End-to-end models of marine ecosystems:
exploring the consequences of climate
change and fishing using a minimal
framework

Celina See Wing Wong

Doctor of Philosophy
University of York
Biology
March 2014



Abstract

Marine ecosystems are vital to human society: as a source of food, for economic growth and
for their potential to mitigate climate change. With marine ecosystems threatened by climate
change and overfishing, there is a need for sustainable fisheries management, which has been
the basis for an ecosystem-based approach to management. This has led to considerable
interest in end-to-end ecosystem models, where the physical effects of the environment and
the population dynamics of all marine organisms are coupled together into one framework.
In this thesis, I studied an end-to-end model which coupled together a box-component model

representing phytoplankton and zooplankton, with a size-structured fish community model.

I investigated the potential artefacts in model results, caused by numerical methods or by
model architecture. I found that care needs to be taken with the choice of numerical method
used to simulate size-structured models, as the choice of numerical resolution can yield nu-
merically stable results but can also affect large-scale behaviours of the system, such as the
slope and mathematical stability of the size-spectra solutions. With regards to model archi-
tecture, coupling together two submodels which differ in structure and resolution can lead to
large-scale behaviours of the system which appear plausible and consistent with empirical

data, but which impose serious discrepancies in the underlying life-histories of the fish.

By distinguishing model artefacts from ecosystem-effects, the interactions and feedbacks
between the higher and lower trophic level organisms can be investigated. I studied the
potential impact of climate change upon the marine ecosystem, and in particular, upon the
seasonal dynamics of phytoplankton. I found that under a warming climate, the spring phy-
toplankton bloom occurs earlier and for a longer duration, and the model predicts the loss of
the autumn phytoplankton bloom. These changes were not solely due to the direct effect of
temperature, but also due to the indirect effect of the interactions of the fish population with
zooplankton. The effect of fishing upon the marine ecosystem was also explored with this
end-to-end model, with two potential fishing strategies applied to the system. Regardless of
the choice of fishing strategy, intensive exploitation of fish stocks can lead to a significant
shift in the dynamics of phytoplankton. The phytoplankton’s dynamics change from stable

annual patterns to unpredictable periodic behaviours.

This thesis has developed an end-to-end model which uses a minimal framework to study the
interactions of organisms at different trophic levels, and highlights the importance of these
interactions and the associated feedbacks under different scenarios. It combines important
theoretical insights into the consequences of model architecture and model-derived artefacts
upon ecosystem-scale behaviours, at the same time as highlighting the potential for end-to-

end models as a practical and flexible management tool.
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Chapter 1

General Introduction

1.1 The modelling of marine ecosystems

Natural ecosystems are necessary for human life, providing us with essential services, from
clean air to food. With over 70% of the Earth’s surface covered by oceans and seas, the fish-
eries industry providing employment to over 600 million people and global fish consumption
at 130.8 million tonnes in 2011 (FAO, 2012), marine ecosystems are essential for human sur-
vival. As well as being of economic value through the importance of commercial fisheries,
marine ecosystems have huge potential for mitigating climate change by acting as a source or
sink for atmospheric carbon dioxide (Boyd and Doney, 2002; Hoegh-Guldberg and Bruno,
2010). The complexity of marine ecosystems has led to a huge diversity of mathematical
models: to understand the major processes and drivers of these systems (such as climate and
human factors), as well as to forecast ecological responses to future scenarios (Fulton et al.,
2011). Due to the vast magnitude of marine ecosystems, the ecological dynamics of the sys-
tem has traditionally been represented using two independent components: biogeochemical

and fish production models (Travers et al., 2009).

Biogeochemical models typically focus on the flux of a main nutrient, such as nitrogen, be-
tween three compartments: nutrients (N), phytoplankton (P) and zooplankton (Z) (Travers
et al., 2009; Libralato and Solidoro, 2009; Carlotti and Poggiale, 2010). As a result of their
biological simplicity, such models can be coupled to hydrodynamic models, which capture
elements of the physical environment of the ocean (such as wind, temperature and irra-
diance) (Blackford, 2004). These hydrodynamic models can be one-dimensional models
representing a water column (such as the General Ocean Turbulence model, GOTM (Black-
ford, 2004)) or completely three-dimensional models (such as the Regional Ocean Modelling
System, ROMS (Shchepetkin and McWilliams, 2005)).
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The connection between nutrients and the population dynamics of these lower trophic level
(LTL) organisms included in biogeochemical models (i.e. phytoplankton and zooplankton)
has traditionally been modelled using simple box compartments to represent each com-
ponent, commonly referred to as nutrient-phytoplankton-zooplankton (NPZ) type models
(Steele and Hendersen, 1981; Franks, 2002). These models have been extended by adding a
detritus compartment (D), in order to represent bacterial nutrient cycling activities, leading
to the NPZD models (Travers et al., 2007; Anderson, 2005).

Fasham et al. (1990) uses the basic NPZD framework, but expands it with explicit compart-
ments for bacteria (B), nitrate nitrogen (N,), ammonium nitrogen (N,) and labile dissolved
organic nitrogen (Ny). The European Regional Seas Ecosystem model (ERSEM), refines
the NPZD components into several functional types (Baretta, 1995): for example, the phyto-
plankton module is divided into five groups: diatoms, flagellates, picoplankton, dinoflagel-
lates and coccolithophores. Another approach for refining the NPZD components is through
size-structure: the NEMURO model divides the zooplankton group into small, large and
predatory (Kishi et al., 2007).

As can be seen, the approach in common with each of these biogeochemical models is re-
taining the plankton functional type within the framework, although the complexity of that
implied disaggregation varies between models (from the most basic NPZD compartment
model (Fasham et al., 1990) to the coarsely size-structured approach (Kishi et al., 2007), to
a stage-structured representation (Moll and Stegert, 2007; Stegert et al., 2007)).

Fish production models, on the other hand, have been developed from the perspective of
fisheries management (Travers et al., 2007). They tend to focus on exploited fish species,
either in a single-species (Lassen and Medley, 2001) or multi-species context (Magnusson,
1995). These models are used to represent the survival and catch for a cohort of an ex-
ploited species and, as such, they are often species specific. Further approaches to modelling
the dynamics of higher trophic level organisms (HTL) structure the fish population through
some individual-based trait, such as age, size or stages (Mellin et al., 2009; Kamioka, 2005;
Rudolf, 2007; de Roos et al., 2008; de Roos and Persson, 2002; de Roos et al., 2010).

To provide two instructive examples, OSMOSE (Object-oriented Simulator of Marine ecOSys-
tem Exploitation) is an individual-based model of size-structured schools of organisms (Shin
and Cury, 2001; Travers et al., 2007, 2009). Within each school, prey selection depends on
being in the same place at the same time as the school of predators, but also upon size-ratios
(predators prefer to feed upon prey which are a within a particular size-range, known as a
predator-prey mass ratio (Andersen and Ursin, 1977; Law et al., 2009; Datta, 2011)). On
the other hand, Ecopath with Ecosim (EwE) describes the system through functional groups

(Christensen and Pauly, 1992). This model requires extensive empirical knowledge of the
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food web being represented, in order to input diet preferences for the organisms.

The biogeochemical and fish production models have traditionally been modelled indepen-
dently of each other, with ‘closure’ terms being used to represent the impact of one upon the
other (Rose et al., 2010; Travers et al., 2007). The biogeochemical models (or LTL models)
use a ‘closure’ term to represent the predation of fish on the phytoplankton and zooplank-
ton. The functional form chosen for this term can influence the dynamics of the LTL model
(Steele and Henderson, 1992; Edwards and Yool, 2000). Similarly, the fish production mod-
els (or HTL models) use a ‘closure’ term to represent the plankton pool that planktivorous
fish species, and larval fish, require for survival. This can be done implicitly by assuming a

‘carrying capacity’ parameter (Travers et al., 2007).

Using a ‘closure’ term effectively assumes that there is no feedback between the dynamics
of the HTLs and the LTLs. However, feedbacks do occur between these two marine sub-
compartments: plankton undergo seasonal influences which affect their dynamics, which
would have a direct (or even indirect) impact upon the fish populations that feed upon them
(Field et al., 2006; Rose et al., 2010), while human factors such as fishing would affect the
predation pressures felt by the LTL organisms (Libralato and Solidoro, 2009; Megrey et al.,
2007; Travers et al., 2007).

This has necessitated the development of ‘end-to-end’ (E2E) models, where the biogeochem-
ical processes are coupled together with the lower and higher trophic level organisms into
one framework (Rose et al., 2010; Fulton, 2010). It should be noted that ‘end-to-end’ mod-
els sometimes refers to models which not only couple together the lower and higher trophic
level organisms into one framework, but also includes nutrient recycling (Heath, 2012; Heath
et al., 2014). For the purposes of this thesis, I will be focussing on ‘end-to-end’ models which

do not explicity include nutrient recycling.

1.2 Current developments in end-to-end modelling

Over the last ten years, there has been a considerable interest in the development of E2E mod-
els to understand the effects of climate change and fishing upon marine ecosystems (Travers
et al., 2007; Rose et al., 2010; Libralato and Solidoro, 2009). There are two common ap-
proaches for constructing E2E models: coupling together existing submodels that represent

LTL and HTL organisms, or creating an entirely new framework (Rose, 2012).

Fennel (2010) developed a NPZDF model, where the traditional NPZD model for the LTL

dynamics are coupled to a fish community dominated by two prey species (sprat and herring)
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and one predator (cod). The fish community is also coarsely size-structured, with 5 sprat
size-classes, 6 herring size-classes and 7 cod size-classes. This model was applied to the
Baltic Sea, with experimental runs over 40 years to study the effect of varying nutrient loads
and fishing mortality of cod. Fennel uses this model to predict that management measures

need to be enforced over several years to improve cod stocks.

Travers et al. (2009) coupled the ROMS-N,P>Z,D; and OSMOSE submodels into one frame-
work. As the LTL model assumes a constant mortality rate to the biological compartments,
these rates needed to be decomposed so that part of it is determined by the HTL model.
Travers et al. (2009) compared a one-way coupling (where the mortality rates of the plankton
groups were kept constant) against a two-way coupling (the mortality rates of the plankton
group were determined by the fish) for the southern Benguela ecosystem for the years 1990-
1997. They showed that the coupling choice had a profound impact upon abundance (where
the biomass of planktivorous species increased during the two-way coupling) and food web
structure (where different food chains occurred during the two-way coupling due to changes

in the dominant food chain which is supported by plankton).

These are two examples of E2E models which have been created by coupling together ex-
isting frameworks for the LTL and HTL communities. There are fewer examples of E2E
models which have been developed from an entirely new framework, but one such example
is the Atlantis model (Fulton et al., 2011; Smith et al., 2007; Link et al., 2010). Fulton et al.
(2011) describes the Atlantis modelling framework as an E2E model which includes the bio-
physical system (environmental drivers as well as biological components), the human users
of the modelled marine ecosystem (industrial fisheries), an adaptive management strategy
(which includes monitoring, assessment and management decision processes) and socioeco-
nomic drivers (human behaviours which influence the system, such as markets and social
networks). Atlantis has been used to explore ecosystem dynamics (Link et al., 2010) and
to predict future regime shifts (Fulton et al., 2011), due to either climate change or human

practices.

There are advantages and disadvantages to either approach, and they both face similar chal-
lenges which arise in the development of E2E models. The advantage of coupling together
existing submodels is that each system has been developed in great detail, and fully tested
and understood over the years. The main issue lies with the fact that the submodels were
created for different purposes. This leads to a difficulty in communication between the two
submodels. For example, regarding the representation of the zooplankton: most LTL mod-
els represent the zooplankton by functional groups such as micro- and meso-zooplankton,
whereas HTL models have represented the LTL organisms implicitly as a ‘carrying capac-
ity’ parameter (Travers et al., 2007). Thus, when coupling together existing submodels, a

‘library’ needs to be created, in order for these two systems to communicate together: the re-
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sources gained by the HTL organisms from feeding on phyto- and zooplankton is aggregated
and distributed to the larval fish, and the predation pressures on the LTL organisms by the
fish is allocated across the functional groups (Libralato and Solidoro, 2009; Travers et al.,
2009).

This issue does not arise when creating a new framework for an E2E model, as the entire
ecosystem is being considered during its development and specific diet niches can be intro-
duced which span both the LTLs and HTLs. Building a new E2E model means that there
is no focus on particular aspects of the marine ecosystem, such as phytoplankton dynamics
or the life history of cod. Instead, wider ecosystem-scale questions can be addressed, where
each component of the marine ecosystem can feedback and affect the others, either directly
or indirectly. The disadvantage of this approach is the cost, both in time and money (Travers
et al., 2007), as well as potential difficulties with mathematical stability, transparency and

tractability due to increased model complexity.

1.3 The challenges involved in developing end-to-end

models

When developing E2E models to represent marine ecosystems, either by coupling together
existing submodels or through developing a new framework, there are two main challenges

which need to be considered.

Firstly, there is the role of zooplankton within the marine ecosystem. As we have seen, zoo-
plankton is the main link between the LTLs and the HTLs in mathematical models. However,
in traditional marine ecosystem models, the zooplankton has been used as the ‘model clo-
sure’ and has not been represented in great detail. For example, in simple NPZ models,
zooplankton mortality is often considered as density dependent and is modelled as being
proportional to the square of the zooplankton concentration (Le Quéré et al., 2005), or else
a linear function is assumed for model simplicity (Edwards and Brindley, 1999). Steele and
Henderson (1992) showed that the choice of a linear function for the zooplankton mortal-
ity leads to limit cycle behaviour, which does not occur when a density dependent function
for the zooplankton mortality is chosen. The zooplankton can be represented as one pop-
ulation, as in the NPZ models (Steele and Hendersen, 1981; Franks, 2002), size-structured
into small, large and carnivorous (Kishi et al., 2007) or, most often, by functional type such
as microzooplankton, heterotrophic flagellates, omnivorous or carnivorous (Baretta, 1995).
On the other hand, zooplankton are often not explicitly considered in HTL models; they are

represented by assuming no internal dynamics (so the total number of individuals remains
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constant over time) (Law et al., 2009) or implicitly as a ‘carrying capacity’ parameter in a

population growth equation (de Roos et al., 2008).

In an E2E framework, the zooplankton needs to realistically represent a range of prey for
zooplanktivores such as herring and sprat, as well as larval fish, whose diet shifts and changes
as it increases in body mass (Rose et al., 2010). One approach for this is to represent the
zooplankton as a size-structured population, where the dynamics are governed by the body
mass of the zooplankton (Fuchs and Franks, 2010; Zhou and Huntley, 1997; Carlotti and
Poggiale, 2010).

The difference in scales between LTL and HTL dynamics, both temporal and spatial, also
need to be addressed in E2E modelling (Rose et al., 2010). In traditional models for LTLs, it
was assumed that the dynamics of fish varied so slowly in comparison to plankton that their
actions upon the LTL organisms were assumed to be constant (Caswell and Neubert, 1998).
A mixture of temporal scales need to be addressed in E2E modelling, in order to realistically
represent the fast dynamics of phytoplankton (e.g. seasonal spring blooms) as well as the
decadal effects that occur (e.g. impact upon the populations due to overharvesting) (Rose
et al., 2010).

A range of spatial scales also need to be considered in an E2E model. Oceans are a spatially
heterogeneous environment where plankton are distributed in ‘patches’ (Currie et al., 1998;
Pitchford and Brindley, 2001; Martin et al., 2002; Brentnall et al., 2003), thus the survival of
organisms whose diet consists of plankton is highly dependent on their movements. Fulton
et al. (2004) show the effect that the spatial resolution has upon ecosystem models, and con-
clude that models with a coarse spatial resolution can lead to misleading results. The impact
of fishing pressure can be misrepresented and over exaggerated using a coarse spatial scale,
as predators and prey overlap for longer periods and over larger areas under these scenar-
10s. Thus, a spatial dimension needs to be considered when developing end-to-end models.
While there are tools which use an explicit spatial resolution within its framework, such as
Ecospace which is a dynamic version of Ecopath, where the biomass within an ecosystem is
dynamically allocated across a grid map (Pauly, 2000), spatial resolution could also be repre-
sented in an indirect way. The Atlantis model uses statistical distributions and coefficients of
variation to capture patchiness in the marine environment, and thus avoids the need to explic-
itly represent them (Fulton, 2010). Thus, statistical indices which represent the probability
of patchiness could be implemented into a predator’s volume search rate, and the spatial
heterogeneity of the ocean could be implemented into the modelling framework without an
explicit spatial scale being considered. Ecopath with Ecosim assumes that prey are divided
into vulnerable and invulnerable components (this is known as the foraging arena theory), or
by defining consumption rates that reflect seasonal and spatial changes in consumption over
the modelled period (Pauly, 2000; Travers et al., 2007).
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1.4 The role of end-to-end models

End-to-end models are necessary tools for gaining insight of the impacts to the marine
ecosystem under future management and environmental scenarios (Fulton et al., 2003b;
Travers et al., 2007; Steele, 2012; Heath, 2012; Heath et al., 2014). For example, global
warming is expected to lead to an increase in the sea surface temperature, with climate
change models predicting a 1.1°C-6.4°C increase over the next 100 years (Huertas et al.,
2011). This would have a direct effect on phytoplankton growth, which is highly influ-
enced by temperature, nutrient availability and light intensity (McCauley and Murdoch,
1987; Moisan et al., 2002; Townsend et al., 1994). Any change within the phytoplankton
population would have direct and indirect consequences for organisms at HTLs, in particu-

lar, upon the survival of fish larvae (Kristiansen et al., 2011).

An increase in sea surface temperature would also affect the physiological rates of organ-
isms within the marine ecosystems, for example, metabolic rates or attack rates of predators
(Clark et al., 2003; Portner and Knust, 2007). Clark et al. (2003) modelled North Sea cod
populations and studied the effect of sea surface temperature on growth rates. They showed
that an increase of temperature led to a decline in the cod spawning stock and recruitment,

with growth rates optimal at 8.5°C.

End-to-end models are also tools that can be used for exploring various fisheries manage-
ment strategies (Fulton, 2010). Traditional management strategies are established in order
to protect the young and harvest the old, whilst still maintaining a strong spawning-stock
population (Beverton and Holt, 1993; Law et al., 2013; Borrell, 2013). However, it has been
argued that this selective fishing strategy has led to fish adapting by investing their energy
into reaching sexual maturity as early as possible, as opposed to growing larger (Law, 2000;
Reznick and Ghalambor, 2005; Enberg et al., 2011).

Recently, a balanced harvesting approach has been suggested as a more suitable fishing strat-
egy, where fishing is distributed across a range of species and sizes, in proportion to their
natural productivity (Law et al., 2012; Garcia et al., 2012). Law et al. (2012) used a dy-
namic size-spectrum single fish species model to compare selective fishing against balanced
harvesting. They showed that balanced harvesting leads to good yields whilst reducing dis-
ruption to the ecosystem. However, the practical implementation needs more consideration
as balanced harvesting requires knowledge of productivity (Maxwell et al., 2012; Jacobsen
et al., 2014), although knowledge of relative growth rates could be used as they are related
to productivity (Law et al., 2012).

These different management strategies need to be considered with the presence of a dy-
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namic phytoplankton and zooplankton community included in the ecosystem framework.
As phytoplankton undergo seasonal dynamics, such as spring and autumn blooms (Truscott
and Brindley, 1994; Winder and Cloern, 2010; Findlay, 2006), their interaction with the fish

population could lead to unforeseen consequences.

I will address the issues raised here in Chapter 4 and Chapter 5.

1.5 The importance of body size in marine ecosystems

Body size is a key feature of a marine organism and defines many of its physiological pro-
cesses (Andersen and Beyer, 20006), thus models of marine ecosystems often incorporate size
structure within their framework (Travers et al., 2009; Fennel, 2010). Empirical evidence
suggests that organisms tend to feed upon smaller individuals, be fed upon by larger individ-
uals and hence grow depending on its size (Blanchard et al., 2009; Cohen et al., 1993). An
observation within marine ecosystems of a linear relationship between abundance and body
size on a logarithmic scale with a slope close to -1, known as a size spectrum (Sheldon et al.,
1972; Quinones, 2003), led to the development of population models of marine ecosystems

where the organisms have a size-dependent diet preference.

There have been huge advances in the field of size-structured modelling over the last few

decades. Platt and Denman (1977) developed a model which incorporated a weight-dependent
growth and metabolic rate within it, and this model gave rise to a power-law steady state

which, when parameterised for the Sargasso Sea, agreed with empirical data. Size-spectra

have also been commonly studied using a variant of the McKendrick-von Foerster partial

differential equation (MvF PDE), an equation originally used to investigate population mod-

elling with age distribution. The MvF PDE incorporates size-dependent growth and mortality

rates into its framework, and relates these population-level rates to the changes in abundance

within the population (Benoit and Rochet, 2004; Datta et al., 2010). Further details of the

MVF PDE will be provided in Chapter 2.

End-to-end models commonly use a size-structured modelling approach to represent the HTL
organisms. For example, Travers et al. (2009) used the OSMOSE framework within their
E2E framework (Shin and Cury, 2001). Maury (2010) couples a size-structured pelagic
model, which uses the dynamic energy budget theory (Nisbet et al., 2010) to account for the
uptake and use of energy for vital processes, such as growth, maintenance and reproduction
to the biogeochemical PISCES model.

A size-structured modelling approach is particularly useful in the context of E2E modelling,
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as it improves model simplicity (important for understanding cause-and-effect feedbacks
within the ecosystem, as well as reducing the computational resources required) and reduces
the amount of parameters required for the model while leading to empirically observable
effects (Dickie et al., 1987). It also provides a useful indicator for measuring the effects of
fishing on the ecosystem (Pope et al., 2006), as size-at-entry fishing tends to lead a steeper

slope of the size-spectrum as fishing pressure increases (Rice, 1996; Bianchi, 2000).

1.6 Thesis structure

The aim of this thesis is to contribute to the understanding of the development and dynamics
of end-to-end models. In particular, the consequences of coupling together submodels which
differ in structure and resolution are explored in the context of some of the major influences

currently shaping marine ecosystems.

In Chapter 2, I explore the consequences of the choice of size resolution in the numeri-
cal methods used to simulate size-structured models. To address this issue, I use a size-
structured fish community model, with a non-dynamic plankton spectrum representing the
LTL organisms. I derive a numerical stability condition for this model, and examine the ef-
fect of size resolution upon the slope and stability of size spectrum solutions. In Chapter 3,
I investigate the ramifications of coupling together submodels which differ significantly in
their structure and resolution. I develop a two-way coupled end-to-end model, using a box
framework of phytoplankton and zooplankton to represent the LTLs and the size-structured
fish community model to represent the HTLs. I explore the effect that the choice of the
zooplankton’s functional response has upon the E2E model, and compare it against the orig-
inal size-structured fish community model. In Chapter 4, I use the dynamic E2E model
to investigate the effects of global warming across the marine ecosystem, and in particular,
the effect of a warming climate upon the seasonal dynamics of phytoplankton. Temperature
is incorporated directly into the E2E model through the phytoplankton’s growth rate, and
the abundances and dynamics of the marine organisms are focussed upon to understand the
consequences of increased sea surface temperatures. In Chapter 5, I study the impact of
fishing upon the dynamics of the marine ecosystem, and in particular, whether the interac-
tions between fish and lower-trophic-level organisms leads to a major shift in the dynamics
of the phytoplankton. I compare the effect of two different fishing strategies upon the marine
ecosystem, specifically, the size-at-entry and balanced harvest strategies. I study the disrup-
tion caused to the marine ecosystem by either strategy, whilst considering the potentially
achieved yield. The thesis ends with a General Discussion in Chapter 6, where I debate the

limitations of the method used and future directions for this work.
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Chapter 2

Continuous or discrete: consequences of model choice

for size-structured ecosystems

Abstract

Size structure is a key feature of marine ecosystems, where organisms tend to grow by feed-
ing upon smaller individuals. It can be incorporated into models in various ways, from
smooth continuous variation, to a small number of discrete size classes. Models of marine
ecosystems are important in understanding fundamental ecological mechanisms and predict-
ing system-level changes, such as those brought about by over-fishing or climate change.
Here we develop a mathematical framework to quantify how the large-scale behaviour of
an ecosystem model can vary according to how finely its size structure is resolved. Explic-
itly, we show that both the slope and stability of size spectrum solutions to a size-based
McKendrick-von Foerster model can vary dramatically depending on the choice of size res-
olution of the model. When evaluating possible ecosystem responses to changes, predictions
based on coarsely resolved size-structured models should be treated with caution. In coarsely
discretised models the properties of, and departures from, stable steady states can appear as

artefacts of model choice, rather than reflecting ecological reality.

Keywords

McKendrick-von Foerster equation; size spectrum; finite difference approximation; stability;

marine ecosystem
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2.1 Introduction

Models for the dynamics of marine ecosystems often incorporate size structure, on the
grounds that body size is a key feature of a marine organism, defining many of its biological
processes (Andersen and Beyer, 2006). Empirical evidence shows that organisms tend to
feed upon smaller individuals, are fed upon by larger individuals and grow depending on
their size (Blanchard et al., 2009; Cohen et al., 1993). The data collected tends to show
an approximately linear log(mass)-log(abundance) relationship, known as a size spectrum
(Quinones, 2003; Sheldon et al., 1972).

The dynamics of size-structured populations have been modelled in many ways, including
individual based modelling (Shin and Cury, 2001), matrix methods (Hughes, 1984; de Roos
et al., 1992), stage-based approaches (de Roos et al., 2008; Rudolf, 2007), ordinary differ-
ential equations (Fennel, 2010; Armstrong, 1999; Pahl-wostl, 1997) and through the use of
partial differential equations (PDEs) (Silvert and Platt, 1978; Benoit and Rochet, 2004). A
commonly favoured method for modelling size-structure in ecosystems is through the use of
a PDE known as the McKendrick-von Foerster PDE (MvF PDE), in which the abundance of
the population is dependent on size and time (Benoit and Rochet, 2004; Andersen and Beyer,
2006; Law et al., 2009; Datta et al., 2011). Regardless of the mathematical framework, there
are two paradigms for modelling size spectra: where the species identity of individuals is
not considered, such as in a community size spectrum (Benoit and Rochet, 2004; Law et al.,
2009) or where individuals are assigned a species identity and each species is size-structured
(Andersen and Beyer, 2006; Hartvig et al., 2010; Rossberg, 2012). This chapter is concerned

with modelling a community size spectrum.

In general, PDEs are challenging for formal analysis, and are usually studied using numerical
integrations instead. This can lead to issues with stability and convergence of the numerical
approximation, as well as being computationally expensive (Lax, 1965). The stability and
convergence of the numerical approximation depends upon the discretised step sizes, in this
case, the time step size (At) and the log(mass) step size (Ax). It is possible to analyse math-
ematically the MvF PDE (Datta et al., 2011; Capitan, 2010; Rossberg, 2012). However, this
requires certain assumptions to be made; Datta et al. (2011) assumed that the steady state was
a power-law and that the model had an infinite range of sizes. Numerical simulations are still
required when studying the MvF PDE as there are a finite number of species in the marine
ecosystem, and this allows exploration of different scenarios such as fishing management

strategies.

When numerically simulating the MvF PDE, the numerical discretisation is typically chosen

to be very fine, i.e. the step sizes are very small, but this leads to a computationally expensive
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model. Ackleh and Ito (1997) discretised a nonlinear size-structured population model, sim-
ilar to the MvF PDE, using an implicit finite difference approximation. From this numerical
scheme, they derived conditions for uniqueness and proved convergence of the numerical

approximation to the solution.

Benoit and Rochet (2004) used a fourth order Runge-Kutta method to solve the MvF PDE,
with Ax = 0.5, where x is log weight and dimensionless. The mass and time steps were de-
termined through trial and error and chosen small enough so that patterns were independent

of the value of the steps, yet large enough for a reasonable computational time.

Another example is Fennel (2009), where a coupled nutrient-phytoplankton-zooplankton-
detritus (NPZD) and fish model is studied. The fish compartment is not explicitly mod-
elled using the MvF PDE, rather, it is comprised of three size-structured species (with size-
structured interactions), where there are five classes for planktivorous sprat, six classes for
herring and seven classes for cod. Each size-class for each species is then modelled using

ordinary differential equations for biomass concentration and abundance.

These three examples illustrate that the level of discretisation varies between different stud-
ies. The question is what is the optimum level of discretisation, or ‘best’ trade-off between
accuracy and computability, required for numerically integrating the McKendrick-von Foer-
ster PDE?

In this study, we apply an upwind, finite-differencing discretisation to the McKendrick-von
Foerster PDE (Lax, 1965; Press et al., 2007), in other words, the individuals in discrete size-

classes grow depending on the individuals in smaller size-classes. This paper addresses two

points:

1. Reliable integration of discretised size-spectrum dynamics

2. Effects of discretisation on steady-state properties

The importance of these results to marine ecosystem models is discussed in the final section.
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2.2 Methods and Results

2.2.1 The McKendrick-von Foerster equation

The McKendrick-von Foerster PDE was originally used to model the population dynamics
of an age-structured population. It was adapted into a size-structured model by Silvert and

Platt (1978), where abundance is a function of body mass and time, and is given by:

oU (w, 1)
ot

A(G(w,t)U(w,1))
ow

2.1)

=—M(w,t)U(w,t) —

where U (w,t) is the density of organisms of mass w per unit volume, G(w,?) is the growth
function and M (w,¢) is the mortality function of organisms of mass w at time ¢ (Silvert and
Platt, 1978; Blanchard et al., 2009; Datta et al., 2010; Law et al., 2009; Andersen and Beyer,
2006; Arino et al., 2004; Calsina and Saldafia, 1995; de Roos et al., 2008; Farkas and Hagen,
2007; Hartvig et al., 2010; Rossberg, 2012).

The size-spectra PDE, Eq.(2.1), is transformed to depend on the natural logarithm of weight,
since the sizes of organisms making up the marine community can span many orders of
magnitude. The co-ordinate transformation is w = wge* where wy is a reference weight,
and x is a dimensionless variable. This leads to the logarithmically transformed size-spectra
PDE:

a”g;’t) (o u(r) — 28 ta);‘(x’t)) 2.2)

The mortality and growth rates of the size-spectra equation

In the size-spectra PDE, mortality consists of predation, intrinsic mortality and senescent
mortality. Predation is upon smaller organisms with a preference towards prey which are a
predator-prey mass ratio (PPMR) apart from themselves (determined by a Gaussian feeding
kernel, ¢(x,x") = (1/0v/2m)exp{—(x —x’ —B)?/26>} where B is the log(PPMR) and G is the
feeding kernel width) (Law et al., 2009). The intrinsic mortality accounts for death which

is not caused by predation, and is assumed to be a constant rate k. As there are no top-class
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predators in this modelling framework, a senescent mortality of zeP™ %) is introduced once
organisms reach a certain log(mass) x;, where y; is the senescent mortality rate and p is the
senescent mortality exponent (Law et al., 2009; Benoit and Rochet, 2004). The growth rate

is determined by the assimilation of mass gained by consumption.

The boundary conditions for the size-spectra PDE needs to be defined. For the left hand
boundary, small organisms require resources to feed upon in order to grow. This is imple-
mented into the model by assuming that there is a fixed resource spectrum of phytoplankton.
As reproduction is not accounted for in this model, the newborn size-class is also fixed. For
the right hand boundary, it is assumed that there is a maximum log(mass) xmax for the fish
community, and that there are no organisms within the model which are greater than this

Xmax -

In other words, the PDE model is:

growth
—~

g(x,1) | u(x,1)

Q

intrinsic mortality ~ senescent mortality  predation
ou(x,t — ’ ) —~
) _ ko4 e () | u(xr) —

0x

(2.3)

Initial condition: u(x,0) = u® (x) for x € [Xmin, Xmax]
Boundary conditions: u(xmin,?) = 1) where u; is a constant value

u(x,t) = 0 for x > xmax

where u(x,7) =y [(woexp(x'))20(x’, x)u(x’,1)dx" and
g(x,1) = oywlexp(x(q — 1)) [exp(x’)0(x,x" )u(x',1)dx', xmin is the minimum log(mass) of
the fish community and xpy,x is the maximum log(mass) of the fish community. See Table

2.1 for the parameter definitions.
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Table 2.1: Parameter values

Parameter value

Term Parameter description Fig.2.1 Fig.2.2 Fig.2.3

Discretisation terms

Ax log(mass) step-size 0.1 see figure see figure

At time step-size see figure < 0.001 <0.001

Feeding terms

Y volume searched per unit time per 600 600 600
unit mass? (m3-yr—!. g=%)

q search volume exponent 0.8 0.8 0.8

o mass conversion efficiency 0.2 0.2 0.2

0 feeding-kernel function

B log(preferred predator:prey mass 4 4 4
ratio)

o feeding-kernel width 2 2 2

Mortality terms

k intrinsic mortality rate (yr—!) 0.1 0.1 0.1

Us senescent mortality rate (yr‘l) 0.5 0.5 0.5

p senescent mortality exponent 1.5 1.5 1.5

Initial conditions

wo reference weight (g) 454%x 1078 4.54%x1078 4.54%x1078

Wmin minimum body mass (g) 1x1073 1x1073 1x1073

Wmax Mmaximum body mass (g) 3.3 x 103 33x10%  33x10°

p1 density of the smallest phytoplank- 2.2 x 106 2.2 % 10° 2.2 % 10°
ton size-class (m~3)

Ay exponent of the phytoplankton -1 -1 -1
spectrum

u density of the smallest consumer 100 100 100
size-class (m?)

Au initial exponent of the consumer -1 -1 -1
spectrum

(Law et al., 2009, see Table 1)
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2.2.2 Reliable integration of discretised size-spectrum dynamics

The solutions of partial differential equations can be approximated using numerical methods,
one of which is the finite differencing method, where the domain space is partitioned into a
mesh and used to approximate the derivatives of the equation through these discrete points
(Lax, 1965; Press et al., 2007). The finite-difference method chosen must be numerically
stable, i.e. any small errors which are introduced to the numerical scheme should dampen
out so that the approximate solution approaches the continuous solution over time. This
stability condition often depends on the step sizes chosen for the variables, in this case the

time and log(mass) variables.

Discretising the size-spectra equation

An upwind, finite-differencing approach is applied to the transformed size-spectra PDE
(Eq.(2.2)) to approximate the continuous PDE with a discrete function. An upwind tech-
nique was used as each size-class grows depending on the size-classes below it in the chain,
ie. u(x,t+ 1) =f(u(Xz<yr,t). In order to discretise the size-spectra PDE, the equation first
needs to be linearised around the steady-state solution. See Appendix 2.4.1 for the steps
involved in linearising and discretising the size-spectra PDE. Linearising about the steady-
state solution by assuming that u(x,7) = u* + €ii(x,t), where u* is the steady-state solution
and € is small, and discretising the subsequent equation yields the discretised size-spectra
PDE:

~[+1 ~[ xl ~1 *l ~xl
— A J — —yZ(woex’)%(x,-,xj)quxu}k-l —,u_*flu.li —2 A)i / (2.4)
! i>j
— (1= x)aywies VY e%io(x),xi)ituf
i<
+(1- K)Ongexf*l(q_l) Z eid(xj_ ,xi)ﬁfu;fl_l
<1

where ii(xj,1;) 1= ﬂ;,u*(xj,tl) = u;fl,g’;l = g(xj,tl)|u;z and ,ujl = ,u(xj,tl)|u;1.

Kelley (1995, Chapter 1) shows that if the finite-difference approximation can be re-written
into the general form of Wt = Mu + ¢, where M is known as the iteration matrix, then
the iteration of the numerical approximation is numerically stable if (M) < 1. §(M) is the

spectral radius of the iteration matrix, i.e. the value of the maximum absolute eigenvalue of
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M. The finite-difference approximation of the size-spectra PDE can be written in the form
@' = Mi' +c. See Eq.(2.9) in Appendix 2.4.1 for the iteration matrix of the linearised

size-spectra PDE.

The iteration matrix of the size-spectra PDE is too complex to derive analytical forms for its
eigenvalues. However, the numerical method can be applied to the time-independent size-
spectrum solution to illustrate the importance that the choices of Ar and Ax has upon the
numerical approximation of the size-spectra PDE. Furthermore, we will demonstrate that if
Ax 1s kept constant, then numerical stability of the finite-differencing method can be achived

by decreasing At.

Ilustration of reliable and unreliable integration

Figure 2.1a and ¢ shows the time-independent size-spectrum solution for four different time
steps, while Figure 2.1b and d shows the stability condition for these time steps. Figure 2.1
shows that the finite-difference approximation of Eq.(2.3) is numerically stable if Af is small
enough. When Ar = 0.001, Figure 2.1a shows that the approximation is numerically stable.
This is verified by the eigenvalues of the iteration matrix which are plotted in Figure 2.1b,
and shows that the spectral radius of the iteration matrix is always less than 1. Note that these
solutions are all very close to each other as, for each time step, the numerical approximation
is approaching the continuous solution. Hence, the solutions are fairly indistinguishable from

each other.

However, increasing the time step-size is all that is required for the finite-difference approx-
imation to become numerically unstable. Figure 2.1c shows that if Az = 0.004, and all other
parameters are kept the same, the time-independent size-spectrum solution becomes numer-
ically unstable. As can be seen in Figure 2.1c, the numerical approximation is no longer
tending towards the continuous time-independent size-spectrum solution, but instead, the
density of individuals of about 0.01g is increasing exponentially. This is verified by Figure
2.1d, which shows that at when time=0.16year, the spectral radius of the iteration matrix is

greater than 1.

2.2.3 Effects of discretisation on steady-state properties

The previous section shows that the MvF PDE can be numerically solved using a finite-
difference approximation. This numerical approximation remains numerically stable for all

log(mass) step sizes, as long as the time step-size is small enough and an appropriate ini-
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tial population abundance is chosen. Hence, the MvF PDE can be coarsely discretised and

remain numerically stable.

Is the solution to the coarsely discretised model consistent with that of the finely discretised
model? We investigate this question by gradually increasing Ax and comparing the stable
steady-state solutions. The McKendrick-von Foerster equation is numerically solved using
the finite-differencing method outlined in Eq.(2.4) for the mathematically stable steady-state

solutions.

Figure 2.2a shows the stable steady-state solution of the McKendrick-von Foerster equation
for different levels of discretisation. Although each discretisation of the McKendrick-von
Foerster equation leads to an approximately linear size-spectrum as the stable steady-state
solution, the gradient of the size-spectrum varies depending on the discretisation. As the dis-
cretisation becomes more coarse, the gradient of the size-spectrum increases (Figure 2.2b).
Note that the straight line is only a visual guide; formal regression is inappropriate because

the plotted points are from numerical analysis of the model and not experimental data.

The stability of the steady-state solution is also studied by analysing the return times to

equilibrium after perturbation. Return times are defined as:

return time := —————— where Apax <0 (2.5)
real(Admax)

where A, is the least negative eigenvalue, where the eigenvalues are determined from the

Jacobian matrix evaluated at equilibrium.

Figure 2.3 shows that as the coarseness of the discretisation increases, the relative return
times decrease. This is due to the number of equations that need to be solved decreasing as

the coarseness of the discretisation increases. (See Appendix 2.4.3 for more details.)

The results also show that as the discretisation becomes finer, the return time increases ex-
ponentially. Thus, the mathematical stability of the discretised MvF PDE is affected by the
choice of the resolution of the numerical discretisation. This is shown by the shaded grey
region of Figure 2.3. Plank and Law (2011) show that different combinations of the predator-
prey mass ratio and the feeding kernel can lead to a stable steady state, or an unstable steady
state, and find that stability requires the feeding kernel width to be at least 2/5 of the predator-
prey mass ratio. This chapter has shown that the mathematical stability of the MvF PDE is

also dependent upon the level of discretisation chosen to numerically approximate it.
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Figure 2.2: The gradient of the size-spectrum solution increases as Ax increases from a fine
discretisation to a coarse discretisation. (a) The stable size-spectrum solution for varying
values of Ax (b) The gradient of the size-spectrum for different values of Ax
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Figure 2.3: The return time to equilibrium decreases as Ax increases. The shaded grey region
shows that if Ax crosses a threshold on the fine scale, the steady-state solution crosses from
stable to unstable.

2.3 Discussion

Modelling the Size Spectrum

The McKendrick-von Foerster partial differential equation, which is used for modelling size-
spectra, can be solved using numerical approximations. However, care must be taken when
solving the MvF PDE with a finite-differencing method, as different levels of discretisation
lead to different results. The results show that as the level of discretisation becomes more
coarse, although the general behaviour remains consistent with the fine discretisation (i.e.
an approximately linear size-spectrum solution), it does not capture the full behaviour of the

model (see Figure 2.2).

Baird and Suthers (2007) developed a size-resolved pelagic ecosystem model and studied the
error in the discretisation of the size-classes. They compared simulations with 17,32, 62, 123
and 245 size-classes, showing that the results for the two coarsest scales (17 and 32) are very
different from the finer scales (62, 123 and 245). They identified the major source of error
as the model’s ability to resolve the appropriate range of prey sizes for a particular predator
species. For example, at the coarsest level of discretisation, the predator of radius 7.7cm
has two prey “species” to feed upon whereas at the finest level of discretisation, the same
predator has 38 prey species. As the discretisation becomes finer, the prey ranges converge

so that they are almost identical. Hence, the discrepancy in results between the coarsely
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and finely discretised MvF PDE could be due to the implementation of the Gaussian feeding
kernel. The results of the MvF PDE equation could be more consistent if the feeding kernel

spanned the same number of size-classes for all levels of discretisation.

The differences in the stable steady-state solution for varying levels of discretisation could
also be due to a trade-off between two types of errors (Picard et al., 2010). One error is
known as the ‘distribution error’, which is the difference between the discrete and continuous
distribution, and arises due to large size-classes combining individuals of different sizes and
averaging the result. The second error is known as the ‘sample error’, the mean of the
standardised variances of the estimator of the transition rates, and is due to highly variable
transition rates with very small size-classes. Picard et al. (2010) show that the optimal size-
class width is a trade-off between the ‘distribution error’ and the ‘sample error’ . They apply
their algorithm to a data set on a tree species of a tropical rainforest in French Guiana and
show that the optimal number of size-classes is 8 classes of 11.4cm in width. Hence the
differences in stable steady-states between the coarsely and finely discretised models, shown

in Figure 2.2, could be due to the ‘distribution error’ growing as Ax increases.
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Empirical Size Spectra

Han (1998) showed that the construction of a continuous spectrum based on empirical data
is dependent on the size-class intervals used. An error results from the effect of the choice of
size-class interval, as logarithmically equal size-class intervals correspond to linearly un-
equal size-class intervals. When constructing discrete models of biomass spectra (Kerr,
1974; Sheldon et al., 1977), only when the choice of size-class intervals is small does the
discrete model for size-spectra become close to accurate. However, the error can be cor-

rected by applying the coefficient of the effect of size-intervals to the size-spectra models.

In light of Han’s results, should empirical data be used to inform the discretisation level of
size-structured models? Mancinelli et al. (2008) collected the dry mass of benthic macroin-
vertebrates over two seasons, and varied the logarithmic bases into which the data was sorted,
leading to size spectra of varied resolutions. The data was allocated to 19 different size
frequency distributions, and ranged from having approximately 100 finely discretised size-
classes to only 12 coarsely discretised size-classes. Their study showed that site- or season-
specific multivariate effects on size spectra are strongly dependent on the resolution of the
size spectrum. With a fine discretisation, there was an increase in the noise of the data. How-
ever, with a coarse discretisation, the size structure originally present in the data is lost. As
with the algorithm determined by Picard et al. (2010), there is a trade-off between fine and

coarse discretisation.

Thus, when developing size-structured models, analysis of the effect of discretisation on the
model should be carried out. Figure 2.2b indicates that there is a linear relationship between
the discrete step size for log(mass) and the slope of the size-spectrum. This relationship
could be used as a correction factor when modelling at a coarse scale, in order to determine

the gradient of the size-spectrum solution at finer scales.

Stability of the Size-Structured Model

The mathematical stability of the steady-state solution was analysed by studying the return
times to equilibrium after perturbation. For this study, I have taken the return time to be a
function of the least negative eigenvalue (Eq.(3.1)). However, simulations using different
perturbations to the model (changing the slope of the static phytoplankton spectrum, chang-
ing the abundance of newborns in the consumer spectrum) led to similar results obtained

from Eq.(3.1) (see Appendix 2.4.2 for more details).
Plank and Law (2011, Figure 4) show that stability occurs roughly when ¢ > 2/50 (where

G is the width of the feeding kernel and B is the log(preferred predator-prey mass ratio).

Figure 2.3 shows that the steady-state transitions from stable to unstable as Ax decreases for
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the MvF PDE. This transition of stability is a numerical artefact of the finite differencing
scheme used to approximate the MvF PDE. Hence, the mathematical stability of the MvF
PDE depends on the width of the feeding kernel, the preferred predator-prey mass ratio and

the choice of the discretisation of the numerical scheme.

As shown by Rossberg (2012), using a naive implementation of the backward differencing
approximation can lead to negative real eigenvalues, which arise due to the boundary as-
sumption that the largest individuals in the model do not grow. Hence, the stability of the
forward differencing scheme could also be due to boundary conditions affecting the numer-

ical analysis.

Size-based Indicators

One of the main drivers behind developing size-spectra models is for the use of size-based
metrics in assessment and management of marine ecosystems. One such metric could be a
comparison of the slope of the size-spectrum in an unexploited state against that of an ex-
ploited state (Jennings and Dulvy, 2005). However, the size composition of catches differs
significantly from that of the actual community due to fishing gear selectivity. Jennings and
Dulvy (2005) suggest that to avoid misleading comparisons, size-based metrics should be ex-
pressed as relative indices rather than absolute. One way of using a relative size-based index

is by looking at the departure of the size-spectrum from a linear solution, or its nonlinearity.

As a more coarsely discretised size-spectra model yields a more positive slope than a finely
discretised size-spectra model, a more fair comparison between the two models would be to
look at the relative change of the slope after exploitation. Initial investigations show that the
coarsely discretised and finely discretised models behave in the same qualitative way under
increased fishing pressure, but further work is needed to investigate the relative changes in
behaviour. Hence, coarsely discretised models could be valid when restricted to analysing
relative change, which is difficult when comparing model outputs to empirical data as data

collected before exploitation are rarely available.

As this study has shown, not only does the empirical size-spectrum need to be carefully sum-
marised, but the discretisation of size-spectra models also need to be carefully chosen. As
Han (1998) show, empirical data provides discrete size-spectra and hence requires appropri-
ately discretised size-structured models to understand the data. The resolution of the size
spectrum, both empirically and in models, affects the outputs in ways which are, generally,
unaccounted for. This study has shown the effect of the resolution of the size spectrum upon
the steady state solutions, and the stability of those solutions. However, short term dynamics,
such as seasonal phytoplankton blooms, could affect the size-structured model, its steady-

state solutions and the stability. Rigorous analysis on the numerical method used to model
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an ecological ecosystem is needed to ensure that patterns observed are emergent from the

model, and not numerical artefacts.
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2.4 Appendix

2.4.1 Deriving the iteration matrix for the discretised size-spectra equa-

tion

Recall the size-spectra PDE is

du(x,t) 0
ot _—,Ll(x,t)u(x7t)—a(g(x,t)u(x,t))
where
u(x,t) :/~c—|—,usep(x_x5)—|—Y/(woex/)q¢(xl,x)u(x',t)dx' (2.6)
——_— —
MI(XJ) h MV g
2(X7t)

g(x,1) =(1 —K)(xyw(q)ex(q1)/exl¢(x,x')u(x',t)dx'

Linearise the size-spectra equation

To analyse the numerical stability of the size-spectra PDE, it needs to be linearised around
the steady-state solution. Assume u(x,t) = u* + €ii(x,t) where u* is the steady-state solution
and € is small. Then the mortality and growth functions which were defined in Eq.(2.6) can

be written as

b 1) =M () £y [ (0 900 )" +e(x, 1))
M (x,t) + M5 (x,t) +eMa(x,t)
g(X,I) :g* ‘I'Sg(x?t)

where M3 (x,1) := Ma (x.t) -, M2 (x,1) := M (x,1) | (), 8 = 8(x,1) |1 and g (x,7) := g(x,1) | (.-
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Then the size-spectra PDE can be re-written as

aﬁ(a);,t) = — M (x,1)u* — ' ii(x, 1) — eMa (x,1)ii(x,1) — aax (g%ii(x,1))
_%(g(xat)u )—8%( (x,1)ii(x,1))

Letting € — 0 yields the linearised size-spectra PDE:

aﬂ(a?t) = = Mo, )" — (1) — % (g7a(x,1)) — 5~ (§(x,1)u”) 2.7)

Discretise the linearised size-spectra equation

Eq.(2.7) is discretised using an upwind finite-differencing method. To simplify notation,

define i(x;,7) := 125-7 f(xj,1) == ﬂé,g(x i) = gi.. Then the discretsation of the linearised
size-spectra PDE is

~l+1 il xl = ~xl
Y gl — gl
-1 ! L e M e
- ——YZ woe )1 (x;, x; )it Axuy — i ity —
i>j Ax
_( —K)OC’YW equ 1) Zex,q) x],xl l *l
i<j
1(g—1 ; 1l
+ (1= x)oywie 14 Y o, x) il
i<j—1
This can be re-written as
A gl LB s p A ] )3
;" =D+ &1 — AtA);e 00 xj-1) 0 iy (2.8)

— AtAX(A}), { TG (xj 1 1,%)) sy | +€97290(x) 12,3 ) J+2+...}
o Are20(xy,x2) { (43)) g — (43)} ) 7

A1) { (43)) 0 — (A3} bty

39



where

At

*[ */

*/
j 8j

(4] =ywilu!
(A3)h =(1 — &)oywiela !

Write the discretised approximation into the general form with an iteration matrix

The finite-difference approximation can be written in the form El“ = Mgl + ¢ where
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2.4.2 The return times of the steady-state solutions for continuous and

discrete models

In Section 2.2.3, the stability of the steady-state solution for the discretised McKendrick-von
Foerster equation was studied by analysing the return time to equilibrium after perturbation.
The return time is also a function of the least negative eigenvalue, and in Section 2.2.3, is
defined as:

. 1
return time := ————— where Apax < 0
real(Amax )

How accurate is this definition for the return time? We perturb the system in two different
ways and measure the time for the system to return to its original equilibrium state. We

perturb the system in two different ways:

1. Changing the gradient of the static phytoplankton spectrum

2. Changing the fixed abundance of newborns (u1)

The perturbations are implemented into the model for one year, before the parameters are
returned to the original set in Table 2.1. The model is then allowed to continue integrat-
ing forwards in time, using a standard Euler’s method, until it has reached the original

equilibrium state (assuming that the perturbed state is equal to the equilibrium state when

‘uperturbed - uequilibrium| <le—6.

Figure 2.4 shows that the definition for return times as a function of the largest eigenvalue
leads to a result which is qualitatively similar to perturbing the system and waiting for the
perturbed state to return to the equilibrium state. The main difference is that the defined
return time leads to a result which appears to be exponentially decreasing much more rapidly

as Ax increases than the perturbed systems.

2.4.3 Size-class intervals and number of size-classes

The range of log(mass) is chosen between some minimum and maximum size, i.€. [Xpin, Xmax)-
When partitioning the log(mass) domain space, the number of size-classes, Nc depend on the

step-size chosen:
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Figure 2.4: As the log(mass) interval, Ax, increases, the return time to equilibrium after per-
turbation decreases. Defining return time as _M}mx leads to a qualitative similar result to
perturbing the system and waiting for the state to return to equilibrium. (Black, filled circle
marker, o) return time := _Klax (Blue, circle marker, o) the gradient of the phytoplankton
size-spectrum was decreased to -1.5 (Green, cross marker, x) the gradient of the phyto-
plankton spectrum was increased to -0.5 (Red, star marker, *) the abundance of the newborn
size-class, uj, was decreased by a factor of 0.5 (Pink, triangle marker,/\) the abundance of
the newborn size-class, u;, was increased by a factor of 1.5

Xmax — Xmin

Ne =

When N¢ is an integer value, then x,,,, is unaffected by the discretisation. However, when
Nc is not an integer value, it is rounded down so that the new maximum size, X,y 1S less
than x,,,,. For example, when x5, = 10, x40 = 25,Ax = 0.1, N¢c = 150 and X,0x = Xpax =
25. However, when Ax = 0.7, then N¢c = 21.43 which leads to 24.7 = Xax < Xmax = 25.
This leads to ranges of Ax where the number of size-classes remains the same, despite an

increasing log(mass) step-size. This can lead to numerical artefacts in the results.

These numerical artefacts need to be removed from results before analysis. Figure 2.3 shows
the results when the maximum log(mass) size was taken into account and controlled for.
The discretisations chosen were to ensure that the consumer spectrum always has the same
largest size-class (about x = 8, or w = 3270g). Figure 2.3 shows that the return time to
steady-state after perturbation decreases as the coarseness of the discretisation increases.

When all possible discretisations are chosen without taking this consideration into account,

43



the result is not as clear to understand.
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Figure 2.5: The return time to equilibrium decreases as Ax increases. The shaded grey region
shows that if Ax crosses a threshold on the fine scale, the steady-state solution crosses from
stable to unstable.

As can be seen in Figure 2.5, the return time to equilibrium continues to decrease as Ax
increases, but there are jumps in the results. The jumps, where the return time momentarily
increases as Ax increases, are due to the numerical discretisation of the McKendrick-von
Foerster equation. During these jumps, the log(mass) step-size is increasing yet the number
of size-classes is staying the same. This is due to the numerical implementation of the code
only allowing a maximum log(mass) of 8. Hence the return time seems to be closely related
to the number of size-classes used as well as the coarseness of the discretisation. However,
the general trend stated in Section 2.2.3 remains true - as the discretisation becomes more

coarse, the return time decreases.
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Chapter 3

Development of an end-to-end model: exploring
the importance of the structure of the zooplankton
link

Abstract

End-to-end models of marine ecosystems couple biogeochemical models of lower-trophic-
level organisms, and population dynamic models of higher-trophic-level organisms into a
single modelling framework. Models of lower-trophic-level organisms tend to use a func-
tional group approach with minimal size-structure within these groups, whereas models of
higher-trophic-level organisms are species-centric with each species’ life history described
using a finely resolved age- or size-structure. The difference between the “structure” and
“resolution” of these coupled models could lead to numerical artefacts being misinterpreted
as ecosystem-scale dynamics. Here, we develop a new end-to-end model which couples
together a phytoplankton population, zooplankton population and a size-structured fish com-
munity. With this minimal framework, we investigate the effect of model architecture upon
the interpretation of steady-state results of a marine ecosystem, and in particular, focus on the
importance of the dynamics of the zooplankton population. The model shows that large-scale
steady-state behaviours of the system (e.g. the size-spectra and associated slopes) are com-
parable with previous models and empirical observations of marine ecosystems. However,
the underlying structure of the model can lead to significant differences in the individual life
histories within the fish community and in particular, lead to vastly different growth rates
for larval fish under different assumptions of the representation of the lower-trophic-level

organisms.
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3.1 Introduction

In traditional models of marine ecosystems, the population dynamics of lower trophic level
organisms (LTLs), such as phytoplankton and zooplankton, and the higher trophic level or-
ganisms (HTLs), such as targeted fish stocks, have been modelled independently of each
other (Libralato and Solidoro, 2009; Rose et al., 2010; Travers et al., 2007).

The LTL population dynamics are commonly described using biogeochemical models, which
capture the way nutrients are utilised by the biological organisms at this trophic level. The
LTLs have been most commonly modelled using box compartments which represent the
concentrations of nutrients, phytoplankton and zooplankton (and detritus), with the dynam-
ics within each box defined by ordinary differential equations. This genre of models has
become known as NPZD-type models (Franks et al., 1986). In the last two decades, these
models have been extended in several ways. One method has been to increase the number of
functional types within the modelling framework. The European Regional Seas Ecosystem
Model (ERSEM) separates the NPZD components into several functional types: for exam-
ple, the phytoplankton module is divided into diatom, flagellate, picoplankton, dinoflagellate
and coccolithorpe (Baretta, 1995). The other commonly used method has been to impose
a simple size-structure on the components of the NPZD model. The NEMURO model in-
creases the complexity of the NPZD model through size-structure: the phytoplankton group
is divided into small and large, whilst the zooplankton group is divided into small, large and
predatory (Kishi et al., 2007).

Due to the strong dependence of the nutrient component upon climatic factors, hydrodynamic
models and biogeochemical models have been coupled together (Franks, 2002; Fasham et al.,
1990). ERSEM has been coupled to several different hydrodynamic models, for examle, a 1d
General Ocean Turbulence Model (GOTM) (Blackford, 2004) and a three-dimensional baro-
clinic model known as POLCOMS (Lewis and Allen, 2009), whilst Travers et al. (2009) cou-
pled together the Regional Ocean Modelling System (ROMS) with a size-structured NPZD
model, known as N>P>7Z,D, (so named as each model was divided into two size-structured

components of large and small).

These LTL models use a ‘closure’ term to represent the predation of fish on the LTL organ-
isms, by assuming that the dynamics of the fish community is so slow when compared to
the dynamics of the LTL organisms that their influence upon these organisms are essentially
constant. The choice of ‘closure’ term can have an important effect upon the dynamics of
the LTL model (Steele and Henderson, 1992; Edwards and Yool, 2000).

Models for the population dynamics of HTL organisms have been developed from the per-
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spective of fisheries management (Travers et al., 2007), and tend to target commercially im-
portant fish stocks, such as cod (Beaugrand and Kirby, 2010), herring (Megrey et al., 2007)
and salmon (Shiomoto et al., 1997). These models structure the fish population through some
individual-based trait, such as age (Mellin et al., 2009; Kamioka, 2005), stages (de Roos
et al., 2008) or size (Datta et al., 2010; Law et al., 2009; Benoit and Rochet, 2004). These
HTL models use a ‘closure’ term to represent the LTL organisms, either through an assump-
tion of a constant ‘pool’ of plankton (Law et al., 2009; Benoit and Rochet, 2004) or by

assuming a ‘carrying capacity’ parameter (Travers et al., 2007).

Over the last five years, the importance of the relationship between climate, LTL and HTL
organisms have become apparent. LTL organisms such as phytoplankton are directly affected
by climate variability, by the physical and chemical properties of the ocean. Zooplankton is
one of the primary food sources of larval fish and planktivores, and so have a direct impact
on HTL population dynamics (Carlotti and Poggiale, 2010; Daewel et al., 2007; Field et al.,
2006; Rose et al., 2010). This has led to the development of end-to-end (E2E) models,
which couple together submodels of the higher and lower trophic level organisms into one
framework (Libralato and Solidoro, 2009; Rose et al., 2010; Travers et al., 2009).

One of the current approaches to studying E2E models is to couple together existing sub-
models, as demonstrated by Travers et al. (2009), where the ROMS-N,P,Z,D, was used to
model the LTLs and OSMOSE (an individual-based model of size-structured schools of or-
ganisms) for the HTLs. Aydin et al. (2005) used the NEMURO model together with Ecopath
with Ecosim (EwE) to model the growth rates of Pacific salmon. Libralato and Solidoro
(2009) coupled together a Trophic-Diffusive model for the LTLs with EWE to create an E2E
model. The main issue when coupling together existing submodels is that each model was
developed with a different intention in mind. Models of LTL organisms have been developed
to improve our understanding of biogeochemical cycles (Edwards and Yool, 2000), whilst
models of HTL organisms have been developed to understand the life histories of fish and
support decisions in fisheries management. As these three examples of E2E models have
shown, the framework for modelling the LTL organisms differs greatly from that used to

model the HTL organisms.

As can be seen from existing E2E models, functional groups which have been coarsely
size-structured tend to be used for models of LTLs (Kishi et al., 2007; Travers et al., 2009)
whereas a species-based approach is commonly used for models of HTLs. Hence, the “struc-
ture” of the coupled models differ significantly. There is also a considerable difference in the
“resolutions” used in LTL and HTL models. In general, there are at most 1-3 compartments
of zooplankton which can be used as a resource for 35 commercially important fish species
(Steele et al., 2007) or 11 size-structured fish populations (Travers et al., 2009). Shin et al.
(2010) state that effects such as trophic cascades can be difficult to observe in E2E models
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due to the effects cancelling each other out when the LTL compartments are aggregated.
The variation in “structure” and “resolution” in the coupled models could lead to numerical

artefacts due to model architecture, with these artefacts being mistaken for ecosystem effects.

In this chapter, we study the impact of coupling together models which differ in “struc-
ture” and “resolution”. Two models will be compared, where the first model, known as
the SR-Fish model, will use the size-structured fish community model discussed in Chapter
2, with the assumption of a static resource spectrum representing the LTL organisms. The
second model will be the PZ-Fish model, a novel dynamic E2E model which couples to-
gether a phytoplankton-zooplankton model (PZ model) (Truscott and Brindley, 1994) to the
size-structured fish community discussed in Chapter 2. With these two modelling frame-
works, we investigate the plausibility of an E2E model, whose submodels differ significantly
in their compositions, and the importance of the zooplankton dynamics within the marine
ecosystem. In particular, we explore the effect that the choice of functional response for the

zooplankton’s grazing rate upon phytoplankton has upon the dynamics of the PZ-Fish model.

3.2 Methods

3.2.1 The SR-Fish Model

The Static Resource-Fish model (SR-Fish) is a size-structured fish community model which
assumes a static resource (i.e. plankton) spectrum for small fish to feed upon. The population
density of the fish community is modelled using a variant of the McKendrick-von Foerster
PDE (MvF PDE) (Benoit and Rochet, 2004; Law et al., 2009; Datta et al., 2010; Datta, 2011),

where the density of individuals is a function of body mass and time, and is given by:

aug,o — —p(x, ulx, 1) - a(gSR(xé;)”<x’l)> 3.1)

with initial condition u(x,0) = u%(x) for X € [Xmin,Xmax] and boundary conditions

1. g(0,0)u(0,1) = x [ gsg(x,t)u(x,t)e**mindx

2. u(x,t) =0 for x > xXmax

48



where u(x,1) is the density of individuals of log(mass) x per unit volume, xp;, is the minimum
log(mass) of the fish community, xp,x 1s the maximum log(mass) of the fish community and
the population dynamics are governed by size-dependent mortality and growth rates, u(x,?)

and gsg(x,1), respectively.

Mortality consists of predation, intrinsic mortality and senescent mortality. Predation is upon
smaller organisms, with the strongest preference towards individuals which are a log(predator-
prey mass ratio) (log(PPMR)) smaller than themselves. This is determined by a Gaussian
feeding kernel, ¢(x’,x) = (1/6v2r)exp{—(x' —x — B)?/26>} where B is the log(PPMR)
and the width is proportional to 6. An intrinsic mortality rate represents death which is not
caused by predation, and is assumed to be a constant rate k. To ensure that there is no accu-
mulation of unrealistically large organisms due to the absence of top-class predators in this
model, a senescent mortality rate of ,usep(x_xf) is introduced once organisms reach a certain
log(mass) x5, where ug is the mortality rate and p is the senescent mortality exponent (Law
et al., 2009; Benoit and Rochet, 2004).

The size-dependent mortality rate can then be written as

p(x,1) =k + pgeP ) 4 ywd / e I0(x' x)u(x',1)dx’ (3.2)

where yis the volume search rate (with units g~¢ year—' m?), ¢ is the volume search exponent
(as the rate at which a predator searches its environment for prey scales with body size)
(Benoit and Rochet, 2004; Law et al., 2009) and wy is the reference weight derived from the

co-ordinate transform w = wpe* where w is the body mass in g of the individual.
Growth is through the assimilation of mass gained by consumption. It is assumed that upon

ingestion, a fraction of that energy gained (k) is used for reproduction and the rest of the

energy is used for somatic growth (1 — ). The size-dependent growth rate can be written as

gsr(x,1) =(1 —k)oywle™ 4~V Bgp(x)

where

Bsg(x) :/ex/q)(x,x’)u(x',t)dx' (3.3)

The reproduction term to the larval fish class can then be written as

49



Rsg :KOW/ ex/(q*I)BSR(x/)exLXmi“u(x',t)dx' (3.4)

where xpi, 18 the size-class denoting the larval fish (see Section 3.2.4 for more details).

A static resource spectrum is assumed within this model to provide food for the small size-
classes of fish, and has a range in body mass of [Wsg min, WsR.max|- The size-classes of this
static resource spectrum are distributed according to a power law p lwg”;} (Law et al., 2009),
where p; is the abundance of phytoplankton of mass wsg min, Wsg 1s the mass of the phyto-

plankton and Ap is the exponent of the resource spectrum.

3.2.2 The PZ-Fish Model

We develop a new dynamic end-to-end model, henceforth known as the Phytoplankton
Zooplankton-Fish (PZ-Fish) model, which represents the lower trophic level organisms as
two populations of phytoplankton (P, density of individuals of log(mass) xp per m—>) and
zooplankton (Z, density of individuals of log(mass) xz per m—3), while the dynamics of
the size-structured fish community are modelled as described in Section 3.2.1. Within this
model, the phytoplankton population density grows logistically in the absence of predators
with a maximum growth rate of rp and a carrying capacity of Pnyax, is preyed upon by Z at
some grazing rate f(P) and is also preyed upon by fish at a rate of Ap(u). Z grows according
to its consumption of P at a rate oz f (P), dies at some intrinsic mortality rate iz and is preyed

upon by fish at a rate of Az(u).

To account for the predation of fish on the phytoplankton populations, it is assumed that
fish which are a PPMR bigger than the phytoplankton have the strongest feeding preference
upon them. This feeding preference is determined using the Gaussian function described
in Section 3.2.1. In other words, if phytoplankton has a log(mass) of xp, then ¢p(x) =
1/(cv/2m) exp{—(x — xp — B)?>/26?} is the function representing the feeding preference of
the fish community for phytoplankton.  and ¢ have been kept identical to the values chosen
for the SR-Fish model to allow for comparison between these models, i.e. we are assuming
that the phytoplankton class is identical to the size-class of the static-resource spectrum with
body mass 9.12 x 10~7g. An alternative assumption would be to assume that the feeding
kernel of the fish upon the phytoplankton is distributed over a wider range of size-classes,
but this chapter is aiming to investigate the challenges involved when fish feed upon one
phytoplankton class, and one zooplankton class. The feeding kernel for fish feeding on

zooplankton can be determined in the same way, assuming that zooplankton has a log(mass)
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of xz.

Figure 3.1 displays ¢p(x) and ¢z(x), and shows that the fish community does not have a
strong feeding preference for phytoplankton, and that the fish of about mass 0.005g has the
strongest preference for feeding on zooplankton. Fish which are bigger than 1g have grown
beyond the body size in which they have a preference for feeding on zooplankton; at this

point, they begin feeding upon small, larval fish.
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Figure 3.1: The feeding kernel functions representing the fish community feeding on phy-
toplankton (¢p(x), the solid green line) and zooplankton (¢z(x), the solid red line) where
wp =9.12x 10~"g and wz = 4.98 x 10™g.

The predation of fish upon phytoplankton (Ap(u)) and zooplankton (Az(u)) can be written

as

Ap(u) = / e 40p (X Yu(x,1)dx’ (3.5)

Az(u) =l / 10, (x Yu(x' ,1)dx’ (3.6)

The PZ-Fish model can be summarised as
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dP P
- =1P <1 — Pmax> — f(P)Z—Ap(u)P (3.7
‘i_f — 4y f(P)Z =z Z — Ay (1)Z
ou(x, 0 : ;
YD) ) - XEPEETET) (338)

where

grz(x,1) =(1 —x)aywle™ 1"V Bpy (x)

where
Brzlw) = [ € 0l )y’ + [ op(x)Plap)dve+ [ 70202 (vz)dxz
and
Rpz =Kouy / 4By (x) e miny(x' 1) dx’ (3.9)

where gpz is the size-dependent growth rate and Rpz is the reproductive rate for the fish
community in the PZ-Fish model. The growth of individual fish in the size-structured com-
munity now accounts for consumption upon dynamic populations of phytoplankton and zoo-
plankton. The reproductive rate also accounts for the consumption of phytoplankt