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Abstract 

 

Macrophages are essential during the innate immune response to bacterial pathogens. 

They have a variety of roles during bacterial infections that extend beyond phagocytosis 

and intracellular killing. The interaction of Staphylococcus aureus with macrophages 

has not been completely characterised. Moreover, how S. aureus is able to manipulate 

the macrophage host defence has produced conflicting results. This thesis has examined 

the kinetics of phagocytosis and intracellular killing of S. aureus by macrophages, as 

well as identifying key features of these processes, and developed a mathematical model 

to describe the interaction of S. aureus with macrophages.  

Exposure of macrophages to S. aureus at a range of doses demonstrated that 

macrophages accumulated intracellular bacteria but although they could kill fixed 

numbers of intracellular bacteria they showed a finite capacity to kill bacteria. There 

was an initial rapid phase of intracellular killing post phagocytosis and then a more 

gradual decline in intracellular, viable bacteria, with persistence of intracellular bacteria 

for extended periods of time. Macrophages maintained viability following S. aureus 

challenge over time and macrophage mediated apoptosis was not apparent. As well as 

this, at the point when macrophages had exhausted their ability to kill intracellular 

bacteria they still demonstrated an ability to phagocytose and accumulate further 

intracellular bacteria.  

This thesis also demonstrated that intracellular bacteria were able to persist 

intracellularly for up to 3 days post infection and then macrophages were lysed by 

intracellular bacteria. The released bacteria were ingested by other macrophages and as 

a result an intracellular pool of bacteria was maintained. Examination of the cell death 

process revealed it was not apoptosis but probably necrosis. I also explored the 

intracellular compartment where S. aureus were residing and was able to show that the 

majority of intracellular bacteria were in a phagolysosome that was not appropriately 

acidified but that the majority of the bacteria colocalised with the late endosomal 

markers lysosome associated membrane protein 1 or 2 (LAMP-1/2). In contrast the 

majority of Escherichia coli and Streptococcus pneumoniae were found to be in 

phagolysosomes that were appropriately acidified.  

This thesis describes a novel mathematical model for the interaction of S. aureus with 

macrophages. The mathematical model showed that macrophages had the ability to 
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phagocytose S. aureus at a rate that depended on the extracellular bacterial 

concentration. However, the model revealed that macrophages showed a finite capacity 

to clear intracellular bacteria which over time gave rise to a population of macrophages 

that were unable to kill all of the bacteria they had phagocytosed.  

Overall this thesis has shown that macrophages can phagocytose S. aureus and they 

accumulate intracellular bacteria over time efficiently. However, they show only a 

limited capacity to kill intracellular bacteria and in response to S. aureus macrophage 

apoptosis is not engaged. This thesis demonstrates that prolonged intracellular 

persistence of S. aureus in macrophages is beneficial to the bacterium and over time 

they lyse the macrophage and are released and re-ingested by other macrophages. This 

thesis suggests that the ability to break this release and re-ingestion cycle could lead to 

better therapeutic management of S. aureus disease.  
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Chapter 1 Introduction 

 

1.1. Staphylococcus aureus 

1.1.1. Brief history 

A long held view in microbiology,  has always been that to be classed as a pathogen, an 

organism must cause a specific clinical infectious disease, but over recent years it has 

become evident that many pathogenic organisms cause common clinical diseases of the 

western world that historically were not recognised as being caused by infectious agents 

such as gastrointestinal ulcers caused by Helicobacter pylori (Finlay and Cossart, 1997). 

As well as this, because of selection pressures certain “old diseases” from days gone by 

that had become less common have re-entered the modern world e.g. Mycobacterium 

tuberculosis (Finlay and Cossart, 1997). Thus the field of infectious diseases is in 

constant flux with new pathogens being recognised and old ones being identified as 

having new roles. 

The staphylococcal genus was first described by Alexander Ogston in the nineteenth 

century, in the form of micrococcus poisoning following his experiments with warm 

and cold abscesses (Lyell, 1989, Ogston, 1882). Today the identification of the species 

Staphylococcus aureus is attributed to Rosenbach, who on hearing of Ogston’s research 

extended it (Lyell, 1989). For many years since this pioneering research S. aureus has 

been classified as an extracellular pathogen, but recent research from the past 50 years 

has provided strong evidence that the pathogen can survive intracellularly in a range of 

professional and non-professional phagocytes (Melly et al., 1960, Rogers and Melly, 

1960, Gresham et al., 2000, Hess et al., 2003). 

S. aureus is often referred to as a “golden-clustered grape” because of its characteristic 

cell division process which leads to the formation of irregular bacterial clumps or chains 

containing various numbers of bacteria (Tzagoloff and Novick, 1977). It is described as 

golden because of the production of a carotenoid pigment called staphyloxanthin 

(Marshall and Wilmoth, 1981) whose structure and biosynthesis has been described by 

Pelz and colleagues (Pelz et al., 2005)  which gives the organism its characteristic 

colour. S. aureus is known to divide in three perpendicular planes and the sister cells 
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maintain their shape until the point of cell division; following this, the sister cells 

separate and become spherical again (Tzagoloff and Novick, 1977). 

1.1.2. Summary of clinical manifestations 

S. aureus has become one of the major causes of a range of clinical infectious diseases 

from milder infections such as skin abscesses to severe infections such as pneumonia, 

staphylococcal scalded skin syndrome (SSSS), skin and soft tissue infections, bone and 

joint infections, bacteraemia, sepsis and widespread abscesses when bacteraemia leads 

to the spread of infection to multiple sites (Lina et al., 1997). 

30% of the general population are colonised with S. aureus , most of whom do not 

develop any serious infections (Archer, 1998). Research into carriage rates has 

elucidated that newborn babies have the highest rate of staphylococcal carriage 

(Williams, 1963). S. aureus has frequently been isolated from the nasal passages, but 

can also be found in other areas such as the throat, perineum and even the intestine 

(Williams, 1963).  

Five stages have been identified in the pathogenesis of S. aureus (Figure 1.1). 

Following on from colonisation, infection can cause local infection or penetrate the skin 

and enter the blood, causing invasive disease. It can then spread systemically and cause 

more severe presentations including metastatic abscesses at sites remote from the initial 

site of infection (Archer, 1998). Systemic infection can result in the development of 

septic shock (Archer, 1998), a host response to infection mediated by cytokines which 

results in low blood pressure and poor blood flow to various organs that is associated 

with significant levels of mortality.  

1.1.3. Antibiotic resistance 

 

The emergence of antibiotic resistant S. aureus has been a huge healthcare burden for 

over 50 years (M.P., 1961).  The reason behind this has been attributed to the over-use 

of antibiotics, as was demonstrated in the late 1940’s with successive passage of S. 

aureus in penicillin rendering it able to grow in 4mg/ml penicillin, and successive 

passage in streptomycin allowing it to grow in 4mg/ml streptomycin (Klimek et al., 

1948). This demonstrated for the first time that antibiotic pressure could select 

resistance in the organism. The emergence of methicillin resistant S. aureus (MRSA)  
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Figure 1.1: The sequence of events in a typical S. aureus infection.  

Following colonisation, the infection can remain local, or if it manages to enter the 

blood, spread rapidly and cause severe destruction and in serious cases death.  
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and vancomycin resistant S. aureus (VRSA) has further complicated medical 

management increasing medical attention on this organism. MRSA has been classified 

as hospital acquired MRSA (HA-MRSA) or community acquired MRSA (CA-MRSA). 

Associated with each of these are various strains, e.g. USA300 are typically found with 

CA-MRSA (Tenover et al., 2006) and USA100, and USA500 typically associated with 

healthcare outbreaks (McDougal et al., 2003). MRSA has become an increasing 

healthcare problem in the USA with CA-MRSA accounting for the majority of recorded 

skin infections (Moran et al., 2006). This is worrying because CA-MRSA can result in 

severe necrotising complications, including necrotising pneumonia with a high rate of 

mortality (Francis et al., 2005, Miller et al., 2005). There are various risk factors 

increasing an individual’s chance of developing an MRSA infection including MRSA 

colonisation, a history of hospitalisation and/or surgery and living in a long term care 

home (Klevens et al., 2007).  

Horizontal gene transfer appears to be responsible for the acquisition of antibiotic 

resistance within the staphylococcal family. For a methicillin sensitive S. aureus 

(MSSA) strain to be reclassified as an MRSA requires expression of the methicillin 

encoded cassette A (mecA) gene carried on the staphylococcal cassette chromosome 

mec element (SCCmec) which encodes the penicillin binding protein 2a (PBP2a) 

(Katayama et al., 2000, Chambers, 1997). This element is 52kB in size; it is known to 

carry the recombinase genes cassette chromosome recombinase gene A (ccrA) and 

cassette chromosome recombinase gene B (ccrB) which allow the SCCmec element to 

insert itself into the S. aureus chromosome (Katayama et al., 2000). PBP2a binds 

weakly to penicillin which contributes to the resistance (Utsui and Yokota, 1985). This 

means MRSA strains can keep synthesising peptidoglycan (PGN) even when penicillin 

is present (Hiramatsu, 2001). 

Selection pressure has now led to the emergence of variant MRSA strains encoding 

variants of the mecA gene. An example of this can be seen in Garcia-Alvarez et al., 

2011. This study reported that the identified strain found in the United Kingdom (UK) 

and Denmark carried a novel mecA gene termed methicillin encoded cassette C (mecC) 

located chromosomally in the same location as found in other MRSA strains carrying 

mecA (Garcia-Alvarez et al., 2011). The SCCmec element was also novel but the variant 

encoded a penicillin binding protein (PBP) that failed to bind penicillin effectively, 

similar to other MRSA strains (Garcia-Alvarez et al., 2011). 



5 
 

In the United States of America (USA) and Japan, there have been reports of MRSA 

clones that have intermediate resistance to vancomycin (Hiramatsu et al., 1997b, 

Hiramatsu et al., 1997a, Tenover et al., 1998). This stimulated research to try and 

understand how vancomycin resistance might occur. For VRSA strain Mu50 it was 

found cell wall thickness determined its resistance profile (Cui et al., 2000). It was 

reported that allowing strain Mu50 to grow in media with an abundant level of factors 

required for cell wall synthesis, better supported resistance (Cui et al., 2000). For both 

strains Mu3 and Mu50, earlier research identified they overproduced penicillin binding 

protein 2 (PBP2) which supported resistance (Hanaki et al., 1998). 

1.1.4. Genome sequence 

S. aureus genomes have been estimated to be roughly 2.8Mbp and they contain a low 

percentage of guanine (G) and cytosine (C) nucleotides (Lowy, 1998, Baba et al., 2008). 

This section will focus on the sequence of S.aureus Newman because this is the strain 

principally used throughout this thesis.  

 

The genome of Newman is 2, 878, 897bp and encodes for 2614 open reading frames 

(ORFs). The Newman strain contains a number of genes that have been identified as 

vital for pathogenesis (Baba et al., 2008). There are four prophages found in Newman 

designated ϕNM1-ϕNM4 which appear to be important for the strain’s pathogenesis 

(Baba et al., 2008). Strains lacking either or all 4 of the prophages displayed reduced 

ability to form organ specific abscesses in a mouse model (Baba et al., 2008). These 4 

prophages are unique to Newman; in addition, unlike some other staphylococcal strains, 

Newman has no major transposons and no SCCmec element (Baba et al., 2008).  

S. aureus Newman contains 2 major pathogenicity islands designated vSaα and vSaβ, 

encoding the major virulence determinants and 2 minor pathogenicity islands 

designated vSaγ encoding exfoliative toxins and exotoxins and vSa4 which has an 

integrase and 3 proteins of unknown function (Baba et al., 2008). Newman expresses a 

range of major surface proteins. Its fibronectin binding protein A (FnBPA) and 

fibronectin binding protein B (FnBPB) are truncated at the C terminus meaning they 

lack sorting signals and are essentially non-functional (Grundmeier et al., 2004). 

The genome lacks several major superantigen genes found in other strains and only 

encodes enterotoxin A (Baba et al., 2008). 
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1.1.5. Staphylococcus aureus virulence factors 

S. aureus has been classed as a ‘clever’ pathogen because of the range of virulence 

factors (VFs) it produces. However, it is how the pathogen controls the production of its 

various VFs that makes it clever, as it only produces them when the population density 

is critical (Figure 1.2). As with most pathogens, S. aureus adheres to a range of tissues, 

and this is an essential first step in the pathogenesis of disease (Finlay and Cossart, 

1997). Following adherence, the pathogen can be internalised by the cell it has adhered 

to (Finlay and Cossart, 1997). VFs produced by S. aureus include a range of surface 

proteins; structures present inside the bacterium and only released following structural 

damage to the bacteria and secreted proteins.  

1.1.5.1. Sortase A  

 

Sortase A (SrtA) aids the establishment of staphylococcal infections (Weiss et al., 

2004). Sortases are localised in the bacterial membrane (Melvin et al., 2011). SrtA is 

important for anchoring certain bacterial surface proteins to the cell wall, the so called 

microbial surface components recognising adhesive matrix molecules (MSCRAMMs) 

(Mazmanian et al., 1999, Patti et al., 1994, Foster and Hook, 1998). SrtA cleaves target 

proteins with an LPXTG motif near the C terminus (Navarre and Schneewind, 1994),by 

cleaving between the threonine and glycine residue, liberating the carboxyl group of 

threonine to form an amide bond with the amine group of the pentaglycine in the cell 

wall linking the C terminus to the bacterial cell wall and hence the protein is attached to 

the bacterial surface (Navarre and Schneewind, 1994, Schneewind et al., 1995). It has 

been shown that SrtA is important early in staphylococcal infections (Weiss et al., 

2004). Deleting the srtA gene severely affects the ability of S. aureus  to infect and 

adhere to cardiac tissue presumably because the mutant fails to properly anchor its 

surface proteins that are required for attachment (Weiss et al., 2004). It was shown the 

mutant bacteria failed to form a complex with fibrinogen, most likely because clumping 

factor (Clf), the required factor for binding to fibrinogen was not properly anchored to 

the bacterial cell surface (Weiss et al., 2004). It has recently been shown that the srtA 

protein is resistant to inhibition by reactive oxygen species (ROS) (Melvin et al., 2011). 

However, earlier research challenges this because in a murine model of septic arthritis it 

was shown that there was no difference in the killing or phagocytosis of a wild-type 

(WT) or srtA mutant strain by macrophages (Jonsson et al., 2002). 
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Figure 1.2: The structure of S. aureus. 

The left hand side show surface proteins that are produced during the exponential phase 

of growth shown on the graph. The right hand side shows some secreted proteins 

produced during stationary phase as shown on the graph.  
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1.1.5.2. Fibronectin binding proteins  

 

S. aureus fibronectin binding proteins (FnBPs) exist in two forms, FnBPA and FnBPB 

and both bind to fibronectin (Flock et al., 1987).When either FnBPA or FnBPB binds to 

fibronectin the staphylococci adhere better to host tissues and colonisation is enhanced 

(Vercellotti et al., 1984).  

FnBPA and FnBPB appear to be necessary for initial infection. Peacock et al., designed 

a study to analyse the genetic expression of FnBPA and FnBPB by various S.aureus 

strains (Peacock et al., 2000). Interestingly, no strains were discovered that contained 0 

FnBPs, but, 25% were found to contain 1 and the remaining 75% contained both genes 

(Peacock et al., 2000). Expression of either was sufficient to mediate bacterial 

adherence to fibronectin and this did not differ between strains harbouring either 1 or 2 

of the genes (Peacock et al., 2000).  

Shinji et al., has demonstrated that both FnBPs are required for the establishment of 

inflammatory responses required for optimal protective responses against bacteria; a 

mutation in either of the genes reduced phagocytosis of S. aureus by inflammatory 

macrophages, resulting in less release of factors from ingested bacteria to stimulate 

macrophage dependent production of inflammatory signals, which would in turn result 

in less activation of macrophage phagocytosis (Shinji et al., 2011).  

1.1.5.3. Protein A 

Protein A (Spa), is a cell bound protein and MSCRAMM  that binds to immunoglobulin 

G (IgG) (Foster, 2005). Spa can bind the fragment crystallisable (Fc) portion of IgG 

preventing Fc receptor mediated phagocytosis because Spa deficient mutants are 

phagocytosed better by neutrophils and show decreased virulence in mice models of  

infection (Patel et al., 1987, Gemmell, 1991, Palmqvist et al., 2002).  Once Spa has 

bound to IgG, the S. aureus cell surface is covered in IgG molecules in the wrong 

position to be recognised by the Fc receptor (Foster, 2005). The remarkable nature of 

this binding by Spa is evidenced by the number of Fc binding domains found in a Spa 

molecule. It has been found that 1 Spa molecule can contain between 2-5 Fc binding 

domains, allowing the protein to achieve a maximum inhibition of phagocytosis by this 

mechanism (Uhlen et al., 1984, Moks et al., 1986).  

 



9 
 

1.1.5.4. Peptidoglycan 

Gram-positive and Gram-negative bacteria synthesise peptidoglycan (PGN) as part of 

their cell wall, and the hallmark of Gram positive bacteria is the overall content of the 

cell wall PGN. For example, the S. aureus cell wall has been found to be roughly 50% 

PGN by weight (Lowy, 1998).  

PGN is important not only for maintaining the structure of the bacterium but because it 

mediates many of S. aureus’ clinical manifestations when acting in association with 

other components of the bacterium. This can be seen in S. aureus induced septic shock 

(De Kimpe et al., 1995). It was shown that incubating macrophages with a component 

of PGN known as peptidoglycan G (PepG) had little effect on nitrite production, 

inducible nitric oxide synthase (iNOS) induction and very modest effects on cytokine 

production e.g. tumour necrosis factor alpha (TNF-α) production increased only slightly 

(De Kimpe et al., 1995). This led to the hypothesis that there must be other co-

stimulatory factors required to act in combination with PGN to produce the phenotype, 

for example, lipoteichoic acid (LTA), because while incubating the macrophages with 

LTA alone caused an increase in nitrite production concomitant with activation of iNOS 

the  administration of both components together led to TNF-α production and interferon 

gamma (IFNγ) release and iNOS activation in the macrophages, showing bacterial cell 

wall components can synergise to produce a clinical phenotype (De Kimpe et al., 1995). 

The PGN polymer is important for activating macrophages, and the macrophage 

receptor cluster of differentiation 14 (CD14) was suggested to bind both membrane 

bound and non-membrane bound PGN (Pugin et al., 1994, Gupta et al., 1996, Dziarski 

et al., 1998) and the glycan part of the PGN chain was suggested as essential for CD14 

binding and the muramyl dipeptide (MDP) was implicated as the minimal structure 

needed to bind to CD14 (Dziarski et al., 1998). With the identification of Toll-like 

receptors (TLRs) it became apparent that it was toll-like receptor 2 (TLR2) that played 

an important role in the identification of S. aureus and although numerous publications 

suggested TLR2 recognised PGN it became apparent that reports implicating TLR2 as 

recognising PGN were probably only the result of TLR2 recognition of LTA or 

lipoproteins that contaminated PGN preparations (Volz et al., 2010). Instead it appears 

that the intracellular degradation of PGN into muramyl dipeptides results in recognition 

by nucleotide-binding oligomerisation domain-containing protein 2 (Nod-2).  
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1.1.5.5. Lipoteichoic acid 

Macrophages and monocytes can be activated by LTA to produce pro-inflammatory 

cytokines such as TNF-α, interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin 8 

(IL-8) (Bhakdi et al., 1991, Mattsson et al., 1993, Standiford et al., 1994). LTA has been 

shown to induce ROS in a range of phagocytic cells (Levy et al., 1990) and to activate 

iNOS in murine macrophages (Cunha et al., 1993).  

Kuo et al., using the human acute monocytic leukaemia cell line, THP-1 showed iNOS 

expression and subsequent nitric oxide (NO) production was stimulated by LTA and 

was prevented if protein kinase C (PKC) activation was inhibited (Kuo et al., 2003). In 

addition they showed that nuclear factor kappa B (NF-κB) was important for the 

response because preventing its activation prevented iNOS activation and nitrite release 

(Kuo et al., 2003).  

LTA activates TLR2 but LTA from different bacteria, despite comparable TLR2 

activation, have differential effects on the proteome of the THP-1 macrophage cell line 

(Zeng et al., 2010). For example, S. aureus LTA but not that from Lactobacillus 

palntarum was found recently to increase manganese (Mn) dependent superoxide 

dismutase (SOD) (Zeng et al., 2010).  

The lipid anchor of LTA is sufficient to mediate cytokine release but it does so at a level 

that is a lot lower than the entire LTA molecule (Morath et al., 2002). Therefore whilst 

parts of the LTA molecule have function that has been characterised, some need to be 

explored further. 

1.1.5.6. Alpha toxin 

S. aureus secretes toxins during the stationary phase of growth. The toxins alter cell 

functions and sometimes lead to cell death (Schmitz et al., 1997) by making the 

membrane permeable (Finlay and Cossart, 1997). 

Alpha toxin (Hla) is a 34kDa pore-forming toxin (Bernheimer and Schwartz, 1963, 

Coulter, 1966). Hla has been shown to cause cell necrosis, especially at high 

concentrations, which is not inhibited by caspase inhibitors (Essmann et al., 2003). In 

one study it was demonstrated that at low concentrations Hla bound to cell membranes, 

inducing apoptosis; in contrast at high concentrations it was adsorbed to the lipid bilayer 

and caused cellular necrosis, by pore formation (Jonas et al., 1994, Bantel et al., 2001). 
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However, this finding was challenged when Essmann et al., found that Hla caused 

necrosis at both low and high concentrations (Essmann et al., 2003).  

Earlier research identified that Hla damaged the structure and integrity of rabbit 

macrophages because macrophages incubated with heat inactivated (HI) toxin or no 

toxin did not show any significant loss in cellular viability compared to macrophages 

incubated with a low concentration of Hla which induced a time and dose dependent 

loss in viability over 4-8 hours (McGee et al., 1983). A similar time and dose dependent 

loss in viability was recently shown for T cells, where Hla concentrations as low as 

3ng/ml
 
reduced T cell viability which increased up to doses ≥ 100ng/ml (Haslinger et 

al., 2003). 

Hla has been shown to lead to IL1β processing in macrophages because it activates the 

NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome which 

causes caspase 1 activation and pro-IL1β processing (Kebaier et al., 2012). Kebaier et 

al., found that in NLRP3 deficient mice there was less neutrophil infiltration into the 

lungs, in response to HI S. aureus in combination with Hla administration, which lead to 

the conclusion that the neutrophilic lung inflammation phenotype seen with Hla is 

dependent on NLRP3 activation (Kebaier et al., 2012). As well as this they found WT 

mice administered with HI S. aureus resolved the infection but that those administered 

with just Hla showed a 40% mortality, and those given HI bacteria and Hla showed 80-

100% mortality. However, mortality was diminished in NLRP3 deficient mice, 

suggesting that the activation of NLRP3 and the resultant inflammatory response to Hla 

was responsible for the lung damage (Kebaier et al., 2012). Thus Hla can compromise 

the host response through induction of both cell death and through harmful cytokine 

driven inflammatory responses.  

1.1.5.7. Panton-Valentine Leukocidin 

Panton Valentine Leukocidin (PVL)  is a pore forming toxin (Panton PN, 1932) found 

in CA-MRSA strains, and has been suggested to account for the high virulence of some 

CA-MRSA strains. However, it is now thought that the ability of CA-MRSA to 

synthesis large quantities of PVL rather than the presence of the pvl gene may be 

responsible for the higher virulence of some strains (Hongo et al., 2009). However, PVL 

is also expressed in some MSSA strains (Varshney et al., 2010). 
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PVL is comprised of two independent subunits termed leukocidinS-PV (lukS-PV) and 

leukocidinF-PV (lukF-PV) (Genestier et al., 2005) and causes a range of clinical 

presentations including necrotising pneumonia (Labandeira-Rey et al., 2007). The lysis 

of immune cells induced by PVL doesn’t require binding of the entire toxin, forming a 

pore composed of both subunits to cause lysis but instead requires sequential binding of 

the components with recruitment of the S component to the neutrophils first, which then 

allows recruitment of the F subunit (Colin et al., 1994). 

Like Hla, it has been suggested that at low concentrations PVL causes cell apoptosis 

and high concentrations cell necrosis, as seen in PMN (Genestier et al., 2005). 

Treatment with PVL resulted in 60% of neutrophils demonstrating deoxyribonucleic 

acid (DNA) fragmentation which was caspase dependent because in the presence of a 

caspase inhibitor only 1% of neutrophils treated with PVL showed DNA fragmentation 

(Genestier et al., 2005). PVL was also shown to target mitochondria because after 5 

minutes, it was detectable in mitochondrial fractions (Genestier et al., 2005). 

Despite PVL’s capacity to induce cell death, strains lacking PVL did not display any  

noticeable reduction in virulence and compared to WT strains they demonstrated 

significantly larger abscesses associated with higher mortality (Bubeck Wardenburg et 

al., 2008). As well as this, for 2 CA-MRSA strains, lukS-PV or lukF-PV deletion did 

not seem to affect lung bacterial growth (Bubeck Wardenburg et al., 2007). Based on 

this it is thought that as well as PVL having a destructive effect on the host, it might 

prime the immune system to recognise and respond to the bacterium (Bubeck 

Wardenburg et al., 2008). This was also shown because PVL expressing strains were 

seen to reduce TNF-α production in the lung (Yoong and Pier, 2012). The authors 

speculated PVL activates the immune system that on one level causes a protective host 

response but that this if excessive also predisposes to host-mediated tissue injury due to 

inflammation, and that by also inducing cellular death PVL also helps reduce an 

excessive inflammatory response (Yoong and Pier, 2012).  

A selection of other important VFs is given in Table 1.1.  

1.1.6. S. aureus regulation of virulence factors 

The accessory gene regulator (Agr) is the best characterised global regulator of S. 

aureus VF gene expression, controlling the synthesis of exoproteins and down-

regulating surface adhesin production (Recsei et al., 1986) (Figure 1.3). The Agr system  
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VF Type of 

molecule 

Role in pathogenesis References 

Sortase B 

(SrtB) 

Iron binding 

protein 

Iron acquisition; thought to have a 

role in staphylococcal persistence 

in tissues. 

(Mazmanian et 

al., 2002) 

Capsule Polysaccharide 11 serotypes, capsule 

polysaccharide 5 (CP5) and capsule 

polysaccharide 8 (CP8) most 

common; antiphagocytic; nutrient 

availability affects capsule 

production and virulence of capsule 

producing strain 

(Arbeit et al., 

1984) 

(Sompolinsky 

et al., 1985) 

(Nilsson et al., 

1997) 

(Thakker et 

al., 1998) 

(O'Riordan 

and Lee, 2004) 

(Foster, 2005) 

Clumping 

factor (Clf) 

Fibrinogen 

binding protein 

Exists as clumping factor A (ClfA) 

and clumping factor B (ClfB); 

reduces macrophage phagocytosis. 

(Hawiger et 

al., 1982) 

(Ni Eidhin et 

al., 1998) 

(Palmqvist et 

al., 2004) 

 

 

Coagulase Thrombin 

activating 

protein 

Secreted protein; activates 

thrombin converting fibrinogen to 

fibrin; three types; acts in concert 

with prothrombin and both form 

staphylothrombin which causes 

plasma clotting. 

(Rammelkamp 

et al., 1950) 

(Hemker et al., 

1975) 

(Kawabata et 

al., 1985) 

(Lowy, 1998) 

(Chavakis et 

al., 2005) 

 

Extracellular 

adherence 

protein (Eap) 

Secretable 

Expanded 

Repertoire 

Adhesive 

Molecules 

(SERAM) 

Prevents leukocyte migration; binds 

to a range of plasma and matrix 

proteins like fibronectin; interacts 

with intracellular adhesion 

molecule 1 (ICAM-1) and 

diminishes acute inflammatory 

response because interferes with 

leukocyte-endothelial cell 

interactions dependent on ICAM-1 

(Chavakis et 

al., 2002) 

(Foster, 2005) 

 

Beta toxin 

(Hlb) 

Toxin Triggers immune cell death e.g. 

lyses monocytes; lyses erythrocytes 

to liberate iron in iron limiting 

environments; Hlb deficient 

mutants demonstrate decreased 

adherence; degrades keratinocytes. 

(Walev et al., 

1996) 

(Cifrian et al., 

1996) 

(Huseby et al., 

2007) 

(Katayama et 

al., 2013) 
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Gamma toxin 

(Hlg) 

Toxin 2 component leukocidin; lyses 

leukocytes and erythrocytes; targets 

neutrophils.  

(Foster, 2005) 

(Malachowa et 

al., 2011) 

Delta toxin 

(Hld) 

Toxin Synthesised by RNAIII; inserts and 

disrupts cell membranes; binds to 

neutrophils, monocytes and 

erythrocytes; causes S. aureus 

phagosomal escape which is 

maximal when expressed with Hlb. 

(Bhakoo et al., 

1982) 

(Janzon et al., 

1989) 

(Schmitz et 

al., 1997) 

(Giese et al., 

2011) 

Exotoxins Toxins Produced during stationary phase 

and released into surrounding fluid; 

exfoliative toxins (ETs)  can disrupt 

skin e.g. exfoliative toxin A (ETA) 

and exfoliative toxin B (ETB) 

target desmoglein-1, a cadherin 

helping join cells together; can 

activate macrophages causing 

massive nitrite production and 

TNF-α release; can function as 

superantigens. 

(White et al., 

1989) 

(Fleming et 

al., 1991) 

(Kawabe and 

Ochi, 1991) 

(Amagai et al., 

2000) 

(Amagai et al., 

2002) 

 

 

Leukocidin 

AB (LukAB) 

Toxin Targets phagocytes; interacts with 

integrin beta-2 (CD18) and cluster 

of differentiation molecule 11b 

(CD11b) and integrin αM/β2 (Mac-

2) 

(Dumont et 

al., 2011) 

(Dumont et 

al., 2013) 

Leukocidin 

ED (LukED) 

Toxin Targets neutrophils; produced in 

vivo with similar effects to PVL; 

binds C-C chemokine receptor type 

5 (CCR5) on macrophages, T cells 

and dendritic cells potentially 

modulating recruitment and 

activation. 

(Gravet et al., 

1998) 

(Alonzo et al., 

2012) 

(Alonzo et al., 

2013) 

 

Table 1.1: List of several virulence factors produced by S. aureus. 
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Figure 1.3: A summary of the Agr system in S. aureus controlling virulence factor 

expression.  

AgrD is exported via AgrB and acts as the autoinducing peptide (AIP) released into the 

extracellular milieu that acts as a quorum sensing signal. The autoinducing peptide 

binds to the histidine sensor kinase AgrC leading to its phosphorylation. AgrC then 

phosphorylates AgrA which binds to promoter regions in the Agr system (P2 for RNAII 

and P3 for RNAIII) and leads to transcription of RNAII and RNAIII encoded genes 

which then control virulence factor gene expression and increases secreted protein 

production at critical bacterial densities. RNAII encodes the two component signal 

transduction system comprising AgrC and AgrA the AgrD precursor of the AIP signal 

and its maturation/export protein AgrB. RNAIII controls target gene expression. 
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contains 2 different operons with 2 different promoters classified as promoter 2 (P2) and 

promoter 3 (P3) (Novick, 2003). Ribonucleic acid III (RNAIII) regulates protein 

expression at both the transcriptional and translational level (Novick et al., 1993). The 

small ribonucleic acid (RNA) encoded by RNAIII regulates gene transcription either by 

direct base pairing with target messenger ribonucleic acid (mRNA) or by base pairing to 

a negative regulator of gene transcription rot, a member of the staphylococcal accessory 

regulator A (SarA) family of transcription factors (McNamara et al., 2000, Said-Salim 

et al., 2003, Boisset et al., 2007). As well as RNAIII, the Agr system contains a quorum 

sensing system (Novick, 2003). Ribonucleic acid II (RNAII) controls the synthesis of 

accessory gene regulator A-D (AgrA-AgrD); when a quorum sensing signal, or the 

autoinducing peptide (AIP) is received by accessory gene regulator C (AgrC). AgrC is 

the sensor histidine kinase, it then activates the response regulator accessory gene 

regulator A (AgrA) which binds to the P2 and P3 promoter regions (Novick et al., 1993, 

Novick et al., 1995, Novick, 2003). In this system the AgrD is the precursor protein for 

the extracellular auto-inducing peptide that functions as the quorum sensing signal and 

accessory gene regulator B (AgrB) functions as its export protein. 

One model states that the AgrD octapeptide concentration is important, with low levels 

causing the expression of cell wall associated proteins and higher levels being 

responsible for the shift to exoprotein production (Projan, 1997). So, when S. aureus 

enters the host, and the population density is low, bacteria express cell wall associated 

proteins as the initial octapeptide concentration is low, allowing the pathogen to escape 

host defence and bind to host tissues (Projan, 1997). Then bacteria multiply and form an 

abscess protecting them further from host defences. As the bacterial population density 

increases, so does the concentration of the octapeptide, which then activates the Agr 

system to shift to exoprotein production, allowing the bacterium to escape the abscess 

with systemic spread and development of metastatic foci of infection where there can be 

further bacterial growth (Projan, 1997). Wesson et al., suggested a modification to this 

model based on their observations that Agr deletion mutant strains accumulated to 

greater levels within host cells rather than the extracellular environment and also 

induced less apoptosis, which could be because of less toxin production or greater cell 

surface protein production leading to greater adherence and so internalisation  (Wesson 

et al., 1998). Their model states that when S. aureus enters a new host they express 

surface proteins not because AgrD is produced less but because the octapeptide is 

diluted and therefore present at a lower concentration, leading to binding and 
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internalisation of bacteria. Once internalised, bacteria are within a membrane bound 

organelle causing the AgrD octapeptide to increase in concentration, activating Agr and 

exoprotein synthesis allowing the bacteria to escape confinement when exotoxins cause 

phagosomal lysis (Wesson et al., 1998).  

Once in the cytoplasm, the AgrD octapeptide is again diluted, meaning the bacteria are 

now better adapted to cytoplasmic survival (Wesson et al., 1998). Once within the 

cytoplasm, the bacteria are postulated to be able to do one of three things. Either, they 

produce a peptide causing apoptosis, encasing the bacteria in an apoptotic body which is 

engulfed by macrophages, but protects the bacteria from any host response (Wesson et 

al., 1998). Secondly, the bacteria could become a small colony variant (SCV) and cause 

a more chronic and persistent disease (Wesson et al., 1998). Finally, if the octapeptide 

concentration becomes high, then exoprotein production would lead to cell lysis and 

allow the bacteria to spread throughout the body (Wesson et al., 1998).  

The most studied member of the staphylococcal accessory regulator (Sar) family is the 

SarA transcription factor. SarA controls the expression of a range of proteins including 

Hla, Hlb, Hld, fibronectin and fibrinogen binding proteins (Cheung et al., 2004). SarA 

expression is found to be maximal towards the end of exponential phase, which 

interestingly coincides with the activation of Agr, leading to the prediction there may be 

a specific SarA-Agr interaction especially as both of these are responsible for 

controlling the transition from exponential to post-exponential growth (Rechtin et al., 

1999). SarA is a DNA binding regulatory protein responsible for activating the Agr 

operon (Rechtin et al., 1999). The SarA protein was established to be important in VF 

regulation because a mutant lacking SarA demonstrated reduced RNAIII expression 

showing SarA to be required for WT RNAIII levels (Dunman et al., 2001).  

Staphylococcal accessory regulator S (SarS) has been demonstrated to control Spa 

expression (Cheung et al., 2001). It was also shown that reconstituting SarS to the 

mutant restored Spa expression (Cheung et al., 2001). It is now also known that the Agr 

RNAIII regulates Spa expression by repressing SarS expression (Cheung et al., 2001). 

Staphylococcal accessory regulator T (SarT) has been found to be important in down-

regulating the expression of Hla (Schmidt et al., 2001). SarT has also been found to 

interact with the Agr system (Schmidt et al., 2001). It is thought that when SarA is 

present and functional, SarT is not expressed increasing Hla transcription. A decrease in 
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SarA increases expression of SarT and this subsequently leads to a decrease in Hla 

transcription (Schmidt et al., 2001).  

1.2. The innate immune system 

1.2.1. The epithelial barrier 

The epithelial barrier is the first line of defence for the human body shown in figure 1.4. 

The airway epithelium within the lungs is an example of this protecting against 

respiratory pathogens in accordance with other measures such as mucus (Vareille et al., 

2011). The mucus component is important because it not only allows the efficient 

exchange of nutrients, water and gas but is rather good at trapping approximately 90% 

of inhaled pathogens that enter the lung (Vareille et al., 2011). Airway epithelial cells 

are also important because they sense the inhaled pathogens. As mentioned above, this 

occurs through receptor expression including pattern recognition receptors (PRRs) like 

TLRs (Vareille et al., 2011). 

1.2.2. Neutrophils 

Neutrophils recognise, phagocytose and kill a range of pathogens through the 

production of ROS and digestive enzymes (Hampton et al., 1996). Neutrophils begin 

their life in the bone marrow, equipped with granules containing various enzymes which 

cannot be replenished and hence neutrophils are classed as end cells ready to intervene 

for short periods with the capacity to respond quickly, following activation in response 

to stimuli they encounter after migration into the tissues (Baggiolini, 1984, Borregaard 

and Cowland, 1997).  

Neutrophil granules are subdivided into 3 categories known as the azurophilic granules, 

secondary and tertiary granules (Borregaard and Cowland, 1997). Azurophilic or 

primary granules are classified based upon their myeloperoxidase (MPO) content, and 

can be split even further into “defensin-rich” and “defensin-poor” (Borregaard and 

Cowland, 1997). Azurophilic granules also contain the serine proteases, neutrophil 

elastase and cathepsin G. Secondary (specific) and tertiary granules are split depending 

on the concentration of lactoferrin (high in secondary granules) and gelatinase (high in 

tertiary granules) within them (Borregaard and Cowland, 1997). As well as granules the 

neutrophil also comes equipped with an nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase in the plasma membrane capable of generation reactive oxygen 

products such as superoxide (Baggiolini, 1984). The superoxide can be broken down  
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Figure 1.4: An overview of the airway epithelium.  

The epithelium is made of a range of layers which in themselves form a protective 

barrier. In the epithelium there are a range of cells such as goblet cells and ciliated cells. 

These cells secrete a range of cytokines and chemokines which lead to the recruitment 

of a range of immune cells including macrophages.  
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into hydrogen peroxide by spontaneous dismutation and hydroxyl radicals which kill 

bacteria and other invading microorganisms (Baggiolini, 1984, Hampton et al., 1998). 

The hydrogen peroxide can also react with chloride ions in an enzymatic reaction 

mediated by MPO and form hyperchlorous acid (HOCl) which is extremely bactericidal 

and can inactivate a range of proteins (Hampton et al., 1998). 

Neutrophils are very important in the innate immune response to S. aureus and patients 

with defects in neutrophil numbers or in neutrophil function are at risk of S. aureus 

infection (Lekstrom-Himes and Gallin, 2000). Neutrophils have been shown to be 

essential in controlling pulmonary infections caused by the bacterium (Kohler et al., 

2011). Using a mouse pneumonia model, it was suggested that a rapid influx of 

neutrophils into the lungs was responsible for protection during staphylococcal 

pneumonia (Kohler et al., 2011). The neutrophils use their oxidative mechanisms to 

destroy S. aureus and this is largely dependent on the MPO system since it was shown 

to be faster with an active MPO (Hampton et al., 1996). It must be noted however, that 

certain S. aureus strains prime neutrophil oxidative responses upon phagocytosis not 

seen with other staphylococcal species (Nilsdotter-Augustinsson et al., 2004). The 

relative importance of ROS in killing bacteria directly has been challenged; Reeves and 

colleagues proposed a model in which the neutrophil serine proteases mediated the 

microbial killing (Reeves et al., 2002). In this model the generation of ROS results in 

accumulation of anionic charge in the endocytic vacuole which necessitates an influx of 

potassium ions. The accumulation of ionic strength results in the release of the cationic 

granule proteases (neutrophil elastase and cathepsin G) and it is these that kill S. aureus. 

Although there is still debate as to whether this model completely explains the basis of 

bacterial killing when ROS are generated it has challenged the view that ROS directly 

mediate bacterial killing in neutrophils.  

1.2.3. Eosinophils 

Eosinophils are similar to neutrophils in that they are formed in the bone marrow and 

also have a range of granules containing various enzymes (Baggiolini, 1984). In a 

similar fashion to neutrophils, they are classified as end cells and they can migrate to 

infection sites in response to activation signals and are designed to respond rapidly 

(Baggiolini, 1984). Eosinophil granule stores also cannot be replenished, contributing to 

their end cell nature (Baggiolini, 1984). Eosinophils are not viewed as having a major 

role in antibacterial host defence but contribute to allergic diseases and S. aureus 
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exacerbates allergic disease, possibly via induction of eosinophil necrosis and release of 

eosinophilic granules in a process mediated by Hla (Prince et al., 2012). 

1.2.4. Monocytes 

Unlike neutrophils or eosinophils, monocytes have the potential to become longer lived 

cells but only a minority will differentiate into long lived tissue cells. They are 

synthesised from a precursor in the bone marrow and are released into the circulation 

where they persist for about 20 hours before in some cases migrating into peripheral 

tissues (van Furth and Cohn, 1968). At some stage in the monocyte’s life cycle, usually 

quite early on, intracellular granules become discharged and the monocyte now 

functions as a macrophage (Baggiolini, 1984). In addition, some monocyte populations 

may take a different differentiation path and divide to form dendritic cells (DCs) 

(Serbina et al., 2008). In a similar fashion to other phagocytic cells, monocytes bind to, 

phagocytose and kill invading microorganisms. This killing is mediated through the 

production of reactive nitrogen intermediates (RNIs), ROS and enzymes present within 

the phagolysosome (Amer and Swanson, 2002, Fang, 2004).  

1.2.5. Natural killer cells 

Natural killer (NK) cells represent a small population of lymphocytes, in the range of 

about 5% (Herberman, 1986). The NK cell recognises and kills its targets in a different 

fashion to some other cells previously described, in that phagocytosis is not utilised. 

The NK cell recognises its target and induces a programme of lysis. The NK cell 

recognises a structure on its target and binds to it, which activates intracellular 

signalling within the NK cell (Herberman, 1986). This rearranges the NK cell granules 

and some other cytoplasmic organelles migrate towards where the NK cell has bound 

the target cell and the granules are released (Herberman, 1986). NK cells cytolytic 

granules contain the pore forming protein perforin and cytolytic proteases such as 

granzymes with which they induce target cell lysis (Bots and Medema, 2006). 

1.2.6. Macrophages 

1.2.6.1. Overview 

 

Macrophages arise from monocytes and are long lived cells. They are relatively 

resistant to various apoptotic stimuli (Liu et al., 2001). Macrophages are found within a 

range of host tissues in low numbers, but a range of signals can lead to an increase in 
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macrophage number (Randolph, 2011). Macrophages are very important in immune 

responses against a range of infections and have been demonstrated to be the first line of 

defence against a range of microorganisms, being the resident phagocytes found in 

tissue (Green and Kass, 1964, Goldstein et al., 1974). Macrophages have various roles 

within the host including phagocytosis and killing of pathogens as well as coordinating 

the inflammatory response through the release of mediators and through the clearance of 

apoptotic cells (Geske et al., 2002). They also link with adaptive immune responses 

presenting peptides to T-helper cells (Oh and Swanson, 1996, Shinji et al., 1998). They 

detect and respond to infectious stimuli and if required elaborate the signals leading to 

the recruitment of other cells such as neutrophils (Nguyen et al., 2012). This can be 

demonstrated by studying the alveolar macrophage (AM) which is the first line of 

defence by which the lung defends itself against S. aureus (Goldstein et al., 1974) for 

example by maintaining the airspace as a sterile environment (Jonsson et al., 1985).  

 

1.2.6.2. The mononuclear phagocyte system 

 

The mononuclear phagocyte system (MPS) is defined as the population of cells that 

come from a universal progenitor in the bone marrow, differentiate into monocytes via 

monoblasts and promonocytes, enter the blood and finally enter resident tissues 

becoming primarily tissue macrophages and dendritic cells (van Furth et al., 1972). 

Cells within the MPS were often considered to be similar based on functional and 

biochemical characteristics (Hume et al., 2002). However, the relationships between the 

various populations always remained difficult to determine until monoclonal antibodies 

became available. 

 

The F4/80 antigen was found to be expressed on all mature cells within the MPS and 

can be used as a marker of macrophage differentiation and to identify a subset of 

macrophage precursors (Hirsch et al., 1981). There is a variation in F4/80 expression on 

monocytes differentiating into macrophages which could be related to either differences 

in development or the activation state (Hirsch et al., 1981). Not all macrophages express 

F4/80 and it is only those that derive from the later stages of development linked to liver 

haematopoiesis and beyond that give rise to the F4/80 positive subset. As well as this, 

F4/80 antigen is unique to mouse macrophages and not expressed by human 

macrophages.  
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AM express lower levels of the F4/80 antigen compared to other cells of the MPS 

lineage (Hume et al., 2002, Gordon et al., 1986). However, creation of a transgenic 

mouse that expressed an enhanced green fluorescent protein (EGFP) driven by the 

colony stimulating factor 1 receptor (CSF-1R) (the macrophage colony stimulating 

factor (M-CSF) receptor) promoter, showed the product was expressed in a similar 

fashion to F4/80 though the lung macrophages had much lower levels of F4/80 staining 

this could have been in part due to difficulty in detection due to the high 

autofluorescence of lung macrophages (Sasmono et al., 2003). As well as this, EGFP 

was found on pro-monocytes, circulating monocytes and lung macrophages (Sasmono 

et al., 2003).  

 

1.2.6.3. Differentiation within the mononuclear phagocyte system 

Cells within the MPS originate from a universal myeloid progenitor.  A universal stem 

cell gives rise to the pluripotent myeloid precursor, the granulocyte, erythrocyte, 

monocyte, megakaryocyte-colony forming unit (GEMM-CFU) which can then form the 

granulocyte/monocyte precursor, the granulocyte, macrophage-colony forming unit 

(GM-CFU). This then goes on to form the monocyte precursor, the macrophage colony 

forming unit (M-CFU) which gives rise to the monoblast. A monoblast then forms a 

promonocyte and the promonocyte eventually becomes a monocyte (Valledor et al., 

1998). Monocytes begin their life cycle within the bone marrow, before moving into the 

blood to differentiate some more and then finally migrating into tissues to become 

resident macrophages and sometimes DCs (Valledor et al., 1998, Tacke and Randolph, 

2006).  

Differentiation of the progenitor cells into specialised types is a committed process with 

a range of stages that can eventually lead to the formation of the macrophage dendritic 

cell progenitor for example. This differentiation is a very controlled process and is 

carried out by a range of transcription factors. One of these transcription factors is PU.1 

which controls expression of the M-CSF receptor (Zhang et al., 1994, Anderson et al., 

1998, Valledor et al., 1998, Mosser, 2003). This receptor is limited to the 

monocyte/macrophage lineage (Sherr, 1990). As well as this PU.1 has been shown to 

control expression of genes encoding fragment crystallisable gamma receptor II 

(FcγRII) and fragment crystallisable gamma receptor IIA (FcγRIIA) and CD14 as well 

as scavenger receptors (Valledor et al., 1998). PU.1 null mice were found to have 

blockages in monocyte/macrophage development including reduced monocyte numbers 
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(Anderson et al., 1998). As well as this it is known monocytes express PU.1 at high 

levels indicating it is important for differentiation in the monocyte/macrophage lineage 

(Chen et al., 1995). PU.1 is also known to be important for neutrophil differentiation 

because there was PU.1 mRNA detectable in neutrophil extracts (Chen et al., 1995).  

PU.1 is a myeloid B lymphocyte specific transcription factor produced by macrophages 

in development at the stage of hepatic haematopoiesis. In the absence of PU.1 F4/80 

macrophages are dramatically reduced in number but phagocytes expressing colony 

stimulating factor gene (c-fms) RNA, which encodes for the M-CSF receptor, produced 

in the yolk sac at an earlier stage of development are still capable of producing F4/80 

negative tissue macrophages (Lichanska et al., 1999). 

Therefore, it appears PU.1 is essential at later stages of development more than at earlier 

stages. This was also shown by studies looking at the lack of PU.1 in the developing 

mouse embryo. What was found was the lack of PU.1 did not affect early gene 

expression such as MPO but did have an effect on later gene expression (Olson et al., 

1995). Despite this, it is also known that although PU.1 is critical in the commitment to 

differentiation, it can occur in the absence of PU.1 (Henkel et al., 1999), as also 

evidenced by Lichanska et al.,(Lichanska et al., 1999). PU.1 also plays important roles 

after the development stage of hepatic haematopoiesis and is clearly essential for the 

development of monocytes into macrophages.  

The control of differentiation is also under the control of other growth factors e.g. by 

interleukin-3 (IL-3) or IL-1β (Lopez et al., 1992). Stimulation of the universal 

progenitor with these interleukins can lead to the development of GEMM-CFU 

(Valledor et al., 1998). Stimulation of GEMM-CFU with these interleukins forces the 

progenitor to develop into the GM-CFU which is the progenitor of both macrophages 

and granulocytes (Valledor et al., 1998). Stimulation of this with M-CSF commits the 

monocytic precursor to become a monoblast and promonocyte before finally becoming 

a monocyte which will then leave the blood and enter tissues, becoming a macrophage 

(Valledor et al., 1998). In humans two main populations of monocytes exist (Strauss-

Ayali et al., 2007). The CD14
++ 

CD16
- 
monocyte makes up about 90% of monocytes 

and is called the ‘classical’ monocyte. In humans these play important roles in 

inflammatory responses and are important sources of IL-1β and T helper 17 (Th-17) 

responses (Smeekens et al., 2011). A separate population constitutes 5-10% of 

monocytes and is CD14
+ 

CD16
+ 

and is referred to as the ‘non classical’ monocyte, these 
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have important roles patrolling the blood vessels and in maintenance of tissue repair but 

may also be expanded during infection and may give rise to greater pro-inflammatory 

cytokine expression (Ziegler-Heitbrock, 2007). More recently an ‘intermediate’ 

monocyte population has been described which is CD14
++ 

CD16
+
 which has a gene 

expression profile and phenotype that is for most characteristics at a level somewhere 

between the levels of the other two monocyte populations (Wong et al., 2011). In mice 

the populations are more evenly divided both giving rise to about 50% of monocytes. 

The cell ortholog of the classical monocyte is the C-C chemokine receptor type 2 

(CCR2
+
)
 
monocyte which is often called an ‘inflammatory’ monocyte in mice as it is 

more rapidly recruited to inflamed tissues while the ortholog of the non classical 

monocyte analogue is the CX3C chemokine receptor 1 (CX3CR1
+
)
 
monocyte. Although 

morphological appearance and receptor characteristics allow this comparison the 

functions of each group seem to differ between mice and humans (Serbina et al., 2008). 

When the monocyte differentiates into the macrophage it increases its hydrolytic 

enzyme content, lysosomal content, mitochondrial number and mechanisms of energy 

metabolism (Valledor et al., 1998). Macrophage differentiation and function is 

dependent upon the tissue it resides in, which imprints its programme of development 

(Valledor et al., 1998).  

There are other transcription factors controlling differentiation that are classified as 

either essential for differentiation or as repressing or activating gene expression 

controlling differentiation at different stages (Valledor et al., 1998). The former group 

includes PU.1 and the latter group c-Myc. As examples c-Myc was shown to effect 

macrophage differentiation in 2 ways. Firstly it induced immature myeloid cell 

proliferation and had a negative effect on genes involved in the later stages of 

differentiation (Valledor et al., 1998). Nuclear Factor Y (NF-Y) was shown to induce 

ferritin synthesis and control major histocompatibility complex II (MHCII) expression 

forcing the progenitor towards a macrophage phenotype (Borras et al., 1995, Marziali et 

al., 1997). It is also important to note that repression of certain transcription factors is 

important for establishing the macrophage lineage (Valledor et al., 1998). Figure 1.5 

summarises some of the major differentiation steps. 

1.2.6.4. Macrophage classification 

 

Macrophages have been divided into classically activated macrophages (CAM or M1) 

or alternatively activated macrophages (AAM or M2). It is thought that the macrophage  
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Figure 1.5: A summary of macrophage development from a universal progenitor 

cell.  

Stimulation of a hematopoietic stem cell with a range of cytokines and chemokines 

results in the formation of the macrophage colony forming unit. This then matures via a 

range of intermediate steps to eventually form a monoblast. This then gives rise to a pro 

monocyte which then forms a monocyte. The monocyte moves into the blood forming a 

peripheral blood monocyte which then migrates into the tissues to form tissue 

macrophages e.g. alveolar macrophage in the lungs, Kupffer cells in the liver and 

histiocytes in the spleen.  
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environment is responsible for determining the type of macrophage that is programmed, 

and that monocytes recruited from the bloodstream form resident tissue macrophages 

that can convert to either an M1 or M2 phenotype and that once polarised macrophages 

can switch polarity dependent on prevailing conditions (Stout et al., 2005). More 

recently an alternative model relating to the source of M1 and M2 macrophages has 

been put forward. This states that different precursors give rise to M1 or M2 

macrophages e.g. in mice monocytes expressing Lys6C are thought to give rise to M1 

macrophages and to be recruited from the blood while the M2 macrophages arise from 

local replication of a subset of tissue macrophages (Auffray et al., 2007, Jenkins et al., 

2011) . M1 macrophages are important in antimicrobial defences and are produced 

during cell mediated immune responses and are classified as being interluekin-12 (IL-

12) positive and interleukin-10 (IL-10) negative (Mosser, 2003, Mantovani et al., 2004, 

Edwards et al., 2006). Recently using thermally injured mice, Asai et al., demonstrated 

that following MRSA challenge, the macrophages present in the skin of normal mice 

were IL-12 positive, IL-10 negative, Chemokine C-X-C ligand 9 (CXCL9) positive and 

mannose receptor negative (Asai et al., 2010). In addition they also expressed iNOS 

mRNA (Asai et al., 2010). The macrophage polarisation of burned mice was typical of 

M2 macrophages, and M1 polarisation did not occur following infection, leading to 

failure to form abscesses and control infection, leading to the hypothesis that M1 

macrophages are important in the formation of an MRSA abscess. 

 

Further stimulation gives programmes associated with M2 macrophages that could 

inhibit abscess formation during MRSA (Asai et al., 2010). Following PRR stimulation 

by a pathogen associated molecular pattern (PAMP) a resident tissue macrophage can 

convert itself into a M1 macrophage. This conversion is important for host responses 

during acute infections but excessive M1 polarisation can also promote sepsis and tissue 

damage (Benoit et al., 2008). M1 macrophages kill invading microorganisms using a 

range of mechanisms and utilise a large volume of oxygen and express iNOS (Mosser, 

2003, Houghton et al., 2009). M1 macrophages are pro-inflammatory secreting a range 

of cytokines and chemokines associated with a T helper 1 (Th1) response e.g. TNF-α, 

IL1β and IL-12 (Mosser, 2003). M1 macrophages were initially thought to require both 

TNF-α and IFNγ to activate them and certainly it was demonstrated that M1 

macrophages stimulated with both tumour necrosis factor (TNF) and IFNγ before 

exposure to an invading pathogen was introduced lead to the macrophage efficiently 

clearing the infection (Mosser and Edwards, 2008). However, it is now accepted that 
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certain TLR agonists can bypass this requirement if they lead to the production of both 

TNF and interferon beta (IFNβ) (Mosser and Edwards, 2008).  

M2 macrophages have historically been used to group all other types of AAMs 

including wound healing macrophages and tumor-associated macrophages (TAMs). It is 

increasingly recognised that M2 polarised macrophages come in many different 

subtypes and probably demonstrate functional diversity; the role of many AAM are 

unknown but some subsets play a role in tissue repair (Mosser and Edwards, 2008). It is 

also thought that a chronic infection can reprogram a tissue macrophage and push it 

towards an M2 phenotype (Benoit et al., 2008). M2 macrophages are anti-inflammatory 

(Brissette et al., 2012). AAM are generally associated with different responses 

compared to M1 macrophages. These include response to parasitic infections, 

angiogenesis, and wound healing (Randolph, 2011). It has been shown that AAM have 

a much reduced ability to kill many bacterial pathogens compared to M1 macrophages 

and that factors released by them can prevent pathogen stimulation of tissue 

macrophages that would push them towards a M1 macrophage phenotype (Katakura et 

al., 2004). AAM in mice express mannose receptors and found in inflammatory zone 1 

(FIZZ1) mRNA, and release a range of cytokines including IL-10 and Chemokine C-C 

motif ligand 17 (CCL17), both of which prevent the conversion of resident 

macrophages towards an M1 phenotype (Mantovani et al., 2004, Edwards et al., 2006). 

Within the M2 family there are further subdivisions of macrophages which is 

determined by their gene expression and the range of synthesised chemokines. If an M2 

macrophage produces CCL17 and expresses the FIZZ1 gene it is classified as M2a 

macrophage (Mϕ), an M2 macrophage producing Chemokine C-C motif ligand 1 

(CCL1) and expresses the sphingosine kinase 1 (SPHK1) gene is called an M2b Mϕ and 

an M2 macrophage producing C-X-C motif chemokine 13 (CXCL13) and carrying the 

FIZZ1 gene is known as M2c Mϕ (Mosser, 2003, Mantovani et al., 2004, Benoit et al., 

2008). The relevance of these three different subtypes is unknown, but all three can 

prevent resident macrophages becoming M1 macrophages. However, there are many 

variations between these particular types, many with features shared between 2 or more 

of these macrophage types (Mosser and Edwards, 2008). 

Going further it has recently been shown that IL-10 acts as a switch guiding monocyte 

to macrophage differentiation during infection. In the normal peritoneum there were 2 

macrophage populations found. One was a minor population CD11b
int 

expressing 

MHCII (MHCII
hi

) and F4/80 while the major population was CD11b
hi 

(MHCII
lo

) 
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(Nguyen et al., 2012). Both populations were phagocytic but only the MHCII
lo 

population could phagocytose apoptotic cells (Nguyen et al., 2012). When IL-10 

expression was high the MHCII
lo

 population of macrophages was formed. IL-10 was 

confirmed as a developmental switch for this major population as it was not formed in 

mice lacking IL-10 signalling or the IL-10 receptor (IL-10R1) (Nguyen et al., 2012). 

The hypothesis from this is IL-10 activates monocytes recruited to a site of 

inflammation to differentiate into MHCII
lo 

monocytes and these “signalling competent 

monocytes” cause “signalling incompetent monocytes” to differentiate into further 

MHCII
lo 

monocytes (Nguyen et al., 2012). Interestingly the introduction of signalling 

competent monocytes into IL-10R1 deficient mice allowed donor monocytes to convert 

resident macrophages into MHCII
lo 

(Nguyen et al., 2012). So, early on in infection it is 

thought IL-10 concentration is high making monocytes differentiate into the major 

population and engulf apoptotic neutrophils (Nguyen et al., 2012). IL-10 levels then 

decrease giving rise to the minor population which could activate the adaptive immune 

system, similar to an antigen presenting cell (APC) (Nguyen et al., 2012).  

1.2.6.5. Macrophage receptors 

1.2.6.5.1. Toll like receptors 

 

TLRs are transmembrane glycoproteins found on the cell surface and within the 

endosomes of many cell types including immune cells such as macrophages (Bowie and 

O'Neill, 2000). Different TLRs recognise different PAMPs, for example lipopeptides 

are recognised by toll like receptor 2 (TLR2), lipopolysaccharide (LPS) is recognised by 

toll like receptor 4 (TLR4) and bacterial DNA is recognised by toll like receptor 9 

(TLR9) but each receptor has multiple ligands (Chang, 2010). In the case of S. aureus 

for example it is proposed that LTA activates TLR2/toll like receptor 6 (TLR6) 

heterodimers (Han et al., 2003) and internalisation into the phagolysosome with 

subsequent digestion will liberate the DNA and engage TLR9 (Hemmi et al., 2000). In 

this manner TLRs can very quickly cause immune activation. Once the TLR has sensed 

the presence of the microorganism, an inflammatory response is initiated which helps 

stimulate pathogen eradication (Gruenberg and van der Goot, 2006). The activation of 

TLRs was shown to be through dimerisation upon ligand binding, which recruits 

myeloid differentiation primary response 88 (MyD88) and leads to intracellular 

signalling (Jin and Lee, 2008). For most TLRs, ligand binding induces homodimer 

formation, but in the case of TLR2, it can form a heterodimer with either toll like 
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receptor 1 (TLR1) or TLR6, allowing it to respond to a wider array of ligands (Jin et al., 

2007). TLR dimerisation activates signalling leading to NF-κB activation, which in turn 

stimulates gene expression, which will lead to pathogen eradication (Takeda and Akira, 

2004). I am going to focus on TLR2 in this section because it has been shown to play an 

important role during S. aureus infections and LTA from S. aureus appears to be a more 

potent TLR2 stimulus than that of some other Gram positive bacteria (Han et al., 2003).  

 

Research identified that mice lacking TLR2 or MyD88 were highly susceptible to S. 

aureus infection (Takeuchi et al., 2000). As well as this the macrophages from these 

mice produced less pro-inflammatory cytokines in response to HI S. aureus (Yokoyama 

et al., 2012). The mice cleared the infection a lot slower than WT mice and the 

macrophages were insensitive to LTA (Takeuchi et al., 2000). The importance of TLR2 

to host responses has been demonstrated for a range of clinical presentations by S. 

aureus. Another study using a brain abscess model demonstrated that animals lacking 

TLR2 had more bacteria persisting and took longer to control the infection; a similar 

effect was not seen in animals lacking TLR4 (Stenzel et al., 2008). Also TLR2 deficient 

mice demonstrated larger influxes of neutrophils and CD11b
+ 

and F4/80
+ 

and F4/80
-
 

macrophages to the abscess which persisted for up to 72 days post infection (Stenzel et 

al., 2008). In this model TLR4 deficient mice had a worse outcome than WT mice, 

though significantly better than TLR2 deficient mice. Based on these observations, it is 

proposed that TLR2 provided the major role with TLR4 providing a minor role in host 

defence against brain infection with S. aureus (Stenzel et al., 2008). This protective 

effect of TLRs will only be beneficial if the resultant inflammatory response maximises 

pathogen clearance and minimises dysregulated inflammation and tissue injury and 

highlights the fact that anti-bacterial responses usually require the combined activation 

of multiple PRRs (Anand et al., 2012). 

 

Another role for TLR2 during S. aureus infection is responding to phenol soluble 

modulins (PSMs). It was shown that PSMs signal through TLR2, with TLR2 

heterodimerisation with TLR1 enhancing the TLR2 response to PSM and TLR6 

impeding this response (Hajjar et al., 2001). Interestingly, cells expressing TLR2 

without the intracellular domain became unresponsive to LTA supporting the role of 

this receptor for recognition of Gram positive cell wall constituents (Schwandner et al., 

1999). As well as this, the expression of TLR2 in cells lacking TLR2 caused them to 

respond to putative TLR2 ligands (Yoshimura et al., 1999). 
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1.2.6.5.2. Nod Like Receptor 2 

 

The nucleotide binding oligomerisation domain (Nod) receptors respond to and detect 

bacterial constituents within the cytoplasm. Nucleotide binding oligomerisation domain 

containing protein 2 (Nod2) has been shown to be important during infections caused by 

S. aureus. Early research showed Nod2 signalling increased pro-IL-1β production, and 

increased the production of antimicrobial peptides as well as other host defence 

mechanisms, implicating their importance in the host defence to microorganisms (Ting 

et al., 2010). 

It is now known that Nod2 is required for bacterial clearance in vivo. Nod2 was found to 

be the receptor for muramyl dipeptide (MDP) which is released from PGN found in 

Gram positive and Gram negative bacteria (Girardin et al., 2003). In mice models, it 

was found that a lack of Nod2 meant the mice responded less well to S. aureus 

pneumonia but also were a lot more sensitive to intraperitoneal and cutaneous S. aureus 

infections (Kapetanovic et al., 2010). Nod2 was needed to elicit an optimal IL-6 

response to S. aureus (Hruz et al., 2009). Based on these observations a model was put 

forward that stated that lack of Nod2 signalling would result in delayed bacterial 

recognition, leading to larger bacterial loads and more severe and dysregulated later 

stages of inflammation as described for TLR2 deficiency above (Hruz et al., 2009). The 

importance of IL-6 in this model is because it is a central stimulator of the immune 

response (Hruz et al., 2009). 

Other research found that chronic Nod2 stimulation enhanced bacterial killing and there 

was less pro-inflammatory cytokine production overall when Nod2 was stimulated by 

live bacteria (Hedl and Abraham, 2013). Also it was shown that p40phox, p47phox and 

p67phox were upregulated, explaining the link between Nod2 stimulation and the 

activation of killing pathways within macrophages (Hedl and Abraham, 2013).  

1.2.6.5.3. Cluster of differentiation 14 

CD14 acts as a co-receptor during interaction of TLRs with their ligands (Sabroe et al., 

2003). The importance of CD14 in S. aureus infections is still unclear. In some studies 

it was demonstrated that CD14 did not affect the outcome of infection or play a huge 

role in S. aureus clearance (Haziot et al., 1999). When CD14 was co-expressed with 

TLR2, an enhanced response to S. aureus was observed in other studies, which has led 

to the suggestion that a range of Gram positive micro-organisms may require CD14 for 



32 
 

optimal recognition by TLR2 (Yoshimura et al., 1999). It has been found that when 

triacylated lipopeptides bind to CD14 it enhances their interaction with the TLR1/2 

complex and although CD14 does not actually bind the lipoprotein it enhances their 

interaction with the TLR1/2 heterodimer (Nakata et al., 2006). CD14 is also required to 

enhance the interaction of other S. aureus ligands with TLR2. For example it has been 

found to enhance the interaction of Panton Valentine Leukocidin (PVL) and its LukS 

subunit with TLR2 and be required for optimal cytokine production by alveolar 

macrophages and pulmonary inflammation in response to PVL (Zivkovic et al., 2011).  

1.2.6.5.4. Macrophage Fc gamma receptors 

Fragment crystallisable gamma receptors (FcγR) belong to a family of immunoreceptors 

whose functional activity can be regulated by the phosphorylation status of the 

cytoplasmic tail  (Swanson and Hoppe, 2004). They recognise IgG opsonised particles 

and several have immunoreceptor tyrosine based activation motifs (ITAMs) in their 

cytoplasmic tails (Ravetch and Bolland, 2001, Underhill and Ozinsky, 2002). While 

some FcγR contain ITAM motifs, a second class have immunoreceptor tyrosine based 

inhibition motifs (ITIMs) (Ravetch and Bolland, 2001). FcγR ITAMs are 

phosphorylated and in turn regulate kinases that causes the phosphorylation of a range 

of downstream targets, regulating actin polymerisation and ultimately phagocytosis 

(Swanson and Hoppe, 2004); those containing ITIMs recruit phosphatases inhibiting the 

signalling (Ravetch and Bolland, 2001). When an IgG opsonised particle binds to the 

FcγR the receptor clusters by patching (Kwiatkowska and Sobota, 1999) causing 

phosphorylation of tyrosine residues in the ITAM motifs (Kwiatkowska and Sobota, 

1999). This results in the formation of a protein complex around the receptor (Booth et 

al., 2002) and causes internalisation through actin polymerisation, membrane movement 

towards the site of binding, pseudopod formation, extension around the particle and 

finally engulfment (Aderem and Underhill, 1999). FcγR phagocytosis is known to 

trigger inflammatory responses and activate the macrophage NADPH oxidase (Sakata et 

al., 1987, Gresham et al., 1988, Ravetch and Clynes, 1998).  

1.2.6.5.5. Macrophage complement receptors 

 

Complement receptors (CR) such as complement receptor 3 (CR3) recognise 

complement opsonised particles (Ross, 2000). There are a range of complement 

receptors such as  complement receptor 1 (CR1) found on B cells and monocytes and 
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CR3 found on macrophages and dendritic cells (Underhill and Ozinsky, 2002). CR1 

recognises a range of microbial opsonins including complement component 1q (C1q) 

and mannose binding lectin (MBL) (Klickstein et al., 1997, Ghiran et al., 2000). CR3 

recognises iC3b which is formed following cleavage of the complement component 3b 

(C3b) (Underhill and Ozinsky, 2002). These receptors cannot mediate internalisation 

without additional signals; in the case of CR3 these signals increase receptor number at 

the membrane surface, increase the affinity of the receptor and allows them to 

phagocytose the  bound particle (Pommier et al., 1983, Berger et al., 1984, Wright and 

Griffin, 1985, Sengelov et al., 1993). An old view of CR phagocytosis suggested that 

the particle bound to the receptor and by a distinct mechanism sank into the cell 

(Aderem et al., 1985, van Lookeren Campagne et al., 2007, Kaplan, 1977), but now it is 

accepted that there are intermediate steps in the process governed by molecules that 

include Ras homolog gene family member guanosine triphosphate (Rho GTPases) and 

the spleen tyrosine kinase (Syk) (Caron and Hall, 1998, Shi et al., 2006). Another 

complement receptor, complement receptor Ig (CRIg), has been demonstrated to be  

important in CR mediated phagocytosis because endosomes containing CRIg were 

recruited to the site of binding providing the membrane for the phagosome (van 

Lookeren Campagne et al., 2007) with microscopy verifying the presence of CRIg in 

the membrane of the maturing phagosome (van Lookeren Campagne et al., 2007). In 

contrast to Fc receptor mediated phagocytosis, CR mediated phagocytosis is non-

inflammatory and does not activate the NADPH oxidase complex (Wright and 

Silverstein, 1983, Yamamoto and Johnston, 1984).  

 

1.2.6.5.6. Scavenger receptors 

 

There are a range of scavenger receptors including scavenger receptors type I and type 

II, macrophage receptor with collagenous structure (MARCO) -both type A scavenger 

receptors, as well as the cluster of differentiation 36 (CD36), also known as a type B 

scavenger receptor. They recognise Gram positive bacterial components, most notably 

recognising LTA (Dunne et al., 1994, Thomas et al., 2000).  

 

Type I and II macrophage scavenger receptors are membrane proteins interacting with 

and phagocytosing a range of targets including apoptotic thymocytes (Platt et al., 1996). 

As stated above these scavenger receptors bind to LTA. It was demonstrated that mice 

lacking both type I and type II receptors (SR-I/II deficient) were more susceptible to S. 
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aureus infection with reduced bacterial clearance and phagocytosis leading to the idea 

that these receptors are important in the host defence (Thomas et al., 2000). Despite this, 

a lack of these receptors did not affect leukocyte recruitment and indeed, mice lacking 

them recruited similar numbers of leukocytes to the site of infection as WT mice 

(Thomas et al., 2000).  

 

CD36 is a transmembrane glycoprotein (Baranova et al., 2008). It recognises and binds 

to Gram positive bacteria, including S. aureus, but will also with weaker affinity bind to 

Gram negative bacteria. CD36 has been demonstrated to be important in bacterial 

clearance because it facilitates phagocytosis and concentrates S. aureus and LTA in the 

phagosome/endosome and engages TLR signalling (Stuart et al., 2005). CD36 

recognises a range of species and cell wall products and can activate both phagocytosis 

and c-Jun N terminal kinase (JNK) signalling pathways resulting in cytokine release 

(Baranova et al., 2008). During S. aureus phagocytosis it has been suggested to have a 

role to play as a TLR independent signalling receptor (Miller et al., 2011). This was 

shown because upon receptor activation sarcoma family kinases (Src) were upregulated 

which lead to JNK dependent pro-inflammatory signalling independent of TLR2/4 

(Stuart et al., 2005, Baranova et al., 2008). Macrophages lacking CD36 showed about 

50% less ability to phagocytose S. aureus and there was 60% less LTA binding to the 

macrophages implicating LTA as the CD36 ligand (Stuart et al., 2005). Based on this 

there are 2 hypotheses for CD36 action. Mechanism 1 states CD36 at the cell surface 

clusters S. aureus released LTA leading to TLR2/6 engagement (Stuart et al., 2005) 

whilst mechanism 2 states CD36 works independently of TLRs and some of the above 

models have shown CD36 driven phagocytosis and cytokine production occurs in the 

absence of TLRs (Baranova et al., 2008). Research has also shown that whilst CD36 is a 

phagocytic receptor, only certain parts of the receptor are essential for phagocytosis; 

these are residues in the COOH domain (Stuart et al., 2005). 

 

Another scavenger receptor implicated in S. aureus host defence is the type II SRA-II 

receptor MARCO. This is a receptor found on a range of macrophages (Elomaa et al., 

1998). In mice it was demonstrated that several tissue populations expressed the 

receptor in response to various inflammatory stimuli (van der Laan et al., 1999). 

MARCO is increased in expression in response to bacterial infection (Elomaa et al., 

1998). On AMs, MARCO was demonstrated to be the most dominant receptor for 

binding bacteria (Arredouani et al., 2005) and has a role in binding bacteria in the blood 
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(van der Laan et al., 1999).  As well as binding bacteria MARCO can bind unopsonised 

particles (Palecanda et al., 1999). Using a tuberculosis (TB) model it was shown that 

tissue macrophages display an increased expression of MARCO and recruited 

macrophages also expressed it (van der Laan et al., 1999). However, in the newly 

recruited macrophages the MARCO receptor was only seen on a few of the cells 

suggesting its expression is not universally expressed but under tight and strict control 

resulting in expression by a subset of cells (van der Laan et al., 1999). However the role 

of scavenger receptors in mediating internalisation of S. aureus is not completely clear 

as inhibitors of scavenger receptors that have not blocked internalisation of several 

strains of S. aureus, even though they blocked uptake of a heat killed commercial strain 

of S. aureus suggesting that strain heterogeneity may influence results and that only 

some strains may utilise uptake by scavenger receptors (DeLoid et al., 2009). 

 

1.2.6.5.7. The mannose receptor 

 

The mannose receptor (MR) was initially identified on AMs as a receptor for the 

clearance of objects containing glycoproteins (Gazi and Martinez-Pomares, 2009). It is 

now known to be expressed by a subpopulation of macrophages and DCs, and its 

expression in non-phagocytic cells renders them phagocytic (Ezekowitz et al., 1990, 

Underhill and Ozinsky, 2002). Expression of MR complementary deoxyribose nucleic 

acid (cDNA) in Cos-1 cells led to them phagocytosing unopsonised Candida albicans 

(Ezekowitz et al., 1990). The MR has been demonstrated to be important in the 

phagocytosis of a range of pathogens such as M. tuberculosis and Francisella tularensis 

(Kang et al., 2005, Schulert and Allen, 2006). Insights from the TB studies have given 

us a lot of information about how the MR functions. Virulent TB displays 

lipoarabinomannan (LAM) which has terminal mannose residues and the MR binds 

mannosylated LAM and can phagocytose mannosylated LAM beads leading to 

increases in intracellular calcium in monocyte derived macrophages (MDMs) 

(Schlesinger et al., 1994, Kang and Schlesinger, 1998, Bernardo et al., 1998). This 

demonstrates how the MR can phagocytose a pathogen and activate intracellular 

signalling pathways (East and Isacke, 2002). MR phagocytosis can elicit inflammatory 

responses, and when internalised mannose coated beads or chitin caused the production 

of TNFα, IFNγ and IL1 by murine spleen cells not seen with cells unable to perform 

phagocytosis (Shibata et al., 1997). As well as this it has been suggested that MR 

interact with other PRRs such as TLR2 and transfecting a cell line with both TLR2 and 
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MR cDNA led to IL-8 secretion in response to Pneumocystis carinii not seen with either 

alone (Tachado et al., 2007). Co-precipitation studies showed the pathogen induced an 

interaction between both receptors leading to the suggestion that the MR bound the 

pathogen/pathogen component and formed a complex with TLR2 leading to 

intracellular signal transduction pathways being activated (Tachado et al., 2007). MR 

expression in cell lines that do not normally express MR resulted in enhanced uptake of 

S. aureus (Vigerust et al., 2012). This suggests that AAM may also be able to 

phagocytose S. aureus since MR is enriched on these cells as described above 

(Mantovani et al., 2002). 

 

1.2.6.6. Macrophage phagocytosis 

Macrophage phagocytosis is split into opsonin dependent and opsonin independent 

phagocytosis (Shinji et al., 1998). In opsonin dependent phagocytosis, it can be through 

IgG binding to the Fc receptor, the C3 complement component iC3b binding to CR, or 

potentially other opsonins such as surfactant proteins binding to their receptors, whereas 

in opsonin independent phagocytosis bacterial molecules usually are directly interacting 

with cell receptors to be recognised (Ross and Medof, 1985, Ravetch, 1994, Ofek et al., 

1995).  

Fc receptor mediated phagocytosis is an important mechanism in macrophages, that 

occurs when the receptors ligate particles opsonised with IgG (Aderem and Underhill, 

1999). When this happens F-actin is seen to be present on the phagosome membrane 

demonstrating its importance in phagocytosis and the mechanism requires functional 

tyrosine kinases such as phosphoinositol-3-kinase (PI3K) and the activation of PI3K 

dependent Ras homolog gene family member (Rho) family of guanosine 

triphosphatases (GTPases) such as Ras-related C3 botulinum toxin substrate (Rac1) and 

the PI3K-independent cell division control protein 42 homolog (Cdc42) as well as the 

activation of downstream kinases such as p21 activated kinase 1 (PAK1) to allow F-

actin polymerisation (Manser et al., 1994, Araki et al., 1996, Cantrell, 2001). It has also 

been demonstrated that some mechanisms of Fc receptor mediated phagocytosis e.g. 

those involving fragment crystallisable gamma receptor III (FcγRIII) is calcium 

dependent (Edberg et al., 1995). Once the particle has been phagocytosed by this 

mechanism, intracellular processes lead to reactive oxygen intermediate (ROI) 

production and particle digestion. Looking at complement mediated phagocytosis, it is 

noted that there are a range of proteins distributed over the phagosome during the 
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process and protein kinase C (PKC) activation is required during the process (Allen and 

Aderem, 1996). Unlike Fc receptor phagocytosis CR mediated phagocytosis does not 

lead to ROI production (Wright and Silverstein, 1983, Aderem et al., 1985). 

Once the particle has been taken up by either opsonin dependent or independent 

mechanisms, it is enclosed in a membrane bound vacuole termed the phagosome which 

cannot kill the pathogen alone (Gruenberg and van der Goot, 2006). Next it undergoes a 

maturation process where it exchanges molecules with the cytoplasm, fuses with 

lysosomes, its pH falls, and microbicidal molecules become activated in what is now 

termed the phagolysosome (Gruenberg and van der Goot, 2006).  

Initially it was thought a single phagosome fused with a single lysosome, but it is now 

accepted that the phagosome changes and then fuses with multiple lysosomes 

(Desjardins et al., 1994). Early on in maturation you see the loss of receptors like the Fc 

receptor, MR and the acquisition of membrane bound proteins such as lysosome 

associated membrane protein 1 (LAMP-1) and lysosome acquired proteases such as 

cathepsin D and L (Pitt et al., 1992, Oh and Swanson, 1996). The lysosome associated 

membrane proteins (LAMP) were first identified in the 1980’s on lysosomal membranes 

(Chen et al., 1985). They are type I integral membrane proteins that are highly 

glycosylated and found on the plasma membrane (Rohrer et al., 1996, Lichter-Konecki 

et al., 1999). They can also be distributed on endosomes (Griffiths et al., 1988). LAMP-

1 and LAMP-2 are similar proteins (Sarafian et al., 2009) and the phagolysosome is 

enriched in LAMP-1 and LAMP-2 (Huynh et al., 2007). There have been 2 pathways 

described for how LAMP proteins reach their target. The first states the proteins are 

transported from the trans- golgi network (TGN) to the endosomes and finally the 

lysosomes (Rohrer et al., 1996). The second pathway states the proteins are delivered 

from the golgi to the cellular surface, internalised and transported along the endocytic 

pathway to  lysosomes (Rohrer et al., 1996). This requires some LAMP to be recycled 

to the plasma membrane (Rohrer et al., 1996). 

Whilst LAMP-1 acquisition peaked at 8 hours (Pitt et al., 1992), LAMP-2 was seen to 

steadily increase over time (Desjardins et al., 1994). It is also seen that a member of the 

rat sarcoma (Ras) superfamily of monomeric G protein GTPases, Ras associated protein 

Rab-5 (Rab-5) decreases over 15 hours, whereas Ras associated protein Rab-7 (Rab-7) 

increases within 2 hours and then decreases suggesting that the Ras associated protein 

guanine triphosphatases (Rab GTPases), known coordinators of vesicle traffic are 
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coordinating the maturation of the phagolysosome (Desjardins et al., 1994). Following 

phagolysosomal fusion events, the phagosome needs to become acidified to about pH5 

which is mediated by an adenosine triphosphatase ATPase in the membrane 

translocating protons into the phagolysosome (Lukacs et al., 1990). This process of 

acidification is dependent upon adenosine triphosphate (ATP) hydrolysis because non-

hydrolysable ATP analogues such as Adenosine 5’-(β, γ imido) triphosphate lithium salt 

hydrate (AMP-PNP) or Adenosine 5′-(3-thiotriphosphate) tetralithium salt (ATPγS) did 

not give rise to acidification (Lukacs et al., 1990). Once all of these processes of 

phagolysosomal maturation and acidification are complete the phagosome is now the 

mature phagolysosome.  

This complexity within the process is evident when studying S. aureus. Early on in an S. 

aureus challenge pathways for cytoskeletal rearrangement are activated during 

phagocytosis (Miller et al., 2011). As well as this signalling pathways which culminate 

in a change in calcium concentration were activated (Miller et al., 2011). Phagocytosis 

of S. aureus was also found to activate PI3K which is important in pseudopod extension 

and phagocytic cup closure leading to engulfment and later on phagosome maturation 

(Miller et al., 2011). The role of the phagolysosome in S. aureus phagocytosis has also 

been explored. It is not only required to kill the pathogen but also to release PAMPs 

from the cell wall. Without this occurring, then S. aureus ligands that stimulate the 

immune system remain inaccessible and cannot activate many TLR or other PRR 

dependent responses (Ip et al., 2010). To confirm this, Ip et al., showed that 

phagocytosis of S. aureus and then acidification of the phagosome must occur before 

maximal TLR signalling in response to the bacterium (Ip et al., 2010).  

1.2.6.6.1. Macrophage phagocytic signalling 

FcγR ITAMs are phosphorylated by members of the Src family of tyrosine kinases 

called Lck/YES related novel protein (Lyn) and hematopoietic cell kinases (Hck) and 

this results in recruitment of Syk which causes the phosphorylation of a range of 

downstream targets including a regulatory subunit of PI-3K and a range of factors 

regulating actin polymerisation and ultimately phagocytosis (Swanson and Hoppe, 

2004). Some signalling molecules are involved in phagocytosis from several different 

receptors. Examples include PI-3K and PKC. Pharmacological inhibition of PI-3K 

blocked both FcγR and CR mediated phagocytosis (Araki et al., 1996, Cox et al., 1999). 

The inhibition of PI3K did not affect the binding of the ligands to each receptor or actin 
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polymerisation suggesting the initial phagocytic signalling was not interrupted; but 

membrane fusion was inhibited (Araki et al., 1996). Araki et al., also demonstrated that 

PI-3K inhibition prevented the phagosome closing (Araki et al., 1996). The inhibition of 

PI-3K also did not prevent F-actin dependent pseudopod extension suggesting it 

occurred in a PI-3K independent manner (Cantrell, 2001). PI-3K inhibition led to 

prolonged activity of the PI-3K dependent Rho GTPase, Rac1 and the PI3K 

independent Cdc42 (Beemiller et al., 2010). 

Early research found that dominant negative (dn) alleles of Rac1 and Cdc42 prevented 

actin polymerisation at nascent phagosomes during Fc receptor mediated phagocytosis 

suggesting they were important for actin assembly (Caron and Hall, 1998). They 

inhibited particle uptake but not the initial binding (Caron and Hall, 1998). Despite this 

effect being seen with both if only one of the proteins was inhibited there was still some 

actin polymerisation supporting their complimentary roles during phagocytosis whereby 

both proteins act at different times during the phagocytic process (Hoppe and Swanson, 

2004). It was demonstrated that Cdc42 acted early in the process and was recruited to 

phagosomes because it was found at the ends of the pseudopodia (Hoppe and Swanson, 

2004). Rac1 on the other hand was found to be distributed throughout the phagocytic 

cup and to be important during the closing of the phagocytic cup around the particle 

(Hoppe and Swanson, 2004). Recently during Fc receptor phagocytosis it was shown 

that when activated Cdc42 stimulated PI-3K leading to increased levels of 

phosphoinositol 3, 4, 5 phosphate (PI3, 4, 5-P) in phagocytic cups. This then led to a 

PI3, 4, 5-P dependent deactivation of Cdc42 which was necessary to complete 

phagocytosis (Beemiller et al., 2010).  

PKC inhibition prevented phagocytosis by both Fc and CR receptors (Zheleznyak and 

Brown, 1992, Allen and Aderem, 1995). PKC is involved in the early stages of the 

phagocytic process because PKC inhibition prevented actin polymerisation occurring 

underneath the area where the particle was bound (Allen and Aderem, 1995). A similar 

role has been documented for phospholipase C (PLC). PLC is recruited to maturing 

phagosomes that contain particles that have been opsonised by IgG and its inhibition 

blocked particle internalisation (Botelho et al., 2000). More detailed analysis revealed 

PLC inhibition prevented actin filaments forming underneath the area of particle contact 

(Botelho et al., 2000).  
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In general there are subtle differences in the initial signalling between FcγR and CR 

phagocytosis. During FcγR receptor phagocytosis there is a phosphorylation of tyrosine 

residues within the ITAM domains which function as binding sites for Src homology 2 

(SH2) domain containing proteins such as Syk and inhibition of Syk kinase prevented 

internalisation of IgG opsonised particles (Matsuda et al., 1996, Kiefer et al., 1998). For 

example FcγRI or IIA cross-linking in monocytes resulted in receptor association with 

Syk and Syk phosphorylation results in its activation (Kiener et al., 1993). Activated 

Syk stimulates tyrosine phosphorylation in a range of downstream proteins such as 

PAK1 involved in actin dynamics (Groves et al., 2008). PAK1 is found to be localised 

to forming phagosomes, and inhibiting PI-3K prevents its loss from phagocytic cups 

rather than its recruitment and association to the forming phagosome (Diakonova et al., 

2002). CR3 mediated phagocytosis does not depend on tyrosine phosphorylation 

(Groves et al., 2008). Actin remodelling during CR3 phagocytosis depends on Ras 

homolog gene family member A (RhoA) because a dn form of Rho and specific Rho 

inhibitors prevented CR internalisation (Caron and Hall, 1998). The Rho family 

GTPases work by recruiting and interacting with a number of downstream proteins in an 

active GTP dependent manner; these regulators can then activate the actin related 

protein 2/3 (Arp 2/3) complex important for actin remodelling at phagocytic cups (May 

et al., 2000). Recent research has shown Ras homolog gene family member G (RhoG) 

also to be important for both Fc and CR phagocytosis; downstream signalling through 

both receptors required different Rho GTPases but both required the presence of 

functional RhoG (Tzircotis et al., 2011). 

1.2.6.7. Macrophage killing 

1.2.6.7.1. Reactive oxygen species 

 

Macrophages have a range of mechanisms to destroy phagocytosed material. 

Phagocytosis and killing by AM is an energy dependent process with the energy being 

generated by glucose metabolism and pyruvate formation (McGee et al., 1983).  

 

ROS are formed in various ways within the cell. For example, they can be generated by 

the mitochondria where electrons leak as they are transferred between complexes and 

through NADPH oxidase reducing oxygen into superoxide and other ROS (Boveris and 

Chance, 1973, Boveris and Cadenas, 1975). The release of ROS is not random and is 

stimulated following microbial exposure. Early research suggested that ROS generation 
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could be mediated through arachidonic acid production upon Fc receptor crosslinking 

(Sakata et al., 1987). It was thought arachidonic acid could activate the NADPH oxidase 

complex, by possibly helping it assemble and hence activating it (Sakata et al., 1987). 

 

Six homologs of the cytochrome subunit of the phagocyte NADPH oxidase complex 

exist and are referred to as the NOX family of NADPH oxidases (Bedard and Krause, 

2007). It is now accepted that the generation of ROS depends upon NOX’s existing in 

one of several forms within the cell,  of which NOX2 or gp91
phox 

is the major isoform in 

phagocytes, forming a dimer with p22
phox

 which is essential for its activity (Morgan et 

al., 2008). The membrane associated p22
phox

/ gp91
phox 

(NOX2) complex recruits 

additional subunits from the cytosol for activity. These are p47
phox

 and p67
phox

 (Morgan 

et al., 2008). Mechanistically, when p47
phox

 becomes phosphorylated it binds to 

phospholipids, interacts with p22
phox

 and then recruits p67
phox

 to the complex; the 

p67
phox

 then binds and stabilises Rac which interacts with this whole complex and the 

complex is now active (Morgan et al., 2008). It was shown that the phosphorylation of 

p47
phox

 was an essential part of ROS generation and required for recruitment of p47
phox 

to the phagolysosomal membrane (DeLeo et al., 1999). Further phosphorylation of 

p47
phox

 results in loss of p47
phox

/p67
phox 

from the phagolysosomal membrane and loss of 

the complex into the cytosol terminates ROS generation (DeLeo et al., 1999).  

 

It has been shown that the opsonisation status of S. aureus does not affect ROS 

generation and both opsonised and unopsonised bacteria generated a similar ROS 

response (Devalon et al., 1987). The role of ROS is to inactivate and destroy invading 

microorganisms. ROS damages cellular proteins, lipids and nucleic acids and can 

activate signalling cascades and cause cell death (Morgan et al., 2008).  

 

1.2.6.7.2. Nitric oxide 

It was demonstrated from in vitro research that mouse macrophages could generate 

nitrate and nitrite when activated and microbial products could lead to RNI generation 

(Nathan and Hibbs, 1991). It was also shown that macrophages released a compound 

that was thought to be nitric oxide (NO) or a related compound like nitrate (Stuehr et 

al., 1989). NO is formed in an enzymatic reaction from L-arginine through the action of 

nitric oxide synthases (NOS) (Kuo et al., 2003). There are 3 NOS isoforms of which 

iNOS/NOS2 is involved in immune responses, while endothelial NOS (eNOS) and 
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neuronal NOS (nNOS) are the two other forms (Kuo et al., 2003). The difference 

between these is iNOS is transcriptionally regulated in response to stimuli (Kuo et al., 

2003). Following the initial generation of NO other intermediates can be formed. 

Superoxide can combine with NO forming peroxynitrite (ONNO
-
). 

It has been shown that protein kinase C epsilon (PKCε) is important for iNOS activation 

and NO production by macrophages and macrophages lacking PKCε produced reduced 

levels of NO (Castrillo et al., 2001). As well as this, LPS induction of NOS2 activity 

was reduced in macrophages lacking PKCε (Castrillo et al., 2001). Treatment of 

macrophages with S. aureus LTA enhanced the expression of PKC and NO showing 

that signal transduction as a result of LTA stimulation can also lead to iNOS expression 

(Kuo et al., 2003). 

Following its generation, NO and its intermediates have various roles to play in killing 

intracellular bacteria. RNI can attack iron-sulphur (Fe-S) clusters including those within 

the mitochondrial complex I and II and can attack cis-aconitase in the tricarboxylic 

(TCA) cycle (Lancaster and Hibbs, 1990). NO can also bind mitochondrial enzymes 

and as a result cellular respiration becomes inhibited and ONNO
- 
can nitrosylate a range 

of cellular proteins or further react to form hydroxyl radicals which are bactericidal 

(Wizemann et al., 1994, Laskin et al., 1994).  

NO production is important in the host response against S. aureus infections, and is 

stimulated in response to the bacterium in phagocytes; infection with S. aureus in a 

murine model increased iNOS mRNA and inhibiting NO production led to increased 

mortality in this model (Sasaki et al., 1998). Also it was demonstrated using an arthritis 

model, that administering NOS inhibitors worsened the outcome of infection because 

the macrophages could not kill S. aureus (Sakiniene et al., 1997). However, the 

organism also expresses lactate dehydrogenases (Ldh) which help it survive under 

conditions of nitrosative stress (Richardson et al., 2008). The expression of Ldh is found 

with S. aureus but not with several other staphylococci such as S. epidermidis or S. 

saprophyticus (Richardson et al., 2008). Ldh expression is essential for S. aureus to 

resist nitrosative stress and although inactivating ldh2 had no effect on virulence, 

inactivating ldh1 attenuated the virulence and a double mutant was avirulent 

(Richardson et al., 2008). As well as lactate dehydrogenases, it is known S. aureus 

produces haem metalloproteases (Hmp) which detoxify the NO (Richardson et al., 

2006).  Thus the overall picture suggests NO may play an important role in controlling 
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S. aureus but the microorganism possesses several strategies to partially resist NO-

mediated killing. In addition although human macrophages appear to generate NO they 

appear to do so at lower levels than mice so the implications of these murine studies to 

man require further clarification (Schneemann and Schoeden, 2007). 

1.2.6.8. Macrophage-associated apoptosis  

1.2.6.9. Brief overview 

 

Apoptosis is a form of programmed cell death (PCD). It is characterised by DNA 

fragmentation, chromatin condensation, cell shrinkage and the redistribution of 

phosphatidylserine  (PS) to the outer leaflet of the plasma membrane (Kerr et al., 1972). 

It is ATP dependent and a block on ATP pushes the death mechanism towards necrosis, 

and it appears the ATP is needed before the morphological changes associated with 

apoptosis occur, showing that these changes are the result of a bioenergetic requiring 

process (Eguchi et al., 1997, Leist et al., 1997). Apoptosis is usually an ordered event 

and not random. It can be used by macrophages to contribute to pathogen control which 

can remove the intracellular niche and complement other intracellular killing strategies 

(Dockrell et al., 2001, Dockrell et al., 2003). As apoptosis does not lead to the release of 

cytoplasmic contents it is not inflammatory (Labbe and Saleh, 2008).  

 

1.2.6.9.1. The intrinsic pathway 

This pathway makes use of the mitochondria, cytochrome c and a family of cysteine 

dependent aspartate directed proteases called caspases. During activation of the intrinsic 

pathway release of cytochrome c from the mitochondria results in formation of a 

complex containing cytochrome c, dATP, the apoptosis activating factor 1 (Apaf-1) and 

pro-caspase 9 to form the apoptosome which then activates pro-caspase 9 and cleaves 

downstream caspases (Bantel et al., 2001). There are 3 families of caspases, initiator 

caspases (2, 8, 9 and 10), which initiate the cascade, executioner caspases (3, 6 and 7), 

which destroy the cell and inflammatory caspases (1, 4, 5 and 12) (Stroh and Schulze-

Osthoff, 1998). Newly formed caspases are inactive and are then proteolytically 

modified activating them. Initiator caspases 8 or 9 activate the executioner caspases 3, 6 

or 7, which cleave a range of substrates leading to cell death (Stroh and Schulze-

Osthoff, 1998, Porter and Janicke, 1999). Activation of caspase 3 has been shown to be 

important for DNA fragmentation seen with apoptosis and also other biochemical and 

morphological changes. When caspase 9 binds to Apaf-1, caspase 9 becomes cleaved 
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and caspase 9 is now active, which cleaves caspase 3 activating it and the execution 

phase of apoptosis begins (Li et al., 1997). Caspase 9 activation can also lead to the 

cleavage and activation of caspases 6 and 7 leading to apoptosis.  

Another family of proteins important in the intrinsic pathway is the B cell lymphoma 2 

(Bcl-2) family comprising 3 subgroups known as antiapoptotic family members 

including Bcl-2 and myeloid cell leukaemia sequence 1 (Mcl-1), proapoptotic multi 

domain channel forming proteins including Bcl-2 associated X protein (Bax) and Bcl-2 

homologous antagonist/killer (Bak) and BH3 only proapoptotic proteins including p53 

upregulated modulator of apoptosis (PUMA), phorbol-12-myristate-13-acetate-induced 

protein 1 (Noxa), BH3-interacting domain death agonist (Bid) and Bcl-2 interacting 

mediator of cell death (Bim) (Bae et al., 2000). Within a cell there is balance of Bcl-2 

family anti- and proapoptotic proteins and it is this concentration that can determine the 

fate of the cell. Anti-apoptotic Bcl-2 family proteins prevent mitochondrial pore 

formation by Bax and Bak preventing cytochrome c release (Kluck et al., 1997). To 

promote the antiapoptotic role of Bcl-2 it has been suggested it must interact with Bax, 

which was shown to occur in vivo (Oltvai et al., 1993, Hirotani et al., 1999). However 

there are two main theories of how BH3 only Bcl-2 proteins induce mitochondrial outer 

membrane permeabilisation (MOMP) to allow cytochrome c release and initiate the 

intrinsic pathway of apoptosis. In the first, the BH3 proteins neutralise the anti-

apoptotic Bcl-2 proteins, releasing Bax and Bak to induce MOMP while in the second 

they directly activate Bax and Bak (Galonek and Hardwick, 2006, Kim et al., 2006, 

Willis et al., 2007, Chipuk and Green, 2008, Lovell et al., 2008). 

An example of direction activation of Bax is the interaction between Bid and Bax which 

can trigger apoptosis. Bid gets cleaved by caspase 8 and moves to the mitochondrion 

where it induces cytochrome c release (Luo et al., 1998, Gross et al., 1998)  This is Bax 

dependent and when Bax binds to Bid there is a conformational change in Bax leading 

to cytochrome c release (Desagher et al., 1999). This leads to caspase activation and 

apoptosis. Bid also interacts with other Bcl-2 family proteins at the mitochondria 

inducing cytochrome c release (Akgul et al., 2004). 

Built into this pathway are also proteins that either promote or prevent the apoptotic 

process occurring. One of these proteins is Mcl-1 which is important in preventing 

macrophages from undergoing apoptosis in health and disease (Liu et al., 2001). There 

are splice variants of Mcl-1 e.g. Mcl-1Exon1, which is pro-apoptotic with a mitochondrial 
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location and can induce a loss of inner mitochondrial transmembrane potential (ΔψM) 

and MOMP (Marriott et al., 2005). Other splice variants include Mcl-1S (Bae et al., 

2000). Mcl-1L interacts with a range of apoptotic proteins whereas Mcl-1S only 

interacts with Mcl-1L leading to the hypothesis that the splicing mechanism of Mcl-1 is 

regulated to give rise to Mcl-1S which induces cell death by taking up some of the 

binding capacity of Mcl-1 for other pro-apoptotic Bcl-2 family members (Bae et al., 

2000). Mcl-1 is thought to sequester the pro-apoptotic protein Bak on the mitochondria 

so it cannot induce apoptosis but more recent studies suggest it has little capacity to 

directly interact with Bax (Willis et al., 2005, Zhai et al., 2008). Also it interacts with 

several BH3 only Bcl2 proteins such as Bim, reducing the concentration of Bim that can 

interact with Bax and move to the mitochondria to induce apoptosis (Opferman et al., 

2003). It also interacts with NOXA (Zhang et al., 2011). 

1.2.6.9.2. The extrinsic pathway 

This pathway involves the ligation of death receptors such as Fas, that can recruit the 

Fas activated death domain (FADD) and pro-caspase 8 into what is termed the death 

inducing signalling complex (DISC), which can activate caspase 8 and lead to 

downstream effects (Bantel et al., 2001).  

There are various receptors involved in this pathway such as the TNF receptor type 1 

(TNFR-1) and Fas (Apo-1/CD95) which have a common motif called the death domain 

(DD) (Itoh and Nagata, 1993, Tartaglia et al., 1993). Ligand binding causes the 

receptors and therefore the DD to aggregate activating a signalling cascade leading to 

cell death (Song et al., 1994, Boldin et al., 1995, Vandevoorde et al., 1997). TNFR-1’s 

DD clusters and recruits tumour necrosis factor type 1 associated death domain 

(TRADD) forming a site for FADD and mediator of receptor induced toxicity 1 

(MORT-1) binding whereas with Fas, the FADD DD associates directly with the Fas 

DD (Hsu et al., 1995, Hsu et al., 1996). In both of these processes, FADD then recruits 

FADD like IL-1β converting enzyme (FLICE), MORT-1 associated CED 3 homologue 

(MACH) and pro-caspase 8, which activates it leading to apoptosis (Boldin et al., 1995, 

Muzio et al., 1996). Fas clustering also activates pro-caspases 3 and 7 as both are 

caspase 8 substrates (Wallach et al., 1997). Fas induced cell death did not occur in a 

caspase 8 mutant and it was demonstrated that this was because there was no cleavage 

of downstream substrates and other caspases (Juo et al., 1998). 
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The components for Fas signalling are pre-assembled in the plasma membrane. When 

all the association and formation processes are complete, the level of caspase 8 and 3 in 

the DISC increases and caspase 3 becomes activated, with the caspase 3 containing 

DISC located in lipid rafts (Aouad et al., 2004). It is suggested that some cell types (so 

called type II cells) Fas activation induces relatively weak levels of caspase 8 activation 

and that engagement of apoptosis requires an amplification loop in which caspase 8 

activates the BH3 only protein Bid (Scaffidi et al., 1998, Li et al., 1998). This then 

activates the intrinsic pathway and MOMP which leads not only to activation of caspase 

9 to increase caspase 3 activation but also results in release of second mitochondria 

derived activator of caspases (Smac)/direct inhibitor of apoptosis binding protein with a 

low isoelectric point (DIABLO) from the mitochondrion which antagonises a factor 

which sequesters caspase 3 (Srinivasula et al., 2000). This factor X linked inhibitor of 

apoptosis protein (XIAP) is an inhibitor of caspase activation and its neutralisation by 

Smac/DIABLO removes caspase 3 from the constraints of XIAP. In type I cells 

stimulation of the DISC induces sufficient activation of caspase 8 and caspase 3 to 

induce apoptosis (Scaffidi et al., 1998).  

1.3. Staphylococcus aureus evasion of the innate immune system 

1.3.1. Overview 

The ability of a pathogen to adapt to the immune mechanisms that aim to control it is a 

feature of evolution. Some bacteria prevent internalisation, some prevent phagosome: 

lysosome fusion and some even survive in this acidic compartment or escape from it 

(Gruenberg and van der Goot, 2006). S. aureus has evolved a range of mechanisms for 

avoiding the innate immune system, ranging from blocking leukocyte migration, 

preventing phagocytosis and inhibiting its killing in host cells. This section will describe 

a few mechanisms used by this “well armed pathogen” (Archer, 1998). 

1.3.2. Chemotaxis inhibitory protein of Staphylococcus aureus and staphylococcal 

complement inhibitor  

S. aureus produces a range of proteins that prevent leukocyte migration to the site of 

infection and phagocytosis. These include chemotaxis inhibitory protein of 

Staphylococcus aureus (CHIPS), and staphylococcal complement inhibitor (SCIN). 

CHIPS bind to neutrophil chemoattractant receptors blocking the actual ligand binding 

(de Haas et al., 2004, Rooijakkers et al., 2005a).  
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CHIPS has been shown to bind to the formyl peptide receptor (FPR) and the 

complement 5a receptor (C5aR) preventing complement component 5a (C5a) and 

Formyl-Methionyl-Leucyl-Phenylalanine (fMLP) induced neutrophil chemotaxis 

(Postma et al., 2004, de Haas et al., 2004). As well as this CHIPS has been shown to 

prevent activation of the innate immune system but as the bacteria multiply and reach 

sufficiently high numbers, it was demonstrated that host chemokines can overcome the 

inhibition caused by CHIPS and the bacteria get phagocytosed (de Haas et al., 2004). 

CHIPS is important in the very early stages of infection, allowing S. aureus to colonise 

a specific niche (de Haas et al., 2004). 

The SCIN protein is found in 90% of S. aureus clinical isolates. It is an effective 

mechanism of preventing phagocytosis because it interacts with C3 convertases on the 

bacterial surface preventing C3b being deposited and hence blocking complement 

mediated phagocytosis (Rooijakkers et al., 2005a). SCIN has a varied mode of action, 

leading to either a failure of the C3 convertase to reassemble after its action on C3, a 

failure of the convertase to form initially or if it has formed a failure of the enzymatic 

activity to occur (Rooijakkers et al., 2005a).  

Other molecules that affect early processes are described in Table 1.2. 

1.3.3. Superantigen like protein 3 

Superantigen like protein 3 (SSL3) is produced in all sequenced S. aureus strains. It was 

shown that SSL3 modulated neutrophil and monocyte responses by inhibiting TLR2 

interactions with its ligands (Bardoel et al., 2012). It is also thought to prevent TLR2 

interacting with other TLRs as a heterodimeric complex (Bardoel et al., 2012). When 

SSL3 bound the extracellular domain of TLR2 it blocked macrophage stimulation with 

HI S. aureus, and other TLR2 specific ligands which lead to reduced IL-12 production 

by macrophages, and it was shown that whilst SSL3 inhibited cytokine production 

(Yokoyama et al., 2012). Other SSLs are described in Table 1.2. 

1.3.4. Adenosine and staphyloxanthin 

Macrophages express adenosine receptors and depending on their activation they have 

been found to express up to 4 (Thiel et al., 2003). WT S. aureus were demonstrated to 

synthesise adenosine using adsA and an adsA deficient mutant was more rapidly cleared 

from blood and unlike WT bacteria could not produce abscesses (Thammavongsa et al., 

2009). The adenosine produced by S. aureus was found to bind to macrophage 
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adenosine receptors and reduce the production of specific cytokines, most notably IL-12 

and TNF-α, and attenuate macrophage responses to S.aureus (Hasko et al., 2000).  

Staphyloxanthin is a carotenoid pigment responsible for giving S. aureus its golden 

colour and mutants with a decreased biosynthetic capacity for staphyloxanthin show 

growth defects (Olivier et al., 2009). Staphyloxanthin is an antioxidant which protects S. 

aureus from oxidative stress by scavenging oxygen radicals and protecting against ROS 

(Clauditz et al., 2006, Olivier et al., 2009). It was shown that mutants lacking the 

pigment were more effectively killed by ROS than WT strains and had reduced survival 

in neutrophils and whole blood (Liu et al., 2005). Staphyloxanthin is found in the 

bacterial cell membrane and this has led to the hypothesis that it might be preferentially 

protecting bacterial lipids against oxidative damage (Clauditz et al., 2006). 

Staphyloxanthin has now been accepted to not only allow S. aureus to evade killing but 

to maintain tissue infection and form characteristic abscesses, though it does not play a 

role in S. aureus colonisation of mucosal surfaces (Liu et al., 2008).  

1.3.5. Catalase and superoxide dismutase 

Catalase is another product made by S. aureus that can help it resist oxidative stress, 

having been first shown to be present in S. aureus in the late 1960’s (Amin and Olson, 

1968). Early research suggested the importance of catalase in destroying hydrogen 

peroxide and thus protecting phagocytosed microbes within the phagolysosome 

(Mandell, 1975). This destruction of hydrogen peroxide by S. aureus catalase breaks the 

compound into oxygen and water and thus offers the organism protection from its 

effects (Mandell, 1975). Interestingly, following incubation with S. aureus there was 

more catalase found inside the macrophages (Das and Bishayi, 2009). Specifically 

inhibiting catalase production by the macrophages confirmed bacterial production of 

catalase by S. aureus (Das and Bishayi, 2009). It is thought the catalase is most 

beneficial in high hydrogen peroxide concentrations because it enables S. aureus to 

scavenge oxygen radicals by breakdown of hydrogen peroxide, avoiding hydroxyl 

radical production (Das and Bishayi, 2009).  

S. aureus produces 2 SOD enzymes classed as superoxide dismutase A (SodA) and 

superoxide dismutase M (SodM). SodA is the major SOD in S. aureus thought to 

respond to oxidative stress with SodM believed to have an additional role (Valderas and 

Hart, 2001). Both SodA and SodM contribute to survival in animal models of S. aureus 

infection. SOD enzymes allow the bacterium to resist oxidative stress within 
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phagolysosomes when phagocytosed. It has been found that the transcription of both 

genes is under tight control and depends upon the presence of a Mn cofactor when 

superoxide is present (Karavolos et al., 2003). Despite this research the reason for the 

bacterium producing 2 separate SOD enzymes, remains unknown. It was shown that 

during late exponential phase SodM levels increase in a SodA deficient mutant 

protecting the mutant from oxidative stress (Valderas and Hart, 2001). This suggested 

SodM may play a unique role at a distinct phase of bacterial growth. (Valderas and 

Hart, 2001). Table 1.2 summarises other immune evasion molecules produced by S. 

aureus. 

1.4. Mathematical modelling of host: pathogen interactions 

1.4.1. Why use mathematical models? 

Research looking at host: pathogen interactions focuses around using biochemical and 

cellular techniques in order to understand the mechanisms behind observed phenomena 

(Kirschner and Marino, 2005); however, if we are to deepen our understanding of these 

behaviours we need to use studies at a much larger scale and this is where mathematics 

can help. Mathematical modelling can help with this understanding because host: 

pathogen interactions are complex with various components interacting with one 

another in a much larger biological system (Kirschner and Marino, 2005). Mathematical 

modelling gives us a different and interesting method to analyse and study these 

complex systems, and more importantly, the interactions between the various 

components within the system (Kirschner and Marino, 2005).  

Mathematical modelling of biological systems can start with a simple diagram. This is 

then extended into a group of equations which is then extended further to make 

predictions about the system. These predictions are then tested experimentally to 

determine if the model holds up (Perelson, 2002, Kirschner and Marino, 2005). The 

next stage in the model is to define it by deciding what mechanisms are to be included 

and what hypotheses are to be tested; then parameters can be estimated from 

experimental data (Kirschner and Marino, 2005).  

Mathematical models are useful because they allow the researcher to analyse large 

amounts of data in a quick way which can then help with planning decisive experiments 

to answer key questions and yield very important results which can be fed into the 

model (Kirschner and Marino, 2005). As well as this they allow the researcher to make 

predictions about the effect of inhibiting various pathways or processes on the  
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Molecule Role in immune evasion References 

Formyl peptide like 1 

inhibitor (FLIPr) 

Binds formyl peptide 

receptor like 1 (FPLR-1) 

preventing leukocyte 

recruitment. 

(Prat et al., 2006) 

Staphopain A Cleaves N terminal domain 

(NTD) of chemokine C-X-

C motif receptor 2 

(CXCR2) preventing proper 

IL-8 association, neutrophil 

recruitment and activation. 

(Laarman et al., 2012) 

Extracellular complement 

binding protein (Ecb) 

Binds complement 

component 3d (C3d) 

inactivating C3b containing 

convertases in alternative 

complement pathway; 

affects C5 convertases. 

(Jongerius et al., 2007) 

Extracellular fibrinogen 

binding protein (Efb) 

Binds C3d and blocks C3b 

containing convertases; 

binds to fibrinogen 

preventing neutrophil 

adhesion, activation and 

migration.  

(Jongerius et al., 2007, Ko 

et al., 2011, Jongerius et 

al., 2012) 

Superantigen like protein 5 

(SSL-5) 

Recognises P-selectin 

glycoprotein ligand 1 

(PSGL-1) preventing 

neutrophil rolling; binds to 

receptors for C3a and C5a 

preventing neutrophil 

chemotaxis; binds and 

blocks matrix 

metalloprotease 9 (MMP-9) 

(Bestebroer et al., 2007, 

Bestebroer et al., 2009, 

Itoh et al., 2010) 

Superantigen like protein 7 

(SSL-7) 

Binds immunoglobulin A 

(IgA) and complement 

component C5; prevents 

IgA binding to fragment 

crystallisable alpha receptor 

1 (FcαR1).  

(Langley et al., 2005, 

Bestebroer et al., 2010) 

Staphylokinase (Sak) Forms complex with 

plasminogen converting it 

into plasmin; plasmin 

causes IgG and C3b 

cleavage from bacterial 
surface; interferes with Fc 

and CR phagocytosis; 

neutralises defensins. 

(Parry et al., 2000, 

Molkanen et al., 2002, Jin 

et al., 2004, Rooijakkers et 

al., 2005b) 

Nuclease Breaks down neutrophil 

extracellular traps (NETs). 

(Berends et al., 2010) 

 

Table 1.2: Immune evasion molecules produced by S .aureus 
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behaviour of a system, and this can be translated clinically. Also they allow the 

researcher to test results and question how close to ‘real’ behaviour are they.  

The first aim of any mathematical model is to determine if it can produce results similar 

to what is observed experimentally and when this has been achieved it can be modified 

to address new problems such as the rate at which certain events are occurring 

(Kirschner and Marino, 2005). The model can then be extended to, for example, begin 

to address what factors might be needed to control the infection in a biological system, 

and what parameter settings are going to be beneficial for the host and/or pathogen to 

succeed. Ultimately this outcome depends on which area of the system you are 

interested in (Kirschner and Marino, 2005). So, mathematical models are extremely 

interesting because they offer insights into hypotheses that have been generated and can 

allow you to compare and contrast conflicting arguments about what might be occurring 

biologically (Kirschner and Marino, 2005). But, these models do have drawbacks and 

the most obvious is that a lot of the time we are modelling individual cells or agents or 

the entire population. In such a fashion it can be difficult to distinguish a heterogeneous 

population from a homogeneous one; and it can be difficult in much larger models to 

follow the fate of an individual cell. But new technologies such as two photon imaging, 

will allow us to produce a time series of in vivo cellular dynamics which can both 

support and help validate mathematical models (Miller et al., 2002, Kirschner and 

Marino, 2005). 

1.4.2. Mathematical modelling methods 

1.4.2.1.Agent based models 

Agent based models (ABMs) are generally computational models where the system is 

studied at the level of individual ‘agents’ (i.e. individual cells, bacteria, etc). These 

agents obey set probabilistic rules which, when simulated over a large number of time 

steps give rise to the population-level dynamics. In an ABM, the system is broken down 

into unique agents, which interact with each other and with other agents (Segovia-

Juarez et al., 2004, Folcik et al., 2007). These models are useful in understanding 

infectious diseases because they are flexible and can help capture emergent issues 

(Bonabeau, 2002) and for example has demonstrated that during TB infection, the slow 

growth of the bacteria is a contributor to virulence (Segovia-Juarez et al., 2004). 

A good example of an ABM is the basic immune simulator (BIS) which was created to 

examine how the immune system interacts (Folcik et al., 2007). Using a range of 
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parameters, the role of the immune system in infection control was examined. There 

were 3 scenarios identified from the model. Firstly, if immune cells cleared the infective 

agent and immune cells were replaced by further immune cells, it would win the battle, 

secondly, if bacteria persisted and killed off immune cells or immune cells were 

activated in insufficient numbers, the immune system would lose and finally if the 

immune cells proliferated an excessive response would result (Folcik et al., 2007). The 

agents in this system have imposed behaviour and have to behave in a specific, pre-

defined way. An over vigorous immune response was seen when not only were there 

too few cells responding, but the cells were activated a lot later and interestingly the 

model observed that programmed cell death could avoid this scenario (Folcik et al., 

2007). These models are useful in predicting, how one agent can potentially out-

compete another.  

Despite potential advantages with ABMs, they have some potential flaws. A non-trivial 

disadvantage is an ABM can be more expensive in terms of time and effort to 

implement than equation based models (Bonabeau, 2002). As well as this it can be 

difficult to analyse how an individual parameter within the entire system affects the 

output behaviour of the ABM (An et al., 2009). Linked into this is the difficulty of 

looking at a single agent’s behaviour and beginning to analyse it in multiple 

environments and many ABM modellers expand the initial interaction space so they can 

look at how ‘agents’ communicate on one level (An et al., 2009). Finally, the nature of 

ABM model means the modeller does rely on very deep computational methods in order 

to generate statistically analysable data sets (An et al., 2009). 

1.4.2.2.Ordinary differential equation models 

Ordinary differential equation (ODE) models are used as a starting point for 

mathematical modelling because of their relative simplicity (Bauer et al., 2009) and 

have proved useful in describing host-pathogen interactions (Antia et al., 1996). ODE 

models are mathematical models where variables in the system e.g. cells, bacteria are 

described by differential equations. These differential equations contain various 

parameters which affect the behaviour of each variable or population, and when 

stimulated over time it produces mathematical dynamics and predictions at the 

population level. The essential building blocks of an ODE model are differential 

equations containing a range of various parameters based upon in vitro observations. 

Then these parameters are assigned values which are again based upon the experimental 
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results and then used within the model to solve the equations and finally the model is 

assessed for biological accuracy as seen in TB and Human Immunodeficiency Virus 

(HIV) studies (Antia et al., 1996, Di Mascio et al., 2004, Day et al., 2011, Hosseini and 

Gabhann, 2012). In order for an ODE model to be as accurate as it can be, it is 

important to decide which parameters it can estimate (Miao et al., 2011). This allows a 

simple model to be created which can offer basic results and information, and then more 

complex scenarios can be built in (Segovia-Juarez et al., 2004). Built into these models 

is one key assumption that the population is homogeneous and as a result the ODE 

model is not very good at estimating deviations away from this (Bauer et al., 2009). 

Having said this, ODE models can be set up to describe a heterogeneous population, but 

they are less adept at this than ABMs.  

1.4.3. The Human Immunodeficiency Virus-1 mathematical model story 

Human Immunodeficiency Virus 1 (HIV-1) is a very good example of where 

mathematical modelling has better informed our understanding of host: pathogen 

interactions. These models used very simple differential equations to describe the 

interaction between susceptible cells, infected cells and free virus (Di Mascio et al., 

2004) and a lot of the early mathematical work was interested in answering how a single 

virus particle was able to infect a susceptible cell, and, how the various cellular 

populations changed throughout the time course of infection  (Di Mascio et al., 2004, 

Dixit and Perelson, 2005).  

Perelson et al., 1993 is notable for producing the first extensive model examining how 

HIV-1 affects cluster of differentiation 4 positive (CD4
+
)
 
T helper cells (Perelson et al., 

1993). The investigators used differential equations to examine the effect of HIV-1 on 

CD4
+
 T helper cell numbers and HIV-1 disease progression. They found there were two 

possible infectious states, the uninfected state and the endemically infected state, in 

which the virus (V) level was constant so that it was affecting the CD4
+
 T helper cell 

population and, the total number of CD4
+
 T helper cells was lower than in an uninfected 

individual (Perelson et al., 1993). The investigators also examined CD4
+
 T helper cell 

depletion. In order to observe increased CD4
+
 T helper cell depletion there would have 

to be more rapid movement between T cell populations, and most important from 

latently infected T cells (T*) to the actively infected T cells (T**) (Perelson et al., 

1993).  
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Analysis illustrated that HIV-1 disease starts with a lag phase where CD4
+
 T helper cell 

numbers remain at a constant level, and then at a defined time there is a second phase of 

infection represented by a decline in the numbers of CD4
+ 

T helper cells (Perelson et al., 

1993). They found latently infected T cells (T*) and  actively infected T cells (T**) 

were initially similar and as CD4
+ 

T helper cells became infected with V, T* decreased 

and T** increased (Perelson et al., 1993). V molecules initially decreased as they bound 

to CD4
+
 T helper cells and were ingested, and then V showed exponential growth to a 

steady state (Perelson et al., 1993).  

This basic model by Perelson et al., has formed the basis for many further models in 

this area. The HIV-1 story has been extended by examining how mutant virions arise 

within an infected CD4
+
 T helper cell. In these models, the investigators assumed that 

before any drug therapy was administered, mutant viruses existed alongside WT viruses 

in HIV-1 infected individuals. Nowak et al., formed a simple set of equations outlining 

how mutant virions could be produced by infected CD4
+ 

T helper cells, and then 

examined how anti-retroviral therapy affected this production. The mathematical model 

formed by the researchers showed that if anti-retroviral therapy prevented replication of 

the WT virus, then the number of virus particles and the proportion of CD4
+
 T helper 

cells in the T* population decreased (Nowak et al., 1997). However, if the production 

rate of WT virus by infected CD4
+
 T helper cells termed k matched the production rate 

of mutant viruses by infected CD4
+
 T helper cells termed km  then mutant virus 

increased in number in both the virus and T* populations at the same time (Nowak et 

al., 1997). However, if k > km mutant virus progeny increased in the T* population first, 

and if k < km mutant virus increased in number in the virus population first (Nowak et 

al., 1997). 

This initial model has proven useful for a range of researchers in beginning to inform 

our understanding of how mutant virus can arise and how treatment affects the balance 

between WT and mutant virus. The Kepler et al., model was an extension of the Nowak 

model. In the first instance the model examined how mutant viruses arose in a cell with 

a single compartment for virus. To do this the investigators examined how a scaled drug 

concentration, termed z affected the production of mutant progeny. In this single 

compartment, the investigators stated the production of mutant virus depended on 

whether the mutant virus could propagate (p) and the overall mutant production rate 

(Kepler and Perelson, 1998). 
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Assumption 1 is primarily an increasing function of z such that below a positive z value 

p will be 0 (Kepler and Perelson, 1998), termed zL. Factor 2 is primarily a decreasing 

function of z such that at some finite z value it will be 0 (Kepler and Perelson, 1998). 

This is termed zU. Incorporating this into the model and subsequent analysis revealed 

that the product of zL and zU generated a curve that peaked and reached 0 at either side 

(Kepler and Perelson, 1998), as shown in figure 1.6. The investigators state that it is 

between these two values, that mutant virus can be produced.  

The model was extended by the investigators to examine the effect of different drug 

concentrations on mutant production. This was done in the context of a cell with 2 

compartments. Compartment 1 is termed the bulk compartment which has a large 

volume and carries the higher drug concentration (Kepler and Perelson, 1998). 

Compartment 2 is termed the sanctuary which has a smaller volume and carries a lower 

drug concentration (Kepler and Perelson, 1998). The investigators assume that virus can 

move between these compartments but infected cells cannot move between the 

compartments (Kepler and Perelson, 1998). As there are different concentrations of 

drug present, term z is now termed z1. 

The investigators assume that a virus molecule in either compartment, termed ‘i’ has 3 

fates: 

1) It can productively infect a CD4
+ 

T helper cell, which can then produce N viral 

progeny (Kepler and Perelson, 1998). 

2) The virus can perish and therefore no progeny are produced (Kepler and 

Perelson, 1998). 

3) The virus can move to the other compartment (Kepler and Perelson, 1998).  

However, for a provirus molecule in compartment ‘i’ to be able to propagate, then at 

least 1 of the progeny virions must have the ability to propagate. Taking compartment 1 

as an example, a virion molecule here can either infect a CD4
+
 T helper cell and 

propagate as a provirus or move to compartment 2 and propagate.  

The investigators then analysed what happened to the chance of a resistant mutant virus 

arising in a cell with two compartments. In the sanctuary compartment, with a small 

drug penetrence partially resistant mutants arose, replicated and expanded in number 

(Kepler and Perelson, 1998). They then left the sanctuary and replicated in the bulk 

compartment where they had a selective advantage (Kepler and Perelson, 1998).  
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Figure 1.6: The product of zL versus zU.  

The solid line represents the mean production rate of resistant virions which is equal to 

the inverse of the mean time to arrival of founding resistant virus (1/τ) and remains 

positive over a finite window of drug concentrations, z between zL and zU. The dashed 

lines represent factors 1 and 2 (probability mutant propagates and mutant production 

rate). From the graph above z =4 the production rate of mutant virus reaches 0. The 

graph represents an acquisition of 2 independent mutations.  
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More recent modelling in this area has examined how multiply infected T cells can 

arise. Before the model was constructed a simple schematic was drawn to describe how 

a target cell was multiply infected with HIV (Dixit and Perelson, 2005). The initial 

model was designed to mimic the effect of adding HIV virions to CD4
+ 

target cells in 

vitro and then following over time the evolution of multiply infected cells. The model 

showed that multiply infected cells in vitro followed two phases characterised by an 

initial increase, which decreased as V increased and then a subsequent decline in 

numbers (Dixit and Perelson, 2005). Model calculations revealed that the number of 

multiply infected cells was always lower than the number of singly infected cells (Dixit 

and Perelson, 2005).  

Other HIV-1 infection models have examined acute and long term infections and how 

these 2 states are controlled. The long term infection model revealed that there was a 

second population of infected cells, termed M* which were a source of virus, and died 

at a slower rate than productively infected cells or T* (Di Mascio et al., 2004). The 

investigators assumed that M* and T* were the only sources of virus in an infected 

individual. Analysis of the model by the investigators showed that anti-retroviral 

therapy reduced viral numbers by about 3 months post onset of treatment, but had to be 

maintained for at least 2-3 years, because the slower decay of virus without treatment 

took between 2-3 years (Di Mascio et al., 2004). The acute model by Smith et al., found 

that during HIV-1 infection there were 2 phases. During phase I virus levels decreased 

and then showed exponential growth because virus was lost and there was a subsequent 

delay before infected cells produced virus (Smith et al., 2010). If CD4
+
 T helper cell 

levels were constant, then the investigators found the virus grew exponentially, causing 

CD4
+
 T helper cell decline as they became infected (Smith et al., 2010). Phase II was 

characterised by a much slower viral growth because CD4
+
 T helper cell numbers were 

reduced and most susceptible CD4
+
 T helper cells had become infected (Smith et al., 

2010). The model also showed in phase II viral numbers peaked and began showing an 

exponential decrease. The investigators assume from phase II that the death rate of 

CD4
+
 T helper cells influenced the decrease in viral numbers (Smith et al., 2010). This 

model revealed there were distinct phases in viral clearance and was useful in predicting 

how the length of the first phase could be used to determine the outcome of treatment 

for the patient.  
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1.4.4. Bacterial mathematical models 

For bacterial infections, a lot of mathematical modelling has focussed on producing 

mathematical models that reliably predict the observed features of infection. For 

example, models of TB infection have been used to explain certain infectious 

phenotypes, e.g. in the case of TB why lung lesions are rare during the initial infection 

phase (Bru and Cardona, 2010). Also, these models can be extended to examine the 

impact of immune restriction on infection, and in the case of TB they demonstrated the 

importance of the innate immune response in controlling the spread of TB (Bru and 

Cardona, 2010). These models also demonstrated that macrophages struggled to control 

extracellular bacterial replication (Warrender et al., 2006).   

An ODE model has been used to examine Bacillus anthracis by inhalation (Day et al., 

2011). The mathematical model was designed to examine how effectively phagocytosis 

could contain the infection in the lung since it was not known how many spores a lung 

could contain (Day et al., 2011). The model was extended to analyse the effects of 

treatment. It defined a threshold level of exposure that the individual could tolerate and 

control with treatment, allowing survival but if this was exceeded the patient died (Day 

et al., 2011). These models show how a simple ODE model can be made more complex 

and effectively applied to investigation of infectious diseases.  

A recent bacterial model examined carriage rates of Streptococcus pneumoniae. The 

investigators modelled a situation based on individuals who were bacterial carriers 

which they sub-divided further and also non-carriers i.e. a population level model 

(Erasto et al., 2012). The investigators defined their statistical model in the first instance 

and then used a Bayesian approach to estimate parameter values. This is an approach in 

which investigators estimate a range of parameter values and determine which set best 

fits the biological data. The reason for the use of this model was that the investigators 

could use Bayesian data augmentation to address incompletely observed data. Their data 

informed transmission predictions, for example it showed how the presence of one 

carrier in a family resulted in a twelve fold increase in the risk of acquiring the 

pneumococcus as compared to living n a family of non-carriers (Erasto et al., 2012). 

This Bayesian model has some assumptions and simplifications. Amongst these is the 

assumption that individuals are only carried with one strain of bacteria at a time and the 

model would require modification to factor in overlapping periods of colonisation with 

more than one strain, as occurs in high exposure settings. 
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Mathematical modelling of S. aureus infections has been very limited and most of the 

work has focussed on better understanding the mechanism of quorum sensing. The work 

surrounding quorum sensing and mathematical modelling has hinged on there being 

various S. aureus scenarios, each made of 2 populations with varying activity and that 

these could be present in varying combinations (Jabbari et al., 2012a). This model is 

based on a competitive exclusion principle whereby if 1 population is larger than the 

other, it will cause the other population to effectively fade out through suppression of its 

agr system (Jabbari et al., 2012a, Jabbari et al., 2012b). The model illustrates how when 

a S. aureus strain is present in larger numbers essentially it needs a “larger quorum 

sensing coefficient”, and upregulates Agr to support its emergence as the “dominant” 

population (Jabbari et al., 2012b).  

1.5. Hypothesis, aims and objectives 

The interaction of S. aureus with the macrophage hasn’t been explored in as much 

depth, as its interaction with neutrophils, which have been more thoroughly 

investigated. Since the macrophage is the resident tissue phagocyte I hypothesise that 

macrophage interactions with S. aureus are likely critical for pathogenesis. I believe that 

investigation of the interaction between the macrophage and S. aureus and the 

mechanisms used by S. aureus to avoid macrophage responses is likely to provide 

critical insights into the pathogenesis of S. aureus infection. 

I hypothesise that S. aureus modifies macrophage responses in host defence to enhance 

its survival and aid its dissemination. More specifically I hypothesise that: 

1) S. aureus modifies macrophage intracellular killing to enable persistence. 

2) S. aureus blocks macrophage cell death processes preventing an important facet 

of macrophage killing of bacteria. 

3) S. aureus uses the macrophage as a protective niche which allows it to persist 

and escape other aspects of host defence. 

The main aim of my thesis was to characterise the kinetics of macrophage ingestion and 

killing of S. aureus and to develop mathematical ODE models to describe macrophage 

interactions with S. aureus informed by my own experimental data describing S. aureus 

phagocytosis and killing by macrophages, and then to explore whether the model 

predictions would hold true when these processes were modified experimentally. 

More specifically I had 4 key aims: 
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1) Challenge THP-1 macrophages with S. aureus to describe phagocytosis, 

intracellular killing and apoptosis associated killing of S. aureus within 

macrophages. 

2) Develop mathematical models to describe the above and use the mathematical 

model to make predictions about these cellular events when they are perturbed. 

3) Manipulate phagocytosis and intracellular killing and test whether the model 

predictions are supported by the experimental data. 

4) Use the combined experimental and modelling approach to provide novel 

insights as to how S.aureus subverts macrophage host defence.  
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Chapter 2 Materials and Methods 

 

2.1.  Materials 

Roswell Park Memorial Institute 1640 (RPMI 1640) media was purchased from Lonza. 

Low endotoxin heat inactivated foetal calf serum (HIFCS) was from Promocell. 4% 

stock paraformaldehyde (PF, BDH Lab Supplies) was stored at -20°C and diluted 1:2 in 

sterile phosphate buffered saline (PBS) to make 2% working stock and stored at 4°C. 

1% saponin was made by dissolving 0.1g powdered saponin (Sigma) in 10ml sterile 

PBS, filter sterilised and stored at 4°C. 3% bovine serum albumin (BSA) was diluted 

1:10 in serum free RPMI 1640 from 30% v/v stock (Biowhitaker) and stored at 4°C. 

Brain heart infusion (BHI) media (Sigma) was made up according to the manufacturer’s 

instructions, autoclaved and stored at room temperature (RT). Phorbol 12-myristate 

acetate (PMA, Sigma) was prepared in dimethyl sulfoxide (DMSO, Sigma) at 100μM 

and stored in single use aliquots at -20°C. 

Lysostaphin was provided by Professor S.J.Foster, University of Sheffield. It was 

prepared from a solid form. 25mg of powder (stored at -20°C) was added to 20mM 

sodium acetate and dissolved giving a concentration of 5mg/ml. It was aliquoted as 

100μl aliquots and stored at -20°C until needed. During experiments a vial was thawed 

and added to RPMI 1640 +10% v/v HIFCS to give the desired concentration. 

Kanamycin was prepared in ethanol as per manufacturer’s instructions. Tetracycline 

was prepared in ethanol as per manufacturer’s instructions.  

LK broth was prepared by dissolving 10g Tryptone, 7g potassium chloride and 5g yeast 

extract in 1l distilled water (dH2O). LK agar was made by adding 0.05% sodium citrate 

and 1.5% bacteriological agar to the previous mixture. Both were autoclaved and stored 

at RT until use. When prepared, appropriate antibiotics were added to the plates. 

2.2. Cell line maintenance 

2.2.1. THP-1 cell maintenance 

THP-1 cells (ATCC) were maintained in RPMI 1640 + 10% HIFCS + 1% L-Glutamine  

and split on a weekly basis at a dilution of 1:3 in sterile T75 flasks by adding 20ml cell 
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suspension into 40ml RPMI 1640 + 10% v/v HIFCS. They were maintained at 37°C 

with 5% carbon dioxide (CO2) and checked daily.  

2.2.2. THP-1 cell differentiation 

THP-1 cells were differentiated using 2nM PMA for 3 days followed by resting for 5 

days (Daigneault et al., 2010). 1ml of cells was seeded in 24 well plates with or without 

coverslips at a concentration of 2 x 10
5
/ml in the presence of PMA.  Once seeded, the 

cells were placed at 37°C and 5% CO2 for 3 days and then the media was removed and 

the cells left in RPMI 1640 + 10% v/v HIFCS without PMA for a further 5 days to 

complete differentiation. Adherence was checked after 24 hours and the cells were 

checked daily. 

The THP-1 differentiation protocol has been characterised by the Dockrell research 

group and compared to differentiated monocyte derived macrophages (MDMs) to verify 

the cell line as a good model of differentiated tissue macrophages (Daigneault et al., 

2010). A key feature of macrophage differentiation is an increase in cytoplasmic 

volume. It was found that similar to MDMs, PMA rested THP-1 cells showed a large 

increase in cytoplasmic volume and firm adherence (Daigneault et al., 2010). As wells 

as this, similar to MDMs, PMA rested THP-1 cells had increased granularity and 

autofluorescence on flow cytometry and showed increased lysosomal and mitochondrial 

staining (Daigneault et al., 2010). MDMs and PMA rested THP-1 cells showed similar 

TLR2 expression. A defining feature of macrophages is their inherent resistance to 

apoptosis. Both MDMs and PMA rested THP-1 cells were resistant to apoptosis induced 

by ultraviolet (UV) light or staurosporine (STS) and both cell types retained Mcl-1 

expression following STS treatment (Daigneault et al., 2010). The capacity for bead 

phagocytosis was similar between both cell types. One key difference between MDMs 

and PMA rested THP-1 cells was in their activation profiles. PMA rested THP-1 cells 

produced more IL1β and TNFα in response to TLR 2 or 4 stimulation and exhibited 

lower cluster of differentiation 206 (CD206) levels than MDMs, a marker of AAM 

differentiation (Daigneault et al., 2010). Based on the above, PMA rested MDMs are 

suggested to represent MDMs and are useful as models of differentiated tissue 

macrophages, but might be more M1 than MDMs.  
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2.3. Monocyte derived macrophage isolation, differentiation and maintenance 

Blood was collected from 2 donors and pooled. The blood was decanted aseptically into 

2 sterile T75 cell culture flasks and 12.5ml Ficoll-plaque was transferred to 2 sterile 

50ml falcon tubes. 25ml of blood was added to each falcon tube and centrifuged at 1500 

x g for 23 minutes. The serum was discarded and the cell layers transferred to fresh 

50ml tubes and centrifuged again at 1000 x g for 13 minutes. The supernatants were 

discarded and the pellets dislodged by gentle tapping. The cells from both tubes were 

combined and topped up with sterile PBS and centrifuged again at 1000 x g for 13 

minutes. The supernatant was discarded and the pellet resuspended in 10ml fresh RPMI 

1640 +10% v/v HIFCS + L glutamine. They were then diluted 1:20 and counted to give 

a cell concentration of 2 x 10
6
/ml. The cells were then seeded in 24 well plates at 1ml 

volume and differentiated for 14 days with media being replaced every 2 days.  

2.4. Bacterial preparation and maintenance 

2.4.1. Bacterial growth 

All strains used are listed in table 2.1. All Staphylococcus aureus strains were grown in 

BHI media and tested for growth in cell culture media (RPMI 1640 +10% v/v HIFCS). 

Bacteria were streaked overnight onto a Columbia Blood Agar (CBA) plate or a BHI 

plate with or without antibiotics and left at 37°C, 5% CO2 overnight (O/N). The next 

day 10 colonies were added to 30ml BHI and the bacteria grown up to mid-log phase, 

measured by spectrophotometry using optical density (OD) 600. This typically took 

between 2-4 hours dependent on strain. At this point, 1ml aliquots were made and 

stored at -80°C. Following freezing, 2 aliquots were taken and plated out on CBA to 

work out the colony forming units (CFU)/ml of frozen stock.   

Streptococcus pneumoniae was grown in BHI media supplemented with 10% FCS until 

mid-log phase was reached, measured by spectrophotometry using OD 600. At this 

point, 1ml aliquots were made and stored at -80°C. Escherichia coli was grown in BHI 

media until mid-log phase was reached as for all other strains and 1ml aliquots were 

made and stored at -80°C.  

2.4.2. Preparation of nitrocellulose bead stocks 

To prepare bead stocks for storage, strains were streaked out on CBA plates with or 

without antibiotics O/N and left at 37°C, 5% CO2. The next day 10 colonies were taken  
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Strain Sourced from Growth conditions Creation 

S. aureus Newman Professor S.J.Foster, 

UoS, MBB 

Department 

BHI media Wild type (WT) 

S. aureus SH1000 Professor S.J.Foster, 

UoS, MBB 

Department 

BHI media WT 

S .aureus 

kanamycin resistant 

(Kan
R
) 

Professor S.J.Foster, 

UoS, MBB 

Department, created 

by G.M
c
Vicker 

BHI media 

supplemented with 

50μg/ml kanamycin  

Bacteriophage 

transduction of 

a fragment 

bearing the 

kanamycin 

resistance 

cassette from 

strain SJF 

3594* into 

strain Newman 

S. aureus Newman 

GFP 

This study  BHI media 

supplemented with 

5μg/ml tetracycline 

Bacteriophage 

transduction of 

a GFP bearing 

plasmid into 

strain Newman 

S. pneumoniae D39 Dr Martin Bewley BHI media with FCS WT 

E. coli strain C29, 

group 2 capsular 

serotype K54  

Dr Helen Marriott BHI media WT 

 

Table 2.1: List of bacterial strains used in this study. 

*SJF 3594 is an RN4220 derivative containing a chromosomally integrated copy of 

pMUTIN4 designed to place a kanamycin resistance gene downstream of the lysA lysine 

biosynthesis gene. The resulting strain is both LysA
+ 

and KanR
+ 

and maintains 

antibiotic resistance without selective pressure.  
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and added to 30ml BHI and left growing O/N at 37°C, 5% CO2 to allow the bacteria to 

reach stationary phase. Following this, they were centrifuged at 4400 x g for 10 minutes. 

The supernatant was discarded and the bacterial pellet added to nitrocellulose beads. 

These were left for 2 minutes, the fluid inside the bead tube was discarded and the beads 

stored at -80°C. 

2.4.3. Newman-green fluorescent protein transduction 

Green fluorescent protein (GFP) was transduced into strain Newman for live 

microscopy to have a fluorescent strain in the same background as all other 

experiments. Strain Newman was streaked out onto an LK agar plate and incubated O/N 

at 37°C. 1 colony was inoculated into 50ml LK and grown O/N at 37°C, 2500 x g. The 

O/N growth was centrifuged at 5000 x g for 10 minutes at RT and the pellet was 

resuspended in 3ml LK. 2 different set ups were prepared: 

1) 500μl recipient cells, 1ml LK, 10μl 1M calcium chloride and 500μl lysate. 

2) 500μl recipient cells, 1.5ml LK, 15μl 1M calcium chloride (control). 

The above were incubated at 37°C for 25 minutes and then at 37°C, 2500 x g for 15 

minutes. 1ml ice cold 0.02M sodium citrate was added to each and they were incubated 

on ice for 5 minutes and centrifuged at 5000 x g for 10 minutes at 4°C. The supernatant 

was removed and the pellets resuspended in 1ml ice cold 0.02M sodium citrate and 

incubated on ice for 1h. 100μl of each was spread onto LK + 5μg/ml tetracycline + 

citrate plates and incubated O/N at 37°C. The plates were checked for growth after 24 

hours and resubcultured onto LK + 5μg/ml tetracycline + citrate plates and checked for 

growth after 24 hours. Frozen bead stocks were prepared and the bacteria checked for 

green fluorescence under the fluorescence microscope.  

2.5. Bacterial infection of cell cultures 

All infections were performed with S. aureus Newman unless stated. THP-1 cells were 

differentiated at 2 x 10
5
/ml described in section 2.2.2. The media in the wells was 

replaced with 500μl fresh RPMI 1640 + 10% v/v HIFCS. A bacterial stock was thawed 

and centrifuged at 9300 x g for 1 minute (S. aureus) or 2 minutes (E. coli), the 

supernatant was discarded and the pellet resuspended in 1ml sterile PBS. This was 

centrifuged again as above, the supernatant was discarded and the pellet resuspended in 

1ml sterile PBS. S. pneumoniae was first opsonised with immune serum containing anti-
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serotype antibodies for 30 minutes at 37°C, 5% CO2 shaking. The bacteria were then 

centrifuged at 13200 x g for 3 minutes, the pellet resuspended in 1ml PBS and 

centrifuged again.  An aliquot of bacteria was taken and added to the differentiated 

macrophages to give the desired multiplicity of infection (MOI). The macrophages and 

bacteria was placed on ice for 1 hour to allow for bacterial adherence to the 

macrophages and then placed at 37°C, 5% CO2 for the desired time course. At each time 

point the cells were washed 3 times with ice cold sterile PBS to stop internalisation and 

then 500μl fresh RPMI 1640 + 10% v/v HIFCS + 20μg/ml lysostaphin was added (S. 

aureus) or 20μg/ml gentamicin (E. coli and S. pneumoniae) and placed at 37°C, 5% CO2 

for 30 minutes to kill extracellular bacteria. Lysostaphin is S. aureus specific and 

cleaves the pentaglycine bridge in the peptidoglycan cell wall (Schindler and Schuhardt, 

1964). The wells were then washed twice with sterile PBS and treated as appropriate for 

the various protocols. 

2.5.1. Monocyte derived macrophage infection 

Monocyte derived macrophages (MDMs) were differentiated at 2 x 10
6
/ml for 14 days. 

S. aureus was prepared as outlined in 2.5 and MDMs were infected in a similar manner. 

Fresh media was added to the MDMs at the start of infection and then it proceeded in a 

similar fashion to THP-1 differentiated macrophages.  

2.5.2. Infections with cytochalasin D 

Infections were carried out as outlined in 2.5. Cytochalasin D (Sigma Aldrich) was 

added at the indicated time points at a concentration of 5μM in RPMI 1640 +10% v/v 

HIFCS. 

2.6. Determination of viable intracellular bacteria using a lysostaphin protection 

assay 

This method is similar to the gentamicin protection assay and allows enumeration of 

intracellular bacteria which are not affected by the extracellular lysostaphin (Baughn 

and Bonventre, 1975). Saponin was used because it recognises cholesterols present in 

the macrophage membrane but not in the bacterial membrane and therefore breaks down 

the macrophage membrane without affecting the intracellular bacteria. 

Infections were carried out as in 2.5 at a range of MOIs. Following 30 minute treatment 

with lysostaphin, cells were washed twice in sterile PBS and 250μl 1% saponin (Sigma) 
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added and placed at 37°C, 5% CO2 for 12 minutes. Following this, 750μl sterile PBS 

was added and the cells lysed by vigorously pipetting up and down. The mixture was 

diluted as appropriate and plated out on CBA plates using the Miles and Misra dilution 

technique (Miles et al., 1938) and left O/N at 37°C, 5% CO2. The plates were counted 

the next day.  

2.7. Lysostaphin pulse chase killing assay 

The lysostaphin pulse chase killing assay or the lysostaphin protection assay is a method 

to enumerate intracellular surviving bacteria without the extracellular lysostaphin 

affecting the intracellular bacteria. It relies on the principal that the lysostaphin rapidly 

kills extracellular and cell surface adherent bacteria, does not penetrate the macrophages 

and is not rapidly taken up by macrophages (Easmon et al., 1978, Maurin and Raoult, 

2001, Kumar, 2008).  

This was done to allow enumeration of surviving bacteria following an initial 

internalisation period. The infections were set up by allowing the macrophages to 

internalise S. aureus for a certain time period. At this point the cells were washed with 

PBS and the remaining extracellular bacteria killed with lysostaphin. Following this the 

macrophages were incubated with low dose lysostaphin to prevent extracellular 

bacterial replication.  

Macrophages were infected as outlined in 2.5 at varying MOIs and extracellular bacteria 

killed as described above. The time course for infection was initial infection 4-16 hours, 

followed by 0.5 hours with lysostaphin. Following this some wells were immediately 

treated with 1% saponin as outlined above to allow a starting number of viable 

surviving bacteria to be determined. To all other wells was added 500μl RPMI 1640 + 

10% v/v HIFCS + 2μg/ml lysostaphin and left for up to 4 hours with measurements 

taken at various time points post lysostaphin. This low concentration was selected 

because it inhibited extracellular bacterial growth and did not affect intracellular 

viability. At each time point post lysostaphin, cells were lysed and plated out as 

previously described.  

2.7.1. Interferon gamma pulse chase killing assay 

Interferon gamma (IFNγ) is a pro-inflammatory cytokine (Denis et al., 2005). IFNγ was 

chosen for stimulation because it has been shown to enhance reactive nitrogen 

intermediate (RNI) production by macrophages (Denis, 1991). Also, during diseases 
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such as chronic granulamatonous disease (CGD) where patients are unable to clear 

bacterial infections efficiently, IFNγ is often administered to help these responses. It 

also enhances ROS production by phagocytes (Cassatella et al., 1990, Schroder et al., 

2004). 

Macrophages were seeded and differentiated as above. Half the wells were stimulated 

with 50ng/ml IFNγ in RPMI 1640 +10% v/v HIFCS at 37°C, 5% CO2 for 18 hours. Half 

the wells were left in RPMI 1640 + 10% v/v HIFCS without IFNγ. Following this the 

wells were washed 3 times with 1ml sterile PBS and 500μl fresh RPMI 1640 + 10% v/v 

HIFCS was added and the macrophages were infected with S.aureus Newman for 6 

hours as previously outlined. Following lysostaphin addition, some wells were lysed 

with 1% saponin to determine a starting surviving viable intracellular bacterial burden 

and the remaining wells were maintained in RPMI 1640 + 10% v/v HIFCS with 2μg/ml 

lysostaphin for 0.5, 1, 1.5, 2, 3 and 4 hours being lysed at time point with 1% saponin to 

determine viable, surviving intracellular bacteria.  

2.7.2. Trolox infections 

Macrophages were incubated with 50μM Trolox for 1 hour prior to the first time point.  

2.8. Microscopy 

2.8.1. 4’6, diamidino-2-phenylindole and fluorescein isothiocyanate staining 

This was done to determine adherent vs internalised bacteria. All antibodies used and 

the concentration is listed in table 2.2. The principle is such that only extracellular and 

adherent bacteria should stain with the anti-staphylococcal antibody and intracellular 

bacteria should remain unstained. Macrophages were grown on coverslips and infected 

at a range of MOI’s as previously outlined for up to 5 hours. This was different to other 

time courses to allow me to measure phagocytosis and adherence at early time points 

before complete intracellular degradation had occurred.  At each time point cells were 

washed 3 times in 1ml ice cold PBS and fixed for 15 minutes with 2% PF diluted from a 

4% stock solution. The cells were left in 1ml sterile PBS following PF treatment. The 

cells were pre-blocked for 30 minutes in 3% BSA at RT. The cells were washed 3 times 

with 1ml sterile PBS and then incubated with anti-rabbit IgG primary staphylococcal 

antibody (Zytomed Biosystems) at RT for 10 minutes. The cells were then washed 3 

times with 1ml sterile PBS and incubated with anti-rabbit FITC conjugate (Sigma) at 

RT in the dark for 10 minutes. The cells were then washed 3 times with 1ml sterile PBS. 
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A drop of Vectashield mounting medium with DAPI was placed onto a slide and the 

coverslips from each well removed, inverted and placed on top of the drop. The 

coverslips were sealed with nail varnish and visualised using the Leica DMRB 

fluorescent microscope on the blue, green and triple filter for counts at 100x and using 

the Zeiss confocal microscope at 63x for imaging using the Argon and Chameleon 

lasers. 100 random macrophages were counted. The total number of DAPI positive 

bacterial cells was determined, and then those which fluoresced FITC positive were 

subtracted from the total to give the true number of internalised bacteria versus adherent 

bacteria.  

2.8.2. Lysosomal associated membrane protein 1/2 staining 

 

Macrophages were grown and infected as above and fixed as previously outlined. 

Following removal of the primary anti-staphylococcal antibody, the cells were washed 3 

times in 1ml sterile PBS and stained with Alexa Fluor 568 (Invitrogen) at RT in the 

dark for 10 minutes. Following this the cells were washed 4 times with 1ml sterile PBS 

and incubated with mouse-anti LAMP-1 (Abcam) or mouse-anti LAMP-2 (Abcam) at 

4°C in the dark O/N. The next day the cells were washed 5 times with 1ml sterile PBS 

and then incubated with Alexa Fluor 488 (Invitrogen) at RT in the dark for 90 minutes. 

The cells were then washed 5 times with 1ml sterile PBS and mounted and sealed as 

above. 100 random macrophages were counted.  

2.8.3. Microscopic analysis of apoptosis 

Macrophages were seeded as above and infected as outlined previously. Following 

lysostaphin treatment the cells were either fixed in 2% PF for 15 minutes or maintained 

in low dose lysostaphin at 37°C 5% CO2. At each time point cultures were washed twice 

in 1ml sterile PBS and fixed as outlined previously. The cells were stained with DAPI 

as previously outlined. 300 macrophages/ sample were counted for apoptosis. Apoptosis 

was determined by fragmented nuclei or nuclei that appeared shrunken with extremely 

bright DAPI fluorescence. Imaging was performed using the x40 lens on the Zeiss 

confocal microscope and the x100 lens on the Leica DMRB microscope for counts.  

2.8.4. Interferon gamma staining 

 

Macrophages were stimulated as outlined above. They were infected with S. aureus 

Newman at MOI 5 for 1.5-5h. At each time point macrophages were washed 3 times  
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Antibody Source Primary or 

secondary  

Species raised in Concentration 

S.aureus 

immunoglobulin 

G (IgG) 

Life Sciences Primary against 

soluble and 

structural 

antigens of the 

whole bacterium 

Rabbit 

polyclonal 

(~4mg/ml) 

1:1000 in PBS 

(0.004mg/ml) 

Lysosome 

associated 

membrane 

protein 1 

(LAMP-1) 

Abcam Primary against 

LAMP-1 

Mouse 

monoclonal 

(0.1mg/ml) 

1:100 in RPMI 

1640 + 10% 

v/v HIFCS + 

0.01% saponin 

(0.001mg/ml) 

Lysosome 

associated 

membrane 

protein 2 

(LAMP-2) 

Abcam Primary against 

CD107b/LAMP-

2 

Mouse 

monoclonal 

(0.1mg/ml) 

1:100 in RPMI 

1640 + 10% 

v/v HIFCS + 

0.01% saponin 

(0.001mg/ml) 

Fluorescein 

isothiocyanate 

(FITC)
 

Sigma Secondary  Goat anti rabbit 

(2mg/ml)  

1:500 in PBS + 

goat serum 

(0.004mg/ml) 

Alexa Fluor 568
 

Invitrogen Secondary Goat anti-rabbit 

(2mg/ml) 

1:250 in PBS + 

0.05 Triton X-

100 + 1% goat 

serum  

(0.008mg/ml) 

Alexa Fluor 488
 

Invitrogen Secondary Goat anti-mouse 

(2mg/ml) 

1:250 in PBS + 

0.05 Triton X-

100 + 1% goat 

serum  

(0.008mg/ml) 

 

Table 1.2: List of antibodies used in this study. 
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with 1ml sterile ice cold PBS and fixed for 15 minutes in 2% PF diluted from a 4% 

stock. They were then washed once in 1ml sterile PBS and left in 1ml PBS until staining 

as outlined in 2.6.1. 100 random macrophages were counted/sample.  

2.8.5. pH rhodamine staining of intracellular bacteria 

pH rhodamine is a fluorescent stain that fluoresces in compartment at about pH 4.5-6. 

The reaction is reversible and the dye loses fluorescence if in an alkaline or neutral 

environment. Prior to infection, a vial of bacteria was thawed and incubated with pH 

rhodamine at a concentration of 10.2μM (diluted from a 10.2mM stock), at 37°C, 5% 

CO2 on a shaker for 30 minutes. The bacteria were centrifuged at 9300 x g for 1 minute 

and the pellet resuspended in 1ml sterile PBS. Macrophage infection with pH 

rhodamine was carried out as described in section 2.4.  

2.8.6. Live microscopy 

 

Macrophages were challenged with S. aureus Newman~GFP at an MOI of 5 bacteria 

per cell for 6 hours and extracellular bacteria were killed with lysostaphin. Cultures 

were maintained with or without lysostaphin, in RPMI-1640 +10% (v/v) HIFCS + 

HEPES buffer without sodium hydrogen carbonate for up to 72 hours post infection. 

Imaging was taken from 52 hours to 72 hours post infection, imaging every 10 minutes 

using the x30 DIC/GFP lasers on the Nikon Ti inverted fluorescence microscope. 

Images were captured with a Neo camera (Ander) using NIS elements (Nikon). The 

microscope was enclosed in a temperature and humidity controlled cabinet (OKO Labs) 

and maintained at 37°C.  

 

In a separate experiment macrophages were challenged with S. aureus Newman~GFP at 

an MOI of 5 bacteria per cell for 1-6 hours imaging every 10 minutes using the x30 

DIC/GFP lasers on the Nikon Ti inverted fluorescence microscope. Images were 

captured as outlined above under the same conditions.  

 

2.9. Bacterial co-infections 

2.9.1. Newman and Kanamycin resistant infection 

 

This was done to determine whether having been given one strain of bacteria to 

phagocytose the macrophages could then phagocytose a second strain. The Kan
R 

strain 
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was selected because it is an isogenic mutant and therefore maintains its resistance 

without antibiotic pressure. Both strains were put onto the macrophages at MOI 5. 

Macrophages were infected with S. aureus Newman for 5 hours, 6 hours or 10 hours 

and then extracellular bacteria were killed with 50μg/ml kanamycin at 37°C for 30 

minutes. The cells were then washed twice with 1ml sterile PBS and some were placed 

in low dose lysostaphin for up to 7.5 hours and some were incubated S.aureus Kan
R
 for 

5-7 hours at 37°C 5% CO2. 

2.10. Flow cytometry 

2.10.1. Live and dead flow cytometry 

Prior to challenge a vial of S. aureus was heat killed at 85°C for 20 minutes and then 

centrifuged as outlined previously. Macrophages were challenged with either heat killed 

or live S. aureus as outlined above at an MOI of 0.05 or 5 for 5 hours. Following 

challenge, extracellular bacteria were killed with lysostaphin and then cultures were 

incubated with 250μl 1% saponin for 12 minutes at 37°C. Following this 750μl sterile 

PBS was added to the cultures and they were lysed. The supernatants were transferred 

to sterile 1.5ml eppendorfs and they were centrifuged at 3300 x g for 0.5 minutes and 

then again at 100 x g for 8 minutes. The supernatants were transferred to a fresh sterile 

1.5ml eppendorf tube and either unstained or stained with 3μM DRAQ7 for 10 minutes 

on ice and then analysed using the LSRII flow cytometer (BD Biosciences) using the 

red 660/20 laser capturing 10,000 events. Results were analysed using BD Biosciences 

software.  

2.11. Mathematical modelling using R
©

 

 

R
© 

is a mathematical programming language allowing users to analyse data and develop 

new functions. This program was chosen because it is freely accessible and easy to 

understand and is suitable for the tasks it is being used for. R consists of three main 

windows, a script window (where the user enters their functions and notes), a console 

(where you tell R what to solve) and a plot window (where R plots graphically the 

outcome of the functions you have asked it solve). There is also an important fix 

function which allows users to check the values of the functions before plotting them, to 

make sure they make sense.  
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2.12. Statistics 

All statistics are listed in the figure legends.  
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Chapter 3 Macrophage control of Staphylococcus aureus infection 

 

3.1. Introduction 

Macrophages have long been recognised as being key cells in the innate immune 

response to pathogens from the days of Elie Metchnikoff. The role of the macrophage in 

controlling Staphylococcus aureus infection has long been a topic of huge interest, since 

early work from van de Velde and colleagues showed that virulent S. aureus was not 

readily destroyed by another phagocytic cell, rabbit polymorphonuclear leukocytes 

whereas avirulent S. aureus was (Van de Velde, 1894). Since S. aureus seemed capable 

of retarding the host response of the main recruited phagocyte at sites of infection the 

capacity of the resident phagocyte, the macrophage, to control infection became an 

important research question.  

The interaction between macrophages and S. aureus can be viewed as a triphasic 

response consisting of a) opsonisation of the bacterium and the migration of monocytes 

and macrophages towards the site of infection, b) attachment of the bacterium to 

macrophage phagocytic receptors and internalisation and c) intracellular killing of the 

bacterium (Verbrugh, 1981). Opsonisation helps the macrophage recognise S. aureus 

and principally involves the C3b component of complement or immunoglobulin G 

(IgG) antibody (Li and Mudd, 1965). C3b or IgG antibody attaches to the bacterial 

surface and are then recognised by macrophages. Following opsonisation S. aureus are 

rapidly internalised by phagocytes (Peterson et al., 1977, Verbrugh et al., 1978). 

 As macrophages mature, their capacity for sustained phagocytosis increases (Baughn 

and Bonventre, 1975). Research with alveolar macrophages (AMs) showed when the 

macrophage recognises S. aureus it becomes spread out and ingests organisms attached 

to the cell surface (Lee et al., 1984). Scanning electron microscopy (SEM) by Walters 

and colleagues in the 1970’s revealed that extracellular S. aureus attached to receptors 

on macrophage lamellipodia and then a cup like structure enclosed the organism which 

was then internalised (Walters et al., 1976).  

Macrophages have a range of receptors to bind and internalise S. aureus including Fcγ 

receptors, complement receptors and scavenger receptors, though the role of the latter 

has been debated (Thomas et al., 2000, DeLoid et al., 2009). Macrophages can 
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phagocytose both opsonised and unopsonised S. aureus, but the phagocytosis of 

unopsonised S. aureus was found to be a lot slower than neutrophils, and, the 

phagocytosis of opsonised S. aureus was found to be similar.  

S. aureus can resist phagocytosis. This resistance can be mediated through a range of 

factors including a polysaccharide capsule which masks key proteins on the bacterial 

membrane making recognition and phagocytosis of the bacterium more difficult. 

However, when serum is present to act as an opsonising factor, S. aureus are rapidly 

ingested (Mackaness, 1960). It is now accepted that S. aureus phagocytosis is not the 

rate limiting step in macrophage control of staphylococcal infection (Rogers and 

Tompsett, 1952, Shayegani and Kapral, 1962, Jonsson et al., 1985).  

Macrophage killing of S. aureus has been shown to be a lot slower than neutrophil 

killing and kinetic measurements showed the killing by macrophages to be 7 times 

slower than neutrophils (Green and Kass, 1964, Devalon et al., 1987). This is in spite of 

the fact that S. aureus can elicit high oxidative burst activation by macrophages early on 

post infection (Yamada et al., 1987). This has led to the hypothesis that although 

macrophages are efficient at phagocytosing S. aureus they may be less efficient at 

killing ingested bacteria and maybe need specific activation to optimise killing (Jonsson 

et al., 1985). Despite this the detailed kinetics of intracellular killing in primary 

macrophages has not been defined and is the focus of this section of my thesis.  

I hypothesised that defects in bacterial clearance were more likely the result of failure to 

sustain killing in the face of ongoing ingestion of bacteria. I tested this by exploring in 

detail the kinetics of bacterial killing and its relationship to phagocytosis, carefully 

examining the effect of time and dose on macrophage killing of intracellular S. aureus 

in vitro. Results were related to the macrophages capacity to control the rate of growth 

of extracellular bacteria and I explored whether phagocytosis was maintained in the 

presence of incomplete microbicidal killing. This enabled a more comprehensive 

understanding of how antimicrobial killing of S.aureus in macrophages relates to 

phagocytosis and where the rate limiting step in bacterial clearance lies. This also 

provided the data I needed to allow me to start to develop a mathematical model of the 

interaction of macrophages and S. aureus.  
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3.2. Results 

3.2.1. Lysostaphin efficiently reduces extracellular Staphylococcus aureus  

 

To measure intracellular bacterial numbers accurately it is necessary to kill all 

extracellular bacteria efficiently using a technique that has minimal impact on 

intracellular bacterial numbers. In order for a bacteriolytic agent to be efficient at 

eliminating adherent and extracellular bacteria in vitro it must act rapidly, not be toxic 

towards the macrophages and not be taken up by the macrophages and allow 

intracellular killing of bacteria (Easmon et al., 1978, Kumar, 2008). Lysostaphin rapidly 

kills S. aureus and is not cytotoxic (Easmon et al., 1978). Lysostaphin is a 

metalloendopeptidase produced by Staphylococcus simulans first isolated in the 1960’s 

(Schindler and Schuhardt, 1964) and kills S. aureus by cleaving the pentaglycine bridge 

in the peptidoglycan cell wall (Kumar, 2008). Lysostaphin is very effective at killing S. 

aureus because the cell wall contains a lot of pentaglycine bridges. Therefore I decided 

to investigate how effective lysostaphin was at reducing extracellular S. aureus numbers 

in the extracellular media following macrophage challenge with S. aureus in order to 

determine if lysostaphin would be a suitable bacteriolytic agent to use to kill 

extracellular and cell surface adherent bacteria in my infection protocols. I also explored 

the effectiveness of gentamicin as a comparison.  

THP-1 differentiated macrophages were challenged with S. aureus Newman for 3 or 5 

hours at a multiplicity of infection (MOI) of 5 bacteria per macrophage. After challenge 

cultures were washed and incubated with 5-20μg/ml of lysostaphin for 30 minutes. 

After incubation the extracellular supernatants were serially diluted and plated onto 

Columbia blood agar (CBA) plates for extracellular colony forming units (CFU) 

estimation in order to determine which concentration of lysostaphin to use to eliminate 

extracellular and cell surface adherent bacteria following exposure to S. aureus.  

After 3 hours of challenge followed by lysostaphin treatment, extracellular CFU became 

undetectable at concentrations above 5μg/ml (Figure 3.1A). After 5 hours of challenge 

followed by lysostaphin treatment, extracellular CFU decreased with increasing 

lysostaphin concentration (Figure 3.1B). I also confirmed that with this dose I could still 

detect significant intracellular bacteria (Figure 3.1C) and that macrophage viability was 

not altered (Figure 3.1D). In comparison I used gentamicin at doses 20-100μg/ml and 

there were higher numbers of extracellular bacteria and lower numbers of intracellular
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Figure 3.1: Extracellular S. aureus colony forming unit’s decreases with increasing 

lysostaphin/gentamicin concentration. 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5 

bacteria per macrophage for 3 or 5 hours and then treated with various concentrations of 

lysostaphin or gentamicin. THP-1 differentiated macrophages were also cultured with 

and without lysostaphin for up to 48 hours. Extracellular supernatants were serially 

diluted for extracellular colony forming units estimation and cultures were lysed for 

intracellular colony forming units estimation. A) 3 hour B) 5 hour challenge. The data 

shows the error and standard error of the mean; n=3, ****p<0.0001, One Way Anova 

with Dunnett’s Post Test versus 5μg/ml. C) 3 and 5 hour intracellular colony forming 

units  with lysostaphin. The data shows the error and standard error of the mean; n=3, 

***p<0.01 unpaired t test versus 3 hours. D) 6 hour, 24 hour and 48 hour culture of 

macrophages with and without lysostaphin. The data shows the error and standard error 

of the mean; n=3. E) 3 hour F) 5 hour challenge and treatment with gentamicin. The 

data shows the error and standard error of the mean; n=3, ****p<0.0001, One Way 

Anova with Dunnett’s Post Test versus 20μg/ml. G) 3 and 5 hour intracellular colony 

forming units with gentamicin. The data shows the error and standard error of the mean; 

n=3, *p<0.05 unpaired t test versus 3 hours. 
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bacteria (Figure 3.1E-G). Based on these results 20μg/ml lysostaphin was chosen to kill 

cell adherent and extracellular bacteria following macrophage challenge with S. aureus.  

3.2.2. Dose dependent loss in the control of extracellular staphylococcal infection 

by macrophages 

 

Since S. aureus primarily causes extracellular infections I investigated the macrophages 

overall ability to control extracellular bacterial replication. I hypothesised that with 

increasing MOI, the macrophage control of extracellular bacterial replication would 

become less efficient.  

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 0.05, 

0.5, 1, 2 and 5 bacteria per macrophage for 2-9 hours. Paraformaldehyde (PF) treated 

THP-1 differentiated macrophages were used as controls to measure the contribution of 

macrophage internalisation on regulating extracellular bacterial numbers. Also S. aureus 

was incubated in media without macrophages to determine that the PF treatment of 

macrophages did not alter extracellular bacterial replication, and to determine how the 

bacteria would replicate in the absence of macrophages. At each time point the 

extracellular supernatants from each condition were serially diluted and plated for 

extracellular CFU estimation. Live and PF treated macrophage cultures were incubated 

with lysostaphin and then lysed with saponin for intracellular CFU estimation. 

Macrophages were able to reduce the replication of extracellular S. aureus but for 

decreasing times with increasing MOI. At an MOI of 0.05 bacteria per cell, 

macrophages prevented extracellular S. aureus replication for at least 7 hours which 

decreased to 5 hours for an MOI of 0.5 bacteria per cell and 3 hours for an MOI of 1 

bacteria per cell (Figure 3.2A-C). With an MOI of 2-5 bacteria per cell the macrophages 

were overwhelmed and not able to control the extracellular bacterial replication at any 

time-point (Figure 3.2D-E). These results suggested that macrophages were able to 

regulate S. aureus extracellular replication for varying times at MOI ≤ 1 and above this 

control became compromised.  
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Figure 3.2: Macrophages ability to control extracellular S. aureus replication is lost 

with increasing multiplicity of infection. 

Live or fixed THP-1 differentiated macrophages were challenged with S. aureus at an 

MOI of 0.05-5 bacteria per macrophage or alternatively S. aureus was grown in 

macrophage media at each dose for 2-9 hours and colony forming units estimated in 

extracellular supernatants A) MOI of 0.05, B) MOI of 0.5, C) MOI of 1, D) MOI of 2, 

E) MOI of 5. The data represents the mean and standard error of the mean; n=3, 

***p<0.001, ****p<0.0001, Two Way Anova with Dunnett’s Post Test of Fixed versus 

Live.  
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3.2.3. Intracellular Staphylococcus aureus accumulate over time in macrophages 

I also addressed the changes in intracellular bacterial burden in macrophages in the 

same set of experiments as I had estimated the changes in extracellular bacterial 

numbers. Despite the ability of macrophages to control the extracellular bacterial 

replication at low MOI’s, there was accumulation of viable intracellular bacteria over 

time, even at low MOI and this increased with increasing MOI (Figure 3.3A-E). 

Since this analysis was at a population level and examined only viable bacteria I next 

addressed what the number of adherent extracellular and intracellular bacteria was in 

individual cells and whether intracellular accumulation was uniformly distributed across 

the cell population. Since this assay didn’t discriminate between viable and non-viable 

bacteria it had the capacity to be less influenced by killing of intracellular bacteria, as it 

would only be altered by complete degradation of the bacteria, a process which is 

predicted to take longer than initial loss of viability. It also had the potential to provide 

an estimate of the total burden of intracellular bacteria in the population, irrespective of 

viability, when the results per cell were multiplied by the total number of macrophages.  

THP-1 differentiated macrophages were challenged with S. aureus at an MOI 0.05-25 

bacteria per macrophage for 1.5-5 hours, fixed with PF and then analysed by 

fluorescence microscopy to determine the number of adherent extracellular and 

intracellular bacteria per macrophage. This protocol exploits the differential staining 

properties of extracellular and intracellular bacteria such that an anti-staphylococcal 

antibody and its FITC-conjugated secondary only label extracellular bacteria while 

intracellular bacteria only stain with a nuclear stain (Gordon et al., 2000). 

Following challenge across the range of MOI’s I found only a modest increase with 

time in the numbers of cell surface adherent bacteria per cell which doubled across the 

range of MOI (Figure 3.4A-F). This suggested the numbers of adherent bacteria is fairly 

constant either due to a limited and fixed level of cell surface engagement or more rapid 

internalisation of a greater number of surface bound bacteria as the MOI increases, such 

that surface numbers of bound bacteria remain at a fairly fixed level and only increase 

over a limited range. In contrast to adherent cell numbers the number of intracellular 

bacteria showed a more marked dynamic range with accumulation at the higher MOI 

over time (Figure 3.4A-F). There was an approximate 5 fold increase in intracellular 

bacteria as the MOI increased by the 5 hour time point. This suggested there was either 

an increased capacity to phagocytose bacteria that was offset by a failure to match the  
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Figure 3.3: Macrophages accumulate intracellular viable S. aureus at all 

multiplicities of infection.  

THP-1 differentiated macrophages were challenged with S. aureus at an MOI 0.05-5 

bacteria per macrophage for 2-9 hours and then treated with lysostaphin. Cultures were 

then lysed and intracellular colony forming units estimated A) MOI of 0.05 and 0.5, B) 

MOI of 1 and 2, C) MOI of 5. The data represents the mean with the standard error of 

the mean; n=3. 
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Figure 3.4: The numbers of extracellular adherent bacteria and internalised 

bacteria with macrophages. 

THP-1 differentiated macrophages were challenged with S. aureus for 1.5-5 hours and 

fixed and stained at each time point. A) MOI of 0.05, B) MOI of 0.5, C) MOI of 1, D) 

MOI of 2, E) MOI of 5, F) MOI of 25. The data represents the mean with the standard 

error of the mean; n=3, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Two Way 

Anova with Bonferonni Post Test, adherent versus internalised.  
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increased ingestion to a comparable increase in the rate of killing or that phagocytosis 

remained fixed but that intracellular killing capacity decreased. The latter possibility 

would seem less likely, in particular since the microscopy experiments suggested an 

increase in the total population intracellular burden at an MOI of 5 as compared to 0.05, 

and if the difference in viable intracellular bacteria was solely the result of decreased 

killing with phagocytosis held at a similar level one would have predicted that the 

numbers calculated by microscopy would have been more similar. Overall these results 

suggested bacteria were accumulating inside the macrophage due to a failure to match 

increased ingestion with increased intracellular killing.  

Similar to the previous result, the percentage of macrophages that had intracellular 

bacteria at 5 hours increased approximately 5 fold over the MOI range, suggesting the 

accumulation of bacteria was the result of more cells accumulating bacteria, rather than 

a fixed number of cells accumulating more bacteria as the MOI increased (Figure 3.5A-

F). It should also be noted that the fold increase (approximately 5 fold) in intracellular 

CFU and in the percentage of macrophages with bacteria over the MOI range was much 

less than the increase in the original MOI (100 fold) and shows that the macrophages 

clearance capacity was failing to keep up with the increased bacterial numbers hence the 

failure to contain extracellular numbers at higher MOI.  

Confocal microscopy images at 5 hours after bacterial challenge at an MOI of 5 bacteria 

per cell demonstrated there were at least 3 distinct populations of macrophages. The 

first group clearly showed small numbers of intracellular bacteria and some cell surface 

adherent bacteria (Figure 3.6A). The second group demonstrated ~ 50 bacteria per 

macrophage (Figure 3.6B-C) and the final group termed the “super-ingesters” were 

harbouring large numbers (>50) of intracellular bacteria (Figure 3.6D). 

3.2.4. S. aureus phagocytosis by macrophages is saturatable 

I next investigated whether with very high doses macrophage accumulation of 

intracellular bacteria would peak. This would suggest that the putative increase in the 

capacity for phagocytosis of S. aureus would become saturated and that the equilibrium 

between ingestion and intracellular killing would reach a steady state that was unaltered 

by increased numbers of extracellular bacteria.  

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5, 25 or 

125 bacteria per macrophage for 1.5-5 hours. At each time point extracellular and cell  
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Figure 3.5: The percentage of macrophages ingesting bacteria.  

THP-1 differentiated macrophages were challenged with S. aureus for 1.5-5 hours and 

fixed and stained at each time point. A) MOI of 0.05, B) MOI of 0.5, C) MOI of 1, D) 

MOI of 2, E) MOI of 5, F) MOI of 25. The data represents the mean with the standard 

error of the mean; n=3, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, One Way 

Anova with Dunnett’s Post Test versus 1.5 hour. 
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Figure 3.6: Macrophages phagocytose S. aureus at varying levels.  

THP-1 differentiated macrophages were challenged with S. aureus for 5 hours and fixed 

and stained. Images were taken using the x63 magnification of the Zeiss laser scanning 

confocal microscope. The red circle represents adherent bacteria on the surface of a 

macrophage. The yellow circles indicate internalised bacteria. Macrophages are shown 

with A) Adherent bacteria and internalised bacteria, B) Internalised bacteria only, C) An 

intermediate number of internalised bacteria, D) a large number of internalised bacteria 

(“super-ingester.”) Scale bar represents 2μm. 
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surface adherent bacteria were killed with a lysostaphin protection assay, macrophages 

lysed and intracellular CFU estimated. Fixed macrophages were used as a control to 

confirm bacteria estimated to be intracellular were not the result of incomplete killing of 

extracellular bacteria and confirmed CFU in fixed cultures were constantly 

undetectable.  

I found that the numbers of intracellular viable bacteria increased with increasing MOI 

(Figure 3.7) suggesting the macrophages were continuing to increase the capacity to 

accumulate S. aureus, even at MOI 125. This presumably reflected either continued 

increases in phagocytosis or further reduction in killing capacity despite maintenance of 

phagocytosis rate, which as before seemed less likely. However, by an MOI 125 there 

was little increase in the number of intracellular viable bacteria compared to MOI 25, 

suggesting accumulation eventually becomes saturated without further capacity to 

increase phagocytosis or reduce intracellular killing.  

3.2.5. Macrophages demonstrate a time and dose dependent loss in the 

intracellular killing of S. aureus 

The rate limiting step in infection control by macrophages may be intracellular killing 

(Jonsson et al., 1985). Having demonstrated in the previous sections that macrophages 

were efficient at phagocytosing S. aureus, and able to increase phagocytic capacity up 

to a high MOI I next wanted to investigate the proportion of phagocytosed S. aureus 

that were killed over time by macrophages and examine the intracellular fate of 

phagocytosed bacteria. My data so far have measured numbers of intracellular bacteria, 

which is a cumulative end-point, influenced by rate of internalisation, intracellular 

killing and potentially intracellular bacterial replication, though the latter is not believed 

to be significant for S. aureus in macrophages over the time course I have studied 

(Kubica et al., 2008). To examine this I used an adaptation of the lysostaphin protection 

assay, which is similar to an adaptation of the gentamicin protection assay and relies on 

killing extracellular or cell surface adherent bacteria with a higher dose of the 

antimicrobial and then maintaining cultures in a low dose of the antimicrobial to inhibit 

extracellular replication and prevent any ongoing bacterial ingestion, without being 

toxic to the phagocytes or being taken up by the phagocytes to significant levels over 

extended periods of culture, therefore not reducing intracellular bacterial numbers. 

Lysostaphin is effective in this assay and was previously described to not be absorbed  
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Figure 3.7: Macrophage phagocytosis of S. aureus is saturatable.  

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5, 25 or 

125 bacteria per cell for 1.5-5 hours and lysed at each time point to allow intracellular 

colony forming unit estimation. The data represents the mean with the standard error of 

the mean; n=3, **p<0.01, ***p<0.001, ****p<0.0001, Two Way Anova with Dunnett’s 

Post Test versus 1.5 hour. 
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by polymorphonuclear leukocytes (Tan et al., 1971). In addition lysostaphin has not 

been demonstrated to penetrate mammalian plasma membranes over extended time 

periods e.g. days and weeks (Easmon et al., 1978, Maurin and Raoult, 2001, Kumar, 

2008).  

To establish the kinetics of intracellular killing I set up a pulse-chase lysostaphin 

protection assay which involved pulsing differentiated macrophages with S. aureus for a 

defined time period, using lysostaphin to kill extracellular and cell surface adherent 

bacteria and then maintaining the cultures in lower doses of lysostaphin for defined time 

periods to ensure there was no ongoing internalisation (chase).  

THP-1 differentiated macrophages were challenged with S. aureus for 4-6 hours at an 

MOI of 5, 25 and 125 bacteria per macrophage. Additionally THP-1 differentiated 

macrophages were challenged with S. aureus for 10-16 hours at an MOI of 5 bacteria 

per macrophage. Following lysostaphin incubation, macrophages were either lysed for 

intracellular CFU estimation or maintained in culture with the lower dose of lysostaphin 

for 0.5- 4 hours and lysed at each time point to calculate the intracellular CFU.  

In all experiments I found the majority of intracellular killing was occurring within the 

first 30 minutes following cessation of phagocytosis and then there was a plateau phase 

with a persistence of intracellular viable bacteria with only very modest killing 

occurring during this phase. After 4 hours with an MOI of 5, there was ~ 90% killing of 

intracellular bacteria within the first 30 minutes but the percentage of intracellular 

bacteria killed within the first 30 minutes decreased with increasing MOI (Figure 3.9). 

In addition to this, increasing incubation time with 5 and 6 hours led to a decrease in the 

percentage of killing occurring in the first 30 minutes, as compared to cultures 

incubated with bacteria for 4 hours, and again, this was dose dependent, decreasing with 

increasing MOI (Figure 3.8A-C). Increasing the exposure time of the macrophages to S 

.aureus to 10-16 hours further reduced the percentage of intracellular bacteria killed in 

the first 30 minutes after phagocytosis ceased, the percentage cleared reaching 1% after 

16 hours of incubation with bacteria (Figure 3.9A-D). I also performed fluorescence 

microscopy, and found there was no decrease in intracellular bacteria per macrophage 

over time and there was no decrease in the percentage of macrophages with intracellular 

bacteria suggesting intracellular killing was exhausted (Figure 3.10A-B). Interestingly 

when I compared the absolute numbers of intracellular bacteria killed within the first 30 

minutes for each exposure time and compared it to the percentage of intracellular  
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Figure 3.8: Macrophage killing of intracellular S .aureus occurs predominantly in 

the first 30 minutes after ingestion. 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5, 25 or 

125 bacteria per macrophage for 4-6 hours, and following high dose lysostaphin 

treatment for 0.5 hours were either lysed or maintained in low dose lysostaphin for 0.5-

4 hours and lysed at each time point to calculate intracellular colony forming units A) 4 

hour B) 5 hour, C) 6 hour initial bacterial challenge. The data represents the mean with 

the standard error of the mean; n=3, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, 

Two Way Anova with Dunnett’s Post Test versus MOI 5. 
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Figure 3.9: Macrophages exhaust their intracellular killing abilities over time. 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5 

bacteria per macrophage for 10-16 hours, and following high dose lysostaphin treatment 

for 0.5 hours were either lysed maintained in low dose lysostaphin for 0.5-4 hours and 

lysed at each time point to allow calculation of intracellular colony forming units A) 10 

hour, B) 12 hour, C) 14 hour, D) 16 hour initial bacterial challenge. The data represents 

the mean with the standard error of the mean; n=3, *p<0.05, **p<0.01, Paired t test 

comparing first two time points.  
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Figure 3.6: Intracellular bacteria are not killed by 16 hours post infection. 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5 

bacteria per macrophage for 16 hours, and following high dose lysostaphin treatment for 

0.5 hours were maintained in low dose lysostaphin for 0.5-4 hours and fixed and stained 

A) Number of intracellular bacteria per cell, B) Percentage of macrophages with 

intracellular bacteria. The data represents the mean with the standard error of the mean; 

n=3. 
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bacteria killed within the first 30 minutes, I found the absolute number of intracellular 

bacteria killed within the first 30 minutes increased for the first few hours of bacterial 

challenge and then was maintained until approximately 14 hours after which it rapidly 

decreased, whereas, the percentage of intracellular bacteria killed declined over time 

(Figure 3.11A-B). This suggested the decreased percentage killing was merely a result 

of the increasing intracellular bacterial accumulation with time, whereas the absolute 

level of intracellular killing remained close to maximal for several hours up to 14 hours 

of exposure to bacteria.  

3.2.6. Interferon gamma only modestly enhances intracellular killing of S. aureus 

Since the intracellular killing of S. aureus by macrophages seemed to be occurring at a 

fairly constant rate despite increasing intracellular accumulation, I next investigated 

whether stimulation of macrophages would further enhance the intracellular killing 

capacity. Macrophages can be activated via a range of signals which alter their 

metabolic and functional capacity (Easmon et al., 1978). Since the initial killing phase 

of intracellular S. aureus in neutrophils is dependent upon reactive oxygen species 

(ROS) and cationic proteases (Reeves et al., 2002) and the production of these is 

enhanced by interferon gamma (IFNγ) stimulation (Cassatella et al., 1990, Denis, 1991, 

Denis et al., 2005, Decker et al., 2005) I investigated the effect of prior IFNγ stimulation 

of macrophages on  their ability to kill phagocytosed intracellular S. aureus. 

THP-1 differentiated macrophages were stimulated with IFNγ prior to infection. 

Unstimulated macrophages were used as a control. Unstimulated and stimulated 

macrophages were then challenged with S. aureus at an MOI of 5 bacteria per 

macrophage for 6 hours. Extracellular and cell surface adherent bacteria were killed 

with lysostaphin and then macrophages were lysed for intracellular CFU estimation or 

maintained in low dose lysostaphin for 0.5-4 hours and lysed at each time point to 

calculate intracellular CFU.  

I found that IFNγ stimulation only modestly increased intracellular killing (Figure 

3.12A), as reflected by a significantly lower baseline level of viable intracellular 

bacteria, which remained lower as the pulse of bacteria underwent intracellular killing. 

To eliminate the possibility that the reduction in intracellular counts within stimulated 

macrophages was due to decreased phagocytosis I challenged stimulated and 

unstimulated macrophages with S. aureus at MOI 5 for 1.5-5 hours and fixed cultures at 

each time point and stained them as outlined in 3.2.3. I found that both stimulated and  
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Figure 3.7: Absolute numbers of intracellular bacteria killed and percentage 

intracellular bacteria killed in the first 30 minutes. 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5 

bacteria per macrophage for 4-16 hours, and following high dose lysostaphin treatment 

for 0.5 hours were either lysed or maintained in lysostaphin for 0.5 hours and lysed at 

each time point to calculate intracellular colony forming units A) Absolute intracellular 

bacteria killed in the first 30 minutes B) Percentage intracellular bacteria killed in the 

first 30 minutes. The data represents the mean with the standard error of the mean; n=3. 

***p<0.001, ****p<0.0001, One Way Anova with Dunnett’s Post Test versus 4 hours. 
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Figure 3.8: Interferon gamma stimulation only modestly enhances intracellular 

killing of S. aureus. 

Macrophages were exposed to IFNγ or left unstimulated and then challenged with S. 

aureus at an MOI of 5 bacteria per macrophage for 6 hours, and following high dose 

lysostaphin treatment for 0.5 hours were either lysed or maintained in low dose 

lysostaphin for 0.5-4 hours and lysed at each time point to allow intracellular colony 

forming units estimation. Alternatively stimulated or unstimulated macrophages were 

challenged with S. aureus for 1.5-5 hours and fixed and stained at each time point A) 

Intracellular viable colony forming units, B) Intracellular bacteria per cell. The data 

represents the mean with the standard error of the mean; n=3, ****p<0.0001, Two Way 

Anova with Bonferonni Post Test, IFNγ treated versus unstimulated. 
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unstimulated macrophages demonstrated similar levels of intracellular bacteria over this 

time course (Figure 3.12B) suggesting they were phagocytosing similar numbers of 

bacteria.  

3.2.7. Macrophages still continue to phagocytose bacteria even after their capacity 

for intracellular killing becomes exhausted  

Having demonstrated that the intracellular killing capacity for S. aureus by 

macrophages became exhausted with time, I next investigated whether macrophages 

that could no longer kill ingested bacteria could still phagocytose S. aureus. To examine 

this I set up a variation of the pulse chase assay described previously which involved 

challenging THP-1 differentiated macrophages with wild type (WT) S. aureus at an 

MOI of 5 bacteria per macrophage for 5, 6 or 10 hours. Extracellular and cell surface 

adherent bacteria were killed with kanamycin, and then cultures were either maintained 

in low dose lysostaphin for 5-7 hours or exposed to a kanamycin resistant (Kan
R
) S. 

aureus at an MOI of 5 bacteria per macrophage for a further 5-7 hours, before 

extracellular and cell surface adherent bacteria were killed with lysostaphin and 

macrophages were lysed for estimation of the intracellular CFU. Lysates were plated 

with and without kanamycin to allow detection of total and Kan
R 

intracellular CFU, so 

that the contribution of bacteria ingested at later time points to the total intracellular 

load could be estimated.  

I found that at all time points macrophages were able to phagocytose the Kan
R
 S. aureus 

(Figure 3.13A-C). Interestingly, the macrophages were still capable of phagocytosing S. 

aureus Kan
R
 at 16 hours when intracellular killing had decreased and levels of 

intracellular Kan
R 

bacteria weren’t significantly different after the 5 hour pulse with the 

resistant bacteria (Figure 3.13C). The second pulse of bacteria did not alter the number 

of viable intracellular Kan
S 

resulting from the original bacterial pulse.  

3.2.8. Macrophage inability to completely kill intracellular S. aureus is not merely 

the result of exposure to high multiplicity of infection 

I next wanted to explore whether the inability of macrophages to clear intracellular S. 

aureus was merely a consequence of exposure to high MOI, as all these experiments 

had been conducted with an MOI of 5 or greater. THP-1 differentiated macrophages 

were challenged with S. aureus at an MOI of 0.05 or 1 bacteria per macrophage for 6 

and 16 hours. Extracellular and cell surface adherent bacteria were killed with  
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Figure 3.9: Macrophages phagocytose S. aureus when intracellular killing is 

exhausted. 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5 

bacteria per macrophage for 5, 6 or 10 hours, and following kanamycin treatment for 

0.5 hours were either lysed or maintained in lysostaphin for 5.5-7.5 hours or challenged 

with S. aureus Kan
R
 for 5-7 hours, and following lysostaphin treatment for 0.5 hours 

were lysed for intracellular colony forming units estimation. A) 5 hour, B) 6 hour, C) 10 

hour initial bacterial challenge. The data represents the mean with the standard error of 

the mean; n=3, * p< 0.05, **p<0.01, Paired T test 5.5 and 7.5 hours Kan
R
. 
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lysostaphin and followed for varying time periods in the presence of low dose 

lysostaphin to follow the decay in intracellular CFU estimation.  

I found for both MOI’s a similar trend was occurring to that observed before for higher 

MOI, with the majority of intracellular killing occurring within the first 30 minutes after 

phagocytosis was prevented and then persistence of a small number of viable 

intracellular bacteria (Figure 3.14A-D). The initial killing phase decreased with 

increasing dose (~ 90% for MOI 0.05 and ~ 60% for MOI 1) at 6 hours, and was close 

to 0% by 16 hours post exposure suggesting macrophages had exhausted their 

intracellular killing capabilities even at lower MOI’s.  

3.2.9. Macrophage inability to completely kill intracellular S. aureus is not cell 

line specific 

I next wanted to explore whether the inability of macrophages to clear intracellular S. 

aureus was merely a consequence of using cell lines, as all these experiments had been 

conducted with the THP-1 cell line. 14 day differentiated monocyte derived 

macrophages (MDMs) were challenged with S. aureus at an MOI of 5 bacteria per 

macrophage for 4, 6 and 16 hours. The kinetics of viable intracellular bacterial number 

decay was then measured as before.   

I found a similar trend was occurring to that observed before for THP-1 differentiated 

macrophages, with the majority of intracellular killing occurring within the first 30 

minutes after phagocytosis was prevented and then there was persistence of viable 

intracellular bacteria for up to 24 hours (Figure 3.15A-C). The initial killing phase 

decreased with increasing time becoming less than 1% by 16 hours post exposure,  

suggesting macrophage exhaustion of intracellular killing capabilities with S. aureus  

was not merely an artefact of using the THP-1 cell line differentiated macrophages .  

3.2.10. Macrophage inability to completely kill intracellular S. aureus is not a 

Newman dependent phenotype 

I next wanted to explore whether the inability of macrophages to clear intracellular S. 

aureus was strain specific, as all these experiments had been conducted with the 

Newman strain. THP-1 differentiated macrophages were challenged with S. aureus 

SH1000 at an MOI of 5 bacteria per macrophage for representative time periods and the 

decay in intracellular viable bacteria estimated.  
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Figure 3.10: Intracellular bacteria persist at low MOIs. 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 0.05 or 

1 bacteria per macrophage for 6 and 16 hours, and following high dose lysostaphin 

treatment for 0.5 hours were either lysed or maintained in low dose lysostaphin for 0.5-

4 hours and lysed at each time point for intracellular colony forming units estimation A) 

MOI 0.05 6 hour, B) MOI 0.05 16 hour, C) MOI 1 6 hour, D) MOI 1 16 hours bacterial 

challenge. The data represents the mean with the standard error of the mean; n=3, * p< 

0.05, Paired t test comparing first two time points. 
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Figure 3.11: Intracellular bacteria persist in MDMs. 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5 

bacteria per macrophage for 4, 6 and 16 hours, and following high dose lysostaphin 

treatment for 0.5 hours were either lysed or maintained in low dose lysostaphin for 0.5-

4 hours and lysed at each time point for intracellular colony forming units estimation A) 

4 hours, B) 6 hours, C) 16 hours challenge. The data represents the mean with the 

standard error of the mean; n=3, * p< 0.05, Paired t test comparing first two time points. 
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I found a similar trend occurring with SH1000 as was seen with Newman. The majority 

of intracellular killing was occurring within the first 30 minutes after phagocytosis was 

prevented and then there was a persistence of viable intracellular bacteria (Figure 

3.16A-C). The initial killing phase decreased with increasing time and was less than 1% 

by 16 hours post exposure suggesting macrophage exhaustion of intracellular killing 

capabilities with S. aureus was not merely a strain specific phenotype.  

3.2.11. Intracellular viable bacteria persist in macrophages for up to 40 hours post 

infection 

Having established that the majority of intracellular killing of S. aureus by macrophages 

was occurring early after ingestion and was sustained for only the first 16 hours or so of 

exposure to bacteria, I next investigated how long intracellular bacteria would persist 

for. I hypothesised, that there would be no additional second phase of killing occurring 

at later time points in contrast to what has been described for some other pathogens 

(Molloy et al., 1994, Dockrell et al., 2003). 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5 

bacteria per macrophage for 6 hours. After killing extracellular and cell surface adherent 

bacteria with high dose lysostaphin, macrophages were maintained in low dose 

lysostaphin for up to 16-40 hours of culture before calculating the intracellular CFU. 

I found that over this time course there was very modest reduction in intracellular viable 

bacteria, and bacteria persisted intracellularly at similar numbers throughout (Figure 

3.17). This suggested that macrophages had become overwhelmed and exhausted their 

intracellular killing capabilities but also that there was no late phase killing being 

initiated and therefore intracellular bacteria persisted within macrophages for at least 40 

hours. Since bacterial numbers were fairly constant it also did not suggest significant 

intracellular replication was occurring.  
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Figure 3.12: SH1000 persists intracellularly. 

THP-1 differentiated macrophages were challenged with S. aureus SH1000 at an MOI 

of 5 bacteria per macrophage for 4, 6 and 16 hours, and following high dose lysostaphin 

treatment for 0.5 hours were either lysed or maintained in low dose lysostaphin for 0.5-

4 hours and lysed at each time point for intracellular colony forming units estimation A) 

4 hours, B) 6 hours, C) 16 hours challenge. The data represents the mean with the 

standard error of the mean; n=3, * p< 0.05, Paired t test comparing first two time points. 
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Figure 3.13: Intracellular bacteria persist for up to 40 hours post infection. 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5 

bacteria per macrophage for 6 hours, and following high dose lysostaphin treatment for 

0.5 hours were either lysed or maintained in low dose lysostaphin for 16- 40 hours after 

bacterial challenge and lysed at each time point for intracellular colony forming units 

estimation. The data represents the mean with the standard error of the mean; n=3. 
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3.3. Discussion 

The persistence of S. aureus within professional and non-professional phagocytes has 

been previously documented, though there is very little data specifically concerning 

survival in differentiated macrophages (Kapral and Shayegani, 1959, Melly et al., 1960, 

Gresham et al., 2000, Hess et al., 2003). There is some evidence for the failure of 

macrophages to kill intracellular S. aureus leading to intracellular persistence (Kim et 

al., 1976, Galbenu et al., 1979). Galbenu et al., reported that pulmonary macrophages 

were unable to kill intracellular S. aureus but they used macrophages from patients with 

pulmonary cancer (Galbenu et al., 1979) which may have affected the results. Likewise, 

Kubica et al., have suggested that MDMs fail to kill S. aureus completely and instead S. 

aureus can indirectly kill the macrophage by an uncharacterised mechanism (Kubica et 

al., 2008).  The reasons for incomplete intracellular killing in macrophages are unknown 

and the molecular mechanisms that account for the failure of the macrophage to control 

S. aureus following phagocytosis are uncharacterised. Another limitation is that there is 

little known about the kinetics of this process, which prompted me to investigate in 

detail how time and dose affect the intracellular killing kinetics following S. aureus 

phagocytosis by macrophages.  

Since differentiated tissue macrophages are crucial to the innate immune response to S. 

aureus (Martin et al., 2011) and are the resident phagocytes that first encountered the 

bacterium within host tissues, I investigated the interaction between differentiated 

macrophages and S. aureus. I investigated the rates of intracellular accumulation, if the 

rates of intracellular bacterial killing of S. aureus were rate limiting and how long 

intracellular S. aureus persisted.  

In this section I have demonstrated that macrophages contain extracellular S. aureus but 

this capacity is overwhelmed at increasing MOI. Lysing the macrophages showed that 

for all doses there was an accumulation of viable intracellular bacteria over time, even 

at low doses of infection when extracellular bacteria were being contained. This 

suggests that even when controlling bacteria macrophage host responses might be 

occurring at the expense of complete intracellular control and would allow some 

intracellular persistence. At higher doses, extracellular S. aureus replication exceeds the 

rate at which macrophages can clear bacteria and extracellular bacterial numbers are not 

controlled. However, as the macrophage response is pushed to the point at which it is 

overwhelmed, phagocytosis is maintained at near maximal rates. This results in the 
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macrophages becoming overwhelmed with more intracellular bacteria than they can kill, 

resulting in accumulation of intracellular viable bacteria.  

I found broadly similar levels of adherent bacteria at all doses, with only a modest 

increase in dynamic range, suggesting that macrophage surface receptors were 

optimally engaged and had the capacity to ensure a steady supply of surface bound 

bacteria for internalisation without allowing accumulation of bacteria on the surface. 

Since only a sub-population of macrophages had intracellular bacteria it is possible that 

macrophage heterogeneity results in differential activation so that only some cells are 

activated to phagocytose or alternatively only a subset of macrophages may be able to 

ingest bacteria irrespective of activation state. An alternative but less likely explanation 

is a subset of those macrophages that have phagocytosed bacteria are differentially 

activated to enhance killing so that bacteria are more rapidly killed and are not present 

on microscopy, although as many of these experiments were conducted in the first few 

hours after ingestion it would seem less likely that significant numbers of macrophages 

had completely killed and degraded all internalised bacteria, thus this possibility seems 

less plausible. 

Although not performed in my thesis there are other methods I could have used to more 

directly analyse phagocytosis and differentiate between adherent, internalised and killed 

bacteria. The reason for not carrying out these methods was because my results were 

designed to be descriptive in order to feed into my mathematical model. One of these 

methods involves manipulating protein A present on S. aureus. I could fuse gold 

particles to protein A and using electron microscopy to determine internalised and killed 

bacteria. The internalised bacteria would be present intracellularly attached to the gold 

particles and killed bacteria would be represented by areas where there is just gold. 

Another method is flow cytometry using fluorescently labelled bacteria. Using the 

labelled bacteria, I could follow internalisation directly by blocking phagocytosis and 

looking at the fluorescent signal to provide a read-out of adherent bacteria and compare 

this to macrophages without blocking to get a measurement of the internalisation. A 

final method is time lapse imaging using labelled bacteria. By doing this, I could follow 

individual macrophages and look at their behaviour over a number of hours to 

determine the adherence versus internalisation rates. These methods would provide a 

more direct measurement of phagocytosis compared to DAPI staining and viability 

counts.  
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I have demonstrated that for a range of bacterial doses macrophages efficiently 

phagocytose S. aureus. They continue to increase internalisation of bacteria up to a high 

MOI of 125, though by this level there was minimal enhancement over the levels seen 

at an MOI of 25 suggesting phagocytosis was maximal and there was no capacity to 

further enhance phagocytosis.  

Phagocytosis of S. aureus is known to occur rapidly and both opsonised and non-

opsonised S. aureus is ingested by macrophages (Jonsson et al., 1985). Detailed studies 

of phagocytosis with other bacteria have been undertaken. Streptococcus pneumoniae is 

known to be inherently resistant to phagocytosis because it possesses a polysaccharide 

capsule which masks bacterial ligands (Jonsson et al., 1985, Gordon et al., 2000). In 

order for S. pneumoniae to be phagocytosed efficiently by macrophages requires 

opsonisation by IgG and complement present in serum (Gordon et al., 2000). Despite 

this opsonisation however, S. pneumoniae is ingested at a lower level than S. aureus and 

macrophages exhibit lower levels of intracellular bacteria (Jonsson et al., 1985). A 

similar pattern has been observed with Pseudomonas aeruginosa which requires IgG 

mediated opsonisation for efficient phagocytosis although IgA has also been shown to 

be important but the mechanism remains elusive (Reynolds et al., 1975). Following 

opsonisation, P. aeruginosa is ingested via Fc receptors present on macrophages 

(Reynolds et al., 1975). Escherichia coli is ingested at a similar rate to S. aureus by 

macrophages, and opsonisation shows a slight enhancement of this rate (Hoidal et al., 

1981, Jonsson et al., 1985). Early literature seemed to suggest with E. coli there was a 

saturation effect which limited the efficiency of phagocytosis which might explain why 

macrophages showed lower intracellular E. coli numbers compared to S. aureus (Hoidal 

et al., 1981). Non-typeable Haemophilus influenzae (NTHi) was also shown to be 

rapidly ingested by AMs and to a similar extent as S. aureus (Jonsson et al., 1985). 

Electron microscopy revealed that NTHi and S. aureus were intracellular and not 

adherent to the macrophage and present in tight vacuoles; the key difference between 

the bacteria were NTHi appeared to be undergoing degradation whereas S. aureus was 

not (Jonsson et al., 1985). There are similarities between these ingestion processes but 

the requirements for opsonisation for example differ between different bacteria, which 

can be a determining factor in the level of internalisation achieved. The key differences 

are in the receptors utilised; S. pneumoniae uses complement and Fc receptors for 

internalisation following opsonisation for example (Gordon et al., 2000), whereas S. 

aureus primarily utilises scavenger receptors (Thomas et al., 2000).  
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I found that at all times and doses the majority of intracellular killing was occurring 

early on, in the first 30 minutes after phagocytosis, and then there was a subsequent 

plateau phase with very modest intracellular killing, which became less pronounced 

with increasing dose and time. This lead to the persistence of intracellular bacteria 

which occurred for at least 40 hours after first exposure to bacteria. As bacterial dose 

and time increased, the percentage of intracellular killing occurring in the first 30 

minutes decreased in spite of the fact that the actual numbers of intracellular bacteria 

killed in the first 30 minutes remained fairly similar from 5-14 hours of bacterial 

exposure. By 16 hours of incubation there was very little reduction in intracellular 

bacterial numbers suggesting macrophages had exhausted their intracellular killing 

capacity and were becoming overwhelmed with intracellular bacteria. I found this 

response was not dose dependent and even at physiologically relevant lower doses, such 

as MOI of 0.05 and 1, there was still persistence of intracellular viable bacteria. As well 

as this, the response was not cell line dependent or strain dependent and I found MDMs 

controlled intracellular S. aureus in a similar manner to THP-1 differentiated 

macrophages. S. aureus SH1000 also persisted intracellularly in a similar fashion to S. 

aureus Newman. Interestingly, stimulating macrophages with IFNγ prior to infection 

only modestly enhanced the intracellular killing capacity. This suggests that the reason 

for exhaustion of killing of intracellular bacteria by the macrophages was not merely 

because the macrophages were sub-optimally stimulated to kill intracellular bacteria in 

culture but instead reflected a fixed capacity of intracellular killing, which was 

overwhelmed by dose and time.  

There are many potential reasons why there is an initial killing period and then a plateau 

phase. ROS production via the NADPH oxidase system has previously been shown to 

be activated by phagocytosis and the act of phagocytosis seems to be an important 

stimulus for the recruitment and activation of the various components that form the 

NADPH oxidase complex in phagocytes (DeLeo et al., 1999). It is possible that there is 

a threshold level of bacteria required for the macrophages to become fully activated and 

achieve maximal phagocytosis and intracellular killing of bacteria. Once maximal there 

is no capacity to further enhance killing. One reason is that intracellular killing requires 

adenosine triphosphate (ATP) generation and the increasing demands of phagocytosis 

and killing could result in failure to ensure adequate ATP levels to support ongoing 

killing. Alternatively the capacity to generate ROS, to acidify the phagolysosome or the 

supply of lysosomes with proteases to engage with the phagosome could become 
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limited, leading to intracellular persistence. The fact that the intracellular killing became 

exhausted before phagocytosis ceased suggests the reasons are most likely related to 

aspects specific to the killing process.  

Alternatively, it is also possible that a subset of S. aureus is resisting the macrophages 

killing response; S. aureus has been demonstrated to resist ROS (Karavolos et al., 2003, 

Das and Bishayi, 2009) and NO (Richardson et al., 2008). S. aureus can also resist 

degradation; peptidoglycan is relatively resistant to degradation by enzymes such as 

lysozyme (Bera et al., 2005, Kaplan et al., 2012). Since killing mechanisms require 

activation and intracellular recognition systems respond to antimicrobial products of 

digested bacteria to enhance activation this could allow some of the intracellular 

bacteria to persist in a ‘silent’ fashion if the necessary killing mechanisms are not 

completely engaged. Thus the model of resistance to degradation could modify further 

killing (Wolf et al., 2011). As a result, the macrophages might not be eliciting further 

responses to these intracellular bacteria allowing them to survive for extended periods 

of time. Finally it could be that the remaining intracellular bacteria traffic to a different 

compartment intracellularly where they cannot be killed or are in a phagolysosome that 

is not sufficiently bactericidal and therefore cannot kill the intracellular bacteria and 

they persist. This could also result from a bacterial subversion response that alters 

lysosome trafficking to and fusion with phagosomes as they mature through stages into 

a mature phagolysosome. In a related mechanism it is possible the intracellular bacteria 

traffic elsewhere intracellularly over time and avoid the macrophages killing response.  

An interesting finding from this section was that macrophages were still able to 

phagocytose S. aureus despite the fact they were no longer killing the bacteria. This 

would seem to further predispose macrophages to accumulation of viable bacteria. I 

found that at 16 hours of incubation when macrophages had exhausted their intracellular 

killing capacity and become overwhelmed with intracellular bacteria, they were still 

able to phagocytose further extracellular bacteria. This suggests macrophages are unable 

to match phagocytosis to the capacity to clear ingested bacteria. In the initial period of 

the macrophage’s response to bacteria, phagocytosis and killing are inter-related since 

phagocytosis stimulates ROS dependent killing (DeLeo et al., 1999), but at later times 

phagocytosis not only fails to induce killing but becomes an uncoupled process that is 

unable to sense that there is no longer a capacity to kill ingested bacteria.   
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A key function of the macrophage is antigen presentation to T cells. There is a lot of 

evidence in the literature demonstrating that macrophages can present antigen to CD4
+ 

primed T cells and CD8
+ 

primed T cells (Kovacsovics-Bankowski and Rock, 1994, Nair 

et al., 1995). Initially it was thought that DCs were the potent antigen presenting cell 

(APC) that presented antigens to the T cells and primed the immune response. In 

summary the DC recognises antigens present on the bacterium and presents these to the 

T cells. The T cells can then proliferate increasing the number of T cells present to 

respond to the antigen. This response can then go on to stimulate B cell responses 

leading to the development of protective antibodies and then the DC can undergo 

apoptosis to turn off the response (Folcik et al., 2007). Recent research has shown that 

macrophages can also prime the immune response. Therefore in my research, culturing 

macrophages with naive T cells could enhance intracellular killing by macrophages. 

This could occur through the macrophages presenting antigens to the T cells stimulating 

them to proliferate, enhancing their effector functions and stimulating them to mature 

into memory T cells which can respond faster on another exposure to the bacterium 

(Pozzi et al., 2005). This would be important because macrophages are abundant at the 

site of infection and if they are potent at presenting antigens and can therefore prime T 

cells it could lead to enhanced clearance of intracellular bacteria because now there are 

two immune cells interacting together to contribute to overall pathogen control (Pozzi et 

al., 2005).  

It is possible that some of the findings presented in this section of my thesis could be 

related to how activated the THP-1 cells are at the start of the experiment. The 

activation of THP-1 differentiated macrophages at the start of experiments can influence 

some of the results presented in this thesis. Unlike MDMs, the THP-1 differentiated 

macrophages are known to be of a more M1 polarisation state (Daigneault et al., 2010), 

in comparison to MDMs which are more of an M2 polarisation state. This enhanced 

activation could mean the THP-1 differentiated macrophages are more stimulated 

initially to start phagocytosing and killing bacteria in comparison to MDMs, which 

would become M1 on exposure to bacteria. It could also mean, that when analysing the 

effect of additional pro-inflammatory stimulation on the ability of THP-1 differentiated 

macrophages to kill intracellular bacteria, further stimulation might have modest effects, 

especially if the THP-1 differentiated macrophages are already maximally activated. 

Despite this, the actual polarisation profile of THP-1 macrophages has not been studied 

in extensive detail, but it was noted that similar to MDMs, THP-1 differentiated 
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macrophages demonstrated the ability to become similar in phenotype to MDMs 

following challenged with heat killed bacteria (Daigneault et al., 2010). In addition, 

despite the additional, suggested M1 polarisation of THP-1 macrophages, the behaviour 

towards S. aureus is similar between THP-1 differentiated macrophages, MDMs and 

bone marrow derived macrophages (BMDMs), suggesting that the initial interaction 

between the cells and bacteria might differ and lead to for example increased adherence 

and internalisation, but the later processes and intracellular killing are broadly similar.  

A lot of the work presented in this section of my thesis used THP-1 differentiated 

macrophages which have advantages and disadvantages as models of differentiated 

tissue macrophages. One of the major advantages is unlike MDMs the differentiation 

protocol is a lot shorter and allows more data to be collected in a shorter space of time. 

As well as this, despite some heterogeneity between the cells, there is generally a lot 

less variation than with MDMs, owing to the lack of donor variation. The main 

advantage of THP-1 differentiated macrophages is they are extremely similar to MDMs 

and therefore are good models of tissue macrophages but the functional consequences 

requires further characterisation and to study more specific macrophage subsets requires 

an altered differentiation protocol. Despite these obvious advantages there are some 

disadvantages with using the THP-1 model. During differentiation, unlike MDMs, there 

was a greater proportion of lysosomes within THP-1 differentiated macrophages which 

could impact on their degradative capacity (Daigneault et al., 2010). Also in respect to 

surface receptors, there could be differences in responses to certain pathogens e.g. 

because of different expression of TLRs (Daigneault et al., 2010). The differentiation 

protocol pushes the THP-1 cells towards differentiated tissue macrophages and 

therefore does not account for the environmental factors accounting for the arisal of 

specific macrophage subsets.  

The findings presented in this section of my thesis demonstrate that macrophages 

efficiently phagocytose S. aureus but have a finite capacity to kill intracellular bacteria. 

Intracellular killing is not complete and even at low dose exposures some bacteria 

remain viable in the intracellular environment but the accumulation of these viable 

bacteria becomes accentuated once killing is exhausted. The level of surviving viable 

intracellular bacteria increased with both time and dose, but, when the macrophages 

could no longer kill they were still able to phagocytose. Stimulation of macrophages 

only modestly enhanced their intracellular killing capacity. It was not clear whether this 

intracellular persistence was primarily the result of intrinsic limitations on the 
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macrophages ability to kill intracellular bacteria or mediated by specific bacterial 

factors. However, this data provided the basis on which to develop a mathematical 

model to explain the interaction between S. aureus and macrophages, which is the focus 

of the next section of this thesis. 



111 
 

Chapter 4 A mathematical model to describe the interaction of 

Staphylococcus aureus with the macrophage 

 

4.1. Introduction 

Over recent years, mathematical models of biological systems have increasingly proved 

a useful tool in helping to inform our understanding of host: pathogen interactions. The 

development of new mathematical models to describe a range of biological systems has 

become very attractive because they can offer important insights, are quick to generate 

and allow predictions to be made.  The ability to use these models to make predictions 

and inform experimental design is at the heart of what makes mathematical models 

extremely useful. Based on this, the development of a mathematical model to describe 

the interaction of macrophages with S. aureus will prove important for future research.  

Mathematical modelling is a particularly powerful research tool in disease biology, 

including at a microbiology and immunology scale. As well as being able to 

complement the study of biological interactions, it can offer new insights into host: 

pathogen behaviour (Kirschner and Marino, 2005). Mathematical models, which can be 

simple or complex may be able to successfully match experimental observations, make 

a range of hypotheses about the system under investigation and offer ideas for 

experiments necessary to extend or inform the model (Kirschner and Marino, 2005, 

Callard and Yates, 2005). A lot of infectious disease models model a single target cell 

and a single pathogen to maintain tractability, but complex models with multiple and 

heterogeneous populations are common in biology (Dixit and Perelson, 2005, Pienaar 

and Lerm, 2014).  

Over the years there have been a number of mathematical models of host: pathogen 

interactions at the pathogen-cell scale developed e.g. models of TB dynamics 

(Warrender et al., 2006), Human Immunodeficiency Virus (HIV-1) (De Boer et al., 

2010) and Hepatitis (Ciupe et al., 2007). These models have offered important insights 

into the behaviour of the immune response following exposure to these infectious 

agents, and, how they are able to cause the diseases they do. Also they have allowed us 

to analyse how treatment can be used in the control of these diseases and when it is best 

to administer treatment (Kepler and Perelson, 1998, Di Mascio et al., 2004). However, 
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there has been no detailed mathematical analysis of the interaction between 

macrophages and S. aureus.  

One of the most modelled bacterial pathogens is TB and mathematical models of TB 

infection have examined the roles played by both macrophages and T cells. It has been 

demonstrated that if macrophages are the only responding cell to a mycobacterial 

infection, then the bacteria are able to grow unrestricted (Warrender et al., 2006). With 

T cell influx the growth is controlled (Warrender et al., 2006). Another study 

demonstrated using an agent based model (ABM) that resting macrophages ingested 

extracellular bacteria leading to bacterial clearance (Segovia-Juarez et al., 2004). On the 

other had activated macrophages were necessary to ingest and kill mycobacteria. Too 

many resting macrophages could provide a perfect bacterial niche preventing the 

necessary interactions for pathogen clearance, whereas, too many activated 

macrophages could cause severe tissue damage (Segovia-Juarez et al., 2004). An 

interesting study from 2010 found that although macrophages were important in the 

response to mycobacteria, the phase of growth of the bacilli influenced the 

differentiation state of the macrophages (Bru and Cardona, 2010). A recent study found 

that if macrophage recruitment was too low then mycobacteria would grow unrestricted 

(Pienaar and Lerm, 2014). Increasing macrophage recruitment offered more control to 

the infection and even a moderate rate of recruitment could eliminate the pathogen 

through the generation of inflammatory mediators (Pienaar and Lerm, 2014). The model 

suggested there was a constant interplay between the host and the bacterium, whereby 

periods of inactive macrophage response would allow the bacteria to disseminate to a 

new location (Pienaar and Lerm, 2014).  

The interaction of S. aureus with macrophages is a very underdeveloped field. There 

have been various reports about the ability of S. aureus to persist in macrophages but 

the papers are conflicting in their nature (Melly et al., 1960, Kubica et al., 2008). It is 

well established that S. aureus can avoid a range of innate immune defences from 

recognition to intracellular killing (Rooijakkers et al., 2006, Richardson et al., 2008) and 

this allows it to successfully establish an infection. However, there has never been an 

extensive study exploring the kinetics of phagocytosis or intracellular killing of S. 

aureus by macrophages which formed the basis of my thesis. Although there are 

mathematical models describing the quorum sensing system of S. aureus (Jabbari et al., 

2012a, Jabbari et al., 2012b) there hasn’t been a current model describing the interaction 

with macrophages.  
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While there are a number of mathematical models addressing the dynamics of TB 

infections there is not currently a mathematical model describing the macrophage 

response to S. aureus. I therefore decided to use my in vitro results to inform a novel 

mathematical model. I developed a model to describe the extracellular and intracellular 

phases of S. aureus infection by using my in vitro results to estimate parameters for the 

model. These results provided important insights into how macrophages respond to S. 

aureus and provided suggestions as to why macrophage control of extracellular and 

intracellular S. aureus was very different.  
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4.2. The Model 

4.2.1. Model structure 

In order to develop my mathematical model I first developed a schematic diagram 

outlining the key biological processes occurring within my system and also the relevant 

cellular and bacterial populations present (Figure 4.1). I described four populations (or 

variables) namely unexposed (or ‘free’) macrophages (Mf) and actively ingesting (or 

‘active’) macrophages (Ma) and extracellular (Se) and intracellular (Si) bacteria. 

Initially, I did also have an additional macrophage population, regarded as ‘chronically 

infected’ macrophages (see below), but as the model developed, this population was 

combined with the actively ingesting macrophage population. Using some of my initial 

experiments I then decided on the key events that could give rise to each population and 

how each population behaved. 

4.2.2. Macrophage and bacterial populations 

Initially, a population of Mf macrophages would be present in culture at a fixed density. 

Over the time course I am focussing on I assume that these macrophages do not decay 

and that no additional cells are recruited. They would respond to Se bacteria and 

actively internalise them making them Ma macrophages with Si bacteria. Ma 

macrophages kill Si bacteria at a fixed rate and in theory if they clear their entire load 

could become Mf macrophages once more. With increasing bacterial dose, macrophages 

ingest more Se bacteria, but because killing occurs at a fixed rate, over time their 

relative killing rate decreases leading to intracellular bacterial persistence.  

Se bacteria have the capacity to replicate in the extracellular medium until it reaches its 

critical population density (‘carrying capacity’), with the growth rate slowing as the 

carrying capacity is approached (‘logistic growth’). They can be ingested by Mf or Ma 

macrophages to become Si bacteria. Si bacteria are assumed not to replicate, at least at 

early time points (as suggested by my experimental data) but can be killed by Ma 

macrophages at a fixed rate. These events are summarised in figure 4.1. 
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Figure 4.1: Summary of the interaction of macrophages with S.aureus during an 

extracellular infection. 

Se bacteria can be internalised by Mf or Ma macrophages to become Si bacteria. Ma 

macrophages can kill intracellular bacteria and become Mf macrophages if they clear 

their entire load. Se bacteria can replicate to a maximum population density.  
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4.2.3. Extracellular model equations and assumptions 

Having formed the representative diagram shown in figure 4.1, I translated it into an 

ordinary differential equation (ODE) model. This relies on forming differential 

equations for each population (variable) which contains various processes (parameters) 

within them to describe in detail how the population changes with time. In coming up 

with my equations I had two key assumptions in my model: 

 A subset of Mf macrophages were capable of phagocytosing Se bacteria.  

 Each sub-population of macrophages, those with and without the potential to become 

Ma, was homogeneous.  

I produced four equations to describe the dynamics of the populations shown in figure 

4.1 over time. I assigned parameters for each of the processes namely: internalisation of 

Se by Mf macrophages (γ); replication of Se (r); the maximum population density for Se 

(k); internalisation of Se by Ma macrophages (β) and; killing of intracellular bacteria by 

Ma macrophages (μ).  

For internalisation of extracellular bacteria by Mf the equation was written as γ*Mf*Se. 

This takes into account that the ability to internalise Se bacteria is a property of an 

interaction of an Mf macrophage with a Se bacteria that would lead to it being ingested. 

The ingestion term is a density dependent rate (i.e. the rate of ingestion by a 

macrophage is proportional to the density of Se bacteria). This is similar for 

internalisation by Ma macrophages which for this model is assumed to occur at the 

same rate as for Mf macrophages (i.e. γ=β). This assumption was partly to make the 

model less complicated. Although internalisation rates might be anticipated to increase 

after a period of bacterial exposure, as a result of activation of macrophages, my 

experimental data did not suggest that this represented a major effect. Moreover the 

assumption was pragmatic because there was no easy way to accurately determine the 

Mf and Ma populations over time, there was no simple method to accurately split up the 

two internalisation rates. The killing of intracellular bacteria is written as μ*Ma, to 

account for the property that intracellular killing is a feature of the Ma population with 

each macrophage killing at some fixed rate.  

The Se equation also has an additional term to account for the replication of bacteria. I 

have written this as (r*Se*(1-Se/k)). This shows that the Se population can replicate but 

by engineering in the k, the bacterial population cannot grow indefinitely but instead 
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has ‘logistic’ growth where, in the absence of macrophages, it will grow to reach its 

carrying capacity, k. The Si equation contains both the internalisation and killing terms.   

4.2.4. Macrophage equations 

The Mf equation shows that Mf macrophages can internalise Se (-γ) and become Ma 

macrophages (Equation 4.1 (1)). As well as this if a Ma macrophage killed its Si 

bacteria it would once again form part of the Mf macrophage population (+μ) (Equation 

4.1 (1)). In the model, it is assumed that above a certain Si level, Ma macrophages can 

no longer clear their entire intracellular bacterial load over time despite intracellular 

killing still occurring at a fixed rate. As there was not a specific term for this in the 

original model, I engineered functions that would allow killing to lead to clearance over 

a certain range of Si numbers and to prevent clearance above a threshold value. These 

terms were the piecewise functions represented at the end of the Mf and Ma equations 

i.e. the (Si/Ma<1) (Equations 4.1). These terms allow the clearance term to be 

discontinuous as intracellular numbers are varied (i.e. it behaves differently over 

different values of Si). They are designed to allow Ma macrophages to clear Si bacteria 

if the Si number is less than 1 bacterium per cell. In the second half of the function, if 

the Si number is greater than 1 bacterium per cell, the function prevents intracellular 

clearance of Si bacteria by Ma macrophages, leading to intracellular killing but Ma 

macrophages do not become Mf macrophages.  

Ma macrophages arise when Mf macrophages internalise Se (+γ) (Equation 4.1 (2)). 

Secondly if a Ma macrophage clears its intracellular bacterial burden it becomes an Mf 

macrophage again (–μ) (Equation 4.1 (2)).  

4.2.5. Bacterial equations 

Se bacteria could replicate (r) to a maximum population density (k) (Equation 4.1 (3)). 

As well as this, Se could be internalised by Mf macrophages (–γ), or internalised by Ma 

macrophages (–β) (Equation 4.1 (3)). These internalisation processes would give rise to 

Si bacteria (Equation 4.1 (4)). Also Si bacteria could be killed by Ma macrophages; 

hence there is a –μ in the Si equation (Equation 4.1 (4)).  
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Equations 4.1: Equations describing the extracellular model. 

Equations were formed based on the diagram in figure 4.1. There are 4 cellular 

populations and each of these is assigned parameters based on how each population 

arises. (1) Mf equation. (2) Ma equation. (3) Se equation. (4) Si equation. The – and + 

signs designate how each parameter causes a population to shift from one to the other. 

Key: γ= internalisation rate of Se by Mf macrophages, μ=killing rate of Si by Ma 

macrophages, r=replication rate of Sf, k=carrying capacity of Sf, β=internalisation rate 

of Sf by Ma macrophages.  
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4.2.6. The initial interaction of S. aureus with macrophages 

Se replication was estimated from S. aureus replication experiments in media over 0-9 

hours. S. aureus at an MOI of 5 was incubated in macrophage media for 1 hour on ice 

and then transferred to 37°C for up to 9 hours. Importantly, there were no macrophages 

present in this experiment. At each time point I took a measurement of the extracellular 

colony forming unit (CFU). I input these results into R® and used a linear model (lm) 

which fitted a straight line through my logged data points. When doing an lm model, R 

comes up with a set of values called residuals which is the difference between the 

observed values and the predicted values. It then tests this for homoscedascity, which is 

the distribution of these residual values around the mean of the data. It plots the fitted 

line versus the residuals and checks the residual values lie close to the line. Secondly, it 

checks the residuals are normally distributed. If these criteria are met, which is checked 

by making R® plot the two graphs, you can be assured that the lm model has produced 

the best fit through the data.   

The internalisation rate of Se by Mf macrophages was estimated from experiments 

where I had allowed macrophages to internalise S. aureus for 0-9 hours. Macrophages 

were challenged with S. aureus at an MOI of 5 for 0-9 hours (1 hour on ice and 8 hours 

at 37°C). At each time point I took a measurement of extracellular CFU. I input the data 

into R® and tried fitting an lm through my logged data. However, trying to employ the 

above method to calculate the internalisation rate of Se by Mf was not simple. Using the 

lm function in R® produced fitted versus residuals plot with points scarcely close to the 

fitted line and therefore this model in R® could not be trusted to have produced the 

most accurate estimation of the data. Therefore I used another method, using the 

function ‘fminsearch’ in the mathematical programming software Matlab®, which fits 

the model output to the experimental data and optimises by minimising the sum of 

squares error between the data and model. This method, which is similar to how R® 

calculates the best fit using lm function allowed a more accurate estimation to be 

achieved and produced a value for γ that was 0.00000011. For simplicity in the model I 

assumed that γ=β and therefore β was also set at 0.00000011.  

To calculate the killing rate of Si by Ma macrophages, I used my results from 

experiments where I had challenged macrophages with S. aureus at an MOI of 5 for 6 

hours. At each time point extracellular bacteria were removed and the experiment 

followed without internalisation for defined time periods. I took a measurement at 30 
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minutes post phagocytosis ceasing and used this to calculate μ in a similar fashion to 

what has been described. When I had an estimate for μ over 30 minutes the value was 

doubled to estimate killing/hour (μ=0.16). This value implies that on average an 

intracellular bacterium can survive for about 6 hours.  

I set the Mf macrophages at 80,000 because my experimental results suggested only a 

subset of macrophages were capable of phagocytosis, and I usually observe no more 

than 40% of macrophages with Si bacteria at 6 hours at an MOI of 5 in my experimental 

results. This would suggest that either 40% of macrophages are capable of ingesting or 

some have ingested, cleared Si bacteria and then not re-ingested. For simplicity, I 

assume the first statement and set the Mf starting at 40% of my Mf seeding density. I 

initially ran the model over 6 hours because this was the time course over which most of 

my experiments were conducted. The code I used for R® for the model is shown in 

appendix 1.  

4.3. Results 

Having estimated the parameters I input them into my model and ran the model at an 

MOI of 0.05 (Figure 4.2A-C) and an MOI of 5 (Figure 4.2D-F) over 6 hours. To 

calculate my parameter estimations I had used data recorded for an MOI of 5. I found 

this produced a good correspondence to my in vitro data at this MOI. I also used these 

parameters to plot the trends for a lower MOI of 0.05.  

The model showed for an MOI of 0.05 Ma macrophages slowly increased in number 

and by 6 hours post infection about ~9.4% of the total Mf macrophage starting 

population (80,000) had become Ma (Figure 4.2A). For an MOI of 5 there was a sharper 

increase in Ma macrophages and by 6h ~99% of the total Mf macrophage starting 

population had become Ma macrophages (Figure 4.2D). For both MOI’s the Se line 

shows a similar increase in the gradient because the model assumes relative bacterial 

growth rather than absolute bacterial growth (Figure 4.2B, E). Over time at both MOI’s 

there is a gradual accumulation of Si bacteria within Ma macrophages as a result of 

ongoing internalisation (Figure 4.2C, F). Plotting the in vitro Se and Si data alongside 

the model outputs shows a good correspondence at both MOIs (Figure 4.3B, C, E, F). 

These results suggest that as the MOI increases more Mf macrophages become activated 

to control the extracellular infection leading to increased accumulation of intracellular 

bacteria.  
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Figure 4.3 shows Se and Ma dynamics for three further bacterial MOI’s (MOI 0.5, 1 

and 10). Figure 4.3 suggests that macrophages control extracellular bacterial replication 

for longer at lower bacterial doses compared to higher bacterial doses (Figure 4.3B, D 

and F). Figure 4.3 also shows that as MOI increases, the number of Ma macrophages 

recruited to help control extracellular bacterial replication increases from 60% of the 

starting Mf macrophage population at an MOI of 0.5 to ~100% of the starting Mf 

macrophage starting population at an MOI of 10 (Figure 4.3A, C and E). These results 

suggest that macrophages have the capacity to control small infections over a number of 

hours, even though there will eventually be exponential growth of Se bacteria. This 

control may have an important role in allowing time for the recruitment of other 

immune cells to the site of infection. At higher bacterial doses, macrophages have to 

work harder to control the large infection, and the influx of other immune cells is 

probably more crucial in determining the outcome of the infection.  

4.3.1. The effect of varying the extracellular bacterial replication rate  

Having shown the extracellular model produced reasonable dynamics at low and high 

bacterial MOI, I next examined the effect of varying the replication rate of extracellular 

bacteria on the population of Se and Si bacteria. To do this, I used the standard error 

from my lm model for bacterial replication, which was 0.058. I varied the replication 

rate using the standard error to make r=0.758 and r=0.642. I input these values into my 

model and re-ran it at an MOI of 0.05 and 5 over 6 hours. 

At both MOI’s for both a higher r value (Figure 4.4A, C) and lower r value (Figure 

4.4A, C), there is similar behaviour in Se bacteria. As the bacteria replicate faster or 

slower, they take less time or longer respectively to reach k. As the bacteria replicate 

faster, more macrophages in the Mf population become Ma and accumulate Si bacteria.  

4.3.2. Modelling later events in the macrophage: S. aureus interaction 

Having modelled the initial phase of infection, I next modelled what was happening to 

intracellular bacteria over time following an initial pulse of S. aureus i.e. events post 

lysostaphin treatment. In experiments involving macrophages and bacteria this protocol 

is standard. The reason behind adding lysostaphin at 6 hours is in order to kill 

extracellular bacteria that have not been ingested. This is important because in order to 

follow intracellular bacteria and intracellular kinetics it is important to make sure that 

extracellular bacteria and therefore ongoing ingestion are not contributing. In my  
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Figure 4.2: Extracellular model outputs. 

Output from the model showing the dynamics of A) Ma macrophages, MOI of 0.05, B) 

Se bacteria, MOI of 0.05, C) Si bacteria, MOI of 0.05 and the in vitro results, D) Ma 

macrophages, MOI of 5, E) Se bacteria, MOI of 5, F) Si bacteria, MOI of 5 and the in 

vitro results. Experimental data is also plotted in B, C, E and F. Parameter values were 

estimated from experimental data as: (r=0.7, k=10
8
, γ=1.1 x 10

7
, μ=0.16). 
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Figure 4.3: Increasing bacterial dose compromises macrophage control of bacterial 

replication.  

Using the parameters calculated above, the model was run at an MOI of 0.5, 1 and 10 

over 6 hours. A) Ma macrophages, MOI of 0.5, B) Se bacteria, MOI of 0.5, C) Ma 

macrophages, MOI of 1, D) Se bacteria, MOI of 1, E) Ma macrophages, MOI of 10, F) 

Se bacteria, MOI of 10. Parameter values were estimated from experimental data as: 

(r=0.7, k=10
8
, γ=1.1 x 10

7
, μ=0.16). 
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Figure 4.4: The effect of varying ‘r’ on Se and Si bacteria. 

Using the parameters calculated above, and altering r to 0.758 or 0.642, the model was 

run at an MOI of 0.05, and 5 over 6 hours. A) Se bacteria MOI of 0.05, B) Si bacteria, 

MOI of 0.05, C) Se bacteria, MOI of 5, D) Si bacteria, MOI of 5. Parameter values were 

estimated from the lm model for r and experimental data for all other parameters: 

(r=0.758 (Higher ‘r’) or r=0.642 (Lower ‘r’), k=10
8
, γ=1.1 x 10

7
, μ=0.16). 
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experiments, I always record post lysostaphin treatment that extracellular bacterial 

numbers are undetectable and therefore in the model I assume that the treatment is 

efficient and hence Se numbers become zero preventing ongoing phagocytosis and Se 

replication. 

I modified my equations to take account of the result of adding lysostaphin to my in 

vitro cultures following the initial infection pulse. As well as this I had one assumption 

for this phase of the model: 

1) Above 1 bacterium per cell, the clearance of intracellular bacteria by Ma macrophages 

ceases.  

I modified three equations to describe the populations (Mf and Ma macrophages and Si 

bacteria) present post lysostaphin treatment. My initial Mf equation had a term 

regulating internalisation of Se bacteria by Mf macrophages and a term for the killing of 

Si bacteria by Ma macrophages. In the intracellular model, the term for internalisation 

of Se bacteria has been removed because lysostaphin treatment removes Se bacteria and 

therefore internalisation is no longer a parameter needed within the model (Equations 

4.2). The Ma macrophage equation has been modified in a similar fashion and now only 

contains a term for intracellular killing of bacteria. My Se equation has been removed 

from this part of the model. The Si equation now only holds a term for the intracellular 

killing of Si bacteria by Ma macrophages. Having modified my equations appropriately, 

I assigned a mathematical code for the parameters within each equation. The parameters 

were killing of intracellular bacteria by Ma macrophages (μ) and the average number of 

Si bacteria per cell (K). This K term was added into the Mf and Ma equations to account 

for the fact that there was a certain threshold of Si bacteria when macrophages would be 

able to clear intracellular bacteria and above this threshold clearance would not occur. 

In my model I assume that intracellular killing of Si bacteria by Ma macrophages occurs 

at a constant rate. Depending on the Si number, intracellular killing can lead to Ma 

macrophages clearing Si bacteria where a Ma macrophage once again becomes an Mf 

macrophage. The Mf equation shows that Mf macrophages can arise when Ma 

macrophages clear Si bacteria (+μ) (Equation 4.2 (5)). Ma macrophages can clear Si 

bacteria (-μ) (Equation 4.2 (6)). Finally the Si equation has been modified to account for 

the fact that Si can be cleared by Ma macrophages (-μ) (Equation 4.2 (7)). 
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4.3.3. Modelling the intracellular phase of infection 

Having edited the initial equations to take into account what could happen to 

intracellular bacteria in the absence of bacterial internalisation, I next substituted in the 

parameter values for each term which were assumed to be the same as the original 

model, but with the addition of the clearance process.  

Prior to running the model, I re-analysed my killing data and it became evident that 

there were two phases of intracellular killing occurring by macrophages. I have termed 

these phase α to represent the initial fast killing that occurs when phagocytosis ceases 

and phase β to represent the more gradual killing that occurs later (Figure 4.5). My 

intracellular model presented in this chapter of my thesis models a single rate of killing 

for analytical ease but further extensions to the model should look to include both 

phases α and β. 

Having substituted my estimated parameter values into the model I ran the model at an 

MOI of 0.05 (Figure 4.6A-B) and an MOI of 5 (Figure 4.6C-D). Again in estimating my 

parameters I used the values from my MOI of 5 experiments and was able to then use 

these to estimate what would happen at an MOI of 0.05. For the purposes of this model, 

the starting densities of Mf and Ma macrophages and Si bacteria were set at the values 

from 6 hours based on the previous extracellular model for each bacterial MOI. I ran the 

model up to 16 hours because this was one of the longer time courses I had performed 

in my experiments. The script for this part of the model is shown in appendix 2.  

I found that using my calculated values I was able to show the phase β behaviour with a 

good degree of accuracy. I found for an MOI of 0.05 Ma macrophages slowly decreased 

in number and by 16 hours post infection almost the entire Ma population had once 

again become Mf macrophages, but there was still a small population of Ma 

macrophages with Si bacteria (Figure 4.6A). For an MOI of 5 there was no decrease in 

Ma macrophages, indicative of the fact that intracellular killing had become exhausted 

and these Ma macrophages were now harbouring more than 1 bacterium per cell (Figure 

4.6C). At both doses, there was a gradual decline in Si bacteria over time (Figure 4.6B, 

D). However, the single rate of killing used here does not account for the initial fast 

phase of killing after lysostaphin is added. 

These results suggest that at low bacterial doses almost every killing event leads to 

intracellular bacterial clearance seen by the decrease in Si numbers almost paralleling  
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Equations 4.2: Intracellular model equations. 

 

The equations presented in figure 4.2 were modified to account for the effect of 

lysostaphin on Se bacteria. There are 3 cellular populations and each of these is 

assigned parameters based on how they behave post internalisation. (5) Mf equation. (6) 

Ma equation. (7) Si equation. Key: μ=killing rate of Si by Ma macrophages, K=average 

number of Si bacteria per cell. The functions at the end of the Mf and Ma equation 

indicate that above a certain value, killing becomes exhausted.  
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Figure 4.5: Two phase intracellular killing dynamics. 

Results from in vitro data shows there are 2 phases of intracellular killing. Phase α 

represents a fast killing step occurring within the first 30 minutes post phagocytosis 

whereas phase β represents a more gradual killing phase.  
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Figure 4.6: Intracellular model outputs. 

Parameters were calculated from the biological results. These altered parameters for 

intracellular killing of bacteria by Ma macrophages, μ (0.16) and the average number of 

bacteria per cell, K (1) were then inputted into the model and the model was run at an 

MOI of 0.05 and an MOI of 5 over 6-16 hours. A) Ma macrophages, MOI of 0.05, B) Si 

bacteria, MOI of 0.05, C) Ma macrophages, MOI of 5, D) Si bacteria, MOI of 5. 
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the decrease in Ma macrophages. In contrast at higher bacterial doses, there is a gradual 

decrease in Si, but killing does not lead to clearance of intracellular bacteria and hence 

the Ma macrophages line stays flat over the 10 hour time course. Finally, the model 

demonstrates that intracellular killing is most likely the rate limiting step in the 

macrophages control of S. aureus and hence over time there is a small amount of Si that 

persist for an extended period of time. This suggests that even at low bacterial doses, 

and with killing of Se with an antimicrobial agent, some Si bacteria can persist 

intracellularly for an extended period of time. 

 

4.4. Discussion 

I have developed and analysed a mathematical model to explore the dynamics of the 

interaction between S. aureus and macrophages. My key results are that: (i) 

macrophages are unlikely to fully control an S. aureus infection over a long time period 

as bacterial replication is always faster than phagocytosis, but; (ii) at low MOI’s 

macrophages may control the infection for as long as 6 hours, potentially allowing time 

for further immune cells to be recruited; (iii) intracellular bacterial numbers will 

gradually accumulate over the course of an infection, assuming persistent extracellular 

bacteria, as phagocytosis is proportional to extracellular bacterial numbers but killing is 

fixed; (iv) treatment that clears all extracellular bacteria may allow full clearance over 

time at low doses. Overall, my model highlights that macrophages alone can never fully 

clear S. aureus infection, but at low bacterial MOI’s they can delay bacterial replication 

for longer time periods compared with high bacterial MOI’s. My model also 

demonstrates, that removing the Se bacterial stimulus leads to a gradual decrease in Si 

bacteria over time, at both low and high bacterial doses, but small numbers of Si 

bacteria persist intracellularly for extended periods of time. Finally my model highlights 

how Si bacterial numbers influence the macrophages ability to clear intracellular 

bacteria, and when Si numbers are sufficiently high enough, macrophages can gradually 

reduce Si numbers but never clear Si bacteria and return to an Mf state again.  

The results from my model have shown that, with realistic parameter values estimated 

from data, the macrophage population will never fully control S. aureus infection. The 

reason is simply that bacterial replication will always outstrip phagocytosis meaning 

extracellular numbers are always increasing. However, at low MOIs I found that 

extracellular numbers could be kept at a low level for long time periods. This is 

important because during human infection it is unlikely to see infection with S. aureus 
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at such high MOI’s. The ability of tissue macrophages to be able to delay extracellular 

S. aureus replication for extended periods at low doses would allow tissue macrophages 

to elaborate chemotactic cytokines and recruit additional immune cells to the site of 

infection such as neutrophils. This interplay allows the macrophage to begin responding 

to and controlling S. aureus infection and then as time progresses the combination of a 

range of innate immune cells ultimately contributes to the successful elimination of the 

pathogen.  

It has been shown in neutrophils that phagocytosis can stimulate oxidative killing 

(DeLeo et al., 1999). The movement between Mf (‘free’) and Ma (‘active’) 

macrophages is dependent on both the extracellular bacterial concentration and the 

intracellular bacterial concentration. However, there are also inherent feedbacks in the 

model. For example, higher Se numbers would cause higher Si numbers and over time 

less transition from Ma to Mf. The schematic diagram I created at the start of the model 

development suggested to me that the overall outcome of the system i.e. the control of 

bacterial infection was a dynamic interplay between bacterial and host factors. This 

mirrors a typical initial phase of S. aureus infection, whereby the ability of the infection 

be localised or systemic depends upon an interplay between the host immune system 

and bacterial virulence factors (Lowy, 1998).   

As the model demonstrates as the bacterial dose increases, macrophages begin to lose 

control of the extracellular phase of S. aureus infection. Potentially, macrophages 

require additional help from other immune cells such as neutrophils in order to 

efficiently manage S. aureus infection (Lowy, 1998). This has been demonstrated for 

TB where early T cell influx combined with the macrophage response reduced bacterial 

growth (Warrender et al., 2006). The earlier peak in Ma macrophages might reflect Ma 

macrophages elaborating cytokines to activate nearby Mf macrophages to respond to 

infection.  However, these models might suggest that the timing of macrophage 

activation is important, although this is not something I have addressed in my 

experiments or my model. If they respond to too great an extent, the control of infection 

might be compromised if activated macrophages release factors that damage tissues and 

enable bacteria to escape to other environmental niches (Segovia-Juarez et al., 2004).  

The effect of ongoing activation and internalisation by macrophages is the accumulation 

of Si bacteria. My results show that intracellular numbers continue to increase over the 

course of an infection while internalisation increases proportionately with extracellular 
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numbers, and killing by macrophages is fixed. Increased intracellular bacterial load may 

have important implications to the infection and could affect cell viability as I will 

investigate in the next section.  

For low bacterial MOI there is a close correlation between Ma and Si numbers after the 

addition of lysostaphin. Over time there is a decrease in Ma macrophages which closely 

mirrors a decrease in Si bacteria. This suggests that the Ma population are still able to 

actively kill Si bacteria and return to an Mf state. For higher bacterial MOI’s there is no 

decrease in Ma macrophages over time suggesting intracellular killing has become 

limited relative to the total intracellular bacterial burden. However, there is still a 

gradual decrease in Si numbers. This may suggest that treatments that can clear 

extracellular bacteria may help the immune system to fully control infection, if given 

whilst the MOI is still low. Despite this, at both a low and a high MOI, Ma killing of Si 

bacteria appears to be rate limiting. Even though at low MOI’s it appears there are Ma 

macrophages able to clear Si bacteria, over time, there is a subset of Ma macrophages 

where Si bacteria persist for extended periods of time that could lead to relapse or 

recrudescence of infection. 

The reason why macrophages show a decreased ability to completely kill intracellular 

bacteria above certain thresholds could be two fold. Firstly, over time an essential 

resource required to maintain rapid intracellular killing (phase α) is depleted reducing 

intracellular killing leading only to the less effective killing of phase β. In addition, 

following initial killing there could be energy limitation leading to a more gradual 

reduction in Si number and ultimately the persistence of small numbers of Si bacteria.  

However, the response to intracellular bacteria could also be influenced by bacterial 

factors. The initial rapid phase of killing at low doses could represent intracellular S. 

aureus that are sensitive to the macrophage defence and therefore are rapidly killed. 

This means that there could be a subset of intracellular bacteria that are sufficiently 

degraded within phagolysosomes to release bacterial ligands to activate macrophages to 

initiate a signalling cascade resulting in sustained intracellular killing of bacteria (Ip et 

al., 2010). This is important as it has been demonstrated that for macrophages to 

sufficiently mount a response to S. aureus requires firstly engagement of bacteria by 

cell surface receptors and secondly intracellular recognition of bacteria by receptors 

(Wolf et al., 2011) recruited to phagosomes (Underhill et al., 1999). In contrast,  it is 

possible, that in the subset of cells in which bacteria persist there is incomplete 
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engagement of this activation process since intracellular bacteria are preventing their 

recognition by the macrophage and persisting in a quiet, non-active state (Tuchscherr et 

al., 2010, Tuchscherr et al., 2011). Regardless of this at higher doses the killing 

mechanisms would become overwhelmed and even appropriately activated cells will 

ingest more bacteria than they can kill.  

This model assumed each population was homogeneous. This assumption can be 

criticised because in vitro the population would not be homogeneous, but for example, 

there would be macrophages at different levels of differentiation or activation. In order 

to determine how this affects results, it would be necessary to differentiate cells in 

different ways then mix them and challenge them with S. aureus. These results could 

then be incorporated into a future model with new equations to describe the new 

populations and also modifications to existing parameters. By doing this, I would expect 

to see the model possibly showing a more oscillatory nature with different groups of 

macrophages responding in different times.  

Another assumption from this system was that extracellular bacteria activated the Mf 

macrophage population. This is a useful assumption for the model, but in vivo there 

might be subsets of cells that could be activated quicker than others and might 

contribute to earlier responses. Stimulating macrophages with different activation 

protocols prior to bacterial challenge and then comparing internalisation and killing 

between stimulated and unstimulated macrophages would allow this to be explored. 

These results could then be incorporated into the model.  

From my in vitro observations it is clear that macrophage killing of intracellular S. 

aureus appears to follow two distinct phases (Figure 4.5). There is an initial phase of 

rapid killing which reduces intracellular bacterial numbers over a short time frame 

(phase α) and then a more gradual phase which reduces bacterial numbers more slowly 

and ‘keeps the intracellular population in check’ (phase β). To improve the model, 

better characterisation of the phases of intracellular killing are required. It will be 

necessary to work out the exact timing of the killing occurring in phase α to determine if 

the rapid reduction occurs early or within the 30 minutes. This would then lead to a 

calculation to work out better the rate of intracellular killing within this first 30 minutes 

which could be incorporated into a more complex model that accounts for the two 

phases. This would produce a more accurate model which has a killing rate based on 

phase α and phase β separately rather than one overall killing rate.  



134 
 

Mathematical models of infectious disease dynamics are very useful in forming 

hypotheses about biological processes and in confirming observed phenomena 

(Kirschner and Marino, 2005). The reason behind the lack of mathematical models 

observing the interaction of S. aureus with macrophages and other immune cells could 

be because S. aureus has always been observed to be an extracellular pathogen (Archer, 

1998) and it is only recently coming to light as surviving in both an extra and 

intracellular environment. However, a lot of the early HIV mathematical models also 

did not examine intracellular kinetics in great detail (Perelson et al., 1993). Therefore it 

is possible that there are many processes affecting the intracellular dynamics and 

kinetics that make these models more difficult to generate. However, the amount of 

useful data and insights gained from generating simple or complex intracellular models 

far outweighs the time and difficulty in generating them. The lack of a good 

mathematical model to describe the interaction of S. aureus with macrophages 

prompted me to carry out a range of in vitro experiments with the central aim of using 

the results to develop and inform a new mathematical model.  

The model presented in this section of my thesis used an ODE system to generate it. 

ODE models are examples of population based models and determine how the 

population changes with time (Miao et al., 2011). As such, they are very useful for 

simple models where the populations are assumed to be homogenous. For the model 

presented in this section of my thesis, an ODE system was excellent at generating a 

simple model which can now be extended.  

As models become more complicated there are other modelling systems which would 

be more appropriate. One type of model which is very popular is agent based models 

(An et al., 2009). These models are very useful because they allow the modeller to 

follow individual cells that behave differently and model how they change with time. 

Essentially the model consists of an environment where the different cells reside and 

this can be altered to account for the behaviour of the different cells (Bauer et al., 2009). 

As the model becomes more complicated, agent based models are useful at 

incorporating elements such as cytokine secretion, cell movement etc and to develop a 

further understanding of how different components interact, as has been shown for TB 

(Segovia-Juarez et al., 2004). ABMs are also useful because they allow the overall 

contribution of individual cell types to for example, infection control to be studied, in a 

way that ODE models just follow the whole population of cells. However, the drawback 
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with ABMs is they are time consuming and require multiple simulations to produce 

accurate results, and as such, are selected only for very complicated models.  

Another type of model which is only starting to prove popular is known as the CyCells 

system (Warrender et al., 2006). This type of model is similar to an ODE model and 

follows how populations change with time. The one key difference here is that there are 

already cellular populations present in an ‘environment’ and the influx of new cells is 

controlled by the cells already present (Warrender et al., 2006). Like other types of 

models, in the CyCells system, the cells can respond and interact with each other and 

respond to the environment. For more complicated these models are useful because they 

allow signalling pathways to be activated and can look at threshold levels of activation 

of the cells which are much harder to do by other modelling techniques (Warrender et 

al., 2006).  

The findings presented in this section of my thesis outline a novel mathematical model 

describing the interaction between S. aureus and macrophages. I have formed a model 

that accounts for at least four populations within my in vitro system, and that Mf 

macrophages are capable of internalising Se bacteria at a range of bacterial doses to 

become Ma macrophages. I have also shown that the response of Mf macrophages to Se 

bacteria determines and influences the outcome of the infection i.e. full control of Se 

replication or minimal control. I have extended the model to describe how intracellular 

bacteria change over time and have been able to demonstrate that as bacterial dose 

increases macrophages ability for sustained intracellular killing is overwhelmed and is 

most likely the reason for bacterial persistence seen in vitro.  
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Chapter 5 Exploring the persistence of Staphylococcus aureus in 

macrophages 

 

5.1. Introduction 

It has become increasingly apparent that S. aureus inhibits aspects of the host response 

(Melly et al., 1960, Gresham et al., 2000, Hess et al., 2003, Kubica et al., 2008). As a 

result of these findings, the biological mechanisms allowing S.aureus to survive 

intracellularly in macrophages, within what can be considered a rather hostile 

environment, became a very important and engaging research question.  

Once S. aureus has been recognised and phagocytosed by macrophages the bacteria 

become encased in the phagosome (Gruenberg and van der Goot, 2006). The 

phagosome matures into a phagolysosome (Desjardins et al., 1994) and a final drop in 

pH mediated by proton movement across the membrane acidifies the phagolysosome 

(Pitt et al., 1992). Acidification is energy dependent with energy coming from vacuolar 

ATPases (V-ATPase) and hydrogen pumps required to activate proteases within the 

phagolysosome (Pitt et al., 1992, Hackam et al., 1997).  

The phagolysosome destroys invading microorganisms using oxidative and non-

oxidative mechanisms. These include the generation of reactive oxygen species (ROS) 

through the NADPH oxidase system, and the mitochondrial electron transport chain 

(ETC) during oxidative phosphorylation, and the generation of NO. Non oxidative 

mechanisms include the production of various proteases e.g. lysozyme matrix 

metalloproteinases and cathepsins as well as pore forming peptides such as β defensins.  

ROS and NO attack various components of microorganisms (Nathan and Shiloh, 2000, 

Fang, 2004). Hydrogen peroxide causes DNA damage to microorganisms (Imlay and 

Linn, 1986, Imlay and Linn, 1988) and attacks DNA bases leading to deoxyribose 

changes which culminate in DNA strand breaks (Fang, 2004). NO inhibits DNA 

replication in bacteria (Schapiro et al., 2003). NO blocks bacterial respiration (Pacelli et 

al., 1995, Stevanin et al., 2000) and interacts with tyrosyl residues inhibiting 

ribonucleotide reductase which puts a blockade on the availability of the precursors for 

bacterial DNA synthesis (Lepoivre et al., 1991). Lysozyme rapidly inactivates bacteria 

(Biggar and Sturgess, 1977). Cathepsin D restricts the growth of microorganisms and it 
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is thought that as the phagosome matures cathepsin D gets released and is activated by 

the low phagosomal pH and cleaves bacterial proteins such as the toxin listeriolysin  

preventing their cytosolic escape and subsequent replication (del Cerro-Vadillo et al., 

2006). Macrophages produce elastase (matrix metalloproteinase 12 or MMP12) that 

gets transported to the phagolysosome (Houghton et al., 2009). Within the 

phagolysosome a new antimicrobial peptide, formed from the C terminal domain (CTD) 

portion of the protein disrupts bacterial cell walls (Houghton et al., 2009). Macrophages 

deficient in MMP12 have higher intracellular viable bacterial burdens compared to WT 

macrophages (Houghton et al., 2009). It has also been shown that AMs produce 

defensins (Patterson-Delafield et al., 1980) which inactivate bacteria by binding to the 

cell membrane and permeabilising it leading to the efflux of intracellular solutes (Lehrer 

et al., 1993).  

 

S. aureus can evade oxidative defences using a variety of mechanisms e.g. 

staphyloxanthin (Clauditz et al., 2006, Olivier et al., 2009), and catalase  (Das and 

Bishayi, 2009). S. aureus also possesses two lactate dehydrogenase genes (Ldh) and a 

haem metalloprotease enabling it to survive intracellularly with NO (Richardson et al., 

2006, Richardson et al., 2008). S. aureus overcomes non-oxidative defences by 

producing staphylokinase for example which can inactivate defensins (Jin et al., 2004). 

S. aureus is hugely resistant to lysozyme through the synthesis of O-acetyltransferase A 

(OatA) (Bera et al., 2005). This resistance to intracellular killing leads to S. aureus 

persistence.  

As mentioned previously, S. aureus persistence has been seen in a range of professional 

and non-professional phagocytes. The molecular mechanisms behind this persistence 

are only just starting to become understood. There are some reports that intracellular S. 

aureus has the ability to persist, even for example in human MDMs, and eventually the 

MDMs succumb to the infection and release intracellular bacteria into the extracellular 

media, by an unknown mechanism, although these reports have not been consistent in 

the literature (Kubica et al., 2008). Added to this it has recently been shown that 

intracellular S. aureus has the capabilities to lyse the phagosome and replicate in the 

cytoplasm (Grosz et al., 2013). This is not just a feature of S. aureus infection of 

macrophages and has been demonstrated for other cell types as well (Giese et al., 2011). 

Therefore it is becoming apparent that S. aureus may manipulate host defences, leading 

to intracellular persistence, bacterial survival and dissemination of infection.  
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Evasion of intracellular killing by bacteria can be the result of pathogen induced 

macrophage apoptosis, which was first demonstrated for Shigella flexineri and allows 

the destruction of macrophages before they can kill bacteria (Zychlinsky et al., 1992). 

Alternatively it may be the result of preventing a programme of host-mediated 

macrophage apoptosis, which enables killing of intracellular bacteria. (Dockrell et al., 

2003). S. aureus has been demonstrated to prevent macrophage apoptosis through the 

upregulation of Mcl-1, which may facilitate intracellular persistence and might prevent 

this form of apoptosis-associated bacterial killing (Koziel et al., 2009, Koziel et al., 

2013) though this remains to be firmly established.  

I hypothesised that S. aureus was capable of intracellular persistence in differentiated 

macrophages and that this was the result of intracellular bacteria residing in a 

phagolysosomal compartment, which was unable to mediate efficient intracellular 

killing. I explored the features of the phagolysosome in which intracellular bacteria 

resided determining phagolysosome markers and whether the phagolysosome was 

sufficiently acidified. I also explored whether key steps required to sensitise 

macrophages for host mediated apoptosis during bacterial infection were engaged. 

These results gave insights into the reasons as to why macrophage antimicrobial killing 

of S. aureus was limited and provided an understanding of potential mechanisms by 

which S. aureus survives intracellularly in macrophages and could subvert host defence.  
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5.2. Results 

5.2.1. Macrophages phagocytose Staphylococcus aureus into lysosome associated 

membrane protein 1 positive organelles 

Having demonstrated in chapter 3 that macrophages phagocytosed S. aureus and there 

was a residual burden of intracellular bacteria I wanted to investigate where the 

intracellular bacteria were localised. To address this I stained macrophages with the late 

endosomal protein lysosome associated membrane protein -1 (LAMP-1) (Gordon et al., 

2000).  

Following challenge of THP-1 differentiated macrophages with S. aureus at an MOI of 

5 bacteria per cell for 1.5-5 hours, cells were fixed.  The cultures were then stained with 

the same anti-staphylococcal antibody previously used for fluorescence microscopy and 

a conjugated Alexa Fluor 568 red secondary antibody to label cell surface adherent 

bacteria. The cultures were then incubated with an unconjugated anti-LAMP-1 primary 

antibody in the presence of a low concentration of saponin to permeabilise the 

phagolysosome and then with a conjugated Alexa Fluor 488 green secondary antibody. 

All nuclei were counterstained with DAPI.  

I found the number of intracellular bacteria (defined as DAPI positive but anti 

staphylococcal antibody negative) colocalising with LAMP-1 to steadily increase over 

time (Figure 5.1A) and by 5 hours of bacterial challenge approximately 85% of all 

intracellular bacteria colocalised with LAMP-1 (Figure 5.1B). This suggested 

macrophages were phagocytosing S. aureus predominantly into a LAMP-1 positive 

organelle. Confocal microscopy revealed that the intracellular bacteria colocalising with 

LAMP-1 had very tight LAMP-1 protein rings formed around them (Figure 5.2). 

Interestingly, there was the appearance of some bacteria not colocalising with LAMP-1 

but still in a cluster formation (Figure 5.2). 
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Figure 5.1: The majority of intracellular bacteria colocalise with LAMP-1. 

THP-1 differentiated macrophages were challenged with S. aureus for 1.5-5 hours and 

fixed and stained at each time point A) The number of intracellular bacteria per 

macrophage colocalising with LAMP-1 (box and whisker plot showing minimum to 

maximum), B) The percentage of intracellular bacteria per cell colocalising with 

LAMP-1. The data represents the mean with the standard error of the mean; n=4, 

**p<0.01, ****p<0.0001, One Way Anova with Dunnett’s Post Test vs 1.5 hour. 
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Figure 5.2: Macrophages phagocytose S.aureus into LAMP-1 positive organelles. 

THP-1 differentiated macrophages were challenged with S. aureus for 5 hours, then 

were fixed and stained. Images were taken using the x63 magnification of the Zeiss 

laser scanning confocal microscope. The red circle represents intracellular bacteria 

colocalising with LAMP-1. The yellow circle indicates intracellular bacteria not 

colocalising with LAMP-1. Scale bar represents 2μm. 
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5.2.2. Intracellular Staphylococcus aureus persist within lysosome associated 

membrane protein 1 and 2 organelles 

Having demonstrated previously that macrophages always had a residual burden of 

intracellular bacteria I next questioned where this residual burden was persisting within 

the LAMP-1 or 2 positive organelle. To address this I stained macrophages with 

LAMP-1 or LAMP-2.  

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5 

bacteria per cell for 6 hours and extracellular bacteria were killed with lysostaphin. 

Cultures were then maintained in low dose lysostaphin for up to 48 hours post infection 

and fixed at each time point.  The cultures were then stained as outlined in 5.2.1 but 

using LAMP-2 instead of LAMP-1 as appropriate in certain experiments. 

I found the number of intracellular bacteria colocalising with LAMP-1 to decrease 

within the first 30 minutes post phagocytosis and then there was a plateau, with the 

number of intracellular bacteria colocalising with LAMP-1 remaining fairly static. 

(Figure 5.3A) but by 48 hours approximately 70% of all intracellular bacteria still 

remained colocalised with LAMP-1 (Figure 5.3B). For LAMP-2, I found the number of 

intracellular bacteria colocalising with LAMP-2 again decreased (although in contrast to 

LAMP-1 the percentage increased) within the first 30 minutes post phagocytosis and 

then the number of intracellular bacteria colocalising with LAMP-2 gradually increased 

over time (Figure 5.4A). The percentage of intracellular bacteria colocalising with 

LAMP-2 gradually increased from 50% at 6.5 hours to about 70% by 48 hours post 

exposure (Figure 5.4B). This suggested intracellular S. aureus persisted within a 

LAMP-1 or LAMP-2 positive phagolysosome possibly because they were resisting 

macrophage intracellular killing mechanisms or the phagolysosomal killing was 

exhausted. 

Having determined the above I decided to dual stain my macrophages with both LAMP-

1 and LAMP-2 together. I found a similar pattern was occurring. Following bacterial 

exposure there was a marked decrease in the number of intracellular bacteria 

colocalising with LAMP-1 or LAMP-2 within the first 30 minutes post phagocytosis 

(Figure 5.5A).  
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Figure 5.3: The majority of intracellular bacteria persist in a LAMP-1 positive 

compartment. 

THP-1 differentiated macrophages were challenged with S. aureus for 6 hours and 

extracellular bacteria were killed with lysostaphin for 0.5 hours and macrophages were 

fixed and stained or maintained in lysostaphin for up to 48 hours post infection A) The 

number of intracellular bacteria per macrophage colocalising with LAMP-1, B) The 

percentage of intracellular bacteria per cell colocalising with LAMP-1. The data 

represents the mean with the standard error of the mean; n=3, *p<0.05, One Way Anova 

with Dunnett’s Post Test versus 6.5 hour. 
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Figure 5.4: The majority of intracellular bacteria persist in a LAMP-2 positive 

compartment. 

THP-1 differentiated macrophages were challenged with S. aureus for 6 hours and 

extracellular bacteria were killed with lysostaphin for 0.5 hours and macrophages were 

fixed and stained or maintained in lysostaphin for up to 48 hours post infection A) The 

number of intracellular bacteria per macrophage colocalising with LAMP-2, B) The 

percentage of intracellular bacteria per cell colocalising with LAMP-2. The data 

represents the mean with the standard error of the mean; n=3. 
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Figure 5.5: The majority of intracellular bacteria persist in a LAMP-1/2 positive 

compartment. 

THP-1 differentiated macrophages were challenged with S. aureus for 6 hours and 

extracellular bacteria were killed with lysostaphin for 0.5 hours and macrophages were 

fixed and stained or maintained in lysostaphin for up to 48 hours post infection A) The 

number of intracellular bacteria per macrophage colocalising with LAMP-1 or LAMP-

2, B) The percentage of intracellular bacteria per cell colocalising with LAMP-1 or 

LAMP-2. The data represents the mean with the standard error of the mean; n=3, 

*p<0.05, ***p<0.001, ****p<0.0001, One Way Anova with Dunnett’s Post Test versus 

6.5 hour. 
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This was followed by a plateau phase with the number of intracellular bacteria 

colocalising with LAMP-1 or 2 remaining fairly constant (Figure 5.5B). This suggested 

that the majority of intracellular bacteria persist within a LAMP-1 and/or 2 positive 

phagolysosome also that there are some bacteria persisting in a LAMP-1/2 negative 

compartment.  

5.2.3. The majority of intracellular S. aureus do not traffick to acidic 

compartments 

Having determined that the majority of intracellular S. aureus trafficked to LAMP-1 and 

2 positive compartments, I next investigated whether persistence of intracellular 

bacteria was associated with any failure to acidify the phagolysosome. To do this I 

decided to examine whether the intracellular bacteria were in a compartment of low pH. 

To do this I used the pH sensitive dye pH-rhodamine, which fluoresces bright red in pH 

4.5-6, and is non-fluorescent in a pH > 6. 

S. aureus was labelled with pH rhodamine for 30 minutes at 37°C and then THP-1 

differentiated macrophages were challenged with the labelled S. aureus at an MOI of 5 

bacteria per cell for 4-6 hours and extracellular bacteria were killed with lysostaphin. In 

a parallel experiment, THP-1 differentiated macrophages were challenged with labelled 

S. aureus at an MOI of 0.05 bacteria per cell for 6 hours.  

Cultures were either fixed and stained as outlined previously or maintained for 0.5-48 

hours post infection and then fixed and stained at each time point. The percentage of 

intracellular bacteria that were rhodamine positive was quantified in 100 random 

macrophages. Alternatively macrophages were exposed to labelled S. aureus at an MOI 

of 5 bacteria per cell for 1.5-6 hours and fixed and stained as outlined previously to 

determine adherent versus intracellular bacteria to determine the percentage of 

intracellular bacteria colocalising with pH rhodamine in 100 random macrophages. As a 

side line, I verified the labelling procedure by placing the bacteria in a range of different 

pH from 4-8 and confirmed fluorescence at pH 4-6 which decreased as pH increased 

(Figure 5.6). 

I found challenging macrophages with labelled S.aureus at MOI of 5 for 4-6 hours only 

led to 30% of intracellular bacteria being contained in a phagolysosome with pH of 6 or 

below (Figure 5.7A-D). Using an MOI of 0.05 I still found that only 30% of 
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intracellular bacteria were in an acidified organelle with pH 6 or below (Figure 5.7E-F). 

This suggested that the majority of intracellular bacteria were in a compartment that was 

not appropriately acidified. I investigated whether the peak in acidification occurred 

earlier than 6 hours. Challenging the macrophages to S. aureus for 1.5-6 hours 

demonstrated there was a gradual increase in fluorescence of pH rhodamine from 20% 

to 30% by 4 hours which remained constant for the next 2 hours (Figure 5.7G-H). This 

suggested that not only were intracellular bacteria in a compartment that was not 

sufficiently acidified, but also that there might be a block on acidification of the 

phagolysosome. 

5.2.4. The failure to traffick to an intracellular compartment of high pH is S. 

aureus specific 

Having determined that only a minority of intracellular S. aureus trafficked to a 

compartment of low pH, I next investigated whether this phenotype was specific to S. 

aureus. To do this I decided to examine whether two other bacteria, Escherichia coli 

and Streptococcus pneumoniae trafficked to intracellular compartments of low pH, by 

staining with pH rhodamine as outlined previously. 

S. pneumoniae was first opsonised in immune serum for 30 minutes at 37°C to enhance 

internalisation and then labelled with pH rhodamine for 30 minutes as outlined above. 

THP-1 differentiated macrophages were challenged with the labelled S. pneumoniae at 

an MOI of 5 bacteria per cell for 4 hours and extracellular bacteria were killed with 

gentamicin. Cultures were maintained for up to 24 hours post infection and fixed at each 

time point.  E. coli was labelled with pH rhodamine for 30 minutes at 37°C and then 

THP-1 differentiated macrophages were challenged with the labelled E. coli at an MOI 

of 5 bacteria per cell for 4 hours and extracellular bacteria were killed with gentamicin. 

Cultures were either fixed as outlined previously or maintained for 0.5-24 hours post 

infection and then fixed at each time point. The percentage of intracellular bacteria that 

were pH rhodamine positive was quantified in 100 random macrophages. 

I found challenging macrophages with labelled S. pneumoniae or E. coli at a high MOI 

for 4 hours led to ~ 60% of intracellular bacteria fluorescing indicative of their presence 

in an endosome of reduced pH (Figure 5.8A-D). Over time there was a gradual 

decrease, for both organisms that were in an acidic compartment and by 24 hours post 

infection there were very few intracellular bacteria in an acidic endosomal compartment 

(Figure 5.8A-D).  
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Figure 5.6: pH rhodamine labelled S. aureus fluoresces maximally at pH of 6 or   

below. 

S. aureus were labelled with pH rhodamine and fixed in paraformaldehyde. Labelled 

bacteria were then incubated in solutions of varying pH and images taken using the 

confocal multiphoton microscope. A) DAPI image of S. aureus following staining. B) 

pH rhodamine image of S. aureus following staining. C) Merged image of S. aureus 

following staining. D) DAPI image of S. aureus at pH 4. E) pH rhodamine image of S. 

aureus at pH 4. F) Merged image of S. aureus at pH 4. G) DAPI image of S. aureus at 

pH 5. H) pH rhodamine image of S. aureus at pH 5. I) Merged image of S. aureus at pH 

5. J) DAPI image of S. aureus at pH 6. K) pH rhodamine image of S. aureus at pH 6. L) 

Merged image of S. aureus at pH 6. M) DAPI image of S. aureus at pH 7. N) pH 

rhodamine image of S. aureus at pH 7. O) Merged image of S. aureus at pH 7. P) DAPI 

image of S. aureus at pH 8. Q) pH rhodamine image of S. aureus at pH 8. R) Merged 

image of S. aureus at pH 8.  
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Figure 5.7: The majority of S. aureus do not localise in a compartment of low pH. 

A-B) THP-1 differentiated macrophages were challenged with pH rhodamine labelled S. 

aureus at an MOI of 5 for 4 hours or C-D) for 6 hours and extracellular bacteria were 

killed with lysostaphin for 0.5 hours and macrophages were fixed for microscopy. 

Cultures were also maintained in low dose lysostaphin and fixed at the indicated time 

points. Alternatively THP-1 differentiated macrophages were challenged with pH 

rhodamine labelled S. aureus at E-F) an MOI of 0.05 for 6 hours or G-H) an MOI of 5 

for 1.5-6 hours and fixed at each time point for microscopy. A, C, E, G) Number of 

intracellular bacteria per cell showing pH rhodamine fluorescence, B, D, F, H) 

Percentage of intracellular bacteria showing pH rhodamine fluorescence.  The data 

represents the mean with the standard error of the mean; n=3 *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001, Two Way Anova with Bonferonni Post Test versus rhodo 

negative.  
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Figure 5.8: Failure to localise in a compartment of low pH is specific to S. aureus. 

THP-1 differentiated macrophages were challenged with pH rhodamine labelled S. 

pneumoniae or E. coli at an MOI of 5 for 4 hours and extracellular bacteria were killed 

with gentamicin for 0.5 hours and macrophages were fixed for microscopy. Cultures 

were also maintained in low dose gentamicin and fixed at the indicated time points. A) 

Number of intracellular S. pneumoniae per cell fluorescing at 4.5-24 hours, B) 

Percentage of intracellular S. pneumoniae fluorescing at 4.5-24 hours, C) Number of 

intracellular E. coli per cell fluorescing at 4.5-24 hours, D) Percentage of intracellular E. 

coli fluorescing at 4.5-24 hours. The data represents the mean with the standard error of 

the mean; n=3 ***p<0.001, ****p<0.0001, Two Way Anova with Bonferonni Post Test 

versus rhodo negative. 
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5.2.5. Host mediated macrophage apoptosis is not engaged during S. aureus 

infection 

Host-mediated macrophage apoptosis has been shown to be an additional mechanism by 

which the macrophage can clear intracellular bacteria, and has been demonstrated for 

bacteria as diverse as S. pneumoniae infection (Dockrell et al., 2001) and mycobacterial 

species (Keane et al., 1997). I sought to investigate whether this additional element of 

killing was engaged during S.aureus infection of macrophages. 

THP-1 differentiated macrophages were challenged with S. aureus Newman at an MOI 

of 5 or 25 bacteria per cell or mock-infected (MI) for 6 hours and extracellular bacteria 

were killed with lysostaphin. Alternatively macrophages were challenged with S. aureus 

SH1000 at an MOI of 5 bacteria per cell for 6 hours and extracellular bacteria were 

killed with lysostaphin. Cultures were then maintained in low dose lysostaphin for up to 

40 hours post infection and fixed at each time point.  The cultures were then stained 

with DAPI to stain nuclei and assessed for apoptosis by fluorescence microscopy, 

counting the number of cells per field to determine cellular viability and also scoring 

apoptosis based on nuclear features such as nuclear fragmentation. 

I found for both S. aureus Newman at an MOI of 5 and 25 bacteria per cell over 40 

hours there was no significant decrease in macrophage numbers compared to MI 

macrophages (Figure 5.9A-B). As well as this macrophage apoptosis was not engaged 

at a high level compared to MI macrophages (Figure 5.9C-D) unlike what is reported 

for S. pneumoniae infection for example. These results suggest the maintenance of 

macrophage cell numbers per field and the non-engagement of apoptosis is not dose 

dependent. I also found this response was not strain dependent and using S. aureus 

SH1000, macrophage viability was again maintained for at least 40 hours versus MI 

macrophages (Figure 5.10A) and there was only a small percentage of macrophage 

apoptosis evident versus MI macrophages (Figure 5.10B). As a positive control, already 

performed by our research group, macrophages were UV irradiated and this induced 

nuclear fragmentation (Marriott et al., 2005). Representative images of S. aureus 

Newman infection versus MI for 6, 20 and 26h are shown in figure 5.11. 
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Figure 5.9: Macrophage associated apoptosis is not engaged during S.aureus 

infection. 

THP-1 differentiated macrophages were mock infected or challenged with S. aureus 

(Newman strain) for 6 hours and extracellular bacteria were killed with lysostaphin for 

0.5 hours and macrophages were fixed and stained or maintained in lysostaphin for up 

to 40 hours post infection A) Macrophage viability at an MOI of 5, B) Macrophage 

viability at an MOI of 25, C) Macrophage apoptosis at an MOI of 5, D) Macrophage 

apoptosis at an MOI of 25. The data represents the mean with the standard error of the 

mean; n=5 (MOI of 5) and n=3 (MOI of 25), *p<0.05, **p<0.01, ****p<0.0001, Two 

Way Anova with Bonferonni Post Test comparing mock infected to infected. 
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Figure 5.10: Failure of macrophages to undergo apoptosis is not strain dependent. 

THP-1 differentiated macrophages were mock infected or challenged with S. aureus 

SH1000 for 6 hours and extracellular bacteria were killed with lysostaphin for 0.5 hours 

and macrophages were fixed and stained or maintained in lysostaphin for up to 40 hours 

post infection A) Macrophage viability at an MOI of 5, B) Macrophage apoptosis at an 

MOI of 5. The data represents the mean with the standard error of the mean; n=3, 

**p<0.01, ****p<0.0001, Two Way Anova with Bonferonni Post Test comparing mock 

infected to infected. 
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Figure 5.11: Representative images of macrophage apoptosis with S. aureus MOI 

5. 

THP-1 differentiated macrophages were challenged with S. aureus Newman or mock 

infected for 6 hours and extracellular bacteria were killed with lysostaphin for 0.5 hours 

and macrophages were fixed and stained or maintained in lysostaphin for up to 20 and 

26 hours post infection. Images were taken using the x40 magnification of the Zeiss 

laser scanning confocal microscope.  A) Mock infected 6 hours, B) S. aureus infection 6 

F)) E)) 

D)) C)) 

B)) A)) 
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hours, C) Mock infected 20 hours, D) S. aureus infection 20 hours, E) Mock infected 26 

hours and F) S. aureus infection 26 hours. Scale bar represents 10μm. 

5.2.6. Macrophages retain viability for extended periods with intracellular S. 

aureus 

Having demonstrated that macrophage cell numbers were maintained for up to 40 hours 

with intracellular S. aureus at a high MOI, I next determined if this phenotype would 

also occur at a lower MOI over an extended period of culture. I hypothesised that if the 

bacteria produced factors that inhibited host-mediated apoptosis that at a lower dose 

might be reengaged. I also reasoned that if this did not occur macrophages would 

continue to ingest bacteria and I wanted to know what the ultimate fate of these cells 

and the bacteria they contained was. I reasoned that if macrophages remained viable 

over an extended period of time, there would be a point when the macrophages 

succumbed to the infection and intracellular bacteria would be released from the 

macrophages intracellular environment.   

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 0.05 

bacteria per cell or MI for 6 hours and extracellular bacteria were killed with 

lysostaphin. Cultures were then either maintained in low dose lysostaphin for up to 14 

days post infection or maintained in low dose lysostaphin for up to 2 days post infection 

and then cultured in lysostaphin free media. At each time point, cultures were either 

lysed for an estimation of intracellular CFU (extracellular CFU were also quantified) or 

fixed and stained as outlined previously for viability, apoptosis and LAMP-1 staining.  

I found as outlined in chapter 3, that over the first 24 hours, there was an initial decline 

in intracellular bacterial numbers over the first 30 minutes post internalisation and then 

a persistence of intracellular bacteria (Figure 5.12A). Extracellular CFU were 

consistently 0 over these time points. In cultures without lysostaphin at 3 days post 

infection there was a burst of extracellular bacterial replication which increased over the 

next 4 days and then plateaued between days 7 and 14 post infection. For cultures 

maintained in lysostaphin there were no detectable extracellular bacteria over the same 

time course. In accordance with these results for cultures maintained without 

lysostaphin there was an increase in intracellular viable bacteria from 3 days post 

infection (Figure 5.12A), whereas in cultures maintained with lysostaphin the 

intracellular viable bacteria numbers gradually declined and became undetectable by 14 

days post infection (Figure 5.12A). I verified these results by microscopy and showed 
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for cultures maintained without lysostaphin there was increase in the number of 

intracellular bacteria per cell from 3 days post infection (Figure 5.12B). Cultures 

maintained with lysostaphin showed a decrease in intracellular bacteria per cell 

becoming 0 by day 14 (Figure 5.12B). This was matched by an increase in the number 

of macrophages with internalised bacteria from 3 days p/i for cultures without 

lysostaphin compared to a gradual decrease for cultures with lysostaphin (Figure 

5.12C). Staining for LAMP-1 association revealed that in cultures maintained without 

lysostaphin the number of intracellular bacteria trafficking to LAMP-1 positive 

compartments increased from 3 days post infection (Figure 5.12D). In those cultures 

maintained in lysostaphin the opposite occurred and the number of intracellular bacteria 

colocalising with LAMP-1 became 0 by day 14 (Figure 5.12D). Despite this, the 

percentage of intracellular bacteria colocalising with LAMP-1 was fairly constant for 

cultures maintained without lysostaphin and decreased for cultures without lysostaphin 

(Figure 5.12E).  

When I looked at macrophage viability, I found this to be fairly similar for infected 

versus MI cultures for both experimental setups for the first 2 days post infection and 

then there was a gradual decline in both setups by 3 days post infection (Figure 5.13A-

B). However, the decrease in macrophage numbers continued for cultures without 

lysostaphin reaching about a 60% decrease by day 14 versus mock infected, whereas for 

cultures maintained in lysostaphin there was an initial 20% decrease by day 3 and then 

no further decrease in macrophage numbers (Figure 5.13A-B). Despite this, the 

percentage of apoptosis noted for both experimental conditions was markedly low 

(Figure 5.13C-D). 

Taken together these results suggest that there is a point during S. aureus infection when 

macrophages become overwhelmed by intracellular bacteria and succumb to the 

infection by a cytolytic death process. These results suggests that sometime between 48 

and 72 hours, there is a release of intracellular bacteria from the macrophages which can 

then replicate extracellularly and be further ingested by other macrophages. This release 

and further ingestion is predicted to be ongoing leading to the gradual decline in overall 

macrophage numbers by day 14 for cultures without lysostaphin. In the case of cultures 

with lysostaphin, these results suggest the same phenomenon with cytolytic cell death 

might be occurring initially but any released bacteria are killed by the extracellular 

lysostaphin minimising any further detectable internalisation and further waves of  
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Figure 5.12: Without inhibition of extracellular replication, intracellular bacterial 

numbers increase. 

THP-1 differentiated macrophages were challenged with S. aureus for 6 hours at an 

MOI of 0.05 and extracellular bacteria were killed with lysostaphin and macrophages 

were maintained in lysostaphin for up to 48 hours post infection. Some cultures were 

then maintained without lysostaphin for up to 14 days post infection. A) The 

intracellular logarithmic colony forming units value of viable bacteria in macrophages 

treated with or without lysostaphin, B) Number of intracellular bacteria per macrophage 

in cultures with or without lysostaphin. C) The percentage of macrophages with 

intracellular bacteria in cultures with or without lysostaphin. D) Number of intracellular 

bacteria in a LAMP-1 positive compartment in macrophage cultures with or without 

lysostaphin. E) The percentage of intracellular bacteria in a LAMP-1 positive 

compartment in macrophage cultures with or without lysostaphin.  The data represents 

the mean with the standard error of the mean; n=3, *p<0.05, **p<0.01, ****p<0.0001, 

Two Way Anova with Dunnett’s Post Test comparing with and without lysostaphin. 
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Figure 5.13: Macrophage viability gradually declines over time in the presence of 

S. aureus. 

THP-1 differentiated macrophages were mock infected or challenged with S. aureus at 

an MOI of 0.05 for 6 hours and extracellular bacteria were killed with lysostaphin and 

macrophages were fixed and stained for apoptosis, defined by nuclear morphological 

features of apoptosis on microscopy, or maintained in lysostaphin for up to 48 hours 

post infection. Some cultures were then maintained without lysostaphin for up to 14 

days post infection. A) Macrophage viability without lysostaphin, B) Macrophage 

viability with lysostaphin. C) The percentage of macrophage apoptosis without 

lysostaphin or D) The percentage of macrophage apoptosis with lysostaphin. The data 

represents the mean with the standard error of the mean; n=3, *p<0.05, ****p<0.0001, 

Two Way Anova with Bonferonni Post Test comparing mock infected to infected. 
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cytolytic death. As there are no further intracellular bacteria accumulating in these 

macrophages, despite what was already present, there is very minimal macrophage lysis 

over the next 11 days and macrophage numbers remain fairly constant throughout the 

remainder of the experimental culture. 

These results were also shown by video time lapse microscopy (Figure 5.14).  

5.2.7. The increase in intracellular bacteria in macrophages over extended 

periods requires repeated waves of cell lysis and re-uptake of released 

bacteria 

Having demonstrated that macrophage cultures maintained without lysostaphin 

exhibited increases in intracellular viable S. aureus from 3 days post infection, I next 

determined if the late increase in intracellular burden required sustained phagocytosis. I 

reasoned that if phagocytosis was inhibited and the intracellular burden increased that 

this would suggest that the increase in intracellular bacteria was the result of 

intracellular replication. I hypothesised that since intracellular bacterial killing seemed 

exhausted that if bacteria did not replicate  over an extended period of time, blocking 

internalisation with the actin cytoskeleton inhibitor cytochalasin D would lead to a 

gradual decline in intracellular viable bacteria over 14 days, as cells were lysed and 

released their bacteria. 

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 0.05 

bacteria per cell or MI for 6 hours and extracellular bacteria were killed with 

lysostaphin. Cultures were then either maintained in low dose lysostaphin with or 

without cytochalasin D from 2 days post infection for up to 14 days post infection or 

maintained in low dose lysostaphin for up to 2 days post infection and then cultured in 

lysostaphin free media with or without cytochalasin D for the remaining time. At each 

time point, cultures were either lysed for an estimation of intracellular CFU 

(extracellular CFU were also quantified) or fixed and stained as outlined previously for 

viability, apoptosis and detection of LAMP-1 staining.  
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Figure 5.14: Representative images of macrophage lysis by S.aureus from video 

time lapse microscopy. 

THP-1 differentiated macrophages were challenged with S. aureus Newman~GFP at an 

MOI of 5 for 6 hours and extracellular bacteria were killed with lysostaphin. Cultures 

were either maintained without lysostaphin until 74 hours post infection. Imaging was 

started at 52 hours post infection. Images were taken using the x20 DIC and GFP 

magnification of the Nikon Ti inverted fluorescence microscope.  A) 52 hours B) 54 

hours C) 56 hours D) 58 hours E) 60 hours F) 62 hours G) 64 hours H) 66 hours I) 68 

hours J) 70 hours K) 72 hours L) 74 hours post infection. Scale bar represents 100μm. 
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I found as outlined in chapter 3, that there was an initial decline in intracellular bacterial 

numbers over the first 30 minutes post internalisation and then a persistence of 

intracellular bacteria over the first 24 hours. Extracellular CFU were consistently 

undetectable over these time points. In cultures where lysostaphin was not maintained in 

the culture after 2 days I found that by 3 days post infection there was an increase in 

extracellular bacterial colony counts, irrespective of the presence of cytochalasin D, 

which increased further over the next 4 days and then plateaued between days 7 and 14 

post infection. 

For cultures maintained in lysostaphin, there were no detectable extracellular bacteria 

over the same time course. In accordance with these results for cultures maintained 

without lysostaphin or cytochalasin D there was an increase in intracellular viable 

bacteria from 3 days post infection (Figure 5.15A), whereas in cultures maintained 

without lysostaphin but with cytochalasin D the intracellular viable bacteria numbers 

gradually declined and became undetectable by 14 days post infection (Figure 5.15A).  

For cultures maintained with lysostaphin with or without cytochalasin D, there was also 

a gradual decline in intracellular viable bacteria over 14 days (Figure 5.15A). I verified 

these results by microscopy and showed for cultures maintained without lysostaphin or 

cytochalasin D there was an increase in the number of intracellular bacteria per cell 

from 3 days post infection (Figure 5.15B), not seen for cultures maintained with 

cytochalasin D (Figure 5.15B). Cultures maintained with lysostaphin with or without 

cytochalasin D showed a decrease in intracellular bacteria per cell becoming zero by 

day 14 (Figure 5.15B). This was matched by an increase in the number of macrophages 

with internalised bacteria from 3 days post infection for cultures without lysostaphin or 

cytochalasin D compared to a gradual decrease for cultures with lysostaphin with or 

without cytochalasin D and cultures without lysostaphin but with cytochalasin D 

(Figure 5.15C). Staining for LAMP-1 association revealed that in cultures maintained 

without lysostaphin the number of intracellular bacteria trafficking to LAMP-1 positive 

compartments increased from 3 days post infection (Figure 5.15D). In those cultures 

maintained in lysostaphin with or without cytochalasin D or without lysostaphin and 

with cytochalasin D the opposite occurred and the number of intracellular bacteria 

colocalising with LAMP-1 decreased and became zero by day 14 (Figure 5.15D). 

Despite this, the percentage of intracellular bacteria colocalising with LAMP-1 was 

fairly constant for cultures maintained without lysostaphin and decreased for cultures  
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Figure 5.15: The increase in intracellular viable bacteria is not the result of 

intracellular replication. 

THP-1 differentiated macrophages were challenged with S. aureus for 6 hours at an 

MOI of 0.05 and extracellular bacteria were killed with lysostaphin and macrophages 

were maintained in lysostaphin for up to 48 hours post infection. Some cultures were 

then maintained with (I+L) or without (I-L) lysostaphin for up to 14 days post infection 

either in the presence (with CyD) or absence of cytochalasin D. A) Intracellular viable 

bacteria depicted as logarithmic value of colony forming units, B) Number of 

intracellular bacteria per cell, C) The percentage of macrophages with intracellular 

bacteria. D) Number of intracellular bacteria in a LAMP-1 positive compartment. E) 

The percentage of intracellular bacteria in a LAMP-1 positive compartment.  The data 

represents the mean with the standard error of the mean; n=3, ****p<0.0001, Two Way 

Anova with Dunnett’s Post Test comparing with and without lysostaphin. 

with lysostaphin with or without cytochalasin D and cultures maintained without 

lysostaphin and with cytochalasin D (Figure 5.15E).  



163 
 

When I looked at macrophage cell number, I found this to be fairly similar for infected 

versus MI cultures for all experimental setups for the first 2 days post infection but there 

was a non significant decline in all conditions involving S. aureus challenge by 3 days 

post infection (Figure 5.16A-B). However, the decrease in macrophage numbers 

became significant for cultures without lysostaphin whereas for cultures maintained in 

lysostaphin with or without cytochalasin D there was an initial 20% decrease by day 3 

and then no further decrease in macrophage numbers, which was also similar for 

cultures without lysostaphin and with cytochalasin D (Figure 5.16A-B). Despite this, 

the percentage of apoptosis noted for all experimental conditions was markedly low 

(Figure 5.16C-D). 

Taken together these results suggest that macrophages are lysed by intracellular bacteria 

and release them allowing them to then replicate extracellularly. There is then further 

internalisation by other macrophages allowing maintenance of a pool of intracellular 

bacteria. Treatment with cytochalasin D suggests the increase in intracellular viable 

numbers is not the result of intracellular replication of bacteria since it is dependent on 

ongoing phagocytosis. Also, the cell number results suggest cytochalasin D is not toxic 

to the macrophages over extended periods of culture and cell death is mainly occurring 

in the presence of ongoing ingestion of extracellular bacteria. Extracellular bacteria are 

by themselves not sufficient to induce cell loss since in the presence of cytochalasin D 

and extracellular bacteria there was only a non-significant decline in macrophage cell 

number.  

5.2.8. The percentage of non-viable bacteria decreases with increasing dose 

Having determined that intracellular S. aureus persisted within macrophages and were 

not in a compartment of low pH, I next investigated whether intracellular bacteria were 

dead. To do this I used the fluorescent dye DRAQ7, which enters permeable cells and 

binds to the DNA as a marker of death. Prior to carrying out this experiment, I used my 

data to hypothesise the percentage of non viable bacteria that should be present for each 

MOI (Table 5.1).  

THP-1 differentiated macrophages were challenged with live or heat killed S. aureus at 

an MOI of 0.05 or 5 bacteria per cell 5 hours and extracellular bacteria were killed with  

 

 



164 
 

T im e  (d a y s )

N
o

.c
e

ll
s

/f
ie

ld

0 .2 7 0 .2 9 0 .4 3 1 3 7 1 4

0

5

1 0

1 5

2 0

2 5

M I-L

I-L

A )

M I-L  w ith  C y D

I-L  w ith  C y D

* **

T im e  (d a y s )

N
o

.c
e

ll
s

/f
ie

ld

0 .2 7 0 .2 9 0 .4 3 1 3 7 1 4

0

5

1 0

1 5

2 0

2 5

M I+ L

I+ L

B )

M I+ L  w ith  C y D

I+ L  w ith  C y D

T im e  (d a y s )

%
 n

u
c

le
a

r
 f

r
a

g
m

e
n

ta
ti

o
n

0 .2 7 0 .2 9 0 .4 3 1 3 7 1 4

0

5

1 0

1 5

2 0

2 5 M I-L

I-L

M I-L  w ith  C y D

I-L  w ith  C y D

* *
* ********

C )

T im e  (d a y s )

%
 n

u
c

le
a

r
 f

r
a

g
m

e
n

ta
ti

o
n

0 .2 7 0 .2 9 0 .4 3 1 3 7 1 4

0

5

1 0

1 5

2 0

2 5 M I+ L

I+ L

M I+ L  w ith  C y D

I+ L  w ith  C y D

*
*

D )

Figure 5.16: Cytochalasin D does not affect macrophage viability. 

Macrophages were mock infected (MI) or challenged with S. aureus at an MOI of 0.05 

(I) for 6 hours and extracellular bacteria were killed with lysostaphin and macrophages 

were fixed and stained for apoptosis or maintained in lysostaphin for up to 48 hours post 

infection. Some cultures were then maintained with (+L) or without (-L) lysostaphin for 

up to 14 days post infection either in the presence (with CyD) or absence of 

cytochalasin D. A) Macrophage viability without lysostaphin and with or without 

cytochalasin D, B) Macrophage viability with lysostaphin and with or without 

cytochalasin D. C) The percentage of macrophage apoptosis (depicted as % nuclear 

fragmentation) without lysostaphin and with or without cytochalasin D. D) The 

percentage of macrophage apoptosis with lysostaphin and with or without cytochalasin 

D. The data represents the mean with the standard error of the mean; n=3, *p<0.05, 

**p<0.01 ****p<0.0001, Two Way Anova with Bonferonni Post Test comparing MI+/- 

L to infected. In panels C) and D) the 2 x * above 3 days indicates significance in I-L 

and I –L with CyD vs MI-L and I +L and I +L with CyD vs MI+L. 
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MOI (5 hours) Intracellular 

bacteria x 

macrophage 

numbers 

Viable 

intracellular 

CFU (log) 

Estimated non 

viable CFU 

(log) 

Percentage 

killing (%) 

0.05 200000 1200 199000 99.5 

0.5 268000 2570 266000 99.3 

1 380000 2700 377000 99.2 

2 428000 3700 422000 99.1 

5 516000 105000 410000 79.7 

 

Table 5.1: Macrophages have a finite capacity for intracellular bacterial killing 

which is overwhelmed by increasing numbers of bacteria.  

The number of intracellular bacteria per macrophage for each dose was multiplied by 

the total number of macrophages in culture to calculate the total intracellular burden, 

after 5 hours of challenge. The number of viable intracellular bacteria was subtracted 

from this to give an estimate of the non viable intracellular bacteria. This was then used 

to give an estimate of the percentage of intracellular bacteria that were killed. 
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lysostaphin. Cultures were then lysed in saponin and centrifuged using a combination of 

low and high spin speeds. The supernatants were then left unstained or stained with 

DRAQ7 and analysed by flow cytometry.  

I found at a low MOI ~95% of intracellular bacteria were dead (Figure 5.17A, E) versus 

~73% at a high MOI (Figure 5.17B, E). This suggested that macrophages were capable 

of killing nearly all intracellular S. aureus at the lower MOI but were increasingly 

accumulating viable intracellular bacteria, with a higher dose.  

5.2.9. Intracellular bacterial accumulation over the initial period of bacterial 

challenge is not the result of intracellular replication 

Having determined that macrophages accumulated intracellular bacteria over time, 

which persisted in an endosome which was not completely acidified, I next wanted to 

investigate whether this was the result of ongoing ingestion or of intracellular bacteria 

replicating.  

THP-1 differentiated macrophages were challenged with S. aureus at an MOI of 5 

bacteria per cell for 4 hours. At this point, they were either left untreated or incubated in 

either cytochalasin D to prevent ingestion, Trolox to prevent oxidative killing or both 

cytochalasin D and Trolox to inhibit both processes. Bacterial challenge was then 

continued for another 1-3 hours. At 5, 6 or 7 hours extracellular bacteria were killed 

with lysostaphin for 30 minutes and cultures lysed to estimate intracellular viable CFU. 

Results were confirmed using video time lapse microscopy, challenging THP-1 

differentiated macrophages with S. aureus Newman~GFP for 1-6 hours and imaging 

over this time course.  

I found compared to untreated controls, cytochalasin D treatment led to a decrease in 

intracellular CFU over time (Figure 5.18). In contrast both untreated and Trolox treated 

cultures showed a significantly higher increase in viable CFU over the same time 

course, as compared with cytochalasin D treated cultures, with the Trolox treated 

samples showing a significantly higher overall viable CFU versus untreated controls 

(Figure 5.18). Dual treatment with both compounds produced a straight line with no 

increase or decrease in intracellular CFU (Figure 5.18). These results suggested that 

macrophages were accumulating intracellular viable bacteria over these time points and 

this was not the result of intracellular replication. I confirmed this with video time lapse  
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Figure 5.17: Macrophages accumulate viable intracellular S. aureus with 

increasing dose. 

THP-1 differentiated macrophages were challenged S. aureus at an MOI of 0.05 or 5 for 

5 hours and extracellular bacteria were killed with lysostaphin. Macrophages were lysed 

and stained with DRAQ7 and analysed by flow cytometry analysing 10,000 events per 

sample. A) Representative dot plot of lysed macrophages showing debris where gate is 

applied, B) Dot plot at an MOI of 0.05 before gating, C) Representative dot plot at an 

MOI of 0.05 after gating, D) Dot plot at an MOI of 5 before gating, E) Representative 

dot plot at an MOI of 5 after gating, F) The percentage of non viable bacteria, MOI of 

0.05 versus an MOI of 5. The data represents the mean with the standard error of the 

mean; n=3.  
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microscopy which showed ingestion with no intracellular replication obvious over the 

first 6 hours of bacterial challenge (Figure 5.19).  
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Figure 5.18: Intracellular replication is not apparent with S. aureus. 

Macrophages were challenged with S. aureus at an MOI of 5 for 4 hours and then 

treated in various ways to inhibit either ingestion with cytochalasin D, intracellular 

killing with Trolox or both processes simultaneously for an additional 1-3 hours after 

which lysostaphin was added for 30 minutes to kill extracellular bacteria. Intracellular 

viable colony forming units were then followed and quantified between 5.5-7.5 hours 

post challenge. *p<0.05, ***p<0.001. Two Way Anova with Dunnett’s Post Test versus 

untreated controls.  
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Figure 5.19: Intracellular replication is not apparent with S. aureus as shown by 

video time lapse microscopy. 

Macrophages were challenged with S. aureus Newman~GFP at an MOI of 5 for 0-6 

hours and imaged using the x30 GFP/DIC Nikon Ti inverted fluorescence microscope. 

A) T=1 hour, B) T=2 hours, C) T=3 hours, D) T=4 hours, E) T=5 hours, F) T=6 hours. 

Scale bar represents 100μm.  
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5.3. Discussion 

The ability of S. aureus to escape host defence and survive intracellularly has been well 

documented (Gresham et al., 2000, Hess et al., 2003). The intracellular survival of S. 

aureus within macrophages has been a topic of interest over recent years (Kubica et al., 

2008). The reason why S. aureus is able to survive in a rather hostile environment has 

not been fully explored. It is not known where intracellularly S. aureus resides and if 

there is a block in early processes during the formation of the phagolysosome. This 

prompted me to investigate the intracellular compartment S. aureus survived in and 

whether there may be a defect in phagolysosome formation. In this section I 

investigated the intracellular compartment in which S. aureus resided in more detail, 

whether macrophage associated apoptosis was engaged, whether intracellular bacteria 

replicated and what happened to bacteria and macrophages over extended periods of 

culture.  

As LAMP proteins are required for optimal maturation of phagolysosomes (Huynh et 

al., 2007), I investigated if intracellular S. aureus resided in a LAMP positive 

compartment. I found that macrophages phagocytosed S. aureus into LAMP-1 positive 

phagolysosomes. LAMP-1 formed a tight protein ring around intracellular bacteria, 

suggesting that macrophages were not inhibited in their ability to fuse with early 

endosomes. Over 48 hours intracellular S. aureus persisted within LAMP-1 and LAMP-

2 positive phagolysosomes. Interestingly the shapes of the graphs were different 

because the kinetics of LAMP-1 and 2 acquisition differ (Pitt et al., 1992, Desjardins et 

al., 1994). As both proteins were present over 48 hours the bacteria could be 

maintaining the proteins within the phagolysosomes or cause recycling of the protein 

(Rohrer et al., 1996) leading to its maintained expression. Alternatively, but less likely, 

there could have been movement of bacteria between macrophages and therefore 

constant fusion of phagosomes with lysosomes occurring and hence constant LAMP 

acquisition.  

At both low and high bacterial MOI, macrophage viability was maintained with low 

levels of apoptosis. This was not strain dependent and S. aureus SH1000 did not cause a 

loss in macrophage cell number and macrophage apoptosis was not engaged. This 

suggested that S. aureus was either subverting or preventing macrophage apoptosis. To 

determine apoptosis I used DAPI staining, which although reasonable is not the most 

reliable technique because it determines live and dead nuclei. Other methods I could 
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have used to determine apoptosis include caspase 3 assay to determine caspase 3 

activation which is a terminal phase in apoptosis activation; alternatively I could have 

done a Western blot to look for truncated apoptosis inducing factor (tAIF) which is also 

a terminal phase in apoptosis and when this protein is activated it moves to the nucleus 

and induces the nuclear changes of apoptosis. Other methods include flow cytometry to 

look for phosphatidylserine exposure on the surface of the macrophage using annexin V 

staining. Finally, in combination with the DAPI staining I could have performed 

TUNEL staining to fully prove the nuclei appearing apoptotic were apoptotic. These 

methods would have supplemented the DAPI staining results.  

I found that for a low MOI, S. aureus was able to survive within macrophages for 

between 7-14 days post infection. Macrophage cell number was maintained and the 

levels of macrophage apoptosis were low. Culture without extracellular lysostaphin 

showed that from 3 days post infection there was extensive extracellular bacterial 

replication with a concomitant loss in macrophages compared to cultures with 

extracellular lysostaphin. This led to an increase in intracellular bacteria with increases 

in intracellular bacteria colocalising with LAMP-1, suggesting ongoing fusion was 

occurring. Cytochalasin D treatment did not prevent the loss in macrophages but did 

prevent any increase in intracellular bacterial numbers. Intracellular replication at these 

late time points could not be ruled out and was not proven directly. So it is possible at 

later time points there is a balance between macrophage internalisation and intracellular 

replication occurring. Similarly for a higher MOI intracellular replication was not 

occurring, at least at these early time points, as treatment with cytochalasin D led to a 

decrease in intracellular viable bacteria compared to untreated or Trolox treated 

cultures. Dual treatment also prevented any increase in intracellular viable bacteria 

further demonstrating that there was no intracellular replication. I verified this with 

video time lapse microscopy. Together these results suggest that the increase in viable 

intracellular bacteria over time was because the macrophages were internalising and 

accumulating bacteria. In these experiments I did not determine macrophage viability. 

One method I could have used to determine this is a dual stain for live and dead cells 

which is commercially available. This combines two different dyes that allow for the 

discrimination between live and dead cells. The theory is that permeabilised membranes 

permit entry of the non-viable stain and all cells permit entry of the viable stain, and 

therefore dead cells fluoresce one colour and live cells fluoresce another. Another 

method, is PI staining which would allow for the determination of compromised cellular 
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membranes. This could be combined with TUNEL staining to determine which non 

viable cells were apoptotic or necrotic.  

The most likely explanation for the above result is that intracellular S. aureus are 

persisting in a ‘silent’ fashion. At some point, they are able to lyse the intracellular 

compartment where they reside and enter the cytoplasm and then go onto lyse the 

macrophage and replicate extracellularly, as shown for other cell types (Giese et al., 

2009, Lam et al., 2010, Giese et al., 2011, Grosz et al., 2013). Extracellular bacteria are 

then ingested by other macrophages that may or may not have already ingested bacteria 

and the process repeats. In the presence of lysostaphin this stage of extracellular 

replication and the pool of extracellular bacteria required for re-uptake is removed and 

the cycle broken. The macrophages become exhausted from intracellular killing giving 

the bacteria an advantage, and they ultimately kill the exhausted macrophage and get 

released into the extracellular fluid. It is also possible that it is a subset of macrophages 

that lyse and release intracellular bacteria as I was able to demonstrate via video time 

lapse imaging that only some macrophages in the population lyse but my analysis was 

unable to determine whether this represented a majority of those that ingest bacteria or 

just a sub-population.  

As I was interested in determining why intracellular S. aureus was able to survive 

within macrophages, I decided to examine whether intracellular S. aureus were in a 

compartment of low pH. As I was interested in determining whether or not intracellular 

S. aureus were in a compartment of low pH, I decided to use a stain that would label the 

bacteria and not the intracellular compartment where the bacteria resided. As this 

particular stain fluoresces maximally at a pH of 6 or below, it gave me an indication of 

whether intracellular bacteria were in a mature phagolysosome. If I wanted to determine 

the actual pH of the compartment where the bacteria resided I could have used a dye 

that directly determined the pH of the intracellular compartment such as Lysostracker. 

However, as the question I was interested in was whether or not S. aureus was in a 

compartment of low pH, a dye that labelled the bacteria and fluoresced at low pH but 

not neutral or high pH was deemed to be a suitable selection. I was able to show that 

only 30% of intracellular bacteria were in a compartment of low pH. This was not dose 

dependent with a similar result seen with low versus high MOI. I was also able to 

demonstrate that I had not missed the peak in acidification through my time course. This 

phenotype was S. aureus specific because both E. coli and S. pneumoniae demonstrated 

significantly higher levels of phagolysosomal acidification. These results suggested that 
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S. aureus was preventing phagolysosome acidification, in contrast to non-professional 

phagocytes (Giese et al., 2009, Lam et al., 2010), which could lead to intracellular 

persistence in a less hostile endosome. It is important to mention here why I used 

opsonised S. pneumoniae but non-opsonised S. aureus. Mainly, the opsonisation is 

important to allow internalisation because S. pneumoniae possesses a thick 

polysaccharide capsule around it. Although this is not a direct comparison it was chosen 

because the S. pneumoniae strain has been widely exploited by the research group and 

some of the results I was trying to verify had been done using this strain (D39). 

Therefore because it was known using this strain of S. pneumoniae that macrophage 

apoptosis occurred, I wanted to prove this was also linked into this strain residing in a 

mature phagolysosome. For a more direct comparison, it would be useful to repeat the 

experiments using a non-opsonised S. pneumoniae strain and this is definitely 

something for the future.  

The reasons for the above result are varied. Firstly, it is possible that S. aureus could 

prevent the inclusion of the V-ATPase into the phagolysosome leading to a failure to 

acidify and activate proteases. Secondly it is possible that the V-ATPase is present but 

not functioning. Thirdly it is possible that the fusion and acidification has occurred and 

that the macrophages are over-producing ROS to kill intracellular bacteria causing the 

decrease in phagolysosomal pH. It is possible that there is a failure to fuse with late 

endosomes bearing markers like Rab7 or lysosome integral membrane protein 2 (LIMP-

II) and hence downstream processes such as V-ATPase acquisition are blocked. Finally, 

since some of the acidification process results from fusion with acid carrying vesicles 

derived from early endosomes this fusion event may be inhibited (Hackam et al., 1997). 

I next determined the percentage of viable and non viable bacteria within macrophages. 

I found that at low MOI there was ~95% of intracellular bacteria that were non viable, 

which decreased to ~73% for MOI of 5. These results suggested that over time 

macrophages accumulated viable bacteria and that as MOI increased the capacity for 

sustained intracellular killing started to become overwhelmed.  

The findings presented in this section of my thesis demonstrate that macrophages 

efficiently phagocytose S. aureus into LAMP-1 positive phagolysosomes and 

intracellular bacteria are able to persist in a LAMP-1 and 2 positive phagolysosomes, 

but the majority of bacteria are not in a phagolysosome of low pH. Macrophages do not 

engage apoptosis as a response to S. aureus. Over time, intracellular bacteria escaped 
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from the macrophages and replicated extracellularly. There were then further increases 

in intracellular bacterial numbers and further decreases in macrophage cell numbers. 

Intracellular replication was not observed at least at early time points. I demonstrated 

that as dose increased, macrophage killing was becoming exhausted leading to a 

persistence of viable intracellular bacteria. The reasons for the failure of S. aureus to 

reside in a compartment of low pH and how the bacteria were escaping the macrophages 

were beyond the scope of this section, but the host and microbial factors responsible 

will pose interesting topics for future research.  
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Chapter 6 Discussion 

6.1. Major findings 

In this thesis I report that macrophages are able to control the growth of extracellular 

bacteria but demonstrate a limited ability to kill intracellular S. aureus leading to 

intracellular persistence, despite sustained phagocytic capacity. The bulk of intracellular 

killing occurs immediately after phagocytosis and after this there is very little further 

killing. The absolute level of killing reaches a maximal level and then remains fairly 

fixed till the late time points after which the level drops off. My mathematical model 

suggested these patterns were consistent with a model where macrophages ingest 

bacteria at a rate proportional to the bacterial population but are limited in their killing 

capacity, and therefore over time macrophages become unable to kill all the bacteria 

they have phagocytosed. I found that only a minority of phagocytosed bacteria entered 

an appropriately acidified phagolysosome, unlike other extracellular bacteria tested, 

despite the fact that the phagosome acquired late endosomal markers such as LAMP-1 

or 2. There was loss in the number of macrophages by day 3 of culture suggesting 

macrophages were being killed. As apoptosis was low and cells died the death process 

appeared to be necrosis. This meant that intracellular persisted for up to 3 days post 

infection within a macrophage and were then released extracellularly as macrophages 

were lysed. These bacteria were then taken up by other macrophages and therefore a 

cycle of release and re-uptake was required to maintain the intracellular pool of bacteria.   

6.2. S. aureus as an intracellular pathogen 

It is well established that S. aureus is easily phagocytosed (Jonsson et al., 1985). The 

pathogen does not possess major virulence factors blocking phagocytosis. Therefore 

phagocytosis of S. aureus is not observed to be the rate limiting step in the 

macrophage’s control of the bacterium. In contrast the pathogen possesses multiple 

attributes that resist intracellular killing by macrophages and this is thought to be the 

rate limiting step in bacterial clearance. It has been suggested that in AMs, macrophage 

killing of S. aureus is slower compared to other pathogens (Jonsson et al., 1985). 

Limited intracellular killing by macrophages results in S. aureus intracellular 

persistence. The reasons why S. aureus are able to subvert intracellular killing are 

varied. Firstly, S. aureus produces virulence factors that inhibit intracellular killing. 

Catalase production detoxifies hydrogen peroxide (Mandell, 1975, Das and Bishayi, 

2009). Staphylokinase has the ability to neutralise ROS and allow S. aureus to survive 
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oxidative stress (Clauditz et al., 2006). It also produces lactate dehydrogenase to survive 

under nitrosative stress as well as a haem metalloprotease (Richardson et al., 2006, 

Richardson et al., 2008). S. aureus is inherently resistant to a range of antimicrobial 

proteins such as lysozyme (Bera et al., 2005) and defensins (Jin et al., 2004). This 

combination of virulence factors likely contributes to S. aureus success as an 

intracellular pathogen. It has been demonstrated that macrophages produce less ROS 

than neutrophils (Devalon et al., 1987). However, ROS production by macrophages 

requires optimal stimulation of macrophages with factors such as IFNγ and by 

phagocytosis (DeLeo et al., 1999), suggesting that without ongoing activation, 

macrophage killing of intracellular of S. aureus is limited. Ongoing killing of S. aureus 

by macrophages has been demonstrated to require dual signalling through TLRs at the 

cell surface and intracellularly (Wolf et al., 2011). There was an initial signal when 

TLR2 on the macrophage surface was engaged by S. aureus PAMPs and then a second 

intracellular signal provided amplification dependent on the timing of intracellular 

degradation of bacteria, which released microbial factors required to engage the pattern 

recognition receptor (Wolf et al., 2011). Resistance to intracellular degradation resulted 

in a failure to fully activate this amplification loop and S. aureus then persisted 

intracellularly until a time when it was ready to escape from lysed cells.  

S. aureus can also alter its genetic and proteomic profile allowing it to persist 

intracellularly without activating the macrophage antibacterial responses in the form of 

small colony variants (Tuchscherr et al., 2011). Small colony variants are well adapted 

to survive within the harsh intracellular environment of the macrophage (Tuchscherr et 

al., 2010). They alter their genetic profile appropriately to survive intracellularly and 

maintain integrity of the host cell (Kriegeskorte et al., 2011). This affords S. aureus 

with the ability to lower its virulence and persist intracellularly. The Agr system 

becomes downregulated in small colony variants preventing host cell killing 

(Tuchscherr et al., 2011). By manipulating its genetic phenotype, the bacterium has the 

ability to either attack the host immune system or persist (Tuchscherr et al., 2011). 

Small colony variant formation allows intracellular S. aureus to both escape 

intracellular killing and to be shielded within a protective niche (von Eiff et al., 1997).  

Once phagocytosed, the majority of intracellular S. aureus fail to traffic to a 

compartment of low pH. This could be an inherent defect in endosomal trafficking, 

preventing the mature phagolysosome forming. The majority of intracellular S. aureus 
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were in a LAMP positive compartment, suggesting they had fused with the early 

endosome because LAMP acquisition is downstream of early endosomal markers 

(Huynh et al., 2007). The failure to acidify, might be related to a failure of the 

phagosome to fuse with late endosomes containing markers like LIMP-II and Rab7 

(Huynh et al., 2007). For certain microorganisms it has been demonstrated the 

phagosome can be remodelled and bacteria persist in an organelle with early and late 

lysosomal markers but exclude the V-ATPase which acidifies the phagolysosome 

(Asare and Abu Kwaik, 2007). These pathogens persist quietly, can also possibly 

replicate and at later stages of infection escape into the cytosol and ultimately are 

released from the host cell (Asare and Abu Kwaik, 2007). In the case of S. aureus, a 

subset of intracellular bacteria might be manipulating the endocytic pathway and some 

might end up in a mature phagolysosome. The macrophage would be able to detect and 

kill the bacteria in the mature phagolysosome but those in a phagosome or other 

compartment that had not fully matured would serve as a source for bacteria that persist 

and at later stages macrophage lysis and release from the host cell.  

There could be exclusion of the V-ATPase leading to intracellular persistence as seen 

with Mycobacterium tuberculosis. Research demonstrates that the majority of 

Mycobacterium tuberculosis do not end up in an acidic compartment but there is still 

partial acidification taking place (Hackam et al., 1997). This is mediated by a 

sodium/hydrogen exchange (NHE) protein that is poised in the phagosome membrane to 

exchange phagosomal sodium ions for cytoplasmic protons leading to partial 

acidification (Hackam et al., 1997). If a similar mechanism holds true for S. aureus it 

could explain why some bacteria do end up in an acidic compartment but the majority 

do not.  

In the case of Francisella tularensis, the phagosome becomes acidic prior to lysosomal 

fusion (Santic et al., 2008). The bacterial phagosome acquires the V-ATPase and there 

is an acidification of the phagosome prior to it fusing with the lysosome (Santic et al., 

2008). This could lead to lysosomal membrane permeabilisation (LMP) and the release 

of bacteria into the cytosol to replicate (Santic et al., 2008). Research from the Dockrell 

group has shown that during S. aureus infection, there isn’t LMP and activation of the 

lysosomal protease cathepsin D (Bewley et al., 2011). LMP and cathepsin D activation 

have been demonstrated to sensitise the macrophage for apoptosis (Bewley et al., 2011). 

It can be argued that the failure to detect LMP and cathepsin D activation during S. 
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aureus infection of macrophages may be due to a failure to acidify the phagolysosome 

or for it to mature appropriately, causing a reduction in the early phase macrophage 

killing response and ultimately reduced apoptosis. Failure to engage apoptosis would 

prevent apoptosis-associated killing, which is critical for the removal of persistent 

intracellular bacteria.  

S. aureus again has the ability to manipulate macrophage apoptosis which has been 

shown to involve the anti apoptotic protein Mcl-1 (Koziel et al., 2009, Koziel et al., 

2013). For certain pathogens, there is a decrease in Mcl-1 levels over time which 

correlates with induction of macrophage apoptosis (Marriott et al., 2005). In the case of 

S. aureus this does not occur. It has been found that Mcl-1 levels are maintained at a 

high level (Koziel et al., 2009). The ability of S. aureus to manipulate this pathway in 

macrophages and prevent apoptosis-associated killing would lead to increased 

persistence of bacteria which eventually escape the macrophage at a later period of time. 

My data suggests that failure to downregulate Mcl-1 may be linked to failure to 

appropriately mature the phagolysosome.  

Finally, S. aureus has been shown to be able to escape intracellular confinement, which 

appears to be a final stage in its complex interaction with the macrophage, although 

these results require further characterisation (Kubica et al., 2008, Grosz et al., 2013). 

This ability is important during S. aureus infection whereby it spreads to distant tissues 

and re-establishes infection. The factors responsible for this phase of infection are only 

just beginning to be elucidated and include virulence factors such as phenol soluble 

modulins (Grosz et al., 2013). By turning on expression of these toxins at a crucial point 

in time, this allows S. aureus to escape the phagosome, enter the cytoplasm and escape 

the macrophage.  

In the experiments presented in my thesis, I was able to record macrophages 

phagocytosing bacteria at different levels. This is not necessarily reflective of a 

difference in the capacity of macrophages to phagocytose and the actual reason behind 

the behaviour is unknown. One speculative reason is the activation status of different 

macrophages in culture at the start of the experiment, especially as we are dealing with a 

heterogeneous population, or alternatively the ability of the macrophages to respond to 

activation stimuli. There could be a concentration gradient occurring, e.g. of bacterial 

peptides meaning some macrophages can respond to the bacteria earlier and start 

phagocytosing and so appear to have more intracellular bacteria within them than those 
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that might respond later. Another possibility is that there is a defect in intracellular 

killing as time progresses. It can be suggested that within a macrophage there could be 

two compartments that I have termed ‘fast killing’ and ‘slow killing.’ When 

macrophages first phagocytose bacteria it is possible that some bacteria reside in a ‘fast 

killing’ compartment and some in a ‘slow killing’ compartment. Over time, the slow 

killing compartment cells begin to dominate when there are no bacteria in the fast 

killing compartment leading to increases in intracellular viable bacteria. Those 

macrophages that start phagocytosing later appear to have fewer bacteria if they still 

have the capacity to kill fast and slow. Ultimately those macrophages exhibiting very 

high numbers of intracellular bacteria could represent those that cannot kill bacteria. 

Therefore, this could represent why in a heterogeneous population there are 

macrophages with varying levels of intracellular bacteria. A final possibility is there is 

differing levels of recruitment of macrophages meaning there is always a pool of 

macrophages that do not respond until much later. This could account for differing 

levels of intracellular bacteria, especially if for example, some had been phagocytosing 

for 5 hours and some for 1 hour, if they were recruited later as the bacterial density 

increased. This would need to be tested experimentally and I have not explored this in 

my thesis.   

6.3. Mathematical models of host: pathogen interactions 

I used my biological data to develop a novel mathematical model to describe the 

interaction between macrophages and S. aureus. Mathematical modelling is a powerful 

tool that can both inform our understanding of biological systems and also help make 

predictions about unknown events (Callard and Yates, 2005, Kirschner and Marino, 

2005). Having performed an in depth characterisation of the kinetics of macrophage 

phagocytosis and intracellular killing of S. aureus I used my experimental results to 

motivate and parameterise a mathematical model that would accurately portray the 

biological results and provide insight into the underlying biological process.  

Consistent with what I observed in vitro I was able to demonstrate that as bacterial dose 

increased there was a progression towards macrophages not being able to successfully 

control extracellular replication over the observed time period. My results from the 

parameterised model show that macrophages are able to limit extracellular growth for at 

least 6 hours at low bacterial doses. In vivo this delay to exponential growth of bacteria 

may be an important factor as it may buy enough time for other cells to be recruited to 
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the site of infection. On their own however, the model shows that the macrophages are 

ultimately fighting a losing battle since bacterial growth will eventually outstrip 

phagocytosis.  

The experimental work in my thesis has highlighted that there is a limit to intracellular 

killing of S. aureus by macrophages. In my model I therefore assumed that while 

macrophages phagocytose at a rate proportional to the extracellular bacteria numbers, 

the killing ability of each activated macrophage is fixed. In other words, macrophages 

will ingest more and more bacteria as the extracellular concentration increases, but will 

still kill internalised bacteria at a constant rate. Therefore while intracellular bacteria 

numbers may be kept low while the extracellular population is controlled, as the 

extracellular bacteria enter their exponential growth phase the intracellular numbers will 

ultimately increase. 

In the absence of extracellular bacteria there is a gradual decline in intracellular 

bacteria, but even at later time points there was still some intracellular persistence, even 

at low bacterial doses. Therefore, the model highlighted that although the macrophages 

were able to kill intracellular bacteria they were not able to clear all of the intracellular 

load which allowed some bacteria to persist. However, the administration of an 

antimicrobial can help the macrophage clear intracellular bacteria, and over time, in the 

presence of extracellular antimicrobials intracellular bacterial numbers become zero.  

I made a number of key assumptions when developing the model that should be 

considered in further modelling work. First of all the mathematical model assumes a 

homogeneous population while my experimental data suggests a subset of cells ingest 

and kill and a significant population remain naive although they can potentially become 

macrophages that phagocytose at later time points. Secondly, it is possible the 

macrophage needs additional help from other cells to achieve optimal control of 

infection, as evidenced through TB models (Warrender et al., 2006). Thus the 

investigation of macrophages in isolation of other cells may not fully represent their 

behaviour in vivo. Furthermore although my data showed there were two phases of 

killing, this initial model assumed there was a single constant rate of intracellular killing 

for mathematical tractability. The first phase is more dramatic and occurs promptly after 

phagocytosis, while the second is much more gradual. This model should now be 

manipulated, to include the two phases of killing, and, having done the necessary 

experiments, to begin to unravel whether the intracellular persistence is because there is 
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a depletion of an essential element of the intracellular killing machinery, or because the 

bacteria are subverting the macrophage response. 

I feel it is important to briefly comment on how mathematical modelling can be used to 

predict experimental outcome as this is a key objective of any mathematical model. 

When a basic mathematical model is established it is important to determine if it holds 

up experimentally. This is usually done by selecting a parameter within the model to 

test e.g. macrophage intracellular killing and manipulating it experimentally. This then 

produces a result which can be used to calculate an alternative rate for the parameter 

under investigation. This new rate can be added into the model to see if it produces 

reasonable dynamics to what is observed experimentally. Alternatively, prior to carrying 

out the experiment, the model can be tested by running plots at for example a lower 

dose and determining the behaviour. This can then be compared to an experiment to see 

if the model is good at making predictions which can be verified. This ability to 

manipulate models is important clinically. In trials where certain drugs are known to 

target specific processes, these altered rates can be incorporated into the model to 

determine how useful the drug will be, e.g. will it provide long term health benefits. 

This has proven popular and has been done with HIV research where it was shown that 

treatment only benefits over a small window.  

In my thesis, this manipulation was not carried out. The main reason was although I had 

produced a mathematical model that worked it did not fully take into account the 

heterogeneous nature of the population and assumed homogeneity. This is something 

that needs to be added in before manipulating the model to account for the differing 

behaviour of the population. Also, the main manipulation I wanted to perform was to 

look at intracellular killing. As the model is presented I was not able to estimate two 

different rates of intracellular killing meaning my model although fitting the data, it did 

not account for the slow and fast phases independently. Extensions to the model would 

be to look at the effect of macrophage recruitment on phagocytosis and add this into the 

model to account for the heterogeneous behaviour. However, what I have presented, I 

used my Se replication rate and varied it to show the responses on the model and also 

ran the model at a higher dose than I normally use to show how Se and Si bacteria and 

Ma macrophages behave and this shows that my initial model holds up, but requires 

some minor improvements and statistical analysis to further improve it. In summary, 

although I did not get round to manipulating my mode owing to time, I was able to 

briefly show, at least by altering the model, that it could be used to make predictions. 
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6.4. Future directions 

6.4.1. Characterisation of the compartment of intracellular persistence 

I have shown that intracellular S. aureus persist in a compartment that is LAMP positive 

and not of a low pH. This leaves an open ended question as to what the nature of this 

intracellular compartment. One possible mechanism that requires further 

characterisation is whether or not there is a defect in lysosomal/endosomal fusion post 

LAMP acquisition. It would be interesting to see whether the bacteria are manipulating 

the endocytic pathway and therefore persisting in a phagosome like compartment. Also 

it would be interesting to see if there is a failure to recruit the V-ATPase, if the V-

ATPase is functioning or if a subset of bacteria acquire an alternative acidifying 

machinery leading to a subset being in a ‘mature phagolysosome’ but the majority not.  

6.4.2. The mechanism of macrophage death by intracellular S. aureus 

I also demonstrated that over extended periods of culture, intracellular bacteria escaped 

from the macrophage, replicated extracellularly and were reingested by other 

macrophages. Given this interesting observation, it would be interesting to unravel how 

intracellular bacteria are able to escape from the macrophage. It would be interesting to 

determine the mode of cell death occurring. I have defined it as cytolytic but does not 

involve apoptosis. It is likely to involve necrosis or necroptosis but it would be 

interesting to determine to what extent it is programmed by the innate response or 

whether it is activated by a bacterial leukocidin or other toxin. It would also be 

interesting to phenotype the bacteria at the start of infection, during persistence and after 

macrophage lysis to determine if there are any changes to them when persisting and 

whether they express particular virulence factors to lyse the macrophage.   

6.5. Conclusion 

In summary, the data presented in this thesis demonstrate that the rate limiting step in 

the macrophage response to S. aureus is at the level of intracellular killing. Macrophage 

killing of bacteria becomes exhausted before phagocytosis. Intracellular persistence 

eventually led to the expulsion of intracellular bacteria from the macrophage and 

concomitant cell death. These extracellular bacteria were then re-phagocytosed. I have 

demonstrated that intracellular bacteria do not reside in a compartment of low pH and 

macrophage apoptosis is not engaged during S. aureus infection. I have translated my 

data into a mathematical model to describe the extracellular and intracellular behaviour 
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of macrophages towards S. aureus. The mechanisms surrounding some of this data 

require further characterisation to fully understand the biological reasons behind them.  
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Appendix 1 Script for extracellular mathematical model 
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Appendix 2 Script for intracellular mathematical model 
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