR 9 9 NIAIAAHVDHGKTT EF1A\$EUGGR 9 9 NIAILAAHVDAGKTT TETO\$CAME 5 SIATETOSM 5 SI	NIGVLAHVDAGKTT	STATETM	5	5
NIATAAHVDHGKTT EF2SHALHA 23 23 NIGILAHVDAGKTT TETOSCAMJE 5 SI NIGILAHVDAGKTT STATETOSK 5 STATETOSK 5 SUPSTALATOSCAL NIGIAAHDAGKTT EFGSSIPL 12 NIGIAAHDAGKTT EFGSSTPL 12 NIGIAAHDAGKTT EFGSSTPL 12 NIGIAAHDAGKTT EFGSTHETH 14 NIGISAHDAGKTT EFGSTHETH 14 NIGISAHDAGKTT A28513 11 SLIFMGHVDAGKST SUP2SYEAST 262 262 EHVSHLHVDHGKST MUSELF2PSA 46 46 MUSCALF2PSA 46 46 MUSCALF2PSA 46 46 STITCGSVDDGKST NODQ\$RHIME 26 26 ELONGATION2 9 motif 2 ERGITIDIA EF12SKENLA 68 45 ERGITIDIA EF12SKENLA 68 45 ERGITIDIS EF10SXENLA 64 SEGITIDIS EF12SXENLA 64 SEGITIDIS EF12SXENLA 64 SEGITIDIS EF13SXENLA 61 45 ERGITIDIS EF13SXENLA 61 45 ERGITIDIS EF13SXENLA 64 SEGITIDIS EF13SXENLA 64 SAT ERGITIDIS EF13SXENLA 64 SEGITIDIS EF13SXENLA 64 SAT ERGITIDIS EF13SXENLA 64 SAT ERGITIDIS EF13SXENLA 64 SAT SEGITIDIS EF13SXENLA 64 SAT SEGITIDIS EF13SXENLA 64 SAT SEGITIDIS EF13SXENLA 64 SAT SEGITIDIS EF13SXENLA 64 SAT SEGITIDIS EF13SXENLA 64 SAT SAT SAGITINTA EFFUSSATS 5 ARGITINTA EFFUSSATS 5 ARGITINTA EFFUS 58 ARGITINTA EFFUSSATIO 58 ARGITINTA	SLVVIGHVDSGKST	EF1A\$EUGGR	9	9
NIGILAHVDACKTTTETOŠCAMJE55NIGILAHVDACKTTSTATETOSM55NFSIIAHIDACKTTBVECLA66IATAGHVDACKTTEFGCSB22NIGIAAHIDACKTTEFGSPIPL1212NIGIAAHIDACKTTEFGSPIPL1212NIGIAAHIDACKTTEFGSPIPL1212NIGIAAHIDACKTTEFGSPIPL1212NIGIAAHIDACKTTEFGSMICLU1010NIGISAHIDACKTTEFGSMICLU1010NIGISAHIDACKTTA285131111SLIFMCHDACKSTSUP2SYEAST262262ELONGATIONAGKTTEF2SMETVA2323RFITCGSVDDACKSTSUD2SYEAST26226ELONGATION29motif29motifEF13SMENLA6845ERGITIDIAEF12SDROME6845ERGITIDIAEF12SDROME6845ERGITIDIAEF13SXENLA6145ERGITIDIAEF13SXENLA6145ERGITIDIAEF13SXENLA6445ERGITIDIAEF13SXENLA6445ERGITIDIAEF13SXENLA6845ERGITIDIAEF13SXENLA6845ERGITIDIAEF13SXENLA6845ERGITIDIAEF13SXENLA6845ERGITIDIAEF13SXENLA6845ERGITIDIAEF13SXENLA6845ERGITIDIAEF13SXENLA6845ERGITIDIA <t< td=""><td>NIAIAAHVDHGKTT</td><td>EF2\$HALHA</td><td>23</td><td>23</td></t<>	NIAIAAHVDHGKTT	EF2\$HALHA	23	23
NIGILAHVDACKTTSTATETOSM55NIGILAHVDACKTTEVECLA66IIATAGHVDHGKTTEFECSB22NIGIAHDAGKTTEFGSANANI1212NIGIAHDAGKTTEFGSSPIPL1212NIGIAAHDAGKTTEFGSSTHETH1414NIGIAAHDAGKTTEFGSTHETH1414NIGIAAHDAGKTTEFGSTMETH1414NIGIAHDAGKTTEFGSTMELU1010NIGIAHDAGKTTEFGSTMELU1010NIGIAHDAGKTTEFGSTMICU1010NIGIAHDAGKTTEFGSTMICU1010NIGIAHDAGKTTEFGSTMICU1010NIGIAHTAHGKTTEFGSTMICU2222ELONGATION29	NLGILAHVDAGKTT	TETO\$CAMJE	5	5
NFSIIAHIDHGKSTEVECLA66IIATAGHVUNGKTTEFGSB2NIGIAAHIDAGKTTEFGSANANI12NIGIAAHIDAGKTTEFGSSPIPL12NIGIAAHIDAGKTTEFGSSPIPL12NIGIAAHIDAGKTTEFGSSTHETH141414NIGIAAHIDAGKTTEFGSRICLU10NIGISAHIDAGKTTA2851311NIGISAHIDAGKTTA2851311SLIFMGHVDAGKSTSUP2SYEAST262EHVSKLHVDHGKSTMUSELF2PSA46MGICAHIAHGKTTEF2SNETVA23RFITCGSVDDGKSTNODQ\$RHIME2626EGGTIDIAEF10\$XENLAERGITIDIAEF10\$XENLA68ERGITIDIAEF10\$XENLA68ERGITIDIAEF12\$DROME68ERGITIDISEF12\$XENLA64ERGITIDISEF13\$XENLA64ERGITIDIAEF13\$XENLA64ERGITIDIAEF13\$XENLA64ERGITIDIAEF13\$XENLA64ERGITIDIAEF13\$ARTMA68ERGITIDIAEF14\$ANTMA64ERGITIDIAEF14\$ANTMA68ERGITIDIAEF14\$MOUSE68ERGITIDIAEF14\$MOUSE68ERGITIDIAEF14\$MOUSE68ERGITIDIAEF14\$MOUSE68ERGITIDIAEF14\$MOUSE68ERGITIDIAEF14\$MOUSE68ERGITIDIAEF14\$MOUSE68ERGITIDIAEF14\$MOUSE68ERGITIDIAEFFU5\$ARTH12ARGITINTA </td <td>NIGILAHVDAGKTT</td> <td>STATETOSM</td> <td>5</td> <td>5</td>	NIGILAHVDAGKTT	STATETOSM	5	5
IIATAGHVDHGKTTEFECSB22NIGIAAHIDAGKTTEFG\$ANANI1212NIGIAAHIDAGKTTEFG\$SPIPL1212NIGIAAHIDAGKTTEFG\$THETH1414NIGISAHIDAGKTTEFG\$THETH1111NIGISAHIDAGKTTEFG\$THETH1414NIGISAHIDAGKTTEFG\$THETH1111NIGISAHIDAGKTTEFG\$THETH1414NIGISAHIDAGKTTEFG\$THETH1414NIGISAHIDAGKTTEFG\$THETH11SLIFMGHVDAGKSTSUP2\$YEAST262262EHVSHLHVDHGKSTMUSELF2PSA4646MGICAHIAHGKTTEF2\$METVA2323RFITCGSVDDGKSTNODQ\$RHIME2626ELONGATION299motif2EFGITIDIAEF10\$XENLAERGITIDIAEF10\$XENLA6845ERGITIDIAEF12\$XENLA6845ERGITIDIAEF12\$XENLA6145ERGITIDISEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6345ERGITIDIAEF13\$XENLA6345ERGITIDIAEF13\$XENLA6845ERGITIDIAEF13\$XENLA6845ERGITIDIAEF13\$MOUSE6845ERGITIDIAEF13\$MOUSE6845ERGITIDIAEF14\$MOUSE6845ERGITIDIAEF14	NFSIIAHTDHGKST	BVECLA	6	6
NIGIAAHIDAGKTTEFG\$ANANI1212NIGIAAHIDAGKTTEFG\$SPIPL1212NIGIAAHIDAGKTTEFG\$ECOLI1111NIGIAAHIDAGKTTEFG\$ECOLI1010NIGIAAHIDAGKTTEFG\$MICLU1010NIGIAAHIDAGKTTEFG\$MICLU1010NIGIAAHIDAGKTTEFG\$MICLU1010NIGIAHIDAGKTTEFG\$MICLU1010NIGIAHIDAGKTTSUP2\$YEAST262262EHVSHLHVDHGKSTMUSELF2PSA4646NMGICAHIAHGKTTEF2\$METVA2323FITCGSVDDGKSTNODQ\$RHIME2626Pmotif2EERGITIDIAEF1\$D\$XENLA6845ERGITIDIAEF1\$D\$XENLA6845ERGITIDIAEF1\$D\$XENLA6845ERGITIDIAEF1\$D\$XENLA6845ERGITIDISEF1\$\$XENLA6845ERGITIDIAEF1\$A\$APIME6845ERGITIDIAEF1\$A\$APIME6845ERGITIDIAEF1\$A\$ANTSA6745ERGITIDIAEF1\$A\$ANTSA6745ERGITIDIAEF1\$A\$ANTSA6745ERGITIDIAEF1\$A\$ANTSA6845ERGITIDIAEF1\$A\$ANTSA6845ERGITIDIAEF1\$A\$MOUSE6845ERGITIDIAEF1\$A\$MOUSE6845ERGITIDIAEF1\$A\$DICDI7145ARGITINTAEFEYT5830ARGITINTA	TIATAGHVDHGKTT	EFECSB	2	2
NIGIAAHIDAGKTTEFG\$SPIPL1212NIGIAAHIDAGKTTEFG\$SPIPL1414NIGIAAHIDAGKTTEFG\$STHETH1414NIGISAHIDAGKTTEFG\$STICLU1010NIGISAHIDAGKTTA285131111SLIFMGHVDAGKSTSUP2\$VEAST262262EHVSKLHVDHGKSTMUSELF2PSA4646NMGICAHIAHGKTTEF2\$KMTVA2323RFITCGSVDDGKSTNODQ\$RHIME2626ELONGATION299motif 2EFSIA68ERGITIDIAEF1\$SNA6845ERGITIDISEF1\$Q\$XENLA6845ERGITIDISEF1\$Q\$XENLA6845ERGITIDISEF1\$Q\$XENLA6845ERGITIDISEF1\$Q\$XENLA6845ERGITIDISEF1\$Q\$XENLA6845ERGITIDISEF1\$Q\$XENLA6845ERGITIDISEF1\$Q\$XENLA6845ERGITIDISEF1\$Q\$XENLA6845ERGITIDISEF1\$Q\$XENLA6845ERGITIDISEF1\$Q\$NOUSE6845ERGITIDISEF1\$Q\$NOUSE6845ERGITIDISEF1\$Q\$NANI6845ERGITIDIAEF1\$Q\$NANI5830ARGITINTAEFECT5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH <td>NIGIAAHTDAGKTT</td> <td>EFG\$ANANI</td> <td>12</td> <td>12</td>	NIGIAAHTDAGKTT	EFG\$ANANI	12	12
NIGIAHIDACKTTEFG\$THETH1414NIGIAHIDACKTTEFG\$ECLI1111NIGISAHIDACKTTEFG\$MICLU10NIGISAHIDACKTTA2851311SLIFMCHVDACKSTSUP2\$YEAST262PUSHLHVDHCKSTMUSELF2PSA46MGICAHIAHCKTTEF2\$METVA23RFITCGSVDDCKSTNODQ\$RHIME26PEGITIDIAEFSSIAERGITIDIAEF1\$XENLA68ERGITIDIAEF1\$SNCME68ERGITIDIAEF1\$SNCME68ERGITIDISEF1\$SNCME68ERGITIDISEF1\$SNCME68ERGITIDISEF1\$SNCME68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDISEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ERGITIDIAEF1\$SNCMA68ARGITINTAEFTU\$ACCDI71ARGITINTAEFTU\$ACCDI71ARGITINTAEFTU\$ACCDI71ARGITINTA	NIGIAAHIDAGKTT	EFG\$SPIPL	12	12
NIGISAHIDAGKTTEFG\$ECOLI1111NIGISAHIDAGKTTEFG\$MICLU1010NIGISAHIDAGKTTA285131111SLIFMGHVDAGKSTSUP2\$YEAST262262EHVSHLHVDHGKSTMUSELF2P\$A4646NMGICAHIAHGKTTEF2\$METVA2323RFITCGSVDDGKSTNODQ\$RHIME2626ELONGATION29	NIGIAAHIDAGKTT	EFG\$THETH	14	14
NIGIMAHIDAGKTTEFG\$MICLU1010NIGIMAHIDAGKTTA285131111SLIFMGHVDAGKSTSUP2\$YEAST262262EHVSHLHVDHGKSTMUSELF2PSA4646NGICAHIAHGKTTEF2\$METVA2323RFITCGSVDDGKSTNODQ\$RHIME2626ELONGATION29	NIGISAHIDAGKTT	EFG\$ECOLI	11	11
NIGISAHIDAGKTTA285131111SLIFMGHVDAGKSTSUP2SYEAST262262EHVSHLHVDHGKSTMUSELF2PSA4646NGICAHIAHGKTTEF2SMETVA2323RFITCGSVDDGKSTNODQ\$RHIME2626ELONGATION29	NIGIMAHIDAGKTT	EFG\$MICLU	10	10
SLIFMGRUDAGKSTSUP2\$YEAST262262EHVSHLHVDHGKSTMUSELF2PSA4646NMGICAHTAHGKTTEF2\$METVA2323RFITCGSVDDGKSTNODQ\$RHIME2626ELONGATION29motif 2EFGITIDIAEF10\$XENLA68ERGITIDISEF10\$XENLA6845ERGITIDIAEF11\$DROME6845ERGITIDIAEF12\$DROME6845ERGITIDISEF13\$XENLA6845ERGITIDISEF13\$XENLA6845ERGITIDIAEF14\$APIME6845ERGITIDISEF14\$APIME6845ERGITIDISEF1A\$ARTSA6745ERGITIDISEF1A\$ARTSA6745ERGITIDISEF1A\$ARTSA6745ERGITIDISEF1A\$MOUSE6845ERGITIDISEF1A\$MOUSE6845ERGITIDIAEF1A\$MOUSE6845ERGITIDIAEF1A\$MOUSE6845ERGITIDIAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$CHARE5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL58 <td< td=""><td>NIGISAHIDAGKTT</td><td>A28513</td><td>11</td><td>11</td></td<>	NIGISAHIDAGKTT	A28513	11	11
BINSHLAUDHGKSTMUSELF2PSA4646NMGICAHIAHGKTTEF2\$METVA2323RFITCGSVDDGKSTNODQ\$RHIME2626ELONGATION29motif 2ERGITIDIAEFSS1A6845ERGITIDIAEF10\$XENLA6845ERGITIDIAEF11\$DROME6845ERGITIDIAEF12\$DROME6845ERGITIDIAEF12\$DROME6845ERGITIDISEF12\$XENLA6845ERGITIDIAEF12\$XENLA6845ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6845ERGITIDIAEF13\$XENLA6845ERGITIDIAEF13\$XENLA6845ERGITIDIAEF13\$XENLA6845ERGITIDISEF13\$MOUSE6845ERGITIDISEF13\$MOUSE6845ERGITIDISEF13\$MOUSE6845ERGITIDIAEF13\$MOUSE6845ERGITIDIAEF13\$MICLI6845ERGITIDIAEF13\$MICLI7145ARGITINTAEFEQT5830ARGITINTAEFTU\$ASATLO5830ARGITINTAEFTU\$ASATLO5830ARGITINTAEFTU\$ASATLO5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830 <tr< td=""><td>SLIFMGHVDAGKST</td><td>SUP2\$YEAST</td><td>262</td><td>262</td></tr<>	SLIFMGHVDAGKST	SUP2\$YEAST	262	262
INNGICAHIAHGRTTEF2\$METVA2323RFITCGSVDDGKSTNODQ\$RHIME2626ELONGATION29motif 2ERGITIDIAEFSSIA6845ERGITIDIAEF10\$XENLA6845ERGITIDIAEF11\$DROME6845ERGITIDIAEF12\$DROME6845ERGITIDISEF12\$XENLA6845ERGITIDISEF12\$XENLA6845ERGITIDISEF13\$XENLA6145ERGITIDIAEF13\$XENLA6845ERGITIDIAEF13\$XENLA6845ERGITIDIAEF13\$XENLA6845ERGITIDISEF13\$XENLA6845ERGITIDISEF13\$MOUSE6845ERGITIDISEF13\$MOUSE6845ERGITIDISEF13\$MOUSE6845ERGITIDISSHREF1A56845ERGITIDIAEF13\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830ARGITINTAEFTU\$SPIPL5830 </td <td>FHVSHLHVDHGKST</td> <td>MUSELF2PSA</td> <td>46</td> <td>46</td>	FHVSHLHVDHGKST	MUSELF2PSA	46	46
RFITCGSVDDGKSTNODQ\$RHIME2626ELONGATION29motif 2ERGITIDIAERGITIDISERGITIDIAERGITIDIAERGITIDISERGITIDISERGITIDISERGITIDISERGITIDIAERGITIDISERGITIDIAERGITIDISERGITIDIAERGITIDIAERGITIDISERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDISERGITIDISERGITIDISERGITIDISERGITIDISERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDIAERGITIDIAARGITINTAERGITIDIAARGITINTAEFTU\$ANANIARGITINTAEFTU\$ARATHARGITINTAEFTU\$ARATHARGITINTAEFTU\$ARATHARGITINTAEFTU\$ARATHARGITINTAEFTU\$ARATHARGITINTAEFTU\$ARATHARGITINTAEFTU\$ARATHARGITINTAEFTU\$ARATHERGITIDISERGITIDISERGITIDISERGITIDISERGITIDISERGITIDISERGITIDISERGITIDISERGITIDISERGITIDISERGITIDISERGITID	MGICAHIAHGKTT	EF2\$METVA	23	23
ELONGATION2 9 motif 2 ERGITIDIA EFSSIA 68 45 ERGITIDIS EF10\$XENLA 68 45 ERGITIDIA EF11\$DROME 68 45 ERGITIDIA EF12\$DROME 68 45 ERGITIDIS EF12\$XENLA 61 45 ERGITIDIA EF13\$XENLA 61 45 ERGITIDIA EF13\$XENLA 61 45 ERGITIDIA EF13\$XENLA 68 45 ERGITIDIA EF13\$APIME 68 45 ERGITIDIA EF13\$ARATH 68 45 ERGITIDIS EF13\$MOUSE 68 45 ERGITIDIS EF13\$MOUSE 68 45 ERGITIDIS EF13\$MOUSE 68 45 ERGITIDIS EF13\$MOUSE 68 45 ERGITIDIS EF13\$MOUSE 68 45 ERGITIDIA SHREF1A5 68 45 ERGITIDIA EFEGT 58 30 ARGITINTA EFFU\$ANANI 58 30 ARGITINTA EFTU\$ARATH 125 40 ARGITINTA EFTU\$ARATH 14 EFTU\$ARATH ARA 14 EFTU\$ARATH ARA 14 ERGITIDIA EFTU\$ARATH ARA 14 ERGITIDIA EFTU\$	RFITCGSVDDGKST	NODQ\$RHIME	26	26
9 motif 2 ERGITIDIA EFSSIA 68 45 ERGITIDIS EF10\$XENLA 68 45 ERGITIDIA EF11\$DROME 68 45 ERGITIDIA EF12\$DROME 68 45 ERGITIDIA EF12\$XENLA 68 45 ERGITIDIS EF13\$XENLA 61 45 ERGITIDIA EF1A\$APIME 68 45 ERGITIDIA EF1A\$ARTH 68 45 ERGITIDIA EF1A\$ARTSA 67 45 ERGITIDIS EF1A\$ARTSA 67 45 ERGITIDIS EF1A\$MMAN 68 45 ERGITIDIS EF1A\$MOUSE 68 45 ERGITIDIS EF1A\$MOUSE 68 45 ERGITIDIS EF1A\$MOUSE 68 45 ERGITIDIA EF1A\$MOUSE 68 45 ERGITIDIS EF1A\$MOUSE 68 45 ERGITIDIA EF1A\$MOUSE 68 45 ERGITIDIA EF1A\$MOUSE 68 45 ERGITIDIA EF1A\$MOUSE	ELONGATION2			
motif 2ERGITIDIAEFSSIA6845ERGITIDISEF10\$XENLA6845ERGITIDIAEF11\$DROME6845ERGITIDIAEF12\$DROME6845ERGITIDISEF12\$XENLA6845ERGITIDISEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6745ERGITIDISEF14\$ARTSA6745ERGITIDISEF14\$MOUSE6845ERGITIDIAEF14\$MOUSE6845ERGITIDIAEF14\$MOUSE6845ERGITIDIAEF14\$DICDI7145ARGITINTAEF14\$DICDI7145ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH <td< td=""><td>9</td><td></td><td></td><td></td></td<>	9			
ERGITIDIAEFSSIA6845ERGITIDISEF105XENLA6845ERGITIDIAEF115DROME6845ERGITIDIAEF125DROME6845ERGITIDISEF125XENLA6145ERGITIDISEF135XENLA6145ERGITIDIAEF135XENLA6145ERGITIDIAEF135XENLA6145ERGITIDIAEF135XENLA6145ERGITIDIAEF135XENLA6745ERGITIDIAEF135XENLA6745ERGITIDISEF135MOUSE6845ERGITIDISEF135MOUSE6845ERGITIDIAEF135MOUSE6845ERGITIDIAEF135MOUSE6845ERGITIDIAEF135MOUSE6845ERGITIDIAEF135MOUSE6845ERGITIDIAEF135MOUSE6845ERGITIDIAEF135MOUSE6845ERGITIDIAEF135MOUSE6845ARGITINTAEF135MOUSE6845ARGITINTAEFT05830ARGITINTAEFT0530ARGITINTAEFT05ASTLO5830ARGITINTAEFT05XPIPL5830ARGITINTAEFT05XPIPL5830QRGITINTAEFT05XPIPL5830QRGITINTAEF135XENLA7145ERGITIDISEF135XENLA7145ERGITIDIAEF135XENLA7145ERGITIDIA <t< td=""><td>motif 2</td><td></td><td>60</td><td></td></t<>	motif 2		60	
ERGITIDISEF10\$XENLA6845ERGITIDIAEF11\$DROME6845ERGITIDIAEF12\$DROME6845ERGITIDISEF12\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$ARATH6845ERGITIDIAEF14\$ARTSA6745ERGITIDISEF14\$ARTSA6745ERGITIDISEF14\$MUAN6845ERGITIDISEF14\$MUAN6845ERGITIDIAEF14\$MUSE6845ERGITIDIAEF14\$MUSE6845ERGITIDIAEF14\$MUSE6845ERGITIDIAEF14\$MUSE6845ERGITIDIAEF14\$MUSE6845ERGITIDIAEF14\$MUSE6845ARGITINTAEFEGT5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530 <tr< td=""><td>ERGITIDIA</td><td>EFSSIA</td><td>68</td><td>45</td></tr<>	ERGITIDIA	EFSSIA	68	45
ERGITIDIAEF11\$DROME6845ERGITIDIAEF12\$DROME6845ERGITIDISEF12\$XENLA6845ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6845ERGITIDIAEF13\$XENLA6845ERGITIDIAEF13\$ARATH6845ERGITIDIAEF14\$ARATSA6745ERGITIDISEF14\$MOUSE6845ERGITIDISEF14\$MOUSE6845ERGITIDIASHREF1A56845ERGITIDIAEF14\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFEU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$CYAPA5830ARGITINTAEFTU\$CYAPA5830QRGITINISEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830ERGITIDISEF14\$THECE6643ERGITIDIAEFTU\$SPIPL5830ERGITIDIAEFT1\$XENLA7145ERGITIDIAEFEY1A6845ERGITIDIAEFEY1A6845	ERGITIDIS	EF10\$XENLA	68	45
ERGITIDIAEF12\$DROME6843ERGITIDISEF12\$XENLA6845ERGITIDISEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$ARATH6845ERGITIDISEF14\$ARATSA6745ERGITIDISEF13\$MOUSE6845ERGITIDISEF13\$MOUSE6845ERGITIDIASHREF1A56845ERGITIDIAEF13\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFEGT5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$CYAPA5830ARGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$MICLU6032QRGITINTAEFTU\$NTAEFTU\$A45ERGITIDIAEFTU\$NTAEFTU\$A6845ERGITIDIAEFTU\$AEFTU\$A6845	ERGITIDIA	EF11\$DROME	68	40
ERGITIDISEF12\$XENLA6345ERGITIDISEF13\$XENLA6145ERGITIDIAEF13\$XENLA6145ERGITIDIAEF13\$ARATH6845ERGITIDIAEF1A\$ARATH6845ERGITIDISEF1A\$ARTSA6745ERGITIDISEF1A\$MUMAN6845ERGITIDISEF1A\$MOUSE6845ERGITIDISEF1A\$MOUSE6845ERGITIDISA326846345ERGITIDIAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CYAPA5830ARGITINTAEFTU\$MICLU6032QRGITINISEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$MICLU6032QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$MICLU6032QRGITINTAEFTU\$SPIPL5830ERGITIDISEFTU\$SPIPL5830ERGITIDIAEFTU\$SPIPL6643ERGITIDIAEFTU\$THAEFTU\$THAERGI	ERGITIDIA	EF12\$DROME	00	45
ERGITIDISEF13\$XENLA6163ERGITIDIAEF13\$APIME6845ERGITIDIAEF1A\$ARATH6845ERGITIDIAEF1A\$ARATH6845ERGITIDISEF1A\$HUMAN6845ERGITIDISEF1A\$MOUSE6845ERGITIDISEF1A\$MOUSE6845ERGITIDISEF1A\$MOUSE6845ERGITIDIASHREF1A56845ERGITIDIAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFEGT5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830E	ERGITIDIS	EF12\$XENLA	00	45
ERGITIDIAEF1A\$APIME6843ERGITIDIAEF1A\$ARATH6845ERGITIDIAEF1A\$ARTSA6745ERGITIDISEF1A\$HUMAN6845ERGITIDISEF1A\$MOUSE6845ERGITIDIASHREF1A56845ERGITIDIASHREF1A56845ERGITIDIAEF1A\$DICDI7145ARGITINTAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITIDISEF11\$XENLA7145ERGITIDISEF13\$THECE6643ERGITIDIAEFBY1A6845ERGITIDIAEFBY1A6845	ERGITIDIS	EF13\$XENLA	61	45
ERGITIDIAEF1A\$ARATH6845ERGITIDIAEF1A\$ARTSA6745ERGITIDISEF1A\$HUMAN6845ERGITIDISEF1A\$MOUSE6845ERGITIDIASHREF1A56845ERGITIDIAA326846345ERGITIDIAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFEGT5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITIDISEF11\$XENLA7145ERGITIDIAEF14\$THECE6643ERGITIDIAEFBY1A6845ERGITIDIAEFBY1A6845	ERGITIDIA	EF1A\$APIME	68	45
ERGITIDIAEF1A\$ARTSA6745ERGITIDISEF1A\$HUMAN6845ERGITIDISEF1A\$MOUSE6845ERGITIDIASHREF1A56845ERGITIDIAA326846345ERGITIDIAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFBYT9430ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$MICLU6032QRGITINTAEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDIAEFSYIA6845ERGITIDIAEFSYIA6845ERGITIDIAEFBYIA6845	ERGITIDIA	EF1A\$ARATH	68	45
ERGITIDISEF1A\$HUMAN6843ERGITIDISEF1A\$MOUSE6845ERGITIDIASHREF1A56845ERGITIDIAA326846345ERGITIDIAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITISTAEFEYT9430ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830ERGITIDISEFTU\$SPIPL5830ERGITIDISEFTU\$SPIPL5830ERGITIDIAEFTU\$SPIPL5830ERGITIDIAEFTU\$SPIPL5830ERGITIDIAEFTU\$SPIPL5830ERGITIDIAEFTU\$SPIPL5830ERGITIDIAEFTU\$SPIPL5830ERGITIDIAEFTU\$SPIPL6845ERGITIDIAEFTU\$SPIPL6845ERGITIDIAEFTU\$THAEFTU\$THA6845	ERGITIDIA	EF1A\$ARTSA	67	45
ERGITIDISEF1A\$MOUSE6845ERGITIDIASHREF1A56845ERGITIDISA326846345ERGITIDIAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITISTAEFBYT9430ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ASTLO5830ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830ERGITIDISEFT1\$XENLA7145ERGITIDIAEFBY1A6845ERGITIDIAEFBY1A6845ERGITIDIAEFBY1A6845	ERGITIDIS	ef1a\$human	68	40
ERGITIDIASHREF1A56845ERGITIDISA326846345ERGITIDIAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITISTAEFBYT9430ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH5830QRGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDIAEFBY1A6845ERGITIDIAEFBY1A6845ERGITIDIAEFBY1A6845	ERGITIDIS	EF1A\$MOUSE	68	40
ERGITIDISA326846345ERGITIDIAEFGITIDIAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFBYT9430ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDIAEFBY1A6845ERGITIDIAEFBY1A6845	ERGITIDIA	SHREF1A5	68	40
ERGITIDIAEF1A\$DICDI7145ARGITINTAEFEGT5830ARGITINTAEFBYT9430ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530QRGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$MICLU6032QRGITINTAEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDISEF11\$XENLA7145ERGITIDIAEFBY1A6845ERGITIDIAEFBY1A6845	ERGITIDIS	A32684	63	45
ARGITINTAEFEGT5830ARGITISTAEFBYT9430ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ASTLO5830ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDIAEFBY1A6845ERGITIDIAEFBY1A6845	ERGITIDIA	EF1A\$DICDI	71	45
ARGITISTAEFBYT9430ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ASTLO5830ARGITINTAEFTU\$ASTLO5830ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$MICLU6032QRGITINTAEFTU\$SPIPL5830ERGITIDISEFTU\$SPIPL5830ERGITIDIAEF11\$XENLA7145ERGITIDIAEF14\$THECE6643ERGITIDIAEFBY1A6845	ARGITINTA	EFEGT	58	30
ARGITINTAEFTU\$ANANI5830ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ASTLO5830ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITINTAEFTU\$SPIPL5830QRGITIDISEF11\$XENLA7145ERGITIDIAEF14\$THECE6643ERGITIDIAEFBY1A6845ERGITIDIAEF11\$RHIRA6845	ARGITISTA	EFBYT	94	30
ARGITINTAEFTU\$ARATH12530ARGITINTAEFTU\$ASTLO5830ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CHLRE5830QRGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$SPIPL6032QRGITINTAEFTU\$SPIPL5830ERGITIDISEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDIAEF14\$THECE6643ERGITIDIAEFBY1A6845ERGITIDIAEFBY1A6845	ARGITINTA	EFTUŞANANI	58	30
ARGITINTAEFTU\$ASTLO5830ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$MICLU6032QRGITINTAEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDVAEF14\$THECE6643ERGITIDIAEFBY1A6845ERGITIDIAEF11\$RHIRA6845	ARGITINTA	EFTUŞARATH	125	30
ARGITINTAEFTU\$CHLRE5830ARGITINTAEFTU\$CYAPA5830QRGITINTAEFTU\$MICLU6032QRGITINTAEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDVAEF14\$THECE6643ERGITIDIAEFBY1A6845ERGITIDIAEF11\$RHIRA6845	ARGITINTA	EFTU\$ASTLO	58	30
ARGITINTAEFTU\$CYAPA5830QRGITINISEFTU\$MICLU6032QRGITINTAEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDVAEF14\$THECE6643ERGITIDIAEFBY1A6845ERGITIDIAEF11\$RHIRA6845	ARGITINTA	EFTU\$CHLRE	58	30
QRGITINISEFTU\$MICLU6032QRGITINTAEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDVAEF14\$THECE6643ERGITIDIAEFBY1A6845ERGITIDIAEF11\$RHIRA6845	ARGITINTA	EFTU\$CYAPA	58	30
QRGITINTAEFTU\$SPIPL5830ERGITIDISEF11\$XENLA7145ERGITIDVAEF11\$XTHECE6643ERGITIDIAEFBY1A6845ERGITIDIAEF11\$RHIRA6845	ORGITINIS	EFTU\$MICLU	60	32
ERGITIDISEF11\$XENLA7145ERGITIDVAEF1A\$THECE6643ERGITIDIAEFBY1A6845ERGITIDIAEF11\$RHIRA6845	ORGITINTA	EFTU\$SPIPL	58	30
ERGITIDVAEF1A\$THECE6643ERGITIDIAEFBY1A6845ERGITIDIAEF11\$RHIRA6845	ERGITIDIS	EF11\$XENLA	71	45
ERGITIDIA EFBY1A 68 45 ERGITIDIA EF11\$RHIRA 68 45	ERGITIDVA	EF1A\$THECE	66	43
ERCITIOTA EF11\$RHIRA 68 45	ERGITIDIA	EFBY1A	68	45
	ERGITIDIA	EF11\$RHIRA	68	45

.

		68	45
ERGITIDIA	EF12QRAIRA TET2CEUTEN	68	45
ERGITIDIA	EF 13 SKRIKA EF 13 SKRIKA	68	45
ERGITIDIA	CU8028	68	45
ERGITIDIA	FFFCT	58	30
ARGITINTS	EFTISTHETH	59	31
ARGITINTA	TUSTILIA	59	31
ARGITINTA	1 ETTI	42	15
AAGITINTS	EF1ASSULAC	67	45
ERGVTINLS	FF1ASLYCES	68	45
ERGITIDIA	EFTUSMYCGA	58	30
ARGITINTA	XELEFIALA	68	45
ERGITIDIS	EFTUSHALMA	66	45
PROVIDIA	EF2SCRIGR	65	30
ERCITIKST FROIDING	EF2SDROME	65	30
ERCITINST EBCIMINCH	EF2 SHUMAN	65	30
	EF2 SMESAU	65	30
ERCITINSI ERCITINSI	EF2SRAT	65	30
ADGITINGI ADGITINIT	EFTUSTHEMA	58	30
TRAITINII TRAITINII	EF2SDICDI	65	30
ABGITINSA	EFTUSMYCGE	58	30
PROTTINOA PROVIDIVA	EFTUSMETVA	68	45
OPGITIOTA	TETMSSTRFA	51	32
ORGITIOTG	TETMSUREUR	51	32
ORGITIOTG	STATETM	51	32
FRCITIDIA	EF1A\$EUGGR	68	45
FRGITIDAA	EF2\$HALHA	67	30
ORGITIOTA	TETO\$CAMJE	51	32
ORGITIOTA	STATETOSM	51	32
FEGINIKAO	BVECLA	49	29
KRGMTIDLG	EFECSB	33	17
FRGITITAA	EFG\$ANANI	58	32
FRGITITAA	EFG\$SPIPL	58	32
FRGITITAA	EFG\$THETH	60	32
FRGITITSA	EFG\$ECOLI	57	32
FRGITITSA	EFG\$MICLU	56	32
FRGITITSA	A28513	57	32
NDGKTIEVG	SUP2\$YEAST	321	45
FRCITIKST	MUSELF2PSA	90	30
ARGITIYAA	EF2\$METVA	67	30
EQGITIDVA	NODQ\$RHIME	87	47
ELONGATION3			
11			
motif 3		00	11
TIIDAPGHRDF	EFSSIA	00	11
TIIDAPGHRDF	EF10SXENLA	00	11
TIIDAPGHRDF	EFIISDROME	00	11
TIIDAPGHRDF	EF12SDROME	00	11
TIIDAPGHRDF	EF125XENLA	00 01	11
TIIDAPGHRDF	EF135XENLA	00	11
TIIDAPGHRDF	EFIASAPIME	00	11
TVIDAPGHRDF	EFIASAKATH	00	11
TIIDAPGHRDF	EFIASAKTSA	87	11
TIIDAPGHRDF	EFIASHUMAN	88	11
TIIESPGHRDF	EFIASMOUSE	88	11
TIIDAPGHRDF	SHREF1A5	88	ΤŤ

227

A32684	83	11
EF1ASDICDI	91	11
FFFCT	78	11
EFEGI	114	11
	78	11
EFTUŞANANI	145	11
EFTUŞARATH	70	11
EFTUSASTLO	70	11
EFTUSCHLRE	/8	11
EFTUŞCYAPA	78	11
EFTUŞMICLU	80	11
EFTUŞSPIPL	78	11
EF11\$XENLA	91	11
ef1a\$thece	86	11
EFBY1A	88	11
ef11\$rhira	88	11
EF12\$RHIRA	88	11
EF13\$RHIRA	88	11
EF1A\$CANAL	88	11
S08058	88	11
EFECT	78	11
EFTUSTHETH	79	11
TTHTUF	79	11
1 ETU	62	11
EFIASSULAC	87	11
EFIASLYCES	88	11
EFTUSMYCGA	78	11
YFLFF1ALA	88	11
EETICUNI MA	86	11
PERCONALINA	101	27
EF2SCRIGR	101	27
EF25DROME	105	21
EF25HUMAN	101	21
EF2\$MESAU	101	27
EF2\$RAT	101	27
EFTUSTHEMA	78	11
EF2\$DICDI	99	25
EFTU\$MYCGE	78	11
EFTU\$METVA	88	11
TETM\$STRFA	71	11
TETM\$UREUR	71	11
STATETM	71	11
EF1A\$EUGGR	88	11
EF2\$HALHA	91	15
TETOSCAMJE	71	11
STATETOSM	71	11
BVECLA	74	16
FFECSB	54	12
RECENNANT	78	11
Brocept DI	79	11
ELG32LILD FLG32LILD	20	11
EFG5TRETR	00	19
EFGSECOLI	04 77	11
EFGSMICLU	/0	19
A28513	84	11
SUP2SYEAST	341	74
MUSELF2PSA	126	4/
EF2\$METVA	91	10
NODQ\$RHIME	107	11

TIIDAPGHRDF TIIDAPGHRDF **AHVDCPGHADY** SHVDCPGHADY **AHVDCPGHADY AHVDCPGHADY** AHVDCPGHADY AHVDCPGHADY AHVDC PGHADY AHVDAPGHADY AHVDCPGHADY TIIDAPGHRDF TIIDAPGHRDF TVIDAPGHRDF TVIDAPGHRDF TVIDAPGHRDF TVIDAPGHRDF TVIDAPGHRDF TVIDAPGHRDF AHVDCPGHADY SHVDCPGHADY SHVDCPGHADY AHVDC PGHADY TVIDAPGHRDF TVIDAPGHRDF AHVDCPGHADY TIIDAPGHRDF TIVDCPGHRDF NLIDSPGHVDF NLIDSPGHVDF NLIDSPGHVDF NLIDSPGHVDF NLIDSPGHVDF AHIDCPGHADY NLIDSPGHVDF AHVDCPGHADY TIVDCPGHRDF NIIDTPGHMDF NIIDTPGHMDF NIIDTPGHMDF TIIDAPGHRDF NLIDTPGHVDF NIIDTPGHMDF NIIDTPGHMDF NFIDTPGHVDF GFIDVPGHEKF NIIDTPGHVDF NIIDTPGHVDF NIIDTPGHVDF NIIDTPGHVDF NIIDNPGHVDF NIIDTPGHVDF TILDAPGHKMY NLIDSPGHVDF NLIDTPGHVDF

IVADTPGHEEY

EFSS1A	104	5
EF10\$XENLA	104	5
EF11\$DROME	104	5
EF12SDROME	104	5
EF12SXENLA	104	5
EF13SXENLA	97	5
EF1ASAPIME	104	5
EF1ASARATH	104	5
EF1ASARTSA	103	5
EF1A\$HUMAN	104	5
EF1A\$MOUSE	104	5
SHREF1A5	105	6
A32684	99	5
EF1A\$DICDI	107	5
EFEGT	94	5
EFBYT	130	5
EFTUŞANANI	94	5
EFTUŞARATH	161	5
EFTUSASTLO	94	5
EFTUSCHLRE	94	5
EFTUSCYAPA	94	5
EFTUSMICLU	96	5
EFTUŞSPIPL	94	5
EF11\$XENLA	107	5
EF1A\$THECE	102	5
EFBY1A	104	5
EF11\$RHIRA	104	5
EF12\$RHIRA	104	5
EF13\$RHIRA	104	5
EF1ASCANAL	104	5
S08058	104	5
EFECT	94	5
EFTUSTHETH	95	5
TTHTUF	95	5
1ETU	78	5
EF1A\$SULAC	103	5
EF1ASLYCES	104	5
EFTUSMYCGA	94	5
XELEF1ALA	104	5
EFTUSHALMA	102	5
EF2SCRIGR	117	5
EF2\$DROME	121	5
EF2SHUMAN	117	5
EF2SMESAU	117	5
EF2SRAT	117	5
EFTUSTHEMA	94	5
FF2SDICDI	115	5
FFTUSMYCGE	94	5
FETUSMETVA	104	5
TETMSSTRFA	87	5
TETMSUREUR	87	5
STATETM	87	5
FFIASEUGGR	104	5
FF2CHALHA	107	5

ELONGATION4 12 motif 4 TGTSQADCAVLI TGTSQADCAVLI TGTSQADCAVQI TGTSOADCAVLI TGTSQADCAVLI TGTSQADCAVLI TGTSQADCAVLI TGTSQADCAVLI TGTSQADCAVLI TGTSQADCAVLI TGTSQADCAVLI GTSQVADCAVLI TGTSQADCAVLI TGTSQADCAVLV TGAAQMDGAILV TGAAQMDGAIIV TGAAQMDGAILV TGAAQMDGAILV TGAAQMDGAILV TGAAQMDGAILV TGAAQMDGAILV TGAAQMDGAILV TGAAQMDGAILV TGTSQADVALLV TGASQADAAVLV TGTSQADCAILI TGTSQADCAILI TGTSQADCAILI TGTSQADCAILI TGTSQADCAILI TGTSQADCAILI TGAAQMDGAILV TGAAQMDGAILV TGAAQMDGAILV TGAAQMDGAILV TGASQADAAILV TGTSQADCAVLI TGAAQMDGGILV TGTSQADCAVLI TGASQADNAVLV AALRVTDGALVV AALRVTDGALVV AALRVTDGALVV AALRVTDGALVV AALRVTDGALVV TGAAQMDGAILV AALRVTDGALVV TGAAQMDGAILV TGASQADAAVLV RSLSVLDGAILL RSLSVLDGAILL RSLSVLDGAILL TGTSQADAAVLV

RAMRAVDGALVV

			_
RSLSVLDGAVLL	TETOŞCAMJE	87 87	5 5
RSLSVLDGAVLL	STATETOSM	87	5
RSLAACEGALLV	BVECLA	90	5
AGVGGIDHALLV	EFECSB	70	5
RSMRVLDGVVAV	EFGŞANANI	94	5
RSMRVLDGVIAV	EFGŞSPIPL	34	5
RSMRVLDGAIVV	EFGŞTHETH	100	5
RSMRVLDGAVMV	EFGSECOLI	100	5
RSLRVLDGAVAV	EFGSMICLU	92	5
RSMRVLDGAVMV	A28513	100	5
GGASQADVGVLV	SUP2SIEASI	140	5
AALRVTDGALVV	MUSELF2PSA	142	5
RAMRAIDGAVVV	EF25METVA NODOCRUIME	107	5
TGASTADLAIIL	NODŐŻKHIWE	123	5
ELONGATION5			
10	4		
motif 5	FRCC1 A	149	22
LIVGVNKMDS		140	24
LIVGINKMDS	EFIUŞXENLA EFILADDONE	140	34
LIVGVNKMDS	EFIIŞDROME EFIIŞDROME	140	34
LIVGVNKMDS	EF 12 SDROME	140	32
LIIGVNKMDS	EF 12 SXENLA	1/1	32
LIIGVNKMDS	EF 13 SAENLA EF 13 SAENLA	1/9	34
LIVGVNKMDM	EF IASAPIME TTI 1 CADATU	140	32
MICCCNKMDA	EF IASARAIN FF1 A CADTCA	147	22
LIVGVNKMDS	EF INGARISA FF1 A CHIMAN	148	32
LIVGVNKMDS	EF IASHOMAN EF1 A SMOUSE	148	22
LIVGVNKMDS	CUPERINS CUPERINS	140	22
LIVGVNKMDS	32269A	138	27
LIVGVNKMDS	TELACOLOT	151	30
MIVAINKMDE		131	25
IVVFLNKEDQ	EFEVT	167	25
IVVFVNKVDT	EF DI I DEMISANANT	131	25
IVVFLNKEDM	EF 10 GANAUL	198	25
MVVFLNKEDQ	EF 10 SANATH	131	25
LVVFLNKEDQ	EF ICORDIZC TETUSCHI.RF	131	25
VVVFLNKEDQ	EFICSCHERE	131	25
MVVFLNKEDQ	EFICOULTR	133	25
LLVALNKSDM		131	25
IVVFLNKADM	EF105BF1FD	151	32
LIVCVNKMDL	EFILJADHUA TRI 1 ČTHECE	139	25
ILVAVNKMDM	EF TAS INDEL	148	32
LIVAVNKMDS	TTI 1 CPHIRA	148	32
LIVAINKMDT	EFIISKIIKA mm12¢PHIRA	148	32
LIVAINKMDT	EFIZSKIIKA	148	32
LIVAINKMDT	EFISSKIIKA	148	32
LIVAVNKMDS	EFIASCANAL	1/9	32
LIVAINKMDT	500000	121	25
IIVFLNKCDM		122	25
IVVFMNKVDM	EFTOSTREIN	122	25
IVVFMNKVDM	1 DUAL	115	25
IIVFLNKCDM	IETU	4 Y 4 T T D	32
VIVAINKMDL	EF1ASSULAC	4 X O	32
MICCCNKMDA	EF1AŞLYCES	40	25
MVVFLNKCDV	EFTU\$MYCGA	131	32
LIVCINKMDC	XELEFIALA	148	

LIVGINKMDS

	TETTICHALMA	139	25
LIVAVNKMDL	EF IUSHAMIA EF2SCRIGR	153	24
PVLMMNKMDR	EF2SCRIGR EF2SDROME	157	24
PILFMNKMDR	EF25DROPE EF26UIMAN	153	24
PVLMMNKMDR	EF 2 SHOTLAN DED ÉMEG ALI	153	24
PVLMMNKMDR	Er 2 SMESAU	153	24
PVLMMNKMDR		131	25
MIVFINKTDM	EFTUSIHEMA	151	24
PVLFVNKVDR	EF25DICDI	121	25
MVVFLNKCDI	EFTUŞMICGE	144	28
LAVAVNKMDT	EFTUŞMETVA	100	20
TIFFINKIDQ	TETMŞSTRFA	123	24
TIFFINKIDQ	TETMŞUREUR	123	24
TIFFINKIDQ	STATETM	123	24
MIVATNKFDD	EF1ASEUGGR	148	34
PTLFINKVDR	EF2\$HALHA	143	24
TIFFINKIDQ	TETOŞCAMJE	123	24
TIFFINKIDQ	STATETOSM	123	24
VVPVLNKIDL	BVECLA	126	24
LTVALTKADR	EFECSB	107	25
RIVFVNKMDR	EFG\$ANANI	130	24
RIAFINKMDR	EFG\$SPIPL	130	24
RIAFANKMDK	EFG\$THETH	132	24
RTAFVNKMDR	EFG\$ECOLI	136	24
RICEVNKMDK	EFG\$MICLU	128	24
RTAFVNKMDR	A28513	136	24
	SUP2\$YEAST	401	32
DVT.MMNKMDR	MUSELF2PSA	178	24
DVLEINKVDR	EF2\$METVA	143	24
TAT AVNKTOL	NODQ\$RHIME	160	25

C.5 METHYL

COMPOUND(3) D.N. PERKINS 10/4/1991 CYTOSINE SPECIFIC METHYL TRANSFERASE

1. WU, J.C., SANTI, D.U. Kinetic and catalytic mechanism of HhaI methyltransferase. JOURNAL OF BIOLOGICAL CHEMISTRY 262 4778-4786 (1987)

2. SULLIVAN, K.M., SAUNDER, J.R. Sequence analysis of the Ngo PII methyltransferase gene from Neisseria gonorrhoeae; homologies with other enzymes recognising the sequence GGCC. NUCLEIC ACIDS RESEARCH 16 4369 (1988)

3. POSFAI, J, BHAGWAT, A.S., ROBERTS, R.J. Sequence Motifs for Cytosine Methyltransferases. GENE 74 261-265 (1988)

DNA (cytosine 5) methyltransferase catalyse the methylation of cystine residues in specific sequences of DNA to produce DNA (5-methyl) cytosine. In mammlian cells, cytosine specific methyltransferases methylate certain sequences which are believed to modulate gene expression and cell differentiation. In bacteria, these enzymes are a component of restriction modification systems and serve as valuable tool for the manipulation of DNA [1]. Homology between the C-5 methyltransferases has been noted by a number of workers [2].

An alignment of eleven sequences of was prepared as the initial step in this study from which three motifs were selected. It has been suggested that there are five well conserved regions within this family, each region containing invariate residues [3]. The first conserved region (FxGxG) is described in motif one, although these residues are not completely invariate. The second conserved region described by Posfai et al, (GxPCxxxSxxxG), is in fact not conserved over the whole family and was found to be of little use for discrimination. Motif two was derived from the third conserved region which is suggested to have the three invariant residues (ENV), although again these positions are not completely conserved. The fourth conserved region was used as a basis for motif three, sequence CHVCYMV (from Chlorella virus) though differs as histidine replaces the supposably conserved glutamine. The fifth region suggested by Posfai et al is not conserved across the whole family and is of no use for discrimination. Two iterations were required until convergence was reached.

SUMMARY INFORMATION

26	codes	involving	3	elements
0	codes	involving	2	elements

COMPOUND FEATURE INDEX

	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	_	
--	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	--

3	26	26	26
2	0	0	0
-+ 	1	2	

True	pos	it	ive	s:
11.000	-			

CTBPSR	SPRMTASE	S02599	CTBPPT
ECOMASE	S02598	CTBPRH	MTH2\$HAEPA
MTB2\$BACSU	MTB1\$BREEP	JS0489	XYBSR1
AQUMAB	MTB1\$BACSH	MTNG\$NEIGO	XYECR2
DCMSECOLI	JS0102	MTD1\$DESDN	XYHIH1
MTSI\$SALIN	MTSA\$STAAU	MTM1\$MORSP	MTDM\$MOUSE
MTSI\$SPISQ	CHVCYMT		

CTBPSR	Site-specific methyltransferase - Bacteriophage
SPRMTASE	DNA methyltransferase - Bacteriophage SPR
S02599	Site-specific methyltransferase - Bacteriophage
CTBPPT	Site-specific methyltransferase - Bacteriophage
ECOMASE	Mtase protein - Artificial gene
S02598	Site-specific methyltransferase - Bacteriophage
CTBPRH	Site-specific methyltransferase - Bacteriophage
мтн2\$наера	METHYLTRANSFERASE - Haemophilus parainfluenzae
MTB2\$BACSU	MODIFICATION METHYLASE BSUF I - Bacillus subtilis
MTB1\$BREEP	METHYLTRANSFERASE - Brevibacterium epidemidis
JS0489	banI methylase - Bacillus aneurinolyticus
XYBSR1	methyltransferase BsuRI - Bacillus subtilis
Aqumab	M.AquI alpha protein - Agmenellum quadruplicatum

MTB1\$BACSH MTNG\$NEIGO XYECR2 DCM\$ECOLI JS0102 MTD1\$DESDN XYHIH1 MTS1\$SALIN MTSA\$STAAU MTM1\$MORSP MTDM\$MOUSE MTSI\$SPISQ CHVCYMT	METHYLTRANSFER METHYLTRANSFER Site-specific m DNA-CYTOSINE M methyltransfer METHYLTRANSFER METHYLTRANSFER METHYLTRANSFER DNA (CYTOSINE- CPG DNA METHYL cytosine methy	ASE - Bacillus ASE - Neisseria methyltransfera ETHYLTRANSFERAS ase - Haemophil ASE - Desulfovi ase - Haemophil ASE - Salmonell ASE - Staphyloc ASE - Morexella 5)-METHYLTRANSF ASE - Spiroplas	sphaeri gonorr se EcoF E - Eso us aeg brio de us haer a infan coccuc de sp. TERASE sma sp. Chlore	cus hoeae HI - E. cherichi ptius esulfuri molyticuntis aureus - Mouse Hla vir	coli a coli cans us
SCAN HISTORY					
OWL10_1 2 5	50 NSINGLE				
INITIAL MOTIF-SE	ETS				
METHYL1					
17					
motif 1			•	-	
KVLSLFSGCGGMDLGI	LE	MTB1\$BREEP	2	2	
NVLSLFSGCGGLDLG	FE	XYBSR1	10	60	
KIISLFSGCGGLDLG	FE	MINGSNEIGO	13	T2	
RVMSLFSGIGAFEAA	LR	CTBPPT	5	5	
RVMSLFSGIGAFEAA	LR	ECOMASE VVUTU1	13	13	
RFIDLFAGLGGFRLA	LE	AIRIRI MMM1 CMORCD	106	106	
KFIDLFSGIGGIRQS	FE	MIMISMORSP	1021	1021	
RTLDVFSGCGGLSEG	FH	MTDMSMOUSE	76	76	
KALSFFSGAMGLDLG	IE	MISISSALIN CUVCVMT	, G 4	, G A	
RTLELFAGIAGISHG	LR		12	12	
RVFEAFAGIGAQRKA	LE	W121225125	12	14	
METHYL2					
15					
motif 2		MTB1\$BREEP	161	142	
KPKVFIAENVKGLVT	•	XYBSR1	187	110	
QPEIFVAENVKGMMT		MTNG\$NEIGO	115	85	
OPKFFLAENVSGMLA	, T	CTBPPT	142	120	
KPKFVILENVKGLIN	ſ	ECOMASE	142	120	
KPKFVIDENVKOEIN		XYHIH1	112	82	
KPKVVFMLNVRGLIN KTRVI.FLENVPGLIN	ſ	MTM1\$MORSP	206	83	
RTPVDI LLKNVRNFVS	· •	MTDM\$MOUSE	1135	97	
PREVIVIENVRGLLS	5	MTSI\$SALIN	185	92	
KPKIVFLENSHMLSH	I	CHVCYMT	104	83	
LPKYLLMENVGATTH	t	MTSI\$SPISQ	179	150	
METHYL3					
14					
motif 3			200	32	
GVAQNRERVIFIGI		MIRISPREEL	200	31	
GVPQLRERVIIEGV		XIBSKI	233	31	
GVAQERKRVFYIGF		MINGSNEIGO	101	31	
NVPQNRERVYIIGI		CIBLL	100		

	FCOMASE	188	31
NVPQNRERVYIIGI	YVHTH1	158	31
GIPOKRERIYMICF	MTM1 SMORS P	252	31
GIPQKRKRFYLVAF	MTDMSMOUSE	1181	31
	MTSISSALIN	252	52
GVPQIRERVIIICS	CHVCYMT	147	28
GAHHQRHRWFCLAI	MTSISSPISO	225	31
GSSQARRRVFMMST	11010010Q		
FINAL MOTIF-SETS			
METHYL1		4	
17			
motif 1	CTRACK	5	5
RVMSLFSGIGAFEAALR	СТВРЗК	5	5
RVMSLFSGIGAFEAALR	CIBERI	5	5
RVMSLFSGIGAFEAALR	XVECR2	97	97
RFIDLFAGIGGIRKGFE	SPRMTASE	4	4
RVMSLFSGIGAFEAALR	ECOMASE	5	5
RVMSLFSGIGAFEAALR	S02598	5	5
RVMSLFSGIGAFEAALR	502599	5	5
RVMSLFSGIGAFEAALR	DCMSECOLI	88	88
	XVBSR1	60	60
NVLSLFSGCGGLDLGFE	MTB1 SBREEP	2	2
	MTB2\$BACSU	102	102
TELERGIGGIRLEFE	MTNGŚNEIGO	13	13
	XYHIH1	13	13
RFIDEFAGEGGFREALE	JS0489	4	4
	MTM1 SMORSP	106	106
KFIDEFSGIGGIRQSFE	MTSASSTAAU	5	5
KVVELFAGVGGFRLGLE	MTB1SBACSH	59	59
NVLSH COROCHDUCFE	JS0102	2	2
NLISH BERGEDLER	AOUMAB	4	4
KLISH BERGERLAMO	MTH2SHAEPA	33	33
TFIDDERGIGGESHCER	MTD1 SDESDN	2	2
	CHVCYMT	4	4
RULEDFROIROISIGER	MTSISSPISQ	12	12
RVFEATAGICAGI.SEGEN	MTDMSMOUSE	1021	1021
RTLDVFSGCGGLDLGFA	MTSI\$SALIN	76	76
VADO: • • • • • • • • • • • • • • • • • • •			
METHYL2			
15			
MOTIL 2	CTBPSR	109	87
OPKFFVF ENVROLIN	CTBPRH	109	87
QPRYFVFENVKGLIN	CTBPPT	142	120
KPKFVILENVKGLIN	XYECR2	226	112
KPAIFVLENVKNEKS	SPRMTASE	108	87
QPKFFVFENVKGLIN	FCOMASE	142	120
KPKFVILENVKGLIN	s02598	109	87
KPKFVILENVKGLIN	s02599	109	87
QPKFFVFENVKGLIN	DOMÉRIOI.T	217	112
RPAMFVLENVKNLKS	UCM3ECOLI VVECD1	197	110
QPEIFVAENVKGMM'I'		161	142
KPKVFIAENVKGLVT	MIRISEREE	201	82
QPKMFLLENVKGLLT	MIRZSBACSU	115	85
QPKFFLAENVSGMLA	MI.WCSMETCO MI.MCSMETCO	110	82
KPKVVFMENVKNFAS	VIUTHT	112	20

.

			06
RPKAFLLENVRGLVT	JS0489	107	80
KTPVLFLENVPGLIN	MTM1 \$MORSP	206	03
FPKYLLLENVDRLLK	MTSAŞSTAAU	119	110
QPEIFVAENVKGMMT	MTB1\$BACSH	186	110
KPIFFLAENVKGMMA	JS0102	102	83
LPKCFVMENVKGMIN	AQUMAB	113	94
QPKAFFLENVKGLKN	MTH2\$HAEPA	134	84
SPKFFVMENVLGILS	MTD1\$DESDN	106	87
KPKIVFLENSHMLSH	CHVCYMT	104	83
LPKYLLMENVGATTH	MTSI\$SPISQ	179	150
RPRFFLLKNVRNFVS	MTDM\$MOUSE	1135	97
RPKYIVIENVRGLLS	MTSI\$SALIN	185	92
METHYL3			
14			
motif 3			~ 4
NVPQNRERLYIIGI	CTBPSR	155	31
NVPQNRERIYIIGV	CTBPRH	100	31
NVPQNRERVYIIGI	CTBPPT	198	31
FLPQHRERIVLVGF	XYECR2	280	39
NVPQNRERLYIIGI	SPRMTASE	154	31
NVPQNRERVYIIGI	ECOMASE	188	31
NVPQNRERLYIIGI	S02598	122	31
NVPQNRERLYIIGI	S02599	122	31
FLPQHRERIVLVGF	DCMSECOLI	2/1	39
GVPQLRERVIIEGV	XYBSR1	233	31
GVAQNRERVIFIGI	MTBISBREEP	208	32
GLPQRRERIVIVGF	MTB2\$BACSU	247	31
GVAQERKRVFYIGF	MTNGŞNEIGO	101	31
GIPQKRERIYMICF	XYHIHI	158	31
GVPQNRVRIYILGI	JS0489	153	31
GIPQKRKRFYLVAF	MTM1 SMORS P	252	31
GNAQRRRRVFIFGY	MTSASSTAAU	168	34
GVPQIRERVIIVGV	MTB1\$BACSH	232	31
GVAQDRKRVFYIGF	JS0102	148	31
GVPQFRERVFIVGN	AQUMAB	167	39
GVPQNRERIYIVGF	MTH2\$HAEPA	182	33
GVPQSRQRVFFIGL	MTD1\$DESDN	155	34
GAHHQRHRWFCLAI	CHVCYMT	14/	20
GSSQARRRVFMMST	MTSI\$SPISQ	225	21
CVAOTRRRAIIILA	MTDM\$MOUSE	1181	31
GVPQIRERVIIICS	MTSI\$SALIN	252	52

C.6 FERREDOXIN COMPOUND(3) D.N.PERKINS, 10-APRIL-1991 FERREDOXIN

1. VORST, O., VAN DAM, F., OOSTERHOFF-TEERTSTRA, R., SMEEKENS, S. and WEISBECK, P.

Tissue specific expression directed by an Arabidopsis thaliana pre-ferredoxin promoter in transgenic tobacco plants. PLANT MOLECULAR BIOLOGY 14 491-499 (1990).

2. DUTTON, J.E., LYNDON, J.R., HASLETT, B.G., TAKRURI, I.A.H., GLEAVES, J.T. and BOULTER, D. Comparitive studies on the properties of two ferredoxins from Pisium sativum. JOURNAL OF EXPERIMENTAL BOTANY 31 379-391 (1980).

3. MASUI, R., WADA, K., MATSUBARU, H., WILLIAMS, M.M. and ROGERS, L.J. Characterisation, amino acid sequence and phylogenetic considerations regarding the ferrdoxin from Ochromonas danica. PHYTOCHEMISTRY 27 2817-2820 (1988).

Ferredoxin is a low molecular weight iron-sulphur protein which is present in all photosynthetic organisms. The active centre is a 2Fe-2S cluster, chelated by four conserved cysteine residues [1]. Ferredoxin functions as an electron carrier in the photosynthetic electron transport chain of the chloroplast and also plays a central role as an electron donor to various cellular processes such as nitrate reductase, sulphite reductase and glutamate synthase [2]. There has been shown to be two types of plant ferredoxin, these differ in amino acid composition but are similar in terms of structure and function [3].

An alignment of twelve sequences was prepared from which three motifs were selected. The first motif contains the first two conserved cysteines, while motifs two and three are derived from the regions surrounding the second cysteine cluster. After two iterations convergence had been reached as all the plant type ferredoxin sequences present in the database were shown to match with all three features. There is no discrimination for the bacterial type ferredoxins that exhibit a different cysteine spacing.

SUMMARY INFORMATION

59 codes involving 3 elements 0 codes involving 2 elements

COMPOUND FEATURE INDEX

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

3	59	59	59
2	0	0	0
+- 	 1	2	3

FER1SSYNP7	FER1\$CYAPA	FENM1M	FESC
FEKM	FER1\$PHYES	FEMW	FEEF
FER1SPEA	FEBQ	FENM	FER1\$ANAVA
ANAPETF	JX0082	FEKK	FEYB6
FERSARATH	FER3\$RAPSA	FEFZ1	FESP2
FETA	FESG	FER\$SILPR	FERP
FER1\$RAPSA	FEFW2E	FEYCAL	FEYCT
FEPRR	FEFW2	FEED	FERŞAPHHA
FEDH1	FERZ	S03730	FER2ŞCYACA
FER2\$RAPSA	FEWT	N\$3FXC	FEPRU
FEFNG	FER\$MARPO	FEDH2	FEFWL
FER\$BUMFI	FELG	FEAH	FEEQI
FER\$BRYMA	FESP1	FEAA	FENMZM
FEAH2	FER\$PERBI	FEEQZ	FERZŞANASP
FEYC2	FEHS	FERSA	
FER1SSYNP7	FERREDOXIN	I - Synechoco	ccus sp.
FER1SCYAPA	FERREDOXIN	I - Cyanophor	a paradoxa
FENM1M	Ferredoxin	I - Nostoc mu	scorum
FESC	Ferredoxin	- Scenedesmus	quadricauda
FEKM	Ferredoxin	- Chlamydomon	as reinhardtii
FER1\$PHYES	FERREDOXIN	I - Food poke	berry
FEMW	Ferredoxin	- Fischerella	sp.
FEEF	Ferredoxin	- Chlorogloeo	psis fritschii
FER1\$PEA	FERREDOXIN	I - Garden pe	a
FEBQ	Ferredoxin	- Great burdo	CK
FENM	Ferredoxin	I - Nostoc mu	scorum
FER1\$ANAVA	FERREDOXIN	I - Anabaena	Variabilis
ANAPETF	ANAPETF fe	rredoxin I - A	napaena sp.
JX0082	Ferredoxin	L-Fd A - Radi	sn Aldenium
FEKK	Ferredoxin	- Cyaniaium c	aldarium
FEYB6	Ferredoxin	- Synechocyst	is sp. mahidangia thalinna
FER\$ARATH	FERREDOXIN	PRECURSOR - A	adich
FER3\$RAPSA	FERREDOXIN	I, LEAF L-A - R	autsii
FEFZ1	Ferredoxir	I - Apnanizon	lenon 1105-aquae
FESP2	Ferredoxir	II = Spinach	0.3 M
FETA	Ferredoxir	- Elephant's	eal
FESG	Ferredoxir	1 - Spiruiina n	White campion
FER\$SILPR	FERREDOXIN	1 PRECURSOR.	white campion
FERP	Ferredoxin	1 - Rape	Padich
FER1\$RAPSA	FERREDOXIN	N ROOT R-BI - P	(auisii (abarry
FEFW2E	Ferredoxin	1 II - Food por	cenerry cue lividue
FEYCAL	Ferredoxin	1 - Synechococc	
FEYCT	Ferredoxin	h - Synechocock	
FEPRR	Ferredoxi	n - Red alga	ockeherry
FEFW2	Ferredoxii	h II = Collution I	lder
FEED	Ferredoxi	h - European e	e halophitica
FER\$APHHA	FERREDOXII	N - Apnanollec	la calina
FEDH1	rerredox1	n I - Dunailei	200 - 1706 2 2 2 3 16
FERZ	rerredox1)	$\mathbf{n} \mathbf{T} = \mathbf{K} \mathbf{I} \mathbf{C} \mathbf{G}$	
S03730	FELLEGOX1)	$\mathbf{H} \mathbf{I} = \mathbf{K} \mathbf{I} \mathbf{C} \mathbf{C}$	caldarium
FER2\$CYACA	FERREDUXI	N - Cyaniaium	Dedish
FER2\$RAPSA	FERREDUXI	N KOUT $K-BZ =$	Vartan
FEWT	Ferredox	n - wheat	mlatancie
NGSEYC	Ferredoxi	u - spirulina	pracement

		_		
FEPRU	Ferredoxin	- Laver		
FEFNG	Ferredoxin	- Urajiro		
FER\$MARPO	FERREDOXIN	- Liverwort	aline	
FEDH2	Ferredoxin	II - Dunallella s	attic	
FEFW1	Ferredoxin	I - Common pokebe	filiformis	
FER\$BUMFI	FERREDOXIN	- Bumilleriopsis	11111011112	
FELG	Ferredoxin	- White popinac		
FEAH	Ferredoxin	- Aphanotnece sac		
FEEQ1	Ferredoxin	I - Horsetall		
FER\$BRYMA	FERREDOXIN	- Bryopsis maxima	L	
FESP1	Ferredoxin	I - Spinach		
FEAA	Ferredoxin	- Alfalfa		
FENM2M	Ferredoxin	II - Nostoc musco	orum	
FEAH2	Ferredoxin	II - Aphanothece	sacrum	
FER\$PERBI	FERREDOXIN	- Peridinium bipe	95	
FEEQ2	Ferredoxin	II - Horsetail	.	
FER2\$ANASP	FERREDOXIN	HETEROCYST - Anal	oaena sp.	
FEYC2	Ferredoxin	II (2Fe-2S) - Syn	nechococcu	s sp.
FEHS	Ferredoxin	- Halobacterium l	halobium	
FEHSX	Ferredoxin	- Halobacterium :	sp.	
SCAN HISTORY				
own 10 1 3	100 NOTNOLE			
OWDIV_1 J	100 NSINOL			
FERREDOXIN1 11 ferr_mot_1 DLPYSCRAGAC DLPYSCRAGAC DLPYSCRAGAC DLPYSCRAGAC DLPYSCRAGSC DLPYSCRAGSC DLPYSCRAGSC DLPYSCRAGSC ELPYSCRAGAC DLPLSCQAGAC DWPFSCRAGAC DNPFSCRAGAC		FESP2 FEFNG FEDH2 FEFZ1 FEFXT FERZ FEFW1 FER\$SILPR FEPRU FEEQ2 FEHS FEYC2	34 34 35 34 34 34 34 83 36 32 58 35	34 34 35 34 34 34 34 36 32 58 35
DEPASCITO TN2				
12				
forr mot 2				_
LEIT WOL -		FESP2	45	0
SSCAGEVISGSVD		FEFNG	45	0
SSCIGNEDORVD		FEDH2	44	0
SSCAGKVEAGIID		FEFZ1	46	0
STCAGKLVIGTID		FEWT	45	0
SSCAGKLVSGEID		FERZ	45	0
SSCAGKVVSGEID		FEFW1	45	0
SSCTGKVTAGTVD		EEPCCTI.DR	94	0
SSCAGKVVAGSVD		L TU COTOLI.	r 47	0
STCAGKVTEGTVD		FEFRC	43	0
STCLGKIVSGTVD		FEEQ2		

	FEHS	69	0
ANCASIVKEGEID	FEYC2	46	0
TTCAARILSGEVD			
FERREDOXIN3			
8			
ferr mot 3	EECD2	74	16
VLTCIAYP	FESF2	74	16
VLTCVAYP	FEING FEDU2	73	16
VLTCVAYA	F EDR2	75	16
VLTCVAYP	F EF ZI	74	16
VLTCHAYP	FEW1	74	16
VLTCHAYP	5 284 55551	74	16
VLTCVAFP	rerni Redecti DB	123	16
VLTCAAYP	FERSSILFA	76	16
VLTCIAYP	FERO	72	16
VLTCIAIP	F EBY=	99	17
RLTCIGSP	FEND FEVC2	75	16
TLLCVAYP	FEIC2		
FINAL MOTIF-SETS			
11			
forr mot 1			
DL PVSCRAGAC	FESP2	34	34
DLPYSCRAGAC	FEFW2	35	35
DLPYSCRAGAC	FEFW2E	35	35
DLPYSCRAGAC	FEFNG	34	34
DL.PYSCRAGAC	FEPRR	35	35
DL PYSCRAGAC	FEKM	32	32
DLPYSCRAGAC	FESC	34	34
DL PYSCRAGAC	FEDH2	33	33
DL PYSCRAGAC	FEKK	36	36
DI PYSCRAGAC	FEYB6	34	34
DI PYSCRAGAC	FEFZ1	35	35
DI PYSCRAGAC	FESG	36	36
DLPYSCRAGAC	FEEF	36	36
DLPYSCRAGAC	FEMW	36	36
DLPYSCRAGAC	FEAH	34	34
DI PYSCRAGAC	FENM1M	36	36
DLF PVSCRAGAC	FER\$APHHA	36	36
DLF PUSCRAGAC	FER1\$CYAPA	37	37
DLFIDOLA	FER1\$RAPSA	36	36
DIPISCRAGAC	FER1\$SYNP7	36	36
DLPYSCRAGAC	FER2\$CYACA	35	35
DLPVSCRAGAC	FER2\$RAPSA	36	36
DLPVSCRAGAC	N\$3FXC	36	36
DLAVSCRAGSC	FESP1	34	34
DLPYSCRAGSC	FETA	34	34
DLPYSCRAGSC	FEBQ	34	34
DLPYSCRAGSC	FERP	34	34
DLPYSCRAGSC	FEWT	34	34
DLPYSCRAGSC	FERZ	34	4⊮ز ۸ د
DLPYSCRAGSC	FEFW1	34	29 22
DLPYSCRAGSC	FEDH1	33	در مد
DLPYSCRAGSC	FER\$ARATH	86	23 23
	FER\$SILPR	83	00

	FFR1SPFA	86	86
DLPYSCRAGSC	FERISPHYES	34	34
DLPYSCRAGSC	FERISRAPSA	34	34
DLPYSCRAGSC	\$03730	34	34
DLPYSCRAGSC	JX0082	34	34
DLPYSCRAGSC	FEE01	33	33
DLPFSCRAGAC	FENM	36	36
DLPFSCRAGAC	FEYCAL	34	34
DLPFSCRAGAC	FEYCT	35	35
DLPFSCRAGAC	FER1\$ANAVA	36	36
DLPFSCRAGAC	ANAPETF	37	37
DLPFSCRAGAC	FEPRU	36	36
ELPISCRAGAC	FER\$BUMFI	36	36
ELPISCRAGAC	FERSMARPO	33	33
DI DESCRAGAC	FEAH2	36	36
DLPSSCRAGSC EL DVSCDACSC	FELG	33	33
ELPISCRAGSC	FER\$PERBI	32	32
ELPISCRAGSC	FEAA	34	34
DIPUGCRAGEC	FEED	34	34
DIPYSCRAGSC	FEHS	58	58
DWPFSCRAGAC	FEHSX	58	58
DWPFSCRAGAC	FENM2M	36	36
DLPFSCRSGSC	FEEO2	32	32
DLPLSCQAGAC	FERSBRYMA	35	35
DIPFSCRSGSC	FEYC2	35	35
DLPASCLIGVC	FER2SANASP	36	36
ELPFSCHSGSC	• _ • • • • • • • •		
FERREDOXIN2			
13			
ferr mot 2			
CAGKVTSGSVD	FESP2	45	0
CSCAGKVTAGAVN	FEFW2	46	0
SCAGKVTAGSVN	FEFW2E	46	0
SSCTGKLLDGRVD	FEFNG	45	0
GTCAGIVELGTVD	FEPRR	46	0
CSCAGKVAAGTVD	FEKM	43	0
CACAGKVEAGTVD	FESC	45	0
CCAGKVEAGTID	FEDH2	44	0
GTCAGKLLEGEVD	FEKK	47	0
STCACKITAGSVD	FEYB6	45	0
STCACKLVTGTID	FEFZ1	46	0
STCAGNETTSGSID	FESG	47	0
STCAGNILOUIU	FEEF	47	0
STCAGRINGETUD	FEMW	47	0
STCAGREIDOTTE	FEAH	45	0
STCAGEUSCITUD	FENM1M	47	0
STCAGRIVSCIUD	FERŞAPHHA	47	0
STCAGAIRECTVD	FER1SCYAPA	48	0
STCAGKVVEGIVD	FERISRAPSA	47	0
STCAGKIERGY	FER1SSYNP7	47	0
STCAGKVVSGIVD	FER2SCYACA	46	0
STCAGKLVKGSVD	FER2SRAPSA	47	0
STCAGQIVKGQVD	NS3FXC	47	0
STCAGTITSGTID	FESPI	45	0
SSCAGKLKTGSLN	FETA	45	0
SSCAGKVKVGDVD	EEBV	45	0
SSCAGKVTAGSVD	טממי עממי	45	0
CCCLOWINGCONTO	r d k P		

SSCAGKVVSGFVD

a

	FEWT	45	0
SSCAGKLVSGEID	FERZ	45	0
SSCAGKVVSGEID	FEFW1	45	0
SSCIGKVIAGTVD	FEDH1	44	0
SSCAGRVESGIVD	FERSARATH	97	0
SSCAGKVVSGSVD	FERSSILPR	94	0
SSCAGRVVAGSVD	FER1SPEA	97	0
SSCAGKVVGGEVD	FER1SPHYES	45	0
SSCAGKVTAGTVD	FER3SRAPSA	45	0
SSCAGKVVSGSVD	503730	45	0
SSCAGKVVSGEID	JX0082	45	0
SSCAGKVVSGTVD	FEE01	44	0
SSCLGKVVSGSVD	FENM	47	0
STCAGKLVSGTVD	FEYCAL	45	0
STCAGKLLEGEVD	FEYCT	46	0
STCAGKLLEGEVD	FER1SANAVA	47	0
STCAGKLVSGTVD	ANAPETF	48	0
STCAGKLVSGTVD	FEPRU	47	0
STCAGKVTEGTVD	FERSBUMFI	47	0
STCAGKVLSGTID	FERSMARPO	44	0
SSCAGKVTAGEVD	FFAH2	47	0
STCAGKLVSGAAP	FELG	44	0
SSCAGKLVEGDLD	FFRSDFRBI	43	0
SSCAGKVLTGSID	FERSPERD ² FFAA	45	ŏ
SSCAGKVAAGEVN	FFED	45	0
SSCAGKLVAGSVD	FFHS	69	0
ANCASIVKEGEID	FFHSX	69	0
ANCAAIVLEGDID	FENM2M	47	Ō
SSCNGILKKGTVD	FFEO2	43	ŏ
STCLGKIVSGTVD	EEDSBDVMA	46	Ő
STCAGKIEGGTVD	FERSERIAL FEVC2	46	0
TTCAARILSGEVD	TEDOCANASP	47	Ő
SSCVGKVVEGEVD	L EKS MADI	- ·	
FERREDOXIN3			
8			
ferr mot 3	FESP2	74	16
VLTCIAYP	FEFW2	75	16
VLTCVAYP	FEFW2E	75	16
VLTCVAYP	FEFNG	74	16
VLTCVAYP	FEPRR	75	16
VLTCVAYP	FEKM	72	16
VLTCVAYP	FESC	74	16
VLTCVAYP	FEDH2	73	16
VLTCVAYA	FEKK	76	16
VLTCVAYP	FEVB6	74	16
VLTCVAYP		75	16
VLTCVAYP	F EF 21	75	16
VLTCVAYP	r 233	76	16
VLTCVAYP	r eler Franzi	76	16
VLTCVAYP	FERW	70	16
ILTCVAYP	FEAH	74	16
VLTCVAYP	FENMIM	76	16
VLTCVAYP	FERŞAPHHA	76	16
VLTCVAYP	FER1SCYAPA	77	16
VLTCVAYP	FER1\$RAPSA	76	16
VLTCVAYP	FER1\$SYNP7	76	16
ILTCVAYP	FER2\$CYACA	75	-
	FER2SRAPSA	76	16
------------	----------------	------------	----
VLTCVAYP	NS3FXC	76	16
VLTCVAYP	FESPI	74	16
VLTCAAYP	FETA	74	16
VLTCVAYP	FEBO	74	16
VLTCVAYP	FFRD	74	16
VLTCAAYP	FFAT	74	16
VLTCHAYP	FFD7	74	16
VLTCHAYP	FERZ FFFW1	74	16
VLTCVAFP	FERMI FERMI	72	16
VLTCVAYA		126	16
VLTCAAYP	FERSARAIN	122	16
VLTCAAYP	FERSSIDFR	125	16
VLTCVAYP	FERIŞPEA	74	16
VLTCVAYP	FERISPHIES	74	16
VLTCAAYP	FERSSRAPSA	74	16
VLTCHAYP	503730	74 77 A	16
VLTCAAYP	JX0082	74	10
VLTCIAIP	FEEQI	73	10
VLTCVAYP	FENM	70	10
VLTCVAYP	FEYCAL	74	10
VLTCVAYP	FEYCT	75	16
VLTCVAYP	FERIŞANAVA	76	16
VLTCVAYP	ANAPETF	77	16
VLTCIAYP	FEPRU	76	16
LLTCVAYP	FER\$BUMFI	76	16
VLTCIAYP	FER\$MARPO	73	16
VMTCVAYP	FEAH2	77	17
VLTCAAYP	FELG	73	16
CLTCVTYP	FER\$PERBI	72	16
VLTCVAYA	FEAA	74	16
VLTCVAYP	FEED	74	16
RLTCIGSP	FEHS	99	17
PLTCIGSP	FEHSX	99	17
VITCVAYP	FENM2M	76	16
TAT	FEEQ2	72	16
TT TO VAYP	FER\$BRYMA	75	16
T T CVAYP	FEYC2	75	16
TLUCYAT	FER2\$ANASP	76	16

i j

Appendix D

Amino acid notation and colours used for multiple sequence alignments

Amino	1 letter	3 letter	Alignment
acid	code	code	colour
Amino acid Alanine Aspar/agine/tate Cysteine Aspartate Glutamate Phenylalanine Glycine Histidine Isoleucine Lysine Leucine Methionine Asparagine Proline Glutamine Arginine	A B C D E F G H I K L M N P Q R	Ala Asx Cys Asp Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg	Alignment colour grey grey yellow red red purple brown blue grey blue grey grey grey grey green brown brown
Serine	S	Ser	green
Threonine	T	Thr	
Valine	v	Val	grey
Tryptophan	W	Trp	purple
Unidentified Tyrosine Glutam/ine/ate	X Y Z	Tyr Glx	grey purple grey

Colour	Residues	Property
Green Grey Blue Red Purple Brown Yellow	STNQ AVLIM HKR DE FYW GP	Polar uncharged Hydrophobic Basic Acidic Aromatic Structural oddities Custeine/ine

