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Abstract 
Lytic polysaccharide mono-oxygenases (LPMOs) are a recently discovered, and rapidly 

expanding, family of enzymes capable of oxidizing complex polysaccharide polymers. 

They are attracting interest in biotechnology as potential factors in the efficient 

treatment of recalcitrant biomass with a particular focus on biofuel production. Previous 

work has identified key physiological features in LPMOs that are archetypal in the 

activity of these enzymes. Here we report that an enzyme from Caldibacillus 

cellulovorans(C. cellulovorans) with high sequence conservation with other LPMOs, 

displays high affinity copper binding characteristics typical of a CBM33 molecule.  By 

using EPR, the active site of C. cellulovorans CBM33 is revealed as an axial type 2 copper 

centre in a histidine brace conformation, emblematic of the LMPO clan. Oxidative 

degradation of chitin and cellulose was proven with mass spectrometry studies, product 

identity suggested a propensity for C1 oxidation; however, potential C4 site oxidation 

by-products were observed. The broad spectrum activity of C. cellulovorans CBM33 

could potentially stimulate a more diverse selection of efficient biofuel treatments. 

Further to this, oxidative activity at 80°C creates a new paradigm for high temperature 

biotechnology treatments for the degradation of recalcitrant polysaccharides.  
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Chapter 1 – Introduction 
 

Biofuels 
Future energy security is an increasing global issue that is polarising opinions in science, 

economics and politics. 1 Remaining fossil fuel deposits are fast being depleted for the 

production of electricity, transport, heating and oil based polymers. 2 Increased 

international demand from both industrially established and developing nations has led 

to forecasts of negative net fuel availability within 50 years, especially for states 

dependant on the importation of fuels.3 Decreasing fossil fuel stocks coupled with 

exponentially increasing demand and market diversity have driven fuel costs to the 

highest ever point. Fossil fuels are rapidly becoming an unviable option, economically 

and environmentally, for many nations. 2,4 Further to demand rapidly eclipsing demand, 

certain forecasts predict that there will be a dramatic, and potential fatal, global 

temperature shift in the near future if over 40% of available fossil fuels are burnt. 5 Even 

if these worst case scenario forecasts are false it is increasingly obvious that energy is 

rapidly becoming one of the most prominent global issues.  

Accumulation of global pressure has triggered an increase in the interest and financial 

support for alternative fuel sources. 6 Scientists have hailed biofuel as an energy source 

with both the production potential and environmental sustainability to replace fossil 

fuels in a balanced energy market. 4 Biofuels are currently estimated as 10% of the 

global energy production (50 EJ per annum) and the field as a whole contributes as the 

most prolific renewable energy source. 7  

Biofuels as a field of research and industry is incredibly diverse. Two major biofuel fields 

exist: the production of fuel biomass feedstock and harvesting oil like metabolic 

products from algal species and the formation of short chain alcohols from biomass. 

Though related, the two are distinct in the production process, production capabilities, 

economic outlook and scientific niche; this work will focus on the production of ethanol 

and short chain hydrocarbons (generally 4C or fewer) from glucose. Glucose is a 

potential feedstock with low cost, water solubility, non-toxic and abundant in plant 

biomass 

There are currently mature biofuel markets around the world: ethanol produced from 

processed sugar cane in Brazil and corn ethanol produced in the United States of 

America supporting beliefs that biomass fuels can realistically enhance the global energy 

portfolio. 8  

These first generation biofuels produced from plant based simple sugars have factors 

limiting their successful integration into a global energy market: 
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1. Decreased food security caused by limitations in available arable land. The 

financial benefits of bio-mass for the production of fuel over agricultural crops is 

leading to decreasing global food security and higher food prices. 

2. Regional water shortages, affecting the agricultural industry and water 

availability for human consumption. Depletion of fresh water sinks is a realistic 

danger due to the large volumes of water required in existing biofuel production 

protocols the irrigation of crops and downstream reaction steps and product 

washing. 

3. The financial input required to reduce CO2 emission by one tonne has been 

calculated according to the existing market. The cost of reducing CO2 emissions 

outweighs the positive environmental effect of 1st generation biofuels leading to 

their dismissal as a long term energy solution due to the incompatibility with the 

current economic environment. 8 The positive global reach of 1st generation 

biofuels is regarded as low considering existing infrastructure and production 

protocols. 

4. Limitations in market infrastructure including the transportation, processing 

facilities, refining facilities and experts and fuel compatibility has led to high 

company start-up costs and a nullification of positive environmental impacts. 

International bodies, governments and companies have begun to emphasise the 

production of biofuel from sources that do not have a detrimental impact on food, water 

and land security globally, 2nd generation biofuels. 9 The focus of bio-technology has 

shifted towards the step-wise liberation of sugars from agricultural waste and forest 

residues rich in lignocellulose and then conversion to fuels.   

Biomass structure 
The superfluity and high potential energy of lignocellulose as a feedstock for biofuel 

production has made it an impossible avenue for companies to ignore when searching 

for greener, renewable technologies to contribute to the complex global energy 

network.  

Cellulose is a polymer formed by the condensation of D-glucose monomers through β–1, 

4–glycosidic bonds to form linear chains (Figure 1.1A). Single cellulose chains aggregate 

laterally through hydrogen bonding and Van de waals interactions to form rod like 

structures called microfibrils. 10 Glucan chains do not exist as single entities in nature 

and therefore in the process of real time synthesis multiple chains are produced 

simultaneously and bind to form dense microfibrils in a crystalline matrix (Figure 1.1B). 
11 Cellulose is the base component of plant cell walls and provides protection, structure 

and support for the individual cell and synergistic rigidity with tissue. 

During cell wall synthesis cellulose is loaded with hemicellulose (branching 

polysaccharide polymers, such as mannan and xylan12)  and pectins to form a 

voluminous web of branching carbohydrate side chains. These spaces are occupied by 
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bound lignin (phenylpropanoid polymers), 13 the effect is complete encapsulation of 

cellulose leading to biomass recalcitrance (Figure 1.1C). Recent work aimed at 

characterising the molecular make up of lignocellulose has suggested that lignin 

physically inhibits degradation molecule access to cellulose. 

Cellulase action 
For cellulosic biofuel to be a major component of the global energy production network, 

saccharification of the complex cellulose crystal must be achieved. 9 Existing 

biotechnology protocols utilise step-wise degradation of the crystalline structure.  

Firstly the general recalcitrance of the lignocellulose complex is reduced by disruption of 

the hemicellulose or lignin network to liberate cellulose. A variety of techniques exist 

including dilute sulphuric acid pre-treatment, alkaline explosion and organic solvent 

extractions. 14 

 

 

 
 

 

Figure 1.1 The complex structure of cellulose. 
Figure 1.1 shows the complex structure of lignocellulose. (Figure from Nguyen (2010) 

15
). 

(A) Shows the linear structure of the cellulose polymer, single molecule polyglucan like this does not form readily in 
nature, instead the chain has a propensity to polymerise in rod like components to create dense, crystalline 

structures. 
(B) Cartoon representation of a cellulose microfibril displays the inaccessibility of individual cellulose chains due to the 

steric packing in crystalline regions. Not shown are the stabilising molecules bound into the complex 3D structure 
which further stabilise the crystal structure. 

(C) Image displaying a cross section of a plant cell wall displaying the complete encapsulation of cellulose by lignin. 
(Figure adapted from Lawrence Livermore National Laboratory website). 

 

Non-cellulose cell wall component removal greatly increases the accessibility of the cellulose, 
enabling the second step, enzymatic degradation of the cellulose matrix. 13 Existing enzyme 
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treatments contain a wide spectrum of carbohydrate active molecules. A combination of endo-
acting and exo-acting cellulases will cleave cellulose into glucose monomers (Figure 1.2A). 16,17 

These enzymes are greatly inhibited by the recalcitrant structure of cellulose, even after 

the pre-treatment process. As evidenced in Figure 1.2, Parts B and C, cellulases have 

active site envelopes buried with the protein core. These pockets are created by aligned 

hydrophobic residues that hinder the entrance of water molecules protecting an open 

cavity within the protein core containing the catalytically dependant residues.18  

The globular structure of cellulases means that the enzyme is only able to cleave 

glycosidic bond when a single cellulose strand is able to enter the enclosed groove 

(endoglucanase) or tunnel (exoglucanase) active sites. 19 Because of this, cellulase 

enzymes are only able to degrade cellulose in amorphous regions of cellulose and a large 

protein load is required to completely degrade the matrix. The inaccessibility of the 

active site to truly crystalline polysaccharides inhibits the production of short 

oligosaccharides and reduces the viability of lignocellulosic biofuels without serious 

steps to improve recalcitrant polysaccharide breakdown. Despite a rapidly expanding 

repertoire of techniques, high enzyme load and the initial energy input required have 

made lignocellulosic fuels increasingly unviable economically for the field of 

biotechnology. 
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Figure 1.2 Cellulase action on crystalline cellulose. 
Figure 1.2 shows the structural features of cellulase enzymes and the synergistic breakdown of cellulose. (Figure 

adapted from Nguyen (2010) 
15

). 
(A) Cartoon of cellulose activity on a microfibril of cellulose with particular emphasis on different site of attack for the 

endo and exo cellulase enzymes 
(B) Space filling model of an endo-glucanase active anywhere along an exposed cellulose chain enabled by the groove 

like binding site. The different coloured residues show the amino acid residue polarity of charge. 
(C) Space filling model of an exo-glucanase active and the cellulose chain ends. The different coloured residues show 

the amino acid residue polarity of charge. 

Lytic Polysaccharide Mono-oxygenases 
The inestimable potential of cellulase treatments in biotechnology has driven research 

into improving the poor activity of cellulose degrading cocktails. An extended database 

of cellulase enhancing conditions exists; citing enzymes, small molecules, buffer 

components and thermal conditions. 20,21  

In one experiment, a fungal protein, of unknown function, was shown to amplify 

hydrolysis of crystalline cellulose two fold and in the process greatly decreasing the 

required enzyme load. Due to the acceleration in hydrolytic activity observed when 

these proteins were present they were named Glycoside Hydrolases, GH61 (See Table 

1.1). 22-26   

 

 

 

 

 

 

 

(A) 

(C) 

(B) 
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Bacterial 
 

Fungal 

First discovered as 

 
Chitin binding protein 21. 

Reports that CBP21 enhances 
chitinase activity. 

 

Cel Glycoside hydrolase 
61 

GH61 enhances the 
activity of classical 

hydrolases. 

Reclassified by 
affinity 

 
Carbohydrate binding module 

33 
Recognise as being bacterial 
homologues of the copper 

dependant mono oxygenase 
proteins from fungi. 

 

Glycoside hydrolase 61 
A copper dependant 

molecule that exhibited 
oxidative activity and no 

hydrolase activity. 

Reclassified by 
activity 

 
Auxiliary Activity 9  

Bacterial LPMOs characterised 
as oxidative molecules acting 
by an unknown mechanism 
but encompassing CBM33 

enzymes. 
 

Auxiliary Activity 10 
Fungal LPMOs were 

reclassified as no 
hydrolase activity was 
observed and enzymes 

generated oxidative 
reaction products. 

Table 1.1 Changes in LPMO classification in the CAZy database. 

Table 1.1 shows how bacterial and fungal LPMOs have been classified since their discovery finally leading to their 

classification as Auxiliary Activity enzymes with oxidative action. 

The CAZy database categorises enzymes active on carbohydrates according to the Henrissat classification, divided into 

families by the structural and activity similarities. 
27

 Families AA9 and AA10 in the CAZy database are LPMOs from all 

kingdoms of life. 
28

 

Attempts were made to characterise LPMO enzymes as a potential augmentation of 

existing biofuel protocols, a crystal structure of CelGH61B from Hypocrea jecorina was 

published allowing for structural elucidation. 29 CelGH61 had an immunoglobulin-like β-

sandwich fold, with a di-valent metal active site situated on a flat binding face (Figure 

1.3). 
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Figure 1.3 The structure of GH61. 
GH61 structure both in a whole molecule, line and ribbon representation and an electron density model of the active 

site. 
(A) Cartoon representation of CelGH61 enzyme showing the β-barrel structure of the immunoglobin like fold 

where the different colours represent different domains of the 3D protein. 

(B) Showing a di-valent metal active site on a flat binding face with electron density showing the two histidine 
residues coordinating the copper ion (Green) and the ligand bond lengths.  

Figure adapted from Quinlan et al.
24 

 

Nickel was modelled into the site; the metal ion coordinated by a histidine brace and a 

tyrosine residue. The N-terminal histidine residue of the amino acid chain coordinates 

the metal ion and was therefore forecast as being essential for activity.  

The structural aspects of GH61 are atypical of classical GHs and suggestions were made 

that GH61 enzymes were not classical hydrolases. No archetypal binding groove or 

tunnel was observed and importantly the key acid/base catalytic residue pairs found in 

hydrolytic enzymes were absent from the structure.   

Active site 
Work on GH61 enzymes began to focus on the characteristics of the active site and the 

identity of the metal ion.  

Ambiguity surrounding the metal identity was partially alleviated when a GH61 structure 

was published; 24 Quinlan et al identified the metal as being a Cu(II) ion. The structure of 

GH61 was recognised as similar to a chitin binding protein (CBP21, renamed CBM33) 

from Serratia marcescens which had been published previously. 30 This molecule was 

shown to have oxidative action on crystalline chitin though the mechanism and metal 

dependency were missed. Utilising this information Quinlan et al predicted GH61 and 

CBM33 as being copper dependent monooxygenases. Electro paramagnetic resonance 

(EPR) studies of the lone electron in GH61 allowed for characterisation of the copper 

centre. The G value obtained for GH61 of 2.27, as shown in (Figure 1.4), is representative 

of Type (II) copper centres and has become indicative of some LPMOs. 24 This type (II) 

copper centre can be characterised by a single copper molecule bound by nitrogen or 

oxygen ligands in a square planar geometry. 

(A) (B) 
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Figure 1.4 Type 2 copper centre analysed by EPR. 
Figure 1.4 showing EPR spectrum of a copper centre coordinated by O/N ligands in a square planar geometry (Type 2 

copper centre) 
The Four peaks are indicative of a type 2 copper centre and have been seen in the EPR spectra of LPMO enzymes 

analysed by EPR. Adapted from Quinlan et al. 
24 

 

Both GH61 and CBM 33 have been shown to contain similar, type (II) copper active sites, 

and overall β-barrel structure with a flat binding face. They are structurally and 

mechanistically related; 31 both have a metal ion active site situated on a flat binding 

face essential for substrate orientation. Within the active site; two histidine residues, 

including the N-terminal residue coordinate the copper. In GH61 a tyrosine residue also 

coordinates the copper and the N-terminal histidine was found to be methylated; 

neither trait has been identified in CBM33 which gives some indication to the different 

substrate activities (Figure 1.5). 
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Figure 1.5 Comparison of a GH61 active site and two species of CBM33s.  
Figure shows a carton comparative analysis of different copper active sites in a variety of LPMO enzymes. 

Cu(II) centre in Thermoascus auranticus GH61 (PDB:2yet). Blue sphere represents a copper ion in the 2+ state. 
Cu(II) centre in Enterococcus faecalis CBM33 (PDB:4alr) ). Blue sphere represents a copper ion in the 2+ state. 

Cu(I) centre in Enterococcus faecalis CBM33 (PDB:4alt). The orange sphere represents a copper ion in the 1+ state, 
though the coordination of the copper indicated that x-ray reducing of the copper has returned the active site to 

Copper 2+. 
Cu(I) centre in Bacillus amyloliquefaciens CBM33 (PDB:2yox) The orange sphere represents a copper ion in the 1+ state 

though the coordination of the copper indicated that x-ray reducing of the copper has returned the active site to 
Copper 2+, though the coordination of the copper indicated that x-ray reducing of the copper has returned the active 

site to Copper 2+.. 
The glutamine residue in GH61 active site is replaced by Phenylalanine in both the species of CBM33s and there is an 

additional alanine. These differences are thought to dictate the different activities and binding characteristics. It is 
clear to see the conserved geometry of the coordinating residues about the copper active site. 

Figure adapted from Hemsworth et al (2013) 
32

 

 
Both CBM33 and GH61 act on the polysaccharide matrix in a non-hydrolytic manner; a 

mechanism involving the copper dependent insertion of atmospheric oxygen into the 

lignocellulose chain has been shown. 33-35 Activity in LPMOs is dependent on the redox 

activation of the enzyme by reducing agents such as celliobiose dehydrogenase enzymes 

(CDH1) or small molecules. 36 This activation is thought to allow binding of atmospheric 

oxygen for the formation of a catalytic reactive oxygen species. Evidence has been 

provided that GH61 and CBM33 molecules can create random length chain breaks in the 

polysaccharide chain by oxidative action to cleave a glycosidic bond and produce a 

charged carboxylic acid chain break. 35,37 Recent theoretical work has suggested that 

they break glycosidic bonds using a copper-oxyl mediated, oxygen rebound mechanism. 

They suggested that previous theories underestimated the reactive oxygen species 

‘power’ required to break the glycosidic bond. 38 The mechanism by which the cellulose 

chain is broken remains unresolved. Questions remain about the specificity of the 

reaction, due to the observation of C1, C4, and C6 oxidation products, as well as further 

doubts about the mechanism for substrate binding. 

These enzyme families are now regarded as lytic polysaccharide mono-oxygenases 

(LPMOs) and their classification in the carbohydrate-active enzymes database 

(CAZy; http://www.cazy.org) was altered accordingly. 39 In 2013, the GH61 and CBM33 

families were reclassified by function to the Auxiliary Activity families 9 and 10 

respectively. 40 

http://www.cazy.org/
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LPMO enzymes have an important role in future cellulosic biofuel protocols due to the 

potential increase in yield, rate and required enzyme load. Existing treatments are 

limited by the enzymes that are available and characterised. Biotechnology must 

advance as a field and find alternative enzymes with broader range of temperature and 

pH tolerance. Most importantly, more enzymes must be characterised that have a broad 

activity spectrum that will allow for complete conversion of lignocellulose material to 

glucose, including the non cellulose polysaccharides in the complex.  

C. cellulovorans CBM33 
C. cellulovorans is a thermophillic, cellulolytic, bacterium that obtains nutrients through 

the degradation of wood and plant matter rich in lignocellulose. 41 C. cellulovorans 

releases an extracellular ‘cellulosome’ cocktail containing enzymes for the degradation 

of plant polysaccharides. A component of the C. cellulovorans cellulosome is a multi-

domain β-1, 4-mannanase; 42  a GH5 mannanase enzyme, which is bracketed by CBM3 

modules and linked to an N-terminal protein thought to be an AA10 enzyme. The gene is 

thought to be a LPMO due to the high sequence conservation with known CBM33s 

(Uniprot: Q9RFX5 - mannan endo-1, 4-β-mannosidase). Discovering a LPMO from C. 

cellulovorans CBM33 enzyme is of particular interest for 2 reasons:  

 

1. It is the only LPMO present in an organism that is known to release extracellular 

enzyme cocktails for the breakdown of material rich in lignocellulose such as woody 

materials. Therefore, it is a possibility that the protein exhibits activity on a variety of 

carbohydrate substrates to accelerate the release of polysaccharide chains from the 

complex matrix. This protein is of particular interest due to the presence of the encoding 

gene on an operon active on mannan polymers, it is possible that this protein is active 

on the complex crystalline substrate mannan to allow nutrient uptake by the cell.  

Activity of an LPMO on mannan has not yet been shown. This novel activity would 

therefore be very important in biotechnology for both biofuels and for other fields that 

are dependent on the degradation of complex polysaccharides. 

2. Calibacillus Cellulovorans is a bacterial strain that grows in high temperatures (50-

80°C). This means that the enzymes of the cellulosome are likely to be stable at those 

temperatures. The thermo stability of these enzymes is desirable as it allows for 

biotechnological applications at higher temperatures to produce higher yields. The 

increased stability can give a larger range of bio-industrial treatment conditions. 

LPMO enzymes will have an important role in future cellulosic biofuel production 

pipelines due to the potential increase in yield, rate and reduced enzyme load that they 

induce. Existing treatments are limited by the enzymes that are available and 

characterised. Biotechnology must advance as a field and find alternative enzymes with 

broader range of temperature and pH tolerance. Most importantly, more enzymes must 

be characterised that have a broad activity spectrum that will allow for complete 

http://www.uniprot.org/uniprot/Q9RFX5
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conversion of lignocellulose material to glucose, including the non cellulose 

polysaccharides in the complex.  

Aim 
The project aimed to characterise C. cellulovorans CBM33 structure and function with a 

view to biotechnological applications. Work will focus on the purification of C. 

cellulovorans CBM33 from E. coli. Experimentally the main aims are to confirm the 

identity of C. cellulovorans CBM33 as a LPMO and elucidate the activity and mechanism. 

If successful the works stands to make a significant impact with wide reaching 

implications in biotechnology. C. cellulovorans CBM33 could improve the yield and cost 

efficiency of existing biofuel treatments and enable expansion to other biological 

feedstock such as hemicellulose. The enzyme could also impact bacterial washing 

powders, water treatment 
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Chapter 2 – Purification of C. cellulovorans CBM33 

2.1 Expression vector 

Expression system optimisation has given rise to a class of vectors derived from the 
E.coli strain pBR322 called pET vectors 43. These vectors have been manipulated to alter 
the available leader sequences, expression signals, relevant restriction sites, and 
other features to optimise recombinant gene expression (see Figure 2.1).  

 

 

 

Figure 2.1 Components of an expression vector. 
ORI site is a short sequence of DNA where replication initiates. Recombinant plasmids contain an ORI site separate from 

the host replication site. Most expression strains have a genetically modified ORI site that has replication inhibitory 
mechanisms for hyper replication of the plasmids. 

Promoter sites are regions of DNA that allow for specific recognition of a gene transcription start site by RNA polymerase. 
Expression tags are transcribed regions of the gene that improve the downstream purification process. These can include 

regions that will help with cell localisation (PelB leader sequence), affinity purification (poly-histidine sequence) or the 
solubility of the intracellular recombinant protein (SUMO). 

Selection marker gene, encoding for the translation of a protein to provide a specific anti-biotic resistance to the strain to 
allow for selective cloning. Common antibiotics used in recombinant protein expression are ampicillin (AmpR – β lactamse 

gene) or kanamycin (kanR – nptII gene). 
Terminator region of DNA to stop the transcription of the recombinant genes. 

 

A former member of the Davies’ group, Ed Taylor, designed and ordered a codon 
optimised vector for the CCCBM33 (Figure 2.2). The C.cellulovorans gene was cloned 
into a pET-11a vector for optimal expression in competent E.coli strains: 

1. The selection marker (see Figure 2.1) in the pET-11a vector is an ampicillin resistance 

gene. The gene encodes for a β-lactamase enzyme, the enzyme has the ability to 

catabolise ampicillin like antibiotics to give resistance for selected growth  

2. C.cellulovorans CBM33 expressed from pET-11a has an expression tag for periplasmic 

targeted expression. The N-terminal sequence of 22 amino acid residues called a PelB 

leader promotes periplasmic translocation of the recombinant protein. The presence of 

an expression tag is designed to allow for more efficient purification to yield higher 

concentrations of recombinant protein. 
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CAT 

ATGAAGTATCTGCTGCCGACGGCTGCTGCTGGTCTGCTGCTGCTGGCTGCCCAACCGGCTATGGCGCATGGTGGT 

ATGGTGTTCCCGGCGACCCGTACGTATGCCTGCTACGTCGATGGCAAAGTGCATGGTAATGGCGGTGACCTGAAC 

ATGATTAATCCGGCATGTCTGGATGCGCTGGCCATCAGTGGCAACTATCAGTTTTGGAACTGGTTCGGTAATCTG 

ATTTCAAACGCTGGCGGTCGTCACCGCGAAATTATCCCGGATGGCAAGCTGTGCGGTCCGACCGCAAGCTTTGAT 

GGCATGAATCAGGCTCGTACGGACTGGTGGACCACGCGTCTGCAACCGGGTGCAACCATCACGGTGCGTGTTAAC 

GCATGGGCTCCGCATCCGGGCACCTGGTATCTGTACGTGACGCGTGATGGTTGGGACCCGACCCAGCCGCTGAAA 

TGGAGCGATCTGGAACCGACCCCGTTCTCTCAAGTTACGAATCCGCCGATTAACAGCTCTGGCCCGGACGGTGCC 

GAATATTCCTGGCAGGTCCAACTGCCGAATAAGCAGGGCCGTCACATTATCTACATGATCTGGCAACGCAGTGAT 

TCCCCGGAAGCGTTTTATAACTGTTCAGACGTTTACTTCGGCTCGGGTCCGATTGCCTACGAATTTGGTGATCCG 

CGCGAAGGCGGTACCATGATC 

TAAGGATCC 

Figure 2.2 Sequence of the ordered C. cellulovorans CBM33 gene. 

Figure 2.2shows the codon optimised expression gene for C.cellulovorans CBM33 with an attached PelB sequence for 

periplasmic targeted expression. (Optimized Sequence Length:708, GC%:56.54) 

3. Pet-11a has a T7 promoter controlling the expression of the recombinant gene. The 

vector does not however have a readily expressed T7 RNA polymerase; instead, 

polymerase expression is regulated through the Lac operon. Lac genes are conditionally 

expressed in the presence of lactose which allows for inducible expression in vitro by 

addition of a lactose analogue, IPTG. 

Recombinant gene expression involves the experimental production of a protein from 

cloned DNA. High protein yields are dependent on the ability to control expression. 

Protein expression is dependent on the RNA polymerase catalysed gene transcription to 

messenger (m) RNA. Regulation of transcription comes from promoters which are 

regions of DNA that allow the binding of polymerase molecules which allows for 

transcription of the genes. An effective mechanism for the control of gene expression is 

the insertion of an inducible promoter into the expression vector to allow control of the 

expression. Inducible promoters only activate expression in the presence of physical or 

chemical stimulus.  

The Lac promoter in expression strains 
The Lac operon in its natural form is a set of genes encoding the uptake and metabolism 

of lactose in E.coli and selected bacterial strains. Three structural genes (lacZ, lacY, 

and lacA) control the uptake and breakdown of lactose in sugar monomers and their 

expression is tightly regulated by a repressor molecule.  

The strong regulation of the Lac operon has made inducible expression of recombinant 

protein a powerful tool in microbiology. In laboratory experiments, as in natural E.coli 

the expression of genes in the Lac operon are completely switched off the absence of a 

substrate. The Lac I gene encodes for the translation of a repressor protein (Lac 

repressor) that is constantly expressed in live E.coli cells. Lac repressor regulates the 

expression levels of the Lac operon in E. coli in order to prevent the genes being 

transcribed when a useful substrate is present. The repressor molecule forms a tetramer 

complex that binds to the DNA that encodes for the Lac operon.  
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The repressor molecule forms a dimer readily with itself and will then form a complex 

made up from four individual subunits of the repressor protein. Each monomer has a 

domain at the N terminal of the subunit, residues 1-49, that when unbound is flexible 

relative to the protein but takes a rigid shape when able to bind to the major groove of 

DNA cis of the promoter site. 44This binding domain has exposed helix-turn-helix motifs 

that allows for sequence recognition of DNA bases in the operator region.  Binding of the 

helix-turn-helix domain allows for hydroxyl groups of the deoxyribose backbone to 

anchor the repressor to the operator site.  

The binding of Lac repressor to this major operator site (Om) and allows for a second 

operator region, regarded as the auxiliary operator site (Oa), which is distal from the 

major operator region to bind to a second helix-turn-helix region of the repressor 

molecule. This multiple site binding of the operator regions creates a complex folded 

conformer of the E. coli which prevents binding of the transcription machinery. The 

repressor molecule directly hinders RNA polymerase binding and therefore negatively 

regulates the expression of the Lac genes. 

Lactose and lactose mimics have a higher affinity for Lac repressor than the operator 

sites and, when present in the cell, bind to the repressor tetramer. Lactose binding to 

the repressor molecule causes an allosteric alteration the protein. The allolactose 

binding site was shown to be in the hinged section of the complex protein distal to the 

DNA binding domain. Binding of IPTG to LacI is mediated by a water mediated, hydroxyl 

conformation about IPTG which alters the structure of the protein, especially the 

dynamic DNA binding domains. 45 This alteration in the 3D structure alters the 

orientation of the helix-turn-helix binding domains relative to the DNA which causes 

dissociation of the repressor from the operator site. This dissociation allows RNA 

polymerase access to the promoter and transcribes the gene in the multiple cloning 

sites. 

In vitro, a lactose mimic, IPTG, is used to selectively induce the genes controlled by the 

Lac promoter, IPTG directly mimics allolactose and is transported across the membrane 

of the cell and can interact with the transcription machinery. The pET vectors, a 

selection of expression strains derived from BL21 have utilised this powerful induction 

tool to control recombinant gene expression in order to optimise translated protein 

yield. The pET vector has a gene attached to the Lac promoter which transcribes a T7 

RNA polymerase. This means that when IPTG is added into the culture it is taken into the 

E.coli cell and promotes the expression of the Lac operon genes, in this case a T7 RNA 

polymerase. The transcribed mRNA is translated and a copy of T7 polymerase is 

produced. T7 polymerase then binds to a different promoter site, in a residue specific 

manner, and catalyses the transcription of the genes controlled by the T7 promoter. 

Normally, the recombinant gene is cloned into the vector downstream of the T7 

promoter site so that the gene of interest is expressed when IPTG is added to the 

system. Is a powerful inducer for in vitro work as there is no expression prior to addition 
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but after the IPTG is induced the molecule binds to the repressor and, as the cell cannot 

break down the synthetic version, transcription is constantly turned on to optimise 

recombinant protein yield (See Figure A1).  

2.2 Expression strain 
Once the recombinant gene has been cloned into a circular DNA vector it must be 

inserted into a host cell for expression of the gene to synthesise the desired protein of 

interest. There are a varied of selection of cell strains which have each been genetically 

altered to help increase to amount of recombinant protein produced. In order to test 

the expression of C.cellulovorans CBM33, from the pET-11a vector, an expression strain 

matrix experiment using different E.coli strains. These strains are all derivatives of BL21 

E. coli cells that have been genetically altered to control aspects of recombinant protein 

production. Several strains of E. coli expression cells were tested in a small scale 

expression test.   

Figure 2.3 is an SDS-PAGE gel showing the isolated soluble protein fraction from the 

tested strains. To isolation methods were used, analysing the whole cell isolate and the 

fraction obtained from the periplasm, utilising the PelB leader sequence periplasmic 

expression to separate C. cellulovorans CBM33 from the cytosolic fraction. 
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Figure 2.3 Expression strain expression test experiments. 
The figure shows an image of an SDS-PAGE gel, the lanes contain expression isolate from the pET-11a vector containing the 

C. cellulovorans CBM33 gene inserted into different expression strains. The expression profiles are shown for the strains 
BL21* and TUNER. 

The arrow indicates the recombinant protein band showing that C. cellulovorans CBM33 is expressed in the soluble fraction 
of both the TUNER and BL21* cells. C. cellulovorans CBM33is not present in the uninduced fractions of either cell 

confirming the IPTG controlled induction. 
 

Recombinant expression of C. cellulovorans CBM33 from TUNER and BL21* cultures gave 

clear soluble bands showing that purification was a possibility from these cells. The basal 

expression levels within the BL21* cell cultures is lower than that in TUNER, and 

therefore it is reasonable to assume that purification of recombinant protein from this 

system would be easier.  Predicted translocation of C. cellulovorans CBM33 to the 

periplasm appears successful due to the presence of the recombinant protein in the 

periplasmic isolated fraction. Successful translocation mechanism will improve the 

purification protocol by reducing contamination and should leave an active protein 

which runs at the correct weight on an SDS-PAGE gel. In an attempt to improve the 

expression yields of C. cellulovorans CBM33 we carried out a sequence of expression 

optimisation studies. 

BL21* is a commonly used cell strain for the expression of recombinant proteins. 
Genetic manipulation leads to hyper transcription of DNA to complete saturate the 
translation machinery. The physiology of the cells have been altered to maximise the 
efficiency of polymerase activity, mRNA stability and minimise RNA breakdown 46. A 
further deletion of the LON and ompT protease genes reduces protein recycling. 47-49 In 
order to maximise recombinant protein expression the transcription levels of T7 
promoter modules is much higher than unaltered cells which means that upon induction 
of the Lac operon genes by IPTG the expression of T7 polymerase will be higher and 
therefore the transcription of the recombinant gene will be more efficient and the final 
concentration of the protein will be higher relative to the cell content. Modifications to 
catabolic genes of BL21* greatly reduces the levels of basal protein expression. Further 
truncation of the RNAase gene reduces the rate of mRNA cleavage and therefore 
saturates the ribosomes for optimal translation. 49 As a further protection to 
recombinant protein yields the competent cells have a resistance to phage T1 (fhuA2), 
which ensures healthy cell growth. 

 

Induction optimisation of PelB C. cellulovorans CBM33  
 

The initial protein yield from BL21* was low and in order to optimize the expression of 

the C. cellulovorans CBM33 gene, an experiment was devised to study how the time of 

induction with respect to culture cell density affects the soluble protein yield. IPTG 

induction can be affected by different factors from uptake rates, culture cell density, 

growth rate and the concentration maintenance inside the cell. By tuning the time of 

expression induction the expression could be increased to optimize the recombinant 
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protein yield. Small scale expression cultures were prepared identically and grown at 

37°C to OD600 0.4 before the temperature was reduced to 16°C. One set of cultures was 

inoculated with IPTG to induce recombinant gene expression at an optical density 

(OD600) 0.8 (early) and another at 1.5 (late). In order to compare the yields of the two 

sample the cells were harvested and the protein isolate analysed by SDS-PAGE gel.  

 

 

 

Figure 2.4 A vector map of pET-11A containing a PelB tagged C. cellulovorans.  
Figure 2.4 shows a vector map of C. cellulovorans CBM33 in a pET-11A vector designed for expression from E. coli. 
Components of the cell that are essential to the optimal expression of recombinant protein, including the origin of 

replication (ori), Ampicillin resistance gene (AmpR), Lac I promoter, T7 promoter and the recombinant gene, are marked. 
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Figure 2.5 Induction optimisation 
Figure showing an SDS-PAGE gel analysing the isolates from BL21* competent cell inoculated with C. cellulovorans CBM33 
and gene expression induced using IPTG at different time points. OD600 0.8 was labelled early induction and OD600 1.5 late 

induction. C. cellulovorans CBM33 is marked on the gel with an arrow at the expected molecular weight. 
 

Figure 2.5 shows that when the cultures were allowed to reach higher cell density before 

IPTG was added to the culture to induce recombinant gene expression the protein band 

increased in density. Considering the increase in protein yield seen in small scale 

expression tests cells were induced at OD600 1.5 for all future experiments. 

Purification of C. cellulovorans CBM33 
 

The periplasmic isolate from the BL21* cells was impure and required purification to 

allow for successful characterisation. If it were possible to design an efficient purification 

protocol to isolate pure recombinant C. cellulovorans CBM33 then characterization of 

the protein would be possible and problems caused by poor expression would be 

negated.  
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Certain physiological properties of C. cellulovorans CBM33 restrict typical purification 

methods. Usual purification techniques, using Histidine tag purification by nickel affinity 

is not possible as the poly-histidine region would bind copper molecules and inhibit any 

binding studies. Alternative N-terminal purification tags have been disregarded due to 

the structural and functional importance of the N-terminal histidine residue. The 

majority of proteases available for the cleavage of a purification tag exhibit non-specific 

cleavage and possible expression artefacts, which, attached to the N-terminal histidine 

are predicted as disrupting the folding and activity of C. cellulovorans CBM33 making the 

construct useless. C-terminal tags were considered, however, again the inability to 

cleave the tag either at all or in a site specific manner could not be ensured.  

A selection of purification techniques was tested in an attempt to purify C. cellulovorans 

CBM33. 

 

 
 

Figure 2.6 Sequential C. cellulovorans purification. 
Figure showing SDS-PAGE gels analysing Sequential purification of C. cellulovorans CBM33 by (A) Q column – anion 

exchange and (B) Gel filtration (S75). C. cellulovorans CBM33 did not bind with the Q column and was therefore present in 
the flow through (Blue arrow on both gels). Size exclusion chromatography purified the recombinant protein apart from a 

contaminant band. 
 

Figure 2.6 shows results of the sequential purification of C. cellulovorans CBM33 by 

anion exchange and gel filtration influenced by the existing purification protocol of 

Bacillus amyloliquefaciens CBM33. 50 C. cellulovorans CBM33 did not bind to the Q 

column and was present in the, very dilute, flow through. At pH 8 C. cellulovorans 

CBM33 should have bound to an anion exchange column according to the Expasy 

predicted pI, the failure of this method made the successful purification of C. 

cellulovorans CBM33 in good yields unlikely. The results in Figure 2.6 (B) shows the gel 

filtration results, the protein was present, but in unmeasurably low concentrations. The 

(A) (B) 
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possibility of increasing the volume of production cultures to increase recombinant 

protein yields was dismissed as a possibility as there was a contaminant protein at 

around 31 kDa.  The presence of this contaminant prevented successful purification and 

characterization of C. cellulovorans CBM33 and other purification methods were 

explored. 

Purification protocol optimisation  

Ammonium sulphate precipitation 
In an attempt to improve the yield of C. cellulovorans CBM33 from purification 

techniques we attempted to precipitate contaminants from the solution by addition of 

ammonium sulphate. The ammonium sulphate concentration in the protein solution was 

raised step-wise and the precipitant analysed. Recombinant C. cellulovorans CBM33 

protein precipitated between 2.0 M and 2.5 M final concentration of ammonium 

sulphate. (Results not shown due to gel distortion in the presence of ammonium 

sulphate) Whilst this technique did purify the recombinant C. cellulovorans CBM33 from 

some contaminant proteins that precipitated in lower ammonium sulphate 

concentrations, the sample was not pure. Furthermore the large contaminant band 

observed in earlier purification steps remained. 

Excess ammonium sulphate, an artefact from the purification method, inhibited 

downstream purification steps and analysis by SDS-PAGE gel. Repeat washing steps to 

remove the excess decreased yields of protein. Precipitation of recombinant C. 

cellulovorans CBM33 by ammonium sulfate precipitation was dismissed as a purification 

step. 

Hydrophobic interaction chromatography 
The hydrophobic interactions of proteins are usually mutually exclusive from the anionic 

interaction characteristics, therefore as an alternative or further purification method 

Hydrophobic Interaction Chromatography was tested. 

The flow through obtained from a Q column, containing C. cellulovorans CBM33,  was 

loaded onto a Phenyl sepharose HIC column equilibrated in a 50 mM Tris pH 8.0, 1 M 

ammonium sulphate buffer. 
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Figure 2.7 Caldibacillus Cellulovorans HIC purification 
Figure showing an SDS-PAGE gel analysing fractions from a Hydrophobic Interaction Chromatography column. The protein 

load was a dilute and impure sample of C. cellulovorans CBM33, purification by HIC did not yield a workable sample of 
recombinant protein. There is no visible band on the gel showing C. cellulovorans CBM33 either due to the low 

concentration of protein or the high concentration of ammonium sulphate in the elution buffer. 
 

 There were no visible protein bands on the SDS-PAGE gel analyzing fractions of the 

hydrophobic gel, either due to ammonium sulphate interference with the gel or lack of 

protein yield (Figure 2.7). 

The elution buffer at this stage of purification contained a large concentration of 

ammonium sulphate, attempted removal by buffer exchange led to loss of the entire C. 

cellulovorans CBM33 enzyme. Analysis of hydrophobic column products suggested that 

the HIC purification step had a negative effect on the final protein yield and therefore 

was disregarded as a purification possibility. 

Protein identification of the purified protein bands 
Two proteins co-purified by the designed purification protocol; (Figure 2.6-B) the protein 

with Mw= 23377 Dalton is hypothesised as being C. cellulovorans CBM33 but the 

identity of the contaminant protein is unknown. It is difficult to understand the co-

purification with C. cellulovorans CBM33 despite the difference in size and without 

further structural and functional understanding it is challenging to design a purification 

process to separate the two. Both proteins were sent to the technology facility at the 

University of York for protein identification by standard mass spectrometry techniques.  

A mascot database search against the NCBInr database showed that the protein with 

Mw= 23377 Dalton had sequence identity with a multi-domain beta-1,4-mannanase 

precursor from Caldibacillus cellulovorans and the contaminant band is β-lactamase. 

These results showed that we had co-purified C. cellulovorans CBM33 and β- lactamase, 

a purification artefact that was incorporated into the PelB C. cellulovorans CBM33 (pET-

11a) vector as resistance selection. β- lactamase selectively deactivates certain penicillin 
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based antibiotics 51 and was present in our system due to induction by the antibiotic 

ampicillin. 

The contaminant protein was identified as a protein essential for cell growth in the PelB 

C. cellulovorans CBM33 gene construct. Resistance selection is essential in molecular 

biology to ensure the growth of only the correct construct and therefore it will be 

impossible to remove β- lactamase from this expression system. 

Attempted purification results for PelB C. cellulovorans CBM33 were unsuccessful and 

other constructs were considered. In order to increase the likelihood of successful 

purification, multiple plasmids containing the C. cellulovorans CBM33 gene were 

designed. 

1. PelB tagged C. cellulovorans CBM33 gene in an YSBL-LIC vector. This construct has the 

same periplasmic expression mechanism as the previous construct as results showed 

that this acted as a successful, natural, purification step. The YSBL-LIC vector, a pET-

28(non His tagged) derivative,  does not contain the gene encoding for β-lactamase and 

therefore utilizing the same purification protocol it should be possible to purify C. 

cellulovorans CBM33.  

2. Intracellular C. cellulovorans CBM33 gene in an YSBL-LIC vector. This construct was 

designed to address the issue of poor expression. It is possible that inefficient 

translocation or tag cleavage during PelB C. cellulovorans CBM33 expression was 

reducing the yield of soluble protein. If this were the case an Intracellular expression 

system would produce a greater yield of C. cellulovorans CBM33.  

3. SUMO C. cellulovorans CBM33 is a gene which encodes for the recombinant protein 

with an attached ubiquitin like protein that will greatly increase the solubility of the 

expressed protein. Within the SUMO domain is a poly-histidine tag that will allow 

efficient purification and better protein yields. 

PelB C. cellulovorans CBM33 in an YSBL-LIC vector 
Recombinant C. cellulovorans CBM33 was partially purified from pET---11a vector 

described above. The protein that co-purified was an expression artefact that is present 

to breakdown the antibiotic that we were using to select for cells with our construct. In 

an attempt to utilise the successful purification technique that we designed above but to 

by-pass the contaminant co-purification C. cellulovorans CBM33 was successfully cloned 

into a YSBL—LIC vector with kanamycin resistance gene encoding an aminoglycoside 3'-

phosphotransferase (Uniprot: P00551). 

We sent the synthesized vector for sequence analysis and the results confirmed that we 

successfully made the construct in Figure 2.8. The C. cellulovorans CBM33 construct with 

kanamycin resistance in the standard YSBL—LIC vector had the same expression 

mechanism as in the PelB C. cellulovorans CBM33 pET 11-A vector. A 22 amino acid N-

terminal PelB tag for periplasmic targeted expression; using the periplasmic 
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recombinant protein purification protocol described above this change in vector should 

by pass the issue of having co-purification of C. cellulovorans CBM33 with β- lactamase.       

Expression 
The soluble periplasmic protein fraction obtained from the cell harvest was loaded onto 

a gel for analysis of the proteins by size. The expression levels of C. cellulovorans CBM33 

were very similar to those observed in the PelB pET-11A construct with lower 

recombinant protein yields and major contaminant bands on an SDS-PAGE gel. (Results 

not shown due to indiscernible protein band) C. cellulovorans CBM33 runs at the 

predicted Mw on an SDS-PAGE gel which shows that the PelB leader sequence was 

cleaved upon translocation to the periplasm as the hypothetical mechanism predicted. 
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Figure 2.8 vector map PelB C. cellulovorans CBM33 YSBL-LIC 
Figure showing a vector map for the PelB C. cellulovorans CBM33 gene. The vector (pET-28 derivative) was chosen to alter 

the resistance selection gene from ampicillin resistance to kanamycin. This step was taken in order to remove the 
contaminant protein seen in previous purification experiments. 

 
 

Purification of C. cellulovorans CBM33 from YSBL-LIC 
 

Based on the purification results of C. cellulovorans CBM33 in pET-11A, the protein was 

purified using the same protocol as the contaminant protein that co-purified previously 

would not be present. 
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The protein isolate was purified by sequential purification by Q-column and gel filtration 

both attached to a Fast Performance Liquid Chromatography AKTA and the fractions 

analysed by SDS-PAGE gel (Figure 2.9). The yield of purified C. cellulovorans CBM33 was 

negligible, protein bands seen in Figure 2.9 (B) were concentrated by acetone 

precipitation before they were visible on an SDS-PAGE gel.  

Design of the construct to remove β-lactamase as a co-purification artefact was 

successful and a pure C. cellulovorans CBM33 sample was obtained from this construct. 

However, continued poor expression meant that the construct was not useful for 

purification. 

 

 
 

Figure 2.9 Sequential C. cellulovorans purification  
Figure showing an SDS-PAGE gel showing the sequential purification of PelB C. cellulovorans CBM33 by (A) Q column anion 

exchange chromatography (Lanes 2-6), HIC (Lanes 7-9) and (B) Gel filtration.  
 

It was interesting to note that results suggested the expression of PelB C. cellulovorans 

CBM33 constructs in small scale expression tests was higher than in the scaled up 

cultures (comparison of small scale expression in Figure 2.4 and large scale expression in 

Figure 2.6). This phenomenon was observed for C. cellulovorans CBM33 expressed in 

both the YSBL-LIC and pET-11a vectors. The original small scale (5 ml) expression tests of 

C. cellulovorans CBM33 carried out by Glyn Hemsworth, from Davies group, suggested 

the periplasmic expression would be strong with a clearly visible band on SDS-PAGE gel 

however the larger scale cultures (500 mls) did not give workable yields. These results 

suggested that the PelB tag attached to the N-terminal residue of C. cellulovorans 

CBM33 could be inhibiting the soluble expression as suggested previously, decreasing 

protein yields. 

 

(A) (B) 
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 Intracellular C. cellulovorans CBM33 in an YSBL—LIC 

vector 
In an experiment designed to test whether a C. cellulovorans CBM33 construct without 

an N-terminal expression tag would display higher expression; primers were designed 

for a C. cellulovorans CBM33 construct without a tag which would be targeted for 

cytoplasmic expression (Figure 2.10). 

Expression of Intracellular C. cellulovorans CBM33 vector 
When deciding which expression strain would provide the optimal environment for 

expression of intracellular C. cellulovorans CBM33; the protein identification data from 

PelB C. cellulovorans CBM33 in pET-11A construct were considered. The Mw of this 

protein was 2 Da lower than the predicted showing the assumed formation of one di-

sulfide bond in the folded protein. 
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Figure 2.10 Vector map Intracellular C. cellulovorans CBM33 YSBL-LIC 
Figure showing the vector map for the Intracellular C. cellulovorans CBM33 gene in YSBL-LIC. The gene is designed for 
expression of recombinant in the cystosol of an E. coli expression strain so the PelB leader sequence was removed in 

cloning. 
 

Di-sulphide bridges are bonds formed between two cysteine residues that are distal in 

the primary sequence of the protein. These intra-molecular bonds are important and in 

some cases essential for protein structure, folding, stability and therefore activity. 

SHuffle E.coli cells from New England Biolabs promote the formation of di-sulphide 

bonds within the cytoplasm and were therefore selected as the expression system for 

this vector to increase stability and solubility of intracellular C. cellulovorans CBM33.  

The cell components were isolated by centrifugation and both the soluble protein and 

insoluble fractions were analyzed by SDS-PAGE gel (Figure 2.11). There is clearly a 
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protein that is present in the soluble fraction that is induced by the addition of IPTG of 

an Mw that corresponds with C. cellulovorans CBM33. The expression of the intracellular 

C. cellulovorans CBM33 protein in these small scale cultures is poor. 

Scaling up the growth cultures to 500 ml flasks produced a negligible band of 

recombinant protein, near impossible to reach a reasonable concentration for 

downstream purification. When considering how low protein purification yields have 

been observed in other constructs this construct was not considered as a sensible 

avenue for experimentation. The intensity of the C. cellulovorans CBM33 protein band 

on SDS gel (Figure 2.11) was similar to the levels observed in periplasmic preparations. 

The hypothesis that expression would be increased in comparison to the PelB constructs 

was disproven. 

 

 

 

 

 

 



38 
 

 
 

Figure 2.11 Intracellular C. cellulovorans expression test 
Figure showing an SDS-PAGE gel analysing the insoluble and soluble expression of the Intracellular C. cellulovorans CBM33 

gene from Shuffle cells. 
 

2.3 SUMO C. cellulovorans CBM33 in a Champion pET—

SUMO vector 
 
Purification of C. cellulovorans CBM33, from both periplasmic isolation and native 

intracellular isolation, produced unworkably low yields of recombinant protein; at this 

stage the largest barrier to efficient purification is the low yield of soluble C. 

cellulovorans CBM33. In order to meet the aims of the project and characterize C. 

cellulovorans CBM33, soluble expression must be increased. 

The field of molecular biology has utilised the attachment of small molecule tags to 

recombinant proteins in order to increase soluble expression. An example is the cloning 

of small ubiquitin-like modifier (SUMO) proteins into recombinant expression vectors to 

increase the solubility of the attached protein domain. SUMO proteins contain an 

ubiquitin like fold which plays a role in a variety of natural expression systems but also 
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creates a very stable fusion construct with recombinant proteins which increases the 

expression stability and therefore the soluble protein yield. 52 

We cloned C. cellulovorans CBM33 into an expression system with a SUMO construct 

attached to the N-terminus in an attempt to increase soluble expression. Primer design 

allowed for exact design of C. cellulovorans CBM33 vector with physiological traits 

improving expression (see Figure 5.4). Further to this, the SUMO domain attached to the 

enzyme contained al poly-Histidine region at the N-terminal. These positively charged 

residues would allow for efficient purification by allowing the recombinant protein to 

bind to a nickel column and purify from the cell isolate. 

Whilst successful purification of recombinant protein was currently the inhibiting factor 

in our characterisation of C. cellulovorans CBM33 and the opportunities to purify by 

nickel affinity chromatography appeared to solve this; it was still imperative that any 

future studies be carried out on C. cellulovorans CBM33 in the native form. Therefore, it 

was essential that it was possible to guarantee specific cleavage of the SUMO domain to 

leave the active conformer of C. cellulovorans CBM33. SUMO C. cellulovorans CBM33 

gene was encoded so that the N-terminal histidine forms a peptide bond, linking the 

SUMO tag to C. cellulovorans CBM33 but also preventing copper binding. 

SUMO protease, a commercially available cysteine protease which identifies the 

proteolytic site through structural recognition, allows for specific cleavage to leave to 

leave the N-terminus of the protein as it would be in the native system. The protease 

has been shown to recognise the cleavage site in a site specific manner dependant on 

the formation of salt bridges between the protease molecule and the SUMO domain 

attached to the recombinant protein. 53 

Small scale expression tests of SUMO C. cellulovorans 

CBM33 

The protein isolated from small scale cultures was analysed by SDS-PAGE gel (Figure 

2.15). A band of protein appears on an SDS-PAGE gel at Molecular weight (Mw= 36778 

Da) which is the correct weight for the predicted SUMO tagged moiety. The band is not 

present in the un-induced cells showing that the protein is induced by the IPTG 

treatment during growth and the majority of the induced protein is present in the 

soluble fraction. Expression of C. cellulovorans CBM33 from the SUMO construct was 

strong and the bound SUMO domain made the protein soluble in solution for 

downstream purification. Results show that intelligent design of the vector allowed for 

an increase in soluble protein. 
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Figure 2.12 Vector map SUMO C. cellulovorans CBM33 Champion pET-SUMO 
Figure showing the vector map for the SUMO C. cellulovorans CBM33 gene in Champion pET-SUMO. In order to increase 
the ease of downstream purification and the solubility of expressed recombinant protein led to an insertion of a SUMO 

moiety onto the N-terminal of the recombinant protein. The protein, solubility tag, has an attached poly-histidine tag for 
optimization of purification. 
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Figure 2.13 SUMO C. cellulovorans CBM33 expression test 
SDS-PAGE gel analysis of SUMO C. cellulovorans CBM33 expression from SHuffle cells.  The SUMO tagged recombinant 

protein has a Mw of 36KDa and is present in good yields in the soluble expression test. 
 

Purification of SUMO C. cellulovorans CBM33 
 

The first stage for purification of C. cellulovorans CBM33 from the SUMO construct 

involved loading onto a Nickel resin column and the fractions collected for analysis by 

SDS-PAGE gel. SUMO C. cellulovorans CBM33 bound to the nickel column due to the 

poly-histidine region in the SUMO domain and only eluted in a gradient of Imidazole 

(Figure 2.14). Fractions A6-C6 contained pure C. cellulovorans CBM33 SUMO fusion, 

(Mw= 36778 Da) the protein was very concentrated and this suggested that the yield 

had the potential to be high. 
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Figure 2.14 SUMO C. cellulovorans CBM33 1st Nickel column 
SDS-PAGE gel analysis of SUMO C. cellulovorans CBM33 purification fractions by Nickel affinity chromatography. The 

soluble expression of the protein from the YSBL-LIC vector coupled with the strong affinity of the SUMO tag for the nickel 
column has led to efficient isolation of a concentrated sample of recombinant protein. Due to high concentrations of the 

protein in the SDS-PAGE gel load the gel has begun to bow, a sign that too much protein was present in the load. 
 

 

 

 

Figure 2.15 SUMO protease purification 
SDS-PAGE gel analysis of SUMO Protease purification by (A) Nickel column and (B) Gel filtration. 

 

Whilst obtaining the pure protein was a significant step forward, it was still necessary to 

cleave the SUMO moiety from the protein using SUMO protease in order to allow 

characterisation of SUMO protease. 

Purification of SUMO protease  
 

The SUMO protease vector was purchased and inserted into a pLysS expression strain, 

Figure 2.15 shows that two step purification of the protease by Nickel column and gel 

filtration gave pure protein. Protein identification of the SUMO protease sample by mass 

(A) (B) 
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spectrometry came back positive and the recombinant protein concentration was 

calculated at 4.1 mg/mL.  

SUMO domain cleavage from SUMO C. cellulovorans CBM33 
 

Imidazole, a known inhibitor of SUMO protease activity, 54 was removed from the 

solution by buffer exchange to maximise the efficiency of the cleavage reaction. 125 mg 

of SUMO C. cellulovorans CBM33 was incubated with 1.25 mg of SUMO protease 

overnight for 16 hours with 0.1 mM of 2-Mercaptoethanol as a reducing agent.  

After the incubation of SUMO protease with C. cellulovorans CBM33 the reaction 

solution contained several products; SUMO protease, the cleaved SUMO domain, un-

cleaved SUMO C. cellulovorans CBM33 and native C. cellulovorans CBM33. C. 

cellulovorans CBM33 was the only constituent of the mixture which does not contain a 

poly-histidine region and therefore was the only molecule that would not bind to a 

nickel resin column and would therefore be separated into the flow through. Results in 

(Figure 2.16) confirm that we successfully cleaved the SUMO domain from C. 

cellulovorans CBM33 and the removal of the His-tag meant that the native enzyme 

eluted in the flow through.  

 

 
 

Figure 2.16 SUMO C. cellulovorans CBM33 2nd Nickel column 
SDS-PAGE gel analysis of Nickel column separation of the cleaved SUMO moiety and SUMO protease (Lanes 4-7) from the 
native C. cellulovorans CBM33 (Lane 3). The protein load on the gel is so high that it has completely bowed but the yield 

and purity seem to confirm this process as an effective purification protocol. 
 

Purification of native C. cellulovorans CBM33 
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To further purify the C. cellulovorans CBM33 protein the solution was concentrated by 

centrifuge to less than 1 ml using a VivaSpin column with a 10 KDa filter to remove 

buffer. The concentrated recombinant protein solution was loaded onto a Superdex S75 

column for purification by gel filtration. SDS analysis showed that C. cellulovorans 

CBM33 was running pure on the gel at the expected molecular weight. Analysis of the 

S75 fractions showed the protein was very concentrated and pure. Due to the high 

concentration of protein the SDS-PAGE gel was completely overloaded and was 

therefore illegible and was not shown. 

To confirm the identity and purity of C. cellulovorans CBM33 the protein was analysed 

by Electrospray Time of Flight mass spectrometry (TOF MS ES+) and the results show a 

protein present in the sample Mw=23377.9 Da (Figure 2.17). This value is 2 Da less than 

the predicted molecular weight calculated through ExpasyTranslate, this result reaffirms 

that C. cellulovorans CBM33 contains one disulphide bridge in the secondary structure. 

The peak also shows that the cleavage of the SUMO domain the cysteine protease, 

successfully expressed and purified above, worked efficiently and that the cleavage was 

specific at the N-terminal histidine.  

These results showed that cloning a SUMO C. cellulovorans CBM33 construct into a 

Champion pET-SUMO vector allowed for successful purification. The intelligent vector 

design addressed each of the problems with purification of C. cellulovorans CBM33 

experienced previously, optimisation of the expression and purification of C. 

cellulovorans CBM33 yield of 152 mg of pure protein. 
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Figure 2.17 Protein ID by mass spectrometry. 
Mass reconstruction using Bruker Daltronics software from Electrospray TOF analysis of pure C. cellulovorans CBM33. The 
main protein peak is at 23370 Da which matches the predicted weight of C. cellulovorans CBM33 minus two. This two Da 

decrease most likely represents the formation of a di-sulphide bond (loss of two hydrogen atoms). 
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Chapter 3 – characterisation of C. cellulovorans 

CBM33 
C. cellulovorans CBM33 was successfully purified from Shuffle E.coli cells which had been 

transformed with and expression vector for a construct of C. cellulovorans CBM33 with a 

SUMO like domain attached to the N-terminal. The acquisition of pure protein enabled 

us to begin experiments to characterise the protein.  Initially we attempted to show C. 

cellulovorans CBM33 is an LPMO molecule before going on to elucidate the mechanism 

of action. 

Isothermal Calorimetry (ITC)  
ITC measures the thermal transfer within a system when “ligand” molecules in solution 

are titrated into a solution containing the molecule being characterised. Previous LPMO 

characterisation experiments have indicated the requirement for copper bound in the 

active site for enzymatic activity. Therefore, carrying out ITC copper binding experiments 

on C. cellulovorans CBM33 by measurement of the thermal shift evolved when a high 

concentration of copper is titrated into a protein solution. The temperature change can 

be used to calculate the reaction stoichiometry and the protein binding affinity for 

copper in this buffer and temperature. 

The experimental data for C. cellulovorans CBM33 gave a KD of 4.31×1027 M calculated 

from 1/Ka. The value obtained was below the lower detection limit of ITC and therefore 

regarded as unreliable and the background measurements were noisy. However, using 

the known concentration of protein and ligand it is possible to calculate that the 

stoichiometric binding ratio of C. cellulovorans CBM33 with copper was 0.604 at 298 K 

(Figure 3.1). Due to the detection limits of the ITC machine, there were no titration 

peaks within the range of copper saturation; therefore, assumptions based on the 

results were limited to the statement that C. cellulovorans CBM33 binds copper very 

tightly.  

Despite purification of C. cellulovorans CBM33 focusing on obtaining pure protein in the 

apo form, without metal bound in the active site, the experimental stoichiometric ratio 

of copper bound to C. cellulovorans CBM33 is lower than the predicted value. Other 

LPMO characterisation experiments have obtained a similarly low stoichiometric value; 

from existing LPMO copper binding data, C. cellulovorans CBM33 should bind to copper 

in an equi-molar ratio.  Sub stoichiometric binding ratios were also observed in ITC 

characterisation of CBM33 from Bacillus amyloliquefaciens. 50 Both C. cellulovorans 

CBM33 and Bacillus amyloliquefaciens CBM33 have a high affinity for copper, shown by 

the tight binding characteristics in ITC experiments, and therefore, if the binding ratio 

were 1:1 then it should have been reflected in the ITC results. X-ray crystallography and 

EPR studies on Bacillus amyloliquefaciens CBM33 went on to confirm a mono-copper 

binding site.  
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Having considered the evidence, it was assumed that C. cellulovorans CBM33 was a 

mono-copper centre. The low stoichiometry could have been explained by suggested 

copper artefact binding from the purification or experimental equipment. If this copper 

was bound to C. cellulovorans CBM33 tightly then it may not have been removed by 

treatment with EDTA and therefore this could have altered the ITC results. 
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Figure 3.1 Isothermal calorimetry analyses of C. cellulovorans CBM33 
Shows the Isothermal calorimetery spectrum evolved when copper is titrated into a solution of C. cellulovorans 

CBM33.The trace was generated by measuring the heat involved when a known volume and concentration of ligand is 
titrated into a solution of C. cellulovorans CBM33. 

Chi
2
/DoF = 7.571E5, N= 0.604 ±0.00855, K= 2.32x10

26
, ∆H= -5139 ±251.5 

∆S= 103 
 

 

 

Crystallisation screening C. cellulovorans CBM33 
In an attempt to investigate the structure of C. cellulovorans CBM33 further crystal 

screens were set up with C. cellulovorans CBM33 purified to 6.7 mg/mL from the SUMO 

construct. This experiment was designed to elucidate the three dimensional structure of 

the protein and resolve the copper stoichiometry. INDEX and PACT plates were set up in 

copper loaded and apo conditions and crystals allowed time to grow. No protein crystals 

grew in the conditions tested. 

Electro paramagnetic resonance experiments on C. 

cellulovorans CBM33 
Attempts to structurally characterize C. cellulovorans CBM33 through traditional 

crystallography methods failed within the project timeframe. Therefore alternative 

methods to characterise C. cellulovorans CBM33 structure in a way that can link 

structure and function were investigated. Electron paramagnetic resonance (EPR) was 

used to try and “infer the structure of the close-lying ligands of the” copper ion. 55  

It is possible to study the ligand characteristics in Cu(II) as there is one free electron in 

the copper molecule. EPR measures the spin of the lone electron in the copper ion, this 

phrase refers to the electron spin about the copper nucleus giving the electron angular 

momentum in the magnetic field. The electron can transition between, energetically 

similar, empty electron orbitals and there is a large angular momentum shift when the 

free electron transitions between orbitals. A free Cu (II) has two regions in the copper 

trace, the parallel and the adjacent. Protein residues binding the d orbital as 

coordinating ligands drastically alters the angular momentum of the free electron and 

represents the symmetry of the coordination. The ligand binding creates a separation in 

the parallel region of the EPR trace to give individual peaks.  

The position of these separated peaks can be used as a fingerprinting method for the 

exact symmetry of the parallel region of the trace and from this information the identity 

of the coordinating residues can be assigned. 

Copper centres display conserved coordination residues according to the type of centre 

and each type of copper centre visible using EPR gives a unique trace (see Table 3.1). The 

individual characteristics of the trace which are brought about by the d orbital energies 
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altering the splitting in the parallel and adjacent directions can act like a fingerprinting 

process to identify the coordination environment of the copper ion.  The key parameters 

in this regard are the g tensor values (g factors are the EPR parameter incorporating 

"chemical shift" information) and the hyperfine coupling value (represented as a - the 

difference in magnetic field caused by the presence of nuclei magnetic fields).56 

 

 

 

 

 

 
 
 

Geometry and 
residues 

Active site and EPR structure 

Type 1 
copper 
centre 

Single copper 
molecule 

coordinated in a 
trigonal planar 

geometry by two 
histidine residues, 
a Cysteine and a 
variable ligand in 
the axial position. 

57 
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Type 2 
copper 
centre 

Square planar, 
single copper, 

active site with 
coordination from 

two histidine 
residues in a T 
shaped brace. 

 

Table 3.1 Comparative figure showing different characteristics of single copper, active sites. 

Table showing an example of single copper centres that give a visible EPR spectrum. Table describes the geometry and 

ligands about the active site and gives a representation of an active site. 

The EPR spectrum measured from a sample of C. cellulovorans CBM33 characterised by 

continuous X-band EPR was adjusted using a measured background and plotted in Figure 

3.2. C. cellulovorans CBM33 EPR measurements gave values of g1=2.28 (2920 Gauss), 

g2=2.08 (3200 Gauss), g3=2.06 (3230 Gauss), A1=152.39 in mKaisers. The different g 

tensor values represent the intensity of interaction in a direction relative to the copper 

centre and represent an axial geometry given by the angular motion alteration of the 

lone electron in the copper centre by the coordinating residues in the x and y plane. 

 

 

 Figure 3.2 EPR spectrum for copper loaded C. cellulovorans CBM33  
Figure showing the EPR trace of C. cellulovorans CBM33 and allowing for analyses of EPR characteristics such as g 

tensor values and splitting patterns. 
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The pattern of splitting observed in the parallel region (calculated by observing the gII 

and gI values from experimental data and displayed in Figure 3.2) of C. cellulovorans 

CBM33 is indicative of a type 2 copper centre. The EPR peaks display an axial geometry 

with the ligands in the X and Y planes (relative to the copper ion) are symmetrical and 

the Z plane ligands are at a different distance.  

The axial nature of the copper active site suggests that C. cellulovorans CBM33 has 

LPMO characteristics (See Table 3.1). Comparative analysis of parallel gII and the shows 

that the value is indicative of a type (II) copper centre. 

 

 gII gI AII 
(Gauss) 

Copper (II) in aqueous acetate buffer, pH 5 2.42 2.08 118 

Copper (II) -TaGH61A* 24 2.27 2.06 153 

met-dopamine beta-mono-oxygenase 58 2.29 2.06 155 

met-peptidylglycine alpha-hydroxylating mono-
oxygenase 59 

2.25 2.05 162 

met-copper amine oxidase 60 2.32  153 

met-lysyl oxidase  61 2.28  153 

Type 2 site in copper methane mono-oxygenase 62 2.24 2.04 185 

Copper (II)-BaCBM33 50 2.25  125 

Copper (II)- C. cellulovorans CBM33 2.28 2.07 152 

 

Table 3.2 EPR characteristics of characterised type (II) copper centres in LPMO molecules.  
Figure showing EPR characteristics for a selection of different LPMO molecules. The gII represents g tensor values 

whilst A is the distance between the parallel region peaks and represents the hyperfine splitting of the copper ion free 
electron in the protein. 

 

 
As the characteristics of the C. cellulovorans CBM33 EPR spectrum match those of a type 

2 copper centre and we can, therefore, assume that the copper active site of C. 

cellulovorans CBM33 has axial symmetry with nitrogen or oxygen coordinating the 

copper ion. These findings provide more evidence to confirm the hypothesis that C. 

cellulovorans CBM33 is a member of the LPMO enzyme family. From this result we are 

able to can infer oxidative activity on polysaccharide molecules. The A value of C. 

cellulovorans CBM33 (152 guass), as a representation of the peak splitting is very 

different from what would be expected from a CBM33 which usually lie closer to a value 

of A=140. The larger distance between gI and gII suggests that the C. cellulovorans 

CBM33 copper centre is far more similar in structure to an archetypal GH61 than to a 

CBM33 active site. It is interesting that despite C. cellulovorans CBM33 being classified 

as a CBM33 enzyme it has a structure and function closer to that of a GH61 LPMO. 
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EPR analysis with Cellulose 
In an attempt to elucidate the mechanism and substrate binding characteristics of C. 

cellulovorans CBM33, potential substrates were added to an EPR cell containing enzyme, 

as above, and the effect of substrate proximity on the copper ion with the ligand 

environment observed. The angular momentum of the unpaired electron in copper can 

be altered by interaction with atoms in close proximity which will alter the g value. 

For a C. cellulovorans CBM33 sample incubated with Avicel (cellulose) the values of g1= 

2.28, g2= 2.06, g3=2.01, A1=160 mKaisers were calculated. Upon addition of cellulose 

into the EPR reaction mixture containing C. cellulovorans CBM33 the g values observed 

in the perpendicular region of the copper centre were reduced and generated some 

splitting patterns around 3300 G. Small fluctuations in the spectra around this area 

suggest that the characteristics of the C. cellulovorans CBM33 active site have changed 

and further study on this phenomenon could elucidate to the mechanism of the enzyme.  

The spectra as a whole looked less like an archetypal copper 2 centre, alterations in the 

spectra showed distortion of the active site.  

These results suggested that C. cellulovorans CBM33 was interacting with cellulose. As 

the fluctuations in the g values are at sites specific to a copper 2 centre we can suggest 

that the alterations of the copper centre are caused by a specific residue, in close 

proximity to the copper ion, with the cellulose substrate.  

   
 

 
 

Figure 3.3 EPR trace of C. cellulovorans CBM33 sample with Avicel. 

  

EPR analysis with Squid pen chitin 
Squid Pen Chitin was added to the C. cellulovorans CBM33 EPR cell and the copper trace 

from this sample was studied. For a C. cellulovorans CBM33 sample incubated with Squid 

Pen Chitin values of g1=2.27, g2=2.06, g3=2.02 and A1=156 mKaisers were calculated. 
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The g values observed for both the perpendicular and parallel regions of the copper 

centre were reduced upon addition of chitin. Like in the cellulose EPR experiment there 

seemed to be greater resolution of the perpendicular region and this generated 

fluctuations between 3220 G and 3400 G. The most noticeable of these evolved peaks 

was at 3380 G; this characteristic was visible in neither the cellulose or apo C. 

cellulovorans CBM33 samples. More work is needed to be able to account for the 

alterations in the copper active site observed with chitin; however, the trace suggested 

that C. cellulovorans CBM33 may exhibit residue specific binding and activity on chitin. 

 

 
 

Figure 3.4 EPR spectrum of C. cellulovorans CBM33 with Squid Pen Chitin. 

 

EPR analysis with Ivory Nut Mannan 
Ivory nut mannan was added to the C. cellulovorans CBM33 EPR cell and studied the 

copper trace from this sample.  
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Figure 3.5 An EPR spectrum of C. cellulovorans CBM33 with Ivory Nut Mannan.  
 

The EPR spectrum for the copper centre in C. cellulovorans CBM33 in the presence of 
Ivory Nut Mannan (Figure 3.5) is completely distorted from the characterised, axial 

anisotropic, type 2 copper centre characterised in C. cellulovorans CBM33. Addition of 
Ivory Nut Mannan into the EPR cell drastically altered the original C. cellulovorans 

CBM33 copper spectrum.  
 
 
 

 
 

Figure 3.6 EPR spectra comparison of C. cellulovorans CBM33 with Ivory Nut Mannan with two blank 
samples. 

Figure shows an EPR trace for C. cellulovorans CBM33 in the presence of ivory nut mannan; and for comparison two 
controls EPR spectra showing only C. cellulovorans CBM33and Ivory Nut Mannan respectively in an attempt to clarify 

the irregular peak observed in Figure 3.5. 
 

In an attempt to clarify the strange copper profile observed in Figure 3.5, a further 

experiment was carried out where the EPR spectrum of a cell containing only Ivory Nut 

Mannan was measured. 

Figure 3.6 shows that the EPR spectrum measured for a sample containing only Ivory Nut 

Mannan exhibited a similar distorted shape as the spectrum with C. cellulovorans 

CBM33. An attempt to normalize the spectra for C. cellulovorans CBM33 in the presence 

of Ivory Nut Mannan using the mannan sample as a background was unsuccessful. 

It was possible to assign sensible g values to the C. cellulovorans CBM33 copper centre, 

in the presence of mannan, if the anisotropy were axial and gx=gy>gz. We assigned the 

peak at 3100 G as the g parallel values of g1=1.97, g2=2.29 and g3=2.14. When the g 

parallel values for C. cellulovorans CBM33 incubated with mannan were compared to 

other copper centre in Table 3.1 would place the copper centre, in this reaction, outside 

the general classification range for LPMO molecules. The data made it difficult to judge 
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whether this was the case however the similar peaks observed in both the mannan blank 

spectrum and the enzyme cell suggested that this was incorrect. 

The distortion of the spectrum makes analysis of the copper centre using this method, 

using g and A values impossible. The spectrum of C. cellulovorans CBM33 with Ivory Nut 

Mannan was indicative of a very strong interaction between copper and the mannan 

molecule. However, from the distortion we could suggest that the interaction is non-

specific. 

Mass spectrometry product analysis 
The activity and substrate specificity of C. cellulovorans CBM33 is still undefined. To 

evaluate C. cellulovorans CBM33 activity on polysaccharide polymers, mass 

spectrometry analysis was carried out on the reaction products evolved from C. 

cellulovorans CBM33 incubation with potential substrates. 

Mechanistic details of polysaccharide breakdown by LPMOs remain absent; however, we 

can begin to make assumptions about key steps and intermediates by studying the 

products evolved in the reaction. C. cellulovorans CBM33 was incubated with 

polysaccharide substrate and the solution analysed by Matrix-assisted laser 

desorption/ionization (MALDI). The oligosaccharide product’s mass allows for 

identification of the lytic oxidation site. 

Product analysis - C. cellulovorans CBM33 incubated with Avicel 
C. cellulovorans CBM33 was incubated with crystalline Avicel in conditions that would 

prompt enzymatic activity. Analysis of the evolved species suggested that C. 

cellulovorans CBM33 exhibits celluolytic activity. Aldonic acid oligosaccharide cleavage 

products were observed, in the C. cellulovorans CBM33 samples, at dimer unit lengths 

(DP) = 4, 5, 6, 7, 8, 9. (See Table 3.2) There was also evidence of unmodified 

oligosaccharides; (DP = 5, 6, 7, 8, 9) though these were also seen in the Avicel blanks the 

intensity of the peak increased when C. cellulovorans CBM33 is present as was the case 

in similar GH61 experiments. 24 A minor product was observed at DPn-2 Da, previous 

work has suggested unopened lactones or C4 oxidation products as the cause for this 

peak (See figure 3.7). 35  

Product analysis - C. cellulovorans CBM33 incubated with Squid Pen 

Chitin 
C. cellulovorans CBM33 was incubated with crystalline squid pen chitin and the reaction 

products analysed using mass spectrometry. C. cellulovorans CBM33 displayed chinolytic 

activity on crystalline Squid Pen Chitin (β-chitin). The predominant reaction product was 

aldonic acid oligosaccharides with DP6 and DP8 (See Figure 3.8). These findings 

corroborated with data collected for other AA10 enzymes which have been described as 

creating lytic chain breaks in chitin structure to form even polymer unit oligosaccharides. 
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Product analysis - C. cellulovorans CBM33 incubated Mannan 

polymers  
Attempting to confirm, for the first time, the activity of an LPMO on crystalline mannan, 

a variety of mannan polymers were incubated with C. cellulovorans CBM33 and the 

products analysed by mass spectrometry. None of the mannan samples contained lytic 

products when analysed by mass spectrometry. The mannan solutions were 

contaminated with free oligosaccharides which prevented the solution from crystallising 

on the MALDI-TOF analysis plate. When it was possible to crystallise a reaction solution 

the mass spectrometry reading was noisy and inconclusive (Data not shown as there was 

not reading). Attempts were made to optimise the analysis protocol by increasing the 

crystallisation agents for the matrix and decontaminating washes of the mannan prior to 

the reaction however neither variation yielded data showing activity on mannan. Further 

work is needed to characterise the activity of C. cellulovorans CBM33 on other crystalline 

polysaccharides. The linking of the C. cellulovorans CBM33 domain to a mannanase 

when the protein is produced from the parent organism implies heavily that activity on 

mannan be the primary purpose of C. cellulovorans CBM33. 

 

 
 

Reaction Product DP5 DP6 DP7 DP8 DP9 

Un-modified 

oligosaccharid

e 

m/z 851 1013 1175 1337 1499 

Integrated 

area 
40 130 201 63 15 

Lactone or m/z N/A 1011 1173 1335 N/A 
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hypothetical 
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area 
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Aldonic acid + 

2Na 
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N/A 
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N/A Integrated 

area 
15 26 24 

 
 

Figure 3.6 Mass Spectrometry analyses of the reaction products evolved when C. cellulovorans CBM33 is 
incubated with Avicel. The peaks represent the m/z of individual saccharide reaction products. Table 

displays the saccharide product characteristics. 
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area 

Aldonic acid  

m/z 1275 1681 

Integrated 

area 
86 114 

Aldonic acid + 2Na 

m/z 1297 1703 

Integrated 

area 
49 58 

 
 

Figure 3.7 Mass Spectrometry analyses of the reaction products evolved when C. cellulovorans CBM33 is 
incubated with squid pen chitin.  

 

Analysis of C. cellulovorans CBM33 activity on chitin under 

thermophillic conditions 
C. cellulovorans is a thermophillic bacterium that can grow in conditions up to 80°C. 

Identifying enzymes that are able to catalyse reactions efficiently at high temperatures is 

a goal in biotechnology to allow treatments at a wider range of temperatures. 

Figure 3.8 clearly shows that oxidative products were produced in the reaction mixture 

which confirms that activity of C. cellulovorans CBM33 on chitin in thermophillic 

conditions. The characteristics of the mass spectrometry analysis were altered between 

the samples carried out at 30°C and those at 80°C. The variation in reaction products 

increases at 80°C which is most likely due to the decreased stability of crystalline 

cellulose at higher temperatures. The activity of an oxidative enzyme at thermophillic 

temperatures is important to increase the efficiency of enzyme treatments to reduce the 

enzyme load required. Results would suggest that increasing the temperature of a 

synergistic reaction between C. cellulovorans CBM33 and classical hydrolases would 

require a far smaller enzyme load that existing biofuel treatments and would therefore 

reduce cost and production potential. 
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Figure 3.8 Mass Spectrometry analyses of the reaction products evolved when C. cellulovorans CBM33 is 
incubated with Squid Pen Chitin in a reaction vessel at 80°C 
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Chapter 4 - Discussion 
The results of our research show that we have successfully purified a protein from 

Caldibacillus cellulovorans which is hypothesised to be a lytic polysaccharide mono-

oxygenase in accordance with current literature.  

Bio-informatics searches suggest that the C. cellulovorans CBM33 enzyme has sequence 

conservation with existing CBM33 molecules. C. cellulovorans CBM33 with an ubiquitin 

like protein attached at the N-terminal has been purified by sequential Nickel column 

and gel filtration. This technique could provide a novel paradigm for efficient purification 

of recombinant proteins whilst conserving the delicate native structure.  

Protein identification results confirmed successful expression, site specific cleavage of 

the SUMO domain and re-affirmed the presence of one di-sulphide bridge in C. 

cellulovorans CBM33. 

The purification protocol utilizing the poly-histidine tag provided a final yield of 150 

mg/L in a pure sample. We experimentally showed that C. cellulovorans CBM33 bound 

copper in a stoichiometric ratio 0.6. This value is lower than expected when examining 

the metal binding site in comparison to other CBM33 molecules. We would expect a 

binding ratio of 1.0. Lower ratios have been observed in related experiments involving 

related AA10 proteins and other single copper dependent proteins. 30,50 This feature may 

suggest copper binding by LPMO molecules tight enough to prevent stripping of the 

copper ion by EDTA. Otherwise there could be a sequence based physiological reason for 

why the protein retains copper such as steric hindrance of EDTA.   

EPR experiments allowed examination of the binding features within copper center of C. 

cellulovorans CBM33. EPR results confirmed that C. cellulovorans CBM33 had an active 

site with typical type 2 copper binding geometry values, characteristics indicative of an 

LPMO protein. G value comparisons with LPMO molecules from other sources appear to 

confirm that the square planar ligands coordinating the coper ion will be nitrogen or 

oxygen atoms which most likely come from histidine molecules as in other LPMO 

molecules.  

These finding suggest that the C. cellulovorans CBM33 active site is not coordinated in an 

archetypal square planar orientation; distortion of the active site has been described in 

other CBM33 molecules.63,64 However, the g values obtained for C. cellulovorans CBM33 

are closer to the characteristics seen in GH61 molecules rather than CBM33s.  

The hyperfine splitting displayed in EPR analysis of C. cellulovorans CBM33 reaction with 

both chitin (squid pen) and cellulose (Avicel) matches those seen in other LPMOs and 

supports the idea of reactive oxygen species formation in the mechanism of 

degradation. These results suggest that C. cellulovorans CBM33 is active on chitin and 

cellulose in an oxidative manner. 
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In previous work, AA9 and AA10 were thought to have exclusive activities, on chitin and 

cellulose respectively, although some more recent studies have shown activity on both. 

Interestingly, in the case of C. cellulovorans CBM33, the active site is somewhere 

between that of typical AA9 and AA10 enzymes previously classified. This raises 

questions about the link between cooper ion ligands in the active site and the activity of 

the protein.  No accepted hypothesis currently exists regarding the substrate specificity 

of LPMOs and differences in the active site residues could provide the answer; for 

example changes in the steric properties, hydrophobicity, or charge  around the active 

site altering the specific binding of a substrate. 

The EPR spectrum for C. cellulovorans CBM33 incubated with Ivory Nut Mannan is less 

definitive.  The trace shows a complete loss of any feature resembling a type 2 copper 

center, the distortion is so complete that it is difficult to make any assumptions about 

the interaction. The distortion of g values suggests an interaction of C. cellulovorans 

CBM33 with mannan, with the mannan in a close proximity to the copper ion; however, 

the results do not give enough evidence to suggest or support novel activity of a CBM33 

protein on complex mannan polymers. 

The hypothesized activity of C. cellulovorans CBM33 on crystalline polysaccharides was 

further tested by analysis of reaction products. Mass spectrometry analysis of reaction 

products showed that there were mass peaks at several Mws that matched oxidation 

products when C. cellulovorans CBM33 was incubated with both cellulose and chitin. 

These results suggest that we have confirmed the activity of a LPMO isolated from a 

Caldibacillus cellulovorans on both chitin and cellulose. Importantly oxidative activity on 

chitin was also proven at 80°C which provides potential for more thermally stable 

enzyme treatments in bio-technology. 

Study of the reaction products from the reaction with cellulose where the products have 

degrees of polymerization between 4 and 9 with the production of a 7 monomer chain 

favored. In comparison, chitin experiments produced products at every other DP-unit, 

for example, 6 and 8 sugar unit products; though, the octomer product appears to be 

favored over the hexamer. These reaction profiles suggest a different mechanism of 

activity on chitin and cellulose and supports EPR characterization that suggests C. 

cellulovorans CBM33 falls between the typical parameters of AA10 and AA9 

characteristics.   

Accounting for the different activity of C. cellulovorans CBM33 of chitin and cellulose, 

the hypothetical activity on mannan polymers and the ability to catalyze reactions at a 

wide range of temperatures makes the enzyme a fantastic candidate for 

biotechnological treatments due to its broad spectrum of activity. Further to this the 

native enzyme complex released from C. cellulovorans involving two carbohydrate 

binding domains and a classical hydrolase will allow for more complex treatments 

allowing for enzymatic cooperation and increasing of rates as well as diversification of 

substrates.  
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Structure and function characterization of C. cellulovorans CBM33 has facilitated a wide 

range of new possibilities in biotechnology as well as enhancing existing areas. Despite 

this, there remains a gap in our knowledge of how C. cellulovorans CBM33 acts and 

biotechnological treatments in general, and therefore, further study is required  

Future work 
Initial steps will focus to resolve the irregular results obtained in copper-protein binding 

experiments. An elegant experiment, involving sequential competition titration of a 

protein with zinc then copper, was developed in the characterization of newly 

discovered AA11. Experimental stoichiometry values obtained for BaCBM33 rose to 

around 0.8 per enzyme molecule which is closer to the expected value and reflective of 

the structural results obtained by x-ray crystallisation. Further to more complex copper 

binding experiments, binding to other metal captions should be investigated to give a 

representation of the specific affinity of the enzyme active site for copper in comparison 

to the less specific binding of other metals. Some CBM33 proteins have been reported as 

exhibiting limited activity in the presence of di-valent metals other than copper. 35 

The affinity, stability and melting temperature of C. cellulovorans CBM33 could be 

investigated through utilization of differential scanning fluorimetry. 65 These 

experiments would give further indication as to copper binding and would confirm the 

LPMO characteristics of C. cellulovorans CBM33. 

The most important piece of future work will be to try and confirm the hypothetical 

activity of C. cellulovorans CBM33 on complex mannan polymers. This is a process that 

has not been discovered and the novel activity would open a wider field open bio-

technological treatments. Attempts to visualize mannan polymer, C. cellulovorans 

CBM33 catalyzed, reaction products using MALDI-TOF were unsuccessful. The crystal 

matrix created on the Bruker mass spectrometer imaging plate designed to absorb the 

sample and allow laser excitation to allow ionization and flight on the instrument. 

However, the mannan samples did not exhibit normal crystallization characteristics and 

therefore the sample components could not be imaged using this method. The samples 

gave incredibly noisy reading and this coupled with unusual crystallization it would 

appear that there are a plethora of mannan oligosaccharide units present (both before 

and after incubation) which are inhibiting the correct crystallization causing the samples 

to be unable to fly. To overcome this barrier, and to give a clearer image of the reaction 

solutions, future work could focus on liquid state analysis of the reaction components 

which would remove the requirement for volatilization. For instance the reaction 

mixture could be analyzed by High Performance Liquid Chromatography (HPLC) or High 

Performance Anion Exchange Chromatography with Pulsed Amperometric Detection 

(HPAEC-PAD). This process would allow for more accurate mass analysis of reaction 

products and allow assigned activity of C. cellulovorans CBM33 on mannan polymers. 
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The understanding of other LPMO molecules increased greatly when it was possible to 

visualize and study the three dimensional structure. Influenced by this, it will be 

important to experimentally find conditions in which both Apo and copper bound 

crystals of C. cellulovorans CBM33 can be grown and diffraction measured. A structure 

resolved by this method will elucidate details about the protein structure to function 

relationship such as active site coordination, coordinating bond lengths (variable in 

LPMOs with a potential link to activity of product length) and protein surface residues 

quoted as playing an essential role in substrate orientation and binding and therefore 

activity. 

The reason for increasing interest in LPMO molecules is the potential role that they 

could play in bio-technological treatments to break down the highly complex and 

recalcitrant structure of polysaccharides. For these proteins to be useful in bio-

technology there is a requisite that they function efficiently in standard industry 

processes. As mentioned above, the first LPMO molecules were identified through their 

synergistic acceleration of a standard hydrolase treatment activity on crystalline 

cellulose. Repeating this experiment to study the activity of classical hydrolases and C. 

cellulovorans CBM33 in concert will demonstrate the activity on cellulose, chitin and 

hypnotically mannan polymers.   

 

Application 
 

LPMOs are attracting such a large amount of attention globally due to the wide range of 

bio-technological niches they could fill. The primary research motive is the formulations 

of biofuel in a renewable manner from sustainable sources in a way that does not 

negatively impact on global food, water and land security. This work has shown that C. 

cellulovorans CBM33 exhibits activity on both chitin and cellulose polymers; this makes 

C. cellulovorans CBM33 an industrial enzyme with the potential to diversify treatments 

due to the fact that C. cellulovorans as a host organism is thermophillic and therefore 

could potentiate reactions at higher temperatures and temperature controlled single 

reaction chambers.  

If the activity of C. cellulovorans CBM33 on mannan substrates could be proven, bio-fuel 

feedstock would increase greatly. Using current techniques utilizing the complete global 

biomass harvest would only produce around 150 EJ/year. 19 Discovery of an enzyme 

which could facilitate the recovery of monomeric sugars from complex mannans and 

glucomannans greatly expands the available feedstock for bio-fuel production as 

mannan is a recalcitrant bio-polymer present in the cell wall of plants. 

Further to the potential C. cellulovorans CBM33 offers to the field of bio-fuels, there are 

other potential uses. Glucomannans are present in many foods; it is added to liquids as a 



64 
 

thickening agent but is known to stain fabric fibers when they come into contact. When 

glucomannan, in food, contacts fibers of clothing it stains the fabric. Removal of mannan 

stains has been an issue for detergent industries for many years and it is only recently 

that enzymes have been developed for bio-tech treatments able to remove these stains.  

C. cellulovorans CBM33 could provide a realistic supplement to these treatments due to 

the high natural thermo-stability suited to high temperature clothes washers and stain 

removal. 

Enzymes active in the degradation of complex polysaccharides have been regarded with 

interest for some time in the field of nutritional science. The human digestion system is 

able to digest only a small percentage of plant material, due to the high percentage of 

recalcitrant polysaccharides in the cell walls, and this therefore decreases the energy 

and nutrition that can be obtained from plant based foods with respect to the land area, 

volume of water, time, money and man power essential for their production. Bio-

technological techniques have been suggested that involved the supplementation of 

symbiotic fauna to the human body to enhance uptake of simple sugars isolated from 

previously indigestible materials. C. cellulovorans CBM33 is a molecule that is predicted 

to disrupt the complex matrix of polysaccharides. A predicted wide range of activity and 

working temperature would make C. cellulovorans CBM33 a valuable addition to 

nutrient optimization treatments. 
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Chapter 5 - Experimental  

Standard methods  

DNA sequencing 
DNA was sequenced using Sanger sequencing (Sanger ABI 3730xl) provided by GATC. 

Samples were sent using research group, pre ordered, barcodes and results were made 

available for download and delivered by email.  

Polymerase Chain Reaction (PCR) 
Gene amplification was achieved by utilising a polymerase chain reaction using 

commercially available polymerase.  66 A typical reaction mixture is shown in Table 5.1 

with Q5 High-Fidelity DNA polymerase (New England Biolabs) usually used, though other 

polymerases (specified in individual protocols) were sometimes chosen to improve 

products yields or as an alternative when PCR of longer sequences was unsuccessful. 

 

PCR reaction 
component 

Quantity 

Template DNA 
(100ng/µl) 

0. 5 µl 

Forward primer DNA 1 µl 

Reverse Primer DNA 1 µl 

dNTPs (2mM) 5 µl 

Polymerase buffer 
(10 x High Fidelity 

buffer) 

10 µl 

Polymerase enzyme 0.5 µl 

MilliQ ddH2O 32 µl 

 
 

Table 5.1 Standard polymerase chain reaction  
Table displaying the standard mixture components for the replication of sample DNA by polymerase chain reaction. 

 

If the PCR reaction was unsuccessful using Q5 polymerase then multiple reactions were 

set up using Q5 Hot start polymerase (New England Biolabs), Phusion polymerase 

(Thermo Scientific), KOD polymerase KOD Hot Start polymerase (Novagen).  

The reaction was controlled thermally in a PCR cycler (See Table 5.2), the 50 µl reaction 

mixture was contained in a thin walled PCR tube to ensure accurate heating. 
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Temperature 
(°C) 

Duration 
(Seconds) 

Repeats Notes 

98 120  

Denature the DNA initially to single 
stranded DNA. This allows binding of 

the primers by complementary Watson-
Crick base pairing. 

98 30 

 
X 30 

Denature strands. 

60 30 
Anneal the primers to the template 

strand 

72 20 
Extension of the copy strand by the 

polymerase, incorporating the 
nucleotides to duplicate the strands. 

4 ∞  
Cooling to 4 °C kills the polymerase 

reaction and stores the products 
without breakdown 

 
 

Table 5.2 PCR cycling protocol for the standard PCR reaction used. 

 

Pouring an agarose gels for analysis by electrophoresis 
 

0.5 g of Agarose powder was added to the TRIS base, acetic acid and EDTA buffer (TAE - 
40mM Tris, 20mM acetic acid, and 1mM EDTA) at pH 8. The mixture was heated for 80 
seconds in the microwave at 800 w; the solution was stirred after 40 seconds to avoid 
evaporation. Once the solution has cooled to room temperature, 1 μL SYBR Safe 
(purchased as 10,000X concentrate in DMSO) is added and mixed by agitation before 
pouring the gel into the casting block and inserting the 6 well medium comb for 50 
minutes before running. 
 

Preparing the samples for agarose gel electrophoresis 
The set gel is placed in a running tank filled above the level of the gel with TAE buffer. 
The products from the PCR reaction need to be mixed with a dye before they are added 
to the gel. The SYBR Safe added to the gel chelates with the DNA. The fluorescence, of 
the complex formed, was imaged under UV irradiation. A ladder consisting stand sized 
oligonucleotides was loaded onto the gel to be used as a marker for comparative 
measurement of the DNA passage through the gel, New England Bioloabs 1 kb ladder 
was used. 
 

Running an electrophoresis gel 
The lid is applied to the tank which ensures that the electrical circuit is closed. A power 

pack is used to apply electrical current (200 v) through the gel for one hour. The TAE, 

acid/base buffer ensure the DNA is negatively charged and therefore is attracted to the 
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positive electrode when a current is applied. Components of the solution are separated 

by size; the larger the chain the slower it travels allowing accurate resolution by size. The 

agarose gel is imaged; the stains used in the loading buffer bind to the DNA and are 

visible under UV light.  

 

Transformation of plasmid containing recombinant gene into 

competent cells 
Competent E.coli cell aliquots were defrosted on ice and 1 µl DNA added to the solution. 

DNA was gently mixed by pipette before heat shocked for 30 seconds at 40°C before 

returning back to ice for a further 2 minutes. Upon addition of 250 µl of SOC growth 

media the reaction mixture is incubated at 37°C for 1 hour in an Eppendorf Thermoblock 

shake. 67 

Preparation of LB agar media for the growth of cells 

LB agar solution is made up in a ratio of 5 g NaCl: 5 g Tryptone: 2.5 g Yeast Extract: 7.5 g 
Agar per 500 ml of MilliQ H2O. 200 mLs of LB agar is melted by microwave, care must be 
taken to avoid boiling of the liquid and agitation should be used to mix and distribute 
the heat. Allow the contents to cool to near room temperature and add antibiotic(s) for 
resistance selection in the vector to a final concentration between 30-50 µg/mL in LB 
agar mixture (Ampicillin -35 µg/mL, Kanamycin – 50 µg/mL, Chloramphenicol – 35 
µg/mL). Under abiotic conditions pour the agar into empty plates, ensuring the surface is 
smooth and level, before being allowed to dry for two hours; place in a drying oven 40 
minutes before use. 

Plating out cells onto LB agar plates 
 

250 µL of cells of the growth culture is pipetted onto the agar plate under aseptic 

conditions. Spread cells evenly with a glass spreader that has been flamed with ethanol 

and a roaring blue flame. Allow the cells to dry onto the plate and then place in the 37°C 

oven to grow overnight. 

Small Scale Expression Tests 
 

LB solution is made up in a ratio of 10 g sodium chloride; 10 g Tryptone, 5 g yeast extract 

powder per litre.  Small, 5 ml cell cultures were grown from a single colony at 37°C and 

agitation of 180 rpm. The growth temperature is reduced to 16°C once the OD600 reaches 

0.4. Once the optical density reaches 1.5 (0.8 in early experiments) IPTG is added to a 

final concentration of 1 mM. The inoculated culture was left to grow over night at 16°C. 
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Glycerol stock of cells containing the desired recombinant gene 

constructs 
 

0.5 mls of culture was mixed with 0.5 mls of glycerol (80%) and mix gently in an 

Eppendorf tube. Drop the tube into liquid nitrogen to freeze and place in a -80°C freezer. 

 

 

 

Large Scale Protein Production for Purification 
 

500 ml cell cultures were grown from a single colony at 37°C and agitation of 180 rpm. 

The growth temperature is reduced to 16°C once the OD600 reaches 0.4. Once the optical 

density reaches 1.5 (0.8 in early experiments) IPTG is added to a final concentration of 1 

mM. The inoculated culture was left to grow over night at 16°C. 

Isolation of the periplasmic fraction from cells 
The cell media was transferred into centrifuge tubes and balanced before centrifugation 

with a Sorvall F10 rotor, 8000 rpm for 30 minutes to obtain a pellet of cells. 

 

1. Cell pellets obtained were weighed before being suspended in 3 volumes (with 

respect to weight in grams) of iced 50 mM Tris pH 8.0, 200 mM NaCl and 20% 

w/v Sucrose. 

2.  40 l of 10 mg/ml Hen Egg White Lysozyme was added for every gram of cell 

paste and solution incubated on ice for 1 hour with occasional agitation. 

3.  Add 60 l of 1 M MgSO4 for every gram of cell paste and incubate on ice for a 

further 20 minutes. 

4.  The protoplasts were spun down in a F13S rotor at 10000 rpm for 20 minutes 

and the supernatant isolated into a fresh tube and stored on ice. 

5. Pellet is suspended again, this time in ice cold milliQ water (same volume as used 

in step 1) and incubated on ice for a further hour. 

6. Repeat Step 4.  

7. 4 sonication pulses were applied to the solution at maximum amplitude to 

decrease the viscosity of the solution 

8. Sample was diluted in 5 volumes of 50 mM TRIS pH8, 50 mM NaCl buffer ready 

for purification. 
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Cell Lysis following intracellular protein expression 
1. Harvest cells were above (Sorvall F10 rotor, 8000 rpm, and 30 minutes) and the 

pellets obtained weighed. 

2. Suspend in 3 volumes (with respect to weight in grams) of iced 50mM TRIS pH8, 

250 mM NaCl, and 30 mM Imidazole buffer. 

3. 10 sonication pulses were applied to the cell suspension in intermediates before 

being returned to ice to cool. The lysed solution was centrifuged in the F13S 

rotor at 10000 rpm for 20 minutes. 

4. The cell lysate was then used for downstream purification. 

 

Protein analysis by polyacrylamide gel electrophoresis 
 

SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) involves the binding of sodium 
dodecylsulfate to protein back bone which forces the unfolding of protein to create a 
charged molecule that can be resolved through a polymer gel by applied current.  
 
12% (w/v) SDS-PAGE gels were poured according to the following recipe: 
 

Resolving Gel Stacking Gel 

2.5 ml Resolving gel Buffer 1.3 ml Stacking gel buffer 

4.2 ml Acrylamide Stock 500 µl Acrylamide stock 

3.2 ml ddH2O 3.2 ml ddH2O 

16 µl TEMED 8 µl TEMED 

100 µl 10% APS 100 µl 10% APS 

 
 

Table 5.3 Shows the standard recipe for making up a 15% SDS-PAGE gel using Hoefer gel kit. 
 

 
Samples were mixed with a quarter volume sample buffer, mixed, and then heated to 

94°C to boil the protein. The sample was loaded into a Hoefer gel kit filled with running 

buffer. The gel was run at 100 volts for 50 minutes with a standard protein ladder into 

one lane. Stain the gel with coomassie blue before de-staining and analysing.  

Specific methods 

Cloning C. cellulovorans CBM33 
 

Ed Taylor ordered a plasmid containing C. cellulovorans CBM33 from GenScript in a pET-
11a vector (Ampicillin resistance selection) with an attached PelB tag for targeting the 
protein to the periplasm. All further cloning was carried out using this DNA template.  
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In-fusion cloning was used to insert the C. cellulovorans CBM33 gene into various 
expression vectors following the standard procedures described by Clontech. 68 

Primer design  
Primers were designed using serial cloner 2.6 (http://serialbasics.free.fr/Serial_Cloner-

Download.html), oligonucleotide sequences, with the standard primers pre-requisites, 

were ordered from Eurofins MWG Operon. Primers were ordered with overlapping 

sticky ends so that annealing to the template strand would be specific and efficient so as 

to give a good yield in PCR reactions. 69 Special attention was paid to the GC content and 

the melting temperature to ensure that PCR artefacts were avoided in the cloning 

process and the DNA product produced had the correct sequence.  
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C. cellulovorans CBM33 YSBL-LIC 

Forward 

primer 

5’ to 3’ 

 

AGGAGATATACCATGCATGGTGGTATGGTGTTCCC 

 

Reverse 

primer 

5’ to 3’ 

 

TGAGGAGAAGGCGCGTTAGATCATGGTACCGCCTTC 

 

SUMO C. cellulovorans CBM33 Champion PET Sumo 

 

Forward 

primer 

5’ to 3’ 

 

GAACAGATTGGTGGTCATGGTGGTATGGTGTTCCC 

 

Reverse 

primer 

5’ to 3’ 

TACCTAAGCTTGTCTTTAGATCATGGTACCGCCTTC 

 
 

Table 5.4 DNA primers for C. cellulovorans CBM33. 
Table showing the sequence of the DNA primers designed and ordered to clone recombinant genes into expression 

vectors. 

DNA purification  
The DNA product from the initial PCR reactions is contaminated with used PCR products, 

artefacts and impurities that must be removed from the solution before any 

downstream reactions can take place. This is done by DNA purification techniques; DNA 

produced from our PCR reactions was purified using the QIAquick PCR Purification Kit 

from Qiagen. All centrifuge reactions for the following protocol were carried out at 

≥10,000 x g (13,000 rpm) in a lab, tabletop, micro centrifuge. The kit has all buffers made 

up to working concentration and the standard protocol was followed. 70 

 DPN-1 Digest reaction 
DNA synthesized from E.coli has undergone N6 methylation of adenine due to 

methyltransferases in the E.coli. Dpn1 digestion is carried out to remove the template 

DNA which bears the methylation. The reaction produces non-methlyated sample which 

makes downstream processes cleaner 

In fusion reaction 
In fusion allows for the cloning of DNA fragments into a linear expression vector to form 

a complete, circular, vector without the need for restriction and ligation. The DNA insert 

containing C. cellulovorans CBM33 was combined with linear vectors using the 

CLonetech InFusion Kit and following the standard protocol. 71 
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Transformation of C. cellulovorans CBM33 vector into 

NovaBlueGiga cells 
An aliquot of NovaBlueGiga cells were transformed with 1 µl of C. cellulovorans CBM33 vector 
DNA following the protocol above. NovaBlueGiga cells are genetically engineered contain recap 
endA mutations, which facilitate high yields of excellent quality plasmid DNA. 72 Cells are plated 
out following the above protocol and grown overnight at 37°C. 
 

Testing the DNA constructs 
The plated cells were left to grow overnight into a selection of single colonies; within 

each colony the cells contained the same genetic sequence. All colonies that grew on the 

antibiotic plates have been selected due to the presence of resistance genes; tests were 

carried out to confirm that the correct gene had been cloned into the plasmid in the 

InFusion reaction and that no contaminant colonies were present. 

Colony PCR 
Using a pipette tip, a single colony was scraped from the agar plate and dipped into a 

Colony PCR solution carry out gel electrophoresis as described above and analyze by 

agarose gel (Dream Taq Buffer acts as the loading dye). The size of the DNA fragment 

showed whether an insert of the correct size has been incorporated into the vector. 

 

 

PCR reaction 
component 

Quantity 

Milli Q ddH2O 9. 5 µl 

Forward primer DNA 
T7 protease forward 

primer (20 µM) 

 
1.5 µl 

Reverse Primer DNA 
YSBL-LIC (- H) reverse 

primer (20 µM) 

 
1.5 µl 

dNTPs (10 mM) 5 µl 

Dream Taq Green 
Buffer  

1.5 µl 

Dream Taq 
Polymerase  

0.5 µl 

 
 

Table 5.5 Colony PCR recipe. 
Showing the standard recipe for making up the Colony PCR reaction mixture to carry out DNA accumulation from 

a colon selected for the presence of a recombinant gene. 
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Colony PCR grow up 
 

The colony picked for colony PCR is then added into a 5 ml LB culture with specific 

antibiotic(s). The overnight culture was set up. After overnight incubation the cell 

suspension was harvested by centrifuge at 13.3k rpm and the supernatant removed. 

Overnight cultures were used to increase the cell density in the suspension to allow 

extraction of DNA from the cells or for inoculation of larger growth  

DNA isolation from cells using SpinPrep DNA kit from Novagen 
 

The harvested cell pellet is suspended in buffer P1 from Novagen according to existing 

protocols. 73  

1. Suspend cell pellet in 250 µl of Buffer P1 (containing LyseBlue Reagent and 

RNAase) in a Eppendorf tube and mix. 

2. Add 250 µl of Buffer P2 and invert 12 times and incubate for 5 minutes on ice 

(solution should turn blue). 

3. Add 350 µl of Buffer N3 and invert 12 times to quench the lysis (should turn 

colourless). 

4. Centrifuge for 10 minutes in a desktop centrifuge at 13k rpm. 

5. Using Gilson, apply the supernatant to QIAprep tube and centrifuge for 60 

seconds. 

6. Wash tube with 500 µl of PB Buffer and spin for 60 seconds.  

7. Add 750 µl of PE Buffer and centrifuge twice for 60 seconds each, allowing the 

sample to stand for 60 seconds in-between.   

8. Elute the membrane bound DNA by washing the tube with 60 µl of EB Buffer into 

a clean Eppendorf, allow the sample to stand for 60 seconds before centrifuging 

for 60 seconds. 

Expression of recombinant C. cellulovorans CBM33 
 

Transformation of expression cells  
The correct DNA sample is transformed into the competent cells following the protocol 

in general methods. Expression of PelB C. cellulovorans CBM33 in pET-11A was tested in 

Bl21, BL21*, Rossetta2, C41 and TUNER cells (See page 52). 

Expression of recombinant C. cellulovorans CBM33 
Cultures of LB media were inoculated with cells containing the C. cellulovorans CBM33 

plasmid and grown following the protocol in general methods (see page 52). 
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Purification of periplasmic C. cellulovorans CBM33 

Q column anion exchange purification 
C. cellulovorans CBM33 and other proteins isolated from E. coli cells were suspended in 

50 mM TRIS pH8, 50 mM NaCl. At pH 8 C. cellulovorans CBM33 should bind to an annion 

exchange column according to the Expasy predicted pI. The protein solution was passed 

through a Q-column in the 50 mM TRIS pH8, 50 mM NaCl buffer column attached to a 

Fast Performance Liquid Chromatography AKTA. 50 The separated fractions were 

collected by automatic fractionation and the UV of each fraction measured. UV 

absorbance represents protein presence and indicated the fraction should be analysed 

further by SDS PAGE gel. 

Hydrophobic Interaction Chromatography column purification 
Protein fraction is concentrated by centrifugation to below 10 mls as described above. 

Sequential buffer exchange washes are carried out into 50 mM TRIS pH8, 50 mM NaCl, 1 

M Ammonium Sulphate buffer. The protein solution was loaded onto a Phenyl 

sepharose Hydrophobic Interaction Chromatography column attached to a Fast 

Performance Liquid Chromatography AKTA. Protein that interacts strongly with the 

column was eluted by a decreasing concentration gradient of Ammonium sulphate from 

1 M across 20 column volumes. The separated fractions were collected by automatic 

fractionation and the UV of each fraction measured to indicate protein presence. 

Analytical ammonium sulphate cut 
Proteins generally have a propensity to precipitate in larger concentrations of 

ammonium sulphate. The concentration of ammonium sulphate in solution was 

sequentially increased to analyse precipitation. 

Take six Eppendorf tubes and label: 

 

Name Reaction components 

1.5 M Ammonium sulphate pellet 0.3 mls of 4 M ammonium sulphate 
solution 

2.0 M Ammonium sulphate pellet 0.2 mls mls of 4 M ammonium sulphate 
solution 

2.5 M Ammonium sulphate pellet 66 mg of Amonium sulphate powder 

3.0 M Ammonium sulphate pellet 66 mg of Amonium sulphate powder 

3.5 M Ammonium sulphate pellet 66 mg of Amonium sulphate powder 

Soluble fraction Empty 

 
 

Table 5.6 Shows the recipe for a standard Ammonium sulphate precipitation experiment. 
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0.5 mls of cold crude protein fraction was added to the first tube and mixed. The sample 

was incubated on ice for 10 minutes and then spun down on a bench top centrifuge at 

13000 rpm. The supernatant was transferred into the next tube by pipette.The process 

was repeated for each of the following tubes and the supernatant from the 3.5 M 

Ammonium sulphate fraction placed into the empty tube. The pellets was dissolved in 50 

mM TRIS pH8 and the protein concentration in each sample analysed by A280 and SDS-

PAGE gel. 50 

Gel filtration 
C. cellulovorans CBM33 protein fraction was concentrated to less than 5 ml and applied 

to a HiLoad 26/60 Superdex 75 column equilibrated in GF buffer (20 mM sodium acetate 

pH 5.0, 250 mM NaCl). The column was run at low pressure, attached to a Fast 

Performance Liquid Chromatography AKTA. Protein presence in automated fraction 

collection allowed for combination of C. cellulovorans CBM33 fractions.  

 

Purification of intracellular C. cellulovorans CBM33 
 

Hi-Trap crude Nickel column purification 
The protein fraction was diluted in four volumes of 50 mM TRIS pH8, 50 mM NaCl, 30 

mM imidazole. The solution was loaded onto a Hi-Trap crude Nickel column in the buffer 

column attached to a Fast Performance Liquid Chromatography AKTA equilibrated in the 

same buffer. 74 Solution components that bound to the Nickel resin were eluted by an 

increased gradient of Imidazole; increased from 30 mM to 300 mM over 20 column 

volumes. Elution fractions were collected by automatic fractionation and the UV of each 

fraction measured. 

Gel filtration 
C. cellulovorans CBM33 protein fraction was concentrated to less than 5 ml and applied 

to a HiLoad 26/60 Superdex 75 column equilibrated in GF buffer (20 mM sodium acetate 

pH 5.0, 250 mM NaCl). The column was run at low pressure, attached to a Fast 

Performance Liquid Chromatography AKTA. Protein presence in automated fraction 

collection allowed for combination of C. cellulovorans CBM33 fractions.  

Purification of SUMO protease 

Hi-Trap crude Nickel column purification 
The protein fraction was diluted in four volumes of 50 mM TRIS pH8, 50 mM NaCl, 30 

mM imidazole, 1 mM β mercapto-ethanol. The solution was loaded onto a Hi-Trap crude 

Nickel column in the buffer column attached to a Fast Performance Liquid 

Chromatography AKTA equilibrated in the same buffer. 74 Solution components that 

bound to the Nickel resin were eluted by an increased gradient of Imidazole; increased 
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from 30 mM to 300 mM over 20 column volumes. Elution fractions were collected by 

automatic fractionation and the UV of each fraction measured. 

Gel filtration 
C. cellulovorans CBM33 protein fraction was concentrated to less than 5 ml and applied 

to a HiLoad 26/60 Superdex 75 column equilibrated in GF buffer (20 mM sodium acetate 

pH 5.0, 250 mM NaCl, 1 mM dithiothreitol). The column was run at low pressure, 

attached to a Fast Performance Liquid Chromatography AKTA. Protein presence in 

automated fraction collection allowed for combination of C. cellulovorans CBM33 

fractions.  

 

 

 

Protein characterisation 

Protein Mass Determination by Electrospray Ionisation Mass 

Spectrometry 
 

The protein was buffer exchanged into 2mM TRIS on a centrifugal concentrator by 

repeated dilution and concentration cycles. This buffer exchange proved an essential 

step to remove trace salt which inhibited sample ionisation on the Mass spectrometer. 

The mass spectrometry and mass reconstruction were carried out by the TechFacility at 

the University of York. 

Isothermal Titration Calorimetery 
 

Isothermal titration calorimetry was performed using a Micro2000 -ITC calorimeter 

(MicroCal). Protein solution, in sodium acetate buffer, pH5, was placed in the cell at a 

concentration of 52.5 µM and a 10-fold more concentrated solution of CuCl2 in the 

syringe was titrated in. Titrations were performed at 298 K. A 2 μL injection was 

conducted initially however was disregarded in data analysis due to spike in noise and 

thermal transfer. 10 μL injections were used during the titration with a 5 min interval 

between each injection. The CuCl2 solution was made up in identical gel filtration buffer 

from C. cellulovorans CBM33 purification process. Data was analysed using the Origin 7 

software package (MicroCal). Heats of dilution were subtracted from the data, but 

previous analysis of related LPMO proteins routinely returned sub-stoichiometric 

binding values with Cu. Utilising evidence from previous work the Calorimeter injection 

system was modified to remove Cu-containing brass components. 
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Electro Paramagnetic Resonance (EPR) analysis of the copper 

active site in C. cellulovorans CBM33 
 

Copper EPR spectrum of C. cellulovorans CBM33 
Continuous wave X-band, frozen solution, EPR spectra of 0.5 mM solution of  C. 

cellulovorans CBM33  (15% v/v glycerol) at pH 5 (acetate buffer) and 155 K were 

acquired on a Bruker ESP 300 spectrometer operating at 9.35 GHz, with a modulation 

amplitude of 4G and microwave power of 5 mW.  

Spectra were normalised by background subtraction for each reading and the g value 

calclulated using the following equation, (  
  

   
) where h=Plank’s constant, 

v=Frequency, β=Bohr magnetron and Bo=field [Gauss]. 

Copper EPR spectrum of C. cellulovorans CBM33 with substrate 
2 mg of substrate was added to an EPR tube containing the above reaction and re-

measured. 

Crystallisation Trials 
Attempts were made to crystallise C. cellulovorans CBM33 to resolve the 3 Dimensional 

structures by X-ray crystallography. Trials were set up using C. cellulovorans CBM33 

concentrated to 6.4mg/ml in pH 5 sodium acetate buffers. Parallel trials were attempted 

to study Apo and Cu-bound C. cellulovorans CBM33 protein structure, Cu(NO3)2·3H2O 

was added to the copper study to a final concentration of 1 mM. Using a Mosquito robot 

(TTP Labtech) separate INDEX and PACT screens were set up and allowed to crystallise at 

289 °K. 

Mass spectrometry of C. cellulovorans CBM33 reaction products 
 

Reaction of C. cellulovorans CBM33 with crystalline substrates 
0.2% w/v solid substrate was suspended in 10 mM ammonium acetate, pH 5.0, 1 mM 

ascorbic acid. C. cellulovorans CBM33 was loaded with equi-molar amounts of copper 

and added to the reaction mixture to a final concentration of 1 μM. Reactions were 

incubated at 30 °C in a rotary incubator. Substrate was separated by centrifugation at 

16,000g at 4 °C for 5 min and the supernatant used for the analysis. 

Matrix-assisted laser desorption ionization–time of flight/time of flight 

Spectrometry 
1 μl of protein sample was mixed with an equal volume of 10 mg/ml 2,5-

dihydroxybenzoic acid in 50% acetonitrile, 0.1% trifluoroacetic acid on a SCOUT-MTP 384 

target plate (Bruker). The spotted samples were then dried in a vacuum desiccator 

before being analyzed by mass spectrometry on an Ultraflex III matrix-assisted laser 
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desorption ionization–time of flight/time of flight (MALDI-TOF/TOF) instrument (Bruker), 

as described in Vaaje-Kolstad et al. _ENREF_67 Results were analysed using the Bruker 

Daltronics Flex Analysis software. 
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Appendix 
 

 

 

Figure A1 Recombinant gene expression from E. coli expression cells. 
Figure displayes the mechanism by which the addition of IPTG to the growth culture overcomes the permanent down 
regulation of the Lac operon genes in expression strains of E.coli. Lac repressor, produced from LacI gene, binds to an 

operator site which sterically hinders the binding and activity of RNA polymerase. IPTG binds to the LacI repressor 
protein allostercally changing the 3D shape and causing it to dissociate from the DNA, leaving the promoter open. E. 

coli RNA polymerase binds and  transcribes large volumes of gene of interest mRNA (in this case T7 polymerase 
inserted into the multiple cloning site).T7 polymerase then goes on to catalyse the expression of the recombinant 

gene controlled by the T7 promoter. IPTG cannot be metabolised by E. coli so once it is bound to the repressor 
molecule the operon genes remain active.(Figure from Novagen recombinant gene expression catalogue). 
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List of abbreviations 
AA9 – Auxiliary Activities 9  

AA10 - Auxiliary Activities 10 

APS – Ammonium Persulfate 

CAZy - Carbohydrate-Active enZYmes 

CBM33 – Carbohydrate binding module 33CBP21 – Chitin binding protein 21 

CDH 1 – cellobiose dehydrogenase 1 

CO2 – Carbon di-oxideEJ - Exajoule 

EPR – Electron paramagnetic resonance 

GH61 - Glycoside Hydrolase Family 61  

HIC – Hydrophobic interaction Chromatography 

IPTG – Isopropyl β--‐D--‐1--‐thiogalactopyranoside 

ITC – Isothermal calorimetry 

LB – Lysogeny Broth 

LPMO – Lytic polysaccharide mono-oxygenase 

MALDI/TOF – Matrix-assisted laser desorption/ionization time of flight mass 

spectrometry 

OD600 – Optical density 600 nm 

PCR – Polymerase Chain Reaction 

SDS-PAGE – sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SUMO - Small Ubiquitin-related Modifier 

TEMED TetraMethylEthyleneDiamine 

Tris - Tris (hydroxmethyl) aminomethane 

ULP – Ubiquitin like protein  
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