
Blast Wave Clearing Effects on Finite-Sized

Targets Subjected to Explosive Loads

Samuel E. Rigby

This thesis is submitted for partial consideration towards the degree of Doctor of

Philosophy in

The Department of Civil and Structural Engineering

at the University of Sheffield

27th August, 2014





dedicated to Megan. . .

you are my sunshine





Abstract

A high explosive detonation is characterised by the rapid release of energy as a mass of

explosive material is converted into a high pressure, high temperature gas. As this gas

expands it displaces the surrounding air, causing a high pressure shock wave to travel

through the air away from the explosive at supersonic speed. This shock wave can po-

tentially cause significant damage as it impacts a structure – it is the challenge of the

engineer to ensure that our infrastructure is robust enough to be able to withstand such

extreme loading.

The first aspect of blast engineering is to be able to predict and quantify the spatial and

temporal variation of the load acting on the target to a sufficient level of accuracy. Whilst

experimental trials and higher order numerical schemes offer useful insights, the time and

expense associated with such methods renders them unusable for the early stages of design.

Accordingly, semi-empirical blast predictions are more often favoured.

These semi-empirical predictions assume that the target forms a reflecting surface that is

effectively infinite in dimensions perpendicular to the direction of travel of the blast wave.

For finite-sized targets, however, the presence of target edges is known to significantly

alter the pressure acting on the loaded face in a process known as blast wave clearing –

diffraction of the blast wave around the target which causes a relief wave to sweep in from

the edges of the reflecting surface.

Current methods for predicting blast wave clearing fail to capture the physical process,

and as such are inadequate at providing valid blast pressure predictions. Approximating

the relief wave as an acoustic pulse allows for accurate predictions which are based on

physically valid principles. Accurate prediction of cleared blast pressure loads has enabled

the effect of blast wave clearing to be identified and quantified.

Secondly, the target response to this load must be predicted. The single-degree-of-freedom

(SDOF) method approximates the distributed properties of the real life system into single

point equivalent values. This procedure is well established for the target properties, and

by transforming the spatial variation of cleared blast pressure in a similar manner (by

conserving energy between real life and equivalent systems), clearing blast pressure loads

can be modelled in SDOF analyses. The marked effect of clearing on structural response

has been clearly demonstrated in this thesis.
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The combined improvements to both load prediction and response modelling has allowed

a full parametric study to be conducted on finite-sized targets subjected to blast loads.

Neglecting clearing can be largely over-conservative for small targets, and for targets with

plastic resistance significantly less than the applied transient blast force. It has been

observed, however, that neglecting clearing can sometimes be non-conservative through

a combination of target rebound, plasticity and early negative pressures caused by the

clearing waves.

Findings in the PhD thesis should be used to highlight the complex nature of blast-target

interaction, particularly when blast wave clearing is concerned, and should dispel the myth

that a design will be safe if clearing is neglected. Results presented in the study can also be

used by practising engineers to determine the likely effect that blast wave clearing will have

on any configuration of explosive mass, stand-off, target size and dynamic properties, and

the numerical models developed within have the potential for widespread use in existing

commercial software.
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Chapter 1

Introduction

This PhD thesis will work towards developing a better understanding of the mechanism

and the effects of diffraction of a blast wave around the edges of a finite-sized target.

This chapter will serve to provide an outline of the structure of the thesis, as well as

describing the motivation behind the current research.

1.1 Background and Motivation

Over recent years, the use of high explosives for malicious attacks has become more com-

mon; often with the explosive being used to target critical building components with the

specific intention of causing structural collapse. In the majority of high-casualty terrorist

attacks – recent examples are shown in Table 1.1, after Dusenberry (2010) – the main

cause of death is not from the direct effects of the blast itself, but from flying rubble,

glass, or building collapse. When a truck laden with around 3,000 kg of high explosives

was detonated outside the Alfred P. Murrah Building in Oklahoma City, USA, on the

19th of April 1995, the entire front face of the building collapsed, claiming 168 lives. In a

similar attack on the US Embassy in Nairobi, on the 7th of August 1998, approximately

212 people were killed; most of the casualties were caused by the collapse of the nearby

Ufundi building.

Furthermore, it has been suggested that the majority of non-fatal injuries from terrorist

attacks are caused by either lacerations from airborne glass fragments or by damage to

hearing from failed glass panels (Norville et al. 1999). The need for civilian infrastructure,

therefore, to be able to resist the intense loading produced from a high explosive detonation

is imperative to ensure the safety of the building’s occupants.

Blast loads typically exceed the forces and actions that a building will be designed to resist

during normal operation by several orders of magnitude. Existing methods to quantify

and design against these loads are beyond the scope of traditional civil engineering. When

this is coupled with a perceived increase in the frequency and severity of malicious high

1
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Date Target Approx. size Deaths Injuries Details
of explosive

18th April, 1983 US Embassy, Lebanon,
Beirut

910 kg 63 120 Truck bomb attack on US Embassy, seen as the
beginning of modern terrorist attacks on the US.
Resulted in the collapse of the entire central façade.

23rd October, 1983 US Marine HQ, Lebanon,
Beirut

5,440 kg 241 75 Reportedly the largest truck bomb in history,
completely levelled the cinderblock building.

19th April, 1995 Alfred P. Murrah Building,
Oklahoma City, USA

3,000 kg 168 680 324 buildings were damaged by the blast, with the
entire front face of the target building collapsing.
The most destructive terrorist attack in the US
before 9/11.

25th June, 1996 Khobar Towers, Khobar,
Saudi Arabia

2,300 kg 19 372 Truck bomb detonated outside an eight-storey
building housing US Air Force personnel. Six nearby
high rise buildings were heavily damaged and
windows were broken in buildings up to a mile away.

7th August, 1998 US Embassies, Nairobi,
Kenya & Dar es Salaam,
Tanzania

3,000 kg 223 4,500+ Two truck bombs exploded at the US Embassies in
two East African capital cities. Most casualties in
Nairobi were caused by the collapsing Ufundi
building nearby. The majority of injuries came from
glass lacerations.

12th May, 2003 Riyadh compound, Riyadh,
Saudi Arabia

unknown 36 160 Seven car bombs detonated simultaneously. Caused
considerable damage to nearby buildings.

8th October, 2004 Hilton Hotel, Taba, Egypt 2 x 200 kg 31 171 Truck bomb detonated in the hotel lobby causing 10
floors of the hotel to collapse.

22nd July, 2011 Office of the Prime Minister,
Olso, Norway

unknown 8 209 Car bomb parked outside government buildings in
Olso, Norway. Caused considerable damage to target
building and nearby structures – majority of injuries
caused by flying debris.

Table 1.1: Examples of recent high-casualty terrorist attacks on buildings using high explosives, adapted from Dusenberry (2010)
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explosive attacks against buildings, the need for accessible and accurate design methods

becomes obvious.

This thesis presents research which will contribute to the existing knowledge of quantifying

front-face blast loading and target response of finite-sized structures subjected to the effects

of a high explosive detonation. The research findings will, when appropriate, be expressed

in a form which will be of practical use to civilian engineers.

1.2 Scope and Objectives of the Thesis

When designing to resist blast loads, the engineer is faced with two principal challenges:

firstly, the pressures associated with the blast wave and how it interacts with the tar-

get must be quantified; secondly, the response of the target should be calculated and

subsequent damage predicted with some degree of confidence.

Whilst experimental work can offer valuable insights into the typical behaviour and char-

acteristics of blast events, it is often very expensive and time consuming. Higher order

numerical schemes can be used to model ‘real-life’ events, but can often require consider-

able computational resources. These numerical schemes, such as finite element analysis,

have particular strengths when used to aid the understanding of fundamental physical

principles and are typically used in this manner – for research rather than design pur-

poses.

Often the exact location, composition and size of explosive will not be known and instead

it is pertinent to know, or be able to quickly determine, the likely effects of a wide range

of blast events. Because of this, the majority of the work in this thesis is concerned

with semi-empirical predictions of blast pressure and approximate methods for evaluating

target response. Higher order schemes are also used in this thesis, primarily to explore

situations where the approximations may not be valid, or to compare against and validate

the simpler methods.

This thesis, therefore, has two main aims, related to the two engineering challenges intro-

duced above:

1. To investigate the form of the blast pressure acting on a finite target, and to inves-

tigate the mechanism of diffraction around the target edge.

2. To gain a better understanding of the influence of blast wave diffraction and clearing

on the dynamic response of finite targets subjected to blast loads.
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1.3 Thesis Outline

The remainder of the thesis is organised into the following chapters:

Chapter 2 – Literature Review and Theoretical Background

This chapter provides background information for explosive blast loading and blast

wave clearing. Current literature relating to the evaluation of blast loads on infinite

and finite sized targets is reviewed, as well as the influence of different loading

assumptions on target response.

Chapter 3 – Air Blast Loading Using LS-DYNA

This chapter is concerned with the modelling of explosive events using finite element

software. The effects of different modelling techniques such as mesh refinement and

re-mapping are studied and blast pressure predictions for incident pressure and re-

flected pressure on semi-infinite and finite targets are validated against experimental

results.

Chapter 4 – A Study of Diffraction Loading and Clearing for Small Targets

The well-validated model for simulating blast events from Chapter 3 is used to

conduct a study on the form of the blast load for small targets. Approximate

methods for predicting the blast pressure are compared against the numerical results

and conclusions on the mechanism of blast wave clearing are drawn.

Chapter 5 – Modelling Structural Response to Blast Loads

This chapter details a series of experimental trials that were undertaken to validate

computational methods for evaluating target response to blast loads. Three tech-

niques for modelling dynamic target deflection are compared against these numerical

results, with a discussion on the relative strengths and suitability of each method.

Chapter 6 – The Influence of Clearing on Dynamic Response

The response of finite targets subjected to cleared blast loads is evaluated for a

range of parameters in an attempt to both understand and quantify the influence of

blast wave clearing, and also to develop and provide detailed guidance on the likely

response and damage a given target will sustain for a given cleared blast load.

Chapter 7 – Summary and Conclusions

This chapter summarises the current research and makes suggestions for future work.



Chapter 1. Introduction 5

1.4 Published Work

The work detailed in this thesis has been published in the following peer-reviewed journal

papers and is repeated herein with permission from Trans Tech Publications, Elsevier, the

Institution of Civil Engineers (ICE) Publishing and Multi-Science Publishing:

• Tyas, A., Bennett, T., Warren, J. A., Fay, S.D. & Rigby, S. E. (2011), ‘Clearing of
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• Rigby, S. E., Tyas, A. & Bennett, T. (2012), ‘Single-degree-of-freedom response of

finite targets subjected to blast loading – the influence of clearing’, Engineering

Structures 45, 396-404.

• Rigby, S. E., Tyas, A., Bennett, T., Warren, J. & Fay, S. (2013), ‘Clearing effects on

plates subjected to blast loads’, Engineering and Computational Mechanics 166(3),

140-148.

• Rigby, S. E., Tyas, A. & Bennett, T. (2014), ‘Elastic-plastic response of plates

subjected to cleared blast loads’, International Journal of Impact Engineering 66,

37-47.
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• Rigby, S. E., Tyas, A., Bennett, T., Fay, S. D., Clarke, S. D. & Warren, J. A.

(2014), ‘A Numerical Investigation of Blast Loading and Clearing on Small Targets’,

International Journal of Protective Structures 5(3), 253-274.





Chapter 2

Literature Review and Theoretical

Background

2.1 Introduction

This chapter provides background information for explosive blast loading and blast wave

clearing, as well as reviewing current literature pertinent to the subjects covered in this

thesis. The predominant focus of this chapter is the evaluation of blast loads on effectively

infinite and finite reflecting surfaces using semi-empirical methods, with a particular focus

on current methods for predicting blast wave clearing. The influence of different loading

assumptions on structural response will be reviewed, however the detailed theory and

application of finite element and single-degree-of-freedom analyses will be provided in

later chapters. This chapter highlights the gaps in the current knowledge base that this

thesis will aim to address.

2.2 Explosive Blast Loading

2.2.1 Blast Waves in Free Air

When a mass of explosive material detonates it is converted into an extremely dense, high

pressure gas. This reacting medium rapidly expands and displaces the surrounding air

away from the source of the explosion at supersonic speed (faster than the speed of sound

in the undisturbed air). The nature of air as a compressible fluid causes the pressure

disturbance to form a shock front, a near discontinuous increase in pressure and density

travelling outwards from the centre of the explosion (Baker 1973).

At a fixed distance from the explosive, the blast wave is characterised by an abrupt in-

crease from ambient air pressure, p0, to peak overpressure, pso,max, followed by a temporal

decay back down to ambient pressure, the duration of which is known as the positive

7
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phase duration, td. The subscript ‘so’ indicates incident pressure values, i.e. the pressure

measured by a transducer that offers no resistance to flow behind the shock front, or by a

shock wave propagating parallel, or ‘side-on’, to a reflecting surface. The term ‘overpres-

sure’ refers to the pressure increase above normal atmospheric conditions caused by the

blast wave.

Following the positive phase comes a period of negative (below atmospheric) pressure

caused by over expansion of the air following the shock front, known as the negative

phase, which has peak amplitude pso,min and duration t−d . After the negative phase,

ambient pressure is restored. An ideal blast wave is shown in Figure 2.1. The impulse,

i, is defined as the integral of the pressure with respect to time, i.e. the area under the

pressure-time curve.

2.2.2 Blast Wave Reflection

When an incident blast wave strikes a rigid target, conservation of mass, momentum and

energy at the interface cause the pressure, density and temperature of the blast wave to

be increased above the incident values. The overpressure at the rigid surface is termed

the reflected pressure, the values of which are given the subscript ‘r’ (see Figure 2.1).

pr,max

pr,min

ta td

p

t

p0

td

ir

iso

iriso

pr

pso

Figure 2.1: Idealised pressure-time profile for a blast wave

The Rankine-Hugoniot ‘jump’ conditions describe the relationship between the states of

compressed air either side of a travelling shock front (Anderson 2001). Balancing mass and

energy across the shock front enables the density, ρs, and particle velocity immediately

behind the shock front, us, to be given as

ρs = ρ0
(γ + 1)pso + 2γp0
(γ − 1)pso + 2γp0

(2.1)
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us = psoa0

√

2

γρ0 [(γ + 1) pso + 2γp0]
(2.2)

where ρ0, p0 and a0 are density, pressure and sound speed of the ambient undisturbed air,

and γ is the specific heat ratio (1.4 for air). For normal reflection, the reflected pressure,

pr, can be expressed in terms of the incident pressure, pso, and dynamic pressure, qs, as

pr = 2pso + (γ + 1)qs (2.3)

where the first term relates to reflection of the incident pressure in the acoustic regime and

the second term represents the pressure increase associated with bringing the compressed

fluid to rest at the reflecting surface, with

qs =
1

2
ρsus

2. (2.4)

Substituting Equations 2.1, 2.2 and 2.4 into Equation 2.3 yields

pr = 2pso
7p0 + 4pso
7p0 + pso

. (2.5)

The reflection coefficient, Cr, is defined as the ratio of the reflected pressure to the incident

pressure, Cr = pr/pso. In the case of weak shocks (where the overpressure is small in

relation to atmospheric pressure, i.e. p0 >> pso), the reflected pressure is dominated by

the acoustic term in Equation 2.3 and Cr ≈ 2.0. For strong shocks (pso >> p0), the

reflection is dominated by the dynamic term, however the upper limit of Cr = 8.0 from

Equation 2.5 is based on the assumption that the air still behaves as an ideal gas at

extremely high pressures and temperatures. If real gas effects such as dissociation and

ionization of the air molecules are taken into account, the reflection coefficient can be as

high as 20 (US Army Materiel Command 1974).

2.2.3 Scaling Laws

Hopkinson-Cranz (or ‘cube-root’) scaling, proposed independently by Hopkinson (1915)

and Cranz (1926), states that similarity exists between the blast waves produced at iden-

tical scaled distances from two explosive charges of similar geometry but different sizes

(Figure 2.2). That is, the blast pressure profile at a distance of R from an explosive mass

W will be similar to the blast pressure at a distance of KR from a mass of K3W . This in-

troduces the concept of scaled distance, Z, where the scaled distance, in units of m/kg1/3,

is given as

Z =
R

W 1/3
. (2.6)
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p

KtdKta

Ki

tdta

R

d

KR

Kd

ip
W

K
3
W

Figure 2.2: Hopkinson-Cranz blast wave scaling (Baker 1973)

In Hopkinson-Cranz scaling, all pressures are identical between scaled and actual values,

and all times are scaled by the same value as the length scale factor, K, or the cube-root

of the charge mass (Kinney & Graham 1985), hence the expressions in Equation 2.7 hold

pactual = pscaled

tactual = tscaledW
1/3

and iactual = iscaledW
1/3.

(2.7)

2.2.4 Positive Phase Parameters

The first step when assessing the performance of a structure under explosive loading is

to quantify the load that the target will be subjected to. Early analytical predictions of

blast wave parameters, perhaps some of the most notable being the work by Taylor (1950),

Brode (1955), and Granström (1956), are based on a number of assumptions[i] and are

not directly applicable for use in design and research of structures subjected to explosive

loads. Experimental tests are expensive and require careful control, and are typically used

to validate numerical models which themselves require a considerable level of expertise

and computational resource.

Consequently, the semi-empirical ‘look-up’ method of Kingery & Bulmash (1984) (hereby

abbreviated as KB) is usually favoured, as it offers a quick and simple means for deter-

mining the blast pressure load.[ii]

This method utilises curves fit to a compilation of data based partly on computer analyses

and partly on measurements from a number of medium to large-scale experimental blast

[i]e.g. point source, instantaneous release of energy and negligible atmospheric pressure compared to peak
overpressure

[ii]In this thesis, ConWep and KB are used interchangeably to denote the semi-empirical predictive method.
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trials, and enables the pressure, impulse, arrival time and duration to be determined for

values of Z between 0.067 and 39.67 m/kg1/3. Close-in blast parameters are largely derived

from computer analyses because of the associated difficulty with measuring the extremely

high pressures near to the blast source (Esparza 1986). The explosive is characterised

into two main types; either a spherical free air burst (a suspended charge detonated at a

height such that the entire duration of the shock wave has passed before the arrival of any

waves reflected from the ground surface), or a hemispherical surface burst (a hemisphere

of explosive detonated on a flat, rigid reflecting surface). The high-order polynomial curve

fits are fairly cumbersome and are not usually presented in the literature, instead the

blast parameters are typically presented as a set of curves, repeated here in Figure 2.3.

These blast parameters form the basis of design guidance such as the US Department of

Defence (2008) Design Manual UFC-3-340-02, Structures to Resist the Effects of Accidental

Explosions, and the computer code ConWep (Hyde 1991).

Authors such as Baker (1973), Kinney & Graham (1985) and Swisdak (1994), among

others, provide simplified relationships for calculating blast wave parameters; a detailed

discussion of the various methods can be found in review papers by Remennikov (2003)

and Ngo et al. (2007). Bogosian et al. (2002) compared simplified predictive methods with

available test data and found that the KB method predicted positive phase parameters to

the highest level of agreement with the experimental data.

The positive phase of the blast can be simplified as a triangular pulse,

pr(t) = pr,max

(

1−
t

td,lin

)

(2.8)

where the linear positive phase duration, td,lin, can be chosen to preserve duration (td,lin =

td) or to preserve impulse (td,lin = 2ir/pr,max). The positive phase, however, is more

commonly described by an exponential decay in the form of the ‘modified Friedlander

equation’ (Friedlander 1946),

pr(t) = pr,max

(

1−
t

td

)

e
−b t

td (2.9)

where b, known as the waveform parameter, controls the decay of the pressure-time curve.

The KB method presents a relationship for this parameter, however from inspection of

Figure 2.3 it is clear that pr,max/pso,max 6= ir/iso for all values of Z, i.e. the decay of

the pressure-time curve that best reproduces the experimentally measured traces is not

the same for incident and reflected pressures. Whilst this is not physically admissible,

it is worth remembering the semi-empirical method only offers a fit to data with no real

physical basis, rather than a solution to a set of governing equations. Regardless, this

issue can be overcome by integrating Equation 2.9 to find an expression for the waveform

parameter in terms of impulse and pressure, i.e.
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Figure 2.3: Incident and reflected positive phase blast wave parameters after UFC-3-340-02 (US Department of Defence 2008). (a) spherical charges of TNT
in free air, (b) hemispherical charges of TNT on the surface
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ir =

td
∫

0

pr,max

(

1−
t

td

)

e−bt/td dt =
pr,maxtd

b2

(

b− 1 + e−b
)

(2.10)

which can be solved separately to find b for incident and reflected pressures. Figure

2.4 shows the waveform parameter given by the KB relationship, as well as exponential

expressions given by Larcher (2007)[iii] and Teich & Gebbeken (2010)[iv]. The values of

b, from separate solutions of Equation 2.10 to preserve incident and reflected impulse

respectively are also shown. Whilst the KB values of b may be appropriate as a ‘first-

guess’, it is recommended that the waveform parameter is determined from iteration of

Equation 2.10 when defining the blast overpressure (Hyde 1991).
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Figure 2.4: Comparison of waveform parameter, b

To illustrate the veracity of semi-empirical positive phase predictions, a number of blast

trials were conducted at the University of Sheffield Blast & Impact Laboratory, Buxton,

UK. 0.25 kg PE4 hemispherical explosive charges were detonated 4 m, 6 m, 8 m and 10 m

away from a semi-infinite, rigid target (a 500 mm thick reinforced concrete bunker wall,

4.5 m high). The charges were detonated on a 50 mm thick steel plate, placed on a level,

flat concrete ground slab, enabling the detonation to be considered as a hemispherical

surface burst. A Kulite HKM 7 bar pressure gauge was placed 375 mm from the base

of the target, and pressure was recorded using a 16-Bit Digital Oscilloscope at a sample

rate of 100 kHz synchronised with the detonation. The blast wave could be considered as

planar and angle of incidence effects could be neglected (see Section 2.2.6).

Figure 2.5 shows experimental positive phase pressure time histories and ConWep predic-

tions where the waveform parameter was found by integrating the Friedlander equation. It

can be seen that the Friedlander equation matches the form of the measured pressure-time

history remarkably well and the positive phase predictions can be seen to be in excellent

qualitative agreement with the experimental results. The recorded traces show a small

[iii]b = 5.278Z−1.1975

[iv]b = 1.5Z−0.38
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amount of sensor ringing at the shock front and a secondary shock wave can be seen to

arrive some time after the primary shock (for example, at 10.3 ms after detonation for the

4 m trace in Figure 2.5).

Immediately after detonation, a compressive shock travels through the explosive material.

When this compressive wave reaches the contact interface between explosive and air, part

of the shock is transferred as a compressive shock wave into the air and part of it reflects

as a tensile wave, travelling back through the explosive. Once this wave reaches the end

of the explosive, it is reflected again as a compressive wave and travels back through the

material, transmitting a second compressive shock as it reaches the explosive/air interface.

Secondary and even tertiary shocks are a known feature of experimental pressure record-

ings (US Army Materiel Command 1974), however they are often ignored as the pressure

and impulse of these shocks are a small fraction of the primary shock.
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Figure 2.5: Experimental and predicted pressure time histories for a 0.25 kg PE4 (0.3 kg TNT)
charge detonated on a rigid surface at ranges of 4 m, 6 m, 8 m and 10 m from a semi-infinite target
(Z = 6.0, 9.0, 12.0 and 14.9 m/kg1/3)

Table 2.1 shows the experimental and predicted positive phase reflected pressures and

impulses. Whilst the sensor ringing mentioned above clearly prevents the peak reflected

pressure from being directly measured, the effect has been demonstrated to effectively

cancel out over the whole record (Smith et al. 1999) and therefore the measured trace

can be temporally integrated to give the experimental specific impulse. Peak reflected

pressures are given as the peak value from a least squares fit of the Friedlander equation

to the pressure readings by extrapolating backwards to the arrival time.[v]

With a difference of no more than 6% between experiment and predicted peak pressures

and impulses, it can be said with confidence that the ConWep predictions can be accurately

used to model the positive phase load arising from a high explosive detonation.

[v]There is no formal method for defining the interval over which the curve should be fit to. Here, the
sensor ringing was judged to have ceased at around 0.4 ms after arrival for all tests and the curve was
fit between this time and the end of the experimental positive phase.
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Stand-off (m) Peak Reflected Pressure (kPa) Peak Reflected Impulse (kPa.ms)

Experiment Predicted Ratio Experiment Predicted Ratio

4 76.8 71.8 0.94 68.8 69.1 1.00
6 39.2 37.1 0.95 44.8 44.6 1.00
8 26.1 24.5 0.94 32.6 32.9 1.01
10 18.3 18.1 0.99 24.9 26.0 1.04

Table 2.1: Experimental and predicted positive phase reflected impulse and ratio of numeri-
cal/experimental

2.2.5 Negative Phase Parameters

Negative phase parameters are also available in the literature (US Department of Defence

2008, Cormie et al. 2009). However, as Bogosian et al. noted in their review, ‘The precise

provenance of these curves is unknown at the present time’ (Bogosian et al. 2002, page 3).

They suggested that this uncertainty is due in part to the fact that ‘not all (experimental

data records) were of sufficient duration and/or quality as to be able to extract negative as

well as positive values, and while some had dubious peak pressure readings, others became

suspect at later time and therefore could not produce reliable impulses’ (Bogosian et al.

2002, page 9). This is perhaps inevitable in the large scale experimental tests that formed

the basis of the data analysed in that work.

The original source of the negative phase parameters presented in UFC-3-340-02 is unclear,

although a thorough review of the available literature indicates that it may have been from

analytical work conducted in the 1950s by Granström (1956). Negative phase parameters

are shown in Figure 2.6 for spherical free air bursts and hemispherical surface bursts.

For small scaled distances, the peak underpressure and negative phase impulse are very

small relative to the positive phase. This is often cited as reason enough to neglect the

negative phase, however it is clear from the parameter charts in Figures 2.3 and 2.6 that

this observation is only true for small values of Z, and that the negative phase impulse

approaches that of the positive phase for larger scaled distances, eventually exceeding the

positive phase impulse when Z > 8. In free-field blast experiments, the rising fireball

creates a lower pressure near the ground surface which draws in the surrounding air. This

has the effect of further lowering the air density, which has already been over-expanded

after the shock wave has passed, and hence results in larger negative phase impulses at

larger stand-off distances (Needham 2010).

The influence of the negative phase has become a topic of interest over recent years, in

particular the effect of the negative phase on light cladding and glazing panels (Krautham-

mer & Altenberg 2000, Dharani & Wei 2004, Gantes & Pnevmatikos 2004, Wei & Dharani

2006, Hooper et al. 2012, Larcher et al. 2012). If a panel is undamaged by the positive

phase of the blast load, a combination of negative phase pressure and elastic rebound

may cause the structure to fail towards the direction of the blast source. It has been
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Figure 2.6: Incident and reflected negative phase blast wave parameters after UFC-3-340-02 (US Department of Defence 2008). (a) spherical charges of TNT
in free air, (b) hemispherical charges of TNT on the surface
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estimated that the majority of non-fatal injuries from explosions are caused by airborne

glass fragments (Norville et al. 1999, Wei & Dharani 2006). In the Oslo bombing on the

22nd of July 2011, window damage was recorded out to approximately 400 m from the

centre of the explosive (Christensen & Hjort 2012). It can be said, therefore, that proper

understanding of the effect of the negative phase is crucial to limit the potential casualties

caused by a high explosive blast and the negative phase should not be neglected in design.

Linear Approximation

Krauthammer & Altenberg (2000) studied the probability of failure of brittle glass panels.

The blast load was simplified as a piecewise, bilinear expression (Equation 2.11), with the

positive phase represented by a linear decay as described in Section 2.2.4 and the negative

phase modelled with a rise time equal to 1/4 of the negative phase duration. As per

the positive phase, the linear negative phase duration, t−d,lin, can be specified to preserve

negative phase impulse, i.e. t−d,lin = 2i−r /pr,min. The negative phase begins at td, rather

than td,lin, giving a period of zero pressure between the linear positive and negative phase.

This approach is recommended in UFC-3-340-02 (US Department of Defence 2008).

pr(t) =























































pr,max

(

1−
t

td,lin

)

, t ≤ td,lin

0, td,lin < t ≤ td

−pr,min

(

t− td

0.25t−d,lin

)

, td < t ≤ td + 0.25t−d,lin

−pr,min

(

1−
t− (td + 0.25t−d,lin)

0.75t−d,lin

)

, td + 0.25t−d,lin < t ≤ td + t−d,lin

(2.11)

Extended Friedlander

Another common method of modelling the negative phase is to simply extend the Fried-

lander equation (2.9) to t = ∞, rather than truncating the expression at td. This is the

approach adopted by Dharani & Wei (2004), Gantes & Pnevmatikos (2004), Wei & Dha-

rani (2006), and the ∗load blast subroutine in LS-DYNA (Randers-Pehrson & Bannister

1997). As introduced previously, given the ConWep positive phase parameters for pres-

sure, duration and impulse, the waveform parameter can be determined by integrating the

Friedlander expression over the positive phase (as in Equation 2.10) which can be solved

iteratively to determine the value of b to give the correct positive phase impulse at that

particular scaled distance.

As the negative phase is also constructed from this expression, it is clear that the form of

this negative phase is entirely dependent on the positive phase parameters only. As such

there are no variables to control negative phase pressure and impulse and the values given
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by this approximation may not match the semi-empirical predictions.

Integrating the negative phase of the Friedlander equation gives the negative phase impulse

as

i−r =

∞
∫

td

pr,max

(

1−
t

td

)

e−bt/td dt =
pr,maxtd

b2
e−b. (2.12)

At Z = 10, for example, ConWep gives peak pressure pr,max = 31.54 kPa, reflected

impulse, ir/W
1/3 = 59.33 kPa.ms/kg1/3 and positive phase duration td/W

1/3 = 4.788

ms/kg1/3. Iterating Equation 2.10 gives the waveform parameter, b = 0.771. When

these parameters are used as input in Equation 2.12, the negative phase impulse is given

as i−r /W
1/3 = 118 kPa.ms/kg1/3, whereas the parameter relationship in the literature,

shown in Figure 2.6(b), gives the negative phase impulse as i−r /W
1/3 = 62 kPa.ms/kg1/3.

Extended Friedlander with Teich C−

r

In order to better control the form of the negative phase, Teich & Gebbeken (2010) in-

troduce the negative phase reflection coefficient, C−

r , which is a function of the scaled

distance,

C−

r =
1.9Z − 0.45

Z
for Z > 0.5 (2.13)

and also offer a scaled distance relationship for an improved waveform parameter

α = 1.5Z−0.38 for 0.1 < Z < 30, (2.14)

which enables the value of extended Friedlander peak underpressure to be better matched

to the published semi-empirical value at that particular scaled distance (e.g. the rela-

tionships shown in Figure 2.6). This gives the piecewise positive and negative phase

expression[vi] as

pr(t) =















pr,max

(

1−
t

td

)

e
−α t

td , t ≤ td

C−

r pso,max

(

1−
t

td

)

e
−α t

td , t > td

(2.15)

Although the introduction of the negative phase reflection coefficient allows the peak neg-

ative phase pressure to be controlled, the new waveform parameter, α, is again given to

match the positive phase impulse of the Friedlander expression to semi-empirical predic-

tions, i.e. there remains no variable to control the negative phase impulse.

[vi]In Teich and Gebbeken’s formulation, pr,max is replaced by Crpso,max, however for consistency with the
positive phase expressions in this thesis the former notation is adopted
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The Teich extended Friedlander gives the negative phase impulse as

i−r =

∞
∫

td

C−

r pso,max

(

1−
t

td

)

e−αt/td dt =
C−

r pso,maxtd

α2 e−α. (2.16)

Again, for Z = 10, the ConWep peak incident pressure, pso,max = 14.81 kPa and the

reflection coefficient and waveform parameter, C−

r = 1.855 and α = 0.625 from Equations

2.13 and 2.14 respectively, give the Teich extended Friedlander negative phase impulse

as i−r /W
1/3 = 180 kPa.ms/kg1/3, which is far greater than the semi-empirical prediction.

Furthermore, in both ‘extended Friedlander’ approaches, the blast pressure will have a

finite pressure value for all values of t, hence the duration of the load, and also the

impulse, cannot always be accurately captured with an extended Friedlander expression.

Cubic Negative Phase

Alternatively, the blast load can be constructed as a piecewise pressure-time function using

the Friedlander positive phase (Friedlander 1946) and a cubic expression for the negative

phase, shown in Equation 2.17. This negative phase expression is given by Granström

(1956) and is recommended by the NavFac Design Manual 2.08, Blast Resistant Structures

(Naval Facilities Engineering Command 1986), and the US Army Blast Effects Design

Spreadsheet, SBEDS (US Army Corps of Engineers 2005).

pr(t) =















pr,max

(

1−
t

td

)

e
−b t

td , t ≤ td

−pr,min

(

6.75(t − td)

t−d

)(

1−
(t− td)

t−d

)2

, td < t ≤ td + t−d

(2.17)

With this expression, the negative phase duration is corrected such that the integral of

the cubic expression gives the same impulse as that given by the semi-empirical parameter

prediction, i.e. t−d = 16i−r /9pr,min.

Experimental Validation

Figure 2.7 shows negative phase approximations for Z = 4 and Z = 16 m/kg1/3 normalised

against the peak reflected pressure and positive phase duration. It is clear that the choice of

negative phase approximation has a significant impact on the form of the blast pressure-

time history. The lack of agreement between the different negative phase expressions

highlights the need for a well validated negative phase model.

Figure 2.8 shows the negative phase pressure-time histories of the experimental trials

introduced in Section 2.2.4. Table 2.2 gives a summary of the experimental and predicted

negative phase reflected impulses from these tests.
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Figure 2.7: Normalised positive and negative phase approximations for Z = 4 and Z = 16 m/kg1/3
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)

Figure 2.8: Negative phase approximations for a 0.25 kg hemispherical PE4 (0.3 kg TNT) charge
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Stand-off (m) Negative Impulse (kPa.ms)

Experiment Cubic Extended Extended

Friedlander Friedlander*

4 52.8 64.5 50.0 126.9
6 39.9 45.8 79.4 119.3
8 31.1 36.0 70.1 118.5

10 27.7 29.8 53.6 120.7

∗ with Teich & Gebbeken (2010) negative phase reflection coefficient, C−

r

Table 2.2: Experimental and predicted negative phase reflected impulse

Apart from the second shock – which arrives at the beginning of the negative phase

on the experimental traces – the cubic negative phase matches the experimental traces

remarkably well, both in terms of peak negative pressure and general form of the negative

phase. The cubic expression can model the negative phase impulse to within 10–25% of the

experimental values, despite the fact that the second shock is neglected in the simplified

semi-empirical prediction. The linear negative phase expression and cubic expressions

are impulse-corrected such that their impulses are equal to the semi-empirical predictions

for that scaled distance. It is clear, however, that the cubic expression offers a better

qualitative match (Figure 2.8) as well as quantitative. Both extended Friedlander and

Teich extended Friedlander approaches demonstrate considerably less good agreement,

with the former over-predicting the negative phase impulse by up to 95% and latter by up

to 340%.

To further illustrate the difference in impulses given by the negative phase approximations,

Figure 2.9 shows the relationship between normalised net impulse ([ir + i−r ]/ir) and scaled

distance, Z. Here it can be seen that the extended Friedlander expression using the Teich

reflection coefficient gives a negative phase impulse of over an order of magnitude greater

than the positive phase impulse for Z > 30 m/kg1/3.
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Figure 2.9: Normalised net impulse ([ir + i−r ]/ir) with scaled distance for different negative phase
approximations
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It is acknowledged that the negative phase requires more stringent validation as well as

a larger experimental database than those provided in this thesis. However, at this stage

it is clear that the empirical predictions appear to be a good indication of the loading

parameters (for both negative and positive phases), and that the cubic expression not only

allows for better quantitative control of the negative phase to match these parameters, but

also appears to follow the general form of the negative phase to a good level of qualitative

agreement. As such, in this thesis the reflected blast pressure-time history is modelled

using the piecewise expression comprising Friedlander positive phase and Granström cubic

negative phase as shown in Equation 2.17.

2.2.6 Non-Ideal Blast Waves

The KB semi-empirical predictions can be used to determine the reflected pressure-time

history acting at a single point some distance from a blast source. The reflected pressure

predictions are based on an ideal blast wave, with the following assumptions:

• The blast wave arrives planar and impinges normally on a rigid target

• The blast wave is unimpeded between the blast source and target

• No reflections arrive from surrounding surfaces throughout the entire duration of the

shock wave

• The point of interest is part of a reflecting surface that is large enough in directions

normal to the direction of travel of the blast wave such that edge effects can be

ignored (see Section 2.3).

There are several approaches available in the literature for considering non-ideal blast

waves. Whilst reflections and obstructions from nearby targets cannot be considered in

ConWep, other codes such as BLAST-X (Britt & Lumsden 1994) operate a ray-tracking

approach to account for this. If the blast wave does not impinge normally on a target, or

if the blast wave is not planar across the whole target, then angle of incidence effects must

be taken into account. The inbuilt ConWep subroutine called Loads on Structures (LOS)

calculates the pressure distribution on a rectangular target, where the pressure acting at

any point on the target is a function of the reflected pressure and incident pressure at that

point, and the angle of incidence of the blast wave, θ,

p(t, θ) = pr(t) cos
2 θ + pso(t)

(

1 + cos2 θ − 2 cos θ
)

. (2.18)

Reflection of the negative phase is less well understood, with SBEDS (US Army Corps of

Engineers 2005) recommending the use of the full reflected underpressure for 0◦ ≤ θ ≤ 45◦

and the incident underpressure for θ > 45◦.
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If the reflecting surface is not perfectly rigid, then fluid-structure interaction (FSI) effects

may occur. As an upper bound, when a blast wave impinges on a target of effectively

infinite mass or stiffness there is no pressure reduction through FSI and the full reflected

impulse is transmitted. As a lower bound, a blast wave impinging on a plate travelling

at exactly the same velocity as the shock front will transmit the incident impulse only.

Kambouchev et al. (2006, 2007) analysed the interaction of blast waves with, and the

impulses imparted to, free standing plates of varying mass, and it was found that the

displacements required to exploit impulse reduction through FSI may be impractical.

Subramaniam et al. (2009) and Teich & Gebbeken (2012) analysed the interaction of a

blast wave coupled with a structural model. In both articles, the reduction in displacement

of the target through FSI was only realised for very low mass or very low stiffness systems

such as large span, lightweight cable-net façades. FSI effects are likely to make very

little difference to the cases studied in this thesis and are therefore neglected when using

semi-empirical pressure predictions.

The main topic of interest for this thesis is the final category of non-ideal blast waves, i.e.

when edge effects of the target cannot be ignored. Such a problem requires a thorough

review and is the subject of the following section.

2.3 Blast Wave Clearing

2.3.1 The Physical Process of Clearing

The Kingery and Bulmash semi-empirical load predictions assume that the target is part of

a reflecting surface that is effectively infinite in dimensions perpendicular to the direction

of travel of the blast wave. If this is not the case, then blast wave clearing will occur.

Clearing begins the moment a blast wave reaches the free edge of a reflecting surface

with finite lateral dimensions. At this free edge, whilst the reflected shock front begins

to reflect away from the target surface, the incident shock front continues unimpeded

past the edge of the target, causing diffraction around the free edge. At the same time a

pressure imbalance between the lower pressure incident wave and higher pressure reflected

wave initiates flow between the higher and lower pressure regions as the pressure begins

to equalise. The diffraction generates a low pressure rarefaction wave, which is driven by

the flow conditions and travels along the loaded face, beginning at the boundaries and

propagating in towards the centre of the target (see Figure 2.10). As it passes over a point

of interest, the rarefaction wave reduces the pressure acting on the loaded face and hence

reduces the total positive phase impulse imparted to the target.

The problem of blast wave clearing is complex and analytical solutions for blast wave

diffraction normal to the direction of blast wave travel are rare in the literature. In a study

of weak shock diffraction, Hunter & Keller (1984) assume that flow conditions behind the

shock front are constant, which is only applicable for situations where the target is con-
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siderably smaller than the length of the blast wave. As such, these analytical predictions

are unable to describe the processes that occur for larger targets. Empirical predictions

therefore form the basis of literature guidance for predicting blast wave clearing.

Planar incident
shock front

Target

Rarefaction wave

Reflected region

Diffracted
region

(a) (b) (c)

Reflected shock front

Figure 2.10: Diffraction of a blast wave around a finite target causing the propagation of a rar-
efaction clearing wave

2.3.2 Empirical Clearing Predictions

The earliest observations of blast wave clearing appear to have been drawn from large

scale nuclear bomb trials undertaken in the 1950s. Murtha (1955) and Morris (1959)

report the findings from blast-pressure measurements taken from pressure transducers

embedded within a 6× 6× 12 ft structure situated 2200 ft from the source (‘ground-zero’)

of a nuclear blast.[vii] With such a small reflecting surface in relation to the length of the

blast wave, any clearing effects will occur very quickly in relation to the positive phase

duration, and will be relatively uniform across the entire reflecting surface.

Accordingly, the early empirical clearing corrections – first introduced by Norris et al.

(1959) and repeated in similar methodologies throughout the literature – only attempt to

correct the entire impulse acting on the target, and not the temporal or spatial distribution

of cleared pressures. These empirical methods assume that clearing relief acts uniformly

over the whole loaded face, beginning immediately at the time of arrival of the blast

wave. The cleared blast pressure decays linearly from the peak reflected pressure to the

stagnation pressure over a characteristic clearing time, tc, as in Figure 2.11.

The stagnation pressure is given as the sum of the incident and drag pressure,

pstag(t) = pso(t) + CDqs(t) (2.19)

where CD is the drag coefficient, which is given as 1.0 for front wall loading (US Depart-

ment of Defence 2008)[viii], and qs is the dynamic pressure defined in Equation 2.4.

[vii]1.8× 1.8× 3.6 m situated 670 m from the source
[viii]The drag coefficient depends on the shape and orientation of the target. For cubic structures loaded

face on, a drag coefficient of 1.0 is considered adequate. For roof and side-wall loading, the drag
coefficient varies between -0.4 for low pressures (<170 kPa) and -0.2 for high pressures (>340 kPa).
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Reflected pressure

p

t

tc

Cleared pressure

Stagnation
pressure

Incident
pressure

Figure 2.11: Clearing corrections from UFC-3-340-02 (US Department of Defence 2008)

The clearing time is given by Kinney & Graham (1985) as

tc =
3S

a
(2.20)

where S is height or half structure width, whichever is smallest, and a is the sonic velocity

in the reflected region. This is often known as the 2D case because only clearing along the

smallest target dimension, S, is considered (Ethridge 1977, Lottero 1981).

The methodology in UFC-3-340-02 (US Department of Defence 2008) gives the clearing

time as

tc =
4S

(1 +R)a
(2.21)

where R is the ratio of S/G and G is height or half structure width, whichever is largest.

This expression represents the 3D case because clearing is considered along both the height

and width of the target.[ix]

These empirical predictions, although they give slightly different methods for calculating

the clearing time, are based on the assumption that the cleared blast pressure is reduced

by an infinite series of interacting expansion waves, each with diminishing strength (Tay-

lor 1972). The net effect of this is, after a given number of expansion wave crossings, the

cleared blast pressure has effectively reached the stagnation value and subsequent expan-

sion wave crossings can be neglected. It can be seen for the 2D case (Equation 2.20) that

for a target with infinite height and a half-width of S, the time taken for an expansion

wave to reach the centre of the target is S/a. For this case, clearing is assumed to be

completed at 3S/a, i.e. after the clearing wave has interacted at the centre, edge, and

again the centre of the target. For the same target, the UFC-3-340-02 (US Department

[ix]The factors of 3 and 4, which appear in Equations 2.20 and 2.21 respectively, will be explained below.
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of Defence 2008) predictions give a clearing time equivalent to 4 wave interactions. As

explained previously, the decay from reflected pressure to stagnation pressure is assumed

to be linear throughout the duration of the rarefaction wave crossings.

Taylor (1972) introduced an alternative method based on observations from shock tube

tests on small sized structures. In his experiments, Taylor found that the average pressure

acting on the front surface of 2D and 3D targets would be ‘nearly coincident’ if the time

scale was given as the number of rarefaction wave crossings. Tests were conducted on 2D

structures and 3D structures with half width equal to height, S = G.[x]

The average cleared blast pressure was given as

p

pr
=

(

1−
pstag
pr

)

e−AτB +
pstag
pr

(2.22)

where τ = ta0(1+R)/S represents the number of rarefaction wave crossings and A and B

are empirical coefficients used to fit the curve to the data (Taylor 1972, Ethridge 1977).

The selection of A and B requires prior knowledge of the blast pressure, and hence the

Taylor clearing expression has limited application for predicting the cleared pressure acting

on a target.

It can be seen in Equation 2.22 that the blast pressure approaches the stagnation pressure

as a limit as the number of wave crossings, τ , tends to infinity. The magnitude of pressure

relief also decreases with an increasing number of wave crossings – both of these features

are more in keeping with the theory of which the above methods are based on.

It is important to note at this stage that these observations are based on experiments

where the length of the blast wave was very large in comparison to the size of the target,

i.e. the time taken for an expansion wave to traverse the surface of the target and hence

the time taken for the cleared load to reach stagnation value (known as the diffraction

phase) was very short in relation to the positive phase of the blast load.

Table 2.3 gives an indication of the different types of loading for different target sizes.

‘Pure drag’ indicates targets where the clearing time is effectively zero and the loading is

almost entirely the stagnation pressure for the entire positive phase, whereas ‘mainly drag’

indicates targets whose clearing time is small and experience some diffraction during the

positive phase. Early empirical clearing predictions are based on targets of this size and

below. ‘Mainly diffraction’ indicates targets where the clearing time is comparable to or

larger than the positive phase, and ‘mainly reflected’ denotes targets with large dimensions

such that the clearing wave does not reach parts of the target during the positive phase.

Full incident and full reflected pressure represent the limits of no target and an infinite

sized target respectively.

[x]For the 2D case, G = ∞ and R = 0, for the 3D case, G = S and R = 1, hence τ for the 3D case is
exactly twice that for the 2D case.
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Target size: 0 ∞

Loading type: Incident Pure
drag

Mainly
drag

Mainly
diffraction

Mainly
reflected

Reflected

Table 2.3: Types of cleared blast loading with different target sizes

2.3.3 Improved Clearing Predictions

The methods of correcting the blast load to account for clearing detailed above inherently

assume that the target is sufficiently small such that the cleared pressure acts relatively

uniformly across the target surface. For non-nuclear explosives, the length of the blast wave

is more comparable to the target dimensions and the observations of the early empirical

clearing corrections may not be valid.

The lack of agreement in the literature on how to calculate the clearing time is enough

to cast doubt on the validity of these methods. Furthermore, if the calculated clearing

time is greater than the positive phase duration then blast wave clearing is assumed to

not take place at all, which is not true for finite sized targets of the ‘mainly drag’ and

‘mainly reflected’ loading types. Also, the assumption that the reflected pressure begins

to decay immediately after the arrival of the shock wave is true for the total load acting

on the face of the target, however it cannot be valid for the pressure at a point on the

target located away from a free edge, since there will be a transient time for the clearing

wave to arrive. The spatial variation of cleared pressures therefore cannot be determined

using the methods outlined previously.

It has also been shown both experimentally (Smith et al. 1999, Rose et al. 2006, Rickman

& Murrell 2007, Tyas et al. 2011a,b) and numerically (Rose & Smith 2000, Ballantyne

et al. 2010) that the cleared pressure can ‘overshoot’ the stagnation pressure and lead to

early negative pressures acting on the target. This, again, cannot be accounted for in the

traditional clearing predictive methods. Such shortfalls have led to the development of

improved methodologies for predicting blast pressure relief on a loaded surface.

In an attempt to provide an improved empirical based method for predicting blast wave

clearing, Smith et al. (1999) conducted a series of small scaled experiments on finite-sized

targets, measuring the pressure at various locations on the loaded face. Whilst the process

of clearing was shown in the experiments, considerable experimental spread prevented

such an empirical method from being drawn up. This led the authors to consider a

numerical based semi-empirical method, using the Computational Fluid Dynamics (CFD)

code Air3D (Rose 2002). In the extension of the original study, Rose & Smith (2000) ran

a series of numerical simulations of blast waves interacting with rigid, finite sized targets.

The targets were chosen to have a width to height aspect ratio of 2:1 to ensure that any

rectangular surface with equal reflecting area but different aspect ratio will clear more

quickly and therefore the results presented will be conservative. Scaled distances of 0.5,

1.0, 2.0, 4.0, 8.0 and 16.0 m/kg1/3, and scaled target heights, H, of 0.1, 0.2, 0.4 and 0.8
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m/kg1/3 were analysed, giving a total of 24 stand-off and target size combinations. The

pressure was monitored at 5 locations along the vertical centreline of the structure and

the specific impulse was averaged between the 5 values.

Scaled distance Clearing factor, Cf = i/iso

(m/kg1/3) H = 0.1 H = 0.2 H = 0.4 H = 0.8

(m/kg1/3) (m/kg1/3) (m/kg1/3) (m/kg1/3)

0.5 12.271 12.673 9.642 5.384
1.0 3.222 3.825 3.837 3.173
2.0 1.969 2.400 2.865 2.990
4.0 1.161 1.296 1.681 1.995
8.0 1.026 1.060 1.251 1.573

16.0 1.025 1.023 1.079 1.396

Table 2.4: Cleared/side-on impulse ratios (Rose & Smith 2000)

The analyses were repeated with the reflecting structure omitted so that the results could

be presented in terms of a clearing factor – the ratio of the cleared impulse to the incident

impulse, Cf = i/iso.
[xi] These clearing factors are summarised in Table 2.4.

Whilst this method is straightforward and based on a physically valid process for evalu-

ating blast wave clearing, it still gives no means for determining the spatial and temporal

characteristics of the cleared pressure acting on the target.

Ballantyne et al. (2010) extended this methodology and used the Air3D code to simulate

the interaction of blast waves with structural columns of varying flange width. For all

practical sizes of bare column (assumed rigid), the impulse was found to be almost iden-

tical to the incident impulse, suggesting that the target clears sufficiently early such that

diffraction effects can be neglected and incident values used in the design of structural

columns subjected to blast loads.

Rickman & Murrell (2007) conducted a series of small scale experiments using 72.6 g

hemispheres of C4 (92 g TNT equivalent) and measured the cleared pressure-time histories

at 5 locations on the reflecting surface of a rigid target. Two target sizes were used for

the test series, corresponding to scaled target heights of 1.00 and 1.63 m/kg1/3, with the

explosives located at scaled distances ranging from 0.323–9.11 m/kg1/3.

From the experimental pressure-time recordings, it was observed that the ConWep predic-

tions ‘agreed remarkably well with the measurements made on the small-scale experiments,

until onset of the relief wave’ (Rickman & Murrell 2007, page 200). Using this rationale,

the authors subtracted the full reflected pressure from the measured pressure at the ar-

rival of the clearing wave to isolate the relief function, so that when applied in reverse, the

superposition of the relief wave and reflected pressure would yield the cleared pressure at

[xi]The incident impulse was given as the value of impulse at the bottom-centre of the target, rather than
the average of the 5 gauge locations. This way, the clearing factor can simply be applied to the incident
impulse given by ConWep.
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that point. The relief function is presented in the form

ln(p) = a+ be−t (2.23)

where a and b are clearing coefficients which are presented as functions of stand-off. Whilst

the authors make it clear that the pressure predictions can be applied for any charge weight

(simply by scaling the time), it is not clear how the relief function varies with distance from

the free edge. Nevertheless, the methodology of superposition of the reflected pressure and

relief wave, as well as the experimental observations, go some way towards explaining the

physical process of blast wave clearing.

2.3.4 The Hudson Predictive Method

Hudson (1955) presented the spatial and temporal distribution of a clearing relief wave

caused by the impingement of a planar blast wave on a rigid target, approximating the

rarefaction wave as an acoustic pulse. This method is based on the assumptions that the

shock is weak (i.e. although the clearing wave travels through shocked air, it is acceptable

to assume that it propagates at the ambient sonic velocity), the blast wave is planar (i.e.

the lateral dimensions of the target are small in comparison to the stand-off, R) and the

depth of the target is sufficiently large to ensure that no clearing waves arrive from the back

face during the duration of loading. Given these assumptions, the acoustic approximation

can be used to determine the pressure acting at any point on the target face, giving full

spatial and temporal distribution of the cleared blast pressure.

Hudson (1955) presents the contours of relief pressure (normalised against the peak inci-

dent overpressure) in terms of non-dimensional length and time parameters. Figure 2.12

shows the temporal and spatial distribution of the clearing relief wave, where Hudson’s

non dimensional length scale, η, is given as

η =
x

a0td
(2.24)

where x is the distance from the point of interest to the nearest free edge, a0 is the sonic

sound speed in air (assumed to be 340 m/s) and td is the positive phase duration. Hudson’s

time scale, δ, is given as

δ =
t

td
− η (2.25)

where t is time.

Figure 2.13 shows the relief functions for select values of η. The clearing wave can be

seen to become more rounded, lower in magnitude and longer in duration as it propagates

over the target face. For any point on a target, 0 < η ≤ 1, the time-varying pressure
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Figure 2.12: Spatial and temporal properties of the rarefaction relief wave (Hudson 1955)

associated with the clearing wave can be evaluated, dimensionalised and superimposed

with the reflected pressure acting on the target to determine the cleared pressure at that

point.[xii]

Tyas et al. (2011a,b) conducted a series of experiments to validate the Hudson predictive

method. Whilst the results are not repeated here in full, Figure 2.14 gives an indication

of the level of agreement achieved. In this example, the gauge location was 337.5 mm

away from the vertical edge of the target and 355 mm away from the horizontal edges.

The positive phase duration was 2.7 ms, giving a blast length of 0.92 m and vertical

and horizontal η values of 0.37 and 0.39 respectively. The Hudson method permits the

superposition of multiple clearing waves, which can be seen to arrive at roughly the same

time, 8.2 ms, in Figure 2.14.

The Hudson method provides a simple yet physically robust means for determining the

pressure acting on a target whose reflecting surface cannot be assumed to be infinite. The

non-dimensional formulation of the Hudson method, as well as the ease with which it can

be combined with ConWep semi-empirical predictions mean the method is suitable for

parametric study, and is used to model cleared blast pressures in the parametric study of

this thesis (Chapter 6).

[xii]η = 0 indicates a point on the free edge where clearing relief will begin immediately upon the arrival
of the blast wave. η > 1 indicates a point that will experience the full reflected pressure for the entire
duration of the positive phase
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Figure 2.13: Hudson clearing functions.
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Figure 2.14: Validation of the Hudson predictive method, adapted from the results in Tyas et al.
(2011a,b)

2.4 Structural Response to Blast Loads

So far, this chapter has focussed on estimating blast loads and how structural properties

and geometry may influence the loading it is subjected to. For the remainder of this

chapter, the reverse situation will be considered.

The topic of structural response to blast loads is very broad and covers a wide range of

parameters and areas of interest. It is not the purpose of this section to review all the

current and past research in this field, instead it is intended that this review will bring

the reader up to speed with the relevant areas of research, and will highlight subject areas

where knowledge is still lacking, or where commonly made assumptions do not hold true.

It is not the purpose of this chapter to provide information on how finite element and

single-degree-of-freedom methods calculate structural response; such information will be

presented when it is relevant to the current research in later chapters.
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2.4.1 Current Best Practice

For an engineer tasked with predicting the response characteristics of a structure subjected

to a blast load, there are 3 main options available; simplified numerical analysis, detailed

numerical analysis or experimental tests.

The single-degree-of-freedom (SDOF) design charts found in Introduction to Structural

Dynamics (Biggs 1964), which are also available in design guidance (US Department of

Defence 2008, Cormie et al. 2009), allow the peak dynamic displacement to be simply ‘read-

off’, given knowledge of the peak pressure and duration of the load, and the target material

properties (mass, stiffness, yield strength) and span. Such a simple method clearly has

mass appeal[xiii], however these charts are based on the assumption of a linearly decaying

load, an assumption that, as demonstrated by the simple validation in section 2.2.4, does

not accurately represent real life blast pressures.

Li & Meng (2002) analysed an SDOF model under different pulse shapes and observed an

important contribution of load shape when the structure is loaded dynamically. Gantes &

Pnevmatikos (2004) reproduced the design charts of Biggs (1964) but with an exponentially

decaying load extended into the negative phase. As shown by the validation in Section

2.2.5, an ‘extended Friedlander’ is not appropriate for modelling the negative phase of the

blast load, which limits the applicability of the results. The linear load is modelled with

td,lin = td, meaning the positive phase impulse of the exponential load decreases relative

to the triangular load with increasing decay coefficient, b. As such, the observations

of the linear load being ‘significantly over-conservative’ does not distinguish between the

effects of the reduced positive phase impulse or the inclusion of the negative phase. Whilst

Krauthammer & Altenberg (2000), Dharani & Wei (2004) and Wei & Dharani (2006) have

found situations where the negative phase can cause stresses up to double those caused by

the positive phase, the findings are only intended to demonstrate the importance of the

negative phase.

In order to provide more robust and extensive design guidance, Teich & Gebbeken (2010)

quantified the influence of the negative phase by comparing SDOF models analysed with

and without the negative phase. One of the key findings of the research was that, at large

scaled distances (Z > 40), the displacement caused by the negative phase was up to an

order of magnitude greater than that caused by the positive phase alone. As discussed in

Section 2.2.5, however, the negative phase approximations from this study are considerably

larger than experimentally measured values, so more complete validation is required before

any reliable conclusions can be drawn.

The SDOF method assumes the application of a uniform pressure load. If blast wave

clearing is considered, the load is not uniform spatially, nor is the distribution of spatial

pressure constant with time. In the case of near field explosions, where the distribution

[xiii]According toGoogle Scholar: at the time of writing this thesis ‘An Introduction to Structural Dynamics’
has been cited over 1,200 times. 265 of these citing articles have been published since 2010
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of pressure and impulse varies spatially but not temporally, the problem becomes simpler.

Cormie & Arkinstall (2012) introduces a new method for analysing SDOF systems sub-

jected to non-uniform loads by calculating a deflected shape at the start of the analysis

based on the initial loading distribution. This is shown to be in agreement with more so-

phisticated multiple degree analyses. Tyas & Pope (2003, 2004) extend the work of Jones

(1971) on predicting residual plastic deformation of thin plates by including an allowance

to model non-uniform loading. Whilst the methods detailed above are valid in their own

right, they require further modification before they are applicable for the problem of blast

wave clearing.

Numerical analysis offers a powerful tool for modelling structural response to blast loads,

however it is apparent from the literature that there is still considerable vagueness involved

when dealing with blast load modelling. A recent review paper by Rajendran & Lee (2009)

provides references for over 90 articles relating to the area of analysis of blast loaded plates.

Of the studies where the plate is modelled using finite elements, the loading is prescribed

in a number of different ways, such as:

• Modelling the explosion process and blast wave propagation through air using finite

elements (Børvik et al. 2009, Chafi et al. 2009, Safari et al. 2011, Zakrisson et al.

2011, Tabatabaei et al. 2013).[xiv]

• Applying the pressure-time history using the semi-empirical pressure predictions

(Børvik et al. 2009, Spranghers et al. 2012, 2013, Borenstein & Benaroya 2013).

• Using experimental measurements of structural response and numerical simulations

to obtain the load via the ‘inverse approach’ (Xu et al. 2010).

• Measuring the load experimentally and using this as input for the numerical model

(Jacinto et al. 2001, Danesi et al. 2002).

2.4.2 The Influence of Clearing

Clearly there is no best approach for modelling the response of targets subjected to blast

loads. Also, it is apparent from the literature survey that there has been very little attempt

to quantify the influence of blast wave clearing on the dynamic response of structures.

This is due to a combination of a) a lack of understanding of the physical process of blast

wave clearing, b) the assumption that ignoring blast wave clearing is conservative, and

c) no access to the correct computational tools to analyse the effect of clearing. In the

experimental work of Dennis et al. (2002), Nassr et al. (2012) and Spranghers et al. (2012,

2013) the targets were purposefully embedded in a larger reflecting surface to reduce the

effect of blast wave clearing. In practice, the engineer is not given the convenience of

simply being able to ignore clearing or factor it out.

[xiv]Modelling of blast waves using finite elements is the subject of Chapter 3
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For structures whose dimensions are comparable to the length of the blast wave, the

time taken for the clearing wave to propagate across the target face is comparable to the

duration of loading. For these structures, the Hudson predictions can accurately predict

the form of the relief wave (Tyas et al. 2011a,b) and the loading is known as diffraction-

type (Table 2.3). For structures whose dimensions are far smaller than the length of

the blast wave (such as the targets in the nuclear trials of the 1950s from where the

original clearing predictions originate), the transit time of the clearing wave and hence

the time taken for pressures to equalise in the reflected and diffracted region is relatively

short compared to the duration of loading. For these scenarios, the loading is known as

drag-type (Table 2.3). In a numerical study on tall buildings subjected to cleared loads,

Rose et al. (2004) highlighted another scenario: buildings whose height is sufficiently large

compared to their width such that the full reflected pressure no longer develops along the

height of the building. This case is only of practical importance for targets with scaled

height larger than the scaled distance, H > Z, due to the longer path length and the

non-normal impingement of the blast wave at higher points on the building. In this study,

normal blast wave clearing, i.e. H < Z, will be considered.

Section 2.3 discussed current experimental and numerical methods for predicting blast

wave clearing on a rigid target. Only two cases were found in the literature where clearing

was investigated with regards to deformable targets. Van Netten & Dewey (1997) con-

ducted a series of experimental tests on cantilevers subjected to explosive loads. In these

tests the width of the loaded face was 30 mm, with the blast length (a0td) estimated to

be around 5 m. The numerical model was loaded with the drag pressure only (Equation

2.4) and was found to be in excellent agreement with the experimental results. Shi et al.

(2007) performed a series of numerical analyses on structural columns subjected to blast

loads and suggested a semi-empirical method for determining the pressure and impulse

imparted to columns of various sizes. The dynamic response of the column was studied

only as a means for quantifying the effect of column-blast wave interaction on impulse

(which, it was concluded, had very little effect, even if the column stiffness was varied

over two orders of magnitude), and not for quantifying the likely displacement the column

would experience as a result of the blast.

It can be concluded that there remains no published work detailing the influence of clearing

on the response of flexible targets.

2.5 Summary

This chapter has focussed on the formation of blast waves and the interaction of blast waves

with structures, as well as detailing semi-empirical methods for predicting positive and

negative phase parameters. Experimental pressure-time histories are used to demonstrate

the accuracy of the semi-empirical blast prediction method – the positive phase matches

the experimental measurements closely, however the negative phase is less well validated
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and as such there are several methods found in the literature which do not give satisfactory

results.

Blast wave clearing has been discussed, and current methods for predicting the effect

of clearing are introduced, including the Hudson method, which forms the basis of the

numerical predictions of blast wave clearing in this thesis.

Existing research on the analysis of structures subjected to blast loads has been reviewed,

with a particular focus on different attempts at quantifying the blast load. Whilst studies

of blast wave clearing exist in the current literature, none detail or quantify the influence

of clearing on dynamic response.





Chapter 3

Air Blast Loading Using

LS-DYNA

3.1 Introduction

Non-linear finite element (FE) software, such as LS-DYNA (Hallquist 2006), can be used

to model explosive detonation and subsequent shock wave propagation through the sur-

rounding media. Differential equations governing the conservation of mass, momentum

and energy are satisfied at each step in time by spatially discretising a continuous domain

into finite elements. Interpolation ‘shape’ functions are used to construct approximations

to variables such as displacements and stresses, which are solved at individual nodal points

rather than throughout the whole continuum. Numerical analyses are a powerful tool as

they allow a vast array of physical parameters to be modelled explicitly without the need

for approximation.

Whilst it is well known that FE software can be used to model structural deformation,

this chapter is only focused on the modelling of air blast. It is the purpose of this chapter

to validate LS-DYNA against a series of well controlled experiments and semi-empirical

pressure predictions to demonstrate the accuracy with which LS-DYNA can simulate ex-

plosive events. The effects of different modelling techniques, such as mesh refinement and

re-mapping will also be studied.

3.2 The ALE Method

A finite element model can be defined by a Lagrangian framework, where the numerical

mesh is fixed to the material and deforms with the continuum it is representing, i.e. there is

no transport of material through elements. It can also be defined in an Eulerian framework

where the mesh is fixed in space and the material flows through the mesh, i.e. there is no

mesh distortion.

37
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Typically, fluid flow problems are solved using an Eulerian framework, however material

mixing and the need to accurately track material interfaces can become problematic and

computationally expensive. Also, a greater number of elements are generally required

for Eulerian analyses (Hallquist 2006). Lagrangian formulations can solve multi-material

problems significantly more robustly due to the fact that the grid is attached to the

material itself. This has setbacks, however, as large deformations can lead to severe mesh

distortion, entanglement and instabilities.

3.2.1 Governing Equations and Advection Method

The Arbitrary Lagrangian Eulerian (ALE) method is a formulation for solving the govern-

ing equations for a material flowing through a mesh that moves with an arbitrary velocity

relative to the material. The governing equations for conservation of mass, momentum

and energy for compressible flow of a moving control volume are given by Souli et al.

(2000) as

∂ρ

∂t
= −ρ

∂v

∂x
− w

∂ρ

∂x

ρ
∂v

∂t
= σij + ρb− ρw

∂v

∂x

ρ
∂E

∂t
= σijv + ρbv − ρw

∂E

∂x

(3.1)

where v is the velocity of the material and w is the relative velocity between the material

and mesh, ρ and E are the density and specific energy of the fluid, and σij is the stress

tensor, defined as σij = −p+ τ , where p is pressure and τ is shear stress.

The above is known as Arbitrary Lagrangian Eulerian because it describes an arbitrary

case which is neither a fully Lagrangian nor a fully Eulerian situation. It can be seen

that if w = v, the Eulerian equations are recovered from Equation 3.1. If there is no

relative motion between the material and mesh, i.e. w = 0, the Lagrangian equations are

recovered from Equation 3.1. In LS-DYNA, the ALE method is solved in two steps in

a process known as an operator split. First, Equation 3.1 is solved with w = 0 and a

Lagrangian cycle is performed. After this, the deformed mesh is transported back to its

original (un-deformed) position as mass, energy and momentum are transported across

element boundaries in an Eulerian process, known as the advection phase. The Eulerian

advection stage is purely computational as all the time-dependent physics are solved in

the Lagrangian stage. This process is shown schematically in Figure 3.1.

The ALE method is attractive for simulating blast events because excessive mesh defor-

mations associated with Lagrangian formulations are avoided due to the advection ‘re-

mapping’ process. The ALE method is also more capable of handling multi-material for-

mulations and tracking material interfaces than Eulerian formulations (Souli et al. 2000).

The solution method for the advection stage in LS-DYNA can be accessed through the
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Lagrangian phase Advection phase

ALE elements

Material

Figure 3.1: Lagrangian and Advection phases in an ALE analysis

*control ale card. Hallquist (2006) recommends using Van Leer (1977) advection with

Half-Index shift for high explosive problems.

The Van Leer MUSCL (monotone upwind scheme for conservation laws) algorithm, when

applied to the linear convection of an arbitrary distribution of variables

∂φ

∂x
= a(x)

∂φ

∂t
(3.2)

is monotonic and conservative, meaning that no new maxima or minima are created, and

that variables are conserved during advection, i.e.

∫

V

φnew dV =

∫

V

φold dV. (3.3)

0-1 1 2

x/ xΔ

0-1 1 2σ

(a) (d)(c)(b)

0-1 1 2σ 0-1 1 2σ

Figure 3.2: Advection of variables using the Van Leer (1977) MUSCL scheme

With reference to Figure 3.2, the Van Leer advection algorithm is implemented in the

following way:

(a) Approximating the initial value distribution (solid line) by a piecewise linear function

(broken line). Conservation is guaranteed by expanding the linear function about the

element centroid (x = j + 1/2), such that

φn
j+1/2(x) = Sn

j+1/2(x− xnj+1/2) + φn
j+1/2 (3.4)

where x is the volume coordinate and Sn
j+1/2 is an approximation of the slope (Hallquist

2006).
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(b) The approximate initial distribution (solid) is advected over a distance of σ∆x (broken

line). For the ALE method in LS-DYNA, this distance is equal to the Lagrangian

displacement that has occurred between advection cycles.[i]

(c) The new linear distribution is defined (broken line), as per Equation 3.4 with mono-

tonicity constraints as defined in Equations 3.5–3.8.

(d) The advection stage is complete and the value distribution is taken as the initial values

for the next step.

To ensure monotonicity, the value of the slope at the element centroid, Sn
j+1/2, is con-

structed such that the values of the variable at the element centroid, φn
j+1/2, and the

values of the variable at adjacent element centroids, φn
j−1/2 and φn

j+3/2, are not exceeded.

Sn
j+1/2 =

1

2

(

sgn(sL) + sgn(sR)
)

×min
(

|sL|, |snj+1/2|, |s
R|
)

(3.5)

sL =
φn
j+1/2 − φn

j−1/2

1

2
(xj+1/2 − xj)

(3.6)

sR =
φn
j+3/2 − φn

j+1/2

1

2
(xj+1 − xj+1/2)

(3.7)

snj+1/2 =
φn
j+3/2 − φn

j−1/2

xj+3/2 − xj−1/2
(3.8)

This is illustrated in Figure 3.3 for different distributions of φ.

(a) (c)(b)

s
L s

R

s

S = 0 S s= S s=
R

Figure 3.3: Monotonicity limits of the slope, S, for different distributions of variables, φ. (a)
sgn(sL) 6= sgn(sR) ⇒ S = 0. (b) min(|sL|, |s|, |sR|) = |s| ⇒ S = s. (c) min(|sL|, |s|, |sR|) = |sR| ⇒
S = sR, adapted from Kaurin & Varslot (2010)

[i]In most circumstances, the advection cycle is performed after 1 Lagrangian phase, although this can be
set higher using the variable nadv in the *control ale card.
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The Van Leer advection method is second order accurate and less dissipative than first

order schemes, and is generally more robust when large pressure gradients are expected

(Hallquist 2006).

3.2.2 Material Models and Equations of State

LS-DYNA requires the definition of parts within the numerical model. Each part represents

an individual component such as the explosive, the air, the target etc., and each part must

have a material model assigned to it in order to link stress to deformation and internal

energy within each element. In the case of explosive modelling (modelling of fluids) an

Equation of State (EOS) must be defined for each fluid part, which expresses a relationship

between the pressure, p, specific volume, V and specific energy, E.

In this thesis, the air is modelled as an ideal gas using the mat null and eos linear

polynomial material model and equation of state respectively. The linear polynomial

equation of state is given as

p = C0 + C1µ+ C2µ
2 + C3µ

3 + (C4 + C5µ+ C6µ
2)E (3.9)

where C0, C1, C2, C3, C4, C5, C6 are constants, µ = ρ/ρ0 − 1 and ρ and ρ0 are the current

and initial densities of air. For ideal gasses, C0 = C1 = C2 = C3 = C6 = 0 and C4 = C5 =

γ − 1 and the equation reduces to the ideal gas equation of state

p = (γ − 1)Eρ/ρ0 (3.10)

where E is the specific internal energy and γ is the ratio of specific heats, defined as the

ratio of the heat capacity at constant temperature to the heat capacity at constant volume.

For air, γ = 1.4. A specific internal energy of E = 253.4 kPa gives an atmospheric pressure

of 101.36 kPa.

If the detonation process is modelled explicitly, then a material model and EOS must be

specified for the explosive. In LS-DYNA, mat high explosive burn is typically used,

which requires the density, ρ, detonation velocity, D, and Chapman-Jouguet pressure,

PCJ , of the explosive to be defined. The EOS used for high explosives is the Jones-

Wilkins-Lee (JWL) empirical formula (Lee et al. 1968), eos jwl, which describes the

pressure, volume, energy relation of the explosive as

p = A

(

1−
ω

R1V

)

e−R1V +B

(

1−
ω

R2V

)

e−R2V +
ωE

V
(3.11)

where A, B, R1, R2 and ω are constants, V is the volume and E is the internal energy.

The parameters for air, TNT and C4 are shown in Table 3.1, with the JWL parameters

for TNT and C4 given in Dobratz & Crawford (1985).
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Air

mat null

ρ0
1.225

eos linear polynomial

C0 C1 C2 C3 C4 C5 C6 E0

0.0 0.0 0.0 0.0 0.4 0.4 0.0 253.4e3

TNT

mat high explosive burn

ρ0 D PCJ
1630 6930 2.10e9

eos jwl

A B R1 R2 ω E0

371.20e9 3.231e9 4.15 0.95 0.30 7.0e9

C4

mat high explosive burn

ρ0 D PCJ
1601 8193 2.80e10

eos jwl

A B R1 R2 ω E0

609.77e9 12.95e9 4.50 1.40 0.25 9.0e9

Table 3.1: Material model and Equation of State parameters for air, TNT and C4 (SI units).
Parameters for TNT and C4 are given in Dobratz & Crawford (1985)

3.2.3 Relevant Keywords and Advancements in LS-DYNA

LS-DYNA accesses various algorithms through the use of keywords in the input file. A

number of capabilities have been added in recent years which have improved the ability of

LS-DYNA to simulate explosive events. Those keywords relevant to the numerical study

in this thesis are introduced here.

• *ale multi-material group enables each element to contain more than one dif-

ferent material (Luo et al. 2004, Alia & Souli 2006), which is essential for modelling

the interaction between the explosive products and air. Up to 10 multi-material

groups can be defined.

• *ale refine can be used to refine ALE elements in areas of high pressure or volume

fraction (Aquelet 2012). This technique could be used to produce an adaptive region

of fine mesh that moves with the shock front, however Alia & Souli (2006) suggest

that mixing of small and large elements in the same model should be avoided as

much as possible because such models tend to reduce simulation accuracy.

• *boundary non reflecting prescribes the boundary condition at a free surface.

This allows material to flow out of the model without reflections from the boundary

contaminating results.

• *control ale allows global parameters for ALE analyses to be set, such as the
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number of cycles between advections (nadv), the advection method (meth), various

smoothing controls, and allows a reference pressure to be added to the free surfaces

of the ALE domain (pref).

• *database tracer will save the history of either a material point (track=0) or

spatial point (track=1). This keyword can be used to give pressure-time histories at

a fixed coordinate in the mesh, which will give the blast overpressure when ambient

pressure is subtracted.

• *initial ale mapping initialises the analysis with data from the previous run, after

Aquelet & Souli (2008). This allows the analyst to change mesh size or model size

during the simulation, and is particularly useful for changing from 2D to 3D (thus

saving a great deal of computational expense), when the propagation of the blast

wave can still be performed in axi-symmetry. Lapoujade et al. (2010) found that

energy was conserved when re-mapping to meshes up to 20 times coarser than the

original.

• *initial detonation is required to define the location of high explosive detonation.

The lighting time of an element, tL is given as the distance from the centre of the

element to the detonation point divided by the detonation velocity, D. The burn

fraction, F , which controls the release of chemical energy, is defined (in 2 dimensions)

as

F = max(F1, F2)

where

F1 =











0 t ≤ tL

2 (t− tL)Dle,max

3Ae
t > tL

F2 =
1− V

1− VCJ

(3.12)

where le,max is the maximum element length, Ae is the element area, V is relative

volume and VCJ is the Chapman-Jouguet relative volume. F1 corresponds to the

programmed burn of the explosive, and F2 is known as the ‘beta burn’, i.e. detonation

caused by volumetric compression. The pressure within the detonating element is

given as the product of the burn fraction and JWL EOS pressure, i.e.

p = Fpeos(V,E). (3.13)

If F exceeds 1 it is reset to 1 and is held constant thereafter. It typically takes

several time steps for F to reach 1, hence the burn front is usually spread over

several elements (Hallquist 2006).
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• *initial volume fraction geometry allows a volume within a user-defined ge-

ometry to be filled with ALE multi-material groups. For blast applications, this

means that the high explosive can be represented without the need to explicitly

model it (with different elements) in the mesh.

• *load blast enhanced applies ConWep LOS pressure predictions (Equation 2.18)

to surfaces within the model given a charge mass and stand-off. This has been cou-

pled with ALE ambient elements (Slavik 2009), negating the need to model the

initial detonation and subsequent blast wave propagation as it only considers the

blast wave once it is within the vicinity of the structure. This has particular appli-

cation for far field loading, however the ambient element layer used as input must

be far enough from the target structure such that reflections from this boundary do

not contaminate results (Schwer 2010).

3.2.4 Bulk Viscosity

In order to reduce any high frequency numerical oscillations that typically follow the shock

front, an artificial bulk viscosity term, q, is added to the pressure term (Hirsch 1988). The

shock discontinuity is smeared into a rapidly varying but continuous transition region over

the length of a few elements. Artificial bulk viscosity increases the stability of the analysis,

as well as reducing numerical dispersion, but may cause excessive smearing of the shock

front, reducing the amplitude of peak overpressure.

The bulk viscosity term, q, is given by Hallquist (2006) as

q = C0ρle
2

(

ds

dt

)2

− C1ρlea

(

ds

dt

)

if ǫ̇kk < 0

q = 0 if
ds

dt
≥ 0

(3.14)

where l is the thickness of the element,
ds

dt
is the strain rate in the direction of the

acceleration, ρ and a are the density and sound speed respectively, ǫ̇kk is the trace of

the strain rate tensor and C0 and C1 are dimensionless constants which default to 1.5

and 0.06 respectively. Values of C0 and C1 are user defined and can be accessed via the

*control bulk viscosity keyword in LS-DYNA.

3.3 Blast Wave Propagation in Free Air

3.3.1 Preliminary Mesh Study

A preliminary mesh study was undertaken to investigate two techniques for representing

a hemispherical surface explosive, as shown in Figure 3.4;
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(a) A radial mesh, with the explosive modelled as a separate part. The mesh was gener-

ated in a purpose written MatLab script with element size increasing with increasing

distance from the explosive, i.e. a constant aspect ratio was kept for air elements. This

allows for a spherically uniform shock propagation.

(b) A Cartesian grid with uniform element size. The explosive was represented using

the keyword *initial volume fraction geometry with contyp = 6 (spherical

container requiring the radius and coordinates of the origin of the sphere as input

values). This method does not require individual meshing of the explosive – a different

charge mass can be specified by changing the parameter r0.

(a) (b)

Figure 3.4: Representation of (a) radial mesh and (b) Cartesian grid mesh used in the preliminary
mesh study

The preliminary analyses simulated a hemispherical TNT charge with 0.05 m radius prop-

agating through free air, using 2D axi-symmetric elements with material properties for air

and TNT outlined in Table 3.1. Bulk viscosity parameters of 3.0 and 0.12 were selected

for C0 and C1 based on the findings of an initial bulk viscosity study. These values are

double the default values for LS-DYNA, and were selected so to minimise the energy lost

through numerical dispersion at larger scaled distances.

The ground surface was modelled with nodal displacements constrained against vertical

translation. For the radial mesh, contact between the explosive and air was achieved

using shared nodes along the boundary, as this is both reliable and economic (Wang 2001,

Alia & Souli 2006). The radial mesh contained 100,000 air elements and 11,700 explosive

elements and the grid mesh contained 250,000 elements in total over a 1 m air domain.

One disadvantage of the advection methods implemented in LS-DYNA is that the values of

φ in the transport volumes are calculated using the one-dimensional expressions (Equation

3.4). This means that there is no coupling between an element and adjacent elements that

share only vertices with the element (elements that do not share edges in 2D and faces in

3D), which introduces a second order advection error. Crucially, this second order error is

only significant when material is transported diagonally along the mesh (Hallquist 2006).

Figure 3.5 shows the overpressure-time histories for both mesh techniques at a distance

of 0.7 m from the centre of the explosive. It is clear from Figure 3.5 that the radial mesh
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Figure 3.5: Overpressure-time histories for 0.8535 kg TNT spherical air burst at 0.7 m for radial
and Cartesian (grid) mesh

is significantly less dispersive than the grid mesh. With the radial mesh, the spherical

expansion of the shock wave is aligned with the elements, whereas the material transport

through the grid mesh occurs along the diagonals of elements, introducing the second

order advection error. The radial mesh is also more efficient, as smaller elements are only

located where necessary, which can give a higher mesh resolution for a given run time

compared to the grid mesh, or can give a shorter run time for a given minimum element

(or time-step) size.

Explicitly modelling the explosive should be preferred over *initial volume fraction

for curved charges. The necessity to accurately model the explosive/air interface is demon-

strated in Figure 3.6, which shows pressure contours in the air domain 0.15 ms after

detonation (by which time the blast wave has travelled ∼0.5 m) for both meshes.
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Figure 3.6: Contours of pressure (units in Pa) at t = 0.15 ms after detonation for (a) radial mesh
and (b) grid mesh. The blast wave has travelled ∼0.5m from the source of the explosive
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The explosive can only be represented by square elements in the grid mesh, and any

elements along the interface have material distributed across the whole element based on

the volume fraction in that cell. This results in a non-spherical energy release, as can be

seen by the increased pressure in the upper left and bottom right corner of Figure 3.6(b).

The non-spherical expansion of the blast wave when using *initial volume fraction

can also be seen.

In light of the points raised above, the initial stages of explosive modelling for the remain-

der of this thesis are conducted using the radial mesh technique.

3.3.2 Mesh Sensitivity

The radial mesh enables the number of elements along the radius and circumference of

the 2D axi-symmetric domain to be specified separately. It was found that increasing

the number of circumferential elements independent of the number of elements along the

radius of the domain had little effect on the fidelity of the simulations. Therefore, a

fixed aspect ratio of 0.2 (short side length in the radial direction and large side length

in the circumferential direction) was chosen for the air elements, which is greater than

the minimum value of 0.1 suggested by Hallquist (2006) for stability purposes, and will

be no less accurate than a mesh comprising more circumferential elements or a shorter

circumferential element length. The mesh sensitivity study is thus focussed on the number

of elements along the radial length of the domain (i.e. in the direction of the blast wave

propagation), the results of which are presented here.
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Figure 3.7: Peak incident overpressure for different mesh densities at three gauge locations. Solid
lines indicate values given by ConWep (Hyde 1991)

A mesh sensitivity analysis was conducted for mesh densities ranging from 1,125 axi-

symmetric elements[ii] to 446,800 axi-symmetric elements[iii]. Figure 3.7 shows the peak

incident overpressure for the different mesh densities at three gauge locations – 0.5, 0.7

[ii]10 elements along the circumference and 100 elements along the radius of the air domain
[iii]200 elements along the circumference and 2000 elements along the radius of the air domain
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and 0.9 m from the centre of the explosive (0.8535 kg TNT with a radius of 50 mm). The

solid lines indicate values of peak incident pressure given by ConWep (Hyde 1991). The

ability of the numerical model to capture the sharp discontinuity of the shock front is

heavily dependent on the density of the mesh in the direction of travel of the blast wave.

The results generally tend towards the semi-empirical predictions for peak incident over-

pressure with increasing mesh density. It is worth noting, however, that the shorter

stand-off case does not appear to be converging as well. The reliability of the KB predic-

tions in the near-field – which are predominantly based on early numerical computations –

are generally recognised as being unreliable and have already been questioned by Esparza

(1986) and more recently by Cormie et al. (2013). This lack of convergence therefore

can be put down to a limitation of the KB method for near-field events, rather than a

limitation of the computer model.

Figures 3.8, 3.9 and 3.10 show pressure-time and impulse-time histories for the numerical

analyses at 0.5, 0.7 and 0.9 m, for a fine mesh (comprising 446,800 elements), a medium

mesh (27,975 elements[iv]) and a coarse mesh (1,125 elements), all with an aspect ratio of

∼0.2 for air elements. The influence of mesh density on resolution of the shock front can

clearly be seen, with the discontinuity being smeared over ∼25 µs for the coarsest mesh but

being accurately represented by the finer meshes. Mesh density has less of an effect on the

incident impulse, suggesting that similar amounts of energy are released from the explosive

regardless of the mesh, and that little energy is lost during blast wave propagation. Alia

& Souli (2006) suggest that no less than 16 elements are required along the radius of the

explosive to accurately model the detonation process. For the coarsest mesh, 15 elements

were used along the radius of the charge and similar amounts of energy were released when

compared to the finer meshes, suggesting that this observation is valid.

Overall, there is a good level of agreement between the semi-empirical and numerical re-

sults for peak pressure and arrival time. The numerical model consistently under-predicts

the incident impulse, however the preservation of peak pressure suggests that this is not

due to cumulative energy losses in the numerical model. In a review of simplified predic-

tive methods, Bogosian et al. (2002) found that ConWep predictions for incident impulse

were on average 15% higher than experimental test results. In the experimental work

of Tabatabaei et al. (2013), it was found that ConWep incident impulses were up to

40% higher than the measured free-field impulses, suggesting there is an inherent over-

conservatism in ConWep incident impulse predictions.

[iv]50 elements along the circumference and 500 elements along the radius of the air domain
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Figure 3.8: Incident pressure-time and impulse-time histories at 0.5 m from the explosive centre
(0.8535 kg TNT) for fine (446,800 elements), medium (27,975 elements) and coarse (1,125 elements)
radial meshes
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Figure 3.9: Incident pressure-time and impulse-time histories at 0.7 m from the explosive centre
for fine, medium and coarse radial meshes
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Figure 3.10: Incident pressure-time and impulse-time histories at 0.9 m from the explosive centre
for fine, medium and coarse radial meshes
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3.4 Reflected Pressure on a Semi-Infinite Surface

In this section, the experimental trials introduced in Section 2.2.4 are used to validate

numerical simulations of 250 g hemispherical PE4 (nominally similar to C4) charges det-

onated 4, 6, 8 and 10 m away from a semi-infinite, rigid target. Empirical predictions

were evaluated from ConWep using an assumed TNT equivalence of 1.2 after Tyas et al.

(2011a,b).

The detonation process and blast wave propagation was simulated using an axi-symmetric

radial mesh, similar to that used in the initial mesh study, with a charge radius of

42.09 mm. One simulation was run with the blast wave propagating through free air,

and separate map files were written at t = 7.1, 12.5, 18.0 and 23.8 ms after detona-

tion, corresponding to travel distances of (slightly less than) 4, 6, 8 and 10 m. The map

files, which contained information of the incident wave, were re-mapped onto a regular

grid mesh (still in axi-symmetry) to allow the planar structure to be modelled using only

nodal constraints, i.e. nodes along the boundary simulating the air/structure interface were

constrained against horizontal translations. The rigid ground surface was again modelled

using vertical translational constraints. Performing the first stage of the analysis using

the radial mesh and re-mapping onto a regular grid just before the blast wave strikes the

target ensures that the blast wave is still spherically symmetrical whilst greatly simplifying

the modelling of the reflecting surface.

*initial ale mapping allows the user to specify the offset of the mapping data in relation

to the mesh. For these analyses, the same grid mesh used for all four analyses with a

different offset distance specified for each stand-off tested. The explosive was modelled as

C4, with JWL parameters taken from Dobratz & Crawford (1985), shown in Table 3.1.

Figures 3.11, 3.12, 3.13 and 3.14 show the pressure-time and impulse-time histories for

the experiments and numerical simulations. Empirical predictions are given by ConWep

positive phase and cubic negative phase as detailed in the previous chapter.
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Figure 3.11: Reflected pressure-time and impulse-time histories for a semi-infinite rigid wall located
4 m away from a 250 g hemispherical PE4 charge
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Figure 3.12: Reflected pressure-time and impulse-time histories for a semi-infinite rigid wall located
6 m away from a 250 g hemispherical PE4 charge
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Figure 3.13: Reflected pressure-time and impulse-time histories for a semi-infinite rigid wall located
8 m away from a 250 g hemispherical PE4 charge
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Figure 3.14: Reflected pressure-time and impulse-time histories for a semi-infinite rigid wall located
10 m away from a 250 g hemispherical PE4 charge
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Overall, the numerical model is in very good agreement with both the semi-empirical

predictions and the experimental results for the positive phase of loading. This suggests

that the conservation of mass, momentum and energy associated with shock wave reflection

at the boundary between air and structure is sufficiently modelled. There is a small

amount of numerical dispersion following the shock front, which becomes more apparent

with increased stand-off. This could be remedied by increasing the artificial bulk viscosity,

however such an increase will decrease the sharpness of the shock front without benefiting

the stability of the solution.

Table 3.2 shows experimental and numerical values of peak reflected pressure and the ratio

of numerical to experimental peak pressures. As in Section 2.2.4, the peak experimental

pressure is given by a curve fit to the recorded data (post sensor ringing) which is then

extrapolated backwards to the arrival time. The numerical model is able to predict the

peak pressure to within 14% of the experimental results.

Stand-off (m) Peak Pressure (kPa)

Exp DYNA Ratio

4 76.8 67.7 0.88
6 39.2 33.9 0.86
8 26.1 24.5 0.94

10 18.3 16.7 0.91

Table 3.2: Peak experimental and numerical reflected pressure for a 0.25 kg hemispherical PE4
charge (0.3 kg TNT) and ratio of numerical/experimental

In general, the duration of the positive phase is shorter than observed in the experimental

results, which leads to slightly reduced values of peak impulse in the numerical simula-

tions. The form of the negative phase is well represented by the semi-empirical predictions,

which generally tend to follow the experimental measurements. There is a slight differ-

ence between the form of experimental and numerical negative phases, as well as a slight

difference in the peak value of underpressure, however it can be seen in Table 3.3 that the

peak impulses and total (net) impulses are generally in agreement between experiment and

simulation. It is not useful to present ratios of numerical and experimental net impulse

due to the proximity of the results to zero.

Stand-off (m) Peak Reflected Impulse Net Reflected Impulse
(kPa.ms) (kPa.ms)

Exp DYNA Ratio Exp DYNA

4 68.8 66.7 0.97 18.4 17.5
6 44.8 40.0 0.89 6.6 7.1
8 32.6 29.7 0.91 1.9 −1.6

10 24.9 21.9 0.88 −2.8 −0.6

Table 3.3: Peak and net experimental and numerical reflected impulse for a 0.25 kg hemispherical
PE4 charge (0.3 kg TNT) and ratio of numerical/experimental peak impulse
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The physical process of the ‘second shock’ (outlined in Section 2.2.4) is captured in the

numerical model, however the arrival time is over-predicted in all numerical simulations.

The formation of the second shock is dependent on several variables, including the det-

onation velocity, and the density (and hence wavespeed) in the explosive products. The

magnitude of this second shock is typically less than 10% of the main shock and, although

it does affect the impulse transmitted through the shock, it is not of primary concern;

the numerical model is still able to calculate the net impulse imparted to the target to

within 3.5 kPa.ms (Table 3.3). Peak pressures, peak impulses and net impulses associated

with the experimental and numerical results are summarised in Figure 3.15, along with

semi-empirical predictions for reference. As the second shock arrives during the negative

phase, it acts to reduce the negative impulse and increase the net impulse acting on the

target. Because the semi-empirical method has no means to account for the second shock,

these predictions for net impulse appear to offer a lower bound estimate.
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Figure 3.15: Peak pressure, peak impulse and net impulse for the experimental results and numer-
ical simulations compared to semi-empirical predictions

3.4.1 A Brief Note on TNT Equivalence

So far, a TNT equivalence of 1.2 has been used for C4. Ackland et al. (2012) questioned the

use of a single equivalence factor and suggested a factor that varies with scaled distance.

The energy equivalence is an intrinsic function of the chemical composition of the explosive,

and therefore the notion of a factor that varies with distance from the explosion has no

physical basis.

The reflected pressure simulations were repeated with 300 g of TNT (44.5 mm radius),

assuming a TNT equivalence of 1.2 for C4/PE4. It can be seen from Figure 3.16 that there

is no discernible difference between the positive phases of the two pressure readings – the

only difference comes with the arrival of the second shock which, as discussed previously,

makes little quantitative difference to the blast pressure load. Similar results were obtained

for 6, 8 and 10 m but are not shown for brevity. It can be concluded that, for the range

of scaled distances of interest, a single equivalence value of 1.2 for C4 is applicable when

using semi-empirical TNT predictions.
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Figure 3.16: Numerical reflected pressure-time histories for a 250 g hemispherical C4/PE4 charge
and 300 g hemispherical TNT charge at 4 m stand-off (assuming a TNT equivalence of 1.2)

3.4.2 Expansion Waves From the Domain Edges

The *boundary non reflecting keyword purports to allow for infinite domains to be

represented in the numerical model. From the numerical analyses conducted thus far,

however, it appears that this method is inadequate at preventing expansion waves from

propagating in from the edges of the domain.

As the pressure wave reaches the non-reflecting boundary, there is an imbalance between

the incident pressure wave within the domain and the ambient pressure applied to the

edge of the domain. This imbalance, in the same mechanism as blast wave clearing, is

equalised with the initialisation of an expansion wave as the higher pressure incident air

flows out of the domain. The reference pressure is constant along the entire edge of the

domain, hence there is no means for the pressure to truly equalise, and a large amount of
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Figure 3.17: Contours of pressure (units in Pa) from numerical analysis. (a) Incident blast wave
reaching the boundary and (b) and (c) propagation of the expansion wave into the air domain
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material is lost from the domain. This behaviour can be seen in Figure 3.17, which shows

the top corner of the domain used in the 4 m analysis. It can be seen that the expansion

wave has travelled ∼0.7 m in 2 ms, indicating a wavespeed of 340 m/s.

Once this expansion wave reaches the area of interest, it can contaminate the results.

Therefore, when modelling an infinite domain, it is recommended that the boundary is

placed far enough from the area of interest such that no expansion waves arrive throughout

the duration of the analysis (Schwer 2010).

3.5 Reflected Pressure on a Finite Surface

The experimental results from Tyas et al. (2011a,b), introduced in Section 2.3.4, are used

in this section to validate the ability of LS-DYNA to simulate the pressure acting on a

finite target subjected to a cleared blast load. A rigid finite target, with dimensions shown

in Figure 3.18, was subjected to 250 g C4 charges again at 4, 6, 8 and 10 m, with the

presence of target edges able to influence the late-time pressure development on the face

of the target. In this test series, two experiments were conducted at each stand-off.

337.5

168.75

355

G1

G2

Figure 3.18: Gauge locations in the finite target (dimensions in mm)

The mapping files written from the analyses in Section 3.4 were re-mapped onto a 3D

domain of solid ALE elements to simulate the interaction between a propagating blast

wave and a finite sized target, namely to simulate the effect of blast wave clearing around

the target edges. When re-mapping from 2D to 3D, it is important to be aware of two

conflicting issues:

• Domain Size – in order to fully capture the pressure-time history from the 2D

analysis, the 3D mesh must be large enough to contain a sufficient ‘length’ of the

blast wave (Aquelet & Souli 2008). For the 10 m simulation, the positive phase

duration is ∼3.6 ms. Assuming a wave speed of 340 m/s gives a positive phase

wavelength of 1.2 m, i.e. the ALE domain must be at least this length in front of the

target to capture the whole of the positive phase. If the entire negative phase is to

be re-mapped, domain lengths of ∼5 m are required. It is also important to have the

domain large enough to ensure that expansion waves from the edge of the domain
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do not reach the monitoring points during the analysis and contaminate results (see

Section 3.4.2 and Schwer (2010)).

• Element Size – As shown in the preliminary mesh study, ALE analyses are sensitive

to element size, particularly when considering the resolution of the shock front. The

elements in the ALE domain should therefore be as small as possible.

A compromise is required in order to generate models of reasonable size and analysis time.

Also, it is often not possible to achieve similar mesh densities between 2D and 3D analyses

owing to the increased number of elements in the additional plane and hence increased

memory requirements of 3D models. In this validation, it was important to validate the

mechanism of clearing and the reduction of positive phase pressure, so a domain length of

1 m was chosen for the air in front, above, and adjacent to the extreme edges of the target

to permit analysis durations of ∼3 ms. A domain length of 0.5 m was modelled behind

the target to give a 1 m distance from the edge of the target to the boundary and back,

again ensuring no expansion waves would arrive before ∼3 ms.

The domain was discretised using elements of side length ∼17.5 mm, with an aspect ratio

of 1, giving 578,816 elements in total. As with the 2D case, the rigid target was modelled

with nodal constraints rather than fluid-structure interaction. Half-symmetry was used,

with appropriate boundary conditions along the vertical boundary. The rigid ground was

again modelled with vertical translational constraints as nodal boundary conditions.

Figures 3.19–3.22 show the numerical and experimental pressure time histories for both

gauge locations. The smoothing of the shock front can be seen for all cases, which is the

result of mapping from a fine mesh to a coarser mesh, as can be justified by the fact that

such smoothing was not observed in the 2D analyses conducted in Section 3.4 (where the

mapping was performed between meshes of similar densities). Nevertheless, the agreement

between numerical and experimental results is very good, and the numerical model is able

to capture the physics of blast wave clearing to a sufficient level of accuracy.
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Figure 3.19: Experimental and numerical pressure-time histories for two gauge locations on a
finite target located 4 m away from a 250 g hemispherical PE4 charge. Gauge locations and target
dimensions are shown in Figure 3.18



Chapter 3. Air Blast Loading Using LS-DYNA 57

12 12.5 13 13.5 14 14.5 15 15.5 16
−10

−5

0

5

10

15

20

25

30

35

40

R
ef

le
ct

ed
 O

ve
rp

re
ss

ur
e 

(k
P

a)

Time after detonation (ms)

 

 

6m Test 1 G1
6m Test 2 G1
6m DYNA

12 12.5 13 13.5 14 14.5 15 15.5 16
−10

−5

0

5

10

15

20

25

30

35

40

R
ef

le
ct

ed
 O

ve
rp

re
ss

ur
e 

(k
P

a)

Time after detonation (ms)

 

 

12 12.5 13 13.5 14 14.5 15 15.5 16
−10

−5

0

5

10

15

20

25

30

35

40

R
ef

le
ct

ed
 O

ve
rp

re
ss

ur
e 

(k
P

a)

Time after detonation (ms)

 

 

6m Test 1 G2
6m Test 2 G2
6m DYNA

12 12.5 13 13.5 14 14.5 15 15.5 16
−10

−5

0

5

10

15

20

25

30

35

40

R
ef

le
ct

ed
 O

ve
rp

re
ss

ur
e 

(k
P

a)

Time after detonation (ms)

 

 

Figure 3.20: Experimental and numerical pressure-time histories for two gauge locations on a finite
target located 6 m away from a 250 g hemispherical PE4 charge
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Figure 3.21: Experimental and numerical pressure-time histories for two gauge locations on a finite
target located 8 m away from a 250 g hemispherical PE4 charge
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Figure 3.22: Experimental and numerical pressure-time histories for two gauge locations on a finite
target located 10 m away from a 250 g hemispherical PE4 charge
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The mechanism for blast wave clearing can be considered as a shock wave in reverse; it

begins as a sharp pressure discontinuity between reflected and incident pressure at the

target edge and becomes more rounded as the wave travels along the target face because

the higher pressures at the head of the wave travel quicker than the trailing lower pressures.

By the time the clearing wave reaches the gauge locations, the relief pressures are smooth

enough to be represented by the coarse mesh; it is likely that further mesh refinement

would yield a sharper initial rise to peak pressure but have little effect on the clearing

pressures thereafter.

Table 3.4 shows the peak impulse at each gauge location for the experiments and nu-

merical simulations. The experimental values are taken as the average between the two

tests. Overall, the numerical impulse is within 12.5% of the experimental results, with a

general trend towards increasing difference with increasing stand-off, which is likely due

to the numerical dispersion seen in the 2D cases. Table 3.4 is also summarised in Figure

3.23, which shows full ConWep reflected pressures as an indication of the level of impulse

reduction attributed to blast wave clearing.

Stand-off (m) Peak Reflected Impulse (kPa.ms)

Gauge 1 Gauge 2

Exp* DYNA Ratio Exp* DYNA Ratio

4 56.5 52.0 0.92 50.8 46.9 0.92
6 32.6 30.2 0.93 29.3 27.3 0.93
8 22.8 20.9 0.92 20.9 19.2 0.92
10 17.4 15.2 0.87 16.2 14.2 0.88

∗ averaged result

Table 3.4: Peak reflected impulse comparison for numerical and experimental trials in both gauge
locations
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Figure 3.23: Numerical and experimental peak impulse at both gauge locations for all stand-offs
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3.6 Summary

LS-DYNA has been used to simulate high explosive detonations for incident and reflected

blast wave parameters, in both near and far field applications.

In the initial mesh study, a mesh with elements radiating out from the centre of the charge

was compared with a grid mesh with regular element size throughout. The explosive in

the radial mesh was modelled explicitly and in the grid mesh it was represented using

the *initial volume fraction keyword. It was found that blast wave propagation was

better simulated with the radial mesh because the elements are generally orientated to the

direction of travel of the pressure wave, which reduces the second order advection errors

and results in less numerical dispersion (see Figure 3.5). Representation of the explosive

as an explicit part is also favourable as construction of the interface between explosive

and air is not mesh sensitive as it is with the grid mesh. For the blast wave propagation

through free air, peak pressure values were approaching ConWep values, however incident

impulses were slightly lower.

The *initial ale mapping ability in LS-DYNA allowed the radial mesh to be re-mapped

onto a Cartesian grid when interaction with a structure was required. Experimental

pressure-time histories were used to validate LS-DYNA results for airblast loading on

a semi-infinite target and it was found that peak pressures and peak impulses were in very

good agreement between experimental, numerical and semi-empirical values (typically

within 10-15%). Net impulse was also in acceptable agreement, however the form of the

negative phase and arrival of the second shock was slightly different between experiments

and numerical simulations.

Blast loading on a finite target was also evaluated, with the experiments detailed in Tyas

et al. (2011a,b) being replicated in LS-DYNA. Despite smoothing of the shock front due

to re-mapping from a fine mesh to a coarser mesh, the experimental and numerical results

were in good agreement, with a difference in peak impulse of no more than 14%. In order

to better capture the shock front, the mesh could be refined locally around the target

using the ale refine keyword, however Alia & Souli (2006) recommend keeping element

size as uniform as possible because mixing of small and large elements tends to decrease

simulation accuracy.

It can be concluded that LS-DYNA is suitable for simulating high explosive detonations

and subsequent blast wave propagation, as well as being able to accurately model phe-

nomena such as shock wave reflection and blast wave clearing.





Chapter 4

A Study of Diffraction Loading

and Clearing for Small Targets

4.1 Introduction

The loading experienced by a point on a finite target remote from a free edge can be

characterised by three distinct phases:

1. The full reflected pressure will be experienced until the clearing wave arrives.

2. The blast pressure will be relieved as the expansion waves reach and propagate over

the point of interest in what is termed the diffraction phase

3. The drag phase occurs, where the diffraction process has ceased, the pressures have

equalised across the front face of the target, and the target is subjected to quasi-

steady drag loading (Ethridge 1977).

As introduced in Section 2.3.2, the current understanding of blast wave clearing suggests

that the diffraction phase consists of a series of expansion waves travelling back and forth

across the target face. Once an expansion wave reaches the opposite edge of the target, it

will diffract around that target edge, sending a lower magnitude wave inwards along the

target face in the opposite direction. As noted by Hudson (1955, page 26) ‘we should expect

oscillations of rather large amplitude. . . these oscillations are caused by the movement of

the rarefaction and compression waves around the target’.

This behaviour is perhaps best illustrated in a shock front distance-time diagram, as per

Figure 4.1, which shows a schematic of the clearing wave oscillations across the front of

a finite-sized target. The main plot of Figure 4.1 shows the location of the shock front

along the vertical front face of the target, and the sub plots show shock front progression

at the times ti, tii and tiii as indicated in the main figure. It can be seen that once the

initial diffraction wave reaches the base of the target (between ti and tii) it is reflected

61
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upwards. Once this wave reaches the top edge of the target, it too initiates a diffraction

wave (between tii and tiii) which itself travels along the front of the target, reflects off

the base and diffracts again upon reaching the vertical extent of the target. This process

is repeated in an infinite series, each wave having decreasing magnitude. Given a large

enough number of expansion wave crossings, the blast pressure will oscillate about, and

eventually approach, the stagnation pressure as a limit.

x

t

Oscillating clearing waves
of diminishing strength

Target top

Reflected pressure
region

Incident pressure
region

(t )i

DragDiffraction

ti tii tiii

Target

Planar incident
shock front

Planar reflected
shock front

Diffraction wave

(t )ii

Reflection from
rigid boundary

(t )iii

First oscillation
diffraction wave

Positive vertical particle acceleration

Negative vertical particle acceleration

Key:

x

Edge vortices

Shock front arrival at t=0

Figure 4.1: Schematic shock front distance-time diagram for a series of clearing waves travelling
across the target face. Subplots show shock front progression at the times indicated

Figure 4.1 uses the following sign convention: positive vertical particle accelerations are

coloured red, whilst negative (downward) vertical particle accelerations are shown in blue.

At this stage, it is important to distinguish between particle motion and wave motion:

in the main plot, which shows the shock front location, the colour indicates the particle

motion whereas the gradient of the line indicates the wave velocity. It can be seen in

Figure 4.1(tii) that the reflected diffraction wave is accelerating the particles downwards

whilst the wave front is propagating upwards.[i] Expansion waves occur when the particle

acceleration is in the opposite direction to the wave propagation, and compression waves

occur when the respective motions are in the same direction.

[i]In the subplots of Figure 4.1, arrows on the shock fronts indicate direction of wave propagation
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Clearly, for small targets, the time taken for a clearing wave to traverse the target face

will be very small in relation to the positive phase duration. The oscillations, therefore,

should dissipate quickly enough such that their form can effectively be ignored (or may not

even be captured in the experimental set up), and only the average behaviour taken into

account. The early nuclear bomb trials involved an arrangement of small targets and large

blast waves (Murtha 1955, Morris 1959, Norris et al. 1959), hence the pressure would have

equalised so quickly so that the actual mechanism of how it equalised could effectively be

ignored on account of it being less important than the global effect of pressure equalisation.

The validation work undertaken in the previous chapter, and the experimental work of

Rickman & Murrell (2007) and Tyas et al. (2011a,b), has been concerned with larger

targets and smaller blast waves (arising from high explosives rather than large nuclear

weapons). In these trials, the duration of the diffraction phase was similar to or often

greater than the positive phase, and typically only one clearing wave crossing was seen.

It has been shown for these arrangements that the Hudson method can accurately model

the clearing effect.

There remains a gap in the knowledge in terms of the form of the blast pressure load

for targets whose dimensions are small enough such that the diffraction phase is resolved

during the load application, yet large enough such that this behaviour constitutes a greater

portion of the total loading duration. In his discussion of drag loading for small targets,

Hudson (1955, page 10) observed that ‘as an approximation, we may write from our

experience that the pulse associated with a wave having traveled (sic) more than the length

of the originating edge is negligible’, i.e. only one traverse of the expansion wave was

seen to affect the recorded blast pressure. This suggests that blast wave clearing is not

properly understood for smaller target dimensions and that the series of expansion wave

interactions may be a misinterpretation of diffraction loading on small targets.

It is known that the reflected pressure is approached as a limit as the target size tends

to infinity, and that the incident pressure is approached as the target size tends towards

zero.[ii] The transition to the upper limit can easily be explained by the fact that the

distance that the clearing wave can travel along the target decreases relative to the target

size as the dimensions of the target increase, i.e. the effect of clearing diminishes as the

target size increases. No proper explanation exists as to how the blast load reaches the

incident pressure in terms of the known mechanism of clearing.

This chapter focusses on using numerical analysis to study blast wave clearing and diffrac-

tion loading of smaller targets in an attempt to better understand how the cleared pressure

approaches the incident pressure as the target reaches infinitesimal size. This chapter will

also serve to offer guidance, based on physical principles, of the regions where blast wave

clearing can be neglected, purely on the basis of the form of the load. Regions where blast

wave clearing can be neglected based on its influence on finite-target dynamic response is

analysed and discussed in the following chapters.

[ii]See Table 2.3 in Section 2.3.2
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4.2 Numerical Study

4.2.1 Preliminary Modelling Considerations

Modelling the blast events explicitly using finite elements has several advantages over

attempting to develop an analytical solution, namely:

• The assumptions required to develop analytical solutions often render the method

suitable only for very few applications. For example, in the analytical study of

Hunter & Keller (1984) on the diffraction of blast waves normal to the direction of

travel, a solution is derived for a weak shock wave with constant conditions behind

the shock front. This has several limitations: firstly, the solution is only true for one

passing of the diffracted wave, i.e. once the wave reaches the opposite edge of the

target, or interacts with the wave travelling in from the opposite edge, the method

is no longer valid; secondly, the solutions cannot be applied to a strong shock or a

shock wave with temporally varying pressure behind the shock front.

• Modelling the explosive and subsequent blast wave propagation allows for a realistic

blast load to be represented in the model. Analysing the propagation of this blast

wave over a target will give results that are directly applicable to guidance on blast

resistant design, as they directly relate to real life situations. If a scenario is modelled

using finite elements, and the model is well validated, then the results can be directly

translated to our understanding of real-life blast events. Cube-root scaling of blast

events widens the range of which the results may apply. Furthermore, the model can

be used to study clearing behaviour for blast waves of varying strength and temporal

decay.

Justification for 2D Analysis

For structures whose size is effectively infinite in one dimension only (the 2D case, as

introduced in Section 2.3.2), blast wave clearing will occur only perpendicular to this

dimension. For targets with two finite dimensions, it has been shown that the clearing

effect can be separated into two principal dimensions (Tyas et al. 2011a). Therefore, it is

only relevant to consider the clearing effect in one dimension in order to investigate the

form of the blast load for small targets and target sizes approaching zero.[iii]

As shown in the mesh sensitivity analysis of the previous chapter, ALE analyses are

particularly sensitive to mesh size and element orientation with respect to the direction

of travel of the blast wave. The relatively little computational expense of 2D analyses

facilitates the use of a fine mesh and can give results that can more accurately capture the

[iii]As demonstrated by Hudson (1955), the size of the target in the direction of travel of the blast wave has
negligible effect on the blast load on the front face of the target, and is therefore assumed to be infinite
to facilitate the use of the Hudson predictive method.
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behaviour seen in real life. Accordingly, the numerical analyses discussed in this chapter

were performed on 2D axi-symmetric finite element models with a radially symmetric

mesh, which were re-mapped onto a rectangular grid immediately prior to reflection of the

blast wave. The target was, again, assumed to be rigid and modelled using nodal point

constraints.

Relevant Parameters

There are a number of parameters which influence the level of clearing relief a target will

experience. These include pressure, impulse, decay of the blast pressure, stand-off, and

target dimensions and shape. In order to facilitate a more focussed numerical study, this

section details how the problem of clearing on small targets can be reduced to two main

parameters.

Firstly, if the mass of explosive is set at 1 kg, scaling durations and impulses becomes

trivial because the scaled and actual time scales are identical (see Section 2.2.3). Varying

the stand-off distance, therefore, allows parameters such as pressure, impulse and temporal

decay of the blast wave to be altered. Secondly, the level of blast wave clearing is directly

related to the size of the target. For a given scaled distance, there exist many combinations

of charge mass and target height that will give the same value of Hudson’s dimensionless

length scale, η (repeated as Equation 4.1 below for clarity).

η =
x

a0td
. (4.1)

Cube root scaling ensures that the length (x) and time (td) parameters are always scaled

by the same factor, K – as in the example shown in Figure 4.2 for two similar arrangements

whose charge mass differs by the factor K3 – and hence the Hudson clearing length in

Equation 4.1 is independent of scaling parameters. For the two arrangements shown in

Figure 4.2, therefore, both targets will give the same value of η at any similar point on

the target and hence will experience identical time-scaled loads.

By varying the scaled target height, H, or specifically the ratio of the scaled distance to

the scaled target height, Z/H, the effect of clearing on different target sizes can be studied,

knowing that the results apply for any situation that has the same ratio at that particular

scaled distance. The problem has now been condensed into two parameters, Z and Z/H.

4.2.2 Weak Shock Study

The problem was first considered for weak shock conditions, where the blast and diffraction

waves can be considered as acoustic rather than shock waves. The situation shown in

Figure 4.3 was modelled, with a 1 kg charge detonated 8 m away from rigid, finite-sized

targets. Scaled target sizes of H = Z/8, Z/16, Z/32, Z/64, Z/128 and Z/256 and Z/512,
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Figure 4.2: Scaled target dimensions giving the same value of η at the mid-point of the target

corresponding to actual heights of 1000 mm to 15.625 mm, were analysed to study the

mechanism of blast wave clearing for smaller targets and to indicate the transition between

diffraction and drag-type loading.

Pressure gauge array
located at 10 mm centres

1 kg

8 m

Target sizes ranging
from Z/8 to Z/512

x

Figure 4.3: Arrangement of the FE models considered in the numerical study for weak shock
conditions

The model was also run with free-field conditions and with an infinite sized target so that

the cleared readings could be compared against the incident and fully reflected cases. The

*database tracer keyword was used to save fixed point values (track=1) at 10 mm

spacing from x = 0 (ground level) up to x = 1 m for all analyses.

Pressure-Time History

Figure 4.4 shows numerical pressure-time histories at the base of the targets (x = 0), as

well as numerical reflected and incident pressures for reference. Results for Z/H = 512

are not shown here but will be discussed in later sections. For a 1 kg hemispherical surface

burst at 8 m stand-off, ConWep gives semi-empirical peak reflected and incident pressures

and positive phase duration as 44.11 kPa, 20.34 kPa and 4.454 ms respectively, which are

in good agreement with the numerical values.
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(c) Z/H = 32
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(d) Z/H = 64
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Figure 4.4: Pressure-time histories at the base of the finite targets (x = 0)
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The effect of blast wave clearing is apparent from the pressure-time traces, which exhibit

a sharp drop off in pressure following the arrival of the rarefaction relief wave. What is

apparent, despite what the current theory suggests, is that there appears to be no trace of

any subsequent oscillations of the cleared pressure caused by additional diffraction waves.

Take Figure 4.4(c) as an example. With a target height of 250 mm, the arrival time of

the clearing wave (assuming a shock front velocity of 340 m/s) to reach the gauge location

from the top of the target is 0.74 ms after arrival of the blast wave. As stated before,

this is clearly seen in the numerical model. Assuming the shock front velocity remains

unchanged, one would expect to see a positive oscillation (pressure increase) at 2.21 ms,

and a subsequent negative oscillation (pressure decrease) at 3.68 ms after the arrival of

the blast wave.[iv] It is acknowledged that the clearing wave should be expected to lose

energy as it propagates, and that the diffracted signal will be lower in magnitude than

the original wave, however some oscillations should still be expected to be seen based

on the current theory, particularly for the smaller targets where the energy losses from

propagating the small distances across the target face will be negligible. This absence

of subsequent oscillations after the primary pulse, despite being in disagreement with the

accepted theory on blast wave clearing, is in agreement with the experimental observations

of Hudson (1955).

Figure 4.5 shows pressure-time fringe plots for the gauges aligned vertically along the

front face of the target (see the model arrangement in Figure 4.3), with the target height

indicated by the solid horizontal line. The pressure is shown as cleared pressure minus

incident pressure to allow the form of the clearing waves to be isolated.

When the blast wave reaches the top edge of the target, an expansion wave can be seen to

travel along the target away from the edge (down), whilst a compression wave can be seen

to travel through the air immediately above the target (up), both waves orthogonal to the

direction of travel of the blast wave itself. Following reflection from the rigid boundary,

the expansion wave changes direction and propagates back along the face towards the

target edge, and beyond into the free air. Following the passing of this expansion wave,

the pressure acting on the target face falls below, and remains below the incident pressure.

It can be seen for all cases that the pressure acting on the entire target face falls below the

incident pressure once the reflected expansion wave has passed across the point of interest.

The air remains over-expanded for the remainder of the loading duration, rather than

experiencing oscillations. This suggests that the blast pressure does not approach the

stagnation pressure but instead reaches and maintains a pressure somewhat below this

value. It appears as though the over-expansion of the air is a function of target size, and

that the larger the target, the more the clearing wave causes the air in front of the target to

over-expand. This is divergent from the current theory and deserves further consideration.

[iv]These times correspond to odd multiples of the transition time of the clearing wave, i.e. the time taken
to travel from the top of the target to the bottom for the first wave, this time plus the time taken to
travel from the bottom of the target to the top and back again for the first positive oscillation, etc.
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Figure 4.5: Fringe plots of cleared pressure minus incident pressure versus time for gauge locations
aligned vertically along the front face of the target (arrangement shown in Figure 4.3). Target top
edge (x-location) is indicated by the solid horizontal line
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Particle Acceleration-Time History

The Rankine-Hugoniot ‘jump’ conditions for conservation of momentum either side of

a moving shock front state that the increase in pressure is equal to the product of the

ambient density, shock velocity and particle velocity (Anderson 2001). The change in

air density can be considered negligible compared to the changes in pressure and particle

velocity, hence it can be said with justification that the pressure of the moving shock is

effectively proportional to the particle velocity. Differentiating this relation with respect

to time indicates that the rate of change of pressure is effectively proportional to the

particle acceleration. Acceleration-time plots, therefore, are analogous to the slope of the

pressure-time plots and can be used to construct the shock front distance-time diagrams

as per Figure 4.1.

Figure 4.6 shows numerical vertical particle acceleration-time fringe plots for the finite-

sized targets, again for the gauges located vertically along the target face and again with

the free field values subtracted for better presentation of the effects of clearing. The

gradient of any shock front is dependent on the size of the mesh as much as it is on the

physics of the problem, hence the magnitude of the acceleration should be considered less

important than the actual sign, or direction, of acceleration. This figure follows the sign

convention introduced earlier in the chapter, with red being vertical accelerations and blue

being vertical decelerations.

The shock front emanating from the top edge of the target can be seen very clearly, as

can the reflection (and sign reversal) off the rigid boundary. Again there appears to be

no diffraction wave oscillation after the initial clearing wave has passed the edge of the

target.

Accelerations caused by numerical oscillations following the reflected shock front can be

seen emanating from the bottom-centre of the target at t = 0. This is a non-physical

feature which is present in all of the numerical results and should not be interpreted as

physical behaviour of the reflected or clearing shock fronts. The region of vortices can be

seen at the top edge of the target.

4.2.3 The Mechanism of Clearing for Weak Shock Conditions

Based on evidence from the numerical analyses, the mechanism of blast wave clearing for

smaller targets can be interpreted as follows:

• At the moment a shock wave reaches the edge of a finite target, the wave diffracts

around the edge of the reflecting surface, causing a clearing wave to travel inwards

along the target face. The wave travels away from the target edge but accelerates

the particles towards the edge, hence acting as an expansion wave and reducing the

pressure acting on the target.
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Figure 4.6: Fringe plots of cleared particle acceleration minus incident particle acceleration versus
time for gauge locations aligned vertically along the front face of the target (arrangement shown
in Figure 4.3). Target top edge (x-location) is indicated by the solid horizontal line
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• If the target is situated on a rigid ground surface, the wave then reflects off the

surface and propagates back towards the origin of the clearing wave, i.e. the top

edge of the target.[v] Reflection causes both the shock front velocity and the particle

acceleration to reverse.

• This reflected clearing wave continues to propagate beyond the target into the free

air above, decreasing in magnitude as it expands both vertically and horizontally.

No diffraction waves are sent back along the target.

• A region of over-expanded air is present in front of the target, which expands out-

wards. The air behind this expanding shock front is in local equilibrium.

A target of zero height will be subjected to the incident pressure, however a target of any

finite height will be subjected to the mechanism described above. There is no physical

way for the blast loading to simply switch from one mechanism to the other, therefore

it must be explained how this transition occurs. This, and the fact that no subsequent

diffraction waves are initialised once the reflected clearing wave reaches the target edge,

can be explained using the following conceptual model, shown in Figure 4.7.

A
x1

x2

h

h

Figure 4.7: Conceptual model of clearing for small targets. Arrows show direction of particle
movement rather than wave propagation

Considering the top edge of the target of height h to be the point source of a clearing

pressure pulse; the reflected clearing wave can be represented as the mirror of this primary

pulse, originating from a point source located at the exact same distance from, and on the

opposite side of, the rigid reflecting surface. In this way, the interaction of the two waves

is physically and conceptually identical to blast wave clearing arising from free air bursts

acting on a target of height 2h. Figure 4.7 shows the temporal progression of the primary

(red) and secondary (blue) pressure pulses.

Now consider a point A, located at some distance, x1, from the origin of the primary

clearing wave. The pressure reduction, or more specifically the vertical velocity imparted

[v]If the target is subjected to a free air burst and is located some distance from the ground, the problem
can be expressed as a hemispherical surface burst with a rigid ground surface by introducing a symmetry
plane along the centre of the target in the direction of travel of the blast wave
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to the air at that point, will be proportional to the distance that the primary clearing

wave has travelled, x1. As the pressure pulse expands outwards, the magnitude of clearing

relief rapidly decreases, such that when the secondary (reflected) clearing wave arrives, the

‘corrective’ velocity applied to that point (acting in the opposite direction to the primary

pulse) will always be less than the velocity imparted by the primary wave. The air at

point A will therefore have a residual velocity acting towards the source of the primary

clearing wave.

At the limit as h tends towards zero, x1 tends towards x2. For a theoretical target of zero

height, the velocity imparted to point A from the secondary clearing wave will be exactly

equal in magnitude and in the opposite direction of the velocity imparted by the primary

wave, and, importantly, will occur at exactly the same time. As the distance from the

free edge is zero across the whole target, the time taken for the clearing wave to arrive at

any point will also be zero, hence the target will clear from the reflected pressure to the

incident pressure immediately upon arrival of the blast wave. Clearly, this situation is only

theoretical and for any real-sized target the reflected pressure and clearing duration will

act out over a finite, non-zero time, however the explanation adequately describes how the

mechanism of blast wave clearing resolves for target sizes approaching zero.

As the target size increases, the actual difference between x1 and x2 increases. The decrease

in strength of the clearing wave is not linear with an increase in distance (Hudson 1955).

Hence, as the target gets larger, the difference in net velocity imparted to any point on

the target increases, as does the duration that this velocity acts before being reduced by

the secondary clearing wave. The air immediately in front of the target is over-expanded

by the clearing waves imparting a net residual velocity towards the target edge. With

increasing target sizes this net velocity is greater – the larger the target, the more the

air is over-expanded. This explains the ‘overshoot’ pressure seen in experimental (Smith

et al. 1999, Rose et al. 2006, Rickman & Murrell 2007, Tyas et al. 2011a,b) and numerical

results (Rose & Smith (2000), Ballantyne et al. (2010) and Figures 4.4 and 4.5).

A revised shock-front distance-time diagram is shown in Figure 4.8. As the target size ap-

proaches zero, the primary and secondary clearing waves tend towards perfect destructive

interference. This results in the over-expanded region, and hence the pressure imparted

to the target, tending towards the incident pressure.
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Subplots show shock front progression at the times indicated

4.3 The Limits of Blast Wave Clearing

4.3.1 Clearing Factor and Over-Expansion Ratio

The clearing factor, Cf , expresses the ratio of the average impulse acting on the target

face to the incident impulse,

Cf =
i

iso
. (4.2)

It has been shown both numerically (Rose & Smith 2000) and experimentally (Tyas et al.

2011a) that at large scaled distances and/or small scaled target dimensions, clearing occurs

‘completely’ and the average specific impulse on the target face tends towards the incident

value. Figure 4.9 shows the cumulative specific impulse-time plots from the numerical

analyses, where the impulse is given as an average of the specific impulse acting on the
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face of the 2D target recorded from the gauge array depicted in Figure 4.3. The peak

numerical incident impulse is also shown.
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Figure 4.9: Impulse-time histories for numerical tests

Table 4.1 shows the clearing factors for the numerical analyses, compared to the 3D nu-

merical results of Rose & Smith (2000), which have been logarithmically interpolated from

the values given in Table 2.4 for the scaled target sizes used in this study. 3D results for

target sizes less than Z/80 are not available for this scaled distance.

Although the 2D clearing factors are higher than those for the 3D case, as would be

expected, and they approach unity more gradually than the 3D case, they still give a good

indication of the behaviour of clearing.[vi] The 2D results can be used as a conservative

case when evaluating the influence of clearing on small target sizes.

Case Clearing factor, Cf = i/iso

Z/H
512 256 128 64 32 16 8

2D 1.030 1.073 1.106 1.176 1.326 1.648 1.946
3D (Rose & Smith 2000) - - - 1.037 1.118 1.347 -

Table 4.1: Clearing factors for the 2D numerical results compared to the 3D numerical results of
Rose & Smith (2000)

Taking the ratio of the two impulses to evaluate the clearing factor offers useful guidance

into the global effect of clearing. It is possible, however, that by using this factor alone one

may be overlooking the actual mechanism of clearing. Consider the situation where the

additional reflected impulse associated with the blast pressure prior to clearing is exactly

cancelled out by the below-incident impulse associated with over-expansion after clearing.

In this case, if only the impulse is considered one might conclude that clearing has occurred

[vi]In the 2D case, diffraction is only permitted around the top edge of the target, with reflection off the
bottom edge. In the 3D case, diffraction around the vertical edges and reflection at the vertical centreline
of the target is also permitted
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completely, as the cleared impulse would match the incident impulse exactly. In reality,

however, clearing has a very definite impact on the form of the blast pressure load and

should not be ignored.

Figure 4.10 shows normalised incident pressure minus average cleared pressure versus time

plots for the numerical analyses; values greater than 1 show that the air in front of the

target has been over-expanded. It can be seen that pressure is relieved immediately once

the clearing waves arrive, and the peak over-expansion is quickly reached before the system

gradually begins to return towards equilibrium. Again, the magnitude of over-expansion

is clearly related to the size of the target and can also be used as a measure of the influence

of clearing.
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Figure 4.10: Normalised incident minus average cleared pressure-time histories for numerical tests

The over-expansion ratio, O, can be given as the peak difference between the cleared and

incident pressure. If this is normalised against the peak incident pressure, adding 1 to the

expression ensures that the factor tends towards 1 (from above) with decreasing target

size, in the same way that the clearing factor, Cf , does.

O = max

(

pso − pavg
pso,max

)

+ 1. (4.3)

Table 4.2 shows the over-expansion ratio at different target sizes from the numerical anal-

yses. The largest target size, H = Z/8, was omitted because the difference between the

average cleared pressure and incident pressure did not reach maximum during the positive

phase.

Z/H
512 256 128 64 32 16

Over-expansion ratio, O 1.020 1.033 1.058 1.100 1.190 1.316

Table 4.2: Over-expansion ratios from the numerical analyses at different target sizes
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We now have two factors which, broadly speaking, give an indication of the relative magni-

tude of both the effect (impulse) and the mechanism (over-expansion) of clearing. As both

values tend towards unity with decreasing target size, and both approach this asymptote

from greater than 1, the two factors can be combined to determine when the cleared blast

pressure has converged with the incident pressure. This is done by defining the conver-

gence ratio as the root mean square of the clearing factor, Cf , and the over-expansion

ratio, O,

Convergence ratio =

√

Cf
2 +O2

2
. (4.4)

4.3.2 Scaled Distance and Target Size Limits

At smaller scaled distances the duration of the blast decreases and the rate of decay of the

blast pressure increases. The diffraction wave will act less like a supported wave (where

pressure conditions change slowly or remain constant for the air that the diffracted wave

propagates into) and more like an unsupported wave. Also, regular reflection for stronger

shocks causes greater amplification in the reflected pressure, hence whilst the magnitude

of the pressure differential driving the clearing wave increases, so does the magnitude of

the reflected impulse it needs to relieve and the relative time available to do so decreases.

As discussed previously, the two main factors contributing to the form of blast wave

clearing are scaled target size and scaled distance. The numerical analyses were repeated

for Z = 1, 2, 4 and 16, again for scaled target sizes ranging from Z/8 to Z/512. The

convergence ratios for these analyses, as well as for Z = 8 m/kg1/3 – determined from

Equations 4.2, 4.3 and 4.4 – are shown in Figure 4.11.
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Figure 4.11: Clearing convergence ratio (root mean square of clearing factor, Cf , and over-
expansion ratio, O, from Equations 4.2 and 4.3 respectively) for the 2D cases at different scaled
distances and scaled target size
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It is clear for Z > 4 m/kg1/3, and particularly for Z > 8 m/kg1/3, that the cleared

behaviour at larger scaled distances is nearly coincident. The waveform parameter of

the Friedlander equation, b, which describes the rate of decay of the pressure-time curve,

remains constant at around 0.7 for 7 < Z < 20 and only slightly decreases to around 0.5

for Z >> 20 (Figure 2.4). Slight variations in the decay of the pressure-time curve, as

well as the fact that for larger scaled distances the reflection coefficient is almost exactly

equal to 2.0, suggests that the behaviour of blast wave clearing is effectively the same

when considering ‘far-field’ blast events.

For far-field conditions, the convergence ratio is less than 1.1 for Z/H ≥ 100, for which it

is reasonable to say that clearing has occurred fully and the blast pressure can be approx-

imated as the incident pressure. For near-field conditions, however, no such convergence

is achieved and clearing can be said to occur, and to have significant magnitude so as to

not be neglected, for any reasonable target size. For example, at Z = 2 m/kg1/3, the blast

pressure has not converged even for H = Z/512 m/kg1/3. This suggests that a 39 mm

target located 20 m away from a 1000 kg TNT burst will still experience some pressure

and impulse greater than the incident value.

It can be concluded that, whilst the mechanism for clearing can be ignored for smaller

targets at larger scaled distances, it should still be considered for smaller targets at small

scaled distances.

4.3.3 Hudson Clearing Predictions for Small Targets

Tyas et al. (2011a,b) experimentally validated the Hudson (1955) method for predicting

the cleared pressure acting on targets subjected to diffraction-type loading, where the

time taken for the clearing wave to propagate across the target face was comparable to

the duration of loading. From the numerical study conducted in this chapter, it has been

shown that the mechanism of clearing does not feature multiple rarefaction wave crossings

but rather a single rarefaction wave originating from the free edge, propagating across the

target face and into the incident air beyond the opposite edge of the target. It stands

to reason, therefore, that the Hudson predictive method will still be able to predict the

cleared pressure acting on small targets as there are no subsequent diffraction waves to

consider aside from the original pulses.

Figure 4.12 shows the reflected, incident and cleared blast pressure at the base of the

target (x = 0) from the numerical analyses (as in Figure 4.4). Also included are the

Hudson (1955) cleared blast pressures and superposition of the cleared pulse with the

reflected pressure to give the pressure predictions at the base of the target. The Hudson

predictions were constructed using the contours of cleared blast pressure and normalised

spatial and temporal parameters as described in Section 2.3.4.
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(a) Z/H = 8
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(b) Z/H = 16
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(c) Z/H = 32
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(d) Z/H = 64
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(e) Z/H = 128
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(f) Z/H = 256

Figure 4.12: Pressure-time histories at the base of the finite targets (x = 0) with Hudson (1955)
clearing corrections
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The superposition of the numerical reflected pressure and the Hudson clearing corrections

are in excellent agreement with the numerical cleared pressures for all the target sizes

studied. This strongly suggests that given knowledge of the free-field and reflected blast

load, and geometry of the target, the cleared blast pressure can be accurately predicted

using the Hudson method.

Interestingly, the empirical clearing predictions of Kinney & Graham (1985), appear to

be in better agreement for smaller target sizes. The clearing time, tc, is given as 3H/a0,

which, for Z/H = 64 shown in Figure 4.12(d), gives tc = 1.1 ms. According to this

method, the cleared blast pressure should have reached drag pressure between 1.1 ms

and 1.4 ms after arrival of the blast wave, depending on whether the true arrival time

is taken as 0.0 ms, or when the pressure is at its peak value at 0.3 ms (accounting for

numerical rounding of the shock front). From Figure 4.12(d), the numerical cleared blast

pressure reaches the incident pressure at approximately 1.2 ms. The fact that the early

empirical clearing predictions appear to be accurate for smaller targets is indicative of the

fact that the experimental arrangements, and hence the developed methods, were only

suitable for observing and recording the behaviour of blast wave clearing for scenarios

where the loading quickly approached the incident pressure relative to the positive phase

duration. Such methods have been demonstrated to be unsuitable for situations where the

diffraction phase constitutes a larger portion of the positive phase, whereas the Hudson

clearing predictions have been shown to be valid for both drag-type and diffraction-type

loading.

4.4 Summary

In this chapter, the mechanism of blast wave clearing has been studied in an attempt

to better understand the process by which the pressure on the front face of rigid target

subjected to a blast load approaches the incident pressure.

The current theory on the mechanism of blast wave clearing suggests that the load acting

on the target face is made up of an infinite series of crossing diffraction waves, each wave

having decreasing magnitude, causing the blast pressure to oscillate about and, for small

targets, rapidly approach the incident pressure. This is explained in terms of a shock front

distance-time plot.

Hudson (1955) did not observe this behaviour in a series of full scale blast tests, yet the

theory and subsequent predictions of blast wave clearing based on this theory are still

widely accepted and prevalent in literature guidance (US Army Materiel Command 1974,

US Department of Defence 2008, Cormie et al. 2009). To see if these observations could

be repeated, a series of numerical analyses were conducted using LS-DYNA, where the

detonation, blast wave propagation and interaction with a parallelepiped structure were

modelled using 2D axi-symmetric ALE elements. Pressure was recorded along the vertical

centreline of a series of rigid targets of decreasing size, with a view to observing how
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clearing affected the blast load for smaller target sizes.

It was observed that rather than a series of crossing rarefaction waves, the cleared blast

pressure features only one rarefaction wave from the free edge, which travels along the

target face, crosses with the clearing wave travelling from the opposite edge (for free air

bursts), or reflects off the rigid ground surface (for surface bursts), and propagates past

the target edge into the incident region beyond the extents of the target. This causes a

region of over-expanded air (relative to the incident blast conditions) to exist in front of

the target, with larger targets resulting in a greater over-expansion.

The ratio of over-expansion to the incident pressure was combined with the ratio of cleared

to reflected impulse to describe how the features of clearing change with both scaled

distance and scaled target size. It was seen that for far-field conditions – judged to be

applicable for scaled distances greater than 4 m/kg1/3 – the cleared conditions converged

with the incident conditions at around Z/H = 100, meaning that clearing can effectively

be ignored for targets smaller than this and the blast load can be represented by the

incident pressure. This value was computed as a result of the 2D analyses where clearing

was allowed over the top edge of the target only and the surface was assumed to be

infinite in the horizontal dimension. For 3D targets, i.e. targets with non-infinite lateral

dimensions, the behaviour is likely to converge with the incident pressure more rapidly

with decreasing target size, hence Z/H = 100 can be seen as a conservative estimate for

the smallest target size at which the clearing effect cannot be ignored. It was also shown

that no such convergence is achieved for near-field conditions, i.e Z < 4 m/kg1/3, and

that the blast pressure must properly be quantified as it cannot be simplified to either the

reflected or incident pressure for any realistic target size.

Finally, it was shown that the Hudson method can accurately capture the features of blast

wave clearing for small target sizes, based on the fact that the load is comprised of only

one clearing wave propagation across the target face from each free edge.





Chapter 5

Modelling Structural Response to

Blast Loads

5.1 Introduction

Once the engineer has quantified the blast load a target will be subjected to, the next step

is to predict the likely damage the target will sustain from such a blast in order to assess

whether the design is adequate or not.

There are several numerical methods for determining structural response to blast loads,

in decreasing levels of complexity, that are studied in this chapter:

• Coupled ALE-Lagrangian analysis – The structure is modelled using Lagrangian

finite elements and the surrounding air domain is modelled using ALE elements.

The detonation process and subsequent blast wave propagation is modelled using

finite elements in order to get a full description of the spatial distribution of blast

pressure and the load is transferred to the target via fluid-structure interaction.

Results of this type are labelled ‘ALE’.

• Uncoupled Lagrangian finite element analysis – The structure is modelled using La-

grangian finite elements and the loading is simplified by applying the semi-empirical

pressure-time history as nodal-point load curves. Results of this type are labelled

‘DYNA’.

• Uncoupled single-degree-of-freedom analysis – The structure is simplified as a single

point equivalent and the loading is further simplified as a single force-time history.

Results of this type are labelled ‘SDOF’.

Whilst it appears that the higher resolution schemes may offer the most accurate repre-

sentations of the target response, lower resolution schemes may provide equally accurate

results without the associated computational expense.

83
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This chapter details a series of experimental trials that were undertaken to validate com-

putational methods for evaluating target response to blast loads. Numerical simulations

relating to the three techniques above are also detailed in this chapter, as is the derivation

of an improvement to the SDOF procedure to take non-uniform loading into account.

5.2 Experimental Work

5.2.1 Experimental Setup

In order to quantify the response of flexible structural targets to cleared and non-cleared

blast loading, a series of small-scale experimental trials was conducted on test plates

situated in:

• An effectively infinite reflected surface, where the plate will experience the full ‘non-

cleared’ pressure load

• A finite reflecting surface, where blast wave clearing will influence the late-time

pressure acting on the target and the plate will experience a ‘cleared’ pressure load

with reduced impulse.

Measuring the displacement of the test plates allows the influence of clearing to be isolated

and quantified, with experimental data available for validation of the various numerical

modelling approaches detailed above.

Hemispherical PE4 charges were placed 6 m away from a reinforced concrete bunker wall

which contained a steel plate lined porthole (320 × 305 mm clear dimensions) into which

the non-cleared test plate was located. The minimum distance from the test plate to

a free edge of the bunker wall was at least 4 m. The positive phase durations of the

hemispherical charges used were all less than 3 ms – a clearing wave travelling at 340 m/s

from the nearest free edge would take >11.5 ms to reach the target before it could begin

to affect the loading on the target, hence the reflecting surface can be assumed to be

effectively infinite in lateral extent and semi-empirical predictions for reflected pressure

can be used.

Orthogonal to the bunker wall, 6 m away from the centre of the explosive, a second

(‘cleared’) test plate was located within a finite reflecting surface, comprising a rigid block

with dimensions such that the target would experience cleared loading. The depth of the

target block was >2 m, ensuring no clearing waves would arrive from the back of the

target. The experimental set up, shown in Figure 5.1, enabled the dynamic deflection of

plates subjected to cleared and non-cleared blast loads to be measured, providing two sets

of data for validation.

The test plates were 0.835 mm thick mild steel. Non-cleared test plates were located in a

305 mm wide, 320 mm high porthole that had been cut in the bunker wall, 305 mm above



Chapter 5. Modelling Structural Response to Blast Loads 85

(a)

Explosive charge

6 m

6 m

Non-cleared
plate

Cleared
plate

Displacement gauge

Displacement gauge

Bunker wall

Finite target

(b)

Figure 5.1: (a) General arrangement of the test arena and (b) Schematic of the test setup

ground level. The target block was a 600 mm square by 1.8 m long reinforced concrete

block clad in 15 mm thick steel plate to provide a flat regular surface. An additional steel

frame, fabricated from 15 mm steel plate, was attached to the front, providing housing for

the laser displacement gauge. A porthole was cut in the front of the steel frame, with the

same dimensions as the porthole in the bunker wall, at the same height above the ground

surface. The test plate in the finite surface was located along the vertical centreline of

the front face of the target block, with 238.5 mm either side to the edges of the reflecting

surface, and 65 mm to the top edge. Dimensions of the finite target (in mm) are shown

in Figure 5.2.

A clamping plate was attached to the front of both finite and infinite targets using 8 ×

M10 bolts, and was used to constrain rotation at the supports, whilst the bolt holes in the

test plates were oversized, allowing free horizontal translation. Additionally, molybdenum

grease was liberally applied to the faces (of both the porthole frame and clamping plate)

that were in contact with the target plate in order to minimise the in-plane frictional

resistance at the supports. The plates were one-way spanning (horizontally spanning the

305 mm) and were slightly undersized in the vertical dimension to allow the top and
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Clamping plate

Explosive positioned at 6 m
on centre-line of target

782

690

320

65

305 238.5

Flexible target

Rigid reflecting
surface

305

Figure 5.2: Dimensions of the finite reflecting surface (dimensions in mm)

bottom edges to translate freely without striking the porthole frame.

Deflection was measured by M7 laser distance sensors (bandwidth of 10 kHz and resolution

accuracy of ±0.6 mm) manufactured by MEL Microelektronik GMBH.

The laser gauge in the finite target was located in the steel housing and was attached to a

bracket fixed directly to the rigid concrete block, insulating the unit against ground shock.

The power and signal cables were fed through a hole punched in the concrete ground slab,

maintaining the smooth reflecting surface of the steel-clad concrete block for the incident

wave to propagate over. The laser gauge measuring the displacement of the non-cleared

target was located within the control room of the bunker and was mounted on a heavy

steel beam, serving to isolate the laser gauge from any potential vibrations caused by the

blast. Displacement data were recorded using a TiePie Handyscope 4 digital oscilloscope,

recording samples at 312.5 kHz and 14 bit resolution. Recording was triggered by the

failure of a break-wire wrapped around the detonator, to synchronise the records with

the time of detonation. The hemispherical charges were detonated using electronically

activated L2A1 detonators. The laser gauges were aligned with the centre of the targets

to give displacement readings at mid-span.

The experimental trials were conducted with hemispherical PE4 charges ranging from 50-

175 g, with the stand-off set at 6 m throughout. Five charge masses were tested, with

one repeat test per charge mass. In each test, the displacements of the cleared and non-

cleared plates were measured, giving a total of 20 test results. A summary of the test plan

is shown in Table 5.1.
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Test Charge mass Stand-off Scaled distance*

(g PE4) (m) (m/kg1/3)

1, 2 50 6 15.3
3, 4 75 6 13.4
5, 6 108 6 11.9
7, 8 140 6 10.9
9, 10 175 6 10.1

∗ Using a TNT equivalence of 1.2 for PE4 (see Section 3.4.1)

Table 5.1: Charge masses and stand-offs used in experimental trials

5.2.2 Experimental Results

The experimental results are shown in Figure 5.3 and are summarised in Table 5.2. The

displacement data were smoothed using a 10-point moving average algorithm (over a period

of 32 µs) to eliminate signal noise and were time-shifted such that the initial motion of the

plates coincided with the arrival times predicted by ConWep. In all cases this was never

more than ±50 µs. The experimental results will be discussed further with reference to

the numerical results in subsequent sections.

Test Charge mass Peak displacement (mm)

(g PE4) Cleared Non-
Cleared

1 50 5.39 8.23
2 50 5.18 8.14
3 75 7.33 10.27
4 75 7.20 10.25
5 108 9.13 13.83
6 108 9.53 13.72
7 140 11.29 16.79
8 140 11.97 16.85
9 175 12.88 19.40

10 175 12.61 19.51

Table 5.2: Peak experimental displacements
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Figure 5.3: Experimental displacement-time histories for cleared and non-cleared plates
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5.3 Coupled ALE-Lagrangian Finite Element Analysis

5.3.1 Preliminary Plate Mesh Study

The influence of mesh density in the air domain was detailed in Section 3.3.2, with the

results showing that air-blast calculations are very sensitive to mesh size. This section

details a preliminary study undertaken on a Lagrangian plate to examine the influence of

mesh size on the ability to model the deformation of a target subjected to a blast load. In

this example, a 1 m square steel plate with thickness 10 mm and elastic material properties

(E = 210 GPa, ρ = 7850 kg/m3 and ν = 0.3) was subjected to a spatially uniform, linearly

decaying load with a peak pressure of 10 kPa and a duration of 10 ms.

The plate was analysed under two support conditions: fully clamped on all four edges

and simply supported on the vertical edges only, effectively giving upper and lower bound

displacements for the plate. Mesh densities ranged from 16 × 16 elements to 512 × 512

elements. Figure 5.4 shows the peak displacement of the plates against mesh size, as well

as indicating a suitable convergence value (0.1% of the displacement of the finest mesh). It

can be seen that convergence is attained at around 900 elements for the clamped plate and

3000 elements for the simply supported plate, suggesting a mesh size of 64 × 64 elements

is adequate.
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Figure 5.4: Mesh convergence for Lagrangian plate under uniform, linear decaying load for (a)
clamped and (b) simply supported boundary conditions

5.3.2 Model Setup

Following the same procedure outlined in the previous chapter, the initial detonation and

subsequent blast wave propagation was modelled using 2D axi-symmetric ALE multi-

material elements. The chosen mesh density was 50 circumferential elements and 500

elements along the radius of the 6m domain, giving an aspect ratio of 0.2 for the air

elements, giving a reasonable compromise between numerical stability, analysis time and

fidelity of results (see Section 3.3.2).
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The analysis was terminated when the shock wave had travelled 6 m, and a mapping file

was written using the *initial ale mapping keyword. The analysis time was chosen to be

typically 0.2-0.3 ms less than the arrival time given by ConWep, to account for smearing

of the shock front into adjacent elements and early shock wave arrival. The duration

times, as well as the radii used in the axi-symmetric ALE analyses are shown in Table 5.3.

The explosive and air were modelled using the *eos jwl and *eos linear polynomial

equations of state respectively and *mat high explosive burn and *mat nullmaterial

properties respectively. The PE4 and air parameters are given in Table 3.1.

Charge mass Radius ConWep ta Duration
(g PE4) (mm) (ms) (ms)

50 24.61 14.23 14.00
75 28.18 13.85 13.60
108 31.82 13.48 13.30
140 34.69 13.19 12.90
175 37.37 12.94 12.70

Table 5.3: Charge mass, radius, and duration for the 2D axi-symmetric analyses

Based on the experimental results in Figure 5.3, a duration of 10 ms was chosen for all

3D analyses (i.e. 10 ms after the time at which the blast wave was re-mapped onto the

3D domain). Assuming a wavespeed of 340 m/s and a loading duration of 10 ms, a 3.4 m

domain in front of the target is required to ensure that sufficient information is mapped

from the 2D to the 3D case. Sufficient length behind, above and adjacent to the target is

also required to ensure that no expansion waves arrive from the boundary throughout the

duration of the analysis. A domain size of 1.7 m from the edge of the reflecting surface in

these directions gives enough distance to ensure that the time taken for the blast wave to

reach of the edge of the domain plus the time taken for the subsequent expansion wave to

reach the target from the domain edge exceeds the analysis duration.

Half-symmetry was utilised by constraining all nodes along the vertical boundary against

horizontal displacement. The ground surface was also modelled using a rigid boundary.

The target plate was modelled using shell elements and the air domain was modelled using

solid brick elements and was represented by two parts, air ‘in front’ of the target (air in

contact with the front of the shell) and air ‘behind’ the target (air in contact with the back

of the shell). This enabled better modelling of the contact between the plate and air (see

Section 5.3.3). Contact between the two air parts was achieved using shared nodes, which

is essential to track the boundary between the two air parts and the target plate. All other

nodes along the boundary of the two air parts, aside from those occupying the same space

as the target, were constrained against displacement to model the rigid reflecting surface.

The air domain was discretised into 20 mm cube elements and the target was discretised

into 6 mm square elements, giving no less than 4 coupling points for each ALE element,

which is greater than 2–3 per element as suggested by Hallquist (2006).
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Figure 5.5 shows the 3D domain used in the analyses, as well as labelling the rigid bound-

aries (all other boundaries were modelled as non-reflecting). The same mesh was used for

all 3D analyses by offsetting the mapping data by 6 m, using the x0 control in the *ini-

tial ale mapping keyword and setting the origin as the bottom corner of the reflecting

surface. The plates were modelled as fully clamped, elastic (E = 210 GPa, ρ = 7850

kg/m3 and ν = 0.3) one-way spanning beams (spanning the horizontal dimension) with

rotational restraint and translational restraint in the x plane at the supports, and a shell

thickness of 0.835 mm.
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Figure 5.5: Parts, co-ordinate origin and dimensions (m) of the 3D domain

5.3.3 Fluid-Structure Coupling

Fluid-Structure penalty coupling was achieved using the *constrained lagrange in

solid keyword. In penalty coupling the contact interface is tracked and nodal penalty

forces are applied if a fluid particle penetrates a Lagrangian element within the time-step

(Zakrisson et al. 2011). These ‘recall’ penalty forces are sufficient to prevent penetration

from occurring, and are applied to both master and slave node sets in opposite directions

to ensure equilibrium (Chafi et al. 2009).[i] Penalty coupling prevents flow through the

Lagrangian structure and ensures energy is conserved (as opposed to constraint-coupling,

whereby momentum is conserved but not energy).

[i]In LS-DYNA, contact occurs when a Lagrangian structure spatially overlaps an ALE mesh; the structure
is assigned as the slave set and the air/explosives assigned as the master set (Hallquist 2006).
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The applied penalty force is in the form of a linear elastic spring resistance. The main

advantages of penalty based methods include:

• No new degrees of freedom are introduced into the system

• Symmetric treatment of contact is permitted

• Very little numerical noise is introduced, avoiding severe hourglassing for under-

integrated elements

• Straightforward implementation

• Arbitrary intersection of master and slave surfaces is permitted, unlike constraint

based contact which cannot operate for two or more master surfaces (Sauvé &

Morandin 2004).

The scaling of the estimated penalty stiffness is based on the geometry and material

properties of the elements associated with the master surface. This adaptive method

ensures that the time-step size remains relatively unchanged by the contact algorithm

(Sauvé & Morandin 2004).

In the analyses conducted as part of this numerical study, separate contact was defined for

the Lagrangian structure interacting with the air part ‘in front’ and the air part ‘behind’

the target, as indicated in Figure 5.5. This was done to ensure that the correct effects of

below atmospheric pressure were modelled; if a lower pressure acts in front of the target

compared to the pressure behind the target, coupling the structure to both of these forces

will ensure that the net force acts in the opposite direction of blast wave travel, effectively

modelling the suction forces. Penalty contact must be aligned with the surface normal

of the shell elements, therefore the normtype control was used to flip the normal of the

shell when defining contact between the target and the air behind the target. The direc

control, used to define the coupling direction, was set as ‘normal only, compression and

tension’ to model the effect of suction from negative pressures acting on the target. All

other contact parameters were kept as the default values.

5.3.4 Results and Discussion

The numerical displacement-time histories are shown in Figure 5.6 with the cleared ex-

perimental displacements for comparison. Table 5.4 summarises the peak numerical and

experimental displacements and shows the ratio of numerical to experimental peak dis-

placements. Displacements are given from the history variables of the node located in the

centre of the plate.
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(b) 75g PE4

12 14 16 18 20 22 24

−10

−8

−6

−4

−2

0

D
is

pl
ac

em
en

t (
m

m
)

Time after detonation (ms)
12 14 16 18 20 22 24

−10

−8

−6

−4

−2

0

D
is

pl
ac

em
en

t (
m

m
)

Time after detonation (ms)

(c) 108 g PE4

12 14 16 18 20 22 24

−12

−10

−8

−6

−4

−2

0
D

is
pl

ac
em

en
t (

m
m

)

Time after detonation (ms)
12 14 16 18 20 22 24

−12

−10

−8

−6

−4

−2

0
D

is
pl

ac
em

en
t (

m
m

)

Time after detonation (ms)

(d) 140 g PE4

12 14 16 18 20 22 24
−14

−12

−10

−8

−6

−4

−2

0

D
is

pl
ac

em
en

t (
m

m
)

Time after detonation (ms)
12 14 16 18 20 22 24

−14

−12

−10

−8

−6

−4

−2

0

D
is

pl
ac

em
en

t (
m

m
)

Time after detonation (ms)

(e) 175 g PE4

 

Experiment − Cleared
Experiment − Cleared
ALE

Figure 5.6: Experimental and coupled ALE-Lagrangian numerical displacement-time histories for
the cleared plates
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Charge mass Peak displacement (mm) Ratio

(g PE4) Experimental* Numerical -
ALE

50 5.29 6.11 1.15
75 7.26 8.11 1.12
108 9.33 9.90 1.06
140 11.63 11.67 1.00
175 12.75 13.10 1.03

∗ averaged result

Table 5.4: Peak experimental and coupled ALE-Lagrangian numerical displacements for the cleared
plates

Qualitatively, the coupled ALE-Lagrangian displacements from Figure 5.6 match up with

the experimentally recorded displacements remarkably well for the first ∼3 ms of analysis.

This suggests that penalty coupling between fluid and structure is effective at modelling the

interaction between blast wave and target; with the level of agreement between the early-

time displacement profiles it is clear that not only is impulse conserved when remapping

from 2D to 3D but also the correct level of impulse is imparted to the target through

fluid-structure interaction.

The latter stages of the displacement-time history are not in as good agreement. During

this stage of displacement negative clearing pressures are acting on the target, causing

suction and rebound. It appears that the numerical model doesn’t capture this behaviour

as accurately. As evidenced by the early stage displacement, penalty coupling can correctly

transfer compressive forces between the air and the target, suggesting that suction, or

tensile forces, can be correctly modelled also. The discrepancy between numerical and

experimental displacements can therefore be explained by the loading itself – the domain

is sufficiently large such that a finer mesh will be too computationally expensive, and

therefore the coarser elements used in the analyses may result in improper representation

of the clearing expansion wave. As was seen in Section 3.3.2, impulse is dependent on

mesh resolution. In this numerical model, the clearing wave has a lower impulse because

of mesh effects and therefore relieves the reflected pressure to a lesser degree than in the

experiments, hence delaying the rebound displacement.

This effect, however, has only a relatively small impact on the peak displacement, as

can be seen by the values of peak displacement in Table 5.4. The numerical model is

able to evaluate the peak displacements of the target to within 15% of the experimental

displacements, with a typical error of around 7%.

The models were run for 168 hours (1 week) on iceberg, the University of Sheffield High

Performance Computing (HPC) server. While the results lie within an acceptable level

of agreement, the fact that large computational resources were required in order to con-

duct these analyses gives reason enough to question the need for such complex methods.

Accordingly, an uncoupled Lagrangian finite element analysis was conducted.
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5.4 Uncoupled Lagrangian Finite Element Analysis

5.4.1 Model Setup

The blast pressure load can be applied directly to the target in a Lagrangian only structural

analysis, where the development of reflected pressure on the target face is assumed to be

independent of the target response, i.e. FSI effects are not taken into account. Whilst this

may over-simplify the blast pressure load, the influence of FSI is only significant for low

stiffness, low mass systems (Kambouchev et al. 2006, 2007, Teich & Gebbeken 2012). In

situations where the stand-off is relatively large, modelling the structure only could result

in savings in computational cost of several orders of magnitude (Slavik 2009). This purely

Lagrangian method is particularly attractive for simple scenarios: where there is a direct

line of sight between the target and source of the blast (i.e. no obstructions which may

cause shadowing) and the target geometry is relatively simple (i.e. there is no focussing of

the shock front). Furthermore, in the ALE-Lagrangian coupled model, the critical time-

step was dictated by the shell elements, combining a small time-step with expensive ALE

calculations. Reduced integration shell elements are computationally inexpensive and a

finer mesh can be specified for uncoupled Lagrangian analyses in order to better model

the spatial variation of clearing pressure at relatively little extra computational cost.

Based on the initial mesh study (Section 5.3.1), the plate was discretised into a grid of

64 × 64 shell elements with four integration points through the thickness of the shell.

The same elastic material properties and boundary conditions were used as those in the

ALE-Lagrangian models. To model the cleared and non-cleared plates, two load cases

were defined:

• Non-cleared plates were subjected to full reflected pressure. Pressure was applied

using the *load blast keyword.

• Cleared plates were subjected to blast pressure using superposition of semi-empirical

pressure predictions and Hudson (1955) clearing corrections.

*LOAD BLAST

The *load blast keyword is an LS-DYNA loading module based on the implementation

of ConWep semi-empirical load predictions after Randers-Pehrson & Bannister (1997).

*load blast requires the definition of a segment set, to which the blast load is applied

using the following expression

p(t, θ) = pr(t) cos
2 θ + pso(t)

(

1 + cos2 θ − 2 cos θ
)

(5.1)

where θ is the angle between the segment normal and the line from the explosive charge to

that point. *load blast allows the user to specify either a hemispherical surface burst or
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a spherical free air burst, and requires only the input of the charge mass and co-ordinates

of the centre of the explosive, and an optional ‘time of detonation’, which can be set as

−min(ta) so that the beginning of the analysis coincides with the arrival of the blast wave.

Although *load blast allows the treatment of arbitrary target geometries, it assumes

that the target forms a part of an infinite reflecting surface and therefore cannot be used

to model the cleared target plates.

Hudson Clearing Corrections

The plates in the finite target were analysed under cleared loading according to the Hudson

(1955) clearing corrections. Following the method outlined in Section 2.3.4, the blast

pressure was applied to the numerical model in the following way:

• The full reflected pressure-time history, given the charge mass and stand-off, was

applied to every node. It was assumed that the shock front arrived at every node

simultaneously and was assumed to be uniform in magnitude (i.e. slant distance and

angle of incidence effects were ignored). With a scaled target height of 0.5 m/kg1/3

at a scaled distance of >10.0 m/kg1/3 this is a reasonable assumption to make –

the peak pressure and time of arrival given by ConWep Loads on Structures (LOS)

differ by no more than 1% across the plate.

• For each node, the distances x1 and x2 to the free edges enabled the Hudson clearing

lengths, η1 and η2, to be evaluated (Equation 2.24). The corresponding pressure-

time function (Figure 2.12) given by the superposition of both curves was applied

to each node with identical x coordinates (33 node sets, given symmetry about the

vertical axis). The co-ordinate system is shown in Figure 5.2.

• The same procedure was adopted for the clearing relief wave corresponding to the

distance to the vertical free edge of the target and the reflection of the relief wave

from the rigid ground surface. Both waves were applied to each node with identical

y coordinates (65 node sets).

• Each node was therefore subjected to the superposition of three load curves; the

reflected pressure and x and y components of clearing relief (the pressure was mul-

tiplied by the element area to give a load-time history).

A total of 99 load curves were defined for the 4225 nodes and were generated using a

purpose written MatLab pre-processor. Numerical analyses were performed for all five

charge masses, with separate runs for Hudson and *load blast loading options, totalling

10 analyses. Hudson’s clearing length scale (η, Equation 2.24) changes with positive

phase duration, hence the Hudson clearing functions were evaluated for each charge mass

separately. Physical damping of the target plate was not included in the numerical model
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as it could not be accurately quantified for the target and is likely to make little difference

to the first quarter cycle of displacement (i.e. to first peak deflection).

Figure 5.7 shows the pressure predictions from a 75 g PE4 charge at 6 m. ConWep

predictions for reflected pressure show the typical load that the non-cleared plate was

subjected to in tests 3 and 4, and Hudson predictions for the furthest and nearest points

from the free edge of the finite target give an indication of the range of pressures acting

on the cleared plate. For the point in the bottom-centre of the target, (0.000, 0.305), the

clearing lengths associated with the x and y distances to the free edge are 0.48 and 0.49

respectively; clearing waves from the top and sides arrive approximately half way through

the positive phase. For the top corners of the plate, (0.153, 0.625) and (−0.153, 0.625), the

x and y clearing lengths are 0.08 and 0.30, and the clearing waves can be seen to arrive

much earlier; the clearing wave from the top face arrives 0.2 ms after load application.
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Figure 5.7: Reflected pressure (pr), incident pressure (pso) and clearing pressure acting at the
furthest (p(0.000,0.305)) and nearest (p(0.153,0.625)) points from the free edge for 75 g PE4 at 6 m
stand-off

Surface plots of the pressure acting across the target at t = 14.50, 14.75, 15.00 and 15.25 ms

after detonation are shown in Figure 5.8, where propagation of the relief waves across the

target face can clearly be seen.

5.4.2 Results and Discussion

The numerical displacement-time histories are shown in Figure 5.9 with the experimental

displacements for comparison. Table 5.5 summarises the peak numerical and experimental

displacements and shows the ratio of numerical to experimental peak displacements, for

both cleared (Hudson) and non-cleared (*load blast) plates. Displacements are given

from the history variables of the node located in the centre of the plate. In the numerical

model, the load was applied at time t = 0 and the displacements were time-shifted to

correspond with the arrival time given by ConWep.
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Figure 5.8: Surface plots of reflected pressure acting on the target for 75 g PE4 at 6 m stand-off.
Dimensions of the finite target and reflecting surface are shown in Figure 5.2
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Experiment − Cleared
Experiment − Non−Cleared
DYNA − Hudson
DYNA − LoadBlast

Figure 5.9: Experimental and DYNA Hudson displacement-time histories for cleared plates and
experimental and DYNA *load blast displacement-time histories for non-cleared plates
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Charge mass Peak displacement (mm)

(g PE4) Cleared Non-Cleared

Experimen- DYNA Ratio Experimen- DYNA Ratio

tal* Hudson tal* load blast

50 5.29 5.83 1.10 8.19 8.22 1.00
75 7.27 7.60 1.05 10.26 10.97 1.07

108 9.33 9.90 1.06 13.78 14.31 1.04
140 11.63 11.86 1.02 16.82 17.22 1.02
175 12.75 13.50 1.06 19.46 20.26 1.04

∗ averaged result

Table 5.5: Peak experimental and numerical displacements for cleared (Hudson) and non-cleared
plates (load blast)

The displacement-time histories from Figure 5.9 for the cleared plates are in very good

agreement for all analyses. The late-time displacement profile of the non-cleared plates

shows a slight difference between numerical and experimental results. *load blast mod-

els the negative phase by extending the Friedlander equation past the positive phase

duration, which has been shown in Section 2.2.5 to be incapable of capturing the correct

form of the negative phase. This has little effect on the peak deflection of the target, as

the majority of the negative phase occurs after the target has reached the maximum value.

There is little appreciable difference between the cleared and non-cleared plate deflections

until the arrival of the clearing wave (between 14 and 16 ms after detonation for all anal-

yses), justifying the assumption that the blast wave arrives planar and angle of incidence

effects can be ignored. Upon arrival of the clearing wave the displacement of the cleared

and non-cleared plates begin to diverge. A combination of reduced positive phase impulse

and early negative pressure serves to decelerate the cleared plates and leads to the plates

beginning to rebound ∼2 ms earlier than the non-cleared plates. This behaviour was

observed for all tests and is accurately captured by the numerical model.

It can be seen from Table 5.5 that the numerical model is able to evaluate the peak

deflection to within 10% of the experimental values, with typical errors of 5% for the

Hudson load model and 3% for *load blast, which, considering the computational time

of no more than ten minutes, is a vast improvement on the ALE-Lagrangian coupled

analyses.

The Hudson method can be readily implemented into commercial FE software, enabling

the deflection of finite targets to be evaluated whilst retaining the simplicity and low com-

putational cost of a Lagrangian only analysis. It is worth noting, however, that the current

best practice for uncoupled Lagrangian analyses is to use the *load blast loading op-

tion, which is useful to gain a first approximation of the typical response characteristics

and peak displacement of plates subjected to blast loads, but can lead to over-conservative

estimations through neglecting clearing. Through this numerical study, the need to accu-

rately model blast wave clearing becomes apparent. If the results from the non-cleared
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numerical analyses are taken as estimations for the peak displacement of the cleared plates

(i.e. if the engineer neglected clearing in the numerical model), peak displacements would

be over-predicted by 48-59%.[ii] This over-conservatism can be overcome by using the

Hudson clearing corrections when modelling plate deflections in an uncoupled Lagrangian

analysis.

In situations where the centre of the charge is far from the reflecting surface, and the

blast wave is unobstructed between the detonation point and the target, then the low

computational cost and demonstrated validity of the Hudson predictive method should be

preferred over more complex schemes such as ALE-Lagrangian coupled analyses.

5.5 The Single-Degree-of-Freedom Method

5.5.1 Introduction

It is not always necessary nor practical to model the target using finite elements (multiple

degrees of freedom). The single-degree-of-freedom (SDOF) method, developed by Biggs

(1964), provides a computationally inexpensive approach to evaluating target response to

blast loads and is recommended in various design guidance including SBEDS (US Army

Corps of Engineers 2005), UFC-3-340-02 (US Department of Defence 2008) and Blast

effects on buildings (Cormie et al. 2009). Based on physically valid approximations, the

SDOF method can be used to accurately ascertain the typical response characteristics

of a structure, and offers a ‘first-guess’ at the likely damage a target will sustain when

subjected to a blast load. Because of these reasons, the SDOF method is well established

in practice (Morison 2006).

The dynamic equation of motion of a distributed system (an example of a simply supported

beam with a transiently varying, spatially uniform load is shown in Figure 5.10) is

mz̈ + cż + kz = F (t), (5.2)

L

z

x

zmax

φ(x) = z(x)/zmax

m, k

me

ke

F(t)

F (t)e

(a) (b)

Figure 5.10: (a) Distributed and (b) equivalent SDOF systems

[ii]Taking the peak displacement under *load blast and dividing by the experimental peak displacements
for the cleared plates
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where m, c and k are the mass, damping and stiffness of the system, z̈, ż and z are the

acceleration, velocity and displacement, and F (t) is the externally applied force. The

equivalent SDOF method works on the basis of ‘transforming’ the distributed properties

of the real life system into equivalent single-point properties, where the displacement of

the single-degree system is defined as the displacement at the point of peak displacement

in the real life system (Figure 5.10). Ignoring damping, the dynamic equation of motion

of the equivalent system is

mez̈ + kez = Fe(t), (5.3)

where me, ke and Fe(t) are the equivalent mass, stiffness and force. The transformation

from distributed to single-degree properties is performed by equating energy between the

two systems: the equivalent mass has equal kinetic energy, the equivalent resistance has

equal internal strain energy and the equivalent loading has equal work done to the dis-

tributed system. This introduces the concept of ‘transformation factors’, which will be

explained in the following section. For any distribution of mass and loading, providing the

transformation is performed correctly, the response of the SDOF system will be identical

to the response of the chosen reference point of the real life system, in both magnitude

and time (Morison 2006).

5.5.2 Transformation Factors and Natural Period

In order to transform the distributed properties into their single-degree equivalents; mass,

stiffness and load transformation factors are required. The normalised deflected shape

function, φ, is given as the deflected shape at any point on the structure divided by the

displacement at the point of maximum deflection, i.e. φ(x) = z(x)/zmax.

By equating the kinetic energy of the two systems, the mass factor, KM , defined as the

factor used to transform the distributed mass into the equivalent mass, me = KMm, is

given as

KM =

L
∫

0

φ(x)2 dx

L
(5.4)

where L is the span of the element. The load factor, KL, defined as the factor used

to transform the distributed load into the equivalent load, Fe(t) = KLF (t) is given by

equating the work done of the real and distributed systems,

KL =

L
∫

0

φ(x) dx

L
. (5.5)
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Loading diagram Strain Load Mass Max. Spring
range Factor, Factor, Resistance, constant,

KL KM Ru k

L

F=pL

elastic 0.64 0.50 8Mm

L

384EI

5L3

plastic 0.50 0.33 8Mm

L
0

L/2

F

L/2

elastic 1.00 0.49 4Mm

L

48EI

L3

plastic 1.00 0.33 4Mm

L
0

L

F=pL elastic 0.53 0.41 12Ms

L

384EI

L3

elastic/plastic 0.64 0.50 8(Ms +Mm)

L

384EI

5L3

plastic 0.50 0.33 8(Ms +Mm)

L
0

L/2

F

L/2

elastic 1.00 0.37 4(Ms +Mm)

L

192EI

L3

plastic 1.00 0.33 4(Ms +Mm)

L
0

Table 5.6: Transformation factors for beams and one-way slabs (Biggs 1964)

Equating internal strain energy between the two systems yields the same transformation

factor as Equation 5.5, hence the equivalent stiffness can be given as ke = KLk. The

dynamic equation of motion for the SDOF system now becomes

KMmz̈ +KLkz = KLF (t). (5.6)

Transformation factors based on static deformation profiles are given in Table 5.6 for

one-way spanning beams under different loading and support conditions. The maximum

resistance, Ru, is given in terms of the moment capacity at mid-span, Mm, and moment

capacity at the supports, Ms. The spring constant, k, is also shown in Table 5.6, in terms

of EI, the bending stiffness of the element.

With knowledge of the equivalent mass and stiffness, the angular frequency of an SDOF

system under free vibration, ω, can be given as

ω =

√

ke
me

(5.7)
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which gives the natural period as

T =
2π

ω
= 2π

√

me

ke
. (5.8)

5.5.3 Closed Form Solution

Biggs (1964) presents an analytical solution for the dynamic response of an equivalent

SDOF system subjected to a suddenly applied, linearly decaying triangular pulse of peak

value, Fe,max, and duration, td, i.e.

Fe(t) =











Fe,max

(

1−
t

td,lin

)

, t ≤ td,lin

0, t > td,lin

(5.9)

The time-varying displacement of the system can be evaluated purely as a function of the

equivalent force, stiffness and angular frequency and is computed in two stages: response

during load application (t ≤ td) and response after load application (t > td),

z(t) =















Fe,max

ke
(1− cosωt) +

Fe,max

ketd

(

sinωt

ω
− t

)

, t ≤ td

Fe,max

keωtd

[

(sinωt)− sinω (t− td)
]

−
Fe,max

ke
cosωt, t > td

(5.10)

Whilst this is a potentially very powerful tool for predicting the response of structures sub-

jected to blast loads, the over-simplification of the blast pressure may not be valid. Closed

form solutions for exponentially decaying loads are presented by Gantes & Pnevmatikos

(2004), however the negative phase is represented by an extended Friedlander form, which,

as discussed previously, may not be an accurate representation of the negative phase of the

blast load. In order to evaluate target response for more complex forcing and resistance

functions, explicit numerical analysis is required.

5.5.4 Linear Acceleration Method

The equation of motion (5.6) can be solved using the linear acceleration method (Biggs

1964) depicted in Figure 5.11. Assuming the acceleration varies linearly across the time-

step, ∆t, the acceleration at any time, tj , between times ti and ti+∆t, can be given as

z̈j = z̈i +
z̈i+∆t − z̈i

∆t
(tj − ti) . (5.11)
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tti ti+ tΔ

actual z

tj

Δt

z

..

..

..

assumed z

Figure 5.11: Linear acceleration method

The velocity is given as

żj = żi +

tj
∫

ti

z̈ dt

or żj = żi + z̈i (tj − ti) +
z̈i+∆t − z̈i

2∆t
(tj − ti)

2 ,

(5.12)

which, at tj = ti+∆t becomes

żi+∆t = żi +
∆t

2
(z̈i+∆t − z̈i) . (5.13)

The displacement at ti+∆t is given as

zi+∆t = zi +

ti+∆t
∫

ti

ż dt

or zi+∆t = żi∆t+
(∆t)2

6
(2z̈i + z̈i+∆t) .

(5.14)

In order to determine the displacement at ti+∆t, the acceleration at ti+∆t must be known.

The equation of motion of the SDOF system (5.3) gives the acceleration at ti+∆t as

z̈i+∆t =
Fe(ti+∆t)

me
−

kezi+∆t

me
(5.15)

which can be substituted into Equation 5.14 to yield

zi+∆t =
zi + żi∆t+

(∆t)2

3
z̈i +

(∆t)2

6

Fe(ti+∆t)

me

1 +
(∆t)2

6

ke
me

. (5.16)

This allows the equation of motion for the SDOF system to be solved at each interval
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until the solution time is reached. The linear acceleration method does not require the

complete mathematical description of force and resistance functions and instead can use

any arbitrary time-varying or displacement-varying function. One drawback of the linear

acceleration method when compared to the closed form solution is that the accuracy is

dependent on time-step size. A greater accuracy requires a greater number of calculations,

but given the simplicity of the calculations at each time-step, convergence is rarely difficult

to achieve.

5.5.5 Verification of an SDOF Model Under a Uniform Load

An equivalent SDOF model was run and the results compared to the finite element plate

displacements obtained from the preliminary mesh study conducted in Section 5.3.1. The

SDOF model was analysed under the same loading conditions (a linear load decaying from

10 kPa over a duration of 10 ms), boundary conditions (one model with the plate fully

clamped on all sides, and one model with the plate simply supported on two opposite

edges only), material properties and span. The SDOF properties of the two plates are

shown in Table 5.7, where the transformation factors for the simply supported plate are

given in Biggs (1964) (summarised in Table 5.6) and the transformation factors for the

clamped plate are given in Morison (2006).

Parameter Symbol Unit Value

Clamped Simply
Supported

Span L m 1 1
Thickness d mm 10 10
Load factor KL - 0.308 0.640
Mass factor KM - 0.182 0.500
Elastic stiffness coefficient k/(EI/L3) - 808.5 76.8
Equivalent stiffness ke kN/m 4357.8 860.2
Equivalent mass me kg 14.29 39.25
Natural frequency f Hz 87.90 23.56
Natural period T ms 11.38 42.44

Table 5.7: Dynamic properties of the clamped and simply supported plates used for verification of
the SDOF method

Figure 5.12 shows the SDOF and FE displacements for both cases. It can be seen that

the overall behaviour is well captured by the SDOF approximation, and that there is

good agreement between the two models for peak displacement and natural period. The

peak SDOF displacements are 1.06 mm for the clamped plate and 5.18 mm for the simply

supported plate, which correspond to differences of 5% and 6% between the SDOF and

FE models. It can therefore be said with confidence that the SDOF method can be used

to accurately represent elastic plate deflections under uniform loading.
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Figure 5.12: Finite element and SDOF displacements for 1m square, 10mm thick plates under
a spatially uniform, linearly decaying load with a peak of 10 kPa and duration of 10 ms for (a)
Clamped (b) Simply supported boundary conditions

5.5.6 SDOF Under Non-Uniform Load

This section details the derivation and verification of a spatial load factor for the inclusion

of a spatially non-uniform load in an SDOF model. The spatial load factor has been

developed specifically for work conducted as part of this thesis, but has a wider application

as will be discussed in Chapter 7 of this thesis.

Derivation of the Spatial Load Factor

The derivation of the SDOF load transformation factor for a loaded plate assumes that

the spatial variation of pressure is invariant of time. This assumption is not valid when

considering the effects of blast wave clearing. In order to ensure that the spatially varying

pressure, p(x, y, t), acting on the face of a target can be validly represented in an SDOF

model, the energy equivalent uniform pressure and spatial load factor are derived in this

section.

Following the energy balance methodology of the equivalent SDOF method, the spatially

varying blast pressure acting on a target can be transformed into an energy equivalent

uniform pressure such that the work done at any instant is equal for both the uniform

pressure, pequiv(t), and ‘real-life’ pressure, p(x, y, t), i.e.

∫

A

p(x, y, t)φ(x, y) dA =

∫

A

pequiv(t)φ(x, y) dA, (5.17)

where A is the panel area and φ is the shape function describing the normalised deflected

shape of the target.
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Since the uniform pressure is independent of x and y, Equation 5.17 can be rearranged to

give

pequiv(t) =

∫

A

p(x, y, t)φ(x, y) dA

∫

A

φ(x, y) dA

, (5.18)

where the two-dimensional shape function can be expressed in separable variable form,

φ(x, y) = φ(x)φ(y) and is constant with time (Blevins 1979). This assumes that the

spatial variation of pressure is not sufficiently non-uniform at any instant in time to cause

deviation from the static deformed profile under a uniform load. This also implies that

the non-uniformity of the load changes over short enough durations to ensure the plate

does not have enough time to adopt a different deformed shape.

The SDOF equivalent force can be given as

Fe(t) = KLFequiv(t) (5.19)

where KL is the load factor and Fequiv(t) is the energy equivalent uniform pressure mul-

tiplied by the area of the plate, Fequiv(t) = Apequiv(t).

The spatial load factor, KS(t), can be defined as a time varying load factor used to

transform the total force acting on the plate at any instant into the energy equivalent

force. The equivalent SDOF force now becomes

Fe(t) = KLKS(t)F (t). (5.20)

Equations 5.19 and 5.20 can be combined to give

KS(t)F (t) = Fequiv(t), (5.21)

and from the definition of the energy equivalent force acting on the plate (Equation 5.18

multiplied by the target area) the time-varying spatial load factor, KS , can be expressed

as

KS(t) =

∫

A

p(x, y, t)φ(x, y) dA

∫

A

p(x, y, t) dA

∫

A

φ(x, y) dA

. (5.22)
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KS is effectively a measure of the non-uniformity of the applied pressure and, combined

with the traditional load factor, can be used to ensure that the force acting on the SDOF

model is equivalent in terms of energy to the real life system for the entire duration of

loading. It can be easily seen from Equation 5.22 that if the distribution of pressure,

p(x, y, t), is uniform (independent of x and y) at an instant in time, the spatial load factor

is equal to unity for that value of t. A spatially uniform pressure therefore has KS = 1 for

the entire duration.

The spatial load factor is derived using the same assumptions and conditions as the tradi-

tional load factor and ensures the analysis is consistent with the SDOF method. Although

the spatial load factor is used to model the effects of blast wave clearing, it could in prac-

tice be used to transform any spatially varying load into an energy equivalent uniform

load.

Verification of the Spatial Load Factor

In order to demonstrate the ability of the spatial load factor to conserve energy between a

non-uniform ‘real life’ distribution of pressure and an SDOF equivalent uniform pressure,

an SDOF model with a non-uniform load was set up and compared to a finite element

model.

The plate was modelled as a 1 × 1 m steel plate with 10 mm thickness and elastic material

properties, with fully clamped boundary conditions. The plate was loaded with a linearly

decaying pressure load of 10 kPa over 10 ms, with a central 0.5 × 0.5 m section loaded

with a pressure of magnitude 20 kPa decaying over a duration of 10 ms, as shown in Figure

5.13. The FE model was modelled with the pressure load applied as nodal-point forces at

the nodes.

1.0

1.00.5

0.5

20 kPa

10 kPa

Figure 5.13: Arrangement of the plate used for verification (dimensions in m)
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The corresponding SDOF model was analysed under two load cases:

• Conserving energy using the spatial load factor, KS . From Euler-Bernoulli beam

theory, ignoring in-plane membrane resistance, the deflected shape of a fixed-fixed

beam under a uniform load gives the shape functions as

φ(x) =
16x2(L− x)2

L4
, φ(y) =

16y2(L− y)2

L4
. (5.23)

Numerically solving Equation 5.22 givesKS(t) = 1.30. The peak total force acting on

the plate is 12.5 kN; applying the spatial load factor gives the peak energy equivalent

uniform force as Fe,max = 16.25 kN.

• Assuming KS(t) = 1 and modelling the SDOF under the total load only, with

Fe,max = 12.5 kN.

Figure 5.14 shows the displacement-time histories of the FE plate and SDOF models,

along with the respective applied force-time histories (spatial load factor shown on minor

vertical axis). It can be seen that, by using the spatial load factor as a simple adjustment

to balance energy between the real life and SDOF applied forces, the SDOF method is

able to evaluate the response of a system to non-uniform loading.
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Figure 5.14: (a) Finite element and SDOF displacements and (b) Energy equivalent uniform
pressure (Fe) and average pressure (Fe,KS=1) loads applied to the SDOF model shown on major
vertical axis. Temporal variation of KS(t) shown on minor vertical axis

The spatial load factor is attractive for scenarios where the spatial variation of load and

thus KS are not constant with time. For these scenarios, the temporal function of KS(t)

can be evaluated at the start of the analysis and used throughout, as it is a function of the

normalised deformed profile only, which is assumed to be unchanged during the analysis,

rather than being a function of actual plate deformation. This approach is simple and is

congruent with the inherent assumptions of the SDOF method, suggesting that wherever

the SDOF method is applicable, so is the use of the spatial load factor.
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5.6 SDOF Analysis

5.6.1 Model Setup

With a verified model for analysing elastic plates subjected to non-uniform loading, a

series of SDOF analyses was performed to model the displacement of plates subjected to

blast loads in order to validate the results against the experimental displacements detailed

in Section 5.2. The dynamic SDOF properties of the plate are shown in Table 5.8.

Parameter Symbol Unit Value

Span L m 0.305
Thickness d mm 0.835
Load factor KL - 0.53
Mass factor KM - 0.41
Elastic stiffness coefficient k/(EI/L3) - 384
Equivalent stiffness ke kN/m 23.39
Equivalent mass me kg 0.262
Natural frequency f Hz 47.52
Natural period T ms 21.04

Table 5.8: Dynamic properties of the plate used in the SDOF analysis

Clearing Predictions

Section 2.3 detailed several clearing predictive methods which have particular application

for approximate design approaches such as the SDOF method. The empirical clearing

predictions of Kinney & Graham (1985) and UFC-3-340-02 (US Department of Defence

2008), shown in Equations 5.24 and 5.25 respectively, are not suitable for use in this

application because the expressions yield clearing times of 3.45 and 2.94 ms respectively,

which are both larger than the positive phase duration for all scaled distances.

tc =
3S

a
(5.24)

tc =
4S

(1 +R)a
(5.25)

where

tc = clearing time (s)

a = shock front velocity (m/s)

S = min(front height, half-width) (m)

G = max(front height, half-width) (m)

R = S/G
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In the case where the clearing time is larger than the positive phase, the literature recom-

mends neglecting clearing and simply using the full reflected pressure. From the difference

in the experimental displacements between cleared and non-cleared loading it is evident

that neglecting blast wave clearing is not valid for this arrangement.

The improved methodology of Rose & Smith (2000) (Section 2.3.3) cannot be used for

this application either. The scaled target heights for the SDOF analyses in this section

range from 1.76 m/kg1/3 (for the smallest charge mass) to 1.16 m/kg1/3 (for the largest

charge mass), which exceed the largest scaled target size of 0.8 m/kg1/3 for which clearing

estimations are available (Table 2.4).

The ConWep Loads on Structures (LOS) subroutine calculates the specific positive phase

impulse acting on a rectangular target by discretising the target into a grid of 65 × 65

nodes and providing impulse values at each node. This subroutine claims to account for

blast wave clearing by reducing the specific impulse, however the methodology behind this

is unclear. With reference to Figure 5.7, the Hudson method predicts that the clearing

wave will reach the furthest point (from the vertical free edges) of the target within 1.2 ms

of load application. ConWep LOS impulse predictions for 75 g PE4, shown in Figure 5.15,

suggest that an area of approximately 305 × 200 mm of the target will experience the

full reflected impulse and remain unaffected by clearing. This indicates that the clearing

wave has travelled only 190 mm during the positive phase (failing to even reach the

target from the vertical edges of the reflecting surface), with a wavespeed of approximately

80 m/s. This suggests that the clearing methodology implemented in ConWep LOS may

significantly under-estimate the effect of clearing and thereby over-estimate the impulse

acting on a target, a point also highlighted in Tyas et al. (2011a).
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Figure 5.15: ConWep LOS specific impulse acting on the cleared target for 75 g PE4. Dimensions
of the finite target and reflecting surface are shown in Figure 5.2
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Load Cases Applied to the SDOF Model

The SDOF model was analysed under four load cases for each scaled distance, giving a

total of 20 analyses. The load cases represent the typical ways blast pressure is modelled

in the literature:

• Cleared – The load curves determined from the superposition of Hudson clearing

corrections and full reflected pressure from Section 5.4.1 were used as inputs to

solve Equation 5.22 at each time-step – giving the temporal relationship for KS(t),

which was then used to give the temporal variation of the SDOF equivalent force

(Equation 5.20). This process was repeated for all charge masses to give the energy

equivalent uniform load acting on the plates. Figure 5.16 shows the transformation

from average pressure to energy equivalent pressure using the spatial load factor for

175 g PE4, assuming the elastic deformed profile of φ(x) for a clamped beam from

Equation 5.23 and φ(y) = 1.
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Figure 5.16: Energy equivalent uniform pressure (Fe) and average pressure (Fe,KS=1) acting on
the plate (major vertical axis) and temporal variation of spatial load factor (minor vertical axis)
for 175 g PE4

It can be seen that KS = 1 before any clearing waves arrive because the applied

pressure is still uniform. The clearing wave from the top face arrives at t = 0.19

ms, however the spatial load factor remains unchanged as the plate is unsupported

in the y direction and the work done between the total force and energy equivalent

force is identical. As soon as the clearing waves arrive from the vertical edges of the

target at t = 0.70 ms, KS > 1. As the clearing wave travels in from the edges, the

central portion of the target is still subjected to the full reflected pressure. This is

acting at the point of largest deflection and doing more work, hence the scenario is

similar to that in Figure 5.13 and the energy equivalent pressure is greater than the

average pressure, hence KS > 1. There is a discontinuity in KS when the loading

changes from positive to negative.
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• Non-Cleared – Full reflected positive and negative phase pressure applied as a uni-

form load with no clearing corrections. The positive phase was modelled with the

Friedlander equation and the negative phase was modelled using the cubic approx-

imation. Blast parameters were determined from the semi-empirical predictions in

UFC-3-340-02 (US Department of Defence 2008).

• Linear – A triangular pulse with peak reflected pressure and shortened duration

to preserve positive phase impulse. The negative phase is neglected. This does not

include clearing and is typically used as a first stage in design.

• ConWep LOS – The equivalent uniform impulse, given by ConWep LOS, applied

as a bilinear triangular pulse. The applied pressure is given as

pr(t) =



















pso,max

(

1−
t

td,lin

)

+ (pr,max − pso,max)

(

1−
t

tc

)

, t ≤ tc

pso,max

(

1−
t

td,lin

)

, t ≤ td,lin

(5.26)

where the clearing time is calculated such that the integral of Equation 5.26 is equal

to the equivalent uniform impulse, i, given by ConWep LOS, i.e.

tc =
2(i− iso)

pr,max − pso,max
(5.27)

This takes ConWep clearing predictions into account but ignores the negative phase.

Figure 5.17 shows all four separate pressure-time histories applied to the SDOF model for

175g PE4, truncated at the end of the positive phase of the non-cleared load. Loading

parameters for all SDOF analyses are summarised in Table 5.9.
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Figure 5.17: Positive phase pressure-time histories used in the SDOF analysis for 175 g charge
mass
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W Loading Parameter

(g PE4) ta pr,max pr,min td t−d ir i−r
(ms) (kPa) (kPa) (ms) (ms) (kPa.ms) (kPa.ms)

50 Cleared 14.29 17.52 5.01 1.357 5.472 11.49 17.12
Non-Cleared 14.29 17.52 5.06 2.147 5.994 14.82 17.05
Linear 14.29 17.52 - 1.692 - 14.82 -
ConWep LOS 14.29 17.52 - 1.692 - 14.34 -

75 Cleared 13.91 20.98 5.57 1.468 6.052 14.69 21.15
Non-Cleared 13.91 20.98 5.77 2.356 6.736 19.55 21.87
Linear 13.91 20.98 - 1.864 - 19.55 -
ConWep LOS 13.91 20.98 - 1.864 - 18.66 -

108 Cleared 13.54 24.78 6.11 1.589 6.610 18.32 25.51
Non-Cleared 13.54 24.78 6.50 2.560 7.482 25.08 27.35
Linear 13.54 24.78 - 2.024 - 25.08 -
ConWep LOS 13.54 24.78 - 2.024 - 23.65 -

140 Cleared 13.27 27.97 6.53 1.684 7.029 21.46 29.11
Non-Cleared 13.27 27.97 7.07 2.714 8.062 29.96 32.08
Linear 13.27 27.97 - 2.142 - 29.96 -
ConWep LOS 13.27 27.97 - 2.142 - 27.87 -

175 Cleared 13.01 31.12 6.91 1.776 7.409 24.58 32.56
Non-Cleared 13.01 31.12 7.61 2.854 8.598 34.91 36.79
Linear 13.01 31.12 - 2.244 - 34.91 -
ConWep LOS 13.01 31.12 - 2.244 - 32.13 -

Table 5.9: SDOF loading parameters for the numerical analyses

5.6.2 Results and Discussion

The SDOF displacement-time histories for the plates under the cleared load case are

shown in Figure 5.18, along with the experimental displacement of the cleared plates for

comparison. For clarity, SDOF displacements to all other load cases are omitted but will be

discussed later. Table 5.10 summarises the peak displacement for the SDOF models under

all load cases, as well as the peak experimental displacements for cleared and non-cleared

plates. As with the previous numerical models, the load was applied at time t = 0 and the

displacements were time-shifted to correspond with the arrival time given by ConWep.

There is a very good level of agreement between numerical and experimental displacements

in Figure 5.18 for all charge masses. The peak displacement and duration of inward

displacement (i.e. the natural period) is well predicted by the SDOF model under the

cleared load. It is interesting to note that the early-time SDOF response slightly over-

predicts the response of the plate, the effect of which is most pronounced at approximately

16 ms after detonation for all tests. There are two contributing factors to this: firstly,

assuming the blast wave strikes planar to the target and subjects the entire target to the

peak reflected pressure at the beginning of the analysis may slightly over-predict the initial
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(b) 75g PE4
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(c) 108 g PE4
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Figure 5.18: Experimental and SDOF displacement-time histories for the cleared plates
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W Peak displacement (mm)

(g PE4) Experimental* SDOF

Cleared Non- Cleared Non- Linear ConWep
Cleared Cleared LOS

50 5.29 8.19 5.23 7.50 9.97 9.63
75 7.27 10.26 7.10 10.45 13.14 12.53
108 9.33 13.78 9.34 14.03 16.86 15.83
140 11.63 16.82 11.29 17.18 20.07 18.69
175 12.75 19.46 13.29 20.42 23.36 21.52

∗ averaged result

Table 5.10: Peak experimental and SDOF displacements

velocity; secondly, the assumption that the plate begins to deform in the normalised shape

immediately after application of the load implies that the initial velocity in the centre of the

target is larger than the initial velocity at the edges, which may cause an over-prediction

of initial kinetic energy.

These assumptions are inherent to the SDOF method, and any work towards correcting

the modelling of initial conditions would not likely yield noticeable or worthwhile im-

provements. The agreement between experimental and numerical peak displacement of

the plates, and the times at which these occur, give confidence in both the ability of the

SDOF method to model plate deformation and also of the Hudson clearing corrections to

accurately model the cleared blast pressure acting on the target. The difference between

peak displacement for the cleared SDOF and experimental results, with reference to Table

5.10, is less than 5% for all analyses.

The peak displacements for non-cleared experimental and SDOF analyses, also given in

Table 5.10, show that if the target is part of a reflecting surface that is infinite in lateral

extent, modelling the target as an equivalent SDOF system under the full (non-cleared)

reflected blast pressure history can predict target response to within 2-8% of the experi-

mental non-cleared peak displacement, which again provides evidence for the validity of

the equivalent SDOF method.

Whilst the results of the non-cleared plates are in good agreement between experimental

and numerical results, it is worth examining what would happen if clearing were neglected

for this series of analyses. If the peak displacements for the SDOF model under the non-

cleared load were taken as approximations of the displacement of the plates in the finite

reflecting surface, the results would be over-predicted by between 42-60%.

The need to model the negative phase correctly is also highlighted by the peak dis-

placements in Table 5.10. For the non-cleared plates, modelling the blast pressure as

an impulse-preserved triangular pulse does not yield satisfactory results, over-predicting

the non-cleared displacements by 19-28%. This over-prediction in peak displacement is

solely due to the inability of the linear load to model the reduction in impulse caused
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by the negative phase, which is a particularly important consideration for large scaled

distances and impulsive target response (Teich & Gebbeken 2010). If the response under

the linear load was taken as an approximation to the displacement of the cleared plates

(i.e. if both the negative phase and clearing were neglected), the numerical model would

over-predict the experimental displacements by as much as 88%.

It is also clear from the numerical results that the clearing predictions from ConWep LOS

do not allow correct modelling of the cleared blast pressure and therefore cannot be used to

accurately model the deflection of plates situated in a non-infinite reflecting surface. Not

only are the results typically 61-82% greater than the experimental displacements of the

cleared plates, but the reduction in peak displacement attributed to clearing is significantly

lower than the experimental values – by taking the peak displacement under ConWep LOS

and dividing by the peak displacement under the linear load, the supposed reduction in

peak displacement attributed to blast wave clearing varies from 3-8%. The experimental

results show that the effect of clearing is much more pronounced, with clearing accounting

for a reduction in peak pressure of 29-35%.

The SDOF modelling in this section has shown that transforming the total force acting on

the plate into an energy equivalent uniform force using the spatial load factor, KS , allows

non-uniform cleared blast pressures to be included in equivalent SDOF models.

5.7 Discussion of Modelling Approaches

This chapter has detailed three different modelling approaches: coupled ALE-Lagrangian

finite element, uncoupled Lagrangian finite element and single-degree-of-freedom analyses.

It is the purpose of this section to discuss the suitability of these methods for evaluating

target response, and also to collate the data from the numerical analyses.

All numerical methods achieved a similar level of agreement with the experimental results,

both qualitatively and quantitatively. Figures 5.19 and 5.20 summarise the peak finite

element and SDOF displacements respectively from Tables 5.4, 5.5 and 5.10. From the

results presented it can be said that, discounting the linear load SDOF approximations

for reasons outlined previously, each method can adequately model (or approximate) the

physical processes and therefore can be used with confidence as a means for modelling the

response of flexible targets subjected to blast loads.

The results demonstrate that an increase in model complexity does not necessarily corre-

late to an increase in the quality and fidelity of the results, nor does it make the model

inherently more capable of considering additional factors. If the underlying assumptions

of a model are valid and based on rigorous treatment of physical principles there is nothing

to suggest that more complex situations cannot be represented by simplifications. This

has been evidenced by the inclusion of blast wave clearing in SDOF models as part of this

study.



Chapter 5. Modelling Structural Response to Blast Loads 119

50 75 108 140 175
4

6

8

10

12

14

16

18

20

22

24

P
ea

k 
di

sp
la

ce
m

en
t (

m
m

)

Charge mass (g PE4)
50 75 108 140 175

4

6

8

10

12

14

16

18

20

22

24

P
ea

k 
di

sp
la

ce
m

en
t (

m
m

)

Charge mass (g PE4)

 

Exp − Cleared
Exp − Non−Cleared
DYNA − Hudson
DYNA − LoadBlast
ALE

175

 

Figure 5.19: Experimental and FE peak displacements
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Figure 5.20: Experimental and SDOF peak displacements

With increasing model complexity there is a growing conflict between the ability of the

model to accurately replicate the physical processes and the need for reasonably sized

simulations that will allow the analysis to be completed within a realistic timeframe. In

the case of the coupled ALE-Lagrangian analyses the requirements to accurately model

the blast wave propagation through air, the process of blast wave clearing, the interaction

between the blast wave and the target and the response of the target itself, all using finite

elements, cannot all be satisfied and a compromise must be met in the form of a coarser

mesh and shortened analysis time. These compromises adversely affect the quality of the

model, leading to no improvement in the results at considerably increased computation

time.

Figure 5.21 shows the ratio of peak numerical to peak experimental displacements of the

cleared plates for the three different numerical approaches for all charge masses. The

average difference between numerical and experimental results for the coupled analyses is

7.3%, compared to 5.8% for the uncoupled analyses and 2.1% for the SDOF analyses.
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Figure 5.21: Ratio of numerical/experimental peak displacements for the cleared plates

The difference in peak response is negligible, however, when considering the running times

of the analyses:

• The coupled analyses were run for 168 hours on the University of Sheffield HPC

server. The time taken to simulate the blast wave propagating, in 2D axi-symmetry,

through 6 m of free air was around 5 hours.

• The uncoupled analyses were typically run for 5–8 minutes (not including the time

taken to generate the load curves using MatLab).

• The SDOF analyses were completed within seconds, including the time taken to

generate the spatial and temporal variation of the clearing pressure and the time

taken to evaluate the spatial load factor.

When analysing target response to cleared blast loads, the demonstrated validity and

accuracy of approximate numerical methods should see such approaches preferred over

complex numerical schemes. The dimensionless formulation of the Hudson approximation

coupled with the short analysis time of the SDOF method enables a more detailed study

of blast wave clearing to be undertaken, which is the subject of the following chapter.

5.8 Summary

This chapter has detailed a series of carefully controlled experimental measurements of the

temporal deflection of simple elastic plates subjected to cleared and non-cleared blast loads.

Deflection-time histories were recorded for steel plates located within a finite reflecting

surface and a reflecting surface of effectively infinite lateral extent. A total of twenty tests

were conducted, with the test plates located 6 m from hemispherical PE4 charges ranging

from 50–175 g. This experimental work was conducted both to assess the accuracy of, and

provide validation for, numerical modelling using different approaches.
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Coupled ALE-Lagrangian analyses were conducted, where the detonation process and blast

wave propagation through free air was evaluated in 2D axi-symmetry and then mapped

onto a 3D air domain containing a part representing the target, which was meshed using

shell elements. The blast pressure was transferred to the target using penalty coupling,

with the process of blast wave clearing, and hence determination of the load, modelled

using ALE elements. It was found that this method could determine the peak deflection

of the finite targets to within 15% (typically within less than 8%) of the experimental

displacements. The main cause for the difference between numerical and experimental

results is attributed to the need for a large domain in order to model a sufficient length

of the blast wave and hence increased mesh size of the model.

Following on from this, uncoupled Lagrangian analyses were conducted, where the plate

was modelled using finite elements and the blast pressure was prescribed using load curves,

i.e. fluid-structure interaction effects were ignored. The non-cleared plates were loaded us-

ing *load blast, an in-built LS-DYNA loading module, whereas the cleared plates were

loaded using the superposition of reflected pressure and Hudson (1955) clearing correc-

tions.

Significant computational savings were achieved through not modelling the surrounding

air, with the models running for 5–8 minutes as opposed to the 168 hour run time of the

coupled models. The modelling results using simple load curves with and without the

inclusion of clearing effects showed excellent correlation with the experimental deflection-

time and peak deflection data, with the peak values differing by no more than 10% for both

loading options. This indicates that using load curves derived from simple semi-empirical

predictive methods and the application of the Hudson clearing corrections can be used

with confidence in modelling, as long as the limiting assumptions of the Hudson approach

are valid.

The single-degree-of-freedom method was introduced, which approximates the target as

a single point equivalent and solves the dynamic equation of motion for the equivalent

system. The spatial load factor, KS , was derived as a function of the applied spatially

non-uniform pressure and the normalised deflected shape of the target. This enabled a

spatially non-uniform load to be correctly represented in an SDOF model (i.e. conserving

energy between real life and equivalent systems) and has been verified for a simple non-

uniform load case.

SDOF models were run under four load cases: cleared pressures comprising an energy

equivalent superposition of reflected pressure and Hudson clearing corrections; non-cleared

reflected pressures; a linearly decaying load with peak pressure and reflected impulse

preserved; and a bilinear decaying load with peak pressure preserved and a reduced impulse

to account for ConWep LOS clearing predictions. The linear and bilinear ConWep LOS

load approximations did not yield satisfactory results, highlighting the need to model the

load correctly even in the early stages of design.

Strikingly, the SDOF analyses with and without cleared loading corrections were in excel-
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lent agreement with the experimental data, with peak displacements differing by no more

than 8% of the experimental measurements for all numerical simulations. The demon-

strated validity of the SDOF method gives confidence that this approach is suitable for

initial analyses of loading events for geometrically simple scenarios. Furthermore, the low

computational expense of the SDOF method coupled with the dimensionless formulation

of the Hudson clearing predictions permits a wider investigation of the influence of blast

wave clearing on the dynamic response of finite, flexible targets subjected to blast loads.



Chapter 6

The Influence of Clearing on

Dynamic Response

6.1 Introduction

In the previous chapters it has been demonstrated that the Hudson (1955) clearing correc-

tions provide a fast and accurate means for determining the cleared blast load acting on

a target. When combined with the single-degree-of-freedom method for predicting target

response, we are equipped with a simple and powerful way to determine the response of

a target to cleared blast loading which has been shown to be in good agreement with a

series of well controlled experimental trials.

Arguably, the main benefit of a scheme of such low computational cost is the ability to

study a wide range of parameters in a short space of time. Many configurations of blast

event and target properties can be analysed to enable a more complete description of the

influence of blast wave clearing to be formulated. Due to the nature of the malicious use

of high explosives, blast engineers are not given the luxury of being able to definitively say

when or where a load will be acting, and can at best only estimate the magnitude of the

load. This makes such a parametric study all the more important as it gives an idea of the

likely target response over a broad range of scenarios, and should certainly be favoured

over more computationally expensive ‘higher order’ schemes.

The US Department of Defence (2008) Design Manual UFC-3-340-02, Structures to Resist

the Effects of Accidental Explosions, recommends the use of SDOF design charts first

formulated by Biggs (1964). These charts present values of peak dynamic displacement,

found from solution of the equivalent SDOF equation of motion under a number of load

shapes and different target properties. Whilst this method is widely accepted in the

literature (US Army Materiel Command 1974, US Department of Defence 2008, Cormie

et al. 2009), one limitation is the fact that the blast load must be simplified, typically

as an equivalent triangular pulse, in order for the peak displacement to be obtained.

123
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Gantes & Pnevmatikos (2004) present improved design charts based on a more realistic

exponential Friedlander (1946) load, which also takes into account a form of the negative

phase (see Section 2.2.5), however this is under the assumption that the target forms part

of a semi-infinite reflecting surface.

In the current literature, research into the effect of blast wave clearing on finite, flexible

targets (Van Netten & Dewey 1997, Shi et al. 2007) has been limited to situations where

the reflecting surface is so small and the ‘length’ of the blast wave is so large such that

the deformable target is effectively loaded by the incident pressure (see Section 4.3). To

date, there remains no published work detailing the influence of clearing on the response

of flexible targets and no means to quantify this effect.

This chapter has two connected aims: the response of finite targets subjected to cleared

blast loads will be evaluated for a range of parameters in an attempt to both understand

and quantify the influence of blast wave clearing; and also to develop and provide detailed

guidance on the likely response and damage a given target will sustain for a given cleared

blast load. This will be achieved through a parametric study using the KB (Kingery &

Bulmash 1984) semi-empirical load predictions with Hudson (1955) clearing corrections

to determine the blast load, and the equivalent SDOF method to calculate the target

response to this load.

6.1.1 Underlying Assumptions and Implementation

To facilitate the parametric study of this chapter, the following assumptions have been

made relating to both prediction of the load and the application of this load to dynamic

response calculations. These assumptions will be justified and their impact discussed with

reference to the current literature as appropriate.

Loading Assumptions

The Hudson method assumes the following conditions:

• The blast wave is plane and parallel to the target surface, with the direction of travel

perpendicular to the target face. This implies that the target dimensions are small

relative to the charge stand-off, or that the stand-off is large.

• The depth of the target is sufficiently large so that no diffraction waves arrive from

the rear of the target. Rose & Smith (2000) have shown these waves have negligible

effect on the front-face load.

• The clearing wave propagates into stagnant air across the target face, i.e. no flow

conditions exist in the direction of travel of the rarefaction wave.

• The velocity of the rarefaction wave is equal to the ambient sonic speed in air.

This requires the incident pressure to be relatively low - Hudson judged that the
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assumption was reasonable for peak incident pressures of less than 300 kPa, i.e.

Z > 2.0 m/kg1/3.

The following assumptions have been made when applying the load to the model:

• The clearing waves can be split into principal directions from vertical and horizontal

target edges and can be superimposed to give the cleared pressure at any point on

the target (Tyas et al. 2011a).

• Only one clearing wave propagates per free edge. The numerical study in Section

4.3.3 has shown that the Hudson predictions are adequate to describe this wave for

the entire duration of the positive phase.

• Any clearing waves are neglected for η > 1 and the full reflected negative phase is

modelled. Whilst in practice the clearing waves may arrive at some nodes during

the negative phase, neglecting this will result in a conservative approximation of the

negative phase. It is estimated that this will have little effect as it will only feature

for large targets where the blast pressure is close to the full reflected pressure. The

peak magnitude of a clearing wave for η = 1 is around 15% of the peak incident

pressure and rapidly decreases for larger values of η.

• The Hudson formulation is based on a decay parameter, b, of 1. Within the report,

however, Hudson (1955, page 16) states that ‘the errors introduced by a variation

0.5 < b < 2.0 are minor. . . the effect of variation in b for values near unity is

very small, becoming noticeable only as b → 0 or as b exceeds 5’.[i] The waveform

parameter varies between 2.0 and 0.5 for 4 < Z < 20 (see Figure 2.4) and only

exceeds 5 when Z < 1.5. The Hudson clearing corrections can be used throughout

this range without any noticeable error.

Modelling Assumptions

Further to the above, a number of modelling assumptions are made throughout this chapter

which are detailed here:

• The target forms the entire front face of the reflecting surface.

• When the target is deforming elastically, the normalised elastic deformed shape,

φ (Section 5.5.2), is assumed to remain constant. When the target is deforming

plastically, the normalised plastic deformed shape is assumed to remain constant.

• The transition between elastic and plastic and hence the change in deformed shape

is assumed to occur instantaneously. This is a limit of the SDOF method in general

[i]In the original report, Hudson uses the symbol C to represent the decay coefficient. Here it has been
changed to b to be consistent with the notation used in this thesis.
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– whilst this could be addressed during this thesis, the effect is likely to be small in

magnitude in comparison to the influence of blast wave clearing.

• The spatial load factor, KS (Section 5.5.6), is calculated based on the assumed elastic

or plastic deformed shape under a uniform load, hence the displacement of the target

is assumed to be unaffected by the non-uniformity of the load. This can be justified

by the fact that when blast wave clearing occurs, the load is changing significantly

quickly and the magnitude of non-uniformity (i.e. the magnitude of KS compared to

unity) is relatively small.[ii] The results in Section 5.6 give confidence in the ability

of the SDOF method to model plate deformation under cleared blast loads.

• Fluid-structure interaction (FSI) effects are neglected and the reflected pressure is

assumed to be unaffected by target compliance. Further to this, the clearing waves

are assumed to propagate along a flat, regular surface and the cleared pressure is

also assumed to be unaffected by target compliance. FSI has shown to be important

only for very low mass or very low stiffness systems, where the initial velocity of the

target is comparable to the peak particle velocity (Kambouchev et al. 2006, 2007,

Subramaniam et al. 2009, Teich & Gebbeken 2012). FSI was ignored in the uncoupled

FE and SDOF analyses in Chapter 5 and the numerical results still showed good

agreement with the measured experimental displacements, suggesting that the FSI

effect is negligible for the situations considered in this thesis.

6.2 Elastic Response to Cleared and Non-Cleared Blast Loads

6.2.1 Numerical Example

Whilst a difference between cleared and non-cleared loading has already been shown in

Chapter 5, this chapter takes a more general approach to quantifying this effect. In

order to demonstrate how the consideration of clearing effects may influence the dynamic

response of a target, the SDOF equivalent equation of motion was solved for two un-

damped elastic systems subjected to the same blast load – a 1 kg TNT hemispherical

surface burst detonated 10 m from the target. Three load cases were considered: an

idealised linear decay; a full positive and negative phase acting on an infinite surface; and

the pressure acting on a 2 × 2 m target with Hudson clearing corrections. The relevant

blast load parameters are given in Table 6.1.

The linear approximation was taken to have the same peak overpressure as the non-cleared

load case, with a reduced loading duration to preserve positive phase impulse. The clearing

pressure was calculated by discretising the target face into a grid of 100×100 elements and

determining the Hudson clearing function at each node. Diffraction was allowed around

the top edge and side edges only with the bottom edge of the plates situated on a rigid

[ii]Remembering that the spatial load factor effectively serves as a measure of the non-uniformity of the
load and KS = 1 when the load is spatially uniform.
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Loading Parameter

ta pr,max pr,min td t−d ir i−r
(ms) (kPa) (kPa) (ms) (ms) (kPa.ms) (kPa.ms)

Cleared 21.64 31.54 6.43 3.39 15.27 49.74 38.71
Non-Cleared 21.64 31.54 7.68 4.79 14.45 59.33 62.39
Linear 21.64 31.54 - 3.76 - 59.33 -

Table 6.1: Loading parameters applied to the numerical model

reflecting surface. The spatially varying pressure was then transformed into an equivalent

SDOF force at each time step by multiplying the pressure by the product of the load

transformation factor, KL = 0.308, the target area, A = 4 m2, and the spatial load

transformation factor, KS , given by the methodology outlined in Section 5.5.6. The three

load cases are shown in Figure 6.1.

20 25 30 35 40
−15

−10

−5

0

5

10

15

20

25

30

35

40

E
qu

iv
al

en
t F

or
ce

 (
kN

)

Time after detonation (ms)

 

 

Cleared
Non−Cleared
Linear

20 25 30 35 40
−15

−10

−5

0

5

10

15

20

25

30

35

40

E
qu

iv
al

en
t F

or
ce

 (
kN

)

Time after detonation (ms)

 

 

Figure 6.1: Three load cases applied to the numerical model

The 2 × 2 m targets were modelled as linear elastic, two-way spanning aluminium panels,

fixed on all sides. Plate A was modelled with a thickness of 7 mm and plate B was

modelled with a thickness of 27.5 mm. The shape functions for φ(x) and φ(y) are given

as the normalised deformed shape of a one-way spanning, elastic clamped beam (Blevins

1979), shown in Equation 5.23, and the two-dimensional shape function is given as the

product of these two variables, i.e. φ(x, y) = φ(x)φ(y). The relevant dynamic model

parameters are shown in Table 6.2, where the dynamic coefficients are given using the

revised values from Morison (2006).

Figure 6.2 shows the dynamic displacement-time histories of the two plates, annotated with

values of peak displacement under the three different load cases – zmax,clear, zmax,inf and

zmax,lin corresponding to the peak displacement under the cleared, non-cleared (infinite

surface) and linear (triangular decay) loads respectively.
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Parameter Symbol Plate A Plate B

Young’s modulus E 69 GPa 69 GPa
Density ρ 2700 kg/m3 2700 kg/m3

Poisson’s ratio ν 0.35 0.35
Load factor KL 0.308 0.308
Mass factor KM 0.182 0.182
Elastic stiffness coefficient k/(EI/L3) 808.5 808.5
Span L 2 m 2 m
Thickness d 7 mm 27.5 mm
Equivalent stiffness ke 140 kN/m 8484 kN/m
Equivalent mass me 13.76 kg 54.05 kg
Natural frequency f 16.05 Hz 63.05 Hz
Natural period T 62.31 ms 15.86 ms
Time ratio td/T 0.077 0.302

Table 6.2: Dynamic properties for 2× 2m linear elastic, two-way spanning aluminium panels, fixed
on all sides
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Figure 6.2: Displacement-time histories for plate A and plate B under the three different load cases
shown in Figure 6.1

For plate A, with the displacement-time history shown in Figure 6.2(a), it can be seen that

the cleared SDOF response begins to diverge from the non-cleared and linear load target

response at around 26 ms, which roughly corresponds to the beginning of the cleared

negative phase (the shortening of the positive phase caused by the reduction in pressure

attributed to clearing). The system reaches a peak outward displacement of around 26

mm at 32 ms after detonation, after which the plate begins to rebound with velocities

acting towards the origin of the blast. There is still ∼4 ms of negative pressure acting

on the target during this rebound phase, hence there is a small magnification in dynamic

displacement and the peak elastic response of 28.2 mm is reached during rebound. This

effect is also seen for the model under the non-cleared load, where the negative phase

causes greater displacement (47.0 mm) in rebound. The model under the linear load is

not subjected to negative overpressures and therefore reaches a peak displacement of 52.5

mm much later on in the analysis, at 39 ms after detonation. In this case, neglecting
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blast wave clearing and designing for a simplified triangular load function would lead to

an over-prediction of peak displacement.

For plate B, displacement-time history shown in Figure 6.2(b), the system under the

cleared load reaches peak outward displacement of 2.7 mm relatively early during the load

application, at around 26 ms after detonation. After this, there is still a large duration

of the cleared negative phase remaining, hence the rebound effect again causes greater

inward displacement, reaching a peak value of 3.96 mm. For this system, the rebound

effect is large enough such that the peak displacement under the cleared load is greater

than the peak displacement of 3.21 mm caused by the linear load. In this case, modelling

the plate under a linear load approximation would be under-conservative and the peak

displacement would be under-predicted. As with plate A, the rebound effect is even more

pronounced for the non-cleared load model.

A representative parameter used in structural dynamics is the ratio of the load duration

to the natural period of the structure, td/T , known as the time ratio. Larger values of

td/T indicate that the target response is quick in relation to the loading duration and the

loading can be considered as quasi-static, whereas smaller values of td/T indicate that the

loading is tending towards impulsive. Plate A and plate B have time ratios of 0.077 and

0.302 respectively, i.e. the two plates lie within the dynamic region of loading, and hence

are sensitive to the time-varying effects of clearing relief.

The displacement ratio, is a useful parameter for determining the influence of clearing

relief on the dynamic response of SDOF systems, and is given as the ratio of the peak

displacement (under either the cleared or non-cleared load) to the peak displacement under

the linear load,

displacement ratio = zmax/zmax,lin. (6.1)

The displacement ratio is effectively a measure of the level at which the traditional ap-

proach (linear load) may under or over-predict the peak elastic deformation. For plate A

and plate B, the cleared displacement ratios are 0.54 and 1.23 respectively, showing that

clearing cannot simply be neglected on the assumption that it will always reduce target

response. Table 6.3 summarises the results of the numerical example.

Plate td/T zmax,lin Loading

(mm) Cleared Non-Cleared

zmax,clear disp. zmax,inf disp.
(mm) ratio (mm) ratio

Plate A 0.077 52.49 28.16 0.54 47.04 0.90
Plate B 0.302 3.21 3.96 1.23 5.13 1.60

Table 6.3: Summary of results from the numerical example
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6.2.2 Elastic Response Spectra

In order to be able to determine the influence of clearing relief on a given target, a para-

metric study was conducted. It has been demonstrated in Section 4.2.1 that for two given

targets, providing they are subjected to the same scaled blast load and are geometrically

similar, they will both be subjected to the same scaled cleared blast load. Therefore, by

varying the scaled distance, Z, scaled target height, H, and td/T (target dynamic prop-

erties), the influence of clearing relief on the peak elastic deformation of finite targets

(i.e. the displacement ratio, zmax,clear/zmax,lin) can be determined over a range of target

properties and blast scenarios that may be of interest to the engineer.

Figures 6.3, 6.4, 6.5 and 6.6 show the response spectra for linear elastic, clamped square

targets subjected to blast loads at scaled distances of 2, 4, 8 and 16 m/kg1/3. Target size

parameters are given as ratios of the scaled distance to scaled target height, Z/H, where

Z/H = 0 indicates a target which forms part of a reflecting surface that is infinite in

lateral extent and is therefore subjected to the full reflected pressure. Z/H = ∞ indicates

a small target which can be assumed to be loaded by the incident pressure only. For far-

field loading (Z ≥ 4m/kg1/3), the limit of Z/H = 100 exists whereby targets smaller than

this size (larger values of Z/H) will effectively experience the incident pressure only. This

value is based on findings from the study of blast wave clearing on small targets detailed

in Section 4.3.

The target size and dynamic properties are independent of scale and can be used to

determine the effect of clearing for any blast event, offering a quick and simple first ap-

proximation to the influence of clearing relief.
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Figure 6.3: Elastic response spectra for Z = 2 m/kg1/3
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Figure 6.4: Elastic response spectra for Z = 4 m/kg1/3
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Figure 6.5: Elastic response spectra for Z = 8 m/kg1/3
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Figure 6.6: Elastic response spectra for Z = 16 m/kg1/3
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6.2.3 Discussion

The Influence of Clearing

The response spectra can be used to make a number of general observations on the sce-

narios where clearing relief is likely to be a significant factor.

When td/T is large, the natural frequency of the system is sufficiently high to ensure

that the target reaches its peak displacement before the onset of clearing. For all scaled

distances, as the natural period of the structure decreases the displacement ratio tends

towards 1, so it can be said that clearing relief has negligible effect at larger time ratios.

When td/T is small, the key loading parameter is the net impulse imparted to the target.

Clearly the consideration of the negative phase alone significantly reduces the total impulse

– the displacement ratio for Z/H = 0 ranges between 0.15–0.35 for the scaled distances

studied. For small scaled distances, the influence of clearing is to reduce the total impulse,

further reducing the displacement of the SDOF system. This finding is in agreement

with the observations of Ballantyne et al. (2010), whereby a series of numerical analyses

demonstrated that clearing relief reduces the impulse acting on a finite target by around

50% of the reflected value. In Figures 6.3 and 6.4, the displacement ratios for finite

targets at the impulsive extreme are roughly 0.5 of the displacement ratio for Z/H = 0.

For larger scaled distances, as the negative phase begins to play a more important role

(Teich & Gebbeken 2010), reduction of positive phase impulse caused by clearing can, for

some target sizes, actually increase the net impulse acting on the target, increasing the

peak displacement.

There exists a region in the dynamic realm of loading, broadly 0.1 < td/T < 1.0, where

negative pressures coincide with negative velocities of the target and the result is a greater

peak displacement in rebound – an effect that has already been observed for targets

situated in an infinite sized reflecting surface (Teich & Gebbeken 2010). This rebound

effect is at its peak when the onset of the negative phase coincides with the peak positive

displacement, which occurs at the end of the first quarter cycle of displacement, i.e. when

td/T = 0.25. The influence of clearing is to reduce the value of peak displacement, but a

reduced positive duration means that this rebound effect is amplified at different values

of td/T than would be the case with no clearing. This results in a region where the

displacement ratio of the target is greater than would be predicted even if negative phase

effects were taken into account. In this case, the reduction of pressure initiates ‘clearing

resonance’ and neglecting clearing could be significantly under conservative.

These observations are consistent throughout the range of scaled distances studied, with

a general trend of increasing displacement ratio with increasing scaled distance. The

response spectra can be used to dispel the notion that clearing relief simply acts to reduce

the pressure and provides evidence for the argument that neglecting clearing is not always

conservative.
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Target Size Limits

The influence of target size can also be observed – a reduction in target size (increase in

Z/H) results in more complete clearing relief and, by reducing the pressure acting on the

target, reduces the peak dynamic displacement. In the clearing resonance region (0.3 <

td/T < 1.8 for Z = 2 m/kg1/3), the relationship between target size and displacement

ratio is less simple, due to each target size having a different reduced positive phase. It is

acknowledged that clearing resonance requires very specific target properties, however it

is important to be aware of the phenomenon and the conditions in which it exists.

Interestingly, the curves for Z/H = 2 and Z/H = 4 are almost coincident with the curve

for Z/H = 0 at Z = 8 and 16 m/kg1/3 respectively (Figures 6.5 and 6.6), suggesting that

for far-field loading, any target with H > 4 m/kg1/3 can effectively be designed assuming

a full reflected pressure load.

It can also be seen that the target response spectrum approaches the incident spectrum

as the target size decreases – as would be expected – and that the convergence is achieved

more quickly for far-field conditions. This is in agreement with the numerical study on

the mechanism of blast wave clearing undertaken in Chapter 4. Also, neither the largest

nor the smallest target spectra appear to be close to the reflected or incident spectra

respectively for Z = 2 m/kg1/3. The fact that clearing has a quantifiable effect on the

dynamic response for all target sizes at small scaled distances confirms the findings from

Chapter 4 that blast wave clearing should still be considered in the near-field.

6.3 Elastic-Plastic Response to Cleared and Non-Cleared

Blast Loads

Consideration of elastic response only is useful for broadly characterising the influence of

clearing and typical loading and target parameters which may result in unsafe design if

clearing is neglected. Often during blast events, a target will experience some form of

permanent plastic deformation or material failure. In this case, an elastic-plastic material

model should be used.

6.3.1 Linear Load Response Spectra

In the analysis performed by Biggs (1964), elastic-plastic SDOF systems are subjected to

a linearly decaying uniform load

Fe(t) =







Fe,max

(

1− t
td,lin

)

, t ≤ td,lin

0, t > td,lin

(6.2)

where Fe,max is the peak force and td,lin is the duration of the triangular load.
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The SDOF system has a bilinear elastic-perfectly plastic resistance function as shown in

Figure 6.7. This comprises linear elastic behaviour with spring resistance kez until the

elastic limit, zE , is reached, followed by plastic behaviour with constant spring resistance,

Ru, thereafter. After the peak displacement, zmax, is reached, the displacement decreases

and the system begins to rebound. When rebounding, the system again behaves elastically

until a spring force of −Ru is attained, whereby the system returns to plasticity.

R

zzE

Ru

-Ru

zmax

1

ke 1

ke

Figure 6.7: Resistance-deflection function of an elastic-plastic SDOF system

The SDOF equation of motion (5.6) is solved using the linear acceleration method (see

Biggs (1964) and Section 5.5.4). The response spectra of elastic-plastic SDOF systems

subjected to triangular loads are be presented in Figure 6.8, where the peak response is

normalised against the elastic limit, i.e. zmax/zE .
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Figure 6.8: Maximum deflection of an elastic-plastic SDOF System under a triangular load (Biggs
1964). Numbers next to curves are resistance ratio, Ru/Fe,max

The time ratio, td/T , as defined previously, gives an indication of the response time of

the target with respect to the load duration – low values of time ratio indicate impulsive

conditions where the loading is completed during the early stages of displacement, whereas

high values of time ratio indicate quasi-static conditions where the target can be expected
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to reach peak displacement long before the loading is complete. The resistance ratio,

Ru/Fe,max, gives an indication of the resistance of the target in relation to the magnitude

of the peak applied force. Providing the mass, stiffness, resistance and load-time history

are known, the peak displacement can be read from the response spectra.

6.3.2 Target Response to Exponential Blast Loads

The triangular load model, from which the response spectra of Biggs (1964) are based,

has two main limitations: firstly, it neglects the negative phase, which Teich & Gebbeken

(2010) and Krauthammer & Altenberg (2000) have shown to be under-conservative if the

scaled distance is large; secondly, the linear load model does not capture the correct decay

of the positive phase pressure-time curve. Gantes & Pnevmatikos (2004) addressed this

limitation by providing response spectra for exponential loading, where the Friedlander

equation (2.9) was simply extended to t → ∞ to capture the negative phase. This was then

compared to the triangular response spectra of Biggs, but as discussed in the literature

review of this thesis (Chapter 2), the fact that the positive phase impulse was not kept

constant with changing decay coefficient makes it difficult to draw a distinction between the

effects of the negative phase and the reduction in positive phase impulse from increasing

the rate of decay of the pressure-time curve.

In this thesis, based on the experimental validation in Section 2.2.5, the reflected negative

phase is modelled using the cubic expression given by Granström (1956). The piecewise

force-time function applied to the SDOF model is given in Equation 6.3

Fe(t) =



























Fe,max

(

1− t
td

)

e−bt/td , t ≤ td

Fe,min

(

6.75(t − td)
t−d

)(

1−
(t− td)

t−d

)2

, td < t ≤ td + t−d

0, t > td + t−d

(6.3)

where Fe,max and Fe,min are given by the peak overpressure and peak negative pressure

multiplied by the target area and load transformation factor. These parameters, along with

the positive phase duration, td, negative phase duration, t̄d, and waveform parameter, b,

are found using the KB semi-empirical predictive method.

Figure 6.9 shows as an example the response spectrum for an elastic-plastic SDOF system

under an exponential blast load at Z = 8 m/kg1/3 and resistance ratio, Ru/Fe,max =

0.5. The triangular response spectrum is also shown, with td,lin = 2ir/pr,max to preserve

positive phase impulse. Dashed regions of the exponential response spectrum indicate

regions where the peak displacement is in rebound.
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With reference to Figure 6.9, the exponential load response spectrum for Ru/Fe,max = 0.5

is defined by four distinct regions:
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Figure 6.9: Response spectra for Z = 8 m/kg1/3 and Ru/Fe,max = 0.5 under triangular and
exponential loads. Dashed lines indicate regions of the exponential response spectrum where the
peak displacement is in rebound. Peak displacements from the examples in Figure 6.10(a-d) are
shown with corresponding values of td/T

a. Elastic deformation only, td/T < 0.15

Figure 6.10(a) shows the SDOF response at td/T = 0.1 (force-time history shown on

the minor y axis). In this region of the response spectrum, zmax < zE and no plastic

deformation occurs. As the system reaches peak displacement on the first cycle,

the velocity of the system becomes negative whilst the negative phase load is still

applied, increasing deflection in the negative (‘rebound’) direction and causing peak

displacement to occur during rebound. This behaviour continues as td/T increases,

until the rebound is sufficient to cause plasticity in the negative direction.

b. Plastic deformation in rebound only, 0.15 ≤ td/T < 0.22

Figure 6.10(b) shows the SDOF response at td/T = 0.2. It can be seen that the only

permanent plastic deformation is in the negative direction, i.e. towards the blast. As

the ratio of td/T increases the magnitude of positive displacement on the first cycle

increases until the elastic limit is reached.

c. Plastic deformation in both directions, 0.22 ≤ td/T < 0.35

Figure 6.10(c) shows the SDOF response at td/T = 0.3. The system undergoes

plastic deformation on the first positive cycle of displacement and undergoes further

plastic deformation in rebound. The system still reaches peak displacement in re-

bound in this region of the response spectrum, with the positive plastic deformation

increasing relative to the negative deformation with increasing td/T .

d. Peak plastic deformation during the first half cycle of displacement, td/T ≥ 0.35

Figure 6.10(d) shows the SDOF response at td/T = 0.8. The positive phase of the

load is sufficient to cause gross plastic deformation (zmax >> zE). Little or no

rebound plasticity occurs.
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Figure 6.10: Normalised displacement-time history of elastic-plastic SDOF systems under an ex-
ponential blast load at Z = 8 m/kg1/3
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The discontinuities in the response spectrum are caused by the transitions between these

regions. Whilst the bounds of each region will change with different values of resistance

ratio, Ru/Fe,max, the behaviour within each region will be similar.

From comparison of the triangular and exponential response spectra, it is apparent that the

loading assumption has a significant impact on the response of the SDOF system. The

triangular load model is over-conservative for impulsive scenarios (low values of td/T ),

yet non-conservative for particular ranges of td/T where the exponential load response

spectrum is in regions b. and c. and peak displacement occurs during rebound.

6.3.3 Target Response to Cleared Blast Loads

Elastic-plastic response spectra were evaluated for Z = 2, 4, 8 and 16 m/kg1/3, for target

sizes of Z/H = 0, 4, 8 and 16 and are shown in Figures 6.11, 6.12, 6.13 and 6.14 respec-

tively. The cleared load was evaluated for each scaled distance and target size by applying

the Hudson (1955) clearing corrections to ConWep (Hyde 1991) predictions of reflected

pressure on a grid of 100 × 100 nodes. This was converted into an energy equivalent

uniform load using the spatial load transformation factor, KS , derived in Section 5.5.6.

The beams were modelled as one way-spanning square panels, with the normalised de-

flected shape, φ, given as

φ(x) =
16x

5L4

(

L3 − 2Lx2 + x3
)

, (6.4)

where x is the length along the beam and L is the total length. For a one-way spanning

member, φ(x, y) = φ(x).

6.4 Discussion

6.4.1 The Influence of Scaled Distance and Target Size

The target response spectra for Z = 2 m/kg1/3 in Figure 6.11 mainly shows region a. and

d. response, with a very narrow range of values of td/T where peak displacement occurs

during rebound (region b. and c. response). For small scaled distances, the magnitude of

the reflected pressure is large relative to the incident pressure, hence the clearing waves are

small in magnitude relative to the reflected pressure. The influence of clearing, therefore, is

fairly minimal and the response of the target is dominated by the reflected pressure profile.

Some small reductions in peak displacement can be seen as the target size decreases,

although it is known that the cleared pressure does not converge with the incident pressure

at small scaled distances. Broadly speaking, the response spectra for Z = 4 m/kg1/3 in

Figure 6.12 exhibit similar characteristics to the response spectra for Z = 2, albeit with

more pronounced rebound regions.
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(a) Z/H = 0
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(b) Z/H = 4
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(c) Z/H = 8
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(d) Z/H = 16

Figure 6.11: Elastic-plastic response spectra for Z = 2 m/kg1/3. Dashed lines indicate regions
where the peak displacement is in rebound
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(a) Z/H = 0
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(b) Z/H = 4

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

t
d
/T

z m
ax

/z
E

 

 

0.1
0.2
0.5
1.0
1.5
2.0

R
u
/F

e,max

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

t
d
/T

z m
ax

/z
E

 

 

(c) Z/H = 8

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

t
d
/T

z m
ax

/z
E

 

 

0.1
0.2
0.5
1.0
1.5
2.0

R
u
/F

e,max

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

t
d
/T

z m
ax

/z
E

 

 

(d) Z/H = 16

Figure 6.12: Elastic-plastic response spectra for Z = 4 m/kg1/3. Dashed lines indicate regions
where the peak displacement is in rebound
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(d) Z/H = 16

Figure 6.13: Elastic-plastic response spectra for Z = 8 m/kg1/3. Dashed lines indicate regions
where the peak displacement is in rebound
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(d) Z/H = 16

Figure 6.14: Elastic-plastic response spectra for Z = 16 m/kg1/3. Dashed lines indicate regions
where the peak displacement is in rebound



Chapter 6. The Influence of Clearing on Dynamic Response 143

The influence of target size can be more clearly seen in the response spectra for Z = 8 and

Z = 16 m/kg1/3 in Figures 6.13 and 6.14. For larger scaled distances, the response of the

target is influenced by the positive phase, negative phase and the contribution of clearing,

rather than being dominated by the reflected pressure as is the case for near-field loading.

It is apparent that for far-field loading, the regions of the response spectra where the peak

displacement occurs during rebound (regions b. and c., as indicated by the dashed lines)

happen over a wider range of td/T . This can be justified by the fact that as the expansion

wave propagates over the target face, the magnitude of the relief pressure decreases and

the pressure pulse becomes more rounded and longer in duration (Hudson 1955). With

smaller targets, therefore, a sharper drop-off in pressure occurs more uniformly across the

loaded face, making smaller targets more susceptible to the dynamic effects that cause

increased displacement in rebound.

Table 6.4 shows the comparison of peak displacements under the non-cleared blast load for

H = ∞ and the cleared blast load for H = 1, over a range of resistance ratios, Ru/Fe,max,

and time ratios, td/T . The results are in agreement with the observation of more complete

clearing occurring at increased distance from the blast source (Rose & Smith 2000, Tyas

et al. 2011a) – the difference in response due to the non-cleared and cleared blast load is

greater in almost every case at Z = 16 when compared to Z = 4.

Ru/Fe,max td/T zmax/zE

Z = 4 Z = 16

H = ∞ H = 1 % diff. H = ∞ H = 1 % diff.

0.2 0.2 1.96 1.66 15 2.75 3.32 -21

0.5 8.78 4.91 44 13.86 6.69 52

1.0 31.06 17.03 45 51.18 22.17 57

0.5 0.2 1.09 0.71 34 1.90 1.19 37

0.5 1.68 1.27 25 2.59 1.82 30

1.0 3.83 2.87 25 6.62 3.40 49

1.0 0.2 0.54 0.36 34 0.84 0.59 30

0.5 0.84 0.83 1 1.35 1.03 24

1.0 1.14 1.07 6 1.46 1.11 24

Table 6.4: Comparison of peak displacement for H = ∞ and H = 1 at Z = 4 and Z = 16

6.4.2 Comparison Against Triangular Load Response Spectra

Knowing that clearing has a more pronounced effect at larger scaled distances, the fol-

lowing sections are concerned with discussing the influence of clearing in the far-field. A

number of observations on the influence of clearing can be made when the cleared response

spectra are compared with the triangular load response spectra. Figure 6.15 shows the

spectra for Ru/Fe,max = 0.5 and Z = 8 m/kg1/3 from Figures 6.13(a-d), as well as the

linear load response spectrum from Figure 6.8. Towards the impulsive end of the response
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spectra (low values of td/T ) the reduction in net impulse associated with clearing and the

negative phase can be seen to significantly reduce the peak displacement of the SDOF sys-

tem under the cleared load relative to the triangular load. The influence of target size can

be seen to further reduce peak displacement. For example, at td/T = 0.2, the displacement

of the cleared plate with Z/H = 16 is 0.9zE , whereas the displacement under the expo-

nential load (Z/H = 0) is 1.7zE . Furthermore, the peak displacement under the cleared

load at Z/H = 16 is around 33% of the peak displacement under the exponential load at

large values of td/T . Clearing is therefore an important consideration for elastic-plastic

systems, even at large values of td/T where it is unimportant for elastic systems.
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Figure 6.15: Response spectra for Z = 8 m/kg1/3 and Ru/Fe,max = 0.5 for different scaled target
sizes, normalised against elastic limit

Figures 6.16(a), (c) and (e) show contours of peak displacement, zmax, normalised against

the peak displacement of the SDOF under the triangular load, zmax,lin. The dashed

line indicates the time ratio at which the system begins to deform plastically (i.e. when

zmax/zE > 1 in Figure 6.13), with elastic behaviour to the left and plastic behaviour to the

right of the curve. The response spectra for Ru/Fe,max = 2.0 are identical to the elastic

response spectra of Section 6.2.2, hence contour lines in the elastic regime are parallel.[iii]

The response spectra for Ru/Fe,max = 2.0 lies entirely in the elastic region.

Figures 6.16(b), (d) and (f) show the normalised response spectra at select values of

Ru/Fe,max. It can be seen from both the normalised response spectra and the displacement

contours that peak values of displacement typically occur between 0.3 < Ru/Fe,max <

0.7, when the system undergoes plastic deformation in rebound only. If the temporal

characteristics of the loading relative to the response of the target are such that greater

displacement is caused in rebound (td/T ≈ 0.25), and the resistance of the target is

such that it enters plasticity in rebound (as, for example Ru/Fe,max = 0.5), then an

amplification in displacement will occur.

It is apparent that blast wave clearing can serve to adversely affect target response when

[iii]Contour lines that are not parallel in the elastic region near to the dashed transition line (between elastic
and plastic behaviour) show situations where the non-cleared load causes plasticity and the cleared load
does not
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(c) Z/H = 8
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(e) Z/H = 16
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Figure 6.16: (a), (c), (e) Contours of peak displacement normalised against peak displacement
under the triangular load for Z = 8 m/kg1/3. The dashed line indicates the time ratio at which the
system begins to deform plastically. (b), (d), (f) Response spectra for select values of Ru/Fe,max
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the magnitude of load is comparable to the resistance of the target, and can serve to

severely lessen the peak displacement when the magnitude of load far exceeds the elastic

resistance. For elastic SDOF systems subjected to cleared blast loads, Ru/Fe,max ≥ 2.0,

the normalised response spectra approach 1.0 as td/T increases, as the natural frequency

of the system is sufficiently high to ensure that the target reaches its peak displacement

before the onset of clearing – i.e. there is no difference between the triangular, full reflected

and cleared blast load, hence clearing has no effect. Elastic-plastic systems, however, ex-

perience gross plastic deformation at higher time ratios (region d. of the response spectra)

and hence the time taken to reach peak displacement increases, allowing time for the effects

of clearing to decelerate the SDOF system. The peak displacement for Ru/Fe,max = 0.1

remains constant at between 0.25 and 0.40 for all scaled target sizes at higher time ratios.

6.4.3 Comparison Against Exponential Load Response Spectra

Normalising the peak SDOF displacement under the cleared load, zmax, against the peak

SDOF displacement under the exponential load, zmax,inf , allows the influence of clearing

to be isolated and further quantified. Figures 6.17(a), (c) and (e) show contours of the

normalised peak displacement. As with Figure 6.16 the dashed line indicates the time

ratio at which the system begins deform plastically. Figures 6.17(b), (d) and (f) show the

normalised response spectra at select values of Ru/Fe,max.

When comparing the cleared elastic response to the non-cleared elastic response, there is

a small region between 0.47 < td/T < 0.80 where ‘clearing resonance’ occurs and peak

displacement is in the order of 10% greater than the SDOF under the full reflected pressure,

for Z/H = 4 only. For the smaller targets, the elastic peak displacement is always less than

the non-cleared response. When plasticity is included in the model, however, there are

certain combinations of td/T and Ru/Fe,max that will result in a greater peak displacement

for the cleared blast load. For Z/H = 4, this clearing resonance can cause displacements

over 30% greater than if clearing were neglected. This value decreases to 21% for Z/H = 8

and 10% for Z/H = 16.

Whilst it requires specific conditions for this adverse response to occur, it is worth not-

ing that the phenomenon exists and blast wave clearing should not be neglected on the

assumption that it is conservative. In practice, it is unlikely that the engineer will have

knowledge of the exact properties of the target and exact parameters of the blast event,

and instead of designing for a single event, a sensitivity-based study may be undertaken;

in which case, it is all the more important to be able to quickly determine if clearing will

have a significant effect on target response – whether it acts to reduce displacement or

cause further damage – in order to allow for clearing in the early stages of design.

The influence of blast wave clearing on target response is complex and dependant on many

parameters, however the response spectra presented in this section provide an effective

method for quantifying its effect.
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Figure 6.17: (a), (c), (e) Contours of peak displacement normalised against peak displacement
under the exponential load for Z = 8 m/kg1/3. The dashed line indicates the time ratio at which
the system begins to deform plastically. (b), (d), (f) Response spectra for select values ofRu/Fe,max
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6.5 The Design Charts in Use

The following section details the practical application of the response spectra using numer-

ical and graphical examples. The results are compared to both an explicit FE model and

current design methods to highlight the error that may be encountered when neglecting

clearing.

1 m

1 m

8 m1 kg

10 mm

E = 65 GPa
ρ

σ

= 2000 kg/m
= 20 MPa

3

y

Figure 6.18: Dimensions and properties of the light cladding panel

A square, simply supported, one-way spanning light cladding panel, shown schematically

in Figure 6.18 – with Young’s Modulus, E = 65 GPa, Density, ρ = 2000 kg/m3 and Yield

strength, σy = 20 MPa – was subjected to a 1 kg hemispherical TNT burst at a distance

of 8 m. The panel has a span, L, of 1 m and thickness, d, of 10 mm. The dynamic SDOF

properties of the panel, i.e. the equivalent mass, equivalent stiffness, elastic resistance,

elastic limit and natural period, were determined using the following equations, after

Biggs (1964)

me = KMρL2d (6.5)

ke = KL384EI/5L3 (6.6)

Ru = 8Mm/L (6.7)

zE = Ru/ke (6.8)

T = 2π
√

me/ke (6.9)

where I is the second moment of area and Mm is the moment capacity at midspan. The

relevant loading parameters and dynamic properties are summarised in Table 6.5. Stiffness,

mass and resistance parameters are shown for elastic response only, using elastic load and

mass factors, KL = 0.64, and KM = 0.50 respectively.

In numerical SDOF analyses, the material properties can simply be switched between

elastic and plastic properties when the displacement goes from one type to the other. In

order to use the graphical methods (i.e. the response spectra), however, one value must be

assumed. When the response is expected to extend beyond the elastic range, Biggs (1964)
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recommends using an approximate weighted average of the elastic, elastic-plastic (for two-

way spanning elements, if appropriate) and plastic factors. In this example, elastic factors

are only used as the response is assumed to be predominantly elastic.

Parameter Symbol Value Unit

Peak reflected pressure pr,max 44.11 kPa
Positive phase duration td 4.454 ms
Young’s modulus E 65 GPa
Density ρ 2000 kg/m3

Yield strength σy 20 MPa
Load factor KL 0.64 -
Mass factor KM 0.50 -
Span L 1 m
Thickness d 10 mm
Equivalent stiffness ke 266.2 kN/m
Equivalent mass me 10 kg
Elastic resistance Ru 2.67 kN
Elastic limit zE 10.01 mm
Natural period T 38.5 ms
Time ratio td/T 0.116 -
Resistance ratio Ru/Fe,max 0.094 -

Table 6.5: Loading parameters and dynamic properties for a 1 × 1 m elastic-plastic, one way
spanning, simply supported panel.

For the FE analysis, the panel was discretised using 100 × 100 shell elements using the

*mat plastic kinematic material model in LS-DYNA (Hallquist 2006), with the cleared

loading applied as force-time curves at every node using the method detailed in Section

5.4.1. The Hudson method has been shown to accurately capture the spatial variation of

cleared blast pressure loading (Tyas et al. 2011a,b) and can, when combined with an FE

model, predict the dynamic deflection of finite plates to a good level of agreement with

experimental results (see Section 5.4.2). The FE model can therefore be considered as an

accurate representation of how the panel would perform in real life.

Figure 6.19 shows the transient displacement of the SDOF models and FE simulation,

with the bottom/left axes showing the real displacement-time history and the top/right

axes showing the normalised history. The values of peak displacement are summarised in

Table 6.6, where it can be seen that the peak SDOF displacement under the cleared load

is within 13% of the FE model on the first rebound.

Ru/Fe,max td/T zmax (mm)

LS-DYNA Clearing Exponential Triangular

0.094 0.116 15.3 17.3 28.1 47.7
% diff. 13 83 211

Table 6.6: Maximum response for FE and SDOF model from numerical analysis and percentage
difference between FE and SDOF displacements



150 6.5. The Design Charts in Use

0 10 20 30 40 50
−20

−10

0

10

20

30

40

50

Time after arrival (ms)

D
is

pl
ac

em
en

t (
m

m
)

 

 
1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

5

z/
z E

0 10 20 30 40 50
−20

−10

0

10

20

30

40

50

D
is

pl
ac

em
en

t (
m

m
)

Time after arrival (ms)

1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

3

4

5

t/t
d

LS−DYNA
Clearing
Exponential
Triangular

Figure 6.19: FE and SDOF response under different loading conditions for a 1 m square cladding
panel

It is possible to determine the peak displacement without the need for numerical analysis,

simply by using the response spectra provided in Figure 6.13. Taking Ru/Fe,max and td/T

as 0.10 and 0.12 respectively, the peak displacement for Z/H = 8 can be read off Figure

6.13(c) to give zmax = 1.7zE , which compares well with 1.53zE determined from the FE

analysis.

If clearing is neglected and the peak displacement under the exponential load is read from

Figure 6.13(a), the peak displacement would be estimated at 2.6zE . If the loading is

further simplified as a triangular load with no provision for clearing or the negative phase,

the peak displacement would be estimated from Figure 6.8 as 5.0zE . These correspond to

over-predictions of 70% and 230% respectively, demonstrating the need to take blast wave

clearing into account, especially during the early stages of design.

Peak displacements obtained using the graphical response spectra method are summarised

in Table 6.7.

Ru/Fe,max td/T zmax/zE

LS-DYNA Clearing Exponential Triangular
Fig. 6.13(c) Fig. 6.13(a) Fig. 6.8

0.1 0.12 1.53 1.7 2.6 5.0
% diff. 11 70 230

Table 6.7: Normalised maximum response for FE and SDOF model using graphical method and
percentage difference between FE and SDOF displacements
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6.6 Summary

The objective of this chapter has been to quantify the effect of blast wave clearing on

elastic and elastic-plastic targets via rigorous analysis of one degree systems.

For a given target size and scaled distance, the cleared blast pressure was given as a

superposition of the ConWep (Hyde 1991) reflected pressure and Hudson (1955) clearing

corrections at a grid of 100 × 100 points on the loaded face. The spatially and temporally

varying pressure was converted into an energy equivalent uniform pressure at each timestep

using the temporally varying spatial load transformation factor, KS(t), derived in Section

5.5.6.

First, linear elastic single-degree-of-freedom systems were analysed using this modified

load model to take into account the pressure relief caused by clearing, with the values of

peak displacement compared against a traditional SDOF model; a linear system subjected

to an equivalent triangular blast load under the assumption that the target is sufficiently

large so that edge effects can be neglected. For two sample targets, it was shown that,

depending on the dynamic properties of the system, clearing relief may be either beneficial

or adverse.

This study was extended to produce full elastic response spectra, where the peak SDOF

displacement – normalised against the peak SDOF displacement under the linear load –

was given as a function of scaled target size, Z, the time ratio of the load duration to

natural period of the target, td/T , and the scaled distance, Z. It was found that, for

elastic systems, clearing has little effect when td/T → ∞ and for systems where td/T → 0,

clearing acts favourably; reducing the net impulse and hence the peak displacement of the

target.

If the loading lies within the dynamic realm, i.e. the period of the system is similar in

magnitude to the duration of the loading event (0.1 < td/T < 1.0), negative pressures

may coincide with the rebound of the target and result in a greater peak displacement. It

is known that clearing may result in early negative pressures, and this effect may initiate

‘clearing resonance’, causing greater peak displacements than would have been predicted

had clearing not been considered.

In the second part of this chapter, elastic-plastic SDOF systems were studied. A simple

example using a non-cleared exponential load was used to characterise the regions of

the elastic-plastic response spectrum, with regions a., b., c. and d. representing: elastic

deformation; plastic deformation in rebound; plastic deformation in both directions; and

peak plastic deformation during the first half cycle of displacement – the system changes

between different regions of the response spectrum with increasing values of td/T .

Response spectra were generated for elastic-plastic systems under cleared and non-cleared

blast loads for a variety of scaled distances and scaled target sizes. Comparing these spec-

tra to the linear load response spectra of Biggs (1964) indicated that certain configurations
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of target size, mass, stiffness and elastic resistance will cause a greater increase in peak

displacement for elastic-plastic systems than for elastic systems. The results tend towards

the elastic response spectra as the ratio of the strength of the target to the peak applied

force, Ru/Fe,max, increases.

Comparing the cleared response spectra to the non-cleared spectra enabled a further quan-

tification of the effects of blast wave clearing. It was found that if the early negative cleared

pressure causes plasticity in rebound when the non-cleared load does not, then displace-

ments can be as high as 30% greater under the cleared blast load. Generally, blast wave

clearing serves to reduce the peak displacement of the target, particularly when the mag-

nitude of the load is large relative to the resistance of the target, and the load duration

is large relative to the response time of the target. Because neglecting blast wave clearing

can either lead to an over-designed target or, occasionally, an un-safe design, it is argued

that blast wave clearing should be considered at all stages of blast resistant design – par-

ticularly when a quick and physically valid method for predicting target response, such as

the one in this thesis, exists.

Finally, numerical and graphical examples have been used to demonstrate how this method

would work in practice. It was shown that the response spectra can be used to predict

the peak response of a finite target to within 11% of an explicit finite element model,

compared to a 230% over-prediction when simplifying the load as a triangular pulse and

reading off the response spectra provided in current design guidance.



Chapter 7

Summary and Conclusions

7.1 Summary

This thesis has aimed to investigate the effect of blast wave clearing on the dynamic

response of finite targets subjected to blast loads.

A high explosive detonation is characterised by the rapid release of energy as a mass of

explosive material is converted into a high pressure, high temperature gas. As this gas

expands it displaces the surrounding air, causing a high pressure shock wave to travel

through the air away from the explosive at supersonic speed. This shock wave can po-

tentially cause significant damage as it impacts a structure – it is the challenge of the

engineer to ensure that our infrastructure is robust enough to be able to withstand such

extreme loading.

The first aspect of blast engineering is to be able to predict and quantify the spatial and

temporal variation of the load acting on the target to a sufficient level of accuracy. In

Chapter 2 a review of the current literature is provided, as well as background information

relating to blast wave phenomology, methods for predicting the blast load acting on a finite

target and the state-of-the-art for predicting target response. A full review of the theory of

blast wave clearing is also given, along with a review of the available methods for predicting

it. In Chapter 3, the Arbitrary Lagrangian Eulerian method is introduced. The explicit

finite element solver LS-DYNA can be used to simulate explosive events and is validated

for three conditions: incident blast waves; reflected pressure on a semi-infinite surface and

reflected pressure on a finite surface. This validated model is then used in Chapter 4 to

study the mechanism of clearing for small targets and to investigate the current theory.

Secondly, the target response to this load must be predicted. An experimental trial, con-

ducted to validate different response-predictive methods, is detailed in Chapter 5. Target

response is simulated using three modelling techniques which are then compared against

the experimental results to determine which method is most appropriate. The single-

degree-of-freedom (SDOF) method approximates the distributed properties of the real life

153
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system into single point equivalent values – this procedure is already well established for

transformation of the target properties. In this thesis, the spatial variation of cleared

blast pressure is transformed in a similar manner by conserving energy between the real

life distributed load and an equivalent uniform load which is applied to the SDOF system.

By transforming the load in this way, non-uniform clearing blast pressure loads can now

be modelled in SDOF analyses.

The combined improvements to both load prediction and response modelling has allowed a

full parametric study to be conducted on finite-sized targets subjected to blast loads. Lin-

ear elastic and elastic-plastic SDOF systems are analysed in Chapter 6, using a modified

load model to take into account the pressure relief caused by clearing. Various combi-

nations of scaled distance, target size, dynamic target properties and target strength are

analysed and the values of peak displacement are compared against a traditional SDOF

model: a linear system subjected to an equivalent triangular blast load under the assump-

tion that the target is sufficiently large so that edge effects can be neglected.

Findings in this PhD thesis should be used to highlight the complex nature of blast-target

interaction, particularly when blast wave clearing is concerned, and should dispel the myth

that a design will be safe if clearing is neglected. Results presented in the study can also be

used by practicing engineers to determine the likely effect that blast wave clearing will have

on any configuration of explosive mass, stand-off, target size and dynamic properties, and

the numerical models developed within have the potential for widespread use in existing

commercial software.

7.2 Conclusions

The output of this thesis can be summarised in the following conclusions, which are listed

in the order that they appear in the current work:

• ConWep predictions for arrival time, peak reflected overpressure, positive phase du-

ration and positive phase reflected impulse have shown to be in excellent agreement

with a series of well controlled experimental trials.

• The cubic negative phase expression of Granström (1956) gives the best approx-

imation for the negative phase both qualitatively and quantitatively. By simply

extending the Friedlander (1946) equation to model the negative phase, the negative

impulse can be grossly overestimated.

• The ALE method in LS-DYNA can be used to simulate blast events to a good level of

agreement with semi-empirical predictions and experimental results, and can capture

features such as shock reflection and blast wave clearing accurately.

• Modelling the explosive using the *initial volume fraction keyword should be

avoided when modelling a curved charge in a rectangular mesh. A radially symmetric
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mesh should be used to correctly model spherical blast wave propagation as transport

of material diagonally through elements introduces a second order advection error

(Hallquist 2006). The spherical blast wave can then be re-mapped onto a rectangular

grid to model blast-target interaction using the *initial ale mapping keyword.

• Current literature guidance on predicting clearing (Kinney & Graham 1985, US De-

partment of Defence 2008, Cormie et al. 2009) is based on the assumption that a

series of expansion waves interact as they travel back and forth across the target

face (Taylor 1972). The work in this thesis has shown this to be an invalid as-

sumption and a new model is proposed, which describes the clearing effect as an

over-expanded region of air propagating outwards from the front-centre of the tar-

get. This over-expansion effect is reduced with decreasing target size and the load

therefore approaches the incident pressure.

• The Hudson (1955) clearing corrections have been shown to be able to predict the

blast load acting on targets subjected to mainly diffraction-type loading (Tyas et al.

2011a,b). In this thesis, it is also demonstrated that these predictions can accurately

capture the features of blast wave clearing for small target sizes, based on the fact

that the load is comprised of only one clearing wave propagating across the target

face from each free edge.

• When modelling structural response to a blast wave, one technique is to model both

the target and the surrounding air using finite elements and to transfer the blast

pressure from the air to the target using fluid-structure interaction. Whilst higher

order schemes such as these allow for more rigorous treatment of real-life physical

effects, their use may be limited by the need for reasonably sized computer models.

• Modelling the plate using finite elements and applying the blast force using simple

nodal-point load curves showed excellent correlation with experimental deflection-

time and peak deflection data. Applying Hudson (1955) corrections to nodal-point

forces allows cleared blast pressure to be applied to a finite target, and again has

been shown to be in excellent agreement with experimental results.

• Transforming the spatially varying pressure acting on a plate into an energy equiv-

alent uniform load using the spatial load transformation factor, KS , enables cleared

loading to be modelled in SDOF analyses, with the values of peak displacement for

an elastic one-way spanning target subjected to a cleared blast load predicted typi-

cally to within 10% of experimentally measured values. The demonstrated validity of

the SDOF method gives confidence that this approach is suitable for initial analysis

of loading events for geometrically simple scenarios.

• If the duration of load application is large relative to the natural period of the target

and the strength of the target exceeds the peak applied force by a factor of 2.0 or

more, the peak response is only affected by the peak reflected pressure and clearing

has little or no effect. If the strength of the target is less than twice the peak applied



156 7.2. Conclusions

force, however, then a quasi-statically loaded target will experience gross plastic

deformation and the time taken to reach peak displacement will increase. In this

case, blast wave clearing will have time reduce the velocity of the target and will act

to lessen peak displacement.

• If the duration of load application is small relative to the natural period of the target

the peak response is only affected by the applied impulse. In this case, inclusion of

clearing in the model will result in a significant reduction in displacement when

compared to designing against a linear load with no negative phase, and a small

reduction in displacement when compared to designing against an exponential non-

cleared load.

• For targets whose response time is comparable to the duration of the load, the influ-

ence of clearing is more complex. Neglecting clearing can be largely over-conservative

for small targets, however neglecting clearing can also be non-conservative through

a combination of target rebound, plasticity and early negative pressures caused by

the clearing waves. This increase in displacement can be up to 30% greater than

the peak displacement caused by a load model that neglects clearing, and up to 60%

greater than the peak displacement caused by a load model that neglects clearing

and the negative phase.

• For far-field loading, clearing can be neglected for situations where the ratio of the

scaled distance to scaled target height, Z/H, is less than 100, on account of the form

of the load converging towards incident blast pressure for targets smaller than this

value.

• Clearing can also be neglected for situations where the ratio of the scaled distance to

scaled target height, Z/H, is greater than 4, on account of the dynamic response of

the target tending towards the response under the full reflected pressure for targets

larger than this value.

• For any other situation, clearing should not be neglected at any stage until the

engineer is confident that its effects are understood.

• The graphical methods for predicting target response in this thesis have been shown

to be able to predict the peak response of a finite target to within 11% of an explicit

finite element model and can be used with confidence as a first means for predicting

the likely damage a target will sustain when subjected to an explosive load.
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7.3 Evaluation and Future Work

In Chapter 2, a series of small scale experimental trials were conducted in order to validate

the Kingery & Bulmash (1984) semi-empirical blast pressure predictions. Whilst the series

comprised only 4 experimental tests, this was considered an adequate number of tests to

demonstrate that the semi-empirical method can be used to predict blast loading to a

good degree of accuracy. Bogosian et al. (2002) showed that there was generally good

correlation between the Kingery and Bulmash predictions and experimental data from

blast trials, but with some considerable spread. It is possible that this was due to the fact

that the empirical data was generally from field trials involving very large explosions, with

the consequent difficulties in carefully controlling the test parameters. Whilst no repeat

tests were conducted for the pressure measurements on semi-infinite targets featured in

this thesis, the level of agreement shown – as well as both the demonstrated repeatability

and accuracy of the related experimental work on finite targets (Tyas et al. 2011a,b) and

the work of Rickman & Murrell (2007) – indicates that in small scale, carefully controlled

experimental trials, the correlation between experimental data and the KB predictions for

the positive phase parameters in the far-field is remarkably good.

In the near-field, however, the KB method appears to be less accurate, with the semi-

empirical predictions regularly over-estimating the incident specific impulse. This ob-

servation is confirmed in the numerical study of Cormie et al. (2013), where revised

scaled-distance relationships are provided for close-in detonations. Traditionally, a lack

of adequately robust instrumentation has prevented the accurate experimental recording

of near-field pressure, and instead numerical analysis is used to inform researchers of the

form of blast pressure loading in the near-field. The University of Sheffield Blast & Impact

research group has recently developed an experimental procedure for capturing the spatial

and temporal variation of pressure from extreme loading events (Fay et al. 2013). This

experimental setup could be used to research near-field loading in an attempt to provide

more accurate guidance for blast parameter prediction.

The negative phase parameters are less well validated than the positive phase. The ob-

vious extension of this work, therefore, is to conduct a further series of blast tests where

negative phase parameters are recorded. The results of this study can be used to either

provide validation for existing negative phase parameters (e.g. those in UFC-3-340-02), or

to generate a new database from which empirical predictions can be drawn. The US Army

Blast Effects Design Spreadsheet, SBEDS, (US Army Corps of Engineers 2005, page 3-9)

states that ‘so little is known about the negative phase blast load, including the effect of

angle of incidence. . . the lack of a well-validated method for predicting the negative phase

blast load is a legitimate reason for using the traditional approach of ignoring the negative

phase blast load when calculating component response.’ By including various angles of

incidence in this study, a more complete picture of reflected negative phase parameters

can be developed, enabling for better modelling of the blast load acting on a deformable

target.
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It was originally intended to conduct this study using LS-DYNA, however the validation in

Chapter 3 indicated that, whilst the negative phase impulse was generally well captured by

the numerical model, there was a slight difference between the form of the experimental

and numerical negative phase. The primary use of ALE analysis in this thesis was to

determine the dynamic displacement of a target where the peak displacement was reached

a short time after the positive phase. The limitation of the numerical model, therefore, was

unimportant in the analyses in this thesis, but will need to be further studied if LS-DYNA

is to be used to investigate the negative phase.

The study on blast wave clearing on small targets in Chapter 4 was evaluated for 2D targets

only. Whilst qualitatively the mechanism will be similar for 3D targets, an equivalent study

conducted on 3D targets would allow for both quantification of this effect, and for those

target sizes where clearing becomes unimportant to be highlighted. In this thesis, a study

of the mechanism itself was only considered important, hence 3D effects were neglected.

The ALE-FSI analyses in Chapter 5 were shown to be in good agreement for the early

stages of target response, but not as much for the later stages when clearing was acting.

This is likely due to mesh effects and is not explored further in this thesis – with a run

time of 168 hours and initial results to within 15% agreement of the experimental results,

any further improvement through mesh refinement (whether this is done locally around

the target or is made adaptive to areas of high pressure gradient using the *ale refine

keyword) was considered both unnecessary and time consuming. It is worthwhile, however,

highlighting the limitations of a computer model, and this appears to be one of them.

The spatial load transformation factor, KS , developed in Chapter 5, enables an arbitrary

spatially varying load to be represented as a uniform load for use in an SDOF model.

This is achieved through balancing the work done between the applied load and an energy

equivalent spatially uniform load. Whilst it is first validated for a case where the applied

load is spatially non-uniform but the non-uniformity remains constant with time, the main

application of the spatial load factor is for loads whose non-uniformity does not remain

constant with time. In this thesis, it has been shown that KS can accurately transform

the non-uniform cleared blast pressures under the assumption that the non-uniformity is

neither great enough nor is it maintained for sufficient duration to cause deviation from

the assumed deformed shape under a uniform load. It would be worthwhile to study this

assumption, and to develop limits where it begins to have an effect in order for KS to

be used in wider applications, for example near field free air loading or when evaluating

the response of a target subjected to a buried explosive – both of which have a spatially

non-uniform load for which the non-uniformity changes with respect to time and could in

theory be suited for SDOF analyses using the spatial load transformation factor.

Fluid-structure interaction is ignored in the parametric study of this thesis. It has been

shown in the literature that FSI can act to decrease the pressure acting on the plate and

hence decrease dynamic displacement (Subramaniam et al. 2009, Teich & Gebbeken 2012).

It is known that FSI only becomes important for systems whose initial response velocity
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is similar to the peak particle velocity of the blast wave. Indeed, the coupled ALE-

Lagrangian numerical results in Chapter 5, where FSI was modelled, showed no better

agreement than the numerical results where FSI was neglected. This strongly suggests

that, for the typical target properties and blast events studied in this thesis, FSI effects

can be ignored. It would be of interest, however, to study the mutual effect of clearing and

target compliance – to what extent does a flexible target influence the form of the clearing

wave? How does this then influence the response of the target? The clearing waves in

this study were assumed to travel along a rigid, flat reflecting surface – it is hypothesised

that a moving target will increase the available volume for the rarefaction wave to expand

into, hence the effects of clearing may be amplified and target response may be further

reduced through FSI. Again, it is unlikely that this will have any noticeable effect for the

compliant targets studied in this thesis (as evidenced by the level of agreement between

the experimental and numerical results of the models ignoring FSI, shown in Chapter 5),

but it will be useful to determine the situations in which it will have an effect and to have

an idea of the likely magnitude of that effect.

Finally, the influence of clearing was researched for simple geometries and for blast events

where the blast wave was unobstructed between source and target and arrived planar and

orthogonal to the reflecting surface. To extend the use of the Hudson clearing predictions,

it would be valuable to consider clearing effects in more complex scenarios represent-

ing blast in an urban environment. Whilst some effort has been undertaken to gain an

appreciation of the effect of nearby structures on the form of the blast load using numer-

ical analysis (Rose & Smith 2002, Rose et al. 2004, 2006), modification of semi-empirical

procedures and inclusion of Hudson (or modified Hudson) predictions would be of more

immediate use to practising civilian engineers. Effects such as shadowing, multiple reflec-

tions and non-orthogonal, non-planar blast wave arrival, whilst their effects have already

been highlighted to some extent in the literature, should be implemented into simple nu-

merical procedures with corresponding simplified clearing methodologies to allow for the

modelling of diffraction effects around the loaded target face. It has been shown in princi-

ple that the superposition of multiple relief waves can still be used for the Hudson clearing

corrections (Tyas et al. 2011a,b) – it would be of interest to see if a similar procedure

could be adopted for clearing predictions in more complex scenarios.

The conclusions drawn in this thesis should be used as evidence for the importance of

considering blast wave clearing, and the methodologies outlined could be adapted for

future research topics.
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