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Abstract

The emerging technology of spintronics promises to revolutionise com-

puting by allowing considerably more energy efficient computing than is

currently possible. Gallium Arsenide is one candidate material for use in

semiconductor spintronic devices and as such detailed study of the spin-

tronic properties of Gallium Arsenide is required. In this thesis we develop

a semiclassical approach to the simulation of the electron population in Gal-

lium Arsenide. We then use this model to look at the properties of the

electron system, in particular the time taken for the electron population

to undergo spin depolarisation. Comparison of the results to experimental

values for the spin depolarisation suggest that the currently well accepted

approach is accurate for low to moderate n type doping densities, but for

higher densities there is a significant departure from the experimentally ob-

tained results. We explore a number of improvements to the usual model

showing substantial improvement in the range of densities that can be ac-

curately predicted.

As Dilute Magnetic Semiconductors have been the topic of substantial

research, we also apply the model to investigate the properties of an mag-

netic impurity in n doped Gallium Arsenide We compare the results to the

Langevin enhanced Landau Lifshitz Gilbert equation, which shows good

agreement allowing us to predict an appropriate damping constant as a

result of the magnetic interaction with the electron population. We also

investigate the nature of the noise felt by the magnetic atom showing that

the usual white noise approximation is of limited validity.
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Chapter 1

Introduction

Spintronics1 is an emerging technology that aims to exploit the spin proper-

ties, and the associated magnetic moment, as well as the charge properties

of electrons in solid state devices, including semiconductor lasers [1], spin

based transistor [2] and MRAM (Magnetoresistive Random Access Mem-

ory) [3]. The increased drive to research spintronic devices, as well as other

emergent technologies, is motivated by a lack of long term plans for the

continued improvement of standard silicon devices [4, 5, 6, 7].

It is worth noting, at this point, that the classical analogy for spin,

that of a particle classically spinning on its own axis, is unhelpful if not

actually misleading and so far any attempt to find an accessible classical-like

explanation of spin has failed. This is of no great concern as we are primarily

interested in the practical applications of this property and accepting the

mathematical origin of spin (as a consequence of the unification of quantum

theory with special relativity and a requirement for angular momentum to

be conserved [8]) and its experimental observation should suffice. In this

regard we should no more be concerned by a lack of understanding of the

1A portmanteau of spin and electronics
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origin of an electron’s spin than we are of the origin of its charge.

In recent years there has been increased concern [9] over the break down

of the so called “Moore’s law”, the observation that the size of a transistor

available in commercial device halves every eighteen months [10]. While

Moore’s law was originally intended only to consider transistor size until

the early 2000s it could be applied to almost any metric of computing power

be it floating point operations per second, hard drive disk capacity [11] or

drawn triangles per second2 [13].

Spintronics is not the only potential to this crises within the electron-

ics community, with active investigation also into quantum computing [14],

DNA computing [15] and optical computing [16], amongst others. Each of

these alternative technologies have the potential to revolutionise comput-

ing, however spintronics is generally considered the most likely to succeed in

part because it allows much of the current technology associated with device

fabrication to be reused.

Quantum Computing is perhaps the most promising of the alternatives to

spintronics amongst the emerging technologies. Quantum computing relies

on the manipulation of entanglement [14] between quantum bits (“qubit”)

and as such relies on the maintaining of coherent states during the operation

of the quantum computer, an idea not dissimilar to the requirement in spin-

tronics for the maintaining of a coherent net spin. The promise of quantum

computing is not a gradual increase in the performance of a computer but in

a dramatic change to the types of problems computers can solve efficiently3.

2A measure of the performance of a graphics processing unit, graphics cards draw all
elements of a 3D environment by rendering a polygon mesh consisting of many triangles
[12]

3A sufficiently large classical computer can simulate a quantum computer, although
without the performance increases, so it does not change the types of problems that can
be, in theory solved, as such the gains from quantum computing does not invalidate the
Church-Turing Thesis [17]; that a function is computable if, and only if, a Turing machine
can compute it.
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The exact class of problems that a quantum computer would improve is

not known [18], but is known to include key problems; for example integer

factorisation, which would make much modern encryption essentially use-

less. The limitation of the range of problems4 that they can solve faster

than a classical computer suggests that the use may be limited to national

governments and research institutions, rather than mass consumer use5.

Optical and DNA computing aim to replace the semiconductor technolo-

gies with alternative materials than allow for greater speed of calculation.

Optical computers aim to replace the flow of current with lasers, increas-

ing significantly the data bandwidth and in principle speed of calculation.

The need to replace the semiconductor transistor with an optical equiva-

lent, consisting of a material with non-linear refractive index makes optical

computation expensive and while optical logic gates have been developed,

so far they require more power, have failed to be miniaturised and offer little

benefit over conventional electronics [20]. DNA computing similarly looks to

replace the integrated circuit, in this case with biological molecules, funda-

mentally the promise of DNA computing is massive parallelisation which for

many applications would allow a massive performance gain. To date there

has, despite the implementation of DNA logic gates, been limited success

[15] in comparison with conventional computing.

The field of spintronics emerged from a series of discoveries in the 1980s

most famously the discovery of giant magnetoresistance (GMR), in 1988

by Albert Fert et al. [21]. In these experiments it was shown that the

spin properties of an electron can, in a well chosen device, have a profound

4The NP complete class of problems is generally regarded, but not proven, to not be
in the class of problems that can be more efficiently solved on a quantum computer [19].

5Although the parallels here to the infamous “There is a world market for maybe five
computers” allegedly said by Thomas Watson, CEO of IBM in 1943, cannot entirely be
ignored.
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impact on the electronic properties. This discovery opened the possibility

of computation involving the spin component of the electron as well as the

electronic charge.

GMR is the variable electrical resistance observed in thin film layers of

adjacent ferromagnetic materials in either parallel or anti parallel alignment.

In the anti-parallel alignment the electron current becomes spin polarised as

it passes through the first magnetic layer and then on reaching the second

layer requires a significant amount of energy to overcome the energy barrier

from the opposite magnetic field. In the parallel case there is no energy cost

associated with crossing into the second layer and as such the resistance is

much lower [21]. This has a wide variety of industrial applications the most

famous of which is in hard disk drives which relies on the effect to read the

state of a particular bit [22]. The enormous practical application of this

discovery resulted in it being awarded the 2007 Nobel prize.

The practical applications of spintronics are expected to move beyond

the use in storage technologies and into semiconductor logic in commercial

devices by around 20256, replacing the current CMOS logic which is increas-

ingly running into difficulties with further miniaturisation. Complementary-

Metal-Oxide-Semiconductor7(CMOS), is a style of circuitry design used in

integrated circuits [23], including microprocessors and microcontrollers.

The important innovation of CMOS devices was the existence, for each

logical unit, of a p doped and an n doped channel, the aim being to create at

all times a high resistance path between the high voltage and earthed lines

(the p-doped channel has a high resistance for positive voltage difference and

low for the reverse, while the n-doped channel has the opposite behaviour

6The 2025 estimate originates from the International Technology Roadmap for Semi-
conductors http://www.itrs.net/

7The name is now somewhat archaic; as modern CMOS devices no longer use the
metals or oxides in the field effect transistors that the technique was named for.
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[23]). During switching however both channels allow current to flow, and

it is during this time that power usage is highest. CMOS logic has allowed

significant miniaturisation however there are a number of difficulties with

miniaturisation significantly beyond current levels as a range of finite size

effects, including current leakage through ever thinner insulating layers, and

increased difficulty in keeping the device within operating temperatures are

becoming significant [24].

Spintronics aims to significantly improve the power usage, and hence

heating problems, by the introduction of the idea of spin current. An ideal,

or pure, spin current consists of a flow of spin up polarised electron while in

the opposite direction there is a flow of spin down electrons [25], the result is

that there is no net flow of current as a result a device, using spin currents

would have extremely low power dissipation8. This lower power usage is

incredibly important in its own right, as currently more than half of the

power consumed by electronic devices is due to the energy cost of cooling

[27] key components, additionally lower power usage opens the possibility

of non-volatile logic [28]. Current computer logic relies on maintaining a

constant flow of current without which the information is lost, non volatile

computing would allow a loss of power to merely stop further calculations,

but would not cause data loss.

The interest in spintronics is extremely broad, with interest in material

properties of semiconductors, metals and half-metals. Half-metals are mate-

rials that have band structure that is different for the majority and minority

spin channels, resulting in an energetically favourable spin direction. As a

result half-metals show spontaneous polarisation even in the absence of an

applied magnetic field; as such all half metals are by definition ferromagnetic

8The spin coulomb drag effect however does mean that even though there is no net
current there will still be some dissipation [26].
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(or at least ferrimagnetic) although only a small minority of ferromagnets

are half metals [29]. by showing strong polarisation of the electron spin pop-

ulation are interesting for spintronic applications, especially for injection of

a spin polarised current [30]. This half-metal spin polarisation has been

observed in the Heusler alloys, a broad class of materials with substantial

research interest.

There are over 20 Heusler alloys so any discussion of the precise proper-

ties is impossible but in general Heusler alloys are face-centred cubic crystals

consisting of non ferromagnetic elements but overall they are ferromagnetic

due to a double exchange mechanism between neighbouring ions [31]. This

results in a significant Curie temperature with room temperature ferromag-

netism being commonly observed, for example the original Heusler alloy

(Cu2MnSn) has a Curie temperature of 630 K. In most Heusler alloys the

magnetic moment lies almost solely on the atom at the centre of the cubic

structure, usually a manganese atom.

In this work we concentrate on the properties of n doped Gallium Ar-

senide (GaAs) as a candidate material for spintronic technologies. GaAs is

a III/V semiconductor which has been used in a range of devices including

integrated circuits, laser diodes and solar cells [32, 33]. GaAs is a good

candidate for spintronic devices as it has the desired spintronic properties,

particularly a high spin depolarisation time allowing the manipulation of

spin currents, as well as being amenable to fabrication on an industrial scale

[32] indeed GaAs has already been used in place of silicon, most notably

the Cray-3 supercomputer9. GaAs junctions can function at very high fre-

quencies (around 250 GHz), much faster than silicon devices, and are much

9Which due to inadequate commercial backing was a complete failure, managing to
secure only one order and eventually resulted in the bankruptcy of Cray Computer Cor-
poration [34]
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less heat sensitive than silicon junctions, due to possessing a large band gap

[35].

The low hole mobility [32] in GaAs prevents the use of CMOS logic

gates and as a result conventional computing using Gallium Arsenide has

generally required large amounts of power10. This drawback is not present

in a spintronic system, which will look to implement spin currents rather

than the more conventional current.

The electronic properties of GaAs have motivated interest in it as a

potential material for spintronic devices. GaAs lacks a preferred spin orien-

tation which allows it to sustain a spin current consisting of equal numbers

of spin up and spin down electrons. This would allow the propagation of

spin currents in GaAs, however these currents will not be extremely long

lasting due to the spin depolarisation mechanisms present in GaAs. GaAs

lacks inversion symmetry, as it is a compound semiconductor, and as such

a charge carrier experiences strong spin-orbit interaction (the Dresselhaus

term) [36] (more details in Chapter 2). This spin-orbit interaction results

in an effective magnetic field which lifts the degeneracy between up and

down electrons for any electron with non-zero momentum. The spin orbit

interaction is highly dependent on the electron momentum and as such each

electron is likely to feel a very different effective magnetic field, around which

the spin part of the electron wavefunction will precess in Larmor precession

(i.e. the magnetic moment precesses around the applied magnetic field).

The depolarisation can only be explained by considering an ensemble

of electrons. Initially all electrons have the same momentum and spin. As

the Dresselhaus field depends only on momentum they all experience the

same effective field and as such precess around it maintaining coherence.

10As noted earlier CMOS logic requires two similar channels, one n doped and one p
doped
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The direction of spin polarisation may change but the magnitude of the

ensemble averaged spin should remain constant. In reality the different

electrons over time become scattered resulting in different electrons having

different velocities and therefore different effective fields. As each electron

will exhibit Larmor precession around a different field over time they will

come to be out of phase with each other and therefore the average spin will

eventually decay. This depolarisation mechanism is known as the D’yakonov

Perel (DP) spin relaxation.

There are other spin depolarisation mechanisms such as the Elliott-Yafet

mechanism (caused by scattering events not being spin symmetric), the Bir-

Aronov-Pikus mechanism (caused by electron-hole exchange interactions)

and hyperfine interactions with nuclear spins. These mechanisms are how-

ever generally much weaker than the DP mechanism in GaAs so this work

concentrates only on the depolarisation caused by the D’yakonov Perel re-

laxation mechanism.

In addition to the use of doped Gallium Arsenide for the medium in

which spin currents travel and various devices, additional possibilities are

created by the introduction of magnetic impurities. These can be introduced

as an addition or as a replacement to the usual doping. These materials,

dilute magnetic semiconductors (DMS) have generated interest due to their

unusual properties [37]. These materials have a somewhat controllable mag-

netic properties which can be tuned by varying the concentration and type

of the magnetic impurities making them of interest for spintronics research

[38, 39, 40].

This work is a theoretical approach to simulating large scale n-doped,

bulk, Gallium Arsenide with the aim to find the spin properties of the system

and how they vary with density and temperature. To handle this problem
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we use the ensemble Monte Carlo simulation [41], which treats the electrons

semiclassically with random scattering events representing the interaction

with the environment (including each other). The ensemble Monte Carlo

approach is a stochastic method for numerical simulation of transport prob-

lems, by solving the Boltzmann transport equation [42] which has recently

been adapted to handle the problem of spin transport [43]. The use of the

ensemble Monte Carlo technique forces us to pay particular attention to the

electron-electron interaction, which for simple transport could be neglected

(as it does not change the average momentum), which is notoriously difficult

to solve and which previous attempts have had only limited success with.
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1.1 Structure of this Document

The work as a whole first describes the ensemble Monte Carlo technique, the

choice we have made as to which scattering mechanisms to include and the

various numerical techniques used to efficiently carry out the time evolution

of the electron. We then discuss the material properties our model predicts

for GaAs samples around 300 K for a large range of densities, showing that

we have a good agreement with experiment for most of the experimental

range. To further improve this agreement we show a number of ways of going

beyond the basic model, and show that using the classical forces to carry out

the electron-electron and electron-impurity interactions is an improvement

over the scattering approaches. Finally we look at the impact of introducing

a single magnetic impurity, and how that impurity behaves in a an applied

field.

In Chapter 2 we detail the ensemble Monte Carlo technique and our

implementation of it. We also outline the procedure used to calculate the

various scattering rates including derivations of non-relativistic scattering

theory, and the approximations used to handle the electron-electron and

electron-ionized impurity scattering. The numerical scheme for updating

the momentum of the electrons and the detail of the spin orbit interaction

are also shown here.

In Chapter 3 we discuss the novelties introduced by our technique, in-

cluding an accurate way to determine the spin depolarisation time, our at-

tempt to localise the electron-electron scattering and the numerical tech-

nique used for the evolution of the spin part of the electron wavefunction.

We also verify that our simulation is producing physically reasonable be-

haviour by testing the thermalisation of our electron population and outline

the thermalisation procedure used to typical calculation runs.
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In Chapter 4 we show the results of our model, particularly detailing

the role of the various scattering mechanisms at a range of densities and

determine a suitable value for the spin-orbit interaction coupling constant

(a42
11). We then show the resulting spin depolarisation times for system and

a range of densities and temperatures showing particularly strong agreement

up to densities of around n = 1017 cm−3.

In Chapter 5 we present a number of potential improvements over the

basic model, presented in Chapter 4, these include corrections for degen-

eracy effects at higher densities and a correction in the electron-electron

scattering rates due to the presence of a third scattering body. We then dis-

cuss an approach based on solving the problem using classical electrostatic

forces, which shows a considerably better behaviour throughout the entire

impurity density range studied. In order to use this approach we are forced

to take a computational approach, known as the Barnes-Hut approach [44],

to allow long range interactions to be treated as the interaction with groups

consisting of many particles, characterised by their mean position and net

charge (otherwise the number of interactions rises too quickly with increased

particle number and soon becomes computationally intractable).

In Chapter 6 we analyse the impact of the introduction of a single mag-

netic spin site and show that interaction with the electron “gas” causes it to

thermalise to an applied magnetic field. To allow simulations over a larger

scale we introduce the Landau-Lifshitz-Gilbert equation, an approach to the

simulation of micromagnetics, and parametrise the behaviour of the spin in

our electron gas in terms of the Gilbert damping constant α. Importantly

we show that the noise experienced by the magnetic spin as a result of the

interaction with the electron population cannot be considered to be a white

11This constant is relatively poorly known with a very wide range of values suggested
by theory and experiment
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noise heat bath, which is a current approximation used in the overwhelming

majority of all current ultrafast laser induced magnetisation processes, with

notable exceptions showing that the type of noise can make a substantial

difference. [45]
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Chapter 2

Method

2.1 Ensemble Monte Carlo

In order to study spin de-coherence we need to be able to simulate a very

large number of particles (of the order of 10,000). This is not computation-

ally tractable for a fully Ab Initio approach, so instead we use the Ensemble

Monte Carlo (EMC) technique [41]. The EMC technique works by treating

the charge carriers (in this case the electrons) as classical particles up to

scattering events which are generally quantum mechanical in nature.

To carry out an ensemble Monte Carlo calculation we start with a con-

ventional molecular dynamics calculation, where we update the momentum,

position and forces acting on each particle at fixed time steps, use some form

of numerical integration to calculate the new values for these properties and

then iterate over many time steps to carry out the evolution over a suitable

time scale. In addition to this traditional molecular dynamics approach we

introduce “scattering events”, this can be used to include interactions with

objects not directly in the simulation (for example we could consider the

impact of laser heating as a scattering mechanism) or as a way of going
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beyond the classical interaction allowing us to also consider some quantum

effects of interactions between our particles. The implementation of the

scattering relies on knowing the scattering rate for each particle, we then

calculate the appropriate time to the next scattering event and update the

position and momentum of the scattered particle to that time (which will

be less than the time to the next time step) and apply the scattering. The

scattering will in general alter the momentum of the particle by changing

the angle and/or the magnitude of the velocity. Once we have carried out

the scattering for one particle we then iterate over many particles until we

reach the time step and which point all particles are updated to that point

in time, notably particles that have scattered since the previous time step

will need updating by a smaller amount than those that have not scattered.

In general ensemble Monte Carlo treats the scattering events as being

instantaneous and uncorrelated1 [41]. As such the scattering rate only de-

pends on the properties, typically momentum, of the charge carrier.

2.1.1 Self Scattering

For numerical convenience we would like each particle to have a constant

scattering rate, and that each particle has the same scattering rate. To

achieve this we will introduce a fictitious scattering (“self scattering”) [46]

which does not affect the particle but simply ensures the total scattering rate

remains constant. This results in the probability distribution for the time

between scattering for one particle of p (τscatter) = exp(−τscatterΓ), where Γ

is the maximum scattering rate, or p (τscatter) = exp(− τscatter
N Γ) for N parti-

cles. As each particle is equally likely to be the next to scatter, irrespective

1That is the scattering rate depends only on properties of the electron being scattered,
not on how recently it scattered, as some scatterings can induce a change in momentum
or energy of the particle there can still be some induced correlations

27



of when it last scattered, this can be used to calculate the next scattering

time for any particle; we can then choose the next particle in a uniform

random way with each particle having equal probability of scattering.

This “self scattering” is simply a numerical simplicity taking advantage

of the relative ease of generating numbers with an exponential decay.

The EMC technique, as the name suggests, is a Monte Carlo technique

and as such makes heavy use of pseudo random numbers. Throughout this

work we use the 32 bit Mersenne twister algorithm [47] as the source of

random numbers. This random number generator has very good properties

showing long correlation times, no discernible biases and passes most, but

not all, of the “Diehard Tests”2

2.1.2 Ensemble Monte Carlo & the Classical Picture

The ensemble Monte Carlo technique is normally described in two ways,

firstly as a solution to the Boltzmann transport equation,

df~k
dt

+
1

h̄
∇~kE~k · ∇~rf~k︸ ︷︷ ︸

Dispersion Relation

+
F

h̄
∇~kf~k︸ ︷︷ ︸

Classical Forces

=

(
df~k
dt

)
coll

, (2.1)

and secondly as classical motion plus scattering. It is worth noting the

extent to which the two explanations are equivalent. There are a few ways in

which the classical model plus scattering may lead to a misunderstanding of

the actual physics being considered, the most obvious and important is the

dispersion relation, which gives rise to a mass like term, provided the band

structure is sufficiently parabolic and the energies involved are small enough,

the use of a classical mass can be justified, although we should of course

use the effective mass not the normal electron mass (For Gallium Arsenide

2A selection of very strict tests for randomness of a set of data [48].
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any error, due to non parabolicity, is small and in this work we neglect

any corrections beyond the parabolic band structure). Secondly Umklapp

processes would not be apparent from a classical picture but are, in principle,

present in any periodic system although in the case of Gallium Arsenide at

or close to room temperature they are vanishingly rare. Additional issues

with the classical picture are introduced if the energy required to create a

electron-hole pair is readily available, again in GaAs at the temperatures we

are considering this is a non issue.

The classical picture will always struggle to cope as we head into the

degenerate regime, in that case though the overall approach is weakened

but some attempt can be made to cope with degeneracy one approach is

outlined in Chapter 6 but otherwise is sufficiently robust to give a good

intuitive feel of the system.

2.1.3 Structure of this document

In this chapter we will go on to discuss the implementation of the various

aspects of the ensemble Monte Carlo technique, as implemented in our sim-

ulations. The next section deals with the calculation of the scattering rates

for the various important scattering mechanisms in n-doped Gallium Ar-

senide, starting with the theoretical framework for calculation of scattering

properties including the Born Approximation (Section 2.2) then moving onto

the scattering rates, and typical scattering angles, for each of the scattering

processes (Section 2.3). This is followed by a section on the deterministic

motion, including how we handle both the momentum updates (using the

velocity verlet algorithm) and a discussion of the field present that causes

the individual spins to precess due to the presence of a spin-orbit field (Sec-

tion 2.4). Additional notes on implentation are also present in Chapter 3
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where we discuss some of the fine details of how we implement the electron-

electron scattering, and how that compares to previous work, and how we

carry out the spin evolution (using the Crank-Nicoloson scheme).

In Chapter 6 we discuss some approaches to further improving how we

the electron-electron interaction is handled, of particular importance here is

the classical electrostatic approach which replaces the electron-electron in-

teraction via a scattering mechanism, this technique shows excellent agree-

ment over a wide range of impurity doping densities and is the method we

recommend for general use, this approach had not previously been imple-

mented due to extreme computational cost, and we describe and approach

for minimising this issue.
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2.2 Scattering Theory

Scattering theory has an important history in the explanation of many phys-

ical phenomena. Although to some extent known (at least for classical the-

ory) for some time, modern scattering theory was developed in the early

days of quantum theory [49], and is referred to throughout as conventional

scattering theory. The scattering mechanisms for our simulation can in

principle be taken from Ab Initio, experimental or conventional scattering

theory. Here we use conventional scattering theory to derive appropriate

scattering rates and the corresponding anisotropy in the scattering angle.

Conventional scattering theory relies on two key results from quantum me-

chanics, Fermi’s golden rule and the Born approximation, although higher

order approximations can be invoked when necessary. In both cases these

are low order approximations that assume that the scattering is small. The

energies obtained by carriers in a typical semiconductor device are suffi-

ciently low we need only consider non-relativistic scattering theory, which

makes solving the problem significantly simpler computationally.

2.2.1 Total Scattering

The total scattering is the characteristic quantity in any scattering process.

It is defined in terms of a scattering cross section, σtot, which represents

the total chance of scattering into any state. The exact definition arises

naturally from the way scattering experiments are conducted. We consider

a well collimated beam of particles of a known energy, E, directed at a

target containing a macroscopic scale sample of scattering centres (generally

particles, but it could equally be a material with a known defect density).

σtot is determined, experimentally, by the placing of suitable detectors in

the path of the transmitted beam. The measured intensity compared to the
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initial intensity gives a definition of the total scattering cross section

Fi
Ft

=
nσ

A
, (2.2)

where Fi and Ft are the incident and transmitted flux respectively, n is the

number of scattering centres and A is the area of the beam [50]. The idea of

a scattering cross section is that of an area, per scattering centre, that if the

incoming particle passes inside it will cause it to scatter with the scattering

target (classically a hard sphere approach which has particles scattering if,

and only if, they contact the surface of the sphere). Although this idea

has a good connection with classical scattering theory, caution is needed in

applying it quantum mechanically. Of particular note is that the scattering

rate can vary strongly with the energy. We are normally more interested in

the differential cross section, dσ
dΩ , which represents the scattering rate into

a given solid angle Ω [51] as this allows us to go beyond merely knowing if

a particle will scatter, by determining how much it will scatter.

2.2.2 Fermi’s Golden Rule

Fermi’s golden rule is a fundamental result of quantum mechanics, it allows

the calculation of the transition rate from an eigenstate3 of the quantum

system to a continuum of states, due to a perturbing field,and is so named

because Fermi referred to it as one of the golden rules of quantum theory.

Assumptions

Consider a potential of the type V ′ = V (x) + v(x, t) where v(x, t) is a weak

perturbing potential Assuming the perturbing potential is switched on at

3More strictly from an eigenstate state or from a very narrow range of practically
indistinguishable eigenstates states, as the derivations rely on results based on a density
of states argument
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t = 0 and then ceases to change, until it is switched off, and that before

the potential is “switched on” the wave function is in an eigenstate state

of energy Ek. Then providing that the potential is weak enough, or it is

switched on for a short enough time, any transition is minimal. Writing the

unperturbed wavefunction as

Ψ(x, t) = e−iEt/h̄ψ(x), (2.3)

where ψ are the solutions of the time independent Schroedinger equation for

the unperturbed system, we can write the perturbed wavefunction as

Ψ′(x, t) =
∑
n

an(t)ψ(x). (2.4)

Derivation

Substituting into the Schroedinger equation for the perturbed system gives

∑
n

an

[
− h̄2

2m

∂2Ψn

∂x2
+ VΨn − ih̄

∂Ψn

∂t

]
︸ ︷︷ ︸

Unperturbed Term

+
∑
n

anvΨn − ih̄
∑
n

da

dt
Ψn = 0,

(2.5)

the first term of which is zero as it is just the Schroedinger equation for the

unperturbed system. If we then multiply by the complex conjugate of some

Ψm and integrate over all space this reduces to

∑
n

ane
−i(En−Em)t/h̄

∫
Ψ∗mvΨndτ = ih̄

∑
n

dan
dt

∫
Ψ∗mΨndτ. (2.6)

As Ψm and Ψn are orthonormal this can be further reduced to

∑
n

ane
−i(En−Em)t/h̄

∫
Ψ∗mvΨn = ih̄

dam
dt

. (2.7)
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If we start in the eigenstate state, k, then at t = 0 we have ak = 1 and for a

sufficiently small perturbation at any time later ak ≈ 1 and an � 1 for any

n 6= k

dan
dt

= − i
h̄
ei(Ek−En)t/h̄vnk, (2.8)

where vnk is
∫

Ψ∗nvΨkdτ . So

an(t) = vnk
1

∆E

[
e−i∆Et/h̄ − 1

]
, (2.9)

where ∆E = Ek − En. The physically meaningful quantity is a∗nan, as it

represents the probability of finding the particle in the new state, is

a∗n(t)an(t) =
v∗nkvnk

h̄2

sin2
(

∆E
2h̄ t
)(

∆E
2h̄

)2 . (2.10)

Note that the energy range in which we expect to find a transition de-

creases with increasing time, due to the
(

sin(X)
X

)2
term. This gives the

occupancy of any state n 6= k and we can define a probability of transition

to any state as Pk ≡
∑

n6=k a
∗
nan

If we consider the special case of scattering to a continuum of states

defined by a density of states, ρn and that ρn and vnk vary slowly then we

get

Pk = v∗nkvnkρn
2

h̄
t

∫ ∞
−∞

sin2(X)

X2
dX, (2.11)

where X = ∆Et
2h̄ And we have, by integration, Fermi’s Golden Rule [52]

Rk =
2π

h̄
v∗nkvnkρn, (2.12)

where Rk is the rate of transition from the state k.
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2.2.3 Born Approximation

The Born Approximation is a first order perturbation approach to scattering

theory. It is this approach that we employ to derive the scattering rates and

the form of the anisotropy, where relevant, for the scattering mechanisms.

If we consider a general potential U(r) with a typical magnitude of |U |

and typical length a acting on a particle of mass (or reduced mass) m and

velocity v then the Born approximation is valid if either [53]

|U | � h̄2

ma2
, (2.13)

or

|U | � h̄v

a
. (2.14)

That is the Born approximation holds for sufficiently weak potentials, or

for sufficiently fast particles in any potential. The first of these conditions

is equivalent (for an attractive potential) to saying that the potential is

not strong enough to allow the formation of bound states. This is a not

unsurprising condition as the formation of bound states would lead to the

particle having a chance of spending some time bound to the attractive

potential delaying the scattering.

Consider a beam incident on the region of scattering, represented as a

plane wave

Ψ(r) = Aei
~k~r, (2.15)

where k = mv
h̄ and A is required for normalisation, if we assume the wave is

contained in a Volume L3 then A = L−
3
2 .

As the potential is usually centrosymmeteric we naturally want to use

spherical polars with the potential centred on the origin
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Ψ(r) = Aei
~k~r cos θ, (2.16)

or

Ψ(r) = Aei
~k·~r, (2.17)

and a particle travelling in a different direction with velocity v′

Ψ(r) = Aei
~k′·~r. (2.18)

The problem is in essence to find at what rate does the potential V (r)

cause the transition from ~k to ~k′ As the k′ states are essentially continuous

we can apply Fermi’s golden rule (2.12) Assuming the particle is initially in

the eigenstate state k and that transition is rare this becomes

Rk =
2π

h̄
V ∗~k′~kVk′~kρ

~k′, (2.19)

where ρ~k is the density of states of k over a small solid angle, dΩ =

2π sin(θ)dθ, and V~k′~k is the matrix element of the potential between ~k and

~k′ that is

V~k′~k =

∫
V (r)ei(

~k′−~k)rdτ, (2.20)

and

ρ~k =
mL3

∣∣∣~k∣∣∣
8π3h̄2 dΩ. (2.21)

Defining S(θ) to be the scattering per unit time into a state with an

angle different by θ, and using the solid angle dω we have

S(θ) =
mL−3

∣∣∣~k′∣∣∣
4π2h̄3 , (2.22)
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using

S(θ) =
dσ

dΩ
I, (2.23)

where I is the incident flux. We can finally write the Born Approximation

as [53]

dσ

dΩ
=
S(θ)

I
=

(
m

2πh̄2

)2

V ∗~k′~kV~k′~k. (2.24)

2.2.4 Linking Scattering Rate to Scattering Cross-Section

Most scattering calculations rely on the concept of a scattering cross section

(σ), discussed later, equivalent to an area in which the particle will undergo

scattering. For ensemble Monte Carlo though, a scattering rate, a typical

rate of scattering events, is more useful as it can be more readily imple-

mented in our simulation. For the two ideas to be comparable a number of

conditions must be met. The media must only slowly vary in concentration

of scattering centres and the cross section must be much smaller than the

typical distance between scattering centres. In that case we can define Γevent

[53] to be the typical time between scattering events, where

Γevent =
nvσ

8π3
, (2.25)

here n is scattering centre number density, v is the particle velocity and σ

is the total scattering cross section. We can combine numerous different

scattering events to give a total Γtot = Γ1 + Γ2 + . . . as the rate of any

scattering happening to an individual particle.
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2.3 Important Scattering Mechanisms in GaAs

While a large number of scattering mechanisms are present in real GaAs

systems, such as neutral impurity scattering [54], scattering to higher bands

[35] and interface scattering [55]. We model only the more important mech-

anisms (polar optical phonons, acoustic phonons, ionised impurities and

electron-electron scattering), the others play only a small role, or are impor-

tant under conditions not studied here (such as in the presence of a strong

applied field). Of these the electron-electron scattering is the only event that

scatters simultaneously two particles in our simulation and as such plays an

especially important role in the model, it should be noted here that the

careful handling of the electron-electron scattering is detailed in Chapters 4

& 5 where we eventually conclude that the best approach is not a scattering

approach.

2.3.1 Ionised Impurities

The ionised impurities (both the doping material and the free electrons)

can be simulated in two distinct ways. Firstly, scattering can be considered

using the quantum mechanics already discussed. To do this we must make a

number of assumptions about the nature of these particles, for example, we

treat them as being uniformly distributed throughout the system and that

they are effectively screened by the presence of the other charged particles.

The other approach is to consider the electron population as a classical

system feeling classical electrostatic forces, this approach is discussed in

detail in the later half of Chapter 5. Here we introduce the approach taken

when treating it as a scattering event, the results of which are detailed in

Chapter 4.
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Yukawa Type Screening

The scattering rate for a long ranged interaction, becomes infinite, which is

clearly unphysical. To prevent this we introduce a screened interaction, this

originates in the screening played by the electron population which reduces

the long range Coulomb effects felt in the device. The simplest form of

the electronic screening is a Yukawa type (screened Coulomb) approach [56]

which has the form

Vy(r) = −g2 e
−λr

r
. (2.26)

This approach depending on the value for λ, the screening length, includes

a large range of possible screening types including a Debye type screening,

that we introduce here, an alternative more detailed screening calculation is

presented in Chapter 5.

Debye Screening

In the classical, non-degenerate limit (low doping densities [57]) we would

expect any form of the screening to approach the Debye limit. The Debye

limit is derived assuming weak fields and assuming the electron gas can be

treated as a continuum over the length scales considered. Starting with

Poisson’s equation [58],

∇2φ = − ρ

ε0εb
, (2.27)

where ρ is the excess charge (ρ = (ni − ne)e). Here we will assume that

the ionized impurities play no role in the screening, as they are stationary.

Considering a localised potential then we would expect that a long way from

it the electron density would be in equilibrium, that is ne = ni = n∞. Also

assuming that the electron population is in thermal equilibrium and that the

total of excess electrons is much smaller than the total number of electrons
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then we also have (from the Boltzmann distribution i.e. p(x) ∝ Ex
kBT

, i.e.

the probability of occupation of a given microstate of energy E decays for

increasing energy, at a given temperature.)

ne = n∞ exp

[
eφ

kbT

]
. (2.28)

Substituting into Poisson’s equation we get

∇2φ =
en∞
ε0εb

(
exp

[
eφ

kbT

]
− 1

)
. (2.29)

Linearising the above expression by assuming that eφ
kbT
� 1 then we get

∇2φ =
e2n∞
ε0εbkbT

φ+O(φ2), (2.30)

which has exponential solutions and therefore allows us to define a distance,

λ2
D = ε0εbkbT

e2n∞
[59], the Debye length over which φ is screened. For this

expression to be reliable the electron population must behave as a non-

degenerate gas (EFermi � kbT ) and the electron population must behave as

a continuum; i.e. there must be a large number of particles over a sphere

the size of the Debye length. We can define the plasma parameter [60],

ND = 4
3πλ

2
Dn∞, to test this which must be large for the Debye screening

to have validity. Practically in our simulations for much, if not all, of the

range the later criterion is not met as strongly (if at all) as one would hope

(See Figure 2.1) and further corrections are needed to compensate for this.

In addition at higher densities the non-degeneracy approximation does not

hold and corrections must be made for this, one approach to handle this is

outlined in Chapter 5.
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Figure 2.1: The number of electrons per Debye Sphere, against impurity
density. For the Debye approximation to be valid we would expect this
to be much greater than one, which it clearly isn’t. This will impact the
reliability of this screening approach. An alternative is outlined in Chapter
5. It should be noted that this is likely to result in an underestimation of the
screening length, and hence an underestimation in the impact of electron-
electron interactions.

2.3.2 Electron-Electron Scattering

The electron-electron scattering is, to first order, the same as the scattering

of ionised impurities4, in practise the form of the scattering rate and the bias

in the scattering angle are the same but the exact values of the parameters

differs as both particles can be moving in the laboratory frame. It is useful

to define the closing velocity, vc, as the difference between the velocities of

the two particles and to use the energy in the centre of mass reference frame

and the reduced mass (m = m1m2
m1+m2 , here m1 = m2 = m∗e) instead of the

electron mass.

2.3.3 Scattering From a Yukawa type potential

For the assumption of a Yukawa potential we can derive the scattering rate,

and resultant angular distribution. Given the general potential of the form,

4As noted in the Born Approximation, the scattering only depends on the magnitude
not the sign of the potential
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V (r) = g
exp (−λr)

r
, (2.31)

where g = q1q2
4πε0εr

, λ is the screening length and r is the distance between

the two particles. We wish to find

f (θ) = −1

d

∫ ∞
0

V (r′) sin (r′) dr′, (2.32)

where f (θ) = Vkk′ and d = 2k sin θ
2 . Integrating gives

f (θ) = − 2mg

h̄2 (λ2 + d2)
. (2.33)

Producing an overall scattering rate of

dσ

dΩ
=

4mg2

h̄4 (λ2 + d2)2 , (2.34)

which is the well known result for scattering of the Yukawa potential

[61].

2.3.4 Phonon Scattering

GaAs at finite temperature has two notable phonon types, leading to two

distinct scattering events. The first, polar optical phonons account for the

heat transfer between the lattice and the carriers. The second type, acoustic

phonons scatter elastically5 with the carrier population and as such are not

responsible for thermalisation. Here we assume that the phonons are well

thermalised and as such obey the Bose-Einstein [63] distribution, that is

fB−E(E) =
1

e

(
E−µ
kBT

)
−1
. (2.35)

5Any non elasticity is only significant at low temperatures, less than 100 K [62]
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For phonons the energy is E = h̄ωq so the expression becomes

1

N0(ωq)
= e

(
h̄ωq
kBT

)
− 1, (2.36)

as the chemical potential, µ, is zero.

Polar Optical Phonons

Polar optical phonons (POP) are the most important phonon scattering as

they are responsible for the thermalisation of the electron population [64].

Thermalisation occurs by the electron population absorbing and emitting

polar optical phonons, in thermal equilibrium the emission and absorption

rates are equal, even in the presence of other thermalising interactions, in

accordance with the principle of detailed balance [65]. By using the Born

approximation it can be shown that the scattering rates are [64]

Γabs(E) = C
N√
E

ln

(√
E + h̄ωPOP +

√
E

√
E + h̄ωPOP −

√
E

)
, (2.37)

Γemi(E) = C
N + 1√

E
ln

( √
E − h̄ωPOP +

√
E

−
√
E − h̄ωPOP +

√
E

)
, (2.38)

for the absorption and emission processes. C is defined as

C =

√
m∗e2ωPOP

16
√

2π2ε0h̄

(
1

ε∞
− 1

εb

)
. (2.39)

The POP scattering is not uniform in the angle to the unscattered motion

(θ) and the angle can be chosen using the non uniformity

cos(θ) =
1 + δ − (1 + 2δ)r

δ
, (2.40)
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where r is a uniformly chosen random number in the range [0, 1) and

δ =
2
√

(E ± h̄ωPOP )(√
E −

√
(±h̄ωPOP )

)2 , (2.41)

where + and − refer to the absorption and emission of polar optical phonons

respectively [64].

Acoustic Phonons

For acoustic phonons the interaction is nearly perfectly elastic and as such

there is only one type of acoustic phonon event. Making use of the known

distribution of acoustic phonons and assuming a parabolic band for the

electrons we get [64]

Γac(E) =

√
2 (m∗)3kBTE2

1

πh̄4v2
sρm

√
E. (2.42)

It should be noted that this mechanism has an unbounded scattering rate

for high energy. To handle this we implement a maximum energy of thirty

times the thermal energy; any instances of a particle exceeding this energy

are recorded and output as a warning on the reliability of the code, such

occurrences are extremely rare (occurring in less than 1% of all stable runs,

in which the initial energy of the particles is equal to or less than the phonon

thermal energy).
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2.4 Deterministic Motion

2.4.1 Momentum Evolution

Velocity Verlet Algorithm

To carry out the momentum and position evolution we use the velocity Verlet

algorithm. For notational simplicity here we treat the system as having one

position degree of freedom, x, but the method is trivially generalised to the

full 3D system. Starting with Newton’s equation of motion

d2x

dt2
=
F (x)

m
. (2.43)

We can define f(x) = F (x)
m and using a time step ∆t, let

tn = n∆t, (2.44)

xn = x(tn) (2.45)

and

vn =
dxn
dt

. (2.46)

The Verlet algorithm is a centred difference method and uses the ap-

proximations that

dx

dt
=

(xn+1 − xn − 1)

2∆t
, (2.47)

and

d2x

dt2
=

(xn+1 + xn−1)− 2xn
2∆t

. (2.48)
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This allows us to write

xn+1 = 2xn − xn−1 + (∆t)2f(xn). (2.49)

This can be solved iteratively, unfortunately this method does not give

us easy access to the instantaneous velocity. It can be obtained but only

after the fact, as the method does not explicitly calculate the velocity at

each time step. As we need the velocity to calculate the scattering rates we

have to use the (mathematically equivalent) modified velocity Verlet scheme

[66]

xn+1 = xn + ∆t

(
vn + ∆t

f(xn)

2

)
(2.50)

and

vn+1 = vn +
∆t (f(xn+1 + fxn)

2
. (2.51)

An additional advantage of this scheme is that it is self starting, that is

we only need the values of xn and vn to calculate the values at the next step.

This in turn means that it is very robust to the effects of any scattering,

which induces abrupt changes in the velocity.

2.4.2 Spin Evolution

The electron spins undergo Larmor precession around the effective field [7].

This precession has a frequency of ω = γHeff , where γ is the gyromagnetic

ratio and Heff is the effective field. This field may have a number of origins

including externally applied fields, interactions with a magnetic site and the

velocity dependent spin-orbit interaction i.e.

Heff = Happlied +HDresselhaus + . . . . (2.52)
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The precession around different fields, drives the spin depolarisation of

the electron population, as overtime the spins come to have randomised spins

due to precessing around different fields. As such the most important terms

in determining the spin depolarisation are those that vary from electron

to electron. An applied magnetic field (that does not vary dramatically

spatially) should make little difference as each electron would precess in the

same way. As such the spin-orbit interaction is the most important driver

of spin depolarisation as each particle will experience a different effective

field, due to having very different velocities. The implementation of this

precession is detailed in Chapter 3.

Dresselhaus Interaction

The Dresselhaus mechanism is the dominant spin orbit coupling in III-V

compound semiconductors, such as GaAs. It arises due to the lack of crys-

tallographic inversion symmetry in the material. The complete derivation is

beyond the scope of this work6 but an outline of the method is given here.

Consider the Pauli equation for a single electron in a crystal lattice

[
~p2

2m
+ Vl −

eh̄

4m2c2
(∇V × ~p) · ~σ

]
[Ψ] = E(Ψ), (2.53)

where Vl is the lattice potential arising from the electrostatic potential.

Since the lattice potential is periodic the wavefunction should have a Bloch

form, that is

Ψ = eik·r (uk (r)) . (2.54)

By making use of a number of group theoretical results and assuming the

6Readers are directed to the complete derivation by Dresselhaus [36]
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px,py and pz commute, it can be shown that the lack of inversion symmetry

results is a spin-orbit interaction [36] of

HD = a42σ · κ, (2.55)

where

κx =
1

h̄3

[
px
(
p2
y − p2

z

)]
, (2.56)

κy =
1

h̄3

[
py
(
p2
z − p2

x

)]
, (2.57)

κz =
1

h̄3

[
pz
(
p2
x − p2

y

)]
, (2.58)

where x, y, z are the principle crystallographic directions [7]. Some care is

needed in handling the strength of the interaction (the a42 term), as number

of experimental [67] and theoretical studies [68] have been conducted to find

the correct value for this term with a wide variety of results, ranging typically

from 8.5 to 35 eVÅ
3
. In order to obtain a reasonable result we fit our value

of a42 by determining the low density depolarisation time and comparing to

experimental data in this limit, more details in the next chapter.

2.5 Experimental Results

Throughout this work we compare our results to experiments carried out by

Oertel, Hübner and Oestreich [69]. In particular we compare to the exper-

imental results of the variation of the depolarisation time against density

(See Figure 2.2) and temperature (See Figure 2.3), the figures are included
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Figure 2.2: The first figure from [69]. This shows the variation of the depo-
larisation time with impurity density. Comparison to this figure is used in
Chapters 3, 4 & 5, as a test of the validity of our simulation. As we have a
free parameter (the spin-orbit strength) we also use this figure to determine
the correct value of the spin orbit parameter, a42. Reprinted with permission
from “High temperature electron spin relaxation in bulk GaAs” [69]

here for completeness7. The comparison to the experimental results is of

particular significance in Chapters 4 and 5, where we show that for lower

densities, a basic scattering approach adequately reproduces the experimen-

tal system (Chapter 4), but for higher densities a more detailed model is

needed (Chapter 5).

2.6 GaAs material properties

In our simulations throughout our work we use the following values for the

material constants in GaAs [70].

vs is the longitudinal sound velocity, a is the lattice constant. ωLO value

7Reprinted with permission from “High temperature electron spin relaxation in bulk
GaAs” [69]. Copyright 2008, AIP Publishing LLC
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Figure 2.3: The second figure from [69]. This shows the variation of the
depolarisation time with electron temperature. The simulation data is com-
pared to this figure in Chapter 4, as part of the analysis of the basic model
of electron-electron scattering presented in Chapter 3. Reprinted with per-
mission from “High temperature electron spin relaxation in bulk GaAs” [69]

GaAs Parameters Experimental Values

E1 (eV ) 7.0

εb 12.90

ε∞ 10.92

ρm (Kg/m3) 5.36× 103

vs (cm/s) 5.24× 105

a (Å) 5.6533

ωLO (Thz) 53.7139

ωLO/ωT0 1.07

Eg(eV) 1.519

EXg (eV ) 1.981

ELg (eV ) 1.815

∆so (eV ) 0.341

α (eV )−1 0.61

m/me 0.067

me (Kg) 9.1× 10−31

Table 2.1: Bulk GaAs Parameters
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holds for the long wavelength limit. m is the electron effective mass at the

bottom of Γ valley. The energy gaps are measured at T = 300 K.

2.7 Statistical Terms

Throughout this work we use a number of statistical terms (See Table 2.2),

they are included here with formula and a description of the quantity they

define [71] for completeness. The terms are calculated from one or more

data sets with N elements, donated xi and yi, any summation is over the

entire set. Sets denoted with a capital i.e. Xi, are sorted numerically in

ascending order.
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Term Explanation Mathematical Definition

Mean A measure of the typical, or
average, value

µ =
∑
x

N

Mode The most common value in
the data set

Median The central value XN
2

or 1
2

(
XN−1

2
+XN+1

2

)
Standard Deviation The spread of the data σ =

√∑
x2

N − µ2

Standard Error The typical error in the calcu-
lation of the value of the mean

σ√
N

Skewness The extent to which the data
is likely to fall above, or below
the mean

∑(x−µ
σ

)3

Kurtosis A measure of ‘peakedness’ of
the distribution

∑ (x−µ)4

σ2 − 3

Pearson’s Product Moment
Correlation Coefficient

A measure of the linear corre-
lation of two data sets

∑
(xi−µx)(yi−µy)

σxσy

Table 2.2: Statistical Terms

It should be noted here that the definition given for the kurtosis is strictly

the excess kurtosis, the measure behaves the most reasonably of the various

measures of kurtosis, the subtraction can be considered a correction to en-

sure the normal distribution has a kurtosis of zero, a property that is useful

for multivariate calculations.

2.8 Conclusion

In this chapter we have discussed the ensemble Monte Carlo to technique,

to summarise each electron is treated as behaving classically in any applied

field plus scattering mechanisms that introduce some of the quantum me-

chanics(See Figure 2.4). The probability of scattering for each particle at

any given time depends on its momentum, to make calculation easier we in-

troduce the concept of “self scattering”. self scattering is not a real process

and is simply the result of us assuming that the scattering rate is always
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Initialise particle po-
sitions, momenta etc.

Calculate time of
next scattering

t next = t curr + ln(1−r)
ΓtotN

Carry out scattering

Update all particles
deterministically

End

t > t update

t > tmax

Figure 2.4: General Method Flowchart. Note r is a uniform random number
in the range [0, 1) using 1− r instead of r allows the calculation of ln(r) for
all possible r.

the maximum possible scattering rate (See Figure 2.5). As a result each

particle has the same chance of scattering at any given time with the time

from one scattering to the next being given by a simple exponential decay.

When a particle is chosen for scattering we evaluate its real scattering rate

of scattering based on the momentum of the particle and scatter it with a

probability equal to the ratio of the actual scattering rate to the assumed

maximum scattering rate. During scattering the momentum of the particle

scattered is updated. At frequent time steps we also update the momentum

of the particles, using the velocity Verlet technique and the spin part of the

electron wavefunction (using a method described in the next chapter).
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Randomly select
scattering particle(s)

Update spin parts
of the electron(s)
to the (current
scattering) time

Choose scattering
mechanism with
pi ∝ Γi( max)

Calculate p = Γi(E)
Γi( max) .

Generate ran-
dom number, r.

Determine appro-
priate θ, update

particle(s) momenta

“Self scattering”. No
update to particle
momenta required

Scattering complete
return to main

r > p r < p

Figure 2.5: The process for carrying out scattering. The nature of “self
scattering” allows us to assume at all times that Γ = Γmax. This allows
us to generate the next time of scattering without evaluating the actual
scattering rate for each electron.
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Scattering Type Scattering Rate

POP (emission) Γemi(E) = CN+1√
E

ln
( √

E−h̄ωPOP+
√
E

−
√
E−h̄ωPOP+

√
E

)
POP (absorption) Γabs(E) = C N√

E
ln
(√

E+h̄ωPOP+
√
E√

E+h̄ωPOP−
√
E

)
Acoustic Phonons Γac(E) =

√
2(m∗)3kBTE2

1

πh̄4v2
sρm

√
E

Ionised impurity scattering Γei(E) = 4
√

2πnee4

(4πε)2
√
m∗E2

β

√
E

1+4E/Eβ

Electron-Electron Γee(E) = 4
√

2πnee4

(4πε)2
√
m∗
2
E2
β

√
E

1+4E/Eβ

Table 2.3: Scattering rates in GaAs

2.8.1 Scattering Rates

The important scattering mechanisms in n-doped Gallium Arsenide, in the

absence of a strong applied field, are polar optical phonon (absorption

and emission), acoustic phonon scattering, doping impurity scattering and

electron-electron scattering. For completion the relevant scattering rates,

shown earlier, are reproduced here (See Table 2.2).

Note that for the electron-electron scattering the energy and momentum

are calculated in the centre of mass of the two electrons.

This technique allows us to study the dynamics of a large number of

particles whilst still retaining sufficient detail of each individual particle to

produce accurate results. We consider in Gallium Arsenide the important

scattering mechanisms to be polar optical phonon scattering (both absorp-

tion and emission), acoustic phonon scattering (which we treat elastically),

ionized impurity scattering and electron-electron scattering (more detail on

how electron-electron scattering is dealt with in the next chapter). The

electron spin’s are assumed to feel a spin-orbit interaction from the Gal-

lium Arsenide lattice, which is described by the Dresselhaus field. This field

varies due to electron momentum and as such is responsible for the spin

depolarisation and dephasing (both discussed in detail in later chapters).
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Chapter 3

Model Novelties and

Verification

3.1 Introduction

This chapter consists of two key parts, firstly it details some of the specific

numeric and computational approaches required to implement the method

described in Chapter 2 and secondly it shows verification that the model

behaves as described, by showing that the model behaves in a physically

reasonable way, in particular confirmation that the model correctly ther-

malises the electron population.

The novel aspects of our model section addresses three key points, firstly

the introduction of the electron-electron scattering as a local phenomenon.

Here we are making a distinction between the local scattering of electrons

off one another and the long range collective behaviour [7], which could be

included in a Poisson type manner1. Secondly we introduce an alternative

numerical integration step for the spin part of the electron wavefunction,

1Chapter 5 does detail an approach to treat the full classical electrostatic electron-
electron and electron-impurity interactions.
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and finally we discuss methods of calculating the time taken for the electron

spin polarisation to decay.

3.2 Novel Aspects of our model

3.2.1 Localised Electron-Electron Scattering

The scattering approach taken throughout this work is derived using a plane

wave basis set, as such they give no information about the local nature of the

scattering. From classical considerations would not expect the scattering to

happen notably over an unlimited range, or at least very long ranges should

contribute relatively little. As we cannot be certain of the exact nature of

the distance dependence of the scattering rate we introduce an arbitrary

limit to the scattering distance. Here we choose the screening length as

the most appropriate distance, however adjusting the distance makes little

difference to the overall properties, provided that the distance is not too

short that electron-electron scattering is suppressed (see Figure 3.1).

A natural approach to allowing scattering over only particles within a

certain distance would be to implement a Verlet neighbour list. In the Ver-

let neighbour list we start by compiling a list for each particle of the other

particles within some distance [72]. This distance, the so called “halo” must

be greater (often much greater) than the maximum distance of any interac-

tion. Once the list is built we can treat the interactions only between those

particles in each others neighbour lists. We have to update the neighbour

lists when a particle has travelled far enough to move from outside the list

to within the interaction distance. Performance is optimised by a suitable

choice of the halo distance such that the number of particles is small whilst

ensuring that updates to the lists are rare. This method is good if the up-
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dating to the lists, for N particles, (which is O(N2)) is much rarer than

reading the lists, and can be optimised by careful choice of the halo be at

best O(N
5
3 ) [72]. In our case though the typical distance an electron trav-

els between electron-electron scatterings is comparable to, and may even

exceed, the screening length.

To more efficiently treat the localised electron-electron system we create

a grid, with size equal to the maximum distance of scattering. Each site

in the grid contains a doubly linked list of particles in the grid site. The

number of potential scattering events for each grid (calculated as the number

of particles in the grid multiplied by the sum of all particles in it and all

neighbouring grid sites) is then calculated for each grid site (See Figure 3.2).

When a scattering event is determined to occur we select a random

grid weighted by the number of potential scattering events for that grid

site. Once a grid is chosen we then choose the two particles involved in

the scattering, one from the grid site itself and one chosen uniformly from

the remaining particles in that grid site and all neighbouring grid sites. If

the distance between the two particles is less then the screening length we

accept the two particles and continue with the scattering event, otherwise

we start the process again choosing a new random grid.

Performance Notes - Choice of grid site

The naive solutions to the choice of grid perform poorly as the number of

particles in each grid fluctuates rapidly. For example we may make a cu-

mulative summation of the total number of possible events for the grid sites

in some order. We could then generate a random number up to the total

for all grids and efficiently select the correct grid (in O(logN) [73] time,

by implementation of a skip list), however the setting up of the cumulative

58



Figure 3.1: The depolarisation time depends on the maximum distance al-
lowed for electron-electron scattering. Around the Debye length it appears
to only be weakly dependant, although as we go to significantly lower scatter-
ing lengths we suppress the scattering rate as particles able to do scattering
can become quite rare, causing a drop in the depolarisation time. Here we
use averages of five runs of 50, 000 particles with n = 50 × 1015 cm−3 and
T = 300 K.

summation is an O(N) operation, worse the typical time between required

updates is proportional to the number of grid sites, making the overall al-

gorithm O(N2 logN)

We instead implement an alternative approach by maintaining the largest

weighting of any grid. To choose the suitable grid we randomly select a non

empty grid site, and choose to keep it with a probability of M
Mmax

where M

is the number of particles in the grid, and Mmax is the largest such value at

the current time in the simulation. This overall requires O(Mmax
M ) iterations,

which is very weakly, although non trivially, dependent on N (See Figure

3.3). As a result overall the choice of a site is almost independent of N,

though of course the number of scattering events scales linearly with N.
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Figure 3.2: A 2D representation of our grid. Each grid site contains a
number of particles. The weighting for each grid is W = M(M + A − 1),
where M is the number of particles in the grid and A is the number in
neighbouring grid sites; for the middle grid in the above figure the weighting
is 3× (7 + 3− 1) = 27. This represents the number of possible pairings any
particle in our grid could have, including pairings with nearest neighbour
boxes.

Figure 3.3: The computational cost of a single electron-electron event is not
entirely independent of N. For large N it appears to converge to a limiting
value.
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Comparison to other methods of handling the electron-electron

interaction

In general other simulations have tended to ignore the issue of electron-

electron scattering, this has been justified (when the charge transport prop-

erties are of interest) by the statement that as the electron electron scatter-

ing conserves momentum and total energy it cannot impact the important

measures of the performance of a device, such as the mobility. In spintronics

systems where the rate of scattering strongly impacts the performance of a

device we certainly do not have that luxury and some attempt to include

electron-electron scattering has been required, however it has generally been

poorly treated. The major difficulty is in a method for choosing appropriate

pairs of particles, which in practice usually has meant that a single parti-

cle is chosen as a primary scatterer and then a second particle is chosen.

Here we briefly outline a few of the alternative approaches to choosing that

particle, and the reasons we have for discarding them.

• Electron chosen from local slice. This method, used in the previous

group model [74], splits the electrons into slices in one dimension.

Electron-electron scattering then happens within pairs of electrons

within the same slice, regardless of the distance between them. This

has a number of disadvantages, in that the apparent temperature in

neighbouring slices can drift significantly as the only thermal contact

is by the movement of electrons between them. It also has difficul-

ties with scattering between electrons a long distance apart in two

directions provided they are close enough in one direction.

• Electron chosen from thermal distribution [41]. In this method instead

of choosing a real second particle the relevant properties of the elec-
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tron are chosen from a thermal distribution, this method is extremely

efficient but results in the electron-electron scattering not conserving

momentum or energy, this causes the total energy to vary more than

would be usually expected and can be difficult to implement if the

device is not in thermal equilibrium.

• Electron chosen from all electrons [7]. This method functions much

like the above, with only one electron actually having its statistics

updated, however instead of choosing from the ideal thermal distri-

bution the second electron is simply a randomly chosen electron from

the entire population. As only one particle is altered this still does

not conserve momentum or energy, and cannot handle any tempera-

ture gradient within the device. It can perform better than a particle

chosen simply from the thermal distribution though, as it can han-

dle situations such as laser heating applied to the entire device, or an

electron population in thermal equilibrium at an unknown tempera-

ture (perhaps in response to the lattice being heated). This method

is the least troubling of all the alternatives to the method we propose

and as such the impact of it is briefly studied in Chapter 4 (Section

4.6).

In addition to scattering approaches to the electron-electron interaction

we can also consider non scattering based approaches. In Chapter 5 (Sec-

tion 5.3) we investigate the impact of replacing the electron-electron scat-

tering (and the electron-impurity scattering) with the interaction due to the

Coulomb forces, this approach is significantly better performing over a wider

range of densities but has significantly poorer performance.
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In comparison to the above methods our approach has all the benefits

of the first choice, conservation of momentum and energy, with none of

the drawbacks (no artificial imposition of a one dimensionality, no cut off

between areas), despite this the abrupt change between areas within one

screening length (that can all scatter with equal probability) and those out-

side it (which can’t scatter at all) is unrealistic and further work should be

undertaken to better attempt to improve the model, perhaps with a scat-

tering rate that decayed the further apart the electrons are.

3.2.2 Spin Evolution

The spin part of the electron wavefunction can be evolved in a number

of ways, here we show the Crank-Nicolson approach to be superior to the

more commonly used Heun scheme for time evolution of the spin part of

the electron wavefunction. The Heun scheme, used extensively in atomistic

magnetic simulations and an alternative derived using the Crank-Nicolson

approximation to Schroedinger Equation.

The Heun scheme is a predictor-corrector method, correct to second

order, which requires two renormalisations of the spin per time step. The

scheme is,

ỹi+1 = yi + ∆tf(ti, yi), (3.1)

yi+1 = yi +
∆t

2
(f(ti, yi) + f(ti, ỹi)) . (3.2)

Renormalising, immediately after calculation of ỹi+1 and yi+1 [75]. The

Crank-Nicolson scheme is a general scheme often used for the time evolution
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of the Schroedinger equation, if we start with the Schroedinger equation

Ĥ (t) Ψ(t) = ih̄
∂Ψ(t)

∂t
, (3.3)

then rearranging we have

Ψ(t) = e
i ˆH(t)t
h̄ Ψ(0). (3.4)

We can expand the exponential in two ways, by use of a Maclaurian expan-

sion;

Ψ(t = ∆t) ≈

(
1− i∆t

h̄
Ĥ −

(
∆t

h̄
Ĥ

)2
)

Ψ(t = 0), (3.5)

where 1 is the Identity matrix, and (by replacing ∆t with −∆t)

(
1 +

i∆t

h̄
Ĥ −

(
∆t

h̄
Ĥ

)2
)

Ψ(t = ∆t) ≈ Ψ(t = 0). (3.6)

These two forms can be combined to get the Crank Nicolson Scheme [76],

Ψ(t = 2∆t) =

(
1 +

i∆tĤ

h̄

)−1(
1− i∆tĤ

h̄

)
Ψ(t = 0), (3.7)

or by considering the time step to be half the length above

Ψ(t = ∆t) =

(
1 +

i∆tĤ

2h̄

)−1(
1− i∆tĤ

2h̄

)
Ψ(t = 0) +O

(
n3
)
. (3.8)

This scheme is correct to third order and conserves probability. Normally

it requires the computationally expensive matrix inversion, however in this

case we are solving for each electron spin independently we know that our

Hamiltonian is only a two by two matrix, so the inversion and multiplication

can be done analytically. We treat each electron as behaving independently,
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which reduces the wavefunction to a complex vector of order 2.

With an effective field hxx̂+ hyŷ + hz ẑ, we have a Hamiltonian of

H = µ

 −hz hx + ihy

hx − ihy hz

 , (3.9)

where µ is the gyromagnetic ratio of the particle.

The inverse of first term of the Crank-Nicolson scheme then is trivially

[77]

(
1 + iγĤ

)−1
=

1

h2
x + h2

y + h2
z

 1− iγhz γ(ihx − hy)

γ(ihx + hy) 1 + iγhz

 , (3.10)

where γ = µ∆t
2h̄ .

This gives a final scheme of

Ψ(t = ∆t) =
1

h2
x + h2

y + h2
z

 1− iγhz γ(ihx − hy)

γ(ihx + hy) 1 + iγhz

Ψ(t = 0). (3.11)

Compared to the Heun scheme this has a number of advantages. Firstly

it implicitly conserves length and energy, removing the need for the costly

renormalisation steps that are present in the Heun scheme due to it not

conserving spin length. The result is that per time step this approach runs

between 50% and 75% faster. The conservation of energy prevents the spuri-

ous damping to, or anti-parallel to, the applied field, seen in other schemes.

Secondly the Crank-Nicolson approach is a third order approach (i.e. the

error term is O
(
∆t3

)
) instead of the second order Heun, allowing larger

time steps (See Figure 3.4). Finally the Heun scheme, by working on the

classical projections, forces us to lose information about the relative phases.
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To convert from the wavefunction to the classical projections (for exam-

ple to determine the net direction and magnitude of the spins) we need to

do some additional calculation. The semi-classical approach to spin evolu-

tion (such as that employed by the Landau-Lifshiftz-Gilbert technique [78])

makes use of a classically well defined direction for the spin. This idea of a

well defined spin direction does have physical meaning even when consider-

ing a spin half particle. It is the direction that if we were to observe a spin,

in a direction, we would be guaranteed, in principle, to find it lying in (not

opposite to) that direction. The x, y and z components of the spin, for a

given wavefunction, are the expectation value of each component. That is

mx = 2(R(↑)R(↓) + I(↑)I(↓)), (3.12)

my = 2(R(↑)R(↓)− I(↑)I(↓)), (3.13)

and

mz = 2(‖ ↑ ‖2)− 1, (3.14)

where ↑ and ↓ refer to the up and down component of the spin and R and I

refer to the real and imaginary component, assuming that the wavefunction

is written in an sz basis. It should be noted, however, that the Crank-

Nicolson approach requires one extra double precision number per particle2

and as such increases the memory requirements by one third.

The use of a numerical approximation, rather than solving analytically is

simply required for efficiency. Due to the large number of trigonometric eval-

uations required to calculate the solution analytically, the Crank-Nicolson

approach is more than an order of magnitude faster, essentially removing

2Needing to store two complex numbers instead of three real numbers in the Heun
scheme approach, which works on mx,my and mz
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Figure 3.4: Plotting the change in angle against time step in a constant
field, we would anticipate a constant rate of change of the azimuthal angle,
for large time steps neither scheme is exact but the Crank-Nicolson behaves
much better than the Heun scheme, even though it is quicker to calculate.

this aspect of the code from being a limiting factor in overall performance

at any number of particles.

3.2.3 Calculation of the Spin Depolarisation Time

For even a relatively small number of particles (N=5,000) each depolarisa-

tion curve generally have apparently very low noise. However when consid-

ering numerous runs, only varying the seed of the random number generator,

we get differences greater than the statistical error on a single depolarisa-

tion curve (Figure 3.5), this remains true over a large range of number of

particles (certainly up to N = 250, 000) This difference requires us to be

careful in our handling of the error bars in our results and in the method

chosen for determining the true value of the spin depolarisation time.

After an initial transient, the electronic spin polarization is observed to

decay exponentially (see Figure 3.5). At low times the behaviour is dif-

ferent so estimates of τ that relies solely on the time for the electron spin

polarisation to reach a certain value is inaccurate, as the transient time will

depend on the details of the initial conditions, even so monitoring for when
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the spin polarisation passes a certain level (for example S = exp(−1)) pro-

vides a reasonable approach. There are two other reasonable approaches to

take, firstly we could fit an exponential decay to the depolarisation time and

secondly we can compare ratios of spin a known time apart.

Exponential Fit

If we carry out a simple least fit regression on the data for each time

step, weighting each point to ln((S(ti)) (ensuring that the tail is not over-

weighted), we obtain an expression for the depolarisation time, τ , of [79]

1

τ
=

∑M
i S(ti)

∑M
i tiS(ti)ln(S(ti))−

∑M
i tiS(ti)

∑M
i S(ti)ln(S(ti))∑M

i S(ti)
∑M

i t2S(ti)−
(∑M

i S(ti)ti

)2 .

(3.15)

Ratio Method

If we instead consider the ratio of the spin at two different times (summing

over all i timesteps), separated by some amount δt, we have

R =
1

N

∑
i

S(t)

S(t+ δt)
, (3.16)

τ =
δt

lnR
. (3.17)

This alternative approach is robust to a large early fluctuation (which

we would expect to decay no faster than τ , and which may account for some

of the difference in errors between runs compared to the expected error for

a single run.
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Comparison

We see in Figure 3.6 that in the high particle number limit the two methods

described in the previous section are consistent. However at low particle

numbers the estimates from both methods deviate from the high particle

number limit. The exponential best fit deteriorates dramatically, for particle

numbers less than N = 15, 000, though this may depend on the system

parameters (such as temperature or doping density). We also notice the ratio

method exhibits similar problems, although less severe, notable deviation

starts between 5,000 and 10,000 (See Figure 3.6).

Also for comparison the time to reach a spin state of S = exp(−1) is

shown. This does not appear to be affected by the number of particles but

in the high limit is inaccurate by around 1 ps.

Conclusion

Care must be taken to accurately determining the spin depolarisation time

from ensemble Monte Carlo simulation data. The results demonstrate that,

when considering simulations with an intermediate number of electrons

(N ∼ 104), an estimate based on the ratios of the average spin polarisa-

tion at different times performs better than a more conventional approach.

In smaller simulations the crude time to reach a given polarisation, is the

best, but this does introduce a systematic error (apparent at large numbers

of particles). For larger simulations (N ∼ 20, 000) there is little to choose

between the exponential fit and the ‘ratios’ method. Throughout this the-

sis, unless otherwise stated, runs consist of a simulation of 25, 000 particles

with repeated runs carried out averaging over the runs until the apparent

standard error is less than 1% of the result, with at least 5 runs conducted.
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Figure 3.5: Two different runs using the same conditions but different ran-
dom seeds produce depolarisation times that disagree by more than the
apparent standard error in either.
The depolarisation time calculated here is calculated as τ = t

log(S) . Here

n = 50× 1015 cm−3, T = 300 K and a42 = 22 eVÅ
3

and the runs consist of
15, 000 particles.

Figure 3.6: The three methods calculation of the depolarisation time is com-

pared here. Here n=40×1015 cm−3, T=300 K and a42 = 22eVÅ
3
. Repeated

independent runs were carried out for each method until the standard error
in lifetime was reduced to less than 1% of the depolarisation time.
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3.2.4 Motional Narrowing and Spin Depolarisation

It is reasonable to discuss how we might go about estimating the spin de-

polarisation time based on the properties of the electron population, such

as the typical scattering times and scattering angles. For the density and

temperatures that we are interested in we are in the motional narrowing

regime where the time averaged effective field, over the time scales required

for depolarisation felt by individual electrons is substantially less than the

instantaneous field. The time averaged field can broadly be impacted in two

ways, firstly the instantaneous field can be increased (trivially for example

by considering materials with different spin-orbit coupling constants), sec-

ondly increasing the scattering rate (which reduces the time averaged field

as the system becomes uncorrelated over a shorter time). As a result in

general the inclusion of additional scattering rates will tend to increase the

rate of depolarisation unless it suppresses other scattering events or impacts

the equilibrium distribution of the electron population.

If we define the time averaged field, over a time τ , to be

h2 {τ} =
1

Nmax

Nmax∑
n=1

(∫ τ

t=0
hxidt

)2

+

(∫ τ

t=0
hyidt

)2

+

(∫ τ

t=0
hzidt

)2

.

(3.18)

We can determine how this behaves for increasing time. At short times

we see a slow decay increasing in rate such that by 1 ps the decay is of the

form h {τ} ∝ 1√
τ

(See Figure 3.7). This decay is in accordance with central

limit theorem as doubling the length of time the system is considered over

doubles the number of essentially independent data points, this suggests

that at this time scale each individual electron can be considered to be

uncorrelated with the other electrons, feeling a field that is roughly Gaussian

and not showing strong time correlation. As this time scale is significantly

71



Figure 3.7: The normalised applied field decays, by around one picosecond
the decay is close to the expected 1√

τ
. Here T = 300 K, n = 1017 cm−3

less than the typically observed depolarisation time (of around 60 ps) we

can conclude that the system is certainly in the motional narrowing regime.

We can use the time averaged field as an estimator of the depolarisation

time of the system, here we look at the depolarisation time against the field

after 10 ps, that is to say the notation used earlier h{10 ps}. For the system

to depolarise the average spin must have changed by some amount θ, at least

π
2 . The rate of change of the spin is proportional to the effective field felt

allowing us to approximate the form of the dependence of the depolarisation

time on the effective averaged field as

αh{τ}t = θ. (3.19)

For large time we know that h{τ} ∝ 1√
τ
. Substituting in we have

B√
τ

= θ, (3.20)

where B is an unknown constant of proportionality. Suggesting that the
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depolarisation time, t, will be of the form t = A
h2{τ} for large τ .

Results

To determine the proportionality constant we fit to the observed data. The

depolarisation time is calculated by carrying out an exponential best fit to

the S(t) curve. Usual procedures apply for this fit we use the standard

a42 = 21.9 eVÅ
3

with temperatures of 250, 300&350 K and doping densities

ranging from 5 to 200 ∗ 10−15 cm−3 (See Figure 3.8).

We can further extend the range of applied field values by varying the

value of a42 over the range 5 to 45 eVÅ
3
, without carrying out a new best fit.

The trend remains in excellent agreement (See Figures 3.2.4). Additionally

if we dramatically alter the method used for the electron-electron interaction

to the electron-electron classical forces (the detail of this method is given

in Chapter 6) we still see the same fit being accurate, again no new fit is

carried out (see Figure 3.10).

Conclusion

Determination of the spin depolarisation time can be readily obtained by

studying the time averaged spin field, this method appears to be the most

accurate and efficient method of calculating the spin depolarisation time.

The advantages include a need to only simulate a short time, a smaller

number of particles needed and that the error in one run is similar to the

error between runs, despite this the method is not used throughout the rest

of this work as the result came too late to be used throughout the rest of the

document and we lack any proof of generality of this method. This method

could also be readily adapted to use using conventional transport codes that

lack the ability to handle spin, as the field can easily be calculated from the
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Figure 3.8: Shown is the depolarisation time for the spin system against one
over the time averaged field multiplied by the gyromagnetic ratio after 10
ps. The fit shown is generated using the gnuplot nonlinear plotting library.
For all other figures the fitted curve is the fit from this data only

instantaneous momenta, although the unknown constant would have to be

determined using a full spin code. This method also helps make it intuitively

clear that anything that increases the scattering rate, the typical scattering

angle or introduces a new scattering mechanism will tend to reduce depolar-

isation, increasing the depolarisation time. As it will reduce the correlation

time, reducing the average effective field.

3.3 Model Testing

3.3.1 Electron Thermalisation

Thermalisation is required before we can start the studies of the spin dy-

namics of the electron population. As we have no potential energy we expect

the electron population to reach a Maxwell-Boltzmann distribution at the

lattice temperature [80], that is

p(E)dE = 2

√
E

π

(
1

kBT

) 3
2

exp
−E
kBT

dE, (3.21)
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Figure 3.9: To test the reasonableness of the Quadratic fit, we extend the
range of the field by artificially altering the spin orbit coupling constant,
within the range routinely claimed experimentally. The fit is to the data in
3.8

Figure 3.10: Even using a dramatically different form of method for updating
the electron, the BH forces approach, we still see a strong agreement with
the fit found in 3.8
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where kB is the Boltzmann constant, E is the energy and T is the lattice

temperature. During the initial evolution of the system (when started out of

thermal equilibrium) the system may not have the Boltzmann distribution

for the correct temperature. To determine the temperature through this

initial evolution we use a definition of temperature calculated by the average

velocity squared of the particles as

T =
〈v2〉m∗

3kB
. (3.22)

In the case of a Boltzmann distribution this reproduces the temperature

but it is also a property that can be cheaply calculated allowing for moni-

toring of the temperature at each time step. In addition to the importance

of the thermalisation to the correct temperature we also wish to know if the

distribution is Boltzmann like. To do this we can produce a histogram of

particle energies (placing them in a box with energy E± 1
2∆E, at each time

step, and compare the differences with the Boltzmann distribution, with

the temperature calculated based on 〈v2〉. We calculate the mean squared

of the residuals by summing over “boxes” of energy E the difference between

the number of particles in that box and the statistical expectation from a

Boltzmann distribution, that is

〈R2〉 =
N∑
i=1

(
C(Ei)

M∆E
− p(Ei)

)2

, (3.23)

(where ∆E is the width of the histogram box,C(E) is the number of

particles within that energy ‘box’, i is the identifier for each box and M is

the total number of particles), and use this as a measure to determine if the

system is Boltzmann like. The temperature used in the calculation of the

p(Ei), is the temperature associated with the 〈v2〉, of the system which is
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not necessarily the lattice temperature. To determine the expected value

of 〈R2〉 and a confidence interval 3, we also carried out this process with a

set of data chosen randomly from a Boltzmann distribution. We carried out

repeated tests, using the Boltzmann distribution until we had a sufficient

sample (10,000 runs used) to determine what value for the residuals a sample

randomly chosen from the Boltzmann distribution would be expected to

have, and importantly what level 95% of all such samples would fall below.

This gives us a reasonable confidence interval against which we can conduct

a meaningful hypothesis test. This method is somewhat crude, as it does

not consider some features of the real electron system (e.g. the particles are

assumed to have uncorrelated energies), however it is sufficient to tell us if

the fit is reasonable.

The thermalisation of the system happens on a relatively short time

scale (taking less than 5 ps to thermalise from 130 K to 300 K (see Figure

3.11)), but the Boltzmann fit (for an arbitrary temperature) is quicker (tak-

ing around 0.5 ps) than the time taken to reach the correct temperature.

The thermalisation can then be characterised as two processes, initially the

system is far too cold and particles are very likely to undergo many polar

optical phonon absorption scatterings, which distorts the system from the

Boltzmann distribution, as the system gets closer to equilibrium the heating

slows down and the electron electron scattering has enough time to ensure

the particles are properly distributed (for the current temperature), during

this time the system continues to heat but goes through what appear to be

a series of quasi-equilibrium states, until it reaches equilibrium, with the

electron temperature matching the lattice temperature.

3Enabling us to say to what extent the system appears to be Boltzmann like, and
therefore to what extent it has a well defined temperature.
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Figure 3.11: The electron population rapidly reaches the lattice temper-
ature, as we allow a full 20 ps for all thermalisation we can have good
confidence that the system reaches equilibrium. Here n = 15 × 1015 cm−3,
T = 300 K and N = 25, 000.

Figure 3.12: The electron population initially starts as a Boltzmann dis-
tribution, by selecting Gaussian distributions for the three components of
the velocity, as it heats to the lattice temperature we see it is initially
driven out of a Boltzmann distribution, before returning to a Boltzmann
distribution, even though the sample has not yet reached the equilibrium
temperature.n = 15× 1015 cm−3, T = 300 K and N = 25, 000
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Figure 3.13: The electron population initially starts at T = 0 K, as the only
way an electron can change energy is to absorb or emit a polar optical phonon
it does not reach a smooth Boltzmann distribution, however the energies
with non zero occupation match exactly with the Boltzmann distribution
and with the distribution function generated from a run including electron-
electron scattering. Here the lattice temperature is 300.

No electron-electron thermalisation

In the absence of electron-electron scattering each particle can only change

its energy by an integer multiple of polar optical phonon energies (equivalent

to around 395 K) and as such the energy distribution does not converge to

a good fit of the Boltzmann distribution when we look at granularities in

energy less than the polar optical phonon energy (see Figure 3.13). This is

to be expected and can result in the apparent, 〈v2〉, measure of temperature

having significant deviation from the lattice temperature. This difference is

impacted solely by the initial condition, if one starts the simulation at the

lattice temperature (instead of allowing it to relax to get there) it does not

cause a deviation from the lattice temperature.

As we have observed that the thermalisation time is relatively short,

around 5 ps seems to be more than adequate we initialise our system, in

all further results, by randomly assigning our particle a velocity, choosing
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randomly the x,y and z components independently from a Gaussian4. We

then allow the system to thermalise for 20 ps, so that we can be very confi-

dent that the system when we start the “experiment” is in a proper thermal

equilibrium state.

4Which is equivalent to choosing the energies from a Boltzmann distribution
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3.4 Conclusion

This chapter has shown how we implement the ensemble Monte Carlo method,

including some of the decisions made in treating the electron-electron scat-

tering and verified that the model does appear to be functioning correctly. In

particular we showed that the Crank-Nicolson scheme is the best approach

for the time evolution of the spin part of the electron wavefunction, showed

an accurate way of determining the spin depolarisation time, and detailed

the method for implementing a restriction on electron-electron scattering to

ensure it remains local in nature. In addition we have described the proce-

dure for the generation of all data presented throughout this Thesis, that is

unless otherwise stated all results consist of 25, 000 particles with repeated

runs carried out averaging over the runs until the apparent standard error

is less than 1% of the result, with at least 5 runs conducted and that the

electron momentum is allowed to thermalise for 20 ps before the start of any

given run.

The next chapter will look in detail at the properties of the electron

population, including the impact of the various scattering mechanisms on

the electron population and the spin depolarisation properties at a range

of densities and temperatures, particularly paying close attention to the

properties near 300 K.
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Chapter 4

Electronic and Spin

properties of the electron

“gas”

4.1 Introduction

This chapter discusses in detail the properties of the electron gas, in par-

ticular it looks at the scattering properties against density and temperature

and the spin depolarisation properties also against density and temperature.

It should be noted that the basis of the model has been described in a

paper (G Marchetti, M Hodgson, J McHugh, RW Chantrell and I D’Amico

[81]). This model was jointly developed by Gionni Marchetti and myself.

Ref [81] gives details of the underlying theoretical model development (the

responsibility of Gionni Marchetti and not reproduced here); I had respon-

sibility for the code development. The calculations and fit to experiment

in [81] were carried out in full collaboration with Gionni Marchetti since

the work required continuous theoretical and computational development.
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The results presented here are obtained with a slightly simpler version of

the model, using the Debye approximation for the screening length. How-

ever, the differences between the results presented here and in [81] are small,

justifying the use of this model; the impact of the fuller calculation of the

screening length is shown in Chapter 5.

This chapter starts by establishing the relative impact of the various

scattering mechanisms, showing that in the low density limit we see a rem-

nant electron-electron impact that seems to be unreasonable, in this limit

we would expect that the impact of the electron electron scattering would

be close to linear. It should be noted that even though we look at doping

densities far below those experimentally discussed we are still significantly

higher that that required for Wigner crystallisation [82], which at any rate

our model cannot attempt to describe, and it is doubtful if it is relevant

given the classical ground state of our system would not be a Wigner crystal

but the binding of the electrons to the ionized doping impurities.

We then use our model, and experimental data, to determine the correct

value of a42, the spin-orbit coupling constant under a variety of system

variants, when the full model is considered we show good agreement with

the experimental value found by Oertel et al. [69]. Having shown good

experimental agreement for the value of the spin orbit coupling we then

go on to show a broad range of densities and temperatures under which

experimental agreement remains good, however for higher densities we show

a significant deviation from experiment, approaches to discuss this problem

are dealt with in the next chapter.
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4.2 Scattering Rates

4.2.1 Phonon Scattering

As the sole form of thermal contact with the lattice the phonon scattering

plays an important role in assuring the electron population becomes prop-

erly thermalised to the lattice temperature. The total rate of polar optical

phonon absorption and emission when at equilibrium should balance and is

observed to be occur around every 0.9 ps per particle at 300 K, this value is

independent of density but varies with temperature (see Figure 4.1). In ad-

dition the phonon scattering has a strong forwards bias, with particles more

likely to be pointing in the same direction as they started after scattering

while this depends on the electron energy as well as the phonon temperature

the average angle scattered is a useful crude measure of this, and shows an

average scattering angle of 0.15± 0.02 at 300 K with the effect stronger the

higher the energy of the particle and the hotter the lattice.

The acoustic phonon scattering is treated as being elastic, and as such

does not transfer energy from the lattice and is considerably rarer, occurring

around once every 7 ps per particle at 300 K, than the POP scattering (see

Figure 4.1) however as it does not contain a bias in the scattering direction

it can have significant impact on the electron population.

Using these mechanisms, only, we can attempt to study the spin depo-

larisation of the electron population, obtaining a low density limit. This can

be used to fit to experiment (where the zero density depolarisation time is

know to be around 40 ps) to determine an appropriate value of a42, which

suggests we should use a value of a42 = 14 eVÅ
3

(see Figure 4.2).
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Figure 4.1: The acoustic phonons are considerably rarer than the polar
optical phonons, for a broad range of temperatures

Figure 4.2: Varying the spin-orbit coupling has a strong impact on the

depolarisation time, this curve implies a low density limit for a42 of 14 eVÅ
3
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Figure 4.3: The average time between electron-electron scattering events as
a function of density. Notably the e-e scattering events are more common
at lower densities, as the average time between an event falls. Here and in
all others figures unless otherwise specified T = 300 K.

4.2.2 Electron Defect and Electron Electron Scattering

The two forms of Coulomb scattering have by far the greatest impact on

the scattering properties across the entire density range studied they are

the most frequent form of scattering and contain a significant forwards bias.

Naively one would expect both mechanisms to be rare at low densities,

but this is not the case. For electron-electron scattering the scattering rate

actually increases at lower densities while electron-impurity scatterings has a

minimum at around 50×1015 cm−3 and at lower still densities becomes more

common (See Figures 4.3 and 4.4). Over the entire observed density rate

the electron-impurity scattering does not changed by more than one part

in ten. The electron-electron scattering rate behaves even more strangely

decreasing monotonically as we increase the impurity density.

Instead of looking at the scattering rate we can multiply it by the average

scattering angle, this gives us a good measure of the effectiveness of the

scattering (See Figures 4.5 and 4.6), as the scattering angle decreases at
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Figure 4.4: The average time between electron-impurity scattering events as
a function of density, the change throughout the density range considered is
small.

Figure 4.5: The mean angle that the particles are scattered by increases for
increasing density, it is this not the scattering rate that gives rise to stronger
electron-electron interactions at high densities
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Figure 4.6: The mean angle multiplied by the scattering rate for electron-
electron scattering, it does fall dramatically at low densities, but does not
vanish, this suggests that even at very low densities the electron-electron
scattering will have a strong influence on the overall scattering properties,
and hence the depolarisation time. This does not seem to be physically
reasonable.

low densities we now see a more reasonable behaviour. As we increase

the density this measure of scattering increases in an apparently monotonic

way. However the low density limit does not appear to be zero, which

suggests that the electron-electron scattering will always play a role even

at exceedingly low densities, this does not seem to be correct as we would

expect sufficiently low densities the Coulomb interaction such be negligible.

4.2.3 Correlations in scattering events

So far we have discussed the scattering rate of various scatterings as if they

are entirely independent of each other, this is in reality not the case, as a

single polar optical phonon event raises or drops the energy of an electron

by many meV, equivalent to a temperature change of 390 K the behaviour of

electrons that have recently undergone a POP absorption event has marked
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Figure 4.7: The scattering rate immediately after a polar optical phonon
scattering is suppressed, here the scattering rate is shown as a ratio with
the scattering rate after 1 ps, note that this is the time since the last polar
optical phonon scattering, which happen themselves around once every 1 ps.
Here the impurity doping density is n = 1 × 1016 cm−3 the temperature is
300 K.

differences with the average population. In the time shortly after a polar

optical phonon event the electrons are less likely to undergo electron-electron

scattering, and if they do scatter will typically scatter by a smaller angle,

this effect is stronger the more phonon absorption events it has recently

undergone, thus a very hot electron can remain at high energies for a long

time (See Figure 4.7).

4.3 Depolarisation Times

The depolarisation time, τ , is defined as the decay constant for the spin

polarisation assuming an exponential decay. It is closely related to the

decoherence time but that should also include some measure of the change

in relative phase, and is discussed later in this chapter. Determining the spin

depolarisation time has been the subject of significant experimental study,

here we compare to the experiments by Oertel et al [69]. This experiment
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used impurity densities ranging from 5 to 250 · 1015 cm−3 and temperatures

from 240 to 360 K. It should be noted that the upper end of the experimental

range for densities, especially at lower temperatures, is no longer completely

treatable with a non-degenerate approach. This effects only a relatively

small portion of the data as we are able to consider some degeneracy effects

in a perturbative manner (one approach, altering the screening length to

compensate for degeneracy effects, is shown in the next chapter).

4.3.1 Density Dependence of the Depolarisation Time

Using the spin-orbit coupling constant found for the phonon only case, as

the low density limit, produces an extremely poor fit to the experimental

data, with an inaccuracy of around a factor of two throughout the density

range, worse towards the top of the range. To compensate for this we select

the value of a42 against a moderate density run including electron-electron

and electron-impurity scattering (See Figure 4.8). This suggests a value of

a42 of around 22 eVÅ
3
, very close to the value found by Ortel et al [69]. This

discrepancy from the phonon only case is probably due to the non negligible

impact of the electron-electron scattering even at low densities discussed

earlier.

Using this value of the spin-orbit interaction the basic model reproduces

the general trend of the data (See Figure 4.9), and is especially accurate up

to around 100×1015cm−3 however beyond that it continues to rise far beyond

that which is experimentally observed [69], suggesting that in that regime

some unconsidered mechanism may be acting. The next chapter discusses

some approaches that can be taken to mitigate this problem. Despite not

converging to the phonon limit, as discussed earlier, in low densities the

agreement with experiment is reasonable for the low density range.
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Figure 4.8: At T = 300 K and n = 50 × 1015 cm−3 the experimental value
is 65 ps, here we plot the depolarisation time against a42 which suggests the

correct a42 value is 22 eVÅ
3
, further precision is impossible due to the size

of the experimental error bars. Here we use a simulation of N = 100, 000
particles.

Figure 4.9: The depolarisation time rises with density, at densities greater
than n = 1017 cm−3 we surpass the experimental value, ending inaccurate
by over 25%, with no evidence of the flattening experimentally observed.

Here a42 = 22 eVÅ
3
.
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Figure 4.10: The temperature dependence for two different densities, here

a42 = 22 eVÅ
3
. We see, as expected, increases the temperature decreases

the depolarisation time. From these two values we have also calculated a
predicted intrinsic depolarisation time. This shows a slight flattening at low
temperatures as the difference between the two densities increases.

4.3.2 Temperature Dependence

Experimentally the temperature dependence has been studied mostly for

lower doping densities, here we compare to the results by Oertel et al.

[69] who studied the temperature dependence at densities of 27 and 38 ×

1015 cm−3. For these densities we have already seen that the basic model

performs well at 300 K and we expect to get a good to fit the experimental

temperature dependence.

In comparison with the work by Oertel et al. there is a reasonable agree-

ment between the experimental results and our work, this suggests that the

model is functioning accurately in the relevant regime. In addition we cal-

culate the implied intrinsic depolarisation time based on these values, the

agreement with the experimental results here is reasonable however we ob-

serve a slight flattening a low temperatures not present in the experimental

results.
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4.4 Dephasing

In addition to considering the spin depolarisation we may also wish to con-

sider the time taken for the electron population to have randomised the

relative phase of the spin wave function, we refer to the time this takes as

the spin dephasing time. The dephasing time is closely related to the de-

polarisation time but is not proportional to it. As the relative phase is by

necessity a two particle phenomenon we determine it by finding the relative

phase between a random sample of 1, 000, 000 electron pairs. Once we have

determined the relative phase for each electron pair we can use the average,

of the absolute difference, as a measure of typical phase difference in the

sample. That is we use a measure of the coherence by considering the mean

phase angle between two spins, using a measure of

C = 1− 2θ̄

π
. (4.1)

The dephasing time may have application beyond the “simple” spintron-

ics, as maintaining coherence is a necessary, but not sufficient, criterion for

quantum computation.

Starting with the case of all electron spins being aligned in the z direction

with no relative phase we can monitor the depolarisation and dephasing

together (see Figure 4.11), in general we find that the dephasing is faster

that the depolarisation.

For practical quantum computation this dephasing time may well be

too fast, it implies a clock cycle of around 25 GHz, considerably faster

than even conventional computation which currently have a fastest clock

cycle of 5 GHz. Decreasing the temperature would produce a much higher

dephasing time but even increasing it to around 250 ps which is equivalent
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Figure 4.11: The dephasing and the spin polarisation compared. We see that
the coherence and polarisation behave very similarly, but that the system
loses coherence faster that it depolarises, here the dephasing time is 43 ps.

Here n = 50× 1015 cm−3, T = 300 K and a42 = 22 eVÅ
3

to a considerably more manageable 4 GHz, is still unlikely to be enough for

viable computation, as this is still a significant loss of coherence over a single

cycle, in reality we would wish to maintain coherence for at least hundreds

of clock cycles.

4.5 Depolarised Spin Fluctuations

4.5.1 Correlations

The fully spin depolarised state is of interest as it enables us to study the

fluctuations in the total spin that emerge as the result of the various scat-

tering mechanisms, these are hard to determine during depolarisation as

many fluctuations we would expect to decay at a similar rate to the decay

of polarisation. To study this we start by giving each electron a random

spin, in addition to its random velocity, these spins are chosen uniformly

from the unit sphere. As the selection is not perfectly uniform we would not

necessarily expect a zero total spin and during a simulation the fluctuations
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Figure 4.12: The fluctuations in the total modulus of the spin have a short
term positive correlation (as measured by Pearson’s Product Moment Cor-
relation Coefficient (PPMCC)), but this gives way to a stable long lasting
negative correlation. Here and throughout this section n = 1016 cm−3,

T = 300 K and a42 = 22 eVÅ
3

in this total spin give us a reasonable measure of some of the important

time-scales in the spin system.

The total spin appears to have two important characteristic times one

a short time noise at around 1 ps that appears to be dominated by small

fluctuations carrying out what appears to be a random walk and one a long

time general over which the system is negatively correlated. This can be

seen by calculating the product moment correlation coefficient1 of the total

magnitude of spin with itself some time later, which shows a short term

positive correlation which then gives way to a long time negative correlation

(See Figure 4.12).

In addition to these effects which are much as we expected we also see

occasional large rapid fluctuations which do not have an obvious origin (See

Figure 4.13). These remarkable changes are not well understood, but seem

to be correlated to times when there is an increased number of scattering

1Calculated for two data set x and y as
∑

(xi−µx)(yi−µy)

σxσy
(See Chapter 2).
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Figure 4.13: The fluctuations in the total modulus of the spin a generally
smooth but have occasional sharp changes, this appears to be due to a
heightened scattering rate at that time (See Figure 4.14).Many such inci-
dents occur in a normal run.

events (See Figure 4.14), the most likely explanation is that this is caused by

a small number of particles reaching abnormally high temperatures and then

undergoing many scattering events as they cool down, by scattering with

other electrons causing a sudden avalanche of scattering events in many

particles. This may cause brief short lived pockets of very hot electrons

which rapidly disperse their energy throughout the system by undergoing

many scattering events.

4.6 Comparison with alternative electron-electron

technique

These results are all based on our implementation of the electron-electron

scattering as a local process, in our case one that can only happen within the

Debye length. This technique does have the oddity that there is an abrupt

jump from scattering being impossible to at a fixed rate once we are within

this distance. This is almost certainly not what is actually happening inside
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Figure 4.14: The scattering rate during one of the rapid changes in spin
polarisation appears to suddenly spike, the mechanism behind this is not
well understood. Here the number of scattering events in a time step is
compared to the average number, and shown as an implied rate.

a real sample and we should compare the impact of this choice to other

ways of handling the electron-electron interaction as a scattering (The next

chapter includes an alternative non scattering approach to handling the

electron-electron and the electron-impurity scattering).

One commonly implemented approach to the electron-electron scattering

is to choose two particles randomly from anywhere in the simulated system

but to only update one of the particles (using the non scattered particle

purely to provide suitable values for the momentum of the second particle),

to compensate the electron-electron rate has to be artificially doubled, pro-

viding the sample is bulk and at equilibrium the electrons chosen should be

equivalent to choosing from the equilibrium distribution function, but has

the advantage that some forms of non equilibrium can be handled (e.g. a

step change in temperature for the entire system). This technique obviously

fails if there is any spatial variance in the system, particularly problematic

is temperature variation.
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Figure 4.15: The alternative way of handling the electron-electron scatter-
ing, is compared to our approach, at 300 K. At low densities the alternative
approach to the electron-electron scattering performs just as well, however
at higher densities the disagreement with experiment is even worse than the
basic model approach.

In general at lot to moderate densities there is little difference between

the two methods, but at higher densities we see less of a slowdown than in

our model (See Figure 4.15), so the fit to experiment is worse still than our

model. This suggests that localising the electron-electron interaction has

had some benefit in helping produce the correct behaviour, however it is

clearly not enough to explain the entire density range.
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4.7 Conclusion

In this chapter we have explored the properties of the electron population

in n-doped gallium arsenide, using an ensemble Monte Carlo technique. We

started this by considering the scattering, and the impact that has on spin

depolarisation, for the case of phonon only scattering. This represents how

we would expect the system to behave at very low doping densities, where the

electron-electron and electron-ionized impurity interactions would be weak

enough that we can neglect them. The inclusion of electron-electron and

electron-impurity scattering, even at low doping densities does not exactly

reproduce the phonon only case, which may be due to the high scatter-

ing rate for electron-electron scattering, even at low doping densities. As

evidenced by the inclusion of electron-electron and electron impurity scat-

tering causing an increase in the depolarisation time of up to around 100%

we see that the phonon scattering and the charge scatterings are of roughly

equal importance, with the exact amounts depending on the density and

temperature.

Using the ensemble Monte Carlo model developed and comparison to

the experiments by Oertel et al. we have found that the spin orbit coupling

constant has a value of 22±0.2 eVÅ
3
, within the known experimental range

in general and in agreement with the Oertel value in particular.

The basic model presented so far produces reasonable quantitative agree-

ment with experimental studies of the depolarisation time in n-doped gal-

lium arsenide, however for large doping densities it fails to reproduce the

saturation in depolarisation time experimentally observed. In the next chap-

ter three potential approaches to increasing the accuracy of the simulation

and thereby improving on this behaviour are presented. Similarly at very

low doping densities the simulation may be overestimating the role of the
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electron-electron scattering causing a deviation from the low doping density

results, however this region is difficult to explore experimentally so limited

studies exist in this area.

Despite the concerns the model is generally successful and with only one

free parameter the extent of the agreement is good, further development

of this approach may yet be able to fix the issues already outlined, the

obvious approach being a more detailed scattering description that allows

for multiple particle scattering but such a method was beyond the scope of

this research project.
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Chapter 5

Beyond the Basic Scattering

Approach

While we have seen, in Chapter 4, that the scattering approach using the

Debye screening formula is enough to generate a reasonable agreement be-

tween theory and experiment throughout the majority of the doping density

range studied experimentally, we nonetheless have poor agreement at the

higher doping densities (n > 150 × 1015 cm−3), and seen that the system

behaves strangely at low densities. As this is a problem due to variation

in doping densities it seems natural to consider the mechanisms that vary

with doping density (that is electron-electron and electron-Ionized impurity

scattering).

In this chapter we discuss further extensions that can be made to the

scattering approach, and as they prove unsatisfactory we look at an alterna-

tive approach using the classical forces acting on each electron. This classi-

cal forces technique is considerably more computationally intensive and the

initial part of that discussion deals with the details of implementing an ef-

ficient particle forces algorithm (the Barnes-Hut Scheme), before discussing
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the results of using it.

The work of the improved scattering, i.e. the improved screening length

and the third body rejection technique, is primarily the work of Gionni

Marchetti, although I did contribute significantly to the implementation of

the third body rejection technique, and is included in here for completeness.

5.1 Improved Scattering

5.1.1 Beyond The Debye Approach

The Debye screening approach is only valid in the limit of a non-degenerate

gas, i.e. when the chemical potential is much less than the average thermal

energy, while this is certainly satisfied at the lower end of our density regime,

as we reach the higher end we start to enter an intermediate regime where

it is not obvious a priori that the thermal energy is sufficiently high that

neglecting degeneracy is justifiable (for example at n = 100×1015 cm−3 the

Fermi temperature is 136 K, still smaller than the temperature but perhaps

no longer negligible. To calculate the screening we need to evaluate [83]

β2 =
ne2

kbT

F−1/2(µf )

F+1/2(µf )
, (5.1)

where β is the inverse screening length,µf is the reduced chemical poten-

tial (i.e. Ef/kBT) and Fj is the Fermi-Dirac integral of order j (Fj (x) =

1
Γ(j+1)

∫∞
0

tj

exp(t−x)+1dt)
1 . It should be noted that the first part of this,

β Deb = ne2

kbT
, is simply the inverse Debye screening length squared. As such

we can simplify this expression to

β2 = β2
Deb

F−1/2(µf )

F+1/2(µf )
. (5.2)

1Here Γ is the Gamma function (Γ (x) =
∫∞

0
xt−1e−xdx.)
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Figure 5.1: The improved calculation of the screening length makes a dif-
ference of at most a few percent. Here we use a temperature of 300 K

The impact of this is the suppression of the inverse screening length,

i.e. an increase in the screening length (see Figure 5.1). The impact is

however small and as such does not significantly reduce the problems at

high densities.

5.1.2 Third Body Rejection Criteria

While the inaccuracy of the screening length at high densities goes some

way towards explaining the lack of flattening in the depolarisation time that

is experimentally observed, it is not sufficient to count for the entire effect.

An additional effect is that our scattering does not account for three, or

more, body effects. In some cases two particles may be expected to scatter

significantly, but in reality a third nearby scattering centre would strongly

influence any longer range scattering effects. To compensate for this we

could attempt to discard all scattering that consists of two particles that are

not each the nearest particle to each other, this approach seems reasonable

it can suppress the scattering to an arbitrary amount2 so instead a more

2Additionally this approach is incredibly sensitive to the exact position of each electron.
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general approach is required.

The third body rejection rate derived by Van de Roer and Widdershoven

[84], is a reduction in the probability of scattering based on the average

probability of a nearby scattering centre giving a reduced scattering rate,

Γtbr, of

Γtbr(v) =
v

a

[
1− exp

(
−a
v

Γee(v)
)]
, (5.3)

where a is the typical distance between particles, i.e. a = 4
π

1
3√n . It is this

approach that we implement.

5.1.3 Results

The third body rejection method is a much stronger effect than the improved

screening length calculation (which changes the scattering rates and mean

scattering angle by less than 5% when compared to the Debye approach. The

third body rejection reduces electron-electron scattering by around 15% at

the top of the range (see Figure 5.2) but unfortunately also plays a signifi-

cant role at lower densities meaning a poorer agreement at those densities.

The two effects together do produce a reasonable agreement with the exper-

imental values of the depolarisation time at higher densities and taken on

its own the improved screening length is reasonable at densities less than

100 × 1015 cm−3, where it is indistinguishable from the Debye limit. (See

Figure 5.3)3.

This could simply be a product of this method overestimating the rate

of third body rejection at lower densities, but it is not obvious how we

could further improve on the method. Neither of the methods do anything

to address the poor performance at very low densities and the nonphysical

3Noting though the problem of very low densities discussed earlier also is not mitigated
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Figure 5.2: The introduction of third body rejection results in a significant
suppression of electron-electron scattering at higher densities, however even
at densities around 50 to 100× 1015 cm−3 the impact is still noticeable.

Figure 5.3: The third body rejection rate, by suppressing the scattering rate
at high densities prevents the growth of the depolarisation time not experi-
mentally observed, however we do not get agreement with the depolarisation
time at lower densities when using this method, the improved screening has
negligible impact over the Debye method. Here the temperature is 300 K

and the spin orbit coupling constant a42 = 21.9 eVÅ
3
.
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difference between simulations with and without electron-electron scattering

remains a problem. So while these approaches certainly help to extend the

regime that we can simulate correctly they do little to improve our a priori

predictive power as we have no way of knowing if it is correct to use the

third body rejection technique.

5.2 Additional Scattering mechanisms

In addition to the scattering mechanisms studied there are other scattering

mechanisms that could play a notable role under a variety of conditions. The

most important of these, scattering to higher bands, would be important if

the particles had significantly higher energies or in the presence of an applied

field, without considering scattering to higher bands we cannot accurately

reproduce the behaviour under an applied field of as little as 100µ Vm−1.

The extension of our simulation for the consideration of real life device would

therefore need to consider the impact of higher bands. We are however at

low enough energies that such events are extremely rare (even in a 100 ps run

we would not expect to see even a single such event). A similar argument

can be made against the necessity to consider Umklapp scattering, which

again happens at energies much greater than the typical thermal energy.

Similar arguments exist for all scattering mechanisms that we have con-

sidered but inevitably this can become a never ending task, since no matter

how many we can eliminate that does not mean other mechanisms not yet

considered can’t explain the behaviour. So while further scattering mecha-

nisms will certainly play a role in the depolarisation there is no good reason

to believe that the divergence from the experiment can be explained simply

as the result of the failure to include any particular scattering mechanism.

Additionally as increased scattering also increases the depolarisation time
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[85] any such mechanism would have to reduce the total scattering at higher

densities which while certainly possible is unlikely.

5.3 Classical Forces

A reasonable approach to take is to replace the scattering due to electron-

electron and electron-ionized impurities and replace them with the classical

interactions between the particles. This approach obviously cannot include

some of the finer grained effects of quantum mechanics, such as where the

scattering diverges from the classical behaviour, and as such would have

little validity in the fully degenerate limit. We can consider the loss of this

detail though against the increased quality of the basic electron-electron

interaction, for example we no longer are constrained to implicitly assume

a lack of correlation in electron positions or a sample of infinite size and

uniform densities. The nature of the problem, one that fundamentally must

consider O(N2) interactions will mean that there is some restriction on the

size of systems we can expect to be able to consider in a reasonable timescale.

5.3.1 Computational Technique

To calculate the forces acting on each particle we need to sum over all other

particles, as the force is long ranged, such that the force on a given particle

is

Fi =
∑
i 6=j

Fij . (5.4)

We make the electrostatic approximation which gives rise to forces of

Fij =
qiqj

4πεε0
rij
|rij|3 . This requires O(N2) calculations and as such rapidly be-

comes computationally intractable (even for moderate numbers of particles).
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To avoid this difficulty we use the the Barnes-Hut scheme [44] which

is a particle-tree handling of the interaction, reducing the calculation to

O(N logN). This method is typically used for gravitational simulations,

such as planetary formation or galaxy collisions [86]. The Barnes-Hut tree

is built recursively for each particle, which are added to the tree sequentially.

The Barnes-Hut tree is a data structure in which each level contains averaged

properties about the level below (such as the total charge and the centre of

charge). Each level is split into eight subsections which are the next level

down. Each of these sections is a node and in addition to the physical

properties it also contains a pointer to each of its subsections and to the

one above it. Before the first particle is added the head node is created,

this node is empty at creation. To add a particle to the Barnes-Hut tree

we start by adding the particle to the head node and then use the following

algorithm (See Figure 5.4).

• Update the total number of particles, total charge and centre of charge

(equivalent to the centre of mass, when all particles are the same mass

and charge).

• If the particle is the only particle in the current node we have finished.

• If the node contains three or more particles then we determine the

appropriate sub node.

– Sub nodes divide space in eight sections divided at the half way

point in x,y,z

• If the node contains exactly two particles (the new particle and one

other):

– First create the eight newly needed empty subnodes
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– Then insert one of the two particles into the corresponding subn-

ode

– When that insertion finishes (which will only be one iteration as

it is guaranteed to be the only particle in that node), we insert

the other particle into its subnode

– This process may need to be repeated an indefinite amount of

times, some trigger is needed to terminate the loop in this case.

At the end of this process each particle has a unique subnode (See Figure

5.5), but not all subnodes contain particles and some subnodes contain more

subnodes.

This process is expected to have complexity of O(logN), but has an

infinite worst case. To prevent this we implemented a limit to the number

of times the subdivision can occur at which point the particles will always

be treated fully. This value makes no noticeable difference provided it is

sufficiently large and is simply to prevent two particles placed arbitrarily

close from causing an infinite number of subdivisions required. We use

a limit of iterations of 25, this means that the chance of two randomly

uniformly placed particles exceeding this limit is less than one part in 1022.

Once a particle has been inserted we then move on to the next particle,

this brings the total computational cost to O(N logN).

Once all particles have been inserted into the tree we are then able to

calculate the forces. The Barnes-Hut parameter, θ, defines the accuracy

of the scheme. A lower θ leads to more accurate force calculation, but is

slower, in the limit that θ = 0 we recover the classical forces limit (albeit at

O(N2 log(N)). To carry out the force calculation for one particle, we start

at the head node and then proceed as follows:
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• If the node contains the particle we are interested in, then evaluate all

subnodes that contain at least one particle

– If the node contains only the particle we are interested in then

stop.

• If the node does not contain the particle we are interested in we need

to determine if we need to calculate the forces

– If the node contains only one particle we calculate the force, re-

gardless of distance

– If the node contains more than one particle evaluate the distance

from the centre of charge to the particle we are interested in

– Evaluate s
d where d is the distance and s is the length of the side

of the node.

– If s
d < θ then calculate the force based on the centre of mass and

total charge

– Otherwise iterate over all subnodes

This approach ensures that there is no spurious self interaction (com-

pared to Poisson type approaches that can never entirely eliminate the self

interaction problem) and treats nearby interactions exactly. As the centre

of charge approach requires the charge always be the same separate trees are

required for the ionized impurities and the electrons. Caution must be taken

though as this scheme does not guarantee the conservation of momentum

or energy, due to forces not necessarily summing to zero. This is due to the

particles interacting sometimes directly with other particles, and sometimes

with the tree. Indeed it is possible for one particle to interact directly with

another but for the reverse interaction to be with the tree. See Figure 5.6
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Figure 5.5: Complete Barnes-Hut tree for seven particles, note each of the
squares contains either one particle, no particles, or is further subdivided

Force Truncation

So far we have presented what may be considered an idealised form of the

numerical algorithm but there a small number of relatively minor corrections

that must be made to ensure stability of the electron population. The most

notable instability results from the diverging potential as two particles come

close together, especially troubling in the case of attracting particles, As

our numerical integration scheme contains truncations such rapidly changing

forces can cause a notable divergence. In practical terms we observe sudden,

apparently spontaneous catastrophic heating during a run. The time for

onset of this problem varies wildly dependent on initial positions as well as

the impurity density (see Figure 5.7) but is generally seen no later than 10

ps into a simulation.

To correct this we simply introduce a maximum allowable force, above
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Figure 5.7: In the absence of a truncation in the force, as described in
the body, the electron system goes through sudden shock instabilities that
catastrophically heat the system in an entirely unstable way.

which the system still sees a force in the same direction but with a magnitude

equal to that of maximum allowable force. In choosing the value of this

maximum force it is important that we allow it to be large enough that it only

impacts very rarely so as to allow the particles to come close enough without

impacting the quality of the result, whilst simultaneously it must be small

enough that any heating introduced is small. To select an appropriate force

we calculate based, on the initial configuration, a mean force; the maximum

allowable force is then some constant multiple of this force. Tests we carried

out on multiples of 1, 000, 100, 000 and 10, 000, 000 particles. Even in the

later case there was no observed additional heating (see Figure 5.8). While it

may be tempting to consider this due to the polar optical phonon heat bath

“soaking up” some of the additional energy; however looking at the number

of polar optical phonon events shows, after initial thermalisation, that the

two are balanced with no observed excess of phonon emission events.
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Figure 5.8: The system thermalises to the temperature of the heat bath
in a very similar time to the electron-electron scattering case, here we used
5, 000 particles at a density of 25×1015 cm−3. The maximum force here is 10
million times the average force found at the initial time step, this truncation
is slight so is unlikely to impact the correct evolution of the system.

Boundary Conditions

There is also an instability caused by the use of periodic boundary condi-

tions. This instability is apparent at all temperatures and densities tested,

and has its origin in the method of determining the force between two par-

ticles a long distance apart. At large distances the particles are not directly

interacting with each other, instead they are interacting with a Barnes-Hut

box which contains the other particle. If the particle is far enough away that

it should be treated through the periodic boundary conditions, but is not so

far away that the box that contains it has a centre of mass that does not get

the periodicity applied to it then the particle will effectively interact without

the periodic boundary conditions. The reverse however may not be true, as

a result a significant net force can build up from all the electron-electron

interactions, which will tend to radically alter the system momentum.

To remove this problem we must use a different form of boundary con-

dition by considering our sample to be inside a larger material, in this outer
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Figure 5.9: By adding additional forces such that it with thermal energy a
particle will only reach 0.1% of the main system length the impact to the av-
erage density is barely notable. As the potential energy grows quadratically
very few particles will ever reach a few multiples of the typical penetration
of this outer potential. Here we show the density averaged over 100 ps with
10, 000 particles at 300 K and an impurity density of 25× 1015 cm−3.

“halo” the particle feels a linearly growing force that attracts it back to the

main sample. This does have the impact that the average electron density

inside the main sample is slightly reduced but we can tune the outer force

to keep this to a reasonable level (see Figure 5.9).

5.3.2 Method Verification and Performance

In addition to the above calculation, checking the temperature of the elec-

tron population, we also tested the algorithm to ensure that the forces were

being calculated correctly by the Barnes-Hut scheme. The easiest test to

carry out is a comparison to the full forces, from which we expect to see

some small deviations. The plot of the exact force against the Barnes-Hut

force appears to be reasonable, with a roughly linear relationship between

the two (a Barnes-Hut constant of zero is equivalent to the full force calcu-

lation and in this case the agreement is exact) (See Figure 5.10). Similarly
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Figure 5.10: The choice of the Barnes-Hut parameter impacts the quality of
the agreement between the exact and the approximation calculation of the
force, this suggests that the use of a Barnes-Hut constant of around 0.1 is
required for accurate force calculation, this value of the Barnes-Hut constant
is used in all figures and results using this method. Note this calculation is
done in reduced system units and hence is dimensionless.

the performance of the system is in line with the expected O(N logN) with

a decrease in the Barnes-Hut constant (increasing the accuracy of the cal-

culation) slowing the result as expected.

5.3.3 Results

As the depolarisation against density is smooth at low densities (no abrupt

transition when we switch off electron-electron and electron-impurity inter-

actions, unlike in the scattering model, we can use the phonon only low

density limit to calculate an appropriate spin orbit coupling constant, a42,

of 14± 2 eVÅ
3

(See Chapter 4) this value is within the experimental range

but is significantly lower than that for the scattering approach. The head-

line result of depolarisation time against density is in excellent agreement

with the experiment throughout the density range (up to 250 ∗ 1015 cm−3)

suggesting that consideration of degeneracy is not necessary to explain the
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Figure 5.11: The classical forces approach shows excellent agreement with
the experimental depolarisation time, throughout the entire range. This
suggests degeneracy is unimportant in explaining the saturation of the de-
polarisation time at high densities, note selected points have been included
from the experiments by Oertel [69], even at higher densities the experi-
ment and theory agree within experimental error bars (and certainly have
the same qualitative trend), for the full experimental figure see Chapter 2.
The run was conducted with a slightly higher value of the spin orbit coupling

constant (a42 = 15 eVÅ
3
) than determined earlier using solely the phonon

scattering. Here T = 300 K.

experimental results (See Figure 5.11) The best fit is achieved using a spin-

orbit coupling constant of a42 = 15 eVÅ
3
. Similar quality agreement is

found for the comparison of depolarisation time against temperature (See

Figure 5.12).

Comparison To Scattering Model Assumptions

The improvements seen by using the classical forces approach suggests that

the approximations made in order to derive the scattering approaches cannot

be reliable. The most likely cause of the inaccuracy is the assumption that

the electron positions are uncorrelated with each other, this can readily be

tested against the classical model. The breakdown in the reliability of the

approximations goes some way towards explaining the inaccuracies when
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Figure 5.12: The classical forces approach shows excellent agreement with
the experimental depolarisation time against temperature, included are se-
lected points from the experiments by Oertel [69]. Here n = 27×1015 cm−3.

compared to experimental results.

The derivation of the scattering rates for the electron-electron and elec-

tron impurity scattering treated the electrons as plane waves, implicit in this

is a lack of correlation in the electron positions with respect to each other

and the ionized impurities. Considering the system from a classical point of

view we would anticipate it being unlikely to find two electrons extremely

close to each other due to the strong coulomb repulsion, similarly we might

expect electrons to be found closer, on average, to the ionized impurities

than to an electron.

To determine the probability of finding an electron a distance, r, from

another electron we start the simulation with initially random positions

and then allow it to thermalise for 10 ps, once thermalisation is complete

we randomly choose pairs of electrons and determine the distance between

them. As we anticipate the correlations being strongest at shortest distances,

we implement a cut-off distance of three times the typical inter-particle

distance, this also prevents the boundary conditions having an adverse effect
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Figure 5.13: The distribution function at higher densities shows a marked
reduction in the chance of finding an electron very close to a second electron,
note that here we plot r2p(r) which removes the reduced number of states at
lower distances, if the particles had positions that was purely independent
of each other we would expect this distribution to be flat. Here T = 300 K
and n = 150× 1015 cm−3.

on the distribution function, as for even the smallest of runs (N = 5, 000

particles) this cut-off distance is still a small fraction of the length of the

entire system.

We see at high densities that there is a significant correlation, with elec-

trons being unlikely to be found near each other, this behaviour is relatively

easily understood as originating in the stronger coulomb forces at higher

densities (See Figure 5.13). The impact this would have on the spin de-

polarisation is non trivial but fewer nearby electrons will reduce the rate of

exchange of energy and momentum between them, causing electrons to have

a longer time between sudden changes brought about by electron-electron

interactions, is comparable to a reduction in the scattering rate which would

tend to suppress the increase in the depolarisation time at higher densities.

Overall this result gives a good explanation as to why the scattering

approach is not reliable at the higher end of densities studied, despite
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dealing with some corrections that we cannot handle in a classical model

(most notably the degeneracy problems), as these corrections are small com-

pared to the errors in the scattering approach’ for densities greater than

100 × 1015 cm−3, it do not seem that the inclusion of degeneracy effects is

necessary to explain the experimental results. If we were to attempt to ex-

tend the model to even higher densities it would be appropriate to attempt

to include some version of the degeneracy pressure as a way of introducing

this correction into the classical approach, there are though severe limita-

tions to any approach based on quasi-classical properties4 as we enter a fully

degenerate approach and in that regime the use of the ensemble Monte Carlo

technique would be dubious at best.

4For example an inability to include any entanglement
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5.4 Conclusions

In this chapter we have seen a few methods for improving on the results found

in the earlier chapters. We initially looked at two approaches that improved

the scattering rates used for the electron-electron and electron-impurity scat-

tering5. These approaches were found to be unsatisfactory as they did not

significantly improve our overall agreement (the improved screening length

made little difference, while the third body rejection improves the agreement

at high densities at a cost of precision at lower densities).

To significantly improve our agreement with experiment over the entire

range we had to implement an approach that considered the classical electro-

static forces. This approach certainly could be further extended in a number

of fairly obvious ways, for example we could move beyond the electrostatic

approximation or introduce degeneracy pressure at higher densities. These

corrections are not required though to produce a reasonable model of the

electron population capable of reproducing the experimental data across the

entire density regime at 300 K. In order to produce a good fit to the ex-

perimental data we used the value of a42, calculated by fitting to the low

density limit. This is the same as in the phonon only case, suggesting that

the system behaves correctly at low densities (As the limiting value of low

density behaves the same as the intrinsic non interacting case as we would

anticipate).

Using this model we were able to investigate some of the approxima-

tions made in deriving the scattering formula for the electron-electron and

electron-impurity scattering. This showed that some of the approximations

are not valid in the higher density regime and may well explain the poor

5In the case of the third body rejection approach it is only applied to the electron-
electron scattering
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agreement with experiment for the basic scattering approach for high den-

sities.
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Chapter 6

Interaction with a magnetic

impurity

6.1 Introduction

Dilute magnetic semiconductors have recently attracted significant inter-

est, in part because of the unusual magnetic and spintronic properties they

possess (See for example [38, 39, 40]). These unusual properties include

significant spin polarisation of the equilibrium electron population and long

spin relaxation times apparent even at room temperature [87].

In this chapter we outline the theoretical background to extending our

model to include a small number of magnetic impurities in otherwise n-

doped gallium arsenide; while this approach does have some limitations it

still permits us to start developing a process that could, in principle, be used

for a more generic class of materials. Throughout this chapter we consider

only the impact of a single magnetic impurity and the behaviour of the

electron population near to it; further extensions including the introduction

of more spin sites and the calculation of total spin properties are natural
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extensions of this work.

The aim of this chapter is to use the detailed electron model to provide

characteristics for a higher level, less detailed, model. This approach would

allow simulations of much bigger sizes than is feasible in our model, whilst

still maintaining enough of the physics to be realistic.

The Landau-Lifshitz-Gilbert (LLG) equation [88] is the natural approach

to implementing an atomistic magnetic model and it is this model for which

we calculate parameters using the more detailed electron model. The Landau-

Lifshitz-Gilbert equation has been extensively used to simulate a wide vari-

ety of magnetic materials including ferromagnets [89, 90], antiferromagnets

[91] and more exotic materials for example spin glass [92] materials.

The LLG describes the spin evolution of each magnetic site in the pres-

ence of an effective field (Heff ); notably it includes a phenomenological

damping term (α). Determining the value of the damping constant α is the

major theme of this chapter. The LLG equation is [88]

dM

dt
= −γ(M ×Heff − αM ×

dM

dt
), (6.1)

where γ is the gyromagnetic ratio, M is the magnetisation of an individual

atom, and α is the phenomenological damping constant.

A number of recent papers have used atomistic spin models to study

the response of a magnetic material to an ultrafast laser pulse, typically

around 50 femtoseconds in duration [93, 94]. The essential assumption is

that the laser energy is transferred to the conduction electron, which heat

up rapidly due to their low heat capacity and can achieve temperatures

in excess of 1000 K in around 1 ps. The spin dynamics is modelled using

Langevin dynamics, which augments the LLG equation with a stochastic

field representing thermal fluctuations. The stochastic field Htherm is due
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to the interaction of the magnetic sites with their environment, particularly

the conduction electrons. Normally it is assumed that noise is assumed to

originate from lots of independent events and is therefore Gaussian1 and

satisfies

〈ha(t)hb(t′)〉 = δabδ(t− t′)2αkBTµs/γ, (6.2)

where a, b = x, y, z and γ is the gyromagnetic ratio. This guarantees that

the system equilibrates to the correct temperature. Although this is an

approach which is successful in providing an interpretation of experimental

data it is unlikely that the noise is in fact uncorrelated. In this chapter we

will discuss the nature of the noise resulting from the interaction with the

electron population, including the time correlation and estimate the value

for the damping constant, α.

6.1.1 Material

We simulate an n-doped GaAs sample at T = 300 K and n = 50×1015 cm−3

using the model of the electron population shown earlier. In particular,

we use the scattering approach to the electron-electron and electron-ionized

impurity interactions, as this model has been shown to adequately reproduce

the experimental conditions for this doping density (see Chapter 4) with

N = 20, 000 particles which is large enough that we are not concerned by

any impact of the boundary or finite size effects but is still small enough

that we are able to conduct the long simulation times required2.

In addition to the n-doping we introduce a single magnetic impurity,

1In accordance with the central limit theorem
2The difficulty in using the preferred classical forces technique is that some of the results

here, particularly for the calculation of the damping constant, α, require extremely long
run times which is difficult to achieve with the computational cost of the classical forces
code. There is no reason to believe the two techniques would produce significantly different
behaviours however as we are in a limit in which they produced similar depolarisation
behaviour.
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placed at the centre of the material. As there is only a single magnetic

impurity we neglect any impact it has on the bandstructure of the system.

Notably we do not introduce an electron, or hole, to compensate for the

impurity . Additionally we consider only the exchange interactions it in-

duces in the material, of particular note this means we neglect any Coulomb

interaction the magnetic spin site would have with nearby electrons.

Although this work is intended to have a more general application as a

method to introduce a magnetic site to an ensemble Monte Carlo simulation,

the magnetic impurity we use throughout is iron. The nature of this work is

highly provisional with additional work required to test the validity of the

various assumptions made throughout.

6.2 Theoretical Model

6.2.1 Electron spin thermalisation

Implementation of the magnetic field is introduced by changing the effective

field felt by the electron. Prior to the inclusion of the magnetic site the

only field considered was the Dresselhaus field (See Chapter 2) we add an

additional term such that

heff = hdress + hext, (6.3)

where heff is the total effective field, hdress is the Dresselhaus field and hext

is the external applied field. To include the impact of the magnetic field on

the electron velocity after the time evolution for each time step we apply a

rotation to the electron velocity, for the F = q(v × B) term in the Lorentz

force equation [95]. For a magnetic field B applied in the ẑ direction this

rotation is
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vx (t+ ∆t) = cos (θ) vx + sin (θ) vy (6.4)

and

vy (t+ ∆t) = cos (θ) vy − sin (θ) vx, (6.5)

where θ = ∆t qBm .

As we are expecting our electron population to induce the thermalisation

to an applied magnetic field via an exchange mechanism, it is reasonable to

expect that this is only possible if our electron population correctly ther-

malises. In Chapter 3 we extensively considered the momentum relaxation

to a thermal distribution at the correct temperature but we have made no

attempt to show thermalisation of the spin part of the electron wavefunction

to an applied field. In the case of the model presented so far, thermalisa-

tion of the electron spin to an applied field is not observed; indeed even a

strong magnetic field makes no difference to the spin depolarisation time

(See Figure 6.1).

Throughout this chapter we wish to see how the system thermalises,

this requires the use of a magnetic field that is competitive with thermal

energies at the temperature considered. This means the use of implausibly

high magnetic fields, ∼ 1000 T, while they are far too strong for an applied

magnetic field it is no stronger than many exchange fields such as those

present in ferromagnetic materials, though of course as we simulate only a

single electron it cannot have any magnetic ordering. It should be noted

here that the magnetic field does cause the electron spins to precess around

it, however as they all precess with the same rate this does not drive spin

depolarisation.
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To allow the electron spins to thermalise correctly we must introduce

infrequent thermal scattering. This scattering represents a large number

of sources of thermalisation including electron-electron exchange, spin flips

induced by phonon and impurity scattering [7]. We know relatively little

about the exact nature of the thermal spin flip scattering but we can in-

troduce a simple model given a few basic facts. Firstly, we know that as a

mechanism it is weak compared to other scattering effects, as it does not

significantly impact the depolarisation time, which could be fully accounted

for without considering it. Secondly, we know that the result of many such

scatterings should be a Boltzmann distribution of electron spins. The exact

nature of this scattering would require detailed Ab Initio work and is be-

yond the limits of this study, we simply implement a spin scattering process

that randomly chooses an angle to the effective field (this includes the spin-

orbit interaction as well as an applied field), whilst keeping the azimuthal

component constant, this angle (θ) is chosen as

p(cos θ) = 1− exp
(
Eθ
kBT

)
, (6.6)

where Eθ is the energy at an angle θ to the applied field. The timescale is

expected to be of a similar order to the spin depolarisation time3, so here we

choose 75 ps for the average time between scatterings for a single particle.

It should be noted that this is an arbitrary choice and further detailed work

could be done to establish a more accurate timescale.

As expected the presence of this scattering causes alignment to an ap-

plied field in a time very close to the thermalisation time chosen. The

resulting distribution is very close, but not identical, to a Boltzmann dis-

3Significantly shorter and it would drive depolarisation, significantly longer and it
depolarisation would prevent thermalisation to an applied field.
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Figure 6.1: The electron population shows no evidence of polarisation to an
applied magnetic field, in fact the field makes no difference to the depolari-
sation. Here we use 50,000 particles.

tribution around the applied field (See Figure 6.2). The difference can be

accounted for by the spin-orbit field which means that individual particles

at any given time do not experience just the applied field, and so does not

simply thermalise to it.

6.2.2 Electron Spin-Magnetic Impurity Interaction

The electron spins interact with the magnetic impurity via an exchange

mechanism with the spin site. While we do not know the exact nature of

this interaction we would expect it to be fairly short ranged with a distance

comparable to the electron wavepacket size as exchange interactions work

via the overlap between the two wavefunctions. The exchange [49] is

J12 =

∫∫
Ψ1(r1)Ψ2(r2)V (r1, r2)Ψ2(r1)Ψ1(r2)dr1dr2, (6.7)
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Figure 6.2: The electron population comes into thermal equilibrium with
the applied magnetic field as a result of the thermal spin scattering. This
induces in the magnetic spin to thermalise. The electron population does not
simply thermalise to the applied field due to the presence of the spin-orbit
interaction.

where r is the position vector. We model the electron as having a Gaussian

wavepacket, with the de Broglie thermal wavelength of λ = h̄√
3mkBT

, which

gives us a typical value for a room temperature particle of mass m. Therefore

we treat the exchange as decaying with distance from the magnetic impurity

with exp(− r
λ

2) and with a maximum of hsd = 6T estimated as 5% of the

typical Fe-Fe exchange value [96].

The evolution of the magnetic site was carried out using the method out-

line in Chapter 3 for the electron spins (i.e. the Crank Nicolson approach).

6.3 Thermalisation of the Magnetic Impurity

6.3.1 Interaction with an idealised electron population

In order to determine if our model of thermalisation is reasonable, we con-

sider a somewhat idealised form of the situation. In order to consider the
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effects due to imperfect thermalisation it is useful to consider an idealised

Boltzmann distribution. Electrons are randomly introduced at a distance of

x = 5λ from the magnetic site with a velocity v, chosen randomly from the

forward biased Boltzmann distribution (p′(vx) = vxp(vx)) and a spin chosen

from the thermal distribution. This electron undergoes no scattering for

the duration of the interaction with the magnetic site. Once the electron is

further from the magnetic site than its original position, it is removed and

a new particle is introduced. It is not necessary to consider the appropriate

time between electron events as during this time the spin merely precesses

around the magnetic field and this angle is unimportant for our purposes

(as we are looking at the angle to the applied field).

Over time the magnetic spin appears to become properly thermalised,

with a Boltzmann distribution of the appropriate temperature (See Figure

6.3). This suggests that the approach of considering the electron population

as the source of both the thermal bath and the damping is at least plausible.

It should be noted that other sources of thermal noise, including phonon

interactions with the magnetic sites would be an additional, albeit minor,

source of damping.

6.3.2 Interaction with the Full Electron System

We have established that the magnetic site will thermalise when in contact

with an ideal electron gas with a proper thermal distribution of the electron

spin and velocity. As such, we have good reason to believe that our method

is a plausible explanation of the thermalisation of the magnetic system; to

go beyond this we introduce the magnetic site to the electron gas model.

The magnetic impurity is placed in the centre of our system and interacts

with the electron gas via the exchange mechanism described earlier.
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Figure 6.3: The magnetic spin interacting with the idealised electron popu-
lation, comes to a Boltzmann distribution. Plotted is the Boltzmann distri-
bution and a select number of points at regular intervals.

To carry out our simulation we first thermalise the electron population

in the absence of the magnetic site, starting with the correct thermal dis-

tribution for the electron spin population in the absence of the spin-orbit

coupling. To allow the population to properly reach a thermal equilibrium

we carry out this thermalisation step for 150 ps, then introduce the mag-

netic impurity at the centre of the simulation4. The magnetic impurity has

its magnetic moment aligned anti-parallel to the applied magnetic field.

Once introduced the magnetic site interacts with the electron popula-

tion, which slowly results in magnetic reversal, until it eventually comes to

be thermalised (See Figure 6.2). During the thermalisation the angle made

to the applied field (θ) is plotted as well as a run using the Langevin LLG

dynamics (See Figure 6.4), while it is impossible to make an concrete judge-

ment on the similarity of the run from a single particle run the motion does

not appear to be significantly different.

4As our system has periodic boundary conditions the position should make no difference
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Figure 6.4: The magnetic site and an LLG display similar initial behaviour,
here we have chosen α = 0.03, a value found for alpha later, it is however
impossible to judge if the deviation from each other is simply due to the
difference in noise felt by the spins.

6.4 Thermal Noise

As discussed earlier to introduce thermal effects to an LLG model we must

add a stochastic term that plays the role of the thermal field. This thermal

field is generally assumed to behave as white noise, in that it contains no

temporal or spatial correlation and can also be compared to the fluctua-

tions in our electron spin model. The usual thermal field in an LLG model

is that of a thermal distribution chosen randomly at each time step with

components in each direction of

htherm = N

√
2αkbT

µγ∆t
, (6.8)

where N is the Normal distribution, γ is the gyromagnetic ratio, α is the

damping constant and ∆t is the implemented time step. We can compare

this to the noise observed in our system, but we must first consider here
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what is meant by the LLG ∆t. The origin of the normal distribution is

the consideration that the simulation is at a scale where the random noise

processes are much faster than the simulation time scales. As such they

can be assumed to be many different random events that can be averaged

over. As there are many such events then application of the central limit

theorem5 suggests that the distribution will asymptotically converge on a

Gaussian distribution for sufficiently large numbers of events. The assumed

lack of correlation in the noise would suggest white noise like behaviour,

however we would anticipate that in our system the actual noise would have

significant temporal correlation.

6.4.1 Correlated noise

Various types of correlated noise have been studied however the most com-

monly used is the Ornstein-Uhlenbeck noise [98] which is mean reverting

over a characteristic time of τ . To generate Ornstein-Uhlenbeck noise we

implement the generating equation

d ~Hth

dt
= −

~Hth

τ
+ ξ, (6.9)

where ~Hth is the thermal part of the effective field felt by a magnetic impurity

and ξ is a random force whose average is zero and time-correlation function

satisfies the fluctuation dissipation theorem.

< ξi(t)ξj(t
′) >=

αkBTδijδ(t− t′)
τ2γµ

. (6.10)

5Assuming that the individual events are uncorrelated, or at most not too strongly
correlated [97] and that they have finite mean, standard deviation, skewness and kurtosis
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Integrating over a small time interval ∆t to remove the delta functions gives

the following expression for the thermal field, Hth

Hth(t+ ∆t) =

(
−Hth(t)

τ
+
σN√

2τ

)
∆t, (6.11)

where N is the normal distribution of unit standard deviation and σ is the

standard deviation of the the non-correlated noise such that

σ =

√
2αkT

µγ∆t
. (6.12)

Equ. 6.11 can be written as [99]

hth(t+ ∆t) =

(
−hth(t) +

N√
2

)
∆t/τ, (6.13)

where the reduced thermal field is hth = Hth/σ.

The impact of Ornstein-Uhlenbeck noise is not readily apparent from

a casual inspection of the time series of the noise, but is readily apparent

from the Fourier Transform in which the magnitude decays with increased

frequency [100], the resulting pink noise is very commonly found in many

types of electrical noise [101].

We obtain a time series of the noise from the exchange interaction with

the electron population, by carrying out a simulation for 50ns, and carry

out a Fourier transform on the resulting data. The Fourier transform of

the thermal field shows a strong decay at higher frequencies, decaying faster

than would be expected of Pink Noise.
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Figure 6.5: The Fourier transform of the noise resulting from the electron
model, the low frequency term dominates with the intensity quickly decaying
with increased frequency, for comparison we also show a fit of pink noise
(I ∝ 1/f). The noise appears to decay faster than the pink noise that would
result from a Ornstein-Uhlenbeck process

6.5 Determining α

We have seen that the electron population correctly induces thermalisation

in the magnetic atom. This suggests that in such a system the doping and

thermalisation can be understood as being, at least in part, due to the ex-

change interaction with the electron population. To be able to characterise

the system for a multiscale approach it is important to calculate the appro-

priate damping constant α, for the LLG equation.

The value of the damping parameter is important to understanding many

of the dynamic properties of a magnetic system and is of particular im-

portance in ferromagnetic resonance (FMR) experiments [102]. However it

should be noted that it does not impact the equilibrium properties, such as

the Curie temperature6, as it controls the rate at which the system returns

6The temperature at which the system ceases to have a net magnetic moment in equi-
librium.
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to equilibrium, but dose not impact the equilibrium condition.

Conventional experimental calculation of α would require the consid-

eration of the linewidth of an FMR experiment, from which the damping

parameter can relatively easily be extracted. This technique however is be-

yond our capabilities to simulate as it would require a very large number

of frequency runs, each of which would take a long time. In addition as

we are only dealing with a single spin site it would inevitably be swamped

with noise from the system. Instead we consider an approaches based on

the properties of our magnetic site, in particular the decorrelation time for

the spin.

6.5.1 Determining α using the properties of the magnetic

site

To determine the damping constant, α, we might naively set the magnetic

atom’s spin a long way from equilibrium, for example pointing in the op-

posite direction to that preferred due to the applied magnetic field. If we

simulate an ensemble of magnetic atoms we would expect to see the average

case damping to the applied field with a Gilbert-like behaviour. The prob-

lem with this approach is that as we get close to thermal equilibrium the

system no longer appears to be damping; as it is in thermal equilibrium it

is as likely to increase the angle to the applied field as it is to decrease it,

this makes it impossible to determine a low θ limit for α.

The damping parameter however does not just determine the damping

but is also responsible for the timescale over which the system loses corre-

lation; it is this property that we exploit to determine an accurate value of

α. We simulate the magnetic site for a long time (25 ns) and then calculate
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Figure 6.6: The time correlation in the angle to the applied field, decays in a
roughly exponential manner. The rate of decay is controlled by the damping
parameter, α. Here we ran the LLG simulation for 1µs, before determining
the PPMCC (as defined in Chapter 2), based on the value of cos θ, at time
t apart.

the Pearson’s product moment correlation coefficient7 between the θ values

with various time differences (See Figure 6.6). As we would expect very

short time differences show almost perfect correlation (the system has not

had enough time to change), while for longer times the correlation appears

to decay exponentially, giving us a typical correlation time of 50 ps (See

Figure 6.7).

To use this behaviour we compare to various simulations carried out

with different α values using the Landau-Lifshitz Gilbert approach. This

approach shows a good agreement between the Langevin enhanced LLG and

the electron simulation for an α value of 0.03± 0.005. The exact value does

appear to have some dependence on the doping density and temperature of

the electron “gas”, the detail of which is beyond this work but is a fruitful

topic of further study.

7Calculated for two data set x and y as
∑

(xi−µx)(yi−µy)

σxσy
(See Chapter 2).
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Figure 6.7: The time correlation in the angle to the applied field, here we
compare the result from the electron gas spin model to the Langevin LLG
result. The Langevin simulation was run for 1µs, while the electron spin
model was run for 25ns using N = 25, 000 electrons. The difference in
simulation time is due to the extreme computational expense of the electron
spin simulation.

6.6 Conclusion

In this chapter we have discussed the introduction of a single magnetic

impurity to our sample and we have studied the resulting behaviour. The

introduction of a thermalisation term to the spin dynamics of the electron

population was also introduced, to ensure the system properly aligns to an

applied field. We have studied the interaction of the electron system and

seen that it causes the magnetic impurity to damp to the applied field, before

eventually reaching thermal equilibrium.

To contrast this with a higher level approach we have compared the

observed behaviour to that predicted by a Langevin extension to the Landau-

Lifshitz-Gilbert approach and found reasonable agreement. To characterise

the unknown damping parameter α, we have considered an approaches based

on studying the decorrelation time of the magnetic spin site. This approach
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shows great agreement between the spin site calculated in our model and a

Langevin LLG approach, not only finding a similar timescale but also a very

similar type of decay, although computational limitations mean significantly

larger noise on the result for the full electron approach, this is especially

notable for correlations over large time differences.

The results presented here show that the dynamic behaviour of a single

magnetic spin impurity situated in an electron heat bath behaves similarly

to a Langevin LLG spin. This suggests that the Langevin enhanced LLG

equation, correctly parametrised in terms of the damping constant, is a

reasonable atomistic-scale description of the spin dynamics. Further work is

suggested to investigate this in more detail and to study the equivalence of

the two approaches at elevated temperatures in order to validate the use of

the LLG equation in simulations of pulsed laser experiments. Importantly,

our model predicts that the electron heat bath cannot be simply represented

as a white-noise source. A detailed further study of the correlation time is

important in relation to ultrafast magnetisation dynamics since Atxitia et al.

[45] have shown that the correlation time can have a significant impact on

the demagnetisation rate of materials subjected to femtosecond laser pulses.

Further work could be carried out to determine the interaction of two

or more spin sites, especially the dependence on distance between them.

This could allow a characterisation of the indirect exchange effect which

could then be used in a large scale LLG model to determine a variety of

material properties including the Curie temperature and the response to

an applied field. Additional work could also be carried out on a material

such as Gallium Manganese with Iron doping where all the doping sites are

magnetic; such a system could then feasibly be simulated using an approach

very similar to our approach to study the overall magnetic properties.
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Chapter 7

Conclusion

7.1 Summary

In Chapter 2 we introduced the background to the ensemble Monte Carlo

technique for simulating the electron population in a semiconductor. For

this approach we discussed the dominate scattering mechanisms, which are

polar optical phonons, electron-electron and electron-ionized Impurity scat-

tering and acoustic phonon scattering. We also discussed the role of inversion

asymmetry giving rise to a spin-orbit coupling parameter which drives the

spin depolarisation and spin dephasing. We also introduced the experimen-

tal results by Oertel et al. [69] which we used throughout the Thesis as our

standard experimental data set for comparison to our simulation results.

In Chapter 3 we introduced a limitation of the electron-electron scatter-

ing, specifically only allowing scattering between nearby electrons, motivated

by a desire to realistically simulate a system much larger than the typical

inter-electron distances, in which we would not anticipate overly long range

scattering type interactions. This distance limit however has to be intro-

duced artificially as the scattering rates were derived using a plane wave
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basis and as such do not contain any spatial information. We compared two

methods for carrying out the spin evolution of the electron spin, the Heun

scheme [75] and the Crank Nicolson scheme [76] showing that the Crank

Nicolson is more efficient, more accurate and retains more information than

the Heun scheme, which we judged to be more than worth the 33% increase

in memory cost. We also discussed the limitations of various approaches to

determining the spin depolarisation time, comparing three techniques, an

exponential best fit, the time taken to reach a fixed polarisation and a time

based on the average ratio of the spin with a time delay. The ratio method

appears to be the best method as it introduces no apparent systematic error

and has smaller finite size effects than the exponential best fit. A method,

although unused in this Thesis due to time constraints, based on the time

averaged field was shown to be the optimal method for calculation of the

spin depolarisation time.

In Chapter 4 we discussed the material properties that we can determine

using the ensemble Monte Carlo technique. These properties can be divided

into two types, firstly the electronic properties, considering how the elec-

trons behave and secondly the spin properties. Particularly important was

the low density behaviour of the electron-electron scattering which remains

important even at the lower densities, it is not as expected as a linear in-

crease of electron-electron scatterings with increasing densities is generally

predicted [69]. We looked closely at the spin depolarisation time and how

it varied with density and temperature, showing good agreement with ex-

periment for doping densities below n = 100× 1015cm−3 however at higher

densities our simulation overestimates the depolarisation time. Chapter 4

had substantial overlap with a paper by Gionni Marchetti, James McHugh,

Irene D’Amico, Roy Chantrell and myself [81], however the paper introduces
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some modification to the basic model presented in Chapter 4, in particular

in Chapter 4 we use a Debye screening, rather than the more complex form

presented and used in the paper.

In Chapter 5 we compared three different approaches to further improv-

ing the accuracy of the simulation, introducing a degeneracy correction, a

third body rejection technique and the classical electrostatic forces (which re-

placed the electron-electron and electron-ionized impurity scatterings). The

degeneracy correction was shown to be very small, and as such could not

account for the difference from the experimental results, suggesting that de-

generacy effects are too small even at the higher densities to be an important

mechanism. The third body rejection technique has a more dramatic impact,

slowing (or perhaps halting) the increasing depolarisation time at high den-

sities in accordance with experiment, it however undermines the behaviour

at moderate to low densities decreasing the agreement with experiment in

that regime.

The final approach considered, the simulation of the classical electro-

static forces is considerably more computationally expensive than the scat-

tering approach despite using the Barnes-Hut scheme [44] which improves

the efficiency of the calculation by grouping distant particles. This compu-

tational cost is however more than worth it as the resulting depolarisation

times are much more accurate, showing the correct qualitative behaviour,

reaching a maximum depolarisation time of 75 ps comparable to the ex-

perimental value, although slightly exceeding it. This discrepancy can be

accounted for by considering the error in the spin orbit coupling which we

have no precise value for.

In Chapter 6 we added a single magnetic atom to our simulation and

tried to determine how it will interact with the electron gas. When we
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include a strong applied magnetic field the magnetic site precesses around

the magnetic field and slowly aligns to it. This damping is characterised

in terms of a Landau-Lifshitz-Gilbert equation [78]. The phenomenological

damping constant α can be estimated by comparing the results of a magnetic

spin in our electron model with that of one in a LLG type approach. To find

the value of the damping constant we used the time taken for the component

of the spin aligned to the magnetic field to become uncorrelated in time. The

damping constant is crucial in determining this decorrelation effect and the

correlation appeared to decay in an exponential manner in both the LLG

and full electron simulation, by comparing the depolarisation curves this

suggests a damping of α = 0.003.

In addition we looked at the noise felt by the magnetic spin for low times

and showed that in that limit the system did not have the typical Gaussian

white noise, but when averaged over for longer times the noise appeared

to become white noise like, as would be expected from the central limit

theorem.
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7.2 Further Work

The electrostatic forces version of the model shows excellent agreement to

experiment across the density range studied, but fundamentally is only valid

in the non-degenerate limit, we certainly would never be able to consider

the fully degenerate limit with such a model we can certainly look to add

some corrections for degeneracy. The obvious way to continue would be

the introduction of an additional electron-electron force to play the role of

degeneracy pressure. Although the details of this approach would need to

be considered the electron degeneracy pressure has the well known formula

[103]

P =

(
3π2
)2/3

h̄2

5me
ρ

5/3
N . (7.1)

To approach this we would need to form a discretised version of the degen-

eracy pressure, preferably one that works on a pair of particles basis. This

would allow us to simulate a larger range of temperatures and densities than

we are currently able to consider.

We already have an approach that allows us to place the ionized impu-

rities in whatever locations we want (although so far we choose to do so

only in a random manner) so it is fairly natural to extend the model to the

simulation of device properties. Depending on the exact nature of the device

this would necessitate the introduction of some additional scattering mech-

anisms, certainly we would want to consider the importance of scattering to

higher bands and probably we would also want to consider the introduction

of a non parabolic band. A large scale extension of the model would require

the ability to handle many more electrons, which requires the parallelisation

of the model which is achievable as the algorithms implemented all fairly

naturally parrellize, the only difficulty may be the Barnes-Hut scheme but
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reasonable parallel algorithms for this already exist [104].

The introduction of more magnetic impurities is also a reasonable way to

extend the model and would allow the calculation of the induced exchange

interaction between magnetic sites. This would require an understanding

of the exchange between the different electrons, and would make it possible

to use the information in a larger LLG model which could then simulate

much larger devices. This would be a multiscale approach and seems a

natural way of exploring sufficiently large magnetic impurities to determine

important magnetic properties such as the Curie temperature, and more

generally the demagnetisation curve. We have seen that the thermal noise

from the electron model is correlated over time scales that are shorter than

those normally present for magnetic systems, it would be interesting to look

at the behaviours where short time scale events are important, for example

ultrafast laser heating [105] requires an understanding of the electron system

on very short time periods, and is readily implementable using our electron

model by adding a laser heating scattering term to the electron dynamics.
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