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Abstract 

 

After death, the skeleton of a vertebrate organism undergoes a variety of physical and 

chemical changes that lead to its destruction or fossilisation (diagenesis). The most common 

type of archaeological bone diagenesis consists of internal microscopic tunnelling produced by 

invasive microorganisms (bioerosion). There is evidence that an organism’s intrinsic gut 

bacteria associated with bodily putrefaction are responsible for the most common type of bone 

bioerosion. Bacterial bioerosion of archaeological bone should be related to how early post 

mortem treatment of a corpse affected bone exposure to putrefaction. Measures of bacterial 

bioerosion may aid taphonomic reconstructions of past funerary treatments of human remains. 

A plethora of variables can affect bodily decomposition, and it is uncertain how far bacterial 

bioerosion reflects anthropogenic or natural processes. Bone undergoes a variety of 

interrelated diagenetic changes over its depositional history and bacterial bioerosion must be 

understood within its diagenetic context.  

The purpose of this study was to determine how far microscopic examination of archaeological 

bone diagenesis may aid in reconstructions of funerary rites. This objective was addressed 

through the histological analysis of bone thin sections from 301 individual skeletons retrieved 

from 25 European Later Prehistoric and British Historical archaeological sites. Bacterial 

bioerosion within this assemblage was primarily influenced by neonatal status or waterlogged 

burial sediments. When the neonatal and anoxic-deposited remains were excluded, bacterial 

bioerosion was controlled by archaeological phase in a way that had been predicted based on 

known early post mortem treatment and forensic models of bodily decomposition. Further 

diagenetic variables were also influenced by early taphonomic events, although these 

relationships were not as strong or as regular as those observed between funerary treatment 

and bacterial bioerosion. These findings suggested that microscopic analyses of bone 

diagenesis has useful applications to reconstructions of early post mortem processes, 

particularly funerary rites. 
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1 INTRODUCTION 

 

After the death of a vertebrate organism, the skeleton is subject to a variety of physico-

chemical changes that lead to its destruction or fossilisation (Hedges 2002; Trueman & Martill 

2002; Nielsen-Marsh et al. 2007; Smith et al. 2007; Lee-Thorp & Sealy 2008). These changes 

are referred to as diagenesis. Bone diagenesis consists of three processes: the breakdown and 

removal of bone proteins, the dissolution or alteration of the bone mineral matrix, and 

infiltration of the bone by exogenous substances. The effects of diagenesis can change the 

macroscopic properties and appearance of bone samples. However, the most effective way of 

measuring diagenesis is through the analysis of changes to the bone microstructure.  

The most common diagenetic pathway observed within archaeological bone is microbial attack 

(Hackett 1981; Turner-Walker et al. 2002; Jans et al. 2004; Nielsen-Marsh et al. 2007). The 

microorganisms responsible for this type of diagenesis invade and travel through the bone 

microstructure in order to exploit the resident proteins. This type of biologically-mediated 

attack is called bioerosion. The progress of microbes through the microstructure produces 

characteristic tunnels called micro-foci of destruction (MFD) (Hackett 1981). Fungal and 

bacterial organisms produce different types of MFD named Wedl and non-Wedl respectively 

(Hackett 1981). 

Bacterial non-Wedl MFD represent the most abundant forms of microbial tunnelling found 

within archaeological bones (Hackett 1981; Turner-Walker et al. 2002; Jans et al. 2004; 

Nielsen-Marsh et al. 2007). The extent of bacterial bioerosion within archaeological bone is 

often variable. Early theories regarding the origins and variation in bacterial bone bioerosion 

were concerned with soil microorganisms that invaded the bone post-skeletonisation 

(Marchiafava et al. 1974; Hackett 1981; Piepenbrink 1986; 1989; Hanson & Buikstra 1987; 

Yoshino et al. 1991; Grupe & Dreses-Werringloer 1993). An exogenous model of bacterial 

attack suggests that variation in bacterial bioerosion amongst archaeological bones was 

controlled by differences in the burial environment that affected the abundance and nature of 

resident soil microorganisms (Turner-Walker & Jans 2008).  

However, successive studies have indicated that non-Wedl MFD are likely to have been formed 

by the intrinsic gut bacteria of the dead organism (Child 1995a; 1995b; Bell et al. 1996; Jans et 

al. 2004; Nielsen-Marsh et al. 2007). These types of bacteria escape into the bone during early 

post mortem soft tissue putrefaction (Polson et al. 1985; Child 1995a; 1995b). In this 
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endogenous model, bacterial bioerosion of bone would be controlled by the extent to which 

the skeleton was exposed to the deleterious effects of putrefaction. This factor would be 

predominantly influenced by early post mortem taphonomic processes (Bell et al. 1996; 

Hedges 2002; Jans et al. 2004; Nielsen-Marsh et al. 2007). 

The status of bacterial bioerosion as a gauge of the extent to which an archaeological bone 

was exposed to putrefaction bacteria presents a potentially useful prospect for the study of 

funerary treatment. It is possible that certain kinds of funerary rites will leave characteristic 

signatures of bacterial bioerosion within archaeological bone microstructure (Parker Pearson 

et al. 2005). If this scenario could be proven, the study of bone diagenesis would provide a 

method of distinguishing between discrete funerary rites that leave similar archaeological 

records. For instance, analysis of bone diagenesis may provide a method of determining the 

processes which led to the formation of disarticulated archaeological human bone 

assemblages. Methods of diagenetic analysis may also help to identify hidden complexities in 

funerary treatment that could not have been discerned through the analysis of the 

archaeological evidence alone (Parker Pearson et al. 2005). 

Relationships between early post mortem treatment and bacterial bioerosion have been 

recorded within certain archaeological assemblages (Jans et al. 2004; Nielsen-Marsh et al. 

2007; Smith et al. 2007). However, there have been no investigations into whether specific 

funerary treatments of human remains produce characteristic signatures of bacterial bone 

bioerosion. Processes such as dismemberment separate the bone from the putrefying viscera 

within the early post mortem period and would be expected to have an immediate effect on 

any related bacterial bone bioerosion. However, rites such as coffin burial or wrapping only 

slow the rate of bodily decomposition, and may have a more nuanced influence on the 

bacterial attack of bone (Mant 1987; Galloway et al. 1989; Mann et al. 1990; Aturaliya & 

Lukasewycz 1999; Fereira & Cunha 2013). Therefore, it has yet to be established which, if any, 

types of funerary treatment have a detectable impact on bodily putrefaction and internal bone 

bioerosion.  

Seasonality is most often cited as the factor that has the largest effect on the nature of bodily 

decomposition (Rodriguez & Bass 1983; 1985; Mann et al. 1990; Manhein 1997; Bass 1997; 

Wilson et al. 2007; Meyer et al. 2013). Anoxic burial environments such as waterlogged graves 

can arrest putrefaction to an extent that sometimes permits soft tissue to persevere over 

extended periods of time (Polson et al. 1985; Cotton et al. 1987; Mant 1987; Janaway 1996; 

Turner & Wiltshire 1999; Fielder & Graw 2003; Wilson et al. 2007). It has yet to be determined 
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whether the effects of anthropogenic processes on bacterial bone bioerosion can be 

distinguished from changes elicited by the burial environment. Moreover, the results of more 

recent experimental research into the origins of non-Wedl MFD have suggested that the role 

of exogenous soil bacteria cannot be discounted (Fernández-Jalvo et al. 2010; Turner-Walker 

2008; 2012). The strength of the relationship between early post mortem processes and 

bacterial bone bioerosion is questionable.  

There are a series of further diagenetic changes that a bone can undergo that may also relate 

to how the body was treated within the early post mortem period. For instance, the presence 

of fungal Wedl tunnelling within archaeological bone microstructure has been linked to 

processes that would have prevented endogenous bacteria from exploiting the bone proteins, 

such as butchery (Jans et al. 2004). The presence of particular materials within the bone matrix 

could be reflective of decompositional environments that affected the progression of 

putrefaction (Hollund et al. 2012). There is a requirement to understand bacterial bioerosion 

within its diagenetic context.  

 

1.1 RESEARCH QUESTIONS 
 

The primary focus of the current study was putrefactive bioerosion of bone. However, the 

requirement to understand this variable amongst overall diagenetic change meant that the 

objectives had to be framed in reference to whole bone diagenesis. The main aims of this 

study were to determine whether there was a relationship between bone diagenesis and 

funerary treatment and decide whether the nature of any associations suggested that 

measures of bone diagenesis could be useful in reconstructions of funerary treatment. These 

aims can be summed up in the following research questions: 

 

1. Is there a relationship between funerary treatment and bone diagenesis that is strong 

enough to be detected by microscopic analysis of archaeological bone? 

 

2. Does the relationship between bone diagenesis and funerary treatment conform to 

predictive models of diagenesis inferred by studies of cadaveric decomposition? 
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3. Is the strength and nature of the relationship between bone diagenesis and funerary 

rite such that certain treatments can be said to produce characteristic patterns of 

diagenesis that can be recognised through the microscopic analysis of archaeological 

bone microstructure? 

 

4. How can measures of bone diagenesis, particularly the microscopic assessment of 

archaeological bones, be usefully employed in reconstructions of funerary processes? 

 

These questions were addressed in the present study through the microscopic analysis of 

diagenetic changes to archaeological bones recovered from European Later Prehistoric (4000 

B.C.-A.D. 43) and British Historical (43 A.D.-present day) sites. The questions were primarily 

structured around the assessment of bacterial bioerosion of bone, although several measures 

of bone diagenesis were used in order to better understand how these changes might be used 

in unison to reconstruct early taphonomic histories of archaeological bone samples. Samples 

of bone from European Later Prehistoric and British Historical archaeological sites were 

compared, as these assemblages represented the best possible proxies of differential funerary 

treatment. The religiosity associated with Historical periods, as well as the articulated state of 

most of skeletons, meant that it could be assumed that the majority of remains recovered 

from British Historical cemeteries had been buried soon after death. The exact funerary 

treatment afforded to individuals recovered from the European Later Prehistoric sites was 

unknown, although there was ample archaeological evidence that bodies had been treated in 

diverse ways which differed from the consistent processes practised during the British 

Historical periods (Darvill 2010). The research questions were addressed by investigating the 

nature of differences in several measures of diagenesis between bone samples from Historical 

and Later Prehistoric phases. A number of factors that may have enacted an influence on bone 

diagenesis were considered during this analysis in order to control for their potential effects, 

although it should be emphasised that the main aim of this study was to assess how far 

funerary treatment impacted on variation in bone diagenesis, rather than account for all 

variation in measures of diagenetic change. 

The analysis expounded above relied upon the variation between the funerary treatments that 

were practised in British Historical and European Later Prehistoric periods. However no 

assumptions were made or were required regarding the exact treatment of the Later 

Prehistoric remains, other than the processes employed did not always involve immediate 
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inhumation. Therefore, the results of the primary analysis were combined with forensic studies 

of cadaveric decomposition to produce interpretations of funerary treatment based on the 

diagenetic and taphonomic evidence from each Later Prehistoric site. These studies provided 

examples of the ways in which measures of bone diagenesis may be used in reconstructions of 

funerary treatment practised in the past. 

 

1.2 STRUCTURE OF THESIS 
 

This thesis is divided into eight further chapters and two Appendices. The Background chapter 

provides more detailed discussion of bone microstructure and diagenetic processes, 

particularly bacterial bioerosion. The discussion of bioerosion includes justifications for the 

assumption of its bacterial and endogenous origin. The Background chapter also addresses the 

different factors that enact an influence on bodily putrefaction and provides some reasoning 

as to why it was thought that particular funerary rites would predominantly influence 

measures of bone diagenesis.  

The Methodology chapter provides descriptions of the techniques used in the microstructural 

analysis of the archaeological bone samples. The details of the variables recorded for each 

bone sample, as well as the justification for their inclusion, are also discussed in this chapter. 

These variables included measures of bone diagenesis as well as factors that may have 

influenced diagenetic change. The Materials chapter provides a discussion of the sites whose 

human remains were included in the current study. Each description discusses the site 

background as well as taphonomic and environmental information that was relevant to the 

diagenetic analysis of each site assemblage. The sampling methods had to be adapted to each 

site. Detailed descriptions of the sampling strategies employed for each site assemblage are 

also explained in the Materials chapter.  

The results are split into two chapters. The first is comprised of the systematic statistical 

testing of variation in each diagenetic parameter across the whole sample of remains (Primary 

Analysis). The second results chapter presents results from discrete and supplementary 

assemblages, which were used to reinforce the findings from the Primary Analysis and provide 

data for interpretations of site-specific patterns of bone diagenesis. The Discussion chapter 

presents an amalgamation and interpretation of both results chapters. Discussions of these 

interpretations are used to directly address the research question. The Specific Discussion 
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chapter is composed of exemplary site-specific interpretations of diagenetic and taphonomic 

information in terms of early post mortem processes, based upon the conclusions of the 

Discussion chapter. These reports provide examples of how measures of bone diagenesis may 

be used in reconstructions of funerary treatment at archaeological sites. The final Conclusion 

chapter presents a summary of all findings and how they answered the research questions. 

These conclusions are qualified by discussions of the current study’s limitations. Consideration 

of the results and their limitations leads to a discussion of recommendations for future 

research directions. 

Throughout the thesis ‘Image’ refers to an unmodified photo or micrographs. ‘Figure’ 

represents an illustration or an illustrated photo/micrograph. Binary and Ordinal Logistic 

Regression models constituted the core statistical tests used in the Primary Analysis. These 

models produced a lot of information, some of which was not directly relevant to the current 

study. Relevant information is summarised in the main text. Appendix 1 consists of IBM SPSS 

tables of extraneous results from ordinal and binary logistic regression models. The second 

Appendix 2 presents a table of results from all the statistical tests that were conducted. This 

table illustrates the Holm-Bonferroni method of correcting for multiplicity as applied to the 

statistical outcomes produced as part of the current research.  

 

 

 

 

 

 

 

 

 

 

 

 



  

7 
 

2 BACKGROUND 

 

This chapter will provide background information on the basic microstructure of bone and 

bone diagenesis. The discussion of bone microstructures is pertinent to this thesis, as they 

dictate the progression of certain types of bone diagenesis and will be used as points of 

reference. The link between early taphonomy of a body and bone bioerosion is based upon the 

notion that the osteolytic microorganisms originate within the organism itself and are active 

during the putrefaction stage of bodily decomposition (Child 1995a, Bell et al. 1996; Jans et al. 

2004; Nielsen-Marsh et al. 2007; Hollund et al. 2012). The second part of this chapter will 

provide a discussion of bone diagenesis, particularly the various forms of bioerosion. This 

section will also examine the evidence that bacterial bone bioerosion is propagated by 

endogenous rather than exogenous microorganisms. 

Cadaveric putrefaction is affected by a large range of variables (Rodriguez & Bass 1983; 1985; 

Campobasso et al. 2001; Vass 2011). The third part of the chapter will discuss the factors that 

can influence bodily decomposition and provide reasoning as to why bone bioerosion is likely 

to be linked to certain specific funerary processes. This part of the chapter will also discuss 

how the link between putrefaction and bone bioerosion might be useful in addressing 

archaeological problems. The final part of this chapter discusses the aims and objectives as 

well as the research strategy that was adopted by the present study. 

 

2.1  BONE MICROSTRUCTURE 
 

Bone is a specialised form of calcified collagen (carbonated hydroxyapatite). The mineral phase 

consists of a crystalline lattice of calcium and phosphate (calcium hydroxyapatite) that includes 

occasional substituted ions such as fluoride (Junqueira et al. 1986). Collagen, a fibrous group of 

proteins consisting mainly of glycine, proline and hydroxyproline, constitutes the majority of 

the organic phase (Junqueira et al. 1986). Non-collagenous proteins such as osteocalcin and 

albumin make up the remainder of the protein fraction (Child 1995a; Cattaneo et al. 1995; 

Collins et al. 2002; Cappellini et al. 2011).  

The intimate bond between the inorganic and organic osseous phases is not well understood, 

but it is directly related to the unique biomechanical properties that are crucial to a bone’s 

functionality within the musculo-skeletal system. The strength of the mineral-protein bond is 
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responsible for the persistence of bone over archaeological timescales (Maximow & Bloom 

1957). Removal of the mineral phase produces a softer substance that cannot retain a rigid 

form whereas absence of the organic collagen leaves a hard but brittle scaffold (Junqueira et 

al. 1986: 146). The combination of the two phases produces a plastic substance that is strong 

and adaptable to stress (Maximow & Bloom 1957).  

Histology is the study of the microscopic anatomy of plant and animal tissue. The gross internal 

structure of bone (histomorphology) can vary across anatomical parts and species, but the 

development and organisation of the bone microstructure remains consistent. Several types of 

microstructures exist within bone. The frequency of their appearance differs depending on the 

age and development of the organism (Junqueira et al. 1986) (Image 2.1).  

 

Image 2.1: Micrograph of a transverse thin section of femoral bone from a dissected human cadaver demonstrating 
healthy organised secondary bone microstructure (taken by the author). 
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Image 2.2: Micrograph of an archaeological infant femoral transverse thin section. Disorganised randomly-
orientated collagen fibres produce woven bone structures which can be observed within the grey areas (white 

arrows) (taken by the author). 

 

The first type of bone tissue to appear in developing humans is woven bone, which consists of 

irregular organisations of collagen fibrils (Junqueira et al. 1986) (Image 2.2). Woven bone 

provides the scaffold for secondary bone formation and is characteristic of neonatal skeletons 

(Junqueira et al. 1986). This temporary microarchitecture is gradually replaced by secondary 

mineralised structures that consist of organised parallel collagen fibres 3-7microns thick. These 

fibres can take three different forms: circumferential lamellar bone, sub-circular (osteonal) 

lamellae or parallel interstitial lamellae (Figure 2.1). Marginal circumferential lamellar bone is 

found at the cortical surface (periosteal surface) and towards the medullary cavity (endosteal 

surface). Haversian canals are produced when lamellar collagen fibrils form around blood 

vessels that travel longitudinally through the bone microstructure (Maximow & Bloom 1957).  
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Figure 2.1: Micrograph of a modern adult human femoral transverse thin section. The different types of secondary 
bone organisation are highlighted: periosteal circumferential lamellar (blue), endosteal circumferential lamellar 

(red), Haversian or osteonal (green) and interstitial (yellow). 

 

The Haversian canal combined with the circling collagen lamellae are referred to as a 

Haversian system or osteon (Maximow & Bloom 1957) (Figure 2.2). The margin of an osteon is 

defined by a mineralised barrier called a cement or reversal line. A cement line also surrounds 

the borders of the Haversian canals. Haversian canals are connected to one another, to the 

medullary cavity and to the periosteum via Volkmann’s canals that travel transversely through 

the bone microstructure (Junqueira et al. 1986). Parallel interstitial bone is made up of primary 

collagen fibrils that have persisted in areas of bone that have not been replaced by Haversian 

systems. Interstitial bone can also consist of the remnants of Haversian systems that have 

been replaced by secondary and tertiary forms.  
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Figure 2.2: Anatomy of an osteon in a transverse plane. 

 

Bone is an active tissue and is constantly undergoing internal remodelling in response to stress 

(Junqueira et al. 1986). Osteon formation is indicative of bone remodelling, as activity-related 

change to the bone microstructure requires vascularisation to supply nutrients to the active 

cells (Maximow & Bloom 1957). Osteons are only found within the dense cortical bone as the 

trabecular bone is supplied with nutrients by the marrow that lies within the large cavities that 

define its structure (Maximow & Bloom 1957). The constant remodelling of the internal bone 

microstructure means that the number of osteons contained within the internal bone 

microstructure increases cumulatively with age of an organism, to the detriment of 

circumferential lamellar and interstitial bone (Kerley 1965) (Figure 2.3). However, 

circumferential lamellar structures persist at the periosteal and endosteal margins regardless 

of age of an organism (Kerley 1965). Remodelling and secondary osteon formation is highest 

during adolescence and slows once an individual reaches adulthood (Junqueira et al. 1986). 

New Haversian systems that form during bone remodelling replace the whole or parts of older 

structures. Most osteons are not replaced entirely and fragments are often left over. Therefore 

the bone microstructure becomes increasingly compact with age. Younger osteons tend to be 

smaller in diameter than their predecessors due to structural pressures from osteon crowding 

limiting their size.  



  

12 
 

 

Figure 2.3: Schematic diagram of the change in microstructural organisation of bone due to cumulative remodelling 
over an individual’s lifetime (redrawn from Kerley 1965: 153). 

 

Bone remodelling is driven by cells specific to osseous materials. Osteoclasts resorb old bone 

by excreting acidic metabolites and collagenase. Acidic metabolites break down bone mineral. 

Collagenases are proteases adapted to breaking down collagen in spite of the molecule’s tight 

helical binding (Junqueira et al. 1986; Child 1995a). Osteoclasts produce and occupy scalloped 

resorptive bays within the bone matrix named Howship’s lacunae (Junqueira et al. 1986). 

Osteoblasts secrete collagen to form new lamellar bone structures. Osteoblasts eventually 

surround themselves with bone and become trapped within the matrix. These trapped cells 

are called osteocytes and the small (22-52microns diameter) cavities they produce within the 

bone matrix are referred to as osteocyte lacunae (Junqueira et al. 1986). The role of 

osteocytes in bone formation ensures that they follow the contours of the lamellar bone and 

appear to orbit the Haversian canal within osteons. Osteocytes are connected to one another 

and the Haversian canals by networks of fine meandering canaliculi. In areas of microstructure 

where bone remodelling is infrequent, the osteocyte cell can die leading to the ossification of 

the lacuna (Garland et al. 1988; Schultz 1997). 

All microscopic bone structures can be viewed using thin section normal transmitted light 

microscopy or polished thick section Scanning Electron Microscopy (SEM) and Transmission 

Scanning Electron Microscopy (TEM) (Cook et al. 1962; Stout 1978; Turner-Walker & Syversen 

2002; Jans 2008). Bone collagen fibres are orientated at 90° to one another (Junqueira et al. 

1986; Schultz 1997). This pattern of orientation means that adjacent collagen fibres refract 

light at perpendicular planes (Schultz 1997). The organisation causes the collagen matrix to 
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appear birefringent when examined under polarised light (Junqueira et al. 1986; Schultz 1997) 

(Image 2.3). The birefringence forms a characteristic ‘Maltese Cross’ pattern within osteons 

(Hackett 1981) (Image 2.4). 

 

Image 2.3: Micrograph of a transverse thin sections of a modern fresh adult femur demonstrating collagen 
birefringence under polarised light (taken by the author). 

 

 

Image 2.4: Micrograph of a transverse thin section of a modern fresh adult femur under polarised light. The Maltese 
cross pattern of collagen birefringence can be observed surrounding osteons (taken by the author). 
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2.2 BONE DIAGENESIS 
 

Diagenesis is a geological term that refers to the chemical and physical changes that sediment 

undergoes that lead to its incorporation within the lithosphere (Lee-Thorp & Sealy 2008). This 

term has been adapted by archaeological disciplines to describe the post-depositional physical 

and chemical changes archaeological remains undergo through interactions with their burial 

environment (Wilson & Pollard 2002). Diagenesis of archaeological artefacts has two possible 

endpoints: incorporation of the artefact into the lithosphere (fossilisation) or destruction 

(Wilson & Pollard 2002). Bone diagenesis refers to any physical and chemical process that 

encourages the degradation of bone proteins and the simultaneous dissolution or replacement 

of the hydroxyapatite matrix (Hedges et al. 2005). Mineral dissolution will lead to complete 

bone disintegration, whereas mineral replacement will eventually produce a fossilised bone 

(Trueman & Martill 2002; Tuross 2002). Bone diagenesis does not begin at the point of burial, 

but is initiated with the death of the organism (Nielsen-Marsh & Hedges 2000; Nielsen-Marsh 

et al. 2007; Smith et al. 2007). 

 

2.2.1 Measures of Diagenesis 

 

The multi-factorial nature of bone diagenesis and the complexity of bone composition make it 

difficult to quantify whole diagenetic changes to bone using only one form of analysis (Hedges 

et al. 1995; Hedges 2002). Bone diagenesis is usually assessed using one or more ‘diagenetic 

parameters’ (Hedges et al. 1995: 201). A diagenetic parameter is defined as, ‘a single 

measurable aspect of a bone sample which reflects the degree of diagenesis which the bone 

has recognisably undergone’ (Hedges et al. 1995: 201). Some studies of bone diagenesis have 

used as many as ten diagenetic parameters (Nielsen-Marsh & Hedges 2000). These parameters 

measure alteration to the mineral and organic phases of bone, either separately or 

simultaneously.  

Bone diagenesis also encompasses changes to the appearance of the bone microstructure that 

do not necessarily entail degradation. These sorts of changes usually involve the penetration of 

the bone microstructure by extraneous minerals (Garland 1987; Schultz 1997; Hanson & Cain 

2007). Interactions between the bone and the external environment can lead to localised 

discolouration of bone microstructure and the accumulation of foreign elements within bone 

porosities and microstructures (Garland 1987; Schultz 1997; Hanson & Cain 2007). Certain 
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measures of bone degradation can be used to recognise these features, although accurate 

identification of their composition is not possible with all techniques of analysis (Hollund et al. 

2012). 

 

2.2.1.1 Histological integrity 

 

The diagenetic parameter that is utilised most often in studies of microscopic bone 

degradation is histological integrity. Histological integrity is assessed through a visual appraisal 

of the extent to which the internal bone microstructure has been degraded or altered (Grupe 

& Dreses-Werringloer 1993; Hedges et al. 1995). Histological integrity is assessed by the 

microscopic examination of bone samples through thin section light microscopy, Transmission 

and Scanning Electron Microscopy, or Backscattered Scanning Electron Microscopy (TEM, SEM 

& BSEM) (Hedges et al. 1995; Bell & Jones 1991) (Image 2.5). Histological alteration of bone is 

characteristic and easily identifiable when compared to sections of unaltered fresh bone 

(Grupe & Dreses-Werringloer 1993). Thin section light microscopy involves examination of the 

bone using normal and polarised light. All forms of bone diagenesis lead to collagen loss, which 

causes a reduction or loss of birefringence under polarised light (Hackett 1981) (Image 2.6).  
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Image 2.5: Transverse BSE-SEM image of the endosteal surface of a Roman human ulna excavated from Castricum, 
The Netherlands. Arrow points to areas of bone that were analysed using SEM-EDS spot analysis to determine the 

constitution of exogenous infiltrations (Hollund et al. 2012: 8). 
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Image 2.6: Micrograph of a transverse archaeological human femoral thin section viewed under polarised light. Loss 
of collagen birefringence corresponds with histological degradation (taken by the author). 

 

Histological destruction of bone correlates with measures of protein loss, such as biomolecular 

yield and can provide a rough guide as to the proportion of bone proteins that are likely to 

have survived into the archaeological record (Hagelburg et al. 1991; Hedges et al. 1995; 

Cipollaro et al. 1998; Götherström et al. 2002; Haynes et al. 2002; Rollo et al. 2002). The 

intimate bond between the organic and inorganic phases of bone guarantees that histological 

degradation will have involved some simultaneous alteration of the mineral, but changes to 

the mineral cannot be quantified directly through histological examination (Schoeninger et al. 

1989; Hedges et al. 1995; Hedges 2002). Direct measures of mineral alteration correspond 

with histological alteration, but the precise relationship is complex (Hedges et al. 1995; 

Trueman et al. 2008). Histological assessment of bone is useful for documenting the extent 

and pattern of chemical or biological degradation of the microstructure and estimating protein 

loss (Hedges et al. 1995).  

Qualitative features of bone diagenesis that can be recognised by histological examination 

include microfissures, staining, infiltrations and inclusions (Garland 1987). Microfissures are 

classified as breaks in the bone histology on the scale of an osteon. Microfissures have been 
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linked with a number of different influences including sample preparation techniques, 

sediment movement, acidic degradation, heat treatment and collagen hydrolysis (Garland 

1987; Hanson & Buikstra 1987; Jans et al. 2002; Guarino et al. 2006; Turner-Walker & Jans 

2008). Microfissures have been linked most often with diagenetic changes that promote bone 

shrinkage through loss of mass (Hanson & Cain 2007; Pijoan et al. 2011; Squires et al. 2011). 

Heating causes moisture within the bone proteins to evaporate (Hanson & Cain 2007; Pijoan et 

al. 2011; Squires et al. 2011). Acidic degradation removes bone mineral (Gordon & Buikstra 

1981; Smith et al. 2007; Turner-Walker & Peacock 2008).  

Histological staining refers to the discolouration of bone microstructure usually promoted by 

interactions with the external environment (Garland 1987; Shahack-Gross et al. 1997; Hanson 

& Cain 2007) (Image 2.8). Inclusions are defined as extraneous materials that have been 

deposited within natural bone microporosities, usually through mineral precipitation during 

groundwater percolation (Garland 1987; Garland et al. 1988; Grupe & Dreses-Werringloer 

1993) (Image 2.9). Infiltrations consist of extraneous materials that lies within the bone matrix 

(Garland 1987; Grupe & Dreses-Werringloer 1993) (Image 2.10). 

 

Image 2.7: Micrograph of an archaeological femoral transverse thin section. Microfissures can be observed 
surrounding the osteons (red arrows) (taken by the author). 
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Image 2.8: Micrograph of a transverse thin section of an archaeological human femur demonstrating intense orange 
microstructural staining at the periosteal surface (between the blue arrows) (taken by the author). 

 

 

Image 2.9: Micrograph of an archaeological human femoral transverse thin section. Dark brown inclusions can be 
observed within the Haversian canals of osteons (blue arrows) (taken by the author). 
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Image 2.10: Micrograph of an archaeological human femoral transverse thin section. Material that has infiltrated 
the bone matrix can be seen surrounding certain Haversian canals (blue arrows) (taken by the author). 

 

2.2.1.2 Measures of Protein Content 

 

There are several diagenetic parameters that directly measure the loss of organic bone 

content, such as percentage remaining carbon (%C), percentage remaining nitrogen (%N), C/N 

ratio or ancient DNA (aDNA) yield (Hedges et al. 1995; Colson et al. 1997; Götherström et al. 

2002; Rollo et al. 2002; Smith et al. 2005 Devièse et al. 2010). Measurement of collagen loss 

has most often been calculated using the C/N ratio. There are several ways of measuring these 

parameters, but normally they involve the combustion or gelatinisation of a fraction of the 

bone sample followed by analysis in a mass spectrometer. Bones that demonstrate the highest 

levels of histological destruction often retain extractable amounts of organic molecules (Grupe 

1995; Hedges et al. 1995; Balzer et al. 1997; Nicholson 1996).  

It is possible that the degradation of bone protein gradually encourages collagen cross-linking 

via Maillard reactions. Cross-linking forms covalent bonds between organic polymer chains, 

creating substances that are more difficult to break down (Collins et al. 1995; Grupe 1995; 

Hedges et al. 1995; Balzer et al. 1997; Nicholson 1996). These chains can form through 

interactions between endogenous organic residues or with exogenous diagenetic substances 



  

21 
 

such as humic acids (van Klinken & Hedges 1995; Nicholson 1996). Most archaeological bones 

will retain at least small quantities organic molecules (Collins et al. 1995: 183).  

 

2.2.1.3 Crystallinity 

 

Crystallinity quantifies the extent to which the hydroxyapatite crystals of a bone sample have 

been altered from those of fresh bone (Schoeninger et al. 1989; Hedges et al. 1995). Fresh 

bone retains a relatively homogeneous distribution of crystal shapes and sizes (Piepenbrink 

1986; 1989). Mechanisms of bone degradation all involve the dissolution of the inorganic 

fraction. After initial dissolution, the bone mineral precipitates rapidly into a more stable form. 

The distribution of crystal sizes after reprecipitation is heterogeneous. Heterogeneity of crystal 

forms increases with diagenesis as the hydroxyapatite is progressively dissolved and 

reprecipitated (Hedges et al. 1995). The character of the changes to the mineral phase is 

dependent upon the process that was responsible for diagenesis.  

Crystallinity has most often been measured using Fourier Transform Infrared Spectroscopy 

(FTIR), which monitors the hydroxyapatite phosphate infrared absorption peaks (Sillen & 

Parkington 1996). Differently-sized mineral crystals will absorb the infrared light at divergent 

wavelengths and so the signature or splitting factor (SF) of severely altered mineral crystals will 

be dispersed over a wider range of wavelengths (Van Klinken & Hedges 1995). The SF is usually 

translated into a Crystallinity Index score that is used to compare samples (Reiche et al. 2003). 

Raman spectroscopy, a modified version of FTIR, can be used to simultaneously detect the 

abundance of collagen along with the extent of mineral alteration (King et al. 2011).  

Bone crystallinity has also been measured using x-ray diffraction and scattering (Person et al. 

1995; Hiller et al. 2004). X-rays are diffracted at different angles depending on the sizes and 

spaces between the bone mineral crystals. High energy x-rays are fired at a bone sample and 

their diffraction pattern is measured (Schoeninger 1989 et al.; Piepenbrink 1989). The 

advantage of x-ray diffraction methods is that they can be used to characterise crystal shape as 

well as size (Wess et al. 2001; Hiller et al. 2004; Hiller & Wess 2006). Different forms of 

diagenesis can produce variable imperfect crystalline forms, and so x-ray diffraction 

techniques may be able to detect subtle differences in diagenetic alteration that other 

methods might miss (Hiller & Wess 2006).  

Changes in bone crystallinity do not often correlate with other diagenetic parameters and 

subsequently these measures are not good indicators of overall diagenetic change (Pucéat et 
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al. 2004; Trueman et al. 2008). Diagenetic processes that have a similar net effect on other 

parameters can affect crystallinity in variable ways (Smith et al. 2007). For instance, chemical 

and biological erosion of bone both promote loss of protein, but affect the mineral differently 

(Parker Pearson et al. 2005; Smith et al. 2007). Crystallinity can be useful in differentiating 

between diagenetic alterations by biological or chemical processes (Hiller & Wess 2006). 

Diagenetic increases in crystallinity become less linear with time, as more variables begin to 

exert an influence (Hiller & Wess 2006).  

 

2.2.1.4 Microporosity 

 

Diagenetic degradation always increases overall bone porosity, but different deleterious 

processes produce discrete pore sizes. The determination of overall and average pore volume 

(microporosity) can reveal the extent and nature of bone degradation (Nielsen-Marsh & 

Hedges 1999; Turner-Walker 1999).  Mercury Intrusion Porosimetry (HgIP) is the technique 

that is typically employed to measure bone microporosity (Nielsen-Marsh & Hedges 1999; 

Turner-Walker 1999). This method measures the volume of bone that is taken up by pores of 

particular set sizes by forcing mercury into a sample under different pressures (Nielsen-Marsh 

& Hedges 1999). Each range of pressure can be related to specific pore sizes (Nielsen-Marsh & 

Hedges 1999). Initial studies focussed on measuring volumes of diagenetic macroporosity 

(pore radius ≥4nm) and natural bone microporosity (pore radius <4nm) (Hedges et al. 1995; 

Nielsen-Marsh & Hedges 1999). Diagenetic mineral dissolution and recrystallisation produces 

larger and more thermodynamically stable crystalline structures compared with fresh bone 

(Hedges et al. 1995). There is related growth in the size of the spaces between crystals, which 

increases macroscopic pore size (Hedges et al. 1995). Collagen and proteins within the bone 

are abundant in micropores and so their removal will reduce overall microporosity (Hedges et 

al. 1995).  

Turner-Walker et al. (2002) and Smith et al. (2007) found that grouping microporosities into 

categories of small (>0.01 <0.1 microns), medium (>0.1 <8.5 microns) and large (>8.5 ~70 

microns) increased their usefulness in studying diagenesis. Small microporosity represented 

diagenetically unaltered bone that retained a high collagen content, medium micropores were 

produced by microbial tunnelling (microbial spongiform porosity) and large microporosities 

reflected crystalline changes and collagen loss promoted by chemical bone dissolution (Turner-

Walker et al. 2002; Nielsen-Marsh et al. 2007; Smith et al. 2007) (Image 2.11). Measures of 
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microporosity have been used to distinguish both the nature and extent of bone degradation. 

Microporosity is the only diagenetic parameter that has been found to correlate strongly with 

every other known measure of diagenesis, and so HgIP is regarded as the only method of 

diagenetic measurement that can singularly relay holistic information about microscopic bone 

alteration (Nielsen-Marsh & Hedges 1999; Jans et al. 2004; Nielsen-Marsh et al. 2007; Smith et 

al. 2007).   

 

Image 2.11: SEM transverse image of microbial spongiform porosity within an archaeological human bone (Turner-
Walker et al. 2002: 408). 

 

2.2.2 Mechanisms of Diagenesis 

 

There were initial fears that the complexity and variability of diagenetic processes would make 

it impossible to construct useful predictive models of bone degradation (Nielsen-Marsh & 

Hedges 2000; Nielsen-Marsh et al. 2007; Smith et al. 2007). However, studies that have 

investigated diagenesis within a wide variety of archaeological human and animal bone from 

the European Holocene identified only four diagenetic end-points (Nielsen-Marsh et al. 2007; 

Smith et al. 2007). Each of these end-points could be related to the influence of one of three 

different types of diagenetic degradation (Nielsen-Marsh et al. 2007; Smith et al. 2007).  
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2.2.2.1 Catastrophic Acidic Dissolution 

 

Acidic burial environments have long been recognised as detrimental to the survival of bone 

over archaeological timescales (Gordon & Buikstra 1981; Bethel & Carver 1987). The 

destructiveness of an acidic environment is best demonstrated by the archaeological body 

stains that are sometimes recognised within acidic sands (Bethel & Carver 1987). Chemical 

degradation involves the breakdown of both the mineral and organic phases until the gross 

bone structure has completely disintegrated, leaving only traces of phosphate (Bethel & Carver 

1987). The speed of bone destruction by acidic dissolution has ensured that diagenetic 

parameters have only characterised its early stages (Gordon & Buikstra 1981; Turner-Walker & 

Jans 2008; Turner-Walker & Peacock 2008; Turner-Walker 2012). The removal of mineral and 

protein increases the volume of bone represented by large microporosities as the bone 

dissolves (Turner-Walker et al. 2002). The chemical action transforms hydroxyapatite crystals 

into insoluble structures, which increases levels of crystallinity (Hedges et al. 1995). Early 

diffuse acidic demineralisation can be observed in histological bone sections as a graduated 

wave of collagen loss emanating from the periosteal edge and is often accompanied by 

enlarged canaliculi and osteocyte lacunae (Hanson & Buikstra 1987; Turner-Walker & Jans 

2008) (Image 2.12). The damage to the bone microstructure and bone shrinkage that occurs as 

a result of the loss of bone volume causes microfissuring within affected areas of the bone 

histology. Subtle chemical alteration may not be visible microscopically, and can only be 

detected with measures of large porosity and localised crystallinity (Parker Pearson et al. 

2005). 

The circumstances that drive acidic dissolution can vary. The simplest scenario is that the 

groundwater and/or burial soil has a low pH (Gordon & Buikstra 1981). The bone is out of 

chemical equilibrium with its environment in these contexts and both the mineral and organic 

bone phases are dissolved and incorporated into the burial matrix (Gordon & Buikstra 1981; 

Bethel & Carver 1987). The rate of bone dissolution is dependent on the soil pH. Low pH will 

promote rapid deterioration that will continue until the bone has completely dissolved (Smith 

et al. 2007). If pH is close to neutral, the phosphate ions that are leached from the bone will 

buffer the external environment and slow or arrest mineral dissolution (Haynes et al. 2002).  

Burials that are frequently recharged with fresh rainwater can also suffer chemical dissolution 

(Hedges & Millard 1995). If a body is interred within a free-draining context or an area with a 

high water table the bone will be subjected to cyclical wetting and drying events (Nielsen-

Marsh & Hedges 2000; Pike et al. 2001). These processes will continually recharge the burial 
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context and reset the chemical equilibrium between the bone and its environment (Smith et 

al. 2007). The successive periods of intense chemical dissolution will eventually lead to the 

disintegration of the whole bone (Nielsen-Marsh & Hedges 2000; Smith et al. 2007). This effect 

is exacerbated by the acidity of rainwater. 

 

Image 2.12: BSEM image of the internal microstructure a cow metapodial that had been experimentally deposited 
within a sphagnum peat bog for four years. A diffuse wave of demineralisation can be observed radiating from the 

periosteal surface (Turner-Walker & Peacock 2008: 158). 

 

Pike et al. (2001) modelled the net effect of particular hydrological regimes on bone 

dissolution: recharge, flow and diffusion dissolution. They found that rate of bone dissolution 

is constant under a diffusive regime, and accelerates with diffusion combined with recharge 

(Pike et al. 2001: 132). However, recharge dissolution is an uncommon phenomenon in the 

burial environment (Pike et al. 2001: 132). Flow dissolution rapidly destroys the bone but is 

limited by the amount of water available (Pike et al. 2001: 132). Dissolution by hydrological 

movement does not dissolve bone substantially in most burial environments (Pike et al. 2001). 

 

2.2.2.2 Collagen Hydrolysis 

 

Bone collagen slowly degrades through spontaneous hydrolytic chemical reactions with water 

in the environment (Collins et al. 1995). Hydrolysis causes the breakup of a target substance 

through the introduction of a water molecule that has split into hydrogen and hydroxyl 

constituents. The presence of water or hydrogen ions in any abundance within the bone or the 
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burial context will promote depolymerisation of collagen by hydrolysis of its peptide bonds 

(Collins et al. 1995). The polypeptide fragments of protein will continue to be degraded until 

the number of hydrogen bonds within the molecule drops below the minimum required, at 

which point the constituent elements dissolve out of the collagen mass (Collins et al. 1995: 

177). These reactions will still take place, albeit at a reduced rate, when water is in limited 

supply (Collins et al. 1995: 181). Chemical collagen degradation alters bone crystallinity as a 

reciprocal effect of the disruption to the protein-mineral bond, but does not alter the 

overarching organisation of the internal microstructure (Smith et al. 2002; 2007). Bones that 

have been subjected solely to extensive collagen hydrolysis retain an immaculate histological 

structure. However, the loss of collagen will cause a reduction in fibril birefringence under 

polarised light (Hackett 1981). Loss of collagen also causes the volume of bone taken up by 

small microporosities to decrease as they are replaced by large diagenetic pores. The collagen 

loss can also be detected by measures of protein content. The alteration of the mineral phase 

caused by chemical hydrolysis can be distinguished by measures of crystallinity (Smith et al. 

2007).  

Collagen hydrolysis of bone proceeds too slowly in most depositional environments to have a 

significant diagenetic effect over archaeological timescales (Collins et al. 1995). Rapid 

processes such as chemical dissolution or biodeterioration will remove the majority of the 

bone collagen before collagen hydrolysis has made an impact (Smith et al. 2007). The protein 

loss and mineral alteration promoted by collagen hydrolysis may constitute a primary 

mechanism of bone fossilisation (Collins et al. 2002). Fossilised bone rarely shows evidence for 

extensive biological or acidic alteration (Trueman & Martill 2002; Tuross 2002). The prevention 

of these rapid diagenetic changes is likely to be a prerequisite for bone fossilisation (Trueman 

& Martill 2002; Tuross 2002; Smith et al. 2007). The rate of collagen hydrolysis is not linear. 

Residual collagen can be preserved through cross-linking (Collins et al. 1995).  

Certain factors can accelerate collagen hydrolysis in exceptional circumstances (Image 2.13). 

Higher temperatures increase the rate of chemical reactions, causing more rapid breakdown of 

bone collagen (Collins et al. 1995). Boiling of bone mimics the effects of severe collagen 

hydrolysis (Roberts et al. 2002; Abdel-Maksoud 2010). In countries with temperate climates, 

most burial environments will not reach the critical temperatures required to significantly 

accelerate chemical collagen loss (Collins et al. 1995). Very alkaline soils might also encourage 

hydrolysis of collagen, as these contexts contain a heightened concentration of the hydrogen 

ions that catalyse peptide reactions (Smith et al. 2002; 2007). Most burial contexts do not 
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naturally reach the high pH levels that would significantly affect the rate of collagen hydrolysis 

(Smith et al. 2002).  

The practice of adding slaked lime to a burial significantly increases the pH of a bone and its 

surrounding environment (Smith et al. 2002). This process could lead to artificial hydrolysis of 

collagen, and has been suggested as one explanation for the few prematurely fossilised or 

hydrolysed bones that have been found amongst some archaeological assemblages. Burial 

environments that expose the bone to intense wetting and drying cycles may also accelerate 

collagen hydrolysis (Smith et al. 2002).  

 

Image 2.13: Micrograph of a transverse femoral thin section of a Neolithic individual that was recovered from the 
site of Tell Halula, Syria viewed under polarised light. The specimen demonstrated excellent preservation of 

microstructures but reduced collagen birefringence, which indicated that bone protein must have been lost through 
chemical hydrolysis (taken by the author). 

 

2.2.2.3 Bioerosion 

 

The most common form of diagenetic alteration detected in archaeological bone is the 

regularised degradation and alteration of the composite bone structure by microorganisms, 

known as bioerosion. The loss of collagen and redeposition of the mineral by microorganisms 

produces discrete tunnels within the bone histology (Hackett 1981; Hedges et al. 1995; Turner-

Walker et al. 2002). Microscopic tunnelling in the internal bone microstructure was first 

identified and attributed to the action of microorganisms by Wedl (1864). Bone that has been 

extensively bioeroded is characterised by high medium porosity, which corresponds with the 
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sizes of the tunnels produced by the microorganisms. There is a related loss of bone volume 

represented by small porosities as collagen content decreases. The dissolution and 

reprecipitation of the organic phase produces elevated crystallinity values. The removal of 

proteins by microorganisms can also be detected by measures of protein content (Hedges et 

al. 1995). Microbial tunnelling directly affects the microstructural organisation of the bone, 

and so measures of histological integrity and collagen birefringence are also affected (Smith et 

al. 2007; Nielsen-Marsh et al. 2007) (Image 2.14). These results vary with the intensity of 

biodeterioration. There has been some evidence to suggest that bone bioerosion occurs 

bimodally, either continuing to completion or not beginning at all (Hedges et al. 1995). 

However, numerous archaeological and experimental bone samples have been found to 

demonstrate intermediate levels of microbial attack (Davis 1997; Turner-Walker & Jans 2008; 

Fernández-Jalvo et al. 2010).  

 

Image 2.14: Micrographs of a transverse femoral archaeological thin section viewed under polarised light. Bacterial 
tunnels can be observed to interfere with collagen birefringence (taken by the author). 

 

Hackett (1981) was the first to describe the morphology of microbial tunnels or micro-foci of 

destruction (MFD) observed in archaeological bone. Hackett classified four morphological 

types: linear longitudinal, budded, lamellar and Wedl (Figure 2.4). The medium-sized microbial 

spongiform porosity defined by Turner-Walker et al. (2002) is produced by the Wedl-type 

lesions themselves. Within non-Wedl MFD, the medium porosities correspond with each 

lesion’s internal porous structure (non-Wedl MFD) (Jans et al. 2002; Turner-Walker et al. 

2002). 
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Figure 2.4: Schematic drawing of how different types of MFD appear within a transverse bone thin section (redrawn 
from Jans et al. 2004: 89). 

 

The three types of non-Wedl MFD differ in their morphology but share similar characteristics 

(Hackett 1981). All three travel longitudinally through the bone and surround Haversian canals 

within osteons (Hackett 1981; Garland et al. 1988; Bell et al. 1996; Jans et al. 2004). Some 

studies report an initial association between non-Wedl MFD and enlarged osteocyte lacunae 

(Bell et al. 1996). Microorganisms may use these natural cavities to invade the bone 

microstructure to avoid the highly-mineralised cement lines that surround the Haversian 

canals (Bell 1990; Bell et al. 1996). Non-Wedl MFD are often limited by cement lines, which 

suggests that these boundaries are mineralised to a degree that renders them impenetrable to 

osteolytic bacteria (Hackett 1981; Balzer et al. 1997). The morphologies of non-Wedl MFD 

might be controlled by the bone microarchitecture (Bell 1990; Bell et al. 1996). Non-Wedl MFD 

are usually surrounded by a hypermineralised cuff or rim, which is formed when the mineral 

recrystallises after initial dissolution and transportation (Hackett 1981). Hypermineralised cuffs 

might only form if a bone’s burial environment has a pH value within the ‘recrystallization 

window’ between pH 7.6 and 8.1 (Berna et al. 2004: 876). 

The characteristics of non-Wedl MFD contrast with the centrifugal Wedl tunnelling, which is 

more often observed to penetrate the periosteal surface of the bone and travel transversely 



  

30 
 

through the microstructure (Hackett 1981; Marchiafava et al. 1974) (Image 2.15). Wedl tunnels 

do not follow the natural bone architecture and are not accompanied by hypermineralised 

rims (Hackett 1981). More recent studies have identified two further types of MFD. Type 2 

Wedl tunnels resemble thinner versions of the Type 1 forms described above, and are usually 

observed spreading out from Haversian canals within osteons (Trueman & Martill 2002). 

External microscopic microbial channelling observed on cortical bone surfaces has been named 

Hackett tunnelling (Davis 1997).  

 

Image 2.15: Micrograph of a transverse thin section of an archaeological frontal bone that was recovered from the 
River Wye, near Bakewell. Wedl tunnelling can be seen radiating from the periosteal surface (taken by the author). 

 

Non-Wedl MFD constitute the majority of microscopic biotic decay observed within 

archaeological bones (Jans et al. 2004; Nielsen-Marsh et al. 2007). It is difficult to say whether 

each form of non-Wedl MFD represents a distinct pathway of destruction relating to discrete 

organisms (Hackett 1981; Child 1995b). Coalesced groups of smaller forms of non-Wedl MFD, 

such as the linear longitudinal types, begin to resemble the larger budded and lamellar forms 

(Hanson & Buikstra 1987; White 2009) (Image 2.16).  
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Image 2.16: Micrograph of an archaeological femoral transverse thin section. Non Wedl MFD can be seen in 
isolation (yellow arrows) and in coalescence (blue arrows) within different parts of the section. Coalescent smaller 

non-Wedl MFD begin to resemble the larger forms (taken by the author). 

 

Most studies of bone diagenesis have emphasised that there is no correlation between the 

macroscopic and microscopic preservation of an archaeological bone (Hanson & Buikstra 1987; 

Bell et al. 2006; Hedges 2002; Jans et al. 2004; Guarino et al. 2006). Assessments of cortical 

preservation and whole bone fragmentation do not correlate with measures of internal 

diagenesis (Hedges et al. 1995; Jans et al. 2004; Jans 2008). The same studies have consistently 

failed to detect correlations between histological preservation and archaeological ages of 

specimens (Hedges et al. 1995; Hedges 2002; Jans et al. 2004; Nielsen-Marsh et al. 2007). A 

Bronze Age bone is just as likely to be histologically well-preserved as a medieval specimen 

(Trueman & Martill 2002; Jans et al. 2004; Nielsen-Marsh et al. 2007). The lack of correlation 

between bone bioerosion and archaeological time suggests that microbial attack to the 

internal bone microstructure completes within the first few decades after death (Hedges et al. 

1995; Hedges 2002) (Image 2.17). 
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Image 2.17: Micrograph of a transverse thin section of an archaeological foot phalanx. The bone has been subjected 
to the maximal levels of bone bioerosion leaving slivers of preserved microstructure at the periosteal and endosteal 

peripheries (taken by the author). 

 

2.2.3 Mechanisms & Origins of the Microbial Decomposition 

 

The proposed link between bacterial bone bioerosion and funerary treatment is dependent 

upon the notion that the majority of bacteria responsible were endogenous to an organism 

and that the majority of bacterial tunnelling was formed during bodily putrefaction. The 

research and justification regarding the mechanisms and likely progenitors of internal bone 

bioerosion will therefore require some elaboration. 

 

2.2.3.1 Mechanisms of Microbial Decomposition 

 

The physical mechanisms of bone decomposition utilised by micro-organisms (fungi and 

bacteria) have not been observed directly (Child et al 1993; Child 1995a; 1995b). The likely 

processes involved have been constructed based upon the chemicals certain microbes are 
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known to produce, the environments in which they thrive, and the ways in which 

microorganisms are known to behave (Child et al. 1993; 1995a; 1995b). In order to break down 

a body’s complex proteins, microorganisms need to be capable of producing proteases (Child 

1995b). The collagen molecule is twisted into a highly stable left-handed triple helical structure 

that is highly adapted to resist enzymatic attack (Collins et al. 1995; Grupe 2001). In order to 

degrade this protein, microorganisms need to be capable of producing collagenase (Child 

1995a; 1995b). Most species of bacteria excrete a protease, but only a minority can produce 

collagenase (Child 1995a). The bond between the collagen and the hydroxyapatite leaves only 

a small space within the molecular structure for extraneous substances to pass through (Mayer 

1994; Nielsen-Marsh & Hedges 2000; Hedges 2002). Any molecule larger than water cannot fit 

through the gap (Child 1995a; 1995b; Nielsen-Marsh & Hedges 2000). Therefore the bone 

protein can only be accessed by collagenase enzymes after some dissolution of the mineral 

phase (Child 1995a; 1995b; Nielsen-Marsh & Hedges 2002; Hedges 2002). 

Various species of fungi can invade and exploit the human body in life. Fungal organisms can 

infect the body’s natural orifices causing metastatic infections and inflammation (Marchiafava 

et al. 1974). Fungal infection in living organisms rarely affects the bone (Marchiafava et al. 

1974). Fungal hyphae are commonly found adhering to freshly excavated archaeological bone 

and have been observed to penetrate the bone via exposed vascular canals (Marchiafava et al. 

1974; Hackett 1981). The cell walls of saprophytic fungal hyphae contain both proteolytic and 

collagenase enzymes, as well as acidic metabolites that promote bone mineral dissolution 

(Marchiafava et al. 1974; Piepenbrink 1986; 1989). Species of fungi that excrete metabolites 

can directly solubilise the mineral phase, although there is some debate as to whether they are 

capable of metabolising the resultant phosphate (Piepenbrink 1989). Marchiafava (1974: 207) 

suggested that attempts by fungi to ingest inorganic products of bone destruction will 

eventually result in poisoning and death. This view is supported by observations of dying 

hyphae surrounded by areas of bone dissolution within thin sections of bone (Marchiafava et 

al. 1974: 208). Fungal cell death results in the release of organic acids, which lowers the local 

pH and encourages bone mineral dissolution (Marchiafava et al. 1974: 208). The death of the 

preceding organisms may be the primary mechanism of mineral dissolution involved with 

fungal osteoclasia. 

There is some debate as to whether most species of bacteria are able to produce acidic 

metabolites, and it has been suggested that bacteria cannot begin to degrade and exploit the 

bone collagen until there has been some localised removal of mineral (Hedges 2002). Certain 

bacteria may be facultative metabolite producers, which would explain why they are often not 
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observed to produce these substances in vitro (Grupe et al. 1993). The death of a bacterial 

organism and the subsequent release of organic acids can lower the pH or a microenvironment 

leading to the dissolution of the hydroxyapatite (Child 1995a). The proliferation of bacterial 

organisms through the internal bone structure may be dependent on the death of pioneer 

colonies (Child 1995a). 

Child (1995a: 25) suggested that bone bioerosion by bacteria involves a complex interaction 

between obligate aerobes, obligate anaerobes and adaptive aerobes/anaerobes. Initial aerobic 

metabolism of amino acids leads to the production of carbon dioxide, water, nitrogen dioxide 

and sulphur dioxide. If this attack occurs rapidly, more oxygen will be consumed than enters 

the system. These processes will eventually produce an anaerobic environment. At this point, 

the obligate anaerobic and facultative anaerobic bacteria will take over protein decomposition 

via fermentation. This osteolytic action produces organic acids (Child 1995a). The organic acids 

will cause the pH of the localised micro-environment to drop, leading to the dissolution of the 

hydroxyapatite (Child 1995a). However, the lack of acidic metabolites will mean that this 

reaction will gradually slow and oxygen will diffuse back into the system, promoting the 

resumption of aerobic degradation (Child 1995a). Anaerobic decomposition facilitates rapid 

aerobic breakdown by dissolving the bone apatite, which would otherwise be impenetrable 

(Child 1995a). These two processes of microbial bone decay would be self-perpetuating. 

This model still raises the question of how aerobic bacteria attain an initial ‘foothold’ in the 

bone matrix if they cannot independently degrade the hydroxyapatite (Nielsen-Marsh & 

Hedges 2000; Hedges. 2002). The initial demineralisation could be caused by deposition of the 

body within an acidic burial context or by hydration and recharge of the surrounding 

environment during heavy rainfall (Hedges 2002). However, all skeletons may be 

demineralised initially to some degree by the acidic organic products of early bodily 

decomposition and autolysis (Janaway 1987; Janaway 1996; Child 1995b; Gill-King 1997).  

 

2.2.3.2 Organisms responsible for MFD 

 

The desire to understand bone diagenesis has led to investigations into what kinds of 

organisms might be responsible, and what sort of conditions promotes or discourage their 

activity (Grupe & Piepenbrink 1989; Grupe et al. 1989; Balzer et al. 1997). The need to 

understand bone diagenesis was considered particularly pertinent to establishing what factors 

affect the likelihood of extracting viable biomolecules from archaeological bones. Different 
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microbiota exploit bone collagen in divergent ways and so it is important to distinguish what 

type of organisms are responsible for microscopic destruction (Grupe & Piepenbrink 1989; 

Grupe et al. 1989; Balzer et al. 1997). The size and shape of the MFD could correspond to a 

wide range of bacterial and fungal species (Hackett 1981). Few studies have observed 

remnants of microorganisms directly associated with penetrating tunnels in bone (Marchiafava 

et al. 1974; Hackett 1981).  

 

2.2.3.2.1 Wedl MFD 

 

Marchiafava et al. (1974) observed a direct association between colonisation of bone by 

fungus of the Mucor genus and microbial tunnelling of the kind that would be eventually 

classified as Wedl MFD.  Marchiafava (1974) buried fresh human vertebrae obtained from 

dissection room cadavers in flowerpots full of moist topsoil and monitored which fungi 

developed. Microstructural tunnelling was observed when these specimens were examined 

using normal light microscopy and SEM. This tunnelling resembled Hackett’s (1981) Wedl type. 

Three fungal species were found adhering to the vertebrae, but when a sample of rat bones 

was inoculated with each species separately, only the bone infected with Mucor sp. eventually 

demonstrated any tunnelling (Marchiafava et al. 1974). 

Hackett (1981) attempted to replicate Marchiafava et al.’s results by inoculating fresh bone 

samples with fungus found adhering to buried archaeological human bone. This experiment 

failed to produce any characteristic tunnelling, although it was unclear whether the samples 

Hackett used included all of the microorganisms that were employed in the experiments of 

Marchiafava et al. (1974). Fernández-Jalvo et al. (2010) inoculated fresh sterilised animal bone 

with cultured fungal species of several genera. This experiment also confirmed that Wedl 

tunnels are caused by fungal organisms. The association between Wedl tunnelling and fungal 

organisms in bone recovered from terrestrial environments is now generally accepted (Hackett 

1981; Child 1995b; Hedges 2002; Jans 2008).  

Turner-Walker (2012) has questioned Marchiafava et al.’s (1974) conclusions. Some of the 

bones that Marchiafava et al. (1974) used had been autoclaved. This process would have 

cleaved the bonds between some of the bone proteins, making them easier for 

microorganisms to exploit. It was unclear from Marchiafava et al.’s (1974) study whether fresh 

or autoclaved bone was used for the successful production of Wedl MFD. If autoclaved bone 

had been used, then the samples would not have provided a realistic test of whether Mucor 
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sp. fungi are responsible for the occurrence of Wedl MFD in archaeological remains (Turner-

Walker 2012). However, Turner-Walker does not address the results of the more recent 

experiments by Fernández-Jalvo et al. (2010), which supported Marchiafava et al.’s (1974) 

findings. It is probable that only certain species of fungi acting in certain environmental 

conditions are capable of producing Wedl tunnelling. Piepenbrink’s (1986; 1989) failed 

inoculation experiments led them to surmise that some fungal species invade the bone 

substrate but do not produce characteristic tunnelling. 

Wedl tunnelling associated with fungal exploitation of bone does not show any evidence for 

mineral redistribution as seen in the hypermineralised cuffs that surround non-Wedl MFD 

(Hackett 1981). The solubilised crystallites are not mobilised by this form of tunnelling, which 

suggests that either they are not readily incorporated into the organism’s body or that 

absorption of the phosphate immobilises or kills the fungus (Marchiafava et al. 1974). 

However, other researchers have argued that the absence of mineral redistribution associated 

with fungal tunnelling implies that the phosphate is fully metabolised and transformed into 

substances that are not reprecipitated with the death of the organism (Hackett 1981; 

Piepenbrink 1986; 1989; Bolan 1991).  

 

2.2.3.2.2 Non-Wedl MFD 

 

The proliferators of non-Wedl MFD in bone have proven more difficult to isolate. Grupe et al. 

(1989) and Grupe & Dreses-Werringloer (1993) inoculated a sample of pig bones that had been 

sterilised using a 25 kGy dose of uranium radiation with a wide variety of fungal and bacterial 

species extracted from soils adjacent to a sample of bioeroded buried bone. The bacterial and 

fungal specimens were chosen on the basis of their ability to cleave bone proteins (Grupe & 

Dreses-Werringloer 1993: 31). Thin section microscopic examination combined with gram 

staining confirmed that each bone sample had been extensively colonised by bacteria and 

fungi (Grupe & Dreses-Werringloer 1993: 31). However, whilst the bacteria produced various 

pigmentations within the bone internal microstructure, they did not produce characteristic 

MFD (Grupe & Dreses-Werringloer 1993). Grupe & Dreses-Werringloer (1993) believed this 

negative result was due to the short incubation time and concluded that although fungi and 

bacteria can infect a bone very rapidly, associated destructive foci only begin to form at a late 

stage.  
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Child et al. (1993) attempted to identify the collagenase-producing microorganisms that would 

be capable of cleaving and exploiting bone proteins. They cultivated bacterial and fungal 

populations from soil, human skin and human faeces under aerobic and anaerobic conditions. 

Seventeen bacterial species tested positive for the production of collagenase at 10°C (average 

burial temperature in temperate conditions) (Child et al. 1993: 165). All of the collagenase-

producing bacteria belonged to the Clostridium genus. Low numbers of these collagenase-

producing bacteria are present within burial soils in northern Europe (Child 1995a; 1995b).  

Balzer et al. (1997) inoculated a sample of pine marten bones with several different species of 

soil bacteria and left them to incubate for between eight and eighteen months. The bones 

were then thin sectioned, stained and examined using light microscopy to identify potential 

colonies. Bacteria had extensively colonised the bone samples, but had not produced 

characteristic MFD (Balzer et al. 1997: 420). The researchers extracted amino acids from each 

bone and compared them against quantities found within a fresh control. The infected samples 

retained depleted levels of proline and glutamic acid (Balzer et al 1997: 421). These substances 

are used by bacteria in the maintenance and growth of their cell walls (Balzer et al. 1997). The 

selective degradation of these amino acids could not be attributed to chemical diagenetic 

factors and must have occurred as a result of protein exploitation by invasive bacteria (Balzer 

et al. 1997). The authors suggested that, given longer incubation periods, this collagen 

exploitation would eventually lead to production of MFD (Balzer et al. 1997: 422). These 

findings suggested that microbial decomposition of bone is predominantly caused by bacterial 

organisms (Grupe & Turban-Just 1998). Hackett (1981) argued that non-Wedl MFD are too 

large (>2 microns) to have been made by single bacterium and are more likely to have been 

produced by larger demineralising fungal hyphae. However, this observation was made before 

SEM and measures of microporosity had established that non-Wedl MFD were composed of 

smaller honeycombed tubules (Yoshino et al. 1991; Jackes et al. 2001; Turner-Walker & 

Syversen 2002).  

Dixon et al. (2008) cut samples from a single 700-year-old archaeological human bone 

specimen from Lincoln. These specimens were selectively inoculated with anaerobic Prevotella 

intermedia bacteria and left to incubate for 33 to 36 weeks. All samples demonstrated non-

Wedl MFD to some degree, suggesting that microorganisms had exploited the bone before the 

samples had been taken. However, the samples that were treated with bacteria demonstrated 

higher concentrations of non-Wedl MFD than the non-infected samples, which suggested that 

non-Wedl MFD do occur as a result of the action of bacteria. These results should be treated 

with caution, as it was possible that they had captured natural variation in bioerosion within 
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the single skeletal element. It is generally accepted by most researchers that non-Wedl MFD 

are produced by species of bacteria (Jackes et al. 2001; Turner-Walker & Syversen 2002; 

Turner-Walker 2008; Turner-Walker & Jans 2008; Fernández-Jalvo et al. 2010; Turner-Walker 

2012). 

 

2.2.3.3 Bioerosion in Non-Terrestrial Environments 

 

Ascenzi & Silvestrini (1984) identified specific types of bone bioerosion associated with 

submersion in sea water. They examined sections of bone from three incomplete skeletons 

recovered from two medieval shipwrecks that lay off of the coast of France. Ascenzi & 

Silvestrini also defleshed and sterilised fresh samples of cow bone and deposited them on the 

sea bottom. ‘Boring’ microtunnels matching the description of Hackett’s Wedl-type were 

discovered in both the experimental cow and archaeological human samples (Ascenzi & 

Silvestrini 1984: 532). A large variety of micro-organisms were detected within the bored 

tunnels, including species of bacteria, algae and protozoans (Ascenzi & Silvestrini 1984: 535). 

The organisms responsible for bioerosion could not be discerned.  

Bell et al. (1996) and Bell & Elkerton (2008) built upon Ascenzi & Silvestrini’s (1984) findings in 

their analysis of forensic and archaeological human remains that had been deposited in 

marine, lacustrine and fluvial deposits. Bones that decomposed whilst immersed in sea water 

demonstrated initial peripheral Wedl tunnelling, similar to that described by Ascenzi & 

Silvestrini (1984) (Bell et al. 1996). A histomorphological study of human remains recovered 

from the Mary Rose shipwreck found off the coast of the Isle of Wight revealed patterns of 

peripheral Wedl tunnelling in bones that had not been covered by sediment in the initial 

period after deposition (Bell & Elkerton 2008) (Image 2.18). The Wedl-type bioerosion was 

restricted to sunlight-exposed bone surfaces, which indicated that endolithic cyanobacteria 

(blue-green algae) were likely to be responsible for biodeterioration (Bell & Elkerton 2008: 

533). Turner-Walker & Jans (2008) observed similar peripheral tunnelling in faunal remains 

that had been collected from a gravel beach at an undisclosed location in Cyprus and a 

freshwater riverbed in West Runton, Norfolk. The microbial attack observed within the Cypriot 

and West Runton specimens resembled the tunnelling bioerosion produced by endolithic 

filamentous cyanobacteria in marine shells (Turner-Walker 1999; Turner-Walker & Jans 2008: 

233).  
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Image 2.18: BSEM of the alveolar margin of a mandible associated with the Mary Rose shipwreck. Wedl tunnelling 
can be observed at the peripheries (Bell & Elkerton 2008: 531). 

 

Pesquero et al. (2010) identified a form of bone bioerosion that was specifically related to 

aquatic and lacustrine burial contexts. Optical microscopy and SEM analysis of bones sampled 

from Miocene mammals excavated from a lake deposit revealed peripheral Wedl tunnelling 

that included hypermineralised zones similar to those observed in non-Wedl MFD (Pesquero et 

al. 2010). Mineralised microspheres were observed within the destructive tunnels. Pesquero et 

al. (2010: 197) interpreted these structures as fossilised bacteria. Pesquero et al. (2010) did 

not give a specific name to this type of attack nor the likely organisms responsible, although it 

was probably that they were specific to the lacustrine environment. 

 

2.2.3.4 An Endogenous Model 

 

The identity and derivation of the bacteria that produce non-Wedl MFD is still under question 

(Child 1995a; 1995b; Bell et al. 1996; Jans et al. 2004, Jans 2008, Turner-Walker 2008; Turner-

Walker 2012). The limited success of investigations into the instigators of non-Wedl MFD may 

be a result of the assumption that the majority of the degradation takes place after 

skeletonisation and is driven by soil bacteria. This concept embodies a strict definition of 

diagenesis, as it presumes all processes occur as a result of the physical and chemical 

interactions with the burial environment. It is likely that at least some, if not, all bacterial bone 
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bioerosion could be caused by microorganisms that were intrinsic to an organism at the point 

of death (Janaway 1987; Child 1995a; 1995b; Bell et al. 1996; Jans et al. 2004).  

Putrefaction is often used interchangeably with terms referring to overall bodily 

decomposition. A strict definition of putrefaction refers specifically to the initial phase of 

decomposition that is mediated by intrinsic chemical and biological processes (Polson et al. 

1985; Clark et al. 1997). The first stage of bodily decomposition is cell autolysis, which begins 

immediately after death (Janssen 1984; Polson et al. 1985; Janaway 1987; Gill-King 1999; Dent 

et al. 2004). The cells of a body are able to exploit the energy within the covalent bonds of 

carbohydrates through the production of enzymes, within narrow environmental conditions 

and the presence of oxygen (Gill-King 1999). When the heart stops beating, the body’s cells no 

longer receive the nutrients and oxygen they require to maintain their structural integrity 

through biosynthesis and subsequently they begin to collapse (Janssen 1984; Gill-King 1999). 

Cell death releases organic acids and protease enzymes from the lysosomes into the 

surrounding environment which accelerate chemical degradation of the soft tissues (Janssen 

1984; Clark et al. 1997). This process represents the sterile autolysis phase of decomposition 

(Janssen 1984; Clark et al. 1997; Gill-King 1999). 

Mammalian gastrointestinal tracts contain abundant species of bacteria which are responsible 

for a variety of beneficial processes in life (Hao & Lee 2004; Ley et al. 2008). Autolysis leads to 

the breakdown of a body’s mucosal membranes that confine intrinsic bacteria to their specific 

functional locales (Child 1995a; 1995b; Gill-King 1999). Intrinsic bacteria are free to 

transmigrate around the body and exploit the soft tissues once the immune system fails and 

the mucosal membranes have collapsed (Jansen 1984; Child 1995a; 1995b; Gill-King 1999). 

Aerobic bacteria transmigrate from the viscera initially (Polson et al. 1985; Janaway 1996; Child 

1995a). However, the release of organic acids promoted by autolytic destruction and bacterial 

respiration rapidly changes the decompositional environment from aerobic to anaerobic and 

acidic (Polson et al. 1985; Child 1995a; 1995b; Gill-King 1999). Most human enteric intestinal 

bacteria are anaerobic and thrive within these new conditions (Polson et al. 1985; Gill-King 

1997; Child 1995a). Anaerobic visceral bacteria are mostly responsible for putrefactive soft 

tissue loss (Polson et al. 1985; Child 1995a; Bell et al. 1996).  

Bacteriological studies of post mortem blood have found that visceral bacteria transmigrate 

into a body’s vasculature within twenty-four hours after death (Martinez et al. 1985; Polson et 

al. 1985; Child 1995b; Bell et al. 1996; Tuomisto et al. 2013). These bacteria can enter the bone 

via the blood vessels that lie inside the Haversian canals (Child 1995a; Child 1995b; Bell et al. 
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1996). Visceral bacteria are specifically adapted to breaking down bodily proteins, including 

collagen (Child 1995a; Gill-King 1999). Autolytic and putrefactive changes are capable of 

promoting complete skeletonisation of a corpse (Clark et al. 1997). Therefore, in the early post 

mortem period the bones of a decomposing cadaver are surrounded by a volatile environment 

that includes high numbers of putrefactive bacteria specifically adapted to breaking down 

bodily proteins. It seems likely that the microorganisms associated with this phase of bodily 

decomposition have the opportunity and the means to engender high levels of diagenetic 

alteration to the internal bone microstructure before a corpse has skeletonised (Child 1995a; 

1995b; Bell et al. 1996; Janaway 1996). Aerobic bacteria present within the external 

environment degrade the superficial soft tissues of a cadaver and will eventually spread 

internally once the environment of the decomposing body becomes oxygenated (Janssen 

1984; Janaway 1996; Gill-King 1997). This later stage of bacterial action is referred to as decay 

(Fielder & Graw 2003; Kakizaki et al. 2011). 

The mechanisms of endogenous bone bioerosion are similar to those outlined previously and 

are probably comparable to those that cause carious lesions in teeth (Child 1995a; Bell et al. 

1996). Bacterial exploitation of organic structures rarely involves a single species of bacteria 

(Pitre et al. 2013). A bacterial biomass containing several different species usually works 

together in breaking down particular organic materials (Pitre et al. 2013). Clostridia sp. 

bacteria, particularly Clostridium histolyticum represent the genus and species most capable of 

exploiting collagen within a hydroxyapatite matrix (Child 1995a; 1995b; Bell et al. 1996; 

Janaway 1996). This genus is found within most soils, but predominates amongst mammalian 

visceral bacteria and is known to play an active role in soft tissue decomposition (Child 1995a; 

Bell et al. 1996; Grupe 2001; Jackes et al. 2001; Janaway 2001). Jackes et al. (2001) used SEM 

to examine the shape of the tubules that constitute the spongiform structure of non-Wedl 

MFD. The morphologies of the cavities were consistent with bodies of Clostridium sp. including 

Clostridium histolyticum (Jackes et al. 2001: 420). 

Clostridium sp. is known to excrete effective collagenase and has consistently been isolated as 

a prospective instigator of non-MFD (Mandl et al. 1958; Child 1995a; Grupe 2001; Jackes et al. 

2001; Grupe & Dreses-Werringloer 1993). However, there is some debate as to whether this 

genus could be responsible for bacterial degradation of buried archaeological bone, due to its 

narrow temperature range tolerance (Child 1995b). Clostridium species have been observed to 

produce collagenase at the low temperatures found in burial contexts (Child et al. 1993; Child 

1995a). The exothermic autolytic chemical reactions that occur during cell death maintain 
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elevated temperatures within a putrefying body (Mant 1987; Janaway 1987; Janaway 1996; 

Clark et al. 1997).  

Jackes et al. (2001) inoculated fresh human bone samples with Clostridium sp. bacteria in an 

attempt to reproduce non-Wedl MFD. One species was observed to attack and demineralise 

the bone but did not produce characteristic MFD. It may be significant that Clostridium 

histolyticum could not be used in this study as it was classed as a biohazard (Jackes et al. 2001: 

428). Child’s (1995) observation that only a small percentage of bacteria from most burial soils 

are able to break down collagen at the low temperatures of a burial environment suggests that 

a decomposing organism’s gut represents the most abundant repository of collagenase-

producing bacteria within most burial environments. It is reasonable to suggest that 

endogenous bacteria might be responsible for some, if not the majority, of internal bacterial 

bone bioerosion found within archaeological remains.  

 

2.2.3.5 Endogenous versus Exogenous 

 

It is important to establish whether bone is predominantly degraded by endogenous rather 

than exogenous microorganisms as either scenario has different implications for mechanisms 

of microscopic bone degradation. In either case these processes can be related directly to 

survival of bone in the ground and the potential for extracting biomolecules (Grupe et al. 1989; 

Balzer et al. 1997; Jans et al. 2002; Reiche et al. 2003). An endogenous model of bioerosion 

would suggest that the survival of organic molecules in bone will be dependent on the 

conditions of early decomposition. The suggestion that bacterial bioerosion is controlled by 

interaction with endogenous bacteria underpins all attempts to reconstruct early taphonomic 

events, such as mortuary processes (Hollund et al. 2012). An exogenous model of bioerosion 

suggests that bimolecular yield would be dependent on the conditions of the burial 

environment and how they changed over time in ways that promoted or discouraged the 

activity of soil microorganisms.  

Child (1995) suggested that endogenous bacteria would not have chance to exploit the bone to 

any great extent before they were out-competed by aerobic soil bacteria. The anaerobic 

endogenous microbiota might aid in the initial ‘foothold’ demineralization of the inorganic 

phase required for later aerobic organisms to access the bone protein (Child 1995a; 1995b; 

Hedges 2002). Janaway (1987) suggested that exogenous bacteria from densely packed 
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cemeteries will be more competitive, as the generations of bacterial colonies will have 

adapted to degrading human bone.  

It has proven difficult to recreate in vitro the immediate post mortem conditions of a 

putrefying body as opposed to a fresh bone in contact with the soil. The conditions of bodily 

putrefaction are difficult to measure without upsetting the environment and potentially 

influencing the result (Mann et al. 1990; Janaway 1996; Campobasso et al. 2001; Adlam & 

Simmons 2007; De Jong et al. 2007). Some species of visceral bacteria are known, but their 

exact ratios and abundance, as well as the specific pathways of their transmigration, have yet 

to be established (Gill-King 1997). Some of the bacteria that are likely to play a significant role 

in bone bioerosion are common to both mammalian viscera and most soils. Confirmation of 

the species of bacteria responsible for non-Wedl MFD, would not significantly increase clarity 

regarding the endogenous versus exogenous question (Child 1995a; Grupe 2001).  

 

2.2.3.5.1 Experimental & Forensic Studies 

 

Most of the arguments for an endogenous or exogenous origin for osteolytic bacteria have 

focussed on identifying which model best fits the trends in bacterial tunnelling observed 

amongst archaeological and forensic bones (Yoshino et al. 1991; Bell et al. 1996; Hedges et al. 

1995; Nielsen-Marsh & Hedges 2000; Jans et al. 2004; Nielsen-Marsh et al. 2007; Turner-

Walker & Jans 2008) (Table 2.1). Yoshino et al. (1991) examined the histology of humeral 

samples taken from human bodies that had been experimentally buried, exposed or 

submerged in sea water for up to fifteen years. They periodically removed samples from 

humeri for SEM analysis to monitor the point at which the bone microstructure began to be 

degraded by bacteria. They found non-Wedl MFD in the periosteal compact bone of one set of 

buried remains after 2.5 years of deposition (Yoshino et al. 1991: 146). Most inhumed samples 

were not attacked until five years after burial. Particles of bacteria and fungi were found within 

the MFD but also within undamaged aspects of the bone. The surface-deposited remains did 

not show any signs of bioerosion until fifteen years after deposition (Yoshino et al. 1992). 

Yoshino et al. (1991: 151) argued that their results suggested that bacterial diagenesis 

coincided with skeletonisation and exposure of the bone to soil microbiota. The early 

detection of MFD in a humeral sample that had been buried for 2.5 years was argued to have 

occurred as the result of shallow burial which could have promoted rapid skeletonisation 

(Yoshino et al. 1991: 152). 
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Endogenous Exogenous 

MFD appear early post mortem. MFD appear late post mortem. 

MFD appear before skeletonisation. MFD appear after skeletonisation. 

The extent of bone bioerosion correlates with 
evidence for early taphonomic events that 
would have affected endogenous microbial 
access. 

The extent of bone bioerosion correlates with 
features of the site environment that would 
have affected exogenous microbial 
abundance. 

MFD are focussed around vascular structures 
and are controlled by the internal 
architecture. 

MFD are independent of the bone 
microstructures. 

Bones from bodies that had decomposed on 
the ground surface will demonstrate minor 
bioerosion that is distributed throughout the 
sample. 

Bones from bodies that had decomposed on 
the ground surface will show minor 
bioerosion at points where they were in 
contact with the soil. 

Bone from a body that was disarticulated 
soon after death will demonstrate limited 
levels of bioerosion compared with bone from 
an organism that decomposed in articulation. 

There will be no significant difference 
between levels of bacterial bioerosion in 
articulated and disarticulated remains. 

Bone from a mummified individual may 
demonstrate minimal bacterial attack. 

Bone from a mummified individual will always 
demonstrate no bacterial attack. 

Bones that are located closer to the gut will 
be more severely affected by bacterial attack. 

Porous bones will be more severely affected 
by bacterial attack. 

Bioerosion will be present to a certain extent 
within bones recovered from sterile burial 
environments. 

Bioerosion will be absent within bones 
recovered from sterile burial condition. 

Neonates will be more likely to show no 
evidence for bacterial alteration. 

Neonates will be equally affected as adults by 
bacterial alteration. 

Bioerosion will not vary with the age-at-death 
of an individual. 

Bioerosion will be more extensive within 
bones from older individuals. 

Table 2.1: A set of predictions and observations adapted from histomorphological studies of archaeological and 
forensic bone that have been used to assess whether MFD are caused by endogenous or exogenous bacteria. 

 

The results of Yoshino et al. (1991) were contradicted by Bell et al. (1996), who performed 

similar analyses on the reclaimed remains of missing persons where the post mortem interval 

was known. Non-Wedl MFD were detected in several of the bone samples. The earliest 

recorded appearance of non-Wedl MFD was three months post mortem (Bell et al. 1996: 132). 

This specimen originated from a set of human remains that had been scavenged by a carnivore 

and left on the ground surface to decompose (Bell et al. 1996). Non-Wedl MFD had formed 

around Haversian canals and at the sites of enlarged osteocyte lacunae (Bell et al. 1996). The 

thin section of a rib recovered fifteen months post mortem from the surface of a muskeg bog 

demonstrated extensive bacterial alteration (Bell et al. 1996: 132). However, a sample of rib 
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fragment from a body that had been inhumed for seventy years, albeit coffined six feet 

beneath the ground and covered in slaked lime, demonstrated only minor signs of bacterial 

damage (Bell et al. 1996: 132). Six specimens of bone whose post mortem period ranged from 

one to eighty-three years were entirely unaffected by bioerosion (Bell et al. 1996: 136).   

Bell et al.’s (1996) study demonstrated that bacterial MFD can form in the early post mortem 

period (Bell et al. 1996). It is difficult to say whether these findings support an endogenous or 

exogenous origin for the osteolytic bacteria, as all of the samples had skeletonised before they 

were retrieved. Bell et al. (1996: 138) suggested that the early appearance of MFD three and 

eighteen months after death strongly indicated that endogenous bacteria were involved in 

initial bioerosion of bone. Both sets of remains in Bell et al.’s (1996) study demonstrated MFD 

had been exposed on the ground surface. Yoshino et al.’s (1991) findings suggested that these 

bones should not have been available for exploitation by soil microbes. The limited bioerosion 

observed in the bones of the scavenged individual could be explained by the biostratinomic 

action of fauna. The scavenging fauna would have swiftly skeletonised the corpse and removed 

the internal organs along with any associated deleterious bacteria before the microorganisms 

had chance to access the bone (Bell et al. 1996: 137).  

Yoshino et al. (1991) said little about the treatment and position of the remains that they 

examined. They did not directly refer to the rate of skeletonisation in their experimental 

remains and relied upon observations relayed in separate reports. The early occurrence of 

non-Wedl MFD in one of their samples was explained by this specimen having been buried 

shallowly, but this justification was speculative (Yoshino et al. 1991: 152). The researchers may 

not have directly handled or perceived the whole bodies in situ, and so the state of each 

body’s decomposition was an unknown quantity. It was debateable whether the beginnings of 

bacterial attack in the bone examined in Yoshino et al.’s (1991) study could be related directly 

to the point at which soft tissue was lost, as there was no discussion of the speed of bodily 

decomposition in each case.  

It is difficult to account for the lack of bioerosion observed in the majority of Bell et al.’s (1996) 

skeletonised samples from an endogenous model of decay, as it was clear that they had all 

undergone putrefaction. It may be significant that the bone samples that were unaltered by 

bacteria originated from the skeletons of 20th century executed prisoners that had been buried 

deep underground and treated with slaked lime (Bell et al. 1996: 136). The cold and hypoxic 

conditions facilitated by deep burial can interfere with natural bodily decomposition, as can 

the application of slaked lime (Schotsmans et al. 2012). 
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2.2.3.5.2 Archaeological Studies 

 

The failed attempts to discern the aetiology of non-Wedl MFD by documenting its 

development in real-time experiments or inoculations led to a shift in methodology. 

Researchers began to focus on the archaeological material, where bacterial attack had run its 

full course. The factors that could be discerned to have influenced the development of non-

Wedl MFD across numerous sites were used to implicate whether endogenous or exogenous 

bacteria were likely to have been responsible. 

A histomorphological study of 119 human bones excavated from a group of Middle to Late 

Woodland period Native American burial mounds from the Lower Illinois Valley found that the 

variation in histological integrity was not related to site environment (Hanson & Buikstra 

1987). Twenty-five per cent of the samples were entirely destroyed by bacterial tunnelling, and 

the rest demonstrated variable levels of attack. The researchers made no mention of the state 

of the remains at recovery and so this study could not be used to discern the relationship 

between early taphonomy and bone bioerosion. 

Nielsen-Marsh & Hedges (2000) examined several diagenetic parameters of 134 bones of 

several species from eight archaeological sites. They concluded that diagenetic degradation of 

bones was dependant on hydrological features of the environment. The diagenetic parameters 

of bone recovered from waterlogged or dry environments indicated that these specimens 

were well-preserved. Bone excavated from contexts that were periodically recharged by flood 

or rainwater tended to have been severely altered by bacterial and chemical erosion (Nielsen-

Marsh & Hedges 2000: 1146). Bone bioerosion was related to site hydrology to some extent, 

but not to in the same way as other measures of bone diagenesis (Nielsen-Marsh & Hedges 

2000: 1143). An unknown factor had affected microbiological decomposition of bone at the 

sites where there was no association with hydrology.  

The extent to which bacterial diagenesis might be affected by hydrology of a site environment 

was also investigated by Reiche et al. (2003). They studied diagenetic parameters of bone from 

the Neolithic site of Bercy in northern France. Some bone specimens had been deposited 

within permanently waterlogged contexts whereas others would have been subjected to 

variable wetting and drying cycles. Bones from waterlogged environments demonstrated 

better histological preservation than bones from environments with more inconsistent 

hydrological regimes. 
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It is difficult to gauge the extent to which the relationships between histological bone 

preservation and site environment support an endogenous or exogenous origin for bacterial 

destruction of bone. The correlations between histological integrity and environmental 

changes would superficially suggest that exogenous bacteria are responsible for non-Wedl 

MFD, as those organisms are more likely to be affected by specific environmental changes 

(Nielsen-Marsh & Hedges 2000; Reiche et al. 2003). The anoxic conditions promoted by 

waterlogging would inhibit the activity of osteolytic soil bacteria and promote high levels of 

histological bone preservation (Bottrell et al. 1998; Turner-Walker & Jans 2008; Turner-Walker 

2012). However, waterlogged burial conditions would also favour good histological bone 

preservation under an endogenous model of bioerosion. Water saturation and accompanying 

anoxia prevents or subdues soft tissue decomposition and interferes with the spread of 

deleterious endogenous microorganisms (Polson et al. 1985; Mant 1987; Janaway 1996; 

Turner & Wiltshire 1999; Fiedler & Graw 2003; Turner-Walker & Jans 2008; Hollund et al. 2012; 

Ubelaker & Zarenko 2011).  

Jans et al. (2004) studied 250 faunal and human bones from 41 archaeological sites using 

microscopy and HgIP. The faunal assemblages consisted of articulated skeletons as well as 

butchered disarticulated remains of domesticated animals. The human bones from across all 

sites originated from articulated skeletons recovered within discrete burials. Bacterial MFD in 

all specimens converged around Haversian canals in osteonal systems, particularly at the site 

of osteocyte lacunae (Jans et al. 2004: 91). Bacteria had not invaded directly through the 

periosteum, but relied upon an organism’s vasculature (Jans et al. 2004: 91). Bones from near 

the abdominal area (ribs, vertebrae) were more grossly affected by bacterial bioerosion (Jans 

et al. 2004: 91). Jans et al. (2004) found that the articulated human bone was significantly 

more likely to have been extensively attacked by non-Wedl MFD than the bone from the 

disarticulated fauna. The disarticulated butchered faunal bones demonstrated higher 

occurrences of fungal tunnelling (Jans et al. 2004: 91). The only faunal material that showed 

evidence for extensive bacterial bioerosion was that which originated from articulated non-

butchered skeletons (Jans et al. 2004: 91).  

The most obvious difference between the human and faunal assemblages was taphonomic 

histories, specifically the evidence for butchery, which also dictated the occurrence of bacterial 

bioerosion within the faunal remains when they were examined in isolation (Jans et al. 2004). 

Most of the domesticate bones had been butchered and separated from their viscera in the 

early post mortem period whereas the human bodies had been buried articulated with their 

organs intact (Jans et al. 2004: 91). The low levels of non-Wedl MFD within the butchered 
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assemblage was attributed to the separation of the bones from the source of deleterious 

bacteria in the early post mortem period. The relatively high incidence of fungal tunnelling in 

the butchered animal bone was explained by the opportunistic action of exogenous 

saprophytic fungi that could freely access nutrient rich organic bone post-skeletonisation. This 

evidence was used to argue that bacteria responsible for the non-Wedl-MFD must have been 

endogenous to the organism and associated with putrefaction (Jans et al. 2004: 92). 

The results of Jans et al. 2004 were reinforced by Smith et al. (2007) and Nielsen-Marsh et al. 

(2007) who also studied bone diagenesis amongst large numbers of bone samples from varied 

sites and environments. Smith et al. (2007) found that microbial degradation was the most 

common form of diagenetic degradation in bone from chemically benign environments. This 

finding supported similar observations by Turner-Walker et al. (2002). Nielsen-Marsh et al. 

(2007) used HgIP and thin section microscopy to examine 219 archaeological bones of variable 

species from a variety of European Holocene sites. Specific chemical tests were performed on 

the burial soils that provided parameters of organic content, pH, exchangeable acidity, 

conductivity and the presence of water soluble cations and anions. These features would have 

affected the abundance and character of soil bacteria. These parameters were used to define 

particular soil types that could be used to gauge environmental influences on the various 

diagenetic pathways.  

Nielsen-Marsh et al. (2007) found that only catastrophic dissolution correlated with burial 

conditions and that bacterial attack was the sole form of degradation found in bone from 

benign contexts (Nielsen-Marsh et al. 2007: 1529). There was no correlation between bacterial 

bioerosion and soil characteristics. Articulated human bone was more likely to have been 

affected by bacterial MFD than disarticulated, butchered bone from domesticated animals. 

These findings reinforced the conclusions of Jans et al. (2004) regarding the relationship 

between taphonomy, putrefaction and bacterial attack to the internal bone microstructure, as 

well as the lack of an association between bacterial bioerosion and environmental conditions.  

Turner-Walker (2008) has questioned the conclusions of both Jans et al. (2004) and Nielsen-

Marsh et al. (2007) and suggested that an exogenous model of bacterial bioerosion would be 

equally as applicable. The discrepancy in bacterial bioerosion between articulated human and 

disarticulated animal bone was more likely to have occurred as a result of the restricted age-

at-death range of the butchered carcasses (Turner-Walker 2008). In the interests of 

maintaining the highest quality of meat with the smallest invest of resources, most 

domesticated animals reared for consumption are usually slaughtered during or just after 



  

49 
 

adolescence (Turner-Walker 2008). The low level of Haversian bone within the young, 

butchered bone would have meant that these remains were less porous and less susceptible to 

invasion by soil bacteria than the human remains, which would have presumably originated 

from individuals of variable age (Turner-Walker 2008).  

Histomorphological investigation of bone samples taken from some of the individuals buried 

and killed in Roman Pompeii, Campania by the eruption of Mount Vesuvius in A.D. 79 also 

provided evidence that bacterial MFD are produced by endogenous microbes. Cipollaro et al. 

(1998) and Guarino et al. (2006) studied the microstructure of bone removed from buried 

Roman skeletons from Pompeii using thin section light microscopy and SEM. They discovered 

that most bones were free from bacterial bioerosion, but a minority had been extensively 

altered by non-Wedl MFD (Cipollaro et al. 1998: 902; Guarino et al. 2006: 517). All of these 

skeletons had been buried beneath hot volcanic pyroclastic material that would have 

remained sterile over the period of burial. The extensive bacterial attack observed in the 

Pompeian bone sections could only have been driven by internal microbiota (Guarino et al. 

2006: 518). Guarino et al. (2006) could not explain why only a small proportion of bones were 

affected by bacterial attack, as presumably all of the individuals were buried with their organs 

intact.  

A common observation amongst histological studies of archaeological bone is that the 

periosteal and endosteal fringes of a bone sample often remain intact whilst the rest of the 

section has succumbed to the highest levels of bacterial tunnelling (Hanson & Buikstra 1987; 

Bell et al. 1996; Jans et al. 2004; Parker Pearson et al. 2005; Hollund et al. 2012). Hollund et al. 

(2012) argued that the ubiquity of this phenomenon was consistent with bacterial attack 

originating from inside of the body, as there was no reason why osteolytic soil bacteria could 

not tunnel directly through the periosteal and endosteal surfaces post-skeletonisation. 

However, Child (1995a; 1995b) and Turner-Walker (2012) suggested that it is more convenient 

for soil bacteria to access the bone microstructure via the natural microscopic channels. 

Hedges (2002) suggested that the periosteal bone surface is more likely to have been 

infiltrated by substances from the external environment, such as humic acids, which would 

have discouraged microbial bioerosion through the deactivation of protease and cross-linking 

of organic molecules. However, both the exogenous bacteria and humic factors within the soil 

would have been able to infiltrate the bone at a similar point after skeletonisation and so the 

argument of osteolytic inhibition by humic cross-linking is not entirely cogent.  
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The study by Dixon et al. (2008) that involved the inoculation of a single archaeological bone 

sample with a particular species of bacteria is interesting in this scenario, as the bacterial 

species that was used, Prevotella intermedia, is an obligate anaerobe. Dixon et al. (2008) 

concluded that the relative success of their experiment compared with similar inoculations of 

bone with aerobic soil bacteria, suggested that anaerobic bacterial species were responsible 

for non-Wedl MFD. Anaerobic bacteria constitute the majority of the gut microbiota that are 

associated with putrefaction, and so Dixon et al.’s (2008) results suggested that the organism’s 

gut represents the most likely origin of osteolytic bacteria (Janaway 1996; Gill-King 1999).  

Trueman & Martill (2002) examined the histology of 350 fossil bones spanning more than 350 

million years. They found that these bones were characterised by a lack of evidence for 

internal microbial decomposition. It was evident that soil bacteria had failed to colonise and 

exploit these bone samples over their long periods of decomposition. This notion led Trueman 

& Martill to conclude that bacterial degradation must occur in the early post mortem period 

and that an early taphonomic event prevented bacterial bioerosion in each case (Trueman & 

Martill 2002).  

 

2.2.3.5.3 Recent Experiments 

 

More recent studies have provided evidence that soil bacteria might still exert an influence on 

the occurrence of MFD. Fernández-Jalvo et al. (2010) examined the histological structure and 

protein content of bones from ten sheep carcasses that had been exposed on an upland 

environment for up to 30 years in Neuadd, Central Wales, U.K. The majority of these bones 

were histologically well-preserved after 30 years. Non-Wedl MFD were observed in a low 

proportion of bone samples. Most of this attack was limited to the sub-periosteal and sub-

endosteal zones and was only observed to consume the majority of the histological structure 

in two bone samples; a vertebra that had been placed in a manure heap post-skeletonisation 

and a femur that had lain exposed on a peat bog for twelve years. 

Fernández-Jalvo et al. (2010: 76) suggested that the organisation and interaction of non-Wedl 

MFD amongst their samples was consistent with separate phases of microbial invasion. These 

phases of attack suggested that bones had been subjected to numerous distinct waves of 

bacterial invasion (Figure 2.5). A mandible from a sheep that had been defleshed and buried in 

a manure pit did not demonstrate any evidence phased invasion of bacterial colonies. 

Fernández-Jalvo et al. (2010: 76) argued that the lack of evidence for phasing suggested that 
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the microbial bioerosion had occurred as one distinct incursion. The phased patterns of 

bacterial bioerosion within the sheep bone from the stream were ascribed to seasonal 

variation in environments having differentially affected the action of soil bacteria. This 

argument presumed that endogenous bacterial attack is a singular process and would not 

produce temporally distinct waves of invasion.  

 

Figure 2.5: BSEM image of a transverse section of sheep mandible that was experimentally deposited within a 
riverbed in Neuadd, Wales showing phased bacterial tunnelling. The areas marked in black represent the secondary 

wave of bacterial attack, earliest to latest (a-c) (Fernandez-Jalvo et al. 2010: 76). 

 

Fernández-Jalvo et al. (2010: 70) noted that the focal destruction in the well-preserved 

samples from Neuadd did not correspond to vascular structures and was randomly dispersed. 

This result indicated that all non-Wedl MFD must be produced at a late stage by external soil 

bacteria (Fernández-Jalvo et al. 2010: 80). The season of death of each carcass did not 

correspond with the presence or extent of non-Wedl MFD. Season of death has consistently 

been recognised as the primary influence on the rate of bodily decomposition (Rodriguez & 

Bass 1983; 1985; Vass 2011). The lack of association between seasonality and bone bioerosion 

suggested that exogenous microorganisms drive bacterial bioerosion of bone (Fernández-Jalvo 

et al. 2010: 80).  

Carnivore tooth marks found on one of the carcasses included in Fernández-Jalvo et al.’s 

(2010) study indicated that the specimen had been scavenged. The rest of the bodies had 

decomposed without any major faunal disturbance. Scavenging rapidly removes the soft tissue 
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that facilitates the growth of endogenous microbes. Under an endogenous model of decay, it 

would be predicted that bones from the scavenged sample should demonstrate low levels of 

bacterial attack (Bell et al. 1996; Jans et al. 2004; Fernández-Jalvo et al. 2010: 78). Fernández-

Jalvo et al. (2010) found no significant differences in the histological alteration of scavenged 

and non-scavenged samples. The lack of association between non-Wedl MFD and vascular 

microstructural features supported a model of later bacterial attack originating from the soil.  

The sheep specimen that was buried in a manure heap after being defleshed by exposure 

demonstrated extensive levels of bacterial attack. The majority of attacking bacteria must have 

come from the surrounding burial context as all of the other exposed bones in Fernández-Jalvo 

et al.’s (2010) sample were only affected by minor levels of bioerosion. However, the manure 

burial context of the sheep bones would have incubated an abundance of mammalian gut 

bacteria that could have mimicked endogenous bacterial attack. Fernández-Jalvo et al. (2010) 

did not explain the presence of bioerosion within surface-deposited remains that had not been 

in contact with the soil.  

Turner-Walker (2012) cut samples from three butchered and defleshed cow metapodials and 

placed them in different positions next to a stream located on the campus of the National 

Yunlin University of Science and Technology in Central Taiwan. One sample was placed within 

the dry soil adjacent to the stream, another within the permanently waterlogged stream bank 

and the final one at the bottom of the stream bed. The dry and waterlogged samples were 

retrieved after one year and the riverbed specimen was retrieved after six months. Sections of 

the samples were analysed by Turner-Walker using BSE-SEM. The bone from the waterlogged 

deposit was heavily cracked and demineralised, but was free from all forms of bioerosion. The 

bone recovered from the riverbed demonstrated Wedl-type tunnelling of the type that has 

been associated with cyanobacteria (Bell & Elkerton 2008). The bone from the dry soil 

demonstrated minor alterations consistent with non-Wedl MFD. The identification of non-

Wedl MFD within the dry soil sample, and its absence from the other material confirmed to 

Turner-Walker that bacteria bioerosion is mediated by aerobic soil microorganisms (Turner-

Walker 2012).  

It is difficult to say how far Turner-Walker’s (2012) experimental study contributes to the 

interpretation of internal bioerosion within archaeological specimens from temperate Europe. 

The humidity and temperature associated with the tropical climate of Taiwan would provide 

the optimum environmental conditions for bacteria (Carter et al. 2007; 2010; Ross & 

Cunningham 2011). Turner-Walker (2012) does not mention whether the bacteria present 
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within Taiwanese soils were typical of those that occur within temperate Europe. Turner-

Walker’s results contrast with findings that dismembered and defleshed cow bones that had 

been deposited and exposed to soil bacteria at Overton Down, Wiltshire for thirty-two years, 

demonstrated no non-Wedl MFD (Nielsen-Marsh & Hedges 2000).  

Turner-Walker (2012) makes no mention of whether the cow bones used in his experiment 

were sterilised before they were placed in their respective environments or whether any 

control samples were taken and tested. The same environments that discourage soil bacteria 

also prevent the activity of putrefactive visceral microbiota (Turner & Wiltshire 1999; Jans et 

al. 2004; Hollund et al. 2012). The speed of post mortem transmigration of gut microbiota 

suggests that Turner-Walker’s bone samples may have been infected by gut microbiota before 

they were acquired (Polson et al. 1985; Bell et al. 1996; Gill-King 1997). Small amounts of 

putrefactive gut bacteria are sometimes recovered from within fresh meat (Gill et al. 1976; Gill 

1979). Endogenous biodegradation of the bone by gut bacteria could have occurred whilst the 

bone was in the dry ground. The inhibitory effects of the other two depositional environments 

would have ensured that the additional samples remained free from putrefactive bacterial 

attack. 

Turner-Walker (2008) and Turner-Walker & Jans (2008: 231) suggested that the immaculate 

histological preservation of medieval human bone excavated from Trondheim, Norway 

indicated that bacterial bioerosion could not be endogenous and linked with putrefaction. The 

soft tissue of the Trondheim bodies had decomposed, yet the bones had not been bioeroded 

(Turner-Walker 2008). The cold temperatures and hypoxia of the deep waterlogged burial 

environment would have produced a sterile burial environment (Turner-Walker 2008). Under 

an exogenous model of bone bioerosion, this detail would explain the high level of histological 

bone preservation (Turner-Walker & Jans 2008: 231). However, cold temperatures and anoxia 

would also have hindered the majority of the collagenase-producing putrefaction bacteria 

(Child 1995a). The organisms that produce protease are more abundant and versatile than 

those that produce collagenase (Polson et al. 1985; Child et al. 1993; Child 1995a’ 1995b). 

Their survival at Trondheim was attested to by the loss of soft tissue (Child 1995a). Soft tissue 

can be lost entirely through sterile autolytic change and hydrolytic reactions with water 

(Polson et al. 1985; Carter et al. 1997). 
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2.2.3.5.4 A Real-time Experiment 

 

White (2009) selectively buried and exposed pig carcasses for set amounts of time and 

examined their bone microstructures using thin section microscopy in order to determine the 

origin of osteolytic bacteria. A mixture of juvenile, neonatal and stillborn carcasses were buried 

in the soil, exposed on the ground surface or contained in plastic boxes in woodland near 

Riseholme, Lincolnshire, U.K. Pigs buried in boxes were either left uncovered, buried in soil 

from a nearby cemetery or buried in sterile sand. Decomposition of the pigs was monitored 

regularly over three years and their bones sampled for thin section light microscopy. Some of 

the early sections were stained using Methylene Blue and Gram staining to detect the 

presence of bacteria prior to them exploiting the bone collagen. 

Gram-positive and Gram-negative bacteria were found to have extensively colonised bone 

samples within one month post mortem (White 2009: 176). No MFD were observed in these 

samples until six months post mortem (White 2009: 183). The non-Wedl MFD began as much 

smaller tunnels that resembled enlarged osteocyte lacunae (termed pre-tunnelling), which 

eventually coalesced to form the characteristic microfocal destruction (White 2009: 161). All of 

the mature remains demonstrated microbial tunnelling to some extent after one year, but the 

bones from the buried pigs were much more severely affected than those that had been 

exposed on the ground surface (Image 2.19). The carcasses that had been deposited on the 

ground surface had decomposed and skeletonised within six to fourteen weeks. The buried 

remains were still actively decomposing when they were sampled after one year. This disparity 

in rates of decomposition between buried and exposed remains has been linked with the 

increased abundance and variety of carnivorous insects that can access and skeletonise an 

unburied corpse (Rodriguez & Bass 1983; Bell et al. 1996; Simmons et al. 2010).  
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Image 2.19: Micrograph of a transverse femoral thin section from a pig carcass that had been buried for a year by 
White (2009). The specimen demonstrated high levels of bacterial tunnelling (taken by the author). 

 

White (2009: 183) argued that these findings supported an endogenous origin for early 

bioerosion of bone. The rapidity and intensity of bacterial invasion and degradation of bone 

could only be ascribed to the activity of endogenous microbes. The differences in bioerosion 

between surface-exposed and buried remains suggested that there was a correlation between 

exposure to putrefaction and osteolytic bacterial attack. The majority of the buried pig remains 

used in White’s (2009) study had not skeletonised, yet their bones demonstrated extensive 

bacterial tunnelling. Bacterial attack was also observed in bone from the boxed pig remains 

that had been coated with sterile sand.  

None of the bones from the stillborn pigs used in White’s (2009) experiment exhibited 

evidence for bacterial bioerosion (Image 2.20). This observation was not consistent with an 

exogenous model of decay, as all other categories of remains from the same environments 

demonstrated some form of microbial alteration. Mammals are born sterile (Mackie 1999). 

Colonies of bacteria invade and establish themselves within the stomach and intestines a few 

weeks after birth (Mackie 1999). The lack of internal bacteria means that putrefaction of 

stillborn and neonatal remains is often delayed or does not occur at all (Polson et al. 1985; 

Janaway 1996; Campobasso et al. 2001; Jans et al. 2004).The lack of bacterial tunnelling within 

the bone of the stillborn pigs supported an endogenous model of bioerosion, as these 

specimens would have not lived long enough to have developed any gut bacteria (White 2009: 
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177). Histological analysis of human bone thin sections from historical contexts found that 

lower proportions of neonatal remains were likely to have been affected by bacterial 

bioerosion than adult bones (White 2009: 154). 

 

Image 2.20: Micrograph of a transverse femoral thin section of a stillborn piglet that had been buried for one year by 
White (2009). The specimen was entirely free from bioerosion (taken by the author). 

 

2.2.3.5.5 Bog Bodies & Mummies 

 

Raised bogs are anoxic, acidic, and cold and are characterised by the presence of tannic 

substances (Painter 1995). These factors produce an environment that is not sympathetic to 

most species of bacteria. Acidity and the sphagnan chemical secreted by the sphagnum moss 

deactivate collagenase and protease. Temperatures within a bog are usually lower than what 

can be tolerated by most species of bacteria. Sphagnan tannins reacts with proteins which 

causes their molecules to cross-link, rendering them inaccessible to most microbes (Painter 

1995). The combination of sphagnum, acidity and anoxia does not produce a sterile 

environment, although these conditions ensure that the types of soil bacteria adapted to 

exploiting bodily proteins are mostly absent (Ridgeway et al. 1986; Painter 1995). The bone of 

bog bodies may be pertinent to studies of bone bioerosion as any focal osteoclasia is unlikely 

to have occurred as a result of external microbial invasion. 

Bell et al.’s (1996) study of forensic remains included a rib from a human body that had lain in 

a muskeg bog for 15 months. The internal microstructure of this specimen had been 

extensively degraded by bacteria. A sheep femur that was included within the study by 

Fernández-Jalvo et al. (2010: 78) had been retrieved from a bog environment and also 
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demonstrated high levels of internal bacterial attack. The sheep femur had lain on top of the 

peat bog initially, and Fernández-Jalvo et al. (2010) suggested that aerobic exogenous bacteria 

were able to access their specimen before the bog environment discouraged bacterial 

exploitation. This explanation was unconvincing given that all other surface-deposited remains 

from Neuadd showed little or no bacterial alteration (Fernández-Jalvo et al. 2010). This 

argument also contradicted Fernandez-Jalvo et al.’s (2010: 80) overall conclusions that aerobic 

bioerosion is a late-occurring phenomenon.   

Brothwell & Bourke (1995) examined the histological integrity of arm and finger bones of one 

of the Iron Age bog bodies that was recovered from Lindow Moss, Cheshire. They observed 

‘punched-out holes’ within the bone microstructure of these samples that resembled the early 

stages of bacterial attack (Brothwell & Bourke 1995; Brothwell & Gill-Robinson 2002). The 

responsible microorganisms must have been endogenous primarily because of the nature of 

the burial context but also because the skin was preserved and the bone had been continually 

protected from exogenous incursion (Yoshino et al. 1991).  

Turner-Walker & Peacock (2008) deposited butchered cow metapodial and flesh within a 

raised sphagnum bog. After four years the flesh was preserved, but SEM demonstrated that 

the bone had been chemically demineralised (Turner-Walker & Peacock 2008: 159). No MFD 

were detected within this sample (Turner-Walker & Peacock 2008: 159). This example may be 

illuminating with regards to bone bioerosion, as the main difference between these samples 

and the other bioeroded bog-deposited bones was that Turner-Walker & Peacock’s (2008) 

bone specimens were not buried as part of intact corpses.  

The principle that exogenous bacteria would not be able to gain access to fleshed remains 

suggests that bones from mummified remains may be informative in addressing whether 

osteolytic bacteria attack from inside or outside the body (Yoshino et al. 1991).  Most methods 

of soft tissue preservation involve the circumvention of putrefaction through the removal or 

neutralisation of gut bacteria (Aufderheide 2003; Lynnerup 2007). Both exogenous and 

endogenous models of bioerosion would predict that bone microstructure of mummified 

remains should remain well-preserved. However, if the mummification process was delayed, 

was not entirely successful, or allowed gut bacteria to remain active for a certain period of 

time, minor putrefactive bone bioerosion could have occurred. Therefore whilst the lack of 

focal destruction in mummified bone would be ambiguous with regards to the origin of 

osteolytic bacteria, any positive identification of MFD must infer invasion by visceral 

microbiota.  
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There have been very few histomorphological studies of bone from mummified individuals as 

the penetration or removal of mummified soft tissue is not considered to be a desirable or 

ethical process. Histomorphological studies have been conducted on a small but varied 

number of remains preserved naturally and artificially using a variety of different techniques 

(Weinstein et al. 1981; Thompson & Cowen 1984; Hess et al. 1998). All of samples of bone 

from mummies have demonstrated immaculate levels of histological preservation. This group 

of isolated reports included a microscopic study of a rib fragment from the naturally-

mummified Bronze Age body that was recovered from within a glacier in the Tyrolean Alps 

(popularly known as Ötzi). No MFD were detected within the rib sample, although species of 

gut bacteria were preserved within the sub-periosteal region (Hess et al. 1998). Endogenous 

bacteria must have escaped into the bone before their activity was stalled by the freezing 

environment (Hess et al. 1998). 

 

2.2.4 Link between Taphonomy & Bone Diagenesis 

 

There have already been some attempts to use diagenetic parameters to reconstruct the 

taphonomic histories of bone (Parker Pearson et al. 2005; Turner-Walker & Jans 2008; Hollund 

et al. 2012). Different studies have drawn upon divergent models of bone diagenesis and 

provide separate examples of how bone diagenesis may be used to reconstruct taphonomic 

events under both endogenous and exogenous models. Those studies that have assumed an 

endogenous origin for osteolytic bacteria have framed diagenetic change of bone in terms of 

events that would have affected early bodily decomposition. Those studies that followed an 

exogenous model of bone bioerosion discuss diagenetic alterations in terms of environmental 

change over time. The few cases are discussed here alongside attempts to provide alternative 

explanations of their findings based on opposite models. 

 

2.2.4.1 Endogenous 

 

2.2.4.1.1 Cladh Hallan, South Uist, Outer Hebrides, U.K. 

 

Dating evidence of articulated human remains excavated from underneath house floors at the 

Bronze Age settlement of Cladh Hallan, South Uist, Outer Hebrides of Scotland suggested that 

the bodies had originally been buried centuries after death whilst retaining some soft tissue 
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(Parker Pearson et al. 2005; 2007). These analyses suggested that the Cladh Hallan remains 

had initially been mummified but that burial eventually led to the disintegration of the organic 

material. Further osteological and DNA analysis supported this conclusion (Parker-Pearson et 

al. 2005).  

When the Cladh Hallan bones were examined histologically using thin section light microscopy 

and HgIP they were found to be well preserved. A thin band of accumulated non-Wedl MFD 

were located 0.5mm deep to the periosteal surface (Summerfield 2004; Parker Pearson et al. 

2005) (Image 2.21). The histological structure of a bone taken from an articulated dog at the 

same site demonstrated extensive bacterial attack (Parker Pearson et al. 2005: 541). Parker 

Pearson et al. (2005) concluded that the human bones had been subjected to intense 

alteration by endogenous gut bacteria which had been suddenly halted. This patterning could 

not have been the result of processing or excarnation, as the remains were articulated and 

there was no evidence that the burial contexts had been disturbed or altered by 

environmental changes such as waterlogging (Parker Pearson et al. 2005). The bacterial attack 

must have been stopped by an anthropogenic process (Parker Pearson et al. 2005; 2007). The 

majority of the other bone samples from similar environments around the site had been 

severely bioeroded and so the burial environment could not have inhibited intrinsic bone 

bioerosion (Parker Pearson et al. 2005; Mulville et al. 2011). The variation in bioerosion 

between bones obtained from similar burial environments from the site precluded the 

possibility that bacterial attack was mediated by features of the environment (Parker Pearson 

et al. 2005; 2007; Mulville et al. 2011). These findings were consistent with the interpretation 

of prior intentional mummification of the well-preserved human skeleton (Parker Pearson et 

al. 2005; 2007).  

Further histological analysis of the Cladh Hallan bone using FTIR and SAXS revealed that 

crystallinity towards the periosteal surface of the bone was elevated (Parker Pearson et al. 

2005: 542). This alteration was not characteristic of microbial degradation but of limited acidic 

dissolution. The skeleton had been recovered from alkaline machair sands that were unlikely 

to have encouraged this kind of attack (Parker Pearson et al. 2005; Nielsen-Marsh et al. 2007). 

The bones must have been placed originally within a corrosive environment. The closest acidic 

environment to the settlement was a peat bog. Parker Pearson et al. (2005: 542) suggested 

that the Cladh Hallan bodies were preserved by temporary deposition within a bog which 

would have preserved the soft tissue and demineralised the periosteal zone (Painter 1995; 

Parker Pearson et al. 2005).  



  

60 
 

 

Image 2.21: Micrograph of a transverse femoral thin section from adult male body that was recovered from the 
Bronze Age Settlement of Cladh Hallan. A minor level of bacterial attack can be observed concentrated at the sub-

periosteal region (taken by the author). 

 

It was difficult to explain how an exogenous model of bone bioerosion could explain the 

patterns observed at Cladh Hallan. Articulated remains from across the site demonstrated 

highly variable levels of bone bioerosion despite originating from similar depositional 

environments (Parker Pearson et al. 2005; Mulville et al. 2011). There was evidence that the 

mummified Cladh Hallan bodies had originally decomposed within a potentially anoxic 

environment, which would have prevented aerobic decomposition by soil bacteria. However, 

prior decomposition within such an environment still does not explain how the bones of the 

Cladh Hallan mummies came to be only partially bioeroded when most other remains buried 

within the same environments had been intensively tunnelled by bacteria (Parker Pearson et 

al. 2005; Mulville et al. 2011).  

 

2.2.4.1.2 Roman Castricum, The Netherlands 

 

Hollund et al. (2012) used endogenous models of bacterial decay to attempt to reconstruct the 

taphonomic histories of a series of Roman bones excavated from the town of Castricum, in the 

Netherlands. Thin section light microscopy and transmission electron microscopy were used to 
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investigate the diagenetic change in each specimen. The majority of the samples were well-

preserved and demonstrated no bacterial tunnelling. The presence of pyrite framboid 

inclusions, orange staining and localised areas of acidic degradation within most of the 

samples suggested that the burial environment was anoxic during the decomposition of the 

remains (Bottrell et al. 1998; Turner-Walker 1999; Hollund et al. 2012). Framboidal pyrite 

consists of raspberry-shaped particles of iron sulphate (Turner-Walker 1999). Under anoxic 

conditions enteric sulphate-reducing bacteria encourage the reduction of decomposition 

products, which react with any available iron to form framboidal pyrite (Turner-Walker 1999). 

Subsequent aeration causes the framboidal pyrite to oxidise, which lowers pH and promotes 

localised chemical erosion (Turner-Walker & Jans 2008; Hollund et al. 2012). 

All of the bones from Castricum had been interred within heavy marine clays (Hollund et al. 

2012). The density of this type of sediment would have promoted hypoxia or anoxic 

conditions, which are known to affect autolysis and putrefaction (Polson et al. 1985; Gill-King 

1997; Turner & Wiltshire 1999; Dent et al. 2004; Hollund et al. 2012). The burial sediment also 

lay within the capillary zone of the water table and would have been waterlogged from the 

point of deposition (Hollund et al. 2012). The position of the graves within this zone would 

have augmented intrinsic anoxia (Mant 1987; Fiedler & Graw 2003; Dent et al. 2004). The 

Roman depositional layer also included a high incidence of humic substances that deactivate 

proteolytic enzymes and promote cross-linking of the organic material (Painter 1995; van 

Klinken & Hedges 1995; Nicholson 1998). Bodily decomposition would have been disrupted 

almost immediately after interment in this type of sediment (Turner & Wiltshire 1999; Hollund 

et al. 2012).The nature of the burial sediments was likely to be responsible for the lack of 

bioerosion within the Castricum samples (Hollund et al. 2012). 

One of the bones from an articulated cattle skeleton exhibited some generalised bacterial 

attack suggesting that it had experienced putrefaction before it was incorporated within the 

reductive burial environment (Hollund et al. 2012: 9). This specimen must have decomposed 

above ground before it was incorporated into the inhibitive clays (Hollund et al. 2012: 9). The 

bones also showed no staining or pyrite inclusions, which emphasised their differential early 

post mortem history (Hollund et al 2012: 9). This study emphasised that, even under an 

endogenous model of decay, burial environment still remains an influential factor dictating 

levels of bacterial bone bioerosion (Hollund et al. 2012). 

Anoxic environments do not sustain high quantities of the bacteria capable of exploiting bone 

collagen (Painter 1995). The high level of histological preservation amongst Hollund et al.’s 
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(2012) samples might still have occurred if bone bioerosion was mediated by soil bacteria. 

However, the bacterial attack found within the bones of the cattle skeleton contradicted an 

exogenous model of bioerosion. It was unlikely that this skeleton had been exhumed from a 

primary aerobic burial context that would have allowed for exogenous bacterial exploitation of 

the bone. This scenario would have required a certain level of skeletonisation to have occurred 

in order for the soil bacteria to have gained access to the bone. The level of skeletal 

articulation within the cattle carcass suggested that decomposition had not progressed very 

far before it was buried within the anoxic clay. The cattle carcass must have decomposed 

primarily above ground before it was incorporated into the clays. The bones had never been in 

contact with a soil environment that would have contained abundant levels of osteolytic 

bacteria. The bacterial bioerosion visible within the bones of this specimen must have been 

caused by intrinsic organisms.  

 

2.2.4.1.3 Watermead, Leicestershire, U.K. 

 

Collins (2010) performed HgIP analysis on long bone sampled from a disarticulated remain 

representing at least three individuals that were excavated from a gravel quarry on the 

Watermead Country Park in Leicestershire in 1994 (Ripper 2010). The remains had been 

recovered from the spoil heap, but all individuals were represented by only partial skeletons, 

which suggested that they were not originally deposited as articulated bodies (Ripper 2010). 

Individual 1 was represented by a cranium, mandible, cervical vertebrae and two possible long 

bones (Cook 2010). Only a cranium could be allocated to Individual 2 (Cook 2010). The 

presence of further replicate long bones indicated the presence of a third individual (Cook 

2010). The atlas and axis vertebrae associated with Individual 1 demonstrated cut marks 

indicative of their throat having been cut peri mortem (Cook 2010). Radiocarbon dating of the 

remains placed the death of Individuals 2 and 3 within the Early Neolithic. Bone from 

Individual 1 dated to the Late Bronze Age (Meadows et al. 2010).  

HgIP analysis was performed on a right femur associated with Individual 2, a right tibia that 

may have been associated with Individual 1 and a right clavicle of unknown provenance (Cook 

2010). No medium-sized porosities indicative of microbial tunnelling were detected in any of 

the samples (Collins 2010). This result indicated that none of these samples had not been 

subject to bacterial bioerosion (Collins 2010). The bones had been recovered from a 

waterlogged context, which would have interfered with putrefaction, but their disarticulation 
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suggested that this environment did not represent their primary depositional context (Bottrell 

et al. 1998; Hedges 2002; Collins 2010; Hollund et al. 2012). Collins (2010) suggested that the 

individuals sampled must have been subject to a funerary process that ensured that the bones 

were not exposed to putrefactive decay, such as excarnation, dismemberment or butchery 

(Jans et al. 2004; Nielsen-Marsh et al. 2007).  

The lack of bacterial tunnelling within the Watermead specimens could also be explained 

under an exogenous model of decomposition. The anoxic waterlogged environment would not 

have maintained populations of aerobic soil bacteria responsible for bone bioerosion under an 

exogenous model of biodegradation (Painter 1995; Turner-Walker 2008; Turner-Walker & Jans 

2008). The disarticulation of the bones suggested that the bodies represented were not 

originally placed within the context in which they were found. An exogenous model of 

bioerosion would stipulate that the bones were kept above ground or within a different anoxic 

environment before they were deposited at Watermead.   

 

2.2.4.2 Exogenous 

 

2.2.4.2.1 Study of Assorted European Remains 

 

Turner-Walker & Jans (2008) used SEM to examine the histological structure of bones 

excavated from seven archaeological sites in order to reconstruct the environmental changes 

to their burial environments over time. Their conclusions were based on the presence or 

absence of pyrite framboids (Bottrell et al. 1998; Turner-Walker 1999). A cranial bone of a 

large mammal recovered from a riverbed in West Runton, Norfolk showed minor peripheral 

Wedl-tunnelling and some framboidal pyrite formation. The results suggested that the bone 

was attacked initially by cyanobacteria before being coated with sediment, which produced an 

anoxic environment (Turner-Walker & Jans 2008: 233). Histomorphological analysis of a 

Mesolithic human bone from the Vale of Pickering in Yorkshire, England revealed extensive 

bacterial bioerosion accompanied by pyrite framboids. The bone had probably originally lain in 

an aerated environment that facilitated attack by soil bacteria before it was buried in anoxic 

sediment (Turner-Walker & Jans 2008). Turner-Walker & Jans (2008: 233) interpret this 

pattern as evidence for the bone having initially been exposed on the ground surface before 

being buried. 
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A human bone taken from the Ypenburg Neolithic cemetery in the Netherlands demonstrated 

arrested bacterial decay accompanied by pyrite inclusions. The bone also displayed a high 

abundance of microfissures. This specimen must have initially been placed in an aerobic well-

drained environment that facilitated exogenous bacterial attack before the burial conditions 

became anoxic (Turner-Walker & Jans 2008: 234). The bacterial attack was so minimal that, 

rather than the bones having been removed from their original burial context, it was argued 

that the grave itself must have been rapidly rendered anoxic, probably by waterlogging 

(Turner-Walker & Jans 2008: 234). This event would have arrested aerobic bacterial attack, 

encouraged sulphate reducing bacteria and produced an acidic environment that corroded the 

mineral, which would have caused the extensive microfissuring (Bottrell et al. 1998; Turner-

Walker & Jans 2008).  

These interpretations assumed an exogenous model of bioerosion, but the main findings 

would still be valid from an endogenous perspective. Exposed remains do not normally 

demonstrate high levels of bioerosion in their microstructure, which suggested that the Vale of 

Pickering bones could have been buried immediately and exposed to an anoxic environment 

via waterlogging or secondary burial (Yoshino et al. 1991; Bell et al. 1996; Jans et al. 2004; 

Fernández-Jalvo et al. 2010; White 2009; Hollund et al. 2012). The extensive bioerosion 

observed in this sample was more commonly found amongst intact articulated burials (Jans et 

al. 2004; White 2009). The bone sample from Ypenburg demonstrated a pattern of bioerosion 

that was more consistent with the body having been sub-aerially exposed, based on the 

established link between surface deposition and limited bone bioerosion (Yoshino et al. 1991; 

Bell et al. 1996; Jans et al. 2004). Episodic waterlogging could still provide a possible 

explanation for these results, as these conditions encourage organic preservation through the 

inhibition of microbiological activity (Painter 1995).  

 

2.2.4.2.2 Effects of Heavy Metals 

 

A study by Müller et al. (2011) examined bioerosion within butchered bones that had been 

differentially deposited in burial environments contaminated by bactericidal metals. The bones 

were recovered from underneath the site of a 14th century metal works in the courtyard of 

Hôtel de Mongelas in central Paris, France. Eight isolated disarticulated animal bones, 

consisting of two femora and a humerus from a goat, two tibiae and a radius from a pig, the 

radius of a cow and a rib of an undefined species were sampled from the site (Müller et al. 
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2011: 48). The study found that bones contaminated with heavy metals such as copper tended 

to be free from microbial bioerosion (Müller et al. 2011: 48). These results suggested that the 

presence of heavy metals in the soil deters bone bioerosion by exogenous bacteria. However, 

two of the contaminated bones demonstrated limited levels of internal bacterial attack (Müller 

et al. 2011: 47). This anomalous result was explained by the construction of a latrine at this 

part of the site during the 18th century (Müller et al. 2011: 48). The introduction of organic 

material and gut microbiota would have recharged the environment with osteolytic 

microorganisms. 

The conclusions of this study were limited by the sample size, the use of bones from different 

species and from different anatomical elements. The variability in the small number of samples 

that were chosen meant that the conclusions regarding the variations in bacterial bone 

bioerosion with metal contamination were tenuous. The use of butchered animal bone meant 

that these specimens may have been subjected to various undetected taphonomic processes, 

including cooking, which would have promoted bone bioerosion or affected the bones’ 

susceptibility to bacterial attack. These problems were compounded by the fact that two out 

of eight of the samples contradicted the central hypothesis regarding the inhibitory effects of 

heavy metals on osteolytic bacterial activity. The variability in bone bioerosion combined with 

the small sample size meant that the results could be related to endogenous rather than 

exogenous microbiota. The explanation for the two anomalous samples makes little sense, as 

it seems unlikely that toxic contamination of bone would have discouraged one type of 

bacterial attack but not another.   

 

2.2.5 Conclusion 

 

This review highlights the difficulties in establishing the identity and origins of the bacteria that 

produce non-Wedl MFD in archaeological bone. Isolated studies often present contradictory 

results, use low numbers of samples, fail to address the results of other studies or are not 

repeatable. However, it is argued here that the evidence currently favours an endogenous 

model of bacterial bone bioerosion. This conclusion is supported by the studies which suggest 

that bacterial bioerosion occurs early post mortem, is linked to early taphonomic events that 

interfere with a bone’s exposure to putrefaction, is highly variable over single sites and 

consistent sediments, is not related to specific properties of the burial environment, occurs 

within bones from environments that would not have maintained quantities of exogenous 
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osteolytic bacteria and is associated anaerobic bacterial species that are predominant within 

the human gut microbiome (Bell et al. 1996, Jackes et al. 2001; Jans et al. 2004; Guarino et al. 

2006; Nielsen-Marsh et al. 2007; Dixon et al. 2009, White 2009; Hollund et al. 2012). Specific 

observations common to the majority of histomorphological studies, such as the clustering of 

non-Wedl MFD in Haversian systems, their respect for cement lines and their avoidance of the 

periosteal circumferential lamellar bone all infer an intimate relationship between bacterial 

attack and vasculature, which is consistent with endogenous origin for invading bacteria 

(Hackett 1981; Bell et al. 1996; Jackes et al. 2001; Jans et al. 2002; Jans et al. 2004; Turner-

Walker & Jans 2008; Hollund et al. 2012). Studies that have argued for an exogenous origin of 

osteolytic bacteria have not yet produced results that could not also be explained by the 

actions of endogenous bacteria. 

The persistence of the periosteal bone band as well as the lack of association between 

measures of bone bioerosion and site environment both contradict predictions of an 

exogenous model of bacterial attack (Hollund et al. 2012). If soil bacteria were able to break 

down and metabolise the composite bone structure, there has been no explanation as to why 

they should need to utilise vascular systems to gain access, especially when exogenous fungi 

are observed to tunnel directly through the periosteal bone surface (Marchiafava et al. 1974; 

Hackett 1981) The studies by Yoshino et al. (1996), Fernández-Jalvo et al. (2010) and Turner-

Walker (2012) are the only ones that report direct evidence that non-Wedl MFD are a late 

occurring externally-driven phenomenon. However, many of their observations were 

consistent with an endogenous model of bioerosion. The majority of investigations into this 

subject are either inconclusive or consistent with an endogenous model that links bacterial 

bioerosion with putrefaction and early biostratinomy (Yoshino et al. 1991; Jans et al. 2004; 

Nielsen-Marsh et al. 2007; Fernández-Jalvo et al. 2010; White 2009; Hollund et al. 2012). 

Turner-Walker’s (2012) experimental study has only limited applicability to bones from 

temperate Europe, and an endogenous origin of osteolytic bacteria could not be ruled out. An 

endogenous model of diagenesis forms the basis of the hypotheses that will be tested in the 

present study. 

 

2.3 FACTORS THAT AFFECT BODILY PUTREFACTION 
 

An endogenous model of bacterial bone bioerosion stipulates that bacterial attack would be 

controlled by the extent to which the bone was exposed to putrefaction bacteria (Bell et al. 
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1996; Jans et al. 2004). Interactions between bone and gut bacteria would be affected by early 

taphonomic events that either separated the bones from the deleterious bacteria or interfered 

with natural decomposition (Jans et al. 2004; Nielsen-Marsh et al. 2007; Hollund et al. 2012). 

The extent to which a particular taphonomic event could curtail putrefactive bone bioerosion 

would depend on how long after death it was enacted and its effectiveness in neutralising 

osteolytic visceral bacteria (Jans et al. 2004; Nielsen-Marsh et al. 2007). 

Separation of bacteria from the bone soon after death would provide the best method of 

ensuring that the bone was not exposed to putrefactive bacterial attack (Bell et al. 1996; Jans 

et al. 2004; Nielsen-Marsh et al. 2007). The immediacy of these kinds of taphonomic events 

would ensure that they would take precedence in affecting bacterial bone bioerosion (Bell et 

al. 1996; Jans et al. 2004; Nielsen-Marsh et al. 2007). A specific set of definable anthropogenic 

processes could be responsible for this type of event (Jans et al. 2004; Nielsen-Marsh et al. 

2007). The utility of butchery in preventing bacterial bone bioerosion has already been noted 

(Jans et al. 2004; Nielsen-Marsh et al. 2007). Processes such as dismemberment and defleshing 

would have a similar effect. Microbiota rely on the circulatory system and a liquid medium for 

transmigration, and so early post mortem exsanguination might also prevent bacterial bone 

bioerosion (Bell et al. 1996; Zhou & Bayard 2011). 

The nature and extent of bodily decomposition is dictated by a plethora of factors (Rodriguez 

& Bass 1983; 1985; Micozzi 1986; Bass 1987; Mant 1987; Garland & Janaway 1989; Micozzi 

1991; Bass 1997; Rodriguez 1997; Sledzik & Micozzi 1997; Mann et al. 1990; Manhein 1997; 

Turner & Wiltshire 1999; Dent et al. 2004; Wilson et al. 2007; Schotsmans et al. 2011; 

Simmons et al. 2011; Ubelaker & Zarenko 2011; Zhou & Bayard 2011; Schotsmans et al. 2012). 

The next section provides a brief synopsis of these factors. This synopsis will provide some 

justification for the assertion that the practise of particular funerary process in the past could 

be reflected within patterns of bacterial bone bioerosion, and outline the issues that are likely 

to aid or obscure attempts to develop a link between bone bioerosion and funerary treatment.  

The list of variables discussed here is not exhaustive. Only those factors that have been 

identified through forensic or experimental investigation are considered. It is unlikely that all 

variables which can affect bodily decomposition have been identified (Zhou & Bayard 2011). 

Moreover, there is still uncertainty regarding the precise ways in which certain taphonomic 

circumstances affect decomposition. Interactions between the effects of known variables can 

be complex, and many studies have reached contradictory conclusions regarding the exact 

changes enacted by particular circumstances. This discussion will only include terrestrial 
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factors that affect decomposition of a cadaver, as the variables that interfere with 

decomposition in aquatic conditions are not salient to the current study. Most studies of bodily 

decomposition have not included analysis of bone microstructure, and so the likely effects of 

each variable on the bacterial attack of the bone had to be extrapolated from the way they 

affected early bodily decomposition (Table 2.2). 

Variable Effect on Decay Rate 

Temperature 5 

Access by insects 5 

Burial & depth 5 

Carnivore/rodents 4 

Trauma (penetrating/crushing) 4 

Humidity/aridity 4 

Rainfall 3 

Body size & weight 3 

Embalming 3 

Clothing 2 

Surface placed on 1 

Table 2.2: Scores devised by Mann et al. (1990: 104) expressing the factors that were observed to have the largest 
effect on the rate of human decomposition in experimental and forensic investigations. Higher numbers indicate 

higher levels of influence. 

 

2.3.1 Environmental Factors 

 

2.3.1.1 Climate 

 

Climate, especially seasonality, is commonly cited as the major factor that accelerates or 

discourages bodily decomposition (Rodriguez & Bass 1983; Bass 1987; Mann et al. 1990; 

Manhein 1997; Bass 1997; Wilson et al. 2007; Meyer et al. 2013). The climate controls two 

factors pertinent to bodily decomposition: temperature and moisture availability (Rodriguez & 

Bass 1983; Mann et al. 1990; Carter et al. 2008; Carter et al. 2010). All chemical reactions 

occur more quickly at higher temperatures, including autolytic and bacterial post mortem 

processes (Gill-King 1997). Bacteria function more effectively within warm temperature ranges 
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(Child 1995a; 1995b; Janaway 1996; Gill-King 1997; Carter et al. 2008). Most bacteria have a 

functional temperature range of between 10oC and 40oC, with an optimal range of between 

25oC and 35oC (Janaway 1996). Visceral putrefactive bacteria and their protease enzymes are 

most functional at around body temperature, whilst their activity usually ceases at 

temperatures lower than around 10oC (Child et al. 1993; Child 1995a; 1995b; Forbes et al. 

2005). Microbiota are reliant on the presence of a certain level of moisture within their 

environment for their mobility, the disposal of their waste products and the functionality of 

their protease enzymes (Janaway 1996; Carter et al. 2010). Warmer climates that allow the 

body to retain an optimal level of moisture will promote faster bodily decomposition 

(Rodriguez & Bass 1983; Janaway 1996; Carter et al. 2010; Zhou & Bayard 2011).  

Cadavers that have been left to decompose on the ground skeletonise fastest in the warmer 

months (Rodriguez & Bass 1983; Mann et al. 1990; Meyer et al. 2013). This faster rate of 

decomposition is partly attributable to increased temperatures accelerating bacterial activity 

and chemical reactions, but is also due to the higher summer abundance of carnivorous insects 

which promote skeletonisation (Rodriguez & Bass 1983; Simmons et al. 2010; Zhou & Bayard 

2011). Warm temperatures also promote the mobilisation of putrefactive gases that attract 

skeletonising fauna (Mann et al. 1990).  

It is less certain how far seasonal variation affects the decomposition of buried individuals. 

Seasonal variations in decomposition of buried carcasses in moderate climates are likely to be 

muted compared with bodies placed above ground, as the climate of a burial environment is 

relatively constant beyond a certain depth (Manhein 1997; Rodriguez 1997). Burial prevents 

carnivorous insects active above ground from contributing to skeletonisation (Rodriguez & 

Bass 1983; Manhein 1997). Mant (1987) observed slight differences in decomposition 

corresponding with the season of burial within cadavers of individuals killed during the Second 

World War which had been exhumed from various contexts in Germany. Bodies buried in 

summer months demonstrated more advanced decomposition (Mant 1987). 

Extreme environmental conditions that cause the temperature of a body to fall outside of 

bacterial tolerances or serve to dry out the soft tissues are liable to curtail bacterial cadaveric 

decomposition (Galloway et al. 1989; Janaway 1996; Galloway 1997). Desiccation of the soft 

tissues promoted by hot arid conditions starves bacteria of the moisture they require to 

remain active (Galloway et al. 1989; Janaway 1996; Aufderheide 2003). Very cold 

environments can desiccate the bodily tissues through freeze-drying (Micozzi 1997). The low 

temperatures of these environments will also curb internal bacterial activity (Janaway 1996; 
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Micozzi 1997; Aufderheide 2003). Extremes of climate are likely to affect bodily decomposition 

in buried and sub-aerially exposed bodies in similar ways, as burial soils within these sorts of 

contexts tend to share the preservative properties of the aerial environment (Aufderheide 

2003). 

It is uncertain whether climatic differences between sites as well as seasonal variations in 

cadaveric decomposition at single sites, would have affected the putrefactive bacterial 

bioerosion of bone. In temperate climates, differences in temperature and moisture content 

alter the rate rather than the level of putrefaction a bone experiences and would not be 

expected to have a significant effect on the overall levels of bacterial bone bioerosion. 

Seasonal changes are more likely to affect bone bioerosion within sub-aerially exposed 

remains because of the increased abundances of skeletonising insects promoted by warmer 

months (Rodriguez & Bass 1983). Putrefactive bone bioerosion would be affected by extreme 

climatic environments that inhibited bacterial activity from an early post mortem stage. 

 

2.3.1.2 Anoxic/Waterlogged Conditions 

 

Environments where oxygen is limited (hypoxic) or absent (anoxic) inhibit early bodily 

decomposition (Janaway 1996; Turner & Wiltshire 1999; Wilson et al. 2007; Turner-Walker & 

Jans 2008; Hollund et al. 2012). Burial environments can be intrinsically anoxic if the soil grain 

size is small and does not leave enough space for particles of oxygen to percolate through the 

substrate (Janaway 1996; Dent et al. 2004). There has been no satisfactory explanation of the 

effect of an anoxic environment on early bodily decomposition, given that most putrefaction 

bacteria are anaerobic (Gill-King 1997). It is possible that soft tissue preserved in anoxic 

environments represents the material that is usually lost through the action of aerobic soil 

bacteria. However, Turner & Wiltshire (1999: 117) noted that putrefaction specifically was 

delayed within pig carcasses deposited in anoxic soils. Putrefaction was only initiated when the 

bodies were exposed to an aerobic environment through exhumation by scavenging carnivores 

(Turner & Wiltshire 1999: 118).  

These observations suggest that an initial oxygenated phase of decomposition is crucial to the 

initiation of putrefaction. Autolytic reactions may be slowed by anoxic conditions as the 

functionality of the enzymes involved in cell autolysis may be reduced by the low redox 

potential of an anaerobic environment (Janaway 1996; Dent et al. 2004). An anoxic 

environment will also inhibit the early decomposition of the soft tissues by endogenous 
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aerobic bacteria (Janaway 1996; Gill-King 1997). The initial loss of bodily structures via 

autolysis and aerobic enteric bacterial attack facilitate the transmigration of anaerobic 

putrefactive microbiota (Polson et al. 1985; Gill-King 1997). Therefore, the non-instigation of 

these primary processes may delay putrefaction until the body experiences an aerobic 

environment.  

Soils can also be rendered anoxic through waterlogging, which saturates the spaces between 

soil particles that are normally occupied by oxygen molecules (Janaway 1996). Waterlogging of 

a grave is often episodic and linked to specific environmental conditions that raise the water 

table or encourage the surrounding sediment to retain water (Janaway 1996). The prolonged 

survival of soft tissue is characteristic of studies that have investigated cadavers retrieved from 

aquatic or waterlogged contexts (Cotton et al. 1987; Mant 1987; Janaway 1996; Rodriguez 

1997; Sorg et al. 1997; Gruspier & Pollanen 2000; Anderson & Hobischak 2004; Pakosh & 

Rogers 2009; Heaton et al. 2010; Widya et al. 2012).  

Waterlogging is more common within soils that retain small grain sizes (Janaway 1996; Carter 

et al. 2010). The density of these environments allows capillary action to persist for longer 

periods of time (Janaway 1996). A waterlogged anoxic environment interferes with 

putrefaction through the same mechanisms discussed above. However, anoxia produced by 

waterlogging would only delay putrefaction had the body been deposited within an 

environment that was already waterlogged or had become waterlogged within the first few 

months after death (Hollund et al. 2012). 

 

Image 2.22: Photograph of a cadaver from the Medico-Legal Centre of the University of Sheffield demonstrating 
deposits of adipocere around the skull (Janaway 1996: 71). 
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The varied survival of soft tissue amongst human remains recovered from waterlogged 

environments suggests that inundation is capable of preserving a certain amount of soft tissue 

even after autolysis and putrefaction have been initialised. The preservation of soft tissue in 

bodies from waterlogged environments is partially attributable to the formation of adipocere 

(Polson et al. 1985; Mant 1987; Janaway 1996; Fiedler & Graw 2003; Ubelaker & Zarenko 

2011) (Image 2.22). Adipocere is a waxy substance that is formed though the hydrogenation of 

body fats by intrinsic (probably non-bioeroding) anaerobic bacteria (Polson et al. 1985). 

Adipocere is difficult for most microorganisms to break down and its formation around the soft 

tissues may inhibit or reduce putrefactive bacterial activity (Mant 1987; Janaway 1996; Fiedler 

& Graw 2003). It was originally thought that only sub-cutaneous deposits of fat could be 

hydrogenated into adipocere. However organs which contain relatively large proportions of 

fatty tissue, such as the liver and the brain, can also become surrounded by adipocere in the 

early post mortem period (Janaway 1996; Fiedler & Graw 2003). Tissues that do not contain 

large quantities of fat may be preserved through fat infiltration caused by the extreme 

pressures produced by putrefaction gases (Fiedler & Graw 2003).  

The extent to which adipocere preserves non-adipose tissues is variable (Polson et al. 1985; 

Janaway 1996). Remnants of organs can survive inside accumulations of adipocere, but in 

other examples only a cast of the original tissue survives (Polson et al. 1985; Janaway 1996). 

Adipocere has been discussed extensively within forensic literature, but the variation and 

inconsistencies in its occurrence has meant that the exact conditions which promote its 

formation have yet to be determined (Ubelaker & Zarenko 2011). Adipocere has been found 

most commonly within bodies deposited in moist anaerobic environments, although it is likely 

that varied circumstances promote adipocere formation (Fiedler & Graw 2003; Forbes et al. 

2005; Ubelaker & Zarenko 2011). An excess of environmental moisture is not always 

necessary. Anaerobic bacteria are capable of reacting with the body’s intrinsic moisture. Wet 

environments accelerate adipocere formation (Forbes et al. 2005). If the conditions suitable 

for sustaining adipocere remain static, the substance can survive for decades or even centuries 

(Forbes et al. 2005; Fründ & Schoenen 2009). However, if a body is placed within a volatile, 

periodically aerobic environment, then it is likely that any adipocere that formed in the early 

post mortem period would have been lost over the duration of deposition (Forbes et al. 2005; 

Fründ & Schoenen 2009).  

The decompositional effects of an anoxic environment can be observed within archaeological 

human burials recovered from waterlogged environments, which often demonstrate 

preservation of soft tissue and bodily fluids as well as organic grave goods (Janaway 1996). 
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However, the variability of adipocere formation and the perseverance of soft tissues other 

than adipocere suggest that a waterlogged anoxic environment inhibits bodily decomposition 

in other ways. It is possible that the saturated environment interferes with the functions of 

anaerobic bacteria or their protease, or otherwise denies the ability of microorganisms to 

exploit the soft tissues (Painter 1995; Janaway 1996). Waterlogged contexts tend to be acidic 

due to the types of substances produced by the anoxic fermentative breakdown of organic 

materials (Child 1995a; Janaway 1996). Acidic environments discourage the growth of most 

species of bacteria and deactivate collagenase enzymes (Janaway 1996; Forbes et al. 2005). 

Slight acidity may provide one possible explanation for the preservation of non-adipose tissues 

within waterlogged contexts. 

If the depositional environment of a body was anoxic from the point of deposition, than 

putrefactive bone bioerosion would be expected to have been significantly reduced (Turner-

Walker & Jans 2008; Hollund et al. 2012). Later interruption of putrefaction via waterlogging, 

either through adipocere formation or some other means, would also limit the level of 

putrefactive bioerosion a bone experiences (Janaway 1996). The effect of an anoxic or 

waterlogged environment on bacterial bioerosion has been studied to some extent (Nielsen-

Marsh & Hedges 2000; Turner-Walker & Jans 2008; Hollund et al. 2012). These studies support 

the notion that bone from permanently anoxic sediments will demonstrate little if any 

bacterial bioerosion, whereas bone from contexts subject to episodic waterlogging will have 

been subject to limited variable bacterial attack (Nielsen-Marsh & Hedges 2000; Turner-Walker 

& Jans 2008; Hollund et al. 2012). 

 

2.3.1.3 Moisture Content of the Soil 

 

Soil moisture content can affect the rate of decomposition beyond the extreme conditions that 

promote anoxia (Janaway 1996; Jagger & Rogers 2009; Carter et al. 2008; 2010). There is an 

optimal level of soil moisture that encourages bacterial bodily decomposition (Carter et al. 

2010). This optimal moisture level fulfils the requirements of exogenous soil bacteria and 

facilitates their activity during decay (Janaway 1996; Carter et al. 2007). Optimal levels of 

moisture within the burial environment are also likely to promote enteric bacterial 

decomposition by ensuring that a corpse remains hydrated (Janaway 1996). The 

decomposition of a cadaver may be related to the matric potential of a burial substrate; how 

much moisture can be held between the soil particles, which is dependent upon soil texture 
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and structure. Soils constituted of coarser particles would not support the suspension of water 

particles above the capillary zone (Janaway 1996; Carter et al. 2010). These coarser soils would 

not facilitate bodily decomposition to the same extent as soils with a denser constitution that 

keep the body moist (Janaway 1996). Very dry soils are likely to promote the desiccation of the 

superficial soft tissues (Janaway 1996). However, the relationship between moisture content 

and bodily decomposition might not be so straightforward. Mant (1987) observed no 

relationship between moisture content and state of decomposition in buried remains from 

soils that were not inordinately wet or dry. 

Moisture content is more likely to affect exogenous soil bacteria that are involved with the 

later decay stage of bodily decomposition (Carter et al. 2010). It is probable that beyond 

conditions that promote an anaerobic environment or aridity, soil moisture content would not 

significantly affect internal putrefaction and any related bacterial bone bioerosion. A low 

correlation between bacterial bioerosion of bone and soil moisture content in contexts that 

were not extremely wet or dry was reported by Nielsen-Marsh et al. (2000). It is possible that 

optimal moisture conditions might accelerate endogenous bodily decomposition, although it is 

unlikely that this process would significantly affect the overall levels of putrefactive attack the 

bone experiences (Janaway 1996). 

 

2.3.1.4 Soil pH 

 

Most species of bacteria are sensitive to changes in environmental pH (Janaway 1996). Soil pH 

affects the nature and extent of microbial biomass and the subsequent rate of cadaveric 

decomposition (Manhein 1997; Haslam & Tibbett 2009). However, the introduction of a 

putrefying cadaver into the burial environment promotes localised alteration of the chemical 

properties of the soil, including rises in pH and temperature, creating a cadaver decomposition 

island (CDI) in the soil (Janaway 1996; Carter et al. 2007).  These environmental changes are 

often used as measure of active cadaveric decomposition (Carter et al. 2007). The initial rise in 

pH is probably related to the ammonification of proteins and their subsequent release from 

decomposing matter (Vass et al. 2002; Dent et al. 2004; Carter et al. 2007; Haslam & Tibbett 

2009). The extent and duration of this rise is dictated by the soil environment’s buffering 

capability (Dent et al. 2004; Haslam & Tibbett 2009). A decrease in soil pH characterises the 

later stages of bodily decomposition, associated with the release of organic acids (Dent et al. 

2004; Haslam & Tibbett 2009). 
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It is uncertain how far soil pH will dictate the rate of putrefaction, as the only study to have 

investigated the effects of pH on soft tissue directly used fresh butchered meat (Haslam & 

Tibbett 2009). High acidity within peat bogs has often been used to explain the soft tissue 

preservation in bog bodies, as acidic environments can deactivate protease enzymes (Painter 

1995; Turner-Walker & Peacock 2008). The intimate relationship between soil pH and bacterial 

activity ensures that the later decay stages of bodily decomposition will be dictated by pH to 

some extent (Janaway 1996; Manhein 1997; Haslam & Tibbett 2009). However, the novel 

internalised nature of the putrefying body, combined with the accompanying alteration of the 

immediate burial environment, suggest that soil pH would have little effect on putrefaction 

and related bacterial bone bioerosion (Janaway 1996; Carter et al. 2007).  

The rapid chemical degradation of bone deposited in acidic contexts suggests that soils which 

preserve osseous remains over archaeological timescales are unlikely to be very acidic, which 

would limit any pH-related variation in putrefaction reflected in archaeological bones (Gordon 

& Buikstra 1981; Bethel & Carver 1987; Nielsen-Marsh et al. 2007; Smith et al. 2007). This 

notion is supported by studies by Nielsen-Marsh et al. (2007) and Smith et al. (2007), which 

found no correlation between pH of the soil and the extent to which a bone was bioeroded by 

bacteria. 

 

2.3.1.5 Burial versus Sub-aerial Exposure 

 

Experimental and forensic studies of decomposition in variably inhumed and sub-aerially 

exposed cadavers from temperate climates have consistently found that skeletonisation of 

buried remains progresses relatively slowly (Rodriguez & Bass 1983; 1985; Mann et al. 1990; 

Clark et al. 1997; Manhein 1997; Rodriguez 1997; Campobasso et al. 2001; Dent et al. 2004; 

Matuszewski et al. 2008; 2010a; 2010b; 2011; Vass 2011). Cadavers buried in aerobic 

environment usually take a number of years to skeletonise, whereas a sub-aerially exposed 

carcass will skeletonise within a few months (Rodriguez & Bass 1983; 1985; Mann et al 1990; 

Campobasso et al. 2001; Breitmeier et al. 2005; Simmons et al. 2011; Vass 2011). The rate of 

decomposition amongst exposed carcasses is more variable than within buried examples, 

primarily because exposed bodies are vulnerable to skeletonisation by a much wider range of 

faunal and environmental factors (Rodriguez & Bass 1985; Mann et al. 1990; Simmons et al. 

2011; Zhou & Bayard 2011). Exposed bodies also skeletonise rapidly because of the higher 
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above-ground temperatures, which facilitate faster bacterial growth (Gill-King 1997; Carter et 

al. 2008). 

Fauna, particularly insects, often remove the soft tissue and internal organs of an exposed 

body before the gut bacteria have had chance to complete their full putrefactive cycle 

(Rodriguez & Bass 1983; 1985; Simmons et al. 2010). Blow-fly maggots, which are usually 

abundant on surface-deposited carcasses, can excrete bactericidal chemicals that may subdue 

putrefactive activity (Kerridge et al. 2005; Huberman et al. 2007). Skeletonising animals and 

insects are less active within a burial environment (Rodriguez & Bass 1985; Mann et al. 1990; 

Manhein 1997; Clark et al. 2007). Therefore, bacterially-mediated putrefaction continues 

unabated within most buried carcasses (Mann et al. 1990; Janaway 1996). The lower 

temperature of the burial environment will ensure that exogenous bacterial activity is slowed 

compared to that which occurs above ground (Carter et al. 2008; Janaway 1996; Gill-King 1999; 

Zhou & Bayard 2011). However, the exothermic autolytic and metabolic reactions that occur 

within a putrefying cadaver ensure that its internal temperature remains elevated during initial 

decomposition (Janaway 1996; Carter et al. 2008). A cadaver will eventually cool to the 

temperature of its burial environment, but by this point the putrefactive microbiota may have 

already completed their destructive cycle (Janaway 1996; Carter et al. 2008). 

The factors that variably influence decomposition of sub-aerially exposed and buried bodies 

suggests that these depositional circumstances are likely to impact on the putrefactive 

bacterial tunnelling of the internal bone microstructure. The bone of a sub-aerially exposed 

carcass will have experienced soft tissue decomposition for only a few months, and most of 

this soft tissue loss would have been perpetuated by extraneous fauna (Rodriguez & Bass 

1983; Mann et al. 1990; Campobasso et al. 2001; Simmons et al. 2010; Matuszewski et al. 

2010a; 2010b; 2011; Vass 2011). The bone of a cadaver buried within an aerobic environment 

would have experienced the full extent of putrefaction. Therefore, it would be expected that 

bone from an exposed carcasses would demonstrate only limited levels of bacterial bioerosion, 

whilst the bones of buried individuals would demonstrate extensive bacterial attack (Bell et al. 

1996; Jans et al. 2004; Fernández-Jalvo et al. 2010). This prediction is borne out by 

experimental and archaeological studies of decomposition and bone bioerosion, which report 

that human and animal remains skeletonised through sub-aerial exposure demonstrate limited 

or no levels of bacterial bioerosion (Bell et al. 1996; Turner-Walker & Jans 2008; Fernández-

Jalvo et al. 2010; Hollund et al. 2012). In contrast, the majority of buried articulated human 

archaeological remains usually demonstrate high levels of bacterial attack to their internal 

microstructure (Nielsen-Marsh et al. 2000; Turner-Walker et al. 2002; Jans et al. 2004; Nielsen-
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Marsh et al. 2007). White’s (2009) histological study of bone from buried and sub-aerially 

exposed pig carcasses found that the extent of bacterial bioerosion was directly related to the 

rates of decomposition promoted by their depositional circumstances. 

 

2.3.2 Intrinsic Factors 

 

2.3.2.1 Body Mass 

 

Body mass has been identified as a factor that can affect cadaveric decomposition (Garland & 

Janaway 1989; Mann et al. 1990). Fereira & Cunha (2013: 4) observed that bodily 

decomposition occurred more rapidly within individuals that had died whilst emaciated, 

whether through malnutrition, disease or other factors such as drug addiction. Those bodies 

that had retained larger amounts of body mass took longer to decompose because of the 

greater abundance of sub-cutaneous fat (Fereira & Cunha 2013). Excessive adipose tissue had 

often been hydrogenated into adipocere (Ferreira & Cunha 2013).  

Similar discrepancies in patterns of decomposition between individuals of variable body size 

were observed by Mant (1987: 72). Sutherland et al. (2013) observed similarly slow rates of 

decomposition amongst sub-aerially exposed pig carcasses of different sizes, although they 

attributed this pattern to the volume of soft tissue that had to be removed in each case, rather 

than the formation of adipocere. However, cadavers that retain a high body mass have also 

been observed to decompose more rapidly than the bodies of smaller individuals placed within 

the same environment (Mann et al. 1990). In these cases, increased moisture content of fatty 

deposits encouraged bacterial activity (Mann et al. 1990; Clark et al. 1997; Campobasso et al. 

2001). The effects of large amounts of body fat on cadaveric decomposition will probably vary 

with certain depositional conditions.  

It is difficult to say whether the differences in bodily decomposition promoted by variation in 

body mass would affect putrefaction and related bone bioerosion. Higher body mass has been 

noted to affect the rate rather than the nature or extent of soft tissue decomposition. It seems 

likely that bones would be exposed to similar levels of putrefactive bacterial activity regardless 

of body size (Mant 1987; Garland & Janaway 1989; Mann et al. 1990; Fereira & Cunha 2013). 

The exception may be in cases where large body mass has encouraged the formation and 

perseverance of adipocere. Adipocere is only likely to form in a way that would affect 

putrefaction within particular environments and in extreme cases where the individual 
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retained large amounts of fat (Mant 1987; Fereira & Cunha 2013). It seems unlikely that 

differences in body mass would have regularly affected putrefactive bone bioerosion. 

 

2.3.2.2 Pathology 

 

Pathological disorders that involve bacterial infection may upset the balance of intrinsic 

microbiota in a decomposing cadaver (Garland & Janaway 1989; Rodriguez 1997; Campobasso 

et al. 2001; Vass 2011; Zhou & Bayard 2011; Fereira & Cunha 2013). Heightened bacterial load 

in the blood stream and the organs may increase the rate of bacterial decomposition either 

through the abundance of deleterious microbiota or the promotion of elevated cadaveric 

temperatures (Garland & Janaway 1989; Janaway 1996; Zhou & Bayard 2011; Fereira & Cunha 

2013). Individuals that are known to have died of bacterial infection have been observed to 

skeletonise more rapidly than individuals that died of non-bacterial causes (Zhou & Bayard 

2011; Fereira & Cunha 2013). Increased rates of putrefaction have also been noted in 

individuals that had died of significant hyperglycaemia related to diabetes mellitus (Zhou & 

Bayard 2011; Fereira & Cunha 2013). Putrefaction bacteria such as Clostridium sp. obtain 

organic carbon from glucose (Zhou & Bayard 2011). The heightened levels of sugars within the 

blood of hyperglycaemic individuals facilitate rapid decomposition (Zhou & Bayard 2011).  

It is uncertain as to the extent to which particular pathologies will affect the rate of bone 

bioerosion in line with bodily decomposition. Certain infectious bacteria are capable of 

attacking the bone substrate in a living individual, but only the inflammatory response of the 

living tissue has been documented, rather than the micromorphology of any bacterial 

exploitation. Analysis of post mortem blood from individuals that died of specific bacterial 

infections have failed to identify pathological species, although it was unlikely that all bacterial 

species present had been cultured successfully (Zhou & Bayard 2011). The consistency in 

morphologies of MFD observed in archaeological bone suggests that pathological bioerosion, if 

it does occur, is visually analogous to intrinsic bacterial attack (Hackett 1981). Intrinsic bacteria 

are capable of completely bioeroding the bone without the input of pathological bacteria. 

Therefore, in most cases it would be expected that the overall visual signature of bioerosion 

would differ little between bones from individuals that had variably died from bacterial 

infection (Hackett 1981; Jans et al. 2004) However, if the pathological bacteria do not exploit 

the bone but are able to outcompete the intrinsic microorganisms in the degradation of the 

soft tissues, it is possible that bacterial bioerosion of bone would be curtailed (Zhou & Bayard 
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2011). Diseases that affect the organisation of the bone microstructure, such as Paget’s 

disease or osteoporosis, could affect the logistics of bacterial invasion of the bone, which may 

have repercussions on the extent and morphology of bioerosion (Bell & Jones 1991; Boyce 

1993; Schultz 1993). No studies have ever investigated this question, and so the exact effects 

of such pathologies cannot be known. 

 

2.3.3 Anthropogenic Factors 

 

2.3.3.1 Clothing & Wrapping 

 

The presence of clothing or wrappings is often observed to influence bodily decomposition, 

but the their effects are complex, variable and dependent on a combination of environmental 

factors (Mant 1987; Garland & Janaway 1989; Galloway et al. 1989; Mann et al. 1990; Goff 

1992; Aturaliya & Lukasewycz 1999; Campobasso et al. 2001; Fielder & Graw 2003; Kelly et al. 

2009; Vass 2011; Voss et al. 2011; Fereira & Cunha 2013). Certain types of wrapping and 

clothing can aid in the desiccation of soft tissues and slow down visible decomposition through 

the rapid absorption of moisture from the skin surfaces (a wicking effect) (Galloway et al. 

1989; Aturaliya & Lukasewycz 1999). Wrappings can also serve to arrest decomposition in 

bodies exposed on the ground surface through the prevention of entomological access (Goff 

1991; 1992; Campobasso et al. 2001).  

The presence of clothing has also been observed to increase the rate of decomposition in 

bodies exposed to sunlight (Mann et al. 1990; Aturaliya & Lukasewycz 1999; Kelly et al. 2009; 

Voss et al. 2011). Skeletonising maggots utilise wrappings or clothes to shield themselves from 

the sun (Mann et al. 1990; Aturaliya & Lukasewycz 1999; Kelly et al. 2009; Voss et al. 2011). In 

wet environments, the absorption of moisture by clothing or wrappings encourages adipocere 

formation by retaining water close to the surface of the body (Mant 1987; Kelly et al. 2009; 

Voss et al. 2011; Fereira & Cunha 2013). The progressive formation of adipocere may 

decelerate endogenous and exogenous bacterial decomposition (Mant 1987; Aufderheide 

2003; Forbes et al. 2005). Synthetic materials are most efficient in encouraging the formation 

of adipocere (Mant 1987; Fereira & Cunha 2013). 

These observations suggest that wrapping or clothing augment soft tissue preservation 

encouraged by specific environmental conditions (Mant 1987; Galloway et al. 1989; Aturaliya 

& Lukasewycz 1999). The likelihood that high numbers of archaeological skeletons were buried 
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clothed or wrapped, combined with the paucity of adipocere from the archaeological record, 

would suggest that this substance is unlikely to have affected decomposition within wrapped 

remains from most burial environments. However, adipocere which formed in the early post 

mortem period may have decomposed over the archaeological timescales (Ubelaker & Zarenko 

2011).  

It is difficult to determine to what extent or how often the presence of wrappings or clothing 

would affect putrefaction in a way that interfered with bacterial bone bioerosion. Adipocere 

may compromise internal bacterial activity, but this substance is only likely to appear under 

specific environmental conditions which would already be liable to affect putrefaction and 

bacterial bone bioerosion (Mant 1987; Forbes et al. 2005; Turner-Walker & Jans 2008; 

Ubelaker & Zarenko 2011). Burial environments which promote adipocere formation, such as 

those with high moisture content, will interrupt putrefaction regardless of whether the body 

was wrapped (Mant 1987; Fielder & Graw 2003; Forbes et al. 2005; Carter et al. 2010; 

Ubelaker & Zarenko 2011; Vass 2011). It is unlikely that wrapping would have significantly 

affected putrefactive bone bioerosion in archaeological remains that had not experienced 

these conditions.  

Soft tissue preservation promoted by clothing through desiccation is limited to the skin, and 

does little to prevent internal putrefaction (Galloway et al. 1989). The protection afforded to 

skeletonising insects by clothing in sub-aerially exposed remains might further minimise bone 

exposure to putrefaction (Mann et al. 1990; Aturaliya & Lukasewycz 1999; Kelly et al. 2009; 

Voss et al. 2011). However, clothing or wrapping that surrounded a sub-aerially exposed 

cadaver may have a prohibitive effect on insect skeletonisation, in which case the bone of a 

cadaver would be exposed to extensive putrefactive bacterial attack (Goff 1991; 1992; 

Campobasso et al. 2001). The lack of correlation between bacterial bone bioerosion and 

clothing may be supported by the findings of Jans et al. (2004) and Nielsen-Marsh et al. (2007) 

that the majority of bone sampled from articulated archaeological human skeletons 

demonstrates consistently high levels of putrefactive bioerosion. The samples used in these 

projects originated from a wide variety of archaeological sites across Europe, which would 

have included remains that had been variably buried with clothing or wrappings. The lack of 

variation in bone bioerosion amongst these samples suggests that putrefactive bioerosion was 

not significantly affected by variation in clothing or wrappings. 

 



  

81 
 

2.3.3.2 Burial Depth 

 

The temperature of burial soil is relatively constant when compared to variations above 

ground (Rodriguez & Bass 1985; Mant 1987; Mann et al. 1990; Campobasso et al. 2001; Wilson 

et al. 2007; Vass 2011). However, the lower temperatures found at more extreme burial 

depths in temperate locations can affect bacterial activity and bodily decomposition 

(Rodriquez & Bass 1985; Janaway 1996; Gill-King 1999; Campobasso et al. 2001; Wilson et al. 

2007). Most species of bacteria cannot tolerate temperatures lower than 4oC (Janaway 1996; 

Gill-King 1999). Low burial depth can significantly retard bacterial decomposition (Rodriguez & 

Bass 1985; Micozzi 1986; Mant 1987; Janaway 1996; Gill-King 1999).  

The oxygenation of the soil also decreases with burial depth depending on its consistency 

(Dent et al. 2004; Vass 2011). The hypoxic or anoxic conditions present at certain burial depths 

will interfere with bodily decomposition (Janaway 1996; Dent et al. 2004; Vass 2011; Gill-King 

1997) (Figure 2.6). Anoxic conditions can be produced if a grave lies below the capillary fringe 

of the water table, where the soil is saturated (Dent et al. 2004; Hollund et al. 2012). Burial 

depth will interact with changes in the height of the water table in dictating the rate and 

nature of bodily decomposition.  

 

Figure 2.6: Diagram illustrating the amount of oxygen available at different burial depths (Dent et al. 2004: 578). 

 

Shallow burial provides scavengers and certain insects with greater access to a decomposing 

cadaver (Rodriquez & Bass 1985; Mann et al. 1990; Campobasso et al. 2001; Schotsmans et al. 
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2011). In temperate climates, the upper soil layers are more aerated and warmer than those 

below, and promote increased bacterial activity (Rodriguez & Bass 1985; Janaway 1996; Dent 

et al. 2004). The environment of shallow burials is more influenced by variable climatic 

conditions above ground. It is likely that rate of decomposition amongst shallowly-buried 

deposits will be more diverse and linked to changes in climate (Rodriquez & Bass 1985; 

Rodriguez 1997). Variation in the effects of different soils means that there is no constant 

method of defining what classes as a shallow or deep burial in a way that would relate to 

bodily decomposition (Rodriguez & Bass 1985; Rodriguez 1997; Vass et al. 2011). Deep burials 

are usually considered to be those that lie over two metres below the original ground surface, 

whereas shallow burials have been classified as those which lie within the first fifty 

centimetres of soil (Rodriguez & Bass 1985; Rodriguez 1997; Vass et al. 2011). Bodies buried 

this shallowly will be accessible to skeletonising insects (Rodriguez & Bass 1985; Schotsmans et 

al. 2011; Vass et al. 2011). However, the overall effects of different burial depths on 

decomposition will vary with soil composition, access afforded to insects, moisture content 

and bacterial load (Rodriquez & Bass 1985; Janaway 1996; Campobasso et al. 2001; Wilson et 

al. 2007; Schotsmans et al. 2011; Vass et al. 2011). 

Decomposition rates of bodies placed at moderate burial depths are likely to vary although the 

overall levels of putrefactive bioerosion the bones experience would be similar (Rodriguez & 

Bass 1985; Breitmeier et al. 2005). The decomposition of bodies buried at extreme depths or 

within the capillary fringe is likely to have been arrested early on, which would have an effect 

on the extent of putrefactive bone bioerosion (Turner-Walker 2008; Hollund et al. 2012). The 

effect of shallow burial on bone bioerosion would be dependent on whether skeletonisation 

was dictated by enteric bacteria or external fauna. If external fauna and microbiota were able 

to remove significant soft tissue before putrefaction was completed, then it is possible that 

putrefactive bone bioerosion would have been affected. However, the warmer environment of 

a shallow burial would ensure that the rate of putrefaction remained higher for longer 

(Rodriguez & Bass 1985; Gill-King 1997; Wilson et al. 2007; Schotsmans et al. 2011). 

Putrefactive bioerosion within bones of shallowly-buried cadavers might be expected to vary 

depending on the season of deposition and accessibility to particular types of fauna. 

Differences in the rates of decomposition within partially-buried single bodies have suggested 

that the rate and nature of skeletonisation in shallowly-buried individuals is likely to be in-

between levels of decomposition promoted by burial and sub-aerial exposure (Wilson et al. 

2007; Schotsmans et al. 2011). By extension, it is probable that bones from shallowly-buried 

bodies would demonstrate variable middling patterns of putrefactive bone bioerosion. 
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2.3.3.3 Coffin Burial 

 

The effect of coffin burial on bodily decomposition is dictated by the nature of the container 

(Rodriguez & Bass 1985; Garland & Janaway 1989; Mant 1987; Mann et al. 1990; Owsley & 

Compton 1997: Fielder & Graw 2003; Fereira & Cunha 2013). Burial within a sealed, airtight 

cast iron coffin produces a unique anoxic environment that arrests bodily putrefaction at an 

early stage (Garland & Janaway 1989; Gill-King 1997; Owsley & Compton 1997). Normal 

putrefaction continues once a coffin is breached and the environment becomes aerated 

(Owsley & Compton 1997). These observations suggest that anoxic environments prevent or 

limit early post mortem changes to the body which anaerobic visceral putrefactive bacteria rely 

on for their proliferation (Gill-King 1997). Coffins constructed out of bactericidal substances 

such as lead may also inhibit internal bacterial activity (Owsley & Compton 1997). 

Most wooden coffins used in the past in Britain were not built to be airtight and would not be 

expected to inhibit bodily putrefaction in the ways discussed above. However, there are some 

suggestions that unsealed wooden coffins can interfere with the normal decomposition 

processes (Mant 1987; Mann et al. 1990; Fielder & Graw 2003; Vass 2011). Mant (1987: 67) 

noted that decomposition amongst individuals interred in coffins was notably accelerated. 

Coffined bodies also demonstrated much lower frequencies of adipocere than those that had 

been buried in the soil (Mant 1987: 67).  Many of the coffins had been packed with wood 

shavings, and Mant (1987: 68) suggested that this packing may have accelerated putrefaction 

by promoting increased local temperatures. The wood shavings may have absorbed fluids, 

which would have deprived internal bacteria of moisture and affected the formation of 

adipocere (Mant 1987: 68). Buried coffins retain a limited quantity of oxygen, which would aid 

bacterial decomposition in hypoxic or anoxic soils (Mant 1987; Dent et al. 2004).  

Ferreira & Cunha (2013) observed that decomposition of remains interred within coffins had 

often been arrested, usually through the formation of adipocere. Many of the burial contexts 

examined by Fereira & Cunha had also been waterlogged. The coffins retained water more 

effectively than the burial sediment, therefore coffin burial ensured that anoxic environments 

promoted by waterlogging persisted for longer. The persistence of these localised 

environments within coffins was probably responsible for the increased occurrence of 

adipocere. Fielder & Graw (2003) suggested that different types of wood used in coffins affect 

bodily decomposition. Adipocere is more likely to form on bodies in coffins made of oak rather 

than spruce, although there was no explanation provided as to why this was so (Fielder & 

Graw 2003). 
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Interment within a sealed airtight coffin has an immediate effect on bodily decomposition, and 

would be expected to arrest putrefactive bone bioerosion (Owsley & Compton 1997; Gill-King 

1997). The exact effect of a wooden unsealed coffin on putrefactive bone bioerosion is more 

uncertain. The results of the studies discussed above suggest that these types of coffins, like 

shrouds and clothing, only serve to augment the effects of particular environments that 

promote the preservation of organic tissue (Mant 1987; Fereira & Cunha 2013). Coffin burial is 

identified frequently within the archaeological record, but is rarely observed to promote the 

preservation of soft tissues outside of waterlogged environments. Burial in an unsealed 

wooden coffin does not appear to consistently affect bodily decomposition. It is likely that 

some of the Holocene archaeological  human bones sampled by Jans et al. (2004) and Nielsen-

Marsh et al. (2007) had been buried within coffins, yet the majority of these samples 

demonstrated consistent patterns of bacterial bioerosion. It would be expected that burial 

within a wooden coffin would not have significantly affected putrefactive bone bioerosion in 

most circumstances. 

 

2.3.3.4 Grave Goods 

 

The presence of bactericidal metals within the burial environment will affect the progression 

of cadaveric decomposition and bone bioerosion through poisoning of enteric and exogenous 

microbiota (Garland & Janaway 1989; Janaway 1996; Müller et al. 2011). There is evidence for 

this effect within bodies interred within coffins constructed out of bactericidal substances such 

as lead (Janaway 1996; Owsley & Compton 1997). However, these studies suggest that bodily 

putrefaction is only arrested if these substances are abundant within the environment and lie 

close to the body. Only a small proportion of grave goods will have been constructed out of 

bactericidal substances and an even smaller proportion of these items would have lain in 

contact with the body during its decomposition. Therefore it is unlikely that grave goods would 

have significantly interfered with bodily decomposition and putrefactive bone bioerosion in 

most situations. 

 

2.3.3.5 Embalming & Mummification 

 

The definition of embalming can vary, but in the present study it is defined as the intentional 

application of substances to a body in order to preserve the soft tissues for a set or indefinite 
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period of time (Sledzik & Micozzi 1997; Aufderheide 2003). The substances that are used in 

embalming are usually bactericides or desiccates (Aufderheide 2003). Embalming staves off 

decomposition by circumventing putrefaction through the neutralisation of enteric microbiota 

(Aufderheide 2003). All methods of embalming are temporary (Aufderheide 2003). Embalmed 

bodies will succumb to natural exogenous decay unless they are continually subject to 

preservative measures or environments (Mann et al. 1990; Aufderheide 2003). For instance, 

the body of the 17th century A.D. Italian saint Francesco Caracciolo had skeletonised by the 

time it was recovered from Agnone, in the Abruzzo region to the city of Naples in the 20th 

century A.D., despite there being documented evidence for the body having been successfully 

embalmed (Rasmussen et al. 2012).  

All studies of decomposition in embalmed remains have used bodies that were preserved by 

modern Western methods (Mann et al. 1990; Sledzik & Micozzi 1997; Lynnerup 2007). Modern 

embalming is usually achieved through the replacement of bodily fluids with preservative 

chemicals such as formaldehyde (Sledzik & Micozzi 1997; Aufderheide 2003). This process is 

commonly performed to ensure that a body remains presentable for funeral, particularly if it is 

being transported over a long distance (Aufderheide 2003). These methods of embalming are 

engineered to temporarily prevent or sufficiently slow down putrefaction between death and 

the funeral. It is probable that autolysis and putrefaction continue to some extent within these 

bodies, but at a much reduced rate (Mann et al. 1990; Sledzik & Micozzi 1997; Aufderheide 

2003). Decomposition of embalmed bodies subsequent to burial is slow and deviates from the 

patterns observed within non-embalmed cadavers (Mann et al. 1990). However, studies of 

buried bodies from 19th and 20th century USA have indicated that modern embalmed bodies 

will eventually skeletonise (Mann et al. 1990). Parts of the body that contain large amounts of 

tissue, such as the buttocks and thighs, are less effectively penetrated by embalming fluids and 

are usually amongst the first to decompose (Mann et al. 1990). It is possible that the negative 

effect of the embalming process on enteric gut bacteria ensures that decomposition of these 

cadavers is mediated almost entirely by exogenous bacterial decay (Mann et al. 1990; Sledzik 

& Micozzi 1997). There may be slight variations observed in the extent of enteric putrefactive 

bacterial attack depending on the quality and timing of embalming.  

Mummification refers to any natural or artificial process that preserves bodily soft tissues, 

including embalming (Aufderheide 2003; Lynnerup 2007). Most mechanisms of mummification 

are temporary, and soft tissue will eventually be lost unless there are renewed attempts at 

preservation, or the body is placed within an environment that is conducive to soft tissue 

preservation (Aufderheide 2003). Like embalming, most anthropogenic methods of 
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mummification involve attempts to circumvent putrefaction through the neutralisation of 

visceral bacteria (Aufderheide 2003). Mummification can also occur naturally as a result of 

processes that kill enteric bacteria or transform the soft tissue into a substance that is more 

difficult for microbes to break down (Painter 1995; Aufderheide 2003; Forbes et al. 2005; 

Lynnerup 2007). The transformation of sub-cutaneous fat into adipocere can be classified as a 

form of mummification, although the frequency and extent of adipocere formation over single 

bodies tends to be variable (Forbes et al. 2005; Fielder & Graw 2003; Lynnerup 2007; Ubelaker 

& Zarenko 2011).  

Artificial methods of mummification such as embalming or evisceration directly target the 

putrefactive process and would limit bacterial bioerosion (Aufderheide 2003; Lynnerup 2007). 

Natural mechanisms of mummification usually affect the superficial bodily tissues, and do not 

often prevent internal putrefaction (Aufderheide 2003; Lynnerup 2007). Internal putrefaction 

is only affected in extreme cases where transformation of external and internal soft tissue 

occurs rapidly (Aufderheide 2003; Lynnerup 2007). Natural mummification would be expected 

to variably limit putrefactive bone bioerosion, depending on the timing and mechanism of 

preservation. Conditions that promote preservation of only the superficial soft tissues would 

be expected to have a nuanced effect on putrefactive bone bioerosion. The few 

histomorphological studies of bone from individuals that were mummified by natural 

processes have consistently failed to locate any MFD (Weinstein et al. 1981; Thompson & 

Cowen 1984; Brothwell & Bourke 1995; Hess et al. 1998). All of these samples had been taken 

from remains that had been mummified by processes that would have had an immediate 

effect on putrefaction.  

 

2.3.3.6 Indoor Environments & Caves 

 

Different non-burial environments affect cadaveric decomposition in variable ways. Structures 

obstruct skeletonising carnivores and insects (Galloway et al. 1989; Goff 1991; Anderson 2011; 

Vass et al. 2011). Indoor bodily decomposition proceeds at a slower rate than outdoor 

decomposition, as indoor decomposition is mostly mediated by the action of endogenous 

microbiota (Goff 1991; Anderson 2011; Vass et al. 2011). Insect colonisation is also reduced in 

enclosed environments because of the containment of putrefactive odours (Mann et al. 1990; 

Goff 1991; Anderson 2011). Decomposition of bodies within modern indoor environments is 

often complicated by factors such as central heating or pets, which serve to alter the rate and 
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the nature of soft tissue loss (Zhou et al. 2011). Factors relating to indoor decomposition tend 

to delay, rather than prevent the initiation of entomological soft tissue loss. The extent of 

putrefaction and related bacterial bone bioerosion within a body placed in such an 

environment would be predicted to lie between that observed within buried and sub-aerially 

exposed remains (Goff 1991; Anderson 2011). 

Caves are unique depositional environments and their properties ensure that decomposition 

of a cadaver would be affected by factors common to both subterranean and sub-aerial 

contexts (Terrell-Nield & MacDonald 1997). Temperatures within caves are usually lower than 

those outside and more similar to the burial environment. Caves are resistant to fluctuations in 

the outside temperature (Terrell-Nield & MacDonald 1997). The cooler cave environment 

would ensure that putrefactive bacterial activity and the progression of bone bioerosion would 

be slowed within a cave-deposited cadaver (Mann et al. 1990; Gill King 1997; Terrell-Nield & 

MacDonald 1997). However, cave-deposited cadavers would be more susceptible to faunal 

skeletonisation, disturbance and disarticulation than buried bodies. An experimental study of 

decomposition in rat cadavers within a cave environment found that whilst insects contributed 

to soft tissue loss, their activity was reduced compared to what is observed within sub-aerially 

exposed bodies (Terrell-Nield & Macdonald 1997). Sub-aerially exposed bodies normally 

skeletonise within a few months (Rodriguez & Bass 1983). Skeletonisation of the cave-

deposited cadavers was variable but often took a number of years (Terrell-Nield & MacDonald 

1997). Reductions in insect activity correlated with distance from the entrance of the cave 

(Terrell-Nield & Macdonald 1997: 56).  Insects are cold blooded, and the low temperatures of 

the cave environment may have discouraged their activity within the cave. Low temperatures 

would also reduce insects’ metabolic rate (Terrell-Nield & MacDonald 1997). 

The cave would have limited the diffusion of putrefactive odours that attract saprophytic 

invertebrates (Goff 1991; Terrell-Nield & MacDonald 1997; Anderson 2011). Cadavers placed 

near the entrance were exposed to higher levels of insect activity, but often desiccated due to 

the increased temperatures and air movement. The nature of bodily decomposition within a 

cave environment was similar to an indoor context and lay somewhere in-between the 

prolonged bacterially-mediated processes encouraged by a burial environment and the rapid, 

entomological skeletonisation of sub-aerially exposed cadavers (Rodriguez & Bass 1983; 1985; 

Terrell-Nield & MacDonald 1997). Bones from a cave-deposited body are likely to have been 

exposed to variable medium levels of putrefactive bioerosion, depending on the part of the 

cave where they decomposed.  
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2.3.3.7 Trauma 

 

Human cadavers that demonstrate evidence for previous penetrative trauma have been 

observed to decompose more rapidly than those without injury (Micozzi 1986; Mant 1987; 

Garland & Janaway 1989; Galloway et al. 1989; Mann et al. 1990). Such trauma allows 

exogenous fauna and microbiota easier access to the insides of a cadaver, which allows 

exogenous decay to augment endogenous putrefaction at an earlier stage. This effect 

produces faster rates of skeletonisation (Micozzi 1986; Mant 1987; Galloway et al. 1989; 

Garland & Janaway 1989; Mann et al. 1990). Penetrative trauma may also provide increased 

access to skeletonising insects. Mann et al. (1990) observed that flies were attracted to and 

laid eggs around the areas of trauma within a cadaver, which promoted faster rates of 

skeletonisation. 

However, Cross & Simmons (2010: 300) recorded that real-time decomposition of pig cadavers 

did not correlate with the presence of penetrative trauma. There was no increased 

entomological activity observed around the areas of trauma in these remains (Cross & 

Simmons 2010: 300). These results suggested that the relationship between penetrative 

trauma and the rate of bodily decomposition is complex and influenced by interactions with 

other environmental factors (Bachmann & Simmons 2010; Cross & Simmons 2010). The extent 

to which penetrative trauma would be expected to have affected bone bioerosion would be 

dependent upon how far the increased exogenous invasion upset internal enteric putrefaction. 

If the decomposition of the soft tissues was mostly mediated by exogenous factors, then bone 

bioerosion might be limited. It is difficult to say whether this scenario is likely, as exogenous 

infiltration might not upset endogenous bone bioerosion and the evidence surrounding the 

relationship between decomposition and penetrative trauma is contradictory.    

 

2.3.4 The Use of Bone Bioerosion in Detecting Funerary Processes 

 

Anthropogenic processes that result in the removal of the bone from the visceral microbiota, 

such as butchery, defleshing, disarticulation and dismemberment, are likely to have the largest 

inhibitory effect on putrefactive bone bioerosion (Jans et al. 2004; Nielsen-Marsh et al. 2007). 

(Jans et al. 2004; Nielsen-Marsh et al. 2007). There is good reason to suggest that mortuary 

rites which involved any of these processes would produce characteristic signatures of 

putrefactive bone bioerosion. Discussion of the factors that affect bodily decomposition 

suggested two further circumstances that are likely to interfere with putrefactive bone 
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bioerosion: sub-aerial exposure and mummification (Rodriguez & Bass 1983; Aufderheide 

2003; Lynnerup 2007). Both of these processes can occur as a result of natural influences, but 

have sometimes been utilised in the anthropogenic treatment of remains (Galloway et al. 

1989; Aufderheide 2003; Lynnerup 2007; Huchet & Greenberg 2010)  

The human urge to retrieve the dead and afford them some form of ritual treatment means 

that sub-aerial exposure of most human remains usually represents part of a formalised 

mortuary ritual (Parker Pearson 1999). By itself, this process is likely to eventuate in the 

complete destruction of bones through weathering (Parker Pearson 1999). Spontaneous 

natural mummification of the kind that would affect putrefactive bone bioerosion occurs 

rarely within bodies deposited in temperate climates (Aufderheide 2003; Lynnerup 2007). 

Mummification of human remains from temperate environments would be most likely to have 

occurred as a result of intentional anthropogenic treatment. Certain anthropogenic process 

enacted as part of mortuary rites, such as coffin burial or wrapping, have some influence on 

bodily decomposition (Mant 1987). However, the subtlety of the influence of these factors on 

cadaveric decomposition suggest that they would not have had a significant effect on 

putrefactive bone bioerosion.  

Studies by Turner-Walker et al. (2002), Jans et al. (2004) and Nielsen-Marsh et al. (2007) have 

suggested that articulated burial soon after death is characterised by extensive putrefactive 

bioerosion to the internal bone microstructure. These observations are cogent given that 

burial of an intact body within aerobic soils is likely to expose the bones to the maximum levels 

of putrefaction (Rodriguez & Bass 1983; 1885). Consistent poor histological preservation of 

buried articulated skeletons would provide the perfect comparison to bones from bodies 

treated in ways that would have limited their exposure to putrefaction and would justify the 

use of bone histology for inferring funerary treatment. However, innumerable environmental 

and anthropogenic factors can affect the decomposition of a buried body (Rodriguez & Bass 

1985; Mant 1987; Mann et al. 1990; Manhein 1997; Rodriguez 1997; Dent et al. 2004; Vass 

2011). An anoxic burial environment affects both putrefaction and bone bioerosion (Polson et 

al. 1985; Turner & Wiltshire 1999; Dent et al. 2004; Turner-Walker & Jans 2008; Hollund et al. 

2012).  

Other environmental and anthropogenic factors may affect bodily putrefaction and bone 

bioerosion in unknown variable ways and obfuscate any signatures of anthropogenic 

treatment. However, studies of the way in which these factors affect bodily decomposition 

suggest that is unlikely that most would significantly interfere with putrefactive bioerosion. For 
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instance, seasonality has the largest overall impact on the rate of bodily decomposition, but 

bones from bodies that decomposed at different times of year are likely to have been exposed 

to similar overall levels of putrefactive bioerosion, albeit at different rates (Rodriguez & Bass 

1983; 1985; Mann et al. 1990; Campobasso et al. 2001; Vass 2011). These inferences of how 

certain variables were likely to have affected putrefactive bone bioerosion were extrapolated 

from experimental and forensic studies of decomposition and are therefore tenuous. At 

present, it is unknown whether bone bioerosion reflects very early taphonomic processes that 

had a direct effect on putrefactive decay, or the effects of a plethora of different factors that 

variably interfered with bodily decomposition until skeletonisation. The purpose of the current 

study is to establish whether the link between the most influential anthropogenic treatments 

and bacterial bone bioerosion is detectable amongst the potential noise from all other factors 

that can influence bodily decomposition. 

Only a limited selection of funerary processes are likely to have affected putrefaction in a way 

that would have left a characteristic signature of bacterial bone bioerosion (Table 2.3). In 

addition, it is likely that different forms of treatment would produce similar microstructural 

signatures of decay. It is not the contention of the current study that bioerosion alone can be 

used to infer treatment, only the extent to which the bone was exposed to putrefaction, which 

is likely to be controlled by early taphonomic processes (Jans et al. 2004; Nielsen-Marsh et al. 

2007). If it is established that bacterial bone bioerosion relates to nearly post mortem 

treatment in predictable ways, then measures of the extent to which the bone was exposed to 

putrefaction could be combined with other contextual taphonomic evidence to produce more 

precise reconstructions of the early post mortem treatment of individuals in the past.  

Treatment Bioerosion 

Dismemberment None 

Defleshing None 

Evisceration None 

Mummification Limited/None 

Sub-aerial exposure Limited 

Burial Severe 

Table 2.3: Speculative list of the types of anthropogenic funerary treatments that are likely to affect putrefactive 
bone bioerosion alongside details of their predicted effects based on the author’s assessment of models of 

decomposition. 
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Relationships between early anthropogenic taphonomic events and bone bioerosion would be 

useful for discerning between different funerary treatments that produce similar 

archaeological records. For instance, assemblages of disarticulated human bone may have 

been accumulated through defleshing by primary burial, sub-aerial exposure or 

dismemberment (Parker Pearson 1999). There have been several attempts to characterise the 

nature of the assemblages produced by each of these processes in order to aid their 

identification in the archaeological record (Mays 1998; Carr & Knüsel 1997; Craig et al. 2005; 

Outram et al. 2005; Smith 2006; Redfern 2008). For instance, skeletal part representation is 

often used to identify whether an assemblage had primarily decomposed in a different context 

(Mays 1998). The smaller bones of the hands and feet disarticulate quickly and would be more 

likely to have been missed when the partially-decomposed remains were recovered (Mays 

1998). Low relative numbers of these bones is often cited as evidence for prior burial or sub-

aerial exposure of remains (Mays 1998; Carr & Knüsel 1997). This method is compromised by 

the fact that the same small bones are also more vulnerable to other taphonomic 

interventions, such as chemical degradation, transportation away from the body and 

excavation bias (Gordon & Buikstra 1981; Mays 1998).  

Signs of fracture, weathering and carnivore alteration on bone samples have been used to 

infer excarnation by sub-aerial exposure (Carr & Knüsel 1997; Craig et al. 2005; Leach 2006; 

Smith 2006; Redfern 1998). However, this model would not apply had sub-aerially exposed 

remains been protected from alteration by a barrier or use of an elevated platform (Madgwick 

2008; Redfern 2008). The presence of significant bone weathering would be dependent on 

how long the bare bones had been exposed to the elements before they were collected. It 

might be expected that tool marks would be found upon the bones of a dismembered or 

defleshed individual, but the presence of such marks would be dependent on the skill of the 

butcher and the objective of processing (Guilday 1962; Binford 1981; Fisher 1995). All of these 

techniques would expose the bone to different levels of putrefactive action and bacterial bone 

bioerosion. Therefore, measurement of bone bioerosion would provide a more certain method 

for determining the funerary treatment that produced disarticulated assemblages. 

Measurements of bacterial bone bioerosion may also be useful in discerning hidden 

taphonomic processes. For instance, the limited pattern of bacterial bioerosion observed 

within the skeletons excavated from Cladh Hallan suggested that these individuals had 

experienced limited putrefaction (Parker Pearson et al. 2005; 2007). This observation was 

combined with the results of dating, isotopic, taphonomic, osteological and ancient DNA 

evidence to suggest that these skeletons had been constructed out of the mummified parts of 
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several individuals (Parker Pearson et al. 2005; 2007; Hanna et al. 2012) (Image 2.23). These 

findings raised questions regarding how mummification can be identified in the British 

archaeological record, given that the wet environment will eventually cause the preserved soft 

tissues to disintegrate (Parker Pearson et al. 2005). The case for mummification at Cladh Hallan 

consisted of specific dating, osteological and taphonomic evidence that is unlikely to be 

replicated at every archaeological site where mummification was practised (Parker Pearson et 

al. 2005; 2007). However, the neutralisation of putrefactive gut bacteria associated with most 

mechanisms of mummification would ensure that the bones from these categories of remains 

would have been subjected to low levels of bacterial bone bioerosion (Weinstein et al. 1981; 

Thompson & Cowen 1984; Brothwell & Bourke 1995; Hess et al. 1998; Aufderheide 2003; 

Lynnerup 2007). Moreover, this limited pattern of bioerosion should stand in contrast to that 

observed within other articulated skeletons that were buried soon after death (Jans et al. 

2004; Nielsen-Marsh et al. 2007). Measures of bone bioerosion might constitute the only 

method of identifying prior practices of evisceration and mummification in the past. 

 

Image 2.23: Photograph of the adult male body that was recovered from the Bronze Age settlement site of Cladh 
Hallan, South Uist. A suite of analytical techniques suggested that this body had been composed out of the 

mummified parts of several individuals (image courtesy of Mike Parker Pearson). 

 

2.4 RESEARCH DESIGN 
 

The primary objective of the present study is to determine and characterise the nature of any 

relationship between bone diagenesis and funerary treatment and assess whether any 
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association is accurate and strong enough for microscopic analysis of archaeological remains to 

be used effectively in reconstructions of funerary treatment. These objectives can be summed 

up in the following research questions: 

 

1. Is there a relationship between funerary treatment and bone diagenesis that is strong 

enough to be detected by microscopic analysis of archaeological bone? 

 

2. Does the relationship between bone diagenesis and funerary treatment conform to 

predictive models of diagenesis inferred by studies of cadaveric decomposition? 

 

3. Is the strength and nature of the relationship between bone diagenesis and funerary 

rite such that certain treatments can be said to produce characteristic patterns of 

diagenesis that can be recognised through the microscopic analysis of archaeological 

bone microstructure? 

 

4. How can measures of bone diagenesis, particularly the microscopic assessment of 

archaeological bones, be usefully employed in reconstructions of funerary processes? 

 

The past studies of the causes of bone diagenesis have utilised one of three different types of 

experiment approaches: 

1. Microstructural analysis of bone sampled from a small number of experimentally-

deposited carcasses. 

2. Microstructural analysis of bone sampled from a small number of forensic cadavers 

recovered from variable environments. 

3. Microstructural analysis of large samples of archaeological bone from variable periods 

and sites. 

The first two approaches would have allowed for the observation of the development of bone 

diagenesis within remains that had been variably deposited in known ways under controlled 

conditions (Yoshino et al. 1991; Bell et al. 1996; Nicholson 1996; Fernández-Jalvo et al. 2010; 

White 2009; Turner-Walker 2012). Such experimental approaches would allow for the direct 

observation of relationships between measures of bone diagenesis and funerary treatment. 

However, neither of these methodologies could be utilised for the current study for ethical, 
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legal and practical reasons. The University of Sheffield Department of Archaeology does not 

hold a licence under the Human Tissue Act (2004) to retain human remains less than one 

hundred years old. The use of human cadavers for forensic experimentation is not authorised 

within the U.K. and would not be considered ethical based on the University of Sheffield’s 

standards.  

The use of non-human analogues in taphonomic experiments would mostly neutralise the 

ethical and legal problems, as long as animals were not euthanized especially for use in the 

study. However, a three-year PhD project does not provide sufficient time to conduct a real-

time study of cadaveric decomposition (Rodriguez & Bass 1983; 1985; Bass 1997). The 

University of Sheffield Department of Archaeology holds a substantial collection of 

archaeological remains that would have experienced a full diagenetic cycle related to their 

death and deposition. Microscopic investigation of archaeological remains provided the most 

practical scenario for determining the interaction between bone diagenesis and funerary rites. 

Past studies of the relationship between diagenesis and taphonomy in archaeological bone 

have focussed on the differences between articulated human and butchered faunal material 

(Jans et al. 2004; Nielsen-Marsh et al. 2007). It was possible that the relationship between 

bone diagenesis and early post mortem treatment could be investigated through further 

comparisons of archaeological bones from different species that were likely to have 

experienced separate taphonomic trajectories. However, such an experimental model would 

be compromised by the intrinsic differences between species as well as diversity in the nature 

of past treatment of categories of remains. 

Gut microbiome and microstructural organisation of bone differ between species (Nicholson 

1997; Martiniakova et al. 2006; Hillier & Bell 2007; Crescimanno & Stout 2012; Dominguez & 

Crowder 2012). Bone from domesticated species that are most often recovered from 

archaeological sites may have been subject to a complex combination of anthropogenic 

treatments relating to carcass processing, cooking and disposal (Mulville et al. 2011). Bones 

from wild species do not present an attractive source for comparison, as their bodies also may 

have been subjected to a variety of uncontrolled taphonomic processes that may have 

affected bone diagenesis, including sub-aerial exposure, scavenging and partial burial.  

It has been suggested that the skeletons of domesticated animals that were not often 

consumed at European archaeological sites, such as dogs, would provide the best comparisons 

to human material, although problems would still arise relating to the intrinsic differences 

between species (Parker Pearson et al. 2005; Mulville et al. 2011). Any experimental design 
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that compared diagenesis within archaeological bones of different species would be 

undermined by questions regarding the validity of comparisons (Turner-Walker 2008).  

It was necessary to focus work for the current study on archaeological bone from a single 

species. The emphasis on funerary treatment meant that the best option was to concentrate 

on variations in diagenesis within archaeological human bone assemblages. Human remains 

from past and present societies have often been subjected to a large variety of anthropogenic 

and natural taphonomic processes (Parker Pearson et al. 1999). However, the significance 

afforded to human remains by most past populations has meant that their exposure to 

complex random biostratinomic processes has usually been controlled or limited (Parker 

Pearson et al. 1999). Therefore it is likely that an archaeological human bone will have 

experienced fewer and less variable taphonomic events than most faunal bones from the same 

sites. The exclusive use of human remains would ensure a level of consistency that would 

improve upon previous studies of diagenesis in archaeological bones (Bell et al. 1996; Nielsen-

Marsh & Hedges 2000; Jans et al. 2004). 

The difficulty in narrowing the scope of the current study to human bone was in locating 

assemblages that had been treated in known but variable ways. A crude idea of the 

relationship between diagenesis and funerary ritual could be attained through comparison of 

separate human bone assemblages that were known to have been treated divergently. It 

would not matter if the specific method was unknown, as long as there was evidence that the 

treatment of the bodies differed in a way that would probably have affected the bone 

exposure to putrefaction.  

The main work for this project was to be undertaken at the University of Sheffield and facilities 

around the U.K. It was deemed practical to identify British archaeological periods that provide 

human bone assemblages that could address the research questions of the current project. 

Documentation of burial rites began and continued intermittently through the Historical (A.D. 

34 – present day) periods of Britain, during which time the majority of the dead were 

invariably buried intact immediately after death. Immediate inhumation during these periods 

is predominantly related to Christian religious rites, although the same process was also 

utilised in Roman Britain from the 2nd century A.D. and the pagan Early Anglo-Saxon era (5th-7th 

century A.D.) (Toynbee 1996; Lucy 2000). The Historical archaeological record of Britain 

provides a swathe of time where the majority of the dead that were not cremated were 

consistently afforded a known form of funerary treatment. This consistency in funerary 

treatment is confirmed by the anatomical articulation of the majority of human skeletons 
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recovered from sites dating to these periods. If a body is not buried soon after death, bodily 

decomposition would ensure that there would be some skeletal disarticulation (Roksandic 

2002; Duday 2006).  

An assemblage of British Historical human bone could be used to test whether consistent 

treatment produces consistent signatures of bacterial bone bioerosion. If funerary treatment 

has a primary role in dictating bacterial bone bioerosion, human bone excavated from British 

Historical contexts should demonstrate consistent patterns of internal bacterial attack, 

regardless of environment, temporal phase or other potentially influential factors. The 

conclusions of experimental studies of cadaveric decomposition can be used to predict how 

different depositional circumstances would have affected the level of putrefaction a bone 

experienced. Burial in aerobic environments allows unabated microbial decomposition and 

exposes the bones of a body to the maximum levels of putrefactive bacterial attack (Rodriguez 

& Bass 1985; Mant 1987; Manhein 1997; Rodriguez 1997; Campobasso et al. 2001; Fielder & 

Graw 2003; Wilson et al. 2007; Vass 2011). If bacterial bone bioerosion is linked to 

putrefaction and funerary treatment it would be expected that bones of individuals who were 

inhumed soon after death would consistently demonstrate the highest levels of bacterial 

attack (Nielsen-Marsh & Hedges 2000; Jans et al. 2004). Extensive levels of bacterial bone 

bioerosion promoted by immediate inhumation could provide a baseline against which all 

other diagenetic signatures could be compared to discern likely post mortem treatment. 

The relationship between bacterial bioerosion and funerary treatment could be tested by 

comparing the results from the Historical samples against another human bone assemblage 

from a similar environment that was known to have been treated more variably. Skeletal 

disarticulation suggests that an individual had been subjected to early post mortem treatment 

that either did not involve immediate inhumation, or of which immediate inhumation formed 

only one part. Most British disarticulated archaeological human bone assemblages that were 

likely to have been disassembled by primary mortuary treatment, rather than subsequent 

disturbance, originate from Later Prehistoric periods; from the Neolithic to the end of the pre-

Roman Iron Age (c.4000 B.C.-A.D. 43). There is no surviving primary documentation from these 

periods and no certainty regarding the types of funerary rites that were practised (Parker 

Pearson 1999; Darvill 2010). However, there is archaeological evidence that a variety of 

different funerary rites were practised in Later Prehistoric Britain, including inhumation, 

primary burial, dismemberment, defleshing, excarnation and mummification (Parker Pearson 

1999; Wysocki & Whittle 2000; Parker Pearson et al. 2005; Brück 2006; Smith 2006; Redfern 

2008; Darvill 2010). 
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Any funerary treatment that did not involve the body decomposing entirely within the ground 

is likely to drag the signature of bacterial bioerosion away from the baseline inhumation level. 

This notion is substantiated by forensic and experimental studies, which have suggested that 

spontaneous endogenous decomposition of unburied remains is swiftly supplanted by 

exogenous factors (Rodriguez & Bass 1983; 1985; Galloway et al. 1989; Dent et al. 2004; 

Wilson et al. 2007; Campobasso et al. 2011; Vass 2011).The exact method of treatment 

afforded to individuals represented within an assemblage does not need to be known for it to 

provide a viable comparison to the Historical remains, there only needs to be evidence for the 

practise of funerary processes that would have affected putrefaction in a way that deviated 

from inhumation. A relationship between funerary process and putrefactive bone bioerosion 

would dictate that human remains sampled from Later Prehistoric British contexts should 

demonstrate variably lower levels of bacterial attack compared with the Historical human 

bone assemblage. Comparison of bacterial bioerosion within human remains from Historical 

and Later Prehistoric British sites would provide a rudimentary but effective scrutiny of the 

relationship between funerary treatment and bacterial bioerosion by testing a simple 

dichotomy of variable and consistent treatment. The nature of any variation between these 

two assemblages would be informative regarding whether studies of cadaveric decomposition 

can be used to predict levels of bacterial bioerosion encouraged by particular forms of post 

mortem treatment. 

This comparison of these two assemblages may be problematic in addressing the research 

questions because of equifinality. Bones excavated from Later Prehistoric sites show superficial 

signs of having had been treated differently from their Historical counterparts, particularly in 

terms of their anatomical articulation. However it is possible that the post mortem treatment 

of these bones exposed them to similar levels of putrefaction as immediate burial. For 

instance, if the skeletal disarticulation of the Later Prehistoric skeletons had been caused by 

primary burial, then their bones would have experienced the same levels of putrefaction as 

those from inhumed Historical individuals. This outcome would produce a false negative 

regarding the relationship between funerary treatment and bacterial bone bioerosion.  

The problem of equifinality could not be avoided. Negative results regarding the expected 

differences between the Later Prehistoric and Historical human bone could occur as a result of 

there being no relationship between bacterial bioerosion and funerary treatment or that 

bodies had all subject to similar treatments that were subsequently obfuscated by secondary 

manipulation. Such a result would not undermine the aims of this project entirely, as the 

results from the consistently-treated Historical remains would still go some way towards 
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assessing the relationship between bacterial bone bioerosion, putrefaction and funerary 

treatment. However, a negative result regarding the expected differences in bacterial bone 

bioerosion between Later Prehistoric and Historical skeletal assemblages would limit the 

conclusions of the current study to the effects of immediate burial.  

A specific set of hypotheses were formulated regarding the relationship between funerary 

treatment and bacterial bioerosion: 

 

1. If bacterial bone bioerosion is linked to funerary processes, bones recovered from 

Historical cemeteries will demonstrate consistent patterns of internal bacterial 

bioerosion. 

 

2. If the nature of bacterial bone bioerosion is controlled by the extent to which early 

funerary processes dictate bodily putrefaction, all bones from Historical cemeteries 

will be characterised by high levels of internal bacterial attack. 

 

3. If bacterial bone bioerosion can be used to distinguish between funerary rites, there 

will be a significant difference between the histological signatures of bone from Later 

Prehistoric and Historical periods. 

 

It was assumed that only burial could be responsible for the survival of an articulated skeleton 

into the archaeological record. Bone from both Historical and Later Prehistoric articulated 

skeletons would be expected to demonstrate analogous levels of bacterial bone bioerosion. 

There was an expectation that most of the variation in bacterial bone bioerosion observed 

amongst the Later Prehistoric remains would originate within the disarticulated/partially 

articulated assemblage. Positive results regarding these hypotheses would indicate that factors 

relating to early post mortem treatment have a dominant role in dictating bacterial bone 

bioerosion, negating the effect of other potential influences. It would be unlikely that these 

hypotheses would be confirmed if bacterial bone bioerosion was primarily controlled by 

factors other than funerary treatment.  

No assumptions were made regarding specific treatments of individual Later Prehistoric 

skeletons, only that the evidence for their variable treatment meant that levels of bacterial 

attack were expected to be diverse. Substantiation of the hypotheses would suggest that 
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results from forensic and experimental studies of decomposition could be used to make 

inferences about the treatments responsible for certain patterns of bacterial bone bioerosion 

and attempts could be made to interpret the likely funerary treatments responsible for the 

individual and site-specific signatures of bacterial bioerosion amongst the Later Prehistoric 

assemblage. This process would allow the production of exemplary reports that demonstrated 

how measures of bone diagenesis may be used in inferring funerary treatment.  

The research questions were framed with reference to bone diagenesis, rather than bacterial 

bioerosion exclusively. The current project is concerned with recording variation in overall 

bone diagenesis with funerary treatment, not just bacterial bioerosion. Certain diagenetic 

changes to bone may directly affect bacterial bioerosion or reflect processes and environments 

that would have interfered with putrefaction (Nielsen-Marsh et al. 2000; Jans et al. 2004; 

Turner-Walker & Jans 2008; Hollund et al. 2012). For instance, certain types of discolouration 

within bone microstructure have been linked to anoxic decompositional environments 

(Turner-Walker & Jans 20008; Hollund et al. 2012). Bacterial bioerosion has to be understood 

within its diagenetic context if any correlations between bacterial bioerosion and funerary 

treatment are to be substantiated.  

There is evidence that other types of bone diagenesis may be linked with early post mortem 

treatment. For instance, fungal Wedl tunnelling appears more often within butchered bones 

(Jans et al. 2004).  It was not possible to predict the relationships between funerary treatment 

and forms of bone diagenesis such as mineral dissolution, Wedl bioerosion or visual diagenetic 

changes. The use of Later Prehistoric/Historical dichotomy as a proxy for funerary treatment 

would mean that associations between funerary treatment and non-bacterial forms of 

diagenesis would have to be assessed through an investigation of how each of these factors 

varied with archaeological phase as well as other recorded variables. Measures of non-

bacterial diagenetic changes included in the current study were used to supplement the results 

from the gauges of bacterial bioerosion in addressing the research questions. 
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3 METHODOLOGY 

 

This chapter provides an outline of the methods and techniques that were used to address the 

research questions outlined in the previous chapter. The first section provides a brief 

discussion of how remains from particular assemblages were chosen. The sampling strategy 

had to be adaptive to each site, and therefore most of the discussion of sampling was included 

within the Materials chapter. However it was still pertinent to include a small section on 

sampling within this Methodology to explain the main objectives. The sampling section is 

followed by a justification for the techniques that were applied to the archaeological remains, 

which is followed by a description of methods of preparation and analysis. This section is 

followed by a description of the systems that were used to quantify diagenetic change using 

these analytical methods. A number of variables that were considered to have potentially 

influenced bone diagenesis were also recorded to assess their effect on diagenetic parameters. 

The variables that were chosen and the manner in which they were recorded are discussed in 

the penultimate section. The final part of this chapter explains the statistical tests that were 

used in the current study. This section includes an explanation of how statistical testing was 

used to address the research questions posed, particularly with regards to the hypotheses 

relating to bacterial bone bioerosion. 

 

3.1 SAMPLING 
 

3.1.1 Sampling Strategy 

 

The success of the current study was dependent upon the analysis of a large number of 

samples to record trends in diagenesis within bone samples from dispersed sites. The 

University of Sheffield Department of Archaeology held a large collection of ready-made 

human bone thin sections from Historical and Later Prehistoric sites that could be analysed 

histologically using transmitted light microscopy. These samples had been produced for earlier 

undergraduate and postgraduate research projects. These projects had usually studied human 

remains from single sites. Diagenetic change within majority of samples had been analysed and 

interpreted using various means, but the results had never been standardised, collated and 
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examined as a whole. The sampling strategy for each separate project was not always guided 

by research aims analogous to those of the current study. However, the number of ready-

made samples that were available meant that their potential contribution towards the 

fulfilment of the current project’s research aims outweighed any problems relating to 

sampling. Moreover, this collection included bone thin sections from material that was no 

longer held at the University of Sheffield, allowing access to assemblages that were no longer 

directly available.   

The varied research questions the premade samples were originally used to address would 

help to cancel any biases when the whole population was examined as a whole. The 

predictions regarding bacterial bioerosion should not have been affected by any biases in the 

sampling of remains from these sites, as the underlying principles should apply to all 

archaeological remains. Attempts to control for potentially influential variables would help to 

counteract biases in sampling. Therefore, some of the sample sets included in the current 

study did not represent the ideal assemblages from particular sites, but were still valid. The 

rationale behind the choice of samples from each site is provided within the Materials chapter. 

The majority of thin sections were assessed without any prior knowledge of previous studies in 

order to ensure that their conclusions did not unconsciously influence their assessment for the 

current project. Inevitably, previous interaction with some of the samples in the collection 

meant that the author had prior knowledge of levels of diagenesis in some instances. It was 

considered whether it was appropriate to include samples whose histological preservation was 

previously known by the author. It was possible that the inclusion of these remains may have 

introduced unconscious bias. However, the author sampled and assessed these remains 

originally without any prior knowledge of their microscopic preservation. The inclusion of 

these remains within the current study was not selective; they happened to make up part of 

the University of Sheffield’s thin sections, the entirety of which were included in the present 

study. Those samples that had been examined previously by the author only constituted a 

small proportion of the overall study sample and should not have introduced any significant 

biases. 

The inclusions of samples from previous studies as well as the variation in the sites that were 

included in the current study meant that sampling strategy varied adaptively from site to site. 

Where possible, sampling of Historical material was based upon obtaining a random sample of 

remains that represented the full extent of a site. The sampling of Later Prehistoric remains 

attempted to maximise sample size whilst obtaining specimens that represented the full 
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spectrum of funerary treatments. Variation in funerary treatment was recognised by variable 

stages of skeletal articulation as well as evidence for post mortem manipulation such as cut 

marks. 

 

3.1.2 Skeletal Element 

 

Many of the previous archaeological, experimental and forensic studies of bone diagenesis did 

not consistently use samples from the same skeletal element, even when the bone originated 

from the same species (Bell et al. 1996; Nicholson 1996; Davis 1997; Jans et al. 2004; Turner-

Walker & Jans 2008; Fernández-Jalvo et al. 2010). Some researchers have attempted to control 

for potential differences in diagenesis of skeletal elements by focussing sampling on the femur, 

although all resorted to using samples from other skeletal elements, particularly other long 

bones (Nielsen-Marsh & Hedges 2000: Jans et al. 2004; Hollund et al. 2012).  

Proportions of secondary osteonal bone vary with skeletal element, as bones from different 

parts of the body are not remodelled similarly over an individual’s lifetime (Junqueira et al. 

1986). The relationship between bioerosion and natural bone porosities suggests that it is 

probable that the nature and extent of bacterial attack will vary with skeletal element. Jans et 

al. (2004) found that bones in closest proximity to the internal organs, such as the ribs and 

lumbar vertebrae, suffered higher levels of bacterial attack (Jans et al. 2004). Hanson & 

Buikstra (1987) also noted that rib samples tended to have been more severely bioeroded than 

any other skeletal element. Jans et al. (2004: 91) attributed this patterning to the closer 

proximity of these bones to the abdominal putrefactive bacteria. This interpretation is 

questionable under an endogenous model of bioerosion, as gut bacteria migrate around the 

body within a few hours after death, which would provide ample opportunity for microbiota to 

access all parts of a skeleton over the duration of bodily decomposition (Polson et al. 1985; 

Child 1995a; Bell et al. 1996). However, bacteria require a liquid medium for transmigration 

and it is possible that post mortem coagulation of the blood might impede their progression to 

peripheral anatomical areas. 

Other studies of diagenesis in varied skeletal elements infrequently mention differences in 

diagenesis between particular bones (Nicholson 1996; Nielsen-Marsh et al. 2000). It is difficult 

to ascertain whether the lack of discussion was due to there being no observable difference in 

diagenesis between skeletal elements or because this relationship was not tested (Nicholson 

1996; Nielsen-Marsh et al. 2000). Differential diagenesis of skeletal elements may be related to 
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ratios of trabecular and cortical bone. The large marrow-containing cavities found within 

trabecular bone expose more of the internal surface area to bacterial attack or interaction 

with the external environment. The large trabecular cavities reduces bone volume per unit of 

space (Turner-Walker 2008). Attacking microbes or chemical processes would require less time 

to degrade trabecular bone. Ribs and vertebrae predominantly consist of trabecular bone and 

so Hanson & Buikstra’s (1987) and Jans et al.’s (2004) results could have reflected different 

constitutions of discrete skeletal elements rather than their anatomical position. 

The lack of clarity regarding variation in diagenesis across human skeletons made it necessary 

to control the skeletal element that was sampled from each individual included in the current 

study. The ideal situation was that all samples originated from the same skeletal element. 

Bones that demonstrate high proportions of cortical bone are the best candidates for 

histological analysis, as the high porosity of trabecular bone renders sample preparation more 

difficult and ensures that there is less microstructure visible in each section. Long bones are 

usually chosen for histological analysis due to their high proportions of cortical bone, 

robusticity and survival rate (Nielsen-Marsh & Hedges 2000; Jans et al. 2004). The femur is the 

most common choice of long bone for diagenetic studies, on the basis that it is the closest long 

bong to the gut and is possibly most sensitive to enteric microbial activity (Nielsen-Marsh et al. 

2000; Jans et al. 2004; Hollund et al. 2012). Sampling for the present study preferentially 

targeted femora to ensure consistency and maximise comparability with other studies of bone 

diagenesis.  

There was no theoretical or evidential reason to suggest that bone bioerosion or bone 

diagenesis generally would vary significantly between skeletal antimeres, as long as all parts of 

a body had decomposed under similar environmental conditions (Jans et al. 2004). However, it 

was decided for consistency that the default position would be to sample the left femur where 

possible. The right femur was sampled in situations where the left was not available or where 

the sampling of the right femur would have caused less damage to the research potential of a 

skeleton, for instance, in cases where the right femur was significantly more fragmented than 

the left. 

Historical remains were likely to have been excavated in anatomical articulation within 

discrete grave cuts, and bones from these examples could be confidently assigned to a specific 

individual. However, many of the Later Prehistoric bones originated from assemblages of 

comingled disarticulated remains. The Historical assemblage included disarticulated material 

that had been collected as part of charnel deposits, or that had accrued within grave fills as a 
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result of disinterment by grave digging. Anatomical sidings of samples become important in 

these instances in ensuring that skeletal elements from the same individual were not sampled 

more than once. The femur that was chosen in each case was dependent upon availability. The 

default position was to sample from the left femur consistently to ensure no replicate 

sampling of individuals. Right femora were sampled at sites where this element was more 

abundant and its selection facilitated larger sample sizes.  

Femoral samples were easily obtainable from the disarticulated and articulated Historical 

assemblages where there were high numbers of individuals represented and abundant 

desirable skeletal elements. However, the volume of human bone recovered from the Later 

Prehistoric contexts was sometimes too low to acquire a good sample size from femora alone. 

In these rare situations, samples were taken from alternative skeletal elements. The rationale 

behind the choice of samples in these cases was specific to each site. The two main variables 

that had to be controlled in selecting these samples were proportions of cortical and 

trabecular bone and proximity of a skeletal element to the gut. A system of selection was 

established based upon structural and anatomical similarity to the femur. Shafts of long bones 

contain relatively analogous proportions of cortical and trabecular bone (Junqueira et al. 

1985). If a femur was not available from a discrete individual, than the next preferred choice 

was a different long bone from the lower limb, then humerii, then any upper limb long bone, 

then any available long bone (including clavicles or metatarsals/metacarpals). This system was 

expected to limit variation in diagenesis that might have occurred as a result of variability in 

the diagenetic potential of discrete skeletal elements. 

The majority of ready-made samples available within the University of Sheffield’s collection 

consisted of long bones from discrete individuals. Most of these samples were femoral and 

could be included within the current study without any difficulty. The collection also contained 

small numbers of tibiae, humerii and fibulae from discrete individuals. The success of the 

current study was dependent upon optimising sample size. Therefore, it was prudent to 

include thin sections from non-femoral long bones, particularly in examples where their 

exclusion would have significantly reduced site sample sizes.  

The potential influence of bone architecture on diagenesis meant that it was necessary to 

consistently target sampling of long bones at the diaphyses (Hedges et al. 1995; Turner-Walker 

2008). Long bone diaphyses were sampled in all cases, as they are mostly constituted of 

cortical bone, as opposed to the epiphyses, which include higher proportions of trabeculae. 

Inevitably there was some variation in exact diaphyseal location that was sampled, particularly 
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in cases where bones were fragmented or incomplete. All samples were taken from variable 

locations on the long bone mid-shaft. 

Attempts were made to account for the potential element-specific patterns of bone diagenesis 

at the analysis stage. The histological preservation of non-femoral skeletal elements was 

scrutinised to establish whether certain bones were intrinsically more or less susceptible to 

diagenetic processes and whether variation related to proportions of cortical bone, proximity 

to the gut, or any other factor. Significant results were controlled in the overall analysis. Any 

skeletal elements that consistently deviated from the diagenetic norm were excluded from the 

analysis. 

 

3.2 ANALYSIS OF BONE DIAGENESIS 
 

3.2.1 Thin Section Light Microscopy 

 

The University of Sheffield Department of Archaeology included the facilities to conduct 

histological analysis of bone samples using thin section transmitted light microscopy. This 

technique allows for the observation of the histological preservation of bone as well as any 

staining, inclusions and infiltrations (Hackett 1981; Garland 1987; Schultz 1997). The images 

that this technique produces do not have the same level of resolution as SEM (Turner-Walker 

& Syversen 2002; Hollund et al. 2012). In particular the small pits and microchannels that 

constitute MFD can be visualised with much greater clarity using SEM (Turner-Walker et al. 

2002).  

SEM was not available within the University of Sheffield Department of Archaeology and 

access to use relevant facilities would have been time-consuming and expensive. It was 

unlikely that use of SEM would have facilitated the analysis of large numbers of samples. The 

resolution of analysis provided by thin section light microscopy was good enough to address 

the aims of the current study.  

The facilities available at the University of Sheffield meant that the methods of sample 

preparation and analysis involved with thin section light microscopy were quick and facilitated 

the preparation of large numbers of samples. Assessment of histological preservation using 

SEM and thin section light microscopy both utilise scales that translate the percentage of 

remaining bone microstructure into an ordinal score (Hedges et al. 1995; Turner-Walker & 
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Syversen 2002). Therefore the basic quantified assessments of histological preservation by 

either thin section light microscopy or SEM were unlikely to differ substantially. All of the 

ready-made samples available within The University of Sheffield Department of Archaeology’s 

collections consisted of thin sections prepared for light microscopy. The use of thin sections 

analysis would allow the incorporation of this substantial collection. The practicalities and 

availability of the thin section light microscopy in meant that this technique was the obvious 

choice for use in the analysis and assessment of histological preservation in bone samples for 

the current study.    

 

3.2.2 Analysis of the Mineral Phase 

 

Thin section light microscopy cannot be used to accurately record diagenesis to the bone 

mineral. The aim of the current study was to attempt to characterise whole bone diagenesis. 

None of the techniques for measuring bone crystallinity were available at the University of 

Sheffield Department of Archaeology. The only way that the bone mineral could be analysed 

was through application to outside institutions. The requirement to access outside institutions 

for crystallinity analyses meant that it was unlikely that every bone sample included could be 

subjected to such testing. It was hoped that analysing the crystallinity of two or three 

specimens from each site would provide some indication as to the specific changes that had 

occurred throughout site assemblages. Time would be allocated for any additional sampling of 

bones that had provided anomalous readings. For instance, in situations where the alteration 

to the bone mineral did not correspond with the burial conditions. Such a result could indicate 

that the depositional environment of a skeleton had changed (Parker Pearson et al. 2005). 

X-ray diffraction techniques could be accessed through application to the Diamond Light 

Source synchrotron facility in Didcot, Oxfordshire. The Diamond Light Source puts out 

invitations to use particular beams in research projects in April and September. If accepted, 

the researcher is provided with a block of days when they can utilise their chosen light source. 

Applications for beamtime were sent to the Diamond Light facility in September 2010, April 

2011 and September 2011 and April 2012. Unfortunately, none of these applications were 

successful. The failure to gain access to techniques was disappointing, but did not affect the 

ability of the current project to address the primary research aims. Measures of bone mineral 

change are mostly pertinent to environmental degradation or heat treatment. The main focus 

of the current project was the assessment of bacterial bioerosion which could be gauged using 
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the available techniques. The lack of a holistic diagenetic characterisation of the bone samples 

narrowed the project from a study of overall diagenesis to one that mostly related to 

bioerosion and histological preservation.  

 

3.3 HUMAN BONE THIN SECTION PREPARATION & ANALYSIS 
 

3.3.1 Sampling Bone for Thin Sectioning 

 

The saw microtome method of producing thin sections that was employed in the current study 

relies on an initial trimming slice to zero the level of the sample and allow for the section 

thickness to be measured out using the built-in micrometer. The clamp that holds the sample 

only drops around six centimetres into the central waste water well (Image 3.1). Bone samples 

longer than six centimetres protrude over the blade. In these cases, it was easier to cut a 

separate sample from the whole bone or bone fragment. The clamp has a maximum diameter 

of around four centimetres, and so wider bone fragments also had to be cut to fit. Smaller 

samples had to be taken from complete femora in order to provide a specimen that could be 

installed within the saw microtome. The need to acquire bone samples below certain 

dimensions necessitated the preferential sampling of fragmented remains, as sampling directly 

from a bone fragment had a lower impact on research potential than cutting a piece from an 

intact skeletal element. 
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Image 3.1: Close-up photograph of the sample clamp in situ within the saw microtome. The clamp can only drop so 
far into the waste water well (taken by the author). 

 

In situations where it was necessary to cut a sample from a bone, no more than what was 

considered essential for the production of a useful thin section was extracted. Samples usually 

consisted of a section of bone around one centimetre by one centimetre that encompassed 

the entire cortical cross section of the long bone shaft down to the medullary cavity (Image 

3.2). Sections were removed from the bone using a Foredom K.1070 rotary saw. The use of 

bone fragments meant that the overall cross-sectional area represented by each bone thin 

section varied. However variation in cross-sectional area should not have affected the scope of 

analysis, as the method of assessment measures the proportion of bone affected by bacterial 

attack, which does not differ significantly across different parts of the long bone cross section 

(Hackett 1981; Hedges et al. 1995). 
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Image 3.2: Archaeological human femur that had been sampled for thin section analysis. The sample of bone that 
has been taken is typical the size of fragment required for cutting in the saw microtome (taken by the author). 

 

Thin sections of bone can be transverse, i.e. perpendicular to the long axis of the bone, or 

longitudinal, i.e. in parallel with the long axis of the bone. The majority of studies that have 

investigated and characterised osteolytic microbial alteration and bone microstructure have 

examined transverse thin sections (Stout 1978; Hackett 1981; Garland 1987; Schultz 1997). 

Anatomical features and diagenetic changes are easier to identify and characterise within 

transverse sections of bone (Stout 1978; Hackett 1981; Garland 1987; Schultz 1997). 

Transverse thin sections can also cover the whole cross-sectional area of a bone and provide a 

better indication of overall diagenesis. Most of the material included in the University of 

Sheffield’s collections consisted of transverse thin sections. Only transverse sections of bone 

were produced and included in the current study. 

 

3.3.2 Preparation of Human Bone Thin Sections 

 

Bone thin sections can be prepared in one of two different ways. A thick section can be cut 

from a bone sample using a regular vertical microtome and grinded down to the required 

thickness using abrasives (de Boer et al. 2013). Bone thin sections can also be produced 

directly using a saw microtome. Saw microtomes consist of horizontal circular blade mounted 

onto a micrometer that allows the precise production of bone sections a few microns in 

thickness. Early blade microtomes were prone to damaging archaeological samples. Thin 
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sections produced using this method often demonstrated microfissures as a result of the stress 

produced by the blade microtome (Schultz 2001). Annular saw microtomes were designed 

specifically for cutting hard materials such as bone and teeth. Saw microtomes include 

diamond-tipped blades that are much less prone to damaging fresh and archaeological bone 

samples during cutting.  

Production of thin sections using a saw microtome is less laborious than a grinding method. 

Grinding requires consolidation of the bone structure by an embedding agent, which voids the 

research potential of left-over fragments. Archaeological bone specimens rarely have to be 

reinforced using an embedding agent for thin section production using an annular microtome. 

Fragments of bone left over from archaeological samples cut using a saw microtome maintain 

their potential for use in future analyses. The grinding method involves larger portions of bone 

being ground down to produce a single thin section. The use of an annular microtome allows 

for the production of several thin sections from a bone fragment of equivalent size and most 

of the original sample is left over at the end. Once the trimming slice has been removed, a 

bone fragment will only lose a few hundred microns of its length to the thin-sectioning 

process. All of the thin sections that constituted the Department of Archaeology’s collections 

consisted of samples that had been produced by a saw microtome. Thin sections were 

prepared using the saw microtome for the current project, as this method represented a quick, 

cheap and efficient option and would allow sections to be produced consistent with those that 

were already accessible.  

All of the thin sections used in the current study were cut from the bone samples using a Leica 

1600 diamond-saw microtome. This machine can produce bone thin sections between five and 

two hundred microns in thickness with a precision of five microns. The blade of the microtome 

is cooled during the cutting process by water from the mains. The movement of the 

microtome clamp holding the sample towards the saw blade is controlled by an internal spring. 

A knob on the side of the machine manipulates this spring and controls the cutting speed. The 

optimal cutting speed varied between samples. If a section was cut too quickly, remnants of 

the progress of the saw were embedded within the bone surface, which spoiled the quality of 

the section. Slow cutting ensured a good quality section. However, a slow cut was not always 

suited to the condition of the archaeological samples, which sometimes crumbled away with 

the progress of the blade.  

The thickness to which each thin section was cut was dependent upon the integrity of the 

bone samples. Well-preserved samples could be cut to thicknesses of 50 microns or lower, 
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whereas more friable specimens would not maintain their integrity at thicknesses below 120 

microns. The thickness of a bone section affects the appearance of the microstructures. 

Thicker sections are more opaque and microstructural features can appear altered when 

compared to the same structures in thinner sections. Microbial tunnelling within thicker 

sections has an amorphous appearance due to the superimposition of several layers of activity. 

The difference in thickness between the sections used in the current study should not have 

significantly affected the ability to identify and characterise features of interest. However, 

differences in thickness were recorded and considered during examination of thin sections. 

The need to cool the blade through the application of water from the mains meant that the 

thin sections produced by the microtome were wet when they were retrieved from the 

machine. Each thin section was left to dry naturally before being mounted. It was possible that 

elements or microorganisms within the water, as well as the movement of water itself, may 

have affected the histological preservation of each section. No diagenetic phenomena were 

observed within any of the thin sections post mounting. The histological preservation of some 

of the samples that were included in the current study was immaculate. Thin sections of fresh 

animal bone that had been prepared using a similar method showed no detrimental effects to 

their microstructures as a result of the thin sectioning process. The time that the bone was 

exposed to water and the relative rapidity of sample drying ensured that the histological 

integrity of the bone thin sections was not significantly affected by the cutting method.  

Several sections were taken from each bone sample at different thicknesses and different 

speeds to ensure that a good quality section was obtained. Acceptable sections were produced 

from the majority of bone samples at between 50 and 100 microns in thickness. A small 

number of friable samples had to be cut at thicknesses between 100 and 120 microns. Any 

samples that continually failed to maintain their integrity at 120 microns were embedded in 

resin to consolidate their structure. This thickness was chosen because thin sections cut above 

this threshold might have begun to demonstrate increased levels of opacity that could have 

been detrimental to the assessment of the bone microstructure (de Boer et al. 2013). Studies 

of bone thin sections often involve the decalcification or staining of samples to enhance 

microstructural features (de Boer et al. 2013). These methods were not necessary for the 

histological examination of the samples used in the present study. 

Thin sections were mounted onto glass microscope slides using a few drops of Entellan 

microscopy resin (Merck chemicals) and a glass coverslip. The glass coverslip was placed onto 

the fluid at each corner sequentially to minimise formation of air bubbles that might obscure 
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microstructural features. Entellan consists of a number of synthetic polymers suspended in 

xylene. This type of resin was chosen for mounting as its refractive index is similar to glass, it 

cures rapidly (20 minutes at room temperature), does not require any prior preparation, does 

not degrade or change colour significantly over time, is resistant to temperature and light and 

is pH neutral. The use of this mounting fluid ensured that good quality and durable bone thin 

sections could be produced rapidly. Pure xylene was used to clean up any excess fluid or 

spillages. Entellan can produce toxic fumes, therefore all thin sections were mounted under 

the hood of a fume cupboard.  

The thin sections already held within the Department of Archaeology’s collections had been 

prepared in a similar manner, although some had been mounted using the Euparal (Alpha 

Chemika) microscopy fluid. This mounting medium has similar properties to Entellan in terms 

of durability and inertness. However, Euparal has a slight yellowish tint. The weakness of this 

yellow tint meant that the use of this fluid would not have affected histomorphological 

assessments of bone thin sections.  

After mounting, each thin section was left to cure for a few hours. The Entellan should have 

cured within twenty minutes, but more time was allocated to make sure the mounting 

medium was not disturbed during drying. After the sections were dried, each individual slide 

was permanently labelled with the site details, context numbers, specimen numbers, slide 

number and section thickness.  

 

3.3.3 Embedding 

 

Bone samples that were too fragile to cut at 120 microns were embedded within the epoxy 

resin Araldite 2020 (Huntsman Advanced Materials). Resins of this sort do not consolidate the 

bone structure through impregnation, but surround the bone supportively so that it does not 

crumble when cut by the microtome. Araldite was chosen because it is inert and has a 

refractive index similar to glass. Araldite cures quickly compared to other embedding 

mediums, and whilst prior heating decreases curing time and increases bonding power, no 

prior treatment is required.  

The Araldite was produced by mixing the resin with the hardener at a ratio of 1:3.5 volume. 

Araldite is corrosive, and so the mixing was performed in a fume cupboard whilst wearing a lab 

coat and gloves. Araldite is also hazardous to the environment. Excess resin and all materials 

that it had touched were disposed of as hazardous waste. The bone samples were placed into 
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separate compartments of an ice cube tray, which were labelled with sample numbers. The 

Araldite mixture was poured over the samples until they were submerged, then left in a fume 

cupboard at room temperature for 48 hours to cure. Araldite ceases to be toxic or corrosive 

when hardened. The embedded bone specimens were thin sectioned using the method 

described above.  

A minority of the ready-made samples from the Department of Archaeology’s collections had 

previously been embedded using the LR White acrylic resin (Agar Scientific). This embedding 

medium would not have affected the constitution of the thin sections in a significant way, 

although the resin sometimes retained a slight yellow tint. The potential yellow tint was taken 

into consideration when the relevant samples were examined.    

 

3.3.4 Histological Examination 

 

All thin sections were analysed and assessed using transmitted light binocular microscopes 

fitted with polarising filters. Each thin section was examined at 25, 40 100 and 400 times 

magnification. The polarising filter enabled the examination of thin sections under cross-

polarised light, which facilitated assessment of collagen fibril birefringence. All digital 

micrographs of bone thin sections were captured using an eye-piece mounted Lumera Infinity 

digital microscopy camera in conjunction with the Lumera Infinity Capture and Analyse 

software. Adobe Photoshop software was used to insert scale bars on the micrographs, but 

images were not altered in any other way. 

 

3.4 MEASURES OF DIAGENESIS 
 

Thin section light microscopy was the only method of analysis that was used in the current 

study. This technique allowed for accurate estimates of histological change and loss of the 

organic fraction of bone, but could not be used to infer changes to the mineral phase. 

However, histological analysis also allows for the recording of other diagenetic alterations to 

the microstructure, such as microfissures, staining, inclusions and infiltrations. The methods 

used for recording diagenetic features for the present project are discussed in this next 

section. 
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3.4.1 Assessment of Bioerosion 

 

3.4.1.1 Oxford Histological Index 

 

OHI 
Score 

Percentage of 
Microstructure 
Remaining 

Description 

0 <5% No original features identifiable, except 
Haversian canals. 

1 <15% Small areas of well-preserved bone present, or the 
lamellate structure is preserved by the pattern of 
destructive foci. 

2 <50% Some well-preserved bone present between destroyed 
areas. 

3 >50% Larger areas of well-preserved bone present. 

4 >85% Bone is fairly well preserved with minor amounts of 
destroyed areas. 

5 >95% Very well preserved, similar to modern bone. 

Table 3.1: Oxford Histological Index (Millard 2001: 640) 

 

The standard method of assessing bioerosion within bone thin sections is the Oxford 

Histological Index (OHI) (Hedges et al. 1995; Millard 2001). This system was originally devised 

by Hedges et al. (1995) and subsequently modified by Millard (2001) to accommodate 

archaeological thin sections that demonstrated medium levels of histological preservation 

(Table 3.1). The OHI translates an assessment of the percentage of remaining unaltered bone 

microstructure into an ordinal grade ranging from zero to five, representing the worst and best 

preserved microstructure respectively. The proportional assessments are supplemented by a 

description of each stage of attack (Hedges et al. 1995; Millard 2001).  

The OHI method is subjective, although inter-observer testing performed by Hedges et al. 

(1995: 203) found that deviations were not significant and repeat assessments never differed 

by more than one unit. Inter and intra-observer testing of the OHI method by a postgraduate 

student at the University of Sheffield similarly produced no significant differences (Downey 

2012). Studies of bone that have measured more than one diagenetic parameter have 

confirmed that OHI scores correlate with bone protein content and biomolecular loss, 

suggesting that they represent true underlying variation in bone degradation (Hedges et al. 
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1995; Nielsen-Marsh & Hedges 2000; Hedges 2002; Jans et al. 2004; Nielsen-Marsh et al. 

2007). OHI scores also correspond with measures of ‘m’ microporosity in bone, which 

represent the most objective measure of microbial bioerosion (Nielsen-Marsh et al. 2007).  

OHI scores cover the whole range of histological preservation, but do not represent equal 

graduations (Hedges et al. 1995; Millard 2001). The highest and lowest two scores represent 

30% of possible variation collectively, whereas the middle two scores account for the 

remaining 70% (Hedges et al. 1995; Millard 2001). The microstructure of most archaeological 

bones that Hedges et al. (1995) used to formulate their method demonstrated very high or low 

levels of histological preservation, with few samples falling in the middle. The OHI system was 

developed to accommodate this patterning by capturing more variation at the top and bottom 

of the scale where most bone samples were likely to lie. The consistency in bimodal 

distributions of histological preservation amongst archaeological bones has been challenged by 

more recent studies (Nicholson 1996; Davis 1997; Millard 2001). In an assemblage where 

histological destruction of bone was randomly variable, a scoring system such as the OHI 

would bias the results towards the middle scores of two and three. The use of the OHI in the 

current study meant that the distribution of scores would have to be monitored to ensure that 

bias had not created an overrepresentation of middle values. 

Studies of bone diagenesis that utilise SEM have formulated a method of bioerosion 

quantification that utilises image analysis software (Turner-Walker & Syversen 2002). 

However, the similarities between different diagenetic phenomena in thin sections observed 

using transmitted light microscopy would make it difficult for image analysis software to 

accurately identify specific regions of bioerosion. Hollund et al. (2012: 5) modified the OHI to 

take into account all diagenetic phenomena that could be detected through histological 

analysis, such as microfissures, which provided an overall quantified assessment of bone 

diagenesis (General Histological Index (GHI)). This scale would not have suited the aims of the 

current study, as the varied diagenetic features that Hollund et al. (2012: 5) recorded are likely 

to be influenced by several disparate factors. Their amalgamation into a single quantity would 

produce a variable that was influenced by too many diverse influences to be used to say 

anything of use, particular regarding bioerosion. The OHI was produced in order to capture 

variation in bioerosion specifically, which was consistent with the aims of the present study. If 

primary analysis of the results suggested that there was a significant correlation between 

bioerosion and other diagenetic features, then their combination into a single variable could 

be enacted at a later stage. Most studies that have investigated bone bioerosion in 

archaeological thin sections have used the OHI, and so the use of this method in the current 
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study would produce comparative data (Hedges et al. 1995; Nielsen-Marsh & Hedges 2000; 

Jans et al. 2004; Nielsen-Marsh et al. 2007; Hollund et al. 2012). The OHI was the only viable 

choice for assessing bioerosion and related histological preservation within thin sections. 

A number of the archaeological thin sections from the University of Sheffield’s collections had 

been used in previous studies of microbial bioerosion (Goodfield 1992; Ashford 1998; Tryzelaar 

2003; Economou 2003; Davidson 2009). Most of these studies had employed novel methods of 

quantification, rather than the OHI. Almost all of the ready-made histological thin sections 

from the University of Sheffield’s collections had to be assessed with the OHI for the first time 

for the current project. In examples where histological preservation had been assessed using 

the OHI, the scores for each section were reassessed by the author without prior knowledge of 

the original result. The old and the new scores were compared and any specimens where the 

two scores differed by more than one unit were discounted. Fortunately, none of the thin 

sections had to be excluded on this basis. In cases where there was a difference, the author’s 

assessment was taken in order to maintain consistency with scores from the rest of the 

samples.  

The abundance of MFD within transverse archaeological bone thin sections often varies 

depending on the part of the section being examined. MFD appear most commonly within sub-

periosteal and sub-endosteal zones, leaving well-preserved regions of bone at the mid-section 

as well as at the periosteal and endosteal margins (Hanson & Buikstra 1987; Bell et al. 1996; 

Hedges 2002; Parker Pearson et al. 2005; Turner-Walker & Jans 2008; Hollund et al. 2012). The 

OHI was scored for the periosteal, internal and endosteal thirds in each thin section in order to 

capture any intra-section variability in bioerosion and to test whether there were any 

consistencies in the patterns of attack. Differential patterns of microbial attack might be 

caused by diverse diagenetic trajectories. The complete thin section was then assessed to 

provide a Whole OHI score.  

 

 

3.4.1.2 Presence of Non-Wedl MFD 

 

The presence of all four of Hackett’s (1981) MFD types (Linear Longitudinal, Wedl, Lamellate 

and Budded) were recorded initially from each bone thin section. Types of tunnelling were 

recorded to compare their distributions to the results of other studies and to determine 

whether the appearance of particular MFD is influenced by discrete variables. However, it 
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became apparent that the linear longitudinal, lamellate and budded MFD (non-Wedl MFD) 

almost always appeared concurrently (Image 3.3). Previous studies of archaeological material 

have concluded that these tunnelling types are likely to have a shared bacterial aetiology (Bell 

et al. 1996; Jackes et al. 2001; Jans et al. 2004). The notion that the three non-Wedl MFD were 

representative of the same phenomena, combined with their covariance within the current 

study meant that it was suitable to produce a single presence/absence variable for the 

occurrence of all three types of non-Wedl MFD that was taken to represent the presence of 

bacterial bioerosion. This parameter would present a distinct record of samples where 

bacterial bioerosion had been entirely inhibited, which would supplement the OHI scale. 

 

Image 3.3: Micrograph of a transverse thin section of an archaeological human femur. All three types of non-Wedl 
MFD can be observed in isolation and in coalescence. Red Arrow = budded, Blue Arrow = linear longitudinal, Yellow 

Arrow = lamellate (taken by the author). 

 

 

3.4.1.3 Presence of Wedl MFD 

 

The OHI represents a measure of all types of destructive biotic change to the bone 

microstructure, and it was expected that this parameter would account for any observed 

variation in fungal Wedl tunnelling. However, in the majority of the cases where they 

appeared, Wedl tunnels found within the current study sample were concentrated on small 

areas of bone that had been spared by the organisms that produce non-Wedl tunnelling 
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(Image 3.4). The limited extent of Wedl tunnels meant that they had rarely destroyed enough 

of the bone microstructure to register on the OHI scale. The extent of Wedl tunnelling did not 

vary considerably between bone samples where it was present. However, it was necessary to 

make some record of this form of bioerosion, as previous studies had suggested that it may be 

indicative of specific depositional circumstances (Jans et al. 2004). Therefore Wedl tunnelling 

was recorded within each sample on a presence/absence basis. 

 

Image 3.4: Micrograph of a transverse thin section of an archaeological human femur demonstrating Wedl 
tunnelling in an area of the bone that had been unaffected by bacterial tunnelling (taken by the author). 

 

 

 

 

3.4.2 Assessment of other Measures of Diagenetic Bone Degradation  

 

3.4.2.1 Collagen Birefringence 

 

The survival of collagen birefringence is commonly measured using the Birefringence Index, 

which affords an ordinal score depending on the intensity of fibril brightness (Jans et al. 2002) 

(Table 3.2). This method is subjective, although the low number of potential outcomes 
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combined with the well-defined categories suggest it is unlikely that there would be significant 

deviation in scores between observers (Jans et al. 2002). The method provided a quick and 

simple way of recording collagen loss.  

Collagen birefringence is affected by any mechanism that removes protein from the bone, and 

will vary with the intensity of microbial attack (Hackett 1981). Deviations from this model 

could be used to infer instances where collagen has been lost by a mechanism other than 

bioerosion. Measures of collagen birefringence may be useful for identifying bone from 

circumstances which promote alternative types of collagen degradation that preserve the 

histological bone structure, such as Accelerated Collagen Hydrolysis (Smith et al. 2007). Thin 

sections that had lost collagen through hydrolysis would not appear degraded under normal 

transmitted light, but examination under polarised light would reveal a loss of birefringence. 

Whole samples were assessed and scored using the Birefringence Index (Jans et al. 2002). 

Birefringence Index Description 

1 Collagen birefringence is bright and comparable to fresh bone. 

0.5 Collagen birefringence is reduced. 

0 Collagen birefringence has been obliterated. 

Table 3.2: Birefringence Index produced using Jans et al. (2002). 

 

3.4.2.2 Microfissures 

 

Microfissures have most often been recorded quantitatively using the Microcracking Index 

(Jans et al. 2002). The number of osteons affected by microfissuring within a particular area 

are counted and the ratio of fissured/non-fissured osteons is calculated (Jans et al. 2002). The 

large number of variables that influence the frequency of microfissures combined with the 

difficulty in discerning the processes that cause particular kinds of fissuring meant that 

measurements of their abundance were not likely to have had much utility in addressing the 

aims of the present study. There have been no previous associations between this diagenetic 

parameter and early post mortem taphonomy. Bone bioerosion is mostly unrelated to 

occurrence of microfissures (Hackett 1981; Jans et al. 2002). The Microcracking Index is time-

consuming to measure and so the use of this parameter would have potentially required a lot 

of work for little result (Jans et al. 2002).  
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The presence of microcracking was recorded qualitatively for each thin section. It was 

considered whether microfissures should have been recorded on a presence/absence basis. 

However, the shape, extent and distribution of microfissures differed so markedly in the small 

proportion of remains where they were present that a presence/absent system seemed 

inappropriate. The futility of recording microfissures was increased by the likelihood that they 

had various possible causes (Jans et al. 2002). Qualitative descriptions of microfissures were 

produced for each bone thin section and employed in the site-specific discussions of bone 

diagenesis, but no quantitative recording systems was employed. These descriptions did not 

form part of the main analysis, but were employed in site-specific discussions of bone 

histology in cases where they aided interpretations of diagenetic patterns. 

 

3.4.2.3 Persistence of the Periosteal surface 

 

A common observation amongst studies of archaeological bone thin sections is that the 

periosteal and endosteal fringes of bone thin sections persevere regardless of the histological 

preservation of the bone cross-section as a whole (Hanson & Buikstra 1987; Nielsen-Marsh & 

Hedges 2000; Hedges 2002; Jans et al. 2004; Hollund et al. 2012) (Image 3.5). Studies that 

discuss this observation do not provide any specific information regarding its prevalence 

(Hanson & Buikstra 1987; Hedges et al. 1995; Hedges 2002; Jans et al. 2004). The presence of a 

preserved periosteal surface was recorded in each sample using a binary system to measure its 

frequency and determine whether it is independent of other parameters of bone diagenesis. 

The measurement of this variable may have some bearing on the interpretations of diagenetic 

signatures.  
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Image 3.5: Micrograph of an archaeological human femoral transverse thin section. The histological preservation of 
the periosteal surface persists despite the rest of the sample having been intensively tunnelled (taken by the author). 

 

3.4.3 Visual Diagenetic Changes 

 

Visual diagenetic changes, consisting of staining, inclusions and infiltrations, represent factors 

that alter the appearance of the bone microstructure but do not necessarily contribute to 

histological degradation. Visual diagenetic changes are usually taken to represent the results of 

interactions between the bone and minerals contained within the external burial environment 

(Garland 1987; 1993; Grupe & Dreses-Werringloer 1993; Gross et al. 1997; Schultz 1997; 

Turner-Walker 1999; Hanson & Cain 2007; Turner-Walker & Jans 2008; Hollund et al. 2012). It 

was pertinent to produce a record of the visual diagenetic features present within each bone 

sample, as their nature and extent were likely to reflect the composition of the depositional 

environment (Turner-Walker & Jans 2008; Hollund et al. 2012). Assessment of these features 

would produce a more rounded analysis of bone diagenesis and provide insight into how the 

bone sample had interacted with its burial context (Turner-Walker 1999; Turner-Walker & Jans 

2008; Hollund et al. 2012). A test of the association between the occurrence of these variables 

and measures of bone degradation would help control for environmental effects on 

bioerosion.  
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The presence or absence of particular forms of staining, inclusions and infiltrations could also 

be used to deduce whether a body originally decomposed under anoxic conditions through the 

identification of pyrite inclusions and orange iron oxide staining (Turner-Walker 1999; Turner-

Walker & Jans 2008; Hollund et al. 2012). No method of quantification has yet been developed 

for recording the presence of visual diagenetic features within archaeological bone thin 

sections. These features were recorded descriptively, and a method of quantification was 

developed based on these observations. This approach meant that it was possible that the 

methods of quantification used in the current study would only be applicable to this specific 

study sample. 

 

3.4.3.1 Staining 

 

Staining in all samples could be classified by colour as orange, yellow and brown. The colour of 

staining was constant across most bone samples. Variation in staining colour observed within a 

thin section was usually a result of diversity in a single colour. A small proportion of samples 

which demonstrated different intensities of staining included all three colours and it was 

possible that all types were the product of the same process or element. The extent of staining 

could be classified within one of four categories (Table 3.3). Staining Scores were recorded for 

each separate colour in present in each sample. 

 

Score Assessment Description 

0 None No staining visible 

1 Superficial Staining is concentrated exclusively at the periosteal and endosteal 
surfaces. 

2 Fair Staining is present at periosteal and endosteal surfaces as well as within 
internal osteons. 

3 Extensive Staining is present throughout the microstructure. 

Table 3.3: Outline of the Staining Score method. 
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3.4.3.2 Inclusions 

 

Inclusions consisted of material deposited within the natural bone porosities. Qualitative 

recording of inclusions revealed that there was little variation in their colour and morphology 

across all samples. Most inclusions consisted of amorphous coarse orange or brown 

accumulations. The material became more opaque when it had collected in high densities 

within porosities and appeared almost black in certain samples. Gradation between the 

orange, brown and black colour of inclusions could be observed within single thin sections and 

sometimes within single porosities, which confirmed that these three colours represented the 

same material. These features were labelled ‘Orange’ inclusions, although it should be stressed 

that this label represented a convenient classification of a ubiquitous granular substance 

whose colour could vary from orange to brown to black.  A second type of inclusion observed 

in a minority of samples consisted of large grey or transparent structures. These ‘Grey’ 

inclusions tended to appear in isolation filling the Haversian canal and resembled a solid mass 

rather than an accumulation of smaller grains. The frequency of inclusions within sections 

could be classified within one of four ordinal categories; none, infrequent, frequent and 

pervasive (Table 3.4). This variable was recorded for each colour category in each sample. 

Score Assessment Description 

0 None No inclusions observable. 

1 Infrequent Inclusions were visible in the minority of microporosities that could be 
observed. 

2 Frequent Inclusions were visible in the majority of microporosities that could be 
observed.  

3 Pervasive Inclusions were present in almost every observable microporosity. 

Table 3.4: Description of the method used for scoring the frequency of inclusions. 

 

 

3.4.3.3 Infiltrations 

 

Infiltrations consisted of materials that had been deposited within the bone matrix rather than 

natural porosities. Infiltrations within all thin sections consisted of orange and black particles 

of material. These two colours were present within all thin sections that demonstrated 

infiltrations, and could not be meaningfully separated. The extent of infiltrations did not vary 
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significantly. These features usually appeared around porosities that were densely packed with 

inclusions. It was possible that the limitations of the thin section microscopy method meant 

that the different types of infiltrations could not be discerned. The lack of variation in the type 

and extent of infiltrations meant that they had to be measured on a presence/absence basis.  

 

3.5 RECORDING OF VARIABLES THAT POTENTIALLY INFLUENCED BONE DIAGENESIS 
 

There are a variety of factors that could potentially affect diagenetic interactions (Rodriguez & 

Bass 1983; 1985; Mann et al. 1990; Campobasso et al. 2001; Wilson et al. 2007; Vass 2011; 

Zhou et al. 2011). The nature of the archaeological material meant that it was impossible to 

control for all of these features whilst retaining a useful sample size. The aims of the current 

study dictated that if there was a significant relationship between funerary treatment and 

bone bioerosion, then most features would not have significantly influenced levels of bacterial 

attack in bone. However it was important that at least some of these potential influences were 

considered and assessed when interpreting the results of measures of bone bioerosion. 

With regards to other measures of bone diagenesis, the extent to which recorded influential 

factors could be perceived to have influenced bone diagenesis would dictate whether the 

relationship between diagenesis and early taphonomy was strong enough to suggest that 

microscopic examination of bone would be useful in determining the nature of funerary 

processes. Therefore, there was some attempt to record the main factors that were likely to 

have affected putrefactive decomposition and bone diagenesis. This preparation included 

strategies to anticipate the possibility of bone bioerosion having been caused by exogenous 

bacteria.  

 

3.5.1 Environmental Factors 

 

3.5.1.1 Soil Type 

 

Previous microstructural studies of archaeological bones from across varied sites established 

that the intrinsic physical and chemical properties of the burial environment have no effect on 

overall levels of bone bioerosion, although it was unknown how these factors may have 

affected other type of bone diagenesis (Hanson & Buikstra 1987; Nielsen-Marsh e al. 2007; 
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Smith et al. 2007). The present study did not have the time nor resources to conduct similar 

tests on soils that had surrounded every bone that was sampled. The sites that were included 

in the current study sample were scattered around the country and had been excavated at 

different times. The bones from these sites had been recovered from a variety of different 

sediment types. It was unclear whether burial soil samples from every site would have been 

extant or accessible. 

It was necessary to include some record of the burial conditions of each site to ensure that soil 

composition had not affected the way in which the archaeological bone had been bioeroded, 

either through the actions of exogenous microorganisms, or by soil properties interfering with 

enteric decomposition. Measurement of soil type was also necessary to address variation in 

other diagenetic factors that were to be recorded, such as staining, inclusions and infiltrations. 

If any of these microstructural features varied consistently with bioerosion, it would be 

important to establish why, and whether this variation was related to treatment of the body or 

burial environment. The way in which each site report had recorded burial sediment varied 

widely. The exact wordings of the reports regarding the burial sediments were recorded 

initially for each sample.  

After all of the burial sediments had been catalogued for each site, attempts were made to 

develop a system that could be used to classify similar soils. The sediments could be split into 

one of four broad categories; sand, silt, clay or gravel. Bones from one site had never been 

buried in sediment and were allocated a separate category of ‘open’. The other categories 

crudely represented collective features of each soil, such as coarseness of soil particles (Figure 

3.1). These features would have dictated intrinsic factors of the soil that may have interfered 

within early bodily decomposition or abundance and composition of soil microbiota, such as 

soil aeration, drainage and composition (Rodriguez & Bass 1985; Janaway 1996; Dent et al. 

2004). The likely effect that these properties had on soil hydrology meant that it was probable 

they had some bearing on other types of diagenetic change (Nielsen-Marsh & Hedges 2000). 

These categorisations of soil type were rudimentary, but represented the best possible 

scenario in capturing variation between the sites used in the current study. 
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Figure 3.1: Diagram of variation in soil texture used as a basis for the classification of soil types (Janaway 1996: 59). 

 

It was originally intended that some measurement of soil pH would also be included. Soil pH 

has been found to affect bodily decomposition and microbial load of the soil (Manhein 1997; 

Haslam & Tibbett 2009). However, studies by Hanson & Buikstra (1987), Nielsen-Marsh et al. 

(2007) and Smith et al. (2007) all established that whilst overall bone diagenesis is heavily 

influenced by soil chemistry, measures of bioerosion did not fluctuate with variations in pH. A 

record of pH was still desirable in order to test this association within the bone assemblage 

that was used. Unfortunately, most site reports did not include specific measures of pH. Where 

pH was mentioned, soil types were usually classified broadly as neutral, alkaline or acidic. It 

was considered whether this three-category division could be used for the present study. It 

was thought that absent values could have been filled by regional results of nationwide 

surveys of soil pH. Unfortunately, the soil pH surveys were too imprecise to provide reliable 

soil pH values for specific archaeological sites.  

The next strategy that was considered involved inferring soil pH from the bedrock geology 

(Laslett et al. 1987; McGraph & Loveland 1992). Soils usually reflect the pH of their parent 

geology (Laslett et al. 1987; McGraph & Loveland 1992). Soils are also in constant mineral 

exchange with their underlying bedrock, and so geology will always influence overlying soil pH 
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to some extent (Laslett et al. 1987; McGraph & Loveland 1992). However, soil pH can also be 

affected by a large number of other natural and anthropogenic factors (Laslett et al. 1987; 

McGraph & Loveland 1992). After some attempts were made to discern soil pH from geology 

at a selection of sites, this system was deemed too complicated, time-consuming and 

unreliable for use in the present study.  

The three category system of classifying soil pH was also reconsidered, as it would have 

created a false division between soils that were quite similar. The pH of the soils that 

preserved archaeological bone had to be alkaline or close to neutral in order for the material 

to have survived into the archaeological record (Gordon & Buikstra 1981; Bethel & Carver 

1987; Nielsen-Marsh et al. 2000; Smith et al. 2007). Any system that discriminated between 

neutral and acidic soils would have created a false notion of distance, as the rarity of highly 

alkaline burial environments would have ensured that soil pH only varied from slightly acidic to 

moderately alkaline (Smith et al. 2007). These variations would not have been captured 

appropriately with categories of alkaline, neutral and acidic, as overall pH scores were likely to 

have been quite similar in terms of how they affected bodily decomposition and subsequent 

bone diagenesis (Haslam & Tibbett 2009). It was decided that there was no requirement to 

attempt to record soil pH for the current study, as the relationship between this factor and 

bone diagenesis had already been established using precise techniques. Any attempts to 

record soil pH were likely to have been simplistic and inaccurate in comparison (Hanson & 

Buikstra 1987; Nielsen-Marsh et al. 2007; Smith et al. 2007). The use of bone samples from 

dispersed archaeological site meant that if diagenesis varied significantly with changes in soil 

pH across the archaeological sites used in the current study, then the hypotheses set out in the 

Methodology would be invalidated.  

 

3.5.1.2 Anoxic Environments 

 

The overriding effect of anoxic environments on bodily decomposition and bacterial bone 

bioerosion meant that the potential influence of anoxic sediments had to be considered when 

interpreting the diagenetic signatures of the bones used in the current study (Polson et al. 

1985; Janaway 1996; Bottrell et al. 1998; Turner & Wiltshire 1999; Fielder & Graw 2003; Dent 

et al. 2004; Turner-Walker & Jans 2008; Vass 2011; Hollund et al. 2012). Anoxic environments 

can also influence visual diagenetic changes and non-biotic histological degradation (Turner-

Walker & Jans 2008; Hollund et al. 2012). Bones from individuals that had decomposed within 
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waterlogged or anoxic environments would be expected to demonstrate high levels of 

histological preservation compared to those that had decomposed in an aerated environment 

(Turner-Walker 1999; Turner-Walker & Jans 2008; Hollund et al. 2012). Under an endogenous 

model, bacterial bone bioerosion would only be affected by environmental anoxia that 

occurred whilst the body was decomposing. In cases where bodies had been surrounded by a 

dense sediment that was intrinsically anoxic from the point of deposition, it could be assumed 

that the body had decomposed anaerobically (Turner & Wiltshire 1999; Hollund et al. 2012).  

Anoxia promoted by waterlogging tends to be episodic and linked to the depth of burial, 

height of the water table or efficiency of soil drainage (Björdel et al. 2000; Powell et al. 2001; 

Holden et al. 2006). Environmental or anthropogenic changes that alter the height of the water 

table can render previously waterlogged anoxic environments as aerobic and vice versa 

(Björdel et al. 2000; Powell et al. 2001; Holden et al. 2006). The state of the burial sediments at 

the point when a skeleton was recovered could not be taken to reflect their state when the 

body was buried (Turner-Walker & Jans 2008). Early anaerobic decomposition could be 

inferred in cases where there was some survival or organic tissue and grave goods, as 

decomposition must have been affected by anoxia within the early post mortem period 

(Janaway 1996; Björdel et al. 2000; Powell et al. 2001; Holden et al. 2006). However, an 

absence of organic preservation could not be used to infer that there had been no previous 

environmental anoxia, as soft tissue and grave goods preserved during initial waterlogging 

could have then been lost when the environment became aerobic. Evidence for waterlogging 

at the point of recovery was not enough to assume that a body had decomposed under these 

conditions, as inundation may have been a recent occurrence. 

Anaerobic conditions were recorded on a presence/absence basis in cases where either the 

burial sediment was intrinsically anoxic, or there was evidence for waterlogging alongside 

survival of organic material from the point of burial. This record would allow for a test of the 

effects of anoxic conditions and whether they overshadowed any relationship between bone 

diagenesis and funerary treatment. It was possible that some of the skeletons that were 

classified as having originated from aerobic contexts had actually been interred initially within 

anaerobic environments, and vice versa. There was no way to counter-act this problem. The 

environmental circumstances and histories of any bones from aerobic contexts that 

demonstrated histological signatures consistent with anaerobic decomposition would have to 

be scrutinised at a later stage. 
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3.5.1.3 Climate & Season of Death 

 

Season of death cannot be determined or controlled for most archaeological human remains. 

However, significant relationships between seasonality and bone bioerosion would be 

apparent within the histological signatures of bones from all sites. Decomposition of buried 

and unburied remains is fastest in warmer months (Rodriguez & Bass 1983; 1985; Mant 1987; 

Galloway et al. 1989; Manhein 1997; Rodriguez 1997; Campobasso et al. 2001; Dent et al. 

2004; Carter et al. 2007; Wilson et al. 2007; Vass 2011; Meyer et al. 2013). If putrefaction and 

patterns of bone bioerosion were primarily dictated by season of burial, it would be expected 

that the whole spectrum of putrefactive bioerosion would be represented within each site 

assemblage. Barring any underlying biases in season of decomposition between Historical and 

Later Prehistoric remains, it would be unlikely that the hypotheses set out in the Background 

chapter (page 98) would be substantiated if season of death significantly affected bone 

bioerosion. 

The possible effect of climatic fluctuations on bacterial bone bioerosion emphasised the 

importance of keeping the study area within the confines of temperate Europe. These 

restrictions would ensure that the remains sampled for this project had decomposed under 

similar climatic conditions. Climate across the U.K. and temperate Europe varies to some 

extent but forensic studies suggest that this variation would not have altered decomposition 

rates significantly (Rodriguez & Bass 1983; 1985; Mant 1987; Galloway et al. 1989; Manhein 

1997; Rodriguez 1997; Campobasso et al. 2001; Dent et al. 2004; Carter et al. 2007; Wilson et 

al. 2007; Vass 2011; Meyer et al. 2013). Any variation in putrefactive bone bioerosion 

attributable to climatological variability should be apparent within a spatial distribution by 

latitude.  

The climate of the U.K and temperate Europe has varied over Late Prehistoric and Historical 

periods. There is little that can be done to address this problem, as remains from all periods 

had to be included if this project was to obtain representations of variable rites. The 

temporality of climatic conditions would have to be taken into account when the results are 

interpreted. It would be expected that there would be notable phase-specific patterns in bone 

bioerosion of the Historical remains if temporal changes in climate had significantly influenced 

bone bioerosion. 
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3.5.1.4 Cave Environments 

 

Some of the Later Prehistoric remains sampled for the current project had been recovered 

from caves. Most of the bones from cave sites had been disarticulated, although there was 

evidence to suggest that the whole bodies had decomposed within the cave environment 

(Chamberlain 1999). It was possible that the specific type of indoor bodily decomposition that 

occurs within a cave environment would produce a characteristic signature of putrefactive 

bone bioerosion (Galloway et al. 1989; Goff 1991; Terrell-Nield & MacDonald 1997; Anderson 

2011). A cave is a unique environment that might instigate similarly unique diagenetic changes 

to the bone microstructure. Bones from bodies that had probably decomposed within a cave 

were recorded using a presence/absence system.  

 

3.5.2 Anthropogenic Factors 

 

3.5.2.1 Clothing & Wrappings 

 

It might be expected that a relationship between clothing and putrefactive bone bioerosion 

would be of benefit to the aims of this project in terms of discerning funerary behaviour. 

However, significant correlations between bone bioerosion and clothing would invalidate the 

assumptions regarding the diagenetic consistency of the Historical bones, particularly because 

the presence of such items is difficult to determine and could not be controlled. The 

hypotheses set out in the Discussion chapter assumed that wrappings or clothing would only 

affect putrefactive bone bioerosion in a limited capacity, if at all (Mant 1987; Galloway et al. 

1989; Garland & Janaway 1989; Mann et al. 1990; Goff 1992; Aturaliya & Lukasewycz 1999; 

Campobasso et al. 2001; Fielder & Graw 2003; Kelly et al. 2009; Vass 2011; Voss et al. 2011; 

Fereira & Cunha 2013). 

Proponents of the archaeothanatology (archaeology of death) method have developed 

techniques for identifying skeletons that had previously been wrapped (Duday 2006; Nilsson 

Stutz 2006). Wrapping holds the joints in unstable positions during soft tissue decomposition 

and soil infilling, producing a ‘walling’ effect on the skeleton (Duday 2006; Nilsson Stutz 2006) 

(Figure 3.2). In situ plans or photographs were available for the articulated samples that were 

sampled for the current project, and so it was possible that each skeleton could have been 

checked for signs of walling. However, this attitude would not be present within every skeleton 

that was wrapped, and certainly not in most that were clothed. Loose wrappings or clothing 
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would not hold the bones tightly enough to produce the unstable skeletal positions that 

characterise walling. 

Attempts to control for the presence of wrappings or clothing amongst the samples used in 

this project would probably be inaccurate. If wrappings did exert an influence on bacterial 

bone bioerosion, the relationship observed between wrappings and bodily decomposition 

suggests that they would limit levels of putrefactive bone bioerosion. The variation in period of 

burial of the Historical remains sampled for the current project ensured that bodies were likely 

to have been variably wrapped in shrouds or dressed in clothes. The hypotheses regarding the 

consistency and nature of bacterial bioerosion within Historical burials should be falsified if 

wrappings or clothes had significantly affected this parameter. 

 

Figure 3.2: The walling effect in a previously-wrapped Mesolithic skeleton from Vedbæk-Bøgebakken, Sweden (Stutz 
2006: 4). 

 

3.5.2.2 Coffin Burial 

 

The ability to identify coffined burials from bone histology would appear to support the aims 

of the current project. However, suggestions from forensic and archaeological studies that the 

type of coffin burial afforded to the majority of individuals in the past would not have 

significantly affected putrefaction meant that the hypotheses assumed that coffin burial would 
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not have affected bacterial bone bioerosion (Rodriguez & Bass 1985; Mant 1987; Mann et al. 

1990; Owsley & Compton 1997: Fielder & Graw 2003; Jans et al. 2004; Nielsen-Marsh et al. 

2007; Fereira & Cunha 2013). Metal fittings or paraphernalia such as coffin plates sometimes 

survive into the archaeological record (Brothwell 1981). In some cases a charcoal outline of the 

original timber coffin survives in grave cuts (Brothwell 1981). However, the inconsistency in 

the survival or recovery of these fittings or stains meant that any attempt to control for the 

presence of coffin would be inaccurate.  

The previous presence of a coffin in a grave may be inferred by the position of the body and 

the way a skeleton collapsed during decomposition (Duday 2006; Nilsson Stutz 2006). If the 

coffin was narrow, the bones of the body would have been held in an unstable position during 

soft tissue decomposition and soil infilling, which would produce a walling effect on the 

skeleton (Duday 2006). A large coffin would have surrounded the body with an open cavity, 

causing the skeleton to collapse outside of the corpse’s silhouette during decomposition 

(Duday 2006). In grave cuts that contain multiple burials, the collapse of an underlying coffin 

can be inferred by slumping of the grave bottom (Brothwell 1981). None of these methods 

could consistently be used to identify the presence of a coffin within a particular grave, 

therefore it was difficult to control for coffin burial.  

The Historical assemblage was gathered from a variety of sites that demonstrated variable 

evidence for coffin burial. As inhumation exposes the bone to the highest levels of putrefactive 

decay, coffin burial would have had to have inhibited putrefaction to have produced a 

detectable change in bacterial bone bioerosion. Therefore, if coffin burial were a major factor 

that affected bodily decomposition and bone bioerosion, the hypotheses regarding the 

consistency of Historical bone bioerosion would be expected to be falsified. The presence of 

coffins with certain remains was recorded on a presence/absence basis in those sites where 

their incidence could be confidently ascribed and measures of related bacterial bone 

bioerosion were interpreted on a site-by-site basis. 

 

3.5.2.3 State of Articulation 

 

It was expected that all buried articulated remains, regardless of archaeological phase, would 

demonstrate similar patterns of bacterial bone bioerosion because this rite represents the 

primary way that an articulated skeleton survives into the archaeological record. A variety of 

different processes may have been responsible for the disarticulation of Later Prehistoric 
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remains, and so it was predicted that significant variation in bone bioerosion amongst bones 

from these phases would be explained by the disarticulated samples. The state of the remains 

was recorded in order to account for variation in measures of diagenesis and test these 

predictions. 

An attempt was made to set up a gradated system of skeletal articulation that ranged from 

articulated, through various stages of partial disarticulation, to an entirely disarticulated 

skeletal element. However, it became clear that there was an almost limitless number of 

possible gradations that could be generated to account for the variation in skeletal articulation 

amongst the study sample (Image 3.6). It was difficult to gauge what resolution of separation 

was appropriate for reflecting different treatments that would have had a variable effect on 

skeletal articulation and bone diagenesis. This lack of knowledge meant that the best approach 

was to be conservative and classify the state of remains based on what could be known for 

certain. Therefore, bones samples were grouped by state based upon whether they were likely 

to have been permanently buried soon after death (articulated) or treated to any other 

process (disarticulated). This system of categorisation meant that the state of the remains 

represented in the disarticulated category varied widely, from almost complete individuals to 

completely disarticulated elements. This situation was not ideal, but was considered to be the 

best way of dealing with the unknowns regarding how variably-disarticulated remains came to 

be disassembled. 

 

Image 3.6: Photograph of the charnel pit P923 from the Danebury Iron Age hillfort in Hampshire, U.K. Several 
different stages of skeletal articulation can be observed amongst the human remains (Cunliffe 1984: 447). 
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3.5.2.4 Historical Charnel Material 

 

The use of disarticulated material from Historical periods was valid for the purposes of the 

current study. All of the Historical disarticulated material that was held at the Department of 

Archaeology consisted of either parts of disturbed burials recovered from historical grave fills 

or formal charnel deposits (Image 3.7). Disarticulated skeletal material recovered from grave 

fills is most often interpreted as remains disturbed by new grave digging (Daniell 1997). The 

nature of formal British charnel deposits is debateable, but they are most often thought to 

represent the reburial of disarticulated remains from bodies that had fully decomposed 

(Daniell 1997). In both cases, the early depositional circumstances of each disarticulated 

individual would have involved inhumation soon after death and would be consistent with the 

other Historical articulated specimens. Some of the Historical disarticulated examples used in 

the current study were recovered in partial articulation, which suggested that the soft tissues 

of each individual had not decayed completely before their bones were disturbed. It was 

unlikely that the disturbance of remains at a late stage would have affected putrefactive bone 

bioerosion (Adlam & Simmons 2007). 

 

Image 3.7: Historical charnel pit from St. Helen-on-the-Walls in York (Daniell 1997: Plate 7). 
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Investigator disturbance of unburied remains has been shown to have little effect on 

decomposition (Adlam & Simmons 2007; De Jong et al. 2011). Disturbance of remains that 

were actively decomposing in graves is likely to have had a larger effect on decomposition, as 

exhumation alters the specific microenvironment of a cadaver (Janaway 2006; Wilson et al. 

2007). The results from the charnel material would be tested at the analytical stage to check 

whether disturbed bones retained particular patterns of bone diagenesis. If significant 

differences between the articulated and disarticulated Historical samples were observed, the 

disarticulated charnel would be excluded.  

The use of disarticulated Historical remains was consistent with attempts to ensure that 

destructive sampling of bone had the least overall detrimental effect on the research potential 

of assemblages. Comingled, unphased, disarticulated human remains are considered to have a 

smaller breadth of research potential than bones that constitute parts of whole individuals 

recovered in articulation from discrete graves (Brickley & McKinley 2004). Larger proportions 

of the disarticulated bones had also been fragmented, which increased their attractiveness for 

destructive analysis on the grounds of preserving research potential. Larger number of 

samples were permitted to be taken from disarticulated assemblages than what would have 

been allowed from groups of whole articulated skeletons. Some of the disarticulated Historical 

material had already been sampled for past research projects and so the inclusion of this 

category of materials was unavoidable if sample size was to be maximised. 

 

3.5.2.5 Burial Depth 

 

Burial depth was recorded sporadically and variably amongst the reports of the sites that were 

included in the current project. Values were not always comparable between sites and it was 

not possible to record burial depth in a consistent away across the entire study sample. The 

requirement to ensure that a body lies deep enough below the ground to avoid disturbance by 

scavenging carnivores, but not too deep to require an inordinate amount of work, meant that 

the majority of the individuals whose bones were used in the current study had been interred 

at depths that would probably not have significantly interfered with bodily decomposition 

(Rodriguez & Bass 1985; Garland & Janaway 1989; Mann et al. 1990; Janaway 1996; 

Campobasso et al. 2001; Dent et al. 2004; Vass 2011). However, information from site reports 

which suggested that particular burials had been placed deeply or shallowly was noted and 

discussed in relation to site-specific interpretations of bone diagenesis. Burial death would 
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inevitably vary within and between different site assemblages and therefore it was unlikely 

that the hypotheses regarding bacterial bioerosion would be supported if this factor had 

significantly affected putrefactive attack to bone. 

 

3.5.2.6 Cremated Bone 

 

Cremation produces a unique diagenetic signature in bone (Forbes 1941; Stiner et al. 1995; 

Hanson & Cain 2007; Pijoan et al. 2007; Squires et al. 2011). The intensity of burning that is 

required for a bone to have calcinated would dictate that all cremated bone would be 

unattractive to osteolytic bacteria due to the loss of collagen. Intense burning causes the rapid 

evaporation of moisture and degradation of the protein molecules (Forbes 1941; Stiner et al. 

1995; Hanson & Cain 2007; Pijoan et al. 2007; Squires et al. 2011). Complete calcination of 

bone results in an object that is predominantly inorganic (McKinley 2000).  

 

Image 3.8: Micrograph of a transverse thin section of an Anglo-Saxon cremated human bone fragment from Elsham, 
Lincolnshire. The microstructure has been severely altered as a result of carbon infiltration, protein loss and 

hydroxyapatite crystal fusion (Squires et al. 2011: 2404). 

 

If the bone was cremated after having previously skeletonised, any bioerosion would probably 

not be detectable because of the changes to the bone microstructure produced by cremation 

(Image 3.8). Cremation fills the bone microstructure with particles of carbon (Stiner et al. 

2005; Hanson & Cain 2007). As temperature and duration of burning increases, so does the 

volume of carbon, until microstructural features are almost unrecognisable (Stiner et al. 2005; 

Hanson & Cain 2007). The fusion of the bone mineral crystals that occurs at high temperatures 

warps and alters the colour of the microstructures (Hanson & Cain 2007). The loss of bone 

volume promoted by evaporation causes bone shrinkage and the collapse of the 
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microstructure into any available natural porosities (Hanson & Cain 2007). The osteocyte 

lacunae are usually the first natural porosities to disappear (Forbes 1941; Stiner et al. 1995; 

Hanson & Cain 2007). The morphology of any previous biotic tunnelling would be expected to 

be lost or transformed by similar processes. Histomorphological studies of cremated bone 

have not detected any forms of bioerosion (Forbes 1941; Stiner et al. 1995; Hanson & Cain 

2007; Pijoan et al. 2007; Squires et al. 2011). Studies of diagenesis within cremated bone 

would not be tenable. Cremated bone could not be used for the purposes of the current study.  

 

3.5.3 Demographic Factors 

 

3.5.3.1 Age 

 

Turner-Walker (2008) suggested that variation in bacterial bioerosion may be attributable to 

age-related differences in the bone microstructure dictating the speed and intensity of 

microbial attack (Kerley 1965; Kerley & Ubelaker 1978; Frost 1987; Cattaneo et al. 1999; Maat 

et al. 2006). Remodelling that takes place over an individual’s lifetime steadily increases the 

porosity of the bone because of the accumulation of secondary osteonal bone (Kerley 1965; 

Kerley & Ubelaker 1978; Frost 1987; Cattaneo et al. 1999; Maat et al. 2006). Bone remodelling 

rates are particularly high amongst adolescents (Junqeuira et al 1986). Observations that the 

logistics of osteolytic bacterial invasion are dictated by features of the bone microarchitecture 

suggest that the extent of bacterial bioerosion might be dictated by age-at-death of an 

individual (Child 1995a; 1995b; Bell et al. 1996; Jans et al. 2004; Hollund et al. 2012; Turner-

Walker 2012). The effect of bone porosity on interactions between the bone and the external 

environment suggests that demographic factors may affect other types of diagenetic change. 

The bodies of neonatal individuals decompose differently to those of post-neonatal remains, 

and White (2009) found that neonatal pig bone was more likely to demonstrate lower levels of 

bacterial bioerosion than similarly-treated post-neonatal remains (Polson et al. 1985; Mant et 

al. 1990; Campobasso et al. 2001). This pattern was repeated when White (2009) analysed a 

sample of archaeological skeletal material. These patterns of decomposition were explained by 

the lower levels of intestinal microbiota present within new-born individuals, which pre-

empted putrefactive bacterial invasion of bone (Mackie et al. 1999; White 2009).  

All of the skeletons whose bones were used in the present study had been assessed using 

modern standardised osteological methods. Aging of all adult remains was based upon one or 
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a combination of dental development/attrition, epiphyseal fusion, cranial suture closure, 

changes to the pubic symphysis, the sternal portion of the ribs and the auricular surfaces of 

the ilium (Krogman 1955; Moorees et al. 1963; Miles 1963; Maresh 1970; Gustafson and Koch 

1974; Scheuer et al. 1980; Brothwell 1981; Isçan et al. 1984; Smith 1984; Isçan et al. 1985a; 

1985b;  Lovejoy et al. 1985, Meindl & Lovejoy 1985; Krogman & Isçan 1986; Steele & Bramblett 

1988; Bouts & Pot 1989; Ubelaker 1989; Brooks & Suchey 1990; Smith 1991; Buikstra & 

Ubelaker 1994; Bass 1995; Schwartz 1995; Buckberry & Chamberlain; Scheuer and Black 2000; 

Brickley & McKinley 2004). Aging of sub-adults was based on combinations of diaphyseal 

length, epiphyseal fusion, dental development and dental attrition (Fazekas & Kosa 1978; 

Scheuer et al. 1980; Isçan et al. 1984; Scheuer & Black 2000). 

The use of human skeletal remains from a number of different sites meant that age-at-death 

estimates had been produced using variable methodologies and categories. The methods used 

were dependent on the state of the assemblage, osteologist preference and stage of 

development in osteological techniques. The inclusion of samples from disarticulated and 

semi-articulated long bones introduced samples that could only be assigned broad age-at-

death estimates.  

The specific age-at-death assessments that had been recorded for each sample were noted 

where they were available. When the assemblage was considered as a whole, all of the 

samples could be classified into one of four broad age categories of neonate (foetal or less 

than one month), child (between one month and ten years old), juvenile (between eleven and 

nineteen years old), adult (over 20 years old). These categories represented the most precise 

age-at-death categorisation that could be applied to the mixed assemblage. Bones were placed 

within one of these categories based on either an age-at-death estimate that had been 

calculated through use of modern specific osteological aging techniques, or the size and state 

of epiphyseal union of discrete long bones. The benefit of this method was that it neutralised 

any biases that may have occurred as a result of different studies using diverse techniques of 

age estimation and categorisation. 

The age categories used in the current study discerned between different types of immature 

individuals, but not between skeletons that had reached maturity. Whilst imprecise, this model 

suited the aims of the present study, as all of the age-related variations in bone diagenesis that 

have been posited describe differences between categories of younger specimens or 

dichotomies between sub-adult and adult remains (Jans et al. 2004; Turner-Walker 2008; 
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White 2009). The age-at-death classification system expounded above would be capable of 

capturing these potential changes whilst allowing for all samples to be included.  

 

3.5.3.2 Sex 

 

Bone remodelling rates vary between males and females, as these processes are thought to be 

partially regulated by sex-specific hormones such as testosterone and oestrogen (Junqueira et 

al. 1986). Sex differences in microstructural organisation are more subtle than those related to 

age (Khosla et al. 2006). Age-related sex-specific hormonal changes ensure that rates of bone 

remodelling differ more noticeably between males and females at certain ages (Junqueira et 

al. 1986; Khosla et al. 2006). These differences in remodelling rates may engender specific 

variation in the microstructural organisation of bone from different sexes, which could 

encourage variable levels of bone diagenesis (Bell et al. 1996; Jans et al. 2004; Turner-Walker 

2008; 2012). The nuanced differences between the bone microstructures of males and females 

meant that it was unlikely that sex would have significantly affected levels of bone diagenesis. 

However, sex estimations for each skeletal sample were recorded where they were available 

to ensure that there were no sex-related differences in bone diagenesis and to explore 

whether diagenesis was dictated by microstructural organisation. 

Most of the skeletons used in the current study had been allocated a sex estimation using the 

morphological characteristics of the pelvis, cranium and mandible where these bones were 

available (Phenice 1969; Ferembach et al. 1980; Katz & Suchey 1986; Krogman & Isçan 1988; 

Bass 1995; Buikstra & Ubelaker 1994; Schwarz 1995; Loth & Henneburg 1996; Brickley & 

McKinley 2004). These techniques were sometimes supplemented by metric measures such as 

diameters of the humeral, femoral and radial heads and distal radius, femoral bicondylar 

breadth and length of the glenoid cavity (Black 1978; Stewart 1979; Dittrick & Suchey 1986; 

Krogman & Isçan 1986; Berrizbeitia 1989; Chamberlain 1994). Metric analyses were more 

often used on disarticulated material that did not include sexually diagnostic features of the 

skull and pelvis. 

Disarticulated long bones that did not retain sexually-diagnostic morphological features made 

up a considerable portion of the current study sample. A proportion of samples that could be 

subject to sex estimation demonstrated sexually ambiguous morphological features. These 

factors meant that only a fraction of samples could be allocated a sex estimate. Most studies 

displayed the certainty of non-indeterminate sex diagnoses using the standard system of Male 
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(M), Probable Male (M?), Indeterminate (??) Probable Female (F?) and Female (F). Biological 

sex of each specimen used in the current study was recorded initially using this method. 

However, the small number of samples that could be allocated a sex meant that the use of 

these four categories produced groupings that contained low numbers of remains. Therefore, 

remains that had been allocated an ‘M’ or ‘M?’ value were recategorised as ‘M’, those given ‘F’ 

or ‘F?’ values were reclassified as ‘F’ and specimens of indeterminate sex were excluded. The 

‘M’ and ‘F’ categorisations were used to test differences between measures of diagenesis in 

bones from individuals of variable sex. However it had to be considered at the analysis stage 

that this method created a dichotomy in sex estimation that was likely to be inaccurate in 

reflecting the actual biological sex of each individual.  

 

3.5.4 Chronological Concerns 

 

3.5.4.1 Specific Phase 

 

The main focus of the present study was the level of bacterial bioerosion observed between 

bone from Historical and Later Prehistoric contexts. However it was also pertinent to record 

the broad chronological phases that the Later Prehistoric bones could be assigned to: Neolithic 

(c.4000-2400 B.C.), Bronze Age (c.2400-700 B.C.) or Iron Age (c. 700 B.C.-A.D. 34). Some of the 

Later Prehistoric remains originated from sites that had not been dated using absolute 

techniques, and so this separation represented the highest level of resolution that could be 

applied to all samples. These boundaries are artificial and there has been debate over whether 

they provide any meaningful division of time and cultural change (Bradley & Hodder 1979; 

Rowley-Conwy 2007). However, whilst funerary ritual within each of these times periods is 

known to vary temporally and geographically, the cultural shifts attributable to these 

boundaries are conventionally thought to engender new ideologies and mortuary practices 

(Bradley & Hodder 1979; Rowley-Conwy 2007; Darvill 2010). It could be argued that any 

detectable changes in diagenesis that corresponded with the specific phase variable would 

support the suggestion that diagenetic change varies with funerary treatment. There would 

have to be some discussion of whether the nature of the change is likely to be related to 

cultural or natural shifts over time. 
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3.5.4.2 Archaeological Age 

 

The lack of correlation between archaeological age and bone bioerosion of ancient remains is a 

defining characteristic of most studies of bone diagenesis (Hedges et al. 1995; Nielsen-Marsh 

& Hedges 2000; Hedges 2002; Jans et al. 2004; Nielsen-Marsh et al. 2007). However, the 

hypotheses that were to be tested relied upon the observation of higher levels of histological 

preservation within older bones. Any positive results might be questionable regarding whether 

internal preservation of archaeological bones allows for their survival over longer timescales. 

The absence of microbial tunnelling from fossil bones supports this assertion (Trueman & 

Martill 2002; Tuross 2002). Archaeological age of bone specimens represents a focal point of 

the hypotheses of this project, and so this variable was measured in terms of the Later 

Prehistoric/Historical dichotomy as well as specific archaeological phases (Neolithic, Bronze 

Age, Iron Age, Historical). This system of separation should provide a way of assessing the 

possibility that higher proportions of better preserved bones survived into the archaeological 

record from older sites. 

 

3.5.5 Macroscopic Preservation 

 

It was considered whether measure of macroscopic bone preservation should also be taken in 

order to investigate whether this factor had any bearing on bone diagenesis, as well as 

whether it provided useful complementary information in interpreting funerary treatment. 

The standardised method of recording surface preservation of archaeological remains was 

developed by Brickley & McKinley (2004). This system involved a visual assessment of cortical 

preservation, translated into an ordinal score from 0 to 5+, with 0 representing poor 

preservation and 5+ representing perfect preservation. 

Most of the bones used in the current study had not been assessed using this system. The 

method of assessment was quick and simple, but locating the skeletons within the University 

of Sheffield’s collections that had already been sampled for thin section analysis would have 

been time consuming. Some of the skeletons that were included within the thin section 

collection at the University of Sheffield no longer formed part of the gross skeletal 

assemblages, and so there was no guarantee that the microscopic preservation of every 

skeleton could be recorded. All studies that have investigated the relationship between bones 

diagenesis, particularly internal bone bioerosion, and macroscopic preservation of remains, 

have noted the lack of correlation between the two variables (Hedges et al. 1995; Hedges 
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2002; Jans et al. 2004). Therefore, a record of macroscopic preservation of each bone sample 

was not necessary for the present study. 

 

3.5.6 Further Uncontrollable Variables 

 

Most other variables that were suggested in the Background chapter as potential influencers 

of bodily putrefaction or bone diagenesis could not be controlled due to the nature of 

archaeological material. The influence of these factors could not be determined directly. If any 

of the following factors had a significant impact on bacterial bone bioerosion, their probable 

variation amongst the current study sample would ensure that the hypotheses set out in the 

previous chapter would not be supported.  

Certain types of pathological conditions can leave lesions on the skeleton (Ortner 2003). 

Disorders such as periostitis (non-specific infection), syphilis, tuberculosis and leprosy 

represent those conditions that are most often detected in human skeletons (Ortner 2003). 

However, bacteria would only have affected the skeleton in the most severe of these cases 

(Ortner 2003). Most pathological conditions leave no skeletal record (Ortner 2003).  

Signs of trauma are often found on skeletal remains, but these marks would only represent 

those wounds that penetrated far enough to have affected the bone (Boylston 2000; Ubelaker 

& Blau 2009). Types of penetrative trauma that may have affected bodily decomposition need 

not have marked the bones. There has been some suggestion that metric measures of long 

bones can be used to infer body mass at death (Auerbach & Ruff 2004). However, a large 

numbers of variables could affect long bone dimensions, and so their use as measures of body 

size are considered to be unreliable (Auerbach & Ruff). None of the samples used in the 

present study had been analysed using such methods and there was not sufficient time or 

resources available for them to be recorded specifically for the present study.  

An endogenous model of bacterial bioerosion relies upon the consistency of destructive 

microbiota within an organism’s gut. However, ratios of bacteria can vary within and between 

populations both temporally and geographically (Franks et al. 1998; Ley et al. 2008; 

Yatsunenko et al. 2012). The ubiquity of bacterial bioerosion within archaeological bones from 

various different species suggests that the bacteria responsible must be common to most 

vertebrates or that most types of vertebrate gut bacteria are capable of exploiting bone 

microstructure (Bell et al. 1996; Nicholson 1996; Davis 1997; Nielsen-Marsh et al. 2000; Jans et 

al. 2004; Nielsen-Marsh et al. 2007; Fernández-Jalvo et al. 2010). Species of bacteria are 
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adapted to breaking down different kinds of proteins (Child 1995a). The nature of an 

individual’s gut microbiome would be partially controlled by diet. Stable isotope and 

osteological studies of bones and teeth can reveal some information about the diet of an 

individual during life. However, the majority of individuals sampled for the current study had 

not been subjected to such analyses. 

Disease may also affect the nature and quantity of gut bacteria. There is currently no way of 

assessing the health of an individual’s gastrointestinal microbiome from their archaeological 

remains. Factors that would have affected an individual’s gut microbiome are likely to have 

varied amongst the diverse sample of Historical remains used in the current study. Any 

significant relationships between composition of an individual’s microbiome and putrefactive 

bone bioerosion would be expected to falsify the hypotheses put forward in the previous 

chapter. 

 

3.6 STATISTICAL ANALYSIS 
 

3.6.1 Tests 

 

All of the results from the diagenetic parameters and possible explanatory variables discussed 

above were recorded within a Microsoft Excel spreadsheet. Values from this spreadsheet were 

imported into IBM SPSS v.20 statistics programme. All charts and tables were produced within 

Microsoft Excel or IBM SPSS. All measurements consisted of ordinal or categorical variables. 

Therefore, only non-parametric tests were used in the statistical analysis. Results of statistical 

tests were considered significant if they reached the 95% confidence level (p<0.05). IBM SPSS 

displays p-values less than 0.0005 as 0.000. The same method of display had to be used 

throughout the Results chapter. 

The distribution of variables was not equal across the study sample. It was possible that 

variation between two variables may have been affected by variation within other correlated 

observed or unobserved variables. Methods to determine the extent to which particular 

factors affected the diagenetic parameters would have to consider the complex effects of 

multiple variables. Regression models represented the best way to determine which factors 

had the largest influence on particular diagenetic parameters whilst controlling for the effects 

of all other variables. All of the dependent diagenetic variables included in the current study 
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were ordinal or binary. Ordinal and binary logistic regressions were used respectively for each 

type of data.  

Both regression models produce two types of results: the influence of the explanatory 

variables on the dependent variable and the reliability of the regression equation in predicting 

outcomes within the dependent variable (Norušis 2012). These two types of results are 

intimately connected. However, the current study was concerned with the influence of 

explanatory variables rather than the ability to predict outcomes. The results from the tests of 

influence were the focus of the statistical analyses. 

Ordinal regression does not determine the overall influence of explanatory variables, but the 

individual influence of each outcome (Norušis 2012). Each outcome within an explanatory 

variable is assigned a parameter estimate, which is the ordered log odds regression coefficient. 

This coefficient dictates the direction and size of the change within the dependent variable 

with each one unit movement of the explanatory variable, whilst each of all other explanatory 

variables remain constant. The size of the parameter estimate for each explanatory outcome 

and the associated sign (positive or negative) directly relate to the size and direction of an 

explanatory outcome’s influence on the dependent variable. The parameter estimate 

quantifies the change in the dependent variable associated with movement to the outcome 

from its predecessor. The ordinal regression as performed in SPSS always takes the highest-

numbered category within an explanatory variable as the reference point that constitutes the 

beginning of movement. Therefore the parameter estimate for the highest numbered 

outcome within an explanatory variable is always zero (Norušis 2012). 

The next relevant figure is the Wald Χ2. The Wald tests the true value of a parameter in 

explaining a dependent variable based on the sample estimate. The Wald Χ2 tests the 

likelihood that the parameter estimate is equal to zero and that the associated shift between 

outcomes has no discernable effect on the dependent variable (Norušis 2012). The significance 

of the Wald Χ2 value and the decision to reject the null hypothesis is determined by the 

accompanying p-value. The ordinal regression output produces two tests that reflect the 

predictive power of the model. The Model Fitting Information provides a Χ2 comparison of the 

predictive power of the ordinal regression against a basic intercept model that does not 

consider specific predictor variables. If the ordinal regression model is useful, then it should 

have greater predictive power than the basic intercept and produce a significant Χ2 value. The 

goodness-of-fit test produces a Pearson Χ2 comparison between the values observed within 

the dataset and those predicted by the ordinal regression equation. A useful ordinal regression 
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model would produce values similar to those observed and generate an insignificant Pearson’s 

Χ2 result. The Nagelkerke Pseudo R-Squared value represents the proportion of variation in the 

dependent variable that is described by a particular regression model (Norušis 2012). 

The construction of the ordinal regression relies on the proportional odds assumption, which is 

that all ordered logit coefficients (parameter estimates) are equal across levels of a particular 

outcome. The proportional odds assumption can be tested using the Test of Parallel Lines. This 

test uses a Pearson’s Χ2 analysis to determine whether the parameter estimates produced for 

the ordinal regression significantly deviate from an idealised model of equal proportional odds. 

A statistically significant Χ2 value would indicate that a single ordinal regression equation was 

not appropriate for producing a predictive model for the dependent variable using the specific 

explanatory variables. 

Binary logistic regression produces results that can be used to gauge the influence of particular 

explanatory variables on the binary dependent variable and the usefulness of the subsequent 

regression equation in predicting dependent variable outcomes. The binary logistic regression 

produces the log odds change in the dependent variable with a single unit change in the 

explanatory factor, whilst all other explanatory variables remain constant. This value is 

calculated for each outcome within an explanatory variable. This value is equivalent to the 

parameter estimate produced by ordinal regression, but in binary logistic regression it is 

referred to as Beta (B). The statistical significance of B is tested via the Wald Χ2. Unlike ordinal 

regression, the Wald Χ2 is also calculated for each variable as a whole where there are more 

than two outcomes.  

The predictive power of binary logistic regression models is tested similarly to those produced 

by ordinal regression. The Omnibus Tests of Model Coefficients provides Χ2comparisons of the 

binary logistic model and an intercept regression that does not consider explanatory variables. 

The predictive efficacy of the logistic regression model is also tested using a Hosmer & 

Lemeshow Χ2, which compares observed results to those predicted by the model. The binary 

logistic regression also produces a Nagelkerke R-Squared value that states the proportion of 

variation in the dependent variable described by the model. 

The regression models could not address all relevant question. Correlation and omnibus tests 

had to be employed to test associations between certain pairs of variables. These tests were 

also used to investigate relationships between subsamples of remains. Bivariate correlations 

between ordinal variables were tested using Spearman’s rho correlation coefficients. These 

tests produce values that express the percentage of variation in one variable that is explained 
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by the other. This value is positive or negative depending on whether the relationship between 

the two variables is direct or inverse. The null hypothesis for this test is that the two variables 

are independent of one another. The significance value (p-value) expresses the likelihood that 

the correlation between the two variables occurred by chance.  

Correlations between categorical variables were calculated using Pearson’s Χ2 analysis. This 

test compares the observed variation between two variables against an idealised model of 

expected values that would have occurred by random chance. The expected values represent 

the null hypothesis that the two variables are independent of one another. Pearson’s Χ2 test 

relies on the assumption that all expected counts will be greater than five. If any cells 

demonstrate expected counts of less than five, Pearson’s Χ2 test has to be discarded and 

Fisher’s Exact Test employed instead. The significance value from Fisher’s Exact Test expresses 

the same information as Pearson’s Χ2. When applied to low sample sizes, Pearson’s Χ2 has to 

be corrected using Yates’ Continuity Correction.  

Associations between categorical and ordinal variables were calculated using Mann-Whitney U 

and Kruskal-Wallis tests. Both of these techniques test the distribution of variation in a 

continuous or ordinal variables amongst categories defined by a categorical variable. The 

technique compares the differences within and between separate categories. The Mann-

Whitney U test is applied to two categories and the Kruskal-Wallis to more than two. The null 

hypothesis is that the distribution of variation in the ordinal variable amongst the categories 

defined by the second variable is the same and that differences within categories are larger 

than the differences between them. The p-value expresses the likelihood that the variation 

between different categories could have occurred by chance.  

Significant results from a Kruskal-Wallis test indicate that there is a difference in the 

distribution of values amongst the categories that have been defined, but does not identify the 

nature of this difference. A significant result would be produced if values from only one 

category differed from the rest or if values for all categories differed from each other equally. 

The factors that are responsible for the majority of significant variation can be discerned 

though a sequence of paired Mann-Whitney U tests.  

The repeated application of correlation and omnibus tests, as well as those processes involved 

with regression models, raises the problem of multiplicity (Holm 1979). The confidence level of 

each statistical test, as well as each outcome within the regression models, was 95% (p<0.05). 

Each repeat test increased the likelihood of finding a significant effect by chance (the family-

wise error rate), thereby raising the risk of Type I Error (rejection of the null hypothesis when it 
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is true). This problem can be neutralised using the Bonferroni Correction, which sets a 

corrected p-value for all tests. The desired family-wise error rate (0.05 for 95% confidence) is 

divided by the number of hypotheses tested (i.e. the number of tests that were carried out 

overall). This method ensures that the family-wise error rate does not exceed 0.05.   

The Bonferroni Correction is a conservative method and increases the risk of Type II Error 

(acceptance of the null hypothesis when it is false), particularly when testing a large number of 

hypotheses (Holm 1979). A modified version of the Bonferroni correction called the Holm-

Bonferroni method was used to account for multiplicity in the current study (Holm 1979). The 

Holm-Bonferroni method is still conservative, but ensures that the family-wise error rate 

remains below 0.05 whilst reducing Type II error. This method involves listing the p-values of 

all statistical tests from largest to smallest. The significant threshold for each test is calculated 

by the desired family-wise error rate (0.05) divided by the position of each p-value within the 

list (0.05/1, 0.05/2, 0.05/3…0.05/n).  

The Holm-Bonferroni method produces a threshold within the list of p-values where the first 

null hypothesis is accepted. All p-values beyond this threshold will accept the null hypothesis. 

The increased rate of Type II error produced by the Holm-Bonferroni method meant that 

statistically insignificant results that lay close to this threshold were scrutinised further to 

determine whether they represented true relationships that had been dismissed in error.  

The nature of regression in controlling for the effects of all variables meant that the inclusion 

of large numbers of explanatory variables was likely to distort the results from individual 

variables. It is difficult to determine whether correlated explanatory variables have an 

independent effect on the dependent parameter within a single regression model (Norušis 

2012). Therefore regression models were run multiple times. Uninfluential explanatory 

variables were not carried forward into each repeat test. This methodology ensured that all of 

the independent significant explanatory variables were identified.  

The distortive effect of multiple explanatory variables meant that the Holm-Bonferroni 

corrected p-values were too stringent to be used initially in determining which explanatory 

variables had influenced the dependent diagenetic parameter. Influential variables were 

included in further regression models when their p-values were under or close to 0.05. 

Repeated modelling of these influential variables eliminated the factors that had no 

independent influence on the dependent parameter. This protocol was repeated until all 

variables within a model were independently influential (p<0.05). At this stage the remaining 

p-values were assessed using the Holm-Bonferroni method to identify the significantly 
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influential explanatory variables. Regression models were run again with significant variables 

until all remaining variables demonstrated significant p-values under the Holm-Bonferroni 

method. If the regression models identified more than two significant influential variables, all 

significant variables were paired against each other within further regression models. Each 

comparison would determine the influence of an explanatory variable when controlling for the 

effect of each one of the others. If each explanatory variable maintained a significant influence 

on the dependent parameter then it was likely that they had all independently influenced the 

dependent variable.  

 

3.6.2 Application of Statistical Tests to the Hypotheses 

 

The first two hypotheses relating to the relationship between bacterial bioerosion and 

funerary treatment required a method of testing whether histological preservation of the 

Historical samples was consistently low. The usual way of testing for significant variation within 

a distribution is through comparison of observed values against a model of natural or random 

variation. Normal variation is usually defined as the model of natural variation within 

continuous data. Tests of normality such as a Kolmogorov-Smirnov test are used to determine 

whether a continuous parameter is significantly variable (Norušis 2012).  

The primary measure of bioerosion used in the current study, Whole OHI, is an ordinal 

variable. This variable represents underlying continuous variation, and therefore natural 

variation was defined as a normal distribution. The hypotheses predicted that there would be 

a bias amongst the Historical samples towards the lowest Whole OHI scores. Such a bias would 

produce a normal distribution centred on Whole OHI scores of zero. This kind of normal 

distribution is referred to as half or folded normal. IBM SPSS statistics programme does not 

provide direct means of comparing an observed distribution against a half-normal model. In 

order to be able test whether Whole OHI data were half-normally distributed, all of the non-

zero data points were replicated as negative numbers. This procedure produced a mirror 

image of the Whole OHI score distribution around zero. This mirrored distribution could be 

tested against a conventional normal model using a Kolmogorov-Smirnov Z-test (Norušis 

2012). 

The hypotheses stipulated that there should be no difference in distributions of Whole OHI 

scores amongst bones from separate Historical site assemblages. This hypothesis would be 

tested using a Kruskal-Wallis analysis of Whole OHI score distributions amongst separate 
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Historical site assemblages. An insignificant result would support the first hypothesis (Table 

3.5). Statistical confirmation of the first and second hypotheses would indicate that all of the 

Historical site-specific distributions of Whole OHI scores conformed to a half-normal model.  

Hypothesis Statement Result 

1 If bacterial bone bioerosion is linked to 

funerary processes, bones recovered from 

Historical cemeteries will demonstrate 

consistent patterns of internal bacterial 

bioerosion. 

 

Whole OHI Scores amongst the 

Historical assemblage 

demonstrate a half-normal 

distribution. 

 

Kruskal-Wallis test indicates no 

significant difference in OHI 

Scores between bones from 

different Historical sites. 

2 If the nature of bacterial bone bioerosion is 

controlled by the extent to which early 

funerary processes dictate bodily 

putrefaction, all bones from Historical 

cemeteries will be characterised by high 

levels of internal bacterial decay. 

Distributions of Whole OHI 

scores amongst the Historical 

bone assemblage and within 

separate Historical site 

assemblages are distributed half-

normally. 

3 If bacterial bone bioerosion can be used to 

distinguish between funerary rites, there will 

be a significant difference between the 

histological signatures of bone from the 

Later Prehistoric and Historical periods. 

Phase (Later Prehistoric versus 

Historical) has a significant 

influence on histological 

preservation within an ordinal 

regression model. 

 

Bones from Later Prehistoric 

contexts demonstrate elevated 

and variable levels of histological 

preservation compared with the 

Historical remains. 

Table 3.5: List of the statistical observations that could be taken to support the three main hypotheses relating to the 
relationship between bacterial bioerosion and funerary treatment. 

 

The third hypothesis would be confirmed through the identification of Phase (Later 

Prehistoric/Historical) as a significantly influential explanatory variable within the ordinal 

regression model of Whole OHI scores. It was expected that this difference would manifest in 

an elevated and more variable Later Prehistoric distribution of Whole OHI scores. The 

expected relationships between the remaining diagenetic parameters and potential 
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explanatory factors could not be defined to the same standard. The factors that influenced 

these measures of diagenesis had to be determined through repeated regression models and 

omnibus tests. 
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4 MATERIALS 

 

This chapter will provide brief overviews of each of the sites whose human remains were 

included in the current study. The majority of the human bone samples were taken for use in 

the Primary Analysis that directly addressed the research aims and hypotheses set out in the 

Methodology. A group of supplementary remains were also included to help improve the 

scope of funerary processes studied, as well as to address potential methodological issues. 

Summary tables of specimens are provided for certain sites where they provide important 

information regarding the osteological and contextual variation within an assemblage. 

 

4.1 MATERIALS FOR THE PRIMARY ANALYSIS 
 

 

Figure 4.1: Map of European Historical (Red Circles) and Later Prehistoric (Blue Crosses) sites used in the primary 
analysis. 

 

Thin sections of human bone representing 301 individuals from across 25 Historical and Later 

Prehistoric European sites were examined for the Primary Analysis (Figure 4.1). One-hundred 

and-thirty-eight sections (46%) originated from the University of Sheffield’s collections, whilst 

163 (54%) were produced specifically for the current study. Each site overview provides a brief 
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history of excavation followed by archaeological evidence for the chronological dating and the 

nature of the funerary treatment. All of the sites included in the current study were excavated 

to modern archaeological standards between 1969 and 2004, and so the information regarding 

the positions and relationships between the skeletons was reliable and comparable. The 

chapter has been separated into the Historical and Later Prehistoric sites to provide an 

impression of the evidence for differences in funerary treatment between these two phases.  

Most of the samples from the Historical assemblage, and some from the Later Prehistoric 

cohort, were not taken specifically for this study, but had been produced for previous research 

projects. Few of these thin sections had been analysed using the OHI, and none had been 

analysed using the full suite of methods that were used in the present study. Details regarding 

the sampling strategies used for these various projects are provided within each site-specific 

discussion. 

 

4.1.1 Historical Site Assemblages 

 

Bone from 208 individuals were analysed from across ten Historical archaeological sites (Table 

4.1). Femora were sampled in 97% of cases. The rest of the samples consisted of other long 

bones including humeri, tibiae, radii and fibulae. The reasons for the inclusion of non-femoral 

thin sections are provided on a site-specific basis. The main aim of sampling from Historical 

assemblages was to ensure that there was representation from temporally and spatially 

disparate sites (Figure 4.2). It was expected that the signatures of diagenesis which related to 

funerary treatment amongst the Historical samples would be consistent regardless of variation 

in all other factors. Uniformity in levels of diagenesis within Historical archaeological bones 

that were widely dispersed around the country would provide compelling evidence for the link 

between bone diagenesis and funerary treatment. All of the Historical bones included in the 

current study originated from English sites. However, these sites were distributed widely 

across the country. The samples originated from sites that covered the whole range of possible 

Historical phases, from the Romano-British to Victorian periods.  
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Site Location Period Number of 

Samples 

All-Saints Fishergate 

Church 

York, North Yorkshire Roman/Medieval/Post-

Medieval 

39 

Bantycock Gypsum 

Mine 

Balderton, Derbyshire Roman 7 

Berinsfield Berinsfield, Oxfordshire Early Anglo-Saxon 20 

Black Gate Newcastle, 

Northumberland 

Late Anglo-Saxon/Norman 25 

Carver Street 

Methodist Chapel 

Sheffield, South 

Yorkshire 

Victorian 9 

Cathedral Close Exeter, Devon Early Anglo-Saxon-

Medieval 

3 

Royal Mint East Smithfield, London Medieval 38 

St. Hilda’s, 

Coronation Street 

South Shields, 

Northumberland 

Medieval-Victorian 29 

St. Leonard’s 

Hospital 

Grantham, Lincolnshire Medieval 10 

St. Mary & St. 

Laurence Church 

Bolsover, Derbyshire Medieval-Victorian 28 

Table 4.1: Catalogue of the Historical sites used in the primary analysis. 

 

Figure 4.2: Map of the distribution of Historical sites used in the primary analysis. 
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4.1.1.1 All Saints Fishergate Church, The Barbican, York, North Yorkshire, U.K. 

 

 

Figure 4.3: Map of the location of the All-Saint's Fishergate Church. 

 

The remains of the All Saints Fishergate church are located underneath an area of the City of 

York that lies by the Barbican Leisure Centre at the corner of Kent Street and Fawcett Street 

(Figure 4.3). Skeletons were first exhumed from the site during trial excavations in 1987 and 

2003. The majority of the skeletons were uncovered during commercial excavations by OnSite 

Archaeology Ltd. between 2007 and 2008, in advance of development. Thirty-one articulated 

skeletons were originally excavated during the 2003 trial excavations, followed by another 654 

in 2007-2008. When combined with the disarticulated human remains that were found within 

unstratified sediment as and grave fills, the minimum number of individuals represent was 

determined to be 1136 (McIntyre & Bruce 2010).  

Stratigraphic and artefact evidence suggested that there were three periods of burial. The 

earliest graves were determinable by their depth and their orientation (McIntyre & Bruce 

2010). These earlier burials were orientated north-south rather than east-west (McIntyre 

2010). The graves from this phase were linked stratigraphically with Roman-era ditches and 

Roman period finds were recovered from their fills (McIntyre & Bruce 2010). Seven skeletons 

were associated with the Roman phase of activity.  
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The next phase of activity was a burial ground associated with the medieval All Saints 

Fishergate church (McIntyre & Bruce 2010). The association between the burials and the 

church was apparent from the burials’ east-west orientation and the way they respected the 

church’s footprint (McIntyre 2010).  Five-hundred-and-forty-seven individual skeletons were 

associated with this graveyard (McIntyre & Bruce 2010). Nineteen individual skeletons had 

been truncated by the church foundations (McIntyre & Bruce 2010: 34). The stratigraphic 

relationship between these burials and those left unmodified by the church, as well as 

similarities in burial styles, suggested that the truncated graves did not significantly predate 

the rest of the assemblage (McIntyre & Bruce 2010: 34). There was evidence that the stone 

foundations had cut through the remains of an earlier wooden building and it was likely that 

burials which predated the stone structure had been associated with an earlier timber church 

(McIntyre & Bruce 2010).  

The first reference to the All-Saints Fishergate church dated to between 1091 and 1095 A.D. 

(McIntyre & Bruce 2010: 32). The remains of the timber structure probably represented a pre-

Conquest church and suggested that the second phase of burial began in the late Anglo-Saxon 

period (McIntyre & Bruce 2010). Documentary evidence indicated that the church shared links 

with Whitby Abbey, and it was likely that burial at the site was halted by the Dissolution of the 

Monasteries in the 16th century A.D. (McIntyre & Bruce 2010: 32). One skeleton recovered 

from the apse of the church was radiocarbon dated to 1432-1488 Cal. A.D. (95% probability) 

(McIntyre personal communication 2012). This date supported the medieval use of the church 

and associated graveyard. Medieval pottery was found throughout the grave fills (McIntyre & 

Bruce 2010: 33). Graves had been frequently intercut, which suggested that they had not been 

afforded permanent markers (McIntyre & Bruce 2010: 33). The majority of the burials 

consisted of single graves, although a small proportion contained double burials, usually of an 

adult and child (McIntyre 2010). Only two of the medieval burials demonstrated evidence for 

coffin burial in the form of nails or stains in the ground (McIntyre & Bruce 2010: 32). 

The third phase of burial activity consisted of ten mass graves that contained 113 articulated 

individual skeletons (McIntyre & Bruce 2010). The number of skeletons within each mass grave 

varied from four to nineteen individuals. These mass graves cut through the medieval deposits, 

but also respected some of the foundations of the stone church (McIntyre & Bruce 2010: 36). 

This patterning suggested that the graves had been constructed after the church fallen into 

partial ruin. The fills of the mass graves were all very similar, which indicated that they had 

been used over a short period of time (McIntyre & Bruce 2010: 36). The bodies had been 

organised into rows to ensure that the maximum number could be interred within each space. 
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The burials were defined by their lack of finds, which suggested that the bodies had been 

buried naked (McIntyre & Bruce 2010: 36). The lack of finds made it difficult to date the burials 

precisely. The demographic data obtained from the osteological analysis indicated that all of 

the skeletons were probably adult males (McIntyre 2010).  

The mass graves had been cut by features relating to a 19th century cattle market (McIntyre & 

Bruce 2010). The evidence that the church had fallen into to ruin before the graves were dug 

inferred that burial took place a good time after the 16th century A.D. (McIntyre & Bruce 2010: 

37). The use of mass graves is not a typical manner of disposal in Historical periods in Britain, 

except as a response to a mass fatality event where conventional burial rites are considered 

inappropriate or impractical (Wright et al. 2005). The heavy male bias of the skeletal 

assemblage was indicative of professions that were historically all-male, such as soldiers or 

sailors (Mays & Cox 2000). The best explanation for the archaeological and osteological data 

was that the mass graves were produced in 1644 during the siege of York by Parliamentary 

armed forces affiliated with Oliver Cromwell (McIntyre & Bruce 2010: 37). The idiosyncratic 

layout of the skeletons within the mass graves at All Saints Fishergate was identical to the 

organisation of remains within other mass graves associated with the English Civil War at 

Abingdon in Oxfordshire (McIntyre & Bruce 2010: 37).  

Two discrete pits containing disarticulated human skeletal material were also discovered at the 

site. There were no finds associated with these contexts (McIntyre 2010). These pits included 

the bones of women and sub-adults, the types of remains that were absent from the mass 

graves (McIntyre 2010). The pits were interpreted as representing post-medieval reburial of 

disarticulated medieval deposits that had been disturbed by the digging of the mass graves 

(McIntyre & Bruce 2010). Disarticulated bones were also recovered from throughout the grave 

fills of all burial horizons. The sequence of deposition suggested that these bones represented 

the remains of medieval individuals that had been disturbed by later grave digging. It was 

possible that a small proportion of the unstratified disarticulated bones consisted of disturbed 

Roman skeletons (McIntyre 2010).  

The anatomical articulation of the skeletal material from the York Barbican site suggested that 

all bodies had been buried intact soon after death. Charnel bone retrieved from most contexts 

was entirely disarticulated, and could be explained by later disturbance long after their initial 

deposition (McIntyre & Bruce 2010). The religiosity associated with the Roman inhumations 

could have been different to that associated with the later Christian skeletons, but it was likely 

that the Roman individuals had also been buried soon after death (Toynbee 1985). It was safe 
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to assume that the majority of individuals from the medieval Christian cemetery had been 

buried intact soon after death. It was difficult to infer what sort of rites were afforded to the 

individuals buried in the post-medieval mass graves, although none of these skeletons were 

disarticulated in a way that inferred delayed burial (McIntyre & Bruce 2010).  

The sediment associated with all the phases of burial was a homogenous sandy clay (McIntyre 

personal communication 2010). There was no evidence for any previous water saturation at 

any of the burial depths. It was unlikely that these soils had retained water well enough to 

have produced frequent episodes of anoxia through waterlogging. The 2007 archaeological 

excavation of the York Barbican site was undertaken in one of the wettest summers ever 

recorded, but no burials became saturated as a result (McIntyre & Bruce 2010). There was no 

significant organic preservation or discolouration of burial sediments that may have been 

indicated previous environmental anoxia. 

Human remains from the York Barbican site were sampled for thin section analysis by the 

author and Downey (2012) for use in the current study and a Masters research project. The 

thin sections were prepared using the method expounded in the Methodology chapter. 

Downey (2012) graded the York Barbican thin sections using the OHI. However the writer 

independently graded these sections to provide results for Downey to use in inter-observer 

tests. Downey did not record diagenetic features extraneous to microbial bioerosion and these 

features were recorded specifically for the current project. 

Downey (2012) was not primarily concerned with the archaeological contexts of the bones. 

Therefore, samples were taken from the disarticulated material recovered from the discrete 

pits and the grave fills in order to limit damage to the research potential of the assemblage 

(Downey 2012). Downey (2012) sampled varied long bones from the left side of the body that 

could be broadly aged as child, juvenile or adult.  All of Downey’s (2012) femoral thin sections 

were included in the analysis for the current project. The precise provenance of the bones that 

were sampled could not be discerned, although their disarticulation suggested that it was 

likely that they all originated from the medieval phase of burial. 

 

4.1.1.2 Bantycock Gypsum Mine, Balderton, Derbyshire, U.K. 

 

The Bantycock opencast gypsum mine lies to the south of Balderton village, Nottinghamshire, 

England (Figure 4.4). Excavations of the site took place in 1999 in advance of the reopening of 

the mine. The excavation identified nine phases of activity based upon artefact typology, 
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ranging from the Early-Late pre-Roman (450-100 B.C.) Iron Age to the late Roman period (mid-

4th century A.D. or later) (Pre-Construct Archaeology 2005). The site consisted of a low-status 

farmstead and settlement complex throughout the pre-Roman Iron Age and most of the 

Roman period (Pre-Construct Archaeology 2005). Towards the later Roman period (mid-4th 

century A.D.), evidence for occupation of the site steadily declined. A small inhumation 

cemetery was established sometime around or after the 4th century A.D (Pre-Construct 

Archaeology 2005). 

 

Figure 4.4: Map of the location of the Bantycock Gypsum Mine. 

 

The excavation recovered twenty-four sets of individual articulated inhumations and an 

additional six sets of disarticulated bones. The majority of the individual articulated remains 

were recovered from the later discrete cemetery, although single individuals had also been 

inhumed within the settlement throughout the Pre-Roman Iron Age and Romano-British 

phases. Radiocarbon dating of one of the skeletons confirmed that the cemetery was in use 

120-340 Cal. A.D. (95% confidence) (Pre-Construct Archaeology 2005). The artefact evidence 

indicated that the cemetery probably belonged to the latter half of this range (Pre-Construct 

Archaeology 2005: 4). Most of the skeletons were recovered from within defined graves, 

although three had been deposited within ditches. Some of the graves demonstrated fittings 
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and furniture suggesting that the bodies had been inhumed within coffins (Pre-Construct 

Archaeology 2005: 53). The trussed attitude of one of the skeletons was suggestive of burial 

within a shroud (Keal 2005: 3). One of the female individuals had been placed within a stone-

lined grave and was accompanied by the in situ skeleton of her unborn foetus (Keal 2005: 3). 

All of the adult remains had been buried in extended, supine positions, whilst the neonates 

were all recovered in flexed postures (Keal 2005). The foetus found in situ with the mother 

came from the discrete cemetery, whilst all other neonatal remains were associated with the 

settlement (Pre-Construct Archaeology 2005).   

The chronology of the Bantycock site meant that it was unlikely the buried individuals had 

been subject to Christian funerary rituals (Toynbee 1985). Inhumation began to take over from 

cremation as the funerary rite of choice in Rome and throughout its provinces during the 2nd 

and 3rd centuries A.D., but there is some debate over whether this was due to the rise of 

Christianity (Toynbee 1985). Christian burials are normally orientated east-west (Parker 

Pearson 1999). All of the remains from the discrete cemetery were buried on a north-south 

orientation. The majority of the individuals retrieved from Bantycock were recovered in 

correct anatomical articulation and must have been buried soon after death. The few 

disarticulated remains consisted of only fragmented or single bones, and most likely 

represented charnel or remains from disturbed shallow graves (Pre-Construct Archaeology 

2005). A small proportion of bodies from the Roman world were embalmed, although this rite 

was normally afforded to high status nobility, and is unlikely to have been performed at any of 

the individuals buried within the humble farmstead at Bantycock (Toynbee 1985; 

Papageorgopoulou et al. 2009). 

The burial sediments at Bantycock consisted of brown loamy clay soils (Pre-Construct 

Archaeology 2005: 5). The density of heavy pure clay environments can sometimes produce an 

anoxic burial environment (Janaway 1996; Turner & Wiltshire 1999; Hollund et al. 2012). The 

coarseness of the clay soils present at Bantycock meant that they were likely to have been 

oxygenated and relatively free-draining (Pre-Construct Archaeology 2005). These burial soils 

should not have significantly interrupted bodily putrefaction (Janaway 1996). There was no 

evidence that any of the burial contexts had been previously waterlogged. 

The Bantycock skeletal assemblage was originally sampled for thin section light microscopy by 

Lorraine White for use in her PhD thesis (White 2009). White’s work was concentrated on 

bioerosion within neonatal remains and the strategy for sampling was based on optimising 

numbers of these samples. Infant skeletons were recovered from dispersed contexts across 
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the site and this strategy provided a good representation of bones from different contexts. 

White sampled femora from seven of the skeletons from the Bantycock assemblage (Table 

4.2). All of the remains sampled had been recovered in articulation. Two of the infant bodies 

had been recovered from the same burial context and were interpreted as a double burial. The 

samples from Bantycock were friable and had to be consolidated through embedding in LR 

White Resin (ASCO Laboratories). White (2009) investigated the bacterial attack within these 

thin sections, but this investigation consisted of a qualitative rather than quantitative 

assessment of microstructural change. All of White’s (2009) samples were reassessed using the 

techniques adopted by the present study. 

Specimen No. Age Phase Context 

Sk 13 Young Adult Late 4th Century Cemetery 

Sk 19 Neonate - 6-9 months 4th Century Settlement 

Sk 21 Neonate - 0-1 month 2nd Century Settlement 

Sk 22 Foetal - 38-39 weeks Unphased Pit 

Sk 23 Neonate – 0-1 month Unphased Pit 

Sk 26 Foetal Late 4th Century Cemetery 

Sk 27 Foetal – 39-40 weeks Unphased  Pit 

Table 4.2: Catalogue of the samples taken from the Bantycock Roman human bone assemblage. 

 

4.1.1.3 Berinsfield, Oxfordshire, U.K. 

 

 

Figure 4.5: Map of the location of the Berinsfield Anglo-Saxon cemetery. 
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Berinsfield is a small village located near the confluence of the Thames and Thame rivers 

outside of Oxford, Oxfordshire, England (Figure 4.5). Burials were first discovered at the village 

in 1974 during a watching brief at the Wally Corner gravel pit. Excavations conducted between 

1974-5 by the Oxford Archaeological Unit discovered a variety of archaeological features, 

including an Anglo-Saxon cemetery (Boyle et al. 1995). The cemetery consisted of 100 graves 

that contained 114 inhumation and four cremation deposits (Boyle et al. 1995) (Figure 4.6). 

Some individuals were represented by disarticulated and unphased skeletal elements from the 

grave fills.  

No programme of absolute dating has been conducted on the skeletons from Berinsfield. The 

chronology of the site is based upon the typologies of the grave goods (Boyle et al. 1995). Few 

of the graves intercut one another. Graves that were devoid of material culture could not be 

assigned a precise date (Boyle et al. 1995). The typologies of the weapons and brooches 

recovered from the cemetery suggested that it was in use from the 5th to the 7th centuries A.D., 

within the early Anglo-Saxon period (Boyle et al. 1995: 76). It was assumed that the unphased 

graves belonged to this chronological range (Boyle et al. 1995). 

The majority of the individuals buried at the Berinsfield cemetery were interred articulated in 

discrete graves in extended supine positions (Boyle et al. 1995). A small proportion of the 

skeletons had retained lightly flexed postures, although the consistent grave measurements 

across the site suggested that these positions represented attempts to fit tall individuals into 

graves of uniform dimensions (Boyle et al. 1995: 116). Multiple burials were recovered from 

seven of the Berinsfield graves. In all cases there was evidence that the grave had been 

purposefully opened and the primary skeleton disturbed to make way for the insertion of a 

new individual (Boyle et al. 1995: 119). The primary individuals from these multiple burials 

demonstrated variable levels of skeletal articulation. The demographic composition of the 

individuals from some of the multiple graves suggested that they were reused as familial burial 

plots (Boyle et al. 1995: 119). The stratigraphic relationship between three skeletons deposited 

in a single grave (grave 133) was complicated by evidence for the activity of scavenging foxes 

(Boyle et al. 1995: 119). However, this grave was the only one from the site that demonstrated 

evidence for carnivore activity (Boyle et al. 1995: 57).  A further six graves from Berinsfield 

contained small numbers of extraneous human bones (Boyle et al. 1995: 119). The few 

fragmentary bones of extra individuals found within these deposits were likely to represent 

charnel material that had been encountered during grave cutting (Boyle et al. 1995: 119).  
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Figure 4.6: Plan of the Berinsfield Anglo-Saxon cemetery (Boyle et al. 1995: 9). 

 

 

 

There was no evidence that any of the individuals recovered from Berinsfield had been buried 

within coffins (Boyle et al. 1995). Stains found within two graves (Grave 104 & 11) suggested 

that these contexts had been lined by charred logs (Boyle et al. 1995: 121). Four of the graves 

had been lined with stone slabs. This process may have represented an attempt to replicate 

the Roman cist burial, although the stone linings of the Berinsfield graves were too 

insubstantial to be classified as cists (Boyle et al. 1995: 121). It was unlikely that the Berinsfield 

graves produced an ‘empty space’ cist or coffin-like environment that differed from what was 

experienced by bodies in earthen graves. Organic material found beneath the body within 

Grave 102 suggested that it had originally been covered in a mat of woven rushes (Boyle et al. 

1995: 121).  
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The individuals buried within the Berinsfield cemetery died before Christianity had been 

adopted by the Anglo-Saxons in the 7th century A.D (Lucy 2000). The pagan rites practised at 

Berinsfield were apparent within the orientation of the graves (mixture of N-S and E-W) and 

the presence of grave goods, which are normally absent from Early Christian Anglo-Saxon 

burials (Lucy 2000). Pagan Anglo-Saxon burial rites did not involve a long delay between death 

and burial (Lucy 2000). This notion is supported by the anatomical articulation of the 

Berinsfield skeletons. Those Berinsfield skeletons that had been disarticulated could be 

explained by later disturbance from grave digging (Boyle et al. 1995).  

All of the burials from Berinsfield had been interred within free-draining gravel soils (Boyle et 

al. 1995:  8). The location of the cemetery on a river terrace suggested that the sediments may 

have been subject to annual recharge by rainfall and flooding. However, the free-draining soil 

would have ensured that the burial environment would not have experienced significant 

episodes of anoxia. There was no evidence that any of the graves had ever been waterlogged.  

Bone of seventeen individuals from the Berinsfield Anglo-Saxon cemetery had already been 

sampled for thin section light microscopy by the author for use in an undergraduate 

dissertation project investigating spatial variation in bone diagenesis across a cemetery (Booth 

2007). The seventeen individuals were selected using a stratified sampling technique aimed at 

obtaining a random distribution of bodies from different parts of the cemetery (Booth 2007) 

(Table 4.3). All of the skeletons sampled had been recovered in articulation. The left femur of 

each skeleton had been sampled consistently. None of the sampled skeletons had been 

recovered from stone-lined or wood-lined graves. The Berinsfield samples were friable and had 

to be embedded in LR White Resin before they could be sectioned (Booth 2007).  

Femoral thin sections from an additional three Berinsfield individuals were identified within 

the collection held at the Department of Archaeology. There was only enough information 

accompanying these sections to identify the site, skeleton number and skeletal element. The 

original purpose of their sampling was unclear. Cross-reference with the skeletal report 

confirmed that these samples had been taken from articulated individuals. Some of the 

skeletons were accompanied by metallic grave goods, but it was unlikely that the presence of 

these items would have significantly interfered with putrefaction (Janaway 1996). The majority 

of grave goods were made of iron, which does not have bactericidal qualities (Janaway 1996). 

The previous histological assessment of the Berinsfield thin sections did not use the OHI scale 

and had not recorded frequencies of other diagenetic features that were salient to the current 

project (Booth 2007). The same thin sections from Berinsfield were assessed by Lorraine White 
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(2009) but this assessment did not involve quantification of the bacterial attack using the OHI. 

All of the Berinsfield bone thin sections were assessed using the OHI along with the other 

methods that were adopted for the present study.   

Specimen Age Estimate Sex Estimate 

102 15-20 Female 

126 Adult Indeterminate 

110 45+ Male 

127 17-19  Indeterminate 

134 45+ Female 

14 8  - 

152 17-19 Female 

161 30-35 Male 

164 35-40 Male 

18 17-23 Female 

22 30-35 Female 

32 45+ Male 

48 7  - 

49 45+ Female 

50 Adult Female 

53 30-35 Male 

68 1.5  - 

73 20-25 Female 

77 35-40 Female 

82 20-25 Male 

Table 4.3: Catalogue of the samples from the Berinsfield Anglo-Saxon human assemblage. 

 

4.1.1.4 Black Gate, Newcastle-upon-Tyne, Northumberland, U.K. 

 

The Black Gate cemetery in Newcastle-upon-Tyne was discovered in 1977 during the 

excavation of two railway arches overlying the site of the city’s medieval castle (Figure 4.7). 

This work was undertaken in advance of a programme of consolidation and landscaping by 

Newcastle City Council. The cemetery was excavated from 1977 until 1982, and then from 

1990 to 1992 for Newcastle City Council (Nolan et al. 2010).  Six-hundred-and-sixty burials 

were excavated, although subsequent osteological analysis determined that at least 679 

individuals were represented (Nolan et al. 2010) (Figure 4.8). The majority of individuals were 

recovered in an extended supine position. The extra individuals were represented by 

disarticulated material from the grave fills. Evidence of intercutting within graves as well as the 

stratigraphic relationships between graves and other features suggested that all of the 
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disarticulated deposits had been produced during grave digging or construction (Nolan et al. 

2010).  

 

Figure 4.7: Map of the location of the Black Gate cemetery. 

 

 

Figure 4.8: Plan of the Black Gate site (Nolan et al. 2010: 153). 
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The typologies of shroud pins and coins found with some of the skeletons suggested that burial 

at the site began in the 8th century A.D, and continued through to the 10th century A.D. (Nolan 

et al. 2010: 157). Excavations were carried out in several discrete zones. The uncertainty 

regarding the relationship between these areas meant that phases could only be established 

locally (Nolan et al. 2010: 154). Burial at the site was interrupted by the documented 

construction of the Norman castle in A.D. 1080 (Nolan et al 2010: 157). A series of radiocarbon 

dates of the skeletons confirmed that the site was in use from the 8th century to the 13th 

Century A.D. (Nolan et al. 2010: 282). The rate of interment was reduced after the 

construction of the castle keep in A.D. 1168-1178 (Nolan et al. 2010: 254). The date and 

correct anatomical articulation of the skeletons meant that it could be assumed that the 

majority of remains had been buried intact soon after death.  

The ubiquity of shroud pins within the earlier graves suggested that the majority of the Anglo-

Saxon individuals were wrapped or clothed when they were buried (Nolan et al. 2010: 246). 

This interpretation was supported by the tight unstable position of skeletons as they lay in situ 

(Duday 2006; Nilsson Stutz 2006; Nolan et al. 2010). The Norman skeletons were more often 

buried within stone cists, whereas the preceding Anglo-Saxon skeletons were all recovered 

from plain earthen graves (Nolan et al. 2010: 217). Few of the stone cists contained paved 

floors and lids, therefore the Norman bodies that would have decomposed within earthen 

burial conditions. A fraction of graves demonstrated evidence for coffin interment (Nolan et al. 

2010: 217). Timber coffins were identified by the presence of dark carbonised stains. One 

skeleton had been buried within a chest (Nolan et al. 2010: 217). The presence or absence of 

evidence for a coffin was not recorded for every grave. 

The burial sediment consisted of boulder clay (Nolan et al. 2007: 155). Heavy clay sediments 

can sometimes promote localised anoxia, although this is unlikely to have occurred within the 

sediments at Black Gate, as the spaces in the clay produced by the occasional fluvio-glacial 

deposits would have ensured that the soil remained aerated and free-draining (Janaway 1996; 

Turner & Wiltshire 1999; Nolan et al. 2010; Hollund et al. 2012). It was unlikely that these soils 

would have retained water and encouraged sustained periods of anoxia through waterlogging. 

There was no substantial organic preservation at the site that might have been indicative of 

anoxia or waterlogging (Nolan et al. 2010). 

Human remains from the Black Gate cemetery had been sampled for thin section analysis by 

two different projects. Femoral thin sections had been taken from three articulated individuals 

that were suspected of having suffered from Paget’s disease (Ashford 1998; Pantzer 2004). The 
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thin sections were sampled in order to aid in the diagnosis of the disorder, as the rapid 

pathological bone formation associated with the disease produces characteristic patterns of 

lamellar bone within the internal microstructure (Bell & Jones 1991; Ashford 1998; Pantzer 

2004). The precise cause of Paget’s disease is unknown (Bell & Jones 1991; Aufderheide & 

Rodriguez-Martin 1998). The nature of the disease has led most researchers to reason that it 

must have a viral or genetic aetiology (Aufderheide & Rodriguez-Martin 1998). Paget’s disease 

is not thought to be a product of bacterial infection and so its presence should not have 

affected the rate of bodily decomposition (Bell & Jones 1991; Aufderheide & Rodriguez-Martin 

1998). However, the alterations to the microscopic and macroscopic bone structures caused by 

Paget’s disease may have affected the logistics of diagenesis (Bell & Jones 1991). The presence 

of Paget’s disease would have to be considered when discussing any variation in bone 

diagenesis amongst the Black Gate samples. The increased porosity of the Paget’s samples 

rendered them fragile, and the bone had to be consolidated in LR White Resin before viable 

thin sections could be produced.  

A further sixteen individuals from the Black Gate cemetery had been sampled for thin section 

microscopy by White (2009). Most of White’s (2009) samples were taken from disarticulated 

skeletal elements recovered from graves and grave fills. All of the adult material sampled by 

White originated from femora, but two of the neonatal samples were taken from humeri 

(White 2009). Non-femoral disarticulated material was only sampled from discrete 

depositional contexts to reduce the risk of duplicate sampling of individuals (White 2009). 

White’s (2009) assessment of the Black Gate thin sections did not include a quantification of 

bioerosion. All of the samples produced by White were reassessed for the current study using 

the techniques discussed in the Methodology. White (2009) embedded all of the Black Gate 

samples within LR White resin before thin sectioning. 

A further five femora from the Black Gate cemetery were thin-sectioned as part of the current 

project in order to increase sample size (Table 4.4). All of the samples were taken from 

unphased disarticulated femoral fragments. Femora from different sides of the body were only 

sampled when they originated from dispersed contexts to ensure that the same individual was 

not sampled more than once. Femoral fragments from opposite sides of the body were 

compared based on states of epiphyseal fusion, shapes and sizes in order to assess whether 

they could have been antimeres. Any femora that could have been antimeres were not 

sampled.  
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Specimen Skeletal Element Age Estimation Sex Estimation 

BG 3215    Femur      Neonate ? 

BG 442     Femur      20-29 Male 

BG 464 Femur 30-49 Female 

BG3191     Femur      36 weeks ? 

BG3277     Femur      27 weeks ? 

BG90 3207  Femur      < 1 month ? 

BG92 3664  Femur 5 or 6 ? 

BG90 3285 Fibula 32 weeks ? 

BG90 3204 Humerus    40 weeks ? 

BG90 3166 Tibia 39 weeks ? 

BG90 3830 Humerus    18 months ? 

BG90 3184 Humerus    4 or 5 ? 

BG 90 3219 Femur Adult  - 

BG 90 614 Femur 30-39 Male 

BG 90 481 Femur 40-49 Male 

BG 90 548 Femur 45-54 Female 

BG 90 8 Femur 45+ Male 

BG 90 127 Femur Adult  - 

BG 90 3199 Femur Neonate  - 

BG 9092 3156(2) Femur Adult  - 

BG9092 3257 Femur Subadult  - 

BG9092 3694 Femur Subadult  - 

BG9092 3156 Femur Adult  - 

BG9092 3257 Femur Adult  - 

BG90 2700 Femur Child  - 

Table 4.4: Catalogue of samples taken from the Black Gate human bone assemblage. 

 

4.1.1.5 Carver Street Methodist Chapel, Sheffield, South Yorkshire, U.K. 

 

The Carver Street Methodist chapel is located in the city centre of Sheffield, South Yorkshire 

(Figure 4.9). The graveyard of the chapel was excavated in 1999 after a watching brief had 

identified articulated skeletons within the proposed site of a beer cellar (ARCUS 2004). The 

subsequent three months of excavations recovered 101 articulated skeletons from 47 grave 

cuts, as well as disarticulated skeletal elements representing an additional 25-30 individuals 

(ARCUS 2004). The Carver Street Chapel was originally built on the outskirts of Sheffield 

between 1804 and 1805 (ARCUS 2004). The Sheffield City archive still holds the burial register 

for the cemetery. All of the skeletons were interred between 1806 and 1855 (ARCUS 2004: 27). 

The cemetery was closed in response to the 1855 Burial Grounds Act, which discontinued the 

use of urban cemeteries in Britain. Inscriptions on tombstones combined with the local death 
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records indicated that there was continuous burial in the Carver Street graveyard over this 

period (ARCUS 2004). The religiosity of the site and correct skeletal articulation of most of the 

bones meant that it could be assumed that the majority of the bodies had been inhumed 

immediately after death. 

 

Figure 4.9: Map of the location of the Carver Street Methodist Chapel. 

 

Many of the graves at Carver Street had been reused and disturbed several times. This 

disturbance had partially disarticulated some of the skeletons (ARCUS 2004: 14). Partial 

articulation of some of the disarticulated remains indicated that they had been disturbed 

before they had skeletonised (ARCUS 2004: 60). Disinterment of remains during putrefaction 

may have interfered with the burial environment in a way that upset the progression of 

decomposition and bone bioerosion (Janaway 1996; Turner & Wiltshire 1999; Breitmeier et al. 

2005). The extent of the disarticulation in these skeletons suggested that they had been 

disturbed after putrefaction had run its course, but results from these samples would have to 

be monitored for atypical patterns of bacterial attack. The grave stones, coffin plates and 

documentary evidence indicated that that grave plots had been reused for members of the 

same family (ARCUS 2004: 26). All grave cuts demonstrated evidence for having been re-cut at 
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least once (ARCUS 2004: 69). Some of the grave cuts were quite deep, reaching three metres 

below the ground surface (ARCUS 2004: 60).  

The period during which the skeletons at Carver Street were interred was characterised by 

coffin burial (Litten 1991; Cox 1998). It was likely that the majority of individuals buried within 

the Carver Street cemetery were originally interred within wooden coffins (ARCUS 2004). 

Remains of coffins and coffin furniture were identified throughout the archaeological 

investigations at the site (ARCUS 2004). Many of the skeletons demonstrated slumping 

indicative of movement due to the collapse of an underlying coffin (Roksandic 2002; ARCUS 

2004: 15). One of the burials had been given additional protection of a brick vault (ARCUS 

2004: 27). The presence or absence of coffins associated with particular skeletons could not be 

discerned from the site report. Evidence for coffins within certain graves had been noted, but 

the presence of multiple individuals within single grave cuts meant that the skeleton 

associated with each coffin was not always deducible (ARCUS 2004).  

The burial medium that surrounded the majority of the skeletons from Carver Street consisted 

of silty clay (ARCUS 2004). This type of soil would not be expected to produce anoxic 

conditions in of itself, however the sediments at Carver Street were very moist and some of 

the graves were waterlogged (ARCUS 2004: 5). Two deep grave cuts had penetrated the 

natural bedrock (ARCUS 2004: 5). The remains found within these contexts still retained soft 

tissue and adipocere, whilst other graves contained liquefied soft tissue (ARCUS 2004: 9). 

Waterlogging had occurred as a result of a high water table as well as deep burial, and was 

probably responsible for the high occurrence of organic grave furniture (ARCUS 2004). The 

inundation of the bodies would have produced an anoxic environment that interrupted bodily 

decomposition. The cessation of decomposition promoted by waterlogged conditions was 

apparent in the presence of preserved soft tissue and adipocere (ARCUS 2004).  

This interpretation was supported by the palaeoentomological analysis of one of the 

waterlogged Carver Street graves (ARCUS 2004: 71). The low representation of Coleopteran 

and Diptera species, which would usually thrive within an enclosed environment that 

contained a decomposing cadaver, suggested that an early environmental event had 

prevented their proliferation. The depths of the graves meant that it was possible that all of 

the bodies from Carver Street had been affected by waterlogging at some point during their 

decomposition, and so all of the samples taken from this site had to be recorded as having 

originated from anoxic deposits (ARCUS 2004). It was possible that the low temperatures and 
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hypoxia encouraged by deep burial also interfered with the decomposition of these remains 

(Rodriguez & Bass 1985; Janaway 2006; Dent et al. 2004; Campobasso et al. 2001; Vass 2011). 

Ten individuals from the Carver Street Methodist Chapel were originally sampled for thin 

section light microscopy as part of a Master project that investigated the differential effects of 

coffin and shroud burial on macroscopic and microscopic preservation of human bone 

(Davidson 2010) (Table 4.5). Nine left femoral samples were chosen on the basis of obtaining a 

representative sample of coffin and shroud burials (Davidson 2010). Examination of the plan of 

the burials confirmed that skeletons had been sampled from diverse areas of the site, which 

suited the aims of the current project. It was unclear where the author of the original study 

obtained information regarding which remains had been subject to coffin and shroud burial 

(Davidson 2010).  

All of the skeletons sampled originated from discrete grave cuts, rather than charnel from 

grave fills. However, some of these skeletons had been disturbed, and were recovered in 

varying stages of anatomical articulation (ARCUS 2004). Some of the partially-articulated 

remains may have been disturbed whilst they were still actively decomposing. Variations in 

bone bioerosion that corresponded with articulation would be investigated amongst the 

Carver Street samples to ascertain whether disturbance during decomposition had affected 

bone bioerosion. Collapse of graves due to coffin movement or disturbance had caused bones 

of several individuals to become intermingled (ARCUS 2004). Sampling had been focussed on 

the left femur to ensure there was no replication of individuals. The methodology of thin 

section preparation was analogous to the techniques used in the present study (Davidson 

2010). 

Specimen Grave Row Age  Sex State 

Sk 1010 3 2 25-35 Male Articulated 

Sk 1044 4 2 Adult Male Disarticulated 

Sk 1095 18 5 50-60 Male Partially Articulated 

Sk 1135 10 3 16-20 Female Articulated 

Sk 1215 45 7 45+ Male Articulated 

Sk 1264 32 6 Adult Male Partially Articulated 

Sk 1140 16 4 Adult Male Articulated 

Sk 1231 37 6 25-39 Male Articulated

Sk 1229 34 6 Adult Female Disarticulated 

Table 4.5: Catalogue of the samples taken from the Carver Street Methodist Chapel human bone assemblage. 
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4.1.1.6 Cathedral Close, Exeter, Devon, U.K. 

 

Cathedral Close is located to the west of Exeter cathedral in Devon, England, U.K. (Figure 4.10). 

The excavations that yielded the assemblage of skeletons discussed here took place between 

1971-6 and were conducted by Exeter Museum Archaeological Unit. These works were 

initiated in response to the demolition of the Saint Mary Major Parish church. There was 

evidence for a cemetery at this site from as early as the 5th Century A.D., at the location of a 

previous Roman forum (Henderson & Bidwell 1982; Allan et al. 1984). Two of six skeletons that 

were excavated from the Roman burial phase were radiocarbon dated to 397-650 Cal. A.D. 

(95% confidence) and 414-760 Cal. A.D. (95% confidence) (Allan et al. 1984: 386). These 

results, plus evidence from the finds and stratigraphy surrounding the burials, indicated that 

the earliest cemetery at the site (known as Cemetery I) was established during the post-Roman 

and early Anglo-Saxon periods (Allan et al. 1984: 389) (Figure 4.11).  

 

Figure 4.10: Map of the location of Cathedral Close. 

 

Burial at the site was probably continuous into the second phase of activity, known as 

Cemetery II (Allan et al. 1984: 391). The orientation of the graves of Cemetery II as well as the 

associated finds suggested that this phase represented an Anglo-Saxon burial ground that was 
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linked to a 7th Century Anglo-Saxon minster (Henderson & Bidwell 1982; Allan et al. 1984). The 

burials from the Cemetery III phase of burial were aligned with the remains of the late Anglo-

Saxon/Norman minster church of St. Peter that had been built in the 10th Century A.D. to 

replace the Saxon minster (Henderson & Bidwell 1982; Allan et al. 1984). This church served as 

the cathedral church of Devon and Cornwall from A.D. 1050 until the consecration of the 

Norman cathedral in A.D. 1133 (Allan et al. 1984: 391). Burials associated with this church 

continued up until the late 12th century A.D. when the building was destroyed and 

incorporated into the new St. Mary Major parish church (Allan et al. 1984: 391). Burial within 

the graveyard of the St. Mary Major church continued up until the 17th century A.D. 

(Henderson & Bidwell 1982; Allan et al. 1984).  

 

Figure 4.11: Plans of the various phases of cemeteries at Cathedral Close (Allen et al. 1984: 388, 390). 

 

The excavations uncovered 272 articulated skeletons. Six of these burials originated from the 

Cemetery I phase and overlay the Roman forum (Henderson & Bidwell 1982; Allan et al. 1984).  

Skeletons representing 88 individuals had been cut by the medieval church of Saint Mary 

Major or the 12th century bell casting pit, and must have dated to the two successive Anglo-

Saxon cemeteries (Henderson & Bidwell 1982; Allan et al. 1984). Fifty-three of these burials 

were reliably assigned to the earlier Cemetery II, based upon their differential alignments and 
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stratigraphy (Henderson & Bidwell 1982; Allan et al. 1984). Many of the burials associated with 

Cemetery III lay on the same orientation as the early medieval skeletons from the graveyard of 

St. Mary Major and consequently these two phases were difficult to distinguish from one 

another (Henderson & Bidwell 1982; Allan et al. 1984). Graves that belonged to Cemetery III 

were identified when they were cut by the medieval church (Henderson & Bidwell 1982; Allan 

et al. 1984). Burials in the south of the site were attributed to Cemetery II, as this area was 

occupied by buildings of the Kalendar brethren then the College of the Vicar’s Choral from the 

beginning of the 13th century A.D. (Henderson & Bidwell 1982; Allan et al. 1984). Thirty-five 

burials could be associated with Cemetery III rather than St. Mary Major graveyard. The 

remainder of the skeletons could only be ascribed to a broad time range between the Anglo-

Saxon and Medieval periods (Henderson & Bidwell 1982). 

The majority of the skeletons excavated from the Cathedral Close site belonged to the Anglo-

Saxon and early medieval phases of burial associated with the Saxon minster, the late Saxon 

church and the medieval Saint Mary Major parish church (Cemetery II & III) (Henderson & 

Bidwell 1982; Allan et al. 1984). The orientation of the burials from Cemetery I suggested that 

the site was a Christian burial ground from its inception (Allan et al. 1984: 386). The religiosity 

of the cemetery and the correct articulation of its skeletons meant that it could be assumed 

that most individuals had been buried intact soon after death.  

Twenty-three of the Anglo-Saxon era burials demonstrated iron coffin nails or strapping 

(Henderson & Bidwell 1982; Allan et al. 1984). It was unclear as to whether there was evidence 

for coffin burial in the medieval periods, as the site report did not discuss the medieval 

remains in detail (Henderson & Bidwell 1982; Allan et al. 1984). It was likely that a proportion 

of the bodies interred within the graveyard of Saint Mary Major had been buried in coffins 

(Allan et al. 1984: 389). A small proportion of the Anglo-Saxon burials included a layer of 

charcoal deposited underneath the body (Allan et al. 1984: 389). Layers of charcoal appeared 

more frequently within graves that also demonstrated evidence for coffins (Allan et al. 1984: 

389). Charcoal may have been used to absorb bodily fluids in an attempt to curtail bodily 

decomposition (Grainger et al. 2008). There have been no experimental tests of whether 

charcoal has this effect on a decomposing cadaver and it is unclear as to whether charcoal 

would have significantly affected putrefactive bone bioerosion. The site report did not provide 

a record of which individuals had been afforded these rites (Henderson & Bidwell 1982; Allan 

et al. 1984). The possibility that skeletons from Cathedral Close had originated from coffin and 

charcoal burials would have to be considered alongside the results from the histological 

analysis. 
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The skeletons from Cathedral Close had been buried within a sandy gravel environment that 

would have been free draining, and should not have encouraged anoxia through retention of 

water (Henderson & Bidwell 1982; Allan et al. 1984). There was no indications in the site 

reports that any of the graves had been waterlogged, and organic preservation at the site was 

poor (Henderson & Bidwell 1982; Allan et al. 1984). Only the metal fittings from coffins 

survived (Henderson & Bidwell 1982; Allan et al. 1984). These observations suggested that the 

graves were not exposed to frequent periods of anoxia that interfered with bodily 

decomposition 

Three skeletons from the Cathedral Close assemblage were sampled for thin sections analysis 

by White (2009) (Table 4.6). It was not possible to determine which Anglo-Saxon cemetery 

phase these skeletons belonged to, although this lack of this knowledge was inconsequential 

to the aims of the current project. All of the thin sections had been taken the left femoral mid-

shaft of articulated skeletons. The Cathedral Close samples were embedded in LR White Acrylic 

resin and mounted using Euparol. White (2009) did not assess samples using the OHI, 

therefore the three thin sections from Cathedral Close were reassessed using the techniques 

discussed in the Methodology.  

Specimen Age Sex 

Exe618 50+ F 

Exe561 15-22 F 

Exe635 25-35 F 

Table 4.6: Catalogue of the samples of human remains taken from the Cathedral Close cemetery. 

 

4.1.1.7 Royal Mint, East Smithfield, London, U.K. 

 

The East Smithfield cemetery is located to the north-east of the Tower of London in the City of 

London and lies underneath the buildings that once formed part of the Royal Mint (Figure 

4.12). Several excavations have been undertaken at the site since the 1970s. The human 

remains sampled for this project were uncovered in 1986-1988 during excavations by the 

Museum of London’s Department of Greater London Archaeology (DGLA). Articulated 

skeletons representing 1012 individuals were recovered from the excavation area (Grainger et 

al. 2008). 

The skeletons from the Royal Mint have not been subject to radiocarbon dating. Artefacts and 

documentary data could be used to split the skeletal assemblage into two phases (Grainger et 

al. 2008). The earliest phase of burial was linked to a cemetery and associated chapel (Holy 
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Trinity) that were founded to accommodate the dead that had accumulated as a result of the 

1348-50 Black Death epidemic (Grainger et al. 2008). The cemetery may have been established 

to accept bodies from outlying parishes as well as the remains of local people (Grainger et al. 

2008: 10). This area of the cemetery consisted of organised rows of single graves as well as 

mass burial trenches (Grainger et al. 2008). These burials could be split into two distinct 

eastern and western groupings. The dimensions of the East Smithfield cemetery corresponded 

with documented measurements of the burial ground associated with the Holy Trinity chapel 

(Grainger et al. 2008: 10). Coins and pottery dating to the 14th century A.D. were found 

throughout the sediments and in association with the skeletons (Grainger et al. 2008: 15).  

 

Figure 4.12: Map of the location of the East Smithfield Royal Mint cemetery. 

 

Mass grave trenches do not represent a conventional funerary practice in medieval Britain and 

usually occur as a practical response to mass fatality events (Wright et al. 2005). The use of 

ordered mass graves in medieval Britain was a specific protocol for dealing with the large 

volumes of Plague victims (Grainger et al. 2008: 19). The Black Death cemetery in East 

Smithfield was established in late A.D. 1348 or early 1349, and so the burials from the Black 

Death sections of the cemetery could be allocated a narrow range between A.D. 1348 and 

1350 (Grainger et al. 2008). The Plague epidemic began to subside by A.D. 1350 and 
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supplementary cemeteries were no longer required (Grainger et al. 2008: 27). A small number 

of single graves were found intercutting the previous interments in the western part of the 

cemetery (Grainger et al. 2008). These graves probably related to intermittent outbreaks of 

the Plague that occurred throughout the 14th and 15th centuries A.D. (Grainger et al. 2008: 31).  

There were no stratigraphic relationships between the single and trench graves. It was not 

certain whether trench graves were used from the cemetery’s inception, or were initiated at a 

later stage when the volume of bodies began to increase (Grainger et al. 2008: 19). The 

ordered nature of the burials led the excavators to speculate that the single and trench graves 

had been dug at the same time and left open until they were filled (Grainger et al. 2008:19). 

The trench graves demonstrated soil slumping in their bases, which suggested that they been 

left open for an extended duration of time (Grainger et al. 2008: 19).  

The trench graves were densely filled with stacks of up to five bodies (Grainger et al. 2008). 

The position of the skeletons suggested that the bodies had been carefully placed in an 

ordered fashion (Grainger et al. 2008: 19). Infant and juvenile bodies had been used to fill gaps 

between the adult individuals. Both single and multiple burials were represented. It was 

unlikely that these circumstances would have produced divergent patterns of decomposition 

and bone bioerosion (Mant 1987). The abundance of rotting cadavers within the mass graves 

would have produced a specific environment that was rich with putrefactive bacterial species. 

However, articulated skeletons from single graves can demonstrate the highest levels of 

putrefactive bioerosion (Nielsen-Marsh et al. 2000; Jans et al. 2004; Nielsen-Marsh et al. 

2007). Mass graves could not have promoted a level of bone bioerosion that was any more 

severe than what can occur as a result of single burial. The differences in bone bioerosion 

between single and mass graves was scrutinised at the analysis stage.  

The presence of corroded nails and organic stains suggested that some of the burials from the 

Black Death cemetery had been interred within coffins (Grainger et al. 2008: 13). Evidence for 

coffin burials were found within single and mass graves. The infrequent evidence for coffins 

suggested that coffin burial was not a common rite within the East Smithfield cemetery and 

that most individuals were buried either clothed or shrouded (Grainger et al. 2008). The site 

report contained a good record of those remains found with grave furniture. It was likely that 

traces of coffins had not survived into the archaeological record in every case. However, the 

bone samples taken from skeletons variably found with evidence for coffins were noted to 

investigate whether there were any differences in bone diagenesis with coffin burial.    
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King Edward III founded the Abbey of Saint Mary Graces at the site of the East Smithfield 

cemetery soon after the Black Death epidemic subsided (Grainger et al. 2008; Grainger & 

Phillpotts 2011). The Holy Trinity chapel was used as a church by the Cistercians until A.D. 1353 

when it was incorporated into the abbey (Grainger et al. 2008; Grainger & Phillpotts 2011). A 

new church was built in association with the abbey around A.D. 1361 (Grainger & Phillpotts 

2011). The second phase of burial at the East Smithfield site was associated with this church 

and the churchyard located to the east of the western Black Death cemetery (Figure 4.13). 

Four-hundred-and-forty single articulated skeletons were recovered from this phase. Burial at 

the site ceased after the Dissolution. All of the skeletons from the later phase dated to a period 

between A.D. 1360 and the mid-16th century A.D. (Grainger & Phillpotts 2011).  

 

 

 

Figure 4.13: Plan of the East Smithfield Black Death and Abbey cemeteries (Grainger et al. 2008: 30). 

 

The underlying pathogen associated with the Plague might have had some effect on the bodily 

decomposition and altered the way in which bones were bioeroded by putrefactive bacteria 
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(Mann et al. 1990; Vass 2011; Zhou & Bayard 2011; Fereira & Cunha 2013). A small number of 

the burials from the western Black Death cemetery were found in various stages of articulation 

without signs of grave disturbance. These bodies must have decomposed to some extent 

before they were interred, which inferred that there was a delay between their death and 

burial (Grainger et al. 2008). These burials may have represented bodies had not been 

discovered until a while after death or those remains that had been transported to the 

cemetery from elsewhere (Grainger et al. 2008: 19). The evidence that some of the graves had 

been left open for a time suggested that bodies may have decomposed within open graves for 

brief periods (Grainger et al. 2008: 19). Bodily decomposition in these examples may have 

been more akin to sub-aerial exposure than burial.  

Some of the graves from both the Black Death and Abbey phases had been partially filled with 

charcoal (Grainger et al. 2008; Grainger & Phillpotts 2011). It was unclear whether these 

deposits represented the remains of planks, charring of a coffin or deliberate deposition of 

charcoal itself (Grainger et al. 2008: 20). In one case the charcoal included some domestic 

waste, which suggested that it had been deposited directly from a domestic context (Grainger 

et al. 2008: 20). Grainger et al. (2008: 21) hypothesised that charcoal may have been used to 

soak up fluid products of decomposition in order to slow the decomposition of individuals that 

had been transported long distances. It is unknown whether charcoal burial has this effect. 

Some of the charcoal burials originated from areas of the cemetery that were not associated 

with the Plague (Grainger & Phillpotts 2011: 104). Unfortunately, the presence and absence of 

charcoal was not recorded for each specific grave in the site reports (Grainger et al. 2008; 

Grainger & Phillpotts 2011). 

Two of the coffined skeletons from the Abbey Church had been surrounded by quicklime 

(Grainger & Phillpotts 2011: 104). Application of both hydrated lime and quicklime retards 

bodily decomposition within the first six months through desiccation of the tissues 

(Aufderheide 2003; Kim et al. 2008; Schotsmans et al. 2012). Quicklime also has bactericidal 

properties (Aufderheide 2003; Kim et al. 2008). This process may have affected how the bone 

of these specimens had been bioeroded by putrefaction bacteria.  

The burial sediments at the Royal Mint consisted of free-draining sandy gravel (Grainger et al. 

2008: 5). These soils should not have encouraged episodes of anoxia via retention of water. 

There was no evidence that any of the graves had experienced sustained episodes of 

waterlogging, either in the form of organic preservation or sediment discolouration (Grainger 

et al. 2008; Grainger & Phillpotts 2011).  
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Specimen Context Age Sex  Area Grave Type Coffin 

1 5728 35-45 Male Eastern BD Single Present 

2 9849 35-45 Male Western BD Trench Absent 

3 11117 25-35 Female Western BD Trench Absent 

4 9517 35-45 Male Western BD Single Present 

5 12884 35-45 Male Western BD Single Absent 

6 5265 25-35 Male Eastern BD Trench Absent 

7 6388 Adult Female Western BD Single Present 

8 6398 25-35 Female Western BD Single Present 

9 6509 35-45 Male Eastern BD Single Present 

10 6602 15-25 Male Eastern BD Single Absent 

11 7163 35-45 Female Western BD Single Present 

12 8099 35-45 Male Western BD Single Present 

13 13774 Adult Male Church Abbey Single Present 

14 13747 Adult Male Church Abbey Single Absent 

15 13530 Adult Male Church Abbey Single Present 

16 13666 35-45 Male Church Abbey  Single Present 

17 16122 45+ Female Church Abbey  Single Absent 

18 10348 45+ Male Church Abbey  Single Absent 

19 10070 45+ Male Church Abbey  Single Absent 

20 10250 5-15 Indeterminate Church Abbey Single Present 

21 8126 Adult Indeterminate Western BD - Absent 

22 5859 35-45 Female Eastern BD Trench Absent 

23 8210 45+ Female Western BD Single Absent 

24 6545 Adult Male Eastern BD Single Present 

25 12774 45+ Female Western BD Trench Absent 

26 6319 Unknown Indeterminate Western BD Trench Absent 

27 12691 35-45 Female Western BD Trench Absent 

28 6383 35-45 Female Western BD Single Absent 

29 8414 25-35 Female Western BD Trench Absent 

30 8217 35-45 Female Western BD Single Present 

31 12897 35-45 Male Western BD Single Present 

32a 11606 35-45 Male Western BD Trench Absent 

32b 10213 Adult Indeterminate  BD Trench Unknown 

33 10635 45+ Female Church Abbey  Single Present 

34 11997 Adult Indeterminate Church BD Single Absent 

35 10250 5-15  Unknown Church Abbey  Single Present 

36 10240 Adult Female Church Abbey  Single Present 

37 14421 15-25 Female Church Abbey  Single Present 

38 10801 35-45 M Church Abbey  Single Present 
Table 4.7: Catalogue of the human bone samples taken from the East Smithfield Royal Mint cemetery. 
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The skeletons from the Royal Mint were sampled for thin section analysis by Tryzelaar (2003) 

as part of a 2003 Masters dissertation. Tryzelaar (2003) compared levels of bioerosion within 

bone from the Black Death and Abbey Church phases. All samples had been taken from 

femoral mid-shafts (Tryzelaar 2003). The samples had not been taken exclusively from one side 

of the body, as all bones sampled had been excavated as part of articulated skeletons 

(Tryzelaar 2003; Grainger et al. 2008). The Royal Mint sections were embedded within LR 

White resin but were otherwise prepared in a similar manner to the method outlined in the 

Methodology chapter.  

Forty individuals from the Royal Mint site were selected for thin section analysis, although 

Tryzelaar only produced viable thin sections from 38 of these specimens (Table 4.7). 

Tryzelaar’s strategy was to acquire a sample of remains that provided a good representation of 

the Black Death and Abbey Church phases of burial. The thin sections provided an adequate 

temporal and spatial representation of the site. This sampling was consistent with the 

objectives of the present study. The samples included almost equal proportions of coffined 

and non-coffined skeletons.  

Tryzelaar (2003) did not use the OHI scores expressed in the methodologies put forward by 

Hedges et al. (1995) and Millard (2001) to assess bioerosion. White (2009) also assessed 

bioerosion within the same samples but not with use of the OHI. Further diagenetic features 

that were required for the present study were not recorded by either researcher (Tryzelaar 

2003; White 2009) The diagenesis of the Royal Mint thin sections was reassessed for the 

present project using the techniques expounded in the Methodology chapter. 

 

4.1.1.8 St. Hilda’s Church, Coronation Street, South Shields, Northumberland, U.K. 

 

St. Hilda’s Church is located at Coronation Street in South Shields, Northumberland on the 

eastern bank of the River Tyne (Figure 4.14). The area that surrounds Saint Hilda’s church has 

been occupied by religious buildings since A.D. 674, when a nunnery eponymous with the later 

church was established at the site (Gibson et al. 2009: 32). The original church was probably 

built in association with this nunnery (Gibson et al. 2009: 32).  

The nunnery was built on the banks of a tidal inlet known as Mill Dam, which was filled in 

between the 17th and 18th centuries A.D. (Gibson et al. 2009: 32). It was likely that individuals 

were continuously inhumed in and around the church within a formalised churchyard (Gibson 

et al. 2009). The church that exists today was built in the 19th century A.D., although it is 
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probable that this structure stands on the same site as its predecessor (Gibson et al. 2009). By 

1816, the graveyard had reached the full capacity of burials, and the ground level was 

artificially raised to facilitate more bodies (Gibson et al. 2009: 33). The cemetery was officially 

closed to new inhumations in 1856, although the burial records for the town suggested that 

interment continued until the 1860s (Gibson et al. 2009: 33). 

 

Figure 4.14: Map of the location of the St. Hilda's church cemetery on Coronation Street, South Shields. 

 

Skeletons from the cemetery formerly associated with Saint Hilda’s church were uncovered 

during a watching brief and trial trench evaluation conducted by the Archaeological Services of 

the University of Durham (ASUD) in 2005 (Gibson et al. 2009). This evaluation was conducted 

in anticipation of modifications the sewerage system. One of the trenches uncovered only 

disarticulated human remains and broken gravestone fragments. An additional trench was dug 

at the projected southern edge of the graveyard. Fourteen grave cuts were identified at two 

metres below the ground surface. Four of these grave cuts were found to contain articulated 

skeletal remains. The finds associated with these burials dated them to the 18th and 19th 

centuries A.D. (Gibson et al. 2009). This evaluation trench was re-excavated by Oxford 

Archaeology North in 2006, with the purpose of excavating down to the natural features to 

remove all skeletal remains.  
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The Oxford Archaeology North excavations extended the original trenches to a maximum 

depth of 5.5m below ground level, excavating a total of 191 human burials; 168 discrete 

articulated individuals and 28 sets of disarticulated bones (Gibson et al. 2009). Disarticulated 

bones usually belong to formalised charnel deposits. Skeletons were excavated from two 

distinct burial horizons defined by the 1816 raising of the ground level (Gibson et al. 2009). The 

post-1816 skeletons were found between two metres and four metres below the modern 

surface within the raising material (Gibson et al. 2009:8). The earlier burial horizon was located 

between four-and-a-half and five-and-a-half metres below ground level (Gibson et al. 2009: 8). 

The graves of the lower horizon had been cut into grey silty clay fluvial deposits laid down by 

activity of the Mill Dam tidal inlet (Gibson et al. 2009: 8). The two burial horizons were 

separated by thirty centimetres of material that was used in the raising of the ground level. 

This level contained a small number of dispersed articulated and disarticulated skeletal 

deposits.  

There was archaeological evidence for the presence of coffins from 177 of the Coronation 

Street burials (Gibson et al. 2009: 9). Evidence for coffins consisted of traces of decayed wood, 

stains in the surrounding soil, metal fittings and coffin plates. There was some partial survival 

of coffin upholstery in some contexts. Some of the coffins had probably left no archaeological 

trace. The majority of individuals from both phases of the cemetery had probably been buried 

within a coffin, as coffin burial had become ubiquitous for both rich and poor in Britain during 

the 18th and 19th centuries A.D. (Litten 1991). Formalised charnel deposits had been placed 

neatly on top of the coffins of intrusive interments (Gibson et al. 2009). Coffins from the lower 

burial horizon demonstrated higher levels of overall preservation than those from the upper 

horizon (Gibson et al. 2009).  

The burials from the upper horizon could be broadly attributed to the period between the 

raising of the ground level and the termination of interment, 1816-c.1860 A.D. (Gibson et al. 

2009). This interpretation was supported by the dates of the finds and grave furniture found 

throughout the sediment within graves (Gibson et al. 2009). The upper burial horizon also 

contained some residual medieval pottery within secondary deposits of industrial and 

domestic waste (Gibson et al. 2009). The skeletons situated in the lower burial horizon could 

have dated to any point between the graveyard’s inception and the ground level raising event, 

from the early medieval period (5th- 10th century A.D.) to A.D. 1816 (Gibson et al. 2009: 7). The 

majority of skeletons recovered from the lower area were coffined (Gibson et al. 2009: 44). 

The single-break style and abundance of coffins recovered from the lower horizon suggested 

that most skeletons dated to the 18th century A.D. (Reeve & Adams 1993; Gibson et al. 2009). 
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The dating evidence, articulation of the skeletons and association of the burial ground with the 

church of Saint Hilda suggested that the majority of individuals had been interred intact soon 

after death.  

The position of the organised charnel deposits and disturbed graves were noted throughout 

the excavation (Image 4.1). Patterns of articulation within charnelled skeletal elements 

suggested that some of the remains still retained some soft tissue when they were disturbed 

(Gibson et al. 2009). Some of the disarticulated remains from Coronation Street demonstrated 

evidence for having been disturbed before the body had decomposed (Gibson et al. 2009: 20). 

It was unlikely that disturbance of the remains at a late stage would have affected putrefactive 

bone bioerosion (Polson et al. 1985; Micozzi 1991; Janaway 1996; Jans et al. 2004; Adlam & 

Simmons 2007; De Jong et al. 2011). However, the early disturbance of remains may have to 

be considered an explanation for any significant variation in levels of diagenesis within the 

Coronation Street samples. 

 

Image 4.1: Formal charnel deposit from the St. Hilda's Coronation Street cemetery (Gibson et al. 2009: Plate 9). 

 

The material that was used in the raising of the graveyard that constituted the upper burial 

horizon consisted of a mixture of gravel, clay and industrial waste (Gibson et al. 2009: 8). The 

sediments of the upper horizon were described as free-draining and aerated (Gibson et al. 

2009: 8). The silty clays that constituted the lower burial horizon had promoted the 

preservation of organic materials, which indicated that these sediments experienced periods 

of anoxia that had interrupted organic decomposition (Gibson et al. 2009: 8). The part of the 
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cemetery that was excavated lay directly adjacent to the site of the filled-in Mill Dam inlet 

(Gibson et al. 2009: 8). It was likely that the lower phase of the cemetery had been frequently 

waterlogged.  

The deep burial of individuals from both phases may have also promoted anoxic or hypoxic 

burial environments (Rodriguez & Bass 1985; Janaway 1996; Dent et al. 2004; Vass 2011). Most 

skeletons interred within this cemetery would have decomposed over two metres below the 

ground surface where oxygen would have been limited (Rodriguez & Bass 1985; Dent et al. 

2004). The low temperatures associated with deep burial in this environment may also have 

affected putrefaction (Rodriguez & Bass 1985; Janaway 1996; Campobasso et al. 2001; Dent et 

al. 2004; Breitmeier et al. 2005; Vass 2011). The high levels of organic preservation combined 

with the likelihood that many of the bodies interred at St. Hilda’s decomposed within anoxic, 

hypoxic or cold conditions meant that all bones from the assemblage had to be considered as 

having originated from anoxic sediments that interfered with putrefaction and bacterial 

bioerosion. 

Remains from the graveyard associated with Saint Hilda’s church were sampled for thin section 

analysis for the present research project as well as for inclusion within a Masters research 

project (Downey 2012). The samples were prepared by the author and Downey (2012). 

Downey’s (2012) project investigated variation in bone bioerosion with age-at-death. Downey 

(2012) sampled varied long bones from the left side of the body that could be broadly aged as 

child, juvenile and adult. Only left femoral thin sections were included in the current study to 

avoid replication of individuals. All of the samples could be cut without embedding. The 

samples were prepared using the techniques outlined in the Methodology chapter.  

All of the bones sampled from the St Hilda graveyard originated from disarticulated charnel 

deposits (Table 4.8). The provenance of disarticulated samples was not apparent within the 

site report (Gibson et al. 2009). Some of the disarticulated material sampled had been 

recovered from the spoil heap or within unphased section of the site (Gibson et al. 2009). 

These bones did not have a secure context and could not be attributed to either burial horizon. 

It was not known whether the individuals sampled had been originally buried within coffins. 

The ubiquity of coffins within burials from both horizons combined with the 18th and 19th 

century penchant for coffined burial suggested that the majority of these bones probably 

originated from coffined bodies (Litten 1991).  

Downey (2012) employed the OHI in their assessment of histological preservation in their bone 

thin sections. However, the writer conducted a parallel set of similar blind assessments to 
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provide data for inter-observer tests. Analysis of samples by the author was also required to 

record other measures of diagenesis. The OHI grades recorded by the author were used in 

then current study.  

Specimen No. Age 

CS-301 Adult 

CS-528 Adult 

CS-535 Adult 

CS-A Adult 

CS-C Adult 

CS-G Adult 

CS-H Adult 

CS-I Adult 

CS-J Adult 

CS-K Adult 

CS-K Adult 

CS-L Juvenile 

CS-B425 Adult 

CS-B385a Juvenile 

CS-B385b Adult 

CS-527Bb Adult 

CS-527a Neonate 

CS-527d Neonate 

CS-49c Neonate 

CS-49b Adult 

CS-49a Juvenile 

CS-49d Juvenile 

CS-73Ab Adult 

CS-73Aa Child 

CS-73Ac Child 

CS-192 Child 

CS-281a Juvenile 

CS-281b Adult 

CS-94a Adult 

Table 4.8: Catalogue of human remains sampled from the St. Hilda's Coronation Street assemblage. 

 

4.1.1.9 St. Leonard’s Hospital, London Road, Grantham, Lincolnshire, U.K. 

 

Grantham is a small town in Lincolnshire, located a few miles outside of Nottingham. London 

Road is one of the main routes that runs through Grantham (Figure 4.15). The skeletal 

collection from London Road was excavated in 1991 as a result of rescue work undertaken by 
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Heritage Lincolnshire in advance of the construction of a service station (Heritage Lincolnshire 

1992). Articulated remains representing 49 individuals were recovered from the site. 

Disarticulated charnel found within the grave fills raised the minimum number of individuals to 

over 50 (Boulter 1992).  

The articulated individuals had been disturbed by later development and most survived in 

incomplete or fragmentary conditions (Boulter 1992). The graves had been filled with the same 

soil that was excavated in their construction, which meant that specific grave cuts were 

difficult to identify (Heritage Lincolnshire 1992: 6). A small proportion of remains from the 

south-east of the site demonstrated patterns of erosion consistent with exposure to heat or 

industrial chemicals and some had been stained by oil (Heritage Lincolnshire 1992: 6).  

 

Figure 4.15: Map of the location of the cemetery of St. Leonard's Hospital, London Road, Grantham. 

 

All of the skeletons lay in an east- west extended supine position (Heritage Lincolnshire 1992: 

8) (Figure 4.16). The stratigraphy of the burials allowed for identification of a broad sequence 

of deposition. The earliest burials were directly adjacent to London Road and were cut by 

burials placed to the east (Heritage Lincolnshire 1992: 11). There was a clear development of 

the cemetery from west to east. The location of a grave in the cemetery reflected its 
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temporality (Heritage Lincolnshire 1992: 11). All of the skeletons were buried within two 

metres of the modern surface, although the depth of the original graves could not be 

established, as the historical ground level had not been preserved (Heritage Lincolnshire 1992: 

11).  

No religious buildings were recorded to have previously existed on the London Road site 

(Heritage Lincolnshire 1992: 4). However, there were references within the first Subsidy Roll of 

Lincolnshire to a medieval hospital within Grantham dedicated to Saint Leonard (Owen 1971; 

1975; Heritage Lincolnshire 1992: 4). The hospital was first mentioned in records dating from 

the reign of Henry II (A.D. 1154-1189) and was probably founded sometime in the 12th century 

A.D. (Owen 1971; 1975). The lands of St. Leonard’s hospital were acquired by the Crown during 

the Dissolution (Heritage Lincolnshire 1992: 4). The best estimate for the period of use of the 

cemetery was between the 12th and 16th centuries A.D. (Heritage Lincolnshire 1992: 4). The 

cemetery probably represented the farthest extent of the burial ground associated with St. 

Leonard’s hospital (Heritage Lincolnshire 1992: 4).  

 

Figure 4.16: Plan of the burials from the cemetery of St. Leonard's Hospital in Grantham (Heritage Lincolnshire 1992: 
11). 

 

The hypothesis that the cemetery represented burial ground of the medieval Saint Leonard’s 

hospital was supported by the archaeological evidence. The east-west orientation of the 
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bodies indicated a Christian burial rite (Heritage Lincolnshire 1992). Pottery sherds recovered 

throughout the excavation dated from the 5th and 14th century A.D. (Heritage Lincolnshire 

1992: 12). There was no evidence for coffin burial, either in the form of preserved wood, stains 

or metal nails (Heritage Lincolnshire 1992). The unstable positions of some skeletons 

combined with presence of copper alloy pins suggested that bodies had been wrapped in 

shrouds (Heritage Lincolnshire 1992: 12). All of these features were consistent with medieval 

burials (Heritage Lincolnshire 1992). Two of the skeletons from London Road demonstrated 

pathological lesions indicative of leprosy (Boulter 1992).  

The burial sediment consisted of brown silty sand (Heritage Lincolnshire 1992: 6). Soil of this 

type is likely to be coarse and free-draining (Janaway 1996). This type of sediment would not 

have caused the significant retention of water and subsequent episodes of anoxia through 

waterlogging (Janaway 1996; Dent et al. 2004; Carter et al. 2010). No evidence of waterlogging 

was recorded from any of the graves, and there were no significant levels of organic 

preservation (Heritage Lincolnshire 1992).  

A selection of bones from the London Road cemetery were originally sampled for thin section 

analysis by Goodfield (1992) as part of an undergraduate dissertation investigating the 

relationship between bone microstructure and age at death (Goodfield 1992) (Table 4.9). 

These samples were also used in White’s (2009) study. Goodfield produced histological thin 

sections from both the right and left femoral mid-shaft of ten individuals from Grantham in 

order to test for any differences between sides. Goodfield’s (1992) strategy was based on 

obtaining samples that had been allocated variable age ranges and that were reasonably well-

preserved. The main focus of this dissertation was the aging of adult remains and so the 

sampling excluded the remains of juveniles, children and infants. The skeletons that were 

sampled had been distributed across the site and were likely to reflect variable phases of use 

(Goodfield 1992). 

Goodfield’s (1992) samples included two of the three skeletons that demonstrated lesions 

consistent with leprosy (Heritage Lincolnshire 1992). It is uncertain whether pathological 

bacteria associated with chronic conditions such as leprosy are capable of biodegrading the 

internal bone microstructure in a way that is consistent with Hackett’s non-Wedl MFD (Schultz 

1993). It was possible that the increased post mortem bacterial load might have affected 

bodily decomposition (Polson et al. 1985; Mann et al. 1990; Vass 2011; Zhou & Bayard 2011; 

Fereira & Cunha 2013). The recognition of lesions consistent with leprosy on these particular 

skeletons meant that the potential effects of pathological bacteria on bone bioerosion could 
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be controlled. Other individuals represented by healthy skeletons from the London Road 

cemetery may have suffered from leprosy but had not yet developed the osteological 

expression of the disease (Aufderheide & Rodriguez-Martin 1998). The possibility that 

individuals represented within the Grantham samples suffered from leprosy would have to be 

considered when discussing any variation in diagenetic signatures of bone thin sections from 

this site. 

Goodfield’s (1992) study was not concerned with the measurement of microbial bioerosion. 

White (2009) did not make use of the OHI in her assessments of bone bioerosion. Goodfield 

(1992) prepared her sections differently to the methodology used in the current study. The 

thin sections from London Road were cut using an Exakt bench band saw and mounted onto 

slides using Flucromount fluid (BDH laboratory supplies). The refractive index of this substance 

is similar to glass. The bench band saw is not capable of cutting thin sections as precisely as the 

saw microtome used in the present project, and so the London Road thin sections were at 

least 150 microns thick (Goodfield 1992). Thicker thin sections can appear opaque. This opacity 

can obscure microscopic features (Schultz 1997). However, Goodfield (1992) had also thin-

sectioned a number of modern femoral fragments using the same methods. Examination of 

the modern thin sections revealed that the increased thickness had not diminished or 

corrupted the microstructures appreciably, and that the thin sections from London Road were 

comparable to the thinner sections sampled using the saw microtome (Goodfield 1992). The 

left femoral thin sections of each London Road individual sampled by Goodfield was assessed 

using the OHI plus the techniques expounded in the Methodology chapter. 

Specimen Age Sex Pathology Position in the Cemetery 

10 30-40 Male None West 

22 20-25 Female None West 

34 20-40 Male None West 

40 Adult Male Leprosy West 

42 35-45 Male Leprosy West 

46 35-45 Male None East 

56 30-40 Female None East 

63 Adult Female None West 

67 45-50 Male None East 

70 40-45 Male None East 

Table 4.9: Catalogue of the specimens sampled from the St. Leonard’s Hospital cemetery, Grantham. 
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4.1.1.10 St. Mary & Saint Laurence Church, Bolsover, Derbyshire, U.K. 

 

The church of Saint Mary & Saint Laurence is located in Bolsover, a small town near 

Chesterfield, Derbyshire, England (Figure 4.17). Architectural features of the old parts of the 

church indicate that it was constructed no later than the 13th century A.D. (Foster 1992). The 

church was damaged by a fire in 1897, and subsequently renovated and rebuilt during the 19th 

and 20th centuries A.D. (Foster 1992). Skeletons were found underneath the church during 

emergency excavations in advance of building work (Kerr 1994). The excavation was conducted 

by the Creswell Heritage Trust between 1991 and 1992 and encompassed three areas within 

the church, as well as areas of the churchyard located directly outside the western walls and 

the main entrance (Foster 1992). A total of 70 articulated skeletons were excavated (Kerr 

1994). Additional disarticulated material was recovered from grave fills and the surrounding 

soils. The disarticulation of this material suggested that all of the bodies had fully decomposed 

before they had been disturbed (Foster 1992). 

 

Figure 4.17: Map of the location of the St. Mary & St. Laurence church and cemetery in Bolsover. 

 

Four of the graves lay above the remains of a Norman knave, but were truncated by the 

foundations and walls of the 13th century tower (Foster 1992: 6). These observations suggested 

that the earliest burial activity at the site began in the Norman period before the 13th century 
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A.D. (Kerr 1994: 6). Four more graves had been truncated by 13th century features. The largest 

proportion of graves contained 18th and 19th century coffin fittings (Foster 1992: 6). Two graves 

located at the north of the church lay atop a 19th century storm water drain (Foster 1992; 

Economou 2003). The majority of the remains recovered from the north of the church 

consisted of the skeletons of children and infants (Foster 1992; Economou 2003) (Figure 4.18).  

No absolute dating of the skeletons has been undertaken. Precise ages could not be assigned 

to any of the skeletons whose graves did not demonstrate stratigraphic relationships with 

dateable features. The majority of skeletons were allocated a broad age range of 13th-19th 

century A.D. (Foster 1992). The levels of skeletal articulation within discrete graves suggested 

that burial had occurred soon after death (Foster 1992). Disarticulated human bone recovered 

from the site had most likely accumulated through disturbance of decomposed bodies during 

grave digging or construction (Foster 1992).  

 

Figure 4.18: Plan of the burials excavated from St. Mary & St. Laurence church, Bolsover (Foster 1992: Figure 5). 

 

Some of the skeletons recovered from underneath the nave of the church had been deposited 

within trench graves containing multiple individuals placed side-by-side (Economou 2003). 
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Multiple bodies would have decomposed within the trench graves, but the other 

circumstances of decomposition would have been very similar to those experienced by bodies 

within discrete cuts. There was no reason to believe that bodies within trench graves would 

have decomposed any differently to the single burials. 

The sediments that surrounded the majority of skeletons recovered from the church consisted 

of clean re-worked natural clay (Foster 1992). The 19th century sediments included a large 

volume of construction debris that had formed as a result of the fire and major rebuilding 

works (Foster 1992). There was no reason to believe that any of the sediments had been 

waterlogged (Foster 1992). The clay soils would not have been entirely free-draining, but it 

was probable that they would not have retained water in a way that promoted sustained 

periods of anoxia (Foster 1992; Janaway 1996; Carter et al. 2010). Some of the skeletons were 

accompanied by remains of coffin furniture, although the site report did not indicate which 

graves included coffins (Foster 1992; Kerr 1994). Some of the 19th century burials contained 

traces of coffin timber (Foster 1992: 6). Organic preservation was not substantial and did not 

suggest previous sustained periods of anoxia.  

A proportion of the skeletons excavated from the church of Saint Mary and Saint Laurence 

were originally sampled for thin sectioning by Economou as part of a Masters dissertation 

(Economou 2003).  Economou’s (2003) investigations were concerned with identifying age-

related variations in bone bioerosion. Economou’s slides were reused by White (2009) 

(Economou 2003). Economou sampled femora from seventeen of the articulated skeletons for 

thin section analysis (Economou 2003). Remains from across the cemetery had been sampled, 

including skeletons that were likely to have dated to diverse periods (Economou 2003). 

Economou’s (2003) focus on neonatal remains meant that sampling was concentrated on the 

north side of the church where these skeletons were more prevalent (Foster 1992; Economou 

2003). Femora had been sampled from alternating sides. However, all samples had been 

extracted from articulated individuals and there was no danger of replicate sampling of 

individuals. All of the thin sections had been mounted onto microscope slides using Euparal.  

Neither Economou (2003) nor White (2009) quantified bone bioerosion in the Bolsover 

samples using the OHI. All of the Bolsover thin sections were reassessed for the present study 

using the methods described in the Methodology. A further twelve femora from the Bolsover 

site were sampled for the current project in order to increase the sample size (Table 4.10). All 

of the new bones that were sampled consisted of disarticulated charnel that had been 
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recovered from graves or grave fills. Thin sections were prepared and analysed using the 

methods adopted for the present study. 

Specimen Grave No. Age Sex State Area 

Bol91-001 9 18-30 years Indeterminable Articulated Tower 

Bol91-002 20 ~4 years Indeterminable Articulated Tower 

Bol91-003 19 20-40 years Indeterminable Articulated South 

Bol91-007 34 42 weeks Indeterminable Articulated North 

Bol91-008a 76 26 weeks Indeterminable Articulated North 

Bol91-008b 76 28 weeks Indeterminable Articulated North 

Bol91-009 79 38 weeks Indeterminable Articulated North 

Bol91-010 82 24 weeks Indeterminable Articulated North 

Bol91-011 85 39 weeks Indeterminable Articulated North 

Bol91-012 88 43 weeks Indeterminable Articulated North 

Bol91-017 133 40 weeks Indeterminable Articulated North 

Bol91-014 112 33 weeks Indeterminable Articulated North 

Bol91-018 135 4 years Indeterminable Articulated North 

Bol91-021 140 6 months Indeterminable Articulated North 

Bol91-028 186 39 weeks Indeterminable Articulated Tower 

Bol91-029 188 7 years Indeterminable Articulated South 

Bol-91-056 263 30 weeks Indeterminable Articulated South 

Bol-91-dis-7 Unknown Adult  Unknown Charnel Unknown 

Bol-91-dis-10 Unknown Adult Unknown Charnel Unknown 

Bol91-dis-9 Unknown Adult Unknown Charnel Unknown 

Bol91-dis-6 Unknown Adult Unknown Charnel Unknown 

Bol91-dis-5 Unknown Adult Unknown Charnel Unknown 

Bol91-dis-3 Unknown Adult Unknown Charnel Unknown 

Bol91-dis-NN Unknown Adult Unknown Charnel Unknown 

Bol91-dis-11 Unknown Adult Unknown Charnel Unknown 

Bol91-dis-4 Unknown Juvenile Unknown Charnel Unknown 

Bol-91-dis-2 Unknown Adult Unknown Charnel Unknown 

Bol-91-dis-2(2) Unknown Adult Unknown Charnel Unknown 

Bol-91-dis-10 Unknown Adult Unknown Charnel Unknown 

Table 4.10: Catalogue of the skeletons sampled from the cemetery at St. Mary & St. Laurence Church, Bolsover. 

 

4.1.2 Later Prehistoric Site Assemblages 

 

Bone samples of 93 individuals from fifteen Later Prehistoric archaeological sites were sampled 

for use in the current study. The samples originated from all phases of the northern European 

Later Prehistoric periods; Neolithic (c.4000-2400 B.C.), Bronze Age (c. 2400-700B.C.) and Iron 

Age (c. 700 B.C.-A.D. 34). The few collections of Later Prehistoric human remains held at the 
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University of Sheffield consisted of articulated, disarticulated or partially disarticulated bone 

from five sites that dated to between the Neolithic and Iron Age. Human bone thin sections 

from three further Bronze Age sites were available within the University of Sheffield’s 

collections. These bones had been sampled from outside institutions as part of the author’s 

Masters dissertation (Booth 2008).  

The rest of the Later Prehistoric remains were obtained from outside institutions. A strategy 

had been devised for identifying remains that would be useful for the current study. The 

primary sampling objective was to acquire optimal sample sizes that demonstrated evidence 

for variable treatment. The non-osteological variable that has been most often linked with 

changes in funerary practice in the British Later Prehistoric is phase (Darvill 2010). Therefore 

an effort was made to sample remains from a wide range of Neolithic, Bronze Age and Iron 

Age sites. It was also important to sample from Later Prehistoric assemblages that had been 

recovered from different parts of the UK in order to test for differences in bone diagenesis that 

could be attributable to variable environmental factors. The published and grey literature was 

studied to identify Later Prehistoric British sites that might provide useful samples. All of the 

sites that yielded high numbers of remains and that demonstrated evidence for variable 

treatment were entered into Microsoft Access database. The Access database included the 

following variables: location of the site, sex estimation, skeletal articulation, evidence for post 

mortem treatment, phase, direct radiocarbon date, indirect radiocarbon date (i.e. date taken 

from an accompanying artefact), position, putative location of the remains, date excavated 

and grave goods. These details provided enough information to prioritise remains that could 

be used to address the research questions (Background chapter page 3).  

Later Prehistoric samples had to be collected through application to outside institutions for 

permission to perform destructive analysis. The destructiveness of microstructural analysis of 

bone combined with the obligation for museum curators to favour preservation meant that it 

was unlikely that every application to sample Later Prehistoric material would be accepted. 

The success of the current research project was dependent on retrieving a large number of 

Later Prehistoric samples. Application was made to sample as many remains as possible to 

ensure that positive responses would be high enough to ensure a good sample size. Sites that 

contained large numbers of remains were targeted preferentially, although these sites 

represented a minority of the total possible Later Prehistoric assemblages.  

The majority of Later Prehistoric bones sampled for the current study consisted of fragments 

of femoral mid-shaft. A different long bone was chosen for analysis in a minority of cases. The 
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reasons for including a non-femoral long bone are provided below and were usually related to 

the need for larger sample sizes at sites where only limited numbers of individuals were 

represented by femora. The need to sample replicate elements combined with the low sample 

sizes of many of the Later Prehistoric collections meant that there could be no specific 

sampling strategy beyond taking all examples of a particular skeletal element.  

Samples of bone from a Swedish Neolithic site were also included in the Later Prehistoric study 

sample. The Later Prehistoric date, evidence for variable treatment and temperate location 

associated with these remains meant that there was no methodological reason as to why they 

could not be included in the Primary Analysis. The addition of these remains increased the 

scope and size of the study sample. The inclusion of the Swedish bones also increased the 

diversity of the Later Prehistoric study sample, which increased its useful in determining 

whether early post mortem treatment had a primary influence on bone diagenesis (Table 4.11, 

Figure 4.19). 

Site Location Period Number of 

Samples 

Beeston Tor CX Wetton, Staffordshire Neolithic 4 

Bilham Farm Brodsworth, South Yorkshire Iron Age 2 

Bradley Fen Whittlesey, Cambridgeshire Bronze Age 3 

Carsington Pasture 

Cave 

Brassington, Derbyshire Neolithic/Iron Age 18 

Cladh Hallan South Uist, Outer Hebrides Bronze Age 5 

Cnip Headland Isle of Lewis, Outer Hebrides Bronze Age 7 

Danebury Hillfort Middle Wallop, Hampshire Iron Age 18 

Frälsegården Falbygden, Sweden Neolithic 10 

Hornish Point South Uist, Outer Hebrides Iron Age 1 

Langwell Cist Strath Oykel, Scotland Bronze Age 1 

Neat’s Court Queensborough, Kent Bronze Age 7 

South Dumpton 

Down 

Broadstairs, Kent Bronze Age/Iron 

Age 

6 

Suddern Farm Middle Wallop, Hampshire Iron Age 2 

Whitwell Quarry Bolsover, Derbyshire Neolithic 5 

Windmill Fields Ingleby Barwick, County 

Durham 

Bronze Age 4 

Table 4.11: Catalogue of the Later Prehistoric sites whose assemblages were used in the current study. 
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Figure 4.19: Map of the location of the Later Prehistoric sites whose remains were used in this study. The different 
colours refer to the specific phase that remains originated from predominantly, brown=Neolithic, gold=Bronze Age, 

grey=Iron Age. 

 

4.1.2.1 Beeston Tor CX, Wetton, Staffordshire, U.K. 

 

The Beeston Tor cave, otherwise known as St. Bertram’s cave, is located next to the northern 

bank of the Manifold River, near the village of Wetton in Staffordshire (Figure 4.20). The 

human remains included in the present project were found within Cave CX, a previously 

unexplored opening towards the top of Beeston Tor Crag (Papakonstantinou 2009: 75). The 

cave entrance had been recorded by the Trent and Peak Archaeological Trust and the Royal 

Commission on the Historical Monuments of England (RCHME) as part of an archaeological 

survey. Human remains were found within the chamber by an amateur caver. Unauthorised 

excavations had revealed a sedimentological sequence of brown cave soils and calcite 

cemented cave surface as well as an assemblage of disarticulated and comingled human and 

animal bone (Papakonstantinou 2009: 76). The chamber was systematically excavated by 

Andrew Chamberlain and archaeologists from the University of Sheffield in 2009 

(Papakonstantinou 2009). 
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Figure 4.20: Map of the location of Beeston Tor CX cave. 

 

The aim of the 2009 excavations was to gain information on the ancient cave usage and 

produce recommendations for conservation of the site. The spoil of the unauthorised 

excavations consisted of dark brown humic soil and mottled red-brown silt with numerous 

inclusions of cave breccia and limestone clasts (Papakonstantinou 2009: 75). A small area of 

ground outside of the cave entrance was also excavated. The sediments outside the cave 

consisted of a brown humic soil that demonstrated extensive root development intense 

bioturbation by burrowing animals (Papakonstantinou 2009: 75). Inside the cave, a 120 

centimetre redeposited horizon followed the western wall to its northern extremity 

(Papakonstantinou 2009: 75). This cut had been filled by a more gravelly form of the humic 

topsoil that had found outside the cave. This deposit was interpreted as representing a lead 

miner’s trench (Papakonstantinou 2009). This trench overlay a pale brown silt containing 

faunal remains. This deposit was overlain at the northern extremity of the cave by a pale grey-

brown silt with inclusions of breccia and limestone clasts (Papakonstantinou 2009: 75).  

Three-hundred-and-thirty-eight disarticulated and comingled human bone fragments and 31 

teeth were recovered from the cave (Papakonstantinou 2009: 77). The repetition of elements 

suggested that these remains represented at least eight separate individuals of variable ages 

(Papakonstantinou 2009: 77). Interment of human remains within caves has been practised 
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intermittently within most Historical and Prehistoric periods in Britain (Chamberlain 2006). 

However, cave burials of multiple individuals are most frequently associated with Later 

Prehistoric periods, particularly the earlier to middle Neolithic (Barnatt & Edmonds 2002; 

Chamberlain 1996; Darvill 2010). The excavation of the Beeston Tor CX deposits produced 

finds of chert and flint tools, a fragment of bronze wire and sherds of pottery 

(Papakonstantinou 2009: 75). The earliest pottery was dated typologically to the Neolithic. 

Two of the human bones produced radiocarbon dates of 3800-3650 Cal. B.C. and 2800-2500 

Cal. B.C. placing them within the early and late Neolithic respectively (Papakonstantinou 2009). 

The lack of overlap between these two dates suggested that Neolithic deposition of remains 

within the cave was long-lived and that the Beeston Tor CX assemblage represented multiple 

episodes of interment over hundreds of years (Papakonstantinou 2009).  

Over half of the human remains were excavated out of the humic soil and red silt sediment 

that had been disturbed during the unauthorised excavations. The remainder of the human 

bones had been recovered from the topsoil at the cave entrance (Papakonstantinou 2009). 

Three-per-cent demonstrated evidence for modification by carnivores or rodents 

(Papakonstantinou 2009: 80). Only three of these bones showed coincident evidence for 

natural weathering suggestive of sub-aerial exposure (Papakonstantinou 2009: 80). An 

unspecified larger number of human remains demonstrated evidence for root etching 

(Papakonstantinou 2009: 79). The evidence for extensive root action both within and outside 

of the cave suggested that this damage could have occurred whilst the bones were buried in 

the humic cave sediments (Papakonstantinou 2009). Several of the human bone fragments had 

been covered by concretions of flowstone (Papakonstantinou 2009). 

Cut marks were identified on the cortical surface of an infant tibia. The position of the cut 

marks corresponded with specific muscle attachments, and suggested that the intention was 

to deflesh (Papakonstantinou 2009: 82). Levels of fragmentation amongst the assemblage 

were low when compared with the number of bones (Papakonstantinou 2009). The 

morphology of breaks suggested that they had occurred when the bone was dry (Wheatley 

2008; Wieberg & Wescott 2008; Papakonstantinou 2009). Three of the adult femora 

demonstrated peri mortem spiral fractures (Wheatley 2008; Wieberg & Wescott 2008; 

Papakonstantinou 2009). 

The smaller bones, such as those from the hands and feet, were underrepresented amongst 

the Beeston Tor CX human assemblage (Papakonstantinou 2009: 82). A lack of bones from the 

hands and feet is often taken to be indicative of prior decomposition of bodies elsewhere, as 
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these skeletal elements are amongst the first to disarticulate and are most commonly lost 

when a body is transported from a primary context (Mays 2008). However, there was also an 

underrepresentation of smaller bones whose articulation usually persists during 

decomposition, such as vertebrae (Papakonstantinou 2009: 82). The low representation of the 

smaller skeletal elements at Beeston Tor CX was most likely to have occurred as a result of 

differential preservation of skeletal elements by size as well as excavation bias 

(Papakonstantinou 2009: 82). The evidence from the skeletal part representation and cortical 

erosion of the bones inferred that intact or mostly intact bodies were deposited and had 

decomposed within Beeston Tor CX (Papakonstantinou 2009). These remains had been 

disarticulated and comingled by subsequent manipulation and disturbance.  

The disturbance of the human remains made it difficult to determine the environmental 

conditions of their initial decomposition. The lack of anatomical relationships between the 

buried bones suggested that bodies had decomposed on the cave floor and the bones were 

incorporated into the sediments at a later stage. It was likely that all of the human bodies 

deposited within Beeston Tor CX had decomposed within an open cave environment. There 

was no evidence that the cave flooded regularly and so it was unlikely that waterlogging 

frequently promoted anaerobic decomposition (Papakonstantinou 2009). There was no 

evidence that the silts and humic soils that eventually contained the human bone assemblage 

were intrinsically anoxic, The accumulations of flowstone observed on some of the bones 

supported the suggestion that the bodies had originally decomposed on the cave floor and 

that bones had remained on the surface for a significant time before they were incorporated 

into the sediments (Papakonstantinou 2009).  

The Beeston Tor CX assemblage was transported to the University of Sheffield Department of 

Archaeology, and so all of the bones from the site were available for sampling. Only left 

femora were sampled in order to avoid the risk of sampling the same individual multiple times 

(Table 4.12). The assemblage included four identifiable left femora. All of these specimens 

were sampled and analysed using the established methodology. All of the samples could be cut 

on the saw microtome without embedding.  

Specimen Age 

219 Adult 

145 2-3 years 

280 Neonate 

36 Older Adult 

Table 4.12: Catalogue of the remains sampled for this study from the Beeston Tor cave assemblage. 
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4.1.2.2 Bradley Fen, Whittlesey, Cambridgeshire, U.K. 

 

 

Figure 4.21: Map of the location of Bradley Fen. 

 

Bradley Fen is located in the south-east of the Flag Fen basin, to the west of the town of 

Whittlesey in Cambridgeshire (Figure 4.21). The site was excavated in 2001 by the Cambridge 

Archaeological Unit (CAU) in advance of quarrying (Knight 2000; Appleby 2005). The main 

archaeological features consisted of a Bronze Age field system, an associated settlement and a 

collection of burnt mounds (Appleby 2005). The burnt mounds were associated with deposits 

of metal artefacts at the edge of the fen (Appleby 2005). The settlement and field system had 

been established on a higher natural terrace and were demarcated from the burnt mounds 

area by a north-south linear feature. The settlement consisted of a number of roundhouses as 

well as some four-post structures, interpreted as storage facilities (Appleby 2005). Numerous 

watering holes and ponds had been dug within the settlement and field systems to allow for a 

fresh water supply when the water table was low (Knight 2000). 

There was archaeological evidence for prehistoric activity at Bradley Fen from the Neolithic to 

the Middle Iron Age (Appleby 2005: 18). Neolithic Peterborough ware pottery was recovered 

from within pits located around the site. Many of the rest of the features were assigned 
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phases through their relationship with an episode of peat formation that was dated to 2300-

1510 cal. B.C. (Appleby 2005: 18). The field systems dated to the Middle Bronze Age. 

Settlement activity in the form of the four-post structures began in the Late Bronze Age 

(Appleby 2005). This activity was accompanied by further metalwork deposits at the fen edge 

including a substantial Bronze Age hoard (Appleby 2005: 18). This phase of activity could be 

dated to the Late Bronze Age by the typology of the metalwork (Appleby 2005: 18). Material 

associated with one of the roundhouses from the settlement yielded Late Bronze Age 

radiocarbon dates of 900-800 cal. B.C (Appleby 2005: 19). A scatter of pottery sherds that 

dated to the Late Bronze Age, Early Iron Age and Middle Iron Age were found overlying earlier 

features further up the slope. The gradual movement of activity away from the fen edge was 

interpreted as representing a relocation to higher ground in response to the Flag Fen basin 

becoming increasingly wet over time (Appleby 2005: 19).  

Disarticulated and articulated human remains amounting to at least five individuals were 

recovered from a variety of contexts around the Bradley Fen site (Appleby 2005; Knight 

personal communication 2008) (Figure 4.22). The disarticulated remains of an adult female (Sk. 

901) were recovered from the banks of a filled-in pond. The distribution of skeletal elements 

suggested that the body had been deposited whole within the pond and subsequent water 

movement had distributed the bone along the bank (Knight personal communication 2008). An 

articulated skeleton of an older adult male (Sk. 573) was discovered within a partially-

backfilled post hole associated with one of the four post structures from the settlement 

(Knight 2000). The post hole was 0.4m-0.7m in diameter and 0.3-0.4m deep. The body was 

supine and had been contorted into a tightly flexed posture in order for it to fit in the post hole 

(Knight 2008, personal communication) (Image 4.2). Part of the backfill of the post hole that 

lay underneath the skeleton consisted of metalworking slag (Appleby 2005). 
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Figure 4.22: Plan of the archaeological features at Bradley Fen. Human remains are marked by red crosses (Appleby 
2005: 24). 

 

Two articulated skeletons were found within discrete graves. An adult male (Sk. 658) had been 

deposited within a grave that was subsequently truncated by a large prehistoric pit, leaving 

only the bones of the lower legs and feet in situ (Knight 2008, personal communication). 

Disarticulated bones presumably belonging to this individual had been deposited in the lower 

levels of the prehistoric pit. The position of the legs suggested that the body had originally lain 

in a crouched position on the left side orientated east-west or southeast-northwest. 

Concretions of iron panning adhered to some of the bones of this individual (Knight 2008, 

personal communication). 
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Image 4.2: Sk. 573 (right) and Sk. 853 (left) recovered from Bradley Fen. Sk. 853 had been deposited head-first in a 
watering hole and Sk. 573 had been squashed into a partly-backfilled post hole (courtesy of Mark Knight, CAU). 

 

The articulated bones of an adult male (Sk. 785) were found in a second discrete shallow 

grave. The torso was prone and the lower legs had been flexed to the right. There was 

evidence of rodent damage on some of the bone surfaces (Knight 2008, personal 

communication). There was no mention of whether this damage was likely to have been 

caused by burrowing rodents that accessed the grave after the body had been deposited.  

The body of an older middle adult female (Sk. 853) had been deposited head first in a watering 

hole (Appleby 2005: 19; Knight 2008, personal communication) (Image 4.2). The skeleton was 

recovered from the basal silt, which suggested that it represented a final deposit before the 

well was abandoned and left to silt up (Appleby 2005; Knight 2008, personal communication). 

The wrists of this skeleton were crossed and hands lay in front of the chest, which suggested 

that they may have been bound when the body was deposited (Appleby 2005: 19; Knight 2008, 

personal communication). The position of the body suggested that there had been no attempt 

to break the fall and that the individual was probably dead before they were deposited 

(Dodwell 2008, personal communication). The bones of this individual had been stained a dark 

brown/black colour and some had been covered in grey concretions. A piece of loose-woven 

textile was found adhered to this individual’s left femur (Knight 2008, personal 

communication). 



  

207 
 

None of the skeletons from Bradley Fen had been radiocarbon dated. The stratigraphic 

relationships between the skeletons and dateable features suggested that the majority of the 

burials dated to the Late Bronze Age (Appleby 2005). For instance, Skeletons 853 and 573 were 

deposited in the later stages of features that could be associated with Late Bronze Age activity 

(Appleby 2005). The isolated shallowly-buried Sk. 785 was allocated a Late Bronze Age/Early 

Iron Age date, although the justification for this later date was not stated explicitly (Knight 

2008, personal communication).  

The waterhole that contained Sk. 853 skeleton was designed to allow access to the water table 

all year round and had probably been waterlogged from the point of deposition (Knight 2008, 

personal communication). The body would have remained inundated during decomposition 

(Appleby 2005). The loss of water from this context is likely to have occurred as a result of 17th 

century A.D. draining of the fens (Appleby 2005). The dark staining of the Sk. 853 skeleton was 

consistent with the bones having spent long periods of time within a waterlogged anoxic 

environment (O’Connor et al. 2011). This kind of staining is often attributed to the infiltration 

of the bone by humic factors that were mobile within the wet environment (O’Connor et al. 

2011). The survival of the organic textile was also consistent with the grave having been 

rendered anoxic at or soon after deposition. This skeleton was recorded as originating from an 

anoxic environment. 

Sk. 573 was surrounded by a fill of mid-brown sandy clay (Knight 2008, personal 

communication). The clay would not have been free-draining to the same extent as coarser 

soils, although it was unlikely that this environment would have been intrinsically anoxic 

(Janaway 1996; Dent et al. 2004; Carter et al. 2010). Sk. 573 had been buried towards the top 

of a post hole that was only 40 centimetres deep. This post hole formed part of a four-post 

structure which was situated on the northern terrace located around two metres above the 

ground water level (Appleby 2005; Knight 2008, personal communication). The sediments that 

surrounded these remains were not waterlogged at the time of the excavation and there was 

no persistence of organic grave goods (Knight 2008, personal communication). The bones did 

not demonstrate the dark staining that was apparent within Sk. 853. It was possible that the 

grave of Sk. 573 was waterlogged through the main period of its deposition, and only became 

aerated after the 17th century draining (Appleby 2005). Subsequent environmental interactions 

may have deleted signs of previous inundation. However, the same process had occurred 

within the context of Sk. 573, yet the taphonomic changes to this skeleton that had ensued as 

a result of waterlogging were still apparent (Appleby 2005: 19). The Sk. 573 was not recorded 

as having originated from an anoxic environment. 
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Sk. 785 and 901 were deposited within sandy clay sediments that were similar to those that 

surrounded Sk. 573. Both of these burials were located on the terrace associated with the Late 

Bronze Age settlement and the same uncertainties surrounded their taphonomic histories 

(Appleby 2005; Knight 2008, personal communication). It was unlikely that Sk. 785 had been 

waterlogged during decomposition as the grave of this skeleton was very shallow (Knight 2008, 

personal communication). The grave of Sk. 901 was deeper than that which contained Sk. 785, 

but was still relatively shallow. There was no evidence from the sediments or the preservation 

of organic material that these contexts had been previously waterlogged. 

Skeletons from Bradley Fen were sampled for thin section analysis by the author for a Masters 

project that investigated whether there was any evidence for the practise of mummification in 

Later Prehistoric Britain beyond the discoveries made at Cladh Hallan (Booth 2008) (Table 

4.13). The skeletons were held by the Cambridge Archaeological Unit. Permission to sample 

the remains had been provided by Mark Knight and Chris Evans, and the thin sections were still 

available within the collections at the University of Sheffield Department of Archaeology.  

Thin sections were produced from fragments of bone taken from the left femoral anterior mid-

shafts of Sk. 573 and 785 and the right femur of Sk. 853. Skeletons had been chosen for 

sampling based on their similarity to the Cladh Hallan remains, particularly in terms of 

evidence for deposition in unusual contexts and severe flexion of the body. The right femur of 

Sk. 853 was sampled to avoid having to disturb the preserved textile that adhered to the left 

element. All of the skeletons were articulated when they were discovered and so there was no 

repeat sampling of individuals. The thin sections of the Bradley Fen specimens did not require 

embedding and were prepared in the manner set out in the Methodology chapter. All of the 

skeletons sampled were articulated in situ, but the unusual nature of their deposition meant 

that they were viable for inclusion within the variably-treated Later Prehistoric cohort of 

remains. Sk. 853 and 573 had been deposited under novel circumstances in contorted 

positions, whilst the rodent gnawing observed on the bones of Sk. 785 indicated that this body 

might have been left to decompose in an open environment for a short length of time.  

The Bradley Fen thin sections had originally been assessed using the OHI by the author during 

work for his Masters dissertation, but this assessment had not included detailed study of other 

diagenetic features (Booth 2008). The updated OHI scoring system developed by Millard 

(2001) had not been employed in the original assessment of the Bradley Fen thin sections. It 

was decided that the best approach was to reassess the Bradley Fen thin sections using the 

OHI whilst recording secondary diagenetic features.  
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Specimen Age Sex Context 

Sk. 573 Older Adult Male Manipulated into a backfilled post hole. 

Sk. 785 Adult Male Shallow grave. Gnawed by rodents. 

Sk. 853 Older Middle Adult Female Watering hole. 

Table 4.13: Catalogue of the specimens that were sampled from the Bradley Fen site. 

 

4.1.2.3 Bilham Farm, Brodsworth, South Yorkshire, U.K. 

 

 

Figure 4.23: Map of the location of the Iron Age burial from Bilham Farm. 

 

Brodsworth Hall is a Victorian country house located to the north-west of Doncaster in South 

Yorkshire. Brodsworth Hall’s surrounding estate has been the subject of ongoing research and 

training excavations conducted by the Universities of Sheffield and Hull since 2006 (Figure 

4.23). Numerous seasons of excavations have revealed features relating to phases of activity 

ranging from the Bronze Age enclosures to Victorian managed landscapes.  

The 2009 series of excavations focussed on a prehistoric ditched enclosure that had been 

identified by geophysical survey near the location of the Bilham Farm water tower. The 

enclosure consisted of an egg-shaped arrangement of ditches that spread out into two track 



  

210 
 

ways leading off in opposite directions. Parts of the enclosure and the track ways were 

excavated in an attempt to retrieve dateable material. The stratigraphy of the site consisted of 

shallow topsoil over a limestone bedrock. This stratigraphy made it difficult to determine 

relationships between features (Merrony 2012, personal communication).  

These excavations uncovered the articulated skeleton of an adult male that had been buried 

on a north-south orientation underneath one of the track ways (Merrony 2012, personal 

communication). The skeleton was accompanied by a canid tooth and a boar’s tusk, both of 

which had been perforated. The legs of the skeleton were flexed, but the torso was prone, 

with the skull lying face down on the grave floor (McIntyre 2009). The torso, sacrum and right 

innominate had fallen away from the left innominate and the bones of the legs, which 

remained flexed on the left side. The body must have originally been placed in the grave flexed 

on its left side. The disarticulation of the skeleton suggested that the articulated torso and part 

of the pelvis were forced away from the left innominate and the legs after the soft tissues had 

partially decomposed (McIntyre 2009).  

A second skeleton of a subadult individual was discovered in 2010 close to where the adult 

was found. The skeleton had been buried in a crouched position orientated north-south 

(Merrony 2012, personal communication).The skeleton had become badly fragmented by 

ploughing and was subsequently block lifted and excavated under laboratory conditions 

(Merrony 2012, personal communication).  

Bone from the adult male skeleton yielded a radiocarbon date of 347-54 cal. B.C. (95% 

Confidence), placing the individual’s death within the Iron Age. The two skeletons had been 

buried within two metres of one another. The subadult skeleton was assigned an Iron Age 

provenance by association (Merrony 2013, personal communication). The two skeletons had 

been stored at the University of Sheffield Department of Archaeology. 

The burial sediment consisted of a heavy sandy clay. This sediment would not have been 

completely free-draining, but was not intrinsically anoxic. Only shallow levels of sediment 

covered the bedrock, and it was likely that the substrate had remained aerated over the period 

of burial (Merrony 2012, personal communication). There was no suggestion that the 

sediments or the interments had been subjected to frequent episodes of anoxia through 

waterlogging (Merrony 2012, personal communication).  

Permission to sample the Bilham skeletons was granted by Colin Merrony. The bones of both 

of individuals were sampled for thin section analysis by the author using the procedures 
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outlined in the Methodology chapter. Samples of the anterior mid shaft of the left femur were 

taken in each case. The low number of samples was potentially problematic with regards to 

site specific interpretations of diagenesis. However, the Bilham bones were valid for inclusion 

as there was evidence that the adult skeleton had been manipulated post mortem.  

 

4.1.2.4 Carsington Pasture Cave, Brassington, Derbyshire, U.K. 

 

 

Figure 4.24: Map of the location of Carsington Pasture Cave. 

 

Carsington Pasture Cave lies within the southern Peak District, around one kilometre east of 

Brassington village (Chamberlain 1999) (Figure 4.24). There are two entrances to the cave; a 

natural ground level passageway hidden within a north-facing hollow and an artificial vertical 

entrance six metres to the south, which was created by lead miners as an access shaft 

(Chamberlain 1999; Papakonstantinou 2009). The natural entrance opens into an initial 

chamber five metres in diameter, known as the entrance or flaccid chamber (Figure 4.26). The 

cave was explored and excavated by members of the Pegasus Caving Club and archaeologists 

from the University of Sheffield in 1998 (Chamberlain 1999). These explorations followed a 
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ten-metre-long passageway from the entrance chamber that terminated in a second chamber, 

known as the Yorick chamber. A vertical natural shaft led to a third chamber. Imprints of 

hobnail boots, pick marks and a clay pipe find suggested that there had been some previous 

mining activity within this chamber (Chamberlain 1999; Papakonstantinou 2009). No evidence 

for such activity was found within the other two chambers. The third chamber terminated in a 

four-metre-deep vertical shaft (Chamberlain 1999).  

 

Figure 4.25: Projected vertical section of Carsington Pasture Cave (Chamberlain 1999: 4) 

 

Quantities of disarticulated human and faunal remains were recovered from all chambers and 

adjoining passages (Chamberlain 1999) (Figure 4.26). There were no soil sediments within the 

cave. The bones were found lying directly on the chamber floors, which consisted of limestone 

and clay rubble (Chamberlain 1999). Some of the bones had been coated in speleothem 

(Chamberlain 1999: 4). All of the human and faunal remains were removed to the University of 

Sheffield (Chamberlain 1999). The human bones represented a minimum of twenty individuals 

(Papakonstantinou 2009). The frequency of human skeletal elements decreased with 

progression through the cave chambers (Chamberlain 1999: 4). The majority of the bones were 

recovered from the floor of the second chamber and the passage that connected this area to 

the third cavern. The distribution of the human bones throughout the cave suggested that the 
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second chamber was the primary focus of deposition (Chamberlain 1999: 4). Movement of 

bone from this chamber was probably encouraged by carnivore and rodent scavenging as well 

as movement of cave sediments (Chamberlain 1999; Papakonstantinou 2009). Marks indicative 

of carnivore gnawing were present on a small proportion of bones (Chamberlain 1999; 

Papakonstantinou 2009).   

 

Figure 4.26: Plan of Carsington Pasture Cave with the position of the finds marked. Open circles represent the 
remains of neonatal individuals. The remains of children and adults are marked by closed circles (Chamberlain 1999: 

4) 

 

The human bone assemblage was dominated by neonates and mature adults (Chamberlain 

1999: 6). The adult bones had been randomly dispersed amongst the cave chambers, but the 

neonatal deposits were concentrated at the centre of the second chamber. Papakonstantinou 

(2009: 30) attempted to allocate disparate bones to specific individuals based on visual pair 

matching, articulation, process of elimination and taphonomy (L’Abbé 2005; Byrde & Adams 

2006). All of the bones from Carsington Pasture Cave had been disarticulated to some degree, 

although general anatomical relationships were still present in certain cases, which suggested 

that some of the bodies had been deposited in at least partial articulation (Chamberlain 1999; 

Papakonstantinou 2009). Lumbar vertebrae, sacra and pelvis bones of two individuals were 

found in close proximity within the passage located between the second and third chambers 

(Chamberlain 1999; Papakonstantinou 2009). The neonatal bones from the centre of the 

second chamber were all partially articulated (Papakonstantinou 2009: 30). A near-complete 
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partially articulated adult male skeleton was recovered from the second chamber 

(Chamberlain 1999: 6).  

The human bone assemblage was characterised by a lack of small bones (Chamberlain 1999: 

6). All of the bones from the cave demonstrated good macroscopic preservation and it was 

unlikely that skeletal part representation had been influenced by differential decomposition. 

However, a similar lack of small bones was also noted within the faunal assemblage from the 

site, which suggested that the dearth of small bones was a result of a systematic bias 

associated with the cave or excavation (Chamberlain 1999; Papakonstantinou 2009).  

Cut marks were identified on three human femora (Chamberlain 1999: 7). Two of these femora 

were from opposing sides of the body and originated from a collection of material that lay in 

close anatomical proximity. Both of these bones may have come from the same individual. The 

cut marks were concentrated at articular ends rather than muscle attachment sites, which 

suggested that the purpose of the processing was to dismember rather than to deflesh 

(Chamberlain 1999; 7).  

Less than 1% of the human bone assemblage demonstrated signs of weathering or carnivore 

alteration (Papakonstantinou 2009: 34). The cave was easily accessible and so the appearance 

of faunal damage could not be used to discriminate between immediate cave deposition and 

outdoor exposure (Papakonstantinou 2009; Mays 1998; Redfern 2008). No bones 

demonstrated root damage indicative of previous burial (Papakonstantinou 2009: 34). The lack 

of weathering suggested that it was unlikely that the bones had been exposed or buried 

elsewhere before being brought to the cave (Chamberlain 1999; Papakonstantinou 2009). The 

assemblage was probably formed through the deposition of whole bodies (Chamberlain 1999; 

Papakonstantinou 2009). These bodies were disarticulated through decomposition and 

subsequent disturbance by humans, fauna and natural karstic processes (Chamberlain 1999; 

Papakonstantinou 2009).   

The dateable finds from the cave chambers suggested that there were multiple phases of 

activity. The species of fauna represented indicated that the cave was in use from around 4000 

B.C. (Chamberlain 1999: 11). A bone pin from the second chamber was dated typologically to 

the Bronze Age. A worked antler fragment showed affinities with similar objects recovered 

from Neolithic sites (Chamberlain 1999). Subsequent excavations of other passages leading off 

from the entrance chamber located finds of Roman pottery and coins (Chamberlain 1999; 

Papakonstantinou 2009). The evidence for post-medieval mining activity suggested that the 
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cave was accessible from the Roman period up until modern times (Chamberlain 1999; 

Papakonstantinou 2009). 

Three bones from the cave were radiocarbon dated (Chamberlain 2001). Two of these samples 

were human: one femur from the collection of neonatal bones recovered from the secondary 

chamber and one of the cut-marked femurs found in the passage connecting the second and 

third chambers. The third date came from an aurochs humerus that was collected from the 

passage between the second and third chambers. The aurochs humerus yielded a radiocarbon 

date of 4226-3770 Cal. B.C. (95% confidence), dating to the Early Neolithic (Chamberlain 2001). 

The cut-marked human femur provided a date of 2836-2292 Cal. B.C. (95% confidence), dating 

to the Late Neolithic/Early Bronze Age (Chamberlain 2001). The radiocarbon date of the 

neonatal bone was 760-402 Cal. B.C. (95% confidence), dating to the Late Bronze Age/Early 

Iron Age. These dates confirmed that use of the cave ranged from the beginning of the 

Neolithic and that there were at least two separate depositions of human remains, in the Late 

Neolithic or Early Bronze Age and the Late Bronze Age or Early Iron Age (Chamberlain 2001: 2). 

It was unknown whether the human bone assemblage from Carsington Pasture Cave 

represented two episodes of deposition or the continuous interment of individuals over 2000 

years (Chamberlain 1999; Chamberlain 2001; Papakonstantinou 2009). The position of the 

dated remains suggested that human bones recovered from the third chamber and the 

passage to the second chamber were probably Neolithic, whereas those remains recovered 

from the floors of the second chamber were more likely to be Iron Age. The close proximity of 

skeletal elements from the same individual in the second/third chamber passage inferred that 

these bones had remained within their original areas of deposition (Papakonstantinou 2009: 

100). The exclusive concentration of cut marked bones within the same passage inferred that 

this collection of bones had been subjected to different funerary processes than those 

deposited within the second chamber (Chamberlain 1999; Papakonstantinou 2009). Further 

evidence for the limited mobility of remains between the second chamber and its passageway 

included the partial articulation of the male adult skeleton from the second chamber 

(Papakonstantinou 2009: 100). However, whilst plausible, this dichotomous chronological 

separation of bones between the Neolithic and Iron Age was reductive and uncertain. All of 

the human bones were recovered from the floor of the cave and had not been deposited in 

sediment. There was no suggestion that the cave had been subject to episodes of flooding that 

might have facilitated decomposition within an anoxic environment (Chamberlain 1999).  
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A neonatal tibia and femur from the Carsington Pasture Cave assemblage were sampled for 

thin section analysis by Economou (2003) and White (2009). These two samples had been 

embedded in LR White Resin and mounted onto slides using Euparal fluid. A further sixteen 

femora were sampled for thin section analysis for use in this project using the procedures 

outlined in the Methodology. The sampling was limited by the preference for the femur 

combined with the requirement to prevent duplicate sampling of individuals. All of the 

available left femoral fragments that included part of the mid-shaft and could not have 

constituted parts of the same bone were sampled. This strategy still allowed for a good 

representation of skeletal elements from throughout the chambers from remains that 

demonstrated evidence for diverse funerary treatment.  

The Carsington Pasture Cave collection was available within the University of Sheffield 

Department of Archaeology. Economou (2003) had already assessed the two neonatal samples 

from Carsington Pasture Cave using the OHI. White (2009) had not used this scale in her 

reanalysis of the remains. The Economou samples had to be reanalysed for the assessment of 

birefringence, inclusions and infiltrations using the strategy outlined in the Methodology 

chapter. These samples were also reassessed using the OHI without any prior knowledge of 

their original scores. This scores recorded for the current study were consistent with those 

allocated by Economou (2003). 

Specimen Age Sex Chamber Articulation 

Y-072 Adult  Unknown Second Disarticulated 

98-019 Adult  Unknown Second  Disarticulated 

98-040 Adult  Unknown Second  Disarticulated 

98-208 Adult Female Second  Disarticulated 

98-314 Adult  Unknown Second Passage Dismembered – cut marks 

98-315 Adult  Unknown Second Passage Disarticulated 

98-316 Adult  Female Second Passage Disarticulated 

98-317 Adult Female Second Passage Disarticulated 

FL-236 Adult  Unknown Entrance Disarticulated 

FL-237 Adult Female Entrance  Disarticulated 

FL-238 Adult  Unknown Entrance  Disarticulated 

FL-239 Adult  Unknown Entrance  Disarticulated 

Y?-047 Adult  Unknown Second  Disarticulated 

Y-03-066 Adult Male Second  Partially Articulated 

Y-059 Adult  Unknown Second  Disarticulated 

CPC-Y-07 Adult Female Unknown Disarticulated 

CPC99-21 Neonate  Unknown Second Chamber Partially Articulated 

CPCY03 Neonate  Unknown Second Chamber Partially Articulated 

Table 4.14: Catalogue of the human remains samples from the Carsington Pasture Cave assemblage. 
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4.1.2.5 Cladh Hallan, South Uist, Outer Hebrides of Scotland, U.K. 

 

Cladh Hallan is located to on the west coast of the island of South Uist, which makes up part of 

the Outer Hebrides archipelago in Scotland, U.K. (Figure 4.27). The site was excavated between 

1999 and 2002 by staff and students from the Universities of Sheffield, Bournemouth and 

Winchester (Parker Pearson et al. 2004; 2005). The excavations revealed a series of multi-

phased prehistoric features. The main focus of the excavations was a group interconnected 

stone roundhouses (Parker Pearson et al. 2004). Three of the northernmost houses were fully 

excavated (Parker Pearson et al. 2005: 530).  

 

Figure 4.27: Map of the location of Cladh Hallan 

 

The Cladh Hallan human remains were discussed to some extent in the Background chapter. 

This section will provide more detail and contextual information to what has already been 

explained. Human remains representing at least five individuals were excavated from 

underneath the peaty floors of the roundhouses (Parker Pearson et al. 2004; 2005) (Figure 

4.28). The positions of the skeletons suggested that they represented foundation deposits 

linked to the initial construction of the roundhouses, rather than the remnants of an earlier 
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cemetery (Parker Pearson et al. 2005: 533). Three skeletons were excavated from the north 

house, one from the central house, and one from the southern house (Parker Pearson et al. 

2004). An isolated unphased disarticulated human femur was recovered from a disturbed 

section of the site, which brought the number of individuals represented up to six 

(Summerfield 2004). 

 

Figure 4.28: Plan of the Cladh Hallan roundhouses with the position of the remains (Parker Pearson et al. 2005). 

 

The typology of the roundhouses suggested that they dated to the Late Bronze Age/Early Iron 

Age (Parker Pearson et al. 2004; 2005). The conjoined nature of the roundhouses indicated 

that they had all been built at around the same time (Parker Pearson et al. 2005: 532). 

Optically-stimulated luminescence (OSL) dates of the sand cores that underlay the shared walls 

suggested that this building took place between 1250-630 B.C. (Parker Pearson et al. 2005: 

537) Radiocarbon dates of barley grains that lay on the floor of the north house dated to 1260-

970 cal. B.C. (Parker Pearson et al. 2005: 537). All of the individuals represented by the 

skeletons must have been buried underneath the houses between 1260-840 cal. B.C. Markov 

Chain Monte Carlo sampling of the accumulated radiocarbon dates provided dates of 

roundhouse construction at 1330-1100 cal. B.C. (68% probability), the construction of the 
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floors (and sealing of the burials) at 1100-930 cal. B.C. (68% probability) (Parker Pearson et al. 

2005: 537). These dates suggested that activity was concentrated at the end of the Bronze Age 

and at the beginning of the Iron Age.  

The articulated skeletons of an adult male, an adult female and an infant were recovered from 

below the northern roundhouse (Parker Pearson et al. 2004; 2005). An articulated flexed 

skeleton of a juvenile and the partially disarticulated remains of a three-year-old child were 

recovered from under the central and southern roundhouses respectively (Parker Pearson et 

al. 2004; 2005). The bones of the three-year-old were found in their correct positions relative 

to one another, but only the vertebrae and the pelvis lay in anatomical articulation (Parker 

Pearson et al. 2004: 74). The partially-articulated nature of the skeleton suggested that the 

body had decomposed in a separate context before it was interred (Parker Pearson et al. 2004: 

74).  

The adult skeletons recovered from the northern roundhouse ostensibly appeared to 

represent two articulated burials. The adult female skeleton had been subjected to unusual 

post mortem treatment (Parker Pearson et al. 2004; 2005). The upper lateral incisors had been 

removed and placed in the hands (Parker Pearson et al. 2005: 534). The lack of damage to the 

tooth roots or the alveolar margin as well as the absence of healing suggested that the teeth 

had been removed peri or post mortem. The distal right femur, proximal tibia and patella 

(constituting the knee) of this skeleton had been broken away and placed in a separate pit 

(Parker Pearson et al. 2007). The character of the break was consistent with the event having 

occurred when the bone the bone had lost its moisture (Parker Pearson et al. 2007). The exact 

timing of the transformation from wet to dry bone is uncertain, but is thought to take around 

three months (Wheatley 2008; Wieberg & Wescott 2008). The broken fragments of the distal 

femur and proximal tibia lay in correct articulation within their separate context, suggesting 

that they still retained some soft tissue when they were deposited (Parker Pearson et al. 

2007). The distal right radius of the same skeleton had been broken away and placed within a 

cremation pit. These observations suggested that the body had remained accessible for an 

extended period after death whilst retaining soft tissue (Parker Pearson et al. 2005; 2007). 

Osteological analysis of the adult male individual discovered that the mandible was unlikely to 

have belonged with the skull that it accompanied (Parker Pearson et al. 2005: 534). The 

cervical vertebrae of this skeleton demonstrated changes consistent with osteoarthritis (Parker 

Pearson et al. 2005: 534). However, the rest of the vertebrae were free from degenerative 

changes. It was argued that this articulated individual had been constructed from the partially 
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articulated parts of three different people representing the post-crania, the cranium and neck 

and the lower jaw (Parker Pearson et al. 2005: 534).  

The revelation that the male skeleton was constructed out of parts of several individuals led to 

suspicions regarding the adult female skeleton, particularly because there was already 

evidence that it had been treated unusually (Parker Pearson et al 2005). Ancient DNA analysis 

of the mandible, humerus and femur suggested that these bones had not originated from a 

single individual (Hanna et al. 2012). This skeleton was also an amalgamation of anatomical 

parts from at least three individuals (Hanna et al. 2012). There were no signs of disturbance 

within either of the grave cuts or the skeletons themselves, and so it was unlikely that these 

post mortem changes had occurred after burial through later exhumation of the remains 

(Parker Pearson et al. 2005; 2007).  

Radiocarbon dating of the different parts of each adult skeleton as well as the bones of the 

three year old child revealed further anomalies. The cranium and mandible of the adult male 

skeleton yielded dates of 1500-1260 cal. B.C. and 1500-1210 cal. B.C. respectively (Parker 

Pearson et al. 2005: 537). The tibia of this skeleton was dated to 1620-1410 cal. B.C. The femur 

of the adult female skeleton produced a date of 1370-1050 cal. B.C. The femur of the three-

year-old child dated to 1440-1130 cal. B.C. These dates were surprisingly early and remarkably 

dispersed considering that the roundhouses were built between 1330 and 1100 B.C., and the 

foundation burials must have taken place between 1100 and 930 B.C. (Parker Pearson et al. 

2005: 537).  

The radiocarbon dates from some of the bones did not overlap with the OSL dates for the 

overlying floors (Parker Pearson et al. 2005). This result suggested that certain parts of the 

adult and child skeletons were already old before they were interred (Parker Pearson et al. 

2005). The radiocarbon dates from the child inferred that decades and even centuries had 

passed before it was inhumed (Parker Pearson et al. 2005: 537). This time period would 

normally have promoted complete skeletonisation, yet the partial articulation of this skeleton 

indicated that there was still soft tissue present when it was deposited (Rodriguez & Bass 

1983; 1985; Janaway 1996; Campobasso et al. 2001; Breitmeier et al. 2005; Vass 2011; Fereira 

& Cunha 2013). The early radiocarbon dates of the two adult skeletons were also anomalous 

when it was considered that they were found in partial articulation (Parker Pearson et al. 2005: 

537). The long duration between death and burial should have ensured the disarticulation of 

these remains had they decomposed normally (Rodriguez & Bass 1983; 1985; Janaway 1996; 

Campobasso et al. 2001; Breitmeier et al. 2005; Vass 2011; Fereira & Cunha 2013). The level of 
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articulation present within the post-crania of both adult skeletons suggested that the bones 

were still held in anatomical position by soft tissue when the bodies were interred (Parker 

Pearson et al. 2005: 537).  

The articulation of the parts present within the Cladh Hallan skeletons does not make sense 

based on conventional knowledge of bodily decomposition (Micozzi 1986; Maureille & Sellier 

1996; Micozzi 1991; Duday 2006). The sequence in which different parts of the body 

disarticulate is highly variable, but there is an accepted general order. For instance, bones of 

the neck, fingers, toes as well as the mandible are weakly articulated by small quantities of soft 

tissue and are usually amongst the first structures to collapse (Micozzi 1991; Duday 2006). The 

humerus of the adult female from Cladh Hallan represented a separate individual to the rest of 

the post-crania (Hanna et al. 2012). The humerus was articulated with a radius and ulna, 

carpals, metacarpals, and the majority of the phalanges of the fingers (Parker Pearson et al. 

2004: 75). It would be unusual for the shoulder joint, which is surrounded by strong 

ligamentous tissue, to decompose before the labile finger joints (Micozzi 1991; Duday 2006). 

The patterns of articulation observed amongst the adult Cladh Hallan skeletons were similar to 

the paradoxical patterns of decomposition observed within formerly mummified disarticulated 

skeletonised remains (Maureille & Sellier 1996; Parker Pearson et al. 2005).  

Parker Pearson et al. (2005; 2007) argued that mummification represented the best 

explanation for the post mortem manipulation and radiocarbon dates of the Cladh Hallan 

remains. This conclusions was supported by the histological analysis of bone from the adult 

male skeleton that has already been discussed (Parker Pearson et al. 2005). Preserved soft 

tissue must have been lost through subsequent interactions with the burial environment 

(Parker Pearson et al. 2004; 2005). Changes to the bone mineral within the tibia of the adult 

male measured by FTIR and SAXS were consistent with the body having been placed within a 

sphagnum bog, and this scenario was proposed as the possible method of mummification 

(Parker Pearson et al. 2005: 542). The burial sediment that surrounded all of the skeletons 

recovered from the Cladh Hallan consisted of a free-draining calcareous machair sand (Parker 

Pearson et al. 2004; 2005). The burial environment should have remained aerated during the 

process of decomposition and it was unlikely that any of the burials experienced episodes of 

anoxia due to waterlogging in this context (Parker Pearson et al. 2004; 2005). 

A selection of the human Cladh Hallan skeletons were sampled for thin section analysis by 

Summerfield (2004) as part of a Master’s dissertation that aimed to characterise the 

histological preservation of bone from the site as well as investigate whether there was any 
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further evidence that skeletons had been mummified previously. Summerfield’s (2004) 

sampling strategy targeted long bones from a diverse range of skeletons. Thin sections were 

produced from femora and humerii. Thin sections had also been produced from the mandible 

and cranium of the adult male skeleton, which had been determined to represent parts of 

separate individuals (Summerfield 2004).  

The majority of the remains from the site had already been sampled by Summerfield (2004), 

and it was felt that further sampling would be redundant (Table 4.15). Summerfield focussed 

on long bones, and so the thin sections fit the criteria of sampling for the current study. It 

would have been preferable to have examined the femora of the three-year-old and fourteen-

year old remains, but extra sampling could not be justified given that samples of equivalent 

long bones from the same individual were available. The thin sections taken from the cranium 

and the mandible associated with the adult male skeleton were not included in the analysis. All 

of the thin sections bar those of the three-year-old could be prepared without having to be 

embedded. The humerus sample from the three-year-old was embedded in LR Acrylic White 

Resin. The sections were mounted onto microscope slides using Euparal.  

Summerfield (2004) assessed the histological preservation of the Cladh Hallan thin sections 

using the OHI. Reanalysis of the Cladh Hallan thin sections was required to record extra 

diagenetic features. OHI was reassessed in each case without prior knowledge of 

Summerfield’s scores. The histological preservation of the adult male had been published in 

the article by Parker Pearson et al. (2005), although this paper did not include the specific OHI 

score. The results from the rest of the remains had not been published, and were only to be 

found within Summerfield’s (2004) Masters dissertation.  

Specimen No. Age Sex Element State  Treatment 

CH 2638 35-39 Male Femur Partially Articulated Mummification 

CH 2316 45+ Female Femur Partially Articulated Mummification 

CH 2792 3  - Humerus Partially Articulated Mummification 

CH 2727 10-14  - Humerus Articulated Burial 

CH C Adult  - Femur Disarticulated Unknown 

Table 4.15: Catalogue of the human remains that were sampled from the Cladh Hallan assemblage. 
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4.1.2.6 Cnip Headland, Isle of Lewis, Outer Hebrides of Scotland, U.K. 

 

 

Figure 4.29: Map of the location of the Cnip Headland site. 

 

Cnip is a small township in the Parish of Uig on the west coast of the Isle of Lewis, in the Outer 

Hebrides of Scotland (Figure 4.29). The Cnip headland lies to the east of the township and 

projects into the sea inlet of Loch Roag. Human remains were observed within a stone feature 

located in the base of a deflation hollow by members of a local historical society in 2008 

(Lelong 2011). A team of archaeologists from the Glasgow University Archaeological Research 

Division (GUARD) excavated and assessed the cist and the surrounding area on behalf of 

Historic Scotland (Lelong 2011). The work uncovered human remains in various stages of 

articulation. Skeletal part representation suggested that at least twelve discrete individuals 

were represented (Knott 2011; Lelong 2011). The remains were taken back to the University of 

Glasgow and assessed by the GUARD osteoarchaeologists Olivia Lelong and Carol Knott (Knott 

2010; Lelong 2011).  

Excavation of the cist and the surrounding area revealed three separate collections of human 

skeletal material, termed Area  A, Area C and Area D. Area A encompassed a three-sided 

capped stone cist (Lelong 2011). The walls of the cist had been consolidated with piles of sand. 

A small hollow had been dug into the bottom of this sandy layer to accommodate the remains 
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of a male individual (Sk. 1) (Lelong 2011: 8) (Figure 4.30). The dental development of this 

individual suggested an age-at-death of fourteen years (Lelong 2011, personal 

communication). This result contrasted slightly with the state of femoral epiphyseal fusion, 

which indicated that the individual must have been over sixteen (Lelong 2011, personal 

communication). The excavators speculated whether this skeleton represented the partially 

articulated remains of two individuals (Lelong 22011, personal communication). However, that 

disparity between the dentition and the post-crania was slight, and could be explained by 

natural variation (Lelong 2011, personal communication).  

 

Figure 4.30: Plan of Sk. 1 from Cnip within its cist (Lelong 2011: 8). 

 

Sk. 1 was originally thought to represent an articulated inhumation that had been buried 

supine in a tightly flexed posture (Lelong 2011: 13). However, closer examination revealed that 

many of the bones of this individual were missing or disarticulated (Lelong 2011: 13). The 

cranium and the first cervical vertebrae were separated from the torso by burial sediment, 

which indicated that they had not been in articulation when they were deposited (Lelong 

2011: 13). Several of the thoracic vertebrae were out of alignment with the rest of the 

vertebral column. The bones of the thorax were also separated from the pelvis by undisturbed 

burial sediment. The left leg was only represented by a fibula, which was found by the 

cranium. Several of the lumbar vertebrae were missing. There was no associated disturbance 

of the burial sediments that may have indicated that disarticulation had occurred as a result of 

later activity (Lelong 2011: 13). Sk. 1 was covered in wind-blown sand which had probably 

entered the cist after though gaps in the stonework. The soils that surrounded the skeleton 
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had been stained a red-brown colour. This staining intensified with proximity to the bones and 

probably represented dispersions of decomposition products (Lelong 2011, personal 

communication). 

A fourth left metacarpal and a fifth left metatarsal were recovered from the packing sand 

below the lower leg of Sk. 1 (Lelong 2011: 13). These bones lay half a metre beneath the 

approximate position of the right foot of the main burial (Lelong 2011, personal 

communication). The size, state of epiphyseal fusion and colour of these bones indicated that 

they did not belong to the right foot of the Sk. 1 and must have represented a second 

individual (Lelong 2011, personal communication). Several other small human bones and teeth 

were recovered from the wind blow sand deposited around the burial and beneath the 

capping stones. Replication of skeletal elements and relative sizes of these bones suggested 

that they had not originated from the main interment (Lelong 2011, personal communication). 

The excavators suggested that the bones were from an earlier burial that was removed to 

accommodate the semi-articulated inhumation (Lelong 2011: 13). The main burial was 

accompanied by finds of a perforated boar’s tooth and a tooth of a juvenile seal.  

Area C was located two metres to the south of the Area A cist (Figure 4.31). This section of the 

site consisted of a sand mound consolidated by a partial stone kerb. Disarticulated human 

bones representing two adults, an infant and a subadult of indeterminate age had been placed 

on top of the mound (Lelong 2011, personal communication). This assemblage predominantly 

consisted of bones from the thorax, hands, feet and cranium (Lelong 2011: 14). These bones 

were associated with a copper alloy awl and had been covered by a layer of sand.  

A second deposition of disarticulated human bones representing two adult females, an infant 

and a child of six or seven had been placed in top of this sand layer (Lelong 2011: 14). This 

deposit consisted of similar types of disarticulated bones to those that were found in the first 

layer, but also included a pelvis and long bones. Some of the bones lay in partial articulation, 

which suggested that soft tissue decomposition had not completed before they had been 

deposited (Lelong 2011: 15). Two small amalgamations of bones appeared to represent the 

deposition of an articulated hand and foot (Lelong 2011: 15). However closer inspection 

revealed that these groups were composed of combinations of hand and foot bones, which 

were interpreted as representing a deliberate effort to reconstruct anatomical parts (Lelong 

2011: 15). Closer examination of an articulated pelvis revealed that only one of the innominate 

bones belonged with the sacrum and that the other originated from a separate individual 

(Lelong 2011: 15). The bones from the second layer of Area C were also surrounded by dark 



  

226 
 

soil the colour of which intensified with proximity to the bone (Lelong 2011: 15). Two jet beads 

were found in association with this layer of human remains. 

 

Figure 4.31: Schematic plan of the disarticulated human remains recovered from Area C at Cnip (Lelong 2011: 16). 

 

Area D was uncovered two metres to the north of the Area A cist. A shallow grave had been 

dug into the sand to accommodate the flexed body of an articulated neonatal infant (Sk. 3) 

(Knott 2010). The sand that surrounded this burial was discoloured brown, which may have 

occurred as a result of the decay of organic material or by the dissipation of bodily 

decomposition products (Knott 2010: 8). The body of the infant was accompanied by various 

marine shells. Another shallow hollow had been dug above this grave to accommodate the 

body of a 40-44 year old female (Sk. 2) (Knott 2010: 7) (Figure 4.32). The skeleton was in a poor 

condition, but the positions of the legs suggested that it had been deposited in a tightly flexed 

posture (Knott 2010). The presence of small proximal hand phalanges suggested that this 

burial had disturbed the infant inhumation that lay underneath. The disarticulation of the hand 

phalanges indicated the infant had skeletonised before it was disturbed (Knott 2010). There 

were suggestions that the adult individual was only partially articulated when it was deposited 

(Knott 2010). The left femur articulated correctly with the rest of the bones of the leg but the 

femoral head was 0.18m away from the acetabulum of the pelvis (Knott 2010: 8). There was 

no evidence of disturbance to the burial sediments that surrounded the body. The adult 
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individual may have been interred in a partially articulated state after having decomposed 

elsewhere.  

 

Figure 4.32: Plan of the adult female skeleton from Cnip Area D (Knott 2010: 8) 

 

The human remains recovered from all areas of the Cnip site were subject to an extensive 

program of radiocarbon dating encompassing fifteen bones from across all of the lettered 

areas (Lelong 2011, personal communication). Remains from all contexts dated to the same 

period; 1900-1530 cal. B.C., placing the death of the individuals within the Early to Middle 

Bronze Age (Lelong 2011, personal communication). Bayesian modelling radiocarbon dates 

suggested that burial activity began in 1795-1695 cal. B.C. (95% probability) and ended 1745-

1650 cal. B.C. (95% probability) (Lelong 2011, personal communication). This model assumed 

that burial took place soon after death. The typologies of the jet beads and the bronze awl 

found amongst the disarticulated remains in Area C were consistent with an Early Bronze Age 

date (Lelong 2011: 14).  

The burial sediments at Cnip varied in colour, but were consistently composed of calcareous 

machair sands (Knott 2011: Lelong 2011). Sandy soils such as these are coarse, free-draining, 

and not naturally anoxic (Janaway 1996). It was unlikely that the sands would have promoted 
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episodic periods of anoxia by waterlogging. There was no significant preservation of organic 

grave goods. There was no evidence to suggest that the burial contexts had ever been 

anaerobic.  

All of the Cnip Headland bones were held at the University of Glasgow. Permission to sample 

the remains was granted by Dr. Olivia Lelong. The sampling strategy was to obtain specimens 

that were representative of the different funerary treatments and the diverse areas of 

excavation. The left femur was missing from the partially-articulated Sk. 1 from Area A and the 

right femur had to be sampled instead. The partial articulation of this skeleton meant that it 

was likely that all of the bones originated from the same individual.  

The disarticulation of the second individual represented within Area A suggested that it had 

been treated differently to the primary skeleton. It was pertinent to obtain representations of 

two potentially different funerary rites from the same context to test whether diagenesis could 

vary within bones from separate individuals obtained from the same grave. Unfortunately the 

only bones that were available to sample from the second Area A individual were not 

conventional long bones. The mid-shaft of the 5th left metatarsal found beneath Sk. 1 was 

sampled. This bone was deemed appropriate for inclusion within the current study as it is 

classed as a long bone and the ratio of cortical and trabecular structures is similar that 

observed within bones such as the femur (White et al. 2012). It had to be conceded that the 

sampling of this bone was problematic, as its anatomical position within an extremity located 

away from the abdomen might have protected it from the deleterious actions of putrefactive 

visceral bacteria (Jans et al. 2004). The results from this specimen would be monitored 

carefully and compared within other remains from the site before they were included within 

the overall analysis.  

Only two femora were recovered from Area C, a left and a right. The fragment of the right 

femur was only a partial mid-shaft, but was much smaller than the comparative part of the left 

femur, which indicated that these two bones were unlikely to have been antimeres (Lelong 

2011, personal communication). Both femora were sampled. The right femur from Area C 

could not have come from the main burial from Area A as the whole of the right femur of Sk 1 

was present. The femur of Sk 1 demonstrated a fused proximal epiphysis, whereas the same 

epiphysis on the left femur from Area C was unfused (Lelong 2011, personal communication).  

It was decided that an additional sample should be taken from another partially articulated 

bone to capture more variation in funerary treatment. No femora lay in partial articulation 

within Area C, and so a different long bone had to be selected. The only relevant long bones 
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available were an articulated radius and ulna (Lelong 2011: 15). The radius was sampled. The 

inclusion of a new skeletal element from the same area of deposition raised the risk of 

sampling from the same individual multiple times. However, epiphyseal fusion and size of the 

radius and ulna indicated that these elements originated from an adult (Lelong 2011, personal 

communication). Size and state of epihphyseal fusion of both femora from Area C indicated 

that they had originated form subadult individuals (Lelong 2011, personal communication). 

The complete fusion of the distal epiphysis of the ulna also ruled out the possibility that the 

two bones originated from Sk. 1, as the distal epiphysis of the Sk. 1 ulna was unfused (Lelong 

2011, personal communication). Both the neonatal and adult burials retrieved from Area D 

retained fragments of their left femora and both of these elements were sampled (Knott 2010; 

Lelong 2011, personal communication). All of the remains were sampled for thin section 

analysis for using the techniques outlined in the Methodology chapter (Table 4.16). All samples 

could be cut without embedding. 

Area Specimen Element Age Sex Articulation 

A Sk 1 R. Femur 14-20 Unknown Partially Articulated 

A SF 54B 5th L. Metatarsal Adult Unknown Disarticulated 

C SF 20 R. Femur Subadult Unknown Disarticulated 

C SF 50 L. Femur Subadult Unknown Disarticulated 

C SF 19 R. Radius Adult Unknown Partially Articulated 

D Sk 2 L. Femur 40-44 Female Partially Articulated 

D Sk 3 L. Femur Neonatal  Unknown Articulated 

Table 4.16: Catalogue of the human remains that were sampled from the Cnip Headland assemblage. 

 

4.1.2.7 Danebury Hillfort, Hampshire, U.K. 

 

The substantial earthworks known as the Danebury Hillfort have been investigated by 

archaeologists since the 19th century (Figure 4.33). The main excavations of the site were 

undertaken by archaeologists from the Universities of Southampton and Oxford between 1969 

and 1978 (Cunliffe 1983; 1984). This work was initiated as a research excavation funded by 

Hampshire County Council, the Department for the Environment, a number of academic 

bodies and commercial companies, as well as the Universities of Southampton and Oxford 

(Cunliffe 1983; 1984).  
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Figure 4.33: Map of the location of the Danebury hillfort. 

 

The Danebury hillfort began as an area of around five hectares enclosed by a timber-framed 

rampart and a ditch (Cunliffe 1983: 49) (Figure 4.34). Two entrances were situated on opposite 

sides of the enclosure and connected by a roadway. The central part of the site and the area 

spreading north of the main road were filled with rows of four-post structure that were 

interpreted as granaries (Cunliffe 1983: 103). The area of the hillfort that lay to the south of 

the road was occupied by postholes of circular houses (Cunliffe 1983: 96). The areas in 

between the houses were filled with groups of granaries and pits.  

The southern area of the hillfort was used for the construction of large four and six post 

granaries (Cunliffe 1983: 106). These structures were laid out along the internal roads. A 

number of quarries were established within the hillfort, concentrated towards the outside of 

the enclosure, on the lee of the ramparts. Storage pits were located in specific clusters all 

around the site (Cunliffe 1983; 1984). Towards the end of the Iron Age, the southwest 

entrance was blocked off. The gates were burnt down, leaving the enclosure entirely 

undefended. This event that was taken to signal the abandonment of the hillfort (Cunliffe 
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1983: 172). Occupation of the site continued after this burning event, but on a much smaller 

scale (Cunliffe 1983: 181).  

 

Figure 4.34: Plan of the excavated parts of the Danebury hillfort during the later phases of occupation (Cunliffe 1983: 
71). 

 

Cunliffe (1983: 66) developed seven ceramic phases through the study of the pottery 

recovered from Danebury. The stratigraphic position of the pottery types helped to establish a 

sequence of ceramic phases that was used to link the different aspects of the site. These 

ceramic phases were dated and corroborated by sixty radiocarbon dates of associated bones, 

charcoal and other organic remains (Cunliffe 1983: 65; Buck et al. 1992). Recalibration and 

Bayesian modelling of the dates by Buck et al. (1992) reemphasised the sequence of the 

pottery phases but also demonstrated that there was substantial overlap. However, all of the 

radiocarbon dates confirmed that the site was occupied from the Early to the Late Pre-Roman 

Iron Age (Cunliffe 1983; Buck et al. 1992) (Table 4.17). 

The southern area of the hillfort was used for the construction of large four and six post 

granaries (Cunliffe 1983: 106). These structures were laid out along the internal roads. A 

number of quarries were established within the hillfort, concentrated towards the outside of 

the enclosure, on the lee of the ramparts. Storage pits were located in specific clusters all 
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around the site (Cunliffe 1983; 1984). Towards the end of the Iron Age, the southwest 

entrance was blocked off. The gates were burnt down, leaving the enclosure entirely 

undefended. This event that was taken to signal the abandonment of the hillfort (Cunliffe 

1983: 172). Occupation of the site continued after this burning event, but on a much smaller 

scale (Cunliffe 1983: 181).  

Ceramic 

Phase 

Cunliffe Original 

Dates (cal. B.C.) 

Buck et al. (1992) Upper 

Date Range (cal. B.C.) 

Buck et al. (1992) Lower 

Date Range (cal. B.C.) 

1-3 550-450  830-430 380-120 

4-5 450-400  860-410 330-140 

6 400-300 650-410 260-A.D. 20 

7-8 300-100 450-240 70-A.D. 100 

Table 4.17: Table of the original dates allocated to the Danebury ceramic phases along with Buck et al.'s (1992) 
estimations based on the Bayesian analysis of radiocarbon dates. 

 

The southern area of the hillfort was used for the construction of large four and six post 

granaries (Cunliffe 1983: 106). These structures were laid out along the internal roads. A 

number of quarries were established within the hillfort, concentrated towards the outside of 

the enclosure, on the lee of the ramparts. Storage pits were located in specific clusters all 

around the site (Cunliffe 1983; 1984). Towards the end of the Iron Age, the southwest 

entrance was blocked off. The gates were burnt down, leaving the enclosure entirely 

undefended. This event that was taken to signal the abandonment of the hillfort (Cunliffe 

1983: 172). Occupation of the site continued after this burning event, but on a much smaller 

scale (Cunliffe 1983: 181).  

The ways in which human remains had been deposited at Danebury varied considerably 

(Cunliffe 1983; 1984). The different types of depositions were separated into six categories; 

whole bodies, individual incomplete skeletons, multiple partially articulated skeletons in 

charnel pits, skulls, pelvis girdles and other individual bones/bone fragments (Cunliffe 1983: 

162). The number of individuals represented in each burial context varied significantly. All 

categories of remains were recovered as part of burials of single and multiple individuals 

(Cunliffe 1984). Most skeletons had been deposited on top of domestic refuse or silt (Cunliffe 

1983: 1984). Certain remains had been covered by a layer of natural silt, which suggested that 

some of the pits had been left open whilst the remains decomposed (Cunliffe 1984: 448). Cut 

marks were identified on one set of remains (Cunliffe 1983: 163). Only a small number of the 

bones demonstrated evidence for carnivore or rodent gnawing (Cunliffe 1984: 463). 
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Twenty-five individuals were represented by depositions categorised as whole bodies (Cunliffe 

1984: 443). All but one of the articulated skeletons were found in postures that demonstrated 

variable degrees of flexion. The extent of flexion could be used to divide the articulated 

assemblage (Cunliffe 1984: 443). The tight and unstable positions of bones within the hyper-

flexed skeletons suggested that these bodies had been wrapped or trussed (Cunliffe 1984: 

443).  

The remains that were included within the ‘individual incomplete skeletons’ category 

consisted of single interments that were missing specific anatomical elements (Cunliffe 1984: 

451). These deposits included articulated skeletons that were missing the skull and bones of 

the arms (Cunliffe 1984: 451). This pattern of anatomical loss was consistent with scavenging 

by carnivores (Micozzi 1986; 1991). The frequency of skull deposition across the site and its 

common absence from partially-disarticulated remains suggested that the skull or the head 

retaining some significance after death (Cunliffe 1983: 164).  

Two contexts were labelled as charnel pits, as they contained mixed assemblages of partially-

articulated remains (Cunliffe 1984: 451) (Image 4.3). Sling stones were recovered from both of 

the contexts, which suggested that their inhabitants may have been the victims of ritual 

slaughter (Cunliffe 1984; 451). Both of the charnel pits belonged to the late period of 

occupation. Isolated skulls were recovered from variably-dated contexts, although the majority 

originated from the latest phases (Cunliffe 1984). A disarticulated skull of a child was found 

with the mandible in articulation, which suggested that the head had been removed before 

decomposition had completed (Cunliffe 1984: 452: Micozzi 1991). The mandibles associated 

with the rest of the skull deposits were absent, which suggested that these skulls had been 

redeposited as dry bones after decomposition (Cunliffe 1984: 452). Single fragmentary pelvic 

girdles were recovered from four pits (Cunliffe 1984: 453). The girdles were associated with 

early and late phases. 
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Image 4.3: Charnel pit P1078 from Danebury, which mostly included deposits of partially articulated bodies (Cunliffe 
1984: 445). 

 

The disarticulated human bone assemblage represented a minimum of thirteen people from 

116 contexts in 77 pit, two post holes, one gully and quarry hollows behind the ramparts 

(Cunliffe 1984: 454). Disarticulated bones were recovered from more contexts than the rest of 

the human remains combined (Cunliffe 1984: 457). Small bones, such as those of the hands 

and feet, or vertebrae were often recovered in association with other bones of the same or 

adjoining anatomical parts (Cunliffe 1984: 457). There was good representation of bones from 

all parts of the body, although there was a noticeable lack of bones from the torso (Cunliffe 

1984). Smaller elements, such as teeth and vertebrae were more often recovered from 

contexts assigned to the later phases (Cunliffe 1984: 454). A proportion of the isolated long 

bones had been fragmented. The fresh nature of the breaks suggested that the bones had 

been broken soon after death (Walker 1984: 455). Larger proportions of disarticulated bones 

demonstrated signs of carnivore gnawing compared to articulated or partially articulated 

skeletons (Cunliffe 1984: 454).  

All of the skeletons from Danebury had been surrounded by a mixture of domestic refuse, 

chalk rubble and silts (Cunliffe 1983; 1984). Chalk is a porous stone, and it was unlikely that the 

sediments or the chalk bedrock would have retained water in a way that would have caused 

frequent saturation and anoxia. There was no extraordinary persistence of organic tissue or 

materials that might have indicated previous anoxic environments. It was assumed that the 

majority of individuals interred at the Danebury site had decomposed under aerobic 

conditions. 
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The bones from Danebury were kept at the Hampshire Museum Service. Permission to sample 

the remains was granted by Dave Allen. Eighteen of the Danebury human bones were sampled 

for thin section analysis. The strategy of the sampling was to capture variation in funerary 

treatment and phase to encompass the maximum levels of potential variability in mortuary 

treatment. The skull and pelvic girdle deposits were excluded. The sample set was focussed on 

all deposits that included femora. The isolated partial skeletons and partially disarticulated 

charnel deposits were combined, as they both represented accumulations of partially 

articulated remains. Six random specimens from each of these categories were selected for 

sampling by ranking the remains using a random number generator in Microsoft Excel. The 

articulated inhumation sample list was divided into two based upon the degree of flexion of 

the skeleton, as the potential presence of wrappings represented further variation in 

treatment. Three samples were taken from flexed and hyper-flexed articulated assemblages 

respectively. Samples of bones were obtained from contexts that demonstrated a spread of 

ceramic phase affiliations, but the bias in representation meant that the majority of samples 

originated from the later stages of occupation.  

Some of the bones that were chosen could not be located on the day of sampling and 

replacement specimens had to be taken. The impact of this setback was limited and the 

distribution of bones samples amongst temporal phases and stages of disarticulation remained 

the same. The need to focus sampling on femora meant that five specimens of disarticulated 

skeletal elements were obtained instead of six and the missing sample was replaced by a 

sample of a partially-articulated femur. In certain cases the left femur was absent, or the right 

femur had been sampled previously. A right femur was only sampled from articulated 

individuals or those partially articulated remains where the antimere was present. One sample 

was taken from an isolated disarticulated right femur. No other bones were recovered from 

this context. The bone was checked against sampled left femora that had not been 

accompanied by a matching right element to test whether it was a likely antimere.  

One of the partially-articulated specimens did not include any femora. The state of skeletal 

articulation within this individual was unique and it was decided that a sample from this 

individual should still be included. The left tibia was sampled in lieu of the missing femora. All 

of the Danebury samples were taken specifically for use in the current project and were 

prepared using the procedures outlined in the Methodology chapter (Table 4.18). The remains 

did not require embedding in order to be thin sectioned. 
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Pit Deposit 

No. 

Age Sex Ceramic 

Phase 

Deposit Type Element 

26 BG 14  Unknown Unknown  7 Individual Bones Femur 

923 40 25-30 Female 6 Multiple partially 

articulated 

Femur 

10 72 Adult  Unknown 6 Individual Bones Femur 

1015 46 20-25 Male 7 Whole bodies Femur 

1078 162 Adult Male 7 Multiple partially 

articulated 

Femur 

120 7 ~8  

Indeterminable 

8 Incomplete 

Skeletons 

Femur 

1993 214 25-30 Female 7 Incomplete 

Skeletons 

 Femur 

2044 275 Adult Unknown 6 Individual Bones Femur 

2100 248 >35 Female 3 Whole bodies Femur 

2447 239 18-22 Male 7 Incomplete 

Skeletons 

Femur 

2605 259 >50 Female 7 Whole bodies Femur 

266 10 20-30 Female 3 Incomplete 

Skeletons 

Tibia 

374 13 3  Unknown 3 Whole bodies Femur 

699 127 Adult?  Unknown 6/8 Individual Bones Femur 

761 130 Adult?  Unknown 8 Individual Bones  Femur 

829 28 25-35 Male 6 Whole bodies Femur 

829 29 25-35 Male 6 Whole bodies Femur 

923 37 16-20 Female 6 Multiple partially 

articulated 

Femur 

Table 4.18: Catalogue of the human remains sampled from the Danebury Hillfort assemblage. 

 

4.1.2.8 Frälsegården, Falbygden, Vastra Götalands, Sweden 

 

Frälsegården is a small farm that lies within the Falbygden region of the Västra Götalands 

County in south-western Sweden (Sjögren 2010) (Figure 4.35). From 1999 to 2001, a team of 

archaeologists from the University of Gothenburg excavated a megalithic passage tomb 

located on the land associated with the Frälsegården farm (Sjögren 2012, personal 

communication). The passage tomb consisted of a southeast-facing sealed entranceway that 

led into a long chamber positioned on a northeast-southwest axis (Sjögren 2010). The typology 

of the Frälsegården passage tomb placed it within a narrow date range between 3300 and 

3000 B.C. (Sjögren 2010). Eight-thousand-three-hundred-and-eighty-one human bone 

fragments were recovered from within the passage tomb, which represented at least 51 
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individuals (Sjögren in prep.). The articulation of the bones was highly variable, ranging from 

entirely disarticulated discrete elements to fully articulated skeletons (Sjögren 2010) (Figure 

4.36).  

 

Figure 4.35: Map of the location of the Frälsegården site. 

 

Some of the partially-articulated skeletons were described as bone ‘packages’, consisting of 

mostly-complete skeletons that had been manipulated into tightly flexed arrangements 

(Sjögren 2010; Sjögren 2012, personal communication). The disarticulated anatomical 

elements were distributed evenly throughout the chamber and part of the entranceway 

(Sjögren 2012, personal communication). The articulated and mostly-complete skeletons were 

concentrated within the centre of the chamber, near the entrance and against the western 

wall. No disarticulated remains were recovered from underneath the near-complete skeletons, 

which suggested that the centre of the chamber had been kept clean up until the interment of 

the articulated remains, or that the area was cleared in order to accommodate the new 

depositions (Sjögren 2012, personal communication). Two separate funerary rites were 

suggested to have been practised at the site, one which led to the disarticulation of the 

remains and one that variably preserved bodily form (Sjögren 2010; Sjögren 2012, personal 

communication). The high level of flexion observed amongst the articulated remains and the 

bone packages suggested that these bodies had been wrapped (Sjögren 2010). 
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Figure 4.36: Plan of some of the skeletons recovered from the Frälsegården tomb. The remains demonstrate varying 
positions and levels of anatomical articulation (Sjögren 2010: 14). 

 

All of the bones retrieved from the Frälsegården passage tomb were examined for the 

presence of cut marks and scavenger gnawing in an attempt to determine methods of 

disarticulation (Sjögren 2012, personal communication). No markings that could be attributed 

to tool processing were found on any of the bones. Two bones demonstrated evidence for 

rodent gnawing (Sjögren 2012, personal communication). None of the bones from 

Frälsegården demonstrated patterns of weathering consistent with surface exposure. These 

results indicated that it was unlikely that the remains had been excarnated by sub-aerial 

exposure (Sjögren in prep).  

The Frälsegården human were subjected to an extensive program of radiocarbon dating, which 

placed all of the remains within the Swedish Middle Neolithic; 3100-2900 cal. B.C. (Sjögren 

2012, personal communication). Bayesian modelling of the radiocarbon dating from the 

articulated and partially articulated skeletons produced a narrower range of deposition 

between 3000-2900 cal. B.C. (Sjögren 2012, personal communication). The distribution of the 

radiocarbon dates for the articulated and disarticulated remains were significantly different 
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and suggested that the interment of disarticulated remains had ceased 100-200 years before 

the deposition of the articulated skeletons (Sjögren 2012, personal communication).  

The Frälsegården remains were originally thought to lie outside of the geographical scope of 

the current study. However, the inclusion of these samples would improve the potential 

variation in funerary treatment represented by the Later Prehistoric samples. The inclusion of 

another site also bolstered the Later Prehistoric sample size. There is evidence from Britain 

and Sweden for deposition of disarticulated and partially disarticulated remains within 

different forms of barrows and chambered tombs during the Neolithic (Darvill 2010; Sjögren 

2010). Climatic conditions are considered to predominantly affect how a body decomposes 

and may have had some effect on putrefactive bone bioerosion (Rodriguez & Bass 1983; 1985; 

Campobasso et al. 2001; Fernández-Jalvo et al. 2010; Vass 2011). However, the Frälsegården 

site lies within temperate Europe on a similar latitude to northern Scotland, and so seasonal 

patterns of decomposition would have been within the British range. 

The evidence from Frälsegården suggested that the majority of individuals decomposed within 

the empty chamber of the passage tomb (Sjögren 2010). However, the monument and the 

interments were subsequently covered by sediment over the thousands of years after the 

tomb fell out of use. The burial sediment was composed of glacial till, a heterogeneous mixture 

of clay, sands and gravels (Sjögren 2012, personal communication). This type of soil would 

have been free-draining and not intrinsically anoxic. The free-draining nature of the soils would 

have prevented frequent episodes of anoxia by waterlogging. The position of the tomb on the 

ancient ground level suggested that it was unlikely that it was regularly flooded. There was no 

evidence for high levels of organic preservation at the site. There was no reason to believe that 

the natural decomposition of the remains within the Frälsegården tomb was altered by any 

factor other than anthropogenic treatment. 

The bones from Frälsegården were held at the University of Gothenburg. Dr. Karl-Goran 

Sjögren granted permission to access the remains and arranged for samples to be sent to the 

University of Sheffield. The bones selected for sampling were grouped into skeletons that were 

articulated, partially articulated and disarticulated. Bones that could be attributed to separate 

individuals were selected by Karl-Goran Sjögren. It was hoped that this strategy would help to 

capture the full variation of funerary rites practised at the site, particularly with regards to the 

differential treatment afforded the temporally-distinct disarticulated and articulated remains.  

Ten of the individuals from the Frälsegården assemblage were sampled for thin section 

analysis (Table 4.19). Three bones originated from articulated complete remains, three from 
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partially articulated skeletons and four consisted of disarticulated skeletal elements. All of the 

bones were sampled specifically for use in the current project and were produced and 

assessed using the techniques expounded in the Methodology chapter.  

The samples were all taken from femora. Right femora were sampled from articulated remains 

where this element was significantly more fragmentary than the left. Right femora were 

sometimes sampled from partially articulated remains where the left femur was absent. Only a 

limited number of femoral fragments were recovered from the disarticulated assemblage. 

Disarticulated right femora were only sampled where they could be associated with a discrete 

individual. The researchers at the University of Gothenburg had performed rigorous 

comparative analysis of the replicate skeletal parts to provide a more accurate estimation of 

how many individuals were represented (Sjögren 2012, personal communication). All of the 

disarticulated or partially articulated femora that were sampled for thin section analysis could 

be confidently ascribed to separate individuals by bone size and state of epiphyseal fusion 

(Sjögren 2012, personal communication). 

Specimen Individual Age Sex Articulation 

123293 - Adult Unknown Disarticulated 

139267 B 30-40 Female Articulated 

130443 G 50-60 Female Partially Articulated 

138105 A 20-30 Female Articulated 

119236 - Adult Unknown Disarticulated 

132234 K 50-59 Male Partially articulated 

136163 AC Adult Unknown Partially Articulated 

134704 E 35-39 Female Articulated 

117150/115371 -  Adult Unknown Disarticulated 

124039  - Adult Unknown Disarticulated 

Table 4.19: Catalogue of the human remains sampled from the Frälsegården assemblage. 

 

4.1.2.9 Hornish Point, South Uist, Outer Hebrides of Scotland, U.K. 

 

Hornish Point is a headland located at the northwest tip of the island of South Uist, in the 

Outer Hebrides of Scotland (Figure 4.37). The Hornish Point site was excavated in 1984 by John 

Barber and Heather James with a team from the Scottish Development Department (Barber 

2003). The sand cliff was excavated using a tapestry system whereby each stratigraphic 

context was assigned a block number and excavated in turn (Barber 2003). All of the blocks 

had been formed by the same depositional processes and lay in contact with one another in 
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sequence. Block 18 contained partial remains of the radial piers of a wheelhouse and 

associated deposits. Four pits averaging 0.4 metres in diameter and 0.8 metres in depth had 

been cut into Block 27, which lay directly underneath this wheelhouse (Barber et al. 1989; 

Barber 2003).  

 

Figure 4.37: Map of the location of Hornish Point. 

 

Human and animal remains were recovered from across the four pits (Barber et al. 1989). The 

bones had been deposited as a jumbled mass on top of a primary infill of brown sand (Barber 

et al. 1989: 774). Human bones originating from a single individual were recovered from across 

all four pits (Barber et al. 1989; Barber 2003) (Figure 4.38). Pit 1 contained a human lower right 

limb and part of the pelvic girdle, which were accompanied by the disarticulated skeleton of a 

complete juvenile bovid 18-30 months old (Barber et al. 1989). Human upper limbs, upper 

thorax and skull were recovered from Pit 2. Pit 3 held the bones of the lower thorax and the 

other half of the pelvic girdle as well as a clavicle, two ribs, a metacarpal, and the distal 

condyles of a femur. The bones from Pit 3 were mixed with substantial parts of the skeletons 

of two sheep, one over three years old and another 18-30 months. Only fragments of the 

human left foot were recovered from Pit 4, which contained most of the bones of a juvenile 

bovid (Barber et al. 1989). The human individual had died at around twelve years of age 
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(Barber et. 1989: 774). The sacrum of this skeleton demonstrated changes consistent with 

spina bifida occulta, a disorder where the sacral vertebrae do not close, leaving the spinal cord 

exposed (Barber et al. 1989: 774). This disorder would not have affected the individual in life 

and was unlikely to have had a significant visible manifestation on the body (Barber et al. 1989: 

774). It was unlikely that this pathology would have affected bodily decomposition. 

 

Figure 4.38: Plan of the position of the pits that contained the partially articulated remains of a juvenile individual 
within the radial walls of an Iron Age wheelhouse at Hornish Point (Barber et al. 1989: 774). 

 

The human bones were recovered from their respective pits in a disarticulated state, but there 

were suggestions that the body was not fully skeletonised when it was deposited. The skeletal 

elements found in each pit originated from the same parts of the body, which suggested that 

anatomical relationships had been retained to some extent (Barber et al. 1989: 774). Some of 

the long bone epiphyses had not fused, yet most lay in articulation with their respective 

diaphyses, which indicated that they were still held together by soft tissue at the point of 

deposition (Barber et al. 1989: 775).  

The fourth and fifth lumbar vertebrae of the Hornish Point individual demonstrated chop 

marks which indicated that the spinal column had been purposefully severed (Barber et al. 

1989: 776). There was no way of determining whether this treatment occurred around the 

time of death or in the early post mortem period, as a wound of this kind would have killed the 
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individual instantly (Barber et al. 1989: 777). The way in which the parts of the skeleton had 

been distributed throughout the pits broadly corresponded with the position of severance. 

Mutilation of the spine may have been carried out in order to distribute the remains amongst 

the four pits (Barber et al. 1989; Barber 2003). Barber et al. (1989: 777) suggested that the 

partial articulation of the body may be explained had the individual been lost at sea, only to 

wash up at a later point in a partially-decomposed state. The mutilation of the body and its 

distribution amongst the pits alongside structured deposits of domesticate bone may have 

represented ritual that was intended to counteract the ill effects of an inauspicious death 

(Barber et al. 1989: 778). 

The bones from Hornish Point have not been dated directly. The architecture of the overlying 

wheelhouse is consistent with other structures found within this part of Britain that have been 

dated securely to the Iron Age (Barber et al. 1989; Barber 2003). Radiocarbon dates of sea-

shells from Block 26, the sediment into which the four pits were cut and Block 4, which lay 

above the deposit containing the wheelhouse, produced bracketing dates of 2410+/-50 (735-

395 cal. B.C.) and 2335+/-50 (732-210 cal. B.C.) respectively (Barber 2003). The Hornish Point 

human remains must have been deposited within the Early to Middle Iron Age (Barber et al. 

1989: Barber 2003). 

The burial sediments were composed of calcareous machair sand (Barber 2003). The 

coarseness of the sand would have ensured that the burial context remained free-draining and 

aerobic. The free-draining nature of the sands would have also prevented frequent periods of 

anoxia from waterlogging. There was no substantial organic preservation at the site. There was 

no reason to suggest that environmental factors may have interrupted the decomposition of 

the remains from Hornish point, although it should be noted that the exact environment in 

which this body decomposed initially was not known. 

The bones of the Hornish Point individual were held at the National Museum of Scotland. 

Permission to sample the remains was granted by Dr. Alison Sheridan. The right femur of the 

Hornish Point juvenile was sampled for thin section analysis and analysed specifically for this 

study using the techniques outlined in the Methodology chapter. The right femoral mid-shaft 

was sampled rather than the left as this was the only side that was available on the day of 

sampling. The thin section was cut from this sample without prior embedding. 

 

4.1.2.10 Langwell Farm, Strath Oykel, Sutherland, Scotland. 
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Figure 4.39: Map of the location of Langwell Farm. 

 

Langwell Farm is located near the south banks of the River Oykel, southeast of the town of 

Lairg in Sutherland, in the Highlands of Scotland (Figure 4.39). In 2009, the landowner 

uncovered a large stone slab in a field near the banks of the River Oykel. Further investigation 

revealed that the slab covered a cist which contained an articulated human skeleton (Lelong 

2009) (Image 4.4). The skeleton was covered in white powdery substance and a woven 

material (Lelong 2009). A team of archaeologists from GUARD excavated the remainder of the 

cist (Lelong 2009). The cist contained a flexed articulated burial of an adult female (Lelong 

2012). 
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Image 4.4: Photograph of the skeleton in situ within the Langwell cist. The bones are covered by a white powdery 
substance and organic material, but no substantial sediment (Lelong 2009: 12). 

 

The skeleton was visible from the opening of the cist and was only half buried (Lelong 2009: 

12). Most of the soil that covered the skeleton had fallen in during the discovery of the grave. 

Pieces of preserved organic woven material were recovered from next to the head and the 

feet (Lelong 2009: 12). Organic material resembling hair was found covering the legs. 

Microscopic analysis identified this material as a cattle hide (Lelong 2012). 

The white powdery sediment that was observed covering the body was initially thought to be 

adipocere (Lelong 2009: 14). Dark greasy sediment was found within the matrix surrounding 

the bones. This material appeared to be organic and was interpreted as products of bodily 

decomposition (Lelong 2009: 14). Amorphous organic material was found throughout the 

sediments in the cist, particular in those that surrounded the skeleton (Lelong 2009: 14) 

(Figure 4.40). More detailed chemical investigations found that the organic content of the 

white substance was low (Lelong 2012). Scanning electron microscopy and Energy-dispersive x-

ray microscopy revealed that this substance consisted of gypsum crystals (Lelong 2012: 13). 

Gypsum is a soft form of calcium sulphate dihydrate that forms as a result of bone mineral 

decomposition (Lelong 2012: 13).   
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Figure 4.40: Plan of the inhumation from Langwell cist with associated deposits and organic materials (Lelong 2009: 
15). 

 

It was likely that the body had decomposed within the empty cavity of the cist rather than 

within the soil (Lelong 2009: 14). The soils in the cist consisted of red, yellow and grey sand 

(Lelong 2009). Sandy environments are usually free-draining and not intrinsically anoxic or 

prone to anoxia through retention of water (Janaway 1996). White mineral deposits that were 

found adhering to the inside of the cist consisted of calcium carbonate products of bone 

decomposition that had been deposited during periods of flooding (Lelong 2012: 13). 

The soils sediments within the cist were a grey colour (Lelong 2009: 14). This colouring was 

most likely caused by periodic episodes of anoxia via waterlogging (Lelong 2012). Waterlogging 

had probably been promoted by heavy rainfall that raised the level of the adjacent River Oykel. 

The frequent inundation of the cist was likely to be responsible for the high levels of organic 

preservation (Lelong 2012). The Langwell skeleton was recorded as having been recovered 

from an anoxic environment. 

The right ulna and the right fibula of the skeleton from Langwell Cist were radiocarbon dated 

along with a piece of the ox hide covering (Lelong 2012). Both the ulna and the ox hide 
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produced dates of 2130-1880 cal. B.C. (95% confidence) (Lelong 2012: 14). The fibula sample 

produced a radiocarbon date that was appreciably earlier than the other two, 2200-1960 cal. 

B.C. (95% confidence) (Lelong 2012: 14). All of the radiocarbon dates placed the death of the 

individual within the Early Bronze Age. The discrepancy between the dates from the different 

bones of the skeleton prompted the excavators to speculate whether it had been constructed 

from pieces of several individuals (Lelong 2011, personal communication). The possibility that 

the Langwell body had previously been curated was also suggested by the radiocarbon date of 

the cattle hide and basketry found in the cist, which were identical to the later date obtained 

from the human bone (Langwell 2012: 14). Radiocarbon dates mark the point of death, and so 

it might be expected that the dates from the basketry and cow hide would have been earlier 

than those from the skeleton. However it was possible that the organisms used to produce 

these items had died shortly before their interment within the cist (Langwell 2012: 14). 

Remains of parasites recovered from the cow hide supported this scenario (Langwell 2012: 14). 

The bones of the Langwell individual were held at the University of Glasgow. Permission to 

sample the remains was granted by Dr. Olivia Lelong. The anterior left femoral mid-shaft of the 

Langwell individual was sampled and analysed using the techniques outlined in the 

Methodology chapter. The Langwell sections were cut without having to be embedded. 

 

4.1.2.11 Neat’s Court, Queensborough, Isle of Thanet, Kent, U.K. 

 

The Neat’s Court business park is located on the outskirts of the town of Queensborough, on 

the west side of the Isle of Thanet (Figure 4.41). In 2009 a strip, map and sample excavation of 

ground surrounding the Neat’s Court site was undertaken by Swales & Thames Archaeological 

Survey Company in anticipation of a new development. This survey identified a buried mound 

in a section of the site named Area C. Archaeologists from MOLES Archaeology led by Geoff 

Morley were subcontracted to excavate Area C. Their excavations revealed the construction 

sequences of a prehistoric barrow.  

The first mound was constructed out of alternate layers of turf and clay over a freshly-laid clay 

layer and had been surrounded by a clay bank. The mound measured around two metres in 

diameter and 0.5 metres high, but was subsequently enlarged with reworked clay and 

domestic refuse. A second mound was constructed over this enlarged structure. This second 

mound was also created from clay mixed with midden material (Morley n.d.). The bank of the 

mound was also enlarged at a later stage. The barrow was covered by alluvial deposits laid 
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down during two phases of alluvial/estuarine inundation (Morley n.d.). The first of these 

inundations surrounded the mound and the second covered it completely (Morley n.d.). The 

stratigraphic relationship between the alluvial deposits and the third raising of the bank 

suggested that the secondary building events had occurred in response to the inundation 

(Morley n.d.). These building phases may have represented an attempt to make the structure 

more visible above the inundation levels (Morley n.d.).  

 

Figure 4.41: Map of the location of the Neat's Court round barrow. 

 

Fourteen separate deposits of human bone had been inserted within the barrow complex. 

Seven of these individuals were represented by cremated inhumations, six by articulated 

inhumations and a seventh by a disarticulated interment (Figure 4.42). Four of the unburnt 

articulated burials were recovered from within the area of the primary mound. The 

homogeneous nature of the clays meant that grave cuts could not be located and the 

stratigraphic relationships between the burials and the construction sequences were 

undiscernible (Morley n.d.). It was not clear which burials were associated with each phase of 

the mound, although all burials originated from the clay and midden material rather than the 

pure clay layers. The levels taken from the four skeletons recovered from the mound indicated 

that they had all been buried at depths within ten centimetres of one another (Morley 2012 
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personal communication). The insertion of separate burials close together without any 

intercutting suggested that the bodies were buried within living memory of one another or 

were distinguished by perishable grave markers (Morley n.d.).  

 

Figure 4.42: Plan of the Neat's Court barrow and associated burials (courtesy of Geoff Morley of MOLES 
Archaeology). 

 

Three of the four articulated burials from the mound were recovered in flexed postures on 

their right sides. The fourth was found in an extended supine position (Image 4.5). The left arm 

and part of the left thorax of this skeleton had been lost through disturbance by a medieval 

drainage pipe. The atlas and axis vertebrae were missing, and the skull was found in an 

unusual position away from the remaining cervical vertebrae, which could be seen running 

underneath the mandible that was articulated with the displaced cranium. The temporo-

mandibular joint is surrounded by minimal soft tissue and subsequently the mandible is one of 

the first bones that disarticulates post mortem (Micozzi 1991; Duday 2006).  The articulation of 

the mandible and cranium of this skeleton suggested that the displacement of the skull had 

occurred soon after death. 

Two articulated burials were excavated from outside of the mound structure. Both of these 

skeletons were recovered in flexed positions on their right sides and were recovered from the 

area between the mound and the surrounding bank. A seventh individual represented by 
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fragments of a skull and humerus was recovered from the surface of the mound. It was likely 

that these bones had been moved from their original context by ploughing (Morley n.d.). 

 

Image 4.5: Sk. 2611 from Neat's Court in situ. The skull and superior vertebrae have been displaced but without any 
subsequent disarticulation of the mandible (Courtesy of Geoff Morley of MOLES Archaeology). 

 

None of the artefacts recovered from the Neat’s Court round barrow have been dated using 

absolute techniques. The nature of the burial sediment and the lack of grave goods meant that 

it was impossible to produce precise dates for burial. The episodes of alluvial inundation 

responsible for the burial of the Neat’s Court Barrow correspond with rises in sea level that 

occurred towards the end of the Bronze Age and beginning of the Iron Age (Morley n.d.). This 

timing was supported by the typology of pottery recovered from within the inundation 

sediments (Morley n.d.). Articulated single inhumation within a round barrow is broadly 

associated with the Early Bronze Age and earlier phases of the Middle Bronze Age in Britain 

(Darvill 2010). The typology of the funerary rites afforded the individuals from Neat’s Court 

would support an Early-Middle Bronze age date (Morley n.d.). Ceramic fragments located 

within the deposits underneath the mound could be dated typologically to the Beaker period 

of the Early Bronze Age (c.2400-2000 B.C.) (Morley n.d.). These artefacts provided an upper 

bracket for the date of the barrow (Morley n.d.). 

The most securely dated feature was a furnished cremation that had been inserted within the 

barrow mound. The cremated bone was found spilling out of a Collared Urn that could be 
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dated typologically to the Early-Middle Bronze Age (2000-1500 B.C.) (Morley n.d.). The primary 

mound must have been built by the Early Bronze Age. The cremated human bone that had 

been deposited within the secondary mound was accompanied by fragments of pottery that 

belonged to the Deverel-Rimbury culture (Morley n.d.). This style of pottery dates to the 

Middle Bronze Age period, 1500-1300 B.C. and provided a terminus ante quem for the building 

of the second mound (Morley n.d.).  

All of the abraded pottery sherds recovered from the domestic refuse that partially constituted 

the secondary mound dated to the Early to Middle Bronze Age (2000-1500 B.C.) (Morley n.d.). 

The residual nature of these pottery sherds meant that they could not be used to date the 

construction of the second mound (Morley n.d.). Construction of the barrow most likely 

occurred over the Early and Middle Bronze Age, but it was difficult to say whether the 

individuals found there died and were buried during this period (Morley n.d.). The deviant 

attitude of the extended skeleton suggested that this individual represented a later post-

Roman interment (Morley n.d.). However, the extended skeleton was recovered from 

underneath the alluvial sediments, at a similar burial depth to all of the other remains from the 

mound. These observations indicated that this skeleton represented a rare extended Later 

Prehistoric interment (Morley n.d.). 

The articulated flexed skeleton found towards the east of the site in the space between the 

mound and the bank was recovered from the inundation layers (Morley n.d.). This sediment 

demonstrated more frequent instances of Late Bronze Age/Early Iron Age pottery (Morley 

n.d.). This skeleton most likely represented a Late Bronze Age/Early Iron Age interment on the 

bank of the inundated round barrow (Morley n.d.). The position of the body suggested that it 

could have been buried shallowly on the edge of the bank or placed on the ground surface 

where it was buried by silt (Morley n.d.). The position of the rest of the burials within the 

original mound and bank suggested that they pre-dated the Late Bronze Age/Early Iron Age 

inundation (Morley n.d.). If it was assumed that the two types of interment, cremated and 

unburnt inhumation, represented two distinct phases of activity, then the earliest period that 

inhumation could have begun was after the insertion of the Deverel-Rimbury cremation in the 

Middle Bronze Age (Morley n.d.). However, funerary processes in the Bronze Age are not 

always conveniently phased. Rites of cremation and unburnt inhumation in have appeared 

contemporaneously at Bronze Age sites (Darvill 2010). The articulated inhumations could have 

dated to any time between the Early and Late Bronze Age.  
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Osteological analysis of the bones from Neat’s Court suggested that a selection of the 

articulated burials had been subjected to unusual post mortem treatment (Deter & Barrett 

2009). All of the skeletons from the mound, plus one recovered from the space between the 

barrow and the bank, demonstrated orange, brown, black and grey discolouration 

concentrated at the epiphyses of long bones (Deter & Barrett 2009). Red/brown discolouration 

and fracturing at the enamel-cementum junction was observed within the dentition of the 

same individuals. These features were not observed within the bones of the later burial. The 

discolouration of the bones were consistent with each body having been exposed to low levels 

of burning (Deter & Barrett 2009). Most of these skeletons were surrounded by ash in situ 

(Morley n.d.). Ash was found directly adhering to some of the remains, but the surrounding 

soil was not discoloured, which suggested that burning had not taken place in or around the 

graves (Morley n.d.).  

All of the skeletons apart from the later individual were surrounded by London Clay mixed with 

large quantities of domestic refuse including charcoal, bone and pottery (Morley n.d.). London 

Clay is a fine-grained, marine geological formation that is distributed across the southeast of 

England.  It is a very dense substrate, and the pure substance can be watertight (Hight et al. 

2003). It was possible that the density of this substrate produced an anoxic or hypoxic burial 

environment within the Neat’s Court barrow. However the large quantities of extraneous 

domestic material that were included within the reworked clay would have broken up the 

sediment and allowed it to retain a degree of aeration.  

Palaeoenvionmental reconstructions of the area suggested that the barrow would have lain 

close to the coast throughout the Bronze Age. The elevation of the bank and the mound would 

have ensured that the bodies remained dry during decomposition (Morley 2012, personal 

communication). The burial conditions within the Neat’s Court Barrow would probably have 

been rendered anoxic by the estuarine inundations that eventually covered the monument 

(Morley n.d.). The length of time that passed between burial (Early-Middle Bronze Age) and 

these inundations (Late Bronze Age/Iron Age) meant that that it was unlikely that anoxia 

would have interfered with bodily decomposition. There was no unusual survival of organic 

material or soft tissue. The burial sediments and skeletons from Neat’s Court did not meet the 

criteria for being classified as having originated from anoxic sediments. 

The bones from Neat’s Court were held by Swales and Thames Archaeology. Permission to 

sample the remains was granted by Geoff Morley. The fragmentary and incomplete nature of 

the Neat’s Court remains meant that all of the skeletons could be sampled for thin section 
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analysis without having to cut a fragment from a whole bone. Fragments of the anterior left 

femoral mid-shaft were obtained from all six of the articulated skeletons. A thin section was 

also produced from a fragment of the disarticulated humerus that was recovered from the 

mound surface. Skeletal part representation amongst the other remains confirmed that this 

bone originated from a discrete individual (Deter & Barrett 2009).  Remains that variably 

showed signs of having been exposed to heating were included. All of the Neat’s Court 

individuals were sampled specifically for the current project using the techniques expounded 

in the Methodology chapter (Table 4.20). The bones from this site were fragile and had to be 

embedded in resin before thin sections could be cut.   

Specimen Age Sex Element Articulation Position Burning 

SK 2326 Adult Unknown Humerus Disarticulated  - None 

SK 2545 45+ Male Femur Articulated Flexed Yes 

SK 2611 17-25 Male Femur Articulated Extended Yes 

SK 2614 17-25 Female Femur Articulated Flexed Yes 

SK 2635 45+ Male Femur Articulated Flexed Yes 

SK 2666 Adult Unknown Femur Articulated Flexed None 

SK 2673 17-25 Male Femur Articulated Flexed Yes 

Table 4.20: Catalogue of the human remains that were sampled from the Neat's Court assemblage. 

 

4.1.2.12 South Dumpton Down, Broadstairs, Kent, U.K. 

 

South Dumpton Down is a small area of farmland located at South Cliff in Dumpton, 

Broadstairs in Kent, U.K. (Figure 4.43). Excavation of the site was carried out between 1992 

and 1994 by the Trust for Thanet Archaeology in response to potential development (Perkins 

1994). The earliest phase of activity consisted of a round barrow surrounded by a ring ditch 

(Perkins 1994). A group of three inter-cutting pits were found underneath the centre of this 

barrow. These pits contained human remains representing at least seven individuals (Perkins 

1994: 3) (Figure 4.44). Only two of these skeletons were complete and articulated. The other 

five skeletons were mostly complete but partially articulated (Perkins 1994: 3). The skulls were 

missing from most of these skeletons. The persistent loss of the skulls suggested that they had 

been purposefully removed after the soft tissue had been lost (Perkins 1994: 3). The sequence 

of deposition and the loss of skeletal elements inferred that these burials represented a 

sequence of successive inhumation (Perkins 1994: 3). Disturbance of the previous burials was 

caused by their movement to accommodate the new bodies as well as by the intentional 

retrieval of skeletal parts (Perkins 1994: 3).  
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Figure 4.43: Map of the location of South Dumpton Down. 

 

 

Figure 4.44: Plan of the skeletons recovered from the three pits located beneath the South Dumpton Down round 
barrow (Perkins 1994: 8). 
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The pits were not large enough to accommodate all of the individuals separately, and most of 

the skeletons overlay one another. Each burial was separated by a thin layer of soil. All of the 

burials had originally been deposited in a flexed posture, although the extent of their flexion 

varied (Perkins 1994: 6). The attitudes and partial articulation of the skeletons suggested that 

they had been disturbed before the soft tissue had decomposed. The skeleton of Burial 7 was 

found pressed up against the wall of one of the pits, with its legs lying parallel to and up 

against the torso (Perkins 1994: 6). It was possible that that the body had been originally 

placed in this position, although the severity of flexion would have been difficult to achieve on 

a fresh corpse. The position of the body was consistent with partially-decomposed remains 

having been pushed to one side of the grave to accommodate new burials.  

A later pit had been dug into the eastern segment of the barrow ring ditch.  This pit contained 

the remains of two articulated individuals deposited in opposing orientations (Perkins 1994: 6). 

A disarticulated mandible from a third individual was also recovered from this pit. The two 

articulated skeletons lay in contact with each other but had not been disturbed. There was no 

evidence to suggest that the pit had been cut more than once, and so it was likely that these 

bodies represented a double burial (Perkins 1994: 6). Another deeper pit was located around 

two metres east of the eastern ring ditch segment. This pit was found to contain a flexed 

articulated skeleton (Perkins 1994).  

 

Figure 4.45: Plan and section drawings of the South Dumpton Down round barrow with primary and satellite 
deposits (Perkins 1994: 7). 
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The next phase of funerary activity was associated with two rectilinear enclosures formed by 

palisade trenches. Posthole arrangements within the enclosure corresponded with hut sites or 

similar structures, which suggested the presence of a settlement (Perkins 1994). A series of 

forty-six pits were found scattered within and outside the palisaded settlement (Perkins 1994; 

1995). The original function of these pits could not be determined, but all had been backfilled 

with a mixture of midden material, burnt soil and ashes. One of the largest pits included a 

single articulated flexed human burial accompanied by an iron belt buckle and a bone pin 

(Perkins 1994: 12). Three more of the pits found across the settlement contained articulated 

human burials. These three contexts were not discussed in detail within the site report, 

although the attitudes of the bodies gave the impression that the individuals had been thrown 

into their contexts rather than deposited in an ordered fashion (Perkins 1994; 1995).  

The earliest phase of activity at South Dumpton Down could be dated broadly by the artefact 

evidence. A food vessel was recovered from the chalk floor of Pit B, underneath the rib cage of 

Burial 2 (Perkins 1994: 6). A Beaker-style pot was found high in the fill of Pit C associated with 

Burial 4 or Burial 6. The style of both vessels dated to the Early Bronze Age (Perkins 1994: 6). 

Burials 1, 3 and 5 were radiocarbon dated (Ambers & Bowman 1998). The femur of Burial 1 

was dated twice, producing dates of 1736-1461 cal. B.C. (95% confidence) and 2189-1882 cal. 

B.C. (95% confidence) respectively (Perkins 1994). These dates were incompatible with one 

another, which the radiocarbon lab attributed to contamination (Perkins 1994; Ambers & 

Bowman 1998). Tests of the femora associated with Burial 5 and Burial 3 produced 

radiocarbon dates of 2010-1696 cal. B.C. (95% confidence) and 2030-1754 cal. B.C. (95% 

confidence) (Perkins 1994; Ambers & Bowman 1998). The radiocarbon dates of supported an 

Early Bronze Age date for the skeletons from the South Dumpton Down barrow (Perkins 1994).  

No radiocarbon dates were obtained from the skeletons associated with the third phase of 

activity at South Dumpton Down. The rectilinear enclosure was aligned with features of the 

Middle-Late Bronze Age enclosure (Perkins 1994). The pits that littered the enclosure 

contained quantities of domestic and industrial refuse including pottery and iron slag (Perkins 

1994; 1995). These artefacts dated to the Early Iron Age and indicated that the associated 

skeletons had been deposited during this time period (Perkins 1994: 12).  

The Bronze Age inhumations recovered from the three pits beneath the round barrow had 

been buried beneath a light red-brown loam (Perkins 1994: 5). Loam contains concentrations 

of silt and clay, and is likely to retain moisture more effectively than gravel or sandy contexts 

(Janaway 1996). However, this burial substrate would still have been aerated and free-draining 
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(Janaway 1996). These burial soils would not have promoted anoxic conditions through 

retention of water. The four inhumations collected from the Iron Age pits were interred with 

deposits of midden material, ashes and burnt soil (Perkins 1994: 12). The coarseness of these 

deposits would have ensured that the burial contexts remained well aerated and free-draining 

(Janaway 1996). There was no significant preservation of organic grave goods from any of the 

phases. There was no evidence to suggest that any of the burials from South Dumpton Down 

had decomposed within an anoxic environment. However the disarticulation of some of the 

Bronze Age skeletons suggested that the bodies may have been deposited elsewhere before 

being interred underneath the round barrow (Perkins 1994). 

The skeletons from South Dumpton Down were held at The University of Kent. Permission to 

sample the remains was obtained from Dr. Patrick Mahoney. Six of the individual skeletons 

recovered from South Dumpton Down were sampled for thin section analysis. Sampling was 

undertaken specifically for the current project and followed the processes outlined in the 

Methodology chapter. All samples were taken from the left femur. The first samples were 

taken from the Early Bronze Age skeletons 2, 5, 6 and 7. The articulation of these skeletons 

ranged from almost complete to mostly disarticulated, including most stages in-between. A 

sample was also taken from one of the articulated skeletons from the flat grave inserted 

outside of the eastern section of the ring ditch that surrounded the round barrow. The 

individuals buried in this part of the site had not been dated directly, although their 

association with the barrow, the orientation and attitude of their burial and their stratigraphic 

relationship to later phases of activity suggested that they dated to the Early or Middle Bronze 

Age (Perkins 1994). The last sample was taken from a skeleton recovered from a large pit 

within the Iron Age settlement (Table 4.21). None of these skeletons had been aged or sexed 

using osteological techniques, although it was clear by bone size and state of epiphyseal fusion 

that all were adult. All of the samples from this site were thin-sectioned without having to be 

embedded.  

Specimen Date Context Articulation 

Burial 6 Bronze Age Round Barrow Partially Articulated 

Burial 10 Bronze Age Flat Grave Disarticulated 

Burial 13 Iron Age Pit Articulated 

Burial 5 Bronze Age Round Barrow Articulated 

Burial 2 Bronze Age Round Barrow Partially Articulated 

Burial 7 Bronze Age Round Barrow Partially Articulated 

Table 4.21:  Catalogue of the human remains sampled from the South Dumpton Down assemblage. 
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4.1.2.13 Suddern Farm, Middle Wallop, Hampshire, U.K. 

 

Suddern Farm lies to the west of the Danebury hillfort, just outside of the village of Middle 

Wallop (Figure 4.46). The site was excavated in 1991 and 1996 as part of the Danebury 

Environs Project run by English Heritage and the University of Oxford (Cunliffe & Poole 2000). 

The survey of the earthworks revealed that the site consisted of a medium-sized double or 

treble-ditched enclosure measuring 2.2 hectares (Cunliffe & Poole 2000). The 1991 excavations 

were concerned with the excavation of this enclosure. The pottery found during these 

excavations was of the same style as that recovered from within the Danebury hillfort and 

confirmed the Iron Age occupation (Cunliffe & Poole 2000). The Danebury ceramic phases 

were used to date the sequences at Suddern Farm and no radiocarbon dating was undertaken 

(Cunliffe 1983; Cunliffe & Poole 2000). The exact sequence of the development was difficult to 

ascertain, as dateable finds were more commonly recovered from accumulated silts rather 

than the bottom of the ditches (Cunliffe & Poole 2000).  

 

Figure 4.46 Map of the location of Suddern Farm. 
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The site began as a Late Bronze Age single-ditched enclosure consisting of that was utilised 

into the Early Iron Age (Cunliffe & Poole 2000) (Figure 4.47). Excavations of the ground inside 

the enclosure revealed patterns of post holes and pits similar to those observed within the 

residential areas of the Danebury hillfort (Cunliffe 1983; Cunliffe & Poole 2000). This period of 

occupation was characterised by distributions of huts interspersed by large storage pits 

(Cunliffe & Poole 2000). The artefacts suggested the site was occupied from the Early to 

Middle Iron Age (Cunliffe & Poole 2000: 65).  

 

 

Figure 4.47: Plan of the Suddern Farm earthworks along with the location of the quarry cemetery (Cunliffe & Poole 
2000:14) 

 

Substantial human remains were only recovered from two contexts within the ditched 

enclosure (Cunliffe & Poole 2000: 21). A partial skeleton that was missing its arms and lower 

legs was excavated from one of the pits associated with ceramic phase 8 (Cunliffe & Poole 

2000: 21). An incompletely-cremated partial skeleton was recovered from another storage pit 

(Cunliffe & Poole 2000: 21). The latter skeleton was associated with quantities of burnt animal 
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bones and domestic debris. Isolated disarticulated human bones and bone fragments were 

recovered from another four pits associated with Early Iron Age deposits (Cunliffe & Poole 

2000: 21).  

The 1996 excavations focussed on a three-ditch linear earthwork that was located to the 

southwest of the circular ditched enclosure. These excavations located a quarry that was cut 

by the outer ditch. Investigations of the quarry revealed that it had subsequently been used as 

a cemetery (Cunliffe & Poole 2000). Human remains representing a minimum number of sixty 

individuals were excavated from this burial ground (Cunliffe & Poole 2000: 152) (Figure 4.48). 

The majority of the skeletons had been buried in articulation within discrete purpose-built 

graves (Cunliffe & Poole 2000: 152).  

 

Figure 4.48: Plan of the Suddern Farm Quarry cemetery (Cunliffe & Poole 2000: 153). 

 

The grave pits occasionally penetrated down to the chalk bedrock, although the majority had 

been interred within the quarry spoil, which mostly consisted of chalk rubble and natural silt 

(Cunliffe & Poole 2000: 166). Skeletons were recovered in various stages of articulation and 

often accompanied by partial remains of other individuals (Cunliffe & Poole 2000: 166). 

Analysis of the grave cuts suggested that previous burials had not been respected by new 

interments. Accompanying disarticulated material most likely represented charnel bone that 

had been redeposited after being disturbed by new grave cuts (Cunliffe & Poole 2000: 168). 
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Most of the disturbed skeletons demonstrated high levels of anatomical articulation amongst 

separated elements, which suggested that many of them were disturbed soon after death, 

before the connective tissue had decomposed (Cunliffe & Poole 2000: 168). The absence of 

skulls from many of the disturbed burials emphasised an interest in this skeletal element that 

was also noted at Danebury (Cunliffe & Poole 2000: 166). 

All of the skeletons from the Suddern Farm cemetery were recovered in variably flexed 

postures (Cunliffe & Poole 2000: 166). There was a dichotomy between loosely and tightly 

flexed attitudes, which suggested that some of the bodies may have been bound (Cunliffe & 

Poole 2000: 166). Two of the burials were recovered with possible grave goods; an iron nail 

and an iron fibula respectively. One of the skeletons had been gnawed by rodents. These 

remains were accompanied by the skeleton of a mouse, and it was likely that the observed 

alterations had been produced by burrowing rodents (Cunliffe & Poole 2000: 167).  

The burial sediments were composed of chalk rubble silts that derived from the erosion of the 

graves (Cunliffe & Poole 2000). The build-up of silts within many of the graves indicated that 

some of them may have been left open for an extended duration (Cunliffe & Poole 2000: 166). 

The burial environments would have remained aerated throughout the stages of bodily 

decomposition. The chalk rubble was coarse as well as free draining and would not have 

encouraged anoxia through retention of water. There was no preservation of organic remains 

that may have indicated previous anoxic conditions. There was no evidence that the 

environmental conditions at Suddern Farm would have affected bodily decomposition. 

The human remains excavated from the Suddern Farm cemetery were held by the Hampshire 

Museum Service. Permission to sample the bones was granted by Dave Allen. It was deemed 

useful to sample some of the human material from Suddern Farm for thin section analysis to 

complement the bones sampled from the Danebury hillfort. Occupation of Suddern Farm and 

Danebury was contemporary and remains from both sites were buried within similar 

environments. However, Cunliffe & Poole (2000: 168) argued that the two assemblages 

represented discrete funerary traditions. The inclusion of the Suddern Farm remains 

potentially increased the variability of treatment captured by the Iron Age assemblages. 
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Figure 4.49: Plans of the burials from Suddern Farm that were sampled for this project (Cunliffe & Poole 2000: 155). 

 

Two partial skeletons were sampled from Suddern Farm. Both of these deposits were 

recovered from the same pit, with one lying on top of the other (Figure 4.49). These skeletons 

were sampled to examine the differences or similarities in diagenesis between remains that 

had been buried in the same environment (Table 4.22). The skeleton of a young female was 

found lying on its back in a tightly flexed position. The skull and lower right leg of this 

individual were missing. An adult male skeleton lay below the female in a tightly-flexed, prone 

position. The skull of this individual was missing, and one of the legs had been disarticulated. 

The higher levels of disarticulation within the female skeleton suggested that it represented an 

earlier deposit that was disturbed by the deposition of the adult male (Cunliffe & Poole 2000: 

167). The conspicuous absence of the skulls of both individuals suggested that there had been 

intrusive recovery of select bones after the soft tissue had decomposed. Both of the samples 

used for thin section analysis were taken from the left femur. The thin sections were produced 

specifically for this project using the procedures outlined in the Methodology chapter. The 

sections could be cut without them having to be embedded.  

Specimen Age Sex Position Articulation 

C19 ~16 Female Flexed supine Partially Articulated 

C20 ~30 Male Flexed prone Partially Articulated 

Table 4.22: Catalogue of the human remains sampled from the Suddern Farm assemblage. 
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4.1.2.14 Windmill Fields, Ingleby Barwick, Stockton-On-Tees, County Durham, U.K. 

 

Windmill Fields is an area of the Ingleby Barwick housing development that lies between the 

towns of Eaglescliffe, Thornaby and Yarm, in the borough of Stockton-On-Tees, in Country 

Durham. In 1996, human remains were discovered in the spoil of construction work on a new 

road within the Windmill Fields development. Exploratory excavations by Tees Archaeology 

discovered that these remains originated from two single flexed articulated burials (Sk. 1 & Sk. 

2) (Annis et al. 1997). Further exploration of the area revealed an oval pit that was defined by 

dark staining (Annis et al. 1997: 4). Excavation of this feature revealed the remnants of a 

wooden cist that contained two groups of disarticulated human bones separated by a thin 

layer of soil (Annis et al. 1997: 5). These bone piles mostly consisted of skulls and long bones, 

but also included a pelvis (Annis et al. 1997: 5). 

 

Figure 4.50: Map of the location of the Windmill Fields site in Ingleby Barwick. 

 

Another single grave was identified within the cut for the road (Annis et al. 1997). This grave 

contained the remains of a flexed articulated skeleton accompanied by a stone mace-head (Sk 

5) (Annis et al. 1997: 5). Further excavations revealed two more single graves (Annis et al. 

1997: 7). The first contained the remains of a single skeleton that had been disarticulated by 
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modern disturbance (Sk. 7). The other consisted of an articulated skeleton that had been 

placed in a flexed posture on its right side (Sk. 6) (Annis et al. 1997: 7). Sk. 6 had been richly 

adorned with various grave goods (Annis et al. 1997: 7). The long bones and skull of a second 

individual had been inserted into the fill of this grave. It was unclear whether this secondary 

deposit represented a previous burial that had been removed to accommodate the new 

skeleton or a deliberate deposit of curated disarticulated remains (Annis et al. 1997: 7). Post-

excavation analysis revealed that both Sk. 5 & Sk. 6 were also accompanied by bone from 

separate individuals (Annis et al. 1997). 

 

Figure 4.51: Plan of the excavated features at the Ingleby Barwick site (Annis et al. 1997: 8) 

 

Ploughing and development had removed the upper parts of all of these features and so their 

relative stratigraphic relationships could not be discerned. However, the pit that included the 

wooden cist was notably deeper than the single graves (Annis et al. 1997: 7). The human 

remains represented a minimum number of eleven individuals (Annis et al. 1997; Anderson 

1998). The disarticulated bones from the wooden cist were examined for signs of animal 

alteration, cut marks and weathering (Anderson 1998). The cortical preservation of the bones 
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was too poor to say whether these features were manifest (Anderson 1998). The bones from 

the cist demonstrated erosion indicative of water movement (Anderson 1998). This 

observation indicated that the bones had lain within the empty cist, allowing water to drip 

directly onto the assemblage (Anderson 1998). It was probable that the bones had not been 

buried immediately but had lain on the floor of the cist for a time until they were buried by 

natural deposition or human activity (Annis et al. 1997). 

The mace-head that was found with Sk. 5 as well as the grave goods that adorned Sk. 6 were 

dated typologically to the Late Neolithic/Early Bronze Age Beaker period (Annis et al. 1997: 

16). This assertion was supported by fragments of Beaker pottery found near the burial of Sk. 5 

(Annis et al. 1997: 3). Bones from all of the single articulated burials as well as the 

disarticulated individuals represented in the wooden cist were radiocarbon dated. At the time 

that the remains were sampled in 2008, the radiocarbon dates combined with the funerary 

traditions suggested that there had been three periods of interment consisting of Late 

Neolithic disarticulated cist deposits, Early Bronze Age unfurnished articulated burial and 

Early/Middle Bronze Age furnished articulated burial (Rowe 2008 personal communication). 

The disarticulated bones from the cist were considered to be Neolithic for the purposes of the 

present study.  

Later Bayesian modelling recognised only two probable phases of activity, although there was 

some overlap (Rowe 2012, personal communication). The results of this modelling were made 

known to the author after the initial analysis of the thin sections had already taken place. The 

individuals represented by Sk 1, Sk 2 and Sk 7 all died around the same time in the Late 

Neolithic/Early Bronze Age period and represented the first phase of interment at the site, 

consisting of deposition of disarticulated bones in the wooden cist and unfurnished articulated 

inhumation (Rowe, personal communication 2012). The second phase of activity consisted of 

furnished burials and took place 60-220 (68% confidence) or 0-250 (95% confidence) years 

later in the Early to Middle Bronze Age. All of the remains from Ingleby Barwick were likely to 

be Bronze Age. The repercussions of the incorrect allocation of the cist material to the 

Neolithic is addressed in later chapters. 

All of the skeletons were recovered from free-draining gravel soils (Annis et al. 1997). The 

coarseness of these soils would have ensured consistent aeration (Janaway 1996). The soils 

would not have retained water efficiently to have promoted frequent episodes of anoxia 

through waterlogging. The sediments were unlikely to have interrupted putrefaction, although 

it should be noted that the bodies represented by the disarticulated bones from the cist may 
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have decomposed within separate environmental conditions (Annis et al. 1997). There was no 

survival of organic grave goods that may have indicated a previous anoxic environment (Annis 

et al. 1997). The wooden cist survived only as staining in the soil. 

Four of the skeletons had been sampled by the author for use in a Masters project (Booth 

2008). The remains were held by Tees Archaeology, and permission to sample them was 

granted by Peter Rowe. These thin sections were still available in the collections at the 

University of Sheffield Department of Archaeology. The sampling strategy for Booth’s (2008) 

project was focussed on obtaining a representative sample of funerary treatment and different 

phases of activity. These aims were analogous to those of the current project (Booth 2008). 

Thin sections had been produced from four of the individuals (Table 4.23). All of the sections 

were sampled from left femora. 

The thin sections had been produced using the techniques explained in the Methodology 

chapter. The samples had not required embedding and were mounted using Euparal resin. The 

thin sections had been previously assessed by the author using the OHI for a Masters 

dissertation (Booth 2008). However, reassessment of the thin sections was required in order 

for further diagenetic variables to be recorded. OHI had been mistakenly recorded using the 

system of Hedges et al. (1995) rather than the updated Millard (2001) system during work for 

the Masters project (Booth 2008). OHI had only been recorded for the thin sections as a whole 

and had not included an assessment of the constituent parts of each section separately. The 

OHI scores of the Ingleby Barwick remains were rerecorded in order to ensure that they were 

consistent with the scores allocated to the rest of the samples used in the current study.  

Specimen Age Sex Articulation Radiocarbon Date (cal. B.C., 95% 

confidence) 

Sk. 2 Young Middle 

Adult 

Male Articulated 2200 - 1970 

Sk. 3 Middle Adult Male Disarticulated 2400 - 2040 

Sk. 5 Middle Adult Male Articulated 1740 - 1530 

Sk. 6 Young Middle 

Adult 

Female Articulated 2030 - 1885 

Table 4.23: Catalogue of the human remains sampled from the Ingleby Barwick site. 
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4.1.2.15 Whitwell Quarry, Bolsover, Derbyshire, U.K. 

 

The Whitwell limestone quarry is located between the villages of Creswell and Whitwell in 

Derbyshire. The site was discovered during a survey of karst features and fissures that was 

undertaken on the active face of the quarry. The excavation was conducted by Bassetlaw 

Heritage Project and researchers from the Creswell Crags Museum between 1988 and 1989 in 

advance of extension of the limestone quarry. The excavations uncovered a portion of a 

trapezoidal long cairn that held the remains of a single articulated individual and a deposit of 

disarticulated, comingled bones that represented the remains of at least sixteen people (Vyner 

& Wall 2011).  

 

Figure 4.52: Map of the location of Whitwell Quarry. 

 

The first phase of the site consisted of an east-west aligned linear deposit of disarticulated 

bones between two wooden posts. Bones from similar parts of the body were often found 

lying close to one another without retaining correct anatomical articulation (Vyner & Wall 

2011: 10). The posts and the bones were surrounded by intermittent lines of limestone blocks. 

The bone deposit was defined by straight edges before the lines of limestone blocks, which 

suggested that the remains had been contained within a timber mortuary structure flanked by 
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the limestone kerb (Vyner & Wall 2011: 10). The human remains were recovered in contact 

with the old ground surface, although it was probable the mortuary structure originally 

included a wooden floor (Vyner & Wall 2011: 10). 

A single articulated inhumation of a sixteen or seventeen year old female was found seven 

metres to the south of the linear mortuary deposit (Vyner & Wall 2011: 12) This skeleton had 

been placed directly on the ground surface between two large sub-circular pits. The burial was 

surrounded by limestone slabs, but the excavators could not discern whether these slabs had 

been deposited with the burial or were related to the later cairn (Vyner & Wall 2011). The 

nature of the collapse of the cairn material that had surrounded the articulated burial 

suggested that the body had lain within a timber box (Vyner & Wall 2011: 12). 

The initial part of the stone cairn was constructed over the single articulated individual (Vyner 

& Wall 2011: 13). The presence of mollusc shells within the skull of this skeleton suggested 

that the body had been accessible during the period of its decomposition, and that 

construction of the cairn must have post-dated skeletonisation (Vyner & Wall 2011: 10). A 

limestone oval cairn was constructed on top of the timber funerary box. This cairn was 

surrounded by a low limestone wall. A second phase of construction involved the erection of a 

new wall and the infilling of space between the cairn and this new structure with limestone 

slabs and stones.  

The two mortuary deposits were joined together through the construction of a large 

trapezoidal limestone cairn (Vyner & Wall 2011). The wooden structure that surrounded the 

primary linear deposit of disarticulated human bone was removed and replaced by rubble and 

limestone (Vyner & Wall 2011: 14). The cairn was surrounded with a low dry stone wall. 

Further disarticulated and comingled remains were recovered from above the intermittent 

layers of limestone deposited during the construction of the cairn, which signified a second 

phase of deposition within the linear mortuary deposit (Vyner & Wall 2011). A linear passage 

was constructed within the trapezoidal cairn that connected the mortuary chamber to a 

northeast entrance. The construction of this entrance ensured constant access to the linear 

mortuary deposit (Vyner & Wall 2011: 8) (Figure 4.53). Deposition within the Whitwell tomb 

was ended when the entrance was blocked by a mixture of limestone slabs and rubble (Vyner 

& Wall 2011).  

Fragments of pottery were recovered from throughout the Whitwell cairn associated with 

periods of construction and mortuary deposition. All of the fragments belonged typologically 
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to the Neolithic Carinated Bowl tradition (Vyner & Wall 2011: 29). Three radiocarbon dates 

were obtained from two of the bones recovered from the linear mortuary deposit and one 

from the isolated articulated individual. These tests produced radiocarbon dates of 4310-3770 

cal. B.C. (95% confidence), 4370-3980 cal. B.C. (95% confidence) and 4050-3710 cal. B.C. (95% 

confidence) respectively (Vyner & Wall 2011: 33). These radiocarbon dates were within the 

Neolithic but were anomalously early (Vyner & Wall 2011: 33). 

 

Figure 4.53: Plan of the excavated part of the long cairn at Whitwell with distribution of pottery types (Vyner & Wall 
2011: 8). 

 

A second round of radiocarbon dating undertaken between 2000 and 2005 discovered that 

these early dates were unreliable due to contamination of the bone by a PVA consolidator 

(Vyner & Wall 2011: 33). The second round of analysis redated the bone samples that had 

been taken previously and analysed further bone fragments representing twelve individuals 

from the linear mortuary deposit. Radiocarbon dates were also acquired from hazelnut shells 

and animal bones. Bayesian modelling of the dates combined with the assumption that the 

majority of individuals had been interred within the cairn soon after death were used to 

provide specific date ranges for each phase of interment (Vyner & Wall 2011: 33). The results 

suggested that the deposition of human remains within the wooden structure of the linear 
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mortuary deposit began between 3790 and 3710 cal. B.C. (95% probability), and that this 

phase of deposition continued right up until the removal of the wooden structure and the 

construction of the stone cairn in 3720-3650 cal. B.C. (95% probability) (Vyner & Wall 2011: 

36). The single inhumation was probably interred during the initial period of the linear 

mortuary structure in 3760-3650 cal. B.C. (95% probability) (Vyner & Wall 2011: 36). The first 

bones were deposited within the new mortuary structure in 3820-3720 cal. B.C. (95% 

probability) and mortuary activity continued until 3630-3540 cal. B.C. (95% probability) (Vyner 

& Wall 2011: 36). These results indicated that all individuals represented within the cairn had 

died over two centuries within the Early Neolithic (Vyner & Wall 2011: 36).  

The spatial patterning and representation of skeletal elements around the Whitwell cairn were 

analysed in order to deduce what kind of funerary treatment was likely to be responsible for 

the assemblage (Figure 4.54). Identification of antimeres and bone fragment matches helped 

to establish the extent to which the bones of a single individual had been distributed 

throughout the cairn. This analysis found that skeletal elements were often closely grouped by 

anatomical proximity (Vyner & Wall 2011). These observations suggested that whole bodies 

had been interred within the cairn (Vyner & Wall 2011: 87). These remains were then 

disarticulated by subsequent disturbance and movement of elements or partial bodies. There 

was a low representation of the small bones of the hands and feet amongst the assemblage as 

a whole. Similar loss of small bone has been associated with secondary deposition of remains 

(Mays 2008). However, it was likely that the small bones of the individuals interred within the 

Whitwell cairn had been lost as a result of chemical erosion by the surrounding sediment 

(Vyner & Wall 2011: 91).  

 

Figure 4.54: Plan of the linear mortuary deposit at Whitwell cairn (Vyner & Wall 2011: 22). 
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The soils that surrounded the remains consisted of calcareous loess (Vyner & Wall 2011). Loess 

is silty and free-draining. If the bodies had lain inside the cairn it was probable that they had 

decomposed within an empty space rather than sediment (Vyner & Wall 2011). If the remains 

had become buried at an early stage, it was unlikely that the soils would have affected bodily 

decomposition through anoxia. There was no reason to believe that the cairn or mortuary 

boxes were flooded or waterlogged for significant periods of time after deposition, and the 

disarticulation of the remains combined with the presence of the passageway suggested that 

interred bodies were freely accessible during and after soft tissue decomposition. There was 

no significant survival of organic remains that may have betrayed a previous anoxic 

environment. 

It was hoped that sampling would encompass the disarticulated remains from the linear 

mortuary deposit as well as the articulated burial from the oval cairn. Unfortunately the 

articulated burial was on display at the Creswell Crags Museum at the time of sampling and 

could not be accessed. All other bones were available within the collections at the University 

of Sheffield Department of Archaeology. Five disarticulated left femora from the linear 

mortuary deposit were sampled (Table 4.24). These samples represented all of the left femora 

that were available from the site. Some of the femora were fragmented, and each femoral 

fragment was checked against the rest to ensure that no two could have originated from the 

same bone. The samples were taken specifically for the current project using the techniques 

outlined in the Methodology chapter. The Whitwell samples could be cut without having to be 

embedded.  

Specimen Age Sex 

740 Adult  Unknown 

657 Adult Unknown 

253 Adult Female 

218 Adult Unknown 

630 Adult Unknown 

Table 4.24: Catalogue of the human remains sampled from the Whitwell cairn assemblage. 

 

4.2 SUPPLEMENTARY REMAINS 
 

The remains discussed above were all sampled to be used in a large-scale comparison of levels 

of diagenesis within human remains recovered from Later Prehistoric and Historical contexts. 

A small number of supplementary samples were taken from other site assemblages to help 
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elucidate the relationship between diagenesis and funerary process or justify methodological 

assumptions. The details of these samples as well as the reasons for their inclusion are 

provided below. 

 

4.2.1 Mummified Bone 

 

Part of the evidence used to argue that the skeletonised remains recovered from Cladh Hallan 

had previously been mummified was the arrested pattern of bacterial bioerosion observed 

within their bone microstructure. This pattern of bioerosion was theoretically consistent with 

an interpretation of putrefaction having been curtailed by mummification (Aufderheide 2003; 

Parker Pearson et al. 2005; Lynnerup 2007). However, levels of bacterial bioerosion within 

mummified bone have never been systematically investigated. Investigation of diagenesis 

within bone from mummified individuals would form a valid part of the current project. Such 

an investigation would help to establish whether there is a specific signature of bone 

diagenesis that is consistent with this rite, which would be helpful towards understanding the 

relationship between bone diagenesis and funerary treatment. 

The few histomorphological studies of bone from mummified individuals have found that 

these specimens remain free from microbial bioerosion (Weinstein et al. 1981; Thompson & 

Cowen 1984; Hess et al. 1998). However, mummified individuals that were used in these 

studies had been preserved in ways that would have affected putrefaction from a point very 

soon after death. For instance, one of these mummified bone samples originated from the 

Bronze Age body that was recovered from the Tyrolean Alps (popularly referred to as Ötzi the 

iceman) (Hess et al. 1998). This individual had died at high altitude where the cold 

temperatures would have ensured that putrefaction bacteria remained inactive (Micozzi 1997; 

Aufderheide 2003). The dry environment eventually desiccated the soft tissues (Micozzi 1997; 

Aufderheide 2003).  

When mummified remains from all cultures are considered as a whole, it is apparent that 

many techniques practised by ancient cultures preserved bodily soft tissues inconsistently 

(Aufderheide 2003; Lynnerup 2007). Perseverance of mummified soft tissue over 

archaeological timescales is likely to be dependent on a number of variables, such as damage, 

handling and climatic conditions (Aufderheide 2003; Lynnerup 2007). The survival of preserved 

soft tissue within a proportion of remains would be dictated by the efficacy of the 

mummification method in preventing early post mortem putrefaction (Aufderheide 2003). 
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Many mummies have only ever consisted of partially fleshed anatomical elements 

(Aufderheide 2003; Lynnerup 2007). For instance, rates of soft tissue preservation and skeletal 

articulation observed amongst the Guanche mummies of Tenerife are extremely variable, 

despite all of these bodies having been treated similarly (Aufderheide 2003: 162). The patterns 

of diagenesis observed within bone from mummified remains may have only captured one 

aspect of variation. It was likely that bacterial bone bioerosion would be more variable within 

mummified bodies that had undergone some putrefactive loss of soft tissue. 

Specimen State Date Publication Mummification 

Method 

Bone Histology 

Peruvian 

Mummy 

Skeleton A.D. 

400-

1600 

Weinstein 

et al. 1981 

Desiccated by 

burial, wrapping 

and deep burial 

in dry, coastal 

sand. 

Perfect 

microstructure. 

Ötzi the 

Tyrolean 

‘ice man’ 

Mummified 

Body 

3300 

B.C. 

Hess et al. 

1998  

Desiccated by 

freeze-drying. 

Cold 

temperatures 

prevented 

putrefaction. 

Perfect 

Microstructure. 

Species of gut bacteria 

identified under the 

periosteum. 

Two 

Utqiagvik 

barrow 

mummies 

Mummified 

Body 

A.D. 

1475 

Thompson 

& Cowen 

1984 

Desiccated by 

freeze-drying. 

Cold 

temperatures 

prevented 

putrefaction. 

Perfect 

microstructure. 

Francisco 

Pizarro 

Mummified 

Body 

A.D 

1541 

Stout 1986 Application of 

lime (CaO). 

Perfect 

microstructure. 

Lindow II 

& Lindow 

I/II 

Mummified 

Boy 

2 

B.C.- 

A.D. 

119 

Brothwell & 

Bourke 

1995; 

Brothwell & 

Gill-

Robinson 

2002 

Deposition within 

a sphagnum peat 

bog. 

Well-preserved, but 

with ‘globular 

pseudopathological 

points of collagen 

loss’. Possible 

accumulations of MFD. 

Worsley 
Man 

Partially 
Mummified 
Head 

A,D, 
100 

Garland 
1995 

Deposition within 
a sphagnum peat 
bog. 

Perfect 
microstructure. 

Table 4.25: Catalogue of mummified bodies whose bone has been subject to histomorphological analysis along with 
a summary the results of each study. 
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The aim of the sampling was to obtain bone specimens from bodies that had been variably 

mummified in order to capture a range of possible signatures. It was hypothesised that bones 

obtained from remains whose soft tissue had been preserved within only limited success 

would be more likely to demonstrate putrefactive bioerosion to their internal bone 

microstructure. Application was made to various institutions to sample mummified bone for 

thin sections analysis. The destructiveness of the thin section method meant that the chances 

of obtaining a large number of bone samples from mummified individuals was low. It was likely 

that retrieval of bone tissue might require removal or destruction of soft tissue. Bone samples 

were acquired from only two mummified bodies. 

 

4.2.1.1 Yemeni Mummy 

 

 

Figure 4.55: Map of the approximate origin of the Yemeni mummy that was sampled. 

 

A small fragment of patella that was covered by preserved soft tissue was obtained from 

Professor Don Brothwell at the University of York. This bone fragment originated from one of 

the desiccated bodies recovered from the highlands northwest of Sana’a in the Yemen (Figure 

4.55). The presence of soft tissue confirmed that the patella had come from a partially 
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mummified individual. This sample had to be embedded before it could be successfully thin-

sectioned.  

The patella has not often been subject to histological examination, particularly in studies of 

bone diagenesis. Therefore comparative thin sections were also produced from two 

disarticulated patellae of unknown provenance that were available within the University of 

Sheffield Department of Archaeology’s collections. The level of discolouration and cortical 

erosion on one of these specimens indicated that it had been retrieved from an archaeological 

context. The fresh appearance of the second patella suggested that it was of a recent origin, 

probably a dissection room cadaver or retired teaching skeleton. It was expected that the 

archaeological patella would be informative as to the nature and extent of microbial 

bioerosion that was possible within this particular skeletal element. The fresh patella would 

provide an example of unaltered microstructure of this bone. All of these samples were thin 

sectioned and prepared using the techniques expounded in the Methodology chapter.  

 

4.2.1.2 Derrycashel Bog Body 

 

 

Figure 4.56: Map of the location of Derrycashel. 
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In January 2005 partially-mummified human remains were extracted from a peat harvester 

near the town of Derrycashel, County Roscommon, Ireland (Kelly 2012) (Figure 4.56). The head 

and feet had been lost to the machinery. Aside from these elements, the body was almost 

complete. The thorax and upper limbs retained the majority of their superficial soft tissues, 

although no internal organs could be identified (Kelly 2012). The legs were almost entirely 

skeletonised. The remains were radiocarbon dated to 1431–1291 cal. B.C., which placed them 

within the Irish Middle Bronze Age (Kelly 2012). In contrast to Iron Age Irish bog mummies, the 

Derrycashel remains showed no signs of having been subject to peri mortem trauma (Kelly 

2012). The Derrycashel body had been manipulated into a flexed posture, which was a 

conventional burial position amongst Irish Bronze Age skeletons (Kelly 2012). Iron Age Irish bog 

bodies are often interpreted in terms of deviant ritual sacrifice and deposition, however the 

observations outlined above led the excavators to conclude that the Derrycashel body had 

been formally buried within the peat bog (Kelly 2012). The Derrycashel body provided an 

opportunity to sample bone from a mummy that demonstrated partial levels of soft tissue 

preservation resulting from inconsistencies of the method rather than subsequent curation. 

The remains of the Derrycashel woman were held at the National Museum of Ireland. 

Permission to sample the remains was granted by Eamonn Kelly. The left clavicle and a 

proximal anterior cortical fragment of tibia were collected from the National Museum of 

Ireland, Dublin and transported to the University of Sheffield Department of Archaeology. 

Samples from both of these bones were thin sectioned using the techniques outlined in the 

Methodology chapter. It was pertinent to take samples from both of these bones, as they 

originated from parts of the body that demonstrated disparate levels of soft tissue 

preservation. These two bones may have been subject to divergent levels of putrefaction. 

 

4.2.2 Havnø Shell Midden, Jutland, Denmark 

 

The Havnø shell midden is located on the banks of the Mariager fjord in eastern Jutland, 

Denmark (Figure 4.57). Modern research excavations of the midden by Søren Andersen from 

the Moesgård Museum began in 2004 and continued up until 2011 (Andersen 2008). The 

midden was around 100 metres in length, 25-27 metres wide, and had been built up gradually 

from accumulations of ten to fifteen shell deposits (Andersen 2008). Radiocarbon dates of 

archaeological material found throughout the midden indicated that the site had been visited 
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over a long period between 5000 and 3000 cal. B.C. (Andersen 2008: 4). This time period 

stretched from the Mesolithic middle and younger Ertebølle phases through to the earliest 

Neolithic Funnelbeaker culture (Andersen 2008: 4). It could not be established if the midden 

had been visited and constructed continuously throughout this period or whether there had 

been several punctuated periods of activity (Andersen 2008: 4). The Ertebølle and 

Funnelbeaker phases could be easily discerned within the midden, as the Neolithic layers held 

fewer and smaller oyster shells and increased abundances of charcoal and cooking stones 

(Andersen 2008: 4). 

 

Figure 4.57: Map of the location of the Havnø shell midden 

 

Disparate fragmentary disarticulated human skeletal elements were recovered from various 

points within the midden phases (Andersen 2008). Radiocarbon dating of human bone samples 

suggested that disarticulated remains had been deposited throughout the Neolithic and 

Mesolithic periods (Andersen 2008: 4). The subsoil consisted of a sandy clay, although the 

human bones were all recovered from within the midden, which was mostly composed of 

oyster, cockle, mussel and periwinkle shells mixed with domestic refuse, including faunal 

material, charcoal and cooking stones (Andersen 2008).  
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Emily Hellewell, a postgraduate researcher from the University of York, was interested in 

analysing the human bones from the Havnø shell midden using thin section light microscopy to 

help determine whether funerary processes differed between the Mesolithic and Neolithic 

phases. There was no consistent representation of particular skeletal elements at the site, and 

so potential element-specific bone diagenesis could not be controlled (Andersen 2008). 

Hellewell was still keen to continue with the analysis even after this problem was explained.  

The analysis of disparate skeletal elements from this site would be useful to the present study. 

All bones originated from the same depositional context and analysis of levels of diagenesis 

could be used supplement the results from the Primary Analysis in establishing whether bone 

diagenesis varies in characteristic ways within bones from particular parts of the body. If there 

was no association between skeletal element and diagenesis within the primary study sample 

and the Havnø remains, then the results from the Havnø samples could be used to infer early 

taphonomic events. The latitude of the Havnø midden was within the range of central 

Scotland. The potential effects of climate on bodily decomposition of the Havnø remains 

would not have differed substantially from those experienced by the bones included in the 

Primary Analysis.  

Eleven human bone fragments from the Havnø midden were sent to the University of Sheffield 

by Søren Andersen at the Moesgård Museum via Emily Hellewell at the University of York. The 

aim of the sampling was to obtain a good representation of bone from different parts of the 

midden. There was also an attempt to sample a wide range of skeletal elements. Samples of 

replicate skeletal elements were taken to determine whether there were specific signatures of 

diagenesis associated with different types of bones. It was decided that the sampling should be 

focussed on long bone shafts to ensure that ratios of cortical and trabecular bone were 

relatively equal between samples. This strategy was consistent with the primary sample set. 

This strategy ensured that any variation in bone bioerosion with skeletal element was likely to 

be associable with anatomy rather than ratio of cortical and trabecular bone. Most elements 

sampled consisted of long bones, however cranial bones were also included. Cranial bones 

contain both cortical and cancellous bone, although larger proportions of cranial bones are 

taken up by cancellous diploë than within long bone shafts. The differences in diagenesis 

between the cranial and post cranial samples would be closely monitored to discern whether 

the higher levels of trabeculae may have affected diagenetic parameters.  
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Bone Number Bone Anatomical Area 

NSV Fibula Limb 

QQB Cranium Extremity 

XPG Cranium Extremity 

LOU-a Fibula Limb 

NYA Ulna Limb 

VNV Cranium Extremity 

UBQ-b Phalanx Extremity 

UBQ-a Metacarpal Extremity 

PCE-a Clavicle Axial 

THE Metatarsal Extremity 

OHL-3 Metatarsal Extremity 

Table 4.26: Catalogue of the human remains sampled from the Havnø assemblage along with their anatomical 
classification. 

 

The disarticulation of the Havnø material combined with the necessity to sample disparate 

skeletal elements meant that it was possible that bones from a single individual had been 

sampled more than once. This factor would not affect the ability to determine whether 

particular skeletal elements demonstrate characteristic signatures of diagenesis, but would 

have to be considered during any attempts to interpret funerary behaviour. All of the Havnø 

bones were sampled and thin sectioned using the techniques outlined in the Methodology 

chapter. None of the samples had to be embedded in resin (Table 4.26).  
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5 RESULTS – PRIMARY ANALYSIS OF THE WHOLE ASSEMBLAGE 

 

This first results chapter presents the findings of the thin section analysis across the whole 

study sample in order to identify the factors that influenced different types of bone diagenesis. 

Identification of these factors were used to determine how different measures of diagenetic 

change may be used in the reconstruction of taphonomic histories, particularly funerary rites. 

This chapter is subdivided by each diagenetic parameter grouped by measures of bone 

degradation (bioerosion, birefringence, and persistence of the periosteal surface) and visual 

diagenetic features (staining, inclusions and infiltrations).  

 

5.1 NOTE ON THE DISPLAY OF STATISTICAL RESULTS 
 

The regression models run in SPSS produced extensive outputs that detailed results pertaining 

to the influence of explanatory variables, the predictive power of the regression models and 

the appropriateness of ordinal regression. The objectives of the current study related to the 

influence of explanatory variables on dependent measures of diagenetic change. There was no 

intention to build accurate predictive models of diagenetic parameters. The imprecision of 

both dependent and explanatory variables used in the current study meant that it was unlikely 

that useful predictive models would be generated from the data that had been collected.  

It was expected that the Test of Parallel Lines generated for the ordinal regression models 

would often reject the null hypothesis of proportional odds. This test is conservative in its 

rejection of the null hypothesis, particularly when incorporating large numbers of independent 

variables. The proportional odds assumption is most applicable to the appropriateness of 

ordinal regression equations as predictive models. The use of ordinal regression as an 

exploratory device meant that the assumption of proportional odds was not considered to be 

imperative to the use of ordinal regression models to identify influential explanatory variables. 

The role of the proportional odds assumption in the calculation of the parameter estimates 

meant that some of these values may have been slightly distorted in cases where the Test of 

Parallel Lines had failed. However, such an outcome would not have affected the identification 

of significant influencers of diagenetic parameters. Tests of Parallel Lines, as well as those 

figures that related to the predictive power of the ordinal and binary regression models, are 

available within Appendix 1. Only those results that were relevant to the influence of 
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explanatory variables (Parameter Estimate/B, Wald Χ2, p-value) were included within the main 

text.  

All ordinal and binary logistic regression SPSS outputs were included within Appendix 1. 

Several regression models were produced for all variables. Summary tables of these models 

were only included within this results chapter if they provided salient information regarding 

the factors that variably affected particular diagenetic parameters. P-values within tables are 

highlighted to reflect their significance. P-values less than 0.05 that indicated that an 

explanatory variable may have had an influence on a diagenetic parameter are highlighted in 

bold. Those values that were significant when the Holm-Bonferroni method was applied are 

marked out by a * symbol. Nagelkerke Pseudo R-Squared values were provided in some cases 

to highlight the proportion of variation within a dependent diagenetic parameter that was 

described by the significant explanatory variables and provide some gauge of the predictive 

power of the explanatory variables. Paired regressions that were performed to check the 

independence of more than two significant explanatory variables were not included in this 

chapter for the sake of brevity, but are available within Appendix 1.   

 

5.2  MEASURES OF BONE DEGRADATION 

 

Histological destruction of most bone samples (87%) used in this study had occurred as a result 

of bioerosion. Almost all (99%) of bioeroded samples demonstrated tunnelling that was 

morphologically consistent with Hackett’s (1981: 250) non-Wedl MFD. Therefore, most 

measures of histological destruction, particularly Whole OHI score could be taken to represent 

measures of bacterial bioerosion. Fungal Wedl tunnelling was observed in 18% of samples, but 

in most cases this type of tunnelling had not destroyed enough of the bone microstructure to 

have affected Whole OHI score.  

 

5.2.1 Comparisons of Measures of Bone Degradation 

 

The status of Whole OHI score as a graduated ordinal gauge of histological destruction meant 

that this parameter represented the primary measure of bacterial bioerosion. Whole OHI score 

was tested against other measures of microstructural degradation to ensure that all variables 
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measured the same effect and confirm that Whole OHI score could be confidently used as a 

proxy for overall levels of histological destruction. Deviation of a measure of bone degradation 

from Whole OHI indicated that that the parameter reflected a different type of degradation 

and would have to be investigated separately.  

 

5.2.1.1 Zonal OHI Score 

 

Separate zonal OHI scores were produced for each third of a transverse thin section, running 

from the external to the internal surface (periosteal, internal, endosteal) The distribution of 

each zonal OHI score across all of samples were tested against Whole OHI score. Significant 

discrepancies between zonal and Whole OHI scores would suggest that the deviating zonal 

score corresponded to a discrete pathway of decay and that this variable would have to be 

investigated separately.  

Zone No. of 

samples 

Spearman’s Rho Significance 

(p-value) 

Periosteal 297 0.791 0.000* 

Internal 297 0.919 0.000* 

Endosteal 297 0.862 0.000* 

Table 5.1: Table of correlations between Zonal OHI scores and Whole OHI scores for the entire study sample. 

 

There were significant positive correlations between all three Zonal OHI scores and Whole OHI 

(Table 5.1). All three zonal scores were likely to vary in similar ways to Whole OHI. The larger 

correlation coefficient attributed to the internal zone suggested that this section provides the 

best gauge of overall bacterial attack. Comparison of the distributions of Zonal OHI scores can 

be used to examine how bacterial bioerosion progressed within most bone samples. Higher 

numbers of endosteal zones were scored the lowest OHI scores compared to internal and 

periosteal areas (Figure 5.1). Periosteal OHI results were elevated and more widely distributed 

amongst the lower scores. Internal OHI scores were somewhere in the middle of those 

obtained from the periosteal and endosteal zones.  
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Figure 5.1: Distributions of Whole OHI scores amongst different zones of thin sections from across the entire study 
sample Distributions of scores for endosteal and internal zones were very similar. Periosteal surfaces tended to 
demonstrate comparatively elevated OHI scores reflecting the common perseverance of the periosteal surface 

(A=endosteal, B=internal, C=periosteal). 

 

5.2.1.2 Presence of Bacterial Attack 

 

There was a significant association between Whole OHI scores and the presence of bacterial 

attack (n=301, Mann-Whitney U=47.000, p=0.000). All but one of the samples that were free 

from bacterial bioerosion had been allocated the highest Whole OHI score of five (Figure 5.2). 

All bones that had been bioeroded demonstrated variable Whole OHI scores. The result 

emphasised that non-Wedl MFD were responsible for almost all histological destruction and 

variation in Whole OHI score. The presence of bacterial bioerosion was still considered 

separately from Whole OHI score in order to determine the factors that influenced the 

occurrence of non-Wedl MFD rather than just the severity of attack. 

 
Figure 5.2: Proportional bar chart demonstrating the distribution of bones affected by bacterial bioerosion amongst 

remains that had been allocated variable Whole OHI scores. Numbers on the bars represent counts of cases. 
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5.2.1.3 Birefringence 

 

There was a significant positive correlation between Whole OHI and Birefringence Index 

(n=301, Spearman’s rho=0.411, p=0.000). The majority of variation in collagen birefringence 

was explained by collagen loss due to bacterial bioerosion. Bones that demonstrated high 

levels of histological preservation demonstrated high Birefringence Index scores (Figure 5.3). 

Collagen birefringence was likely to vary with the same factors as Whole OHI, and so there was 

no need to test Birefringence Index against any further variables. 

A limited number of bone samples demonstrated reduced or absent birefringence despite 

remaining mostly free from bioerosion. Five outliers (2% of the whole sample) demonstrated a 

complete loss of birefringence despite attaining the highest Whole OHI scores of five. Two of 

these bones originated from the Roman Bantycock cemetery, whilst the other three consisted 

of isolated bones from the Carver Street, Royal Mint and Danebury sites. The low number of 

samples and their varied provenance meant that statistical investigation of possible causes of 

this non-biological collagen loss was unlikely to produce useful results. The exact 

circumstances that may explain the loss of collagen in each sample are discussed in the next 

chapter. 

 
Figure 5.3: Box-and-whisker plot of Birefringence Index (BI) against Whole OHI for the whole study sample. 
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5.2.1.4 Wedl Tunnelling 

 

Wedl tunnelling was recorded on a presence/absence basis. A Pearson’s Χ2 test of the 

relationship between Wedl tunnelling and Whole OHI score produced a p-value that was less 

than 0.05 (n=301, Fisher’s Exact Test=14.930, p=0.008). When applying the Holm-Bonferroni 

method of correcting for multiplicity indicated that this result could not be accepted as 

significant (Appendix 2). Thus it was concluded that there was no relationship between Whole 

OHI score and Wedl Tunnelling (Figure 5.4).  

Wedl tunnelling most often appeared within bone samples that also included non-Wedl MFD. 

The occurrence of Wedl tunnelling was lowest within the Whole OHI category that would have 

included bones that were free from bacterial attack. Wedl tunnelling was considered 

separately to the other measures of bone degradation in order to determine the factors had 

influenced its occurrence and explore how this parameter may be used in reconstructions of 

taphonomic events. 

 
Figure 5.4: Proportional bar chart demonstrating the proportions of bone allocated each Whole OHI score that 

demonstrated Wedl tunnelling. Numbers on bars represent counts of cases. 

 

5.2.1.5 Persistence of the Periosteal Surface 

 

A Pearson’s Χ2 analysis of the relationship between Whole OHI score and persistence of the 

periosteal surface produced a p-value less than 0.05 (n=301, Fisher’s Exact Test=11.252, 

p=0.034). However, the Holm-Bonferroni method determined that this result was not 
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significant (Appendix 2). There was no direct relationship between the extent of bacterial 

bioerosion and the loss of the periosteal surface (Figure 5.5). The persistence of the periosteal 

surface was tested separately in order to determine what factors affected its appearance and 

suggest how this parameter might be used in the inference of taphonomic processes. 

 
Figure 5.5: Proportional bar chart demonstrating the proportion of samples that had lost their periosteal surfaces 

within each Whole OHI score category. Numbers on bars represent counts of cases. 

 

5.2.2 Variation in Whole OHI Score 

 

 

Figure 5.6: Histogram of the distribution of Whole OHI scores across the entire study sample. 
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The highest proportion of all samples (42%) demonstrated Whole OHI scores of zero (Figure 

5.6). Seventy-four per cent of samples were scored one of the three lowest Whole OHI scores. 

When the mirrored Whole OHI distribution from all remains was compared against an 

idealised normal curve, there were clear deviations (Figure 5.7). There was an 

overrepresentation of Whole OHI scores of zero and, to a lesser extent, five within the 

observed distribution. There were also slight overrepresentations of scores of two and 

underrepresentation of three and four. The mirrored distribution of Whole OHI scores was 

significantly different from a normal model (n=475, Kolmogorov-Smirnov Z=2.914, p=0.000). 

This result suggested that there were significant levels of variation within Whole OHI score 

across the entire study sample. The multiple peaks indicated that several factors were likely to 

have influenced this parameter. The distribution of Whole OHI scores was tested against 

recorded variables within an ordinal regression model. 

 
Figure 5.7: Histogram of the 'mirrored' distribution of Whole OHI scores across the entire study sample with a 

superimposed idealised normal curve. The mirrored distribution of Whole OHI scores does not conform to a normal 
model, particularly because of the number of bone samples allocated scores of zero and five. 

 

Both ordinal and logistic regression do not work well when explanatory variables are highly 

correlated with one another, therefore choices had to be made over which similar variables 

(such as Phase and Specific Phase) were to be included. Phase was chosen over Specific Phase 

as the Later Prehistoric/Historical dichotomy was directly salient to the hypotheses set out in 

the Methodology chapter. Specific Phase was only variable within the Later Prehistoric subset. 

The variables that were left out would be tested at a later stage using non-parametric omnibus 

tests mediated by the Holm-Bonferroni method.  
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The majority (97%) of samples included in this study were taken from the femur whilst the 

remaining samples were taken from one of a variety of non-femoral long bones. It was 

important to establish whether sampling from variable skeletal elements affected levels of 

bacterial bioerosion. Initial tests suggested that non-femoral samples sizes were too variable 

and/or low to be tested using ordinal regression. Similarly, variable site sample sizes meant 

that specific site also had to be excluded from the ordinal regression. The potential influences 

of site-specific factors and skeletal element would be tested using non-parametric omnibus 

tests. Overall conclusions regarding their influence would have to be determined through 

comparison with results from the supplementary and specific site assemblages. 

Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Anoxia Absent 261 -2.064 31.574 0.000* 

Present 40 0 - - 

Phase Later 
Prehistoric 

93 1.543 11.962 0.001 

Historical 208 0 - - 

Soil Type Clay 159 -1.126 0.871 0.351 

Gravel 65 -0.916 0.552 0.457 

Sand 24 -0.034 0.001 0.977 

Silt 35 -1.562 2.040 0.153 

Open 18 0 - - 

Cave Non-Cave 279 .477 0.199 0.656 

Cave 22 0 - - 

Black 
Death 

Non Black 
Death 

276 -1.456 9.077 0.003 

Black Death 25 0 - - 

State Articulated 238 0.413 0.790 0.374 

Disarticulated 63 0 - - 

Charnel Non-Charnel 213 -0.78 0.040 0.841 

Charnel 88 0 - - 

Age 
Range 

Neonate 31 2.183 24.399 0.000* 

Child 23 -1.020 4.110 0.043 

Juvenile 39 -0.186 0.292 0.589 

Adult 208 0 - - 
Table 5.2: Summary table of the Parameter Estimate from the second ordinal regression model of Whole OHI scores. 

 

The first ordinal regression model of Whole OHI suggested that Anoxic Environment, Phase 

and Black Death deposits had influenced Whole OHI score (Appendix 1, page 569). The 

regression model only included those cells where there were values for all explanatory 

variables. A limited number of individuals had been assigned a biological sex. Therefore, any 

regression model that included the Sex variable would not have included all cases. The first 
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ordinal regression model established that Sex had no influence on Whole OHI score. The 

model was run again without Sex as an explanatory variable in order to produce an outcome 

that included the whole study sample. This sequential run of regression models with and 

without the Sex variable had to be repeated for each diagenetic parameter. 

Anoxia, Phase and Black Death still influenced Whole OHI in the second ordinal regression 

model (Table 5.2; Appendix 1, page 571). Age Range also had an influence, although only the 

neonatal age category significantly affected Whole OHI Score. All of the non-significant 

explanatory variables were removed from the model in order to determine the nature of the 

influence of the significant variables. All variables maintained a significant influence on Whole 

OHI score within this third ordinal regression, which suggested that they had all independently 

influenced Whole OHI score (Table 5.3; Appendix 1, page 573). The Nagelkerke Pseudo R-

Squared value for this ordinal regression suggested that these variables accounted for 21.9% 

of variation in Whole OHI score. The p-value of the parameter estimate associated with the 

Child Age Category dropped below 0.05. However the Holm-Bonferroni correction indicated 

that this result could not be accepted as significant at (Appendix 2). 

Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Anoxia Absent 261 -1.924 32.406 0.000* 

Present 40 0 - - 

Phase Later 
Prehistoric 

93 1.101 18.413 0.000* 

Historical 208 0 - - 

Black 
Death 

Non Black 
Death 

276 -1.431 12.484 0.000* 

Black Death 25 0 - - 

Age 
Range 

Neonate 31 2.028 29.032 0.000* 

Child 23 -1.082 4.884 0.027 

Juvenile 39 -0.229 0.468 0.494 

Adult 208 0 - - 
Table 5.3: Summary table of the Parameter Estimates from the third ordinal regression model of Whole OHI scores. 

 

Each of the significant explanatory variables was paired against the others within separate 

ordinal regression models to further test whether each represented an independent source of 

variation in Whole OHI score (Appendix 1, page 586). Age Range, Phase and Anoxic 

environment all maintained significant influences on Whole OHI score when paired with all 

other significant variables. However, the p-value of the Black Death variable became non-

significant (p= 0.088) when it was placed in a regression model with Age Range. The 
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significance of the Black Death variable within the third regression model and when it was 

placed in regression models with the two other significant variables meant that its influence on 

Whole OHI was still considered. However, it was possible the influence of this variable on 

Whole OHI score may not have been entirely independent of Age Category. 

 
Figure 5.8: Box-and-whisker plot of distributions of Whole OHI scores amongst all bones grouped by age-at-death. 

 

Age Range had the largest effect on Whole OHI score as defined by the parameter estimate. 

Neonatal bones were significantly more likely to demonstrate higher Whole OHI scores than 

bones from all other age categories. Neonatal remains explained the all variation in Whole OHI 

score by age-at-death (Figure 5.8). The variable that had the next largest influence on Whole 

OHI score was the presence of an anoxic environment. The parameter estimates suggested 

that remains from anoxic environments were more likely to demonstrate higher levels of 

histological preservation than bones from aerobic contexts (Figure 5.9). When the neonatal 

remains were removed, the distribution of Whole OHI scores within the anoxic-deposited 

samples, as defined by the interquartile range, was elevated and wider compared to bones 

from aerobic environments. 
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Figure 5.9 Box-and-whisker plot of the distributions of Whole OHI scores amongst remains variably retrieved from an 

anoxic environment (Neonatal remains were excluded). 

 

The next significant variable within the ordinal regression equation was whether or not a 

sample originated from a Black Death cemetery. Bones from the Black Death graves were 

more likely to demonstrate higher Whole OHI scores than those from non-Black Death 

contexts (Figure 5.10). When the neonatal and anoxic-deposited remains were disregarded, 

the Black Death remains demonstrated a comparatively elevated median Whole OHI score 

compared to the non-Black Death samples. 

 
Figure 5.10: Box-and-whisker plot of the distribution of Whole OHI scores amongst remains variably retrieved from a 

Black Death cemetery (Neonatal and Black Death remains were excluded). 
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The variable that had the next most powerful effect on Whole OHI score was whether a bone 

originated from a Historical or Later Prehistoric context. The parameter estimate suggested 

that bones from Later Prehistoric contexts were more likely to demonstrate high Whole OHI 

scores. This pattern was supported by the higher median Whole OHI value of the Later 

Prehistoric assemblage, minus the neonatal, anoxic-deposited and Black Death samples (Figure 

5.11). The interquartile range of the Later Prehistoric assemblage was wider than that of the 

Historical sample, which suggested that histological preservation amongst the Later Prehistoric 

samples was more variable. Whole OHI scores of the Historical samples were centred on a 

median score of zero and demonstrated a restricted interquartile range, which suggested that 

histological preservation of this sample set was invariably low.  

 
 

Figure 5.11: Box-and-whisker plot of the distribution of Whole OHI scores amongst remains from Historical and Later 
Prehistoric contexts (Neonatal, anoxic-deposited and Black Death remains were excluded). 

 

5.2.2.1 Variation in Whole OHI Score amongst the Historical Assemblage 

 

It was predicted within the hypotheses set out in the Background chapter (page 98) that if 

bacterial bioerosion of bone related to funerary treatment in a way that could be predicted by 

models of decomposition, the distribution of Whole OHI scores amongst the Historical remains 

would be half-normal. The ordinal regression had indicated that neonatal remains, anoxic 

environments and bones from Black Death cemeteries demonstrated elevated levels of 

histological preservation. The potential distorting influence of these factors had been 
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predicted in previous chapters, based on the results of previous studies as well as information 

from specific archaeological sites. The distribution of Whole OHI scores amongst post-neonatal 

Historical remains that had not been retrieved from an anoxic or Black Death context should 

have represented the expected distribution from archaeological remains that had been buried 

immediately after death and exposed to consistently high levels of uninterrupted putrefaction. 

The distribution of Whole OHI scores amongst this Historical baseline assemblage resembled a 

smooth half normal model (Figure 5.12). 

 

Figure 5.12: Histogram of the distribution of Whole OHI scores amongst the Historical remains minus anoxic-
deposited, neonatal and Black Death remains, representing the Historical baseline distribution of Whole OHI scores 

relating to primary burial. 

 

However, there was a statistically significant difference between the mirrored version of the 

Historical baseline distribution and an idealised normalised curve (n=170, Kolmogorov-Smirnov 

Z=2.761, p=0.000). The mirrored Historical baseline Whole OHI distribution differed from a 

normal curve by the number of remains that had been allocated low Whole OHI scores, 

particularly zero (Figure 5.13). The Historical baseline distribution was significantly leptokurtic 

compared to a normal model (Pearson’s measure of kurtosis=1.544, Standard Error of Kurtosis 

= 0.370, Ratio=4.17). A distribution can be considered to be significantly leptokurtic when the 

ratio between the measure and standard error of kurtosis is positive and greater than two. It 

was the leptokurtic shape of the Historical baseline distribution that constituted its main 

deviation from a normal model.  

Leptokurtic distributions are characterised by high thin central peaks and short, heavy tails. 

This distribution is produced when data points are highly concentrated around the mean and is 

symptomatic of low variance. The result from the mirrored distribution indicated that the 
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Historical baseline distribution of Whole OHI scores was significantly less variable around 

scores of zero than a half-normal curve. 

 
Figure 5.13: Histogram of the 'mirrored' distribution of Whole OHI scores amongst the Historical baseline 
assemblage with a superimposed idealised normal distribution. The Whole OHI distribution is significantly 

leptokurtic. 

 

 
Figure 5.14: Box-and-whisker plot of Whole OHI scores within collections of bones from discrete Historical sites 

(neonatal, anoxic-deposited and Black Death samples were excluded). 
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The other test of the first and second hypotheses regarding the relationship between bacterial 

bioerosion and funerary treatment set out in the Background chapter (page 98) was the 

expectation that bacterial bone bioerosion should be consistently extensive within different 

Historical site assemblages. When the neonatal, anoxic deposited and Black Death bones were 

excluded, there were no significant differences in distributions of Whole OHI scores between 

separate Historical assemblages (n=121 Kruskal-Wallis Χ2=11.402, p=0.122). Bone samples 

from all Historical sites demonstrated similar high levels of bacterial attack (Figure 5.14).  

 

5.2.2.2 Variation in Whole OHI score amongst the Later Prehistoric Assemblage 

 

It was pertinent to compare the mirrored distribution of the Later Prehistoric samples against 

an idealised normal model to investigate how Whole OHI scores within this assemblage 

differed from the distribution amongst the Historical bone samples. This comparison would 

help to characterise Later Prehistoric variation in Whole OHI score. The frequency distribution 

of Whole OHI scores amongst the Later Prehistoric remains without the anoxic-deposited and 

neonatal samples retained a central tendency towards low Whole OHI scores (Figure 5.15). 

However the distribution demonstrated two secondary peaks at scores of two and five. These 

two peaks represented the point of deviation between the Whole OHI scores of the Historical 

and Later Prehistoric assemblages. 

 

Figure 5.15: Histogram of the frequency distribution of Whole OHI scores amongst the Later Prehistoric assemblage 
(neonatal and anoxic-deposited remains were excluded). 
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There was a significant difference between the mirrored Later Prehistoric distribution of 

Whole OHI scores, excluding the neonatal and anoxic-deposited remains, and an idealised 

normal plot (n=140, Kolmogorov-Smirnov Z=1.437, p=0.032). A high proportion of Later 

Prehistoric remains were allocated Whole OHI scores of zero (Figure 5.16). However, the 

Whole OHI distribution was platykurtic, although this result was not significant (Pearson’s test 

of kurtosis=-0.518, standard error= 0.407, Ratio=1.27). Platykurtic distributions are 

characterised by lower central peaks and long thin tails. These distributions reflect an excess of 

variation around the mean. This result emphasised the different levels of variability within the 

Later Prehistoric and Historical baseline distributions of Whole OHI scores. 

 
Figure 5.16: Histogram of the distribution of Whole OHI scores across the Later Prehistoric assemblage  with a 

superimposed idealised normal distribution (neonatal and anoxic-deposited remains were removed). 

 

The deviation of the Later Prehistoric Whole OHI distribution was not explained by its 

platykurtic shape. This distribution deviated from a normal model by the overrepresentation of 

scores of zero, two and five and an underrepresentation of scores of three, four and one. One 

or more factors intrinsic to the Later Prehistoric remains must have produced the three peaks 

within the data. The Specific Phase variable, which divided Later Prehistoric remains by 

Neolithic, Bronze Age and Iron Age, was not included in the original ordinal regression model. 

There was no significant difference in Whole OHI scores between Later Prehistoric remains 

from different Specific Phases (Neolithic=35, Bronze Age=28, Iron Age=24, Kruskal-Wallis 

Χ2=2.592, p=0.274). 

Site-specific Later Prehistoric variation in bacterial bioerosion might account for some of the 

unexplained variation in Whole OHI score. When the neonatal and anoxic-deposited samples 
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were excluded a Kruskal -Wallis analysis of the difference in Whole OHI scores between 

remains from discrete Later Prehistoric sites, produced a p-value of less than 0.05 (n=87, 

Kruskal-Wallis Χ2=24.576, p=0.026). However the Holm-Bonferroni method determined that 

this result was not significant (Appendix 2). Whole OHI scores amongst remains from different 

Later Prehistoric sites were consistently variable (Figure 5.17).  

 
Figure 5.17: Box-and-whisker plot of distributions of Whole OHI scores within groups of remains from discrete Later 

Prehistoric sites (neonatal and anoxic-deposited remains were excluded). 

 

5.2.2.3 Effect of Skeletal Element on Whole OHI Score 

 

Attempts to determine the extent to which skeletal element influenced bacterial bioerosion 

within the samples included in the current study were undermined by the low number of non-

femoral samples. Some of the skeletal elements that were included only appeared once within 

the entire assemblage. A Kruskal-Wallis Χ2 test of Whole OHI scores amongst different skeletal 

elements produced a p-value that was less than 0.05 (Femur=298, Fibula=1, Humerus=6, 

Metatarsal=1, Radius=1, Tibia=3, Kruskal-Wallis Χ2=14.296, p=0.014). However, the Holm-

Bonferroni method determined that this result was not significant (Appendix 2). It was unlikely 

that variation in bacterial bioerosion within the study sample was attributable to variation in 

skeletal element. 
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5.2.3 Variation in the Presence of Bacterial Attack 

 

Variable Outcome Number 
of 

Samples 

B Wald Significance 
(p-value) 

Anoxia Present/Absent 301 3.441 12.297 0.000* 

Phase Later 
Prehistoric/Historical 

301 -2.437 7.970 0.005 

Soil Type Overall 301 - 4.189 0.381 

Clay 159 2.585 0.000 1.000 

Gravel 65 1.128 0.000 1.000 

Sand 24 1.167 0.000 1.000 

Silt 35 22.314 0.000 0.999 

Open 18 0 - - 

Cave Cave/Non-Cave 301 -2.722 0.000 1.000 

Black 
Death 

Non-Black Death/Black 
Death 

301 0.686 0.431 0.512 

State Articulated/Disarticulated 301 0.867 1.083 0.298 

Charnel Non-Charnel/Charnel 301 -0.976 1.235 0.326 

Age 
Range 

Overall 301 - 24.150 0.000* 

Neonate 31 -4.193 23.320 0.000* 

Child 23 0.310 0.066 0.797 

Juvenile 39 0.014 0.000 0.984 

Adult 208 0 - - 
Table 5.4: Summary table of the Parameter Estimates for the second binary logistic regression of the presence of 

bacterial attack. 

 

Non-Wedl MFD were present within 87% of the whole study sample. The factors that 

influenced the occurrence of bacterial bioerosion were modelled using binary logistic 

regression. The first model tested all possible explanatory variables against the presence of 

bacterial bioerosion (Appendix 1, page 582). Anoxic Environment and Phase had influenced the 

presence of bacterial bioerosion within this model. The first model established that Sex had 

not influenced bacterial bioerosion. Logistic regression was repeated without the Sex variable.  

The second model indicated that Anoxic Environment, Phase and Age Range influenced the 

occurrence of bacterial bioerosion (Table 5.4; Appendix 1, page 584). Bacterial attack was only 

influenced by the neonatal category within Age Range. The model was run again with only the 

significant variables to determine the power and dependence of their influence. Most 

variables maintained significant levels of influence within this third model (Appendix 1, page 

585). The p-value associated with Anoxia was low but non-significant when the Holm-

Bonferroni method was applied (Appendix 2). This low p-value and the significance of Anoxia 
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within the second regression model meant that Anoxia was still considered as a potential 

factor that explained variation in the occurrence of bacterial attack. Neonatal Age remained 

the only factor within Age Category that enacted a statistically significant influence on the 

presence of bacterial bioerosion (Table 5.5). The Nagelkerke R-squared generated for this 

model suggested that these variables accounted for 28.5% of variation in the presence of 

bacterial bioerosion. All significant explanatory variables were paired with one another within 

further binary logistic regression models to explore their independence (Appendix 1, page 

586). All variables maintained their significant influence when tested alongside one another, 

which indicated that they represented independent affecters of bacterial bioerosion.  

Variable Outcome Number 
of 

Samples 

B Wald Significance 
(p-value) 

Anoxia Present/Absent 301 1.915 11.144 0.001 

Phase Later 
Prehistoric/Historical 

301 -1.933 14.462 0.000* 

Age 
Range 

Overall 301 - 33.419 0.000* 

Neonate 31 -3.167 31.276 0.000* 

Child 23 0.542 0.255 0.613 

Juvenile 39 -0.260 0.185 0.667 

Adult 208 0 - - 
Table 5.5: Summary table of the Parameter Estimates for the third binary logistic regression of the presence of 

bacterial attack. 

 

Age Range had the largest influence on the presence of bacterial bioerosion, as defined by the 

size of the parameter estimate. All variation was attributable to the neonatal samples. 

Neonatal bone samples were more likely to remain free from bacterial bioerosion than post-

neonatal samples (Figure 5.18). This trend was likely to be responsible for the high levels of 

correspondence between neonatal status and Whole OHI score. The factor that had the next 

largest influence on the presence and absence of bacterial bioerosion was Phase. Later 

Prehistoric bones were significantly more likely to have remained free from bacterial 

bioerosion than their Historical counterparts (Figure 5.19). The final variable that had 

influenced the presence of bacterial bioerosion was Anoxic Environment. Bones from anoxic 

contexts were more likely to have remained free from bacterial bioerosion than those from 

aerobic environments. Only two Later Prehistoric samples had been recovered from anoxic 

environments. Both were free from bacterial attack. The majority of anoxic-deposited 

Historical remains had been bioeroded, but a significantly larger proportion of these bones 
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were free from bacterial bioerosion when compared to samples from aerobic contexts (Figure 

5.20).  

 

Figure 5.18: Proportional bar chart illustrating the presence of bacterial attack within remains allocated different 
age-at-death ranges. 

 

 
Figure 5.19: Proportional bar chart illustrating the presence of bacterial attack within the Later Prehistoric and 

Historical remains (neonatal bones were excluded). Numbers on bars represent counts of cases. 
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Figure 5.20: Proportional bar chart of the presence of bacterial attack within Historical remains (neonatal samples 
were excluded).Numbers on bars represent counts of cases. 

 

Historical site-specific differences in the presence of bacterial bioerosion were examined to 

assess whether factors exclusive to particular sites may have inhibited bacterial bioerosion of 

bone. When the neonatal remains and the bones from the anoxic environments were 

removed, two of the eight remaining Historical sites included bones that demonstrated no 

internal bacterial tunnelling (Figure 5.21). There was no statistically significant difference in the 

occurrence of non-Wedl MFD amongst bones from discrete Historical sites (n=146, Fisher’s 

Exact=7.119, p=0.431). 

 
Figure 5.21: Proportional bar chart displaying the distributions of bioeroded bones amongst Historical site 

assemblages (neonatal and anoxic-deposited samples were excluded). Numbers on bars represent counts of cases. 
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The high numbers of post-neonatal Later Prehistoric remains that were free from bacterial 

bioerosion represented variation that required an explanation. Later Prehistoric Specific Phase 

had not been included within the logistic regression model. A Kruskal-Wallis Χ2 analysis of the 

presence of bacterial bioerosion within bones from separate Specific Later Prehistoric Phases 

produced a p-value that was less than 0.05 (n=87, Kruskal-Wallis Χ2=13.606, p=0.003). 

However, the Holm-Bonferroni method determined that this result was not significant 

(Appendix 2).  

 

Figure 5.22: Proportional bar chart of the presence of bacterial attack within Later Prehistoric remains grouped by 
Specific Phase (neonatal and anoxic-deposited samples were excluded). Numbers on bars represent counts of cases. 

 

This result was close to the significance threshold within the Holm-Bonferroni method. The 

Holm-Bonferroni method is conservative, which increases the risk of Type II error. Previous 

analyses had failed to identify the source of variation in patterns of bacterial bioerosion within 

Later Prehistoric remains. Specific Phase was cautiously considered as a potential explanatory 

variable for Later Prehistoric variation in the presence of bacterial attack. Large proportions of 

Bronze Age bones were free from microbial bioerosion (Figure 5.22). Distributions of 

unbioeroded remains within the Iron Age and Neolithic remains were similarly low. The Bronze 

Age remains explained the majority of the variation in the occurrence of bacterial attack by 

Specific Phase. 
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Figure 5.23: Proportional bar chart of the presence of bacterial attack within the Later Prehistoric remains grouped 
by site assemblage (neonatal and anoxic-deposited remains were excluded). Numbers on bars represent counts of 

cases. 

 

The presence of bacterial bioerosion was examined between remains from separate Later 

Prehistoric site assemblages to assess how far site-specific factors may have inhibited bacterial 

bone bioerosion. When the neonatal and anoxic-deposited samples were removed, a 

Pearson’s Χ2 test of the differences in the presence of bacterial bioerosion between site 

assemblages produced a p-value that was less than 0.05 (n=87, Fisher’s Exact=26.104, 

p=0.001). However, the Holm-Bonferroni method determined that this result could not be 

accepted as significant (Appendix 2). This result was close to the significance threshold of the 

Holm-Bonferroni method. Five of the remaining fourteen Later Prehistoric sites included 

remains that demonstrated no bacterial tunnelling (Figure 5.23). Four out of five of these sites 

included remains that dated to the Bronze Age.  
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5.2.4 The Nature of Bacterial Bioerosion amongst the Neonatal Samples 

 

The absence of bacterial bioerosion from a large proportion of the neonatal samples may have 

been responsible for their significantly high Whole OHI scores. Whole OHI scores amongst 

those neonatal samples that had been bioeroded was similar to the distribution of scores 

amongst the Historical baseline assemblage (Figure 5.24). There was no statistically significant 

difference between these two distributions (n=286, Mann-Whitney U=1841.000, p=0.296) This 

result confirmed that the significantly high Whole OHI scores of the neonatal samples were not 

a result of generally lower levels of bacterial bioerosion, but solely due to an absence of this 

type of tunnelling from a significant proportion of neonatal samples. 

 
Figure 5.24: Box-and-whisker plot of the distribution of Whole OHI scores amongst the neonatal and post-neonatal 

remains (neonatal remains that were free from bacterial bioerosion were excluded). 

 

5.2.5 Variation in the Presence of Wedl Tunnelling 

 

Wedl tunnelling represented fungal bioerosion and was recorded on a presence/absence basis 

(Marchiafava et al. 1974). Eighteen-per-cent of all samples demonstrated Wedl tunnelling. The 

presence of Wedl MFD was tested against all recorded explanatory variables using binary 

logistic regression to determine the factors associated with its appearance and whether the 

presence of Wedl tunnelling could be used to infer anything useful about the taphonomic 

history of remains.  



  

306 
 

The first model indicated that only the presence of a sand environment significantly influenced 

the occurrence of Wedl tunnelling (Appendix 1, page 590). Confirmation that Sex was not 

influential meant that this variable could be discounted and the model was run again. In the 

second regression Soil Type no longer influenced Wedl tunnelling (Table 5.6; Appendix 1, page 

591). Phase influenced the occurrence of fungal bioerosion within this model. Retrieval of 

remains from a Cave or Charnel Deposit was also influential within the second regression. 

Variable Outcomes Number 
of 

Samples 

B Wald Significance 
(p-value) 

Anoxia Present/Absent 301 0.041 0.007 0.935 

Phase Later 
Prehistoric/Historical 

301 1.190 3.180 0.075 

Soil Type Overall 301 - 3.564 0.468 

Clay 159 -0.234 .028 0.868 

Gravel 65 0.467 0.101 0.750 

Sand 24 -1.563 0.885 0.347 

Silt 35 -0.551 4.089 0.683 

Open 18 0 - - 

Cave Cave/Non-Cave 301 -2.482 4.089 0.043 

Black 
Death 

Non-Black Death/Black 
Death 

301 0.933 1.201 0.273 

State Articulated/Disarticulated 301 0.840 1.290 0.256 

Charnel Non-Charnel/Charnel 301 -0.914 2.177 0.140 

Age 
Range 

Overall 301 - 2.365 0.500 

Neonate 31 -1.310 2.320 0.128 

Child 23 0.018 0.001 0.977 

Juvenile 39 -0.048 0.010 0.921 

Adult 208 0 - - 
Table 5.6: Summary table of the Parameter Estimates relating to the second binary logistic regression model of the 

presence of Wedl tunnelling. 

 

The Logistic Regression model was repeated with these three variables (Appendix 1, page 593). 

The parameter estimates of this third model indicated that acquisition of remains from Charnel 

Deposits or Caves mostly influenced the occurrence of Wedl bioerosion (Table 5.7). Phase no 

longer influenced Wedl tunnelling. However, when the model was run once more with just the 

Cave and Charnel explanatory variables, Charnel no longer demonstrated an influence on the 

presence of Wedl tunnelling, whilst the influence of Cave Deposits became significant under 

the Holm-Bonferroni method (Table 5.8; Appendix 1, page 594; Appendix 2). The influence of 

the Cave variable on Wedl tunnelling remained statistically significant when modelled by itself 

(n=301, B= -2.318, Wald Χ2=23.885, p=0.000) (Appendix 1, page 594). The Nagelkerke R-

squared value indicated that this variable accounted for 12.7% of the variation in the presence 
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of Wedl tunnelling. The B value within the logistic regression suggested that bones from caves 

were more likely to demonstrate Wedl tunnels (Figure 5.25). 

Variable Outcomes Number 
of 

Samples 

B Wald Significance 
(p-value) 

Phase Later 
Prehistoric/Historical 

301 0.501 1.253 0.263 

Cave Cave/Non-Cave 301 -2.256 16.743 0.000* 

Charnel Non-Charnel/Charnel 301 -0.839 4.335 0.037 
Table 5.7: Summary table of the Parameter Estimates from the third binary logistic regression model of the presence 

of Wedl tunnelling. 

 

Variable Outcomes Number 
of 

Samples 

B Wald Significance 
(p-value) 

Cave Cave/Non-Cave 301 -2.548 26.408 0.000* 

Charnel Non-Charnel/Charnel 301 0.630 3.331 0.068 
Table 5.8: Summary of the Parameter Estimates from the fourth binary logistic regression model of presence of Wedl 

tunnelling. 

 

 
Figure 5.25: Proportional bar chart demonstrating the different rates of Wedl tunnelling amongst remains variably 

retrieved from caves. Numbers on bars represent counts of cases. 

 

A substantial proportion of samples still demonstrated Wedl tunnelling when cave-deposited 

bones were excluded. The final variable that could be tested was the distribution of fungal 

tunnelling amongst different site assemblages. There was a significant difference in rates of 

Wedl tunnelling within separate site assemblages (n=191, Fisher’s Exact=38.220. p=0.000). 
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Occurrences of Wedl tunnelling were particularly high within remains from the Later 

Prehistoric sites of Neat’s Court, Brodsworth, Danebury and Suddern Farm, although sample 

sizes at Brodsworth and Suddern Farm were low (n=2 in both cases) (Figure 5.26). The only 

Historical assemblage that demonstrated relatively elevated occurrences of fungal tunnelling 

was the Royal Mint. 

 
Figure 5.26: Proportional bar chart displaying the rates of Wedl tunnelling amongst site assemblages. Numbers on 

bars represent counts of cases. 

 

5.2.6 Variation in the Perseverance of the Periosteal Surface 

 

The periosteal surface had survived within 89% of the thin sections used in the current study. 

The persistence of the periosteal surface was tested against all explanatory variables within a 

binary logistic regression model. None of the explanatory variables had an effect on the 

presence of the periosteal surface in the first model (Appendix 1, page 595). The model was 

repeated without the Sex variable. None of the recorded variables had influenced the 

persistence of the periosteal surface in the second model (Table 5.9; Appendix 1, page 597). 
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The only explanatory variables that demonstrated a slightly elevated level of influence on 

periosteal preservation were Phase and Soil Type. 

Variable Outcome Number 
of 

Samples 

B Wald Significance 
(p-value) 

Anoxia Present/Absent 301 -18.965 0.000 0.998 

Phase Later 
Prehistoric/Historical 

301 -0.471 0.394 0.547 

Soil Type  301 - 7.901 0.095 

Clay 159 20.579 0.000 0.999 

Gravel 65 39.483 0.000 0.999 

Sand 24 19.907 0.000 0.999 

Silt 35 18.548 0.000 0.999 

Open 18 0 - - 

Cave Cave/Non-Cave 301 -21.268 0.000 0.999 

Black 
Death 

Non-Black Death/Black 
Death 

301 0.082 0.000 1.000 

State Articulated/Disarticulated 301 -0.262 0.165 0.684 

Charnel Non-Charnel/Charnel 301 0.084 0.011 0.916 

Age 
Range 

Overall 301  0.646 0.886 

Neonate 31 -0.251 0.093 0.760 

Child 23 -0.463 0.341 0.559 

Juvenile 39 0.354 0.241 0.624 

Adult 208 0 - - 
Table 5.9: Summary table of Parameter Estimates for the second binary logistic regression model of the persistence 

of the periosteal surface. 

 

Variable Outcomes Number 
of 

Samples 

B Wald Significance 
(p-value) 

Phase Later 
Prehistoric/Historical 

301 -0.440 0.472 0.492 

Soil Type Overall 301 - 11.042 0.026 

Clay 159 1.192 0.341 0.559 

Gravel 65 17.962 0.000 0.997 

Sand 24 -1.391 1.373 0.241 

Silt 35 -2.546 5.512 0.019 

Open 18 0 - - 
Table 5.10: Summary table of Parameter Estimates for the third binary logistic regression of the persistence of the 

periosteal surface. 

 

The regression model was run again with Phase and Soil Type as the only explanatory variables 

(Appendix 1, page 598). Only Soil Type influenced the persistence of the periosteal surface in 

the third model (Table 5.10). When the model was run once more with Soil Type as the only 
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explanatory variable, its influence on the survival of the periosteal surface became significant 

under the Holm-Bonferroni method (n=266, B=-0.477, Wald Χ2=13.406, p=0.000; Appendix 1, 

page 599; Appendix 2). Bones from silt environments were more likely to have lost their 

periosteal surfaces (Figure 5.27). The Nagelkerke R-Squared figure for this model suggested 

that this variable accounted for 26.5% of variation in the survival of the periosteal surface.  

 
Figure 5.27: Proportional bar chart of the rates of survival of the periosteal surface amongst remains from different 

soil types. Numbers on bars represent counts of cases. 

 

Variation in the persistence of the periosteal surface between separate sites was investigated 

to determine whether site-specific factors may have been responsible for periosteal survival. 

Pearson’s Χ2 tests of bones from silt and non-silt sites produced a p-values of less than 0.05 

(Non-Silt: Bantycock n=7, Berinsfield n=20, Black Gate n=25, Bolsover, n=28, Bradley Fen n=3, 

Brodsworth n=2, Carsington Pasture Cave n=18, Carver Street n=9, Cladh Hallan n=5, Cnip n=7, 

Coronation Street, n=29, Exeter n=3, Frälsegården n=10, Grantham n=10, Hornish Point n=1, 

Ingleby Barwick n=4, Langwell Cist n=1, Neat’s Court n=7, Royal mint n=38, York Barbican n=39, 

Fisher’s Exact=10.563, p=0.015, Silt: n=266, Fisher’s Exact=33.549, p=0.002). However, the 

Holm-Bonferroni method indicated that neither of these results could be accepted as 

significant (Appendix 2). The result of comparisons of periosteal surfaces between silt sites was 

close to the significance threshold within the Holm-Bonferroni model. Therefore, site-specific 

influences on persistence of the periosteal surface within silt contexts were still considered as 
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possible explanations for some of the variation in this parameter. Three out of the five sites 

that demonstrated silt burial contexts included bones that had lost their periosteal surfaces 

(Figure 5.28).  

 
Figure 5.28: Proportional bar char displaying the rates of survival of the periosteal surface amongst bones from 

discrete sites that had been interred within silt environments. Numbers on bars represent counts of cases. 

 

Many of the bone samples that had lost their periosteal surface originated from Iron Age 

contexts. There was a significant difference in the survival rate of the periosteal surface by 

Specific Phase (n=301, Fisher’s Exact Test=40.288, p=0.000). Samples of Iron Age bones were 

more likely to have lost their periosteal surface (Figure 5.29). Periosteal loss appeared to have 

been partially influenced by factors specific to the Iron Age. 
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Figure 5.29: Rates of periosteal loss within samples of bone from different Specific Phase. 

 

5.3 VISUAL DIAGENETIC PARAMETERS 

 

This section will discuss the results from those diagenetic factors that had altered the 

appearance of bone microstructures (staining, inclusions and infiltrations) without causing any 

apparent loss of histological integrity. These variables were compared against one another 

initially to discern whether they represented different expressions of the same processes. An 

understanding of how these factors related to one another would benefit interpretations of 

the variables that influenced their appearance. This analysis would help to refine 

understanding of whether certain diagenetic features were the product of interactions 

between the bone and its external burial environment or other taphonomic processes. 

Visual diagenetic changes have been linked with infiltrations of the bone by extraneous factors 

and occasionally with conditions that may have affected bodily putrefaction and bone 

bioerosion (Garland 1987; Grupe & Piepenbrink 1993; Schultz 1997; Shahack-Gross et al. 1997; 

Hollund et al. 2012). It would have been complicated to have tested the relationships between 

measures of bacterial bioerosion and visual diagenetic features within the regression models 

discussed above, as visual diagenetic features had not been recorded for all samples. 
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Therefore, the relationships between Whole OHI and visual diagenetic features were tested 

using Spearman’s rho and Pearson’s Χ2 tests. Each visual diagenetic parameter was then 

incorporated into regression models along with relevant explanatory variables to identify the 

factors that were likely to have controlled their prevalence.  

 

5.3.1 Interactions between Visual Diagenetic Parameters 

 

5.3.1.1 Staining versus Inclusions. 

 

Staining Number of 
Samples 

Orange Inclusions Grey Inclusions 

  Spearman’s 
rho 

Significance 
(p-value) 

Spearman’s 
rho 

Significance 
(p-value) 

Orange 266 0.282 0.000 -0.278 0.000* 

Brown 266 0.019 0.761 -0.039 0.530 

Yellow 266 0.004 0.950 0.070 0.257 
Table 5.11: Summary of the results of Spearman's rho correlations of all types of staining against all types of 

inclusions. 

 

Measures of each colour of microstructural staining were tested against the frequency of each 

colour of inclusions (Table 5.11). The frequency of orange staining demonstrated a significant 

positive relationship with the frequency of orange inclusions. Orange inclusions appeared 

infrequently within bones that were not stained or stained only superficially (Figure 5.30). 

Orange inclusions appeared frequently within bones that had been fairly or extensively 

stained. There was a significant negative correlation between the frequency of grey inclusions 

and orange staining. Grey inclusions only appeared within bones where orange staining was 

absent (Figure 5.31). None of the other colours of staining correlated with the remaining 

colours of inclusions. 
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Figure 5.30: Box-and-whisker plot demonstrating the positive significant relationship between orange staining and 

orange inclusions. 

 

 
Figure 5.31: Box-and-whisker plot demonstrating the negative significant relationship between orange staining and 

grey inclusions. 

 

5.3.1.2 Staining versus Infiltrations 

 

Staining 

Colour 

No. of 

Samples 

Fisher’s 

Exact Test 

Significance 

(p-value) 

Orange 266 71.400 0.000* 

Brown 266 4.907 0.140 

Yellow 266 5.278 0.102 

Table 5.12: Results of the statistical analysis of associations between staining colour and the presence of infiltration 
across the entire study sample. 
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Each colour of bone staining was tested against the presence of infiltrations. There was a 

significant relationship between the intensity of orange staining and the presence of 

infiltrations (Table 5.12). The proportion of bones that demonstrated infiltrations increased 

with the intensity of orange staining (Figure 5.32). There were no significant correlations 

between other colours of staining and infiltrations. 

 

Figure 5.32: Proportional bar chart of the occurrence of infiltrations within bones that variably demonstrated orange 
microstructural staining. Numbers on bars represent counts of cases. 

 

5.3.1.3 Inclusions versus Infiltrations 

 

Inclusion 

Colour 

No. of 

Samples 

Fisher’s 

Exact Test 

Significance 

(p-value) 

Orange 266 28.271 0.000* 

Grey 266 14.448 0.000* 

Table 5.13: Summary of the results of Pearson's Χ
2
 tests of both colours of inclusions against the presence of 

infiltrations. 

 

There was a significant relationship between the frequency of orange inclusions and presence 

of infiltrations (Table 5.13). The proportions of bone that included infiltrations increased with 

the frequency of orange inclusions (Figure 5.33). The frequency of orange inclusions did not 
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affect the proportion of bones that included infiltrations. The presence of infiltrations was 

dependent upon the presence of inclusions rather than their frequency. There was also a 

significant relationship between the frequencies of grey inclusions and the absence of 

infiltrations. Grey inclusions were only present within bones where infiltrations were absent 

(Figure 5.34). 

 

Figure 5.33: Proportional bar chart illustrating the occurrence of infiltrations within remains that demonstrated 
alternating frequencies of orange inclusions. Numbers on bars represent counts of cases. 

 

 
Figure 5.34: Proportional bar chart demonstrating occurrences of infiltrations within remains that demonstrated 

variable frequencies of grey inclusions. Pervasive grey inclusions were not observed within any samples. Numbers on 
bars represent counts of cases. 
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These comparisons of visual diagenetic changes indicated that orange staining, inclusions and 

infiltrations correlated significantly with one another and were likely to represent 

manifestations of similar processes. Correlations between measures of orange visual 

diagenetic changes were not as strong as those observed amongst measures of bone 

degradation. Orange staining inclusions and infiltrations were tested independently of one 

another in order to establish how their variation differed and how they might be used in 

isolation or in combination to reconstruct taphonomic histories of remains.  

 

5.3.2 Staining 

 

5.3.2.1 Variation in Orange Staining 

 

Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Anoxia Absent 240 -0.911 4.341 0.037 

Present 26 0 - - 

Phase Later 
Prehistoric 

93 -0.269 0.344 0.557 

Historical 173 0 - - 

Soil Type Clay 124 4.0008 9.354 0.002 

Gravel 65 4.796 12.851 0.000* 

Sand 24 3.519 7.058 0.008 

Silt 35 2.072 3.634 0.057 

Open 18 0   

Cave Non-Cave 244 -3.425 8.889 0.003 

Cave 22 0   

Black 
Death 

Non Black 
Death 

241 0.684 2.012 0.156 

Black Death 25 0 - - 

State Articulated 203 0.992 2.907 0.088 

Disarticulated 63 0 - - 

Charnel Non-Charnel 213 1.235 8.446 0.004 

Charnel 53 0 - - 

Age 
Range 

Neonate 29 0.131 0.084 0.771 

Child 20 -0.195 0.162 0.687 

Juvenile 24 -0.184 0.157 0.692 

Adult 193 0 - - 
Table 5.14: Summary of the Parameter Estimates for the second ordinal regression model for orange staining. 
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Forty-five-per-cent of all samples demonstrated orange staining, which represented 78% of all 

samples that had been stained. Orange staining was the colour found most often within the 

study sample. Orange staining was usually superficial (62% of orange-stained samples) or fair 

(33%) and was rarely extensive (4%). The intensity of orange staining was tested against Whole 

OHI to investigate whether it was reflective of environments that affected bacterial bioerosion. 

There was no significant association between the extent of orange staining and Whole OHI 

(n=266, Spearman’s rho=0.026, p=0.678). The intensity of orange staining was tested against 

all recorded explanatory variables within an ordinal regression model. The first model did not 

identify any of the explanatory variables as having influenced levels of orange staining 

(Appendix 1, page 601). The ordinal regression was run again without the Sex variable.  

Soil Type, Cave Deposition, Anoxic Environment and Charnel Deposits had influenced orange 

staining within the second regression model (Table 5.14; Appendix 1, page 603). The Wald Χ2 

scores of State and Anoxic Environment produced p-values that were close to 0.05. The ordinal 

regression was run again with these five variables. All explanatory variables were influential 

within the third model (Table 5.15; Appendix 1, page 605). The Nagelkerke R-Squared for this 

regression model indicated that 25.2% of variation in orange staining was explained by these 

explanatory variables.   

However, only one outcome within Soil Type could be considered to have had a significant 

effect on orange staining at when the Holm-Bonferroni method was applied (Appendix 2). The 

influence of the Charnel Deposits was close to significant within the Holm-Bonferroni method. 

The regression model was run again with these two variables. Only Soil Type demonstrated a 

significant level of influence on orange staining within this fourth model (Table 5.16; Appendix 

1, page 606). The significant influence of Soil Type was maintained when this explanatory 

variable was placed in an ordinal regression of orange staining by itself (Table 5.17; Appendix 

1, page 607). The Nagelkerke Pseudo R-Squared value indicated that Soil Type described 16.7% 

of the variation in orange staining. 
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Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Anoxia Absent 240 -0.884 4.214 0.041 

Present 26 0 - - 

Soil Type Clay 124 4.121 10.341 0.001 

Gravel 65 4.644 12.888 0.000* 

Sand 24 3.577 7.433 0.006 

Silt 35 2.037 3.586 0.058 

Open 18 0 - - 

Cave Non-Cave 244 -3.515 5.491 0.019 

Cave 22 0 - - 

State Articulated 203 1.195 5.491 0.019 

Disarticulated 63 0 - - 

Charnel Non-Charnel 213 1.212 10.559 0.001 

Charnel 53  - - 
Table 5.15: Summary of the Parameter Estimates from the third ordinal regression of orange staining. 

 

Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Soil Type Clay 124 1.796 8.803 0.003 

Gravel 65 2.269 14.158 0.000* 

Sand 24 0.877 1.657 0.198 

Silt 35 -0.370 0.274 0.601 

Open 18 0 - - 

Charnel Non-Charnel 213 0.900 6.629 0.010 

Charnel 53  - - 
Table 5.16: Summary of the Parameter Estimates from the fourth ordinal regression of orange staining. 

 

Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Soil Type Clay 124 1.376 5.665 0.017 

Gravel 65 2.248 13.899 0.000* 

Sand 24 0.874 1.642 0.200 

Silt 35 -0.369 0.272 0.602 

Open 18 0 - - 
Table 5.17: Summary of the Parameter Estimates from the fifth ordinal regression of orange staining. 

 

The parameter estimates from the regression models indicated that gravel environments had 

the largest overall effect on the extent of orange staining. Bones from gravel environments 

were more likely to demonstrate higher levels of orange staining. Orange staining was usually 
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absent from remains recovered from silt and open environments, absent or only superficial 

within remains from sands and slightly more extensive within remains clay (Figure 5.35).  

 
Figure 5.35: Box-and-whisker plot demonstrating the distribution of orange staining amongst bones recovered from 

different types of soils. 

 

The results from the Charnel Deposits were close to the significant threshold within the Holm-

Bonferroni method (Appendix 2). All of the charnel remains were recovered from clay 

environments. The parameter estimate indicated that charnel samples demonstrated lower 

levels of orange staining than Historical samples that were recovered in articulation. This 

patterning was confirmed within comparisons of charnel and non-charnel remains from clay 

environments (Figure 5.36). 
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Figure 5.36: Box-and-whisker plot of the distribution of orange staining amongst charnel and non-charnel remains 

from clay burial contexts. 

 

It was possible that site-specific influences may have affected the extent of orange 

microstructural staining. Kruskal-Wallis tests of orange staining amongst different site 

assemblages from separate soil types produced p-values of less than 0.05 (Table 5.18). 

Samples of bone from the Open Soil Type category were not included as they all originated 

from a single site. The Holm-Bonferroni method determined that only the result from the clay 

site assemblages was significant (Appendix 2). Orange staining amongst site assemblages from 

clays was highly variable (Figure 5.37). Orange staining was only extensive within remains from 

Carver Street and completely absent from bones recovered from Frälsegården and 

Brodsworth. There was no obvious patterning to the orange staining within these 

assemblages, which suggested that unrecorded site-specific factors were partly responsible for 

variation. 

Burial Soil No. of samples Kruskal-Wallis Χ2 Significance (p-value) 

Clay 71 43.961 0.000* 

Gravel 65 11.147 0.011 

Sand 24 10.722 0.030 

Silt 31 13.313 0.010 
Table 5.18: Summary of the results from the Kruskal-Wallis analysis of differences in levels of orange staining 

between site assemblages whilst controlling for Soil Type. 
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Figure 5.37: Box-and-whisker plot of the distribution of orange staining amongst site assemblages that had been 

interred within clay. 

 

5.3.2.2 Variation in Brown Staining 

 

Only 8% of the whole study sample demonstrated instances of brown staining, which 

represented 13% of stained bones. Brown staining was usually only superficial (65% of brown-

stained bones) or fair (30%), and was rarely extensive (4%).The intensity of brown staining was 

tested against Whole OHI to determine whether this feature was indicative of a burial 

environment or process that interfered with microbial bioerosion of bone. The correlation 

between the intensity of brown staining and Whole OHI score produced a p-value that was 

below 0.05 (n=266, Spearman’s rho=0.138, p=0.024). However, the Holm-Bonferroni method 

indicated that this result could not be accepted as significant (Appendix 2).  

All potentially explanatory variables were tested against the intensity of brown microstructural 

staining within an ordinal regression model. Phase was the only variable that had a significant 

influence on the extent of brown staining within the first model (Appendix 1, page 609). The 

Sex variable was removed and the ordinal regression was performed again. 
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Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Anoxia Absent 240 -0.134 0.032 0.858 

Present 26 0 - - 

Phase Later 
Prehistoric 

93 2.153 7.758 0.005 

Historical 173 0 - - 

Soil Type Clay 124 0.701 0.000 1.000 

Gravel 65 1.891 0.000 0.999 

Sand 24 2.245 0.000 0.999 

Silt 35 0.258 0.000 1.000 

Open 18 0 - - 

Cave Non-Cave 244 14.478 - - 

Cave 22 0 - - 

Black 
Death 

Non Black 
Death 

241 -0.229 0.054 0.817 

Black Death 25 0 - - 

State Articulated 203 0.661 0.768 0.381 

Disarticulated 63 0 - - 

Charnel Non-Charnel 213 -1.909 4.519 0.034 

Charnel 53 - - - 

Age 
Range 

Neonate 29 0.667 0.495 0.482 

Child 20 -14.563 0.000 0.990 

Juvenile 24 0.104 0.022 0.882 

Adult 193 0 - - 
Table 5.19: Summary of the Parameter Estimates from the second ordinal regression model for brown staining. 

 

Phase and Charnel Deposits influenced the extent of brown staining in the second ordinal 

regression model (Table 5.19; Appendix 1, page 611). All variables apart from Phase and 

Charnel were removed and the model was run once more. Neither variable had an influence 

on the occurrence of brown staining within this third model (Table 5.20; Appendix 1, page 

613). It could not be stated with certainty that either of these variables had any effect on 

brown staining, The failure of this model suggested that brown staining appeared too 

infrequently and sporadically for its variation to be characterised using regression models.  

Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Phase Later 
Prehistoric 

93 0.840 2.485 0.115 

Historical 173 0 - - 

Charnel Non-Charnel 213 -1.002 2.911 0.088 

Charnel 53 - - - 
Table 5.20: Summary of Parameter Estimates for the third ordinal regression model of brown staining. 
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It was possible that local site-specific influences may have determined the intensity of 

microstructural brown staining. Bones from most sites did not demonstrate any brown 

staining. Brown stained bones only appeared with frequency within bones from Ingleby 

Barwick, Frälsegården, Cnip and Langwell Cist, which were all Later Prehistoric sites. A Kruskal-

Wallis test of the differences in distributions of brown staining between site assemblages 

produced a p-value less than 0.05 (n=266, Kruskal-Wallis Χ2=44.128, p=0.007). However, the 

Holm-Bonferroni method indicated that this result was not significant (Appendix 2). The result 

from this test was close to the threshold of significance within the Holm-Bonferroni method 

and it was possible that the extent of brown staining was linked to site-specific factors (Figure 

5.38). Brown staining appeared too sporadically for its variation to be characterised, and the 

factors that may have influenced its occurrence would have to be discussed qualitatively. 

 
Figure 5.38: Box-and whisker plot of the extent of brown microstructural staining amongst the entire study sample 

grouped by site assemblage. 
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5.3.2.3 Variation in Yellow Staining 

 

 
Figure 5.39: Box-and-whisker plot of the distributions of Whole OHI scores amongst remains that demonstrated 

varying levels of yellow microstructural staining. 

 

Only 5% of the study sample demonstrated yellow staining, which made up 9% of the total 

number of stained specimens. Yellow staining was usually only superficial (80% of yellow-

stained samples) and occasionally fair (13%). Yellow staining was rarely extensive (7%). The 

positive correlation between Whole OHI score and the intensity of yellow staining produced a 

p-value that was lower than 0.05 (n=266, Spearman’s rho=0.211, p=0.001). The Holm-

Bonferroni correction determined that this result was not significant (Appendix 2). The p-value 

for this result was close to the threshold of significance within the Holm-Bonferroni method. 

Yellow staining was mostly absent from bones with low Whole OHI scores, but was more 

intense amongst those that were histologically well-preserved (Figure 5.39). However, yellow 

staining was rarer than brown staining and it was unlikely that any correlation would have 

significantly affected the overall results from measures of bacterial bioerosion. The possible 

effect yellow staining on histological preservation is explored in later chapters. 
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Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Anoxia Absent 240 -0.391 0.181 0.670 

Present 26 0 - - 

Phase Later 
Prehistoric 

93 0.052 0.002 0.968 

Historical 173 0 - - 

Soil Type Clay 124 -14.275 92.528 0.000* 

Gravel 65 -28.403 0.001 0.981 

Sand 24 -13.016 91.798 0.000* 

Silt 35 -14.675 101.347 0.000* 

Open 18 0 - - 

Cave Non-Cave 244 14.369 - - 

Cave 22 0 - - 

Black 
Death 

Non Black 
Death 

241 -16.168 0.000 0.989 

Black Death 25 0 - - 

State Articulated 203 -0.835 0.434 0.510 

Disarticulated 63 0  - 

Charnel Non-Charnel 213 -1.014 0.848 0.357 

Charnel 53 0 - - 

Age 
Range 

Neonate 29 0.058 0.002 0.962 

Child 20 -14.197 0.000 0.992 

Juvenile 24 0.191 0.046 0.831 

Adult 193 0 - - 
Table 5.21: Summary of Parameter Estimates from the second ordinal regression of yellow staining. 

 

All potentially explanatory variables were tested against the intensity of yellow staining within 

an ordinal regression model. None of the explanatory variables were found to have enacted an 

influence on the severity of yellow staining in the first model (Appendix 1, page 614). Sex was 

removed and the remaining explanatory variables were tested again. The second model 

identified that only Soil Type had a significant influence on yellow staining (Table 5.21; 

Appendix 1, page 616). The Nagelkerke Pseudo R-squared value indicated that this model 

accounted for 13.5% of variation in yellow staining. However, Soil Type no longer 

demonstrated a significant influence on yellow staining when it was placed in an ordinal 

regression model by itself (Table 5.22; Appendix 1, page 618). None of the variables included 

within the regression demonstrated a consistent significant influence on yellow 

microstructural staining.  
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Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Soil Type Clay 124 -0.144 0.017 0.897 

Gravel 65 0.138 0.014 0.905 

Sand 24 0.869 0.518 0.471 

Silt 35 -0.654 0.206 0.650 

Open 18 0 - - 
Table 5.22: Summary of the Parameter Estimates from the fourth ordinal regression model of yellow staining. 

 

It was possible that the intensity of yellow staining was influenced by site-specific taphonomic 

events. When soil type was controlled there were no significant differences in yellow staining 

between bones from separate site assemblages (Table 5.23). It was possible that the 

occurrence of yellow staining was too low to produce viable results. The influencers of yellow 

staining would have to be discerned through more detailed investigation into each yellow-

stained bone’s specific environmental and taphonomic circumstances.  

Burial Soil No. of samples Kruskal-Wallis Χ2 Significance (p-value) 

Clay 124 9.844 0.363 

Sand 65 5.122 0.482 

Gravel 65 2.979 0.395 

Silt 35 0.944 0.918 
Table 5.23: Summary of the results from statistical tests of differences in levels of yellow staining separate site 

assemblages whilst controlling for soil type. 

 

5.3.3 Inclusions 

 

5.3.3.1 Variation in Orange Inclusions 

  

Orange inclusions were present within 73% of bones samples, which represented 85% of all 

samples that demonstrated these features. Where they appeared, orange inclusions were 

usually infrequent (56%) or frequent (42%) and rarely extensive (1%). There was no statistically 

significant association between the extent of orange inclusions and Whole OHI Score (n=266, 

Spearman’s rho=0.104, p=0.092).  
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Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Anoxia Absent 240 -0.652 2.098 0.147 

Present 26 0 - - 

Phase Later 
Prehistoric 

93 0.392 0.706 0.401 

Historical 173 0 - - 

Soil Type Clay 124 2.890 5.631 0.018 

Gravel 65 2.100 2.865 0.091 

Sand 24 2.980 5.915 0.015 

Silt 35 0.731 0.462 0.497 

Open 18 0 - - 

Cave Non-Cave 244 -2.147 4.120 0.042 

Cave 22 0 - - 

Black 
Death 

Non Black 
Death 

241 -0.790 2.491 0.115 

Black Death 25 0 - - 

State Articulated 203 1.042 4.314 0.038 

Disarticulated 63 0 - - 

Charnel Non-Charnel 213 1.209 7.938 0.005 

Charnel 53 0 - - 

Age 
Range 

Neonate 29 0.984 4.290 0.038 

Child 20 0.141 0.089 0.766 

Juvenile 24 0.570 1.744 0.187 

Adult 193 0 - - 
Table 5.24: Summary of Parameter Estimates from the second ordinal regression of orange inclusions. 

 

The occurrence of orange inclusions was tested against all recorded variables within an ordinal 

regression model. Only particular outcomes within Soil Type had an influence on this 

parameter within the first model (Appendix 1, page 619). The Sex variable was removed and 

the remainder of the explanatory variables were included within the second round of testing. 

Soil Type, Charnel Deposits, State of Articulation, Age Range and Cave Deposition had all 

influenced the frequency of orange inclusions in the second regression model (Table 5.24; 

Appendix 1, page 621). The regression was run again using only influential variables. Age Range 

no longer had an influence on orange inclusions in this third model (Appendix 1, page 623). 

Age Range was removed and the remaining explanatory variables were tested again. All of the 

remaining explanatory variables maintained p-values of less than 0.05, although only Charnel 

had a significant influence when the Holm-Bonferroni correction was considered (Table 5.25; 

Appendix 1, page 625; Appendix 2). The p-value for one outcome within soil type was close to 

significant within the Holm-Bonferroni method. These two variables were included within a 

fifth ordinal regression model (Table 5.26) (Appendix 1, page 626). The Charnel remains 
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maintained a significant influence on orange inclusions when the Holm-Bonferroni correction 

was considered. The p-values related to the influence of Soil Types were reduced in size but 

were not significant as defined by the Holm-Bonferroni method (Appendix 2). The significant 

influence of Charnel remains was lost when this explanatory variable was placed by itself 

within an ordinal regression of orange inclusions (n=266, parameter estimate=0.437, Wald 

Χ2=2.274, p=0.132; Appendix 1, page 627). None of the explanatory variables demonstrated a 

consistent significant relationship with the extent of orange inclusions. 

Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Soil Type Clay 124 3.018 6.496 0.011 

Gravel 65 2.113 3.151 0.076 

Sand 24 2.968 6.048 0.014 

Silt 35 0.781 0.545 0.461 

Open 18 0 - - 

Cave Non-Cave 244 -2.257 4.758 0.029 

Cave 22 0 - - 

State Articulated 203 0.952 4.749 0.029 

Disarticulated 63 0 - - 

Charnel Non-Charnel 213 1.372 14.341 0.000* 

Charnel 53 0 - - 
Table 5.25: Summary of Parameter Estimates from the fourth ordinal regression model of orange inclusions. 

 

Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Soil Type Clay 124 1.578 9.400 0.002 

Gravel 65 0.773 2.282 0.131 

Sand 24 1.256 4.362 0.037 

Silt 35 -0.895 2.575 0.109 

Open 18 0 - - 

Charnel Non-Charnel 213 1.245 12.235 0.000* 

Charnel 53 0 - - 
Table 5.26: Summary of the Parameter Estimates from the fifth ordinal regression model of orange inclusions. 
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 Figure 5.40: Box-and-whisker plot of the distribution of orange inclusions amongst bones that were variably 
recovered from charnel deposits within clay contexts. 

 

The relationship between orange inclusions and Charnel Deposit persisted for longest amongst 

the ordinal regressions. It was salient to examine the nature of the potential relationship 

between these two variables. Charnel bones were more likely to demonstrate lower levels of 

orange inclusions than remains recovered as part of articulated skeletons (Figure 5.40). 

However, the range of orange inclusion frequency was similar between these two groups. 

The potential relationship between orange inclusions and Soil Type was also explored. When 

the charnel remains were excluded, bones obtained from silt and open contexts demonstrated 

lower levels of orange inclusions than bones from all other types of deposits (Figure 5.41). 

Distributions of orange inclusions amongst remains from clays and sands were similarly high, 

although bones that demonstrated pervasive inclusions were only recovered from clay 

contexts. Distributions of orange inclusions amongst bones from gravel sites lay between these 

two extremes.  
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Figure 5.41: Box-and-whisker plot of the distribution of orange inclusions amongst bones recovered from different 

soil types (charnel bones were excluded). 

 

It was possible that unrecorded site-specific factors had some effect on the extent to which 

inclusions were deposited within the natural porosities of bones samples. However Kruskal-

Wallis tests of orange inclusion scores between different site assemblages, whilst controlling 

for the effects soil type and charnel deposits, found that variation was only significant within 

site assemblages recovered from silt (Table 5.27). Orange inclusions appeared more often 

within remains from South Dumpton Down, Whitwell Quarry and Beeston Tor (Figure 5.42). 

Levels of orange inclusions within these remains were similar to those from the rest of the 

study sample. The lower levels of orange inclusions within remains from silts were mostly 

attributable to the remains from Danebury and Suddern Farm. 

Burial Soil No. of samples Kruskal-Wallis Χ2 Significance (p-value) 

Clay 71 9.707 0.206 

Gravel 65 7.930 0.047 

Sand 24 6.922 0.140 

Silt 31 21.493 0.000* 
Table 5.27: Summary table of statistical tests of the differences in levels of orange inclusions between separate site 

assemblages whilst controlling for soil type. 
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 Figure 5.42: Box-and-whisker plot of the distribution of orange inclusions amongst separate site assemblages that 

had been deposited within silt. 

 

5.3.3.2 Variation in Grey Inclusions 

 

Grey inclusions were identified within 6% of all samples, which represented 15% of all samples 

that demonstrated inclusions. Grey inclusions almost always appeared infrequently (95%) and 

occurred frequently in only one sample (5%). There was no statistically significant relationship 

between the occurrence of grey inclusions and Whole OHI score (n=266, Spearman’s 

rho=0.035, p=0.057).  

The occurrence of grey inclusions were tested against all recorded explanatory variables within 

an ordinal regression model. None of the explanatory variables had an influence on the 

frequencies of grey inclusions within the first model (Appendix 1, page 629). Sex was removed 

and the ordinal regression was repeated. Only outcomes within Soil Type influenced grey 

inclusions within the second model (Table 5.28; Appendix 1, page 631). Values within Age 

Range and State demonstrated slightly higher levels of influence than other variables. The 

ordinal regression was run again with Soil Type, Age Range and State. Only Soil Type influenced 

the extent of grey inclusions within this third model (Table 5.29; Appendix 1, page 633). The 

only significant outcome of Soil Type was a silt context. The Nagelkerke Pseudo R-Squared 

result indicated that this model accounted for 69.5% of the variation in grey inclusions. 

However, when Soil Type was placed by itself within a further regression model, none of the 
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outcomes maintained a significant influence on the extent of grey inclusions (Table 5.30; 

Appendix 1, page 634). The Nagelkerke Pseudo R-Squared indicated that Soil Type by itself 

described 49.8% of the variation in grey inclusions. 

Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Anoxia Absent 240 14.716 0.000 0.992 

 Present 26 0 - - 

Phase Later 
Prehistoric 

93 0.086 0.000 1.000 

 Historical 173 0 - - 

Soil Type Clay 124 -34.146 0.001 0.981 

 Gravel 65 -34.778 0.000 0.986 

 Sand 24 -34.185 0.000 0.986 

 Silt 35 -15.703 207.440 0.000* 

 Open 18 0 - - 

Cave Non-Cave 244 18.147 - - 

 Cave 22 0 - - 

Black 
Death 

Non Black 
Death 

241 -0.273 0.000 1.000 

 Black Death 25 0 - - 

State Articulated 203 0.969 1.243 0.265 

 Disarticulated 63 0 - - 

Charnel Non-Charnel 213 -14.865 0.000 0.989 

 Charnel 53 0 - - 

Age 
Range 

Neonate 29 -12.694 0.000 0.992 

 Child 20 1.301 0.840 0.359 

 Juvenile 24 0.269 0.072 0.789 

 Adult 193 0 - - 
Table 5.28: Summary of the Parameter Estimates from the second ordinal regression of grey inclusions. 
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Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Soil Type Clay 124 -2.531 2.877 0.090 

 Gravel 65 -17.820 0.000 0.992 

 Sand 24 -17.382 0.000 0.995 

 Silt 35 2,257 4.335 0.037 

 Open 18 0 - - 

State Articulated 203 1.311 2.409 0.121 

 Disarticulated 63 0 - - 

Age 
Range 

Neonate 29 -15.842 0.000 0.995 

 Child 20 0.217 0.041 0.839 

 Juvenile 24 0.533 0.276 0.599 

 Adult 193 0 - - 
Table 5.29: Summary of the Parameter Estimates from the third ordinal regression of grey inclusions. 

 

Variable Outcome Number 
of 

Samples 

Estimate Wald Significance 
(p-value) 

Soil Type Clay 124 -1.337 1.181 0.981 

 Gravel 65 -19.348 0.000 0.986 

 Sand 24 -19.348 - 0.986 

 Silt 35 2.668 6.360 0.012 

 Open 18 0 - - 
Table 5.30: Summary of the Parameter Estimates from the fourth ordinal regression of grey inclusions. 

 

None of the explanatory variables had a consistent significant influence on grey inclusions. 

However, the effect of Soil Type was explored further, as the relationship between this 

variable and grey inclusions approached significance. Remains from silt contexts were more 

likely to demonstrate higher levels of grey inclusions (Figure 5.43). Grey inclusions were mostly 

absent within bones from other soil types. 

It was possible that site-specific influences may have influenced the occurrence of grey 

inclusions. Frequencies of grey inclusions were tested separately between sites that included 

silt and non-silt environments. There was a significant difference in the distributions of grey 

inclusions amongst remains from different sites that had been interred within a silt 

environment, but no differences between those assemblages that had not been inhumed 

within silt (Table 5.31). Grey inclusions were only present within silt-deposited remains from 

Danebury and Suddern Farm (Figure 5.44). This trend was the reverse of what was observed 

with regards to orange inclusions amongst silt-deposited site assemblages. 
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Figure 5.43: Box-and-whisker plot of the distribution of grey inclusions amongst remains recovered from different 

types of soils. 

 

Burial Soil No. of samples  Kruskal-Wallis Χ2 Significance (p-value) 

Silt 35  24.278 0.000* 

Non-Silt 231  18.475 0.491 
Table 5.31: Summary of statistical tests of the distributions of grey inclusions amongst separate site assemblages 

variably recovered from silt. 

 

 
Figure 5.44: Box-and-whisker plot of the distribution of grey inclusions amongst site assemblages that had been 

interred within silt. 
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5.3.4 Infiltrations 

 

Orange Infiltrations were present within 31% of the study sample. Pearson’s Χ2 test of the 

presence of infiltrations amongst remains that demonstrated different Whole OHI scores 

produced a p-value of less than 0.05 (n=266, Pearson’s Χ2=13.698, p=0.017). However, the 

Holm-Bonferroni method indicated that this result was not significant (Appendix 2). The 

presence of orange infiltrations was tested against all potential explanatory variables using 

binary logistic regression. The first model indicated that Soil Type and an Anoxic Environment 

had influenced the presence of infiltrations (Appendix 1, page 635). Sex was removed and the 

regression model was run again. In this second model Soil Type, Charnel Deposit and one 

outcome within Age Range had influenced the presence of infiltrations (Table 5.32; Appendix 

1, page 637). The regression model was run again with these three variables. All variables 

maintained their influence within this third model (Table 5.33; Appendix 1, page 638). The 

Nagelkerke R-Squared value indicated that this regression model accounted for 30.1% of 

variation in the occurrence of infiltrations. 

Variable Outcome Number 
of 

Samples 

B Wald Significance 
(p-value) 

Anoxia Absent/Present 266 0.573 1.034 0.309 

Phase Later 
Prehistoric/Historical 

266 0.241 0.191 0.662 

Soil Type Overall 266 - 21.167 0.000* 

Clay 124 4.924 7.502 0.006 

Gravel 65 5.243 8.270 0.004 

Sand 24 2.998 2.684 0.101 

Silt 35 1.945 1.521 0.217 

Open 18 0 - - 

Cave Non-Cave/Cave 266 -1.974 1.955 0.162 

Black 
Death 

Non Black Death/Black 
Death 

266 -0.025 0.002 0.964 

State Articulated/Disarticulated 266 0.289 0.192 0.662 

Charnel Non-Charnel/Charnel 266 1.432 7.866 0.005 

Age 
Range 

Overall 266 - 6.232 0.101 

Neonate 29 -1.324 4.757 0.029 

Child 20 -0.032 0.003 0.955 

Juvenile 24 0.549 1.082 0.298 

Adult 193 0 - - 
Table 5.32: Summary of the Parameter Estimates for the second binary logistic regression model of the occurrence of 

infiltrations. 
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Variable Outcome Number 
of 

Samples 

B Wald Significance 
(p-value) 

Soil Type Overall 266 - 36.247 0.000* 

Clay 124 2.945 7.535 0.006 

Gravel 65 3.333 9.802 0.002 

Sand 24 1.082 0.850 0.357 

Silt 35 0.382 0.102 0.750 

Open 18 0 - - 

Charnel Non-
Charnel/Charnel 

266 1.537 11.530 0.001 

Age 
Range 

Overall 266  6.639 0.084 

Neonate 29 -1.256 5.171 0.023 

Child 20 0.042 0.006 0.937 

Juvenile 24 0.524 1.020 0.312 

Adult 193 0 - - 
Table 5.33: Summary of the Parameter Estimates from the third binary logistic regression model of the occurrence of 

infiltrations. 

 

Only Soil Type had a significant influence on infiltrations when the results were considered 

within the Holm-Bonferroni method, although the effect of Charnel Deposits was close to the 

significance threshold (Appendix 2). The significant influence of Soil Type was maintained 

when it was placed in a regression model by itself (n=266, B=-0.433, Wald Χ2=13.537, p=0.000; 

Appendix 1, page 639). Bones from clays and gravels demonstrated higher rates of infiltrations 

(Figure 5.45). Rates of infiltrations amongst sand, silt and open environments were low.  

 
Figure 5.45: Proportional bar chart demonstrating the occurrence of infiltrations within bones recovered from 

different types of soil. Numbers on bars represent counts of cases. 
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Site-specific influences may have also contributed to the occurrence of infiltrations. 

Distributions of infiltrations amongst site assemblages were tested whilst controlling for Soil 

Type and the influence of charnel samples. Significant differences in the presence of 

infiltrations were detected between different site assemblages that included clay burial soils, 

but not between site assemblages from all other burial contexts (Table 5.34). The test of 

difference between remains from different gravel contexts produced a p-value of less than 

0.05. However, the Holm-Bonferroni method suggested that this result could not be accepted 

as significant (Appendix 2). 

There was no obvious patterning of infiltrations amongst the remains from clay sites. Most of 

the variation was concentrated within bones from Neat’s Court and Frälsegården, where 

infiltrations were particularly abundant (Figure 5.46). Infiltrations were low-occurring within 

samples from Bolsover and Bradly Fen. These results suggested the occurrence of infiltrations 

was secondarily controlled by site-specific factors when samples had been buried within 

contexts that encouraged their formation. 

Burial Soil No. of 
Samples 

Fisher’s 
Exact Test 

Significance 
(p-value) 

Clay 71 26.106 0.000* 

Gravel 65 11.638 0.004 

Sand 24 7.197 0.082 

Silt 35 3.819 0.376 
Table 5.34: Results of statistical tests of occurrences of infiltrations between bones from different sites whilst 

controlling for soil type. 

 



  

339 
 

 
Figure 5.46: Proportional bar chart demonstrating the distribution of infiltrations amongst separate site 

assemblages recovered from clay environments. Numbers on bars represent counts of cases. 

 

5.4 SUMMARY OF THE KEY FINDINGS FROM THE PRIMARY ANALYSIS 
 

A summary of the key findings of the Primary Analysis ordered by diagenetic parameter is 

provided below.  

Whole OHI 

1. The ubiquity of non-Wedl MFD within the samples used in this study meant that 

Whole OHI score could be taken to represent the extent of bacterial tunnelling. 

2. Neonatal bones demonstrated significantly higher Whole OHI scores compared to 

post-neonatal bones. 

3. Bones from anoxic environments demonstrated significantly higher Whole OHI scores 

compared to bones from aerobic sediments.  

4. Bones from Black Death cemeteries demonstrated significantly higher and more 

variable Whole OHI scores than remains from all other types of sites when the 

neonatal and anoxic-deposited remains were excluded. 
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5. Whole OHI scores of Later Prehistoric bones were significantly higher and more 

variable than those of Historical bones when the neonatal, anoxic-deposited and Black 

Death remains were excluded. 

6. The distribution of Whole OHI scores amongst the Historical samples was significantly 

leptokurtic and centred on scores of zero after the neonatal, anoxic-deposited and 

Black Death bones were excluded. 

7. There was no significant difference in the distributions of Whole OHI scores between 

bones from different Historical sites when the neonatal, anoxic deposited and Black 

Death remains were excluded. 

8. Variation in Whole OHI scores amongst Later Prehistoric bones was not explained by 

specific Later Prehistoric phase or state of articulation when the neonatal, anoxic-

deposited and Black Death remains were excluded. 

Presence of Bacterial Tunnelling 

9. Significantly higher proportions of neonatal samples were free from bacterial 

tunnelling when compared to the post-neonatal bones. The high proportions of 

unbioeroded neonatal samples were responsible for their higher overall Whole OHI 

scores.  

10. When the neonatal remains were removed from the distribution, Later Prehistoric 

samples were significantly more likely to have remained free from bacterial bioerosion 

than Historical samples. 

11. When the effects of phase and neonatal bones were disregarded, bone samples from 

anoxic environments were significantly more likely to have remained free from 

bacterial attack. 

12. There were no significant differences in the occurrence of bacterial attack within 

samples from different Historical site assemblages when neonatal and anoxic-

deposited bones were excluded. 

13. Bronze Age samples were more likely to have remained free from bacterial tunnelling 

than samples from all other Later Prehistoric periods. 

Wedl Tunnelling. 

14. Bones that had been deposited in caves demonstrated significantly higher instances of 

Wedl tunnelling than those that had been buried. 

15. Remaining variation in the presence Wedl tunnelling was site-specific and 

concentrated within remains from Later Prehistoric assemblages. 
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Persistence of the Periosteal Cortex 

16. The periosteal cortex persisted within the majority of samples, regardless of overall 

histological preservation. 

17. The survival of the periosteal cortex was linked to burial sediment. The periosteal 

surface had been lost most often within remains from silt environments. 

Visual Diagenetic Changes 

18. Measures of orange staining, inclusions and infiltrations were highly positively 

correlated with one another. 

19. Orange staining and inclusions were present within most bones that had been 

sampled. 

20. The extent of orange-coloured changes to the bone microstructure did not correlate 

with bacterial bioerosion or the presence of anoxic conditions. 

21. All orange-coloured visual changes to the bone microstructures were associated with 

burial sediment to some degree. 

22. All other types of visual diagenetic changes occurred only rarely. These features were 

linked to the burial environment or site-specific taphonomic processes. 
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6 RESULTS – SPECIFIC ANALYSIS OF DISCRETE ASSEMBLAGES 

 

This second Results chapter describes the variation in measures of diagenesis within site 

assemblages. The Primary Analysis had established that site-specific influences were 

responsible for some of the variation in particular diagenetic parameters. The analysis of 

diagenesis within site assemblages aimed to establish whether the trends observed within the 

entire study sample persisted on a smaller controlled scale and determine which variables 

specific to particular sites may have affected measures of diagenesis. The results from this 

section would also be used in site-specific interpretations of patterns of bone diagenesis.  

This chapter also includes comparisons of bacterial bioerosion within bones from different 

Later Prehistoric Specific Phases to establish whether characteristic patterns of bacterial attack 

could be associated with particular Later Prehistoric time periods. Sample sizes from Later 

Prehistoric sites were small. Analysis of results from Later Prehistoric bones grouped by 

Specific Phase would provide larger numbers of samples to investigate period-specific variation 

in diagenetic features. The final section provides the results from the supplementary remains: 

the Havnø shell midden assemblage and the mummified bone samples from Derrycashel and 

the Yemen. These samples could not be used in the overall analyses, but their results 

addressed some of the research aims. 

 

6.1 SITE-SPECIFIC RESULTS 

 

This section will describe the variability in diagenesis within bones from single sites. The 

Primary Analysis had established that measures of bone degradation and visual diagenetic 

change did not interact with one another and were influenced by different factors. These 

precise analyses should help to determine how certain diagenetic changes to bone can be used 

to infer aspects of funerary treatment or environmental change. Site-specific examinations of 

results were split between measures of bone degradation and visual diagenetic parameters.  

Statistical tests were not employed in the analysis of the data from site assemblages. The use 

of further tests would have exhausted the usefulness of the data, particularly with regards to 

the problem of multiplicity. Statistical testing was redundant within assemblages that included 

a small number of sample. Site-specific diagenetic patterns were explored through 
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examination of visual representations of trends as well as qualitative descriptions and 

comparisons.  

 

6.1.1 Variation in Diagenetic Parameters within Historical Assemblages 

 

The majority of the variation in bacterial bone bioerosion within the Historical assemblage was 

explained within the Primary Analysis. The objective of the site-specific analysis of diagenetic 

parameters within the Historical samples was to test whether correlations observed at the 

assemblage level persisted on a smaller scale. There was some variation in visual diagenetic 

parameters within the Historical site assemblages, and it was thought that analysis of these 

diagenetic parameters across sites would help to determine the factors that influenced their 

abundance. Some Historical assemblages could not be included in the analysis due 

combinations of low sample sizes, low levels of variation in diagenetic parameters or lack of 

salient variable site-specific factors. 

 

6.1.1.1 Bantycock Roman Cemetery, Derbyshire, U.K. 

 

The distribution of Whole OHI score across the bones from the Bantycock site was bimodal. 

Only two of the samples originated from post-neonatal individuals. Both samples 

demonstrated high levels of bacterial attack. Neonatal bones demonstrated variable Whole 

OHI scores, but tended to be better preserved than the post-neonatal samples. The only 

samples that were free from bacterial bioerosion originated from neonatal individuals. One of 

the neonatal samples that was badly preserved had been taken from the foetal skeleton that 

was recovered in situ within the skeleton of its mother. Two of the neonatal samples that were 

free from bacterial bioerosion had lost collagen birefringence. Loss of birefringence was 

sometimes coincident with microstructural staining. In two samples loss of birefringence did 

not correspond with staining and was indicative of a non-biotic loss of collagen. 

The results from the Primary Analysis had suggested that visual diagenetic were influenced by 

burial environment. It was possible that visual diagenetic change might be influenced by local 

differences in the burial environment determined by the position of a skeleton within a site. 

Too few remains were recovered from the Bantycock site for them to be divided up by precise 

equal areas. However, the bones could be separated crudely based on whether they had been 
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retrieved from the cemetery or the settlement. There was no discernable spatial variation in 

the distribution of orange inclusions amongst the Bantycock samples. Bones sampled from the 

settlement demonstrated higher levels of orange microstructural staining and increased 

occurrences of infiltrations compared to bones sampled from the cemetery (Figure 6.1). This 

result provided some suggestion that visual diagenetic features varied with local burial 

environment. 

 
Figure 6.1: Proportional bar chart demonstrating the occurrence of infiltrations within Bantycock samples taken 

from the Cemetery and Settlement sections of the site. 

 

6.1.1.2 Berinsfield Early Anglo-Saxon Cemetery, Oxfordshire, U.K. 

 

Bacterial bioerosion was invariably high within the samples from the Berinsfield Anglo-Saxon 

assemblage, but measures of visual diagenetic change were variable. Some skeletons that 

were sampled had been accompanied by metallic grave goods (Boyle et al. 1995). Metallic 

compounds, particularly ferrous materials, are most often thought to be responsible for 

discolouration of bone microstructure (Shahack-Gross et al. 1997; Hollund et al. 2012). Most of 

the metallic grave goods from Berinsfield were made from iron (Boyle et al. 1995). The bone 

samples from Berinsfield provided an opportunity to investigate whether substances released 

by grave goods interacted with the bone in a detectable way. The results would help to 

determine how far measures of visual diagenetic features might contribute to reconstructions 

of the burial environment. Distributions of orange staining and inclusions were similar 
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between remains variably found with iron grave goods. Infiltrations appeared more commonly 

within bones that were not recovered alongside metal goods. The presence of ferrous grave 

goods within the burial environment had no consistent effect on visual diagenetic changes to 

the bone microstructure. 

It was possible that localised environmental conditions may have affected the extent of visual 

diagenetic changes to the bone microstructure. Scores of visual features were assessed against 

the spatial distribution of skeletons across the Berinsfield cemetery. Each skeleton had been 

allocated a grid reference that corresponded with the areas of the cemetery defined by Boyle 

et al. (1995: 150). The skeletons sampled for this study originated from eight separate grid 

squares. There were no differences in levels of visual diagenetic parameters between bones 

from different areas of the site. There was no apparent patterning when samples from 

adjacent areas were considered together. Variation in visual diagenetic alterations to the 

Berinsfield samples was not dictated by spatial distribution. 

 

6.1.1.3 Black Gate Anglo-Saxon/Norman Cemetery, Northumberland, U.K. 

 

The Black Gate assemblage yielded neonatal and post-neonatal remains, mixtures of charnel 

and articulated bone, as well as samples from various different skeletal elements. Neonatal 

remains from Black Gate demonstrated elevated Whole OHI scores compared to the non-

neonatal bones. Bacterial attack was absent from 16% of the Black Gate samples. All of these 

samples originated from neonatal skeletons. 

Three of the Black Gate samples had been taken from humeri, one was from a fibula and a 

final sample was from a tibia. The majority of these non-femoral samples had come from 

neonatal material and tended to demonstrate low levels of bacterial bioerosion. All post-

neonatal material, regardless of element, demonstrated bacterial tunnelling. Only humeri and 

femora had been sampled from post-neonatal bones. These skeletal elements demonstrated 

similar distributions of Whole OHI scores (Figure 6.2). Femora had been allocated a larger 

range of Whole OHI scores, although this skeletal element were more abundant amongst the 

site assemblage. 
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Figure 6.2: Distribution of Whole OHI scores amongst Black Gate post-neonatal samples that had been taken from 

different skeletal elements. 

 

There was little variation in Whole OHI score amongst the post-neonatal Black Gate remains. A 

single post-neonatal sample that demonstrated a higher level of histological preservation 

(Whole OHI=4) originated from the charnel assemblage. However, there was no evidence from 

the entire study sample or the rest of the Black Gate remains that charnelling was responsible 

for lower levels of bacterial attack. The spatial distribution of the disarticulated and articulated 

skeletons sampled from Black Gate was not known and the effect of this factor on visual 

diagenetic parameters could not be assessed. The Primary Analysis had identified that orange 

staining, inclusions and infiltrations appeared more often within non-charnel than charnel 

remains. This patterning persisted to some extent within the non-charnel and charnel remains 

from Black Gate (Figure 6.3 & Figure 6.4). Variation in orange staining amongst the charnel and 

non-charnel Black Gate remains was similar, although the median score of the charnel samples 

was lower. There was no difference in the distributions of orange inclusions between the 

charnel and non-charnel samples. Infiltrations appeared less often within samples of charnel 

bone. 
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Figure 6.3: Distributions of orange staining amongst samples of charnel and non-charnel bones from Black Gate. 

 

 
Figure 6.4: Occurrence of infiltrations amongst samples of charnel and non-charnel bones from Black Gate. 
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6.1.1.4 Carver Street Methodist Chapel Post-Medieval Cemetery, South Yorkshire, U.K. 

 

 

Figure 6.5: Frequency histogram of the distribution of Whole OHI scores amongst the remains from the Carver Street 
post-medieval cemetery. 

 

The remains from Carver Street had been recovered from waterlogged anoxic sediment. The 

distribution of Whole OHI scores amongst this assemblage differed markedly from the 

Historical baseline model. High proportions of samples demonstrated medium and high Whole 

OHI scores (Figure 6.5). Whole OHI score of five, which appeared rarely amongst the Historical 

baseline assemblage, was the modal value within the Carver Street assemblage.  

Levels of bacterial bioerosion across bones from different parts of the site were investigated to 

determine whether there was any spatial patterning that could be used to refine explanations 

of the diversity in bacterial attack. All of the bones that were retrieved from Row 6 within the 

Carver Street cemetery were free from bacterial bioerosion, whereas bones recovered from 

outside of this row had all been tunnelled by bacteria (Figure 6.6). The distribution of Whole 

OHI scores amongst the remains that were not recovered from Row 6 was still elevated 

compared to the majority of Historical samples taken as a whole. The numbering of the rows 

reflected the true position of the bodies relative to one another. Remains from Rows 4, 5 and 6 

taken together demonstrated an elevated distribution of Whole OHI scores compared to 

samples from all other rows. These observations suggested that bacterial bioerosion within the 

Carver Street bones was partly controlled by the position of a skeleton within the cemetery. 
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Figure 6.6: Distribution of Whole OHI scores amongst samples of skeletons recovered from different rows within the 

Carver Street cemetery. 

 

Two of the three bones from Carver Street that were free from bacterial bioerosion 

demonstrated a loss or obliteration of collagen birefringence. Both of these bones had been 

retrieved from Row 6. The loss of collagen birefringence did not correspond with areas of 

orange staining, which suggested that bone protein had been lost via a non-biological 

mechanism. 

Measures of bacterial bioerosion were compared against the extent of orange visual 

diagenetic parameters to examine their correlation within bones from an anoxic environment. 

This relationship had been refuted by the results from the whole assemblage, but it was 

pertinent to investigate any association within bones recovered from sites that were known to 

have been episodically anoxic. Frequencies of orange inclusions were relatively invariable 

across the Carver Street assemblage. Distributions of Whole OHI scores were similar amongst 

bones that had been variably stained orange. The single sample that demonstrated extensive 

orange staining was free from bacterial bioerosion. Samples that included infiltrations tended 

to be histologically better preserved than those where infiltrations were absent (Figure 6.7). 

These results suggested there was a slight positive relationship between certain orange visual 

diagenetic changes and histological preservation within the Carver Street samples. There was 

no obvious spatial distribution of visual diagenetic changes amongst the remains from Carver 

Street. The only bone that demonstrated extensive levels of orange staining originated from 

Row 6, but staining within remains from this row as a whole was variable. 
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Figure 6.7: Distributions of Whole OHI scores amongst Carver Street samples that variable demonstrated 

infiltrations. 

 

6.1.1.5 Royal Mint Medieval Cemetery, London, U.K. 

 

The Royal Mint was the only site that included remains that had been recovered from Black 

Death graves. The distribution of Whole OHI scores amongst the Royal Mint samples differed 

from what was observed within remains from most Historical sites (Figure 6.8). The majority of 

Royal Mint samples had been extensively tunnelled by bacteria. However, a substantial 

proportion of samples demonstrated medium Whole OHI scores, whilst a minor proportion 

retained excellent histological preservation. 

 

Figure 6.8: Frequency histogram of the distribution of Whole OHI scores amongst remains recovered from the Royal 
Mint medieval cemetery. 
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The assemblage from the Royal Mint could be divided by phase into those remains that were 

likely to have been composed of Black Death victims and those remains that had been interred 

within the Abbey Church area after the Plague epidemic had subsided. It had already been 

established within the Primary Analysis that the distribution of Whole OHI scores amongst the 

Black Death samples differed significantly from the rest of the Historical sample assemblage. 

Most of the remains that had been allocated the medium and high Whole OHI scores 

originated from the Black Death cemetery (Figure 6.9). The Whole OHI scores of the remains 

from the Abbey Church were consistent with the Historical baseline distribution.  

 
Figure 6.9: Distribution of Whole OHI scores within Royal Mint samples from skeletons that were variably recovered 

from the Black Death cemetery. 

 

One of specimens from the Abbey Church was anomalously free from bacterial bioerosion. The 

sample originated from the skeleton that had been surrounded by quicklime within a coffin. 

This sample was the only one from the site and one of the few from the whole study sample 

that demonstrated reduced levels of collagen birefringence despite remaining histologically 

well-preserved. This observation suggested that the unique depositional circumstances of this 

skeleton had promoted a non-biotic loss of collagen. The rest of the church samples had been 

bioeroded by bacteria and demonstrated a maximum Whole OHI score of three.  

Some of the skeletons from the Royal Mint that were associated with coffin furniture. 

Distributions of Whole OHI scores were similar amongst samples of skeletons that had been 

variably deposited within coffins. Skeletons from the Royal Mint had been variably recovered 

from single and mass graves. There was no difference in Whole OHI scores between samples of 

bone recovered from these different grave types. Wedl tunnelling was found to be more 
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prevalent amongst the Royal Mint assemblage compared against the other Historical 

assemblages. Wedl tunnelling was more common amongst the remains that had been 

recovered from the Abbey Church rather than the Black Death areas (Figure 6.10). This result 

suggested that a factor relating to the treatment of the individuals from the church had 

increased rates of Wedl MFD. 

 
Figure 6.10: Proportional bar chart displaying the occurrence of Wedl tunnelling within Royal Mint samples from 

skeletons variably recovered from Black Death areas. 

 

Spatial variation in visual diagenetic parameters were investigated amongst the Royal Mint 

sample set. Spatial variation was determined by whether a skeleton originated from the 

eastern cemetery, the western cemetery, or the abbey church. There were slight differences in 

levels of orange microstructural staining between remains from different parts of the site. 

Bones from the eastern cemetery tended to demonstrate higher levels of microstructural 

staining, although there was substantial overlap between the three distributions (Figure 6.11). 

The spatial distributions of orange inclusions and infiltrations echoed the results from the 

orange staining. The similar variability of these features suggested that the burial sediment in 

different parts of the Royal Mint cemetery had influenced frequencies of visual diagenetic 

changes to bone microstructures.  
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Figure 6.11: Distributions of orange staining amongst Royal Mint samples from skeletons recovered from different 

areas of the site. 

 

6.1.1.6 St. Hilda’s Medieval/Post-Medieval Cemetery, Northumberland, U.K. 

 

The Coronation Street assemblage included three samples from neonatal skeletons. These 

samples demonstrated an elevated distribution of Whole OHI scores compared to the post-

neonatal specimens (Figure 6.12). The neonatal bones were more likely to have remained free 

from bacterial bioerosion.  

 

Figure 6.12: Box-and-whisker plot of the distributions of Whole OHI scores amongst neonatal and post-neonatal 
remains from the Coronation Street medieval/post-medieval cemetery. 
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It was likely that skeletons from Coronation Street had been deposited within anoxic sediment. 

Whole OHI scores of the Coronation Street post-neonatal samples were variable and differed 

markedly from the rest of the Historical remains. Whilst there was a peak within the lowest 

Whole OHI scores, there were also equal representations of medium and high scores (Figure 

6.13). The distribution of Whole OHI scores amongst this assemblage was similar to what was 

observed within the waterlogged Carver Street samples. The main difference between the two 

sites was the higher numbers of remains from Coronation Street that scored low Whole OHI 

values.  

 

Figure 6.13: Frequencies of Whole OHI scores amongst the samples from Coronation Street (the neonatal samples 
were excluded). 

 

The precise provenances of the remains that constituted the Coronation Street assemblage 

were not known. Spatial distribution of bacterial bioerosion and visual diagenetic changes 

within this site assemblage could not be examined. The retrieval of the Coronation Street 

remains from an anoxic environment meant that it was possible that there would be a 

relationship between measures of bacterial bioerosion and visual diagenesis (Hollund et al. 

2012). Distributions of Whole OHI scores were not affected by differences in levels of orange 

staining. All bone samples that did not include orange inclusions demonstrated Whole OHI 

scores of zero. Histological preservation was higher amongst remains that demonstrated 

orange inclusions, although variations in the abundance of inclusions had no subsequent effect 

on Whole OHI score. Bones that were free from infiltrations tended to demonstrate higher 

Whole OHI scores, but this difference was very slight. These patterns did not amount to 

notable trends in relationships between bacterial bone bioerosion and visual changes to the 

bone microstructure.  
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6.1.1.7 St. Leonard’s Hospital Medieval Cemetery, Lincolnshire, U.K. 

 

All of the bones from the cemetery of St. Leonard’s hospital had been extensively bioeroded 

by bacteria. Some of the skeletons that had been sampled from this site had demonstrated 

lesions consistent with leprosy. The presence of leprotic lesions on skeletons had not affected 

levels of bacterial bioerosion in related bone samples. The intensity of orange visual diagenetic 

parameters was compared between bones from the east and west areas of the Grantham site. 

Measures of orange staining and inclusions were similar amongst remains from different parts 

of the cemetery. The single sample that included infiltrations originated from the western 

area, but this result did not amount to a notable spatial trend in visual diagenesis.  

 

6.1.1.8 St. Mary & Saint Laurence Medieval/Post-Medieval Cemetery, Derbyshire, U.K. 

 

The Bolsover assemblage included neonatal and post-neonatal remains as well as charnel and 

non-charnel bones. Neonatal bone samples demonstrated an elevated distribution of Whole 

OHI scores compared with the post-neonatal samples (Figure 6.14). Four out of five of the 

samples from the site that were free from bacterial bioerosion had been taken from neonatal 

skeletons. All of the neonatal bone samples that were free from bacterial attack were 

recovered from the northern wall of the St. Mary and St. Laurence church. 

 
Figure 6.14: Distribution of Whole OHI scores amongst Bolsover samples from neonatal and post-neonatal skeletons. 
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The only post-neonatal bone that remained free from microbial bioerosion had been taken 

from the charnel assemblage. Charnel post-neonatal bones demonstrated an elevated 

distribution and wider range of Whole OHI scores compared to non-charnel samples. However, 

distributions of charnel and non-charnel Whole OHI scores overlapped and were consistent 

with patterns of bacterial bioerosion observed amongst the rest of the Historical baseline 

assemblage (Figure 6.15).  

 
Figure 6.15: Distribution of Whole OHI scores amongst Bolsover samples from articulated and charnel skeletons. 

 

The articulated remains sampled from Bolsover originated from three different areas: the 

north churchyard, the south churchyard and the church tower. The majority of skeletons 

sampled (65%) originated from the north side of the church. The provenance of the 

disarticulated material could not be established. Visual measures of diagenesis were tested 

between remains from these areas in order to establish whether variation could be attributed 

to the spatial distribution of skeletons. Yellow staining was only identified within samples of 

disarticulated material and brown discolouration was present within only one sample of an 

articulated skeleton. Levels of orange staining and inclusions tended to be higher amongst 

remains from the north side of the church and the church tower compared with the south 

side, although there was overlap between these distributions (Figure 6.16 & Figure 6.17). 

Infiltrations were only found within one sample from the north side of church. Therefore there 

was some suggestion that visual diagenetic features varied with position of a skeleton within 

the cemetery.  
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Figure 6.16: Distributions of orange staining amongst Bolsover samples from skeletons that had been recovered 

from different parts of the site. 

 

 
Figure 6.17: Distributions of orange inclusions amongst Bolsover samples from skeletons that had been recovered 

from different areas of the site. 

 

The Primary Analysis had suggested that levels of orange staining and infiltrations were lower 

within samples from charnel bones. This finding was supported by the results from the 

Bolsover assemblage (Figure 6.18 & Figure 6.19). 
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Figure 6.18: Distribution of orange staining amongst samples of charnel and non-charnel remains from Bolsover. 

 

 
Figure 6.19: Distributions of orange inclusions amongst samples of charnel and non-charnel bones from Bolsover. 

 

6.1.2 Variation in Diagenetic Parameters within Later Prehistoric Assemblages 

 

Most of the variation in histological preservation of bone samples from Later Prehistoric sites 

was not explained by the factors tested within the Primary Analysis. Confirmation of the 

hypotheses put forward in the Methodology suggested that this unexplained variation was 

likely to relate to how remains had been treated in the early post mortem period. Histological 

results from separate Later Prehistoric assemblages were investigated to examine whether 
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patterns observed at the assemblage level were replicated at discrete sites. The results also 

provided an analytical base for discussions regarding the possible funerary treatment of 

remains from each site. Comparison of the diagenetic signatures of each assemblage to the 

Historical baseline model would help to determine how degradation of bone at each site had 

deviated from that which is encouraged by immediate burial. Reference to forensic models of 

decomposition would help to determine what sorts of post mortem processes might have been 

responsible for these deviations. Descriptions of the visual diagenetic changes were included in 

order to provide an idea of their prevalence and assess the likelihood that specific localised 

environmental conditions were responsible for variation in bacterial bone bioerosion. Spatial 

variation in visual diagenetic changes across sites could not be assessed in most cases due to 

low sample size and spatial variability. 

 

6.1.2.1 Beeston Tor CX Neolithic Cave Deposits, Staffordshire, U.K. 

 

 

Figure 6.20: Frequency histogram of the distribution of Whole OHI scores amongst the Neolithic remains sampled 
from the Beeston Tor CX cave assemblage. 

 

Four disarticulated bones were sampled from Beeston Tor CX. All bone samples demonstrated 

low Whole OHI scores (Figure 6.20). The exception was specimen 145, which was allocated a 

Whole OHI score of three. This distribution of Whole OHI scores was consistent with the 

Historical baseline. All samples demonstrated Wedl tunnelling within areas of bone that had 

not been consumed by bacterial tunnelling. Wedl tunnelling was found rarely amongst the 

whole study sample. The result from Beeston Tor was consistent with the finding from the 
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Primary Analysis that Wedl tunnelling occurred more often within bones from caves. Three of 

the four Beeston Tor samples demonstrated orange staining. This staining was superficial in 

two cases and fair in one. Infrequent or frequent orange inclusions were detected within all of 

the samples from this site. Infiltrations were only recorded from one of the Beeston Tor 

samples.  

 

6.1.2.2 Bradley Fen Late Bronze Age Settlement, Cambridgeshire, U.K. 

 

The three Bradley Fen samples had been taken from articulated skeletons. All of these samples 

demonstrated very good to excellent levels of histological preservation (Whole OHI=4 or 5). 

Two of the samples (Sk. 573 & Sk. 785) included minor levels of bacterial bioerosion. The 

sample from Burial 853 was free from microbial bioerosion. Burial 853 had been recovered 

from an anoxic environment. When Burial 853 was removed from the distribution, the Whole 

OHI scores of the Bradley Fen remains were still elevated compared to the Historical baseline. 

There was some doubt over whether the decomposition of all of the bodies from Bradley Fen 

had been affected by intermittent waterlogging. The Whole OHI scores of the Bradley Fen 

remains lay within the upper range of the distribution for the Historical anoxic-deposited bone 

samples (Figure 6.21). This result decreased the likelihood that the high level of histological 

preservation within the remains from Bradley Fen was attributable to waterlogging, although it 

was possible that the small sample size produced a skewed distribution.  
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Figure 6.21: Distribution of Whole OHI scores amongst the Bradley Fen samples compared to Historical samples from 

skeletons recovered from anoxic environments (neonatal samples were excluded). 

 

All of the Bradley Fen thin sections demonstrated orange inclusions. These inclusions were 

found ubiquitously throughout the natural porosities of Burial 853 but infrequently within the 

samples taken from Burials 573 and 785. All of the Bradley Fen thin sections demonstrated 

orange microscopic staining at their periosteal and endosteal margins. This peripheral staining 

was slight and inconsistent within the thin sections from Burial 853, but much more intense 

and intrusive within samples from Burials 573 and 785. Orange staining was often observed 

within areas of microbial destruction. No infiltrations were present within any of the Bradley 

Fen samples. 

 

6.1.2.3 Bilham Farm Iron Age Enclosure, South Yorkshire, U.K. 

 

The Bilham Farm articulated skeletons had both been extensively bioeroded by bacteria and 

were allocated Whole OHI scores of zero. Wedl tunnelling was identified in both samples in 

small areas of bone microstructure that had not been consumed by bacterial attack. The 

distribution of Whole OHI scores amongst these samples lay within the Whole OHI scores of 

the baseline Historical population. Neither sample demonstrated significant levels of 

microstructural staining. Orange inclusions appeared frequently within both samples. 

Infiltrations were present within the thin section from Sk. 1022.  
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6.1.2.4 Carsington Pasture Cave Iron Age/Neolithic Cave Deposit, Derbyshire, U.K. 

 

Eighteen disarticulated bones had been sampled from the Carsington Pasture Cave. 

Histological preservation varied from excellent to poor. A large proportion of samples lay 

within the middle of this range (Whole OHI=2) (Figure 6.22). Two of the bones originated form 

neonatal skeletons. Both of these samples were free from bacterial tunnelling. The distribution 

of Whole OHI scores amongst the post-neonatal remains from Carsington Pasture Cave, was 

more elevated and variable than the Historical baseline model as defined by the median value 

and interquartile range (Figure 6.23). Two of the post-neonatal samples were free from 

bacterial bioerosion. One of these samples was taken from a bone that demonstrated cut 

marks indicative of dismemberment. The Carsington Pasture Cave bones had been recovered 

from three different chambers and passageways. Radiocarbon dates had suggested that the 

assemblages from each of these contexts may have belonged to separate phases of activity. 

There were no discernable differences in distributions of Whole OHI scores between the 

samples of bone recovered different parts of the cave. Wedl tunnelling was identified within 

67% of the Carsington Pasture Cave thin sections, which represented an unusually high 

occurrence. This result was consistent with the finding that Wedl tunnels appeared more 

frequently within bones from caves. 

 

Figure 6.22: Frequency histogram of the distribution of Whole OHI scores within the Neolithic/Iron Age remains 
recovered from Carsington Pasture Cave. 
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Figure 6.23: Distribution of Whole OHI scores amongst the Carsington Pasture Cave samples compared to the 

Historical baseline assemblage (neonatal bones were excluded). 

 

 
Figure 6.24: Box-and-whisker plot illustrating the distribution of orange staining within the Neolithic/Iron Age 

remains recovered from different chambers within the Carsington Pasture Cave. 
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Image 6.1: Micrograph of the endosteal surface of a femoral thin section from specimen CPC-02-FL237 from 
Carsington Pasture Cave under polarised light. The porosities demonstrate a unique form of crystalline inclusion that 

appeared transparent under normal light (arrows). 

 

Five of the eighteen samples from Carsington Pasture Cave demonstrated superficial or fair 

levels of microstructural staining. The staining was orange-coloured in all but one case where it 

was yellow. The yellow staining was only superficial and may have represented a weaker form 

of the orange discolouration. Orange staining was absent amongst the remains from the 

entrance chamber but present in similar quantities within the bones recovered from the 

second chamber and second passageway (Figure 6.24). Inclusions appeared within fourteen of 

the eighteen samples. One sample demonstrated types of inclusions that were unique to the 

bones from this site. These inclusions consisted of transparent crystalline formations that 

became illuminated under polarised light (Image 6.1). There were no notable trends in the 

distribution of inclusions amongst bones from different chambers that corresponded with the 

patterning of orange staining. 
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6.1.2.5 Cladh Hallan Bronze Age Settlement, South Uist, U.K. 

 

 

Figure 6.25: Frequency histogram of the distribution of Whole OHI scores across the remains recovered from the 
Cladh Hallan Bronze Age settlement. 

 

The samples from Cladh Hallan had been taken from a mixture of articulated, partially 

articulated and disarticulated remains. Whole OHI score across the Cladh Hallan samples were 

variable. Samples demonstrated the lowest, highest and medium levels of histological 

preservation (Figure 6.25). The distribution of Whole OHI scores within the Cladh Hallan 

remains was slightly elevated compared to the Historical baseline model. Variation in Whole 

OHI score of the Cladh Hallan remains, as defined by the interquartile range, was broader than 

within the Historical baseline (Figure 6.26). The Cladh Hallan distribution mostly deviated from 

the Historical baseline in terms of the remains that were allocated Whole OHI scores of four 

and five. These scores had been allocated to the articulated potentially mummified CH 2638 

individual and the disarticulated CH-C femur respectively.  
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Figure 6.26: Distribution of Whole OHI scores amongst the Cladh Hallan samples and the Historical Baseline 

Assemblage. 

 

Four out of the five Cladh Hallan samples had been stained. The staining was superficial in 

three cases and extensive in one. Three of the stained bones demonstrated orange staining 

and one had been stained yellow. The yellow staining was only superficial and may have 

represented a weaker form of the orange staining observed in other samples from the site. 

Infrequent and frequent orange/ inclusions were identified in two samples. Only one sample 

demonstrated infiltrations. 

 

6.1.2.6 Cnip Headland Bronze Age Cemetery, Isle of Lewis, U.K. 

 

Seven disarticulated, partially articulated and articulated bones from Cnip had been sampled 

as part of the current study. Only one of the bones samples demonstrated bacterial tunnelling. 

Bacteria had destroyed the majority of the microstructure within this specimen (Whole 

OHI=0). The rest of the bones were free from microbial attack. One of the samples had 

originated from a neonatal skeleton. The dominance of a well-preserved histological signature 

amongst the Cnip assemblage meant that the preservation of the neonatal individual did not 

set it apart from most of the post-neonatal remains. All of the well-preserved post-neonatal 

remains from Cnip represented outliers to the Historical baseline assemblage. 
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Collagen birefringence was reduced within two of the histologically well-preserved bones from 

Cnip. Both of these bones also demonstrated brown staining. The areas of bone microstructure 

where collagen birefringence was reduced corresponded with staining. Superficial brown 

staining was also identified within two other samples from Cnip, although in these cases 

staining was not extensive enough to have affected birefringence. The Cnip bones had been 

retrieved from discrete deposits a few metres apart from one another, named Areas A, C and 

D. Brown staining of variable intensity was only present within samples from Areas A and C. 

Orange inclusions appeared frequently or infrequently within all of the bones from Cnip, but 

infiltrations were always absent. There was no consistent overall patterning in spatial 

distributions of visual diagenetic features amongst samples. 

 

6.1.2.7 Danebury & Suddern Farm Iron Age Settlements, Hampshire, U.K. 

 

The Suddern Farm and Danebury bones originated from archaeological sites that were 

temporally and geographically close. It was decided that the results from these sites would be 

best discussed together. Samples had been taken from disarticulated, partially articulated and 

articulated remains. The histological preservation of most of the Danebury and Suddern Farm 

samples was poor. However, Whole OHI score was variable within these lower confines (Figure 

6.27). All samples demonstrated bacterial bioerosion. One outlying sample demonstrated only 

limited levels of bacterial attack (Whole OHI=5).  

 

Figure 6.27: Frequency histogram displaying the distribution of Whole OHI scores across remains retrieved from the 
Iron Age Danebury and Suddern Farm settlements. 
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The distribution of Whole OHI scores of the Danebury and Suddern Farm samples was elevated 

and variable when compared with the Historical baseline signature (Figure 6.28). The 

Danebury & Suddern Farm assemblage included higher proportions of bone samples that had 

been allocated Whole OHI scores of two, which was the modal value. 

 
Figure 6.28: Distribution of Whole OHI scores amongst the Danebury & Suddern Farm samples compared against the 

Historical Baseline Distribution. 

 

Cunliffe & Poole (2000: 168) had suggested that the Danebury and Suddern Farm assemblages 

represented different funerary traditions practised by the same society and it was therefore 

pertinent to compare the diagenetic signatures of samples from these two sites. The two 

Suddern Farm samples demonstrated a slightly elevated distribution of Whole OHI scores 

compared to the Danebury specimens, although overall these two distributions were 

consistent with one another. 

The various states of skeletal articulation represented within the samples from Danebury & 

Suddern Farm may have reflected separate forms of treatment. The samples were split into 

categories of burial type defined within the site report: Disarticulated Elements, Whole Bodies, 

Incomplete Bodies and Multiple Partially Articulated bones. There were no observable 

differences in distributions of Whole OHI scores based on these categories. The original groups 

were simplified into three categories of articulated, partially articulated and disarticulated 

skeletons. The distributions of Whole OHI scores amongst the articulated and partially 
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articulated remains were very similar. The histological preservation of the disarticulated bones 

was consistently very poor, apart from the single anomalous best preserved sample (Deposit 

130). The main variation in bacterial bioerosion existed between the articulated/partially 

articulated remains combined and the disarticulated discrete bones (Figure 6.29). 

 
Figure 6.29: Distribution of Whole OHI scores amongst Danebury & Suddern Farm samples from skeletons that 

demonstrated variable levels of articulation (Deposit 130 was excluded). 

 

The human remains recovered from Danebury were associated with different Ceramic Phases 

(Cunliffe 1983). These phases had been used to set out the chronology of the site within the 

Iron Age. The majority of bones sampled originated from Ceramic Phases 6 and 7. Analysis of 

the changes in burial practice over time had identified specific trends, and it was possible that 

some of the variation in Whole OHI score amongst the Danebury remains was attributable to 

the different phasing of depositions (Cunliffe 1984; Cunliffe & Poole 2000). Distribution of 

Whole OHI scores within bones from Ceramic Phases 3, 6 and 7 were very similar. Histological 

preservation within bones from Ceramic Phase 8 appeared to be higher than within remains 

from all other Ceramic Phases, although this patterning was probably a result of low numbers 

of remains from Ceramic Phase 8 (n=2) combined with the presence of the anomalous Deposit 

130.  

Bayesian analysis of radiocarbon dates by Buck et al. (1992) had suggested that Cunliffe’s 

Ceramic Phases represent continua rather than discrete temporal horizons. Therefore, the 
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bones were regrouped by Ceramic Phase into Early (Ceramic Phases 1-3), Middle (4-6) and Late 

periods (7-8). The distribution of Whole OHI scores within samples of bone from the Late 

period was more variable and elevated than within samples from the Early and Middle periods. 

However, this patterning was also likely to reflect the influence of Deposit 130, which 

belonged to the Late period. It was considered whether variation in Whole OHI score across 

the Danebury samples may have been related to a combination of phase and state of 

articulation. However, sample sizes were too low to meaningfully compare the Danebury and 

Suddern Farm assemblages using both variables. 

The Danebury and Sudden Farm samples demonstrated elevated rates of Wedl tunnelling 

compared to most other site assemblages. Wedl tunnels were absent from the samples of 

disarticulated bone but occurred more frequently within samples from articulated and partially 

articulated skeletons (Figure 6.30). This patterning was similar to the distribution of bacterial 

tunnelling. The partially articulated and articulated remains had been subject to processes that 

increased their susceptibility to Wedl tunnelling.  

 
Figure 6.30: Proportional bar chart displaying the occurrence of Wedl tunnelling within Danebury & Suddern Farm 

samples from skeletons that demonstrated variable levels of articulation. 

 

The periosteal surface had been lost in twelve out of the twenty samples from these sites, 

which represented a higher proportion than what was observed amongst the other site 

assemblages. Like bacterial bioerosion and Wedl tunnelling, the survival of the periosteal 

surface appeared to be linked to state of articulation (Figure 6.31). Samples of articulated and 

partially articulated bones were more likely to have lost their periosteal cortex than samples 
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from disarticulated skeletal elements. This result added to the evidence for the different 

treatment of the articulated/partially articulated and disarticulated bones. 

 
Figure 6.31: Proportional bar chart of the loss of the periosteal surface amongst Danebury & Suddern Farm samples 

from skeletons recovered in variable states of articulation. 

 

Only three of the samples from Danebury and Suddern Farm demonstrated microstructural 

staining. In two cases this staining was extensive, and in one it was only superficial. The 

superficial staining was orange-coloured, whilst the extensive discolouration was orange and 

yellow respectively. Deposit 130 demonstrated extensive yellow staining and it was possible 

that this feature was related to its deviant taphonomic history. Grey inclusions appeared 

frequently or infrequently within most remains from Danebury and Suddern Farm. Infiltrations 

were not observed within any of the samples from this site.  

The well-preserved sample from Deposit 130 demonstrated reduced levels of collagen 

birefringence that could not be explained by microbial bioerosion. The yellow discolouration of 

this sample had not rendered the bone opaque and could not have been responsible for the 

dampening of collagen birefringence. Collagen must have been lost from this bone through a 

mechanism other than biodegradation. 

 

6.1.2.8 Frälsegården Neolithic Chambered Tomb, Falbygden, Sweden 

 

Samples had been taken from articulated, partially articulated and disarticulated post-neonatal 

bones from Frälsegården. The histological preservation of the Frälsegården specimens was 



  

373 
 

quite poor. No thin section scored higher than three on the OHI scale and most scored two or 

below (Figure 6.32). However, there was considerable variation in Whole OHI score within this 

range. The distribution of Whole OHI scores amongst the Frälsegården samples was slightly 

skewed towards higher values when compared to the Historical baseline, but overall the two 

distributions were consistent with one another. 

The distribution of Whole OHI scores from the Frälsegården specimens could be split between 

those samples that had no measurable microstructure remaining (OHI=0) and those that 

retained some detectable level of histological integrity (OHI>0). These groups were separated 

by state of articulation and phase. Samples taken from bones that had been partially or fully 

articulated dated to a later phase of activity and retained higher levels of microscopic 

preservation compared to the earlier disarticulated bone samples, which all demonstrated 

Whole OHI scores of zero (Figure 6.33).  

 

Figure 6.32: Frequency histogram of the distribution of Whole OHI scores amongst remains from the Frälsegården 
Neolithic chambered tomb. 

 



  

374 
 

 
Figure 6.33: Distributions of Whole OHI scores amongst Frälsegården samples from skeletons that had been 

recovered in variable states of articulation. 

 

The microstructures of five of the ten Frälsegården samples had been stained. Four of the 

samples demonstrated brown staining and one had been stained orange. This staining was 

only ever superficial. Orange inclusions were observed infrequently or frequently within eight 

of the Frälsegården thin sections. Infiltrations were present within seven of the ten 

Frälsegården bone samples.  

 

6.1.2.9 Hornish Point Iron Age Settlement, South Uist, U.K. 

 

The bone of the partially-articulated individual recovered from Hornish Point had been 

severely degraded by bacterial attack and was allocated a Whole OHI score of zero. The 

bacterial attack had consumed all of the available microstructure apart from the periosteal 

cortex. The Whole OHI score of the Hornish Point sample was consistent with the distribution 

of scores amongst the Historical baseline assemblage. The sample demonstrated some 

superficial orange staining at the periosteal and endosteal surfaces. Orange inclusions 

appeared infrequently within the Hornish Point sample. Infiltrations were entirely absent. 
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6.1.2.10 Langwell Farm Early Bronze Age Cist, Sutherland, U.K. 

 

The sample from the adult articulated skeleton recovered from the Langwell Farm cist retained 

an excellent level of microstructural preservation and was free from microbial bioerosion. 

Microbial bioerosion was seldom absent from the bones included within the Historical baseline 

assemblage and the histological signature of the Langwell sample would have represented an 

outlier amongst this Historical baseline sample. There was evidence that the Langwell 

individual had decomposed within an anoxic environment. The histological preservation of this 

sample was consistent with the distributions of Whole OHI scores amongst the anoxic-

deposited remains from Carver Street and Coronation Street, although the preservation of the 

Langwell sample was at the top of the range of the Historical anoxic-deposited distribution. 

The collagen birefringence of the Langwell sample had been reduced. Reductions in 

birefringence corresponded with areas of dark brown staining at the periosteal and endosteal 

surfaces. Orange inclusions appeared frequently within the Langwell sample, but infiltrations 

were absent. There was no orange discolouration of the bone microstructure within the 

Langwell sample (Hollund et al. 2012). 

 

6.1.2.11 Neat’s Court Bronze Age Round Barrow, Kent, U.K. 

 

The Neat’s Court bone samples were all from post-neonatal articulated or disarticulated 

skeletons. Three of the samples were histologically well-preserved, but the preservation of the 

remainder was poor (Figure 6.34). The degradation of these samples was predominantly 

attributable to non-Wedl tunnelling, although Wedl tunnels were identified in four samples. 

The Wedl tunnelling within the Neat’s Court samples was more extensive than what was 

observed in most other specimens from the study sample that had been affected by this type 

of attack. However, Wedl tunnelling within the Neat’s Court samples still occupied portions of 

the bone microstructure that were unaffected by bacterial MFD. 
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Figure 6.34: Frequency histogram of the distribution of Whole OHI scores amongst the remains recovered from the 
Neat's Court Bronze Age round barrow. 

 

 
Figure 6.35: Distribution of Whole OHI scores amongst the Neat's Court samples compared to the Historical baseline 

assemblage. 

 

The distribution of Whole OHI scores amongst Neat’s Court remains was slightly elevated and 

variable compared to the Historical baseline, as defined by the median value and interquartile 

range (Figure 6.35). The Neat’s Court samples that had been allocated Whole OHI scores of 

four and five were primarily responsible for the deviation of the distribution from the 

Historical baseline. Two of the Neat’s Court samples were free from bacterial bioerosion. One 

of these samples demonstrated levels of fungal tunnelling which were responsible for a lower 

Whole OHI score of four. The single sample taken from the disarticulated skeleton had been 

extensively bioeroded.  
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Five of the seven skeletons that were sampled demonstrated macroscopic surface 

modifications that suggested they had been exposed to heat treatment. It was possible that 

the heat treatment represented a novel post mortem process (Morley personal 

communication 2012). The fire-treated remains demonstrated varied and elevated Whole OHI 

distributions compared to the bones that showed no heat alteration (Figure 6.36). All of the 

samples form Neat’s Court demonstrated fair levels of orange discolouration. All samples 

included frequent or infrequent occurrences of orange inclusions. Infiltrations were present 

within all of the Neat’s Court thin sections.  

 
Figure 6.36: Distributions of Whole OHI score amongst Neat's Court samples from skeletons that variably 

demonstrated macroscopic signs of burning. 

 

6.1.2.12 South Dumpton Down Bronze Age Round Barrow and Iron Age Settlement, Kent, 

U.K. 

 

Articulated, partially articulated and disarticulated post-neonatal skeletons had been sampled 

from South Dumpton Down. All of these samples demonstrated poor levels of histological 

preservation due to bacterial tunnelling (Figure 6.37). The distribution of Whole OHI scores 

within the South Dumpton Down specimens was consistent with the Historical baseline. The 

modal Whole OHI score of the South Dumpton Down samples was one, which suggested that 

this assemblage as a whole demonstrated slightly higher levels of histological preservation 

than the Historical baseline. The best-preserved South Dumpton Down sample dated to the 

Iron Age, whilst the rest of the bones were associated with the Early Bronze Age barrow. 

Samples from articulated skeletons demonstrated slightly elevated distributions of Whole OHI 

scores compared to the disarticulated and partially articulated remains. However, the 
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articulated sub-set included the Iron Age skeleton, which may have been subjected to a 

different form of treatment than the Bronze Age bodies. 

 

Figure 6.37: Frequency histogram of the distribution of Whole OHI scores amongst the remains sampled from the 
South Dumpton Down Bronze Age round barrow and Iron Age settlement. 

 

Staining was only observed in one of the South Dumpton Down samples. This staining 

consisted of superficial brown discolouration at the periosteal and endosteal surfaces. Orange 

inclusions occurred frequently or infrequently within all of the South Dumpton Down samples. 

Infiltrations were absent from within this sample set.  

 

6.1.2.13 Whitwell Quarry Neolithic Cairn, Derbyshire, U.K. 

 

All four disarticulated bones sampled from the Whitwell Quarry assemblage demonstrated 

poor levels of histological preservation due to bacterial tunnelling and had been allocated 

Whole OHI scores of zero. The histological preservation of the Whitwell samples was 

consistent with baseline Historical samples. Two of the five Whitwell thin sections 

demonstrated superficial orange microstructural staining. Orange inclusions appeared 

infrequently within four out of the five samples. Infiltrations were detected in only one 

sample.  
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6.1.2.14 Windmill Fields Bronze Age Cemetery at Ingleby Barwick, County Durham, U.K. 

 

The Ingleby Barwick samples had been taken from post-neonatal articulated and disarticulated 

skeletons. Two of the samples from articulated skeletons were scored the lowest Whole OHI 

scores of zero. The other two samples, taken from one articulated and one disarticulated 

skeleton, were both allocated the highest Whole OHI score of five. The two high-scoring 

remains were free from microbial bioerosion and would have represented outliers within the 

Historical baseline assemblage.  

Histological preservation at Ingleby Barwick was not dependent on skeletal articulation. There 

was some patterning in the Whole OHI scores by phase. The later (Middle Bronze Age) remains 

were both badly degraded, whereas the bones that dated to the Early Bronze Age (Sk 2 and Sk 

3) were histologically well-preserved. The relationship between collagen birefringence and 

histological preservation was inconsistent within the Ingleby Barwick thin sections. Some of 

the bones that retained high levels of histological preservation demonstrated reduced levels of 

collagen birefringence. These areas of birefringence reduction were coincident with brown 

microstructural staining. Areas of brown staining were apparent in the thin sections of the two 

well-preserved samples. Orange inclusions appeared infrequently within all of the remains 

from Ingleby Barwick. No infiltrations were recorded within the samples from this site.  

 

6.2 ANALYSIS OF ASSEMBLAGES FROM SPECIFIC LATER PREHISTORIC PHASES 
 

The results of the Primary Analysis established that there were significant differences in 

distributions of Whole OHI scores between Later Prehistoric and the Historical baseline 

distribution. The distribution of Whole OHI scores amongst the Later Prehistoric assemblage 

was also significantly different from a normal distribution, which indicated that there was a 

substantial level of variation in the histological preservation of this assemblage that required 

explanation. The Later Prehistoric distribution of Whole OHI scores deviated from the normal 

model and the Historical baseline by the higher numbers of remains that had been allocated 

medium and high Whole OHI scores.  

The only factor which came close to explaining some of the Later Prehistoric variation in 

histological preservation within the Primary Analysis was Specific Phase. Bronze Age samples 

tended to demonstrate higher rates of unbioeroded bones. It had been expected that if 
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bacterial bioerosion related to funerary treatment, there would be some variation in 

histological preservation within samples from different Later Prehistoric phases, because each 

phase potentially represented a cultural shift that was likely to be accompanied by changes in 

the ways the dead were treated. However, there were no significant differences in 

distributions of Whole OHI scores between bones from different Later Prehistoric phases. This 

result indicated that distributions of Whole OHI scores amongst remains from specific Later 

Prehistoric phases were likely to be significantly different from the Historical baseline and 

include unexplained variation. It was pertinent to explore phase-specific trends in histological 

preservation to determine whether this factor may explain overall Later Prehistoric variation in 

nuanced ways that may not have been detected by statistical techniques. 

It was predicted in the Methodology that if bacterial bone bioerosion related to funerary 

activity then the majority of the variation in Whole OHI would have originated within the 

disarticulated remains of the Later Prehistoric assemblage. There was no significant difference 

in the distributions of Whole OHI score between articulated and disarticulated Later 

Prehistoric remains. This lack of significant difference meant that distributions of Whole OHI 

scores within articulated and disarticulated Later Prehistoric bone assemblages were 

significantly different from the Historical baseline model. It was pertinent to compare the 

results from the articulated and disarticulated Later Prehistoric assemblages against the 

Historical baseline sample in order to discern the nature of their variation. It was hoped that 

these results combined Specific Phase would contribute to the explanation of variance in 

bacterial bioerosion within the Later Prehistoric assemblage. 

 

6.2.1 Neolithic Samples 

 

After the neonatal and anoxic-deposited remains were disregarded, large proportions of 

Neolithic samples demonstrated the lowest OHI scores of zero, which was consistent with the 

Historical baseline assemblage (Figure 6.38). However, the Neolithic distribution deviated from 

the Historical baseline by the proportions of samples allocated Whole OHI scores of two and, 

to a lesser extent, five. These deviations constituted part of the significant variation in Whole 

OHI score within the Later Prehistoric bones. Only disarticulated Neolithic samples had been 

allocated Whole OHI scores of five. One of these samples was from the Ingleby Barwick 

wooden cist deposit that was later found to date to the Bronze Age. Another one of these 

histologically well-preserved samples had been taken from the Carsington Pasture Cave cut 
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marked bone. The few articulated Neolithic bone samples demonstrated a Whole OHI score 

profile that was consistent with the Historical baseline. The rest of the disarticulated remains 

were responsible for the main peak at zero, and the slight peak at two.  

 
Figure 6.38: Distribution of Whole OHI scores amongst the Neolithic samples separated by state of articulation 

(neonatal remains were excluded). 

 

6.2.2 Bronze Age Samples 

 

The distribution of Whole OHI scores amongst the post-neonatal Bronze Age remains from 

aerobic environments differed from the Neolithic distribution. The Bronze Age remains 

included the familiar large peak at Whole OHI scores of zero (Figure 6.39). Frequencies of 

samples declined through Whole OHI scores of one, two and three, which was consistent with 

the Historical baseline model. However, the proportions of Bronze Age bone samples that had 

been allocated Whole OHI scores of four and five produced a second peak that rivalled the 

first, creating a bimodal distribution. The Bronze Age remains were largely responsible for the 

high Whole OHI scores within the Later Prehistoric distribution. This trend was reflected within 

the finding that the Bronze Age assemblage included higher proportions of remains that were 

free from bacterial bioerosion. There was no division by state of articulation between the 

histologically poorly-preserved and well-preserved Bronze Age samples. Histologically well-

preserved samples were just as likely to have originated from an articulated or disarticulated 

skeleton. 
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Figure 6.39: Distribution of Whole OHI score amongst the Bronze Age remains separated by state of articulation 

(anoxic-deposited remains were excluded). 

 

6.2.3 Iron Age Samples 

 

The distribution of Whole OHI scores amongst the Iron Age sample assemblage also differed 

subtly from those of the Neolithic and Bronze Age assemblages. The dominant peak at Whole 

OHI scores of zero was present but there was another equivalently large peak at Whole OHI 

scores of two (Figure 6.40). The Iron Age assemblage was predominantly responsible for the 

peak at Whole OHI scores of two within the Later Prehistoric remains taken as a whole. The 

Iron Age assemblage did not demonstrate a notable proportion of remains that retained high 

Whole OHI scores, which set it apart from the Neolithic and Bronze Age assemblages. Both 

articulated and disarticulated Iron Age samples that had been allocated Whole OHI scores of 

between zero and three. A single disarticulated sample had been allocated the highest Whole 

OHI score of five. 
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Figure 6.40: Distribution of Whole OHI scores amongst the Iron Age samples separated by state of articulation. 

 

6.2.4 Interactions between State, Specific Phase and Bacterial Bioerosion 

 

The relationships between Specific Phase, state of articulation and Whole OHI score were 

complex. There were subtle differences between distributions of Whole OHI scores amongst 

assemblages from different Later Prehistoric phases. The majority of articulated remains from 

Neolithic and Iron Age sites demonstrated consistently low levels of histological preservation 

(Figure 6.41). However, these levels of histological preservation were slightly elevated 

compared to the Historical baseline, particularly with respect to the bone samples that had 

been allocated Whole OHI scores of two. All of the articulated Later Prehistoric remains that 

demonstrated the highest Whole OHI scores belonged to the Bronze Age. Articulated remains 

that were allocated Whole OHI score of 4 or 5 were recovered from three of the four Bronze 

Age sites that were included within this distribution. 
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Figure 6.41: Distribution  of Whole OHI scores amongst Later Prehistoric samples from articulated skeletons 
separated by Specific Phase (neonatal and anoxic-deposited remains were excluded). 

 

Distributions of Whole OHI scores amongst the disarticulated Later Prehistoric sample 

assemblage organised by phase were more balanced (Figure 6.42). Every specific phase was 

represented amongst most of the Whole OHI scores that appeared. Histological preservation 

amongst the disarticulated remains was more variable than amongst the samples from 

articulated skeletons, and was not defined by Specific Phase to the same extent. 

 

Figure 6.42: Distribution of Whole OHI scores amongst Later Prehistoric samples from disarticulated skeletons 
separated by Specific Phase (neonatal and anoxic-deposited remains were excluded). 
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6.3 SUPPLEMENTARY ASSEMBLAGES 
 

The supplementary samples were examined in order to complement the analysis of the 

primary assemblage, and were considered separately. Only small numbers of samples were 

obtained from each supplementary site. Some of the supplementary remains included 

diagenetic phenomena that had not been observed within the primary assemblage. Therefore, 

analysis of the results from these sites is mostly descriptive. 

 

6.3.1 Havnø Mesolithic/Neolithic Shell Midden 

 

The histological preservation of the Havnø samples was highly variable (Figure 6.43). Most 

Whole OHI categories were represented, although there was a bias towards higher values. All 

but three of the samples from Havnø demonstrated evidence for bacterial bioerosion. None of 

the samples had been taken from neonatal skeletons. All samples, including those that had 

been extensively altered by bacteria, retained bands of well-preserved circumferential lamellar 

bone at their periosteal fringe. 

 

Figure 6.43: Frequency Histogram of the distribution of Whole OHI scores amongst the remains from the Neolithic-
Mesolithic Havnø shell midden. 

 

The primary aim of sampling the disparate bones from the Havnø assemblage was to establish 

whether bacterial bioerosion varied with skeletal element and/or anatomical location. There 

were no statistically significant differences in the Whole OHI scores amongst different skeletal 
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elements (n=11, K-W Chi-squared=4.782, p=0.572). Replicate skeletal elements always 

demonstrated disparate levels of bacterial bioerosion. The two metatarsal samples lay on 

opposite ends of the OHI scale from one another. Some of the skeletal elements were 

represented by only one sample. There was no significant relationship between the presence 

of bacterial bioerosion and skeletal element (Pearson’s chi-squared, n=11, Fisher’s 

Exact=5.221, p=0.927). 

When bone samples from particular parts of the body were grouped together and compared 

there was still no significant distribution of Whole OHI scores between sample groups (n=11, K-

W chi-squared=0.206, p=0.902). Whole OHI scores within bones from different parts of the 

body varied considerably and did not decrease with proximity to the gut. Levels of bacterial 

bioerosion were not dictated by skeletal part or anatomy. There was also no significant 

difference in the occurrence of bacterial bioerosion within bones from different anatomical 

sites (Pearson’s chi-squared, n=11, Fisher’s Exact=0.803, p=1.000). Most of the remains from 

Havnø demonstrated similar orange and brown inclusions. Patches of light brown staining 

appeared inconsistently within the osteonal bone of most thin sections, whilst orange staining 

concentrated at the periosteal and endosteal peripheries appeared infrequently. 

 

6.3.2 Mummified Samples 

 

The status of the mummified remains as single specimens taken from discrete sites meant that 

the results of the histological analysis of their thin sections could not be analysed statistically. 

Therefore the results from the mummified samples are discussed descriptively. 

 

6.3.2.1 Derrycashel Bog Body 

 

Samples of the Derrycashel body’s tibia and clavicle were thin sectioned. Both thin sections 

had been stained a vivid deep red colour, which diffused to black towards the outer fringes 

(Image 6.2). Both samples demonstrated excellent levels of microstructural preservation and 

collagen birefringence (Image 6.3). This sample would have represented an outlier within the 

Historical baseline distribution. There were sporadic occurrences of dark tunnels visible in all of 

the Derrycashel thin sections but more commonly within the tibial samples. These isolated 

tunnels resembled enlarged osteocyte lacunae. There was an obliteration of collagen 
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birefringence associated with the tunnelling when the sections were viewed under polarised 

light (Image 6.4). The enlarged lacunae were observed to have grown and coalesced in certain 

places, forming larger dark areas of destruction (Image 6.5). The accumulated erosion was 

sometimes of a similar size and shape to non-Wedl MFD.  

 

Image 6.2: Micrograph of a tibial thin sections from the Derrycashel bog body. The bone has been stained a deep red 
colour. The histological structure of the sample is well-preserved, although small accumulations of focal collagen loss 

can be observed throughout, particularly surrounding osteons (yellow arrows). 

 

 

Image 6.3: Micrograph of a tibial thin section from the Derrycashel bog body viewed under polarised light. Collagen 
birefringence has been preserved. 
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Image 6.4: Micrograph of a tibial thin section from the Derrycashel bog body under polarised light. Focal points of 
collagen loss can be seen to interrupt collagen birefringence (yellow arrows). 

 

 

Image 6.5: Micrograph of a tibial thin section from the Derrycashel bog body. The enlarged osteocyte lacunae-like 
focal points of collagen loss can be observed to have accumulated, creating larger diagenetic forms (yellow arrows). 
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Characteristic hypermineralised rims were absent from these MFD-like agglomerations 

(Hackett 1981). These lesions never covered enough of the bone microstructure for the 

destruction to have been registered by the OHI system. The tunnelling appeared sporadically 

throughout the thin sections, but was concentrated towards the periosteal surfaces. Apart 

from the enlarged structures discussed above, there was a dearth of osteocyte lacunae within 

the Derrycashel thin sections. The deficit in lacunae was observed in all of the Derrycashel 

samples, but particularly within the clavicular sections (Image 6.6).  

Dark, irregular-shaped inclusions were often observed lying within the natural Haversian 

canals of most of the Derrycashel thin sections (Image 6.7). These inclusions occurred more 

frequently within the tibial samples. The inclusions were often seen adhering to the periosteal 

and endosteal surfaces of bone thin sections. The opacity of these inclusions made it difficult 

to examine their structure for detailed description and identification. In certain instances the 

dark material crossed the boundaries of the Haversian canals and infiltrated the bone 

microstructure. There was no direct relationship between this infiltration and the focal 

destruction mentioned above. Most Haversian canals and other natural bone porosities 

contained orange translucent structures that lined or covered their respective cavities. These 

structures became illuminated under polarised light.  

 

Image 6.6: Micrograph of a clavicular thin section from the Derrycashel bog body. There is a notable absence of 
osteocyte lacunae surrounding Haversian canals. Circular lamellar fibres that constitute osteons can be seen clearly 

(taken by the author). 

 



  

390 
 

 

Image 6.7: Micrograph of a tibial thin section from the Derrycashel bog body. Irregular black inclusions can be 
observed within the natural porosities (yellow arrows). 

 

6.3.2.2 Desiccated Yemeni Mummy 

 

The histological preservation of the Yemeni patella was comparable to the modern dissection 

room sample and was classified as excellent (OHI=5) (Image 6.8 &Image 6.9). Both the 

mummified and fresh sample retained high levels of collagen birefringence (Image 6.10). 

However, collagen birefringence within the mummified sample was diminished slightly 

towards the periosteal surface. The loss of birefringence in these areas had occurred in spite of 

the retention of high levels of microstructural preservation and indicated that collagen had 

been lost via a non-biological mechanism. The histological preservation of the Yemeni sample 

ensured that it would have been anomalous when compared to the Historical baseline 

distribution. The thin section of the archaeological patella was filled with non-Wedl MFD 

(OHI=0), which proved that this skeletal element was just as susceptible to microbial 

bioerosion as all other bones (Image 6.11).  
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Image 6.8: Micrograph of a transverse thin section of a fresh patella of unknown provenance viewed under polarised 
light. Collagen birefringence is high, suggesting good preservation of organic structure. 

 

 

Image 6.9: Micrograph of a thin sections from the mummified Yemeni patella. The histological preservation of this 
sample was excellent. All major microstructures including osteons and osteocyte lacunae could be observed. The 

pale orange structure at the periosteal edge to the right of the image represented preserved soft tissue. 
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Image 6.10: Micrograph of a thin section from the mummified Yemeni patella. Collagen birefringence has been 
preserved throughout the bone microstructure but can be seen to diminish slightly towards the periosteal surface. 
The protein fibres within the preserved soft tissue at the periosteal surface were illuminated under polarised light. 

 

 

Image 6.11: Micrograph of a transverse thin section of the periosteal surface of an archaeological patella of 
unknown provenance. The microstructure has been extensively tunnelled by bacteria (taken by the author). 
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Small focal points of collagen loss could be observed towards the periosteal surface of the 

mummified patella, at the point at which the mummified soft tissue met with the bone (Image 

6.12). This collagen loss resembled enlarged osteocyte lacunae and were similar to the lesions 

observed within the Derrycashel samples. These features covered a much smaller area of bone 

within the Yemeni sample and had not amalgamated into larger forms (Image 6.13). The 

enlarged osteocyte lacunae interrupted collagen birefringence when the sections were viewed 

under polarised light (Image 6.14). 

Orange/brown and transparent particles were observed infrequently within the natural 

porosities of the mummified patella (Image 6.15). The soft tissue that adhered to the 

periosteal surface of the patella was an orange colour, but no staining was observed within the 

bone microstructure itself. No infiltrations were observed within this sample. The mummified 

patella demonstrated a notable excess of irregular, joined-up system of microfissures, 

particularly towards the junction between the bone and the soft tissue (Image 6.16).  The 

presence of these microfissures sometimes corresponded with areas of dampened collagen 

birefringence (Image 6.17). 

 

Image 6.12: Micrograph of a thin section from the mummified Yemeni patella. Small black focal points destruction 
resembling enlarged osteocyte lacunae can be observed towards the periosteal surface, close to the juncture 

between the bone and the soft tissue. 
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Image 6.13: Micrograph of a thin section from the periosteal surface of the Yemeni mummified patella. 
Accumulations of focal destruction of the bone microstructure can be observed at the juncture between the bone 

and the preserved soft tissue. 

 

 

Image 6.14: Micrograph of a thin section from mummified Yemeni patella. The focal points of collagen loss have 
interrupted collagen birefringence. 

 



  

395 
 

 

Image 6.15: Micrograph of a natural trabecular porosity within a thin section from the Yemeni mummified patella. 
Brown inclusions have filled the porosity. 

 

 

Image 6.16: Micrograph of the periosteal surface of a thin section from the Yemeni mummified patella. 
Microfissuring can be observed at the periosteal zone, at the juncture between bone and soft tissue. 
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Image 6.17: Micrograph of the periosteal surface of a thin section from the Yemeni mummified patella. A loss of 
collagen birefringence at the periosteal surface can be seen to correspond within a microfissured area of bone 

microstructure. 
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7 DISCUSSION 

 

The Primary Analysis (first Results chapter) was geared towards addressing the research 

questions set out in the Background chapter (page 3). The following discussion is 

predominantly concerned with the results from this part of the analysis. However, this 

discussion will also encompass and amalgamate salient results from the Site Specific, Phase 

Specific and Supplementary Analyses. The Results chapters had expounded the findings from 

measures of physical bone degradation and visual diagenetic changes separately. The same 

pattern is followed in this discussion because of the established convention and also because 

the results had suggested that these two types of parameters had gauged separate influences 

of diagenetic change. The results from the mummified material are presented as isolated 

reports within a third and final section.  

 

7.1 BONE DEGRADATION 

 

The first part of this discussion focuses on the variation in measures of bone degradation; 

bioerosion (non-Wedl and Wedl), collagen birefringence and persistence of the periosteal 

surface. These discussions provide reasoning for the relationships between these parameters 

as well as the factors that had affected their variation. The results from each parameter are 

presented thematically, with separate discussions of the likely causes of particular 

relationships covered in order of diminishing significance. The predicted relationship between 

bacterial bioerosion and funerary process had been explained in the form of detailed 

hypotheses set out in the Background chapter (page 98). Interpretations of relationships 

between bacterial bone bioerosion and funerary treatment were framed with reference to 

these statements. Interpretations of variation amongst other measures of bone degradation 

were related to the research aims through discussions of observed correlations between 

diagenetic parameters and explanatory variables. Discussion of these results allows for some 

interpretation of the use of these features in reconstructions of early taphonomic processes. 
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7.1.1 Bacterial Bioerosion  

 

The ubiquity of bacterial bioerosion within the bones used in the present study was consistent 

with observations by Jans et al. (2004) as well as other authors (Nielsen-Marsh & Hedges 2000; 

Turner-Walker et al. 2002; Jans et al. 2004; Nielsen-Marsh et al. 2007; Smith et al. 2007). The 

high proportion of bones sampled for the current project (87%) that had been bioeroded by 

bacteria was higher than the 75% rate of bioeroded archaeological human bones recorded by 

Jans et al. (2004: 89). The following discussion includes results from both Whole OHI 

measurement and the presence of bacterial bioerosion, as these measures complemented one 

another in representing the nature of biodeterioration found within particular bone 

assemblages. 

 

7.1.1.1 Zonal OHI Scores 

 

Zonal OHI scores were recorded because bacterial bioerosion across thin sections has been 

noted to vary (Hanson & Buikstra 1987; Hedges et al. 1995; Hedges 2002). All of the zonal OHI 

scores correlated significantly with Overall OHI score. This result suggested that all four 

measures of internal histological destruction were influenced by the same factors and could be 

taken to represent manifestations of the same process. The correlations between Whole OHI, 

Periosteal OHI and Endosteal OHI were lower than those between the Whole OHI and Internal 

OHI. The middle third of a thin section provides the best overall indication of histological 

integrity across the whole sample.  

The differences between the distribution of Zonal OHI and Whole OHI scores were complex. 

Higher proportions of internal thirds demonstrated elevated Whole OHI scores compared to 

the endosteal and periosteal zones. Lower OHI scores allocated to the periosteal and endosteal 

thirds of thin sections were consistent with results of previous studies which have suggested 

that non-Wedl MFD form initially within sub-periosteal and sub-endosteal areas (Hanson & 

Buikstra 1987; Bell et al. 1996; Hedges 2002; Jans et al. 2004; Parker Pearson et al. 2005; 

Turner-Walker 2012). These areas of attack expanded internally until they meet within the 

middle third of the section (Hanson & Buikstra 1987; Bell et al. 1996; Hedges 2002; Jans et al. 

2004; Parker Pearson et al. 2005; Turner-Walker 2012). This progression ensured that the 

internal third of a thin section was most often preserved within samples that demonstrated 
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limited levels of bioerosion. Even within heavily bioeroded samples, small islands of preserved 

bone microstructure were often observed within the internal third of thin sections.  

Higher proportions of periosteal thirds of thin sections were scored OHI values of one and two, 

compared with endosteal zones, which tended to score zero. This difference was attributable 

to the persistence of the periosteal cortex, which served to elevate OHI scores in these zones. 

Preserved endosteal surfaces were not observed as often, although the endosteal cortex lies at 

the edge of the trabecular bone that is often lost during the thin sectioning process. It was 

possible that the lower Whole OHI scores of endosteal thirds of thin sections was due to a 

systematic loss of the endosteal trabecular fringe. 

 

7.1.1.2 Whole OHI & Presence of Bacterial Bioerosion 

 

The distribution of the Whole OHI scores towards low values suggested that no significant 

systematic bias had been introduced by the inequality of OHI categories (Hedges et al. 1995: 

Millard 2001). The inequalities involved with the OHI scoring system would have biased 

distributions towards scores of two and three. The results of the current study supported the 

two conclusions of Hedges et al. (1995: 203), that bacterial bioerosion within archaeological 

bones is generally distributed bimodally towards low and high levels of histological 

preservation and that when bacterial bioerosion begins, it usually continues until most of the 

bone microstructure has been destroyed. The modal Whole OHI values amongst the samples 

used in the present study were not as balanced as within the distribution presented by Hedges 

et al (1995: 203). Bones that demonstrated high levels of histological preservation were less 

common within the samples included in the current study. Higher proportions of samples used 

in the current study demonstrated medium Whole OHI scores of two and three. 

The hypotheses that were set out to address the primary research questions were related to 

the distribution of bacterial attack amongst remains from different phases and the differences 

in patterns of bioerosion between bones from different Historical sites. The discussion of the 

variation in bacterial bioerosion will begin with a description of the primary factors that 

influenced the nature of bacterial tunnelling. The discussion will then move on to an 

examination of the differences in patterns of bacterial bioerosion between bones from 

different Historical sites. This strategy allowed for the hypotheses to be addressed directly. 
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7.1.1.2.1 Bacterial Bioerosion and Skeletal Element 

 

It was important to establish whether bacterial bioerosion varied with skeletal element in 

order to confirm that all the samples could be included in the overall analysis. The majority 

(97%) of bone thin sections originated from the femur. The rest had been taken from various 

other long bones. There were no significant differences in levels of histological preservation 

between samples taken from different skeletal elements, either amongst the assemblage as a 

whole, or across single site assemblages. There were no consistent trends in bacterial 

bioerosion amongst particular skeletal elements. Bacterial bone bioerosion did not vary 

significantly with skeletal element within the remains sampled for the current study.  

Long bones include similar ratios of cortical and trabecular bone (Junqueira et al. 1986). 

Variation in bacterial bone bioerosion with skeletal element has previously been explained by 

anatomy or microstructural organisation (Hanson & Buikstra 1987; Bell et al. 1996; Jans et al. 

2004; Turner-Walker 2008). These previous studies included samples of long bones and non-

long bones (Hanson & Buikstra 1987; Hedges 2002; Jans et al. 2004). Differences in levels of 

histological preservation amongst samples used in previous studies followed the division 

between long-bones and non-long bones. The lack of evidence from the Primary Analysis of 

the current study for variation in bacterial bone bioerosion with anatomy suggested that the 

variation in bacterial tunnelling with skeletal element is a result of differences in 

cortical/trabecular ratios or overall natural bone porosity. 

The results from the histological analysis of the bones from Havnø shell midden were used to 

supplement the conclusions of the Primary Analysis regarding variation of bacterial bone 

bioerosion with skeletal element. The histological preservation of the Havnø human bone 

assemblage was not dependent upon skeletal element and there were no correlations 

between bacterial bone bioerosion and anatomical location. These results supported the 

conclusions from the Primary Analysis and inferred that bacterial bioerosion was not 

associated with anatomy, particularly a skeletal element’s proximity to the gut. This conclusion 

was questionable to some extent, as anatomical area was crudely defined in the current study 

and unrecorded variables, such as bodily posture during initial decomposition, may have had 

some bearing on a bone’s proximity to the source of putrefactive bacteria (Jans et al. 2004). 

The cranial and metatarsal fragments sampled from Havnø represented those skeletal 

elements that would have lain farthest from the gut during putrefaction. These bone samples 

demonstrated variable levels of bacterial attack. The two phalanges scored the highest and 
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lowest possible Whole OHI scores and provided evidence that bones which are most remote 

from the internal organs can demonstrate extensive levels of bacterial bioerosion. This finding 

suggested that there was no limit to the extent a bone could be bioeroded based on its 

anatomical position.  

The Havnø study sample mostly consisted of long bones and the results from this site was 

consistent with the suggestion that variation in bacterial bioerosion with skeletal element is 

dependent on ratios of cortical and trabecular bone. The small number of disparate skeletal 

elements that were sampled from Havnø and the high level of variation in their Whole OHI 

scores, meant that these results had only limited scope in establishing whether bacterial 

bioerosion could be expected to vary with skeletal element on a universal scale. The results 

from Havnø and the main assemblage provided no reason to exclude the small, but pertinent 

number of non-femoral thin sections used in the Primary Analysis. However, the small number 

of non-femoral samples that were included meant that this result could not be used to state 

definitively that bacterial bone bioerosion does not vary with skeletal element.  

 

7.1.1.2.2 Bacterial Bioerosion and Age-at-Death 

 

The variable that had the greatest influence on Whole OHI score and the presence of bacterial 

attack amongst the samples used in the current study was age-at-death. Turner-Walker (2008: 

16) suggested that the dichotomy between articulated human bones and butchered animal 

bones used by Jans et al. (2004) to justify an enteric model of bacterial bone bioerosion was a 

product of age-related differences in microstructure having affected the logistics of exogenous 

microbial invasion. However, the relationship between age and bacterial bone bioerosion 

observed within the samples used in the current study did not conform to Turner-Walker’s 

(2008: 16) model. Turner-Walker (2008: 16) suggested that the bones of younger individuals 

would be less susceptible to bacterial bone bioerosion because of their lower natural porosity. 

Neonatal samples demonstrated significantly higher Whole OHI scores compared to samples of 

older individuals. However, samples from bones of children demonstrated lower levels of 

histological preservation than those from juveniles. The median Whole OHI score of the 

juvenile remains was identical to that of the adults. The adult samples demonstrated a slightly 

elevated distribution of Whole OHI scores compared to the juvenile remains. There was no 

linear association between age-at-death and bacterial bone bioerosion, which refuted Turner-

Walker’s (2008: 16) explanation for differences in levels of bioerosion between articulated and 
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butchered archaeological remains (Jans et al. 2004). All variation in bacterial bioerosion related 

to age-at-death amongst the current study sample was explained by the differences between 

neonatal and post-neonatal bone.  

The nature of the histological preservation of neonatal bones was refined by the results of the 

presence of bacterial bioerosion. Forty-nine per cent of neonatal bones from across all sites 

were free from bacterial bioerosion, which contrasted with 9% of post-neonatal samples. 

Neonatal age of an individual was the primary factor that dictated whether or not a bone had 

been bioeroded. There was no difference in the extent of bacterial bioerosion between 

neonatal and post-neonatal remains that had been bioeroded, which confirmed that higher 

distributions of Whole OHI scores amongst neonatal samples was not the result of variably 

elevated levels of histological preservation, but the high numbers of neonatal samples that 

remained free from bacterial bioerosion. High histological preservation of neonatal remains 

was observed consistently within isolated site assemblages. These results indicated that there 

was a factor intrinsic to the remains of infants less than one month old that prevented their 

bones from experiencing putrefactive bioerosion. This effect subsided once an infant lived past 

its first few weeks.  

White’s (2009) study of archaeological bone reported that neonatal remains were more often 

free from bacterial bioerosion. These findings were supported by similar results from the 

bones of experimentally-deposited pig carcasses (White 2009). The present study had 

expanded on a selection of archaeological bones that were used by White (2009) and so a 

similar result was expected. The present study confirmed White’s (2009) results on a larger 

scale. White’s (2009) research was mostly concerned with the histological analysis of neonatal 

bones and so the current study provided a broader contrast between neonatal and post-

neonatal remains.  

White (2009) argued that the best explanation for the lack of bacterial bioerosion within 

neonatal samples was the sterility of infant intestinal tracts at birth (Mackie 1999). Those 

infants that were stillborn or lived only a few days after birth would not have developed the 

enteric osteolytic bacteria responsible for the production of non-Wedl MFD (Mackie 1999; Jans 

et al. 2004; Nielsen-Marsh et al. 2007; White 2009). The binary preservation of the neonatal 

bones was consistent with the dichotomy between infants that had differentially lived long 

enough to develop colonies of gut microbiota responsible for bacterial bone bioerosion. This 

interpretation indicated that almost half of the neonatal samples used in the current study 

originated from individuals that were likely to have been stillborn.  
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There were no other intrinsic differences between neonatal and post-neonatal remains that 

could have provided an alternative explanation for the dichotomy in the presence of bacterial 

bioerosion. Neonatal bone is less mineralised than bone from more mature individuals 

(Junqueira et al. 1986). However, the mineral phase represents the bone fraction that bacteria 

struggle to break down (Hackett 1981; Bell et al. 1996; Hedges 2002; Turner-Walker 2008). 

Low mineralisation within neonatal bones would be expected to encourage bacterial attack, if 

it were to have any effect at all.  

Neonatal bone has not been subjected to secondary remodelling and consequently contains 

fewer Haversian systems (Junqueira et al. 1986). The use of Haversian canals by invasive 

osteolytic bacteria suggests that the low numbers of secondary osteons might explain the lack 

of bacterial bioerosion within the neonatal samples (Turner-Walker 2012). However, 

secondary osteon density increases cumulatively with age and it would be expected that 

bacterial bioerosion would have increased progressively with age-at-death if the abundance of 

osteons were responsible for patterns of bacterial attack (Junqueira et al. 1986; Kerley 1965). 

Neonatal bone is vascularised to some extent, and so low numbers of osteons would not 

explain the absence of non-Wedl MFD from this category of samples. 

Under a model where bacterial bioerosion is dictated by whether or not and individual was 

stillborn, it might be expected that younger foetal individuals would be more likely to 

demonstrate higher levels of histological preservation. However, it was decided that a test of 

this assertion would not be within the scope of this thesis. It was probable that a combination 

of imprecise or inaccurate osteological age estimations and the differential survival of 

premature infants would distort any changes to bacterial bone bioerosion that related to 

foetal age. One in situ foetal skeleton that was sampled from the Bantycock Roman cemetery 

demonstrated high levels of bacterial bioerosion. The bones of this infant may have been 

attacked by the enteric bacteria of the mother, whose skeleton had been extensively 

bioeroded. 

The results from the neonatal individuals suggested that stillborn bodies do not undergo 

significant putrefaction. These bodies must decompose through sterile autolysis and 

exogenous decay (Polson et al. 1985). Circumvention of putrefaction is the primary mechanism 

that is used to promote preservation of the soft tissues and it is likely that neonatal bodies 

would be more prone to spontaneous mummification (Jansen 1984; Polson et al. 1985; 

Campobasso et al. 2001). Forensic studies have noted that neonatal putrefaction is often 

delayed or stunted (Jansen 1984; Polson et al. 1985; Campobasso et al. 2001). Anecdotal 
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forensic evidence has indicated that the bodies of stillborn or murdered new-born infants 

often mummify (Polson et al. 1985; Campobasso et al. 2001). This phenomenon is regularly 

attributed to the mummifying properties of the clandestine environments where infant bodies 

are often hidden, such as airing cupboards (Polson et al. 1985; Janaway 1996; Campobasso et 

al. 2001). However, the sterility of new-born infant intestinal tracts suggests that these bodies 

may be intrinsically more susceptible to mummification. 

There have been no systematic studies that have compared the nature of decomposition 

within neonatal and non-neonatal remains. Experimental studies of pig carcasses have noted 

that neonatal bodies tend to skeletonise more quickly than adults (White 2009; Sutherland et 

al. 2013). However, the remains used in these examples were buried or sub-aerially exposed. 

In both scenarios the faster skeletonisation of the neonatal remains was probably attributable 

to their lower body mass, which would have ensured a shorter period of exogenous decay 

(Sutherland et al. 2013). A buried putrefying body influences the chemical properties of its 

surrounding environment through the release of heat, fluids and gases (Janaway 1996; Vass et 

al. 2002; Dent et al. 2004; Carter et al. 2007; Haslam & Tibbett 2009). These substances can be 

hostile towards the proliferation of exogenous soil bacteria (Janaway 1996; Dent et al. 2004; 

Carter et al. 2007). The absence of putrefaction might enable exogenous bacterial decay of 

buried neonatal bodies. 

These results suggested that histological preservation of neonatal remains that were free from 

bacterial bioerosion could not be used to infer early post mortem treatment. However, the 

consistency in levels of bacterial attack within bioeroded neonatal and post-neonatal remains 

suggested that significant variation in bioeroded neonatal bones would require further 

explanation. The nature of the age-related variation in the presence of bacterial bioerosion 

was consistent with the putrefactive model of bacterial attack. The ability to identify the bones 

of stillborn infants, whilst not directly consistent with the aims of the current project, could be 

useful for archaeologists in attempting to identify mortuary environments that were reserved 

for stillborn infant deposition, such as unconsecrated Catholic cemeteries (Finlay 2000; 

Murphy 2008). Higher numbers of stillborn infants would be expected to be present within an 

unbaptised cohort of infant remains (Finlay 2000). Therefore, whilst assemblages from both 

consecrated and unconsecrated cemeteries might demonstrate variable levels of bioerosion, 

unbioeroded neonatal samples would be expected to appear more abundantly amongst the 

latter. A deficiency in the number of unbioeroded neonatal remains recovered from a 

cemetery would infer that stillborn and young infants had been deposited elsewhere.  
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7.1.1.2.3 Bacterial Bioerosion and Anoxia 

 

The variable that demonstrated the next highest correlation with changes in Whole OHI score 

was recovery of a bone from an anoxic environment. Forty samples (13%) originated from 

skeletons that had been deposited within an anoxic environment. Bone recovered from these 

sediments demonstrated lower levels of bacterial bioerosion than those retrieved from 

aerobic conditions. The relationship between anoxic environments, putrefaction and bone 

bioerosion was discussed in earlier chapters and the correlation between histological 

preservation and anoxic environment was expected (Turner-Walker & Jans 2008; Hollund et al. 

2012; Turner-Walker 2012). The distribution of Whole OHI scores amongst bone samples from 

the two waterlogged Historical sites, Carver Street and Coronation Street, were similarly 

elevated and variable. The two Later Prehistoric skeletons that had been recovered from 

anoxic environments were free from microbial bioerosion.  

Most of the samples of bone from anoxic environments had been bioeroded by bacteria. 

Anoxic environments limited rather than prevented bacterial bone bioerosion, which was 

highlighted by the weaker association between an anoxic environment and the presence of 

bacterial attack. When the neonatal remains were removed from the distribution, 19% of 

bones from anoxic environments were free from microbial bioerosion. The results from the 

whole assemblage suggested that Later Prehistoric remains were more likely to have been 

subjected to processes that inhibited putrefactive bioerosion of bone. Phase had a larger effect 

on the presence of bacterial bioerosion than anoxic environment. When the Later Prehistoric 

bones were removed from the distributions, the number of remains from anoxic deposits that 

were free from bacterial bioerosion dropped to 14%. Anoxic environments promoted lower 

levels of bacterial bioerosion, but only occasionally inhibited microbial destruction. This result 

was probably a consequence of environmental anoxia having been caused by intermittent 

waterlogging.  

The anoxic-deposited Roman remains from Castricum studied by Hollund et al. (2012) were 

mostly free from microbial bioerosion. All of these remains had been deposited directly into 

sediments that were intrinsically anoxic (Hollund et al. 2012). Burial contexts that lie close to, 

but not within the capillary zone of the water table, would only experience periodic anoxia 

relating to seasonal waterlogging (Janaway 1996; Björdel et al. 2000; Turner-Walker & Jans 

2008). Sk. 853 from Bradley Fen had been deposited in an environment that would have been 

permanently waterlogged throughout the duration of decomposition (Knight 20008, personal 
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communication). The thin sections from this skeleton were free from microbial bioerosion. The 

perseverance of organic grave goods within the cist of the Langwell Farm skeleton indicated 

that this environment had also been waterlogged soon after deposition (Lelong 2011). The 

Langwell skeleton also yielded a sample that was free from microbial attack.  

The skeletons from Coronation Street and Carver Street were interred at variable depths at 

different times of the year around or within the capillary zone of the water table (ARCUS 2004; 

Oxford Archaeology North 2008). The variation in the distribution of Whole OHI scores 

amongst these remains was likely to be related to how far bodily decomposition had 

progressed before each grave had become inundated (Hollund et al. 2012). The consistency in 

measures of bacterial bioerosion between remains from these two assemblages suggested 

that the intermittent waterlogging had produced similar patterns of putrefactive bioerosion. 

These results suggested that there may be a particular generalised patterning of Whole OHI 

scores consistent with remains obtained from an intermittently-waterlogged cemetery. 

Skeletons excavated from the same areas of a cemetery or from similar burial depths would 

have been equally susceptible to seasonal waterlogging and would be expected to 

demonstrate comparable patterns of bacterial bone bioerosion. It was impossible to test this 

assertion within both the Coronation Street and Carver Street assemblages. All Coronation 

Street samples had been taken from disarticulated charnel. The site report for Carver Street 

had recorded the relative positions of skeletons within each grave (ARCUS 2004). These 

diagrams provided stratigraphic relationships between skeletons from the same grave, but 

there was no way to calculate the absolute or relative depth of each interment. No two 

skeletons had been sampled from the same grave. The effect of increased burial depth on 

putrefaction could be observed within the deepest-buried skeletons from Carver Street, Sk 

1093 and 1114, which demonstrated high levels of soft tissue preservation (ARCUS 2004). 

Unfortunately, neither of these skeletons had been sampled for thin section analysis. 

All bones from Carver Street that demonstrated the highest levels of histological preservation 

originated from graves within a single row, Row 6 (ARCUS 2004). The spatial specificity of 

bacterial bone bioerosion suggested that the position of these graves had rendered their 

occupants more prone to specific environmental conditions that interfered with bodily 

putrefaction. However, the remains that demonstrated high levels of soft tissue preservation 

had not been recovered from this row, which suggested that burial depth was just as 

important as horizontal position in controlling soft tissue decomposition relating to 

waterlogging. One possible explanation for the spatial specificity of histological preservation 
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was that the graves within Row 6 were deeper than the rest. An alternative explanation may 

be that this particular row of graves had been produced within a similar time frame, when the 

water level was high enough to inhibit bodily putrefaction. This point could be tested through 

analysis of the burial records for Carver Street, although there was no scope for this search to 

have been undertaken as part of the present study. 

These results were consistent with the association between bacterial bioerosion and 

putrefaction, but suggested that the histological preservation of bones from anoxic 

environments cannot be used to infer early taphonomic treatment beyond the level of bodily 

decomposition that had taken place before the burial environment had been rendered anoxic 

(Hollund et al. 2012). Elevated patterns of bacterial bone bioerosion within archaeological 

assemblages from anoxic conditions, such as those observed amongst the remains from Carver 

Street and Coronation Street, may be used to infer whether particular burial environments 

were likely to have been anoxic, or subject to varying cycles of anoxia, during the 

decomposition of the interred bodies. 

 

7.1.1.2.4 Bacterial Bioerosion and Black Death 

 

The variable that had the next largest effect on the distribution of Whole OHI scores, but not 

the presence of bacterial bioerosion, was whether or not a bone originated from a Black Death 

grave. Bones from Black Death graves demonstrated elevated and more variable distributions 

of Whole OHI scores than those from all other contexts, after the neonatal and anoxic-

deposited samples were excluded. The same factor had not influenced the presence of 

bacterial bioerosion, which suggested that the underlying factor responsible for this effect 

reduced rather than obstructed bone exposure to putrefaction.  

Evidence for slumping of the soils and skeletal disarticulation within the Black Death graves 

had indicated that there had been a delay between death and burial in some instances, which 

suggested that these remains had decomposed to some extent before they were buried 

(Grainger et al. 2008: 19). Delays may have resulted from the high volume of bodies that 

required burial, failure to collect bodies directly after death or transportation of bodies to the 

site from surrounding parishes (Grainger et al. 2008). A delay between death and burial would 

explain the variable and elevated levels of histological preservation amongst the Black Death 

bones. Unburied bodies would have been rapidly skeletonised by insects, thereby reducing the 
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levels of soft tissue putrefaction the bones experienced once the remains were buried 

(Simmons et al. 2010). The extent of bacterial bone bioerosion would be dependent on how 

far the body had decomposed above ground. The lack of correlation between Black Death 

bones and the presence of bacterial bioerosion was consistent with this interpretation. If a 

body skeletonises entirely on the ground surface, the rapid loss of soft tissue can prevent the 

formation of non-Wedl MFD (Rodriguez & Bass 1983; 1985; Bell et al. 1996; Turner-Walker & 

Jans 2008; Fernández-Jalvo et al. 2010; Simmons et al. 2010). There was no evidence from 

levels of disarticulation that any of the Black Death remains had entirely skeletonised above 

ground and so all of these skeletons would have experienced some level of putrefactive attack 

(Grainger et al. 2008).  

A possible alternative scenario was that pathological bacteria associated with the Plague 

variably accelerated skeletonisation within the Black Death samples and reduced the levels of 

putrefactive activity that the bones experienced (Campobasso et al. 2001; Vass 2011; Zhou & 

Bayard 2011; Fereira & Cunha 2013). Side-effects of the disease may have reduced the 

microbial load of the gut and the severity of putrefactive bacterial attack (Vass 2011; Zhou & 

Bayard 2011; Fereira & Cunha 2013). Loss of body mass from emaciation could have also 

reduced the duration of skeletonisation (Mant 1987; Zhou & Bayard 2011; Fereira & Cunha 

2013). Variability in bacterial bone bioerosion observed amongst the Black Death samples 

would have been influenced by the extent to which each case of Plague had affected these 

factors. 

The uniformity of Whole OHI scores amongst the rest of the Historical assemblage, which 

would have inevitably included individuals that died of infectious disease, suggested that 

pathological conditions had little effect on bacterial bone bioerosion. The association between 

rates of skeletonisation and burial or sub-aerial exposure is well-established within the 

forensic literature, whereas the correspondence between infectious disease and 

decomposition is more ambiguous (Mann et al. 1990; Vass 2011; Fereira & Cunha 2013). The 

differential treatment of a proportion of the Black Death remains was most likely to account 

for their significantly variable levels of bacterial bone bioerosion (Rodriguez & Bass 1983; 1985; 

Simmons et al. 2010). Significant variation in Whole OHI score within samples of bone from 

Black Death contexts provided the first hints towards a relationship between bacterial 

bioerosion and early post mortem treatment. 
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7.1.1.2.5 Bacterial Bioerosion and Archaeological Phase 

 

The final variable that had a significant effect on the presence and extent of bacterial 

bioerosion was archaeological phase. When the neonatal, anoxic-deposited and Black Death 

remains were excluded, 208 samples remained, which represented 69% of the original study 

sample. The difference in bacterial bioerosion amongst these remaining samples was dictated 

by whether they originated from a Historical or Later Prehistoric context. This variable was the 

last to significantly influence measures of bacterial bioerosion. Archaeological phase controlled 

the presence of bacterial bioerosion to a greater extent than the presence of an anoxic burial 

environment or Black Death context. The relationship between bacterial bioerosion and phase 

directly supported the third hypothesis formulated in the Background chapter (page 98) 

relating to the validity of the relationship between bacterial bioerosion and funerary 

treatment. The assumptions regarding the use of the Later Prehistoric/Historical division as a 

proxy of funerary treatment suggested that levels of bacterial bioerosion within post-neonatal 

remains that had not been recovered from anoxic environments were likely to reflect 

differential exposure to putrefaction encouraged by funerary processes. 

The majority of remains from the Historical assemblage demonstrated high levels of bacterial 

bioerosion. The distribution of Whole OHI scores amongst the Later Prehistoric samples was 

elevated and more variable than the distribution amongst the Historical samples. The modal 

and median OHI scores of the Historical remains were both zero, and the subsequent 

distribution resembled a half-normal curve. The modal Whole OHI score within the Later 

Prehistoric assemblage was also zero, but the median equalled one and significant peaks were 

present at scores of two and five. These peaks were what differentiated the Later Prehistoric 

distribution from that of the Historical assemblage. Bones from Later Prehistoric contexts were 

significantly more likely to have remained free from bacterial bone bioerosion than those 

obtained from Historical sites.  

The notion that funerary rite was the causal factor behind the different levels of bacterial 

bioerosion amongst the Historical and Later Prehistoric remains was supported by the nature 

of the difference between these sample sets when compared to models of bodily 

decomposition established by forensic and experimental studies. It had been predicted that 

bones from Historical sites would demonstrate high levels of bacterial bioerosion, as it could 

be assumed that the majority of these samples had been exposed to extensive putrefaction 

through burial soon after death (Rodriguez & Bass 1983; 1985; Jans et al. 2004). The 
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interquartile range of the Historical distribution was confined to the lowest OHI scores of zero 

and one, representing the most severe levels of bacterial destruction.  

It had been predicted that if bacterial bioerosion related to funerary treatment, the Later 

Prehistoric bones would demonstrate more variable patterns of internal bone bioerosion as 

there was evidence that these bodies had been treated diversely. Burial was likely to promote 

the highest levels of putrefactive bone bioerosion and so Whole OHI score within an 

assemblage that had been subjected to variable treatment could only be elevated compared to 

the Historical samples (Rodriguez & Bass 1983; 1985; Manhein 1997; Rodriguez 1997; 

Campobasso et al. 2001; Jans et al. 2004; Nielsen-Marsh et al. 2007; Vass 2011). The higher 

median value and broad interquartile range of the Later Prehistoric Whole OHI distribution 

suggested that histological preservation amongst this assemblage was elevated and variable 

compared to the Historical study sample. Bacterial bioerosion of the archaeological samples 

used in the current study varied predictably based on knowledge regarding variable processes 

of decomposition and known treatment of the dead. 

 

7.1.1.2.6 Uniformity in Historical OHI scores 

 

The requirements of the first two hypotheses put forward in the Background chapter (page 98) 

were that the distribution of Whole OHI scores amongst the Historical remains would form a 

half-normal shape, and that there would be no difference in measures of bacterial bioerosion 

between bones from different Historical site assemblages. It had been predicted that neonatal 

and anoxic-deposited remains were likely to increase overall levels of histological preservation 

amongst the Historical samples and therefore the exclusion of these types of sample was 

considered to be valid. The exclusion of the Black Death samples was also valid, as there was 

prior evidence that these remains had not been interred immediately after death and could 

not be considered as part of the consistently-buried Historical cohort of remains. The Historical 

assemblage that was left after the exclusion of these samples (the Historical baseline) 

represented the group of skeletons that were buried soon after death, subjected to high levels 

of putrefactive bioerosion and were expected to demonstrate the consistent patterns of 

extensive bacterial attack detailed within the first and second hypotheses. 

The distribution of Whole OHI score amongst the Historical baseline assemblage was 

significantly different from a half-normal model. Ostensibly, this result refuted the 
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expectations of the first hypothesis that distribution of Whole OHI scores amongst the 

Historical assemblage would form a half-normal shape. However, further analysis revealed that 

the Historical baseline distribution deviated from the half-normal model in terms of its 

significant leptokurtic shape. A leptokurtic distribution is produced when data points closely 

cluster around the mean, which in a normal distribution is also usually the modal value. This 

distribution is symptomatic of low variation around the modal value. The Historical baseline 

distribution was significantly less variable than a normal distribution around Whole OHI scores 

of zero. The normal distribution had been chosen as the comparative model because it 

represented natural variation within a continuous variable that could be explained by chance. 

Therefore, although the Historical baseline distribution of Whole OHI scores was not 

consistent with the statistical criteria of the first hypothesis, the significantly low variance of 

this distribution around zero was more consistent with the specific hypothesis that Historical 

remains would demonstrate invariably poor levels of histological preservation. Failure to fulfil 

the statistical criteria of the first hypothesis was attributable to a weakness within the 

predictive model in not recognising that the hypothesis would still be acceptable if variation 

within the Historical assemblage was significantly lower than what might be expected as a 

result random chance. Histological preservation within the Historical baseline assemblage was 

invariably poor and consistent with levels of putrefaction that would be experienced by bones 

from bodies that were buried immediately after death. 

Ninety-eight-per-cent of the Historical baseline sample had been bioeroded by bacteria. This 

finding combined with the variability in Whole OHI scores meant that the two samples from 

this distribution that were free from bacterial bioerosion represented anomalous outliers. One 

of these samples had been taken from the Bolsover charnel assemblage. Evidence for specific 

environmental or taphonomic factors that may have been responsible for this sample’s 

anomalous histological preservation were not forthcoming. The other sample originated from 

the Royal Mint skeleton that had been forced into a coffin that was too small for the body and 

covered with slaked lime (Grainger & Phillpotts 2011: 104). The circumstances of this skeleton 

had suggested to the excavators that it belonged to a high status individual whose body had 

been displayed before burial (Grainger & Phillpotts 2011: 104). The body may have been 

treated with lime to arrest decomposition and ensure that it looked presentable when it was 

displayed (Grainger & Phillpotts 2011: 104). Experiments that have investigated the effects of 

liming on the decomposition of pig carcasses found that it interferes with decomposition 

within the first six months of burial (Schotsmans et al. 2012). The presence of lime within the 

burial environment has been implicated in the survival of soft tissue within numerous other 
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burials (Aufderheide 2003; Kim et al. 2008). Lime is bactericidal, but can also preserve soft 

tissue through desiccation (Aufderheide 2003; Schotsmans et al. 2012). It was likely that the 

absence of bacterial attack from the limed Royal Mint skeleton sample was attributable to 

liming having interfered with bodily putrefaction. This specimen provides further evidence for 

the association between bacterial bioerosion and funerary treatment.  

The second expectation with regards to the relationship between bacterial bioerosion and 

funerary treatment was that distributions of Whole OHI scores would be similar between 

different Historical site assemblages. There was no statistically significant difference in Whole 

OHI scores and the presence of bacterial attack between bone samples from different sites 

within the Historical baseline assemblage. When combined with the results from this 

assemblage as a whole, this finding indicated that the histological preservation of all Historical 

site assemblages was invariably poor. These two findings were consistent with the first two 

hypotheses and suggested that levels of bacterial bioerosion conformed to what would be 

expected within skeletons from bodies that were buried soon after death. All significant 

variation in bacterial bioerosion of Historical samples away from this consistent diagenetic 

signature of inhumation could be attributed to the influence of neonatal, anoxic-deposited and 

Black Death samples. 

 

7.1.1.2.7 Uninfluential Factors 

 

Significant variation in bacterial bioerosion amongst the Historical remains was explained by 

neonatal, anoxic-deposited and Black Death remains. The dichotomy between the Historical 

and Later Prehistoric assemblages had been taken as a proxy of differential funerary 

treatment, which could not be measured directly. The use of this proxy was risky, as there 

were a number of factors that differed between Later Prehistoric and Historical remains that 

might have affected the way the bodies had decomposed. However, all factors that had been 

recorded as having potentially affected bacterial bone bioerosion were controlled to some 

extent or showed no significant relationship with Whole OHI score or the presence of bacterial 

tunnelling. These variables could not have been responsible for the excess variation in 

bacterial bioerosion within the Later Prehistoric samples.  

Age-at-death (excluding neonatal bone), sex and skeletal element all demonstrated no 

association with measures of bacterial bioerosion, which refuted the possibility that 
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demographic differences in bone microstructure were responsible for patterns of bacterial 

attack (Jans et al. 2004; Turner-Walker 2008). The nature of the burial soil that surrounded 

bone samples also had no influence on bacterial bioerosion. This result was particularly 

pertinent to the underlying assumptions of the endogenous origin of osteolytic bacteria, 

particularly when it was considered that the bones from Carsington Pasture Cave had not been 

buried yet demonstrated extensive levels of bacterial bioerosion. Retrieval of bones from the 

open environment of Carsington Pasture Cave had no influential effect on the presence or 

extent of bacterial bioerosion and therefore it was unlikely that non-Wedl MFD had been 

produced by exogenous soil bacteria. The categories of soil type were problematic, but in 

general the lack of association between measures of bacterial bioerosion and burial soil 

further supported the assumption that bacterial bioerosion was produced by enteric bacteria 

rather than exogenous soil bacteria. This result also suggested that beyond anoxic 

environments, variation in qualities of the burial sediment had not affected bodily 

decomposition in a way that impacted on putrefactive bioerosion of bone. 

The lack of variation in measures of bacterial bone bioerosion amongst the Historical remains 

suggested that unrecorded or non-recordable factors were unlikely to have affected bodily 

putrefaction in a way that influenced bacterial bone bioerosion. It was important to make a 

note of these factors to discount their potential influence on the variation in bacterial 

bioerosion amongst the Later Prehistoric samples. There was evidence that the remains from 

the majority of Historical sites had been differentially subjected to coffin burial (Foster 1992; 

Boyle et al. 1995; ARCUS 2004; Grainger et al. 2008; Gibson et al. 2009; Nolan et al. 2010). The 

sporadic survival of coffin furniture into the archaeological record meant that it was impossible 

to accurately record the occurrence of coffined remains amongst the study sample. However if 

coffin burial had interfered with putrefactive bone bioerosion, measures of bacterial attack 

between and within bones from Historical sites would have been highly variable. The site-

specific results from the Royal Mint assemblage suggested that there was no association 

between coffin burial and bacterial bone bioerosion (Grainger et al. 2008). The results from 

the Royal Mint assemblage also suggested that deposition within a single or mass grave also 

had no effect on levels of bacterial bioerosion. This result was expected given that an 

individual’s gut bacteria are capable of extensively bioeroding the skeleton by themselves 

without any assistance from any extraneous gut bacteria present within the surrounding 

environment (Janaway 1996; Hedges 2002; Jans et al. 2004). 

A similar logic could be applied to the effects of the presence of clothing and wrappings. There 

were variable osteological and artefactual indications for the presence of tight wrappings or 
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clothing at each Historical site (Boulter 1992; Foster 1992; Boyle et al. 1995; ARCUS 2004; 

Grainger et al. 2008; Gibson et al. 2009; McIntyre & Bruce 2010). The temporal variation in the 

Historical remains sampled for this study, sometimes over single sites, meant that a certain 

number of individuals from each Historical cemetery would have been variably clothed or 

wrapped (Foster 1992; Gibson et al. 2009). The lack of unexplained variation in bacterial 

bioerosion amongst Historical samples suggested that clothing and wrappings had not 

substantially affected exposure to putrefactive bacterial attack. 

It was unlikely that all of the Historical burials were interred at the same time of year. The lack 

of variation in bacterial bioerosion amongst the Historical remains suggested that season of 

burial had not significantly affected levels of putrefactive bone bioerosion. These results were 

consistent with those obtained from the microscopic study of bones from fallen livestock 

conducted by Fernández-Jalvo et al. (2010). The results from the current study indicated that 

whilst seasonal changes often alter the rate of decomposition within buried remains, the levels 

of putrefaction that a bone experienced does not change significantly (Rodriguez & Bass 1983; 

Mant 1987; Mann et al. 1990; Manhein 1997; Bass 1997; Wilson et al. 2007; Fernández-Jalvo 

et al. 2010; Meyer et al. 2013). Seasonality was likely to have affected putrefactive bone 

bioerosion indirectly at sites where it promoted waterlogging. The consistency in bacterial 

bioerosion amongst the Historical remains indicated that climatic changes over time had not 

significantly impacted bacterial bone bioerosion. It was difficult to determine whether this 

finding had similar implications for the results from the Later Prehistoric remains, which 

represented a longer duration of time that included larger climatic fluctuations (Darvill 2010). 

Burial depth varied between and within remains recovered from different Historical sites 

(Boulter 1992; Foster 1992; Boyle et al. 1995; ARCUS 2004; Grainger et al. 2008; Gibson et al. 

2009; McIntyre & Bruce 2010). The consistency of bacterial bioerosion within the Historical 

remains suggested that burial depth had not dictated levels of putrefactive bioerosion unless it 

had resulted in the body being placed within an anoxic environment (ARCUS 2004; Gibson et 

al. 2009; Hollund et al. 2012). It was still possible that particularly deep burials curtail 

putrefaction and bone bioerosion through their intrinsic anoxia (ARCUS 2004; Dent et al. 2004; 

Gibson et al. 2009). This possibility could not be assessed within the current study sample, as 

all bones that had been subjected to deep burial had also been waterlogged (ARCUS 2004; 

Gibson et al. 2009). These results suggested that although variations in moderate burial depths 

can affect the rate of bodily decomposition, they do not alter the overall level of putrefaction 

that bones experience (Campobasso et al. 2001). 



  

415 
 

The consistency in Whole OHI score amongst the Historical remains suggested that factors 

intrinsic to an individual that could have affected gut bacteria, such as diet, disease, 

microbiome health and composition, had not significantly influenced putrefactive bacterial 

bioerosion of bone. These factors would have varied within and between the temporally 

diverse populations that constituted the Historical study sample. This result indicated that the 

species of bacteria responsible for the production of non-Wedl MFD occur commonly within 

most human populations through time and that their presence and ability to bioerode bone is 

not affected by diet. Forensic studies have indicated that decomposition is accelerated within 

individuals who died of infectious diseases. The lack of variation in bacterial bioerosion 

amongst the Historical population, some of which were likely to have died of infectious 

conditions, suggested that these diseases had not substantially altered the extent of 

putrefactive bone bioerosion (Campobasso et al. 2001; Vass 2011; Fereira & Cunha 2013). This 

general conclusion was supported by the specific finding that there was no significant 

difference in levels of bacterial bioerosion between leprotic and healthy skeletal samples from 

the medieval St. Leonard Hospital cemetery in Grantham. 

Penetrative trauma represented another variable that was likely to have varied between and 

within the Historical assemblages (Boulter 1992; Foster 1992; Boyle et al. 1995; ARCUS 2004; 

Grainger et al. 2008; Gibson et al. 2009; McIntyre & Bruce 2010). The results of investigations 

into the effects of penetrative trauma on decomposition are variable, although some studies 

have suggested that it accelerates skeletonisation (Micozzi 1986; Mant 1987; Galloway et al. 

1989; Mann et al. 1990; Cross & Simmons 2010). The Historical consistency in bacterial bone 

bioerosion indicated that penetrative trauma had little effect on the levels of putrefactive 

bioerosion that bones experienced. However, it was possible that only small numbers of the 

remains sampled had been subject to penetrative trauma, in which case variation in bacterial 

bioerosion attributable to this factor may have failed to impact on overall diagenetic trends. 

Penetrative trauma may represent another factor that affected the rate, but not the extent of 

putrefactive decomposition experienced by a bone. Alterations in the rate of bodily 

decomposition attributable to penetrative trauma may be localised to affected areas. 

The results from the samples included in the current study may be surprising given that some 

uninfluential variables are commonly cited as primary influences on cadaveric decomposition 

(Rodriguez & Bass 1983; 1985; Janaway 1996; Campobasso et al. 2001; Vass 2011). The 

common feature of many of these non-influential factors was that they affect the rate of 

decomposition, rather than the overall level of putrefaction experienced by the bones 

(Rodriguez & Bass 1983; 1985; Janaway 1996; Campobasso et al. 2001; Vass 2011). These 
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results were consistent with the hypothesis that only factors that sufficiently reduce the level 

of putrefaction experienced by a bone, such as rapid soft tissue loss by extraneous means, will 

affect bacterial bone bioerosion (Jans et al. 2004; Nielsen-Marsh et al. 2007). This finding 

indicated that anthropogenic processes such as coffin burial will not produce a characteristic 

signature of bacterial bone bioerosion. However, the low impact of these processes on 

bacterial bone bioerosion would ensure that it would be easier to discern diagenetic signatures 

of more effective treatments. 

 

7.1.1.2.8 Later Prehistoric Assemblage 

 

When the neonatal (three samples from two sites) and anoxic-deposited (two samples from 

twos sites) remains were excluded from the distribution, the pattern of Whole OHI scores 

amongst the Later Prehistoric bones did not change substantially. The distribution was 

significantly different from a normal model. The modal value of this Later Prehistoric 

distribution was zero, but there were two secondary peaks at Whole OHI scores of two and 

five. The slightly platykurtic distribution of Later Prehistoric Whole OHI scores emphasised that 

the difference between this distribution and the Historical baseline was the higher levels of 

variation within the former. There was no significant difference in Whole OHI score or the 

presence of bacterial attack between Later Prehistoric site assemblages, although the results 

from both parameters were close to the significance threshold within the Holm-Bonferroni 

method (Appendix 2). Low sample sizes and high levels of variation in bacterial bioerosion 

across Later Prehistoric site assemblages could have affected statistical significance.  

It was possible that unrecorded, unknown factors specific to the Later Prehistoric periods had 

produced the variation within this assemblage. However, it was difficult to determine what 

unrecorded variable could have influenced variation in the bacterial bioerosion within the 

Later Prehistoric assemblage without it having had some effect on the histological preservation 

of the Historical samples. Based on current knowledge regarding the relationship between 

taphonomy, putrefaction and bacterial bioerosion, funerary treatment represented the best 

explanation for the dichotomy in histological preservation observed between the Later 

Prehistoric and Historical sample assemblages. The next section presents attempts to account 

for the variation in bacterial bone bioerosion amongst the Later Prehistoric remains to explore 

whether there was any further evidential justification for the relationship between bacterial 

bioerosion and funerary treatment.  
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7.1.1.2.8.1 Remains from Cave Environments 

 

All of the bones sampled that had been recovered from cave sites were disarticulated at the 

point of recovery. It could not be stated with absolute certainty that all individuals represented 

had decomposed within a cave. However, taphonomic analysis of the human bone 

assemblages from both cave sites suggested that most individuals were originally deposited as 

whole corpses (Chamberlain 1999; Papakonstantinou 2009). Therefore, it was assumed that 

the remains from cave sites had decomposed within these contexts from the outset and that 

patterns of bacterial bioerosion would reflect this process.  

Patterns of cadaveric decomposition observed within caves indicated that cave deposition 

would result in bones being exposed to variably high levels of putrefactive bioerosion (Terrell-

Nield & MacDonald 1997). The lack of significant difference in measures of bacterial bioerosion 

between cave-deposited remains and the variably-bioeroded Later Prehistoric assemblage 

suggested that the cave-deposited samples had been bioeroded diversely. Whole OHI scores 

amongst samples of post-neonatal bones from cave sites (Carsington Pasture Cave and 

Beeston Tor CX) were generally low, but slightly elevated and variable when compared to the 

Historical baseline. The higher histological preservation of the cave-deposited samples was 

partly attributable to the presence of bones that had been subjected to early post mortem 

manipulation (Chamberlain 1999; Jans et al. 2004; Nielsen-Marsh et al. 2007; 

Papakonstantinou 2009). The samples of bone from the Carsington Pasture Cave that 

demonstrated cut-marls indicative of dismemberment was free from microbial bioerosion. The 

association between cut-marks and histological preservation supported the hypothesis that 

bacterial bioerosion of bone is primarily controlled by interventions which would have 

neutralised the effect of putrefactive gut bacteria within the immediate post mortem period 

(Jans et al. 2004; Nielsen-Marsh et al. 2007).  

Patterns of bacterial bioerosion within the cave-deposited post-neonatal bones that showed 

no evidence for dismemberment was still slightly elevated compared to the Historical baseline. 

Whole OHI scores of two were particularly well-represented amongst these samples. This 

patterning was consistent with what would be expected based on models of cadaveric 

decomposition in caves and indoor environments (Galloway et al. 1989; Goff 1991; Terrell-

Nield & MacDonald 1997; Anderson 2011). The cave would have restricted insect interaction 

with the deposited corpses, promoting prolonged putrefaction (Galloway et al. 1989; Goff 

1991; Terrell-Nield & MacDonald 1997; Anderson 2011; Vass et al. 2011). However, the small 
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loss of soft tissue promoted by insects could have been enough to have variably limited levels 

of putrefactive bioerosion experienced by the skeleton, which would have produced a 

diagenetic signature that was in-between those produced by burial and sub-aerial exposure. 

Therefore some of the deviant variation (Whole OHI scores of two and five) in bacterial 

bioerosion of the Later Prehistoric samples was attributable to Neolithic deposition of corpses 

within caves as well as dismemberment practices. 

 

7.1.1.2.8.2 State of Articulation & Phase 

 

The only variable that came close to exerting a significant influence on measures of bacterial 

bioerosion and explaining some of the variation in histological preservation amongst the Later 

Prehistoric remains was specific Later Prehistoric phase, Neolithic, Bronze Age or Iron Age. It 

had been predicted in the Methodology that if bacterial bioerosion related to funerary 

treatment it might be expected to vary with specific Later Prehistoric phase because of the 

culturally-specific changes in funerary treatment associated with different time periods 

(Bradley & Hodder 1979; Rowley-Conwy 2007). The use of archaeological phase (Later 

Prehistoric versus Historical) as a proxy for funerary treatment formed the basis of the current 

study. However the association between funerary treatment and Later Prehistoric phase was 

more tenuous than within the Later Prehistoric/Historical dichotomy, as less is known about 

the rites that were practised in the Later Prehistoric periods and how they varied with time 

and geography (Darvill 2010). Archaeological phases are artificial constructs and funerary ritual 

is not likely to transition neatly between each phase in all parts of the country (Bradley & 

Hodder 1979; Rowley-Conwy 2007; Darvill 2010). These observations suggested that any 

phase-specific variation in bacterial bioerosion amongst the Later Prehistoric remains was not 

likely to be straightforward. The lack of significant associations between bacterial bioerosion 

and Later Prehistoric phase was likely to be a product of these inconsistencies.  

State of articulation represented an archaeological end-point that must have been related to 

how Later Prehistoric human remains had been treated after death. Immediate burial was 

assumed to represent the primary way of ensuring that an articulated skeleton survived into 

the archaeological record. It was expected that measures of putrefactive bioerosion would be 

similar between articulated Historical and Later Prehistoric assemblages. Various funerary 

processes can promote skeletal disarticulation, and so it was expected that the majority of 

variation in bacterial bone bioerosion amongst the Later Prehistoric samples would have 
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originated within the disarticulated bone samples. However, state of articulation had no 

significant influence on measures of bacterial bioerosion.  

The distributions of bacterial bone bioerosion amongst the disarticulated Later Prehistoric 

remains met the expectations set out in the Methodology. Bacterial bioerosion was highly 

variable and differed from what was observed within the Historical baseline assemblage. The 

confirmation of the three Hypotheses regarding the relationship between bacterial bioerosion 

and funerary treatment suggested that variation within the disarticulated Later Prehistoric 

remains most likely corresponded with funerary treatments that had exposed the bone to 

diverse levels of putrefaction (Rodriguez & Bass 1983; 1985; Bell et al. 1996; Jans et al. 2004; 

Nielsen-Marsh et al. 2007; Simmons et al. 2010). The lack of correlation in measures of 

putrefactive bioerosion between Later Prehistoric remains recovered in different states of 

articulation related to the assumption that immediate burial is the primary way of ensuring 

that an articulated skeleton persists into the archaeological record. 

It was thought that variation in bacterial bioerosion amongst the Later Prehistoric 

disarticulated assemblage might be explained by specific Later Prehistoric phase. The pattern 

of Whole OHI scores amongst the disarticulated assemblage was similar to the pattern 

amongst the samples as a whole. The majority of disarticulated samples had been allocated 

Whole OHI scores of zero, but secondary peaks were present at scores of two and five. 

Distributions of Whole OHI scores amongst samples from different phases was relatively 

constant. However, subtle variation in phase-specific distributions of bacterial bioerosion 

accounted for the primary differences between the disarticulated assemblage and the 

Historical baseline model.  

Neolithic disarticulated samples constituted parts of the peaks at Whole OHI scores of two and 

five. At least one of these samples that had been allocated a Whole OHI score of five had been 

taken from a bone of a dismembered body. Another of these samples was from the Ingleby 

Barwick Bronze Age bone that had been erroneously attributed a Neolithic date. As discussed 

above, bones of Neolithic bodies that had decomposed within caves were responsible for the 

Neolithic representation of scores of two. Evidence for differential treatment of Neolithic 

remains and associated change in levels of bacterial bioerosion supported the link between 

bacterial bone bioerosion and funerary treatment but highlighted how variation in treatment 

might distort Later Prehistoric phase-specific patterns. The peak at Whole OHI score of five 

amongst the disarticulated Later Prehistoric assemblage mostly consisted of Bronze Age 

samples, whereas Iron Age samples contributed substantially to the peak at scores of two.  
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The distribution of Whole OHI scores amongst the articulated Later Prehistoric remains was 

similar to that observed amongst the disarticulated samples. Secondary peaks at Whole OHI 

scores of two and five were responsible for the deviation of this distribution from the 

Historical baseline. There were clearer divisions in Whole OHI score based on specific Later 

Prehistoric phase. All of the articulated Neolithic and Iron Age remains had been bioeroded. 

Distributions of Whole OHI scores amongst these samples were responsible for the peak at 

Whole OHI scores of two. These samples demonstrated a slightly elevated histological 

preservation compared to the Historical baseline, but in general their diagenetic signatures 

were consistent with the notion that articulated remains were protected from rapid soft tissue 

loss in the early post mortem period and their bones were subsequently exposed to high levels 

of putrefactive bioerosion. The only articulated Later Prehistoric bone samples that 

demonstrated high levels of histological preservation had been recovered from Bronze Age 

sites. It was these Bronze Age remains that constituted the main deviation of the Later 

Prehistoric articulated distribution away from the Historical baseline and what would be 

expected within bones from bodies that had been buried immediately after death. The high 

proportions of Bronze Age samples that were free from bacterial bioerosion were responsible 

for the close-to-significant variation in the presence of bacterial bioerosion amongst Later 

Prehistoric remains from different phases. 

It was possible that the high proportions of unbioeroded samples of articulated Bronze Age 

bones may have occurred through the influence of one site that included larger numbers of 

such remains and had biased overall patterns. However, four out of the six Bronze Age sites 

that did not include anoxic deposits demonstrated high proportions of articulated bones that 

had not been bioeroded by bacteria. Sample sizes within some of the Bronze Age sites were 

low, however the rarity of unbioeroded bones from the Historical baseline distribution 

suggested that the occurrence of histologically well-preserved bones from articulated 

skeletons at multiple Bronze Age sites represented a real phase-specific phenomenon.  

The variable extent of bacterial attack within disarticulated and articulated Later Prehistoric 

remains was very similar. Variation in bacterial attack amongst these assemblages was 

explained by subtle disparities attributable to a combination of phase and state of articulation. 

Trends were complex, which was likely to be attributable to the variable treatment of human 

remains throughout Later Prehistoric phases, as exemplified within the Neolithic cave-

deposited samples. Remains from all Later Prehistoric phases contributed to the prominent 

peaks at Whole OHI scores of zero. A combination of Iron Age and Neolithic bones were mostly 

responsible for the secondary peak at Whole OHI scores of two. A combination of Neolithic 
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disarticulated bones and Bronze Age articulated and disarticulated samples were responsible 

for the higher Whole OHI scores of four and five.  

Associations between chronology and bacterial bioerosion were also observed within samples 

from certain Later Prehistoric site assemblages. For instance, the Early Bronze Age specimens 

from Ingleby Barwick were free from bacterial bioerosion, whilst the Middle Bronze Age 

remains were filled with bacterial tunnelling (Annis et al. 1997). More subtle phase-specific 

variations in bone bioerosion were observed within Later Prehistoric remains from Neat’s 

Court, Frälsegården, Cnip Headland, Carsington Pasture Cave, Cladh Hallan and South 

Dumpton Down. These patterns are discussed in more detail within the next chapter. 

Phase-specific differences in measures of bacterial bone bioerosion could raise concerns about 

whether the archaeological age of remains had any bearing on bioerosion. Bacterial bioerosion 

linked to chronology would be more consistent with an exogenous origin for osteolytic 

bacteria. Previous studies of bone diagenesis in archaeological remains have consistently 

found no relationship between chronological age and bacterial bone bioerosion (Hedges et al. 

1995; Hedges 2002). It would be expected that differences in bacterial bioerosion dictated by 

chronology would produce progressive patterns. Either levels of bacterial bioerosion would 

increase with age of remains because of the increased opportunities for bacterial exploitation, 

or they would decrease because of the greater potential for histologically well-preserved 

bones to survive into the archaeological record (Hedges 2002; Trueman & Martill 2002). 

Patterns of bacterial bioerosion within remains from different Later Prehistoric phases did not 

fit either of these models. Histological preservation was low within the Neolithic remains, 

increased into the Bronze Age then decreased within bones from the Iron Age. The high levels 

of histological preservation observed within the samples of bone from the Mesolithic/Early 

Neolithic Havnø site also deviated from a chronological model. This evidence was compounded 

by the observation that bacterial bioerosion varied considerably within samples of bones that 

dated to similar periods as well as within assemblages retrieved from the same site. The 

results of the current study agreed with previous research in indicating that chronological age 

has no bearing on bacterial bone bioerosion over archaeological timescales (Hedges et al. 

1995; Hedges 2002).  

Cultural change associated with specific phases is often thought to be associated with 

adaptation to climatic shifts (Bradley & Hodder 1979; Rowley-Conwy 2007; Darvill 2010). It was 

possible that differences in bacterial bioerosion with Later Prehistoric phase were attributable 

to shifts in climatic conditions that accompanied or even drove the cultural change whilst also 
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altering the nature of cadaveric decomposition. The results from the Historical assemblages 

had suggested that seasonality and changes in climate were unlikely to have affected 

putrefactive bacterial bioerosion. The variation in bacterial bioerosion between similarly-aged 

remains from the same Later Prehistoric sites, as well as the subtleties of variation in bacterial 

attack by phase refuted the suggestion that climatic fluctuations were responsible for phase-

specific differences in bacterial bioerosion.  

 

7.1.2 Wedl Tunnelling 

 

Wedl tunnelling was present within 18% of the study sample. In terrestrial environments, this 

type of alteration is associated with the exploitation of bone by extraneous fungi (Marchiafava 

et al. 1974; Jans et al. 2004; Fernández-Jalvo et al. 2010). This type of tunnelling usually 

occurred concurrently with bacterial attack within the current study sample. This result 

contrasted with the findings from previous studies which have found that fungal tunnelling 

usually occurs in isolation (Jans et al. 2004; Nielsen-Marsh et al. 2007). Wedl tunnelling was 

never observed to have destroyed significant proportions of the internal bone microstructure, 

and was mostly seen within small islands of well-preserved bone that had been missed by 

bacteria. The absence of Wedl bioerosion from bones that were free from non-Wedl MFD 

suggested that it was unlikely that prior fungal tunnelling had been erased by subsequent 

bacterial attack. A more likely scenario was that fungi invaded the bone after the body had 

skeletonised and targeted the areas of preserved bone microstructure that had been missed 

by putrefactive bacteria (Nielsen-Marsh & Hedges 2000; Jans et al. 2004). 

The primary factor that influenced the presence of Wedl tunnelling was whether a bone had 

been retrieved from a cave. Bones from caves were significantly more likely to demonstrate 

Wedl tunnelling. The specific decompositional environment of the cave appeared to have 

encouraged fungal exploitation of bone collagen. Most of the bones from caves were never 

properly buried, and would have lain within a cold, moist, but aerated atmosphere up until the 

point at which they were retrieved. The link between Wedl tunnelling and cave deposition is 

supported by descriptions of cadaveric decomposition within cave environments, which 

recognise fungi as major contributors to later bodily decay in these contexts (Terrell-Nield & 

MacDonald 1997). This observation was consistent with the appearance of Wedl tunnelling 

within areas of bone that had been missed by putrefactive bacteria. Previous studies have 

suggested that fungal exploitation of bone is more likely to occur within bones that retain 
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some soft tissue, which was consistent with the taphonomic evidence from the cave 

assemblages that bones had been deposited as part of whole corpses (Marchiafava et al. 1974; 

Chamberlain 2001; Papakonstantinou 2009).  

All samples of bones that did not originate from caves were likely to have been buried before 

or soon after decomposition. The lower rates of Wedl tunnelling within buried bones 

suggested that burial obstructs fungal exploitation of the bone microstructure. The types of 

fungus that are most capable of exploiting bone collagen may not be able access buried bone 

beyond a certain depth and may rely on open environments for the transportation of their 

spores. These results suggested that defleshed bones exposed to the air may be particularly 

susceptible to fungal exploitation. 

There were significant differences in the occurrence of Wedl tunnelling between bones from 

different site assemblages after the cave bones were excluded. Most of the variation was 

controlled by Later Prehistoric site assemblages. Wedl attack appeared most often within 

samples of bones from four Later Prehistoric sites: Neat’s Court, Brodsworth, Danebury and 

South Dumpton Down. The only Historical site assemblage that demonstrated higher 

occurrences of Wedl tunnelling was the Royal Mint. Analysis of the results from the Royal Mint 

identified that occurrences of Wedl tunnelling were higher within samples from skeletons 

found within the Abbey Church. 

The significant site-specific differences in occurrences of Wedl tunnelling amongst bone 

samples suggested that deposition within a cave was not the only factor that encouraged 

fungal exploitation of bone. There was some suggestion that bodies recovered from 

underneath the Abbey Church at the Royal Mint site had been displayed before they were 

eventually interred (Grainger et al. 2008). Exposure of bone along with decomposing soft 

tissue in an open indoor environment may have been responsible for the slightly elevated 

occurrence of fungal Wedl tunnelling within these samples. The higher occurrence of Wedl 

tunnelling within bones from Later Prehistoric sites was notable given that Historical remains 

were likely to have been buried soon after death, whereas there was evidence that the Later 

Prehistoric bones had been subject to varied forms of treatment that may have involved sub-

aerial exposure or entombment above ground (Cunliffe 1983; 1984; Barber et al. 1989; Perkins 

1994; Annis et al. 1997; Chamberlain 1999; Parker Pearson et al. 2005; Darvill 2010; Lelong 

2010; Vyner & Wall 2011; Lelong 2012). The association between Wedl tunnelling and Later 

Prehistoric sites combined with the evidence for the significant effect of cave deposition 

suggested that retention of a bone above ground or within an open aerated environment, 



  

424 
 

possibly whilst retaining some soft tissue, encouraged fungal exploitation of bone 

microstructure.  

There was evidence from Danebury, Suddern Farm and Brodsworth that graves had been 

reopened before the bodies had skeletonised (Cunliffe 1983; Merrony 2012, personal 

communication). Bones from all of these sites demonstrated Wedl tunnelling. Similar post 

mortem processes had been implicated at other Later Prehistoric sites such as Hornish Point, 

South Dumpton Down and Cladh Hallan, but samples from these sites did not demonstrate 

fungal tunnelling (Barber et al. 1989; Perkins 1994; Parker Pearson et al. 2005). This 

observation suggested that retention of a bone above ground increased the chances, but did 

not guarantee it would be tunnelled by fungi. The precise conditions that encourage fungal 

exploitation of bone microstructure require further investigation. 

The link between Wedl tunnelling and decomposition of a bone in an open environment may 

be consistent with previous observations that Wedl tunnelling is prevalent within the 

butchered archaeological bones of domesticated animals (Jans et al. 2004). Many of these 

butchered bones were likely to have been deposited as waste, possibly whilst retaining some 

soft tissue, in the open air, on the ground surface or within a rubbish tip (Jans et al. 2004). An 

association between Wedl tunnelling and decomposition of bone above ground suggested that 

the identification of Wedl bioerosion could be used to discern previous states of deposition 

that might otherwise leave no archaeological trace.  

These findings suggest that unbioeroded bones deposited in open environments should 

provide prime targets for saprophytic fungi. However, the absence of Wedl tunnelling from 

unbioeroded samples of bone from Carsington Pasture Cave, where the majority of bioeroded 

samples demonstrated some Wedl tunnelling, detracted from this hypothesis. Perhaps prior 

bacterial bioerosion facilitates subsequent fungal attack to some extent. Jans et al. (2004: 91) 

noted that fungal attack usually appears in isolation within most archaeological bones. 

However, most archaeological bones sampled by Jans et al. (2004) had been buried and would 

not have experienced an open aerated environment that may have facilitated fungal 

bioerosion (Jans et al. 2004). The higher prevalence of fungal attack within the current human 

study sample may have occurred as a result of the inclusion of bones that experienced 

putrefaction followed by open conditions that enabled fungal exploitation. The successful 

experimental reproduction of fungal tunnelling within fresh bone samples combined with 

common occurrence of fungal tunnelling in isolation within butchered faunal material 

suggested that prior putrefactive bacterial bioerosion of bone is not prerequisite for fungal 
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exploitation (Marchiafava et al. 1974; Fernández-Jalvo et al. 2010). However, many of the 

archaeological butchered faunal bones sampled by Jans et al. (2004) may have been heated 

through cooking. The alteration of the bone mineral promoted by heating could have rendered 

the proteins more susceptible to exploitation by saprophytic fungi (Turner-Walker 2012). 

 

7.1.3 Collagen Birefringence 

 

The significant correlation between Whole OHI score and Birefringence Index confirmed that 

the primary mechanism of collagen loss amongst the primary study sample was microbial 

exploitation (Hackett 1981). All bones that demonstrated immaculate birefringence had been 

allocated OHI scores of five. This result was expected given that any histological destruction 

would have resulted in collagen loss and a reduction of birefringence (Hackett 1981). A small 

number of bone samples demonstrated immaculate levels of histological preservation but 

reduced or obliterated collagen birefringence. These bones were disparately spread amongst 

the whole study sample.  

The loss of birefringence within histologically well-preserved thin sections could be attributed 

to one of two factors. Microstructural features were sometimes obscured within areas of thin 

sections that had been stained. Intense staining sometimes caused a corresponding loss of 

birefringence when the section was viewed under polarised light (Garland 1987; Grupe & 

Dreses-Werringloer 1993; Schultz 1997; Shahack-Gross et al. 1997; Hanson & Cain 2007; 

Turner-Walker 2008). Staining prevents light from refracting through the bone section, thereby 

dampening birefringence (Garland 1987; Grupe & Dreses-Werringloer 1993). Loss of 

birefringence that corresponded with areas of staining probably did not represent protein loss.  

Loss of birefringence in certain histologically well-preserved samples could not be explained by 

microstructural staining. Birefringence reduction in these samples must have represented 

protein loss by a chemical rather than biological mechanism (Collins et al. 1995; Nielsen-Marsh 

et al. 2007; Smith et al. 2007). The survival of these bones into the archaeological record 

suggested that they had been subjected to accelerated chemical hydrolysis rather than acidic 

erosion (Gordon & Buikstra 1981; Collins et al. 1995; Smith et al. 2007). An acidic environment 

would normally promote destruction of the whole bone before it could enter the 

archaeological record (Gordon & Buikstra 1981; Smith et al. 2007). 
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Only seven bones used in the current study (2%) showed evidence for birefringence reduction 

through collagen hydrolysis. This figure was much lower than the 14% of archaeological bones 

from European Holocene sites that were found by Smith et al. (2007: 1491) to have been 

degraded by accelerated hydrolysis. The disparity between these figures may be attributable 

to the use of domesticate faunal material by Smith et al. (2007). Exposure of a bone to 

moderately high temperatures for extended lengths of time represents the only process that 

has been confirmed to promote accelerated collagen loss (Collins et al. 1995; Smith et al. 2002; 

Nielsen-Marsh et al. 2007; Smith et al. 2007; Abdel-Maksoud 2010). Some of the faunal 

material of the type that is obtained from archaeological sites is likely to have been subject to 

cooking processes that could have promoted chemical collagen loss (Collins et al. 1995; Abdel-

Maksoud 2010; Koon et al. 2010).  

The rarity of archaeological bones from temperate Europe that have been degraded through 

accelerated collagen hydrolysis suggested that specific environmental conditions or 

taphonomic events are likely to be responsible for this type of degradation (Nielsen-Marsh et 

al. 2007; Smith et al. 2007). Explanations for accelerated collagen loss include highly alkaline 

contexts or depositional environments that promote rapid wetting and drying cycles (Smith et 

al. 2002; Nielsen-Marsh et al. 2007; Smith et al. 2007). One of the ways in which a burial 

environment may be rendered sufficiently alkaline to promote collagen hydrolysis is through 

the application of lime (Smith et al. 2002). The only bone sample from the Royal Mint that 

demonstrated immaculate histological preservation but low collagen birefringence came from 

the skeleton that had been surrounded by lime (Grainger & Phillpotts 2011). This specimen 

provides some evidence that the increase in environmental alkalinity promoted by liming can 

promote accelerated collagen hydrolysis in bone. 

Well-preserved samples of bone from Neat’s Court and Danebury demonstrated reduced 

levels of collagen birefringence without any corresponding microscopic staining. There was 

macroscopic evidence that each of these specimens had been burnt (Cunliffe 1984; Morley 

2010, personal communication). The evidence for accelerated collagen loss within these 

samples was consistent with the bones having been exposed to low levels of heat for extended 

durations. The implications of these results are discussed in the site-specific interpretation of 

diagenetic patterns. 

The rest of the samples that demonstrated characteristics of accelerated collagen loss were 

distributed amongst the Bantycock and Carver Street assemblages. The conditions that 

promoted accelerated collagen loss within these samples were not apparent. The burial 
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environment of the Carver Street remains was wet and acidic (ARCUS 2004). Collagen loss 

amongst samples from this site may have been encouraged by periods of increased acidity 

rather than accelerated hydrolysis. Some of the bones from Carver Street were friable and 

demonstrated high numbers of microfissures to their internal microstructure. These features 

are consistent with acidic erosion, although microfissures can also appear within remains that 

have lost collagen through rapid hydrolysis (Gordon & Buikstra 1981; Smith et al. 2002; Turner-

Walker & Jans 2008; Turner-Walker & Peacock 2008). There was no obvious reason for the loss 

of collagen birefringence amongst the Bantycock samples (Smith et al. 2002).  

 

7.1.4 Persistence of the Periosteal Surface 

 

The large proportion of samples that retained a preserved periosteal cortex (89%) contrasted 

with the proportion of bioeroded specimens. There was no relationship between the 

persistence of the periosteal surface and measures of bacterial bioerosion. These results 

agreed with the observations of previous studies that the survival of the periosteal cortex is 

unrelated to overall histological preservation and that this area is often immune to bacterial 

tunnelling (Hanson & Buikstra 1987; Jans et al. 2004; Turner-Walker 2008; Hollund et al. 2012). 

The common persistence of the periosteal bone surface is probably responsible for the lack of 

correlation between the macroscopic and microscopic measures of bone preservation (Hedges 

et al. 1995; Hedges 2002).  

Previous studies have suggested that bacterial bioerosion of the periosteal surface is halted 

through the deactivation of collagenase and cross-linking of organic molecules by invasive 

humic acids from the burial soil (van Klinken & Hedges 1995; Hedges 2002; Jans et al. 2004; 

Turner-Walker 2008). This scenario does not make sense under an endogenous model of 

bioerosion, as enteric bacteria would be capable of accessing the bone long before it came into 

contact with the soil. The relationship between the persistence of the periosteal surface and 

microstructural staining was not investigated statistically. The observations that staining was 

most often observed at the periosteal and endosteal surfaces of bone samples were consistent 

with an association between the intensity of staining and periosteal preservation.  

Humic factors have been linked with brown microstructural staining (Garland 1987; Grupe & 

Dreses-Werringloer 1993; Schultz 1997). Brown microstructural staining appeared within a 

small proportion of the samples used in the current study. It was unlikely that humic staining 
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was responsible for the survival of the periosteal surface amongst most bones included within 

the current study sample. Orange microstructural staining appeared much more often, but this 

type of discoloration has not been linked with humic substances or the persistence of the 

periosteal surface (Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997; Hollund et 

al. 2012). Brown staining was observed within both bioeroded and unbioeroded areas of bone 

thin sections. There was no evidence that the immunity of the periosteal surface to bacterial 

bioerosion was associated with microstructural staining. 

A more likely explanation for the perseverance of the periosteal surface is the composition of 

the internal bone microstructure. Enteric osteolytic bacteria gain access to the bone through 

the vasculature within the Haversian canals (Bell et al. 1996; Jans et al. 2004). It is probable 

that bacteria travel down the canaliculi from the Haversian canal in order to begin attacking 

the bone microstructure from the osteocyte lacunae. This route allows bacteria to bypass the 

indigestible mineralised cement line that surrounds the Haversian canal (Bell et al. 1996; 

Hedges 2002; Jans et al. 2004; Turner-Walker 2008). Bone remodelling and secondary osteon 

formation is concentrated within the internal bone microstructure, leaving fringes of non-

osteonal circumferential lamellar bone at the periosteal and endosteal peripheries (Junqueira 

et al. 1986; Kerley 1965). The osteocytes contained within circumferential lamellar bone are 

separated from osteolytic bacteria by at least one cement line. The perseverance of the 

periosteal surface within archaeological bone thin sections could be attributable to the lack of 

Haversian systems within circumferential lamellar bone, which denies direct access to invading 

bacteria. 

Periosteal loss amongst the current study sample was caused by a destructive factor that was 

not linked to bioerosion. There was a statistically significant association between the presence 

of the periosteal surface and soil type. Samples of bones from silt environments were more 

likely to have lost their periosteal surface than those recovered from other types of soil. The 

correlations between the persistence of the periosteal surface and soil type suggested that this 

diagenetic parameter represented external mechanical erosion. Silt contexts more often 

encouraged periosteal loss, presumably through some process of weathering. There were no 

significant site-specific differences in levels of periosteal loss between bones that had been 

deposited within silt, although the difference was close to the significance threshold within the 

Holm-Bonferroni method (Appendix 2). Periosteal loss was most common amongst remains 

from Danebury Hillfort, Suddern Farm and Whitwell Quarry. Only two samples were obtained 

from Suddern Farm, and so it was difficult to establish the significance of this result. Silt burial 

environments did not result in equal proportions of periosteal loss. Site-specific variation in 
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periosteal loss amongst silt-deposited samples may have been attributable to the inadequacy 

of categories of soil type in capturing properties that affected bone degradation. On the other 

hand, site-specific differences in the composition of the silts may have controlled erosion of 

the periosteal bone cortex. 

There was also a significant difference in the persistence of the periosteal surface between 

remains from different Later Prehistoric phases. Samples of Iron Age bones were more likely to 

have lost their periosteal surfaces. Most of the Iron Age bones had been recovered from silt 

burial contexts and so it was difficult to distinguish which variable was responsible for variation 

in this diagenetic parameter. Both silt burial environment and Iron Age date appeared to have 

had some independent influence on the survival of the periosteal cortex.  The debateable 

status of phase as a measurement cultural change suggested that the best explanation for 

variation in periosteal cortex survival was that Iron Age bones had been subjected to a specific 

post mortem process that promoted cortical weathering. It was difficult to determine what 

other factors may have promoted phase-specific patterns in exogenous erosion. There was 

evidence that Iron Age remains from Danebury, Suddern Farm, South Dumpton Down and 

Bilham Farm had decomposed in open burial environments before being buried. Partial 

articulation of some of the skeletons from these sites suggested that bones had been handled 

and curated for a length of time before being deposited. The exposure of bone to the elements 

within these circumstances could have promoted cortical weathering and was likely to have 

been responsible for the increased prevalence of periosteal loss. 

These results indicated that the loss of the periosteal surface may be useful in determining 

taphonomic histories of remains to a limited extent. Taphonomic processes that encouraged 

substantial weathering of the bone cortex are also to be reflected in rates of periosteal 

survival. These processes probably include burial within silt environments. Periosteal loss 

within samples of bone from non-silt contexts may be useful for inferring previous funerary 

treatment that would have produced significant cortical weathering, such as prolonged sub-

aerial exposure.  
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7.2 VISUAL DIAGENETIC CHANGES 

 

7.2.1 Orange Diagenetic Changes 

 

Orange staining and orange inclusions represented the visual diagenetic features that were 

found most abundantly within the current study sample. There were statistically significant 

positive correlations between levels of orange staining, orange inclusions and infiltrations 

which indicated that the intensity of all of these features increased concurrently. However, 

some of the relationships between these features were not straightforward. Orange inclusions 

appeared more frequently within remains where orange staining was present. Frequencies of 

orange inclusions increased in remains that showed fair rather than superficial levels of orange 

staining. However, the frequencies of orange inclusions did not increase between remains that 

demonstrated fair and extensive orange staining.  

The relationship between orange staining and the occurrence of infiltrations was fairly linear. 

Bones that were free from orange inclusions demonstrated much lower occurrences of 

infiltrations. However, the occurrence of infiltrations did not vary with the frequencies of 

inclusions. The occurrence of infiltrations was related to the presence or absence of inclusions 

rather than their intensity. The association between infiltrations and inclusions supported 

qualitative observations that infiltrations commonly surrounded osteons that had been 

densely packed with orange inclusions. These results suggested that infiltrations represented 

areas where orange inclusions had spilled out of the natural porosities into the surrounding 

microstructure. Measures of orange inclusions related to their frequency rather than their 

intensity within natural porosities, and so an increase in the measure of inclusions used in the 

current study did not correlate with an increase in occurrences of infiltrations. 

Both orange staining and infiltrations varied significantly with burial soil. The relationship 

between orange inclusions and soil type was close to significant within the Holm-Bonferroni 

method (Appendix 2). These results were consistent with the suggestion that visual diagenetic 

changes are promoted by features of the burial environment (Garland 1987; Shahack-Gross et 

al. 1997). The relationship between sediment and visual diagenetic change was emphasised by 

the results from the samples of bones from Carsington Pasture Cave. These bones were not 

recovered from sediment and were the only samples allocated to the ‘Open’ soil type 

category. Orange visual diagenetic changes were absent or low within samples of bone from 

this site. 
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The significant associations and similar colours of these visual diagenetic changes suggested 

that they represented different consequences of interactions between the bone and a 

particular mineral present within most burial environments (Garland 1987; Grupe & Dreses-

Werringloer 1993; Schultz 1997; Shahack-Gross et al. 1997; Hanson & Cain 2007). Correlations 

between these features and burial soil suggested that this mineral had originated from the 

burial context, rather than having formed in situ (Hollund et al. 2012). This conclusion was 

supported by the evidence that orange diagenetic changes sometimes varied with spatial 

distribution of skeletons across sites, although this kind of patterning was not present within 

all parameters at all locations.  

Previous studies of bone diagenesis have associated orange-coloured diagenetic features with 

ferrous materials, particularly iron oxides (Garland 1987; Grupe & Dreses-Werringloer 1993; 

Schultz 1997; Shahack-Gross et al. 1997; Hanson & Cain 2007). The ubiquity of archaeological 

bone interaction with iron oxides would be unsurprising given that it is one of the most soluble 

minerals commonly found within soils and is often responsible for their pigment 

(Schwertmann 1991; 1993). The best explanation for the correlation between orange visual 

diagenetic parameters and their variance with soil type was that they all represented 

expressions of iron oxides that had entered the bone through different mechanisms.  

The concentration of orange staining at the periosteal and endosteal surfaces of thin sections 

was consistent with the suggestion that this parameter represented diffusion of iron oxides 

into areas of bone that were in direct contact with the burial matrix. Inclusions were likely to 

represent iron oxides that had been transported into the natural porosities by percolating 

groundwater (Garland 1987: Schultz 1997). Infiltrations most likely represented extreme forms 

of either of these outcomes that had enabled large accumulations of iron oxides to penetrate 

the bone matrix. The different distributions of these features within certain bones must have 

been related to how far properties of particular environments altered the ways in which iron 

oxides interacted with the bone microstructure (Garland 1987; Schultz 1997; Shahack-Gross et 

al. 1997).  

The overarching factor that would have affected these features would have been the 

abundance of iron oxides within the immediate burial environment. Spatial distributions of 

orange diagenetic features within remains from particular sites indicated that localised 

availability of iron oxides affected the abundance of orange changes. Abundance of iron oxides 

within the environment is likely to have had the largest effect on bone staining, as staining 

appeared most frequently within areas of bone that were in contact with the burial sediment. 
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However, the dependence of inclusions and infiltrations on percolating groundwater would 

indicate that these features would have been secondarily influenced by soil moisture content 

and mobility. The discussion below provides some attempt to explain the disparate patterns of 

variation in orange visual diagenetic parameters with soil type in terms of differences in 

properties of the burial environments.  

 

7.2.1.1 Orange Staining 

 

Orange staining was almost non-existent amongst remains from silt and open contexts, mostly 

absent within bones from sands, while superficial in bones from clays, and more extensive 

amongst bones from gravels. These results suggested that iron oxides were not abundant 

within the sand and silt contexts. The exact chemical composition of each of the burial soils 

was unknown, but their probable constitution was consistent with a lack of iron oxides. Sands 

are mostly constituted of silica and quartzes which are unlikely to encourage significant orange 

pigmentation. The silt burial contexts consisted of either limestone or chalk rubble, two rock 

types that are also unlikely to promote significant discolouration of bone in of themselves 

(Cunliffe 1983; Perkins 1994; Cunliffe & Poole 2000; Vyner & Wall 2011).  

There were significant site-specific differences in orange staining between bones that had 

been interred within clays. No site assemblage could be identified as singularly explaining this 

variation. Microstructural staining was rarely consistent within assemblages of bones from 

single sites, which indicated that variation in properties of soils across sites was likely to have 

affected the intensity of orange staining. The intensity of orange microstructural staining 

varied with spatial distribution of remains within the Royal Mint cemetery, which was a gravel 

site. Orange staining was most commonly found within remains from the eastern cemetery, 

which had yielded bones that had been contaminated by chemicals that had entered the soil 

as a result of industrial activities associated with the Royal Mint (Grainger et al. 2008). Higher 

levels of staining within samples of bones from these areas may have been related to the 

presence of these chemicals (Grainger et al. 2008). Spatial patterning of orange-stained bones 

was not apparent within most site assemblages, although spatial distribution could only be 

recorded crudely in most cases. It was likely that unknown unrecorded site-specific factors had 

influenced levels of orange staining in certain instances 
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There was a close-to-significant association between orange staining and charnel assemblages. 

This association persisted within site assemblages that included samples of both charnel and 

non-charnel remains. Whether a sample originated from a charnel bone also affected the 

occurrence of orange inclusions and infiltration. Samples of charnel material were more likely 

to be free from or demonstrate lower levels of orange staining. It was difficult to justify how 

charnelling practices may have affected orange staining within a model where this diagenetic 

parameter was primarily affected by the nature of the surrounding burial environment. The 

charnel bones were subject to the same post-excavation processes as articulated remains. Any 

relationship between charnelling and orange staining must have been produced by some 

aspect of charnelling that reduced interactions between the bone and the burial environment. 

One possible explanation was that charnelled bones were not placed back in sediment soon 

after they were exposed, but were kept above ground for a length of time before being 

reinterred. The disinterred bones may have been left on the ground surface or stored within a 

purpose-built structure such as an ossuary before being reburied. The time spent above 

ground would have ensured that charnel bones would not have interacted with the burial 

environment to the same extent as articulated deposits.  

The problem with this explanation was that all of the charnel bones that had been sampled 

had eventually been reinterred and had laid within soil for a number of centuries before being 

excavated. Any period of disinterment would be relatively insignificant compared to the time 

the bone spent in the ground and therefore it is difficult to envision charnelling having had a 

significant impact on overall interactions with the burial environment. It would be expected 

that bones would have to be retained above ground for a significant length of time in order to 

affect comparative levels of microstructural staining. If charnelling was responsible for levels of 

orange staining then this diagenetic parameter may have some use in reconstructing 

taphonomic processes linked to treatment of remains, rather than just the nature of the burial 

sediment. Anomalously low levels of orange staining within a sample of bone from an 

assemblage could be used to suggest that the specimen had been retained above ground for a 

certain length of time. However the potential influential effects of local burial conditions 

would compromise any such inferences. 
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7.2.1.2 Orange Inclusions 

 

The factor that was found to have had the largest significant influence on frequencies of 

orange inclusions was whether a sample came from a charnel bone. The strength of this 

influence was uncertain, as when this factor was placed by itself within a regression model, it 

no longer enacted a significant influence on orange inclusions. However, similar interactions 

between other orange visual diagenetic changes and charnel remains suggested that there was 

a relationship between orange inclusions and charnelling.  

Samples from charnel bones demonstrated lower levels of orange inclusions. This relationship 

persisted within samples of bones from Black Gate but not Bolsover, where the extent of 

orange inclusions was the same amongst samples from charnel and non-charnel bones. 

Reduced periods of time spent interacting with the burial environment was the only 

conceivable explanation for differences in levels of orange inclusions between charnel or non-

charnel remains. Such an explanation would suggest that orange inclusions form gradually 

within bone samples over a number of centuries. Only a slow process could have been 

responsible for charnel bones demonstrating a deficiency of visual diagenetic features 

compared to consistently buried bones after they had been reinterred for a number of 

centuries. It is possible that levels of orange inclusions could be used to infer certain aspects of 

anthropogenic taphonomic treatment rather than just environmental factors. 

Soil type did not have a significant effect on orange inclusions when the Holm-Bonferroni 

method was employed (Appendix 2). However, the results from regression analysis 

approached significance and the measure of orange inclusions was highly correlated with 

infiltrations and orange staining, which both shared significant relationships with burial soil. 

Bones from silt and open contexts demonstrated lower levels of orange inclusions than those 

from all other environments. Bones from silt and open contexts explained the majority of the 

soil-specific variation in orange inclusions. Frequencies of orange inclusions were similar within 

samples of bones from all other soil types when the charnel bones were excluded. The low 

levels of orange staining found within remains from silt contexts was attributed to the low 

levels of iron oxides within the burial environment, and the same factor was probably 

responsible for the dearth of orange inclusions within the same category of remains (Garland 

1987; Schultz 1997). The higher frequencies of orange inclusions found within the remains 

from sand contexts contrasted with the lack of orange staining. Frequencies of Inclusions are 

likely to be linked to the availability of iron oxides but also the mobility of groundwater. The 
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discrepancy between levels of orange staining and inclusions suggested that iron oxides were 

not common within the sands that directly surrounded sampled skeletons. Ferrous minerals 

must have found their way into bone porosities from elsewhere through groundwater action.  

There was a significant difference in the frequency of orange inclusions amongst bones from 

silt sites. The majority of variation was explained by the Danebury and Suddern Farm site 

assemblages. Levels of orange inclusions within bone samples from these sites were 

particularly low. Levels of orange inclusions within samples of silt-deposited bones from 

remaining site assemblages were similar to those amongst site assemblages from non-silt 

contexts. The Danebury and Suddern Farm site assemblages had been interred within chalk 

burial environments, which would have contained relatively low levels of iron oxides. The 

other silt-deposited bones had been interred amongst limestone silt. Levels of orange staining 

did not vary significantly between different site assemblages from silts. The result from the 

orange inclusions suggested that although iron oxides had not often been in direct contact 

with bones from silts and had not differentially affected levels of staining, they occurred often 

enough within non-chalk silts to be transported into the bone microporosities via percolating 

groundwater. This result highlighted that although measures of orange visual diagenetic 

changes reflected the results of similar processes, there were differences in their variations 

based on the specific circumstances that promoted their occurrence. 

 

7.2.1.3 Infiltrations 

 

The presence of infiltrations was significantly influenced by soil type. Bones from sands, silts 

and open environments demonstrated similarly low levels of infiltrations, whereas these 

features were observed abundantly within bones from clay and gravels. There were significant 

differences in the occurrences of infiltrations within different site assemblages that had been 

interred within clay. These results indicated that the frequency of infiltrations was related to 

the burial environment and was controlled by the nature of the burial soils as well as site-

specific conditions (Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997; Shahack-

Gross et al. 1997).  

The patterns of infiltrations amongst samples of bone from different soil types were very 

similar to the variability in levels of staining. The similarity in the distributions of these two 

diagenetic forms suggested that occurrence of infiltrations was related to the abundance of 
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ferrous mineral within the burial environment (Garland 1987; Grupe & Dreses-Werringloer 

1993; Schultz 1997; Shahack-Gross et al. 1997; Hollund et al. 2012). The high correlation 

between orange staining and infiltrations ran contrary to the observations that infiltrations 

represented the consequence of compact inclusions. However, this observation was likely to 

be the result of the inclusion recording method, which focussed on the number of natural 

porosities affected rather than the amount of material present. Most of the variation amongst 

the orange infiltrations was explained by the presence or absence of inclusions, whilst 

inclusion frequency appeared to be inconsequential.  The suggestion that infiltrations formed 

in environments that included high levels of iron oxides indicated that an abundance of this 

mineral was likely to encourage the deposition of excess materials within natural porosities, 

enabling the formation of infiltrations.  

The lack of difference in occurrences of infiltrations amongst different site assemblages from 

silt and sand burial soils suggested that site-specific variability had little effect on infiltrations 

when iron content of the soil was low. However, there was some suggestion of spatial 

variation in infiltrations amongst samples of bone from Bantycock, and the Royal Mint. Spatial 

distribution of infiltrations amongst the samples of bone from the Royal Mint followed the 

same pattern as orange staining and was similarly likely to be the result of ground 

contamination by chemicals associated with the minting process.  

Whether a bone originated from a charnel deposit was also found to have influenced 

infiltrations. Infiltrations occurred less commonly within charnel bones. This influence 

approached significance under the Holm-Bonferroni method (Appendix 2). The relationships 

between charnelling and other orange visual diagenetic changes suggested that this result was 

pertinent. Infiltrations were consistently found in lower frequencies within samples of charnel 

bone from site assemblages that included both charnel and non-charnel remains. Like orange 

staining and inclusions, the only explanation that could be provided for this relationship was 

that retention of the bone above ground reduced the time a bone spent interacting with iron 

oxides in the burial environment and limited the occurrence of infiltrations relative to bones 

that had not been disinterred. This result suggested that it might be possible for measures of 

infiltrations to be used in inferring anthropogenic treatment of remains in cases where 

influential effects of the burial environment could be controlled.  
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7.2.1.4 Orange Visual Diagenetic Changes and Anoxia 

 

Hollund et al. (2012) found that iron oxides had accumulated within archaeological bones as a 

result of bodily decomposition within an anoxic environment. It was important to establish 

whether iron oxides were a signifier of previous anoxic conditions within the current study 

sample, as such environments would have interrupted putrefaction and may have been 

responsible for significant variation on measures of bacterial bone bioerosion (Bottrell et al. 

1998; Turner-Walker 1999; Turner-Walker & Jans 2008; Hollund et al. 2012). There was 

evidence that most of the current study sample had interacted with materials that caused 

orange microstructural alteration. None of the measures of orange diagenetic change had 

been significantly influenced by anoxic conditions.  

It was possible that subtle differences between orange visual diagenetic features could have 

provided a way of discerning between structures that had formed as a result of anoxic 

decomposition or interactions with ferrous materials in the environment (Turner-Walker & 

Jans 2008; Hollund et al. 2012). However, all orange inclusions were amorphous and often 

demonstrated the full range of variation in shapes and hues within single bone samples. 

Categories of orange inclusions could not be satisfactorily divided using thin section light 

microscopy. The correlation between measures of orange aesthetic diagenetic changes 

indicated that they all represented manifestations of the same process.   

Framboidal pyrite formations are usually present within bones from bodies that decomposed 

under anoxic conditions (Bottrell et al. 1998; Turner-Walker 1999; Turner-Walker & Jans 2008; 

Hollund et al. 2012). This compound would only have formed in the presence hydrogen 

sulphides produced by decomposing organic matter (Hollund et al. 2012). The techniques of 

microscopy used in the current study could not be used to identify framboidal pyrites 

effectively because of the level of variation within the ubiquitous orange inclusions. The 

limited means of the current study suggested that orange visual diagenetic changes were 

present within most archaeological samples and were related to the levels of iron oxide within 

the immediate burial environment. Whilst orange diagenetic changes to bone are likely to 

form as a result of anaerobic bodily decomposition, these changes occurred too commonly 

within archaeological bones used in the current study for them to be used to say anything of 

use about the conditions of early decomposition. 

The likelihood that orange microstructural changes were indicative of burial environments that 

interfered with bodily decomposition was investigated additionally through tests of 
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associations between visual diagenetic features and Whole OHI score (Turner-Walker & Jans 

2008; Hollund et al. 2012). Moreover, other researchers have linked the appearance of visual 

diagenetic features with the composition of the burial sediment (Garland 1987; Grupe & 

Dreses-Werringloer 1993; Shahack-Gross et al. 1997; Hanson & Cain 2007). Categories of burial 

sediment had been crudely defined, and so variation in visual diagenetic features provided an 

extra method of assessing the relationship between burial sediment and bacterial bone 

bioerosion. Any significant relationships between these features would have jeopardised the 

results of the analysis of bacterial bone bioerosion discussed above. However there were no 

significant associations between orange microstructural changes and Whole OHI in the current 

study. These results combined with the divergent explanatory variables that were found to 

have influenced bacterial bioerosion and visual diagenetic change suggested that these two 

types of microstructural alteration were not related to one another. 

Variations in the three types of orange diagenetic alterations were compared against measures 

of bacterial bioerosion within samples of bone from anoxic sites. These specific tests were 

performed to establish whether the relationship between visual diagenetic changes and 

bacterial bioerosion was different between bones from anoxic and aerobic environments. 

Bones that demonstrated higher levels of histological preservation would have originated from 

bodies that decomposed under anoxic conditions from an early stage and would be expected 

to demonstrate increased levels of orange microstructural change. One of the samples from 

Carver Street had been extensively stained orange, although beyond this single observation 

there were no further relationships between orange staining, orange inclusions and 

histological preservation. Infiltrations appeared more commonly within samples of bones from 

Carver Street that were histologically well-preserved. None of the measures of orange 

diagenetic features correlated with Whole OHI score amongst the Coronation Street site 

assemblage. These results indicated that decomposition within anoxic environments amongst 

the current study sample had not affected levels of orange microstructural change. If iron 

oxides were produced within these kinds of environments then they had a negligible effect on 

the levels of visual diagenetic features that had been promoted by interactions between the 

bones and the burial environments (Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 

1997; Shahack-Gross et al. 1997). This result supported the finding that infiltrations of bone by 

iron oxides were not necessarily indicative of environmental conditions that interfered with 

bacterial bone bioerosion.  

The association between orange diagenetic features and burial soil meant that lack of 

correlation between measures of bacterial bioerosion and orange microstructural alterations 
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provided further evidence that bacterial bioerosion did not correspond with composition of 

the burial matrix and could not account for the variation in bacterial attack within the Later 

Prehistoric assemblage. These conclusions must be accompanied by the caveat that the thin 

section light microscopy method was not the best technique for identifying differences 

between visual diagenetic changes. However, within the confines of the current study these 

results suggested that the explanations for variations in bacterial bioerosion amongst the 

whole study sample discussed above remained valid.  

 

7.2.2 Other Visual Diagenetic Alterations 

 

Comparisons of the different types of visual diagenetic changes established that the remaining 

categories, brown staining, yellow staining and grey inclusions, were not related to one other, 

nor to measures of orange microstructural change. Theses specific visual diagenetic changes 

occurred within small proportions of the study sample. The relationship between these 

isolated phenomena and other recorded variables will be discussed in order to determine if 

these features were indicative of factors that had influenced bacterial bone bioerosion as well 

as whether they could be of any use in inferring aspects of early taphonomic processes. The 

rare occurrence of these visual diagenetic features amongst this study sample meant that any 

conclusions regarding their influence and variation would have to be taken with caution. 

 

7.2.2.1 Brown Staining 

 

Bones that demonstrated brown microstructural staining comprised only 13% of the total 

number of stained bones. Variation in brown staining was not influenced by any of the 

variables that were recorded for the current study. There was no significant variation in brown 

staining between bones from different sites. Brown-stained bones were absent or appeared 

only sporadically within bone from most sites, and only occurred frequently within samples 

from Frälsegården, Ingleby Barwick and Cnip Headland. The single specimen from Langwell Cist 

demonstrated the highest levels of brown staining. Factors specific to these sites must have 

encouraged brown staining within these bones. The results from orange diagenetic changes 

and previous studies of other sample sets had suggested that visual diagenetic changes were 
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likely to have been caused by interactions with substances in the burial environment (Garland 

1987; Grupe & Dreses-Werringloer 1993; Shahack-Gross et al. 1997; Jans et al. 2004).  

There was evidence that bones from Ingleby Barwick, Cnip Headland and Langwell Cist 

decomposed within enclosed environments that had contained large quantities of organic 

material (Annis et al. 1997; Lelong 2011; 2012). Brown staining has commonly been attributed 

to infiltration of the bone by humic acids from burial soils (Garland 1987; Grupe & Dreses-

Werringloer 1993; Shahack-Gross et al. 1997; Reiche et al. 2003; Jans et al. 2004). Humic acids 

are formed through the decomposition of organic matter. The Langwell Cist specimen was 

covered in a large cow hide, and the stained Ingleby Barwick bones had been contained within 

a wooden cist (Annis et al. 2007; Lelong 2012). Most of the sand that directly surrounded the 

remains recovered from Cnip had been discoloured brown, presumably as a result of decayed 

organic matter (Lelong 2011). It was likely that the brown microstructural bone staining at 

these three sites had been caused by humic factors released by decaying organic grave goods. 

However, it was probable that a significant proportion of the whole study sample had lain 

within environments that contained appreciable quantities of decaying organic matter, such as 

coffins, but most did not demonstrate brown microstructural staining. The paucity of brown 

staining amongst Historical bones suggested that quantities of decaying organic matter within 

the burial environment did not always induce brown microstructural staining. The extent of 

brown staining was most likely influenced by the proximity of the organic matter to the bone 

combined with features of the burial environment that facilitated the diffusion of brown-

staining elements, such as moisture content and mobility. 
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Image 7.1: Micrograph of a transverse femoral thin section from the Langwell Cist individual. Bioerosion is absent 
from areas of the microstructure that have been variably stained brown (taken by the author). 

 

There was no significant association between brown staining and Whole OHI score within the 

Holm-Bonferroni method (Appendix 2). This result refuted the notion that humic acids prevent 

bacterial bone bioerosion (Hedges 2002; Jans et al. 2004; Turner-Walker 2008). Both stained 

and unstained areas of single thin sections could remain unbioeroded (Image 7.1). These 

observations could be explained by one of three scenarios: brown staining was not always a 

result of humic infiltration, humic acids did not significantly inhibit bacterial exploitation of 

bone proteins or the bone was stained after it had been bioeroded by bacteria. The results 

from the current study sample suggested that that brown staining could sometimes be used to 

identify remains that had been previously surrounded by decaying organic matter. However, 

the low proportion of samples that demonstrated this type of staining combined with the 

inconsistencies between brown staining and the presence of organic material suggested that 

this type of microstructural change would not provide a reliable indicator of taphonomic 

circumstances. Further investigation of brown staining in archaeological bones is required to 

define its cause and confirm any possible uses in taphonomic reconstructions. 
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7.2.2.2 Yellow Staining 

 

Yellow staining was present within 5% of the bones sampled for this study, which represented 

only 8% of the total number of stained samples. In some specimens it was unclear whether the 

yellow staining represented a discrete form of alteration or a weaker version of the orange 

discolouration. There was no statistically significant difference in yellow staining between 

bones taken from different sites. Yellow staining was equally infrequent amongst all site 

assemblages. The extent of yellow staining was only more than superficial in two samples of 

bone from the Royal Mint site and one from Danebury. The two Royal Mint samples 

demonstrated fair levels of yellow staining. Several skeletons excavated from the Royal Mint 

had been contaminated and discoloured macroscopically by waste chemicals produced during 

the minting process (Grainger et al. 2008). The two yellow-stained samples originated from the 

eastern part of the Royal Mint site that demonstrated most evidence for chemical 

contamination. It was likely that yellow staining within the Royal Mint samples had been 

caused by contamination from chemicals within the burial environment. The Royal Mint was 

built centuries after interment at the site had ceased, and so it was unlikely that this 

contamination had interfered with bodily decomposition and bone bioerosion (Grainger et al. 

2008). 

The single sample recovered from the Danebury hillfort that demonstrated extensive yellow 

staining had been taken from a bone that showed macroscopic discolouration indicative of 

burning (Cunliffe 1984). This specimen demonstrated a non-biotic reduction in collagen 

birefringence that was consistent with heat treatment (Collins et al. 1995; Smith et al. 2007; 

Abdel-Maksoud 2010). Burning bone at low temperatures produces a yellow or tan colour 

within the microstructure. Low-level burning represented the best explanation for the 

discolouration of the Danebury sample (Shahack-Gross et al. 1997; Hanson & Cain 2007; 

Squires et al. 2011). The yellow-stained bone specimens from these two sites suggested that 

this type of discolouration was associated with specific taphonomic events. 

The presence and intensity of yellow staining was positively correlated with Whole OHI score. 

The result of this correlation approached significance within the Holm-Bonferroni method 

(Appendix 2). However the crux of this positive correlation was the single extensively-stained 

sample that had been allocated a Whole OHI score of five. There was no linear distribution of 

yellow staining scores amongst variably-bioeroded samples that had not been allocated a 

Whole OHI score of five. The anomalous sample comprised the burnt bone from Danebury, the 
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discolouration of which was not the result of infiltration by a substance that had prevented 

bacterial bioerosion. The small number of remains that demonstrated yellow staining meant 

that the Danebury sample had an undue influence on tests of correlation. The discussions had 

established that yellow staining was likely to have occurred as a result of disparate site-specific 

processes. The correlation between yellow staining and bacterial bone bioerosion was unlikely 

to have occurred as a result of a single process that interrupted putrefaction, and was 

probably a remnant of small sample size. The exact processes that are responsible for yellow 

microstructural staining would need to be discerned before this factor could be of any use to 

reconstructions of taphonomic processes. 

 

7.2.2.3 Grey Inclusions 

 

Frequency of grey inclusions within the study sample was significantly influenced by soil type, 

which added to the evidence that visual diagenetic changes were influenced by interactions 

with the burial environment. Grey inclusions were found almost exclusively within samples of 

bone recovered from silts and open environments. Further tests of the distributions of grey 

inclusions amongst site assemblages that had been deposited in silt produced a significant 

result. Grey inclusions were only identified within samples of bone from Danebury and 

Suddern Farm. This finding was the inverse of the results from the orange inclusions and 

suggested that all inclusions formed as a result of similar processes involving different 

materials from the burial environment. The bones from Suddern Farm and Danebury had been 

surrounded by chalk silt and domestic waste (Cunliffe 1983; 1984; Cunliffe & Poole 2000). It 

was probable that grey inclusions found in bone samples from these sites represented 

deposits of calcite that had been transported into the bone from the burial environment by 

percolating groundwater (Garland 1987). 

Grey inclusions were also found amongst the remains recovered from Carsington Pasture 

Cave. However, the nature of these inclusions was quite different to those found within the 

bones from silt contexts. Inclusions from silt-deposited bone were rounded, whilst those 

observed within the Carsington Pasture Cave remains consisted of large crystalline structures. 

Some of the bones from Carsington Pasture cave were noted to have been covered by 

limestone speleothem, and it was likely that these inclusions represented the internal 

precipitation of this material (Chamberlain 1999; Papakonstantinou 2009).  
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Frequencies of grey inclusions did not correlate with bacterial bone bioerosion. This result 

provided further proof of the separateness of the processes that produce these types of 

diagenetic changes within archaeological bone. These results supported the overall findings 

that visual diagenetic changes relate to long-term interactions between a bone and substances 

within the immediate burial environment and were mostly unrelated to other types of bone 

diagenesis. 

 

7.3 MUMMIFIED REMAINS 

 

Samples of bone from mummified bodies were included in the current study in order to 

establish whether remains that had been afforded such treatment demonstrated characteristic 

patterns of bone bioerosion. Preservation of soft tissues usually requires some circumvention 

of putrefaction and theoretically mummified bone would be expected to demonstrate limited 

or no bacterial tunnelling depending on the efficacy of the preservative method. The few 

bones of mummies that have been studied previously have all been free from microbial 

bioerosion (Weinstein et al. 1981; Thompson & Cowen 1984; Hess et al. 1998). However, all of 

these mummified samples had been preserved in ways that would have had an immediate 

effect on putrefaction. Both of the mummified remains sampled for the current project had 

been preserved through natural processes, which may not have efficiently circumvented 

putrefaction (Kelly 2012). These samples should be useful in establishing variation in levels 

putrefactive bioerosion within mummified bone.  

 

7.3.1 Derrycashel Bog Body 

 

The intense and consistent red staining observed within the Derrycashel thin sections was 

unlike the types of discolouration found within the archaeological bones recovered from 

conventional burial environments in both its colour and distribution. Staining within the 

archaeological bones used in the current study was usually orange, yellow or brown, and 

concentrated at the periosteal and endosteal surfaces. It was reasonable to conclude that the 

staining of the Derrycashel sample was specific to the deposition of bone within a bog 

environment. Similar red-brown colouring is often observed in bog water run-off (Painter 
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1995). This pigment occurs as a result of dissolved tannic acids produced by the decaying 

organic material within the bog (Painter 1995). The discolouration of the Derrycashel bone was 

most likely a result of infiltration by similar substances. Painter (1995; 1998) suggested that 

soft tissue preservation in bog bodies is caused by the presence of tannins such as sphagnan, 

which is released by decaying Sphagnum moss (Painter 1995). Sphagnan produces Maillard 

reactions within bodily proteins, which cross-link the intrinsic polypeptide chains, rendering 

them invulnerable to most processes of decomposition (Painter 1995; 1998). The intense 

staining and high levels of organic preservation observed within the Derrycashel bone samples 

were both symptomatic of tannic acid infiltration (Jahnel & Frimmel 1994; Painter 1995; 1998).   

The dark inclusions recorded within the Derrycashel bone were opaque, non-crystalline, 

irregular and were likely to be organic (Garland 1995; Schultz 1997). The morphology and 

pigment of these inclusions were very different from those observed within the archaeological 

remains used in the Primary Analysis. Garland (1995: 107) described similar organic inclusions 

within the bone microstructure of the mummified cranium recovered from Worsley Moss and 

concluded that they were microscopic fragments of Sphagnum moss. It is likely that the 

organic inclusions represent the same material in both cases, although the morphology of the 

inclusions from the Derrycashel remains resembled remnants of blue-green algae desmids, 

rather than microscopic Sphagnum (Woerlkerling 1976).  

In common with other bones samples extracted from mummified remains, the histological 

preservation of the bone microstructures in the Derrycashel specimens was excellent 

(Weinstein et al. 1981; Thompson & Cowen 1984; Hess et al. 1998). Collagen birefringence 

within the Derrycashel specimens was also high, which indicated that the bone protein 

structures had been preserved (Hackett 1981). The focal points of collagen loss observed 

within the Derrycashel specimens superficially resembled natural enlarged osteocyte lacunae. 

However whilst the sizes of osteocyte lacunae can fluctuate within and between fresh bone 

samples, they have not been noted to grow and coalesce as they had within the Derrycashel 

specimens (Maximow & Bloom 1957; Junqueira et al. 1986). These enlarged osteocyte lacunae 

were particularly conspicuous because of the deficiency in typical osteocyte lacunae within the 

Derrycashel bone samples. Many osteons were free from microstructures that resembled 

osteocyte lacunae. The appearance of enlarged osteocyte lacunae was independent of the 

presence of normal-sized lacunae.  

Osteocyte lacunae were also notable by their absence from the microstructure of the 

mummified human head excavated from Worsley Moss (Garland 1995: 107). The loss of 
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osteocyte lacunae within the bones of the Derrycashel individual must have occurred as a 

result of exposure to the bog environment. Osteocyte lacunae are commonly observed to have 

disappeared from the microstructure of cremated human bones (Forbes 1941; Hanson & Cain 

2007). Hanson & Cain (2007) reasoned that the obliteration of osteocyte lacunae in cremated 

bone was as a consequence of the evaporation of moisture content and fusion of the 

hydroxyapatite mineral crystals which resulted in a loss of bone mass. Osteocyte lacunae are 

thought to disappear because they represent convenient cavities into which the bone 

structure can collapse to compensate for this loss of mass (Hanson & Cain 2007). Bones 

deposited in bogs lose mass through demineralisation encouraged by chemicals within the 

environment (Painter 1995). This loss of bone mass most likely caused the collapse of the 

osteocyte lacunae in the Derrycashel and Worsley Moss samples (Hanson & Cain 2007). This 

reasoning highlights the likely diagenetic origin of the enlarged osteocyte lacunae. The survival 

of these features in areas where conventional osteocyte lacunae had been lost indicated that 

the enlarged types represented cavities within the bone microstructure, rather than variations 

in the natural porosities that bone lamellae naturally circumvent and subsequently collapse 

into during bone shrinkage.  

Enlarged coalescent osteocyte lacunae have been associated with progressive 

demineralisation and biological attack of bone microstructure (Gordon & Buikstra 1981; Bell et 

al. 1996). Turner-Walker & Peacock (2008: 158) noted that the gradual demineralisation of 

Scandinavian bog-deposited cow metapodials involved the enlargement and amalgamation of 

osteocyte lacunae and associated canaliculi. Gordon & Buikstra (1981) and Turner-Walker & 

Jans (2008) found similar diffuse patterns of enlarged osteocyte lacunae in archaeological 

human bones that had been deposited in acidic soils. The acidity of the bog environment has 

often been used as an explanation for bone demineralisation (Turner 1995). However Painter 

(1995) and Turner-Walker & Peacock (2008) demonstrated that bone demineralisation in bogs 

more often occurs as a result of the action of Sphagnum moss. The live Sphagnum 

holocellulose sequesters calcium as well as other multivalent cations, as does the sphagnan 

acid that is produced when the moss dies and transforms into peat (Painter 1995: 90). In most 

other corrosive acidic burial environments, both phases of the bone substrate are rapidly 

destroyed (Gordon & Buikstra 1987; Nielsen-Marsh et al. 2007; Smith et al. 2007; Turner-

Walker & Jans 2008). If bog acidity was to blame for bone demineralisation, it would be 

difficult to account for the selective destruction of mineral and conservation of protein that 

was apparent in the Derrycashel bones (Turner-Walker & Peacock 2008; Kelly 2012).  The 

processes by which Sphagnum and its by-products can both remove the mineral and preserve 



  

447 
 

the protein have been articulated in detail (Painter 1995). Therefore, it was plausible that 

Sphagnum rather than the acidity was primarily responsible for the demineralisation of the 

Derrycashel bone.  

The focal destruction present within the Derrycashel thin sections did not adhere precisely to 

the morphology of Hackett’s (1981) bacterial MFD. Chemical bone demineralisation forms a 

diffuse ‘wave’ of destruction, beginning at the periosteal edge and moving inwards (Gordon & 

Buikstra 1981; Turner-Walker & Jans 2008; Turner-Walker & Peacock 2008; Fernández-Jalvo et 

al. 2010). The points of collagen loss in the Derrycashel samples were more abundant towards 

the periosteal aspects, but were generally distributed sporadically throughout the thin 

sections. The points of collagen loss did not conform to a progressive wave of destruction 

model (Turner-Walker & Peacock 2008). The Worsley Man skull was retrieved from a similar 

demineralising environment, yet demonstrated no enlarged osteocyte lacunae (Garland 1995). 

The enlarged lacunae identified within the Derrycashel sample were not associable with a 

demineralising environment, and must have occurred as a result of bacterial collagen loss.  

Hackett’s (1981: 250) specific MFD forms represent an advanced level of osteolytic decay, and 

it is likely that there are various stages to their formation (White 2009). It is known that non-

Wedl MFD are formed from smaller amalgamations of cavities, the microbial spongiform 

porosity (Jackes et al. 2001; Turner-Walker et al. 2002). White (2009) found that non-Wedl 

MFD begin as smaller dark cavities that resemble enlarged osteocyte lacunae. Non-Wedl MFD 

in archaeological bone are usually concentrated around osteocyte lacunae that appear 

enlarged (Hackett 1981; Hanson & Buikstra 1987; Bell 1990; Bell et al. 1996; Jans et al. 2004). 

The distribution of focal collagen loss within the Derrycashel samples was similar to that 

observed within partially biodegraded archaeological specimens, which demonstrate dispersed 

accumulations of non-Wedl MFD that intensify towards the sub-periosteal zones (Hackett 

1981; Hanson & Buikstra 1987; Child 1995a; Jans et al. 2004; Jans 2008; Hollund et al. 2012).  

The lack of characteristic hypermineralised zones from the borders of the areas collagen loss 

located within the Derrycashel remains prevented an unequivocal confirmation of the 

presence of Hackett’s (1981: 250) non-Wedl MFD (Jans et al. 2004; Jans 2008). However, the 

lack of hypermineralised zones might be expected, considering that the Derrycashel remains 

had been extensively demineralised. Non-bacterial micro-organisms such as mosses and algae 

are capable of exploiting bone protein in certain circumstances. Exogenous blue-green algae 

(cyanobacteria) have been identified as the likely culprits involved in the bioerosion of bones 

recovered from aquatic contexts (Bell & Jones 1990; Bell et al. 1996). The presence of biomass 
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within the Derrycashel specimens that resembled cyanobacteria could provide an explanation 

for the observed bioerosion. However, cyanobacterial bioerosion is characterised by Wedl 

MFD, which were absent from the Derrycashel thin sections (Hackett 1981; Bell & Jones 1990; 

Bell & Elkerton 2008; Turner-Walker & Jans 2008). If the cyanobacteria were responsible for 

the collagen loss, there should have been an association between the presence of inclusions 

and the areas of degradation. However, there was no relationship between the organic 

inclusions and the microscopic tunnelling, even in areas of the thin sections where the algae 

appeared to have infiltrated the bone microstructure. There was no evidence of biological 

destruction in the bone microstructure of the head recovered from Worsley Moss, despite this 

specimen containing organic inclusions similar to those observed in the Derrycashel samples 

(Garland 1995). The lack of enteric bioerosion in the Worsley Head was predictable as trauma 

in its associated vertebrae indicated that the head was separated from the major source of 

endogenous bacteria (i.e. the rest of the body) in the early post mortem period (Garland 1995; 

Nielsen-Marsh et al. 2007).  

The identification of bacterial bioerosion within the incompletely-mummified Derrycashel thin 

sections supported the hypothesis that the bones of mummies will be bioeroded by 

putrefactive bacteria if the method of preservation is inconsistent and fails to suspend 

putrefaction soon after death (Jans 2008; White 2009). The Derrycashel specimens 

represented the first bones obtained from a mummified body that demonstrated lesions that 

were likely to have occurred as a result of biotic collagen loss. The pattern of decomposition 

within the Derrycashel samples suggested that the bones had been subjected to the initial 

stages of bacterial attack before putrefaction was halted by the preservative environment 

(Jans et al. 2004; Nielsen-Marsh et al. 2007; Jans 2008; Hollund et al. 2012). This finding 

supported the proposal that bodies placed within peat bogs will be subject to variable levels of 

decomposition before putrefaction is eventually curtailed. This conclusion was consistent with 

the sporadic preservation of soft tissue observed within bog bodies generally and in the 

Derrycashel body specifically. 

The lack of visible circumferential lamellar bone within the Derrycashel bone samples 

suggested that most of the periosteal third had been lost. Thus, the part of the Derrycashel 

bone that was most likely to have been extensively attacked by bacteria was not present (Jans 

et al. 2004; Parker Pearson et al. 2005; Hollund et al. 2012). It was possible that the loss of the 

periosteal surface of the Derrycashel samples has led to an underestimation of microscopic 

decay. The loss of the periosteal surface itself may have occurred as a result of intense 

bacterial bioerosion within the sub-periosteal zone. Initial putrefactive bioerosion may have 
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removed a quantity of collagen from the sub-periosteal bone before the sphagnan infiltration 

began to take effect (Painter 1995; 1998). When the elements in the bog began to decalcify 

the bone, the previous microbial-induced collagen loss would have ensured the complete 

collapse of the periosteal surface up until the point where the bacterial attack had been halted 

(Painter 1995; Turner-Walker & Peacock 2008). This theory could explain why the bones of 

some bog bodies have entirely disintegrated whilst the soft tissue has remained intact (Turner 

1995). White’s (2009) histological study of buried pig carcasses found that bone which retained 

large quantities of soft tissue often demonstrated extensive levels of bacterial collagen loss. 

The inhibitory effects of sphagnan are not consistent within as well as between bog body 

specimens, and it is likely that putrefactive bone bioerosion is equally as variable (Painter 

1995; Turner 1995). Therefore the presence or absence of bones within bog bodies may be 

dependent on the extent to which the endogenous putrefactive microbiota were able to 

exploit the bone before they were neutralised by the encroaching bog chemicals.   

 

7.3.2 Yemeni Desiccated Mummy 

 

In addition to the mummified Yemeni patella, two further patellae had been analysed to 

provide a characterisation of the microstructure and morphology of diagenesis within this 

specific little-analysed bone. The provenances of both of these samples was unknown, but 

based upon their condition and context it was likely that one was an archaeological bone that 

originated from a British Historical cemetery and the other was a modern fresh sample. The 

high levels of bacterial bioerosion observed within the British archaeological patella confirmed 

that this skeletal element is susceptible to extensive putrefactive bacterial attack. The 

histological preservation of the patella from the Yemeni mummy was comparable to the fresh 

bone sample. Collagen birefringence within the Yemeni patella was high, although it was 

slightly reduced towards the periosteal surfaces, which indicated that collagen had been lost 

from the outer fringes of the bone via a non-biological mechanism. The high microstructural 

preservation of the Yemeni patella was consistent with previous histomorphological 

characterisations of bone from mummified individuals. 

There were notable occurrences of enlarged osteocyte lacunae within the Yemeni patella. 

These phenomena would normally be regarded as representing variation in natural 

phenomena, however the results of White (2009) combined with observations of similar 

features within the bone of the Derrycashel individual suggested that these features 
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represented the beginnings of bacterial bioerosion. These features were concentrated within 

the sub-periosteal zone of the patella. This patterning emulated the distribution of non-Wedl 

MFD with archaeological bones and the samples from the Derrycashel individual. Examination 

of the thin section of the Yemeni patella under polarised light demonstrated that the enlarged 

osteocyte lacunae obliterated natural collagen birefringence, which indicated that they 

represented collagen loss (Hackett 1981). It was possible that these features represented the 

beginnings of putrefactive osteolytic bioerosion, although it was difficult to say for certain, as 

the focal destruction was not as advanced as that which was observed within the Derrycashel 

individual as well as White’s (2009) pig bones.  

The Yemeni mummy had been preserved naturally within a hot desiccating burial context 

(Brothwell 2010, personal communication). The enteric visceral bacteria would have been 

rapidly deprived of the moisture they required for their proliferation as soon as the body 

entered the burial matrix. It was not surprising that levels of putrefactive bioerosion within this 

sample were lower than what was observed within the partially-mummified Derrycashel 

sample. The presence of focal points of collagen loss within the Yemeni individual suggested 

that putrefaction was initiated to some extent before the corpse had dried out. Therefore the 

bone from the Yemeni sample further confirmed that high levels of histological preservation 

are sustained within bone from mummified remains, but also hinted that these bones are not 

immune from internal bacterial bioerosion.  

Accumulations of small microfissures were identified at the periosteal edges of the Yemeni 

patella thin section, particularly around sites that were attached to soft tissue. The size and 

shape of these microfissures suggested that they had not occurred as a result of sample 

preparation trauma, which are usually regularised in line with the path of the cutting blade, 

but had a diagenetic aetiology (Schultz 1997). The microfissuring corresponded with areas of 

birefringence loss at periosteal zones. It was likely that the bone had cracked because of the 

loss of mass that had resulted from the chemical removal of protein (Smith et al. 2002; 2007). 

Microfissuring and loss of collagen is consistent with bone diagenesis by accelerated hydrolysis 

(Smith et al. 2002; Nielsen-Marsh et al. 2007; 2007). Collagen hydrolysis within the Yemeni 

sample was likely to have been accelerated by the high temperatures of the burial 

environment (Collins et al. 1995; Smith et al. 2002; 2007).  

The microstructure of the Yemeni patella had not been stained and did not include any 

infiltrations. However, this specimen included frequent inclusions. These inclusions consisted 

of accumulations of regular rounded brown particles. These features did not resemble the 
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types of inclusions found commonly within the archaeological bone used in the Primary 

Analysis, which were much more irregular in size and colour. It was probable that the 

inclusions within the Yemeni patella consisted of small particles of sand that had infiltrated the 

bone through the natural porosities.  

 

7.3.3 Summary of the Results from the Mummified Material 

 

The results from the histological analysis of both mummified sample found that 

microstructural preservation was high. This result was consistent with previous 

histomorphological studies of bone from mummified bodies and provided further evidence for 

the link between putrefaction and bacterial bone bioerosion (Weinstein et al. 1981; Thompson 

& Cowen 1984; Hess et al. 1998). These results contrasted with the histological preservation of 

the Historical archaeological remains and indicated that mummified bodies are the only 

category of ancient articulated remains that consistently demonstrate high levels of 

histological preservation. Articulated post-neonatal remains that had not decomposed under 

anoxic conditions rarely demonstrated high levels of histological preservation, and in this 

sense, this diagenetic signature was characteristic of mummified bone.  

However, the Derrycashel specimen and the Yemeni sample to a lesser extent indicated that 

mummified bone is not immune from bacterial bioerosion. Inefficient methods of 

mummification can expose the bones to minimal levels of putrefactive bioerosion. Therefore, 

the diagenetic signature of mummification bone is a scale ranging from minimal to no levels of 

bacterial bioerosion. This result confirmed that the pattern of bioerosion observed within the 

remains of the adult male recovered from Bronze Age Cladh Hallan was consistent with prior 

mummification (Parker Pearson et al. 2005). The characterisation of the effects of 

mummification on bone histology and the rarity of this histological signature within most 

archaeological bone suggested that analysis of archaeological bone microstructure would 

provide a useful tool for identifying skeletons that had been previously mummified, but had 

subsequently lost their soft tissue (Parker Pearson et al. 2005). Occurrence of inclusions and 

staining within both samples was consistent with the notion that these features represent 

interactions between the bone and elements within the burial environment (Garland 1987). 

 

 



  

452 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

453 
 

8 SPECIFIC DISCUSSION 

 

The results discussed in the previous chapter established that patterns of bacterial bioerosion 

within post-neonatal remains recovered from aerobic burial environments reflected how far 

the early post mortem treatment of an individual had facilitated bone exposure to putrefaction 

bacteria (Jans et al. 2004; Nielsen-Marsh et al. 2007; Smith et al. 2007). The exact treatment 

that was afforded the Later Prehistoric individuals that were included in this study was 

uncertain. Distributions of Whole OHI scores across remains each Later Prehistoric site 

assemblage had been compared against the Historical baseline in order to establish how 

bacterial bioerosion varied from what would be expected to have occurred as a result of 

immediate burial.   

This next chapter mostly consists of reports that combined the taphonomic information from 

each Later Prehistoric site and forensic studies of bodily decomposition with the results from 

the histological analysis of the human bone to formulate interpretations of mortuary rites that 

had been practised in each case. Some of these reports had already been produced for 

institutions that were responsible for the curation of each respective assemblage as part of 

agreements that had facilitated sampling. These discussions provide exemplary studies that 

demonstrate the potential utility of bone histology in inferring funerary rite when combined 

with other contextual information. 

The results from the whole assemblage had suggested that there were phase-specific trends in 

patterns of bacterial bone bioerosion amongst the Later Prehistoric remains that likely 

translated into the practise of particular mortuary rites. Therefore, discussion of the results 

from each Later Prehistoric site were grouped by Later Prehistoric Phase. Each grouping of 

reports was followed by a discussion of results from all bone samples that belonged to the 

same phase. This discussion only covered those treatments that best explained the patterns of 

bone diagenesis and taphonomy within the bones used in the current study. It was not the 

intention of this review to infer the types of rites that were practised all over Britain during 

these time periods, although widespread performance of a particular kind of treatment might 

be inferred circumstantially if the same kinds of processes were identified at 

contemporaneous sites from different parts of the country. However all of these 

interpretations must be accompanied by the caveat that there was probably much regional 

and temporal variation in funerary activities within specific Later Prehistoric periods (Darvill 

2010). 
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8.1 DEVIANT TREATMENT OF INFANTS 
 

There is evidence from several past and modern societies that the bodies of neonates or young 

infants are often subject to a deviant form of funerary treatment (Murphy 2008). There were 

some notable patterns in the distribution of histologically well-preserved neonatal bones from 

some of the site assemblages that merited further discussion regarding the recognition of their 

possible deviant treatment. All of the neonatal remains from the Roman Bantycock settlement 

that did not demonstrate any bacterial bioerosion originated from isolated discrete graves 

located within the settlement itself, rather than the associated cemetery (Pre-Construct 

Archaeology 2005). It was possible that these potentially stillborn babies had been afforded a 

deviant form of funerary treatment. However, adult remains were also recovered from the 

settlement contexts, albeit less frequently. The cemetery dated to the later phase of activity at 

the site, and it was possible that a designated burial ground did not exist during earlier periods 

(Pre-Construct Archaeology 2005). The only neonatal sample that was sampled from the 

cemetery came from the foetus that was found in situ within the skeleton of its mother (Pre-

Construct Archaeology 2005). 

Differential deposition of stillborn remains may also have been practised at Bolsover. High 

numbers of neonatal remains was recovered from the north side of the Saint Mary & Saint 

Laurence church (Foster 1992). A large proportion these neonatal skeletons were free from 

bacterial bioerosion (Foster 1992). Documentary evidence had suggested that in this area of 

the country during the period the cemetery was used, the north side of the church was 

reserved for burials of deviant individuals, such as cases of suicide or unbaptised infants 

(Foster 1992; Kerr 1994). Therefore the abundance of possible stillborn individuals from the 

north side of the church may be significant. However, only one neonatal skeleton was sampled 

from outside of the north side of the church. This sample had been extensively bioeroded and 

was therefore likely to have originated from an infant that had lived for a short while after 

birth. 

The cluster of partially-articulated neonatal remains recovered from Carsington Pasture Cave 

had been radiocarbon dated to the Late Bronze Age/Early Iron Age (Chamberlain 1999). The 

specific ages-at-death, Iron Age date, partial state of articulation and localised nature of these 

remains suggested that they comprised a separate depositional event to the rest of the human 

bones, which were representative of all age-at-death categories, had been extensively 

disarticulated around the cave chamber and had produced a Late Neolithic/Early Bronze Age 

radiocarbon date (Chamberlain 1999; Papakonstantinou 2009). Both skeletons that were 
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sampled from the neonatal cluster were free from bioerosion. The partial articulation and 

completeness of the neonatal skeletons suggested that the cave represented their primary 

depositional context and that their partial disarticulation had occurred as a result of later 

disturbance (Chamberlain 1999; Papakonstantinou 2009).  

These observations suggested that Carsington Pasture Cave was used for the exclusive 

deposition of stillborn neonatal remains in the Iron Age. Iron Age remains are not often 

recovered from cave sites (Cunliffe 1991). Most human remains that date to this period have 

been recovered from within discrete monuments, cemeteries or settlements (Cunliffe 1991). 

The exclusivity of the Iron Age neonatal deposits meant that it was tempting to interpret this 

assemblage as having resulted from the deviant deposition of stillborn infants. However, the 

few radiocarbon dates that were obtained from the site ensured that this interpretation was 

tenuous. 

 

8.2 LATER PREHISTORIC INTERPRETATIONS 
 

8.2.1 Mesolithic/Neolithic 

 

8.2.1.1 Havnø Shell Midden, Denmark 

 

Bacterial bioerosion within the remains from the Havnø were unlikely to have been influenced 

by environmental inconsistencies, preservational biases or the effects of diverse skeletal part 

representation. Bacterial bioerosion of the bone from Havnø could be taken to represent the 

extent to which a skeletal element had been exposed to putrefaction bacteria, and so the 

histological results could be used to make some cautious inferences regarding funerary 

practices (Bell et al. 1996; Jans et al. 2004; Nielsen-Marsh et al. 2007; Hollund et al. 2012). It 

could not be known whether each bone represented a specific individual, and it was likely that 

certain samples originated from a single skeleton (Andersen 2008).  

All of the bones from Havnø demonstrated some level of bacterial bioerosion, but there was a 

dichotomy between those that had been extensively and sparingly bioeroded. This patterning 

suggested that at least two separate funerary rites were represented at Havnø. Both of these 

processes led to the disarticulation of the skeleton before the bones were interred in the 

midden. The bias of the OHI scoring method towards middle grades became relevant to the 
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study of the Havnø bones when specimens UBQ-a and LOU-a were considered. Both bones 

were given OHI scores of two, but whilst UBQ-a retained almost fifty-per-cent of its histological 

integrity, the LOU-a specimen retained only around twenty-per-cent. The histological 

destruction observed within UBQ-a was closest to that recorded within the better-preserved 

group and this specimen most likely represented an outlier to this distribution. Therefore, the 

two groups of Havnø bones that represented the putative discrete funerary practices consisted 

of the poorly-preserved specimens: NSV, THE and LOU-a, and the well-preserved specimens: 

UBQ-a, QQB, XPG, NYA, VNV, UBQ-b, PCE-a and OHL-3. 

The well-preserved Havnø bone specimens must have been derived from individuals that were 

subjected to a post mortem process which limited bone exposure to putrefactive bacteria (Bell 

et al. 1996; Jans et al. 2004; Parker Pearson et al. 2005; Nielsen-Marsh et al. 2007; Hollund et 

al. 2012). Sub-aerial exposure could account for this pattern of bacterial bioerosion (Rodriguez 

& Bass 1983; 1985; Simmons et al. 2010). Variation in bacterial bioerosion was possibly related 

to the time of year each individual decomposed (Galloway et al. 1989; Bass 1997; Archer 2004; 

Carter et al. 2007; Michaud & Moreau 2011; Zhou & Bayard 2011). However, a study of 

bacterial bioerosion in bones taken from sub-aerially exposed mammalian remains found no 

correlation between bacterial attack and season of death (Fernández-Jalvo et al. 2010). It is 

probable that a complex combination of environmental variables affect bodily decomposition 

and bacterial bioerosion of bone within sub-aerially exposed cadavers (Fernández-Jalvo et al. 

2010). The inconsistency in representation of skeletal elements amongst the Havnø 

assemblage meant that the possibility that different skeletal elements were variably prone to 

bacterial bioerosion could not be dismissed entirely (Hanson & Buikstra 1987; Jans et al. 2004).  

The poorly-preserved Havnø specimens had been subjected to high levels of putrefactive 

attack consistent with immediate inhumation of an intact body (Rodriguez & Bass 1983; 1985; 

Bell et al. 1996; Bass 1997; Rodriguez 1997; Jans et al. 2004; Nielsen-Marsh & Hedges 2000; 

Nielsen-Marsh et al. 2007; Hollund et al. 2012). The disarticulation of the Havnø remains 

suggested that whole bodies must have been primarily buried elsewhere. However, the 

poorly-preserved Havnø bones all originated from lower limbs or extremities, and it was 

possible that the replicated fibula fragments, NSV and UBQ-a, originated from the same 

individual (Hellewell 2012, personal communication). Histological preservation across the 

poorly-preserved Havnø bones was variable, but the fibula fragments were similar in terms of 

the severity of their bioerosion. It was feasible that all of the poorly preserved Havnø bones 

originated from a single individual that was buried intact within the midden and subsequently 

disturbed by later activity. 
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The Havnø bone thin sections all demonstrated types of orange staining, inclusions and 

infiltrations that were commonly found within the majority of archaeological samples used in 

the current study. The inclusions observed within the Havnø thin sections were consistent with 

deposits of iron oxides that precipitate out of percolating groundwater within the natural bone 

porosities (Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997; Hollund et al. 

2012). The orange staining that appeared at the periosteal and endosteal fringes in certain of 

the Havnø thin sections was probably caused by diffusion of iron oxides that occurred as a 

result of these external surfaces lying in contact with the burial medium (Grupe & Dreses-

Werringloer 1993; Hollund et al. 2012). Inconsistent brown staining of the type observed 

within the Havnø samples has most often associated with infiltration by humic acids released 

by decaying organic matter (Garland 1987; Grupe & Dreses-Werringloer 1993; van Klinken & 

Hedges 1995; Shahack-Gross et al. 1997). There was a slight association between the presence 

of brown staining and evidence for previous organic grave goods within the study sample used 

in the Primary Analysis. The Havnø midden would have contained an abundance of 

decomposing organic matter that could have been responsible for the brown staining 

(Andersen 2008). The uniformity of these phenomena across the Havnø samples added to the 

evidence that these bones had been subjected to similar burial conditions over the period of 

their deposition.  

The histological analysis of specimens from the Havnø assemblage revealed that the remains 

represented two possible funerary treatments that resulted in skeletal disarticulation. The 

histological signatures of most of the bones suggested that the individuals had been 

excarnated by sub-aerial exposure before their bones were interred in the midden. The 

histological signatures of the rest of the bones were consistent with primary burial. All of the 

bones that demonstrated low levels of histological preservation may have belonged to the 

lower limbs of a single individual. Therefore, it was possible that all of the extensively 

bioeroded samples from Havnø originated from a single individual that had been buried in 

articulation within the midden and was subsequently disarticulated by later disturbance. 
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8.2.2 Neolithic 

 

8.2.2.1 Beeston Tor Cave CX, Staffordshire, U.K. 

 

All four samples recovered From the Beeston Tor CX cave demonstrated high levels of bacterial 

attack to their internal microstructures. The Beeston Tor assemblage was disarticulated and 

comingled. This assemblage included a single neonatal femur. The poor level of histological 

preservation of this sample suggested that this individual was not likely to have been stillborn. 

This individual had been subjected to the same diagenetic processes as the rest of the bone 

sampled from Beeston Tor CX.  

One sample, the femur of a two to three-year-old child, demonstrated slightly higher levels of 

histological preservation. Over fifty-per-cent of the internal microstructure of this sample 

remained intact. However, the overall results suggested that all bones had been subjected to 

high levels of putrefactive decay, similar to what would be expected to have occurred within 

remains that had been buried intact soon after death (Rodriguez & Bass 1983; 1985; Bell et al. 

1996; Bass 1997; Rodriguez 1997; Jans et al. 2004; Nielsen-Marsh & Hedges 2000; Nielsen-

Marsh et al. 2007). The most immediate interpretation of diagenesis within this assemblage 

was that the bodies were originally defleshed through primary burial and the disarticulated 

bones were deposited in the Beeston Tor CX cave. 

It was assumed that the sample taken from Beeston Tor CX was representative of the 

assemblage as a whole. However, there was evidence that treatment of the remains deposited 

within the Beeston Tor CX cave may have varied. Radiocarbon dates of bones from the same 

comingled assemblage produced disparate dates within the Neolithic (Chamberlain 1999). A 

tibia of a child that was not sampled for thin sections analysis demonstrated cut marks 

indicative of dismemberment (Papakonstantinou 2009). These observations suggested that the 

Beeston Tor CX assemblage had accumulated over a significant length of time as a result of 

variable processes (Chamberlain 1999; Papakonstantinou 2009). 

The interpretation of primary burial at Beeston Tor CX appeared to contradict the taphonomic 

evidence from the site, which had suggested that whole bodies had decomposed within the 

cave (Chamberlain 1999; Papakonstantinou 2009). Forensic studies of cadaveric 

decomposition within structures and caves have established that bones would have 

experienced variably high levels of putrefactive bioerosion mediated by the extent to which 

the environment facilitated access to skeletonising insects (Galloway et al. 1989; Goff 1991; 

Terrell-Nield & MacDonald 1997). Patterns of bacterial attack observed within the bones from 
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cave environments used in the current study were variably high and consistent with the model 

of indoor decomposition proposed by forensic experiments (Galloway et al. 1989; Goff 1991; 

Terrell-Nield & MacDonald 1997). The higher histological preservation of the bone from the 

child hinted at potential variability in bacterial bioerosion that was consistent with the 

signatures of cave samples taken as a whole. Only five-per-cent of samples within the 

Historical baseline distribution demonstrated Whole OHI scores of three. It was possible that 

low sample size at Beeston Tor CX had captured a skewed distribution of variation in bacterial 

bioerosion, or that this specific cave environment was more effective in preventing 

entomological access to cadavers (Goff 1991; Terrell-Nield & MacDonald 1997). 

All of the bones from the Beeston Tor assemblage demonstrated Wedl bioerosion. Wedl 

tunnelling was found commonly within remains from caves. It has been suggested that the 

presence of soft tissue on the bones would facilitate fungal exploitation, which provides 

further support for the suggestion that the remains had been deposited within the cave in the 

early post mortem period (Marchiafava et al. 1974; Terrell-Nield & MacDonald 1997). Fungal 

decomposition characterises the late stages of cadaveric decay within caves (Terrell-Nield & 

MacDonald 1997). It was probable that the specific, dark, cold, damp but aerated conditions of 

the cave encouraged fungal tunnelling in the Beeston Tor CX samples.  

The analysis of the entire assemblage had identified that staining, inclusions and infiltrations 

were directly related to the burial environment. Such features observed within the Beeston 

Tor assemblage must have occurred as a result of coverage by speleothem or after bones had 

been incorporated into the cave sediments. All staining inclusions and infiltrations were of an 

orange colour, consistent with those found within the majority of the bones sampled for this 

study, and probably indicative of infiltration by iron oxides (Garland 1987; Grupe & Dreses-

Werringloer 1993; Schultz 1997; Hollund et al. 2012).  

The histological and taphonomic evidence from the Beeston Tor CX cave suggested that at 

intact human remains were left to decompose on the cave surface at several points during the 

Neolithic. The skeletons were disarticulated and comingled through a combination of faunal 

and human disturbance before being incorporated within the sediments inside and at the 

entrance of the cave. Whilst the skeletons lay on the ground surface their bones were 

degraded further by saprophytic fungi.  
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8.2.2.2 Carsington Pasture Cave, Derbyshire, U.K. 

 

The Carsington Pasture Cave assemblage consisted of partially-articulated and entirely 

disarticulated remains (Chamberlain 1999; Papakonstantinou 1999). All of the bones were 

recovered from the surface of the cave and showed no markings of having previously been 

interred within sediment (Chamberlain 1999; Papakonstantinou 1999). Samples of bone from 

the cave had been variably attacked by bacteria. Most bone samples that were free from 

bacterial attack originated from the cluster of partially-articulated Iron Age neonatal remains 

recovered from the second chamber. The possible treatment of the Iron Age neonatal remains 

was discussed above. 

Two post-neonatal bone samples from Carsington Pasture Cave were free from microbial 

bioerosion, which indicated that they had not been exposed to putrefaction. One of the 

samples originated from a mostly-complete partially articulated skeleton. The other sample 

came from a disarticulated jumble of bones that may have all belonged to a single individual. 

The second of these skeletons demonstrated cut marks indicative of dismemberment 

(Chamberlain 1999; Papakonstantinou 1999). If dismemberment had occurred soon after 

death, the bones would have been removed from the soft tissues and organs before visceral 

bacteria were able to access the internal microstructure (Bell et al. 1996; Jans et al. 2004; 

Nielsen-Marsh et al. 2007). This process represented best explanation for the lack of bacterial 

bioerosion within the second individual. 

No cut marks were detected on the partially articulated remains that were also free from 

microbial bioerosion. Initial partial disarticulation through sub-aerial exposure could have been 

responsible for the low levels of putrefactive bioerosion within these remains. However, this 

process only variably inhibits putrefactive bacterial bioerosion of the bone (Rodriguez & Bass 

1983; 1985; Bell et al. 1996; Fernández-Jalvo et al. 2010; Hollund et al. 2012). The similar high 

levels of histological preservation observed within the cut-marked skeleton circumstantially 

suggested that both sets of remains had been dismembered. This process would not 

necessarily have left tell-tale cut marks on the bones (Guilday et al. 1962; Binford 1981; Fisher 

1995). The similarity in skeletal part representation between the histologically well-preserved 

remains added circumstantial support to the suggestion that they had been treated 

analogously. The completeness of the dismembered skeletons and the close proximity of their 

bones suggested that these processes had taken place within or around the cave and that this 

environment represented the primary depositional context (Chamberlain 1999; 

Papakonstantinou 2009). 
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The rest of the post-neonatal remains from Carsington Pasture Cave demonstrated variably 

poor levels of histological preservation, which indicated that they had been exposed to 

extensive soft tissue putrefaction. Whole OHI scores of the bioeroded remains accumulated 

around scores of two and were elevated compared to the Historical baseline distribution. 

These results suggested that whilst most of the bioeroded remains from Carsington Pasture 

Cave had experienced intense levels of putrefaction, these processes had progressed variably, 

and in some cases may not have run their full course. This pattern was likely to be 

representative of bone from a body that had decomposed within the cave environment 

(Terrell-Nield & MacDonald 1997). Primary interment of whole bodies within Carsington 

Pasture cave was supported by the taphonomic analysis of distribution and representation of 

the human skeletons at the site (Chamberlain 1999; Papakonstantinou 2009). 

The majority of the post-neonatal remains from Carsington Pasture Cave had not been dated, 

and those that had provided wide possible ranges. The most elegant scenario was that all of 

the non-neonatal samples had been deposited during the Neolithic or Early Bronze Age. It was 

possible that the two dismembered skeletons represented separate phases of activity. 

However, evidence for disparate rites is not necessarily indicative of different phases of 

activity within British Later Prehistoric periods, where there is evidence for the 

contemporaneous practise of discrete rites (Darvill 2010). Dismemberment may have 

represented a deviant form of funerary treatment. 

Wedl tunnelling was identified within small sections of all but one of the bioeroded human 

bone samples from Carsington Pasture Cave. Fungal incursion was associated with cave 

interment amongst the entire sample set and probably occurred as a result of the bone having 

lain within an open, aerated environment that facilitated fungal exploitation, possibly whilst 

retaining some soft tissue (Terrell-Nield & MacDonald 1997; Jans et al. 2004). The suggestion 

that soft tissue facilitates fungal exploitation of bone collagen supported the notion that 

fleshed bodies had decomposed within the cave (Marchiafava et al. 1974; Terrell-Nield & 

MacDonald 1997).  

The association between visual diagenetic changes and burial environment was consistent 

with the low levels of staining, inclusions and infiltrations observed within the Carsington 

Pasture cave specimens, which had never been placed within burial sediment (Garland 1987; 

Grupe & Dreses-Werringloer 1993; Schultz 1997; Hollund et al. 2012). Bones that had been 

covered in flowstone demonstrated specific crystalline inclusions that were most likely 

representative of speleothem incursion. Some inclusions resembled the orange variety that 
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were common to many of the archaeological bone sampled in this study. These features were 

likely to consist of iron oxide deposits produced by occasional water movement through the 

cave (Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997; Hollund et al. 2012). 

 

8.2.2.3 Frälsegården Chambered Tomb, Falbygden, Sweden 

 

All of the samples taken from the Frälsegården specimens demonstrated high levels of 

bacterial bioerosion, which indicated that they had been treated in ways which exposed the 

remains to extensive soft tissue putrefaction. However, the differences between the Whole 

OHI scores of the Frälsegården articulated and disarticulated human assemblage suggested 

that the articulated samples had been exposed to significantly lower levels of putrefactive 

attack. These signatures of bone bioerosion and skeletal articulation indicated that there were 

two separate funerary traditions represented within the Frälsegården assemblage; an earlier 

rite that had encouraged skeletal disarticulation and exposed the bones to high levels of 

putrefactive bioerosion and a later practice that promoted skeletal articulation whilst variably 

reducing levels of bacterial bioerosion (Sjögren 2011, personal communication). 

Bacterial alteration of the disarticulated samples was characteristic of immediate burial 

(Rodriguez & Bass 1983; 1985; Bell et al. 1996; Nielsen-Marsh & Hedges 2000; Jans et al. 

2004). These remains may have been defleshed by primary burial before they were exhumed 

and placed within the tomb. However, it was probable that the tomb promoted environmental 

conditions similar to those that would be found within a cave or indoor environment. The 

lower temperatures and diminished levels of insect activity within the Frälsegården chambered 

tomb would have promoted slow, unabated bodily decomposition (Galloway et al. 1989; Goff 

1991; Terrell-Nield & MacDonald 1997). The simplest interpretation of the pattern of bone 

diagenesis amongst the Frälsegården disarticulated assemblages was that the remains had 

been interred directly within the tomb and were disarticulated by subsequent deposition and 

disturbance.  

The lower levels of histological preservation observed amongst the disarticulated Frälsegården 

bones compared to remains from Carsington Pasture Cave and Beeston Tor suggested that 

initial primary burial still represented a plausible explanation. However, the original sampling 

of the Frälsegården remains had included a specimen from an articulated dog that had been 

interred directly within the chambered tomb. The articulation of this specimen suggested that 

the pattern of decomposition represented what would be expected from immediate interment 
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within the tomb (Sjögren 2011, personal communication). The pattern of bacterial bioerosion 

within the dog skeleton was analogous to that observed within the samples of disarticulated 

human bone. Whilst this result had to be tempered with the caveats regarding the 

appropriateness of comparing bacterial bioerosion within bone from different species, it 

supported nonetheless the suggestion that bacterial attack within the disarticulated human 

remains was a result of primary interment within the tomb. Frälsegården lies on a higher 

latitude than Carsington Pasture Cave and Beeston Tor. Higher levels of bacterial bioerosion 

within the Frälsegården remains may have been attributable to the colder climate, which 

would have reduced skeletonising insect activity (Rodriguez & Bass 1983; 1985; Terrell-Nield & 

MacDonald 1997; Campobasso et al. 2001; Vass 2011). 

Levels of bacterial bioerosion within the articulated and partially articulated Frälsegården 

remains were variable but less extensive than those observed within the disarticulated 

specimens. The results the Carsington Pasture Cave and Beeston Tor CX had suggested that 

deposition within a cave or indoor environment promotes variable levels of bacterial bone 

bioerosion, and it was possible that signatures of bioerosion within all of the Frälsegården 

samples could be explained by direct decomposition cadavers within the tomb (Terrell-Nield & 

MacDonald 1997). However, the equal divisibility of the samples by bioerosion, articulation 

and chronology could not be ignored. These results suggested that the higher levels of skeletal 

articulation amongst the later deposits was not a result of gradual disarticulation from 

disturbance over time, but was attributable to a change in the way the dead were treated 

(Sjögren 2011, personal communication). 

The patterns of bacterial bioerosion observed within the samples from articulated and partially 

articulated bones suggested that they had been subjected to processes that had an 

inconsistent effect on putrefaction (Bell et al. 1996; Jans et al. 2004; Nielsen-Marsh et al. 

2007). There was no evidence that the sediments within the chamber were ever anoxic or 

would have promoted an environment that would have inhibited putrefaction (Sjögren 2011, 

personal communication). If whole cadavers had been interred directly within the tomb, it was 

likely that they were left decay on the ground surface within the open chamber, and not 

surrounded by sediment (Sjögren 2010). It was possible that bacterial bioerosion within the 

articulated and partially-articulated remains had been curtailed by the remains having been 

deposited initially within an inhibitory context (Parker Pearson et al. 2005; Hollund et al. 2012). 

However, patterns of bacterial bioerosion within these remains were more extensive than 

those observed within the anoxic-deposited Historical samples. 
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The link between level of articulation and Whole OHI score in the Frälsegården human 

assemblage suggested that an anthropogenic process linked to maintenance of bodily form 

were responsible for higher levels of histological integrity (Sjögren 2011, personal 

communication). The increased levels of skeletal articulation refuted the possibility that these 

samples had been sub-aerially exposed, as this treatment would have encouraged rapid 

skeletonisation and disarticulation (Rodriguez & Bass 1983; 1985; Simmons et al. 2010). One 

possible explanation was that these remains had been heavily wrapped. Wrapping of some of 

the Frälsegården remains was suggested by their level of articulation and highly flexed 

postures (Sjögren 2010). Wrapping has been found to interfere with bodily decomposition in 

certain situations, although the results of the current study suggested that wrapping or 

clothing had little overall effect on putrefactive bone bioerosion (Mant 1987; Galloway et al. 

1989; Mann et al. 1990; Goff 1992; Aturaliya & Lukasewycz 1999; Campobasso et al. 2001; 

Fielder & Graw 2003; Kelly et al. 2009; Vass 2011; Voss et al. 2011; Fereira & Cunha 2013).  

Most studies of wrapping have suggested that this factor only inhibits putrefaction when 

augmenting other environmental influences such as aridity or water saturation (Mant 1987; 

Galloway et al. 1989; Fielder & Graw 2003; Vass 2011). The patterns of putrefactive bioerosion 

observed within the articulated and partially-articulated Frälsegården samples could be 

explained had they been initially wrapped and placed within a wet anoxic context that 

facilitated adipocere formation before they were interred within the tomb. Such a process may 

account for the partial articulation of some of the Frälsegården remains, particularly where 

they constituted the legs and pelvis, as adipocere commonly forms in areas that are high in 

body fat such as the thighs and buttocks (Mant 1987; Mann et al. 1990; Janaway 1996; Forbes 

et al. 2005). However, levels of bacterial bioerosion within the articulated Frälsegården bone 

specimens were more extensive than what would be expected if putrefaction had been 

significantly curtailed. 

An alternative hypothesis could be that the articulated bodies had been wrapped soon after 

death, but subsequent interment within the Frälsegården tomb was delayed. Efficient 

wrapping of the body would have prevented some insects from gaining access to the corpse 

and so the bones would have been exposed to extensive soft tissue decomposition, despite 

remaining unburied (Galloway et al. 1989; Goff 1992; Aturaliya & Lukasewycz 1999; 

Campobasso et al. 2001; Fielder & Graw 2003; Kelly et al. 2009; Vass 2011). A combination of 

soft tissue loss facilitated by the insects that had penetrated the wrappings and any inhibitory 

effects of the wrappings themselves could have been responsible for the arrested signatures of 

extensive bacterial attack. The relative levels of articulation of these bodies suggested that 
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they had been placed within the tombs before the bodies had fully decomposed (Sjögren 

2010). The implication of a delay between death and burial might indicate that the wrapped 

remains were displayed for a short while.  

Preservation of skeletal articulation and inhibition of bacterial bone bioerosion could have 

been achieved by an inadequate form of mummification (Parker Pearson et al. 2005). The 

results from the Cladh Hallan skeletons and the Derrycashel bog body indicated that sporadic 

mummification techniques are likely to promote variable levels of histological preservation 

and anatomical articulation within skeletal remains (Parker Pearson et al. 2005; Kelly 2012). 

Bacterial bioerosion and patterns of disarticulation within the Frälsegården articulated and 

partially-articulated remains would reflect the efficacy of the mummification method in each 

case. This interpretation was weakened by the observation that the histological preservation 

of the articulated remains was no higher than those that were partially-articulated, as it would 

be expected that patterns of bacterial attack and articulation would both reflect the quality of 

mummification. The extensive levels of bioerosion observed within the Frälsegården bones has 

not yet been equalled within remains obtained from mummified bodies (Weinstein et al. 1981; 

Thompson & Cowen 1984; Hess et al. 1998).  

The remains from Frälsegården did not demonstrate incidences of Wedl tunnelling, despite 

them having originated from an open environment that might be expected to have 

encouraged fungal exploitation. This observation did not invalidate the hypotheses that the 

remains decomposed within the tomb itself, as the appearance of this type of tunnelling is 

likely to be related to several factors that control the abundance of fungal spores and their 

access to the internal bone microstructure. The Frälsegården bones demonstrated minor levels 

of orange staining, but mild to intense levels of orange infiltrations and inclusions. The results 

from the assemblage as a whole suggested that the staining, inclusions and infiltration formed 

as a result of interactions with the iron oxides located within the burial soil (Garland 1987; 

Grupe & Dreses-Werringloer 1993; Schultz 1997; Hollund et al. 2012). 

 

8.2.2.4 Whitwell Quarry, Derbyshire, U.K. 

 

All of the bones sampled from the Whitwell Quarry assemblage demonstrated invariably poor 

levels of histological preservation, which indicated that they had all experienced extensive 

putrefaction (Bell et al. 1996; Jans et al. 2004; Nielsen-Marsh et al. 2007). All of the bones 

originated from the disarticulated linear mortuary deposit within the cairn (Vyner & Wall 
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2011). The results were consistent with these bodies having been buried soon after death 

(Rodriguez & Bass 1983; 1985; Bell et al. 1996; Nielsen-Marsh & Hedges 2000; Jans et al. 2004; 

Nielsen-Marsh et al. 2007). Therefore, one possible interpretation of the patterns of bacterial 

bioerosion within these samples was that all remains were initially buried elsewhere before 

the disarticulated bones were exhumed and interred within the tomb. However, the 

histological results from the bones interred within Carsington Pasture Cave, Beeston Tor and 

Frälsegården had suggested that deposition within caves or tombs produced similar extensive 

levels of putrefactive bone bioerosion (Goff 1991; Terrell-Nield & MacDonald 1997). It was 

possible the indoor environment of the cairn had a similar effect as a cave in restricting 

invertebrate access and ensuring that soft tissue loss was mostly mediated by natural 

spontaneous decomposition (Goff 1991; Terrell-Nield & MacDonald 1997). 

The histological preservation of the bone from Whitwell Quarry was particularly low but still 

consistent with the preservation of remains obtained from other tomb and cave sites. Only five 

bones were sampled from Whitwell Quarry and it was possible that they happened to present 

a slightly skewed sample of possible variation. The simplest explanation for the histological 

signatures of the Whitwell Quarry remains was that all of the bodies had been interred as fully-

fleshed corpses within the linear mortuary deposit and had been disarticulated by successive 

activity.  

There were no incidences of Wedl tunnelling noted within any of the Whitwell Quarry remains. 

This observation did not significantly affect the taphonomic interpretation of the Whitwell 

assemblage, as Wedl tunnelling had not occurred consistently within all bone samples from 

cave or tomb contexts. The Whitwell sample had been attacked more severely by bacteria 

than the bones from Carsington Pasture Cave and Beeston Tor, and so there was possibly not 

enough bone protein available in these samples to facilitate fungal exploitation (Jans et al. 

2004). The Whitwell bones demonstrated weak orange staining and infrequent inclusions and 

infiltrations. These features were similar to those found within most archaeological bones used 

in the present study, and probably occurred as a result of interactions between the bone and 

iron oxides within the burial environment and percolating ground water (Garland 1987; Grupe 

& Dreses-Werringloer 1993; Schultz 1997).  
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8.2.3 Neolithic Summary 

 

Most of the Neolithic remains consisted of disarticulated or partially articulated bones that had 

been deposited within caves or tombs. Most bone samples from all of these contexts 

consistently demonstrated extensive levels of putrefactive bioerosion that had been arrested 

at a variably late stage. These results were consistent with the deposition and decomposition 

of fleshed bodies within these environments (Galloway et al. 1989; Goff 1991; Terrell-Nield & 

MacDonald 1997). Skeletal disarticulation was encouraged by repeated disturbance, 

manipulation and selective recovery of remains during and after skeletonisation. Variability in 

bacterial bone bioerosion amongst these remains probably occurred a result of deviations in 

the accessibility of remains to invertebrates (Galloway et al. 1989; Goff 1991; Terrell-Nield & 

MacDonald 1997). Samples of Neolithic bones were partly responsible for peaks in Later 

Prehistoric post-neonatal Whole OHI scores of two and five. The bone samples responsible for 

Whole OHI scores of five tallied with the two specimens from Carsington Pasture cave that 

were likely to have been taken from dismembered individuals. The peak at Whole OHI scores 

of zero and two were explained by decomposition of bodies within cave or indoor 

environments. 

 

8.2.4 Bronze Age 

 

8.2.4.1 Bradley Fen Settlement, Cambridgeshire, U.K. 

 

All three of the skeletons sampled from the Bradley Fen were articulated at the point of 

recovery yet were allocated high Whole OHI scores of four or five. The sample from Sk 853 was 

entirely free from microbial bioerosion. High histological preservation was an atypical finding 

amongst the articulated remains sampled for this project. Less than three-per-cent of the 

Historical baseline samples demonstrated Whole OHI scores of four or five and less than two-

per-cent were free from microbial bioerosion. These patterns of bacterial bioerosion suggested 

that putrefaction of these remains had been interrupted at an early post mortem juncture (Bell 

et al. 1996; Jans et al. 2004; Nielsen-Marsh et al. 2007; Hollund et al. 2012). 

Burial 853 was recovered from a watering hole whose base had been positioned strategically 

below the water table (Knight 2008, personal communication). It was probable that this 

individual had decomposed within a waterlogged anoxic environment. This skeleton had 

eventually been buried by accumulations of silt (Knight 2008, personal communication). The 
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immaculate histological preservation of bone from Burial 853 was best explained by this 

individual having been deposited within waterlogged anoxic sediments soon after death 

(Turner-Walker & Jans 2008; Hollund et al. 2012). The resultant anoxic environment would 

have arrested early decomposition and prevented putrefactive bioerosion of the bone (Turner-

Walker & Jans 2008; Hollund et al. 2012).  

The sediments that surrounded Burials 573 and 785 consisted of sandy clay and were not 

waterlogged (Knight 2008, personal communication). There were no indications that these 

sediments were or had ever been anoxic, either in terms of the survival or organic material or 

the composition of the burial soils (Knight 2008, personal communication). These two bodies 

had been buried shallowly within sediment located two metres above the original ground 

water level (Appleby 2005). Histological preservation of bones sampled from Historical anoxic 

deposits were variably elevated. However, the histological preservation of the two remaining 

Bradley Fen samples were higher than the overall preservation of the anoxic-deposited 

Historical remains. The intermittent waterlogging associated with the Historical sites meant 

that some of the remains recovered from these locations had probably decomposed under 

aerobic conditions. This observation combined with the small number of samples from Bradley 

Fen meant that it remained uncertain whether the histological signatures of the Bradley Fen 

bones had been caused by environmental anoxia (Hollund et al. 2012). However, the lack of 

evidence that these skeletons had decomposed within a waterlogged context meant that an 

anthropogenic explanation for their heightened levels of histological preservation had to be 

considered. 

Rapid skeletonisation associated with sub-aerial exposure of a cadaver reduces the levels of 

putrefaction that bones experience (Rodriguez & Bass 1983; 1985; Bell et al. 1996; Simmons et 

al. 2010; Vass 2011). The correct anatomical articulation of the bones from Burials 573 and 785 

precluded the possibility that they had been sub-aerially exposed (Knight 2008, personal 

communication). Some of the bones of Burial 853 had been modified by rodents (Knight 2008, 

personal communication). It was possible that this modification had been enacted by 

burrowing mammals that were able to access the shallow grave, although there were no 

notable signs of burrowing within the burial sediment (Knight 2008, personal communication). 

These observations suggested that there may have been a delay between the death and burial 

of Burial 853 that facilitated rodent access. 

Shallow burial might encourage patterns of bodily decomposition similar to those of sub-

aerially exposed cadavers because of the higher environmental temperatures and increased 
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accessibility of the cadaver to skeletonising insects (Rodriguez & Bass 1985; Yoshino et al. 

1991; Campobasso et al. 2001; Dent et al. 2004; Vass 2011). Burials 573 and 785 had been 

buried shallowly, and so this scenario could explain their heightened levels of histological 

preservation as well as evidence for rodent modification (Yoshino et al 1991). However, 

forensic studies of decomposition have suggested that different parts of partially-buried 

bodies decompose differently depending on whether they lie above or below the ground 

(Schotsmans et al. 2011). The results from the Primary Analysis had suggested that burial 

depth that did not result in anoxia had little effect on bacterial bone bioerosion (Nielsen-Marsh 

& Hedges 2000; Jans et al. 2004; Nielsen-Marsh et al. 2007; Smith et al. 2007; Turner-Walker 

2008).  

The flexed postures of the Bradley Fen burials, particularly the highly contorted attitude of 

Burial 573, suggested that the bodies had been wrapped (Parker Pearson et al. 2005; Nilsson 

Stutz 2006). Coverings have only been observed to interfere substantially with bodily 

decomposition under particular environmental conditions that augment the effects of 

wrappings (Galloway et al. 1989; Forbes et al. 2005; Notter & Stuart 2011; Vass 2011; Ferreira 

& Cunha 2012). The results from the Primary Analysis had suggested that wrapping or clothing 

do not significantly affect bacterial bone bioerosion. It was unlikely that wrapping alone would 

have affected decomposition of the Bradley Fen carcasses in a way that would have 

significantly curtailed the putrefactive bioerosion of the bone microstructure.  

The literature review and analysis of the mummified remains demonstrated that bones from 

mummified bodies are the only ancient articulated remains that consistently retain high levels 

of histological preservation (Weinstein et al. 1981; Thompson & Cowen 1984; Stout 1986; 

Brothwell & Bourke 1995; Garland 1995; Hess et al. 1998; Parker Pearson et al. 2005). The 

results from the Derrycashel bog body established that bones from mummified remains can 

experience limited levels of putrefactive bioerosion when they have been preserved using 

inefficient methods. Previous mummification of the Bradley Fen remains was a plausible 

explanation for their histological signatures of arrested putrefactive bioerosion. 

Mummification and curation would also explain the rodent modification of Burial 853. 

If the Bradley Fen remains had been intentionally preserved, the levels of bacterial bioerosion 

within these bones suggested that the technique employed had not arrested putrefaction 

immediately. These signatures of bioerosion were similar to those found within the bones of 

the Derrycashel bog body, which suggested that the Bradley Fen remains may have been only 

partially mummified. These results were similar to those obtained from the Cladh Hallan 
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skeletons, and may indicate that the Bradley Fen individuals could represent composite bodies 

(Parker Pearson et al. 2005; Hanna et al. 2012). The suggestion that Burials 573 and 785 had 

been mummified before they were buried raised questions as to whether Burial 853 was 

similarly treated. An identical diagenetic signature would have been produced within the 

skeleton of Burial 853 had the body been deposited as a fresh or mummified cadaver. The 

results from the Primary Analysis had suggested that Later Prehistoric treatment was more 

likely to be responsible for the absence of bacterial bioerosion from archaeological bone than 

anoxic environment. 

The Historical baseline assemblage included a small proportion of remains that demonstrated 

high levels of histological preservation. It could be argued that the two Bradley Fen specimens 

represented outliers within the natural variation of bacterial bioerosion caused by immediate 

burial that had been captured by random chance. This possibility could not be dismissed within 

the context of the Bradley Fen site. However, based on the Historical baseline distribution, it 

was improbable that bone samples extracted from two articulated burials across one site 

would both demonstrate high levels of histological preservation unless there was some other 

process involved (Jans et al. 2004; Nielsen-Marsh et al. 2007; Smith et al. 2007; Jans 2008; 

Hollund et al. 2012). The best explanation for the patterns of bioerosion observed within the 

Bradley Fen remains was that they were subject to funerary processes that curtailed their 

putrefaction and preserved their soft tissues.  

All of the Bradley Fen skeletons demonstrated orange staining at their periosteal and 

endosteal surfaces. This staining was intense within the bones from Burial 573 and 785 and 

more superficial within the samples from Burial 853. Accumulations of iron oxides within 

archaeological remains have been associated with initial decomposition under anoxic 

conditions (Hollund et al. 2012). However the distribution of these features within the Bradley 

Fen remains was consistent with similar phenomenon observed within the majority of the 

study sample. Their presence within the Bradley Fen specimens could not be taken to be 

indicative of a decompositional environment that had interfered with putrefactive bone 

bioerosion (Hollund et al. 2012). It was likely that the orange staining had accumulated as a 

result of interactions between the bone and iron oxides within the burial environment 

(Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997). The availability of iron oxides 

within the Bradley Fen burial environment was attested to by the frequent appearance of iron 

panning on skeletal remains from the site (Appleby 2005). 
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Anoxic decomposition and subsequent iron oxide formation usually lowers the local pH 

producing microfissuring within the internal bone microstructure (Turner-Walker 1999; 

Turner-Walker & Jans 2008; Hollund et al. 2012). No such diagenetic alterations were recorded 

from the Bradley Fen specimens. These features, as well as iron oxide staining, were also 

mostly absent from the bones of Burial 853 which almost certainly did decompose within an 

anoxic environment. Perhaps the remains of Burial 853 were never sufficiently aerated to 

encourage iron oxidation, or the microstructural features associated with anoxic 

decomposition do not always appear. These results supported the assertion that putrefactive 

bioerosion within the bones of Burials 573, 785 and possibly 853 was not arrested by 

environmental conditions. 

The bones of Burial 853 demonstrated dark macroscopic staining, yet microscopic analysis 

revealed that this discolouration was superficial, and had occurred as a result of a thin layer of 

extraneous dark material that adhered to the cortex. The opacity of this material made it 

difficult to interpret its constitution, but it was similar to the inclusion that filled the natural 

bone microporosities. The bones of Burials 573 and 785 were not obviously discoloured on a 

macroscopic scale, despite demonstrating intense orange microscopic staining to their 

periosteal surfaces. The intense and intrusive orange staining observed within the bones of 

Burials 573 and 785 suggested that their burial environment encouraged higher levels of iron 

oxide infiltration than the sediments that surrounded Burial 853. Iron oxides must have been 

more abundant within the clay soils of Burials 573 and 785 than within the silts that contained 

Burial 853. This finding was consistent with variations in orange aesthetic diagenetic changes 

with burial soil observed amongst the assemblage as a whole. 

The dark brown inclusions that were observed within all of the Bradley Fen thin sections were 

similar in colour and morphology to those found commonly within most of the archaeological 

remains sampled for the present study (Garland 1987; Grupe & Dreses-Werringloer 1993; 

Schultz 1997; Hollund et al. 2012). It was likely that these inclusions represented deposits of 

iron oxides that had entered the bone through the movement of percolating groundwater 

(Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997). The high frequency and 

intensity of the inclusions found within the Burial 853 thin sections was probably a result of 

the watery environment having increased the mobility of extraneous materials. Decomposition 

within anoxic waterlogged environments promotes the formation of framboidal pyrite and so 

this material may have partially constituted the dark inclusions found within the Burial 853 

thin section (Turner-Walker 1999; Turner-Walker & Jans 2008; Hollund et al. 2012).  
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8.2.4.2 Cladh Hallan Settlement, South Uist, U.K. 

 

Parker Pearson et al. (2005; 2007) had already published an interpretation of the funerary 

processes responsible for the signature of bioerosion within CH 2638. They concluded that the 

limited levels of bacterial bone bioerosion found within this sample were consistent with this 

skeleton having been previously mummified (Parker Pearson et al. 2005). This interpretation 

was supported by studies of the histological preservation of bone from mummified human 

individuals included in the present and previous studies (Weinstein et al. 1981; Thompson & 

Cowen 1984; Brothwell & Bourke 1995; Hess et al. 1998). The composite CH 2316 skeleton had 

been subject to similar types of post mortem treatment as CH 2638. It was inferred by 

association that this skeleton had also previously been mummified (Parker Pearson et al. 

2005). 

The finding that CH 2686 was composed of the partially articulated parts of several individuals 

could infer that this individual was constructed from parts of individuals that had been sub-

aerially exposed (Parker Pearson et al. 2005; Hanna et al. 2012). However, the patterns of 

articulation amongst the constituent parts of this individual combined with the long period 

between death and burial inferred by the radiocarbon dates precluded the possibility that this 

body had been constructed from the remains that had been partially disarticulated through 

sub-aerial exposure (Micozzi 1991; Parker Pearson et al. 2005; Duday 2006).The partial 

preservation of the mummified remains from Derrycashel was consistent with the partial 

articulation of the constituent parts of CH 2686, and provided further proof that the haphazard 

technique of mummification utilised at Cladh Hallan could have involved submersion of the 

remains within a sphagnum peat bog. There was no indication that the environmental 

conditions of the in situ burial contexts of the Cladh Hallan remains would have promoted 

anoxic bodily decomposition (Parker Pearson et al. 2005). 

Summerfield (2004) had also taken samples of bone from the discrete individuals represented 

by the cranium and the mandible of CH 2868. These bones were not included within the 

present study because they did not originate from long bones. Both samples were free from 

bacterial bioerosion or demonstrated only limited bacterial attack (Summerfield 2004). 

Therefore all of the known separate individuals that constituted the CH 2868 composite 

demonstrated signatures of bacterial decay that were best explained by the remains having 

been previously mummified (Weinstein et al. 1981; Thompson & Cowen 1984; Stout 1986; 

Brothwell & Bourke 1995; Garland 1995; Hess et al. 1998; Parker Pearson et al. 2005). 



  

473 
 

Histological preservation amongst the rest of the Cladh Hallan human remains was variable 

(Summerfield 2004). Two samples demonstrated extensive levels of bacterial bioerosion 

suggesting that they had been exposed to the highest levels of putrefactive bacterial activity. 

These patterns of bioerosion were consistent with the samples having decomposed as part of 

corpses that were buried immediately after death (Bell et al. 1996; Nielsen-Marsh & Hedges 

2000; Jans et al. 2004; Nielsen-Marsh et al. 2007). One of these samples had been taken from 

the femur of the skeleton CH 2616. This result was ostensibly inconsistent with this part of the 

skeleton having originated from a previously-mummified individual, as preservation of the soft 

tissue is usually achieved through the cessation of putrefaction (Aufderheide 2003; Parker 

Pearson et al. 2005). This result clashed with the taphonomic and dating evidence, which were 

consistent with mummification (Parker Pearson et al. 2005; 2007).  

Prior mummification provided the only explanation for the levels of articulation observed 

amongst the constituent parts of CH 2616. The level of articulation observed amongst these 

skeletons would be improbable had they been reconstructed out of disarticulated parts of 

bodies that had decomposed naturally (Micozzi 1991). The ways in which the constituent parts 

of these bodies were assembled suggested that the inhabitants of Cladh Hallan must have had 

some anatomical knowledge. However, it seemed unlikely that this knowledge would have 

extended to the intricate articulations of the bones of the hands and feet, particularly in a way 

that would have retained the unstable positions observed within the Cladh Hallan skeletons. 

Patterns of skeletal articulation were more similar to those observed amongst skeletonised 

remains that were likely to have been formerly mummified (Maureille & Sellier 1996). 

The high levels of bacterial bioerosion observed within the femur of CH 2616 might be 

explained in one of two ways. It was possible that the reconstruction of individuals did not 

consist only of mummified remains, but included infrequent single or partially articulated 

bones from bodies that had decomposed naturally whilst buried. The left femur that was 

sampled from CH 2616 had been manipulated post mortem, along with the corresponding tibia 

and patella (Parker Pearson et al. 2005; 2007). The femur of CH 2616 may have originated 

from an individual that had partially decomposed underground before being disinterred. The 

partially-decomposed leg could have been incorporated within the composite body after the 

internal bone microstructure had been bioeroded by putrefactive bacteria. This argument is 

weakened by the radiocarbon dates from the bone, which suggested that the femur was likely 

to have been older than its surrounding sediments, although there was a small overlap. The 

period between death and disinterment would have ensured that the lower limb would have 

entirely skeletonised and disarticulated. 
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An alternative hypothesis was that the leg originated from a body that was incompletely 

mummified. The suggestion that the mummification method adopted at Cladh Hallan was only 

sporadically successful was evidenced by the composite nature of the whole bodies as well as 

the arrested patterns of internal putrefactive bioerosion within the sample from CH 2638. If 

the method of mummification was only sporadically effective, the assembly of mummified 

parts might have represented the conglomeration of the best-preserved bits of several bodies 

to produce the most complete individual. Similar attempts to reconstruct single individuals 

form incompletely-mummified bodies have been observed within assemblages of Greco-

Roman mummified human remains from the Dakleh Oasis in Egypt (Aufderheide et al. 1999; 

Aufderheide 2003). Small-angle x-ray analysis of the bones of the CH 2868 sample revealed a 

level of demineralisation that was most likely caused by the body having been deposited in an 

acidic environment, such as a bog (Parker Pearson et al. 2005). Inconsistent mummification 

promoted by a bog environment was apparent within the Derrycashel bog body, in both the 

partial preservation of its soft tissues and bioerosion of the internal bone microstructure (Kelly 

2012). The limited level of bacterial bioerosion observed within the tibia of the Derrycashel 

bog body was comparable to that recorded from Cladh Hallan skeleton CH 2868 (Parker 

Pearson et al. 2005: 541).  

The identification of bacterial bioerosion within the bones of the Derrycashel bog body 

indicated that bone from a mummified individual preserved using an inconsistent method may 

have experienced putrefactive bioerosion. The results from this sample had also suggested 

that the occasional loss of the skeleton from preserved bog bodies may be due to the failure of 

the bog environment in preventing extensive putrefactive bioerosion of the bone. Bog 

environments that failed to prevent some putrefactive bone bioerosion may still have 

preserved the superficial soft tissues sufficiently to have ensured some level of skeletal 

articulation. If all of the formerly-mummified remains from Cladh Hallan had been preserved 

through deposition in a bog, putrefactive bone bioerosion would have varied between 

individuals. This scenario would provide an explanation for the extensive levels of bacterial 

bioerosion observed within the femur from the CH 2616 mummy. A sample taken from a part 

of the skeleton that represented a different individual may reveal a contrasting signature of 

bacterial bone bioerosion, more consistent with mummification. The suggestion that the 

bones of a preserved body may have been variably bioeroded by putrefactive bacteria 

weakened the potential utility of histological analysis in identifying skeletal remains that had 

been formerly mummified. Unusually low levels of bacterial bioerosion in bone is likely to a 
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tendency rather than an absolute within bodies that were mummified using techniques that 

did not involve evisceration or immediate neutralisation of gut microbiota.  

The other bone sample from Cladh Hallan that had been intensely bioeroded was taken from 

the skeleton of a ten-to-fourteen-year-old child (CH 2727) that had been buried underneath a 

roundhouse (Parker Pearson et al. 2004; 2005). This skeleton retained a tightly flexed posture, 

but demonstrated no further evidence for unusual treatment. There was no evidence for 

unusual post mortem treatment and the radiocarbon dates from this individual were not 

anomalously early (Parker Pearson et al. 2005). The simplest explanation for the taphonomic 

and histological evidence was that CH 2727 had been buried underneath the roundhouse soon 

after death (Summerfield 2004).  

The skeleton of the CH 2792 three-year-old child that was also recovered from underneath a 

roundhouse demonstrated high levels of bacterial bioerosion. However, this attack was not as 

extensive as what was observed within the previous two specimens. This level of putrefactive 

bioerosion was observed infrequently within the Historical baseline assemblage, which 

indicated that this individual may not have been buried immediately after death. This 

signature of bioerosion was observed most often within cave-deposited remains, or Iron Age 

samples where there was some evidence that the body had been left to decompose in the 

open air for a short while. The majority of the CH 2792 skeleton was represented, although 

most of it was disarticulated, which suggested that the body was in an advanced state of 

decomposition when it was buried (Parker Pearson at al. 2005). There was no evidence that 

the grave had been disturbed after burial, and so the disarticulated parts must have been 

retained within some form of container (Parker Pearson et al. 2005).  

The histological preservation of this specimen was consistent with retention of the body within 

a sealed bag or other container for a short while above ground before it was buried. Such a 

container would have limited access to skeletonising insects and ensured that the bones were 

exposed to extensive levels of putrefaction. However, radiocarbon dates of the bones of this 

specimen were appreciably earlier than the dates of the construction of the roundhouse 

(Parker Pearson et al. 2005). It was possible that the decomposing remains had been retained 

within a container whilst the roundhouse was constructed and buried once building was 

completed. However, the length of time between the death and deposition indicated by the 

radiocarbon date stipulated that the body should have completely disarticulated by the time it 

was interred (Rodriguez & Bass 1983; 1985; Parker Pearson et al. 2005). The exact timing of 

bodily decomposition is highly variable. However, uninhibited bodily decomposition in a 
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temperate environment, particularly above-ground, would be expected to take no longer than 

a few years (Rodriguez & Bass 1983; 1985; Janaway 1996; Manhein 1997; Rodriguez 1997; 

Campobasso et al. 2001; Dent et al. 2004; Wilson et al. 2007; Vass 2011; Fereira & Cunha 

2013). The overlap of the radiocarbon dates meant that it was still possible that this specimen 

had decomposed within an organic container above ground (Parker Pearson et al. 2005). 

However, the partial perseverance of skeletal articulation and limited bacterial bone 

bioerosion of this specimen was also consistent with a haphazard mummification process 

(Aufderheide 2003; Lynnerup 2007). Evidence for the preservative treatment of other 

individuals from the Cladh Hallan site may circumstantially support similar conclusions 

regarding the partial articulation of CH 2792. The histological preservation of CH 2792 was too 

low to be undoubtedly attributed to mummification. 

The unstratified disarticulated femur that was uncovered from a separate part of the site 

during quarrying activities was the only bone sample from Cladh Hallan that remained free 

from microbial bioerosion. This bone had not been exposed to bodily putrefaction. It was not 

clear whether this bone represented part of an articulated burial or a disarticulated deposit 

(Summerfield 2004). Disarticulation via surface exposure would have limited the level of 

putrefactive decay that the bone experienced (Bell et al. 1996; Fernández-Jalvo et al. 2010; 

Simmons et al. 2010). However, only a few bones from surface-exposed cadavers remain free 

from microbial bioerosion and it is likely that most will have been exposed to limited 

putrefaction (Bell et al. 1996; Fernández-Jalvo et al. 2010; Simmons et al. 2010). Another 

possible explanation was that the body that this femur belonged to had originally been 

purposefully dismembered or defleshed soon after death (Jans et al. 2004). No tool marks 

were located on this bone, although dismemberment could have been performed without 

producing marks (Guilday et al. 1962; Binford 1981; Fisher 1995).  

The immaculate histological preservation of this CH-C sample was also consistent with prior 

mummification (Weinstein et al. 1981; Thompson & Cowen 1984; Stout 1986; Brothwell & 

Bourke 1995; Garland 1995; Hess et al. 1998). This scenario was pertinent when the other 

potential disarticulated formerly-mummified remains from this site were considered. The lack 

of bacterial bioerosion to the internal bone microstructure of this specimen suggested that the 

cessation of putrefaction had been more successful than within the bodies of CH 2616 and CH 

2868. The lack of context for this specimen was frustrating, as it could not be established 

whether it originated from a fully-articulated mummified individual or another reconstructed 

composite.  
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A small number of articulated bones sampled from the Historical baseline assemblage were 

free from bioerosion, and it was possible that the abnormal histological signatures located 

within the remains from Cladh Hallan represented a skewed sample of natural variation. 

However, the accompanying dating and taphonomic evidence combined with the high levels of 

histological preservation observed within the remains that composed CH 2868 suggested that 

it was improbable that the diagenetic signatures were a result of skewed natural variation 

within bodies that had been buried soon after death (Parker Pearson et al. 2005; 2007). Most 

of the bone samples from Cladh Hallan demonstrated superficial levels of orange and yellow 

staining and infrequent inclusions and infiltrations. The nature of all these features were 

consistent with those that appeared commonly within most of the archaeological bones 

sampled for this study. These features were most likely to represent interactions between the 

bone and iron oxides within the soil and the percolating groundwater (Garland 1987; Grupe & 

Dreses-Werringloer 1993; Schultz 1997). The mildness of these visual diagenetic changes most 

likely attested to the paucity of iron oxides within the machair sand burial environment and 

was inconsistent with these diagenetic features having formed as a result of bodily 

decomposition within an anoxic environment (Hollund et al. 2012). 

None of the Cladh Hallan bone samples demonstrated characteristic microstructural staining, 

inclusions and infiltrations that would have been indicative of previous deposition within a bog 

(Garland 1995). Studies of changes to bone and soft tissues placed within sphagnum bogs have 

demonstrated that bones deposited in direct contact with the bog are subject to only mild 

staining within the time it takes for soft tissue to mummify (Gill-Robinson 1999; Turner-Walker 

& Peacock 2008). The intense red staining observed within the Derrycashel sample was the 

result of the body having been deposited within the bog environment for millennia (Garland 

1995). It was likely that the mild bone staining that may have been acquired by the bone while 

the Cladh Hallan body was in a bog would have been replaced by discolouration promoted by 

elements within the new burial soils. Any remains of sphagnum or algae desmids that had 

managed to infiltrate the Cladh Hallan bones may also have been replaced by factors intrinsic 

to the new burial soils (Garland 1995).  

 

8.2.4.3 Cnip Headland Cemetery, Isle of Lewis, U.K. 

 

All but one of the bone samples from Cnip were entirely free from bioerosion, which suggested 

that they had been treated in a way which prevented their exposure to putrefactive bacteria. 
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Disparate skeletal elements from discrete individuals had been sampled from Cnip. However, 

the results from the whole assemblage, the supplementary samples and the Cnip remains 

taken in isolation suggested that bacterial bioerosion did not vary significantly with skeletal 

element. 

One of the samples that was free from bacterial bioerosion had come from a neonatal 

individual (Sk. 3) that was recovered within a grave located underneath an adult female 

skeleton (Sk. 2) in Area D (Knott 2010). The neonatal skeleton was partially disturbed when the 

adult female body was inserted (Knott 2010). The nature of the skeletal disarticulation of the 

neonate suggested that this disturbance had taken place after the neonatal body had 

decomposed. The best explanation for the histological preservation of the neonatal individual 

was that it had been stillborn, or died soon after birth. 

The sample from the adult female skeleton that directly overlay the neonatal remains (Sk. 2) 

was the only one from Cnip that had been bioeroded (Knott 2010). This specimen had been 

exposed to high levels of putrefactive attack. There was a severe contrast in the level of 

bioerosion observed within this specimen and the sample from the neonatal skeleton that lay 

directly beneath it, which reinforced the notion that bacterial attack was not a consequence of 

the burial environment. The signature of bioerosion within Sk. 2 was consistent with the body 

having been buried intact soon after death (Rodriguez & Bass 1983; 1985; Bell et al. 1996; Jans 

et al. 2004; Nielsen-Marsh et al. 2007). This skeleton had demonstrated a certain degree of 

skeletal disarticulation when it was uncovered, which suggested that the grave may not have 

represented the primary depositional context (Knott 2010). However, the disarticulation of this 

skeleton was slight and could have occurred as a result of movement during decomposition.  

All of the disarticulated and partially articulated bones sampled from Areas A and C were free 

from microbial bioerosion. The radiocarbon dates of bone from all contexts were statistically 

indistinguishable (Lelong 2011, personal communication). The most direct way that 

putrefactive bioerosion within these remains could have been prevented was through 

dismemberment or defleshing (Jans et al. 2004; Nielsen-Marsh et al. 2007). No cut marks were 

identified on any of the remains recovered from Cnip Areas C and A, although this type of 

processing may not have left marks on the bone (Guilday et al. 1962; Binford 1981; Fisher 

1995). It was unlikely that the body from the Area A cist had been dismembered, as the 

skeleton was fairly complete and most of the bones lay in anatomical articulation (Lelong 

2011). The impression of correct skeletal articulation observed within some of the remains 

from the Cnip may have been distorted by attempts at skeletal reassembly (Lelong 2011). 
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However, the level of skeletal articulation within Sk. 1 from the Area A cist was unlikely to have 

been achieved through reassembly of entirely disarticulated elements. Accurate reassembly of 

skeletal form was not considered necessary for most of the disarticulated remains from Area C. 

Sub-aerial exposure of the remains would have ensured that putrefactive bacterial bioerosion 

was kept to a minimum whilst promoting swift disarticulation (Rodriguez & Bass 1983; 1985; 

Bell et al. 1996; Fernández-Jalvo et al. 2010; Simmons et al. 2010). Redfern (2008) and Carr & 

Knüsel (1997) reasoned that remains excarnated by sub-aerial exposure would demonstrate 

some evidence for carnivore scavenging and weathering. No carnivore marks were located on 

any of the Cnip remains, although the exposed bodies may have been protected from these 

factors by a barrier or deposition on an elevated platform. The cortex of the bones samples 

from Cnip had been badly eroded, although it was unclear whether this represented the kind 

of weathering that occurs as a result of sub-aerial exposure (Lelong 2011). The bones of the 

adult skeleton from Area D demonstrated the highest levels of cortical weathering, despite the 

probability that this individual had decomposed below ground (Lelong 2011).  

The sporadic articulation of the remains from Areas A and C suggested that they had been 

retrieved and buried before the soft tissues had fully decomposed. It was unlikely that the bare 

bones had been left to weather for a significant length of time. Bones of sub-aerially exposed 

bodies experience some putrefaction (Bell et al. 1996; Turner-Walker & Jans 2008; Fernández-

Jalvo et al. 2010; Hollund et al. 2012). The absence of bacterial tunnelling from the Cnip 

samples, whilst consistent with surface exposure, would represent an unusual finding within 

bones from bodies that were treated in this fashion (Bell et al. 1996; Turner-Walker & Jans 

2008; Fernández-Jalvo et al. 2010; Hollund et al. 2012).  

The consistent levels of microstructural preservation observed within the Cnip samples could 

be explained by sub-aerial exposure had they all been afforded this treatment at the same 

time of year. The results from the Historical baseline distribution established that seasonality 

had not significantly affected putrefactive bone bioerosion within buried remains at sites 

where it had no effect on intermittent waterlogging. However, must forensic investigations of 

decomposition that established links between seasonality and cadaveric decomposition 

studied unburied bodies (Rodriguez & Bass 1984; 1985; Mann et al. 1990; Bass 1997; 

Campobasso et al. 2001; Vass 2011). Unlike buried samples, seasonality will affect the extent 

as well as the rate of putrefaction that the bones are exposed to because of the associated 

abundance of skeletonising insects (Rodriguez & Bass 1983; 1985; Campobasso et al. 2001; 

Simmons et al. 2010; Vass 2011). Increased insect activity would have severely limited the 
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levels of soft tissue putrefaction experienced by bones (Rodriguez & Bass 1983; 1985; 

Galloway et al. 1989; Simmons et al. 2010). Therefore, it was feasible that sub-aerial exposure 

could explain patterns of bioerosion and disarticulation within the Area A and C samples had 

all of the remains been originally exposed during warmer months. 

Variation in levels of articulation amongst the Area A & C bones indicated that there must have 

been discrepancies in the time that each individual represented at Cnip had been sub-aerially 

exposed (Lelong 2011). The limited skeletal disarticulation observed within the skeleton from 

the Area A cist suggested that this body must have decomposed for a shorter period of time 

than the individuals represented by the largely disarticulated remains recovered from Area C. 

Variation in levels of skeletal articulation amongst the remains from Area C supported similar 

conclusions regarding the variable durations of sub-aerial exposure. The purported link 

between putrefaction and bone bioerosion suggested that variation in the duration of sub-

aerial exposure should have produced disparities in the extent of putrefaction experienced by 

the bones (Jans et al. 2004). A previous study of bacterial bioerosion in bones of fallen 

livestock suggested that this type of degradation is not influenced by seasonality, even 

amongst sub-aerially exposed carcasses (Fernández-Jalvo et al. 2010). The consistent lack of 

bacterial bioerosion within the variably-articulated Cnip Area A & C remains meant that sub-

aerial exposure did not provide a satisfactory explanation for their disarticulation. 

The Cnip Areas A and C remains had not been recovered from their primary depositional 

context (Lelong 2011). Primary deposition of these remains within an anoxic environment soon 

after death would have provided one method of prohibiting putrefactive bioerosion of these 

bones (Hollund et al. 2012). This environment must have been consistently anaerobic from the 

point of deposition in order for it to have inhibited putrefaction consistently (Hollund et al. 

2012). It was unlikely that the machair sands from which the Cnip bones were all excavated 

were intrinsically anaerobic, or were frequently rendered so by waterlogging. This notion was 

supported to by the high level of bacterial bioerosion within the articulated skeleton from Area 

D (Knott 2010). Another possibility was that all of the individuals represented by the remains 

from Areas A and C were eviscerated or exsanguinated soon after death.  

Initial deposition within an anoxic environment, evisceration, or possibly exsanguination are all 

processes that are likely to increase the potential for mummification (Aufderheide 2003). 

Histomorphological studies of bones from mummified individuals have indicated that 

immaculate preservation of bone histology is more consistent with mummification than 

excarnation (Weinstein et al. 1981; Thompson & Cowen 1984; Stout 1986; Brothwell & Bourke 



  

481 
 

1995; Garland 1995; Hess et al. 1998; Parker Pearson et al. 2005; Turner-Walker & Jans 2008; 

Fernández-Jalvo et al. 2010; Hollund et al. 2012). As long as the mummification method used 

was consistent or involved evisceration, prior mummification would best explain the 

consistent absence of bacterial bioerosion from the Cnip bone samples (Weinstein et al. 1981; 

Thompson & Cowen 1984; Stout 1986; Brothwell & Bourke 1995; Garland 1995; Hess et al. 

1998; Parker Pearson et al. 2005). The disarticulation of the remains from Cnip may contradict 

an interpretation of mummification, although the evidence from Cladh Hallan suggested that 

partial disarticulation of Bronze Age mummies may have been the norm (Parker Pearson et al. 

2005; 2007). The attempts at skeletal reassembly within some of the remains from Area C 

provided conjectural parallels between the Cladh Hallan and Cnip assemblages (Lelong 2010). 

It was conceivable that the Cnip Areas A and C were repositories for partially articulated 

mummified material.  

The radiocarbon dates obtained from the bones from Areas A & C were slightly earlier than 

those from Sk 2, although overall the dates were not significantly different (Lelong 2011, 

personal communication). The discrepancy in the dates would be consistent with the remains 

from Area A & C having been curated for a certain length of time before the death and burial 

of Sk. 2. It was possible that the interment of all these remains occurred at the same time, 

despite their variable dates of death. However, the radiocarbon dates of these individuals 

were so close that they would also be consistent with a scenario that involved sub-aerial 

exposure rather than mummification. 

Several of the well-preserved samples from Cnip demonstrated a reduced level of 

birefringence that was coincident with brown microstructural staining. It was likely that the 

loss of collagen birefringence in these samples did not represent loss of protein, but 

interference from microstructural staining (Hackett 1981; Garland 1987; Turner-Walker 2008). 

The orange inclusions that were observed infrequently within the Cnip samples were similar to 

the type that were found commonly within most archaeological remains sampled for the 

current study. These features were likely to represent deposits of iron oxides that had 

precipitated out of percolating groundwater (Garland 1987; Grupe & Dreses-Werringloer 1993; 

Schultz 1997). The absence of orange staining within this sample set suggested that the 

infrequency of inclusions was probably attributable to a lack of iron oxides present within the 

sandy burial environment.  

Brown staining was observed in the thin sections taken from the right radius and a left femur 

excavated from Area C. Brown staining was also present within the burial sediment that 
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surrounded these remains. It was likely that both phenomena were caused by organic material 

that had accompanied the remains and subsequently decomposed (Garland 1987; Grupe & 

Dreses-Werringloer 1993; Schultz 1997). Decayed soft tissue does not normally leave a visible 

mark in the burial sediment. Such marks occur more commonly where durable organic 

materials, such as wood, leather or wicker, have slowly been degraded within the grave 

(Janaway 1996). The excavators believed that the staining that surrounded the disarticulated 

Cnip remains represented decayed soft tissue (Knott 2010; Lelong 2011). However, similar 

staining found surrounding the neonatal skeleton from Area D was interpreted as evidence for 

the former presence of a durable organic material that had been used to contain the body 

(Knott 2010).  

The presence of staining suggestive of treated organic tissue in the areas surrounding the 

disarticulated bones from Cnip might be salient with regards to the mummification hypothesis. 

However this brown staining was not found around all bones recovered from the site. Perhaps 

some of the remains from Area C had originally been placed in organic containers, or the 

specific environment of these bones promoted the retention of decomposition products 

produced by soft tissues. There was no suggestion that humic acids had arrested osteolytic 

decomposition through the deactivation of bacterial collagenase (Hedges 2002; Jans et al. 

2004). Histological bone preservation persisted in areas that did and did not demonstrate 

brown staining.  

 

8.2.4.4 Ingleby Barwick Cemetery, County Durham, U.K. 

 

Two bone samples from Ingleby Barwick were free from bone bioerosion and two had been 

extensively bioeroded. When combined with the in situ states of articulation of these remains, 

the histological results suggested that there were possibly three separate funerary rituals 

represented at the site. The poor microstructural preservation and correct skeletal articulation 

of the Sk. 5 and Sk. 6 samples were consistent with immediate burial (Annis et al. 1997). The 

excellent microstructural preservation of the bone from the earlier Sk. 2 and Sk. 3 specimens 

suggested that they had been manipulated in a way that prevented their exposure to 

endogenous putrefying bacteria (Bell et al. 1996; Jans et al. 2004; Nielsen-Marsh et al. 2007). 

The absence of bacterial tunnelling from within the ostensibly Neolithic disarticulated bones of 

Sk. 3 suggested that this individual had been excarnated by sub-aerial exposure or 

dismemberment before the remains were placed within the mortuary box (Bell et al. 1996; 
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Annis et al. 1997; Jans et al. 2004; Fernández-Jalvo et al. 2010; Hollund et al. 2012). No tool 

marks were found on any of the bones recovered from the mortuary box, although 

dismemberment may not have left any such features (Guilday et al. 1962; Binford 1981; Fisher 

1995). Rapid skeletonisation associated with sub-aerial exposure would have ensured that the 

bones were subject to only limited levels of putrefactive bioerosion, although most bones from 

bodies deposited in this way are exposed to a limited level of putrefactive bacteria (Bell et al. 

1996; Fernández-Jalvo et al. 2010; Hollund et al. 2012). Features associated with sub-aerial 

exposure, such as weathering and carnivore alteration of the bone cortex were absent from 

the cist remains (Annis et al. 1997). The appearance of these features would have been 

dependent upon the timescale of excarnation and any protection afforded to decomposing 

remains.  

It was more difficult to determine the taphonomic event that prevented putrefactive 

bioerosion of the articulated Early Bronze Age Sk. 2 specimen (Annis et al. 1997). There was no 

suggestion that the burial sediment was anoxic. The variation in bacterial bioerosion across the 

site assemblage in spite of the bodies having been buried within a few metres of one another 

within similar sediment, precluded this possibility (Annis et al. 1997). Conventional 

explanations for the absence of bacterial bioerosion within this specimen such as 

dismemberment or excarnation could not be applicable due to the skeleton’s correct 

anatomical articulation. This body must have been treated in a manner that prevented 

bacterial bioerosion but promoted skeletal articulation. The results from the Historical remains 

had suggested that bacterial attack can remain uninitiated within a small proportion of bones 

from bodies that were buried soon after death. However, the chance of encountering such a 

sample were low.  

The patterns of articulation and bacterial bioerosion of the Sk. 2 bones were consistent with 

mummification or evisceration (Weinstein et al. 1981; Thompson & Cowen 1984; Stout 1986; 

Brothwell & Bourke 1995; Garland 1995; Hess et al. 1998; Parker Pearson et al. 2005). 

Immediate evisceration would have removed the source of the endogenous bacteria, which 

would have adversely affected putrefaction and probably stimulated some soft tissue 

preservation (Aufderheide 2003). Sk. 1 and Sk. 7 were not sampled for thin sectioning, but 

their radiocarbon dates and burial style were very similar to Sk. 2, and so it could be inferred 

by association that these bodies may also have been mummified (Annis et al. 1997). 

The initial analysis of the radiocarbon dates and specific treatments of the individuals buried at 

Ingleby Barwick had identified three periods of deposition; Late Neolithic interment of 
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disarticulated bones within the mortuary chamber, Early Bronze Age unfurnished burials and 

Middle Bronze Age furnished burials (Annis et al. 1997). However, Bayesian analysis of the 

dates indicated that the individuals represented by the bones from the mortuary chamber and 

the unfurnished burials had died around the same time (Rowe 2012, personal communication). 

The bones of Sk. 3 had been classified as Neolithic throughout the initial analysis. The high 

histological preservation of the Sk. 3 bones was similar to what was observed within the 

contemporaneous remains from the unfurnished Sk. 2 burial and more consistent with 

mummification than sub-aerial exposure (Weinstein et al. 1981; Thompson & Cowen 1984; 

Stout 1986; Brothwell & Bourke 1995; Garland 1995; Bell et al. 1996; Parker Pearson et al. 

2005; Hess et al. 1998; Fernández-Jalvo et al. 2010; Hollund et al. 2012). When the 

disarticulated and potentially mummified partially articulated remains from Bronze Age Cnip 

and Cladh Hallan were considered, another possible interpretation of the cist-deposited 

remains was that they represented the interment of disarticulated mummified elements.  

The disarticulation of the remains from the wooden cist suggested that regardless of whether 

these remains had been mummified, the bones from individuals that had died in the Early 

Bronze Age had been curated. Curation would have ensured that date of death and deposition 

would not necessarily have coincided. Therefore, there may have only been one Middle Bronze 

Age phase of deposition at Ingleby Barwick that involved curated remains being buried 

alongside fresh furnished cadavers.  The presence of disarticulated human material within the 

grave of Sk. 6 provided circumstantial evidence that contemporaneous deposition of curated 

and fresh remains had been practised at Ingleby Barwick (Annis et al. 1997). 

All of the remains from Ingleby Barwick contained orange inclusions that were found typically 

within most of the study sample. These features were likely to represent deposits of iron 

oxides (Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997). None of the remains 

demonstrated significant orange staining, which suggested that iron oxides were not prevalent 

within the surrounding environment. Brown staining was identified within bones from Sk. 2 

and Sk. 3. This staining was similar to that observed within the remains recovered from the 

Cnip Headland, although no brown staining was identified within the surrounding burial 

context. Brown staining was most intense within the disarticulated remains from the cist. The 

results of the current and previous studies indicated that brown staining is associated with the 

release of humic acids from decaying organic matter (Garland 1987; Grupe & Dreses-

Werringloer 1993; Schultz 1997). The presence of humic factors within the burial context of Sk. 

3 would be logical given that these remains had been surrounded by a wooden cist (Annis et 

al. 1997). No traces of organic remains were located from within the grave of Sk. 2, although 
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staining of this individual was less severe than what was observed within Sk. 3. There was no 

suggestion that humic acids had arrested osteolytic decomposition through the deactivation of 

bacterial collagenase (Hedges 2002; Jans et al. 2004). Histological bone preservation persisted 

in areas that did and did not demonstrate brown staining.  

 

8.2.4.5 Langwell Farm Cist, Sutherland, U.K. 

 

The Langwell cist specimen was free from microbial bioerosion. This result was obtained rarely 

from articulated specimens sampled for the present study. Putrefaction of the Langwell body 

must have been arrested at an early post mortem stage in a way that allowed skeletal 

articulation to be retained. Evidence from the sediments, the cist walls and the survival of 

organic grave goods suggested that the Langwell cist had been intermittently waterlogged 

from an early post mortem juncture (Lelong 2012). The cist was located close to the banks of 

the River Oykel. Seasonal changes to the level of this river were likely to be responsible for 

waterlogging (Lelong 2012). The survival of perishable goods indicated that waterlogging must 

have occurred frequently within the first few decades after deposition. Complete submersion 

of the body would have produced an anoxic environment that inhibited putrefaction and 

bacterial bone bioerosion (Janaway 1996; Turner & Wiltshire 1999; Turner-Walker & Jans 

2008; Hollund et al. 2012). The inhibitory effects of waterlogging may have been augmented 

by the presence of the heavy cattle hide wrapping (Mant 1987; Mann et al. 1990; Goff 1992; 

Aturaliya & Lukasewycz 1999; Campobasso et al. 2001; Fielder & Graw 2003; Kelly et al. 2009; 

Fereira & Cunha 2013).  

The presence of adipocere within the burial environment of the Langwell cist would have 

provided some credence to the possibility that wrapping combined with waterlogging was 

responsible for the absence of bacterial bioerosion from the Langwell thin sections. Adipocere 

degrades more quickly within aerobic conditions, and so it might be expected that conditions 

which promoted the survival of organic grave goods would also have encouraged the 

perseverance of adipocere (Fielder & Graw 2003; Forbes et al. 2005). White material 

resembling adipocere was found in abundance within the silhouette of the Langwell body, but 

chemical analysis of this substance indicated that it was not adipocere (Lelong 2012). Chemical 

signatures indicative of decomposition products were detected in the soils underneath the 

Langwell skeleton, but it was unclear whether these signals were diagnostic of adipocere 

(Lelong 2012). The cist was not waterlogged at the point of recovery, and it was possible that 
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the frequent oxygenation of the environment following drops in the water level would have 

perpetuated the breakdown of hydrogenated adipose tissue (Fielder & Graw 2003; Forbes et 

al. 2005). 

If putrefaction of the Langwell individual had been affected by waterlogging, the histological 

preservation of its bones would still represent a relatively rare outcome for bones deposited 

within conditions that had been intermittently rendered anoxic. The majority of bone 

excavated from periodically waterlogged environments demonstrated elevated levels of 

histological preservation, rather than a complete absence of bacterial bioerosion. Only bones 

from bodies that had been placed directly within contexts that were intrinsically anoxic remain 

free from bacterial bioerosion (Turner-Walker & Jans 2008; Hollund et al. 2012). The cist at 

Langwell must have been waterlogged soon after deposition if this process was to explain the 

absence of bacterial bioerosion from the bone microstructure (Hollund et al. 2012).  

The earliest that non-Wedl MFD have been observed to appear within bone is three moths 

post mortem, and so the contents of the cist must have been rendered anoxic within this time 

period (Bell et al. 1996; White 2009). The persistence of organic grave goods within the 

Langwell cist suggested that the cist was waterlogged at an early stage. However, the cadaver 

would have decomposed more quickly than the grave goods and so the survival of the latter 

did not guarantee that the cist was waterlogged early enough to have affected putrefaction of 

the Langwell individual. The practicalities of building a cist and interring a body within 

waterlogged sediment meant that it implausible that the grave was waterlogged when the 

individual was interred. The body was placed on the ground surface of the cist rather than 

buried, and so if the cist had been waterlogged in a way that would have affected bodily 

decomposition, the remains would have had to have been deposited directly within standing 

water. It was likely that the cist became waterlogged after the body had been deposited, but 

there was no way of establishing whether this event occurred in time to arrest putrefactive 

bioerosion of bone. The perseverance of soft tissue or adipocere into the archaeological record 

would have proven that the cist was waterlogged soon after the body was deposited, although 

its absence could not be used to argue the opposite (Lelong 2012). 

Later Prehistoric treatment was more often responsible for the absence of bacterial bioerosion 

from bone samples than anoxic environments amongst the whole study sample. The 

histological signature of the Langwell cist individual was more consistent with bone from 

mummified individuals rather than the remains recovered from anoxic environments 

(Weinstein et al. 1981; Thompson & Cowen 1984; Stout 1986; Brothwell & Bourke 1995; 
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Garland 1995;; Hess et al. 1998; Parker Pearson et al. 2005; Turner-Walker & Jans 2008; 

Hollund et al. 2012). If the Langwell remains had been mummified, the technique efficiently 

compromised the visceral bacteria soon after death. This level of histological preservation 

would also be theoretically consistent with evisceration, although this process in itself would 

have increased the chances of soft tissue preservation (Aufderheide 2003). The same 

diagenetic signature would have been produced had a mummified individual been deposited 

within a cist that was later waterlogged. Mummification would explain the slightly anomalous 

early radiocarbon date that was obtained from this specimen (Lelong 2012). The contrasting 

radiocarbon dates that were obtained from different parts of this skeleton had suggested to 

the excavators that the Langwell skeleton might have represented a composite body (Lelong 

2012). This observation circumstantially linked the remains to the formerly-mummified 

remains that were retrieved from Bronze Age Cladh Hallan. 

Orange inclusions of the type that were found within most archaeological remains used in the 

current study were found infrequently within the thin sections of the Langwell individual. 

These features most likely represented precipitations of iron oxides from percolating 

groundwater (Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997; Hollund et al. 

2012). No orange staining was found within this bone. This result was predictable given that 

these bones had not laid in contact with sediment for a significant length of time. Despite this 

body having most likely decomposed under anoxic conditions, there was no evidence for 

localised orange iron oxide staining or framboidal inclusions (Turner-Walker & Jans 2008; 

Hollund et al. 2012). This observation supported the notion that these features are not always 

present within bone from bodies that decomposed in anaerobic environments (Hollund et al. 

2012).  

The Langwell bone samples demonstrated intense brown staining of the type that is thought to 

be caused by humic acids produced by decaying organic matter (van Klinken & Hedges 1995; 

Shahack-Gross et al. 1997). The Langwell skeleton was surrounded by a cow hide and a 

number of partially decayed organic grave goods (Lelong 2012). The presence of brown 

staining within the Langwell sample reinforced the notion that this type of bone discolouration 

occurs as a result of the mobilisation of decaying organic matter in the burial environment 

(Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997). There was no suggestion that 

humic acids had arrested osteolytic decomposition through the deactivation of bacterial 

collagenase (Hedges 2002; Jans et al. 2004). Histological bone preservation persisted in areas 

that did and did not demonstrate brown staining.  
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8.2.4.6 Neat’s Court Round Barrow, Kent, U.K. 

 

The histological signatures of the Neat’s Court remains formed a bimodal pattern. Three of the 

bones sampled demonstrated high levels of microstructural preservation, which suggested 

that they had been treated in ways that exposed the bones to limited levels of putrefactive 

bioerosion. The other four bone samples had all been extensively bioeroded by bacteria. All of 

the well-preserved specimens had been recovered in articulation. Their low levels of microbial 

bioerosion were atypical when compared with the results from the Historical baseline 

assemblage. A small proportion of the Historical baseline assemblage demonstrated high levels 

of histological preservation, but this variation was unlikely to account for the proportion of 

remains from Neat’s Court that demonstrated these signatures. These remains must have 

been treated using a method that limited putrefactive attack to the bone but maintained 

skeletal articulation (Bell et al. 1996; Jan et al. 2004; Nielsen-Marsh et al. 2007).  

The burial soil at Neat’s Court consisted of London clay; a very dense marine sediment that 

may be intrinsically anoxic in its pure form (Morley 2011, personal communication). 

Archaeological bones recovered from similar marine clays have demonstrated high levels of 

histological preservation (Hollund et al. 2012). However, the burials from this example lay 

within the waterlogged capillary zone of the water table (Hollund et al. 2012). The 

histologically well-preserved Neat’s Court skeletons had been interred within the extension of 

the primary round mound, which consisted of a mixture of reworked London Clay and 

domestic waste (Morley 2011, personal communication). The remains had not been buried 

within the pure clay matrix, and so it was uncertain whether this burial environment would 

have been intrinsically anoxic. The position of the skeletons within the built-up mound meant 

that they lay above the capillary zone of the water table. The mound was eventually inundated 

by tidal incursions that would have induced an anaerobic burial environment (Morley 2011, 

personal communication). However, palaeoenvironmental evidence and dating of the marine 

silts suggested that this inundation did not take place until the Late Bronze Age/Early Iron Age, 

long after the Middle Bronze Age remains would have decomposed (Rodriguez & Bass 1983; 

1985; Morley 2011, personal communication). 

The probability that the histological structure of the Neat’s Court skeleton had been preserved 

through interment within anoxic sediment was further reduced when the positions of the 

histologically poorly-preserved remains were considered. The burial context of all but one of 

extensively bioeroded skeletons consisted of the same material that surrounded the 

histologically well-preserved remains. These results indicated that the reworked London clay 
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sediments had not interfered with putrefactive bone bioerosion. All of the skeletons were 

recovered from similar levels within the ground. There were no differences in burial depth that 

may have affected the aeration of each grave (Morley 2012, personal communication). Sk. 

2673 was buried within the same part of the mound as the three histologically well-preserved 

skeletons (Morley 2011, personal communication). These four skeletons were buried at similar 

depths within a few metres of one another. The discrepancy between the bacterial bioerosion 

of these remains further suggested that the burial sediment had not interfered with bodily 

decomposition. The bimodal microstructural preservation of the Neat’s Court remains was not 

consistent with samples of bone obtained from intermittently-waterlogged Historical deposits, 

which demonstrated the full spectrum of histological preservation.  

There was no satisfactory environmental explanation for the limited bacterial bioerosion 

observed amongst the remains from Neat’s Court. Anthropogenic interpretations had to be 

employed. Most methods of treatment that would have limited the bone exposure to 

putrefaction, such as sub-aerial exposure or dismemberment, would have encouraged the 

rapid disarticulation of the skeleton (Bell et al. 1996; Fernández-Jalvo et al. 2010; Hollund et al. 

2012). The only bones from articulated individuals that consistently demonstrated limited or 

no levels of bacterial bioerosion are those sampled from mummified remains (Weinstein et al. 

1981; Thompson & Cowen 1984; Stout 1986; Brothwell & Bourke 1995; Hess et al. 1998; 

Parker Pearson et al. 2005). The best explanation for the histological preservation of the well-

preserved remains from Neat’s Court was that their putrefaction had been arrested through 

mummification or evisceration. The presence of bacterial bioerosion within the two of the 

well-preserved samples suggested that evisceration was unlikely to have been involved 

(Aufderheide 2003; Parker Pearson et al. 2007). The signatures of bacterial bioerosion 

resembled those from the Derrycashel and Cladh Hallan remains, which suggested that the 

mode of mummification was inconsistent and exposed the bones to minor levels of 

putrefactive attack (Parker Pearson et al. 2005).  

Most of the remains from Neat’s Court did not demonstrate evidence for unusual post mortem 

treatment beyond the signs of burning (Parker Pearson et al. 2005; 2007). However, the 

articulated skull of one of the putatively mummified skeletons, Sk. 2611, had been displaced 

from the body, and lay in an unusual position over the right shoulder of the skeleton a few 

centimetres away from the vertebrae. The articulation of the mandible suggested that the 

skull had been displaced in the early post mortem period and that this displacement had not 

occurred as a result of the insertion of the medieval drainage pipe that was responsible for the 

disarticulation of part of the torso (Micozzi 1986; 1991; Duday 2006). The cervical vertebrae 
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are amongst the first bones to disarticulate via natural decomposition and it was possible that 

movement of the skull had occurred after the regular loss of soft tissue (Micozzi 1986; 1991; 

Duday 2006). However significant movement of the skull within the burial environment via 

decomposition was unlikely, given that the body was surrounded by dense sediment. The atlas 

and axis vertebrae were the only bones of the spinal column that were absent. This evidence 

suggested that the skull and mandible may have been removed before the body was buried. It 

was possible that the body had been decapitated, although no signs of trauma were found on 

any of the vertebrae or the mandible (Mays 1998: 175). Decapitation would explain damage to 

but not the loss of the two cervical vertebrae (Mays 1998: 175). If this body had been 

mummified, than the inefficient system of preservation may have led to the disarticulation of 

the head at the axis vertebrae. Further deterioration of the head could have led to the loss of 

the axis and atlas vertebrae before the body and head were buried together.  

The rest of the remains from Neat’s Court demonstrated extensive patterns of bacterial 

bioerosion that were consistent with prolonged putrefaction associated with immediate intact 

burial (Rodriguez & Bass 1983; 1985; Mant 1987; Manhein 1997; Rodriguez 1997; Nielsen-

Marsh & Hedges 2000; Jans et al. 2004; Nielsen-Marsh et al. 2007). The heavily-bioeroded 

remains included an incomplete skeleton that was recovered in partial articulation. The 

scattered nature of the bones of this burial had suggested that it represented an articulated 

skeleton that had been disturbed by later ploughing (Morley 2011, personal communication). 

The results of the histological analysis supported this conclusion. 

Discolouration of the bones and teeth of some of the remains excavated from Neat’s Court 

had been interpreted as the remains having been subjected to unusual post mortem treatment 

involving exposure to heat (Deter & Barrett 2009). Some of the skeletons were surrounded by 

charcoal within their graves, although there were no signs of in situ burning (Morley 2011, 

personal communication). The burnt remains had not been exposed to heat within or around 

the burial context, as would be expected had they been subject to an alternative cremation 

rite such as a bustum burial (Dodwell 2012). Signs of heat treatment were found on all of the 

bones that demonstrated high levels of histological preservation, plus one extra sample that 

had been extensively bioeroded (Deter & Barrett 2009). These results suggested that heat 

treatment and histological preservation of the remains may have been linked. 

It was difficult to determine whether there were any microstructural indications that the 

bones from Neat’s Court had been exposed to heat (Shahack-Gross et al. 1997; Hanson & Cain 

2007). Exposure to low temperatures can produce specific alterations to the bone 
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microstructure (Forbes 1941; Shahack-Gross et al. 1997; Hanson & Cain 2007; Squires et al. 

2011; Castillo et al. 2013). Unfortunately these changes usually involve discolouration of the 

internal bone microstructure that are difficult to differentiate from staining and infiltration by 

external minerals (Shahack-Gross et al. 1997; Hanson & Cain 2007). The abundance of orange 

staining and infiltrations within the Neat’s Court remains meant that it was impossible to 

determine whether any of these features were indicative of heat-related changes. One osteon 

within the microstructure of Sk. 2614 demonstrated black infiltrations and characteristic 

microcracking that could have occurred as a result of heat treatment (Shahack-Gross et al. 

1997; Hanson & Cain 2007; Squires et al. 2011; Castillo et al. 2013). Similar black inclusions and 

microfissuring were observed within other Neat’s Court bone thin sections that demonstrated 

macroscopic evidence for heat treatment (Deter & Barrett 2009). It was possible that these 

inclusions represented infiltrations of carbon that had been produced through the combustion 

of organic materials (Shahack-Gross et al. 1997; Hanson & Cain 2007; Squires et al. 2011; 

Castillo et al. 2013). However, these infiltrations often merged with orange features, and so it 

could not be determined whether they represented deposits of iron oxides or carbon.  

Some of the bones from Neat’s Court that demonstrated high levels of microstructural 

preservation retained reduced levels of collagen birefringence. Some of this reduction in 

birefringence had occurred as a result of the dampening effect of microstructural staining 

(Garland 1987; Shahack-Gross et al. 1997; Turner-Walker 2008). However, loss of birefringence 

was also apparent within unstained areas of certain bones. Loss of birefringence without an 

accompanying loss of histological integrity suggested that collagen had been lost by 

accelerated hydrolysis, which can be produced by low level heating of the bone for long 

durations (Collins et al. 1995; Smith et al. 2002; Abdel-Maksoud 2010). Evidence for other 

mechanisms that could have accelerated chemical loss of collagen within these remains was 

not forthcoming, although the exact conditions that promote this type of bone protein loss are 

still uncertain (Smith et al. 2002; 2007). The rarity of this form of collagen loss within the whole 

study sample suggested that a specific anthropogenic processes rather than an environmental 

factor were likely to have accelerated hydrolysis of collagen within the Neat’s Court samples 

(Smith et al. 2007).  

The coincidence of evidence for heat treatment and high histological integrity of the Neat’s 

Court skeletons allowed for speculation regarding whether these features were related to the 

inhibition of putrefaction. One of the mechanisms of preservation forwarded to explain the 

mummification of the Cladh Hallan bodies was smoking of the corpse through long term 

exposure over a fire (Parker Pearson et al. 2005; Morley 2011, personal communication). Such 



  

492 
 

treatment would have desiccated the soft tissues and deprived putrefactive bacteria of the 

moisture required for their proliferation (Aufderheide 2003; Parker Pearson 2005; Lynnerup 

2007). Desiccation would start at a superficial level and progress inwards. Therefore, if the 

Neat’s Court bodies had been smoked, but not eviscerated, the bone would have been 

exposed to minor variable levels of internal putrefactive action before the bacteria were 

neutralised (Parker Pearson et al. 2007). Cadavers would have to be smoked for significant 

lengths of time before the soft tissues were preserved (Aufderheide 2003). Macroscopic signs 

of burning were concentrated on the dentition and the long bone epiphyses, areas of the 

anatomy that are not well-protected by soft tissue (Deter & Barrett 2009; Morley 2011, 

personal communication). These affected zones represented parts of the skeleton that would 

have been most vulnerable to the effects of heat within a fleshed body (Morley 2011, personal 

communication). 

One of the Neat’s courts samples that had been extensively bioeroded by bacteria originated 

from a skeleton that demonstrated macroscopic signs of heat treatment. This observation 

suggested that the link between heat treatment and histological preservation was false. 

However, the results from the Cladh Hallan assemblage as well as the Derrycashel bog body 

had suggested that methods of mummification that did not involve evisceration could have 

exposed bones to high levels of putrefactive action (Parker Pearson et al. 2005; 2007). High 

histological integrity of previously-mummified samples may represent a trend rather than an 

absolute. It was possible that the burned and bioeroded Neat’s Court specimen had been 

ineffectually smoked, leading to extensive internal putrefaction and bone bioerosion.  

The Neat’s Court remains demonstrated high incidences of Wedl tunnelling. The Wedl 

tunnelling observed within these samples was more extensive and took up larger proportions 

of the bone microstructure than that observed within bones from other sites. The Wedl 

tunnelling could be seen to infiltrate the bone from the Haversian canals. Fungal tunnelling is 

normally observed to originate from the periosteal bone surface (Marchiafava et al. 1974; 

Hackett 1981; Jans et al. 2004; Nielsen-Marsh et al. 2007). However fungal attack was still 

concentrated within the internal areas of bone that had not been exploited by bacteria. 

The results of the current study had suggested that Wedl tunnelling was more likely to have 

occurred within bones that had been kept above ground, possibly whilst retaining some soft 

tissue (Jans et al. 2004). However, it could not be determined whether the same factors had 

contributed to the instigation of Wedl tunnelling within every assemblage. It was likely that 

other unknown mechanisms encouraged fungal exploitation of the bone. The appearance of 
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fungal tunnelling within the Neat’s Court remains might be consistent with the mummification 

hypothesis had preserved bodies been curated above ground for extended periods of time. 

However, only two of the three histologically well-preserved ‘mummified’ specimens 

demonstrated Wedl tunnelling. Three of the extensively-bioeroded specimens had been 

attacked by fungi. Fungal tunnelling was absent from a bone sample that was free from 

bacterial attack. A link between fungal tunnelling and curation might be consistent with the 

suggestion that remains from Neat’s Court were preserved and kept above ground for a time. 

However, the uncertain conditions required for fungal exploitation of bone suggested that this 

conclusion could not be sustained solely on the evidence of Wedl attack. Wedl tunnelling was 

not observed within bone samples of the putatively formerly-mummified skeletons from other 

site assemblages.  

The higher occurrences of Wedl tunnelling identified within butchered and possibly cooked 

domesticate bone had indicated that fungal exploitation might be facilitated by the dissolution 

of bone mineral encouraged by low level heating (Hedges 2002; Jans et al. 2004; Turner-

Walker 2012). Wedl tunnelling was observed within all but one of the Neat’s Court bone 

samples that demonstrated evidence for heat treatment, and one extra sample that did not. It 

was difficult to determine whether the heightened incidence of fungal tunnelling amongst the 

Neat’s Court remains was indicative of any single taphonomic process. 

Most of the bone samples from Neat’s Court demonstrated high levels of orange staining 

inclusions and infiltrations. The appearance of these features may provide evidence that these 

individuals had decomposed under anoxic conditions (Hollund et al. 2012). However, the 

results of the current study suggested that iron oxide staining, infiltrations and inclusions were 

commonly observed within most archaeological bone thin sections (Garland 1987; Grupe & 

Dreses-Werringloer 1993; Schultz 1997). Similar staining and inclusions were observed within 

thin sections of bone from the Deverel-Rimbury cremation deposit, a nearby Roman cremation 

inhumation and a disarticulated cow bone that was recovered from within a few metres of the 

round barrow (Morley 2011, personal communication). Each of these bones had either been 

cremated or disarticulated and so it was unlikely that iron staining and inclusions had been 

produced by bodily decomposition under anoxic conditions (Hollund et al. 2012). The same 

kinds of staining, inclusions and infiltrations were also observed within the Neat’ Court bone 

samples that had been extensively bioeroded by bacteria. These results suggested that the 

extensive orange microstructural staining observed within the Neat’s Court samples was not a 

result of decomposition within an anoxic environment but interactions between the bone and 

iron oxides present the within burial environment (Hollund et al. 2012).  
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8.2.4.7 South Dumpton Down Round Barrow, Kent, U.K. 

 

All of the samples from South Dumpton Down demonstrated extensive bacterial bioerosion 

which indicated that that they had been exposed to substantial levels of putrefaction. There 

was a slight discrepancy in the level of bacterial attack between the Early Bronze Age and Iron 

Age samples. The one Iron Age sample demonstrated a heightened Whole OHI score compared 

with the Bronze Age specimens. The results from the Iron Age sample were discussed 

alongside the other sites that dated to this period. 

All of the burials that dated to the Bronze Age demonstrated Whole OHI scores of one or zero 

which were consistent with all individuals having been buried intact soon after death (Nielsen-

Marsh & Hedges 2000; Jans et al. 2004; Nielsen-Marsh et al. 2007). This interpretation could 

be applied to the Bronze Age individuals recovered from the pit underneath the barrow and 

the remains that lay in the grave to the north of this structure (Perkins 1994). The partial 

disarticulation of these samples meant that it was possible that some of these remains had 

been primarily buried elsewhere before being placed within one of the three pits. However, 

the completeness of the skeletons suggested that the in situ environment represented their 

primary depositional context (Perkins 1994; Gibson 2007).  

The results of the histological analysis were consistent with the original interpretations of the 

site, which suggested that the South Dumpton Down Bronze Age assemblage had accumulated 

as a result of the successive interment and manipulation of whole bodies (Perkins 1994; 

Gibson 2007). This scenario was supported by the stratigraphic evidence that earlier remains 

were more likely to demonstrate higher levels of skeletal disarticulation (Perkins 2004). 

Disarticulation of remains was promoted by disturbance as a result of successive interment 

and the selective retrieval of particular skeletal elements.  

The skulls were missing from most of the Bronze Age individual from the pit, and it was likely 

that each successive act of interment was accompanied by the retrieval of a skull from a 

previous deposition (Perkins 1994). The high levels of histological attack and partial 

articulation observed within these remains suggested that this disturbance had taken place 

after the putrefaction stage, but before the bodies had skeletonised. This interpretation was 

supported by the radiocarbon dates from the skeletons, which were indistinguishable from 

one another and suggested that death and interment of each individual had occurred within a 

short space of time (Perkins 1994). Gibson (2007) argued that the rites practised at Early 

Bronze Age South Dumpton Down represented a continuation of Neolithic funerary practices 
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of successive interment and disturbance albeit performed within a set of pits rather than a 

tomb. Patterns of bacterial bone bioerosion and disarticulation at South Dumpton Down were 

similar to those observed amongst the Neolithic remains from Frälsegården, Whitwell Quarry 

and Beeston Tor. 

Most of the Bronze Age remains from South Dumpton Down were free from microstructural 

staining. Superficial brown staining was observed within one sample. The results from the 

whole assemblage suggested that the occurrence of brown staining was loosely associated 

with humic factors released through the decomposition of organic grave goods. The presence 

of brown staining might suggest that the grave once contained perishable items. The stained 

sample had been extensively bioeroded by bacteria, which indicated that humic staining had 

not inhibited bacterial exploitation (Hedges 2002; Jans et al. 2004). Infrequent orange 

inclusions and infiltrations observed amongst the South Dumpton Down specimens were 

consistent with similar features recorded within most archaeological bones used in the current 

study. Their presence was probably the result of interactions between the bone and iron 

oxides in percolating groundwater (Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 

1997). The lack or orange staining within these samples suggested that iron oxides were not 

prevalent within the immediate burial environment. 

 

8.2.5 Bronze Age Summary  

 

All but one of the Bronze Age site assemblages included articulated remains whose diagenetic 

signatures were consistent with immediate burial. The distribution of these sites across Britain 

and from different phases of the Bronze Age suggested that primary inhumation was afforded 

to a significant proportion of individuals in Bronze Age Britain (Jans et al. 2004; Nielsen-Marsh 

et al. 2007). Bone samples from articulated skeletons that demonstrated limited or low levels 

of bacterial bioerosion were exclusive to Bronze Age site assemblages. This trend was partly 

responsible for the phase-specific variation in the presence of bacterial bioerosion amongst 

the Later Prehistoric samples. Bronze Age articulated and disarticulated samples were more 

likely to have remained free from bacterial bioerosion than remains from any other phase. 

These patterns of bacterial attack were largely responsible for the peak in the Later Prehistoric 

distribution of Whole OHI scores at five, particularly within the articulated assemblage. These 

Bronze Age sites included Cladh Hallan, where there was taphonomic evidence that the 

articulated skeletons which demonstrated these diagenetic signatures had previously been 
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mummified (Parker Pearson et al. 2005; 2007). The analysis of the Historical assemblage had 

established the rarity of this diagenetic signature within the bones of buried individuals. The 

suggestion that this signature of putrefactive bone bioerosion was consistent with 

mummification had been confirmed to some extent by histomorphological studies of 

mummified bone by the present and previous studies (Weinstein et al. 1981; Thompson & 

Cowen 1984; Stout 1986; Brothwell & Bourke 1995; Hess et al. 1998; Parker Pearson et al. 

2005).  

The low numbers of samples that were obtained from certain Bronze Age sites meant that the 

interpretation of diagenetic signatures as evidence for mummification was tenuous on a site-

by-site basis and could be dismissed as the result of limited sampling having captured a 

skewed distribution of natural variation. However, the persistent occurrence of histologically 

well-preserved articulated skeletons at numerous Bronze Age sites, especially when contrasted 

to the lack of similar remains from Iron Age, Neolithic and Historical contexts, supported the 

assertion that they represented an unusual form of treatment that was specific to the Bronze 

Age. The only form of treatment that consistently produces articulated skeletons that have 

experienced no or little putrefactive bioerosion is mummification (Weinstein et al. 1981; 

Thompson & Cowen 1984; Stout 1986; Brothwell & Bourke 1995; Hess et al. 1998; Parker 

Pearson et al. 2005).  

The Bronze Age exclusivity of diagenetic signatures of mummification bolstered site-specific 

inferences of these rites and increased the likelihood that similar treatment was responsible 

for the atypically high levels of histological preservation within Bronze Age articulated samples 

of bone that had been recovered from anoxic environments. Phase had a larger influential 

effect on the presence of bacterial bioerosion than environmental anoxia. It was more likely 

that the absence of bacterial bioerosion from the anoxic-deposited Bronze Age samples was a 

result of treatment than anoxic environment, although the potential effect of environmental 

anoxia could not be disregarded entirely. 

Histological preservation within the Bronze Age disarticulated samples was also higher than 

within similar remains from Iron Age and Neolithic contexts. The only post-neonatal Neolithic 

disarticulated remains that demonstrated similar levels of histological preservation had been 

taken from the bones of dismembered individuals that were unlikely to have experienced 

bodily putrefaction. Sub-aerial exposure would have limited the levels of putrefaction a bone 

experienced, however many of the Bronze Age disarticulated samples were free from 

putrefactive bacterial attack (Bell et al. 1996; Fernández-Jalvo et al. 2010; Simmons et al. 
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2010). This diagenetic signature was more consistent with prior mummification (Weinstein et 

al. 1981; Thompson & Cowen 1984; Stout 1986; Brothwell & Bourke 1995; Hess et al. 1998; 

Parker Pearson et al. 2005).  

The ostensibly articulated formerly mummified remains from Cladh Hallan had been 

constructed out of the disarticulated parts of several individuals (Parker Pearson et al. 2005; 

2007; Hanna et al. 2012). When considered alongside the results from the articulated Bronze 

Age samples, it was more parsimonious to consider the histologically well-preserved 

disarticulated Bronze Age remains as products of prior mummification that had not retained 

their articulation. The familiar image of mummified remains is one of articulated fleshed 

bodies, but high proportions of mummified specimens are recovered in variable stages of 

articulation and decomposition (Aufderheide 2003; Lynnerup 2007). Histological signatures of 

mummification were identified in bones within sites ranging from the Outer Hebrides of 

Scotland to the northern coast of Kent and from contexts attributable to the Early, Middle and 

Late phases of the Bronze Age. These results indicated that mummification may have been 

practised on a widespread scale in Britain throughout the Bronze Age. 

The variability of putrefactive bacterial bioerosion observed amongst the potentially 

mummified remains as well as their diverse levels of articulation indicated that any methods of 

preservation were only sporadically successful in each case. There was evidence that the Cladh 

Hallan remains were mummified by temporary submersion within a sphagnum peat bog 

(Parker Pearson et al. 2005). The inconsistencies involved with mummification in a bog 

environment were consistent with the variable levels of anatomical articulation amongst the 

Cladh Hallan skeletons (Turner 1995; Aufderheide 2003). The immaculate levels of histological 

preservation within the bone samples from Cnip and Ingleby Barwick indicated that visceral 

bacteria were separated from the bone in the early post mortem period and suggested that 

evisceration may have been involved in any preservative process (Aufderheide 2003; Jans et al. 

2004; Nielsen-Marsh et al. 2007). The evidence that the Neat’s Court remains were exposed to 

low level heat treatment suggested that these bodies may have been preserved through 

smoking (Morley 2011, personal communication). These observations were consistent with the 

conclusions of Parker Pearson et al. (2005: 543) that methods of mummification practised in 

the Bronze Age were likely to have made innovative use of natural resources. The construction 

of composite bodies out of the mummified remains of multiple individuals at Cladh Hallan was 

interpreted as a symbolic attempt to unite the ancestors of several lineages (Parker Pearson 

2005; 2007). The variable patterns of disarticulation and putrefactive bone bioerosion within 

the bone samples of the potential Bronze Age mummies suggested that such reconstructions 
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may have represented practical attempts to account for inconsistencies in maintaining an 

individual’s form associated with inefficient preservative methods (Aufderheide 2003).  

Radiocarbon dates from the potentially mummified Bronze Age remains from Ingleby Barwick, 

Cnip Headland and Cladh Hallan were all earlier than conventional burials from the same sites 

(Annis et al. 1997; Parker Pearson et al. 2005; Lelong 2011). One of the radiocarbon dates from 

the Langwell Farm Cist skeleton was anomalously early (Lelong 2012). The dating evidence 

from Cladh Hallan established that mummified bodies may have been curated for decades or 

centuries before they were buried (Parker Pearson et al. 2005). The early dates of some of the 

putative former-mummies identified by the current study might suggest that there was a 

similar delay between the death and burial of these individuals. The formerly--mummified 

remains from Cnip, Neat’s Court and Ingleby Barwick were all recovered alongside skeletons 

that demonstrated diagenetic signatures consistent with inhumation soon after death. It was 

possible that interment of mummified and untreated bodies had occurred simultaneously at 

some sites (Annis et al. 1997; Lelong 2011; Morley 2011, personal communication).  

 

8.2.6 Iron Age 

 

8.2.6.1 Bilham Farm Enclosure, South Yorkshire, U.K. 

 

The bone samples taken from the two articulated individuals excavated from Bilham Farm 

demonstrated extensive levels of bacterial bioerosion that suggested the bones had been 

exposed to high levels of putrefaction. This result was consistent with both bodies having been 

buried intact soon after death (Rodriguez & Bass 1983; 1985; Bell et al. 1996; Nielsen-Marsh & 

Hedges 2000; Jans et al. 2004; Nielsen-Marsh et al. 2007). The microstructure of these samples 

had not been stained, which suggested that the burial sediment had not contained large 

quantities of iron oxides. The orange inclusions found within both specimens were similar to 

those observed within the majority of other bones from the whole study sample, and most 

likely represented deposits of iron oxides transported by percolating groundwater (Garland 

1987; Grupe & Dreses-Werringloer 1993; Schultz 1997).  

Small quantities of Wedl tunnelling were observed within small islands of bone within both 

samples that had been spared by bacteria. The small sample size meant that it was difficult to 

gauge the significance of the Wedl tunnelling, as it was possible that sampling had captured an 

unrepresentative cohort. The overall results of the present study, as well as other research 
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into bioerosion, had suggested that Wedl tunnelling is more likely to appear within bones that 

had decomposed on the ground surface whilst retaining small amounts of soft tissue 

(Marchiafava et al. 1974; Jans et al. 2004). The presence of Wedl tunnelling within the Bilham 

remains may be significant when it is considered that the state of articulation of the adult 

individual suggested that this grave had been reopened in order to manipulate the body whilst 

it was decomposing (Merrony 2012, personal communication). The reopening of the grave 

may have provided saprophytic fungal species sufficient opportunity to exploit the remaining 

bone proteins and soft tissues before the body was reburied (Jans et al. 2004). This 

manipulation must have taken place during the later stages of decomposition, after the bone 

had been mostly bioeroded by putrefactive bacteria. There was no evidence that the grave of 

the sub-adult individual had been re-opened, even though the bones of this individual had also 

been affected by Wedl tunnelling (Merrony 2012, personal communication). It was possible 

that the grave could have been reopened in a way that had not disturbed the anatomical 

articulation of the skeleton. 

 

8.2.6.2 Danebury & Suddern Farm, Hampshire, U.K. 

 

All but one of the bones sampled from the Danebury and Suddern Farm assemblages 

demonstrated moderate to severe levels of bacterial bioerosion. The exceptional sample had 

been subjected to minor levels of bacterial attack. These results suggested that majority of 

individuals had been treated in ways which exposed the bones to variable extensive levels of 

putrefactive attack. The distribution of Whole OHI scores across this population varied from 

the Historical baseline model. These results suggested that most of the remains from these 

sites had decomposed within something akin to a burial environment, but that prior or 

subsequent treatment had variably limited bone exposure to putrefaction (Nielsen-Marsh & 

Hedges 2000; Jans et al. 2004; Nielsen-Marsh et al. 2007).  

Putrefaction of the Danebury and Suddern Farm remains may have been variably altered had 

the burial sediments been subject to frequent episodes of anoxia through waterlogging 

(Turner-Walker & Jans 2008; Hollund et al. 2012). There was no evidence that any of the burial 

sediments had been regularly waterlogged (Cunliffe 1983; 1984; Cunliffe & Poole 2000). 

Bacterial bioerosion within the Danebury & Suddern Farm samples was much more extensive 

than that observed within the waterlogged Historical remains. It was improbable that 

environmental factors were responsible for the patterns of bacterial attack observed within 
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the Danebury & Suddern Farm sample. Variations in bacterial bioerosion within this 

assemblage must have been related to the nature of their early post mortem treatment (Jans 

et al. 2004; Nielsen-Marsh et al. 2007). 

Identification of cortical weathering on bone from other Iron Age sites that yielded skeletal 

assemblages similar to those from Danebury, such as Gussage-all-Saints and Maiden Castle, 

had suggested that bodies had been excarnated through sub-aerial exposure (Redfern 2008). 

The extensive bacterial bioerosion observed within the Danebury & Suddern Farm samples 

was not consistent with sub-aerial exposure, as this rite would have exposed the bones to only 

limited soft tissue putrefaction (Rodriguez & Bass 1983; 1985; Bell et al. 1996; Fernández-Jalvo 

et al. 2010; Simmons et al. 2010). The effect of seasonality on the abundance of skeletonising 

insect may have produced variation in the level of putrefaction that a bone experienced 

(Rodriguez & Bass 1983; 1985; Wilson et al. 2007; Simmons et al. 2010; Meyer et al. 2013). 

However, soft tissue loss via insect activity would be expected to have limited bone exposure 

to soft tissue putrefaction to a greater extent than what was apparent within the Danebury & 

Suddern Farm samples (Bell et al. 1996; Turner-Walker et al. 2008; Fernández-Jalvo et al. 2010; 

Hollund et al. 2012). An investigation into the weathering patterns amongst the Danebury 

remains had concluded that they were unlikely to have been sub-aerially exposed (Madgwick 

2008). Only low numbers of bones from the Danebury site demonstrated carnivore gnawing or 

weathering that characterises sub-aerially exposed bone (Madgwick 2008; Redfern 2008).  

The slightly elevated distribution of Whole OHI scores within the bones from Danebury & 

Suddern Farm sites resembled what was observed within both Neolithic cave deposits and the 

remains bones from the Royal Mint Black Death cemetery. Slow, extensive putrefaction within 

the cave-deposited remains had most likely been regulated by soft tissue loss via restricted 

insect activity (Terrell-Nield & MacDonald 1997). The articulation of the skeletal remains from 

the Black Death Royal Mint cemetery suggested that the variability in patterns of bacterial 

bone bioerosion was related to a delay between death and burial (Grainger et al. 2008). 

Consideration of these examples combined with the contextual information suggested that the 

distribution of bacterial bioerosion within the Danebury & Suddern Farm samples was 

explained either by bodies having been left to decompose above ground for a short while 

before being buried, or by deposition of the dead within an environment that variably 

restricted insect access. 

The skeletal articulation of the Danebury and Suddern Farm assemblages was highly variable, 

ranging from articulated whole skeletons to discrete disarticulated elements (Cunliffe 1983; 
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1984; Cunliffe & Poole 2000). When the assemblage was separated into articulated, partially 

articulated and disarticulated remains, the distribution of Whole OHI scores amongst the first 

two categories was similarly variable and elevated, but histological preservation within the 

disarticulated bones was uniformly low. This result suggested that the disarticulated remains 

had been treated consistently in a way that ensured they were exposed to the highest levels of 

putrefactive bioerosion. The best explanation for this observation was that individuals 

represented by disarticulated bone had been buried soon after death and that their bones had 

been disinterred and redeposited after decomposition had run its full course (Bell et al. 1996; 

Nielsen-Marsh & Hedges 2000; Jans et al. 2004; Nielsen-Marsh et al. 2007). The disarticulated 

material was distributed sporadically around numerous contexts, usually pits, within the 

Danebury site. It was possible that the disarticulated bones represented ‘charnel’ material; 

bones that had been disinterred from fully-decomposed primary burials as a result of later 

activity. The arrangement of Danebury changed considerably over the course of its use, and it 

was possible that the pits which held human remains had been encountered during the 

production of new features (Cunliffe 1983; 1984). 

The suggestion that the individuals represented by the disarticulated remains had been buried 

soon after death clashed with the evidence for carnivore gnawing and fresh bone fractures 

within the disarticulated assemblage as a whole and from two of the disarticulated elements 

that had been sampled (Cunliffe 1983; 1984). These types of alterations would only be 

expected to occur within unburied fresh bone (Cunliffe 1984). Some articulated and partially-

articulated specimens demonstrated equally high levels of bacterial bioerosion, and it was 

possible that all remains from Danebury & Suddern Farm had been treated similarly. The high 

levels of bacterial bioerosion amongst the disarticulated remains may have represented a 

skewed representation of the overall distribution. 

All of the human remains from Danebury had been recovered from storage pits rather than 

purpose-cut graves (Cunliffe 1983; 1984). These pits were sometimes found to have been half-

filled with domestic refuse before the body was interred (Cunliffe 1983; 1984). The build-up of 

silts around certain skeletons suggested that a proportion bodies had originally lain within 

open pits for a duration before they were buried. Accumulations of silts were also observed 

within the quarry graves at Suddern Farm (Cunliffe & Poole 2000). A scenario where bodies 

were exposed in pits for limited lengths of time provided a plausible explanation for the levels 

of putrefactive bone bioerosion. Bodies exposed in pits would have been subjected to rapid 

soft tissue loss via skeletonising insects (Simmons et al. 2010). If the remains were buried 

before the majority of the soft tissue was lost, the bones would still have been subject to 



  

502 
 

substantial but limited levels of soft tissue putrefaction. The similarity in the levels of bacterial 

bioerosion amongst the articulated and partially articulated remains suggested they 

represented different parts of the same process. Partially-articulated anatomical parts as well 

as disarticulated bones may have been removed from whole bodies that had been allowed to 

decompose within an open pit. This interpretation suggested that pits containing bodies may 

have been left open so that distinct anatomical parts could be retrieved after the remains had 

decomposed far enough to facilitate their removal. Burial of the remains before 

skeletonisation would ensure that the bones were exposed to only minimal weathering. The 

samples that demonstrated the highest levels of bacterial bioerosion must only have been 

exposed for a short while before being buried.  

The weakness of this interpretation was that it would be expected that if bacterial bone 

bioerosion was related to duration of exposure within a pit, levels of disarticulation would 

correlate within bacterial attack. The entirely disarticulated bones must have been removed 

after the body had mostly composed within the open pit. These remains would have 

experienced only limited levels of soft tissue putrefaction and should have demonstrated the 

highest levels of histological preservation, yet the opposite scenario was observed. This 

prediction assumed that the disarticulated remains were originally removed as single 

elements, rather than as parts of an anatomical section that subsequently disintegrated.  

Articulated remains must have been buried soon after deposition, before soft tissue had been 

lost, and should have demonstrated the highest levels of putrefactive bioerosion.  Whole OHI 

scores amongst the articulated remains were variable and elevated. Partially articulated 

remains would have represented anatomical parts that were removed after some soft tissue 

loss and should have demonstrated lower levels of bacterial bioerosion than the articulated 

samples. Distributions of bacterial bioerosion within the partially articulated samples was 

similar to those observed within the articulated cohort. It was possible that seasonal variations 

in the rapidity of soft tissue loss within pit-interments had increased variability in putrefactive 

bacterial bioerosion, but the expected patterning should have been preserved to some extent 

(Rodriguez & Bass 1983; 1985; Wilson et al. 2007; Simmons et al. 2010; Meyer et al. 2013). 

An alternative scenario that would account for the lack of correlation between putrefactive 

bone bioerosion and skeletal articulation could be that the pits were prepared in way that 

protected the bodies from the effects of skeletonising insects. Madgwick (2008) had suggested 

that the lack of cortical erosion amongst the human bone assemblage from Danebury, in spite 

of the evidence that remains had lain within open pits, suggested that the human skeletons 
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had been afforded some form of protection from modification (Madgwick 2008: 71). Patterns 

of bacterial bioerosion and cortical weathering could be explained had the pits been covered 

with textiles, leathers or plugged with another material whilst the bodies decomposed. Such 

coverings would have restricted, but not entirely prevented insect access, allowing the bones 

to experience variable extensive soft tissue putrefaction (Galloway et al. 1989; Goff 1991; 

Terrell-Nield & MacDonald 1997; Anderson 2011; Vass et al. 2011). Discrete skeletal elements 

or anatomical parts would not have become available for removal until a later decompositional 

stage, which would explain similarities in patterns of bacterial bioerosion within remains that 

demonstrated variable levels of articulation. The extent of bacterial bioerosion would not have 

been controlled by the length of time the body was exposed within an open pit, but the 

efficacy of the coverings in preventing entomological access (Bell et al. 1996; Terrell-Nield & 

MacDonald 1997; Jans et al. 2004; Simmons et al. 2010).  

It was tempting to view the exposure of human remains within covered or open pits as an 

attempt to ensure controlled decomposition whilst allowing access to certain anatomical parts 

as and when they become available for use in further rituals. However, the varied levels of 

bacterial bioerosion observed within the articulated remains suggested that these bodies had 

decomposed within open or covered pits before being buried without any removal of 

anatomical elements. This finding suggested that the rites practised at Danebury were not 

solely concerned with obtaining relics, or that the characteristics associated with the individual 

or the nature of their decomposition disqualified the use of their bones in further depositional 

processes. 

The Suddern Farm burials had originated from single graves within a discrete cemetery located 

on the outside of a settlement (Cunliffe & Poole 2000). Cunliffe & Poole (2000: 168) suggested 

that it was likely these burials represented a different funerary tradition from that which was 

practised at the Danebury hillfort. It was possible that the type of treatment observed at 

Suddern Farm constituted the rite afforded to the majority of individuals during the British Iron 

Age (Cunliffe & Poole 2000: 168). Most of the skeletons from the Suddern Farm cemetery 

showed some level of disarticulation that suggested that bodies had been manipulated after 

they had partially decomposed (Cunliffe & Poole 2000). Cunliffe & Poole (2000: 168) believed 

that this disturbance was the result of new grave digging. However, the evidence for the 

persistent removal of particular skeletal elements hinted that primary burial did not represent 

the terminal form of treatment (Cunliffe & Poole 2000).  
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The two individuals that were sampled for this project (C19 & C20) from Suddern Farm had 

been interred within the same pit and demonstrated variable levels of skeletal articulation 

(Cunliffe & Poole 2000). The skulls had been removed from both skeletons. The original 

interpretation of this context was that one body had been originally buried within the grave 

and was subsequently disturbed by the insertion of the second individual (Cunliffe & Poole 

2000: 168). This scenario implied that the grave was reopened a second time to remove the 

skull of the secondary deposit. The level of bacterial bioerosion observed within the bones of 

these remains was consistent with those from the Danebury articulated and partially 

articulated samples. The elevated Whole OHI scores of the Suddern Farm samples placed them 

towards the higher end of the Danebury distribution, farther away for the Historical baseline 

signature. The similarity between the distribution of bacterial bioerosion and skeletal 

articulation amongst the Danebury and Suddern Farm remains suggested that, contrary to the 

conclusions of Cunliffe & Poole (2000: 168), both assemblages had been produced by similar 

processes. It was likely that the Suddern Farm individuals sampled for the current project and, 

by extension, the majority of similarly-treated remains from the cemetery, had been allowed 

to decompose within covered or open pits before they were buried. Partial disarticulation of 

remains would have occurred during the pre-burial retrieval of skeletal elements such as skulls. 

The presence of complete skeletons within the Suddern Farm cemetery further suggested that 

retrieval of relics was not the sole purpose of this treatment and that burial did not always 

follow the acquisition of anatomical parts. 

The Danebury & Suddern Farm assemblages demonstrated slightly higher incidences of Wedl 

tunnelling than what was found typically amongst most assemblages included in the present 

study. Wedl tunnelling was more common amongst the partially articulated specimens at 

Danebury & Suddern Farm, although fungal attack was also found within the bones of one 

articulated individual. The results from the Primary Analysis suggested that fungal tunnelling 

appeared within bone samples that were likely to have been exposed above ground for a 

length of time, possibly whilst still retaining some soft tissue (Jans et al. 2004). Higher 

occurrences of Wedl tunnelling within the Danebury and Suddern Farm samples was 

consistent with skeletonised or partially skeletonised bodies having lain in an open 

environment.  

The Danebury samples did not consistently demonstrate a preserved periosteal cortex. The 

destruction of this part of the bone microstructure is not enabled by internal bacterial attack, 

but must occur as a result of exogenous erosion. Bones from all contexts within Danebury & 

Suddern Farm had lost their periosteal surface. The results from the Primary Analysis had 
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suggested that silt burial environments may have promoted periosteal loss. However, some 

weathering of the periosteal bone surface would also be consistent with prior exposure of the 

remains in an open or covered pit (Madgwick 2008). Bones that had lost their periosteal 

surfaces included discrete disarticulated samples whose patterns of bacterial bioerosion 

suggested that they had been disarticulated via primary burial. However, periosteal loss was 

higher within bone samples from articulated and disarticulated bones. This result supported 

the assertion that the articulated and partially-articulated bones were treated differently to 

the disarticulated assemblage. Greater loss of the periosteal surface from articulated and 

partially articulated remains was consistent with the interpretation that these remains had 

more often been left to decompose within open pits and were exposed to greater levels of 

weathering, whereas the disarticulated samples originated from bodies that had decomposed 

whilst buried and had been protected from cortical erosion.  

The anomalous sample from Danebury that demonstrated limited levels of bacterial 

bioerosion was recovered as a discrete disarticulated skeletal element (Cunliffe 1984). The 

cortex of this specimen had been heavily weathered, burnt and gnawed by a carnivore 

(Cunliffe 1984). The entire bone microstructure was discoloured yellow. The character of the 

discolouration was not consistent with infiltration by extraneous elements, but resembled the 

colour changes associated with low-level heat treatment (Shahack-Gross et al. 1997; Hanson & 

Cain 2007; Squires et al. 2011). Most of the bone microstructure was perfectly preserved, but 

collagen birefringence within the histologically-intact areas was low. This observation 

suggested that collagen had been removed via accelerated collagen hydrolysis, which was 

consistent with this specimen having been exposed to low level burning (Hackett 1981; Smith 

et al. 2002; Smith et al. 2007; Abdel-Maksoud 2010). 

The limited signature of bacterial bioerosion observed within the anomalous sample, Deposit 

130, was consistent with it having originated from a body that decomposed on the ground 

surface (Bell et al. 1996; Jans et al. 2004; Turner-Walker & Jans 2008; Fernández-Jalvo et al. 

2010; Hollund et al. 2012). Burning of the whole corpse would have interfered with the 

proliferation of visceral bacteria (Polson et al. 1985). The link between putrefaction and 

bacterial bioerosion indicated that the bacterial attack must have occurred before the bone 

was exposed to heat (Bell et al. 1996; Jans et al. 2004; Nielsen-Marsh et al. 2007; Smith et al. 

2007). This putative treatment contrasted with the processes that had been afforded to 

individuals that constituted the rest of the assemblage. It was possible that the Deposit 130 

had been subjected to similar processes as the other remains from Danebury & Suddern Farm 

and represented either an outlier to the distribution of bacterial bioerosion, or had originated 
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from an individual that had not been covered or buried effectively prior to skeletonisation. 

However, the evidence for additional exposure to low level heating supported the suggestion 

that these remains had been afforded a deviant form of funerary treatment. 

The Danebury remains were mostly free from the orange inclusions and staining that were 

present within the majority of archaeological remains were used in the current study (Garland 

1987; Grupe & Dreses-Werringloer 1993; Schultz 1997). The lack of these features were 

probably the result of the burial environment including a low abundance of iron oxides. This 

observation was consistent with the burial contexts of the Danebury skeletons, which 

consisted of eroded chalk silt and domestic rubbish. Many of the Danebury bones 

demonstrated grey inclusions. The results of the overall analysis had suggested that these 

features were reflective of the burial environment. The inclusions observed in the Danebury 

and Suddern Farm samples probably consisted of particles of chalk that had made their way 

inside the bone porosities (Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997). 

 

8.2.6.3 Hornish Point Settlement, South Uist, U.K. 

 

The bones of the Hornish Point Boy specimen had been extensively bioeroded but maintained 

a preserved periosteal fringe. Barber et al. (1989: 778) had suggested that partial 

decomposition and special treatment of this individual indicated that the body may have been 

lost at sea initially. An aquatic environment would have interfered with putrefaction and bone 

bioerosion (Cotton et al. 1987; Rodriguez 1997; Pakosh & Rogers 2009; Heaton et al. 2010; 

Maria & Docents 2010). Archaeological and forensic bones recovered from aquatic 

environments tend to remain free from bacterial bioerosion (Ascenzi & Silvestrini 1984; Bell & 

Elkerton 2008; Turner-Walker & Jans 2008). The evidence that the Hornish Point Boy bones 

had been exposed to high levels of putrefactive bioerosion suggested that the body had not 

spent the early post mortem period within an aquatic context. 

The osteolytic microorganisms that erode bone microstructure in aquatic contexts produce 

Wedl tunnelling (Ascenzi & Silvestrini 1984; Bell & Elkerton 2008; Turner-Walker & Jans 2008). 

No Wedl tunnelling was observed within the Hornish Point specimen. Initial evidence of 

marine-type bioerosion could have been obliterated by the subsequent bacterial colonisation. 

However, Wedl tunnelling micro-organisms are thought to be exogenous and are most often 

observed to bore through the periosteal cortex before travelling inwards towards the mid-

section (Hackett 1981; Jans et al. 2004; Bell & Elkerton 2008; Turner-Walker & Jans 2008). 
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Wedl MFD should still have been visible within the preserved periosteal band of the Hornish 

Point specimen had the skeleton been attacked by marine microorganisms. Whilst the absence 

of marine-type bioerosion could not be used to rule out the possibility that the Hornish Point 

Boy had been lost at sea, the overriding presence of a common terrestrial pattern of 

bioerosion indicated that these remains had decomposed on land.  

The extensive patterns of putrefactive bioerosion observed in the samples from the Hornish 

Point individual was consistent with immediate intact burial (Rodriguez & Bass 1983; 1985; Bell 

et al. 1996; Nielsen-Marsh & Hedges 2000; Jans et al. 2004; Nielsen-Marsh et al. 2007; Jans 

2008). The partial disarticulation of the Hornish Point skeleton was likely to have occurred as a 

result of primary burial. Partial articulation of anatomical elements within this individual 

suggested that it had been disinterred after putrefactive bone bioerosion had completed but 

before the body had skeletonised.  

The distribution of the skeleton amongst the pits broadly corresponded to the site where the 

vertebrae had been severed (Barber et al. 1989). This observation suggested that the act of 

severance was committed in order to fit the partially-decomposed remains within the four 

pits, rather than as a peri mortem act of ritual slaughter (Barber et al. 1989). This finding 

indicated that the mutilation of the body had taken place after its initial decomposition, as the 

act of severance alone would not have allowed the remains of a fresh corpse to have been 

distributed across the four pits. There was no obvious reason why the body could not have 

been entirely dismembered to fit amongst the pits if this act had been carried out immediately 

after death (Barber et al. 1989). The histological evidence was consistent with the Hornish 

Point remains having been buried before they were mutilated. Severance of the body would 

have interfered with transmigration of putrefactive bacteria, either through the separation of 

the viscera from the bones or exsanguination, and would have limited bacterial bone 

bioerosion (Jans et al. 2004). 

The vertebrae are held with strong ligaments and are usually amongst the last skeletal 

elements to disarticulate (Micozzi 1986; Roksandic 2002). Decomposition of a buried body is 

variable and any rate of skeletonisation presumed by the buriers of the Hornish Point 

individual was likely to have been inaccurate. It was possible that the Hornish Point Boy was 

initially buried in order to disarticulate the remains so that they could have been placed 

amongst the four pits. However, decomposition of the body may not have been as advanced 

as expected when it was eventually uncovered. Rather than having to rebury the remains, it 

may have been deemed practical or appropriate to sever the half-decomposed body to allow it 
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to be distributed across the four pits. The Hornish Point specimen demonstrated superficial 

levels of orange staining and inclusions. The results of the present study as well as previous 

projects suggested that these features were very common and occurred as a result of 

interactions between the bone and iron oxides located in the burial environment and 

percolating groundwater (Garland 1987; Grupe & Dreses-Werringloer 1993; Schultz 1997; 

Hollund et al. 2012).  

 

8.2.6.4 South Dumpton Down Enclosure, Kent, U.K. 

 

The slightly elevated Whole OHI score of the Iron Age skeleton from South Dumpton Down 

could have occurred as a result of natural variation in bacterial bioerosion within buried 

remains (Jans et al. 2004). This level of histological preservation was represented quite 

frequently amongst the Historical Baseline distribution. However, the OHI score of the South 

Dumpton Down Iron Age specimen also matched the modal value observed amongst the 

Danebury and Suddern Farm Iron Age assemblages. The Iron Age skeleton from South 

Dumpton Down was retrieved from a pit that had silted up naturally before it was filled by 

domestic refuse (Perkins 1994). The similarities between this specimen and the Danebury & 

Suddern Farm burials circumstantially suggested that the South Dumpton Down individual had 

decomposed within an open or covered pit before it was buried. Restriction of putrefactive 

bone bioerosion would have been caused by the intermittent access granted to skeletonising 

invertebrates by the depositional context.  

The South Dumpton Down Iron Age specimen was complete and in articulation when it was 

recovered and represented another example of an Iron Age body whose exposure within a pit 

had not been enacted to facilitate the retrieval of body parts during decomposition. No Wedl 

tunnelling was observed within the South Dumpton Down sample. However, Wedl tunnelling 

was not present within all bones recovered from Danebury and Suddern Farm. The Iron Age 

specimen from South Dumpton Down demonstrated no microstructural staining. Orange 

inclusions of the kind that were found in abundance amongst the majority of remains sampled 

for this study occurred infrequently within this sample. It was likely that these inclusions had 

formed through the precipitation of iron oxides out of percolating groundwater (Garland 1987; 

Grupe & Dreses-Werringloer 1993; Schultz 1997). 
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8.2.7 Iron Age Summary 

 

Most Iron Age individuals appeared to have been treated to some form of burial combined 

with prior and/or subsequent exposure and manipulation (Cunliffe 1983; 1984; Barber et al. 

1989; Perkins 1994). The Iron Age remains were obtained from opposite ends of Britain, but 

interpretations of treatment were quite consistent. Despite variation in levels of skeletal 

articulation across different sites, these results suggested that all remains represented 

different stages of similar processes. The patterns of bacterial bioerosion observed amongst 

the bone samples from Hornish Point and Bilham Farm suggested that these remains had been 

buried before they were manipulated. However, the diagenetic signatures of these remains 

were also consistent with initial deposition in a covered pit.  

There was a possible dichotomy between those remains that had been buried immediately 

and disinterred after decomposition had mostly completed and those bodies that had lain 

within an open or covered grave or pit for a certain length of time before being manipulated 

and buried. The disinterment and redeposition of remains associated with these processes 

indicated that part of their purpose was to obtain disarticulated or partially articulated skeletal 

elements that could be used in further activities.  

The increased accessibility of the remains facilitated by exposure within a pit would have 

allowed for decomposition to have been monitored. Disarticulated elements could have been 

obtained as soon as they became available. Retrieval of anatomical parts using this method 

would have produced more certain results than disinterment of immediately-buried remains 

where the rate of decomposition would have varied. Variability in the speed of soft tissue loss 

within buried remains indicated that this process would not always have produced the 

required levels of disarticulation. Such an outcome may have been responsible for the decision 

to sever the vertebral column of the Hornish Point individual. 

Anthropogenic dismemberment of a corpse would have provided the quickest and most 

practical method of obtaining disarticulated parts of an individual. Sub-aerial exposure of the 

dead would have ensured swift disarticulation of the remains and rapid access to bones that 

could be reused in further rituals (Rodriguez & Bass 1983; 1985; Mann et al. 1990; 

Campobasso et al. 2001; Simmons et al. 2010; Vass 2011). The lack of evidence for this kind of 

treatment suggested that Iron Age populations considered it important that individuals 

experienced prolonged spontaneous natural decomposition in a way that limited interference 

by invertebrates. It was possible that interment of bodies within open or covered pits provided 
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opportunities for the retrieval of relics, whilst ensuring that bodies underwent expected 

modes of decomposition. 

The evidence that articulated skeletons had also decomposed within covered pits before they 

were buried suggested that the retrieval of relics was not the sole motivation behind these 

practices (Cunliffe 1983; 1984; Cunliffe & Poole 2000). The Bilham Farm individual had been 

manipulated in a way that did not involve the removal of anatomical parts (Merrony 2011, 

personal communication). Deposition of remains within these contexts would have allowed for 

the observation of prolonged processes of spontaneous bodily decomposition. The practice of 

a treatment that allowed the observation of decomposition, but did not always require 

interference with the remains, suggested that the observations themselves may have been of 

some utility. Patterns of bodily decomposition perhaps dictated whether or not the remains of 

that individual were subsequently used in further rituals. This scenario is conjectural but 

provides a novel perspective on the variation in decomposition and manipulation observed at 

Iron Age sites.  

The emphasis on natural spontaneous decomposition within the Iron Age remains increased 

the significance of the inferred sub-aerial exposure and burning of the single individual from 

Danebury. The individual represented by this bone had been subjected to processes that Iron 

Age populations had apparently tried to prevent within most of human remains. The rapid and 

invertebrate-led soft tissue loss associated with sub-aerial exposure would have represented 

an inversion of the type of decomposition that was encouraged within most of the Iron Age 

remains. Purposeful exposure and burning of this individual may have represented a deviant 

form of funerary treatment that was deemed necessary due to aspects of that individual’s 

identity or death. The signature of bacterial bone bioerosion within the anomalous sample was 

consistent with that of an individual that had died and decomposed away from the settlement 

and was not provided with the normal form of funerary treatment. Evidence for carnivore 

alteration of this bone might support this interpretation, although this kind of modification 

was found on other disarticulated bones sampled from Danebury. The subsequent burning of 

the remains may have represented a form of cleansing treatment afforded to the individuals 

that had died and decomposed under inauspicious circumstances.  
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9 CONCLUSIONS 

 

The research questions that this project set out to answer were as follows: 

1. Is there a relationship between funerary treatment and bone diagenesis that is strong 

enough to be detected by microscopic analysis of archaeological bone? 

2. Does the relationship between bone diagenesis and funerary treatment conform to 

predictive models of diagenesis inferred by studies of cadaveric decomposition? 

3. Is the strength and nature of the relationship between bone diagenesis and funerary 

rite such that certain treatments can be said to produce characteristic patterns of 

diagenesis that could be recognised through the microscopic analysis of archaeological 

bone microstructure? 

4. How can measures of bone diagenesis, particularly the microscopic assessment of 

archaeological bones, be usefully employed in reconstructions of funerary processes? 

Each of these questions could be asked of every form of bone diagenesis; bacterial bioerosion, 

fungal bioerosion, persistence of the periosteal surface and visual diagenetic change. 

Conclusions regarding relationships between each of these features and funerary processes 

will be discussed in turn. The purported association between bacterial bone bioerosion and 

funerary treatment was related to the interactions between bone and putrefaction bacteria 

(Child 1995a; 1995b; Bell et al. 1996; Jans et al. 2004; Nielsen-Marsh et al. 2007). Studies of 

cadaveric decomposition facilitated predictive hypotheses regarding expected patterns of 

bacterial bioerosion amongst the Historical and Later Prehistoric assemblages (Rodriguez & 

Bass 1983; 1985; Mant 1987; Galloway et al. 1989; Bass 1997; Manhein 1997; Rodriguez 1997; 

Campobasso et al. 2001; Vass 2011; Zhou & Bayard 2011). Assessment of the research aims 

within measures of bacterial bioerosion was performed through tests of these predictions. The 

factors that influenced other measures of diagenetic change to bone were uncertain. 

Questions regarding the use of these measures of bone diagenesis in inferring funerary 

treatment had to be assessed through the identification of the factors that most influenced 

their occurrence and severity. 

 

 



  

512 
 

9.1 BACTERIAL BONE BIOEROSION 
 

The research questions set out above were assessed with regards to bacterial bioerosion using 

the following three hypotheses: 

 

Hypothesis 1: If bacterial bone bioerosion is linked to funerary processes, bones 

recovered from Historical cemeteries will demonstrate consistent patterns of internal 

bacterial bioerosion. 

 

Hypothesis 2: If the nature of bacterial bone bioerosion is controlled by the extent to 

which early funerary processes dictate bodily putrefaction, all bones from Historical 

cemeteries will be characterised by high levels of internal bacterial decay. 

 

Hypothesis 3: If bacterial bone bioerosion can be used to distinguish between funerary 

rites, there will be a significant difference between the histological signatures of bone 

from the Later Prehistoric and Historical periods. 

 

Bacterial bioerosion was observed within most of the archaeological samples used in the 

current study and it had usually consumed the majority of the internal bone microstructure. A 

small number of samples (3%) had been taken from non-femoral long bones. There was no 

variation in bacterial bioerosion between different skeletal elements within the primary or 

supplementary assemblages. This result provided some tentative evidence that bacterial 

bioerosion does not vary amongst long bones and that variation in bacterial bioerosion with 

skeletal element is likely to relate to intrinsic ratios of cortical and trabecular bone. 

The extent of bacterial bone bioerosion was primarily controlled by age-at-death, specifically 

whether the sample had been taken from a neonate. Almost 50% of neonatal bones were free 

from microbial bioerosion. The neonatal/post-neonatal dichotomy primarily dictated whether 

or not a bone was likely to have been bioeroded by bacteria. This patterning could only be 

explained by the sterility of the human intestinal tract at birth (Mackie 1999; White 2010). The 

neonatal remains that were free from bacterial bioerosion were likely to represent those 

individuals that were stillborn or had died before they had developed the gut microbiota 
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responsible for non-Wedl MFD (White 2010). Histological preservation of neonatal remains 

was not a reliable indicator of putrefaction relating to early post mortem treatment. 

Most bones that had been recovered from waterlogged anoxic environments had been 

bioeroded by bacteria, but as a whole they demonstrated higher levels of histological 

preservation than remains from aerobic contexts. This result was expected, given that 

waterlogged environments are known to interfere with soft tissue decomposition and 

putrefactive bioerosion (Polson et al. 1985; Mant 1987; Mann et al. 1990; Janaway 1996; 

Rodriguez 1997; Nielsen-Marsh & Hedges 2000; Campobasso et al. 2001; Fielder & Graw 2003; 

Turner-Walker & Jans 2008; Zhou & Bayard 2011; Hollund et al. 2012). Bacterial bioerosion in 

these samples would have been controlled by how far the body had decomposed before the 

grave became inundated (Hollund et al. 2012). These results supported inferences regarding 

the interaction between bacterial bone bioerosion and putrefaction, but indicated that 

histological preservation of bone cannot be related to funerary treatment within remains from 

anaerobic environments (Turner-Walker & Jans 2008; Hollund et al. 2012). 

The next factor that dictated the extent of bacterial bioerosion was whether a bone originated 

from a Black Death cemetery. Samples of bone from the Royal Mint Black Death graveyard 

demonstrated lower levels of bacterial bioerosion than the rest of the study sample. A 

proportion of the Black Death skeletons had been recovered in variable stages of articulation 

and it was likely that there had been a delay between death and burial of these individuals. 

Rapid soft tissue loss of unburied bodies associated with skeletonising insects would have 

ensured that the bones of these individuals experienced lower levels of putrefaction and 

related bacterial bioerosion. The link between Black Death contexts and histological 

preservation provided the first indication of a relationship between early funerary treatment 

and bacterial bone bioerosion within this study. 

The final factor that influenced the level of bacterial bioerosion and one of the main factors 

that dictated the presence of bacterial attack was phase. Bones from Later Prehistoric contexts 

were more likely to be free from bacterial bioerosion or demonstrate variably elevated levels 

of histological preservation when compared to samples of Historical bone. When the neonatal, 

anoxic-deposited and Black Death samples were excluded, 98% of Historical samples 

demonstrated bacterial bioerosion. The significantly leptokurtic distribution of Historical 

Whole OHI scores around zero indicated that these samples invariably demonstrated high 

levels of bacterial attack. There was no significant variation in patterns of bacterial bioerosion 

between bones from different Historical sites. All significant variation in bacterial bioerosion 
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amongst the Historical samples was explained by neonatal, anoxic-deposited and Black Death 

bones. These patterns of bacterial bioerosion were consistent with extensive exposure to 

putrefaction encouraged by immediate burial after death (Rodriguez & Bass 1983; 1985; 

Nielsen-Marsh & Hedges 2000; Jans et al. 2004; Nielsen-Marsh et al. 2007; Hollund et al. 

2012).  

When the anoxic-deposited, neonatal and Black Death remains were removed from the 

distribution the three hypotheses set out above regarding the relationship between bacterial 

bioerosion and funerary treatment were all supported by the data. This result suggested that 

bacterial bone bioerosion within the remaining samples reflected the extent to which early 

post treatment exposed the bones to putrefaction in a way that was consistent with 

experimental and forensic studies of decomposition.  

The consistency in levels of bacterial attack amongst the Historical samples suggested that 

recorded and unrecorded factors that would have varied amongst this population had enacted 

no significant effect on the progression of putrefactive bone bioerosion. These variables 

included post-neonatal age-at-death, sex, burial soil, wrapping/clothing, coffin burial, 

seasonality, burial depth, microbiome, diet, health, infection, trauma and archaeological age. 

The common theme amongst some of these variables was that they have been observed to 

affect the rate rather than extent of cadaveric decomposition. This result emphasised that 

patterns of bacterial bioerosion are likely to reflect a small range of early post mortem 

processes that significantly reduce bone exposure to soft tissue putrefaction, such as 

dismemberment, sub-aerial exposure, evisceration or mummification (Jans et al. 2004). 

Signatures of bacterial bioerosion could not be confidently used to infer practise of treatments 

that have a more nuanced effect on bodily decomposition, such as coffin burial.  

It was expected that state of skeletal articulation and archaeological phase would provide the 

best proxies of funerary treatment within the Later Prehistoric remains. There were no 

consistent significant differences in bacterial bioerosion that related to these features. 

However, deviations in patterns of bacterial attack that separated the Later Prehistoric 

remains from the Historical samples could be explained by phase-specific patterns of bacterial 

bioerosion. It was likely that the variability in funerary treatment practised within and between 

single sites from similar periods as well as the equifinality of certain processes had distorted 

phase-specific patterns of bacterial bioerosion. The lack of correlation between patterns of 

bacterial bioerosion and state of skeletal articulation was attributed to the incorrect 

assumption that burial was the only way in which an articulated skeleton could persist into the 
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archaeological record. Variation in bacterial bioerosion with Later Prehistoric phase supported 

the notion that bacterial bioerosion varied with funerary treatment in a predictable way. 

Histological investigation of mummified bone suggested that these types of remains 

consistently demonstrate high levels of microstructural preservation. This result was 

consistent with previous histological characterisations of mummified bone (Weinstein et al. 

1981; Thompson & Cowen 1984; Brothwell & Bourke 1995; Hess et al. 1998). Bones from 

mummies represent the only ancient articulated remains that consistently demonstrated high 

levels of histological preservation. The results from the partially preserved Derrycashel bog 

body provided the first evidence that mummified bone is not immune to enteric bacterial 

tunnelling. Haphazard techniques of preservation will allow some visceral bacteria to escape 

and bioerode the bone microstructure. The evidence for a signature of histological 

preservation associated with mummification supported the link between bacterial bioerosion 

and funerary treatment.  

Confirmation of the hypotheses and the supporting evidence provided by the analysis of 

bacterial bioerosion positively answered all the research questions posed by the current study. 

Analysis of bacterial bioerosion via microscopic examination of archaeological bone would be 

useful in identifying funerary rites that significantly affected the level of putrefaction a bone 

experienced. This method would work best when combined with forensic studies of 

decomposition and the accompanying taphonomic evidence from the site. 

 

9.2 FUNGAL TUNNELLING 
 

Fungal tunnelling occurred alongside non-Wedl MFD within a small proportion of the bones 

used in the current study. This Wedl tunnelling was concentrated on small areas of bone 

microstructure that had not been altered by bacterial attack. Wedl tunnelling was found most 

commonly within bones from cave environments. This relationship was consistent with 

forensic studies of decomposition within caves, which had indicated that fungi are heavily 

involved in later bodily decay (Terrell-Nield & MacDonald 1997).  

The results suggested that Wedl bioerosion is more likely to occur within bone that 

decomposed in an open environment post skeletonisation. Therefore, there could be a loose 

relationship between fungal tunnelling and certain modes of early post mortem treatment. The 

presence of Wedl tunnelling within a bone sample would suggest that it may have previously 
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lain on the ground surface or within an open chamber such as a cave, pit or ossuary. Fungal 

tunnelling may be of limited use in reconstructing taphonomic histories and funerary 

treatment in a small proportion of archaeological remains. Analysis of fungal tunnelling 

provided limited positive answers to the research questions posed by the current study. 

 

9.3 PERSISTENCE OF THE PERIOSTEAL SURFACE 
 

The periosteal surface persisted in the majority of specimens included in the current study 

sample, regardless of the extent to which the internal microstructure had been bioeroded. This 

result contributed to previous observations that the periosteal outer circumferential lamellar 

bone is immune to bacterial exploitation (Hedges 2002; Jans et al. 2004). The best explanation 

for this pattern was the low number of osteons that are found within circumferential lamellar 

bone. Osteons represent the point of entry for invading enteric microorganisms and their 

absence from periosteal circumferential lamellar bone would restrict bacterial colonisation. 

The results from the current study suggested that periosteal loss was associated with extrinsic 

variables that would have affected external macroscopic cortical erosion such as sediment 

movement and/or weathering. Periosteal loss or degradation may be useful in inferring early 

post mortem treatment as part of holistic studies of cortical erosion that are used in identifying 

processes such as sub-aerial exposure.  

 

9.4 ACCELERATED COLLAGEN HYDROLYSIS 
 

Evidence for collagen loss by accelerated chemical hydrolysis in the form of non-biotic loss of 

collagen birefringence was found within a small number of bone sampled for the current 

study. One of the bones that had been degraded in this manner had come from a skeleton that 

had been covered in slaked lime. Evidence for accelerated collagen hydrolysis within this 

sample supported previous suggestions that the increase in environmental pH produced by 

liming promotes bone collagen loss by accelerating hydrolytic reactions (Smith et al. 2002). A 

number of other samples that had lost collagen birefringence showed signs of having been 

exposed to low levels of heat. Prolonged exposure to moderately high temperatures for long 

durations is known to accelerate hydrolysis (Collins et al. 1995; Smith et al. 2002; Abdel-

Maksoud 2010). The exact circumstances that were responsible for the accelerated hydrolysis 
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within the remainder of the remains used in this study could not be discerned. Microscopic 

evidence for accelerated collagen hydrolysis can be linked with specific conditions or 

treatments such as high environmental pH or low level heat treatment in a small proportion of 

archaeological bones.  

 

9.5 VISUAL DIAGENETIC CHANGES 
 

Orange staining and orange inclusions were found in the majority of bones sampled for the 

current project. The occurrence and extent of these features were correlated with one another 

and with orange infiltrations. Infiltrations had most often formed in situations where inclusions 

had become so compacted that the material had spilled out of natural porosities into the 

surrounding microstructure, although these features sometimes appeared unaccompanied by 

inclusions. The frequencies of these diagenetic changes were associated with the type of burial 

soil. Staining was observed most commonly within peripheral areas of bone that would have 

been in contact with the sediment. Orange visual diagenetic changes most likely represented 

manifestations of interactions between the bone and iron oxides in the soil (Garland 1987; 

Grupe & Dreses-Werringloer 1993; Schultz 1997; Hollund et al. 2012).  

Previous studies had indicated that that discolouration of the bone microstructure by iron 

oxides may be indicative early decomposition of a body within an anoxic environment that 

would have interfered with putrefactive bone bioerosion (Turner-Walker & Jans 2008; Hollund 

et al. 2012). The ubiquity of orange microstructural changes combined with the lack of 

association between these features and measures of bacterial bioerosion or environmental 

anoxia suggested that orange diagenetic changes were not representative of anoxic 

environments within the study sample used in the current project. The likelihood that orange 

microstructural changes represented accumulations of iron oxides that had infiltrated the 

bone over the course of its deposition suggested that these features are not useful in inferring 

aspects of funerary treatment. However, all three forms of orange diagenetic change had been 

influenced by charnelling practices. Charnel bones demonstrated lower levels of orange visual 

diagenetic features than articulated remains. The only conceivable explanation for this pattern 

was that past disinterment of the charnel bones had reduced their interactions with the burial 

environment. This result suggested that microscopic detection of anomalous differences in 

visual diagenetic changes across site assemblages could be used to suggest that certain bones 

had interacted with the burial environment to a lesser extent and may have been previously 
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disinterred. However, the overriding and varied influence of burial soil on visual diagenetic 

changes meant that any inferences of anthropogenic post mortem treatment would be 

tenuous. 

Small numbers of bone samples demonstrated different categories of staining and inclusions. 

The occurrence of grey inclusions within remains from particular environments supported the 

relationship between these features and the constitution of the burial environment. There was 

a loose association between brown staining and decaying organic matter, which was 

consistent with the conclusions of previous studies that brown staining represents infiltration 

of bone by humic acids (Garland 1987; Grupe & Dreses-Werringloer 1993; van Klinken & 

Hedges 1995; Schultz 1997; Shahack-Gross et al. 1997). The presence of such staining could be 

useful for inferring the former presence of organic grave goods or wrappings that had 

surrounded parts of the body. Yellow microstructural discolouration was related to specific 

environmental conditions and treatments such as chemical contamination or burning (Hanson 

& Cain 2005; Squires et al. 2011). The infrequent occurrence of these features and uncertainty 

regarding their exact aetiology meant that they would have limited use in reconstructions of 

funerary treatment. In rare cases visual diagenetic features were indicative of specific 

taphonomic processes and may therefore be of limited use in inferring funerary treatment as a 

supplement to other diagenetic changes. 

 

9.6 INTERPRETATION OF FUNERARY TREATMENT  
 

The third research question referred to the types of funerary treatments that can be inferred 

from measures of bone diagenesis. This factor was partly addressed by the discussion of the 

various diagenetic parameters but was most apparent within interpretations of the funerary 

treatment at Later Prehistoric sites. The following section provides a summary of the funerary 

treatments that were inferred to have been practised within particular phases of the British 

Later Prehistoric, which gives some indications as to the kinds of practices that can be 

discerned using the histological method when it is combined with other taphonomic 

information. 
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9.6.1 Neolithic 

 

All of the Neolithic remains sampled originated from caves or chambered tombs. The 

measures of bone diagenesis combined with the taphonomic evidence suggested that funerary 

activity usually involved the interment of whole bodies within these contexts. Skeletons had 

been disarticulated and comingled by subsequent manipulation, selective removal of skeletal 

elements and disturbance during successive interment. Similar signatures of bone diagenesis 

were found within assemblages from caves and tombs, which suggested that bodily 

decomposition had proceeded similarly within bodies that had been placed within these 

separate contexts.  

The histological and taphonomic evidence relating to two individuals from Carsington Pasture 

Cave suggested that they had been dismembered soon after death, which may have 

represented a deviant form of treatment. A combination of dating, taphonomic and 

histological evidence from of the Frälsegården assemblage suggested that there had been a 

shift in funerary practices from rites that resembled those practised at other Neolithic sites to 

a form of treatment that attempted to maintain an individual’s bodily form (Sjögren, in prep.). 

 

9.6.2 Bronze Age 

 

The results from the Bronze Age skeletons suggested that a proportion of the articulated 

bodies had been immediately buried after death. The Early Bronze Age remains that had been 

interred within pits underneath a round barrow at South Dumpton Down had been 

successively deposited, manipulated and disturbed (Perkins 1994). Evidence for this practise 

was confined to this site and may have represented a continuation of Neolithic successive 

interment and manipulation within a mortuary context (Gibson 2007). 

The diagenetic signatures of the rest of the Bronze Age articulated remains were consistent 

with previous mummification (Weinstein et al. 1981; Thompson & Cowen 1984; Stout 1986; 

Brothwell & Bourke 1995; Hess et al. 1998; Parker Pearson et al. 2005). These histological 

signatures were only found consistently amongst articulated remains that dated to the Bronze 

Age. The influence of phase on the presence of bacterial bioerosion suggested that phase-

specific treatment was most likely to be responsible for the lack of bacterial bioerosion within 

samples of Bronze Age bone from anoxic environments. Variations in signatures of bacterial 

bioerosion amongst these formerly-mummified Bronze Age remains suggested that methods 
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of preservation were likely to have been variably successful. Many of the samples from 

partially articulated and disarticulated Bronze Age bones also demonstrated diagenetic 

signatures that were consistent with mummification. These diagenetic signatures could have 

been produced through disarticulation by sub-aerial exposure. The Cladh Hallan mummies had 

been constructed out of the partially articulated parts of several individuals (Parker Pearson 

2005; Hanna et al. 2012). Prior mummification of both disarticulated and articulated Bronze 

Age remains represented the most elegant interpretation of the evidence. The samples that 

demonstrated a mummification diagenetic signature originated from Bronze Age assemblages 

that were widely dispersed around the country and provided the first indications that 

mummification may have been practised on a widespread scale in Britain during this period. 

 

9.6.3 Iron Age 

 

The analysis of the Iron Age individuals suggested that treatment varied little between 

different archaeological sites. The results suggested the Iron Age remains had been subjected 

to one of two practices: immediate burial of a corpse followed by exhumation, manipulation 

and retention of remains or decomposition within an open or covered pit, followed by 

manipulation, curation and burial. It was possible that all remains had been placed originally 

within an open or covered pit before being variably manipulated and buried. Histological and 

taphonomic information from one of the disarticulated bones from Danebury suggested that 

this individual had decomposed on the ground surface before the bones were heated at a low 

temperature. This individual may have been afforded a deviant form of funerary treatment. 

 

9.7 SUMMARY 
 

In sum, bacterial bioerosion was the best measure of bone diagenesis that addressed the 

research aims of this study regarding the relationship between diagenesis and funerary 

treatment. This parameter was mostly influenced by whether a bone originated from a 

neonatal individual or an anoxic environment. When neonatal and anoxic-deposited bones 

were excluded there was a detectable relationship between measures of bacterial bioerosion 

and phase that was strong enough to be identified by the microscopic examination of most 

archaeological bones. Bacterial bioerosion of bone varied with phase in a way that would be 
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expected based on forensic studies of cadaveric decomposition and the ways in which the 

dead were known to have been treated in Historical and Later Prehistoric periods. Bacterial 

bone bioerosion of post-neonatal remains that decomposed in aerobic environments reflected 

the extent to which certain funerary treatment exposed the bones to putrefactive attack. 

Examples of rites that are likely to produce characteristic signatures of bacterial bioerosion 

include dismemberment, evisceration, sub-aerial exposure, inhumation, and mummification. 

Analysis of bacterial bioerosion is a useful tool in interpreting early post mortem treatment of 

human remains when combined with information regarding bodily decomposition in different 

situations and holistic study of the accompanying taphonomic evidence. 

The relationship between other measures of bone diagenesis and funerary treatment were not 

as strong or definable. The appearance of these features could be loosely associated with 

particular depositional situations or treatments, but only amongst a small number of samples. 

Measures of fungal tunnelling, periosteal bone loss and collagen birefringence can usefully 

supplement interpretations of funerary treatments from bacterial bioerosion. The recognition 

of these sorts of diagenetic changes is important for discussions of variations of bacterial 

bioerosion.  

The most common forms of visual diagenetic change to the bone microstructure related to 

properties of the burial environment. These features did not demonstrate a significant 

relationship with early post mortem processes and are likely to be of little use in 

reconstructions of funerary treatments. However, interpretations of early post mortem 

treatment that incorporate bacterial bioerosion should also include measures of visual 

diagenetic features to ensure that variation in bacterial attack was not related to interactions 

between the bone and the burial sediment. Microscopic characterisation of diagenetic changes 

to bone, particularly bacterial bone bioerosion, would be useful in discerning treatments 

responsible for disarticulated assemblages of bone. Analysis of bone diagenesis would also be 

useful for identifying hidden or unexpected forms of funerary treatment, such as previous 

mummification (Parker Pearson et al. 2005).  
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9.8 LIMITATIONS 
 

9.8.1 Anoxic Environments & Neonates 

 

The primary limitation of the current study with regards to the research aims was that 

bacterial bone bioerosion did not primarily correlate with funerary treatment. The associations 

between bacterial bioerosion, deposition within an anoxic environment and neonatal age 

meant that bacterial bioerosion could not be explained by specific funerary processes within a 

large proportion of the study sample. The use of bone histology as a method of inferring 

funerary treatment would not be applicable to all archaeological remains. However, it would 

be expected that future studies of archaeological bone diagenesis would be able to 

compensate for the effects of neonatal remains and anoxic environments. Most burial 

contexts included in the current study were not anoxic throughout the duration of deposition, 

and so it would be expected that the problem of previous anoxia would apply to bones from 

only a limited number of sites.  

The variable anoxia associated with episodic waterlogging meant that bone assemblages had 

been designated as having originated from an anoxic environment when it was unlikely that 

every grave had been inundated during bodily decomposition. Distributions of measures of 

diagenesis amongst these samples could not be used as a reliable model of bone diagenesis 

within an anaerobic environment. Diagenesis and levels of histological preservation would be 

expected to vary between cemeteries depending on frequency and duration of episodic 

inundations as well as the layout of the burial ground.  

Another consequence of the methodology was that bodies that were classified as having 

originated from aerobic environments may have decomposed under anoxic conditions. 

Characteristics of burial sediment can change over time, particularly in areas where the water 

table has been artificially altered (Turner-Walker & Jans 2008). Anoxic decomposition would 

have to be the primary explanation applied to archaeological remains that demonstrated an 

elevated pattern of histological preservation. The likelihood that an assemblage decomposed 

within an intermittently-anoxic environment could not be determined through examination of 

the bone microstructure alone and would have to be discerned through scrutiny of the 

accompanying environmental and taphonomic evidence. This conclusion further emphasised 

that histological analysis of archaeological bone is not a stand-alone method and must be 

combined with other environmental and taphonomic information if it is to be of use. 
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9.8.2 Nature of Analysis 

 

The differences in patterns of bacterial bioerosion between Historical and Later Prehistoric 

remains varied in a way that would be predicted based on knowledge regarding their likely 

treatment and forensic models of cadaveric decomposition (Rodriguez & Bass 1983; 1985; 

Mann et al. 1990; Nielsen-Marsh et al. 2000; Campobasso et al. 2001; Jans et al. 2004; Nielsen-

Marsh et al. 2007; Vas 2011; Zhou & Bayard 2011). Funerary treatment represented the best 

explanation for these patterns of variation, but correlation between funerary processes and 

diagenetic parameters were inferred rather than observed directly. The use of archaeological 

remains meant that not all variables could be controlled and there was a possibility that 

patterns of bacterial bone bioerosion were influenced by variation in underlying variables that 

had not been considered. The results from the Black Death skeletons, cut-marked bone, the 

limed skeleton and the mummified remains provided supporting evidence that bacterial 

bioerosion varied predictably with treatment and reduced the likelihood that alternative 

factors were responsible for variation in bacterial bioerosion amongst the Later Prehistoric 

samples, but this possibility could not be dismissed completely. 

 

9.8.3 Measures of Diagenesis 

 

The failure to access facilities used to characterise crystallinity of bone samples meant that one 

of the primary measures of bone diagenesis was not included in the current study. The lack of 

measures of the mineral phase did not significantly impact on the ability to address the main 

aims but the conclusions of the current study could not be taken as a complete representation 

of how bone diagenesis can be used to determine funerary treatment. The absence of 

crystallinity values limited interpretive strength and breadth of the current study. Changes to 

the bone mineral phase that are not caused by biological alteration are usually promoted by 

corrosive environments or heat treatment (Sillen & Parkington 1996; Hedges et al. 1995; Van 

Klinken & Hedges 1995; Hiller et al. 2004; Thompson 2004; Hiller & Wess 2006; Reiche et al. 

2003; Nielsen-Marsh et al. 2007; Smith et al. 2007; Thompson et al. 2009; Squires et al. 2011; 

Thompson et al. 2013). Measures of mineral change may have helped to refine explanations of 

diagenetic patterns within certain assemblages. For instance, crystallinity values could have 

helped to determine whether burning was responsible for the deviant diagenetic signature of 

Deposit 130 from Danebury. Knowledge of bone mineral alteration would also have helped to 

confirm whether the categories of soil type used in the current study represented real 
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differences in sediment that affected mechanisms of bone diagenesis (Nielsen-Marsh et al. 

2007; Smith et al. 2007).  

 

9.8.4 Sample Sizes 

 

The small samples sizes involved with comparisons of specific site assemblages meant that 

results produced were sometimes questionable. Small sample size became pertinent when it 

was considered that the baseline Historical distribution covered all possible Whole OHI scores. 

There was a chance that elevated levels of histological preservation could have occurred as a 

result of skewed sampling of variation attributable to burial. Low sample sizes made it difficult 

to determine whether site-specific deviations from the Historical baseline model were a result 

of treatment or low numbers of samples having produced a skewed distribution. The site-

specific interpretations of mortuary processes within small assemblages were hazardous when 

taken by themselves. 

Bones from Bronze Age contexts routinely demonstrated levels of histological preservation 

that deviated from the Historical baseline sample. However, the small sample sizes at 

particular sites meant that the possibility that the results represented a skewed representation 

of natural variation could not be discounted. The likelihood that these patterns had occurred 

by chance was significantly reduced when the same deviations were found within the Bronze 

Age assemblage considered as a whole. It was fortunate that many of the site-specific 

interpretations of funerary treatment were borne out when remains were collated into larger 

phase-specific groups.  

 

9.8.5 Diagenetic Signatures of Funerary Rites 

 

It should be emphasised that the results of the current study suggested that bacterial 

bioerosion of bone would only be useful for identifying funerary processes that had a 

significant impact on the extent of putrefaction experienced by a bone. Microstructural 

analysis of archaeological bones would only be useful for identifying a restricted number of 

treatments. The problem of wide variation in bacterial bioerosion within bones from 

individuals that had been buried was compounded by the likelihood that signatures of 

bacterial bioerosion associated with other types of funerary ritual consisted of spectra rather 
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than absolute values. The diagenetic effects of particular funerary treatments are likely to 

overlap. This overlap would disrupt attempts to interpret mortuary rites. Whilst there is 

evidence that sub-aerial exposure of a body consistently produces low levels of bacterial bone 

bioerosion, the range of possible attack would probably overlap with the attack observed 

within bones from buried bodies.  

There is also the problem of equifinality of particular funerary processes. Certain discrete 

funerary treatments could expose bones to similar levels of putrefaction and produce similar 

patterns of bone diagenesis. This problem was particularly apparent within attempts to 

determine treatment of Neolithic remains from caves and tombs. Deposition of bodies in 

certain indoor contexts was likely to produce patterns of bacterial bioerosion that were similar 

to those encouraged by primary burial.  

Inferences of funerary treatment from the diagenetic signatures of single samples would be 

extremely tenuous. Any inferences would have to be based on probabilities regarding which 

form of treatment most often causes the specific signature of attack, combined with a holistic 

analysis of the accompanying taphonomic evidence. Ideally, the use of histological analysis to 

infer funerary treatment would be applied to a decent sample size across a single site to 

determine whether the distribution of diagenetic signatures across multiple bone samples was 

consistent with a particular form of treatment. Variability in diagenetic signatures of different 

funerary rites would be problematic at sites where multiple mortuary processes were 

practised contemporaneously. Interpretations of funerary treatment using these methods 

would represent likelihoods rather than certainties. These conclusions further emphasise that 

histological analysis cannot be used alone as a tool for deducing early post mortem 

taphonomy, and has to be assimilated into an holistic taphonomic analysis of a site. In certain 

cases, it might be necessary to put forward several possible explanations for the diagenetic 

and taphonomic evidence. 

 

9.8.6 Measures of Burial Soil 

 

The inconsistencies in the records of the burial sediments at the sites included in the current 

study meant that this variable could only be defined in crude terms. It could not be 

determined whether this variable was representative of soil properties that would have 

affected bone diagenesis. Visual diagenetic alterations to bone microstructure such as staining, 

inclusions and infiltrations have been associated with properties of the surrounding burial 
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matrix (Garland 1987; Grupe & Dreses-Werringloer 1993; Van Klinken & Hedges 1995; Schultz 

1997; Shahack-Gross et al. 1997). The correlations between measures of these features and 

burial soil within the current study suggested that the categories of sediment related to real 

properties of the burial environment that affected interactions between the sediment and the 

bone. The lack of correlation between precise measures of soil properties and bacterial 

bioerosion recorded by previous studies suggested it was unlikely that variation in bacterial 

attack within the current study sample was attributable to variations in burial context that had 

not been encompassed by the measurements of sediment type (Nielsen-Marsh & Hedges 

2000; Nielsen-Marsh et al. 2007; Smith et al. 2007). The lack of variation in bacterial bioerosion 

amongst the bones from the dispersed Historical sites also suggested that sediment was 

unlikely to account for significant variation in bacterial bioerosion, although the uncertainties 

regarding the appropriateness of soil type categories meant that the results of the current 

study could not be used to infer that soil properties never have any effect on bacterial bone 

bioerosion. 

The inability to record soil pH weakened the conclusions of the current study as it was possible 

that inequalities in the pH of soils at sites from different archaeological phases were 

responsible for significant variation in measures of bone diagenesis. However, it was 

improbable that soil pH of the dispersed sites used in the current study would have varied in a 

way that produced the observed patterns of bone diagenesis. Measures of bone diagenesis 

often varied significantly across bones from single sites where burial sediment was consistent. 

The likelihood that soil pH varied little over the sites that were included in this study further 

suggested that this factor was unlikely to have interfered with bone diagenesis amongst the 

current study sample. Previous studies of archaeological bone diagenesis that included precise 

measures of soil pH failed to identify correlations between this factor and bone diagenesis 

within non-acidic environments (Nielsen-Marsh et al. 2007; Smith et al. 2007). However, the 

results of the current study could not be used to state with certainty that soil pH has no effect 

on the measures of bone diagenesis in contexts that were not significantly acidic. 

 

9.8.7 Visual Diagenetic Changes 

 

One of the weaknesses of the thin section light microscopy method was that whilst it could be 

used to detect the presence and extent of visual diagenetic changes, it was limited in 

discerning their constitution. It was impossible to identify discriminating aspects of visual 
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diagenetic changes beyond simple differences such as colour. Identification of the materials 

responsible for these type of changes had to be achieved through comparison against similar 

phenomenon described by previous studies (Garland 1987; Grupe & Dreses-Werringloer 1993; 

Van Klinken & Hedges 1995; Schultz 1997; Shahack-Gross et al. 1997; Hollund et al. 2012). It 

was possible that subtle differences in visual diagenetic features had been missed by the 

techniques used in the current study. Such differences may have been indicative of materials 

associable with environments or treatments that were responsible for particular diagenetic 

trajectories (Turner-Walker & Jans 2008; Hollund et al. 2012). The conclusions of the current 

study relating to the simplistic categories of staining, inclusions and infiltrations remained 

valid. However, more precise methods of analysis that would provide a more nuanced 

separation of categories might find that variability in these features can produce more useful 

information about taphonomic processes. It was likely that the current study only captured a 

small fraction of the possible visual diagenetic features that can appear within archaeological 

bone. Therefore the results cannot be used to suggest that the study of visual diagenetic 

changes are never of any value to reconstructions of early taphonomic processes. Future 

studies of bone diagenesis would have to consider the potential impact of these features. 

 

9.8.8 Skeletal Element 

 

 The results of the current study were limited slightly by the inclusion of samples from varying 

skeletal elements, as it has not been determined how bone diagenesis might vary within 

different types of bones (Hanson & Buikstra 1987; Jans et al. 2004). There was no consistent 

significant variation in bone diagenesis with skeletal element amongst the study sample used 

in the current project. There was a possibility that measures of diagenesis varied subtly 

between skeletal elements, but that sample sizes were too low to capture this diversity. The 

exclusive use of long bones and the low occurrences of particular skeletal elements meant that 

the results could not be used to refute the suggestion that bone diagenesis varies with skeletal 

element. The validity of future studies of the relationship between bone diagenesis and 

funerary treatment would be uncertain unless they were concentrated on a specific skeletal 

element or controlled for potential discrepancies between different bones.  
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9.8.9 Mummification 

 

Only two samples of bone from mummified individuals were included in the current study. The 

histological preservation of both of these samples was consistent with the few previous 

histomorphological studies of bone from mummies and suggested that there was a 

characteristic signature of histological bone preservation associated with mummification 

(Weinstein et al. 1981; Thompson & Cowen 1984; Stout 1986; Brothwell & Bourke 1995; Hess 

et al. 1998; Parker Pearson et al. 2005). However, the small number of samples analysed 

meant that the notion of a digenetic signature of mummification was still uncertain. 

Mummified bone is likely to demonstrate variable levels of histological preservation depending 

on the method of preservation. The highly degraded bone sample from one of the Cladh Hallan 

individuals suggested that high levels of histological preservation within bones of mummies 

might be a tendency rather than an absolute (Parker Pearson et al. 2005). 

 

9.8.10 Archaeological Remains from Different Parts of the World 

 

The samples used in the Primary analysis were limited to bones obtained from temperate 

zones. Environmental factors have a greater effect on bodily decomposition in parts of the 

world where climatic conditions are more extreme (Rodriguez & Bass 1983; 1985; Galloway et 

al. 1989; Parson 2003; Dent et al. 2004; Congram 2008; Parks 2011; Vass 2011; Voss et al. 

2011; Zhou & Bayard 2011). The increased influence of environmental variables on 

decomposition may reduce or negate the effectiveness of measures of bone diagenesis, 

particularly bacterial bioerosion, in reconstructions of funerary treatment. In addition, there 

could be a host of unknown factors that affect the origin and extent of bone diagenesis in 

different parts of the world, such as variations in soil bacteria or geology. 

 

9.8.11 Chronological Age 

 

The results suggested that seven-thousand-year-old histologically well-preserved and poorly-

preserved bones from temperate Europe are just as likely to survive into the archaeological 

record (Hedges 2002). However, only histologically well-preserved bones survive over 

geological timescales (Hedges 2002; Trueman & Martill 2002). These observations suggest 

whilst bacterial bioerosion does not appear to affect bone survival over archaeological 
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timescales, histologically poorly-preserved bones are unlikely to persist beyond a critical 

chronological threshold. Patterns of diagenesis found within Palaeolithic and older human 

bones may not provide a representative distribution of bone diagenesis as it relates to early 

taphonomic processes. 

  

9.9 FUTURE RESEARCH 
 

9.9.1 Refining and Corroborating Findings 

 

The conclusions of the current research could be corroborated and refined through analysis of 

the same or comparable study samples using alternative measures of bone diagenesis. 

Reanalysis of some of the bones using techniques that measure bone mineral change would 

aid in refining interpretive models of diagenesis (Sillen & Parkington 1996; Hedges et al. 1995; 

Van Klinken & Hedges 1995; Hiller et al. 2004; Thompson 2004; Hiller & Wess 2006; Reiche et 

al. 2003; Nielsen-Marsh et al. 2007; Smith et al. 2007; Thompson et al. 2009; Squires et al. 

2011; Thompson et al. 2013). These analyses would provide a better impression of how far 

diagenetic changes to bone can be used in the reconstructions of taphonomic histories.  

Examination of bone microstructure using precise techniques such as SEM would allow for 

better discrimination of visual diagenetic changes (Turner-Walker & Syversen 2002; Turner-

Walker 2008; Turner-Walker & Jans 2008; Hollund et al. 2012). Reanalysis of remains using this 

technique would help to refine conclusions regarding how staining, inclusions and infiltrations 

can be used to reconstruct taphonomic processes. SEM can be used to identify features such 

as framboidal pyrite, which would help to determine whether patterns of bacterial bioerosion 

in certain samples were a product of anthropogenic treatment or decomposition under anoxic 

conditions (Turner-Walker & Jans 2008; Hollund et al. 2012). Anoxic decomposition produces 

localised acidic demineralisation of bone microstructure. A combination of measures of 

crystallinity and SEM could be used to develop a system of determining whether or not a body 

was likely to have previously decomposed within an anoxic environment (Hollund et al. 2012). 

Another possible method of corroborating the results of the current study would be to 

examine signatures of diagenesis within remains from multi-period single sites where funerary 

treatment varied between phases. For instance, it would be pertinent to compare diagenetic 

signatures of bones from a British site where there was evidence for both Historical burial and 
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Later Prehistoric variable manipulation of the dead. Such a study would provide a microcosm 

of the research presented here whilst reducing potential variation in environmental factors 

that may have interfered with bone diagenesis. 

Further testing of the correlation between bacterial bioerosion and funerary treatment could 

involve the histological examination of archaeological bones from varied societies that were 

known to have practised processes that would have reduced the levels of putrefaction a bone 

experienced. However, the best way to corroborate the results of the current study would be 

through the analysis of bone diagenesis within experimentally-deposited human bodies or 

analogous pig carcasses (Fernández-Jalvo et al. 2010; White 2009). This methodology would be 

the only way of testing correlations between funerary treatment and bone diagenesis directly. 

White’s (2010) study followed this model, but only examined a small range of treatments over 

a limited time period. 

 

9.9.2 Neonatal Remains 

 

The results from the neonatal remains suggested that the skeletons of stillborn individuals may 

be identifiable within the archaeological record. Histological analysis of archaeological bone 

could be used to calculate rates of still-births within past populations and identify societies 

where this category of remains had been afforded a deviant form of treatment (Finlay 2000). 

Such studies would provide greater clarity of the causes of infant mortality as well as the 

perception and treatment of stillborn individuals in the past. 

 

9.9.3 Waterlogged Environments 

 

Further research is required into the exact effects of intermittently-waterlogged environments 

on bacterial bone bioerosion (Turner-Walker & Jans 2008; Hollund et al. 2012). It was likely 

that variation in bacterial bioerosion within bones from waterlogged cemeteries used in the 

current study was related to the timing of inundation. It would be pertinent to investigate this 

inference further by examining whether variation in bacterial bioerosion amongst articulated 

remains from a seasonally-waterlogged cemetery conformed to expected patterns. For 

instance, it would be predicted that bone from deeper burials would be more likely to 

demonstrate heightened levels of histological preservation. Establishing how bacterial bone 

bioerosion varies within waterlogged cemeteries may help to determine how far funerary 
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treatment can be discerned within remains recovered from these sorts of environments. Such 

studies might also be informative as to predictive models of histological preservation within 

remains obtained from particular contexts. 

 

9.9.4 Funerary Treatment 

 

One of the primary ways in which the results of the current study could instigate future 

research would be in studies of the types of funerary rites that were practiced in the past. 

Microstructural analysis would be particularly useful for investigating prehistoric funerary rites 

at sites where practices are disputed or ambiguous. Microstructural analysis of archaeological 

bone could be particularly helpful in determining mechanisms of disassembly amongst 

disarticulated skeletons.  

The most obvious application of the results of the current study would be a direct examination 

of British Bronze Age remains to establish whether there is further evidence that this 

civilisation routinely mummified their dead (Parker Pearson et al. 2005; 2007). The results 

from the Bronze Age and mummified samples suggested that histological analysis may provide 

a consistent method of determining whether an archaeological skeleton had been previously 

mummified. The primary indications of the veracity of the mummification hypothesis 

presented in the results of the current study suggested that it would also be worth 

investigating whether evidence for a similar rite could be located at Bronze Age or earlier sites 

on the European continent. The result emphasised how the histological method could help to 

identify funerary treatments that would otherwise have been hidden and revolutionise 

perceptions on how particular societies treated their dead.  

Any investigations into the practise of mummification in Bronze Age Britain would have to be 

accompanied by further histological examination of mummified material. Investigations into 

the histological preservation of bog body bone conducted as part of the current study 

established potential mechanisms responsible for the loss of the skeleton within bog-

deposited remains that retain preserved soft tissues. Further investigation into similar samples 

might help to determine the mechanisms behind the variability in preservation of human 

remains from these environments. Examination of bone from mummies that had been 

preserved using variable techniques would help to establish the range of diagenetic outcomes 

associated with these remains and determine how far the mode of preservation could be 

discerned by histological examination of bone. To the same end, it would also be relevant to 
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examine the histology of skeletons that were likely to have been previously mummified, such 

as the Guanche bodies of Tenerife or skeletal Peruvian mummy bundles (Aufderheide 2003).  

 

9.9.5 Black Death 

 

Another possible future research direction suggested by the results of the current study could 

be an exploration of the relationship between bone diagenesis and the Plague. It would be 

pertinent to investigate whether the differential pattern of bacterial bioerosion observed 

amongst the skeletons from the Black Death graves occurred as a result of delayed burial or 

the way that the associated pathogen interfered with processes of decomposition. One way of 

doing this might be to investigate the remains from the Royal Mint Black Death graves in 

further detail to determine whether disarticulated skeletons were more likely to display 

deviant patterns of bacterial bioerosion. If no such pattern was observed then it would have to 

be considered that the pathogen itself was the factor that had affected bodily decomposition 

and bone bioerosion. If bacterial bioerosion was related to the delay between death and 

burial, then inferences could be made regarding the individuals from Black Death cemeteries 

that were likely to have been local or transported from further afield. Temporal variation in 

patterns of bacterial bioerosion might be indicative of reactions to the escalation of the 

epidemic that caused fluctuations in the period between death and burial. In an eventuality 

where bacterial bioerosion was related to the Black Death pathogen, histomorphological 

studies of medieval remains could be used to identify Plague-affected individuals that had 

been afforded a conventional burial within an established cemetery.  

 

9.9.6 Remaining Variation in Bacterial Bioerosion 

 

It was not the intention of the current study to identify all of the factors responsible for 

variation in bone diagenesis and bacterial bone bioerosion in particular. One of the questions 

that was left unanswered by the current project was what factor was responsible for the little 

variation in bacterial bioerosion observed amongst the Historical baseline assemblage. It 

would be important to determine what other factors might influence bone exposure to 

putrefaction in to ensure that variation in bacterial bioerosion is not mistaken for differences 

encouraged by early post mortem treatment. For instance it would be interesting to examine 

patterns of bacterial bioerosion within archaeological populations where there was evidence 
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for circumstances that would have had an extreme effect on microbiome health. Starvation 

represents one process that would be expected to substantially alter the abundance of gut 

microbiota. It would be relevant to investigate patterns of bacterial bioerosion amongst a 

Historical cemetery population dating to a period of famine. If bacterial bone bioerosion was 

related to microbiome, histological preservation of bone amongst famine assemblages would 

be higher than what would be expected from an inhumed Historical articulated population.  

 

9.9.7 Faunal Assemblages 

 

The current study focussed on diagenesis of archaeological human bones in order to avoid the 

taphonomic and microstructural complexities involved with examining bone from variable 

species. The same types of bioerosion observed within human bones have been found within 

archaeological and modern bones of several different species and are likely to have a similar 

enteric aetiology (Nicholson 1996; Davis 1997; Nielsen-Marsh & Hedges 2000; Hedges 2002; 

Jans et al. 2004; Fernández-Jalvo et al. 2010; Hollund et al. 2012). It would be expected that 

diagenetic changes association with interactions between human bone and the burial 

environment would be similar amongst faunal assemblages. Histological examination of bone 

could be used as part of holistic taphonomic analyses in determining early post mortem 

treatment of all species recovered from archaeological sites.  

 

9.9.8 Biomolecular Yield 

 

Histological preservation of bone has been variably linked to the survival or organic molecules 

such as aDNA (Hagelburg et al. 1991; Grupe 1995; Colson et al. 1997; Cipollaro et al. 1998; 

Gardner 1999; Geigl 2002; Götherström et al. 2002; Haynes et al. 2002; Rollo et al. 2002; 

Devièse et al. 2010). The exact relationship between the histological preservation of bone and 

aDNA yield in particular is unclear (Collins et al. 2009; Ottoni et al. 2009). Loss of bone protein 

does not necessarily equate to a direct corresponding loss of DNA (Collins et al. 2009; Otoni et 

al. 2009). Nevertheless, the conclusion of the current study may present some counter-

intuitive notions with regards to the likely success of attempts to extract biomolecules from 

archaeological bone.  

Most discussions of biomolecular preservation are concerned with environmental conditions 

and time, but the results of the present study emphasise the role of early cultural practices 
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(Perry et al. 1988; Grupe 1995; Mays 1998; Geigl 2002; Götherström et al. 2002; Haynes et al. 

2002; Rollo et al. 2002; Devièse et al. 2010). There is no doubt that biomolecules degrade at a 

predictable rate that is dependent on the environmental conditions (Collins et al. 1995). 

However, the extent of biomolecular survival in bone recovered from a temperate site, as 

dictated by histological preservation, should not vary with archaeological time and would be 

dependent on the way an individual was treated after death. The oldest bones used in this 

study, those from the Mesolithic Havnø shell midden, demonstrated some of the highest levels 

of histological preservation of any assemblage, and may be more viable for biomolecular 

analysis than the majority of the remains excavated from British Historical contexts. The 

inhibitory effects of waterlogged environments on bacterial bone bioerosion suggested that 

biomolecular studies are also likely to be more successful when applied to bones from anoxic 

contexts, discounting those environments such as peat bogs whose properties obstruct aDNA 

amplification in other ways (Painter 1995). The bones of neonates, which in the past have been 

considered to be most susceptible to diagenetic processes, may retain the largest potential for 

survival of biogenic molecules (Buckberry 2000). 

Periosteal circumferential lamellar bone represents the part of a specimen that is most likely 

to have survived into the archaeological. However, this area of bone is undesirable for use in 

biomolecular sampling, as it is more susceptible to contamination (Hagelburg et al. 1991). The 

internal third of a bone cross-section consistently demonstrated the next-highest levels of 

histological preservation, and could present the best choice for sampling. The indications that 

bacterial bone bioerosion was dependent upon porosity dictated by ratios of cortical and 

trabecular and osteonal density indicated that biomolecular sampling would be best targeted 

on compact bone that is unlikely to have undergone significant remodelling. Further research 

related to the conclusions of this study could help to refine protocols for optimising 

biomolecular yield from archaeological bone.  
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11 APPENDIX 1: REGRESSION MODELS 

 

11.1 WHOLE OHI 
 

11.1.1 Whole OHI Ordinal Regression Model 1 

 
Case Processing Summary 

 N Marginal 
Percentage 

Whole OHI 

0 42 35.9% 

1 23 19.7% 

2 20 17.1% 

3 14 12.0% 

4 6 5.1% 

5 12 10.3% 

Anoxic 
Absent 106 90.6% 
Present 11 9.4% 

Phase 
Later Prehistoric 40 34.2% 
Historical 77 65.8% 

Soil Type 

Clay 30 25.6% 
Gravel 55 47.0% 
Sand 16 13.7% 
Silt 13 11.1% 
Open 3 2.6% 

Cave 
Non-Cave 114 97.4% 
Cave 3 2.6% 

Black Death 
Non-Black Death 95 81.2% 
Black Death 22 18.8% 

State 
Articulated 99 84.6% 
Disarticulated 18 15.4% 

Charnel 
Non-Charnel 115 98.3% 
Charnel 2 1.7% 

Sex 
Male 62 53.0% 
Female 55 47.0% 

Age Range 
Juvenile 12 10.3% 
Adult 105 89.7% 

Valid 117 100.0% 

Missing 184  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 237.061    
Final 198.169 38.893 11 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 164.914 159 .358 
Deviance 134.422 159 .922 

Link function: Logit. 
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Pseudo R-Square 

Cox and Snell .283 
Nagelkerke .294 
McFadden .102 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[WholeHI = 0] -3.765 1.786 4.443 1 .035 -7.265 -.264 

[WholeHI = 1] -2.765 1.770 2.442 1 .118 -6.233 .703 

[WholeHI = 2] -1.821 1.759 1.072 1 .301 -5.270 1.627 

[WholeHI = 3] -.919 1.758 .273 1 .601 -4.365 2.528 

[WholeHI = 4] -.321 1.765 .033 1 .856 -3.780 3.139 

Location 

[Anoxic=0] -4.073 .917 19.711 1 .000 -5.870 -2.275 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] 2.544 .621 16.799 1 .000 1.327 3.760 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] -.324 1.270 .065 1 .799 -2.813 2.165 

[StandardSoilNum=2] 1.021 1.298 .618 1 .432 -1.524 3.565 

[StandardSoilNum=3] .826 1.282 .415 1 .519 -1.686 3.338 

[StandardSoilNum=4] -.102 1.173 .008 1 .931 -2.401 2.197 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] 0
a
 . . 0 . . . 

[Cave=1] 0
a
 . . 0 . . . 

[BD=0] -1.415 .518 7.459 1 .006 -2.431 -.400 

[BD=1] 0
a
 . . 0 . . . 

[State2Num=1.00] .363 .694 .273 1 .601 -.998 1.724 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] .253 1.416 .032 1 .858 -2.521 3.028 

[Charnel=1] 0
a
 . . 0 . . . 

[SexNum=1] .111 .358 .096 1 .756 -.590 .813 

[SexNum=2] 0
a
 . . 0 . . . 

[AgeRange4Num=3.00] -.704 .604 1.356 1 .244 -1.888 .481 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 198.169    
General 213.926

b
 .

c
 44 . 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of 
step-halving. 
c. The log-likelihood value of the general model is smaller than that of the null 
model. This is because convergence cannot be attained or ascertained in 
estimating the general model. Therefore, the test of parallel lines cannot be 
performed. 
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11.1.2 Whole OHI Ordinal Regression Model 2 

 
Case Processing Summary 

 N Marginal Percentage 

Whole OHI 

0 127 42.2% 

1 45 15.0% 

2 51 16.9% 

3 23 7.6% 

4 15 5.0% 

5 40 13.3% 

Anoxic 
Absent 261 86.7% 
Present 40 13.3% 

Phase 
Later Prehistoric 93 30.9% 
Historical 208 69.1% 

Soil Type 

Clay 159 52.8% 
Gravel 65 21.6% 
Sand 24 8.0% 
Silt 35 11.6% 
Open 18 6.0% 

Cave 
Non-Cave 279 92.7% 
Cave 22 7.3% 

Black Death 
Non-Black Death 276 91.7% 
Black Death 25 8.3% 

State 
Articulated 238 79.1% 
Disarticulated 63 20.9% 

Charnel 
Non-Charnel 213 70.8% 
Charnel 88 29.2% 

Age Range 

Neonate 31 10.3% 
Child 23 7.6% 
Juvenile 39 13.0% 
Adult 208 69.1% 

Valid 301 100.0% 

Missing 0  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 430.806    
Final 347.557 83.249 13 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 260.832 202 .003 
Deviance 207.651 202 .378 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .242 
Nagelkerke .253 
McFadden .088 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[WholeHI = 0] -3.247 .815 15.865 1 .000 -4.844 -1.649 

[WholeHI = 1] -2.529 .806 9.839 1 .002 -4.108 -.949 

[WholeHI = 2] -1.590 .798 3.967 1 .046 -3.154 -.025 

[WholeHI = 3] -1.031 .797 1.670 1 .196 -2.593 .532 

[WholeHI = 4] -.562 .799 .495 1 .482 -2.129 1.005 

Location 

[Anoxic=0] -2.064 .367 31.574 1 .000 -2.784 -1.344 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] 1.543 .446 11.962 1 .001 .669 2.418 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] -1.126 1.206 .871 1 .351 -3.491 1.239 

[StandardSoilNum=2] -.916 1.233 .552 1 .457 -3.332 1.500 

[StandardSoilNum=3] -.034 1.209 .001 1 .977 -2.405 2.336 

[StandardSoilNum=4] -1.562 1.094 2.040 1 .153 -3.706 .581 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] .477 1.070 .199 1 .656 -1.620 2.575 

[Cave=1] 0
a
 . . 0 . . . 

[BD=0] -1.456 .483 9.077 1 .003 -2.404 -.509 

[BD=1] 0
a
 . . 0 . . . 

[State2Num=1.00] .413 .465 .790 1 .374 -.498 1.325 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] -.078 .390 .040 1 .841 -.843 .687 

[Charnel=1] 0
a
 . . 0 . . . 

[AgeRange4Num=1.00] 2.183 .442 24.399 1 .000 1.317 3.050 

[AgeRange4Num=2.00] -1.020 .503 4.110 1 .043 -2.006 -.034 

[AgeRange4Num=3.00] -.186 .344 .292 1 .589 -.859 .488 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log 
Likelihood 

Chi-Square df Sig. 

Null Hypothesis 347.557    
General 194.784

b
 152.773

c
 52 .000 

The null hypothesis states that the location parameters (slope coefficients) 
are the same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum 
number of step-halving. 
c. The Chi-Square statistic is computed based on the log-likelihood value of 
the last iteration of the general model. Validity of the test is uncertain. 

 

 

 

 

 

 

 



  

573 
 

11.1.3 Whole OHI Ordinal Regression Model 3 

 
Case Processing Summary 

 N Marginal 
Percentage 

Whole OHI 

0 127 42.2% 

1 45 15.0% 

2 51 16.9% 

3 23 7.6% 

4 15 5.0% 

5 40 13.3% 

Anoxic 
Absent 261 86.7% 
Present 40 13.3% 

Phase 
Later Prehistoric 93 30.9% 
Historical 208 69.1% 

Black Death 
Non-Black Death 276 91.7% 
Black Death 25 8.3% 

Age Range 

Neonate 31 10.3% 
Child 23 7.6% 
Juvenile 39 13.0% 
Adult 208 69.1% 

Valid 301 100.0% 

Missing 0  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 268.441    
Final 197.629 70.812 6 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 95.281 64 .007 
Deviance 96.888 64 .005 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .210 
Nagelkerke .219 
McFadden .075 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[WholeHI = 0] -2.979 .512 33.897 1 .000 -3.982 -1.976 

[WholeHI = 1] -2.274 .499 20.764 1 .000 -3.252 -1.296 

[WholeHI = 2] -1.356 .488 7.724 1 .005 -2.313 -.400 

[WholeHI = 3] -.818 .487 2.821 1 .093 -1.773 .137 

[WholeHI = 4] -.373 .491 .576 1 .448 -1.334 .589 

Location 

[Anoxic=0] -1.924 .338 32.406 1 .000 -2.587 -1.262 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] 1.101 .257 18.413 1 .000 .598 1.604 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[BD=0] -1.431 .405 12.484 1 .000 -2.225 -.637 

[BD=1] 0
a
 . . 0 . . . 

[AgeRange4Num=1.00] 2.028 .376 29.032 1 .000 1.290 2.766 

[AgeRange4Num=2.00] -1.082 .490 4.884 1 .027 -2.042 -.122 

[AgeRange4Num=3.00] -.229 .334 .468 1 .494 -.885 .427 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 197.629    
General 180.704

b
 16.925

c
 24 .852 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of 
step-halving. 
c. The Chi-Square statistic is computed based on the log-likelihood value of the 
last iteration of the general model. Validity of the test is uncertain. 
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11.1.4 Whole OHI Paired Ordinal Regression Models 
 

11.1.4.1 Age Range & Anoxia 
 

Case Processing Summary 

 N Marginal Percentage 

Whole OHI 

0 127 42.2% 

1 45 15.0% 

2 51 16.9% 

3 23 7.6% 

4 15 5.0% 

5 40 13.3% 

Anoxic 
Absent 261 86.7% 
Present 40 13.3% 

Age Range 

Neonate 31 10.3% 
Child 23 7.6% 
Juvenile 39 13.0% 
Adult 208 69.1% 

Valid 301 100.0% 

Missing 0  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 177.390    
Final 131.061 46.329 4 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 52.637 31 .009 
Deviance 57.832 31 .002 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .143 
Nagelkerke .149 
McFadden .049 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[WholeHI = 0] -1.580 .313 25.488 1 .000 -2.193 -.967 

[WholeHI = 1] -.917 .305 9.040 1 .003 -1.515 -.319 

[WholeHI = 2] -.052 .300 .030 1 .863 -.640 .537 

[WholeHI = 3] .466 .304 2.356 1 .125 -.129 1.061 

[WholeHI = 4] .897 .312 8.280 1 .004 .286 1.508 

Location 

[Anoxic=0] -1.363 .313 18.945 1 .000 -1.976 -.749 

[Anoxic=1] 0
a
 . . 0 . . . 

[AgeRange4Num=1.00] 1.526 .355 18.475 1 .000 .830 2.221 

[AgeRange4Num=2.00] -1.345 .481 7.822 1 .005 -2.288 -.402 

[AgeRange4Num=3.00] -.472 .329 2.065 1 .151 -1.117 .172 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 
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Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 131.061    
General 120.841

b
 10.220

c
 16 .855 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of 
step-halving. 
c. The Chi-Square statistic is computed based on the log-likelihood value of the 
last iteration of the general model. Validity of the test is uncertain. 

 
 

11.1.4.2 Age Range & Black Death 

 
Case Processing Summary 

 N Marginal Percentage 

Whole OHI 

0 127 42.2% 

1 45 15.0% 

2 51 16.9% 

3 23 7.6% 

4 15 5.0% 

5 40 13.3% 

Age Range 

Neonate 31 10.3% 
Child 23 7.6% 
Juvenile 39 13.0% 
Adult 208 69.1% 

Black Death 
Non-Black Death 276 91.7% 
Black Death 25 8.3% 

Valid 301 100.0% 

Missing 0  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 135.420    
Final 106.457 28.963 4 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 38.141 21 .012 
Deviance 37.601 21 .014 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .092 
Nagelkerke .096 
McFadden .031 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[WholeHI = 0] -.941 .364 6.704 1 .010 -1.654 -.229 

[WholeHI = 1] -.303 .360 .711 1 .399 -1.008 .402 

[WholeHI = 2] .519 .361 2.066 1 .151 -.189 1.226 

[WholeHI = 3] 1.004 .366 7.514 1 .006 .286 1.722 

[WholeHI = 4] 1.417 .375 14.274 1 .000 .682 2.152 

Location 

[AgeRange4Num=1.00] 1.537 .356 18.654 1 .000 .840 2.235 

[AgeRange4Num=2.00] -1.268 .481 6.950 1 .008 -2.210 -.325 

[AgeRange4Num=3.00] -.283 .325 .761 1 .383 -.920 .353 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

[BD=0] -.649 .378 2.949 1 .086 -1.390 .092 

[BD=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 106.457    
General 97.255 9.202 16 .905 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 

 

11.1.4.3 Age Range & Phase 

 
Case Processing Summary 

 N Marginal Percentage 

Whole OHI 

0 127 42.2% 

1 45 15.0% 

2 51 16.9% 

3 23 7.6% 

4 15 5.0% 

5 40 13.3% 

Age Range 

Neonate 31 10.3% 
Child 23 7.6% 
Juvenile 39 13.0% 
Adult 208 69.1% 

Phase 
Later Prehistoric 93 30.9% 
Historical 208 69.1% 

Valid 301 100.0% 

Missing 0  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 160.050    
Final 130.213 29.837 4 .000 

Link function: Logit. 
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Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 47.710 31 .028 
Deviance 50.527 31 .015 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .094 
Nagelkerke .099 
McFadden .032 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[WholeHI = 0] -.209 .159 1.711 1 .191 -.521 .104 

[WholeHI = 1] .424 .161 6.958 1 .008 .109 .739 

[WholeHI = 2] 1.240 .176 49.593 1 .000 .895 1.585 

[WholeHI = 3] 1.728 .193 80.516 1 .000 1.350 2.105 

[WholeHI = 4] 2.148 .212 102.827 1 .000 1.733 2.563 

Location 

[AgeRange4Num=1.00] 1.563 .358 19.081 1 .000 .862 2.264 

[AgeRange4Num=2.00] -1.298 .481 7.289 1 .007 -2.241 -.356 

[AgeRange4Num=3.00] -.277 .323 .732 1 .392 -.910 .357 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

[Phase2Num2=1] .481 .231 4.356 1 .037 .029 .933 

[Phase2Num2=2] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 130.213    
General 108.919

b
 21.295

c
 16 .167 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of 
step-halving. 
c. The Chi-Square statistic is computed based on the log-likelihood value of the 
last iteration of the general model. Validity of the test is uncertain. 
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11.1.4.4 Phase & Anoxia 
Case Processing Summary 

 N Marginal Percentage 

Whole OHI 

0 127 42.2% 

1 45 15.0% 

2 51 16.9% 

3 23 7.6% 

4 15 5.0% 

5 40 13.3% 

Phase 
Later Prehistoric 93 30.9% 
Historical 208 69.1% 

Anoxic 
Absent 261 86.7% 
Present 40 13.3% 

Valid 301 100.0% 

Missing 0  
Total 301  

 

 

 

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 97.475    
Final 70.025 27.450 2 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 11.787 13 .545 
Deviance 11.974 13 .530 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .087 
Nagelkerke .091 
McFadden .029 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[WholeHI = 0] -1.467 .300 23.978 1 .000 -2.054 -.880 

[WholeHI = 1] -.822 .292 7.894 1 .005 -1.395 -.249 

[WholeHI = 2] .004 .288 .000 1 .990 -.560 .567 

[WholeHI = 3] .488 .290 2.834 1 .092 -.080 1.057 

[WholeHI = 4] .889 .297 8.958 1 .003 .307 1.472 

Location 

[Phase2Num2=1] .691 .234 8.736 1 .003 .233 1.150 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[Anoxic=0] -1.534 .320 23.057 1 .000 -2.161 -.908 

[Anoxic=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 
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Test of Parallel Lines
a
 

Model -2 Log 
Likelihood 

Chi-Square df Sig. 

Null Hypothesis 70.025    
General 61.622 8.402 8 .395 

The null hypothesis states that the location parameters (slope coefficients) 
are the same across response categories. 
a. Link function: Logit. 

 

11.1.4.5 Phase & Black Death 
Case Processing Summary 

 N Marginal Percentage 

Whole OHI 

0 127 42.2% 

1 45 15.0% 

2 51 16.9% 

3 23 7.6% 

4 15 5.0% 

5 40 13.3% 

Phase 
Later Prehistoric 93 30.9% 
Historical 208 69.1% 

Black Death 
Non-Black Death 276 91.7% 
Black Death 25 8.3% 

Valid 301 100.0% 

Missing 0  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 75.737    
Final 67.924 7.813 2 .020 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 12.467 8 .132 
Deviance 11.597 8 .170 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .026 
Nagelkerke .027 
McFadden .008 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[WholeHI = 0] -.883 .363 5.935 1 .015 -1.594 -.173 

[WholeHI = 1] -.265 .359 .544 1 .461 -.970 .439 

[WholeHI = 2] .516 .361 2.045 1 .153 -.191 1.222 

[WholeHI = 3] .967 .365 7.012 1 .008 .251 1.684 

[WholeHI = 4] 1.347 .373 13.041 1 .000 .616 2.078 

Location 

[Phase2Num2=1] .508 .231 4.846 1 .028 .056 .960 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[BD=0] -.786 .381 4.249 1 .039 -1.533 -.039 

[BD=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log 
Likelihood 

Chi-Square df Sig. 

Null Hypothesis 67.924    
General 56.326 11.597 8 .170 

The null hypothesis states that the location parameters (slope coefficients) 
are the same across response categories. 
a. Link function: Logit. 

 

11.1.4.6 Anoxia & Black Death 
Case Processing Summary 

 N Marginal Percentage 

Whole OHI 

0 127 42.2% 

1 45 15.0% 

2 51 16.9% 

3 23 7.6% 

4 15 5.0% 

5 40 13.3% 

Black Death 
Non-Black Death 276 91.7% 
Black Death 25 8.3% 

Anoxic 
Absent 261 86.7% 
Present 40 13.3% 

Valid 301 100.0% 

Missing 0  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 93.688    
Final 68.758 24.931 2 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 16.113 8 .041 
Deviance 14.611 8 .067 

Link function: Logit. 
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Pseudo R-Square 

Cox and Snell .079 
Nagelkerke .083 
McFadden .026 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[WholeHI = 0] -2.358 .489 23.250 1 .000 -3.317 -1.400 

[WholeHI = 1] -1.709 .481 12.645 1 .000 -2.651 -.767 

[WholeHI = 2] -.880 .472 3.478 1 .062 -1.805 .045 

[WholeHI = 3] -.400 .471 .721 1 .396 -1.323 .523 

[WholeHI = 4] -.008 .474 .000 1 .986 -.937 .920 

Location 

[BD=0] -.866 .376 5.312 1 .021 -1.603 -.130 

[BD=1] 0
a
 . . 0 . . . 

[Anoxic=0] -1.419 .312 20.675 1 .000 -2.030 -.807 

[Anoxic=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log 
Likelihood 

Chi-Square df Sig. 

Null Hypothesis 68.758    
General 54.146 14.611 8 .067 

The null hypothesis states that the location parameters (slope coefficients) 
are the same across response categories. 
a. Link function: Logit. 

 

11.2 PRESENCE OF BACTERIAL ATTACK 
 

11.2.1 Presence of Bacterial Attack Binary Logistic Regression Model 1 
 

Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 117 38.9 

Missing Cases 184 61.1 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 27.826 11 .003 

Block 27.826 11 .003 

Model 27.826 11 .003 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 49.554
a
 .212 .437 

a. Estimation terminated at iteration number 20 because maximum 
iterations has been reached. Final solution cannot be found. 
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Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 2.078 7 .955 

 
Contingency Table for Hosmer and Lemeshow Test 

 Bacterial Tunnelling = Absent Bacterial Tunnelling = Present Total 

Observed Expected Observed Expected 

Step 1 

1 7 6.976 7 7.024 14 

2 2 2.468 11 10.532 13 

3 1 1.193 15 14.807 16 

4 1 .502 11 11.498 12 

5 1 .397 12 12.603 13 

6 0 .282 11 10.718 11 

7 0 .140 12 11.860 12 

8 0 .043 12 11.957 12 

9 0 .000 14 14.000 14 

 

 

 
Classification Table

a
 

 Observed Predicted 

 Bacterial Tunnelling Percentage Correct 

 Absent Present 

Step 1 
Bacterial Tunnelling 

Absent 4 8 33.3 

Present 2 103 98.1 

Overall Percentage   91.5 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Anoxic(1) 4.601 1.566 8.633 1 .003 99.551 

Phase2Num2(1) -3.510 1.307 7.210 1 .007 .030 

StandardSoilNum   2.686 4 .612  
StandardSoilNum(1) -20.068 23205.424 .000 1 .999 .000 

StandardSoilNum(2) -21.980 23205.424 .000 1 .999 .000 

StandardSoilNum(3) -20.132 23205.424 .000 1 .999 .000 

StandardSoilNum(4) -.179 25705.508 .000 1 1.000 .836 

BD(1) .509 1.467 .121 1 .728 1.664 

State2Num(1) .905 1.265 .511 1 .475 2.471 

Charnel(1) .859 1.651 .271 1 .603 2.362 

SexNum(1) -.179 .797 .050 1 .822 .836 

AgeRange4Num(1) .204 1.309 .024 1 .876 1.226 

Constant 18.744 23205.424 .000 1 .999 138151848.363 

a. Variable(s) entered on step 1: Anoxic, Phase2Num2, StandardSoilNum, BD, State2Num, Charnel, 
SexNum, AgeRange4Num. 
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11.2.2 Presence of Bacterial Attack Binary Logistic Regression Model 2 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 80.476 13 .000 

Block 80.476 13 .000 

Model 80.476 13 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 151.634
a
 .235 .436 

a. Estimation terminated at iteration number 20 because maximum 
iterations has been reached. Final solution cannot be found. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 9.012 7 .252 

 
Contingency Table for Hosmer and Lemeshow Test 

 Bacterial Tunnelling = Absent Bacterial Tunnelling = Present Total 

Observed Expected Observed Expected 

Step 1 

1 24 21.780 17 19.220 41 

2 5 8.534 32 28.466 37 

3 3 2.869 23 23.131 26 

4 5 3.418 34 35.582 39 

5 1 1.456 32 31.544 33 

6 0 .731 34 33.269 34 

7 1 .149 38 38.851 39 

8 0 .062 37 36.938 37 

9 0 .000 15 15.000 15 

 
Classification Table

a
 

 Observed Predicted 

 Bacterial Tunnelling Percentage Correct 

 Absent Present 

Step 1 
Bacterial Tunnelling 

Absent 14 25 35.9 

Present 3 259 98.9 

Overall Percentage   90.7 

a. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Anoxic(1) 3.443 .982 12.297 1 .000 31.275 

Phase2Num2(1) -2.437 .863 7.970 1 .005 .087 

StandardSoilNum   4.189 4 .381  
StandardSoilNum(1) 2.585 18579.315 .000 1 1.000 13.257 

StandardSoilNum(2) 1.128 18579.315 .000 1 1.000 3.089 

StandardSoilNum(3) 1.167 18579.315 .000 1 1.000 3.214 

StandardSoilNum(4) 22.314 17142.102 .000 1 .999 4908017957.024 

Cave(1) -2.722 18579.315 .000 1 1.000 .066 

BD(1) .686 1.044 .431 1 .512 1.985 

State2Num(1) .867 .833 1.083 1 .298 2.379 

Charnel(1) -.976 .879 1.235 1 .267 .377 

AgeRange4Num   24.150 3 .000  
AgeRange4Num(1) -4.193 .868 23.320 1 .000 .015 

AgeRange4Num(2) .310 1.203 .066 1 .797 1.363 

AgeRange4Num(3) .014 .724 .000 1 .984 1.015 

Constant .703 1.448 .236 1 .627 2.020 

a. Variable(s) entered on step 1: Anoxic, Phase2Num2, StandardSoilNum, Cave, BD, State2Num, 
Charnel, AgeRange4Num. 

 

 

11.2.3 Presence of Bacterial Attack Binary Logistic Regression Model 3 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 50.014 5 .000 

Block 50.014 5 .000 

Model 50.014 5 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 182.096
a
 .153 .285 

a. Estimation terminated at iteration number 6 because parameter 
estimates changed by less than .001. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 1.572 5 .905 
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Contingency Table for Hosmer and Lemeshow Test 

 Bacterial Tunnelling = Absent Bacterial Tunnelling = Present Total 

Observed Expected Observed Expected 

Step 1 

1 17 16.112 16 16.888 33 

2 4 3.263 13 13.737 17 

3 9 11.216 63 60.784 72 

4 4 4.320 26 25.680 30 

5 1 1.023 24 23.977 25 

6 4 2.836 105 106.164 109 

7 0 .229 15 14.771 15 

 
Classification Table

a
 

 Observed Predicted 

 Bacterial Tunnelling Percentage Correct 

 Absent Present 

Step 1 
Bacterial Tunnelling 

Absent 7 32 17.9 

Present 2 260 99.2 

Overall Percentage   88.7 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Anoxic(1) 1.915 .574 11.144 1 .001 6.785 

Phase2Num2(1) -1.933 .508 14.462 1 .000 .145 

AgeRange4Num   33.419 3 .000  
AgeRange4Num(1) -3.167 .566 31.276 1 .000 .042 

AgeRange4Num(2) .542 1.073 .255 1 .613 1.720 

AgeRange4Num(3) -.260 .605 .185 1 .667 .771 

Constant 1.708 .457 13.945 1 .000 5.517 

a. Variable(s) entered on step 1: Anoxic, Phase2Num2, AgeRange4Num. 

 

11.2.4 Presence of Bacterial Attack Paired Binary Logistic Regression Models 
 

11.2.4.1 Age Range & Anoxia 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 32.723 4 .000 

Block 32.723 4 .000 

Model 32.723 4 .000 
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Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 199.387
a
 .103 .192 

a. Estimation terminated at iteration number 6 because parameter 
estimates changed by less than .001. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 2.564 3 .464 

 
Contingency Table for Hosmer and Lemeshow Test 

 Bacterial Tunnelling = Absent Bacterial Tunnelling = Present Total 

Observed Expected Observed Expected 

Step 1 

1 15 15.000 16 16.000 31 

2 6 6.585 28 27.415 34 

3 5 2.877 30 32.123 35 

4 13 13.826 168 167.174 181 

5 0 .713 20 19.287 20 

 
Classification Table

a
 

 Observed Predicted 

 Bacterial Tunnelling Percentage Correct 

 Absent Present 

Step 1 
Bacterial Tunnelling 

Absent 2 37 5.1 

Present 1 261 99.6 

Overall Percentage   87.4 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Anoxic(1) 1.053 .463 5.181 1 .023 2.867 

AgeRange4Num   30.543 3 .000  
AgeRange4Num(1) -2.331 .444 27.602 1 .000 .097 

AgeRange4Num(2) .806 1.056 .582 1 .445 2.238 

AgeRange4Num(3) -.063 .588 .011 1 .915 .939 

Constant 1.439 .425 11.482 1 .001 4.218 

a. Variable(s) entered on step 1: Anoxic, AgeRange4Num. 

 
 

11.2.4.2 Age Range & Phase 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 
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Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 38.877 4 .000 

Block 38.877 4 .000 

Model 38.877 4 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 193.233
a
 .121 .225 

a. Estimation terminated at iteration number 6 because parameter 
estimates changed by less than .001. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 5.684 4 .224 

 
Contingency Table for Hosmer and Lemeshow Test 

 Bacterial Tunnelling = Absent Bacterial Tunnelling = Present Total 

Observed Expected Observed Expected 

Step 1 

1 15 15.000 16 16.000 31 

2 4 2.114 6 7.886 10 

3 11 12.369 63 61.631 74 

4 0 2.384 34 31.616 34 

5 8 6.631 126 127.369 134 

6 1 .502 17 17.498 18 

 
Classification Table

a
 

 Observed Predicted 

 Bacterial Tunnelling Percentage Correct 

 Absent Present 

Step 1 
Bacterial Tunnelling 

Absent 3 36 7.7 

Present 1 261 99.6 

Overall Percentage   87.7 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

AgeRange4Num   33.136 3 .000  
AgeRange4Num(1) -2.729 .493 30.652 1 .000 .065 

AgeRange4Num(2) .596 1.064 .314 1 .575 1.814 

AgeRange4Num(3) -.290 .596 .236 1 .627 .749 

Phase2Num2(1) -1.349 .420 10.320 1 .001 .259 

Constant 2.955 .358 68.160 1 .000 19.209 

a. Variable(s) entered on step 1: AgeRange4Num, Phase2Num2. 
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11.2.4.3 Anoxia & Phase 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 10.718 2 .005 

Block 10.718 2 .005 

Model 10.718 2 .005 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 221.393
a
 .035 .065 

a. Estimation terminated at iteration number 5 because 
parameter estimates changed by less than .001. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 .199 1 .656 

 
Contingency Table for Hosmer and Lemeshow Test 

 Bacterial Tunnelling = Absent Bacterial Tunnelling = Present Total 

Observed Expected Observed Expected 

Step 1 

1 9 9.000 31 31.000 40 

2 16 17.130 75 73.870 91 

3 14 12.870 156 157.130 170 

 

 
Classification Table

a
 

 Observed Predicted 

 Bacterial Tunnelling Percentage Correct 

 Absent Present 

Step 1 
Bacterial Tunnelling 

Absent 0 39 .0 

Present 0 262 100.0 

Overall Percentage   87.0 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Phase2Num2(1) -1.041 .382 7.437 1 .006 .353 

Anoxic(1) 1.201 .465 6.679 1 .010 3.323 

Constant 1.301 .382 11.595 1 .001 3.674 

a. Variable(s) entered on step 1: Phase2Num2, Anoxic. 
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11.3 WEDL TUNNELLING 
 

11.3.1 Wedl Tunnelling Binary Logistic Regression Model 1 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 117 38.9 

Missing Cases 184 61.1 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 15.611 11 .156 

Block 15.611 11 .156 

Model 15.611 11 .156 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 81.374
a
 .125 .222 

a. Estimation terminated at iteration number 20 because maximum 
iterations has been reached. Final solution cannot be found. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 3.503 8 .899 

 
Contingency Table for Hosmer and Lemeshow Test 

 Wedl = Absent Wedl = Present Total 

Observed Expected Observed Expected 

Step 1 

1 11 11.000 0 .000 11 

2 12 11.645 0 .355 12 

3 13 13.244 1 .756 14 

4 10 10.116 1 .884 11 

5 10 10.806 2 1.194 12 

6 13 11.237 0 1.763 13 

7 12 12.229 3 2.771 15 

8 9 9.442 3 2.558 12 

9 7 7.650 4 3.350 11 

10 3 2.631 3 3.369 6 

 
Classification Table

a
 

 Observed Predicted 

 Wedl Percentage Correct 

 Absent Present 

Step 1 
Wedl 

Absent 99 1 99.0 

Present 15 2 11.8 

Overall Percentage   86.3 

a. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Anoxic(1) 19.663 13253.478 .000 1 .999 346472470.200 

Phase2Num2(1) .348 .877 .157 1 .692 1.416 

StandardSoilNum   4.741 4 .315  
StandardSoilNum(1) -2.930 1.674 3.062 1 .080 .053 

StandardSoilNum(2) -3.054 1.754 3.034 1 .082 .047 

StandardSoilNum(3) -4.104 1.901 4.660 1 .031 .017 

StandardSoilNum(4) -2.104 1.469 2.051 1 .152 .122 

BD(1) 1.292 1.147 1.270 1 .260 3.641 

State2Num(1) .504 1.006 .250 1 .617 1.655 

Charnel(1) -.127 31134.721 .000 1 1.000 .881 

SexNum(1) .733 .624 1.379 1 .240 2.081 

AgeRange4Num(1) .380 .904 .177 1 .674 1.463 

Constant -20.483 28172.969 .000 1 .999 .000 

a. Variable(s) entered on step 1: Anoxic, Phase2Num2, StandardSoilNum, BD, State2Num, Charnel, 
SexNum, AgeRange4Num. 

 
 

11.3.2 Wedl Tunnelling Binary Logistic Regression Model 2 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 40.557 13 .000 

Block 40.557 13 .000 

Model 40.557 13 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 245.694
a
 .126 .205 

a. Estimation terminated at iteration number 6 because parameter 
estimates changed by less than .001. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 5.149 8 .742 
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Contingency Table for Hosmer and Lemeshow Test 

 Wedl = Absent Wedl = Present Total 

Observed Expected Observed Expected 

Step 1 

1 32 33.030 2 .970 34 

2 36 35.382 2 2.618 38 

3 32 29.807 1 3.193 33 

4 25 24.882 3 3.118 28 

5 26 25.423 5 5.577 31 

6 24 26.312 9 6.688 33 

7 19 18.196 4 4.804 23 

8 30 30.608 9 8.392 39 

9 19 17.891 8 9.109 27 

10 3 4.469 12 10.531 15 

 
Classification Table

a
 

 Observed Predicted 

 Wedl Percentage Correct 

 Absent Present 

Step 1 
Wedl 

Absent 240 6 97.6 

Present 42 13 23.6 

Overall Percentage   84.1 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Anoxic(1) .041 .505 .007 1 .935 1.042 

Phase2Num2(1) 1.190 .667 3.180 1 .075 3.287 

StandardSoilNum   3.564 4 .468  
StandardSoilNum(1) -.234 1.402 .028 1 .868 .792 

StandardSoilNum(2) .467 1.468 .101 1 .750 1.595 

StandardSoilNum(3) -1.563 1.661 .885 1 .347 .210 

StandardSoilNum(4) -.551 1.172 .221 1 .638 .576 

Cave(1) -2.482 1.228 4.089 1 .043 .084 

BD(1) .933 .851 1.201 1 .273 2.541 

State2Num(1) .840 .740 1.290 1 .256 2.317 

Charnel(1) -.914 .620 2.177 1 .140 .401 

AgeRange4Num   2.365 3 .500  
AgeRange4Num(1) -1.310 .860 2.320 1 .128 .270 

AgeRange4Num(2) .018 .625 .001 1 .977 1.018 

AgeRange4Num(3) -.048 .487 .010 1 .921 .953 

Constant -.392 1.192 .108 1 .742 .676 

a. Variable(s) entered on step 1: Anoxic, Phase2Num2, StandardSoilNum, Cave, BD, State2Num, 
Charnel, AgeRange4Num. 
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11.3.3 Wedl Tunnelling Binary Logistic Regression Model 3 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 28.995 3 .000 

Block 28.995 3 .000 

Model 28.995 3 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 257.255
a
 .092 .150 

a. Estimation terminated at iteration number 5 because parameter 
estimates changed by less than .001. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 .000 2 1.000 

 
Contingency Table for Hosmer and Lemeshow Test 

 Wedl = Absent Wedl = Present Total 

Observed Expected Observed Expected 

Step 1 

1 108 108.000 12 12.000 120 

2 60 60.000 11 11.000 71 

3 70 70.000 18 18.000 88 

4 8 8.000 14 14.000 22 

 
Classification Table

a
 

 Observed Predicted 

 Wedl Percentage Correct 

 Absent Present 

Step 1 
Wedl 

Absent 238 8 96.7 

Present 41 14 25.5 

Overall Percentage   83.7 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Phase2Num2(1) .501 .447 1.253 1 .263 1.650 

Cave(1) -2.256 .551 16.743 1 .000 .105 

Charnel(1) -.839 .403 4.335 1 .037 .432 

Constant .898 .611 2.157 1 .142 2.455 

a. Variable(s) entered on step 1: Phase2Num2, Cave, Charnel. 

 

 



  

594 
 

11.3.4 Wedl Tunnelling Binary Logistic Regression Model 4 
 

Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 27.757 2 .000 

Block 27.757 2 .000 

Model 27.757 2 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 258.494
a
 .088 .144 

a. Estimation terminated at iteration number 5 because parameter 
estimates changed by less than .001. 

 
Classification Table

a
 

 Observed Predicted 

 Wedl Percentage Correct 

 Absent Present 

Step 1 
Wedl 

Absent 238 8 96.7 

Present 41 14 25.5 

Overall Percentage   83.7 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Cave(1) -2.548 .496 26.408 1 .000 .078 

Charnel .630 .345 3.331 1 .068 1.878 

Constant .560 .443 1.594 1 .207 1.750 

a. Variable(s) entered on step 1: Cave, Charnel. 

 

11.3.5 Wedl Tunnelling Binary Logistic Regression Model 5 
 

Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 
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Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 24.507 1 .000 

Block 24.507 1 .000 

Model 24.507 1 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 261.744
a
 .078 .127 

a. Estimation terminated at iteration number 4 because parameter 
estimates changed by less than .001. 

 
Classification Table

a
 

 Observed Predicted 

 Wedl Percentage Correct 

 Absent Present 

Step 1 
Wedl 

Absent 238 8 96.7 

Present 41 14 25.5 

Overall Percentage   83.7 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Cave(1) -2.318 .474 23.885 1 .000 .098 

Constant .560 .443 1.594 1 .207 1.750 

a. Variable(s) entered on step 1: Cave. 

 

11.4 PERSISTENCE OF THE PERIOSTEAL SURFACE 
 

11.4.1 Persistence of the Periosteal Surface Binary Logistic Regression Model 1 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 117 38.9 

Missing Cases 184 61.1 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 39.811 11 .000 

Block 39.811 11 .000 

Model 39.811 11 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 41.815
a
 .288 .574 

a. Estimation terminated at iteration number 20 because maximum 
iterations has been reached. Final solution cannot be found. 
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Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 1.500 7 .982 

 
Contingency Table for Hosmer and Lemeshow Test 

 Periosteal Surface = Absent Periosteal Surface = Present Total 

Observed Expected Observed Expected 

Step 1 

1 8 8.000 5 5.000 13 

2 3 3.532 10 9.468 13 

3 2 1.046 10 10.954 12 

4 0 .423 13 12.577 13 

5 0 .000 16 16.000 16 

6 0 .000 13 13.000 13 

7 0 .000 9 9.000 9 

8 0 .000 11 11.000 11 

9 0 .000 17 17.000 17 

 
Classification Table

a
 

 Observed Predicted 

 Periosteal Surface Percentage Correct 

 Absent Present 

Step 1 
Periosteal Surface 

Absent 5 8 38.5 

Present 2 102 98.1 

Overall Percentage   91.5 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Anoxic(1) -18.241 13145.780 .000 1 .999 .000 

Phase2Num2(1) -.592 1.341 .195 1 .659 .553 

StandardSoilNum   7.223 4 .125  
StandardSoilNum(1) 3.113 1.984 2.461 1 .117 22.488 

StandardSoilNum(2) 20.911 6825.173 .000 1 .998 1206687848.545 

StandardSoilNum(3) 1.362 1.885 .522 1 .470 3.905 

StandardSoilNum(4) -.586 1.448 .164 1 .686 .556 

State2Num(1) -.142 1.220 .014 1 .907 .868 

BD(1) .083 10821.066 .000 1 1.000 1.086 

AgeRange4Num(1) -.078 1.373 .003 1 .955 .925 

Charnel(1) .528 30831.241 .000 1 1.000 1.696 

SexNum(1) -1.244 .995 1.563 1 .211 .288 

Constant 18.915 29914.039 .000 1 .999 163957108.335 

a. Variable(s) entered on step 1: Anoxic, Phase2Num2, StandardSoilNum, State2Num, BD, 
AgeRange4Num, Charnel, SexNum. 
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11.4.2 Persistence of the Periosteal Surface Binary Logistic Regression Model 2 
 

Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 55.128 13 .000 

Block 55.128 13 .000 

Model 55.128 13 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 148.791
a
 .167 .340 

a. Estimation terminated at iteration number 20 because maximum 
iterations has been reached. Final solution cannot be found. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 5.207 8 .735 

 
Contingency Table for Hosmer and Lemeshow Test 

 Periosteal Surface = Absent Periosteal Surface = Present Total 

Observed Expected Observed Expected 

Step 1 

1 15 15.000 16 16.000 31 

2 5 4.471 21 21.529 26 

3 1 2.587 19 17.413 20 

4 4 3.299 27 27.701 31 

5 6 3.700 34 36.300 40 

6 0 2.082 28 25.918 28 

7 1 .861 29 29.139 30 

8 0 .000 29 29.000 29 

9 0 .000 19 19.000 19 

10 0 .000 47 47.000 47 

 
Classification Table

a
 

 Observed Predicted 

 Periosteal Surface Percentage Correct 

 Absent Present 

Step 1 
Periosteal Surface 

Absent 5 27 15.6 

Present 4 265 98.5 

Overall Percentage   89.7 

a. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 
1

a
 

Anoxic(1) -18.965 6319.464 .000 1 .998 .000 

Phase2Num2(1) -.471 .782 .362 1 .547 .624 

StandardSoilNum   7.901 4 .095  
StandardSoilNum(1) 20.579 20048.799 .000 1 .999 865964409.337 

StandardSoilNum(2) 39.483 21024.452 .000 1 .999 140380738810896064.000 

StandardSoilNum(3) 19.907 20048.799 .000 1 .999 442016010.481 

StandardSoilNum(4) 18.548 20048.799 .000 1 .999 113625235.888 

State2Num(1) -.262 .643 .165 1 .684 .770 

Cave(1) -21.268 20048.799 .000 1 .999 .000 

BD(1) .082 10230.293 .000 1 1.000 1.085 

AgeRange4Num   .646 3 .886  
AgeRange4Num(1) -.251 .823 .093 1 .760 .778 

AgeRange4Num(2) -.463 .793 .341 1 .559 .629 

AgeRange4Num(3) .354 .721 .241 1 .624 1.424 

Charnel(1) .084 .798 .011 1 .916 1.087 

Constant 22.118 12024.748 .000 1 .999 4031970548.826 

a. Variable(s) entered on step 1: Anoxic, Phase2Num2, StandardSoilNum, State2Num, Cave, BD, 
AgeRange4Num, Charnel. 

 

11.4.3 Persistence of the Periosteal Surface Binary Logistic Regression Model 3 
 

Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 42.130 5 .000 

Block 42.130 5 .000 

Model 42.130 5 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 161.789
a
 .131 .265 

a. Estimation terminated at iteration number 20 because maximum 
iterations has been reached. Final solution cannot be found. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 .272 4 .992 
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Contingency Table for Hosmer and Lemeshow Test 

 Periosteal Surface = Absent Periosteal Surface = Present Total 

Observed Expected Observed Expected 

Step 1 

1 15 15.000 20 20.000 35 

2 4 4.000 20 20.000 24 

3 3 2.322 19 19.678 22 

4 9 9.678 128 127.322 137 

5 1 1.000 21 21.000 22 

6 0 .000 61 61.000 61 

 
Classification Table

a
 

 Observed Predicted 

 Periosteal Surface Percentage Correct 

 Absent Present 

Step 1 
Periosteal Surface 

Absent 0 32 .0 

Present 0 269 100.0 

Overall Percentage   89.4 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Phase2Num2(1) -.440 .641 .472 1 .492 .644 

StandardSoilNum   11.042 4 .026  
StandardSoilNum(1) -.696 1.192 .341 1 .559 .498 

StandardSoilNum(2) 17.962 4981.059 .000 1 .997 63183658.614 

StandardSoilNum(3) -1.391 1.187 1.373 1 .241 .249 

StandardSoilNum(4) -2.546 1.084 5.512 1 .019 .078 

Constant 3.273 1.212 7.292 1 .007 26.392 

a. Variable(s) entered on step 1: Phase2Num2, StandardSoilNum. 

 

11.4.4 Persistence of the Periosteal Surface Binary Logistic Regression Model 4 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 301 100.0 

Missing Cases 0 .0 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 12.991 1 .000 

Block 12.991 1 .000 

Model 12.991 1 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 190.927
a
 .042 .086 

a. Estimation terminated at iteration number 5 because parameter 
estimates changed by less than .001. 
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Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 .000 3 1.000 

 
Contingency Table for Hosmer and Lemeshow Test 

 Periosteal Surface = Absent Periosteal Surface = Present Total 

Observed Expected Observed Expected 

Step 1 

1 15 15.000 20 20.000 35 

2 4 4.000 20 20.000 24 

3 12 12.000 147 147.000 159 

4 1 1.000 17 17.000 18 

5 0 .000 65 65.000 65 

 
Classification Table

a
 

 Observed Predicted 

 Periosteal Surface Percentage Correct 

 Absent Present 

Step 1 
Periosteal Surface 

Absent 0 32 .0 

Present 0 269 100.0 

Overall Percentage   89.4 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

StandardSoilNum -.477 .130 13.406 1 .000 .621 

Constant 3.222 .392 67.384 1 .000 25.072 

a. Variable(s) entered on step 1: StandardSoilNum. 
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11.5 ORANGE STAINING  
 

11.5.1 Orange Staining Ordinal Regression Model 1 

 
Case Processing Summary 

 N Marginal Percentage 

Orange Staining 

None 48 41.0% 

Superficial 38 32.5% 

Fair 28 23.9% 

Extensive 3 2.6% 

Anoxic 
Absent 106 90.6% 
Present 11 9.4% 

Phase 
Later Prehistoric 40 34.2% 
Historical 77 65.8% 

Soil Type 

Clay 30 25.6% 
Gravel 55 47.0% 
Sand 16 13.7% 
Silt 13 11.1% 
Open 3 2.6% 

Cave 
Non-Cave 114 97.4% 
Cave 3 2.6% 

Black Death 
Non-Black Death 95 81.2% 
Black Death 22 18.8% 

State 
Articulated 99 84.6% 
Disarticulated 18 15.4% 

Charnel 
Non-Charnel 115 98.3% 
Charnel 2 1.7% 

Sex 
Male 62 53.0% 
Female 55 47.0% 

Age Range 
Juvenile 12 10.3% 
Adult 105 89.7% 

Valid 117 100.0% 

Missing 184  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 170.117    
Final 126.430 43.687 11 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 94.535 91 .379 
Deviance 85.674 91 .638 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .312 
Nagelkerke .345 
McFadden .160 

Link function: Logit. 

 

 

 

 

 

 



  

602 
 

Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[OrangeStain = 0] .192 1.959 .010 1 .922 -3.648 4.032 

[OrangeStain = 1] 1.932 1.969 .963 1 .326 -1.927 5.791 

[OrangeStain = 2] 4.713 2.026 5.411 1 .020 .742 8.685 

Location 

[Anoxic=0] .228 .758 .090 1 .764 -1.258 1.714 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] -.331 .568 .339 1 .560 -1.443 .782 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] -.713 1.738 .168 1 .682 -4.120 2.694 

[StandardSoilNum=2] -.502 1.744 .083 1 .773 -3.919 2.915 

[StandardSoilNum=3] -1.883 1.763 1.140 1 .286 -5.339 1.573 

[StandardSoilNum=4] -22.527 .000 . 1 . -22.527 -22.527 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] 0
a
 . . 0 . . . 

[Cave=1] 0
a
 . . 0 . . . 

[BD=0] .734 .522 1.980 1 .159 -.289 1.757 

[BD=1] 0
a
 . . 0 . . . 

[State2Num=1.00] 2.181 1.233 3.128 1 .077 -.236 4.598 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] -1.244 1.502 .686 1 .408 -4.187 1.699 

[Charnel=1] 0
a
 . . 0 . . . 

[SexNum=1] .496 .391 1.610 1 .205 -.270 1.262 

[SexNum=2] 0
a
 . . 0 . . . 

[AgeRange4Num=3.00] -.197 .682 .083 1 .773 -1.534 1.140 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 126.430    
General 93.191

b
 33.238

c
 22 .059 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of step-
halving. 
c. The Chi-Square statistic is computed based on the log-likelihood value of the last 
iteration of the general model. Validity of the test is uncertain. 
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11.5.2 Orange Staining Ordinal Regression Model 2 

 
Case Processing Summary 

 N Marginal Percentage 

Orange Staining 

None 128 48.1% 

Superficial 86 32.3% 

Fair 46 17.3% 

Extensive 6 2.3% 

Anoxic 
Absent 240 90.2% 
Present 26 9.8% 

Phase 
Later Prehistoric 93 35.0% 
Historical 173 65.0% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Cave 
Non-Cave 244 91.7% 
Cave 22 8.3% 

Black Death 
Non-Black Death 241 90.6% 
Black Death 25 9.4% 

State 
Articulated 203 76.3% 
Disarticulated 63 23.7% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Age Range 

Neonate 29 10.9% 
Child 20 7.5% 
Juvenile 24 9.0% 
Adult 193 72.6% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 280.166    
Final 209.940 70.226 13 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 248.115 116 .000 
Deviance 132.599 116 .139 

Link function: Logit. 

 

 
Pseudo R-Square 

Cox and Snell .232 
Nagelkerke .261 
McFadden .119 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[OrangeStain = 0] 1.912 .928 4.244 1 .039 .093 3.731 

[OrangeStain = 1] 3.720 .949 15.352 1 .000 1.859 5.581 

[OrangeStain = 2] 6.186 1.033 35.868 1 .000 4.161 8.210 

Location 

[Anoxic=0] -.911 .437 4.341 1 .037 -1.767 -.054 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] -.269 .459 .344 1 .557 -1.168 .630 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] 4.008 1.310 9.354 1 .002 1.440 6.577 

[StandardSoilNum=2] 4.796 1.338 12.851 1 .000 2.174 7.418 

[StandardSoilNum=3] 3.519 1.325 7.058 1 .008 .923 6.115 

[StandardSoilNum=4] 2.072 1.087 3.634 1 .057 -.058 4.201 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] -3.425 1.149 8.889 1 .003 -5.677 -1.174 

[Cave=1] 0
a
 . . 0 . . . 

[BD=0] .684 .482 2.012 1 .156 -.261 1.628 

[BD=1] 0
a
 . . 0 . . . 

[State2Num=1.00] .992 .582 2.907 1 .088 -.148 2.133 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] 1.235 .425 8.446 1 .004 .402 2.068 

[Charnel=1] 0
a
 . . 0 . . . 

[AgeRange4Num=1.00] .131 .451 .084 1 .771 -.752 1.014 

[AgeRange4Num=2.00] -.195 .484 .162 1 .687 -1.144 .754 

[AgeRange4Num=3.00] -.184 .465 .157 1 .692 -1.095 .727 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 209.940    
General .000

b
 209.940 26 .000 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete separation in 
the data. The maximum likelihood estimates do not exist. 
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11.5.3 Orange Staining Ordinal Regression Model 3 

 
Case Processing Summary 

 N Marginal Percentage 

Orange Staining 

None 128 48.1% 

Superficial 86 32.3% 

Fair 46 17.3% 

Extensive 6 2.3% 

Anoxic 
Absent 240 90.2% 
Present 26 9.8% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Cave 
Non-Cave 244 91.7% 
Cave 22 8.3% 

State 
Articulated 203 76.3% 
Disarticulated 63 23.7% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 165.300    
Final 97.676 67.624 8 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 65.825 31 .000 
Deviance 35.692 31 .257 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .224 
Nagelkerke .252 
McFadden .115 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[OrangeStain = 0] 1.497 .732 4.184 1 .041 .063 2.931 

[OrangeStain = 1] 3.288 .753 19.084 1 .000 1.813 4.763 

[OrangeStain = 2] 5.748 .849 45.888 1 .000 4.085 7.411 

Location 

[Anoxic=0] -.884 .431 4.214 1 .040 -1.728 -.040 

[Anoxic=1] 0
a
 . . 0 . . . 

[StandardSoilNum=1] 4.121 1.282 10.341 1 .001 1.609 6.633 

[StandardSoilNum=2] 4.644 1.293 12.888 1 .000 2.108 7.179 

[StandardSoilNum=3] 3.577 1.312 7.433 1 .006 1.005 6.148 

[StandardSoilNum=4] 2.037 1.076 3.586 1 .058 -.071 4.146 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] -3.515 1.136 9.580 1 .002 -5.741 -1.289 

[Cave=1] 0
a
 . . 0 . . . 

[State2Num=1.00] 1.195 .510 5.491 1 .019 .195 2.195 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] 1.212 .373 10.559 1 .001 .481 1.943 

[Charnel=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 97.676    
General .000

b
 97.676 16 .000 

The null hypothesis states that the location parameters (slope coefficients) are 
the same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete 
separation in the data. The maximum likelihood estimates do not exist. 

 

11.5.4 Orange Staining Ordinal Regression Model 4 

 
Case Processing Summary 

 N Marginal Percentage 

Orange Staining 

None 128 48.1% 

Superficial 86 32.3% 

Fair 46 17.3% 

Extensive 6 2.3% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 113.835    
Final 64.364 49.470 5 .000 

Link function: Logit. 
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Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 17.878 10 .057 
Deviance 15.295 10 .122 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .170 
Nagelkerke .191 
McFadden .084 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[OrangeStain = 0] 2.074 .652 10.105 1 .001 .795 3.352 

[OrangeStain = 1] 3.789 .681 30.997 1 .000 2.455 5.123 

[OrangeStain = 2] 6.232 .788 62.536 1 .000 4.687 7.776 

Location 

[StandardSoilNum=1] 1.769 .596 8.803 1 .003 .600 2.937 

[StandardSoilNum=2] 2.269 .603 14.158 1 .000 1.087 3.451 

[StandardSoilNum=3] .877 .682 1.657 1 .198 -.459 2.213 

[StandardSoilNum=4] -.370 .707 .274 1 .601 -1.756 1.016 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Charnel=0] .900 .350 6.629 1 .010 .215 1.586 

[Charnel=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 64.364    
General .000

b
 64.364 10 .000 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete separation in 
the data. The maximum likelihood estimates do not exist. 

 

11.5.5 Orange Staining Ordinal Regression Model 5 
 

Case Processing Summary 

 N Marginal Percentage 

Orange Staining 

None 128 48.1% 

Superficial 86 32.3% 

Fair 46 17.3% 

Extensive 6 2.3% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Valid 266 100.0% 

Missing 35  
Total 301  
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Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 96.918    
Final 54.215 42.703 4 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 15.153 8 .056 
Deviance 13.035 8 .111 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .148 
Nagelkerke .167 
McFadden .073 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[OrangeStain = 0] 1.176 .552 4.543 1 .033 .095 2.258 

[OrangeStain = 1] 2.852 .572 24.835 1 .000 1.731 3.974 

[OrangeStain = 2] 5.278 .694 57.907 1 .000 3.919 6.637 

Location 

[StandardSoilNum=1] 1.376 .578 5.665 1 .017 .243 2.508 

[StandardSoilNum=2] 2.248 .603 13.899 1 .000 1.066 3.429 

[StandardSoilNum=3] .874 .682 1.642 1 .200 -.463 2.210 

[StandardSoilNum=4] -.369 .707 .272 1 .602 -1.755 1.018 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 54.215    
General .000

b
 54.215 8 .000 

The null hypothesis states that the location parameters (slope coefficients) are 
the same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete 
separation in the data. The maximum likelihood estimates do not exist. 
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11.6 BROWN STAINING  
 

11.6.1 Brown Staining Ordinal Regression Model 1 

 
Case Processing Summary 

 N Marginal Percentage 

Brown Staining 

None 105 89.7% 

Superifical 6 5.1% 

Fair 6 5.1% 

Anoxic 
Absent 106 90.6% 
Present 11 9.4% 

Phase 
Later Prehistoric 40 34.2% 
Historical 77 65.8% 

Soil Type 

Clay 30 25.6% 
Gravel 55 47.0% 
Sand 16 13.7% 
Silt 13 11.1% 
Open 3 2.6% 

Cave 
Non-Cave 114 97.4% 
Cave 3 2.6% 

State 
Articulated 99 84.6% 
Disarticulated 18 15.4% 

Charnel 
Non-Charnel 115 98.3% 
Charnel 2 1.7% 

Sex 
Male 62 53.0% 
Female 55 47.0% 

Age Range 
Juvenile 12 10.3% 
Adult 105 89.7% 

Black Death 
Non-Black Death 95 81.2% 
Black Death 22 18.8% 

Valid 117 100.0% 

Missing 184  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 68.425    
Final 54.226 14.199 11 .222 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 53.185 57 .619 
Deviance 41.683 57 .936 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .114 
Nagelkerke .207 
McFadden .151 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 
[BrownStain = 0] 32.343 3358.687 .000 1 .992 -6550.562 6615.248 

[BrownStain = 1] 33.202 3358.687 .000 1 .992 -6549.703 6616.107 

Location 

[Anoxic=0] -.626 1.499 .175 1 .676 -3.564 2.311 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] 2.463 .918 7.203 1 .007 .664 4.262 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] 15.161 3358.686 .000 1 .996 -6567.744 6598.065 

[StandardSoilNum=2] 16.891 3358.686 .000 1 .996 -6566.013 6599.795 

[StandardSoilNum=3] 17.654 3358.686 .000 1 .996 -6565.250 6600.558 

[StandardSoilNum=4] 14.912 3358.686 .000 1 .996 -6567.992 6597.817 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] 0
a
 . . 0 . . . 

[Cave=1] 0
a
 . . 0 . . . 

[State2Num=1.00] .455 1.129 .163 1 .687 -1.757 2.667 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] 13.513 .000 . 1 . 13.513 13.513 

[Charnel=1] 0
a
 . . 0 . . . 

[SexNum=1] -.523 .670 .610 1 .435 -1.836 .789 

[SexNum=2] 0
a
 . . 0 . . . 

[AgeRange4Num=3.00] -.440 1.209 .133 1 .716 -2.810 1.929 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

[BD=0] -.344 1.032 .111 1 .739 -2.367 1.680 

[BD=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 54.226    
General 48.231

b
 5.995

c
 11 .874 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of 
step-halving. 
c. The Chi-Square statistic is computed based on the log-likelihood value of the 
last iteration of the general model. Validity of the test is uncertain. 
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11.6.2 Brown Staining Ordinal Regression Model 2 

 
Case Processing Summary 

 N Marginal Percentage 

Brown Staining 

None 243 91.4% 

Superifical 15 5.6% 

Fair 7 2.6% 

Extensive 1 0.4% 

Anoxic 
Absent 240 90.2% 
Present 26 9.8% 

Phase 
Later Prehistoric 93 35.0% 
Historical 173 65.0% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Cave 
Non-Cave 244 91.7% 
Cave 22 8.3% 

State 
Articulated 203 76.3% 
Disarticulated 63 23.7% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Age Range 

Neonate 29 10.9% 
Child 20 7.5% 
Juvenile 24 9.0% 
Adult 193 72.6% 

Black Death 
Non-Black Death 241 90.6% 
Black Death 25 9.4% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 106.668    
Final 85.072 21.595 13 .062 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 77.594 116 .998 
Deviance 57.862 116 1.000 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .078 
Nagelkerke .152 
McFadden .112 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[BrownStain = 0] 17.462 1469.435 .000 1 .991 -2862.578 2897.503 

[BrownStain = 1] 18.644 1469.435 .000 1 .990 -2861.396 2898.684 

[BrownStain = 2] 20.818 1469.436 .000 1 .989 -2859.223 2900.859 

Location 

[Anoxic=0] -.134 .745 .032 1 .858 -1.594 1.327 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] 2.153 .773 7.758 1 .005 .638 3.667 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] .701 1469.435 .000 1 1.000 -2879.338 2880.741 

[StandardSoilNum=2] 1.891 1469.435 .000 1 .999 -2878.149 2881.931 

[StandardSoilNum=3] 2.245 1469.435 .000 1 .999 -2877.794 2882.285 

[StandardSoilNum=4] .258 1469.435 .000 1 1.000 -2879.782 2880.297 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] 14.478 .000 . 1 . 14.478 14.478 

[Cave=1] 0
a
 . . 0 . . . 

[State2Num=1.00] .661 .755 .768 1 .381 -.818 2.140 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] -1.909 .898 4.519 1 .034 -3.669 -.149 

[Charnel=1] 0
a
 . . 0 . . . 

[AgeRange4Num=1.00] .667 .948 .495 1 .482 -1.191 2.524 

[AgeRange4Num=2.00] -14.563 1162.260 .000 1 .990 -2292.550 2263.424 

[AgeRange4Num=3.00] .104 .696 .022 1 .882 -1.260 1.467 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

[BD=0] -.229 .990 .054 1 .817 -2.169 1.711 

[BD=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 85.072    
General 30.688

b
 54.384

c
 26 .001 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of 
step-halving. 
c. The Chi-Square statistic is computed based on the log-likelihood value of the 
last iteration of the general model. Validity of the test is uncertain. 
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11.6.3 Brown Staining Ordinal Regression Model 3 

 
Case Processing Summary 

 N Marginal Percentage 

Brown Staining 

None 243 91.4% 

Superifical 15 5.6% 

Fair 7 2.6% 

Extensive 1 0.4% 

Phase 
Later Prehistoric 93 35.0% 
Historical 173 65.0% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 30.854    
Final 27.015 3.839 2 .147 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 6.707 4 .152 
Deviance 8.783 4 .067 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .014 
Nagelkerke .028 
McFadden .020 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[BrownStain = 0] 1.935 .413 21.951 1 .000 1.126 2.745 

[BrownStain = 1] 3.060 .500 37.454 1 .000 2.080 4.041 

[BrownStain = 2] 5.167 1.060 23.771 1 .000 3.090 7.244 

Location 

[Phase2Num2=1] .840 .533 2.485 1 .115 -.204 1.885 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[Charnel=0] -1.002 .587 2.911 1 .088 -2.152 .149 

[Charnel=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 27.015    
General 18.232 8.783 4 .067 

The null hypothesis states that the location parameters (slope coefficients) are 
the same across response categories. 
a. Link function: Logit. 
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11.7 YELLOW STAINING  
 

11.7.1 Yellow Staining Ordinal Regression Model 1 
 

Case Processing Summary 

 N Marginal Percentage 

Yellow Staining 

None 110 94.0% 

Superifical 5 4.3% 

Fair 2 1.7% 

Anoxic 
Absent 106 90.6% 
Present 11 9.4% 

Phase 
Later Prehistoric 40 34.2% 
Historical 77 65.8% 

Soil Type 

Clay 30 25.6% 
Gravel 55 47.0% 
Sand 16 13.7% 
Silt 13 11.1% 
Open 3 2.6% 

Cave 
Non-Cave 114 97.4% 
Cave 3 2.6% 

Black Death 
Non-Black Death 95 81.2% 
Black Death 22 18.8% 

State 
Articulated 99 84.6% 
Disarticulated 18 15.4% 

Charnel 
Non-Charnel 115 98.3% 
Charnel 2 1.7% 

Sex 
Male 62 53.0% 
Female 55 47.0% 

Age Range 
Juvenile 12 10.3% 
Adult 105 89.7% 

Valid 117 100.0% 

Missing 184  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 40.778    
Final 24.938 15.840 11 .147 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 23.582 57 1.000 
Deviance 16.918 57 1.000 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .127 
Nagelkerke .310 
McFadden .258 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 
[YelloStain = 0] -1.717 15719.166 .000 1 1.000 -30810.716 30807.282 

[YelloStain = 1] -.290 15719.166 .000 1 1.000 -30809.289 30808.709 

Location 

[Anoxic=0] -1.863 1.617 1.327 1 .249 -5.033 1.307 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] .869 1.594 .297 1 .585 -2.255 3.994 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] 1.337 15100.039 .000 1 1.000 -29594.196 29596.869 

[StandardSoilNum=2] -14.455 15719.166 .000 1 .999 -30823.453 30794.544 

[StandardSoilNum=3] 2.603 15100.039 .000 1 1.000 -29592.930 29598.135 

[StandardSoilNum=4] -14.049 16370.423 .000 1 .999 -32099.488 32071.390 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] 0
a
 . . 0 . . . 

[Cave=1] 0
a
 . . 0 . . . 

[BD=0] -18.825 4368.181 .000 1 .997 -8580.302 8542.653 

[BD=1] 0
a
 . . 0 . . . 

[State2Num=1.00] 15.332 .000 . 1 . 15.332 15.332 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] -2.242 1.990 1.269 1 .260 -6.143 1.658 

[Charnel=1] 0
a
 . . 0 . . . 

[SexNum=1] .221 .903 .060 1 .806 -1.549 1.992 

[SexNum=2] 0
a
 . . 0 . . . 

[AgeRange4Num=3.00] -16.447 6080.819 .000 1 .998 -11934.633 11901.740 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 24.938    
General .000

b
 24.938 11 .009 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete separation 
in the data. The maximum likelihood estimates do not exist. 
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11.7.2 Yellow Staining Ordinal Regression Model 2 

 
Case Processing Summary 

 N Marginal Percentage 

Yellow Staining 

None 251 94.4% 

Superifical 12 4.5% 

Fair 2 0.8% 

Extensive 1 0.4% 

Anoxic 
Absent 240 90.2% 
Present 26 9.8% 

Phase 
Later Prehistoric 93 35.0% 
Historical 173 65.0% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Cave 
Non-Cave 244 91.7% 
Cave 22 8.3% 

Black Death 
Non-Black Death 241 90.6% 
Black Death 25 9.4% 

State 
Articulated 203 76.3% 
Disarticulated 63 23.7% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Age Range 

Neonate 29 10.9% 
Child 20 7.5% 
Juvenile 24 9.0% 
Adult 193 72.6% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 69.011    
Final 54.411 14.600 13 .333 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 53.871 116 1.000 
Deviance 31.210 116 1.000 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .053 
Nagelkerke .135 
McFadden .109 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[YelloStain = 0] -14.658 1182.557 .000 1 .990 -2332.428 2303.112 

[YelloStain = 1] -12.948 1182.558 .000 1 .991 -2330.719 2304.822 

[YelloStain = 2] -11.832 1182.558 .000 1 .992 -2329.603 2305.938 

Location 

[Anoxic=0] -.391 .919 .181 1 .670 -2.192 1.409 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] .052 1.316 .002 1 .968 -2.527 2.632 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] -14.275 1.484 92.528 1 .000 -17.184 -11.367 

[StandardSoilNum=2] -28.403 1182.557 .001 1 .981 -2346.172 2289.366 

[StandardSoilNum=3] -13.016 1.358 91.798 1 .000 -15.678 -10.353 

[StandardSoilNum=4] -14.675 1.458 101.347 1 .000 -17.532 -11.818 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] 14.369 .000 . 1 . 14.369 14.369 

[Cave=1] 0
a
 . . 0 . . . 

[BD=0] -16.168 1182.556 .000 1 .989 -2333.935 2301.599 

[BD=1] 0
a
 . . 0 . . . 

[State2Num=1.00] -.835 1.268 .434 1 .510 -3.320 1.649 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] -1.014 1.101 .848 1 .357 -3.172 1.145 

[Charnel=1] 0
a
 . . 0 . . . 

[AgeRange4Num=1.00] .058 1.214 .002 1 .962 -2.321 2.436 

[AgeRange4Num=2.00] -14.197 1455.002 .000 1 .992 -2865.948 2837.555 

[AgeRange4Num=3.00] .191 .895 .046 1 .831 -1.563 1.945 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 54.411    
General .000

b
 54.411 26 .001 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete 
separation in the data. The maximum likelihood estimates do not exist. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

618 
 

11.7.3 Yellow Staining Ordinal Regression Model 3 
 

Case Processing Summary 

 N Marginal Percentage 

Yellow Staining 

None 251 94.4% 

Superifical 12 4.5% 

Fair 2 0.8% 

Extensive 1 0.4% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 31.241    
Final 28.942 2.300 4 .681 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 21.420 8 .006 
Deviance 13.396 8 .099 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .009 
Nagelkerke .022 
McFadden .017 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[YelloStain = 0] 2.845 1.034 7.569 1 .006 .818 4.871 

[YelloStain = 1] 4.511 1.157 15.202 1 .000 2.243 6.779 

[YelloStain = 2] 5.616 1.417 15.721 1 .000 2.840 8.393 

Location 

[StandardSoilNum=1] -.144 1.116 .017 1 .897 -2.332 2.044 

[StandardSoilNum=2] .138 1.154 .014 1 .905 -2.124 2.399 

[StandardSoilNum=3] .869 1.207 .518 1 .471 -1.497 3.236 

[StandardSoilNum=4] -.654 1.439 .206 1 .650 -3.475 2.167 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 
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Test of Parallel Lines
a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 28.942    
General .000

b
 28.942 8 .000 

The null hypothesis states that the location parameters (slope coefficients) are 
the same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete 
separation in the data. The maximum likelihood estimates do not exist. 

 

11.8 ORANGE INCLUSIONS 
 

11.8.1 Orange Inclusions Ordinal Regression Model 1 
 

Case Processing Summary 

 N Marginal Percentage 

Orange Inclusions 

None 20 17.1% 

Infrequent 50 42.7% 

Frequent 46 39.3% 

Pervasive 1 0.9% 

Anoxic 
Absent 106 90.6% 
Present 11 9.4% 

Phase 
Later Prehistoric 40 34.2% 
Historical 77 65.8% 

Soil Type 

Clay 30 25.6% 
Gravel 55 47.0% 
Sand 16 13.7% 
Silt 13 11.1% 
Open 3 2.6% 

Cave 
Non-Cave 114 97.4% 
Cave 3 2.6% 

Black Death 
Non-Black Death 95 81.2% 
Black Death 22 18.8% 

State 
Articulated 99 84.6% 
Disarticulated 18 15.4% 

Charnel 
Non-Charnel 115 98.3% 
Charnel 2 1.7% 

Sex 
Male 62 53.0% 
Female 55 47.0% 

Age Range 
Juvenile 12 10.3% 
Adult 105 89.7% 

Valid 117 100.0% 

Missing 184  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 150.909    
Final 106.964 43.946 11 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 135.404 91 .002 
Deviance 66.968 91 .972 

Link function: Logit. 
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Pseudo R-Square 

Cox and Snell .313 
Nagelkerke .355 
McFadden .175 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[OrangeInc = 0] -4.276 2.377 3.236 1 .072 -8.934 .383 

[OrangeInc = 1] -1.621 2.362 .471 1 .492 -6.250 3.007 

[OrangeInc = 2] 3.118 2.368 1.734 1 .188 -1.523 7.759 

Location 

[Anoxic=0] -.464 .813 .325 1 .568 -2.057 1.129 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] .419 .580 .522 1 .470 -.718 1.557 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] 1.032 1.420 .529 1 .467 -1.750 3.815 

[StandardSoilNum=2] -.002 1.437 .000 1 .999 -2.819 2.815 

[StandardSoilNum=3] .820 1.416 .336 1 .562 -1.955 3.595 

[StandardSoilNum=4] -3.308 1.437 5.296 1 .021 -6.125 -.491 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] 0
a
 . . 0 . . . 

[Cave=1] 0
a
 . . 0 . . . 

[BD=0] -1.010 .550 3.367 1 .066 -2.088 .069 

[BD=1] 0
a
 . . 0 . . . 

[State2Num=1.00] .737 .828 .794 1 .373 -.885 2.360 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] -1.898 2.058 .851 1 .356 -5.932 2.135 

[Charnel=1] 0
a
 . . 0 . . . 

[SexNum=1] -.023 .387 .004 1 .952 -.782 .735 

[SexNum=2] 0
a
 . . 0 . . . 

[AgeRange4Num=3.00] .545 .656 .689 1 .406 -.741 1.831 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 106.964    
General .000

b
 106.964 22 .000 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete 
separation in the data. The maximum likelihood estimates do not exist. 
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11.8.2 Orange Inclusions Ordinal Regression Model 2 
 

 
Case Processing Summary 

 N Marginal Percentage 

Orange Inclusions 

None 46 17.3% 

Infrequent 124 46.6% 

Frequent 93 35.0% 

Pervasive 3 1.1% 

Anoxic 
Absent 240 90.2% 
Present 26 9.8% 

Phase 
Later Prehistoric 93 35.0% 
Historical 173 65.0% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Cave 
Non-Cave 244 91.7% 
Cave 22 8.3% 

Black Death 
Non-Black Death 241 90.6% 
Black Death 25 9.4% 

State 
Articulated 203 76.3% 
Disarticulated 63 23.7% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Age Range 

Neonate 29 10.9% 
Child 20 7.5% 
Juvenile 24 9.0% 
Adult 193 72.6% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 249.783    
Final 192.184 57.598 13 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 175.125 116 .000 
Deviance 117.545 116 .442 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .195 
Nagelkerke .220 
McFadden .101 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[OrangeInc = 0] -.768 .895 .736 1 .391 -2.522 .986 

[OrangeInc = 1] 1.759 .899 3.826 1 .050 -.003 3.522 

[OrangeInc = 2] 5.917 1.079 30.059 1 .000 3.802 8.032 

Location 

[Anoxic=0] -.652 .450 2.098 1 .147 -1.535 .230 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] .392 .466 .706 1 .401 -.522 1.306 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] 2.890 1.218 5.631 1 .018 .503 5.277 

[StandardSoilNum=2] 2.100 1.240 2.865 1 .091 -.332 4.531 

[StandardSoilNum=3] 2.980 1.225 5.915 1 .015 .578 5.382 

[StandardSoilNum=4] .731 1.076 .462 1 .497 -1.378 2.840 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] -2.147 1.058 4.120 1 .042 -4.221 -.074 

[Cave=1] 0
a
 . . 0 . . . 

[BD=0] -.790 .501 2.491 1 .115 -1.772 .191 

[BD=1] 0
a
 . . 0 . . . 

[State2Num=1.00] 1.042 .502 4.314 1 .038 .059 2.026 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] 1.209 .429 7.938 1 .005 .368 2.051 

[Charnel=1] 0
a
 . . 0 . . . 

[AgeRange4Num=1.00] .984 .475 4.290 1 .038 .053 1.916 

[AgeRange4Num=2.00] .141 .474 .089 1 .766 -.787 1.069 

[AgeRange4Num=3.00] .570 .432 1.744 1 .187 -.276 1.416 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 192.184    
General 122.290

b
 69.894

c
 26 .000 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of 
step-halving. 
c. The Chi-Square statistic is computed based on the log-likelihood value of the 
last iteration of the general model. Validity of the test is uncertain. 
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11.8.3 Orange Inclusions Ordinal Regression Model 3 
 

 
Case Processing Summary 

 N Marginal Percentage 

Orange Inclusions 

None 46 17.3% 

Infrequent 124 46.6% 

Frequent 93 35.0% 

Pervasive 3 1.1% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Cave 
Non-Cave 244 91.7% 
Cave 22 8.3% 

State 
Articulated 203 76.3% 
Disarticulated 63 23.7% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Age Range 

Neonate 29 10.9% 
Child 20 7.5% 
Juvenile 24 9.0% 
Adult 193 72.6% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 196.735    
Final 144.060 52.676 10 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 82.388 77 .316 
Deviance 74.130 77 .572 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .180 
Nagelkerke .203 
McFadden .092 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 

[OrangeInc = 0] .264 .588 .202 1 .653 -.888 1.416 

[OrangeInc = 1] 2.754 .616 20.006 1 .000 1.547 3.960 

[OrangeInc = 2] 6.878 .865 63.291 1 .000 5.183 8.572 

Location 

[StandardSoilNum=1] 2.855 1.208 5.592 1 .018 .489 5.222 

[StandardSoilNum=2] 2.149 1.200 3.208 1 .073 -.202 4.500 

[StandardSoilNum=3] 2.904 1.217 5.693 1 .017 .519 5.290 

[StandardSoilNum=4] .775 1.072 .522 1 .470 -1.326 2.876 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] -2.145 1.053 4.148 1 .042 -4.210 -.081 

[Cave=1] 0
a
 . . 0 . . . 

[State2Num=1.00] .890 .446 3.983 1 .046 .016 1.765 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] 1.205 .390 9.559 1 .002 .441 1.969 

[Charnel=1] 0
a
 . . 0 . . . 

[AgeRange4Num=1.00] .794 .453 3.078 1 .079 -.093 1.682 

[AgeRange4Num=2.00] -.030 .464 .004 1 .948 -.939 .879 

[AgeRange4Num=3.00] .487 .426 1.312 1 .252 -.347 1.322 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 144.060    
General 113.053

b
 31.007

c
 20 .055 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of 
step-halving. 
c. The Chi-Square statistic is computed based on the log-likelihood value of the 
last iteration of the general model. Validity of the test is uncertain. 
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11.8.4 Orange Inclusions Ordinal Regression Model 4 
 

 
Case Processing Summary 

 N Marginal Percentage 

Orange Inclusions 

None 46 17.3% 

Infrequent 124 46.6% 

Frequent 93 35.0% 

Pervasive 3 1.1% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Cave 
Non-Cave 244 91.7% 
Cave 22 8.3% 

State 
Articulated 203 76.3% 
Disarticulated 63 23.7% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 142.322    
Final 94.262 48.060 7 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 41.417 23 .011 
Deviance 37.260 23 .031 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .165 
Nagelkerke .187 
McFadden .084 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[OrangeInc = 0] .307 .576 .284 1 .594 -.822 1.436 

[OrangeInc = 1] 2.773 .604 21.067 1 .000 1.589 3.957 

[OrangeInc = 2] 6.846 .854 64.269 1 .000 5.172 8.520 

Location 

[StandardSoilNum=1] 3.018 1.184 6.496 1 .011 .697 5.338 

[StandardSoilNum=2] 2.113 1.190 3.151 1 .076 -.220 4.446 

[StandardSoilNum=3] 2.968 1.207 6.048 1 .014 .602 5.333 

[StandardSoilNum=4] .781 1.059 .545 1 .461 -1.294 2.856 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] -2.257 1.035 4.758 1 .029 -4.286 -.229 

[Cave=1] 0
a
 . . 0 . . . 

[State2Num=1.00] .952 .437 4.749 1 .029 .096 1.808 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] 1.372 .362 14.341 1 .000 .662 2.083 

[Charnel=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 94.262    
General 82.086

b
 12.176

c
 14 .592 

The null hypothesis states that the location parameters (slope coefficients) are 
the same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of 
step-halving. 
c. The Chi-Square statistic is computed based on the log-likelihood value of the 
last iteration of the general model. Validity of the test is uncertain. 

 

11.8.5 Orange Inclusions Ordinal Regression Model 5 

 
Case Processing Summary 

 N Marginal Percentage 

Orange Inclusions 

None 46 17.3% 

Infrequent 124 46.6% 

Frequent 93 35.0% 

Pervasive 3 1.1% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 104.592    
Final 65.236 39.356 5 .000 

Link function: Logit. 
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Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 17.898 10 .057 
Deviance 17.432 10 .065 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .138 
Nagelkerke .156 
McFadden .069 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[OrangeInc = 0] .204 .571 .128 1 .721 -.915 1.323 

[OrangeInc = 1] 2.614 .597 19.182 1 .000 1.444 3.783 

[OrangeInc = 2] 6.645 .844 62.052 1 .000 4.991 8.298 

Location 

[StandardSoilNum=1] 1.578 .515 9.400 1 .002 .569 2.586 

[StandardSoilNum=2] .773 .512 2.282 1 .131 -.230 1.777 

[StandardSoilNum=3] 1.256 .602 4.362 1 .037 .077 2.435 

[StandardSoilNum=4] -.895 .558 2.575 1 .109 -1.989 .198 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Charnel=0] 1.245 .356 12.235 1 .000 .547 1.942 

[Charnel=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 65.236    
General 47.804 17.432 10 .065 

The null hypothesis states that the location parameters (slope coefficients) are 
the same across response categories. 
a. Link function: Logit. 

 

11.8.6 Orange Inclusions Ordinal Regression Model 6 
 

 
Case Processing Summary 

 N Marginal Percentage 

Orange Inclusions 

None 46 17.3% 

Infrequent 124 46.6% 

Frequent 93 35.0% 

Pervasive 3 1.1% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Valid 266 100.0% 

Missing 35  
Total 301  
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Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 28.310    
Final 25.959 2.351 1 .125 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 2.776 2 .250 
Deviance 2.575 2 .276 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .009 
Nagelkerke .010 
McFadden .004 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 

[OrangeInc = 0] -1.230 .275 20.014 1 .000 -1.769 -.691 

[OrangeInc = 1] .923 .269 11.778 1 .001 .396 1.450 

[OrangeInc = 2] 4.838 .630 58.926 1 .000 3.603 6.073 

Location 
[Charnel=0] .437 .290 2.274 1 .132 -.131 1.004 

[Charnel=1] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log 
Likelihood 

Chi-Square df Sig. 

Null Hypothesis 25.959    
General 23.384 2.575 2 .276 

The null hypothesis states that the location parameters (slope coefficients) are 
the same across response categories. 
a. Link function: Logit. 
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11.9 GREY INCLUSIONS 
 

11.9.1 Grey Inclusions Ordinal Regression Model 1 
 

 
Case Processing Summary 

 N Marginal Percentage 

Grey Inclusions 
None 105 89.7% 

Infrequent 12 10.3% 

Anoxic 
Absent 106 90.6% 
Present 11 9.4% 

Phase 
Later Prehistoric 40 34.2% 
Historical 77 65.8% 

Soil Type 

Clay 30 25.6% 
Gravel 55 47.0% 
Sand 16 13.7% 
Silt 13 11.1% 
Open 3 2.6% 

Cave 
Non-Cave 114 97.4% 
Cave 3 2.6% 

Black Death 
Non-Black Death 95 81.2% 
Black Death 22 18.8% 

State 
Articulated 99 84.6% 
Disarticulated 18 15.4% 

Charnel 
Non-Charnel 115 98.3% 
Charnel 2 1.7% 

Sex 
Male 62 53.0% 
Female 55 47.0% 

Age Range 
Juvenile 12 10.3% 
Adult 105 89.7% 

Valid 117 100.0% 

Missing 184  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 74.160    
Final .000 74.160 11 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson .
a
 23 . 

Deviance .
a
 23 . 

Link function: Logit. 
a. Floating point overflow occurred while computing 
this statistic. Its value is therefore set to system 
missing. 

 

 
Pseudo R-Square 

Cox and Snell .469 
Nagelkerke .970 
McFadden .958 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold [GreyInc = 0] 4.439 8.499 .273 1 .601 -12.218 21.095 

Location 

[Anoxic=0] .062 3.513 .000 1 .986 -6.825 6.948 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] .496 2.380 .043 1 .835 -4.169 5.160 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] -2.646 9.408 .079 1 .778 -21.086 15.793 

[StandardSoilNum=2] -2.499 9.287 .072 1 .788 -20.701 15.702 

[StandardSoilNum=3] -2.333 9.015 .067 1 .796 -20.001 15.336 

[StandardSoilNum=4] -51.969 .000 . 1 . -51.969 -51.969 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] 0
a
 . . 0 . . . 

[Cave=1] 0
a
 . . 0 . . . 

[BD=0] -.085 2.384 .001 1 .972 -4.758 4.588 

[BD=1] 0
a
 . . 0 . . . 

[State2Num=1.00] 2.469 7.529 .108 1 .743 -12.288 17.226 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] -.355 6.817 .003 1 .958 -13.715 13.006 

[Charnel=1] 0
a
 . . 0 . . . 

[SexNum=1] .714 1.880 .144 1 .704 -2.972 4.399 

[SexNum=2] 0
a
 . . 0 . . . 

[AgeRange4Num=3.00] .999 2.395 .174 1 .677 -3.695 5.693 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis .000    
General .000

b
 .000 0 . 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete 
separation in the data. The maximum likelihood estimates do not exist. 
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11.9.2 Grey Inclusions Ordinal Regression Model 2 

 

 
Case Processing Summary 

 N Marginal Percentage 

Grey Inclusions 

None 246 92.5% 

Infrequent 19 7.1% 

Frequent 1 0.4% 

Anoxic 
Absent 240 90.2% 
Present 26 9.8% 

Phase 
Later Prehistoric 93 35.0% 
Historical 173 65.0% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Cave 
Non-Cave 244 91.7% 
Cave 22 8.3% 

Black Death 
Non-Black Death 241 90.6% 
Black Death 25 9.4% 

State 
Articulated 203 76.3% 
Disarticulated 63 23.7% 

Charnel 
Non-Charnel 213 80.1% 
Charnel 53 19.9% 

Age Range 

Neonate 29 10.9% 
Child 20 7.5% 
Juvenile 24 9.0% 
Adult 193 72.6% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 101.727    
Final 23.993 77.734 13 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 47.297 73 .992 
Deviance 12.212 73 1.000 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .253 
Nagelkerke .588 
McFadden .519 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 
[GreyInc = 0] 2.324 2987.899 .000 1 .999 -5853.850 5858.499 

[GreyInc = 1] 6.188 2987.899 .000 1 .998 -5849.987 5862.364 

Location 

[Anoxic=0] 14.716 1542.928 .000 1 .992 -3009.366 3038.799 

[Anoxic=1] 0
a
 . . 0 . . . 

[Phase2Num2=1] .086 1617.017 .000 1 1.000 -3169.210 3169.381 

[Phase2Num2=2] 0
a
 . . 0 . . . 

[StandardSoilNum=1] -34.146 1414.385 .001 1 .981 -2806.289 2737.998 

[StandardSoilNum=2] -34.778 2018.357 .000 1 .986 -3990.685 3921.128 

[StandardSoilNum=3] -34.185 1899.835 .000 1 .986 -3757.793 3689.423 

[StandardSoilNum=4] -15.703 1.090 207.440 1 .000 -17.839 -13.566 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[Cave=0] 18.147 .000 . 1 . 18.147 18.147 

[Cave=1] 0
a
 . . 0 . . . 

[BD=0] -.273 2185.908 .000 1 1.000 -4284.574 4284.028 

[BD=1] 0
a
 . . 0 . . . 

[State2Num=1.00] .969 .870 1.243 1 .265 -.735 2.674 

[State2Num=2.00] 0
a
 . . 0 . . . 

[Charnel=0] -14.865 1076.405 .000 1 .989 -2124.580 2094.849 

[Charnel=1] 0
a
 . . 0 . . . 

[AgeRange4Num=1.00] -12.694 1294.815 .000 1 .992 -2550.485 2525.097 

[AgeRange4Num=2.00] 1.301 1.420 .840 1 .359 -1.481 4.084 

[AgeRange4Num=3.00] .269 1.006 .072 1 .789 -1.702 2.241 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 23.993    
General .000

b
 23.993 13 .031 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete 
separation in the data. The maximum likelihood estimates do not exist. 
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11.9.3 Grey Inclusions Ordinal Regression Model 3 
 

 
Case Processing Summary 

 N Marginal Percentage 

Grey Inclusions 

None 246 92.5% 

Infrequent 19 7.1% 

Frequent 1 0.4% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

State 
Articulated 203 76.3% 
Disarticulated 63 23.7% 

Age Range 

Neonate 29 10.9% 
Child 20 7.5% 
Juvenile 24 9.0% 
Adult 193 72.6% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 94.680    
Final .000 94.680 8 .000 

Link function: Logit. 

 
Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 42.649 38 .278 
Deviance 11.815 38 1.000 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .299 
Nagelkerke .695 
McFadden .632 

Link function: Logit. 
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Parameter Estimates 

 Estimate Std. 
Error 

Wald df Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Threshold 
[GreyInc = 0] 2.685 1.009 7.075 1 .008 .706 4.663 

[GreyInc = 1] 6.420 1.461 19.324 1 .000 3.558 9.283 

Location 

[StandardSoilNum=1] -2.531 1.492 2.877 1 .090 -5.455 .393 

[StandardSoilNum=2] -17.820 1754.239 .000 1 .992 -3456.066 3420.426 

[StandardSoilNum=3] -17.382 2790.597 .000 1 .995 -5486.851 5452.087 

[StandardSoilNum=4] 2.257 1.084 4.335 1 .037 .132 4.382 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

[State2Num=1.00] 1.311 .845 2.409 1 .121 -.344 2.967 

[State2Num=2.00] 0
a
 . . 0 . . . 

[AgeRange4Num=1.00] -15.824 2400.935 .000 1 .995 -4721.570 4689.923 

[AgeRange4Num=2.00] .217 1.070 .041 1 .839 -1.879 2.313 

[AgeRange4Num=3.00] .533 1.013 .276 1 .599 -1.453 2.519 

[AgeRange4Num=4.00] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis .000    
General 20.459

b
 .

c
 8 . 

The null hypothesis states that the location parameters (slope coefficients) are the 
same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value cannot be further increased after maximum number of 
step-halving. 
c. The log-likelihood value of the general model is smaller than that of the null 
model. This is because convergence cannot be attained or ascertained in 
estimating the general model. Therefore, the test of parallel lines cannot be 
performed. 

 

11.9.4 Grey Inclusions Ordinal Regression Model 4 
 

Case Processing Summary 

 N Marginal Percentage 

Grey Inclusions 

None 246 92.5% 

Infrequent 19 7.1% 

Frequent 1 0.4% 

Soil Type 

Clay 124 46.6% 
Gravel 65 24.4% 
Sand 24 9.0% 
Silt 35 13.2% 
Open 18 6.8% 

Valid 266 100.0% 

Missing 35  
Total 301  

 
Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 81.778    
Final 17.545 64.233 4 .000 

Link function: Logit. 
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Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 30.957 4 .000 
Deviance 8.983 4 .062 

Link function: Logit. 

 
Pseudo R-Square 

Cox and Snell .215 
Nagelkerke .498 
McFadden .428 

Link function: Logit. 

 
Parameter Estimates 

 Estimate Std. Error Wald df Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Threshold 
[GreyInc = 0] 2.775 1.003 7.659 1 .006 .810 4.739 

[GreyInc = 1] 6.317 1.427 19.594 1 .000 3.520 9.114 

Location 

[StandardSoilNum=1] -1.337 1.230 1.181 1 .277 -3.748 1.074 

[StandardSoilNum=2] -19.348 7897.470 .000 1 .998 -15498.105 15459.408 

[StandardSoilNum=3] -19.348 .000 . 1 . -19.348 -19.348 

[StandardSoilNum=4] 2.668 1.058 6.360 1 .012 .594 4.742 

[StandardSoilNum=5] 0
a
 . . 0 . . . 

Link function: Logit. 
a. This parameter is set to zero because it is redundant. 

 
Test of Parallel Lines

a
 

Model -2 Log Likelihood Chi-Square df Sig. 

Null Hypothesis 17.545    
General .000

b
 17.545 4 .002 

The null hypothesis states that the location parameters (slope coefficients) are 
the same across response categories. 
a. Link function: Logit. 
b. The log-likelihood value is practically zero. There may be a complete 
separation in the data. The maximum likelihood estimates do not exist. 

 

11.10 INFILTRATIONS  
 

11.10.1 Infiltrations Binary Logistic Regression Model 1 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 117 38.9 

Missing Cases 184 61.1 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 38.037 11 .000 

Block 38.037 11 .000 

Model 38.037 11 .000 
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Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 123.945
a
 .278 .370 

a. Estimation terminated at iteration number 20 because maximum 
iterations has been reached. Final solution cannot be found. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 9.981 8 .266 

 
Contingency Table for Hosmer and Lemeshow Test 

 Infiltrations = Absent Infiltrations = Present Total 

Observed Expected Observed Expected 

Step 1 

1 10 11.479 2 .521 12 

2 13 11.651 0 1.349 13 

3 10 8.592 1 2.408 11 

4 6 5.765 4 4.235 10 

5 5 4.848 6 6.152 11 

6 5 4.313 6 6.687 11 

7 4 5.091 9 7.909 13 

8 3 3.451 7 6.549 10 

9 1 2.936 9 7.064 10 

10 4 2.874 12 13.126 16 

 
Classification Table

a
 

 Observed Predicted 

 Infiltrations Percentage Correct 

 Absent Present 

Step 1 
Infiltrations 

Absent 38 23 62.3 

Present 7 49 87.5 

Overall Percentage   74.4 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Anoxic(1) 2.522 1.070 5.555 1 .018 12.455 

Phase2Num2(1) -.915 .799 1.312 1 .252 .400 

StandardSoilNum   16.408 4 .003  
StandardSoilNum(1) 22.291 23205.450 .000 1 .999 4797871286.819 

StandardSoilNum(2) 20.651 23205.450 .000 1 .999 930594683.836 

StandardSoilNum(3) 18.563 23205.450 .000 1 .999 115325979.791 

StandardSoilNum(4) 18.556 23205.450 .000 1 .999 114542317.722 

BD(1) -.200 .582 .118 1 .731 .819 

State2Num(1) -.125 1.110 .013 1 .910 .882 

Charnel(1) -.543 1.609 .114 1 .736 .581 

SexNum(1) .202 .455 .198 1 .657 1.224 

AgeRange4Num(1) .535 .765 .489 1 .484 1.707 

Constant -22.067 23205.451 .000 1 .999 .000 

a. Variable(s) entered on step 1: Anoxic, Phase2Num2, StandardSoilNum, BD, State2Num, Charnel, 
SexNum, AgeRange4Num. 
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11.10.2 Infiltrations Binary Logistic Regression Model 2 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 266 88.4 

Missing Cases 35 11.6 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 68.448 13 .000 

Block 68.448 13 .000 

Model 68.448 13 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 275.869
a
 .227 .313 

a. Estimation terminated at iteration number 6 because parameter 
estimates changed by less than .001. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 2.647 8 .955 

 
Contingency Table for Hosmer and Lemeshow Test 

 Infiltrations = Absent Infiltrations = Present Total 

Observed Expected Observed Expected 

Step 1 

1 22 22.740 2 1.260 24 

2 26 25.184 1 1.816 27 

3 19 19.820 4 3.180 23 

4 12 11.655 2 2.345 14 

5 23 22.390 6 6.610 29 

6 21 20.392 6 6.608 27 

7 12 13.866 12 10.134 24 

8 15 13.685 17 18.315 32 

9 10 11.530 21 19.470 31 

10 13 11.739 22 23.261 35 

 
Classification Table

a
 

 Observed Predicted 

 Infiltrations Percentage Correct 

 Absent Present 

Step 1 
Infiltrations 

Absent 132 41 76.3 

Present 28 65 69.9 

Overall Percentage   74.1 

a. The cut value is .500 
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Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

Anoxic(1) .573 .563 1.034 1 .309 1.773 

Phase2Num2(1) .241 .552 .191 1 .662 1.272 

StandardSoilNum   21.167 4 .000  
StandardSoilNum(1) 4.924 1.798 7.502 1 .006 137.523 

StandardSoilNum(2) 5.243 1.823 8.270 1 .004 189.160 

StandardSoilNum(3) 2.998 1.830 2.684 1 .101 20.041 

StandardSoilNum(4) 1.945 1.577 1.521 1 .217 6.991 

Cave(1) -1.974 1.412 1.955 1 .162 .139 

BD(1) -.025 .545 .002 1 .964 .976 

State2Num(1) .289 .660 .192 1 .662 1.335 

Charnel(1) 1.432 .511 7.866 1 .005 4.186 

AgeRange4Num   6.232 3 .101  
AgeRange4Num(1) -1.324 .607 4.757 1 .029 .266 

AgeRange4Num(2) -.032 .554 .003 1 .955 .969 

AgeRange4Num(3) .549 .527 1.082 1 .298 1.731 

Constant -5.007 1.389 12.988 1 .000 .007 

a. Variable(s) entered on step 1: Anoxic, Phase2Num2, StandardSoilNum, Cave, BD, State2Num, 
Charnel, AgeRange4Num. 

 
 

11.10.3 Infiltrations Binary Logistic Regression Model 3 
 

 
Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 266 88.4 

Missing Cases 35 11.6 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 65.490 8 .000 

Block 65.490 8 .000 

Model 65.490 8 .000 

 
Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 278.828
a
 .218 .301 

a. Estimation terminated at iteration number 6 because parameter 
estimates changed by less than .001. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 4.773 7 .688 
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Contingency Table for Hosmer and Lemeshow Test 

 Infiltrations = Absent Infiltrations = Present Total 

Observed Expected Observed Expected 

Step 1 

1 20 19.886 1 1.114 21 

2 25 25.680 3 2.320 28 

3 22 21.475 3 3.525 25 

4 34 34.342 9 8.658 43 

5 23 22.652 7 7.348 30 

6 19 21.244 24 21.756 43 

7 6 4.050 3 4.950 9 

8 22 19.429 31 33.571 53 

9 2 4.242 12 9.758 14 

 
Classification Table

a
 

 Observed Predicted 

 Infiltrations Percentage Correct 

 Absent Present 

Step 1 
Infiltrations 

Absent 128 45 74.0 

Present 25 68 73.1 

Overall Percentage   73.7 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

StandardSoilNum   36.247 4 .000  
StandardSoilNum(1) 2.945 1.073 7.535 1 .006 19.006 

StandardSoilNum(2) 3.333 1.065 9.802 1 .002 28.023 

StandardSoilNum(3) 1.082 1.174 .850 1 .357 2.950 

StandardSoilNum(4) .382 1.197 .102 1 .750 1.465 

Charnel(1) 1.537 .452 11.530 1 .001 4.648 

AgeRange4Num   6.639 3 .084  
AgeRange4Num(1) -1.256 .552 5.171 1 .023 .285 

AgeRange4Num(2) .042 .534 .006 1 .937 1.043 

AgeRange4Num(3) .524 .519 1.020 1 .312 1.689 

Constant -4.323 1.127 14.710 1 .000 .013 

a. Variable(s) entered on step 1: StandardSoilNum, Charnel, AgeRange4Num. 

 
 

11.10.4 Infiltrations Binary Logistic Regression Model 4 
 

Case Processing Summary 

Unweighted Cases
a
 N Percent 

Selected Cases 

Included in Analysis 266 88.4 

Missing Cases 35 11.6 

Total 301 100.0 
Unselected Cases 0 .0 
Total 301 100.0 

a. If weight is in effect, see classification table for the total number of cases. 

 
Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 1 

Step 15.666 1 .000 

Block 15.666 1 .000 

Model 15.666 1 .000 
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Model Summary 

Step -2 Log likelihood Cox & Snell R 
Square 

Nagelkerke R 
Square 

1 328.652
a
 .057 .079 

a. Estimation terminated at iteration number 4 because parameter 
estimates changed by less than .001. 

 
Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 .000 3 1.000 

 
Contingency Table for Hosmer and Lemeshow Test 

 Infiltrations = Absent Infiltrations = Present Total 

Observed Expected Observed Expected 

Step 1 

1 17 17.000 1 1.000 18 

2 32 32.000 3 3.000 35 

3 20 20.000 4 4.000 24 

4 81 81.000 43 43.000 124 

5 23 23.000 42 42.000 65 

 
Classification Table

a
 

 Observed Predicted 

 Infiltrations Percentage Correct 

 Absent Present 

Step 1 
Infiltrations 

Absent 173 0 100.0 

Present 93 0 .0 

Overall Percentage   65.0 

a. The cut value is .500 

 
Variables in the Equation 

 B S.E. Wald df Sig. Exp(B) 

Step 1
a
 

StandardSoilNum -.433 .118 13.537 1 .000 .649 

Constant .229 .253 .823 1 .364 1.257 

a. Variable(s) entered on step 1: StandardSoilNum. 
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12 APPENDIX 2: HOLM-BONFERRONI METHOD 

 

The following table presents all of the p-values of statistical tests run on pairs of variables for 

the current study and the assessment of their significance using the Holm-Bonferroni 

correction for multiplicity. A p-value was significant when it was below the threshold defined 

by the Holm-Bonferroni method. Significant p-values are highlighted in bold.  

 

TEST 
NO. 

COMPARISON TEST P-
VALU
E 

HOLM-BONFERRONI 
SIGNIFICANCE THRESHOLD 

1 Presence of Bacterial Attack & Cave 
Deposition 

Binary Logistic 
Regression 

1.000 0.050 

2 Persistence of the Periosteal Surface & Black 
Death 

Binary Logistic 
Regression 

1.000 0.025 

3 Brown Staining & Clay Soil Type Ordinal 
Regression 

1.000 0.017 

4 Brown Staining & Silt Soil Type Ordinal 
Regression 

1.000 0.013 

5 Grey Inclusions & Phase Ordinal 
Regression 

1.000 0.010 

6 Grey Inclusions & Black Death Ordinal 
Regression 

1.000 0.008 

7 Persistence of the Periosteal Surface & Cave 
Deposition 

Binary Logistic 
Regression 

0.999 0.007 

8 Brown Staining & Gravel Soil Type Ordinal 
Regression 

0.999 0.006 

9 Brown Staining & Sand Soil Type Ordinal 
Regression 

0.999 0.006 

10 Persistence of the Periosteal Surface & Anoxia Binary Logistic 
Regression 

0.998 0.005 

11 Yellow Staining & Child Age Category Ordinal 
Regression 

0.992 0.005 

12 Grey Inclusions & Anoxia Ordinal 
Regression 

0.992 0.004 

13 Grey Inclusions & Neonatal Age Category Ordinal 
Regression 

0.992 0.004 

14 Brown Staining & Child Age Category Ordinal 
Regression 

0.990 0.004 

15 Yellow Staining & Black Death Ordinal 
Regression 

0.989 0.003 

16 Grey Inclusions & Charnel Ordinal 
Regression 

0.989 0.003 

17 Grey Inclusions & Gravel Soil Type Ordinal 
Regression 

0.986 0.003 

18 Grey Inclusions & Sand Soil Type Ordinal 
Regression 

0.986 0.003 

19 Grey Inclusions & Clay Soil Type Ordinal 
Regression 

0.981 0.003 

20 Whole OHI & Sand Soil Type Ordinal 
Regression 

0.977 0.003 

21 Yellow Staining & Phase Ordinal 
Regression 

0.968 0.002 

22 Infiltrations & Black Death Binary Logistic 
Regression 

0.964 0.002 
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TEST 
NO. 

COMPARISON TEST P-
VALU
E 

HOLM-BONFERRONI 
SIGNIFICANCE THRESHOLD 

23 Yellow Staining & Neonatal Age Category Ordinal 
Regression 

0.962 0.002 

24 Orange Inclusions & Sex Ordinal 
Regression 

0.952 0.002 

25 Yellow Staining & Orange Inclusions Ordinal 
Regression 

0.950 0.002 

26 Wedl Tunnelling & Anoxia Binary Logistic 
Regression 

0.935 0.002 

27 Yellow Staining & Silt Site Assemblages Kruskal-Wallis 0.918 0.002 

28 Persistence of the Periosteal Surface & 
Charnel 

Binary Logistic 
Regression 

0.916 0.002 

29 Yellow Staining & Gravel Soil Type Ordinal 
Regression 

0.905 0.002 

30 Yellow Staining & Clay Soil Type Ordinal 
Regression 

0.897 0.002 

31 Persistence of the Periosteal Surface & Age 
Range 

Binary Logistic 
Regression 

0.886 0.002 

32 Brown Staining & Juvenile Age Category Ordinal 
Regression 

0.882 0.002 

33 Brown Staining & Anoxia Ordinal 
Regression 

0.858 0.002 

34 Whole OHI & Charnel Ordinal 
Regression 

0.841 0.001 

35 Yellow Staining & Juvenile Age Category Ordinal 
Regression 

0.831 0.001 

36 Presence of Bacterial Attack & Sex Binary Logistic 
Regression 

0.822 0.001 

37 Brown Staining & Black Death Ordinal 
Regression 

0.817 0.001 

38 Yellow Staining & Sex Ordinal 
Regression 

0.806 0.001 

39 Grey Inclusions & Juvenile Age Range Ordinal 
Regression 

0.789 0.001 

40 Orange Staining & Neonate Age Range Ordinal 
Regression 

0.771 0.001 

41 Orange Inclusions & Child Age Range Ordinal 
Regression 

0.766 0.001 

42 Brown Staining & Orange Inclusions Spearman's rho 0.761 0.001 

43 Whole OHI & Sex Ordinal 
Regression 

0.756 0.001 

44 Grey Inclusions & Sex Ordinal 
Regression 

0.704 0.001 

45 Orange Staining & Juvenile Age Category Ordinal 
Regression 

0.692 0.001 

46 Orange Staining & Child Age Category Ordinal 
Regression 

0.687 0.001 

47 Persistence of the Periosteal Surface & State 
of Articulation 

Binary Logistic 
Regression 

0.684 0.001 

48 Yellow Staining & Anoxia Ordinal 
Regression 

0.670 0.001 

49 Infiltrations & Phase Binary Logistic 
Regression 

0.662 0.001 

50 Infiltrations & State if Articulation Binary Logistic 
Regression 

0.662 0.001 

51 Infiltrations & Sex Binary Logistic 
Regression 

0.657 0.001 

52 Yellow Staining & Silt Soil Type Ordinal 
Regression 

0.650 0.001 

53 Whole OHI Score & Juvenile Age Category Ordinal 0.589 0.001 



  

643 
 

TEST 
NO. 

COMPARISON TEST P-
VALU
E 

HOLM-BONFERRONI 
SIGNIFICANCE THRESHOLD 

Regression 

54 Orange Staining & Phase Ordinal 
Regression 

0.557 0.001 

55 Persistence of the Periosteal Surface & Phase Binary Logistic 
Regression 

0.547 0.001 

56 Brown Staining & Grey Inclusions Spearman's rho 0.530 0.001 

57 Presence of Bacterial Attack & Black Death Binary Logistic 
Regression 

0.512 0.001 

58 Yellow Staining & State of Articulation Ordinal 
Regression 

0.510 0.001 

59 Wedl Tunnelling & Age Range Binary Logistic 
Regression 

0.500 0.001 

60 Grey Inclusions & Non-Silt Site Assemblages Kruskal-Wallis 0.491 0.001 

61 Brown Staining & Neonatal Age Category Ordinal 
Regression 

0.482 0.001 

62 Yellow Staining & Sand Site Assemblages Kruskal-Wallis 0.482 0.001 

63 Yellow Staining & Sand Soil Type Ordinal 
Regression 

0.471 0.001 

64 Wedl Tunnelling & Soil Type Binary Logistic 
Regression 

0.468 0.001 

65 Orange Inclusions & Silt Soil Type Ordinal 
Regression 

0.461 0.001 

66 Whole OHI & Gravel Soil Type Ordinal 
Regression 

0.457 0.001 

67 Brown Staining & Sex Ordinal 
Regression 

0.435 0.001 

68 Presence of Bacterial Attack & Historical Site 
Assemblages 

Pearson's Χ-
squared 

0.431 0.001 

69 Orange Inclusions & Phase Ordinal 
Regression 

0.401 0.001 

70 Yellow Staining & Gravel Site Assemblages Kruskal-Wallis 0.395 0.001 

71 Presence of Bacterial Attack & Soil Type Binary Logistic 
Regression 

0.381 0.001 

72 Brown Staining & State of Articulation Ordinal 
Regression 

0.381 0.001 

73 Infiltrations & Silt Site Assemblages Pearson's Χ-
squared 

0.376 0.001 

74 Whole OHI & State of Articulation Ordinal 
Regression 

0.374 0.001 

75 Yellow Staining & Clay Site Assemblages Kruskal-Wallis 0.363 0.001 

76 Grey Inclusions & Child Age Category Ordinal 
Regression 

0.359 0.001 

77 Yellow Staining & Charnel Ordinal 
Regression 

0.357 0.001 

78 Whole OHI & Clay Soil Type Ordinal 
Regression 

0.351 0.001 

79 Presence of Bacterial Attack & Charnel Binary Logistic 
Regression 

0.326 0.001 

80 Infiltrations & Anoxia Binary Logistic 
Regression 

0.309 0.001 

81 Presence of Bacterial Attack & State of 
Articulation 

Binary Logistic 
Regression 

0.298 0.001 

82 Whole OHI & Juvenile Age Range Ordinal 
Regression 

0.296 0.001 

83 Wedl Tunnelling & Black Death Binary Logistic 
Regression 

0.273 0.001 

84 Grey Inclusions & State of Articulation Ordinal 
Regression 

0.265 0.001 
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TEST 
NO. 

COMPARISON TEST P-
VALU
E 

HOLM-BONFERRONI 
SIGNIFICANCE THRESHOLD 

85 Yellow Staining & Grey Inclusions Ordinal 
Regression 

0.257 0.001 

86 Wedl Tunnelling & State of Articulation Binary Logistic 
Regression 

0.256 0.001 

87 Wedl Tunnelling & Sex Binary Logistic 
Regression 

0.240 0.001 

88 Persistence of the Periosteal Surface & Sex Binary Logistic 
Regression 

0.211 0.001 

89 Orange Inclusions & Clay Site Assemblages Kruskal-Wallis 0.206 0.001 

90 Orange Staining & Sex Ordinal 
Regression 

0.205 0.001 

91 Whole OHI & Cave Deposition Ordinal 
Regression 

0.199 0.001 

92 Orange Inclusions & Juvenile Age Category Ordinal 
Regression 

0.187 0.001 

93 Infiltrations & Cave Deposition Binary Logistic 
Regression 

0.162 0.001 

94 Orange Staining & Black Death Ordinal 
Regression 

0.156 0.001 

95 Whole OHI & Silt Soil Type Ordinal 
Regression 

0.153 0.001 

96 Orange Inclusions & Anoxia Ordinal 
Regression 

0.147 0.001 

97 Wedl Tunnelling & Charnel Binary Logistic 
Regression 

0.140 0.001 

98 Brown Staining & Infiltrations Ordinal 
Regression 

0.140 0.001 

99 Orange Inclusions & Sand Site Assemblages Kruskal-Wallis 0.140 0.001 

100 Whole OHI & Historical Site Assemblages Kruskal-Wallis 0.122 0.001 

101 Brown Staining & Phase Ordinal 
Regression 

0.115 0.000 

102 Orange Inclusions & Black Death Ordinal 
Regression 

0.115 0.000 

103 Yellow Staining & Infiltrations Pearson's Χ-
squared 

0.102 0.000 

104 Whole OHI & Orange Inclusions Spearman's rho 0.092 0.000 

105 Brown Staining & Charnel Ordinal 
Regression 

0.088 0.000 

106 Infiltrations & Age Category Binary Logistic 
Regression 

0.084 0.000 

107 Infiltrations & Sand Site Assemblages Pearson's Χ-
squared 

0.082 0.000 

108 Orange Inclusions & Gravel Soil Type Ordinal 
Regression 

0.076 0.000 

109 Wedl Tunnelling & Phase Binary Logistic 
Regression 

0.075 0.000 

110 Orange Staining & Silt Soil Type Ordinal 
Regression 

0.058 0.000 

111 Whole OHI & Grey Inclusions Ordinal 
Regression 

0.057 0.000 

112 Orange Inclusions & Gravel Site Assemblages Kruskal-Wallis 0.047 0.000 

113 Orange Inclusions & Neonate Age Category Ordinal 
Regression 

0.038 0.000 

114 Orange Staining & Anoxia Ordinal 
Regression 

0.037 0.000 

115 Whole OHI & Persistence of the Periosteal 
Surface 

Pearson's Χ-
squared 

0.034 0.000 

116 Orange Staining & Sand Site Assemblages Kruskal-Wallis 0.030 0.000 
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TEST 
NO. 

COMPARISON TEST P-
VALU
E 

HOLM-BONFERRONI 
SIGNIFICANCE THRESHOLD 

117 Orange Inclusions & State of Articulation Ordinal 
Regression 

0.029 0.000 

118 Orange Inclusions & Cave Deposition Ordinal 
Regression 

0.029 0.000 

119 Whole OHI & Child Age Category Ordinal 
Regression 

0.027 0.000 

120 Prehistoric Site Assemblages & Whole OHI Kruskal-Wallis 0.026 0.000 

121 Whole OHI & Brown Staining Spearman's rho 0.024 0.000 

122 Orange Staining  & State of Articulation Ordinal 
Regression 

0.019 0.000 

123 Orange Staining & Cave Deposition Ordinal 
Regression 

0.019 0.000 

124 Whole OHI & Infiltrations Spearman's rho 0.017 0.000 

125 Persistence of the Periosteal Surface & Sand 
Site Assemblages 

Pearson's Χ-
squared 

0.015 0.000 

126 Orange Inclusions & Sand Soil Type Ordinal 
Regression 

0.014 0.000 

127 Skeletal Element & Whole OHI Ordinal 
Regression 

0.014 0.000 

128 Orange Staining & Gravel Site Assemblages Kruskal-Wallis 0.011 0.000 

129 Orange Inclusions & Clay Soil Type Ordinal 
Regression 

0.011 0.000 

130 Orange Staining & Silt Site Assemblages Kruskal-Wallis 0.010 0.000 

131 Whole OHI & Wedl Tunnelling Pearson's Χ-
squared 

0.008 0.000 

132 Brown Staining & Site Assemblage Kruskal-Wallis 0.007 0.000 

133 Orange Staining & Sand Soil Type Ordinal 
Regression 

0.006 0.000 

134 Infiltrations & Gravel Site Assemblages Pearson's Χ-
squared 

0.004 0.000 

135 Presence of Bacterial Attack & Specific Phase Pearson's Χ-
squared 

0.003 0.000 

136 Persistence of the Periosteal Surface & Silt 
Site Assemblages 

Pearson's Χ-
squared 

0.002 0.000 

137 Orange Staining & Clay Soil Type Ordinal 
Regression 

0.001 0.000 

138 Orange Staining & Charnel Ordinal 
Regression 

0.001 0.000 

139 Infiltrations & Charnel Binary Logistic 
Regression 

0.001 0.000 

140 Whole OHI & Yellow Staining Spearman's rho 0.001 0.000 

141 Presence of Bacterial Attack & Later 
Prehistoric Site Assemblages 

Pearson's Χ-
squared 

0.001 0.000 

142 Whole OHI & Anoxia Ordinal 
Regression 

0.000 0.000 

143 Whole OHI & Phase Ordinal 
Regression 

0.000 0.000 

144 Whole OHI & Black Death Ordinal 
Regression 

0.000 0.000 

145 Whole OHI & Neonatal Age Category Ordinal 
Regression 

0.000 0.000 

146 Presence of Bacterial Attack & Anoxia Binary Logistic 
Regression 

0.000 0.000 

147 Presence of Bacterial Attack & Phase Binary Logistic 
Regression 

0.000 0.000 

148 Presence of Bacterial Attack & Age Category Binary Logistic 
Regression 

0.000 0.000 
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TEST 
NO. 

COMPARISON TEST P-
VALU
E 

HOLM-BONFERRONI 
SIGNIFICANCE THRESHOLD 

149 Wedl Tunnelling & Cave Deposition Binary Logistic 
Regression 

0.000 0.000 

150 Persistence of the Periosteal Surface & Soil 
Type 

Binary Logistic 
Regression 

0.000 0.000 

151 Orange Staining & Gravel Soil Type Ordinal 
Regression 

0.000 0.000 

152 Orange Inclusions & Charnel Ordinal 
Regression 

0.000 0.000 

153 Grey Inclusions & Silt Soil Type Ordinal 
Regression 

0.000 0.000 

154 Infiltrations & Soil Type Binary Logistic 
Regression 

0.000 0.000 

155 Persistence of the Periosteal Surface & 
Specific Phase  

Pearson's Χ-
squared 

0.000 0.000 

156 Periosteal OHI & Whole OHI Spearman's rho 0.000 0.000 

157 Endosteal OHI & Whole OHI Spearman's rho 0.000 0.000 

158 Internal OHI & Whole OHI Spearman's rho 0.000 0.000 

159 Presence of Bacterial Bioerosion & Whole OHI Mann-Whitney 0.000 0.000 

160 Birefringence Index & Whole OHI Spearman's rho 0.000 0.000 

161 Wedl Tunnelling & Site Assemblage Pearson's Χ-
squared 

0.000 0.000 

162 Orange Staining & Orange Inclusions Spearman's rho 0.000 0.000 

163 Orange Staining & Grey Inclusions Spearman's rho 0.000 0.000 

164 Orange Staining & Infiltrations Pearson's Χ-
squared 

0.000 0.000 

165 Orange Inclusions & Infiltrations Pearson's Χ-
squared 

0.000 0.000 

166 Grey Inclusions & Infiltrations Pearson's Χ-
squared 

0.000 0.000 

167 Orange Inclusions & Silt Site Assemblages Kruskal-Wallis 0.000 0.000 

168 Grey Inclusions & Silt Site Assemblages Kruskal-Wallis 0.000 0.000 

169 Infiltrations & Clay Site Assemblages Pearson's Χ-
squared 

0.000 0.000 

170 Orange Staining & Clay Site Assemblages Kruskal-Wallis 0.000 0.000 

 




