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Abstract

Marine ecosystems are vital to human society: as a source of food, for economic growth and
for their potential to mitigate climate change. With marine ecosystems threatened by climate
change and overfishing, there is a need for sustainable fisheries management, which has been
the basis for an ecosystem-based approach to management. This has led to considerable
interest in end-to-end ecosystem models, where the physical effects of the environment and
the population dynamics of all marine organisms are coupled together into one framework.
In this thesis, I studied an end-to-end model which coupled together a box-component model
representing phytoplankton and zooplankton, with a size-structured fish community model.

I investigated the potential artefacts in model results, caused by numerical methods or by
model architecture. I found that care needs to be taken with the choice of numerical method
used to simulate size-structured models, as the choice of numerical resolution can yield nu-
merically stable results but can also affect large-scale behaviours of the system, such as the
slope and mathematical stability of the size-spectra solutions. With regards to model archi-
tecture, coupling together two submodels which differ in structure and resolution can lead to
large-scale behaviours of the system which appear plausible and consistent with empirical
data, but which impose serious discrepancies in the underlying life-histories of the fish.

By distinguishing model artefacts from ecosystem-effects, the interactions and feedbacks
between the higher and lower trophic level organisms can be investigated. I studied the
potential impact of climate change upon the marine ecosystem, and in particular, upon the
seasonal dynamics of phytoplankton. I found that under a warming climate, the spring phy-
toplankton bloom occurs earlier and for a longer duration, and the model predicts the loss of
the autumn phytoplankton bloom. These changes were not solely due to the direct effect of
temperature, but also due to the indirect effect of the interactions of the fish population with
zooplankton. The effect of fishing upon the marine ecosystem was also explored with this
end-to-end model, with two potential fishing strategies applied to the system. Regardless of
the choice of fishing strategy, intensive exploitation of fish stocks can lead to a significant
shift in the dynamics of phytoplankton. The phytoplankton’s dynamics change from stable
annual patterns to unpredictable periodic behaviours.

This thesis has developed an end-to-end model which uses a minimal framework to study the
interactions of organisms at different trophic levels, and highlights the importance of these
interactions and the associated feedbacks under different scenarios. It combines important
theoretical insights into the consequences of model architecture and model-derived artefacts
upon ecosystem-scale behaviours, at the same time as highlighting the potential for end-to-
end models as a practical and flexible management tool.
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Chapter 1

General Introduction

1.1 The modelling of marine ecosystems

Natural ecosystems are necessary for human life, providing us with essential services, from
clean air to food. With over 70% of the Earth’s surface covered by oceans and seas, the fish-
eries industry providing employment to over 600 million people and global fish consumption
at 130.8 million tonnes in 2011 (FAO, 2012), marine ecosystems are essential for human sur-
vival. As well as being of economic value through the importance of commercial fisheries,
marine ecosystems have huge potential for mitigating climate change by acting as a source or
sink for atmospheric carbon dioxide (Boyd and Doney, 2002; Hoegh-Guldberg and Bruno,
2010). The complexity of marine ecosystems has led to a huge diversity of mathematical
models: to understand the major processes and drivers of these systems (such as climate and
human factors), as well as to forecast ecological responses to future scenarios (Fulton et al.,
2011). Due to the vast magnitude of marine ecosystems, the ecological dynamics of the sys-
tem has traditionally been represented using two independent components: biogeochemical
and fish production models (Travers et al., 2009).

Biogeochemical models typically focus on the flux of a main nutrient, such as nitrogen, be-
tween three compartments: nutrients (N), phytoplankton (P) and zooplankton (Z) (Travers
et al., 2009; Libralato and Solidoro, 2009; Carlotti and Poggiale, 2010). As a result of their
biological simplicity, such models can be coupled to hydrodynamic models, which capture
elements of the physical environment of the ocean (such as wind, temperature and irra-
diance) (Blackford, 2004). These hydrodynamic models can be one-dimensional models
representing a water column (such as the General Ocean Turbulence model, GOTM (Black-
ford, 2004)) or completely three-dimensional models (such as the Regional Ocean Modelling
System, ROMS (Shchepetkin and McWilliams, 2005)).
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The connection between nutrients and the population dynamics of these lower trophic level
(LTL) organisms included in biogeochemical models (i.e. phytoplankton and zooplankton)
has traditionally been modelled using simple box compartments to represent each com-
ponent, commonly referred to as nutrient-phytoplankton-zooplankton (NPZ) type models
(Steele and Hendersen, 1981; Franks, 2002). These models have been extended by adding a
detritus compartment (D), in order to represent bacterial nutrient cycling activities, leading
to the NPZD models (Travers et al., 2007; Anderson, 2005).

Fasham et al. (1990) uses the basic NPZD framework, but expands it with explicit compart-
ments for bacteria (B), nitrate nitrogen (Nn), ammonium nitrogen (Nr) and labile dissolved
organic nitrogen (Nd). The European Regional Seas Ecosystem model (ERSEM), refines
the NPZD components into several functional types (Baretta, 1995): for example, the phyto-
plankton module is divided into five groups: diatoms, flagellates, picoplankton, dinoflagel-
lates and coccolithophores. Another approach for refining the NPZD components is through
size-structure: the NEMURO model divides the zooplankton group into small, large and
predatory (Kishi et al., 2007).

As can be seen, the approach in common with each of these biogeochemical models is re-
taining the plankton functional type within the framework, although the complexity of that
implied disaggregation varies between models (from the most basic NPZD compartment
model (Fasham et al., 1990) to the coarsely size-structured approach (Kishi et al., 2007), to
a stage-structured representation (Moll and Stegert, 2007; Stegert et al., 2007)).

Fish production models, on the other hand, have been developed from the perspective of
fisheries management (Travers et al., 2007). They tend to focus on exploited fish species,
either in a single-species (Lassen and Medley, 2001) or multi-species context (Magnusson,
1995). These models are used to represent the survival and catch for a cohort of an ex-
ploited species and, as such, they are often species specific. Further approaches to modelling
the dynamics of higher trophic level organisms (HTL) structure the fish population through
some individual-based trait, such as age, size or stages (Mellin et al., 2009; Kamioka, 2005;
Rudolf, 2007; de Roos et al., 2008; de Roos and Persson, 2002; de Roos et al., 2010).

To provide two instructive examples, OSMOSE (Object-oriented Simulator of Marine ecOSys-
tem Exploitation) is an individual-based model of size-structured schools of organisms (Shin
and Cury, 2001; Travers et al., 2007, 2009). Within each school, prey selection depends on
being in the same place at the same time as the school of predators, but also upon size-ratios
(predators prefer to feed upon prey which are a within a particular size-range, known as a
predator-prey mass ratio (Andersen and Ursin, 1977; Law et al., 2009; Datta, 2011)). On
the other hand, Ecopath with Ecosim (EwE) describes the system through functional groups
(Christensen and Pauly, 1992). This model requires extensive empirical knowledge of the
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food web being represented, in order to input diet preferences for the organisms.

The biogeochemical and fish production models have traditionally been modelled indepen-
dently of each other, with ‘closure’ terms being used to represent the impact of one upon the
other (Rose et al., 2010; Travers et al., 2007). The biogeochemical models (or LTL models)
use a ‘closure’ term to represent the predation of fish on the phytoplankton and zooplank-
ton. The functional form chosen for this term can influence the dynamics of the LTL model
(Steele and Henderson, 1992; Edwards and Yool, 2000). Similarly, the fish production mod-
els (or HTL models) use a ‘closure’ term to represent the plankton pool that planktivorous
fish species, and larval fish, require for survival. This can be done implicitly by assuming a
‘carrying capacity’ parameter (Travers et al., 2007).

Using a ‘closure’ term effectively assumes that there is no feedback between the dynamics
of the HTLs and the LTLs. However, feedbacks do occur between these two marine sub-
compartments: plankton undergo seasonal influences which affect their dynamics, which
would have a direct (or even indirect) impact upon the fish populations that feed upon them
(Field et al., 2006; Rose et al., 2010), while human factors such as fishing would affect the
predation pressures felt by the LTL organisms (Libralato and Solidoro, 2009; Megrey et al.,
2007; Travers et al., 2007).

This has necessitated the development of ‘end-to-end’ (E2E) models, where the biogeochem-
ical processes are coupled together with the lower and higher trophic level organisms into
one framework (Rose et al., 2010; Fulton, 2010). It should be noted that ‘end-to-end’ mod-
els sometimes refers to models which not only couple together the lower and higher trophic
level organisms into one framework, but also includes nutrient recycling (Heath, 2012; Heath
et al., 2014). For the purposes of this thesis, I will be focussing on ‘end-to-end’ models which
do not explicity include nutrient recycling.

1.2 Current developments in end-to-end modelling

Over the last ten years, there has been a considerable interest in the development of E2E mod-
els to understand the effects of climate change and fishing upon marine ecosystems (Travers
et al., 2007; Rose et al., 2010; Libralato and Solidoro, 2009). There are two common ap-
proaches for constructing E2E models: coupling together existing submodels that represent
LTL and HTL organisms, or creating an entirely new framework (Rose, 2012).

Fennel (2010) developed a NPZDF model, where the traditional NPZD model for the LTL
dynamics are coupled to a fish community dominated by two prey species (sprat and herring)
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and one predator (cod). The fish community is also coarsely size-structured, with 5 sprat
size-classes, 6 herring size-classes and 7 cod size-classes. This model was applied to the
Baltic Sea, with experimental runs over 40 years to study the effect of varying nutrient loads
and fishing mortality of cod. Fennel uses this model to predict that management measures
need to be enforced over several years to improve cod stocks.

Travers et al. (2009) coupled the ROMS-N2P2Z2D2 and OSMOSE submodels into one frame-
work. As the LTL model assumes a constant mortality rate to the biological compartments,
these rates needed to be decomposed so that part of it is determined by the HTL model.
Travers et al. (2009) compared a one-way coupling (where the mortality rates of the plankton
groups were kept constant) against a two-way coupling (the mortality rates of the plankton
group were determined by the fish) for the southern Benguela ecosystem for the years 1990-
1997. They showed that the coupling choice had a profound impact upon abundance (where
the biomass of planktivorous species increased during the two-way coupling) and food web
structure (where different food chains occurred during the two-way coupling due to changes
in the dominant food chain which is supported by plankton).

These are two examples of E2E models which have been created by coupling together ex-
isting frameworks for the LTL and HTL communities. There are fewer examples of E2E
models which have been developed from an entirely new framework, but one such example
is the Atlantis model (Fulton et al., 2011; Smith et al., 2007; Link et al., 2010). Fulton et al.
(2011) describes the Atlantis modelling framework as an E2E model which includes the bio-
physical system (environmental drivers as well as biological components), the human users
of the modelled marine ecosystem (industrial fisheries), an adaptive management strategy
(which includes monitoring, assessment and management decision processes) and socioeco-
nomic drivers (human behaviours which influence the system, such as markets and social
networks). Atlantis has been used to explore ecosystem dynamics (Link et al., 2010) and
to predict future regime shifts (Fulton et al., 2011), due to either climate change or human
practices.

There are advantages and disadvantages to either approach, and they both face similar chal-
lenges which arise in the development of E2E models. The advantage of coupling together
existing submodels is that each system has been developed in great detail, and fully tested
and understood over the years. The main issue lies with the fact that the submodels were
created for different purposes. This leads to a difficulty in communication between the two
submodels. For example, regarding the representation of the zooplankton: most LTL mod-
els represent the zooplankton by functional groups such as micro- and meso-zooplankton,
whereas HTL models have represented the LTL organisms implicitly as a ‘carrying capac-
ity’ parameter (Travers et al., 2007). Thus, when coupling together existing submodels, a
‘library’ needs to be created, in order for these two systems to communicate together: the re-
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sources gained by the HTL organisms from feeding on phyto- and zooplankton is aggregated
and distributed to the larval fish, and the predation pressures on the LTL organisms by the
fish is allocated across the functional groups (Libralato and Solidoro, 2009; Travers et al.,
2009).

This issue does not arise when creating a new framework for an E2E model, as the entire
ecosystem is being considered during its development and specific diet niches can be intro-
duced which span both the LTLs and HTLs. Building a new E2E model means that there
is no focus on particular aspects of the marine ecosystem, such as phytoplankton dynamics
or the life history of cod. Instead, wider ecosystem-scale questions can be addressed, where
each component of the marine ecosystem can feedback and affect the others, either directly
or indirectly. The disadvantage of this approach is the cost, both in time and money (Travers
et al., 2007), as well as potential difficulties with mathematical stability, transparency and
tractability due to increased model complexity.

1.3 The challenges involved in developing end-to-end
models

When developing E2E models to represent marine ecosystems, either by coupling together
existing submodels or through developing a new framework, there are two main challenges
which need to be considered.

Firstly, there is the role of zooplankton within the marine ecosystem. As we have seen, zoo-
plankton is the main link between the LTLs and the HTLs in mathematical models. However,
in traditional marine ecosystem models, the zooplankton has been used as the ‘model clo-
sure’ and has not been represented in great detail. For example, in simple NPZ models,
zooplankton mortality is often considered as density dependent and is modelled as being
proportional to the square of the zooplankton concentration (Le Quéré et al., 2005), or else
a linear function is assumed for model simplicity (Edwards and Brindley, 1999). Steele and
Henderson (1992) showed that the choice of a linear function for the zooplankton mortal-
ity leads to limit cycle behaviour, which does not occur when a density dependent function
for the zooplankton mortality is chosen. The zooplankton can be represented as one pop-
ulation, as in the NPZ models (Steele and Hendersen, 1981; Franks, 2002), size-structured
into small, large and carnivorous (Kishi et al., 2007) or, most often, by functional type such
as microzooplankton, heterotrophic flagellates, omnivorous or carnivorous (Baretta, 1995).
On the other hand, zooplankton are often not explicitly considered in HTL models; they are
represented by assuming no internal dynamics (so the total number of individuals remains
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constant over time) (Law et al., 2009) or implicitly as a ‘carrying capacity’ parameter in a
population growth equation (de Roos et al., 2008).

In an E2E framework, the zooplankton needs to realistically represent a range of prey for
zooplanktivores such as herring and sprat, as well as larval fish, whose diet shifts and changes
as it increases in body mass (Rose et al., 2010). One approach for this is to represent the
zooplankton as a size-structured population, where the dynamics are governed by the body
mass of the zooplankton (Fuchs and Franks, 2010; Zhou and Huntley, 1997; Carlotti and
Poggiale, 2010).

The difference in scales between LTL and HTL dynamics, both temporal and spatial, also
need to be addressed in E2E modelling (Rose et al., 2010). In traditional models for LTLs, it
was assumed that the dynamics of fish varied so slowly in comparison to plankton that their
actions upon the LTL organisms were assumed to be constant (Caswell and Neubert, 1998).
A mixture of temporal scales need to be addressed in E2E modelling, in order to realistically
represent the fast dynamics of phytoplankton (e.g. seasonal spring blooms) as well as the
decadal effects that occur (e.g. impact upon the populations due to overharvesting) (Rose
et al., 2010).

A range of spatial scales also need to be considered in an E2E model. Oceans are a spatially
heterogeneous environment where plankton are distributed in ‘patches’ (Currie et al., 1998;
Pitchford and Brindley, 2001; Martin et al., 2002; Brentnall et al., 2003), thus the survival of
organisms whose diet consists of plankton is highly dependent on their movements. Fulton
et al. (2004) show the effect that the spatial resolution has upon ecosystem models, and con-
clude that models with a coarse spatial resolution can lead to misleading results. The impact
of fishing pressure can be misrepresented and over exaggerated using a coarse spatial scale,
as predators and prey overlap for longer periods and over larger areas under these scenar-
ios. Thus, a spatial dimension needs to be considered when developing end-to-end models.
While there are tools which use an explicit spatial resolution within its framework, such as
Ecospace which is a dynamic version of Ecopath, where the biomass within an ecosystem is
dynamically allocated across a grid map (Pauly, 2000), spatial resolution could also be repre-
sented in an indirect way. The Atlantis model uses statistical distributions and coefficients of
variation to capture patchiness in the marine environment, and thus avoids the need to explic-
itly represent them (Fulton, 2010). Thus, statistical indices which represent the probability
of patchiness could be implemented into a predator’s volume search rate, and the spatial
heterogeneity of the ocean could be implemented into the modelling framework without an
explicit spatial scale being considered. Ecopath with Ecosim assumes that prey are divided
into vulnerable and invulnerable components (this is known as the foraging arena theory), or
by defining consumption rates that reflect seasonal and spatial changes in consumption over
the modelled period (Pauly, 2000; Travers et al., 2007).
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1.4 The role of end-to-end models

End-to-end models are necessary tools for gaining insight of the impacts to the marine
ecosystem under future management and environmental scenarios (Fulton et al., 2003b;
Travers et al., 2007; Steele, 2012; Heath, 2012; Heath et al., 2014). For example, global
warming is expected to lead to an increase in the sea surface temperature, with climate
change models predicting a 1.1◦C-6.4◦C increase over the next 100 years (Huertas et al.,
2011). This would have a direct effect on phytoplankton growth, which is highly influ-
enced by temperature, nutrient availability and light intensity (McCauley and Murdoch,
1987; Moisan et al., 2002; Townsend et al., 1994). Any change within the phytoplankton
population would have direct and indirect consequences for organisms at HTLs, in particu-
lar, upon the survival of fish larvae (Kristiansen et al., 2011).

An increase in sea surface temperature would also affect the physiological rates of organ-
isms within the marine ecosystems, for example, metabolic rates or attack rates of predators
(Clark et al., 2003; Pörtner and Knust, 2007). Clark et al. (2003) modelled North Sea cod
populations and studied the effect of sea surface temperature on growth rates. They showed
that an increase of temperature led to a decline in the cod spawning stock and recruitment,
with growth rates optimal at 8.5◦C.

End-to-end models are also tools that can be used for exploring various fisheries manage-
ment strategies (Fulton, 2010). Traditional management strategies are established in order
to protect the young and harvest the old, whilst still maintaining a strong spawning-stock
population (Beverton and Holt, 1993; Law et al., 2013; Borrell, 2013). However, it has been
argued that this selective fishing strategy has led to fish adapting by investing their energy
into reaching sexual maturity as early as possible, as opposed to growing larger (Law, 2000;
Reznick and Ghalambor, 2005; Enberg et al., 2011).

Recently, a balanced harvesting approach has been suggested as a more suitable fishing strat-
egy, where fishing is distributed across a range of species and sizes, in proportion to their
natural productivity (Law et al., 2012; Garcia et al., 2012). Law et al. (2012) used a dy-
namic size-spectrum single fish species model to compare selective fishing against balanced
harvesting. They showed that balanced harvesting leads to good yields whilst reducing dis-
ruption to the ecosystem. However, the practical implementation needs more consideration
as balanced harvesting requires knowledge of productivity (Maxwell et al., 2012; Jacobsen
et al., 2014), although knowledge of relative growth rates could be used as they are related
to productivity (Law et al., 2012).

These different management strategies need to be considered with the presence of a dy-
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namic phytoplankton and zooplankton community included in the ecosystem framework.
As phytoplankton undergo seasonal dynamics, such as spring and autumn blooms (Truscott
and Brindley, 1994; Winder and Cloern, 2010; Findlay, 2006), their interaction with the fish
population could lead to unforeseen consequences.

I will address the issues raised here in Chapter 4 and Chapter 5.

1.5 The importance of body size in marine ecosystems

Body size is a key feature of a marine organism and defines many of its physiological pro-
cesses (Andersen and Beyer, 2006), thus models of marine ecosystems often incorporate size
structure within their framework (Travers et al., 2009; Fennel, 2010). Empirical evidence
suggests that organisms tend to feed upon smaller individuals, be fed upon by larger individ-
uals and hence grow depending on its size (Blanchard et al., 2009; Cohen et al., 1993). An
observation within marine ecosystems of a linear relationship between abundance and body
size on a logarithmic scale with a slope close to -1, known as a size spectrum (Sheldon et al.,
1972; Quinones, 2003), led to the development of population models of marine ecosystems
where the organisms have a size-dependent diet preference.

There have been huge advances in the field of size-structured modelling over the last few
decades. Platt and Denman (1977) developed a model which incorporated a weight-dependent
growth and metabolic rate within it, and this model gave rise to a power-law steady state
which, when parameterised for the Sargasso Sea, agreed with empirical data. Size-spectra
have also been commonly studied using a variant of the McKendrick-von Foerster partial
differential equation (MvF PDE), an equation originally used to investigate population mod-
elling with age distribution. The MvF PDE incorporates size-dependent growth and mortality
rates into its framework, and relates these population-level rates to the changes in abundance
within the population (Benoı̂t and Rochet, 2004; Datta et al., 2010). Further details of the
MvF PDE will be provided in Chapter 2.

End-to-end models commonly use a size-structured modelling approach to represent the HTL
organisms. For example, Travers et al. (2009) used the OSMOSE framework within their
E2E framework (Shin and Cury, 2001). Maury (2010) couples a size-structured pelagic
model, which uses the dynamic energy budget theory (Nisbet et al., 2010) to account for the
uptake and use of energy for vital processes, such as growth, maintenance and reproduction
to the biogeochemical PISCES model.

A size-structured modelling approach is particularly useful in the context of E2E modelling,
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as it improves model simplicity (important for understanding cause-and-effect feedbacks
within the ecosystem, as well as reducing the computational resources required) and reduces
the amount of parameters required for the model while leading to empirically observable
effects (Dickie et al., 1987). It also provides a useful indicator for measuring the effects of
fishing on the ecosystem (Pope et al., 2006), as size-at-entry fishing tends to lead a steeper
slope of the size-spectrum as fishing pressure increases (Rice, 1996; Bianchi, 2000).

1.6 Thesis structure

The aim of this thesis is to contribute to the understanding of the development and dynamics
of end-to-end models. In particular, the consequences of coupling together submodels which
differ in structure and resolution are explored in the context of some of the major influences
currently shaping marine ecosystems.

In Chapter 2, I explore the consequences of the choice of size resolution in the numeri-
cal methods used to simulate size-structured models. To address this issue, I use a size-
structured fish community model, with a non-dynamic plankton spectrum representing the
LTL organisms. I derive a numerical stability condition for this model, and examine the ef-
fect of size resolution upon the slope and stability of size spectrum solutions. In Chapter 3,
I investigate the ramifications of coupling together submodels which differ significantly in
their structure and resolution. I develop a two-way coupled end-to-end model, using a box
framework of phytoplankton and zooplankton to represent the LTLs and the size-structured
fish community model to represent the HTLs. I explore the effect that the choice of the
zooplankton’s functional response has upon the E2E model, and compare it against the orig-
inal size-structured fish community model. In Chapter 4, I use the dynamic E2E model
to investigate the effects of global warming across the marine ecosystem, and in particular,
the effect of a warming climate upon the seasonal dynamics of phytoplankton. Temperature
is incorporated directly into the E2E model through the phytoplankton’s growth rate, and
the abundances and dynamics of the marine organisms are focussed upon to understand the
consequences of increased sea surface temperatures. In Chapter 5, I study the impact of
fishing upon the dynamics of the marine ecosystem, and in particular, whether the interac-
tions between fish and lower-trophic-level organisms leads to a major shift in the dynamics
of the phytoplankton. I compare the effect of two different fishing strategies upon the marine
ecosystem, specifically, the size-at-entry and balanced harvest strategies. I study the disrup-
tion caused to the marine ecosystem by either strategy, whilst considering the potentially
achieved yield. The thesis ends with a General Discussion in Chapter 6, where I debate the
limitations of the method used and future directions for this work.
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Chapter 2

Continuous or discrete: consequences of model choice
for size-structured ecosystems

Abstract

Size structure is a key feature of marine ecosystems, where organisms tend to grow by feed-
ing upon smaller individuals. It can be incorporated into models in various ways, from
smooth continuous variation, to a small number of discrete size classes. Models of marine
ecosystems are important in understanding fundamental ecological mechanisms and predict-
ing system-level changes, such as those brought about by over-fishing or climate change.
Here we develop a mathematical framework to quantify how the large-scale behaviour of
an ecosystem model can vary according to how finely its size structure is resolved. Explic-
itly, we show that both the slope and stability of size spectrum solutions to a size-based
McKendrick-von Foerster model can vary dramatically depending on the choice of size res-
olution of the model. When evaluating possible ecosystem responses to changes, predictions
based on coarsely resolved size-structured models should be treated with caution. In coarsely
discretised models the properties of, and departures from, stable steady states can appear as
artefacts of model choice, rather than reflecting ecological reality.

Keywords

McKendrick-von Foerster equation; size spectrum; finite difference approximation; stability;
marine ecosystem
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2.1 Introduction

Models for the dynamics of marine ecosystems often incorporate size structure, on the
grounds that body size is a key feature of a marine organism, defining many of its biological
processes (Andersen and Beyer, 2006). Empirical evidence shows that organisms tend to
feed upon smaller individuals, are fed upon by larger individuals and grow depending on
their size (Blanchard et al., 2009; Cohen et al., 1993). The data collected tends to show
an approximately linear log(mass)-log(abundance) relationship, known as a size spectrum
(Quinones, 2003; Sheldon et al., 1972).

The dynamics of size-structured populations have been modelled in many ways, including
individual based modelling (Shin and Cury, 2001), matrix methods (Hughes, 1984; de Roos
et al., 1992), stage-based approaches (de Roos et al., 2008; Rudolf, 2007), ordinary differ-
ential equations (Fennel, 2010; Armstrong, 1999; Pahl-wostl, 1997) and through the use of
partial differential equations (PDEs) (Silvert and Platt, 1978; Benoı̂t and Rochet, 2004). A
commonly favoured method for modelling size-structure in ecosystems is through the use of
a PDE known as the McKendrick-von Foerster PDE (MvF PDE), in which the abundance of
the population is dependent on size and time (Benoı̂t and Rochet, 2004; Andersen and Beyer,
2006; Law et al., 2009; Datta et al., 2011). Regardless of the mathematical framework, there
are two paradigms for modelling size spectra: where the species identity of individuals is
not considered, such as in a community size spectrum (Benoı̂t and Rochet, 2004; Law et al.,
2009) or where individuals are assigned a species identity and each species is size-structured
(Andersen and Beyer, 2006; Hartvig et al., 2010; Rossberg, 2012). This chapter is concerned
with modelling a community size spectrum.

In general, PDEs are challenging for formal analysis, and are usually studied using numerical
integrations instead. This can lead to issues with stability and convergence of the numerical
approximation, as well as being computationally expensive (Lax, 1965). The stability and
convergence of the numerical approximation depends upon the discretised step sizes, in this
case, the time step size (∆t) and the log(mass) step size (∆x). It is possible to analyse math-
ematically the MvF PDE (Datta et al., 2011; Capitán, 2010; Rossberg, 2012). However, this
requires certain assumptions to be made; Datta et al. (2011) assumed that the steady state was
a power-law and that the model had an infinite range of sizes. Numerical simulations are still
required when studying the MvF PDE as there are a finite number of species in the marine
ecosystem, and this allows exploration of different scenarios such as fishing management
strategies.

When numerically simulating the MvF PDE, the numerical discretisation is typically chosen
to be very fine, i.e. the step sizes are very small, but this leads to a computationally expensive
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model. Ackleh and Ito (1997) discretised a nonlinear size-structured population model, sim-
ilar to the MvF PDE, using an implicit finite difference approximation. From this numerical
scheme, they derived conditions for uniqueness and proved convergence of the numerical
approximation to the solution.

Benoı̂t and Rochet (2004) used a fourth order Runge-Kutta method to solve the MvF PDE,
with ∆x = 0.5, where x is log weight and dimensionless. The mass and time steps were de-
termined through trial and error and chosen small enough so that patterns were independent
of the value of the steps, yet large enough for a reasonable computational time.

Another example is Fennel (2009), where a coupled nutrient-phytoplankton-zooplankton-
detritus (NPZD) and fish model is studied. The fish compartment is not explicitly mod-
elled using the MvF PDE, rather, it is comprised of three size-structured species (with size-
structured interactions), where there are five classes for planktivorous sprat, six classes for
herring and seven classes for cod. Each size-class for each species is then modelled using
ordinary differential equations for biomass concentration and abundance.

These three examples illustrate that the level of discretisation varies between different stud-
ies. The question is what is the optimum level of discretisation, or ‘best’ trade-off between
accuracy and computability, required for numerically integrating the McKendrick-von Foer-
ster PDE?

In this study, we apply an upwind, finite-differencing discretisation to the McKendrick-von
Foerster PDE (Lax, 1965; Press et al., 2007), in other words, the individuals in discrete size-
classes grow depending on the individuals in smaller size-classes. This paper addresses two
points:

1. Reliable integration of discretised size-spectrum dynamics

2. Effects of discretisation on steady-state properties

The importance of these results to marine ecosystem models is discussed in the final section.
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2.2 Methods and Results

2.2.1 The McKendrick-von Foerster equation

The McKendrick-von Foerster PDE was originally used to model the population dynamics
of an age-structured population. It was adapted into a size-structured model by Silvert and
Platt (1978), where abundance is a function of body mass and time, and is given by:

∂U(w, t)
∂t

=−M(w, t)U(w, t)− ∂(G(w, t)U(w, t))
∂w

(2.1)

where U(w, t) is the density of organisms of mass w per unit volume, G(w, t) is the growth
function and M(w, t) is the mortality function of organisms of mass w at time t (Silvert and
Platt, 1978; Blanchard et al., 2009; Datta et al., 2010; Law et al., 2009; Andersen and Beyer,
2006; Arino et al., 2004; Calsina and Saldafia, 1995; de Roos et al., 2008; Farkas and Hagen,
2007; Hartvig et al., 2010; Rossberg, 2012).

The size-spectra PDE, Eq.(2.1), is transformed to depend on the natural logarithm of weight,
since the sizes of organisms making up the marine community can span many orders of
magnitude. The co-ordinate transformation is w = w0ex where w0 is a reference weight,
and x is a dimensionless variable. This leads to the logarithmically transformed size-spectra
PDE:

∂u(x, t)
∂t

=−µ(x, t)u(x, t)− ∂(g(x, t)u(x, t))
∂x

(2.2)

The mortality and growth rates of the size-spectra equation

In the size-spectra PDE, mortality consists of predation, intrinsic mortality and senescent
mortality. Predation is upon smaller organisms with a preference towards prey which are a
predator-prey mass ratio (PPMR) apart from themselves (determined by a Gaussian feeding
kernel, φ(x,x′) = (1/σ

√
2π)exp{−(x−x′−β)2/2σ2} where β is the log(PPMR) and σ is the

feeding kernel width) (Law et al., 2009). The intrinsic mortality accounts for death which
is not caused by predation, and is assumed to be a constant rate k̃. As there are no top-class
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predators in this modelling framework, a senescent mortality of µseρ(x−xs) is introduced once
organisms reach a certain log(mass) xs, where µs is the senescent mortality rate and ρ is the
senescent mortality exponent (Law et al., 2009; Benoı̂t and Rochet, 2004). The growth rate
is determined by the assimilation of mass gained by consumption.

The boundary conditions for the size-spectra PDE needs to be defined. For the left hand
boundary, small organisms require resources to feed upon in order to grow. This is imple-
mented into the model by assuming that there is a fixed resource spectrum of phytoplankton.
As reproduction is not accounted for in this model, the newborn size-class is also fixed. For
the right hand boundary, it is assumed that there is a maximum log(mass) xmax for the fish
community, and that there are no organisms within the model which are greater than this
xmax.

In other words, the PDE model is:

∂u(x, t)
∂t

=−

intrinsic mortality︷︸︸︷
k̃ +

senescent mortality︷ ︸︸ ︷
µseρ(x−xs) +

predation︷ ︸︸ ︷
µ(x, t)

u(x, t)−

∂


 growth︷ ︸︸ ︷

g(x, t)

u(x, t)


∂x

(2.3)

Initial condition: u(x,0) = u0(x) for x ∈ [xmin,xmax]

Boundary conditions: u(xmin, t) = u1 where u1 is a constant value

u(x, t) = 0 for x > xmax

where µ(x, t) = γ
∫
(w0 exp(x′))qφ(x′,x)u(x′, t)dx′ and

g(x, t) = αγwq
0 exp(x(q− 1))

∫
exp(x′)φ(x,x′)u(x′, t)dx′, xmin is the minimum log(mass) of

the fish community and xmax is the maximum log(mass) of the fish community. See Table
2.1 for the parameter definitions.
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Table 2.1: Parameter values

Parameter value

Term Parameter description Fig.2.1 Fig.2.2 Fig.2.3

Discretisation terms
∆x log(mass) step-size 0.1 see figure see figure
∆t time step-size see figure ≤ 0.001 ≤ 0.001

Feeding terms
γ volume searched per unit time per

unit massq (m3·yr−1· g−q)
600 600 600

q search volume exponent 0.8 0.8 0.8
α mass conversion efficiency 0.2 0.2 0.2
φ feeding-kernel function
β log(preferred predator:prey mass

ratio)
4 4 4

σ feeding-kernel width 2 2 2

Mortality terms
k̃ intrinsic mortality rate (yr−1) 0.1 0.1 0.1
µs senescent mortality rate (yr−1) 0.5 0.5 0.5
ρ senescent mortality exponent 1.5 1.5 1.5

Initial conditions
w0 reference weight (g) 4.54×10−8 4.54×10−8 4.54×10−8

wmin minimum body mass (g) 1×10−3 1×10−3 1×10−3

wmax maximum body mass (g) 3.3×103 3.3×103 3.3×103

p1 density of the smallest phytoplank-
ton size-class (m−3)

2.2×106 2.2×106 2.2×106

λp exponent of the phytoplankton
spectrum

-1 -1 -1

u1 density of the smallest consumer
size-class (m−3)

100 100 100

λu initial exponent of the consumer
spectrum

-1 -1 -1

(Law et al., 2009, see Table 1)
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2.2.2 Reliable integration of discretised size-spectrum dynamics

The solutions of partial differential equations can be approximated using numerical methods,
one of which is the finite differencing method, where the domain space is partitioned into a
mesh and used to approximate the derivatives of the equation through these discrete points
(Lax, 1965; Press et al., 2007). The finite-difference method chosen must be numerically
stable, i.e. any small errors which are introduced to the numerical scheme should dampen
out so that the approximate solution approaches the continuous solution over time. This
stability condition often depends on the step sizes chosen for the variables, in this case the
time and log(mass) variables.

Discretising the size-spectra equation

An upwind, finite-differencing approach is applied to the transformed size-spectra PDE
(Eq.(2.2)) to approximate the continuous PDE with a discrete function. An upwind tech-
nique was used as each size-class grows depending on the size-classes below it in the chain,
i.e. u(x, t + 1) = f(u(x̄x̄<x, t). In order to discretise the size-spectra PDE, the equation first
needs to be linearised around the steady-state solution. See Appendix 2.4.1 for the steps
involved in linearising and discretising the size-spectra PDE. Linearising about the steady-
state solution by assuming that u(x, t) = u∗+ εũ(x, t), where u∗ is the steady-state solution
and ε is small, and discretising the subsequent equation yields the discretised size-spectra
PDE:

ũl+1
j − ũl

j

∆t
=− γ ∑

i> j
(w0exi)q

φ(xi,x j)ũl
i∆xu∗lj −µ∗lj ũl

j−
g∗lj ũl

j−g∗lj−1ũ∗lj−1

∆x
(2.4)

− (1−κ)αγwq
0ex j(q−1)

∑
i< j

exiφ(x j,xi)ũl
iu
∗l
j

+(1−κ)αγwq
0ex j−1(q−1)

∑
i< j−1

exiφ(x j−1,xi)ũl
iu
∗l
j−1

where ũ(x j, tl) := ũl
j,u
∗(x j, tl) := u∗lj ,g

∗l
j = g(x j, tl)|u∗lj and µ∗lj := µ(x j, tl)|u∗lj .

Kelley (1995, Chapter 1) shows that if the finite-difference approximation can be re-written
into the general form of ul+1 = Mul + c , where M is known as the iteration matrix, then
the iteration of the numerical approximation is numerically stable if ξ(M)< 1. ξ(M) is the
spectral radius of the iteration matrix, i.e. the value of the maximum absolute eigenvalue of

28



M. The finite-difference approximation of the size-spectra PDE can be written in the form
ũl+1 = Mũl + c. See Eq.(2.9) in Appendix 2.4.1 for the iteration matrix of the linearised
size-spectra PDE.

The iteration matrix of the size-spectra PDE is too complex to derive analytical forms for its
eigenvalues. However, the numerical method can be applied to the time-independent size-
spectrum solution to illustrate the importance that the choices of ∆t and ∆x has upon the
numerical approximation of the size-spectra PDE. Furthermore, we will demonstrate that if
∆x is kept constant, then numerical stability of the finite-differencing method can be achived
by decreasing ∆t.

Illustration of reliable and unreliable integration

Figure 2.1a and c shows the time-independent size-spectrum solution for four different time
steps, while Figure 2.1b and d shows the stability condition for these time steps. Figure 2.1
shows that the finite-difference approximation of Eq.(2.3) is numerically stable if ∆t is small
enough. When ∆t = 0.001, Figure 2.1a shows that the approximation is numerically stable.
This is verified by the eigenvalues of the iteration matrix which are plotted in Figure 2.1b,
and shows that the spectral radius of the iteration matrix is always less than 1. Note that these
solutions are all very close to each other as, for each time step, the numerical approximation
is approaching the continuous solution. Hence, the solutions are fairly indistinguishable from
each other.

However, increasing the time step-size is all that is required for the finite-difference approx-
imation to become numerically unstable. Figure 2.1c shows that if ∆t = 0.004, and all other
parameters are kept the same, the time-independent size-spectrum solution becomes numer-
ically unstable. As can be seen in Figure 2.1c, the numerical approximation is no longer
tending towards the continuous time-independent size-spectrum solution, but instead, the
density of individuals of about 0.01g is increasing exponentially. This is verified by Figure
2.1d, which shows that at when time=0.16year, the spectral radius of the iteration matrix is
greater than 1.

2.2.3 Effects of discretisation on steady-state properties

The previous section shows that the MvF PDE can be numerically solved using a finite-
difference approximation. This numerical approximation remains numerically stable for all
log(mass) step sizes, as long as the time step-size is small enough and an appropriate ini-
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tial population abundance is chosen. Hence, the MvF PDE can be coarsely discretised and
remain numerically stable.

Is the solution to the coarsely discretised model consistent with that of the finely discretised
model? We investigate this question by gradually increasing ∆x and comparing the stable
steady-state solutions. The McKendrick-von Foerster equation is numerically solved using
the finite-differencing method outlined in Eq.(2.4) for the mathematically stable steady-state
solutions.

Figure 2.2a shows the stable steady-state solution of the McKendrick-von Foerster equation
for different levels of discretisation. Although each discretisation of the McKendrick-von
Foerster equation leads to an approximately linear size-spectrum as the stable steady-state
solution, the gradient of the size-spectrum varies depending on the discretisation. As the dis-
cretisation becomes more coarse, the gradient of the size-spectrum increases (Figure 2.2b).
Note that the straight line is only a visual guide; formal regression is inappropriate because
the plotted points are from numerical analysis of the model and not experimental data.

The stability of the steady-state solution is also studied by analysing the return times to
equilibrium after perturbation. Return times are defined as:

return time :=− 1
real(λmax)

where λmax < 0 (2.5)

where λmax is the least negative eigenvalue, where the eigenvalues are determined from the
Jacobian matrix evaluated at equilibrium.

Figure 2.3 shows that as the coarseness of the discretisation increases, the relative return
times decrease. This is due to the number of equations that need to be solved decreasing as
the coarseness of the discretisation increases. (See Appendix 2.4.3 for more details.)

The results also show that as the discretisation becomes finer, the return time increases ex-
ponentially. Thus, the mathematical stability of the discretised MvF PDE is affected by the
choice of the resolution of the numerical discretisation. This is shown by the shaded grey
region of Figure 2.3. Plank and Law (2011) show that different combinations of the predator-
prey mass ratio and the feeding kernel can lead to a stable steady state, or an unstable steady
state, and find that stability requires the feeding kernel width to be at least 2/5 of the predator-
prey mass ratio. This chapter has shown that the mathematical stability of the MvF PDE is
also dependent upon the level of discretisation chosen to numerically approximate it.
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(a)

(b)

Figure 2.2: The gradient of the size-spectrum solution increases as ∆x increases from a fine
discretisation to a coarse discretisation. (a) The stable size-spectrum solution for varying
values of ∆x (b) The gradient of the size-spectrum for different values of ∆x
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Figure 2.3: The return time to equilibrium decreases as ∆x increases. The shaded grey region
shows that if ∆x crosses a threshold on the fine scale, the steady-state solution crosses from
stable to unstable.

2.3 Discussion

Modelling the Size Spectrum

The McKendrick-von Foerster partial differential equation, which is used for modelling size-
spectra, can be solved using numerical approximations. However, care must be taken when
solving the MvF PDE with a finite-differencing method, as different levels of discretisation
lead to different results. The results show that as the level of discretisation becomes more
coarse, although the general behaviour remains consistent with the fine discretisation (i.e.
an approximately linear size-spectrum solution), it does not capture the full behaviour of the
model (see Figure 2.2).

Baird and Suthers (2007) developed a size-resolved pelagic ecosystem model and studied the
error in the discretisation of the size-classes. They compared simulations with 17, 32, 62, 123
and 245 size-classes, showing that the results for the two coarsest scales (17 and 32) are very
different from the finer scales (62, 123 and 245). They identified the major source of error
as the model’s ability to resolve the appropriate range of prey sizes for a particular predator
species. For example, at the coarsest level of discretisation, the predator of radius 7.7cm
has two prey “species” to feed upon whereas at the finest level of discretisation, the same
predator has 38 prey species. As the discretisation becomes finer, the prey ranges converge
so that they are almost identical. Hence, the discrepancy in results between the coarsely
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and finely discretised MvF PDE could be due to the implementation of the Gaussian feeding
kernel. The results of the MvF PDE equation could be more consistent if the feeding kernel
spanned the same number of size-classes for all levels of discretisation.

The differences in the stable steady-state solution for varying levels of discretisation could
also be due to a trade-off between two types of errors (Picard et al., 2010). One error is
known as the ‘distribution error’, which is the difference between the discrete and continuous
distribution, and arises due to large size-classes combining individuals of different sizes and
averaging the result. The second error is known as the ‘sample error’, the mean of the
standardised variances of the estimator of the transition rates, and is due to highly variable
transition rates with very small size-classes. Picard et al. (2010) show that the optimal size-
class width is a trade-off between the ‘distribution error’ and the ‘sample error’ . They apply
their algorithm to a data set on a tree species of a tropical rainforest in French Guiana and
show that the optimal number of size-classes is 8 classes of 11.4cm in width. Hence the
differences in stable steady-states between the coarsely and finely discretised models, shown
in Figure 2.2, could be due to the ‘distribution error’ growing as ∆x increases.
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Empirical Size Spectra

Han (1998) showed that the construction of a continuous spectrum based on empirical data
is dependent on the size-class intervals used. An error results from the effect of the choice of
size-class interval, as logarithmically equal size-class intervals correspond to linearly un-
equal size-class intervals. When constructing discrete models of biomass spectra (Kerr,
1974; Sheldon et al., 1977), only when the choice of size-class intervals is small does the
discrete model for size-spectra become close to accurate. However, the error can be cor-
rected by applying the coefficient of the effect of size-intervals to the size-spectra models.

In light of Han’s results, should empirical data be used to inform the discretisation level of
size-structured models? Mancinelli et al. (2008) collected the dry mass of benthic macroin-
vertebrates over two seasons, and varied the logarithmic bases into which the data was sorted,
leading to size spectra of varied resolutions. The data was allocated to 19 different size
frequency distributions, and ranged from having approximately 100 finely discretised size-
classes to only 12 coarsely discretised size-classes. Their study showed that site- or season-
specific multivariate effects on size spectra are strongly dependent on the resolution of the
size spectrum. With a fine discretisation, there was an increase in the noise of the data. How-
ever, with a coarse discretisation, the size structure originally present in the data is lost. As
with the algorithm determined by Picard et al. (2010), there is a trade-off between fine and
coarse discretisation.

Thus, when developing size-structured models, analysis of the effect of discretisation on the
model should be carried out. Figure 2.2b indicates that there is a linear relationship between
the discrete step size for log(mass) and the slope of the size-spectrum. This relationship
could be used as a correction factor when modelling at a coarse scale, in order to determine
the gradient of the size-spectrum solution at finer scales.

Stability of the Size-Structured Model

The mathematical stability of the steady-state solution was analysed by studying the return
times to equilibrium after perturbation. For this study, I have taken the return time to be a
function of the least negative eigenvalue (Eq.(3.1)). However, simulations using different
perturbations to the model (changing the slope of the static phytoplankton spectrum, chang-
ing the abundance of newborns in the consumer spectrum) led to similar results obtained
from Eq.(3.1) (see Appendix 2.4.2 for more details).

Plank and Law (2011, Figure 4) show that stability occurs roughly when σ ≥ 2/5β (where
σ is the width of the feeding kernel and β is the log(preferred predator-prey mass ratio).
Figure 2.3 shows that the steady-state transitions from stable to unstable as ∆x decreases for
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the MvF PDE. This transition of stability is a numerical artefact of the finite differencing
scheme used to approximate the MvF PDE. Hence, the mathematical stability of the MvF
PDE depends on the width of the feeding kernel, the preferred predator-prey mass ratio and
the choice of the discretisation of the numerical scheme.

As shown by Rossberg (2012), using a naı̈ve implementation of the backward differencing
approximation can lead to negative real eigenvalues, which arise due to the boundary as-
sumption that the largest individuals in the model do not grow. Hence, the stability of the
forward differencing scheme could also be due to boundary conditions affecting the numer-
ical analysis.

Size-based Indicators

One of the main drivers behind developing size-spectra models is for the use of size-based
metrics in assessment and management of marine ecosystems. One such metric could be a
comparison of the slope of the size-spectrum in an unexploited state against that of an ex-
ploited state (Jennings and Dulvy, 2005). However, the size composition of catches differs
significantly from that of the actual community due to fishing gear selectivity. Jennings and
Dulvy (2005) suggest that to avoid misleading comparisons, size-based metrics should be ex-
pressed as relative indices rather than absolute. One way of using a relative size-based index
is by looking at the departure of the size-spectrum from a linear solution, or its nonlinearity.

As a more coarsely discretised size-spectra model yields a more positive slope than a finely
discretised size-spectra model, a more fair comparison between the two models would be to
look at the relative change of the slope after exploitation. Initial investigations show that the
coarsely discretised and finely discretised models behave in the same qualitative way under
increased fishing pressure, but further work is needed to investigate the relative changes in
behaviour. Hence, coarsely discretised models could be valid when restricted to analysing
relative change, which is difficult when comparing model outputs to empirical data as data
collected before exploitation are rarely available.

As this study has shown, not only does the empirical size-spectrum need to be carefully sum-
marised, but the discretisation of size-spectra models also need to be carefully chosen. As
Han (1998) show, empirical data provides discrete size-spectra and hence requires appropri-
ately discretised size-structured models to understand the data. The resolution of the size
spectrum, both empirically and in models, affects the outputs in ways which are, generally,
unaccounted for. This study has shown the effect of the resolution of the size spectrum upon
the steady state solutions, and the stability of those solutions. However, short term dynamics,
such as seasonal phytoplankton blooms, could affect the size-structured model, its steady-
state solutions and the stability. Rigorous analysis on the numerical method used to model
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an ecological ecosystem is needed to ensure that patterns observed are emergent from the
model, and not numerical artefacts.
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2.4 Appendix

2.4.1 Deriving the iteration matrix for the discretised size-spectra equa-
tion

Recall the size-spectra PDE is

∂u(x, t)
∂t

=−µ(x, t)u(x, t)− ∂

∂x
(g(x, t)u(x, t))

where

µ(x, t) = k̃+µseρ(x−xs)︸ ︷︷ ︸
M1(x,t)

+γ

∫
(w0ex′)q

φ(x′,x)u(x′, t)dx′︸ ︷︷ ︸
M2(x,t)

(2.6)

g(x, t) =(1−κ)αγwq
0ex(q−1)

∫
ex′

φ(x,x′)u(x′, t)dx′

Linearise the size-spectra equation

To analyse the numerical stability of the size-spectra PDE, it needs to be linearised around
the steady-state solution. Assume u(x, t) = u∗+εũ(x, t) where u∗ is the steady-state solution
and ε is small. Then the mortality and growth functions which were defined in Eq.(2.6) can
be written as

µ(x, t) =M1(x, t)+ γ

∫
(w0ex′)q

φ(x′,x)(u∗+ εũ(x, t))dx′

M1(x, t)+M∗2(x, t)+ εM̃2(x, t)

g(x, t) =g∗+ εg̃(x, t)

where M∗2(x, t) :=M2(x.t)|u∗,M̃2(x, t) :=M2(x, t)|ũ(x,t),g∗ := g(x, t)|u∗ and g̃(x, t) := g(x, t)|ũ(x,t).
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Then the size-spectra PDE can be re-written as

∂ũ(x, t)
∂t

=− M̃2(x, t)u∗−µ∗ũ(x, t)− εM̃2(x, t)ũ(x, t)−
∂

∂x
(g∗ũ(x, t))

− ∂

∂x
(g̃(x, t)u∗)− ε

∂

∂x
(g̃(x, t)ũ(x, t))

Letting ε→ 0 yields the linearised size-spectra PDE:

∂ũ(x, t)
∂t

=− M̃2(x, t)u∗−µ∗ũ(x, t)− ∂

∂x
(g∗ũ(x, t))− ∂

∂x
(g̃(x, t)u∗) (2.7)

Discretise the linearised size-spectra equation

Eq.(2.7) is discretised using an upwind finite-differencing method. To simplify notation,
define ũ(x j, tl) := ũl

j, µ̃(x j, tl) := µ̃l
j, g̃(x j, tl) := g̃l

j. Then the discretsation of the linearised
size-spectra PDE is

ũl+1
j − ũl

j

∆t
=− γ ∑

i> j
(w0exi)q

φ(xi,x j)ũl
i∆xu∗lj −µ∗lj ũl

j−
g∗lj ũl

j−g∗lj−1ũ∗lj−1

∆x

− (1−κ)αγwq
0ex j(q−1)

∑
i< j

exiφ(x j,xi)ũl
iu
∗l
j

+(1−κ)αγwq
0ex j−1(q−1)

∑
i< j−1

exiφ(x j−1,xi)ũl
iu
∗l
j−1

This can be re-written as

ũl+1
j =D∗lj ũl

j +

{
∆t
∆x

g∗lj−1−∆t(A∗2)
l
je

x j−1φ(x j,x j−1)

}
ũl

j−1 (2.8)

−∆t∆x(A∗1)
l
j

{
ex j+1q

φ(x j+1,x j)ũl
j+1 + ex j+2q

φ(x j+2,x j)ũl
j+2 + ...

}
+∆tex j−2φ(x j,x j−2)

{
(A∗2)

l
j−1− (A∗2)

l
j

}
ũl

j−2

+∆tex j−3φ(x j,x j−3)
{
(A∗2)

l
j−2− (A∗2)

l
j−1

}
ũl

j−3 + ...
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where

D∗lj =1−∆tµ∗lj −
∆t
∆x

g∗lj

(A∗1)
l
j =γwq

0u∗lj

(A∗2)
l
j =(1−κ)αγwq

0ex j(q−1)u∗lj

Write the discretised approximation into the general form with an iteration matrix

The finite-difference approximation can be written in the form ũl+1 = Mũl + c where
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ũl
=

           ũl 1 ũl 2 . . . ũl j . . . ũl N

           
c
=

           0 0 . . . 0 . . . 0           

M
=            1

0
0

0
··
·

0
. .

.
. .

.
. .

.
. .

.
. .

.
··
·

··
·

+
∆

t
∆

xg
∗l j−

2
−

∆
t(

A
∗ 2)

l j−
1e

x j
−

2
φ
(x

j−
1,

j−
2)

+
D
∗l j−

1
−

∆
t∆

x(
A

1)
∗l j−

1e
x j

q φ
(x

j,
x j
−

1)
−

∆
t∆

x(
A
∗ 1)

l j−
1e

x j
+

1q
φ
(x

j+
1,

x j
)
··
·

··
·

+
∆

te
x j
−

2φ
(x

j,
x j
−

2
{(

A
∗ 2)

l j−
1
−
(A
∗ 2)

l j}
+

∆
t

∆
xg
∗l j−

1
−

∆
t(

A
∗ 2)

l je
x j
−

1
φ
(x

j,
x j
−

1)
+

D
∗l j

−
∆

t∆
x(

A
∗ 1)

l je
x j

+
1q

φ
(x

j+
1,

x j
)
··
·

··
·

. .
.

. .
.

. .
.

. .
.

··
·

··
·

. .
.

. .
.

. .
.

. .
.

D
∗l N

           
(2

.9
)
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2.4.2 The return times of the steady-state solutions for continuous and
discrete models

In Section 2.2.3, the stability of the steady-state solution for the discretised McKendrick-von
Foerster equation was studied by analysing the return time to equilibrium after perturbation.
The return time is also a function of the least negative eigenvalue, and in Section 2.2.3, is
defined as:

return time :=− 1
real(λmax)

where λmax < 0

How accurate is this definition for the return time? We perturb the system in two different
ways and measure the time for the system to return to its original equilibrium state. We
perturb the system in two different ways:

1. Changing the gradient of the static phytoplankton spectrum

2. Changing the fixed abundance of newborns (u1)

The perturbations are implemented into the model for one year, before the parameters are
returned to the original set in Table 2.1. The model is then allowed to continue integrat-
ing forwards in time, using a standard Euler’s method, until it has reached the original
equilibrium state (assuming that the perturbed state is equal to the equilibrium state when
|uperturbed−uequilibrium|< 1e−6.

Figure 2.4 shows that the definition for return times as a function of the largest eigenvalue
leads to a result which is qualitatively similar to perturbing the system and waiting for the
perturbed state to return to the equilibrium state. The main difference is that the defined
return time leads to a result which appears to be exponentially decreasing much more rapidly
as ∆x increases than the perturbed systems.

2.4.3 Size-class intervals and number of size-classes

The range of log(mass) is chosen between some minimum and maximum size, i.e. [xmin,xmax].
When partitioning the log(mass) domain space, the number of size-classes, NC depend on the
step-size chosen:
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Figure 2.4: As the log(mass) interval, ∆x, increases, the return time to equilibrium after per-
turbation decreases. Defining return time as − 1

λmax
leads to a qualitative similar result to

perturbing the system and waiting for the state to return to equilibrium. (Black, filled circle
marker, •) return time := − 1

λmax
(Blue, circle marker, ◦) the gradient of the phytoplankton

size-spectrum was decreased to -1.5 (Green, cross marker, ×) the gradient of the phyto-
plankton spectrum was increased to -0.5 (Red, star marker, ∗) the abundance of the newborn
size-class, u1, was decreased by a factor of 0.5 (Pink, triangle marker,4) the abundance of
the newborn size-class, u1, was increased by a factor of 1.5

NC =

∣∣∣∣xmax− xmin

∆x

∣∣∣∣
When NC is an integer value, then xmax is unaffected by the discretisation. However, when
NC is not an integer value, it is rounded down so that the new maximum size, x̃max is less
than xmax. For example, when xmin = 10,xmax = 25,∆x = 0.1, NC = 150 and x̃max = xmax =

25. However, when ∆x = 0.7, then NC = 21.43 which leads to 24.7 = x̃max < xmax = 25.
This leads to ranges of ∆x where the number of size-classes remains the same, despite an
increasing log(mass) step-size. This can lead to numerical artefacts in the results.

These numerical artefacts need to be removed from results before analysis. Figure 2.3 shows
the results when the maximum log(mass) size was taken into account and controlled for.
The discretisations chosen were to ensure that the consumer spectrum always has the same
largest size-class (about x = 8, or w = 3270g). Figure 2.3 shows that the return time to
steady-state after perturbation decreases as the coarseness of the discretisation increases.
When all possible discretisations are chosen without taking this consideration into account,
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the result is not as clear to understand.
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Figure 2.5: The return time to equilibrium decreases as ∆x increases. The shaded grey region
shows that if ∆x crosses a threshold on the fine scale, the steady-state solution crosses from
stable to unstable.

As can be seen in Figure 2.5, the return time to equilibrium continues to decrease as ∆x

increases, but there are jumps in the results. The jumps, where the return time momentarily
increases as ∆x increases, are due to the numerical discretisation of the McKendrick-von
Foerster equation. During these jumps, the log(mass) step-size is increasing yet the number
of size-classes is staying the same. This is due to the numerical implementation of the code
only allowing a maximum log(mass) of 8. Hence the return time seems to be closely related
to the number of size-classes used as well as the coarseness of the discretisation. However,
the general trend stated in Section 2.2.3 remains true - as the discretisation becomes more
coarse, the return time decreases.
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Chapter 3

Development of an end-to-end model: exploring
the importance of the structure of the zooplankton
link

Abstract

End-to-end models of marine ecosystems couple biogeochemical models of lower-trophic-
level organisms, and population dynamic models of higher-trophic-level organisms into a
single modelling framework. Models of lower-trophic-level organisms tend to use a func-
tional group approach with minimal size-structure within these groups, whereas models of
higher-trophic-level organisms are species-centric with each species’ life history described
using a finely resolved age- or size-structure. The difference between the “structure” and
“resolution” of these coupled models could lead to numerical artefacts being misinterpreted
as ecosystem-scale dynamics. Here, we develop a new end-to-end model which couples
together a phytoplankton population, zooplankton population and a size-structured fish com-
munity. With this minimal framework, we investigate the effect of model architecture upon
the interpretation of steady-state results of a marine ecosystem, and in particular, focus on the
importance of the dynamics of the zooplankton population. The model shows that large-scale
steady-state behaviours of the system (e.g. the size-spectra and associated slopes) are com-
parable with previous models and empirical observations of marine ecosystems. However,
the underlying structure of the model can lead to significant differences in the individual life
histories within the fish community and in particular, lead to vastly different growth rates
for larval fish under different assumptions of the representation of the lower-trophic-level
organisms.
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3.1 Introduction

In traditional models of marine ecosystems, the population dynamics of lower trophic level
organisms (LTLs), such as phytoplankton and zooplankton, and the higher trophic level or-
ganisms (HTLs), such as targeted fish stocks, have been modelled independently of each
other (Libralato and Solidoro, 2009; Rose et al., 2010; Travers et al., 2007).

The LTL population dynamics are commonly described using biogeochemical models, which
capture the way nutrients are utilised by the biological organisms at this trophic level. The
LTLs have been most commonly modelled using box compartments which represent the
concentrations of nutrients, phytoplankton and zooplankton (and detritus), with the dynam-
ics within each box defined by ordinary differential equations. This genre of models has
become known as NPZD-type models (Franks et al., 1986). In the last two decades, these
models have been extended in several ways. One method has been to increase the number of
functional types within the modelling framework. The European Regional Seas Ecosystem
Model (ERSEM) separates the NPZD components into several functional types: for exam-
ple, the phytoplankton module is divided into diatom, flagellate, picoplankton, dinoflagellate
and coccolithorpe (Baretta, 1995). The other commonly used method has been to impose
a simple size-structure on the components of the NPZD model. The NEMURO model in-
creases the complexity of the NPZD model through size-structure: the phytoplankton group
is divided into small and large, whilst the zooplankton group is divided into small, large and
predatory (Kishi et al., 2007).

Due to the strong dependence of the nutrient component upon climatic factors, hydrodynamic
models and biogeochemical models have been coupled together (Franks, 2002; Fasham et al.,
1990). ERSEM has been coupled to several different hydrodynamic models, for examle, a 1d
General Ocean Turbulence Model (GOTM) (Blackford, 2004) and a three-dimensional baro-
clinic model known as POLCOMS (Lewis and Allen, 2009), whilst Travers et al. (2009) cou-
pled together the Regional Ocean Modelling System (ROMS) with a size-structured NPZD
model, known as N2P2Z2D2 (so named as each model was divided into two size-structured
components of large and small).

These LTL models use a ‘closure’ term to represent the predation of fish on the LTL organ-
isms, by assuming that the dynamics of the fish community is so slow when compared to
the dynamics of the LTL organisms that their influence upon these organisms are essentially
constant. The choice of ‘closure’ term can have an important effect upon the dynamics of
the LTL model (Steele and Henderson, 1992; Edwards and Yool, 2000).

Models for the population dynamics of HTL organisms have been developed from the per-
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spective of fisheries management (Travers et al., 2007), and tend to target commercially im-
portant fish stocks, such as cod (Beaugrand and Kirby, 2010), herring (Megrey et al., 2007)
and salmon (Shiomoto et al., 1997). These models structure the fish population through some
individual-based trait, such as age (Mellin et al., 2009; Kamioka, 2005), stages (de Roos
et al., 2008) or size (Datta et al., 2010; Law et al., 2009; Benoı̂t and Rochet, 2004). These
HTL models use a ‘closure’ term to represent the LTL organisms, either through an assump-
tion of a constant ‘pool’ of plankton (Law et al., 2009; Benoı̂t and Rochet, 2004) or by
assuming a ‘carrying capacity’ parameter (Travers et al., 2007).

Over the last five years, the importance of the relationship between climate, LTL and HTL
organisms have become apparent. LTL organisms such as phytoplankton are directly affected
by climate variability, by the physical and chemical properties of the ocean. Zooplankton is
one of the primary food sources of larval fish and planktivores, and so have a direct impact
on HTL population dynamics (Carlotti and Poggiale, 2010; Daewel et al., 2007; Field et al.,
2006; Rose et al., 2010). This has led to the development of end-to-end (E2E) models,
which couple together submodels of the higher and lower trophic level organisms into one
framework (Libralato and Solidoro, 2009; Rose et al., 2010; Travers et al., 2009).

One of the current approaches to studying E2E models is to couple together existing sub-
models, as demonstrated by Travers et al. (2009), where the ROMS-N2P2Z2D2 was used to
model the LTLs and OSMOSE (an individual-based model of size-structured schools of or-
ganisms) for the HTLs. Aydin et al. (2005) used the NEMURO model together with Ecopath
with Ecosim (EwE) to model the growth rates of Pacific salmon. Libralato and Solidoro
(2009) coupled together a Trophic-Diffusive model for the LTLs with EwE to create an E2E
model. The main issue when coupling together existing submodels is that each model was
developed with a different intention in mind. Models of LTL organisms have been developed
to improve our understanding of biogeochemical cycles (Edwards and Yool, 2000), whilst
models of HTL organisms have been developed to understand the life histories of fish and
support decisions in fisheries management. As these three examples of E2E models have
shown, the framework for modelling the LTL organisms differs greatly from that used to
model the HTL organisms.

As can be seen from existing E2E models, functional groups which have been coarsely
size-structured tend to be used for models of LTLs (Kishi et al., 2007; Travers et al., 2009)
whereas a species-based approach is commonly used for models of HTLs. Hence, the “struc-
ture” of the coupled models differ significantly. There is also a considerable difference in the
“resolutions” used in LTL and HTL models. In general, there are at most 1-3 compartments
of zooplankton which can be used as a resource for 35 commercially important fish species
(Steele et al., 2007) or 11 size-structured fish populations (Travers et al., 2009). Shin et al.
(2010) state that effects such as trophic cascades can be difficult to observe in E2E models
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due to the effects cancelling each other out when the LTL compartments are aggregated.
The variation in “structure” and “resolution” in the coupled models could lead to numerical
artefacts due to model architecture, with these artefacts being mistaken for ecosystem effects.

In this chapter, we study the impact of coupling together models which differ in “struc-
ture” and “resolution”. Two models will be compared, where the first model, known as
the SR-Fish model, will use the size-structured fish community model discussed in Chapter
2, with the assumption of a static resource spectrum representing the LTL organisms. The
second model will be the PZ-Fish model, a novel dynamic E2E model which couples to-
gether a phytoplankton-zooplankton model (PZ model) (Truscott and Brindley, 1994) to the
size-structured fish community discussed in Chapter 2. With these two modelling frame-
works, we investigate the plausibility of an E2E model, whose submodels differ significantly
in their compositions, and the importance of the zooplankton dynamics within the marine
ecosystem. In particular, we explore the effect that the choice of functional response for the
zooplankton’s grazing rate upon phytoplankton has upon the dynamics of the PZ-Fish model.

3.2 Methods

3.2.1 The SR-Fish Model

The Static Resource-Fish model (SR-Fish) is a size-structured fish community model which
assumes a static resource (i.e. plankton) spectrum for small fish to feed upon. The population
density of the fish community is modelled using a variant of the McKendrick-von Foerster
PDE (MvF PDE) (Benoı̂t and Rochet, 2004; Law et al., 2009; Datta et al., 2010; Datta, 2011),
where the density of individuals is a function of body mass and time, and is given by:

∂u(x, t)
∂t

=−µ(x, t)u(x, t)− ∂(gSR(x, t)u(x, t))
∂x

(3.1)

with initial condition u(x,0) = u0(x) for x ∈ [xmin,xmax] and boundary conditions

1. g(0, t)u(0, t) = κ
∫

gSR(x, t)u(x, t)ex−xmindx

2. u(x, t) = 0 for x > xmax
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where u(x, t) is the density of individuals of log(mass) x per unit volume, xmin is the minimum
log(mass) of the fish community, xmax is the maximum log(mass) of the fish community and
the population dynamics are governed by size-dependent mortality and growth rates, µ(x, t)

and gSR(x, t), respectively.

Mortality consists of predation, intrinsic mortality and senescent mortality. Predation is upon
smaller organisms, with the strongest preference towards individuals which are a log(predator-
prey mass ratio) (log(PPMR)) smaller than themselves. This is determined by a Gaussian
feeding kernel, φ(x′,x) = (1/σ

√
2π)exp{−(x′− x− β)2/2σ2} where β is the log(PPMR)

and the width is proportional to σ. An intrinsic mortality rate represents death which is not
caused by predation, and is assumed to be a constant rate k̃. To ensure that there is no accu-
mulation of unrealistically large organisms due to the absence of top-class predators in this
model, a senescent mortality rate of µseρ(x−xs) is introduced once organisms reach a certain
log(mass) xs, where µs is the mortality rate and ρ is the senescent mortality exponent (Law
et al., 2009; Benoı̂t and Rochet, 2004).

The size-dependent mortality rate can then be written as

µ(x, t) =k̃+µseρ(x−xs)+ γwq
0

∫
ex′q

φ(x′,x)u(x′, t)dx′ (3.2)

where γ is the volume search rate (with units g−q year−1 m3), q is the volume search exponent
(as the rate at which a predator searches its environment for prey scales with body size)
(Benoı̂t and Rochet, 2004; Law et al., 2009) and w0 is the reference weight derived from the
co-ordinate transform w = w0ex where w is the body mass in g of the individual.

Growth is through the assimilation of mass gained by consumption. It is assumed that upon
ingestion, a fraction of that energy gained (κ) is used for reproduction and the rest of the
energy is used for somatic growth (1−κ). The size-dependent growth rate can be written as

gSR(x, t) =(1−κ)αγwq
0ex(q−1)BSR(x)

where

BSR(x) =
∫

ex′
φ(x,x′)u(x′, t)dx′ (3.3)

The reproduction term to the larval fish class can then be written as
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RSR =καγ

∫
ex′(q−1)BSR(x′)ex′−xminu(x′, t)dx′ (3.4)

where xmin is the size-class denoting the larval fish (see Section 3.2.4 for more details).

A static resource spectrum is assumed within this model to provide food for the small size-
classes of fish, and has a range in body mass of [wSR,min,wSR,max]. The size-classes of this
static resource spectrum are distributed according to a power law p1wλP

SR (Law et al., 2009),
where p1 is the abundance of phytoplankton of mass wSR,min, wSR is the mass of the phyto-
plankton and λP is the exponent of the resource spectrum.

3.2.2 The PZ-Fish Model

We develop a new dynamic end-to-end model, henceforth known as the Phytoplankton
Zooplankton-Fish (PZ-Fish) model, which represents the lower trophic level organisms as
two populations of phytoplankton (P, density of individuals of log(mass) xP per m−3) and
zooplankton (Z, density of individuals of log(mass) xZ per m−3), while the dynamics of
the size-structured fish community are modelled as described in Section 3.2.1. Within this
model, the phytoplankton population density grows logistically in the absence of predators
with a maximum growth rate of rP and a carrying capacity of Pmax, is preyed upon by Z at
some grazing rate f (P) and is also preyed upon by fish at a rate of AP(u). Z grows according
to its consumption of P at a rate αZ f (P), dies at some intrinsic mortality rate µZ and is preyed
upon by fish at a rate of AZ(u).

To account for the predation of fish on the phytoplankton populations, it is assumed that
fish which are a PPMR bigger than the phytoplankton have the strongest feeding preference
upon them. This feeding preference is determined using the Gaussian function described
in Section 3.2.1. In other words, if phytoplankton has a log(mass) of xP, then φP(x) =

1/(σ
√

2π)exp{−(x− xP−β)2/2σ2} is the function representing the feeding preference of
the fish community for phytoplankton. β and σ have been kept identical to the values chosen
for the SR-Fish model to allow for comparison between these models, i.e. we are assuming
that the phytoplankton class is identical to the size-class of the static-resource spectrum with
body mass 9.12× 10−7g. An alternative assumption would be to assume that the feeding
kernel of the fish upon the phytoplankton is distributed over a wider range of size-classes,
but this chapter is aiming to investigate the challenges involved when fish feed upon one
phytoplankton class, and one zooplankton class. The feeding kernel for fish feeding on
zooplankton can be determined in the same way, assuming that zooplankton has a log(mass)
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of xZ .

Figure 3.1 displays φP(x) and φZ(x), and shows that the fish community does not have a
strong feeding preference for phytoplankton, and that the fish of about mass 0.005g has the
strongest preference for feeding on zooplankton. Fish which are bigger than 1g have grown
beyond the body size in which they have a preference for feeding on zooplankton; at this
point, they begin feeding upon small, larval fish.

Figure 3.1: The feeding kernel functions representing the fish community feeding on phy-
toplankton (φP(x), the solid green line) and zooplankton (φZ(x), the solid red line) where
wP = 9.12×10−7g and wZ = 4.98×10−5g.

The predation of fish upon phytoplankton (AP(u)) and zooplankton (AZ(u)) can be written
as

AP(u) = γwq
0

∫
ex′q

φP(x′)u(x′, t)dx′ (3.5)

AZ(u) = γwq
0

∫
ex′q

φZ(x′)u(x′, t)dx′ (3.6)

The PZ-Fish model can be summarised as
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dP
dt

= rPP
(

1− P
Pmax

)
− f (P)Z−AP(u)P (3.7)

dZ
dt

= αZ f (P)Z−µZZ−AZ(u)Z

∂u(x, t)
∂t

=−µ(x, t)u(x, t)− ∂(gPZ(x, t)u(x, t))
∂x

(3.8)

where

gPZ(x, t) =(1−κ)αγwq
0ex(q−1)BPZ(x)

where

BPZ(x) =
∫

ex′
φ(x,x′)u(x′, t)dx′+

∫
exPφP(x)P(xP)dxP +

∫
exZ φZ(x)Z(xZ)dxZ

and

RPZ =καγ

∫
ex′(q−1)BPZ(x′)ex′−xminu(x′, t)dx′ (3.9)

where gPZ is the size-dependent growth rate and RPZ is the reproductive rate for the fish
community in the PZ-Fish model. The growth of individual fish in the size-structured com-
munity now accounts for consumption upon dynamic populations of phytoplankton and zoo-
plankton. The reproductive rate also accounts for the consumption of phytoplankton and
zooplankton in the same way.

See Table 3.2 for a definition of all the parameters used in this model and in the SR-Fish
model.

3.2.3 Functional responses

The representation of the zooplankton’s grazing rate upon the phytoplankton population (i.e.
the formulation of the functional response) can have a profound influence on the dynamics
of planktonic models, leading to oscillating or constant population densities (Gentleman and
Neuheimer, 2008). Most expressions of functional responses have a satiating response to
increasing prey availability as well as grazing thresholds and varying degrees of nonlinearity
(Franks, 2002). The most common functional responses are characterised by Holling Type
(Holling, 1959). Type I responses increase linearly with food:

52



f (P) = rZP

where rZ is the zooplankton’s maximum grazing rate. Type II responses assume that the
consumer is limited by its capacity to process food, and thus satiates when there are high
densities of prey available:

f (P) =
rZP

CII +P

where CII is the half-saturation coefficient. Finally, Type III responses have a sigmoidal
form: at low prey densities, the grazing rate accelerates and then decelerates as it approaches
satiation. It can be written as:

f (P) =
rZP2

C2
III +P2

where CIII is a parameter describing the nonlinearity in the zooplankton’s feeding response
to prey abundance.

In this chapter, we investigate the effect that the choice of functional response has upon
a dynamic end-to-end model. The PZ-Fish model represents the effect of fish predation
on phytoplankton and zooplankton through a dynamic, linear response. When the PZ-Fish
model is at equilibrium (or steady-state), i.e. the populations of phytoplankton, zooplankton
and fish remain constant over time, then the values of AP(u) and AZ(u) are constant and the
steady-state solutions of the PZ submodel can be studied. Let AP(u) = AP and AZ(u) = AZ

when the PZ-Fish model is at equilibrium.

Table 3.1 shows the analytical steady-state solutions and the associated Jacobian matrix (the
matrix of first-order partial derivatives of the system) for the PZ submodel. For each func-
tional response, there are three possible steady-state solutions: (0,0), (P∗,0) and (P∗,Z∗).
The stability of those steady-states (the ability of the populations to return to the steady-state
solution under small perturbations) can be determined by studying the associated Jacobian
matrix. The Routh-Hurwitz stability criterion can be applied to determine the stability of
the steady-state, where the solution is stable if the trace of the Jacobian matrix is negative
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and the determinant of the Jacobian matrix is positive. However, even with a simple 2×2
matrix, the derivation for the conditions required for stability can be complex and difficult
to analyse, in which case, stability can be determined by direct calculation of the Jacobian’s
eigenvalues.

3.2.4 Numerical methods

Numerical methods are necessary to study the dynamics of the SR-Fish and PZ-Fish models.
This requires a discretisation method to be chosen, where the domain space is partitioned into
a mesh and used to approximate the differential equations (Lax, 1965; Press et al., 2007) (see
Chapter 2 for a thorough investigation into the effect of discretisation upon size-structured
models). The boundary conditions for the discretised SR-Fish and PZ-Fish models are

du(xmin, t)
dt

=−µ(xmin, t)u(xmin, t)−
g(xmin, t)u(xmin, t)

∆x
+

g(0, t)u(0, t)
∆x

=−µ(xmin, t)u(xmin, t)−
g(xmin, t)u(xmin, t)

∂x
+

R
∆x

du(xmax, t)
dt

=− (k̃+µseρ(x−xs))u(xmax, t)−
g(xmax, t)u(xmax, t)

∆x
+

g(xmax−1, t)u(xmax−1, t)
∆x

where gSR or gPZ is used for the size-dependent growth rate g(x, t) and RSR or RPZ is used
for the reproductive rate R, depending on whether the SR-Fish or PZ-Fish model is being
studied.

Parameters

The parameter values used within the numerical simulations, as well as their full definitions
and units, for the SR-Fish and PZ-Fish models can be found in Table 3.2. The size-structured
fish community model uses parameter values from Law et al. (2009)[Table 1]. The only
exception is the fraction of consumed biomass which is allocated to reproduction, κ. A
value of 0.75 was chosen to ensure co-existence of the full phytoplankton-zooplankton-fish
community. An empirical value for this parameter cannot be found, as the model aggregates
species into a single community of fish. Therefore, the parameters for explicit life histories
of the constituent species cannot be used within this modelling framework.

The P growth rate, rP, and the Z mass conversion efficiency, αZ , parameter values were
taken from Truscott and Brindley (1994). The Z Holling Type II half-saturation coefficient
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value ranges between 9.22× 103 and 4.45× 105 m−3 (Fasham et al., 1990; Stock et al.,
2008), and a value of 9.22×103 m3 chosen for this study. The Z Holling Type III switching
parameter was converted from the value used in Edwards and Brindley (1999). The value
of P carrying capacity, Pmax, was chosen to be 2.2× 105 m−3. The Z grazing rate, rZ , was
varied, depending on the choice of functional response (see Section 3.2.3): 2.74×105 year−1

for Type I, 365 year−1 for Type II (Fasham et al., 1990; Stock et al., 2008) and 548 year−1

for Type III (Edwards and Brindley, 1999). The Z intrinsic mortality rate, µZ , was assumed
to be 0.1 year−1 as this is the intrinsic mortality rate assumed for the fish community.

The slope of the static-resource spectrum λP, was determined by using the stable steady-
state solutions for the PZ-Fish model (for each of the Holling Type functional responses),
and using trial and error to find a value for the slope of the static-resource spectrum, which
yielded a steady-state solution for the SR-Fish model which was comparable to those of the
PZ-Fish model.

Table 3.2: Parameter definitions for the SR-Fish and PZ-Fish models.

Parameter Description Unit Parameter Value

Static resource spectrum
wSR,min minimum body mass of the re-

source spectrum
g 9.12×10−7

wSR,max maximum body mass of the re-
source spectrum

g 2.72×10−3

p1 abundance of phytoplankton of
mass wSR,min

m−3 1.45×102

λp exponent of the resource spectrum - -0.13

PZ sub-model
rP P growth ratea year−1 109.5
Pmax P carrying capacity m−3 2.2×105

rZ Z grazing rate year−1 various (see Figure 3.4)
CII Z Holling type II half-saturation

constantb
m−3 9.2×103

CIII Z Holling type III switching
parameterc

m−3 5.2×103

αZ Z mass conversion efficiencya - 0.05
µZ Z intrinsic mortality rate year−1 0.1
φP predation kernel on P -
φZ predation kernel on Z -
wP P mass g 9.12×10−7

wZ Z mass g 4.98×10−5
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Table 3.2: Parameter definitions for the SR-Fish and PZ-Fish models.

Parameter Description Unit Parameter Value

Fish sub-model
wmin minimum body mass g 1×10−3

wmax maximum body mass g 3.3×103

w0 reference weight, w = w0ex g 4.54×10−8

Feeding terms
γ volume searched per unit time per

unit massq d

m3 year−1 g−q 600

q search volume exponentd - 0.8
α mass conversion efficiencyd - 0.2
φ feeding-kernel function -
β log(preferred predator:prey mass

ratiod

- 4

σ feeding-kernel widthd - 2
κ fraction of ingested energy allo-

cated to reproduction
- 0.75

Mortality terms
k̃ intrinsic mortality rated year−1 0.1
µs senescent mortality rated year−1 0.5
ρ senescent mortality exponentd - 1.5
xs size-class at which senescent mor-

tality is introducedd

- log(60)

a Truscott and Brindley (1994)
b Murray (2001)
c Edwards and Brindley (1999)
d Law et al. (2009)
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3.3 Results

In this section, the dynamic PZ-Fish model is compared to the SR-Fish model, and they
are measured against each other in various ways. Firstly, we investigate the effect that the
choice of functional response for the zooplankton’s grazing upon phytoplankton has upon
the stability of the PZ-Fish model. We then compare the PZ-Fish model against the SR-Fish
model, for each functional response, and use the following measures:

1. Total biomass in the fish community

2. The slope of the size-spectrum

3. Stability of the steady-state solution

4. Growth of a cohort of fish over five years

Note that the slope of the size-spectrum, and the associated R2, is calculated using Matlab’s
polyfit function, which uses a least squares method to fit the coefficients to a linear polyno-
mial. These measures were chosen in order to see if the dynamic PZ-Fish model can give
comparable results to the well-studied SR-Fish model.

3.3.1 Stability due to the choice of functional response

In this section, we study the stability of the (P∗,Z∗) steady-state solutions for each Holling
Type functional response, under different predation pressures by the fish community (i.e.
(AP,AZ)-parameter space). We only study the non-trivial steady-state solution here, as we
are interested in a marine ecosystem which allows for co-existence of all the species within
it. Figure 3.2 shows the regions where the (P∗,Z∗) steady-state solution is non-negative,
the stability of the solution and also marks the predation pressure that a size-structured fish
community would exert upon the phytoplankton and zooplankton populations.

The PZ submodel is a 2× 2 system, and the associated Jacobian matrix can be used to
determine the two associated eigenvalues at the steady-state. These eigenvalues can be used
to determine the stability of the steady-state solutions. Eigenvalues are generally complex
numbers, but the real part of the eigenvalue can be used to determine stability of the steady-
state. If both real parts of the eigenvalue are negative, then the steady-state is stable (i.e. the
system returns to the steady-state solution after a small perturbation). If either of the real
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parts of the eigenvalue are positive, then the steady-state is unstable (i.e. the system does not
return to the steady-state solution after a small perturbation).

Figure 3.2 shows the stability of the (P∗,Z∗) steady-state solution when a Holling Type I, II
or III functional response is assumed. The marker indicates the predation pressures exerted
upon the phytoplankton and zooplankton populations by a size-structured fish community.

Figure 3.2a shows that when a Holling Type I functional response is used in the PZ-submodel,
then the (P∗,Z∗) steady-solution is stable if it is non-negative. Otherwise, the extinction of
P and Z is the stable solution to the system. When comparing the Holling Type I functional
response to the Type II and Type III responses, the Holling Type I remains stable under much
more intensive predation pressures from the fish community - only when the predation pres-
sure of the fish upon the phytoplankton population (AP) exceeds the phytoplankton growth
rate (rP), do the phytoplankton and zooplankton populations crash and become extinct. This
is the case for each Holling Type functional response, however, the existence and stability
of the steady-state solutions are more sensitive to the predation pressure of the fish upon the
zooplankton community (AZ) for Holling Type II and III functional responses.

The existence of the (P∗,Z∗) steady-state solution when a Holling Type II functional re-
sponse is assumed, is highly dependent on the predation of fish on the zooplankton popu-
lation (see Figure 3.2b). When AZ > 18 year−1, then the zooplankton population has been
grazed to extinction. When (P∗,Z∗)> 0, it is most commonly an unstable solution, and the
phytoplankton and zooplankton populations oscillate over time (see Figure 3.3a). As can be
seen in Figure 3.2b, there is only a small region of (AP,AZ)-parameter space in which the
(P∗,Z∗) steady-state solution is stable.

When a Holling Type III functional response is assumed, the (P∗,Z∗) steady-state solution
is non-negative under higher predation pressures than when a Type II functional response
is assumed, with AZ > 28 year−1 before the zooplankton is grazed to extinction (see Figure
3.2c). There is also a much larger region of (AP,AZ)-parameter space in which the steady-
state solution is stable, compared to when a Type II functional response is assumed. The
marker in Figure 3.2c also shows that when a size-structured fish community is assumed
to be feeding on the phytoplankton and zooplankton populations, the predation pressures
exerted upon the lower trophic level organisms means that the (P∗,Z∗) steady-state solution
is on the cusp of stability, and it would only require a small change in the predation pressures
to lead to an unstable solution. Thus, in an end-to-end model where the PZ model is coupled
to a size-structured fish community, a Type III functional response could lead to the system
being easily destabilised under environmental influences, such as fishing.
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(a)

(b)

(c)

Figure 3.2: The stability of the (P∗,Z∗) steady-state solutions for the three functional re-
sponses used to represent the zooplankton’s grazing on the phytoplankton. The marker rep-
resents the predation pressures of a size-structured fish community upon the phytoplank-
ton and zooplankton populations (determined using the steady-state solution of the SR-Fish
model and calculating Eq.(3.6) at this steady-state). The functional responses used are (a)
Holling Type I (b) Holling Type II and (c) Holling Type III.
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Figure 3.3: An illustration of the dynamic behaviours of the (P∗,Z∗) steady-state solution,
which are either (a) unstable, where the phytoplankton and zooplankton populations oscillate
over time or (b) stable. In this example, a Holling Type III functional response is assumed,
but similar behaviour occurs under a Type II response.

3.3.2 Comparing the steady-state solutions

In this section, we compare the SR-Fish model against the PZ-Fish model (with the three
different functional responses), and analyse the steady-state solutions of the entire marine
ecosystem. We investigate whether a dynamic PZ-Fish model can yield comparable results
to the previously well-studied SR-Fish model, and so whether it is a valid framework for an
end-to-end model.

The steady-state solutions

Figure 3.4 compares the steady-state solutions of the SR-Fish model against those of the PZ-
Fish model, for each functional response. The static resource spectrum of the SR-Fish model
was chosen to ensure that the abundance of the size-structured fish community was similar
to that obtained when using the dynamic PZ-Fish model. As can be seen, when the static
resource spectrum is amalgamated into two boxes of phytoplankton and zooplankton, the
density of these boxes are larger than that of the static resource spectrum. When a Holling
Type II functional response is used within the PZ-Fish model, the density of the steady-state
solution is much larger than those obtained when using a Holling Type I or III response. See
Appendix 3.5.1 for an analysis using phase-planes to understand the differences between the
steady-state solutions.
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Figure 3.4: The steady-state size-spectra for the SR-Fish model (black, solid line), the PZ-
Fish model with Type I response (blue −•−), the PZ-Fish model with Type II response
(green −×−) and the PZ-Fish model with Type III response (red −4−). The zooplankton
grazing rate, rZ , varies for each functional response, with rZ = 2.74×105 year−1 for a Type I
response, rZ = 365 year−1 for a Type II response and rZ = 548 year−1 for a Type III response.

The biomass of the marine ecosystem

Figure 3.5 compares the total biomass of the steady-state solutions, where the green shaded
areas are the biomasses obtained from the lower trophic level organisms (either the static
resource spectrum or the P and Z components) and the biomasses obtained from the fish
community are shaded in black. As can be seen, when a Type II functional response is as-
sumed within the PZ-Fish model, under these parameters, the biomass within the marine
ecosystem is greater than the other model choices. This is due to the large proportion of
biomass obtained from the phytoplankton population, which is almost at its carrying capac-
ity. The Type III functional response also has a larger proportion of its biomass obtained
from the phytoplankton and zooplankton populations than under a Type I or static-resource
spectrum assumption.

If analysing the biomass obtained from the fish community only, apart from the Type II
model choice, the PZ-Fish model yields a comparable amount of biomass to the SR-Fish
model.

Slope of the size-spectrum

Empirical size-spectra tend to exhibit a slope with a gradient close to -1 (Quinones, 2003).
Figure 3.6 shows that the SR-Fish model has a gradient at about -1.05. The PZ-Fish model
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Figure 3.5: The biomass of the marine ecosystem, with the lower trophic level organisms
(either a static resource or the P and Z components) represented by the green bar and the
size-structured fish community represented by the black bar. The mode types are the SR-
Fish model and the PZ-Fish model with either a Holling Type I, II or III functional response
assumed. The zooplankton grazing rate, rZ , varies for each functional response, with rZ =
2.74×105 year−1 for a Type I response, rZ = 365 year−1 for a Type II response and rZ = 548
year−1 for a Type III response.

has a more negative slope than the SR-Fish model, regardless of the choice of functional
response, with gradients between -1.2 and -1.1. However, the difference is not of a great
magnitude, and the PZ-Fish model yields size-spectra which are comparable to empirical
size-spectra.

Stability of the marine ecosystem

The stability of the SR-Fish and PZ-Fish models are studied by using Matlab’s fsolve func-
tion to determine the Jacobian matrix of the E2E models at steady-state. From the Jacobian
matrix, the associated eigenvalues (and thus the stability) of the E2E models can be deter-
mined. If all of the real parts of the eigenvalues are negative, then the E2E model is stable
and if any of the real parts of the eigenvalues are positive, then the E2E model is unstable.
Whilst each of the models are stable, Figure 3.7 shows that the largest eigenvalues of the PZ-
Fish model are less negative than the SR-Fish model, i.e. the PZ-Fish model has steady-state
solutions which are “less stable” than the SR-Fish model. This means that when the sys-
tem is perturbed slightly, the PZ-Fish system takes longer to return to steady-state than the
SR-Fish model, which could have implications when considering potential scenarios such as
climate change and fishing strategies.
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Figure 3.6: The slope of the size-spectrum for the fish community for each model type, i.e.
the SR-Fish model or the PZ-Fish model with either a Holling Type I, II or III functional
response assumed. The zooplankton grazing rate, rZ , varies for each functional response,
with rZ = 2.74× 105 year−1 for a Type I response, rZ = 365 year−1 for a Type II response
and rZ = 548 year−1 for a Type III response.

The difference in stability between the PZ-Fish and SR-Fish models are likely due to model
architecture. In the SR-Fish model, the static resource spectrum has no dynamics within it,
whereas the PZ-Fish model must account for two dynamic populations of phytoplankton and
zooplankton. Thus, the added complexity within the PZ-Fish model is likely to affect the
stability of the ecosystem, and make it more susceptible to environmental changes.

Growth of a larval fish

The growth of a cohort of fish can be determined by the solution of dx/dt = g(x, t), where
g(x, t) comes from Equation 3.3 for the SR-Fish model or Equation 3.9 for the PZ-Fish
model (Law et al., 2009). Figure 3.8 shows the growth of a cohort fish over five years for
each model. A cohort from the SR-Fish model grows from 0.001g to about 5g over five
years. However, a cohort from the PZ-Fish model does not grow as fast as in the SR-Fish
model: when a Holling Type II functional response is assumed, the larval fish only grows to
0.1g over five years.

The growth of the cohort of fish within the PZ-Fish model is the fundamental way in which
the PZ-Fish model differs from the SR-Fish model. The growth of a fish is dependent on
the prey it consumes, whether that is a spectrum of resources or two boxes of phytoplankton
and zooplankton. In the SR-Fish model, the larval fish has a high density of prey on which
it can feed upon - it can feed on resources from < 1× 10−5g to 0.001g. As the SR-Fish
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Figure 3.7: The stability of the marine ecosystem for each model type, i.e. the SR-Fish model
or the PZ-Fish model with either a Holling Type I, II or III functional response assumed.
The zooplankton grazing rate, rZ , varies for each functional response, with rZ = 2.74×105

year−1 for a Type I response, rZ = 365 year−1 for a Type II response and rZ = 548 year−1

for a Type III response.

model assumes a spectrum of resources, the larval fish have much more prey available to it
than under the PZ-Fish model assumption. In the PZ-Fish model, the larval fish have only
two boxes of phytoplankton and zooplankton to feed upon. Thus, the larval fish within the
PZ-Fish model have a limited supply of prey available to them, and cannot grow as quickly
or as large as the fish within the SR-Fish model.

3.4 Discussion

The most common method for developing end-to-end models of marine ecosystems is to
couple together existing submodels of higher and lower trophic level organisms into one
framework. The difference between the “structure” and “resolution” of these modelling
frameworks can have a significant impact upon the dynamics of an end-to-end model, and
could lead to the misinterpretation of ecosystem-scale effects which are due to model archi-
tecture, rather than being a consequence of biological processes. In this modelling study, we
develop an E2E model with one phytoplankton population, one zooplankton population and a
size-structured fish community and show that the differences in submodel structure can lead
to steady-state solutions of the marine ecosystem which appear plausible, but which have
underlying faults which need more consideration. In particular, we highlight the importance
of the zooplankton link when coupling together end-to-end models.
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Figure 3.8: The growth of a cohort of fish over five years for the SR-Fish model (black,
solid line), the PZ-Fish model with Type I response (blue −•−), the PZ-Fish model with
Type II response (green −×−) and the PZ-Fish model with Type III response (red −4−).
The zooplankton grazing rate, rZ , varies for each functional response, with rZ = 2.74×105

year−1 for a Type I response, rZ = 365 year−1 for a Type II response and rZ = 548 year−1

for a Type III response.

Travers et al. (2009) developed an E2E model which coupled the ROMS-N2P2Z2D2 (de-
scribing the dynamics of lower trophic levels) and OSMOSE (describing the dynamics of
higher trophic levels) into one framework, and compared this dynamic model to a one-way
forcing of the fish model where the mortality rates of plankton groups were kept constant.
They show that a dynamic E2E model predicts different food web structures in the Benguela
upwelling ecosystem and that this is due to changes in the food chain supported by plank-
ton. Their study shows the importance of the plankton dynamics and the feedback of these
dynamics up through the food chain in an ecosystem.

The results shown in Figure 3.4, 3.5, 3.6, 3.7 and 3.8 show that an E2E model which cou-
ples together two submodels which have differing “structures” and “resolutions” can lead to
steady-state solutions which are comparable to the results obtained from the isolated sub-
models. Taking measurements of the steady-state solution does not allow for an under-
standing of the dynamics that drive the system. As we saw, steady-state properties such as
the total biomass within the ecosystem and the slopes of the size-spectra cannot be used
to distinguish between different choices of functional responses within the zooplankton’s
described dynamics, or even between the choice of representing the LTL organisms by a
static resource spectrum or as two dynamic compartments of phytoplankton and zooplank-
ton. Thus, data collected regarding these types of steady-state properties cannot be used to
discern the dynamics of the marine ecosystem. The underlying differences between the sub-
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models can yield significant changes in the dynamical behaviour of the fish community, such
as in the growth trajectories of larval fish. Aggregating the LTL organisms into two compart-
ments of phytoplankton and zooplankton leads to a much slower growth rate for larval fish,
than when a size-spectra of primary producers (of the same resolution of the size-structured
fish community) is assumed. It is only through studying the dynamical properties of the
marine ecosystem, such as responses to perturbations to investigate stability or measuring
the growth rates of fish, that a deeper understanding of the impact that interactions between
species across different trophic levels has upon the ecosystem can be gained.

To examine the question of whether it is the difference in resolutions between the submodels
that leads to different dynamical properties of the marine ecosystem, there are two possible
routes for investigation. Firstly, the zooplankton population could be modelled at a finer
resolution, either through increasing the number of functional groups within the modelling
framework or by using a size-structured approach for modelling their dynamics. Fuchs and
Franks (2010) developed an NPZ model where plankton size was continuous to explore the
potential impacts of climate change on planktonic ecosystems. However, their modelling
framework did not account for growth in the zooplankton population, which is a key feature
of the MvF PDE. A similar continuous size-structured approach for the zooplankton popu-
lation, which incorporates size-dependent growth through the population, could be adopted
within this framework.

Another alternative, which would maintain the minimal framework (and the tractability that
it provides), would be to distribute the feeding kernels of the fish upon the phytoplankton
and zooplankton populations over a wider range of size-classes. The key issue within this
modelling framework is the method in which fish feed upon the plankton: the fish have a
single preference for phytoplankton of size xP and zooplankton of size xZ . However, if the
phytoplankton are distributed over a range of size-classes, [xP,xP+∆xP], then the fish would
have a large range of plankton to feed upon than a single size-class.

This study has also shown the importance of the zooplankton population in the modelling
of marine ecosystems. The choice of functional response to represent the zooplankton’s
grazing rate upon phytoplankton can have a significant impact upon the stability of the PZ
submodel, and this could then influence the dynamics of the marine ecosystem. Gentle-
man and Neuheimer (2008) show that the choice of functional response can have profound
implications for ecological stability of planktonic ecosystem.

Many current E2E models assume a satiating response of the zooplankton when feeding
upon phytoplankton, i.e. a Type II functional response (Fennel, 2009; Kishi et al., 2007;
Scheffer and Rinaldi, 2000; Travers et al., 2009). We have shown that whilst the stability of
the PZ submodel may be highly sensitive to the choice of functional response (see Figure

67



3.2), when the PZ submodel is coupled to the size-structured fish community, the stability
of the marine ecosystem exhibits less susceptibility to the choice of functional response (see
Figure 3.7).

In conclusion, we have shown that an end-to-end model which couples together submodels of
differing structures and resolutions can yield steady-state solutions which appear to be com-
parable to the isolated submodels, but that the amalgamation of several plankton functional
types into one size-class can have significant consequences to the underlying dynamics of the
model. The implications of aggregated functional types to the dynamics of marine ecosys-
tems under key scenarios, such as climate change and fishing strategies, need to be better
understood, so that ecosystem-scale effects and artefacts due to model architecture can be
distinguished from each other. The PZ-Fish model is a useful tool for understanding the
feedbacks that occur between the HTLs and LTLs, but should not be used to predict specific
outcomes for the fish community until it has been further developed.
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3.5 Appendix

3.5.1 Phase plane analysis of the choice of functional responses

Figure 3.4 shows that the Holling Type II functional response leads to a steady-state solution
which is significantly different from that obtained with the Holling Type I or III responses.
This is due to the parameters chosen within the model, leading to a different ‘type’ of solu-
tion for the Type II response and can be understood using a phase plane analysis of the PZ
submodel.

The nullclines of the phytoplankton and zooplankton dynamics are the abundances at which
the phytoplankton or zooplankton populations do not change over time, or when dP

dt = 0
and dZ

dt = 0, respectively. The point at which these two nullclines intersect is known as the
steady-state of the solution. Figure 3.9 shows the phase planes for the PZ submodel, when
a Type I, II or III functional response is assumed for the zooplankton’s grazing upon the
phytoplankton. As can be seen, the structures of each of the phase planes differs, but has
fundamental similarities.

A Type I functional response has only two possible steady-state solutions: (0,0) or (P∗,Z∗).
Figure 3.9a shows a steady-state solution with a low phytoplankton and low zooplankton
abundance for the Type I functional response.

However, when a Type II response is assumed, the phytoplankton’s nullcline is now a parabola,
and the (P∗,Z∗) steady-state solution can occur either before or after the peak of the parabola.
For the parameters chosen, the steady-state solution occurs after the peak of the parabola (see
Figure 3.9b). This means that the steady-state solution has a very high phytoplankton abun-
dance, close to the carrying capacity Pmax, and a low zooplankton abundance.

Figure 3.9c shows the phase plane for a Type III functional response. The phytoplankton
nullcline is now a sigmoidal function, and the (P∗,Z∗) steady-state solution can occur in
three regions: before the minimum turning point, between the minimum and maximum turn-
ing points or after the maximum turning point. For these parameters, the (P∗,Z∗) steady-state
solution occurs before the minimum turning point, yielding a low phytoplankton-low zoo-
plankton abundance for the steady-state solution which is comparable to the Type I response.

As Figure 3.9 shows, the parameter set used for the Type II functional response leads to a
steady-state solution which differs fundamentally from the Type I or III responses, and thus
yields significantly different results within the end-to-end PZ-Fish model.
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(a)

(b)

(c)

Figure 3.9: The phase planes of each functional response used within the PZ submodel,
where phytoplankton nullclines are the green lines and the zooplankton nullcines are the red
lines. The steady-state solution occurs at the intersection of the phytoplankton and zooplank-
ton nullcines. The functional responses used are (a) Holling Type I (b) Holling Type II and
(c) Holling Type III.
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Chapter 4

The impact of a warming climate upon the sea-
sonal dynamics of phytoplankton, and the conse-
quences to the marine ecosystem

Abstract

Climate change models predict an increase in sea surface temperatures of 1− 6◦C over the
next 100 years. Temperature is a key environmental factor in the occurrence of spring phyto-
plankton blooms in marine ecosystems, as warmer spring temperatures lead to an increased
phytoplankton growth rate. Thus, a warming climate would have a direct effect upon the
seasonal dynamics of phytoplankton, and an indirect effect upon the zooplankton and fish
communities that feed upon it. Here, we develop a new end-to-end model, which couples to-
gether phytoplankton, zooplankton and a size-structured fish community. We use this model
to investigate the effects of a future ocean warming scenario across the marine ecosystem.
The model shows that increased temperatures lead to an earlier occurrence and longer dura-
tions of the spring phytoplankton bloom and predicts the loss of the autumn phytoplankton
bloom.

Keywords

End-to-end model; climate change; phytoplankton blooms; size-structured fish model
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4.1 Introduction

Plankton is the primary resource for higher trophic levels (HTLs) such as fish, either as
a direct food source or indirectly as food for zooplankton populations that fish feed upon
(Townsend et al., 1994). A key feature of phytoplankton population dynamics in temper-
ate oceans is rapid growth in the population biomass followed by an equally rapid decline,
known as a seasonal phytoplankton bloom. This phenomenon typically occurs in the spring
months, with a smaller bloom often occurring in the autumn months (Truscott and Brindley,
1994; Winder and Cloern, 2010; Findlay, 2006). It can persist for a few weeks to months
(Elliott et al., 2006; Thomas et al., 2003; Winder and Cloern, 2010). The seasonal dynamics
of primary production is of major importance to global carbon dynamics and in providing
the raw material upon which the entire marine ecosystem is based.

There are a number of important factors which can lead to the occurrence of a spring bloom:
increased nutrient availability, light intensity, the thermal stratification of the water column
and temperature (McCauley and Murdoch, 1987; Moisan et al., 2002; Townsend et al., 1994).
Temperature is a key influence because phytoplankton growth rates are temperature depen-
dent (Moisan et al., 2002); with warmer temperatures leading to a greater phytoplankton
growth rate.

One expected consequence of global warming is an increase in the sea surface temperature.
Climate change models predict that sea surface temperatures will increase between 1.1◦C to
6.4◦C over the next 100 years (Huertas et al., 2011). The sensitivity of phytoplankton growth
rates to water temperature means that global warming will impact the spring blooms. Data
from the Continuous Plankton Recorder (CPR) has been studied by Reid et al. (1998), and
in particular, the extent to which the observed variability in plankton populations is linked to
climate change. Reid et al. (1998) note that there has been a regime shift in the North Sea
ecosystem after 1987, and that this is regime shift coincided with a consistently high North
Atlantic Oscillation (NAO) between 1988 and 1995. Elliott et al. (2006) showed that in a
temperate lake, increasing the water temperature led to an earlier occurrence of the spring
blooms, and a later occurrence of summer blooms. Similarly, Peeters et al. (2007) showed
that warmer air temperatures and low wind speeds led to an earlier occurrence of the spring
bloom.

The changes in the spring phytoplankton bloom will have a direct effect on the fish pop-
ulations, and in particular, upon the survival of the fish larvae. Cushing (1975) proposed
the ‘match-mismatch’ hypothesis, in which the timing of spawning fish and the timing of the
spring phytoplankton bloom must overlap in order for the fish larvae to optimise their growth,
and hence increase their survival rate. An earlier seasonal phytoplankton bloom could lead to
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a ‘mismatch’ if the fish are unable to adapt their spawning times, and thus negatively impact
the fish stocks. These potential consequences need to be considered to understand better how
to manage fisheries in a way that is sensitive to environmental change.

Mathematical models are useful tools for understanding and predicting how effects of dif-
ferent climate warming scenarios may influence phytoplankton and dependent HTLs. In
many existing such models, organisms at lower trophic level (LTLs), such as phytoplankton
and zooplankton, are modelled using hydrodynamic models, which capture elements of the
physical environment of the ocean, and biogeochemical models that represent how nutrients
are utilised by these LTL biological components (Libralato and Solidoro, 2009; Carlotti and
Poggiale, 2010). These models use a ‘closure’ term to represent the predation of fish on
the phytoplankton and zooplankton. The functional form chosen for this ‘closure’ term can
influence the dynamics of the LTL model (Steele and Henderson, 1992; Edwards and Yool,
2000). Where a ‘closure’ term is used, it effectively assumes that there is no interaction
between the HTLs and the LTLs, so the feedbacks that occur between these trophic levels
cannot be studied.

Over the last ten years, there has been considerable interest in developing ‘end-to-end’ (E2E)
models, where the biogeochemical processes are coupled together with the lower and higher
trophic level organisms into one framework (Rose et al., 2010; Fulton, 2010). An E2E ap-
proach allows models to capture how organisms within the marine ecosystem interact with
each other. This allows ecosystem-scale questions to be addressed, such as the impact of
climate warming on the marine ecosystem.

Here, we use an E2E model which couples a phytoplankton-zooplankton model (PZ model)
(Truscott and Brindley, 1994) to a size-structured fish community model, henceforth called
the PZ-Fish model. This modelling framework is simple and tractable - the PZ model is a
predator-prey model which has been well studied in the past (Truscott and Brindley, 1994;
Freund et al., 2006; James et al., 2003). It has a non-trivial stable fixed point and also allows
for the occurrence of a phytoplankton bloom. The size-structured fish community model al-
lows for a reduction in parameters due to allometric scaling laws. By using this minimal E2E
framework, where the key factors and their interrelationships are explicitly modelled, we are
able to understand the effect of the phytoplankton blooms upon the ecosystem dynamics.

We use this model to address an ecosystem-scale question: what is the likely effect of a
warming climate upon the seasonal dynamics of phytoplankton, and what will be the conse-
quences for the wider marine ecosystem?

73



4.2 Methods

4.2.1 A PZ-Fish model

We define a dynamic model that couples phytoplankton and zooplankton to a size-structured
fish community model (the PZ-Fish model). Figure 4.1 is a schematic diagram showing the
flow of biomass through this modelled marine ecosystem. The phytoplankton population is
predated upon by zooplankton and fish; the zooplankton is predated upon by fish; and the
fish of log(mass) x are predated upon by larger fish, and grow larger by eating smaller fish.
The sub-models of phytoplankton-zooplankton and the size-structured fish community are
explained in further detail in Subsection 4.2.2 and Subsection 4.2.3.

4.2.2 The phytoplankton and zooplankton dynamics

An excitable model for phytoplankton and zooplankton was first proposed by Truscott and
Brindley (1994). Within this model, the phytoplankton population density, P (density of
individuals of log(mass) xP per m−3), grows logistically in the absence of predators with
a maximum growth rate of rP and a carrying capacity of Pmax, and is preyed upon by the
zooplankton population density, Z (density of individuals of log(mass) xZ per m−3), at some
grazing rate f (P). We assume a Holling Type III functional response for the zooplankton’s
grazing upon phytoplankton, i.e. f (P) = rZP2

C2+P2 , where rZ is the zooplankton’s maximum
grazing rate and C is a parameter describing the nonlinearity in the zooplankton’s feeding
response to prey abundance.

Z grows according to predation on P, at a rate αZ f (P) where 0 < αZ < 1 is the zooplank-
ton’s conversion efficiency, and dies at some intrinsic death rate µZ . We extend the Truscott
and Brindley (1994) model to include predation by the size-structured fish community, with
predation rates AP(u) and AZ(u), for the phytoplankton and zooplankton respectively, where
u (density of individuals per m−3) represents the density of the fish community.

To account for the predation of fish on the phytoplankton and zooplankton populations, a
feeding kernel function, φ(x,x′) (where x,x′ represent log(body mass)), is needed to measure
the preference of fish of log(body mass) x to feed on a prey item of log(body mass) x′. It is
assumed that a predator has the strongest feeding preference for prey items which are a fixed
predator-prey mass ratio (PPMR) smaller than itself (Andersen and Beyer, 2006; Law et al.,
2009; Datta, 2011), but will also feed on prey close to this PPMR. This feeding preference is
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Table 4.1: Parameter definitions for the PZ-Fish model.

Parameter Description Unit Parameter Value

PZ sub-model
r̃P P growth ratea day−1 0.3
Pmax P carrying capacity m−3 2.2×105

rZ Z grazing rate day−1 1.5
C Z Holling type III switching

parameterb
m−3 5.2×103

αZ Z mass conversion efficiencya - 0.05
µZ Z intrinsic mortality rate day−1 2.74×10−4

φP predation kernel on P -
φZ predation kernel on Z -
wP P mass g 9.12×10−7

wZ Z mass g 4.98×10−5

Fish sub-model
wmin minimum body mass g 1×10−3

wmax maximum body mass g 3.3×103

w0 reference weight from w = w0ex g 4.54×10−8

Feeding terms
γ volume searched per unit time per

unit massq c
m3 day−1 g−q 1.64

q search volume exponentc - 0.8
α mass conversion efficiencyc - 0.2
φ feeding-kernel function -
β log(preferred predator:prey mass

ratioc
- 4

σ feeding-kernel widthc - 2
κ fraction of ingested energy allo-

cated to reproduction
- 0.75

Mortality terms
k̃ intrinsic mortality ratec day−1 2.74×10−4

µs senescent mortality ratec day−1 1.37×10−3

ρ senescent mortality exponentc - 1.5
xs size-class at which senescent mor-

tality is introducedc
- log(60)

a Truscott and Brindley (1994)
b Edwards and Brindley (1999)
c Law et al. (2009)
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Figure 4.1: Schematic diagram showing the flow of biomass through the phytoplankton (P),
zooplankton (Z) and size-structured fish community (u(x, t)). Phytoplankton are eaten at
predation rates f (P) by zooplankton and AP(u) by fish. Zooplankton are eaten at predation
rate AZ(u) by fish. The abundance of fish of size x change by being predated upon by larger
fish, growing larger by eating smaller fish and by smaller fish growing larger. The consumed
biomass for a fish of size x is allocated either to its own growth, or to reproduction.
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determined using a Gaussian function, φ(x,x′) = 1/(σ
√

2π)exp{−(x−x′−β)2/2σ2}, where
β is the log(PPMR) and the width is proportional to σ (Benoı̂t and Rochet, 2004; Law et al.,
2009).

In other words, if phytoplankton has a log(mass) of xP, then φP(x) = 1/(σ
√

2π)exp{−(x−
xP−β)2/2σ2} is the function representing the feeding preference of the fish community for
phytoplankton. Similarly the feeding kernel for fish feeding upon zooplankton is φZ(x) =

1/(σ
√

2π)exp{−(x− xZ−β)2/2σ2} where xZ is the log(mass) of Z. Thus the predation of
fish upon phytoplankton (AP(u)) and zooplankton (AZ(u)) can be written as

AP(u) = γ

∫ xmax

xmin

ex′q
φP(x′)u(x′, t)dx′ (4.1)

AZ(u) = γ

∫ xmax

xmin

ex′q
φZ(x′)u(x′, t)dx′ (4.2)

where γ is the volume search rate and q is the volume search exponent (as the rate at which
a predator searches its environment for prey scales with body size), xmin and xmax are the
minimum and maximum log(mass) size-classes for the fish community (Benoı̂t and Rochet,
2004; Law et al., 2009).

4.2.3 The size-structured fish community dynamics

The fish community is modelled using the McKendrick-von Foerster partial differential equa-
tion (MvF PDE) (Datta, 2011; Law et al., 2009; Benoı̂t and Rochet, 2004). According to the
MvF PDE, the abundance of fish is a function of body mass, w (g), and time, t (days). The
change of abundance of fish is due to a size-dependent growth rate and a size-dependent
mortality rate. As the spectra usually span many orders of magnitude the MvF PDE is often
studied using log-transformed mass, x (Benoı̂t and Rochet, 2004; Law et al., 2009). Thus,
the abundance of fish, of size x and at time t, is represented by u(x, t), and increases and
decreases according to some size-dependent rates g(x, t) and µ(x, t), respectively.

Death

The size-dependent mortality rate has three components to it: predation by larger size-classes
of fish, an intrinsic mortality rate and a senescent mortality rate. Predation is determined by
the Gaussian feeding kernel, φ(x,x′), described previously (see Section 4.2.2). Note that
this feeding kernel is the interaction between the size-classes of the fish community only,
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whereas φP(x) is the interaction of the fish community with phytoplankton, and similarly
φZ(x) for zooplankton.

An intrinsic mortality rate accounts for death not caused by predation, and is assumed to be
a constant rate k̃. Finally, a senescent mortality rate, µseρ(x−xs), prevents a high abundance
of large size-classes in the absence of top-class predators in this model. Here µs is the mor-
tality rate, ρ is the senescent mortality exponent and xs is the size-class at which senescent
mortality is introduced (Benoı̂t and Rochet, 2004; Law et al., 2009).

Thus the combined size-dependent mortality rate can be written as

µ(x, t) = k̃+µseρ(x−xs)+ γwq
0

∫ xmax

x
ex′q

φ(x′,x)u(x′, t)dx′

Growth

The size-dependent growth rate assumes that growth is a result of mass gained by consump-
tion. In other words, a fish in size-class x predates upon smaller fish (or phytoplankton and
zooplankton) and converts the prey biomass into energy which is used for somatic growth
and reproduction. The size-dependent growth rate can be written as

g(x, t) =(1−κ)αγwq
0ex(q−1)B(x)

where

B(x) =
∫ x

xmin

ex′
φ(x,x′)u(x′, t)dx′+

∫ xPmax

xPmin

exPφP(x)P(xP)dxP +
∫ xZmax

xZmin

exZ φZ(x)Z(xZ)dxZ

where 0 < κ < 1 is the fraction of converted biomass allocated to reproduction, 0 < α < 1 is
the conversion efficiency.

Reproduction

As mentioned previously, upon consuming a prey’s biomass, the predator allocates a fraction
of that converted biomass to reproduction (κ) and the remainder to growth (1-κ) (Perrin and
Sibly, 1993; Thygesen et al., 2005; Hartvig et al., 2010). The reproduction term to the larval
fish class can be written as
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R = καγwq
0

∫ xmax

xmin

ex′(q−1)B(x′)ex′−x1u(x′, t)dx′

where xmin is the size-class denoting the larval fish.

The E2E model: the PZ-Fish model

The full E2E model, which we call the PZ-Fish model, can be summarised as:

dP
dt

= rPP
(

1− P
Pmax

)
− f (P)Z−AP(u)P

dZ
dt

= αZ f (P)Z−µZZ−AZ(u)Z

∂u(x, t)
∂t

=−µ(x, t)u(x, t)− ∂(g(x, t)u(x, t))
∂x

(4.3)

with initial condition P(0)=P0,Z(0)= Z0 and u(x,0)= u0(x) for x∈ [xmin,xmax] and bound-
ary conditions

1. g(0, t)u(0, t) = κ
∫

g(x, t)u(x, t)ex−xmindx

2. u(x, t) = 0 for x > xmax

Numerical methods are required to learn about the dynamics of this model. This requires
a discretisation method to be chosen, where the domain space is partitioned into a mesh
and used to approximate the derivatives of the equation through these discrete points (Press
et al., 2007). If xmin and xmax are the smallest and largest size-classes of the discretized
fish community (respectively), then the lower and upper boundary conditions for the fish
community can be written as

du(xmin, t)
dt

=−µ(xmin, t)u(xmin, t)−
g(xmin, t)u(xmin, t)

∂x
+

R
∆x

du(xmax, t)
dt

=− (k̃+µseρ(x−xs))u(xmax, t)−
g(xmax, t)u(xmax, t)

∆x
+

g(xmax−1, t)u(xmax−1, t)
∆x
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We use a finite difference method for the numerical simulations, with log(mass) x discretised
with step size ∆x = 0.1 and time t discretised with step size ∆t = 0.1.

Parameters

The full definitions and units of the parameters used to formulate the PZ-Fish model can be
found in Table 4.1, together with the default value used for the numerical simulations.

The PZ sub-model

The P growth rate, r̃P, and the Z mass conversion efficiency, αZ , parameter values were taken
from Truscott and Brindley (1994). The Z grazing half saturation coefficient was taken from
Edwards and Brindley (1999). The units used by Edwards and Brindley (1999) were m−3gC,
so we assumed that the measured mass of plankton in this model was carbon and re-scaled
the parameter into m−3. This was done by dividing the empirical parameter by the body
mass of P.

The value of P carrying capacity, Pmax, was chosen to be 2.2× 105m−3, together with the
Z grazing rate, rZ , as a value of 1.5 day−1, as these choices allowed for a strong seasonal
phytoplankton bloom. A value of 1.5 day−1 is within the empirical range of 0.6-1.4 day−1

reported by Edwards and Brindley (1999). Finally, the Z intrinsic mortality rate, µZ , was
assumed to be 2.74× 10−4 day−1, as this is the intrinsic mortality rate assumed on the fish
community.

The size-structured fish model

The majority of the parameters used for the size-structured fish model were taken from Law
et al. (2009)[Table 1]. The exception is the fraction of consumed biomass which is allo-
cated to reproduction, κ. A value of 0.75 had to be used, as smaller values did not permit
co-existence of the full phytoplankton-zooplankton-fish community. Choosing an empiri-
cal value for this parameter is difficult, because the model has to aggregate many different
species into a single community of fish. It is therefore not possible to use parameters for
explicit life histories of the constituent species. The assumption of a constant fraction of
incoming biomass to reproduction simply assumes that reproduction is taking place at all
body sizes within the community as a whole.

80



4.2.4 Seasonal phytoplankton blooms

To investigate the impact of global warming on the seasonal dynamics of phytoplankton, we
focus on the long-term systematic temperature changes, where T (t) is the temperature over
time and its impact upon the nutrients of the ecosystem N(t). We assume that phytoplankton
is directly and indirectly affected by global warming by incorporating a temperature- and
nutrient-dependent phytoplankton growth rate into the modelling framework. We consider a
scenario of climate change where there is an increase of 3◦C of the mean temperature over
the next 100 years. Figure 4.2a shows the mean, minimum and maximum temperatures used
for the 100 year simulation.

To mimic the rapid warming of ocean waters, and thereby to predict its effect on ecosystem
dynamics, we use a sawtooth temperature profile:

T (t) =


(T0−∆T )+

(2∆T ·100
365−20

)
−
( 2∆T

365−20

)
· t for 0≤ t < 100 days

(T0−∆T )−
(2∆T ·100

20

)
+
(2∆T

20

)
· t for 100≤ t < 120 days

(T0 +∆T )+
(

2∆T ·(120)
365−20

)
−
( 2∆T

365−20

)
· t for 120≤ t < 365 days

(4.4)

where T0 = 10◦C is the mean temperature, ∆T = 6◦C is the maximum change in temperature
from the mean temperature over the year, the seasonal forcing occurs on day 100 and lasts
for 20 days. Figure 4.2b shows this sawtooth temperature profile over one year.

We assume the phytoplankton growth rate is represented as a function of temperature, T (t),
and nutrients, N(t), i.e. rP = rP(t,T (t),N(t)). If these are independent effects, then the
phytoplankton growth rate becomes a product of the temperature dependent component,
J(t,T (t)), and the nutrient limitation factor, L(t,T (t)) (Fasham et al., 1990). Thus, rP be-
comes:

rP = rP(t,T,N) = J(t,T (t)) ·L(t,T (t)). (4.5)

The Van’t Hoff rule describes the effect of changing temperature on reaction rates, and fol-
lowing the method described by Freund et al. (2006) for implementing the Van’t Hoff rule
into the temperature-dependent component of the growth rate gives
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Figure 4.2: (a) The temperature profile for 100 years uses a sawtooth temperature profile
each year, where there is an increase of 3◦C in the mean temperature over 100 years. (b) The
sawtooth temperature profile for one year, with T0 = 10◦C and ∆T = 6◦C, where the forcing
occurs at day 100 and ends on day 120 (see Equation 4.4).

J(t,T (t)) = (Q10)
(T (t)−T0)/10r̃P. (4.6)

The Van’t Hoff rule says that a change of temperature by 10◦C will multiply the reaction
rate at mean temperature by a factor of Q10, where r̃P is the initially chosen phytoplankton
growth rate. As with Freund et al. (2006), we choose a value of Q10 = 2. Figure 4.3a (the
dotted-dashed black line) shows the temperature dependent growth rate, J(t,T (t)), over the
course of one year.

Once the phytoplankton bloom has been initiated, it is controlled via the decreasing nutrient
concentrations (Fasham, 1993; Findlay, 2006). We assume that the nutrient concentration
is a function of total new production following the onset of stratification (where the water
column forms layers that prevents water mixing due to warmer temperatures) in early spring,
and model the nutrient limitation factor by:

L(t,T (t)) = max
(

1−δ

∫ t

0
J(t ′,T (t ′))L(t ′,T (t ′))P(t ′)

(
1− P(t ′)

Pmax

)
dt ′,0.1

)
(4.7)
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where 0 < δ < 1 is chosen to account for the flux of nutrients out of the upper mixed layer as
they are taken up by phytoplankton. We fix a minimum value of 0.1 for Q(t,N) to account
for the continual supply of nutrients mixing into the upper mixed layer from deeper waters.
We also allow the nutrient concentration to slowly increase to its maximum value between
day 270 and 365. If we did not allow this, there would be an artificial bloom induced at day
0 every year, caused by the sudden increase in nutrient concentration.

Figure 4.3a (the dotted red line) shows the nutrient limitation factor, Q(t,N), over the course
of one year. Figure 4.3b (the dashed green line) shows the phytoplankton growth rate that
is obtained by multiplying together the temperature dependent component and the nutrient
limitation factor for one year.

Figure 4.3: The effect of temperature on the phytoplankton growth rate, rP(t,T (t),N(t)), for
one year. (a) The two independent components of the phytoplankton growth rate, the nutri-
ent limitation factor, L(t,T (t)) (dotted red line) against the temperature-dependent compo-
nent, J(t,T (t)) (dash-dotted black line). These factors are multiplied together to determine
rP(t,T (t),N(t)). (b) Sawtooth temperature profile, T (t) (solid blue line) against the phyto-
plankton growth rate, rP(t,T (t),N(t)) (dashed green line).
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4.3 Results

4.3.1 The effect of warming on the timing and duration of the phyto-
plankton bloom

In this section, we analyse the effect of climate warming upon three large-scale characteris-
tics of the ecosystem over the course of the 100 years of numerical simulation. We examine
1) the time at which the bloom occurs, which is measured as the first peak in phytoplank-
ton abundance after the seasonal forcing at day 100, 2) the duration of the bloom, which is
measured as the time between the first peak to the first trough after the phytoplankton crash
and 3) the maximum height that the bloom reaches, which is measured as the relative change
in abundance when compared to the steady-state value. (Note, the steady-state value is the
point at which there is no change in the phytoplankton, zooplankton or fish populations over
time and is determined for the scenario in which there is no seasonal forcing).

The consequences of the warming climate to the fish community is analysed here by looking
at only two size-classes - the larval fish (with body mass 0.001g) and small fish (with body
mass 0.01g). These two size-classes of fish have a strong feeding preference for phytoplank-
ton and zooplankton, and so are most directly affected by changes in the dynamics of these
organisms.

The detailed dynamics which drive these signals are examined in Section 4.3.2.

Timing of the bloom

Figure 4.4a shows how many days after the seasonal forcing a phytoplankton bloom occurs
(the green bullets, −•−). As can be seen, the blooms occur increasingly early under a
warming climate. The change in behaviour is due to the maximum phytoplankton growth
rate which occurs as the temperature increases, which allows the phytoplankton’s growth to
quickly exceed the predation pressures on them.

Although the zooplankton’s bloom also occurs earlier under warmer temperatures, their shift
in timing is not as large as for the phytoplankton population. The zooplankton’s bloom oc-
curs about 4 days earlier after a 3◦C increase in the temperature, whereas the phytoplankton
bloom occurs about 8 days earlier.
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(a)

(b)

(c)

Figure 4.4: The three measured large-scale characteristics of the ecosystem. (a) The number
of days after the onset of seasonal forcing in which the peak in abundance occurs, (b) the
duration of the bloom (measured between the first peak to the first trough in density) and
(c) the height of the maximum peak event for 10 years of the simulated 100 year run, for
phytoplankton (green bullets,−•−), zooplankton (blue crosses,−×−), larval fish (0.001g)
(red circles, −◦−) and small fish (0.01g) (cyan triangles, −N−).

85



There does not appear to be a significant change in the timing of peak density in the fish
community.

Duration of the bloom

Figure 4.4b shows the duration of the phytoplankton bloom (the green bullets, −•−). The
length of the phytoplankton bloom increases with increasing temperature, as the effect on
the phytoplankton growth rate allows the phytoplankton to escape the pressures of predation
for longer. This pattern of behaviour can also be seen in the zooplankton and small fish.

However, the larval fish show a switch in their reaction to the phytoplankton’s bloom duration
between year 25 and year 35. This can be understood through Figure 4.5c. Under cooler
conditions, there are actually two peaks in the larval fish density due to the spring and autumn
phytoplankton blooms. However, as the temperature increases, there is no longer an autumn
phytoplankton bloom and there is no secondary peak in the larval fish. Thus, instead of there
being a relatively short spring bloom in the larval fish populations, under warmer conditions,
there is only one long bloom in the larval fish population.

Magnitude of the bloom

Figure 4.4c shows that there is an increase in the maximum densities reached by the phyto-
plankton population as temperature increases. As the temperature increases, the combination
of the fast phytoplankton growth rate and the high predation pressure on the zooplankton is
enough to excite the phytoplankton population to higher densities. See Section 4.3.2 for a
full analysis on this occurrence.

4.3.2 The phytoplankton and zooplankton dynamics

The results in Section 4.3.1 reveal potentially important changes to the large-scale behaviour
of the ecosystem. The advantage of our E2E model is that it allows us to understand the
mechanisms driving these changes in system-level dynamics. To show this, we compare
the seasonal dynamics of the PZ-Fish model for two years of the simulation: year 5, when
the mean temperature is 10.15◦C and year 95, when the mean temperature has increased to
12.85◦C.

In year 5, the phytoplankton population undergoes a bloom starting at day 110. This bloom
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(a)

(b)

Figure 4.6: Comparing the (P,Z)-phase plane and trajectory for different points of year 5 and
year 95. The phytoplankton nullcline is the curved green line and the zooplankton nullcline
is the vertical blue line for year 5. These nullclines are dependent upon the predation of
the fish community upon the phytoplankton and zooplankton - in particular, the zooplankton
nullcline increases as AZ(u) increases. This allows the phytoplankton population to increase
to significantly greater abundances than under the assumption that AP(u) and AZ(u) are con-
stant values. (a) The phase plane and trajectories for year 5 (the solid black lines) and year
95 (the dashed black lines). (b) A close-up view of the phase plane and trajectories for year 5
(the solid black lines) and year 95 (the dashed black lines) which are inside the marked box
shown in (a).
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lasts for about 35 days, before the phytoplankton population drops rapidly in abundance.
The phytoplankton population then undergoes a smaller autumn bloom for a further 50 days
(Figure 4.5a, solid green line). However, in year 95, the phytoplankton population has only
one long bloom, which starts just before day 110 and lasts for almost 55 days before the
population drops to its original steady-state abundance (Figure 4.5a, dashed green line).

As is standard in a predator-prey interaction, there is a time delay in the build-up of the
zooplankton population (Figure 4.5b). However, the zooplankton population also undergoes
an autumn bloom in year 5 (which is absent in year 95) due to the autumn bloom of the
phytoplankton.

The increase in zooplankton population means that there is more food for the very small fish
to feed upon, which leads to an increase in their growth rates and their contribution to the
reproduction term. Figure 4.5c shows the increased density of larval fish, which follows the
initial phytoplankton bloom. As these very small fish grow, their diet preferences change:
initially, they have a strong preference for feeding on phytoplankton, which leads to an in-
crease in AP(u), then gradually switch to a preferential zooplankton diet which leads to an
increase in AZ(u).

The increased predation pressure on the phytoplankton and zooplankton populations due to
the fish community then leads to a decline in the phytoplankton population, as their growth
rate is unable to compensate for the higher predation pressures upon them. This is also due to
a decline in the growth rate of the phytoplankton, partly through the temperature dependent
growth rate, but also as the lack of available nutrients in the environment limit their growth.
Once the phytoplankton population passes a threshold value, the zooplankton population
crashes as they are unable to sustain growth under similarly high predation pressures (see
Figure 4.6).

However, the difference between the dynamics that occur in year 5 and year 95 are due to
the increased grazing pressures upon the zooplankton population. In year 5, the grazing
on zooplankton decreases quickly enough that the phytoplankton growth rate is still high
enough to induce a second, autumn bloom. In year 95, the extended duration of the spring
bloom (due to the high grazing pressure on the zooplankton) is such that the phytoplankton
population does not have a high enough growth rate to undergo a second bloom (see Figure
4.6).
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4.4 Discussion

The warming climate will have a profound impact on marine organisms - the warmer tem-
peratures will have a direct effect on the growth rate of phytoplankton, and an indirect but
potentially significant effect on the survival of fish larvae. This modelling study shows that
a warmer temperature led to a shift to an earlier phytoplankton bloom, a longer duration for
the phytoplankton bloom and an extinction of the autumn bloom (Figure 4.5).

Timing of the bloom

There have been several empirical studies investigating the effect that the physical environ-
ment has on the timing of phytoplankton spring blooms. Edwards et al. (2002) analysed a
long term plankton dataset for the North Sea and identified two key periods in that dataset:
a cold-boreal event in the 1970s and a warm-temperate event in the 1980s. They showed a
clear difference in the timing of the phytoplankton bloom under these two periods, where the
bloom occurred earlier in the warm-temperate event by about 2.5 months.

However, a study by Wiltshire and Manly (2004) on the time series dataset at Helgoland
Roads in the North Sea showed that an increase of 1.13◦C over 40 years has led to a back-
wards shift in the spring bloom, i.e. it occurs later. These two completely different trends
under a warming climate are due to other elements of the environment: Wiltshire and Manly
(2004) argued that this backward shift in the spring bloom was due to the persistence of
zooplankton during the autumn and winter months, which suppressed the growing biomass
needed for a spring phytoplankton bloom, thus causing a delay in the bloom. This was
investigated in a later study (by extending the dataset with another 4 years of data), but
no significant effect of the zooplankton population upon the start of the bloom was found
(Wiltshire et al., 2008). In fact, Wiltshire et al. (2008) show that it is the preceding winter
temperature that is the significant effect on the phytoplankton bloom.

A sawtooth temperature profile was used in this study to ensure that the seasonal forcing was
strong enough to cause a phytoplankton bloom. Therefore, it is the rapid rate of increase
in temperature which triggers a phytoplankton bloom in the PZ-Fish model. A sinusoidal
temperature profile was inappropriate for this study as the bloom/non-bloom dynamics are
dependent on the initial population of phytoplankton and zooplankton (Freund et al., 2006),
whereas they are not for the sawtooth temperature profile.

The earlier timing of the spring bloom is due to the increased phytoplankton growth rate,
as it allows the phytoplankton population to grow quicker than it is grazed upon. There-
fore, it is the higher growth rates caused by a warmer temperature, not the preceding winter
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temperature which affects the timing of the spring blooms in this model.

Duration of the bloom

Our numerical simulations showed a marked increase in the duration of the spring phyto-
plankton bloom, from 30 days to 55 days, caused by a 2.85◦C increase in mean temperature
(Figure 4.4b). This result agrees with the modelling results of Kristiansen et al. (2011),
which found that warmer ocean temperatures led to longer periods of productivity, and also
supports the conclusion by Martens and Beusekom (2008), that global warming will lead to
a longer copepod season.

However, Figure 4.4b shows only a small increase in the zooplankton (or copepod) abun-
dances in the ecosystem. This could be due to the single size-class of zooplankton which
is used to represent small, large and carnivorous zooplankton groups in the model. Martens
and Beusekom (2008) found that the carnivorous zooplankton population gradually increased
over a warming climate, and this detail cannot emerge from our current model. Further work
is needed to extend the number of size-classes representing the phytoplankton and zooplank-
ton populations, to allow the behaviour of small, large and carnivorous zooplankton popula-
tions under different warming scenarios to emerge.

An important consequence of the longer spring bloom is the predicted extinction of the au-
tumn bloom. Figure 4.5a shows that under warmer temperatures, the spring bloom lasts
for so long that the system does not allow time for a second bloom in the autumn months.
Similar findings are reported by Molen et al. (2012), who used a coupled hydrodynamic-
biogeochemical water column model GOTM-ERSEM-BFM to predict that warmer temper-
atures can lead to a smaller autumn bloom occurring.

It is suggested that the autumn bloom is driven by the deepening of the surface mixed layer
at the end of summer, leading to an influx of nutrients to the surface layer as well as a
reduction in grazing pressure by predators (Martinez et al., 2011; Findlay, 2006). Martinez
et al. (2011) used ocean color time series to study the phytoplankton spring and autumn
blooms in the North Atlantic, and found that in the Eastern Atlantic, the autumn bloom was
weaker in the 2000s than in the 1980s. They hypothesised that this was due to a delay in the
deepening of the mixed layer depth.

Similarly, Song et al. (2010) show that in their model simulations, there is a slight delay in
the autumn plankton bloom with high sea surface temperatures. However, their ocean color
data shows that the autumn plankton bloom is correlated with sea surface salinity and sea
surface temperature. If the effect of salinity is greater than that of temperature, then the
autumn plankton bloom will be negatively correlated with temperature (Song et al., 2010).
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Thus, their data shows an association of high temperatures with early autumn bloom timing.

Our study shows the importance of the fish community to the dynamics of the phytoplankton
population. The delay of the autumn bloom under a warming climate is due to the extended
duration of the spring bloom. The spring bloom, in turn, is affected by the increased graz-
ing pressure of the fish community upon the zooplankton population, which decreases the
grazing pressure upon the phytoplankton population. If a ‘closure’ term were used for the
phytoplankton-zooplankton submodel, as opposed to a dynamic fish community model, the
loss of the autumn bloom under a warming climate is not observed.

Consequences to the fish community

The ‘match-mismatch’ hypothesis is the proposal that the timing of egg hatching and the
timing of the spring phytoplankton bloom must overlap in order for the larval fish larvae
to optimise their growth, and increase their survival rate (Cushing, 1975). Kristiansen et al.
(2011) showed that the longer period of productivity which is caused by warmer temperatures
leads to enhanced survival in the first 30 days of their larval fish.

Our study shows that there is a potential for an increased ‘mismatch’ under a warming cli-
mate: Figure 4.4a shows that while the spring phytoplankton bloom occurs earlier under
warmer temperatures, there is no significant change to the timing of the peak of abundance
in the larval fish.

To fully explore the consequences of an earlier occurring and longer lasting spring phy-
toplankton bloom to the fish community, the size-structured fish community model needs
adapting. The reproduction function should be annual, not continuous. Currently, the fish
community reacts immediately to the earlier onset of the phytoplankton bloom, whereas in
reality, spawning is an annual occurrence which would lead to a delayed reaction of the fish
community to the seasonal phytoplankton dynamics (Wright and Trippel, 2009).

The amalgamation of several zooplankton functional types into one size-class should also be
addressed. The larval fish have only one phytoplankton class and one zooplankton class to
feed upon initially. It takes a few days of feeding on these two prey items before the larval
fish has enough biomass to grow into the next size-class, and hence extend its feeding range.
However, if the zooplankton compartment was extended to more than one size-class, for
example small, large and carnivorous zooplankton, there would be potentially more resources
for the larval fish to feed upon and use for faster growth and enhanced survival.
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Temperature dependence

In this study, we have focused on the impact of increasing the mean sea surface temperature
upon a dynamic marine ecosystem. This has been implemented into the model through the
phytoplankton growth rate, via the Van’t Hoff rule (see Eq.4.6). Temperature also affects
other processes, such as optimal growth rates for fish (Peck and Daewel, 2007; Pörtner and
Knust, 2007; Gislason et al., 2010) or the hatching times of fish eggs (Pepin et al., 1997;
Mooij et al., 2008), which are not currently considered in this modelling framework. These
are factors which need to be considered in future work. However, the simplest framework is
the suitable starting point for understanding the effect that a changing temperature has upon
the complex marine ecosystem.

The variability of the temperature profile is also likely to play an important role in a warming
climate. Initial modelling results have shown that decreasing the variance of the temperature
profile can lead to a very small spring phytoplankton bloom with no autumn bloom, thus
showing the importance of temperature variance in phytoplankton dynamics. Freund et al.
(2006) showed that adding fluctuations to the temperature profile induced switching between
a bloom and a non-bloom mode. For a comprehensive analysis on the effect of a warming
climate on a marine ecosystem, temperature dependent rates should be used for more than
just the phytoplankton growth rate, and fluctuations to the temperature profile need to be
explored.

Conclusion

Temperature is a strong influence on marine ecosystems, and in order to understand its im-
pact, a whole ecosystem approach is needed. This study shows that such an E2E approach
is feasible, and can offer insight and predictions beyond the scope of focussed models. Thus
the effect of the spring phytoplankton bloom can help with the understanding of the growth
and survival of larval fish, as well as the effect of predation by the fish community upon the
phytoplankton and zooplankton populations.

Acknowledgements

We thank Sarah Collings, Simon Croft, Sonja van Leeuwen, Rodney Forster, Liam Fernand,
Jamie Wood and Gustav Delius for their helpful insights. This research was supported by a
joint studentship to CW from the Centre for Environment Fisheries and Aquaculture Science
UK and the University of York UK.

93



Chapter 5

The consequences of size-selective fishing and bal-
anced harvesting to the seasonal dynamics of phy-
toplankton

Abstract

The impact of fishing is not restricted solely to the fish community, but also feeds back
through the food web to the lower-trophic-level organisms, such as the phytoplankton and
zooplankton. We use a dynamic end-to-end model to study two different fishing strategies:
size-at-entry and balanced harvesting. With this modelling framework, we explore the di-
rect and indirect effects of these harvesting schemes, and in particular, the impact they have
upon the phytoplankton population. We quantify the disruption to the phytoplankton using
two measures: 1) the scaled time-averaged Euclidean distance between phytoplankton pop-
ulations when the fish community is either harvested or not and 2) the periodicity of the
phytoplankton dynamics. Our results show that, regardless of the choice of fishing strategy,
intensive harvesting upon small fish (of body mass 1g or smaller) can lead to a significant
shift in the phytoplankton’s dynamics: from stable annual patterns to unpredictable periodic
behaviours. Balanced harvesting allows a greater biomass yield of fish to be achieved under
low intensity fishing scenarios than a size-at-entry fishing strategy, but can also lead to a
greater range of complex dynamics occurring within the phytoplankton population. This has
the potential for greater variability in the annual fisheries yield obtained, which could have
economic and ecological consequences.
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5.1 Introduction

The exploitation of marine resources has been managed in some places for hundreds of
years. The traditional approach to fisheries management has been to protect the young and
harvest the old, whilst trying to maximise the fished yield (Beverton and Holt, 1993; Law
et al., 2012; Garcia et al., 2012; Borrell, 2013). One strategy commonly applied is known as
size-at-entry, where fishing only begins upon individuals of a minimum body mass (so as to
protect the juveniles), and then the adults are fished with approximately equal intensity (Pope
et al., 2006; Jacobsen et al., 2014). This is representative of the current harvesting scheme
applied to the North Sea fish stocks (Jacobsen et al., 2014). The impact of this selective
fishing strategy has been realised over the last few decades, from stock collapses (such as
the decline of the North Sea cod (O’Brien et al., 2000; Hutchinson, 2008)) to evolutionary
responses (where fish have begun investing their energy into reaching sexual maturity as
early as possible, leading to yields of small-sized fish (Reznick and Ghalambor, 2005; Enberg
et al., 2011)).

Over the last few years, a different approach to fisheries management has been suggested,
known as balanced harvesting. This approach recommends that the exploitation of the marine
ecosystem is distributed across a range of species and sizes in proportion to their natural
productivity (Law et al., 2012; Garcia et al., 2012). Law et al. (2012) used a dynamic size-
spectrum model to represent a single species of fish, and compared the effects of selective
and balanced harvesting upon the yield, resilience and disruption to the fish community.
They show that the balanced harvesting strategy can achieve good yields whilst reducing
the disruption to the fish community. Jacobsen et al. (2014) used a size- and trait-based
model to represent a fish community, and concluded that unselective balanced harvesting
is more likely to preserve the structure of fish communities than selective fishing, but the
consequence is a significant reduction in the average size of fish obtained.

Mathematical models are useful tools for studying complex systems, for understanding and
predicting how the system will react under different scenarios. The conventional means
of modelling marine ecosystems have been by representing the system using two indepen-
dent components: biogeochemical and fish production models (Travers et al., 2009). The
representation of the lower trophic level (LTL) organisms, such as phytoplankton and zoo-
plankton, in fish production models has been done implicitly, through some ‘carrying capac-
ity’ (Travers et al., 2007) or by assuming them to be a static resource (Law et al., 2009).
However, the LTL organisms have a direct effect upon the fish community, as they are the
primary food source for larval fish and planktivores. The seasonal dynamics of the phy-
toplankton (which undergo a large spring bloom and smaller autumn bloom in temperate
marine ecosystems (Truscott and Brindley, 1994; Winder and Cloern, 2010; Findlay, 2006))
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could interact with the fish population in ways which have not yet been explored and lead to
unforeseen possibilities.

This has led to a large movement towards the use of ecosystem-scale models in order to
account for the potential feedbacks and interactions between different organisms within the
marine ecosystem (Gaedke, 1995; Fulton et al., 2003a; Plagányi, 2007). The need to address
ecosystem-scale questions has led to the rapid development of ‘end-to-end’ (E2E) models
over the last ten years. E2E models couple together lower and higher trophic level organisms
into one framework (Rose et al., 2010; Fulton, 2010), thus allowing for interactions between
all organisms within the marine ecosystem.

We use an E2E model which couples together a phytoplankton-zooplankton box component
model to a size-structured fish community model, henceforth called the PZ-Fish model (see
Chapter 4). This E2E model allows for interactions between the phytoplankton, zooplank-
ton and fish populations, and the minimal framework means that we are able to understand
the effect that exploitation of the fish community has upon the dynamics of phytoplankton
and zooplankton. We use this model to compare the size-at-entry and balanced harvesting
strategies and to investigate the degree of disruption that these fishing schemes have upon
the marine ecosystem.

5.2 Methods

A dynamic end-to-end model (the PZ-Fish model) which couples together phytoplankton (P,
density of individuals of log(mass) xP per m−3), zooplankton (Z, density of individuals of
log(mass) xZ per m−3) and a size-structured fish community (u(x, t), density of individuals,
of log(mass) x at time t, per m−3) is used to investigate the effect of two different fishing
strategies upon a marine ecosystem. The phytoplankton population is predated upon by
zooplankton and fish; the zooplankton is predated upon by fish; and the fish of log(mass) x

are predated upon by larger fish, and grow larger by eating smaller fish. The PZ-Fish model
can be written as:
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dP
dt

= rPP
(

1− P
Pmax

)
− f (P)Z−AP(u)P

dZ
dt

= αZ f (P)Z−µZZ−AZ(u)Z

∂u(x, t)
∂t

=−µ(x, t)u(x, t)− ∂(g(x, t)u(x, t))
∂x

with

µ(x, t) = k̃+µseρ(x−xs)+ γwq
0

∫
ex′q

φ(x′,x)u(x′, t)dx′

g(x, t) =(1−κ)αγwq
0ex(q−1)B(x)

where

B(x) =
∫

ex′
φ(x,x′)u(x′, t)dx′+

∫
exPφP(x)P(xP)dxP +

∫
exZ φZ(x)Z(xZ)dxZ (5.1)

with initial condition P(0)=P0,Z(0)= Z0 and u(x,0)= u0(x) for x∈ [xmin,xmax] and bound-
ary conditions

1. g(0, t)u(0, t) = κ
∫

g(x, t)u(x, t)ex−xmindx

2. u(x, t) = 0 for x > xmax

where rP is the phytoplankton growth rate (which is temperature- and nutrient-dependent),
Pmax is the phytoplankton carrying capacity (the maximum population abundance reached in
the absence of predators), f (P) is the zooplankton grazing rate upon phytoplankton, AP(u) is
the fish community’s grazing rate upon phytoplankton, 0 < αZ < 1 is the zooplankton’s con-
version efficiency, µZ is the zooplankton’s intrinsic mortality rate, AZ(u) is the fish commu-
nity’s grazing rate upon zooplankton, xmin is the minimum log(mass) of the fish community,
xmax is the maximum log(mass) of the fish community, w0 is the reference weight derived
from the co-ordinate transform w=w0ex, µ(x, t) is the fish community’s size-dependent mor-
tality rate (comprising intrinsic mortality, senescent mortality and predation) and g(x, t) is the
fish community’s size-dependent growth rate (resulting through mass gained by consump-
tion). We assume a Holling Type III functional response for the zooplankton’s grazing upon
phytoplankton, i.e. f (P) = rZP2

C2+P2 , where rZ is the zooplankton’s maximum grazing rate and
C is a parameter describing the nonlinearity in the zooplankton’s feeding response to prey
abundance.

A sawtooth temperature profile is used to simulate the rapid warming of ocean waters. This
has a direct effect on the phytoplankton population, as the phytoplankton growth rate is
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assumed to be temperature- and nutrient-dependent. Thus, an increase in temperature leads
to a faster phytoplankton growth rate.

This model is identical to the one used to study the impact of a warming climate upon a
temperate marine ecosystem in previous work (see Chapter 4 for details). Table 5.1 lists the
full definitions and units of the parameters used to formulate the PZ-Fish model, together
with the default values used for the numerical simulations. Chapter 4 (Section 2) has details
for the reasoning behind most of the default values used. The value of Z grazing rate, rZ

was chosen to be 1 day−1, which is still within the empirical range of 0.6-1.4 day−1 reported
by Edwards and Brindley (1999). This was due to a change in a parameter within the size-
structured fish model, the fraction of consumed biomass which is allocated to reproduction,
κ. A value of 0.4 was chosen for this study to try and lie within relatable, empirical ranges.
A smaller value of rZ was used to ensure that bloom dynamics still occurred when seasonally
forced, under this new value of κ.

5.2.1 Fishing strategy

In this paper, we compare the effect that two different fishing strategies has upon a temperate
marine ecosystem: size-at-entry and balanced harvesting.

Size-at-entry

The size-at-entry strategy assumes that the harvesting of the ecosystem is a fixed mortality
rate upon fish larger than some chosen minimum body-size (wF ). In other words:

µSAE
F (x, t) =

{
µ̃F if x >= xF

0 otherwise
(5.2)

where xF is the chosen log(body-size) at which fishing begins and µ̃F > 0 is the fixed fishing
mortality rate.

Balanced harvesting

Balanced harvesting assumes that fishing intensity is proportional to size-dependent produc-
tivity (Law et al., 2012; Jacobsen et al., 2014), where productivity (with units g m−3 day−1)
is measured as the total rate at which biomass passes through the ecosystem at each body
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Table 5.1: Parameter definitions for the PZ-Fish model.

Parameter Description Unit Parameter Value

PZ sub-model
r̃P P growth rate at T=10◦C a day−1 0.3
Pmax P carrying capacity m−3 2.2×105

rZ Z grazing rate day−1 1.0
C Z Holling type III switching

parameterb
m−3 5.2×103

αZ Z mass conversion efficiencya - 0.05
µZ Z intrinsic mortality rate day−1 2.74×10−4

φP predation kernel on P -
φZ predation kernel on Z -
wP P mass g 9.12×10−7

wZ Z mass g 4.98×10−5

Fish sub-model
wmin minimum body mass g 1×10−3

wmax maximum body mass g 3.3×103

w0 reference weight, w = w0ex g 4.54×10−8

Feeding terms
γ volume searched per unit time per

unit massq c
m3 day−1 g−q 1.64

q search volume exponentc - 0.8
α mass conversion efficiencyc - 0.2
φ feeding-kernel function -
β log(preferred predator:prey mass

ratioc
- 4

σ feeding-kernel widthc - 2
κ fraction of ingested energy allo-

cated to reproduction
- 0.4

Mortality terms
k̃ intrinsic mortality ratec day−1 2.74×10−4

µs senescent mortality ratec day−1 1.37×10−3

ρ senescent mortality exponentc - 1.5
xs size-class at which senescent mor-

tality is introducedc
- log(60)

Fishing terms
wF minimum body size for entry to the

fishery
g various

µ̃F constant fishing rate day−1 various

a Truscott and Brindley (1994)
b Edwards and Brindley (1999)
c Law et al. (2009)
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size. The productivity can be written as:

P(x, t) = w0exg(x, t)u(x, t)

where g(x, t) is the growth dynamics described by Equation 5.1 and w = w0ex is the body
mass of the fish (with units g). The fishing rate for the balanced harvesting strategy is thus,
simply:

µBH
F (x, t) =

{
µ̃F P(x,t)
P(xF ,t)

if x >= xF

0 otherwise
(5.3)

The balanced harvesting fishing rate is divided by the productivity at xF to ensure that the
fishing rate is the same as the size-at-entry strategy at this chosen size-class. This it to try
and facilitate a qualitative comparison between these two strategies. Jacobsen et al. (2014)
scaled these two fishing rates so that the exploitation was the same across all strategies for
fish weighing 444g, which is approximately equivalent to assuming a minimum body-size to
the fishery of 10g.

Figure 5.1: Comparing the size-at-entry (dashed red lines) and balanced harvesting strategies
(solid grey lines), with wF = 0.02g and µ̃F = 1 year−1. (a) The range of fishing intensities
over the course of one year and (b) The fishing intensity on day 1 of the year.
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Figure 5.1 shows an example of the fishing intensity for each of these strategies over the
course of one year, when wF = 0.02g and µ̃F = 1 year−1. As the balanced harvesting strategy
is dependent on productivity, which varies over time, there is a range of fishing intensities
over time for this scenario (see Figure 5.1a).

5.3 Results

Fishing undoubtedly leads to a disturbance of the marine ecosystem, but are some fishing
schemes more disruptive than others? Does the benefit of the yield outweigh the cost of the
disruption? We investigate this by exploring the effect that the choice of the minimum body
size at which harvesting can begin (wF ) and the intensity of that fishing pressure (µ̃F ) has
upon the ecosystem. We use a range of minimum body sizes for the entry-size to the fishery,
from <0.01g to 10g. These ranges are typical of industrial fisheries which are focused upon
small zooplanktivorous species (Andersen and Pedersen, 2010), although previous studies
have assumed fishing with a minimum entry-size to the fishery from 1g to 100g (Law et al.,
2012) for a mackerel- or herring-like fish species, and 10g for an entire community of fish
(Jacobsen et al., 2014). For each (wF , µ̃F )-pairing, a no-fishing scenario is simulated for
a year before being used as the initial condition for a ten year simulation, where either a
size-at-entry or balanced harvesting strategy is practiced.

We measure the disturbance to the ecosystem in two ways:

1. The scaled time-averaged Euclidean distance between the phytoplankton populations
when the fish community is harvested or not harvested

2. The period of the phytoplankton dynamics

5.3.1 Euclidean distance

Harvesting upon the fish community propagates through the marine ecosystem, and has a
large impact upon the phytoplankton populations. Freund et al. (2006) utilised three distance
measures in their study, to investigate the trajectories of phytoplankton and zooplankton
concentrations under bloom and non-bloom modes. We use the same Euclidean distance
measure here to see how close trajectories of the phytoplankton’s population when the fish
community is fished or not fished come to each other. dP is defined as the time-averaged
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Euclidean distance between the phytoplankton’s density when the fish community is fished
and not fished.

dP =

(
τ

∑
t

√
(PF(t)−PNF(t))

2
)
/τ (5.4)

where PF(t) is the phytoplankton density at time t when the fish community is harvested,
PNF(t) is the phytoplankton density at time t when the fish community is not harvested and
τ is the number of days which the distance measure is being averaged over. Similar distance
measures were used for zooplankton, and for the entire ecosystem, but as the largest effects
were seen in the phytoplankton population, we only present these results here.

When dP is a small value, there is only a small qualitative change in the dynamics of the
phytoplankton population (see Figure 5.2(a), where dP = 0.004). A large qualitative change
in behaviour is measured through a large distance value. Figure 5.2(b) shows dP = 0.104,
which is 2 magnitudes larger than before.

Figure 5.2: Two examples of the effect that harvesting upon the fish community has upon the
phytoplankton density, where the phytoplankton density under a no-harvesting scenario for
the fish community, PNF(t) (dashed black lines), is compared to the phytoplankton density
when the fish community is harvested, PF(t) (solid blue lines). (a) A small change to the
dynamics leads to a small value of dP = 0.004 and (b) a large change to the dynamics leads
to a larger value of dP = 0.104.

Figure 5.3 shows the time-averaged Euclidean distance, and has been scaled to a value be-
tween 0 and 1 in order to allow for a comparison between the size-at-entry and balanced
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(a)

(b)

Figure 5.3: The time-averaged Euclidean distance between the phytoplankton populations
when the fish community is harvested or not harvested for (a) the size-at-entry fishing strat-
egy and (b) the balanced harvesting strategy.
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harvesting strategies. The distance measure shows that the chosen minimum body-size at
which fishing begins is the dominant factor in the disruption to the marine ecosystem. How-
ever, the distance measure for the balanced harvesting strategy (Figure 5.3b) shows minimal
changes to the phytoplankton population when fishing begins at 1g, whereas the size-at-entry
strategy shows a significant difference in this region between the phytoplankton populations
when the fish community is harvested or not harvested. Overall, the balanced harvesting
strategy can be applied over a much larger range of fishing (wF , µ̃F)-scenarios than the size-
at-entry strategy, whilst causing less disturbance to the phytoplankton populations.

When a minimum body-size of just under 0.01g is chosen for the fishery, then there is a
notable change to the phytoplankton population. These are the size-classes of fish which
are feeding predominantly on the zooplankton population. The higher mortality rate upon
these fish leads to a release in the predation pressure upon zooplankton, thus the zooplankton
population increases. This in turn leads to a decrease in the phytoplankton population as their
predation pressures by the zooplankton increases. Hence this fishing strategy has a direct
impact upon the marine ecosystem. Under a balanced harvesting strategy, these small-sized
fish have a high productivity and are fished upon more intensely than under a size-at-entry
strategy. This leads to a greater disruption to the phytoplankton population under lower
fishing intensities when using a balanced harvesting approach.

The greatest impact to the phytoplankton population occurs when harvesting upon fish stocks
begins with a chosen minimum body-size of about 0.1g. These are the size-classes of fish
which are feeding predominantly on the planktivores. As before, there is a trophic cascade
effect through the marine food web, due to the direct impact of fishing. It is a much more
pronounced effect than the previously described case as there are more feedbacks occurring
when fishing upon this trophic level. Fishing on individuals of body mass 0.1g leads to a
decrease in the predation pressure upon the planktivores, whose population density then in-
creases. This in turn decreases the zooplankton population and increases the phytoplankton
population. However, by increasing the phytoplankton population, there is more food avail-
able for larval fish and planktivores, who uses the available food to grow quickly through
the fish community. Thus the feedbacks that occur between the trophic levels can lead to the
occurrence of complex dynamics.

There is a noticeable absence of a strong feedback to the dynamics of the phytoplankton
when a minimum body-size of 1g or larger is chosen for the fishery. The trophic cascade
that is initiated by fishing is damped as it travels further away from the perturbed trophic
level (Andersen and Pedersen, 2010). Thus, when the cascade reaches the zooplanktivores
(or other small fish that have a diet which includes zooplankton), the effect that it has upon
them is minimal and does not trigger a strong reaction in the phytoplankton population.
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5.3.2 Period of the phytoplankton dynamics

Section 5.3.1 shows that the choice of fishing strategies can lead to a large disruption of the
marine ecosystem. One of the consequences to the marine ecosystem is the change in the
periodic behaviour of the phytoplankton population. In general, phytoplankton undergoes
a spring bloom due to increased temperature, nutrient availability and light intensity (Mc-
Cauley and Murdoch, 1987; Moisan et al., 2002; Townsend et al., 1994). The phytoplankton
then undergoes a smaller autumn bloom due to an increase in nutrients through mixing and
diffusion into the upper mixed layer from the lower layer of the water column (Findlay,
2006). This behaviour occurs on an annual basis, in other words, with a period of 1 year−1.

Figure 5.4 shows that the periodicity of the phytoplankton population changes under different
fishing scenarios. The size-at-entry and balanced harvesting fishing strategies cause six dif-
ferent dynamic behaviours within the phytoplankton population, from aperiodic (henceforth
labelled as period-0) to period-5 dynamics.

To determine the periodicity of the phytoplankton population, a fast Fourier transform was
applied to the phytoplankton data. The fast Fourier transform converts time to frequency,
and thus can indicate the strongest frequencies that occur in time-series data. The period
is simply the inverse of the frequency: the peaks of the fast Fourier transform indicate the
strongest periodic behaviour within the phytoplankton behaviour. The fast Fourier transform
can be written as:

f̂ (ξ) =
N

∑
j=1

P( j)
(

e(−2πi)/N
)( j−1)(ξ−1)

(5.5)

where N is the number of points the transform is applied to and P is the phytoplankton
density over ten years.

Figure 5.5 shows the results of a fast Fourier transform, and the resultant dominant period of
the phytoplankton’s dynamics when there is no harvesting upon the fish community. As can
be seen in Figure 5.5a, there is a strong peak at period 1, indicating that the dominant period
is the recognised annual large spring bloom/small autumn bloom case.

Figure 5.6 shows the different periodic behaviours that the phytoplankton population under-
goes, depending on particular (wF , µ̃F)-fishing scenarios. As can be seen, the majority of the
fishing scenarios do not disrupt the phytoplankton population’s seasonal dynamics, as the
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Figure 5.5: When there is no fishing on the marine ecosystem, the phytoplankton population
exhibit period 1 dynamics. The fast Fourier transform (FFT) indicates the dominant (a)
frequency and (b) period in the phytoplankton population.

period-1 behaviour is the most dominant.

The size-at-entry fishing strategy shows three clear regions of disturbance to the dynamics of
the phytoplankton population, which refine those regions distinguished by the Euclidean dis-
tance measure (see Figure 5.3a). The regions centred at fishing with a minimum body mass
<0.01g and 1g were the least affected by the fishing strategy, and can be seen in Figure 5.6a
that the phytoplankton population has period-2 or period-4 dynamics within these regions.
Thus, the phytoplankton population undergo a large spring bloom, followed by a smaller
autumn bloom every two years (which is of the same magnitude as in the period-1 case),
but then has a relatively small spring bloom and no significant autumn bloom in the second
year (see Figure 5.4c). The region centred at fishing with a minimum body mass 0.1g shows
the largest range of periodic dynamics within the phytoplankton population, with period-0,
period-2 and period-3 dynamics occurring under these fishing scenarios.

The balanced harvesting strategy shows only two clear regions of dynamical change in the
behaviour of the phytoplankton. As with the size-at-entry strategy, there is a region of dis-
turbance centred around fishing scenarios which begin harvesting at body mass <0.01g,
and this region again shows period-2 dynamics. The second region of disturbance, centred
around fishing with a minimum body mass 0.1g, covers less potential (wF , µ̃F)-scenarios
than under the size-at-entry strategy. The region spans fishing scenarios where harvesting
begins on fish of size 0.01g to about 0.15g, whereas the comparable region for the size-at-
entry strategy spans a range of 0.01g to 0.25g. However, the balanced harvesting strategy
also shows that significant changes to the phytoplankton population can occur under less in-
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(a)

(b)

Figure 5.6: The periodicity of the phytoplankton’s dynamics when the fish community is
harvested using (a) the size-at-entry fishing strategy and (b) the balanced harvesting strategy.
The choice of body mass at which fishing begins and the intensity of the fishing pressure
leads to six different types of dynamical behaviours occurring in the phytoplankton popula-
tion (from period 0 to period 5), as seen in Figure 5.4. In general, the fishing intensity has to
be greater than 3 year−1 to impact the phytoplankton population.
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tensive fishing pressures: within this region, a fishing pressure of 3.5 year−1 can drastically
affect the periodic behaviour of the phytoplankton, whereas a fishing pressure of 4 year−1 is
needed under the size-at-entry strategy to impact the phytoplankton’s dynamics.

The changes in the periodic behaviour of the phytoplankton are caused by the changes in the
fish community’s dynamics when it is harvested upon, and in particular, the rate at which
the fish graze upon the zooplankton population. Figure 5.7 shows the predation rate of fish
upon zooplankton for three different fishing intensities. These scenarios were chosen as the
phytoplankton’s dynamics transition across three different periodic behaviours under these
fishing intensities, under the balanced harvesting strategy. For the size-at-entry strategy, the
phytoplankton has period-1 dynamics under each fishing intensity shown. Figure 5.7a shows
that the exploitation of fish is minimal, and thus there is no significant difference change to
the phytoplankton’s dynamics.

When the fishing rate is increased from 3 year−1 to 3.5 year−1, the phytoplankton’s dynamics
alter from period-1 to period-5 under a balanced harvesting strategy. As can be seen in
Figure 5.7b, the peak in AZ(u) can occur earlier than at a lower fishing intensity. When this
happens, there is a sudden drop in the zooplankton’s abundance due to the increased pressure
from predation, which releases the phytoplankton population and allows it to bloom to high
abundances. A dynamical phase-plane analysis of the effect of increasing fishing intensities
has upon the phytoplankton and zooplankton populations can be found online, where three
movies of these described scenarios show the range of behaviours that can occur (please
visit http://www.youtube.com/playlist?list=PLWBS2IgRW2JT7bx-7MPM6K2hwYLW4jios
to view these movies).

The reaction of the phytoplankton population to different fishing scenarios could have a
major impact upon sustainable fisheries management. If the seasonal behaviour of the phy-
toplankton varies yearly (or over multiple years), this could mean that the yield achieved by
fisheries becomes much more variable. This would have economic and ecological conse-
quences.

5.3.3 Yield

Yield is measured as the total biomass obtained through harvesting the fish community, and
can be calculated as Y =

∫
w0exµF(x, t)u(x, t)dx (with units g day−1 m−3).

Figure 5.8 shows that when the dynamics of the marine ecosystem are considerably affected
by exploitation, this can have a significant impact upon the yield. Figure 5.8b and c show
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that when the natural period-1 dynamics of the phytoplankton are disrupted, the yield can
appear more variable and unpredictable. Consider the period-2 dynamics case: when there is
a year with a relatively small spring bloom, this impacts the zooplankton population which
also has a relatively low density season. Thus, there is less food available for the planktivores
in the fish community, and less biomass overall within the fish community. This leads to a
relatively low-yield year.

Figure 5.9: The averaged annual yield (normalised by dividing over the maximum obtained
yield) for the size-at-entry strategy (solid black line) and the balanced harvesting strategy
(dashed red line), when fishing begins on individuals of body mass 0.02g.

Figure 5.9 compares the averaged annual yields obtained under the size-at-entry and bal-
anced harvesting strategies (where the yields were averaged over ten years), for the scenario
where fishing begins upon individuals of body mass 0.02g. The results show that under
low fishing intensities, the balanced harvesting strategy achieves a higher average annual
yield than the size-at-entry strategy. However, once a fishing pressure of about 1.5 year−1

is exerted upon the ecosystem, the size-at-entry strategy achieves the higher average annual
yield.

5.4 Discussion

The results of this study show that harvesting fish populations can have a significant impact
upon the dynamics of phytoplankton. Whether a size-selective or balanced harvesting strat-
egy is exerted upon a marine ecosystem, small changes in the fishing intensity can cause the
phytoplankton dynamics to shift from a predictable annual pattern, to something much less
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predictable where there are bloom and non-bloom years.

There have been several investigations into the potential trophic cascades that can occur in
marine ecosystems due to over exploitation of top predators. Casini et al. (2008) showed that
a reduction of cod in the Baltic Sea had direct effects upon its main prey, the zooplanktiv-
orous sprat, but also indirect effects upon the zooplankton and phytoplankton populations.
Thus, a top-down cascade could feedback all the way down to the level of the primary pro-
ducers, highlighting the importance of an ecosystem-scale approach to sustainable fisheries
management. Casini et al. (2008) also proposed that, while the intensity of the spring bloom
is mainly affected by the previous winter’s nutrient level, the summer (or early autumn)
bloom is a top-down driven process caused by the interactions with the fish community. Our
results indicate that the causes of the spring and autumn blooms are not easily separated
into top-down and bottom-up (nutrient-driven) reasonings, but rather that the relationship
between fish and the lower-trophic-level organisms leads to dynamical changes which occur
over a long time-scale.

Figure 5.4 shows that the phytoplankton dynamics can shift from the typical period-1 dy-
namics observed in temperate marine ecosystems, to much more complex behaviours such
as period-5 and period-0 dynamics. Zohary (2004) analysed the phytoplankton record from
Lake Kinneret, the only freshwater lake in Israel, from 1969 to 2002. She shows that there
exists two distinct periods within this record. Firstly, between 1969 and 1993, the phyto-
plankton dynamics exhibited distinctly stable periodic dynamics which occurred annually,
centred on a spring bloom of dinoflagellate. However, the second period occurs between
1994 and 2002, where there is a loss of the previously predictable pattern: instead, there are
bloom and non-bloom years which occur. There were two major perturbations which took
place in Lake Kinneret between these periods: (i) the collapse of the fishery of Kinneret
Bleak and (ii) the re-flooding of dried peat-soils in the lake’s catchment. The collapse of the
fishery led to a ‘bleak dilution program’, where sub-commercially sized fish were harvested
annually, as well as the over-fishing of other commercial species. Although a cause-and-
effect relationship between the bleak fishery and the major changes in the phytoplankton
dynamics cannot be inferred, our results show that under intensive harvesting of fish stocks,
the dynamics of the phytoplankton population can dramatically shift behaviours.

Figure 5.3 and Figure 5.6 both indicate that there are distinct regions within potential fishing
scenarios which lead to a disturbance in phytoplankton dynamics. This is likely a model arte-
fact, due to the aggregation of phytoplankton populations into one group, and similarly for
zooplankton. Thus, the largest changes to the phytoplankton’s dynamics occur when fishing
pressure is exerted directly upon those fish species which have the strongest linkage to the
phytoplankton and zooplankton populations. Although such noticeable trophic cascades can
occur in marine ecosystems, such as the cod-induced cascade in the Baltic Sea (Casini et al.,
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2008) or the fishing-induced cascade in the Black Sea (Daskalov et al., 2007), these circum-
stances are rare. Further work is needed to explore the consequences of the aggregation of
the phytoplankton and zooplankton populations, as we would expect more ‘diluted’ regions
of disturbances to occur when considering a less amalgamated approach.
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Implications for fisheries management

Regardless of the strategy applied for harvesting fish populations, our results have shown the
clear consequences that exploitation of top predators has upon primary producers. Figure
5.8 shows the clear link between primary production and fisheries yields, and highlights the
importance of a holistic view towards fisheries management (Chassot et al., 2007; Travers
et al., 2007). The results show an absence of a strong feedback to the dynamics of the
phytoplankton population for fisheries with a size-at-entry of 1g and larger, and while North
Sea fisheries operate with entry sizes of 100g to 1000g (Law et al., 2012; Jacobsen et al.,
2014; Andersen and Pedersen, 2010), understanding the potential impact of fishing at lower
limits for the size-at-entry is important for developing future strategies. For example, the
balanced harvesting strategy would predominantly harvest fish of a very small size (likely
with a body mass less than 1g), as these fish have the highest productivity in the marine
ecosystem.

Size-selective fishing strategies can lead to major disturbances in the marine ecosystem
(O’Brien et al., 2000; Hutchinson, 2008; Reznick and Ghalambor, 2005; Enberg et al., 2011),
and these disturbances can potentially occur over a wider range of fishing scenarios than a
balanced harvesting approach. A balanced harvesting strategy can still have the same signifi-
cant impact upon the dynamics of the primary producers, but it can also reduce the disruption
to the size distribution of the marine ecosystem (Law et al., 2012), thereby preserving the
structure and biodiversity of the ecosystem. However, the major disadvantage to using a
balanced harvesting strategy is the ability to parameterise it accordingly to the natural pro-
ductivities of species (Jacobsen et al., 2014). Compromises could be made for practical
implementation, whereby the natural productivity is measured per season of the year rather
than per day.

Balanced harvesting is a promising management strategy which protects the size-structure of
marine ecosystems whilst achieving higher fisheries yields than a size-at-entry strategy. Yet
it can have the same disruptive influence upon the underlying phytoplankton’s dynamics as
size-selective fishing strategies, with the shifts in the phytoplankton’s dynamics leading to
more variable fisheries yields.
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Chapter 6

General Discussion

6.1 Summary and Synthesis

Marine ecosystems are of huge importance to human society: as a source of food, for eco-
nomic growth and for mitigating climate change (Vitousek et al., 1997; Botsford et al., 1997;
Levin and Lubchenco, 2008; Boyd and Doney, 2002; Hoegh-Guldberg and Bruno, 2010; Jin
et al., 2003). Human activities, such as the overexploitation of commercially important fish
stocks (Worm et al., 2009), have led to large-scale changes in the fish communities. One
such change has been in the size and species composition of the fish communities (Jennings
et al., 2002). These changes have consequences in the yield obtained through fishing, where
the catch is dominated by smaller-sized fish (Reznick and Ghalambor, 2005; Enberg et al.,
2011), as well as the biodiversity within the marine ecosystems (Bianchi, 2000). Human
activities have also had an indirect effect upon marine ecosystems through climate change
(Hoegh-Guldberg and Bruno, 2010): the warming of the sea surface temperatures have af-
fected biological processes (such as the growth rate of phytoplankton (Moisan et al., 2002)),
as well as depleted oceanic oxygen leading to dead zones in the ocean (Diaz and Rosen-
berg, 2008). The potential role of the ocean in mitigating climate change by acting as a sink
for atmospheric carbon dioxide (Siegenthaler and Sarmiento, 1993; Boyd and Doney, 2002;
Yool et al., 2013) has also lead to humans having a direct influence upon marine ecosystems,
through large-scale iron fertilisation experiments (Coale et al., 1996; Blain et al., 2007).

Marine ecosystems are complex systems, where lower-trophic-level organisms interact with
higher-trophic-level organisms, and their dynamics are intricately affected by each other.
Taking account of their interactions and their consequences for managing fisheries sustain-
ability is the basis for an ecosystem-based approach to fisheries management (Rose et al.,
2010; Fulton, 2010).
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Over the last ten years, there has been a huge interest in ‘end-to-end’ (E2E) modelling,
where hydrodynamic models (representing the environmental forcing of the ocean), biogeo-
chemical models (representing the utilisation of nutrients by the lower-trophic-level (LTL)
organisms) and fish production models (representing higher-trophic-level (HTL) organisms)
are coupled together into one framework (Rose et al., 2010). The common approach for
constructing E2E models has been to couple together existing submodels that represent the
LTL and HTL organisms (Aydin et al., 2005; Libralato and Solidoro, 2009; Travers et al.,
2009; Fennel, 2010; Kishi et al., 2011). Biogeochemical models of LTLs tend to represent
the organisms through functional groups (Kishi et al., 2007; Travers et al., 2009), whereas
fish production models are frequently species-centric. Thus, the “structure” of the coupled
models are significantly different. There is also a vast difference in the “resolutions” used
in the isolated submodels: LTL models divide the functional groups into 1-3 size-classes at
most (such as small, large and carnivorous), whilst HTL models use a much finer resolution.
Travers et al. (2009) used 11 size-structured fish populations within their E2E model, whilst
Fennel (2010) used 7 size-classes to represent the life cycle of cod. Only by understanding
the implication of coupling together models which differ at the component level can E2E
models be used to predict ecosystem changes due to environmental stressors. This thesis
provides a systematic investigation into the effects of coupling together models which differ
in their “structure” and “resolution”, to aid in the differentiation between ecosystem-scale
effects and numerical artefacts due to these fundamental differences.

6.1.1 The discretisation of size-structured models

Size-structured models are commonly used in E2E models to represent the population dy-
namics of HTL organisms (Travers et al., 2009; Maury, 2010). There are many advantages
to size-structured models, particularly for E2E modelling, as they promote model simplicity
and tractability in complex frameworks, as well as providing useful indicators for measuring
the status of an ecosystem (Pope et al., 2006). The McKendrick-von Foerster partial differen-
tial equation models an age-structured population (Kot, 2001), and a variant of this equation
has been widely used to model size-structured populations (Benoı̂t and Rochet, 2004; Ander-
sen and Beyer, 2006; Law et al., 2009), where the abundance of the population is dependent
on body size and time.

Partial differential equations (PDEs) are usually studied using numerical methods due to the
challenges faced with formal mathematical analysis, although great strides have been taken
in this direction by assuming scale invariance (Capitán, 2010; Datta et al., 2011). Numerical
methods involve partitioning the domain space into a grid and approximating the PDE at
these discrete points (Lax, 1965; Press et al., 2007). Numerical methods require care to
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ensure that they are numerically stable and that the integrations converge to the numerical
approximation (Lax, 1965); these factors are dependent on the choice of discretized step
sizes. In Chapter 2 of this thesis, I studied the effect that the choice of numerical resolution
had upon the large-scale behaviour of a size-structured fish community. I derived a numerical
stability condition which showed that size spectrum models could be numerically stable
under coarse resolutions (i.e. a large step size for the size-classes is chosen). However, whilst
the system may be numerically stable when coarsely resolved, the level of discretisation also
affects the slope of the size spectrum, and its mathematical stability.

The changes in the large-scale behaviour of the fish community under different discretisa-
tions of the numerical scheme are primarily due to the implementation of the feeding kernel
(Baird and Suthers, 2007). At coarse resolutions, the predator has a limited number of prey
available to feed upon, which limits its somatic growth and thus impacts the final abundances
and slope of the size spectrum. As the discretisation becomes finer, the number of prey avail-
able to the predator increases: continuing the discretisation allows the range of available prey
to converge to the continuous limit. With a greater number of prey available for feeding upon,
the predator is able to allocate more biomass to somatic growth, and thus there is a higher
abundance of large fish species at finer resolutions. The effect that the choice of numeri-
cal resolution has upon model behaviour has been shown in mathematical modelling studies
(Baird and Suthers, 2007; Picard et al., 2010), as well as in the construction of empirical
size-spectra (Han, 1998; Kerr, 1974; Sheldon et al., 1977; Mancinelli et al., 2008). The re-
sults from Chapter 2 shows the necessity of recognising the role that the choice of numerical
method has upon biological interpretations, and that consideration of numerical resolution
must be addressed in size-structured modelling.

6.1.2 Model architecture and understanding its impact upon the dy-
namics of end-to-end models

Understanding the effect that model architecture has upon the large-scale behaviour of a
model is as important as understanding the effect that the choice of numerical method has
upon it. Historically, models of LTL and HTL organisms have been developed from very
different perspectives. Biogeochemical models have been most commonly used for mod-
elling LTL populations: these models focus on the flux of a key nutrient (usually nitrogen)
through the biological components of phytoplankton and zooplankton. These biogeochemi-
cal models are coupled to hydrodynamic models which capture the physical elements of the
ocean (such as the wind speed and sea surface temperature) (Blackford, 2004), and attempt
to realistically model the dynamics of primary production. The population dynamics of HTL
organisms have been developed from the perspective of fisheries management (Travers et al.,
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2009), with a focus of optimising yields of exploited fish stocks whilst maintaining a strong
spawning-stock population (Lassen and Medley, 2001; Magnusson, 1995). The different fo-
cus that has led to the development of biogeochemical and food web/fish population models
has meant that these models vary significantly with the scales used (both spatial and temporal
(Carlotti and Poggiale, 2010)), the structure of the biological components (from functional
groups for LTL organisms and fish species for HTL organisms) and the resolution of the
biological components (from 1-3 zooplankton groups (Steele et al., 2007) to finely-resolved
(for approximating continuous PDEs) size-structured models with 101 size-classes (Maury
et al., 2007).

Developing a dynamic E2E ecosystem model is not a straightforward task, particularly when
coupling together models which were created for different purposes. Not only are there
practical considerations (functional groups which are defined in the LTL model may not be
in the HTL model, thus requiring a ‘library’ to be created to enable the two submodels to
communicate), but the fundamental differences of the frameworks for the submodels may
have consequences upon the ecosystem-scale behaviours. In Chapter 3, I developed a dy-
namic E2E model using a minimal framework (henceforth known as the PZ-Fish model):
I represented the LTL organisms with two box components for the phytoplankton and zoo-
plankton, and used a size-structured fish community model to represent the HTL organisms.
This minimal framework mimics those used in current E2E models (Travers et al., 2009;
Fennel, 2010; Megrey et al., 2007). I compare these results to the previously defined HTL
model - the size-structured fish community model where the LTL organisms are represented
by a static resource spectrum.

With this minimal framework, I studied the steady-state solutions of the ecosystem model.
The results show that if only measures of the steady-state solutions are studied (such as the
abundances of the organisms within the ecosystem, the total biomass within the ecosystem or
the slope of the size-spectra), then the E2E model yields results which appear plausible and
comparable to empirical observations. It is only when studying the underlying life histories
within the model that the effect of the choice of model architecture can be seen. The growth
trajectory of an individual larval fish in the E2E model grows much slower, and to a smaller
maximum size, than a larval fish in the HTL model. Both models lead to fish growing at
a slower rate and to a smaller maximum size than seen in real data. Santos et al. (2002)
measured a range of species of fish of the Algarve coast, with maximum body sizes ranging
from 8g to over 1000g, whereas the average fish in the HTL model grows to a maximum
size of about 5g and to only 0.1g in the E2E model. The difference in the growth trajectories
is due to the representation of the LTL organisms - the E2E model assumes that the LTL
organisms are two compartments of phytoplankton and zooplankton and thus the larval fish
are limited by the supply of prey available to them.
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DeYoung et al. (2004) proposed that a rhomboid strategy be used for modelling pelagic
ecosystems, where the trophic level or population of interest is modelled at the highest reso-
lution, and that the resolution decreases at higher or lower trophic levels. Speirs et al. (2010)
use the rhomboid strategy to explicitly model the populations dynamics of cod and the nine
North Sea species which potentially have the strongest interaction with cod. Using this ap-
proach, Speirs et al. (2010) showed that the population of herring has a strong impact upon
the cod populations, and in particular, that the maximum sustainable yield of cod is strongly
dependent on the abundance of the herring population.

The results from this chapter shows that modelling different trophic levels at different res-
olutions can impact the trophic level of interest, and that this strategy should be used with
caution. These types of frameworks can be used to understand the effect that higher and
lower trophic levels have upon each other, and the feedbacks and interactions between these
trophic levels, but should not be used for predicting the impact on the underlying life histo-
ries.

6.1.3 The importance of the zooplankton dynamics

The zooplankton population has long been under-represented in marine ecosystem models:
in LTL models, a ‘closure’ term is implemented in the zooplankton’s dynamics to represent
predation by the fish populations, whereas in HTL models, the zooplankton is not modelled
explicitly but is portrayed through a ‘carrying capacity’ parameter, or through a fixed ‘pool’
of resources (Rose et al., 2010; Travers et al., 2007; Morozov et al., 2012). The representation
of the zooplankton is of key importance in E2E models, as they are the link between the lower
and higher trophic levels (Rose et al., 2010). The zooplankton population has been modelled
in many different ways, from a single box component (Franks, 2002; Steele and Hendersen,
1981), to a coarsely size-structured representation of small and large (Travers et al., 2009),
using a completely stage-structured representation (Fennel, 2001; Moll and Stegert, 2007;
Stegert et al., 2007) to a continuously size-structured population model (Fuchs and Franks,
2010).

The underlying dynamics of the zooplankton population, such as the modelling of the graz-
ing of herbivorous zooplankton upon the phytoplankton populations (Morozov et al., 2012;
Gentleman and Neuheimer, 2008), must also be investigated. In planktonic models, the
zooplankton’s grazing dynamics are commonly described by a function which has a satiat-
ing response to increasing prey availability (Franks, 2002), usually through a Holling Type
II functional response (Travers et al., 2009; Scheffer et al., 2000) or an Ivlev-type function
(Fennel, 2010; Kishi et al., 2007). It has been observed, historically, that the use of a satiating
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response leads to a destabilization of the ecosystem (Gentleman and Neuheimer, 2008).

In Chapter 3, three different functional responses for the grazing of zooplankton upon phy-
toplankton are studied: the Holling Type I, II and III functional responses. The mathematical
stability of the isolated LTL submodel (where the predation upon the phytoplankton and zoo-
plankton populations by the HTLs is assumed to be a constant rate) shows that the steady-
state solutions are strongly dependent upon the assumed predation rate of the fish upon the
zooplankton population, particularly when a satiating functional response is assumed in the
zooplankton’s grazing rate. The results show that when a Type II functional response is used,
the LTL submodel (and thus the coupled E2E ecosystem model) is predominantly unstable
under most predation pressures by the HTL organisms. The Type III response is predomi-
nantly stable under most predation pressures, but can be unstable under particular scenarios.
A Type III response is underused in planktonic models, yet it has the same satiating charac-
teristics as a Type II response, and the mathematical formulation allows for the occurrence of
“excitable” phenomena such as seasonal spring phytoplankton blooms (where a rapid growth
in the phytoplankton biomass is followed by an equally rapid decline) (Truscott and Brindley,
1994; Freund et al., 2006; Winder and Cloern, 2010).

6.1.4 Climate change and the consequences to marine ecosystems

In temperate oceans, phytoplankton undergoes an annual occurrence known as a seasonal
bloom. This typically occurs in the spring months, with a smaller bloom often occurring
in the autumn months (Truscott and Brindley, 1994; Winder and Cloern, 2010; Findlay,
2006). The spring bloom is caused by a number of environmental factors (increased nutrient
availability, light intensity and temperature (McCauley and Murdoch, 1987; Moisan et al.,
2002; Townsend et al., 1994)), whilst the autumn bloom is caused by destratification leading
to an influx of fresh nutrients from the lower layers of the water column (Findlay, 2006).

Climate change is predicted to lead to an increase of 1.1◦C to 6.4◦C in sea surface tempera-
ture over the next 100 years (Huertas et al., 2011). In this thesis, I focus on the effect of sea
surface temperature upon the seasonal phytoplankton blooms, and the impact upon the rest of
the marine ecosystem. In particular, in Chapter 4, I investigate the effect of a future warm-
ing scenario across a marine ecosystem, where the mean sea surface temperature increases
by 3◦C over 100 years. The PZ-Fish model developed in Chapter 3, with a Holling Type
III functional response assumed for the zooplankton’s grazing function upon phytoplankton,
was used to model the dynamics of the marine ecosystem. In this chapter, it is assumed that
temperature has a direct influence upon the phytoplankton growth rate (an increase in tem-
perature leads to an increase in the phytoplankton growth rate), and the results show that the
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warming temperature leads to a shift to an earlier occurrence of the phytoplankton bloom.
This is in agreement with several empirical studies investigating the timing of the spring
blooms (Edwards et al., 2002; Wiltshire and Manly, 2004).

The warming of the sea surface temperatures also leads to an increase in the duration of the
spring phytoplankton bloom, which has a direct impact upon the autumn blooms. Due to
the extended duration of the spring bloom, there is not enough time for an autumn bloom to
occur: thus under a warming climate, this thesis predicts a loss of the autumn bloom. These
results have been found in a modelling study by Molen et al. (2012), as well as in empirical
observations (Martinez et al., 2011).

This thesis shows the importance of ecosystem-scale models, and the need to include the
interactions between LTL and HTL organisms in one framework. The extended duration of
the spring phytoplankton bloom is due to the increased grazing pressures of the fish com-
munity upon the zooplankton community. The zooplankton population declines, which in
turn decreases the grazing pressure of the zooplankton upon the phytoplankton population
and leads to a longer phytoplankton bloom. If a ‘closure’ term were used, representing the
predation of the fish community as a fixed mortality rate upon the phytoplankton and zoo-
plankton dynamics, the full implication of a warming climate would not be realised. Whilst
the occurrence of an earlier bloom would emerge (as this is a direct effect of a warming
climate), the predicted loss of the autumn bloom would not as this is due to the complex
interactions of the phytoplankton and zooplankton populations with the fish community.

6.1.5 The impact of fishing on marine ecosystems

Fishing upon marine ecosystems is a practice which has occurred over hundreds of years
(Pauly et al., 2005), and the management of fisheries is an area which attempts to protect
those resources whilst maximising the yield obtained (Botsford et al., 1997; Caddy and
Cochrane, 2001). This has led to the development of quantitative stock assessment meth-
ods, such as the use of mathematical models of the population dynamics of fish (Schnute
and Richards, 2001). These mathematical models focus on exploited fish species, either
in a single-species (Lassen and Medley, 2001) or multi-species context (Magnusson, 1995).
These models focus solely on the HTL organisms, and do not explicitly include the dynamics
of the LTL organisms within their frameworks. Fisheries managers have begun adopting an
ecosystem approach to their strategies, where the targeted fish stocks are not the only con-
sideration in exploitation practices but also the LTL organisms such as phytoplankton and
zooplankton, and the socioeconomic effects (Plagányi, 2007; Hall and Mainprize, 2004).
This has been one of the driving factors in the development of E2E models.
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In Chapter 5, I use the dynamic PZ-Fish model developed in Chapter 3 and simulate two
fishing strategies in order to understand the implications that exploitation of fish stocks has
upon the phytoplankton population. A traditional size-at-entry strategy, where fish of a min-
imum body size enter the fishery before being harvested, and a recently developed balanced
harvesting strategy, where fishing occurs on all size-classes of fish in the community but in
proportion to their natural productivity (Law et al., 2012; Garcia et al., 2012; Zhou et al.,
2010), were studied in this chapter. I explore the fishing scenarios that would be representa-
tive of an industrial fishery focussed upon small zooplanktivorous species. The results show
that each of these fishing strategies can significantly affect the dynamics of the phytoplank-
ton population, shifting the stable annual patterns to unpredictable periodic behaviours. This
finding is supported by empirical results which show that the seasonal dynamics of phyto-
plankton are strongly affected by the fish community (Casini et al., 2008; Zohary, 2004).
The balanced harvesting strategy also achieves a greater biomass yield under low intensity
fishing scenarios than the size-at-entry strategy, but can also lead to a greater disturbance in
the phytoplankton population. These results show the potential dangers of fishing down to
body sizes so small that large feedbacks occur into the plankton. Thus, this thesis makes a
useful contribution to the ongoing debate about top-down (changes due to the fish popula-
tion) and bottom-up (changes due to the nutrients and plankton population) control in marine
ecosystem dynamics.

These findings show that exploitation of the fish community can have a strong influence upon
the dynamics of the phytoplankton, and supports the need for ecosystem-based fisheries man-
agement. However, the fishing scenarios used in this modelling study are only representative
of fisheries which are focused upon small zooplanktivorous species. Fishing scenarios which
assumed a size-at-entry strategy upon larger fish (for example, a minimum body size of 10g)
did not show any significant changes upon the dynamics of the phytoplankton population.
This is due to the size-structured fish community: when a size-spectrum model is perturbed
(for example, through fishing), the trophic cascade is damped as it comes further away from
the perturbed trophic level (Andersen and Pedersen, 2010). This effect is amplified in the
size-structured fish community model due to the assumption of each size-class contribut-
ing to the reproductive rate of the community. Thus, when fishing occurs on larger fish, the
trophic cascade is damped to such a degree that when it affects the zooplanktivores (and other
small fish which have a strong feeding preference upon the phytoplankton and zooplankton),
it does not have a significant effect upon the phytoplankton’s dynamics.
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6.2 Future perspectives and priorities

In this thesis, a systematic investigation into the effect of model architecture upon the large-
scale behaviours of models of marine ecosystems has been conducted, and an understanding
of the interactions and feedbacks between the higher and lower trophic level organisms has
been achieved. A minimal framework was used to develop a dynamic E2E model which
mimics those used in recent studies, which couples together a box-compartmental model of
phytoplankton and zooplankton and a size-structured fish community. Using this framework,
it has been possible to study the implications of coupling together two models which vary
significantly in their structure and resolution, as well as highlighting the importance of E2E
models for addressing ecosystem-scale questions, such as the impact of climate change and
fishing. In doing so, ways to improve the model have become evident, as well as avenues for
future work.

The aim of this thesis was to understand the consequences of coupling together models
which differ significantly in their structure and resolution. In Chapter 3, a phytoplankton-
zooplankton-fish model was developed as the basis of this investigation. The amalgamation
of several plankton functional types into two compartments of phytoplankton and zooplank-
ton has had a significant impact upon the individual life histories of larval fish. Results from
Chapter 3 has shown that having only two prey items to feed upon leads to a slower growth
trajectory for larval fish as well as a smaller body mass after five years, when compared to
an assumption of a fixed resource which is numerically resolved to the same degree as the
fish community. This is partly due to the formulation of the feeding kernel (the preference
that an individual fish has for feeding upon phytoplankton or zooplankton), and one route
that could be explored is the extension of the feeding kernel to represent feeding on a range
of size-classes of phytoplankton (or zooplankton). This would retain the minimal framework
of the PZ-Fish model, which allows for tractability of the model when different forcing sce-
narios are explored, and allows the interactions between the trophic levels to be the focus of
investigations.

However, to fully understand the effect of the aggregation of plankton functional types into
a limited number of size-classes, this modelling framework should be extended. The zoo-
plankton needs to be methodically resolved into a population which is consistent with the
modelled fish community, by first dividing it into two size-classes (of large and small zoo-
plankton) and eventually extending it to a fully size-structured population (Fuchs and Franks,
2010). A similar approach can then be undertaken for resolving the phytoplankton popula-
tion. However, the dynamics of the phytoplankton population cannot be modelled using the
McKendrick-von Foerster equation as phytoplankton does not grow through consumption
of smaller phytoplankton. Fuchs and Franks (2010) model a continuous population of size-
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structured phytoplankton by assuming that the maximum specific growth rate scales with
body size. This approach could be adopted when developing a size-structured phytoplank-
ton population.

The size-structured fish community model also has limitations: in reality, the ocean consists
of hundreds of species of fish with individual life histories, and by modelling these species
within one framework restricts the emergence of behaviours such as diet shifting (Claessen
and Dieckmann, 2002) or regime shifts (Shannon et al., 2004; Andrades, 2012). A multi-
species approach for the fish community could be used, for example, by determining species
by their asymptotic size and thus using a trait- and size-based model (Andersen and Beyer,
2006; Hartvig et al., 2010). Whilst this proposal would lead to a more complex model for
the fish community, it would also allow for more realistic scenarios to be explored such as
size-at-entry fisheries with a minimum body size of 100g (Jacobsen et al., 2014).

Another limitation to the size-structured fish community model is the assumption of con-
tinuous reproduction, an assumption made in most size-structured models (Hartvig et al.,
2010; de Roos et al., 2008; Law et al., 2012). In reality, most fish will spawn once a year
and the timing of the spawning period can be vital for the survival of the larval fish (Cush-
ing, 1975; Wright and Trippel, 2009). Thygesen et al. (2005) show that when reproduction
occurs once a year in a size-structured mode, it affects the strategy of optimal allocation of
energy between growth and reproduction. This is a feature which could have ecosystem-scale
consequences. By modelling reproduction as a seasonal ‘pulse’, ideas such as the ‘match-
mismatch’ hypothesis (the proposal that the timing of egg hatching and the timing of spring
phytoplankton blooms must overlap for optimal growth of the larval fish (Cushing, 1975))
can be studied, and the interaction between the phytoplankton and the fish community is
better represented.

In Chapter 4, the impact of a warming climate upon the seasonal dynamics of phytoplankton
was studied, where the sea surface temperature directly affected the phytoplankton growth
rate. However, temperature also affects other processes in biological organisms, such as
metabolic rates (Richardson, 2008), optimal growth rates (Peck and Daewel, 2007) and egg-
hatching times (Pepin et al., 1997). Temperature can also have an indirect effect upon phys-
iological processes through changing the oxygen content of the ocean waters, which again
impacts the somatic growth rates of fish (Cheung et al., 2012; Pörtner and Knust, 2007).
Thus, climate change will not just affect the seasonal dynamics of the phytoplankton, but
will also have a direct impact upon the survival rate of fish within the ecosystem. A warm-
ing climate may have a stronger influence upon the dynamics of marine ecosystems than the
study in this thesis suggests, as the fish community is also directly affected by sea surface
temperatures and creates additional feedbacks within the ecosystem that are not captured in
the modelling study in Chapter 4.
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Variability has not been fully implemented into this work, yet it plays an important role
in marine ecosystems, either through environmental effects (O’Brien et al., 2000), the sea-
sonal variation found in the timing of phytoplankton blooms (Gaedke, 1992; Townsend et al.,
1994) or in fish recruitment (Kristiansen et al., 2011). An initial investigation into a variable
warming climate was conducted, and showed that decreasing the variance of the temperature
profile can also affect the seasonal dynamics of phytoplankton, leading to a small spring
bloom and no autumn bloom. As variability is a key factor in the timing of phytoplankton
blooms and fish recruitment (Burrow et al., 2011), it is an important avenue to explore in the
context of E2E modelling.

To conclude, this thesis presents an initial investigation into the effect that coupling together
models that differ significantly in their structure and resolution has upon large-scale be-
haviours of marine ecosystems. Whilst steady-state solutions of E2E models can yield re-
sults which superficially appear credible, by studying the underling life-histories of the fish
community, discrepancies can be found. However, using a minimal modelling framework
can still allow an understanding of the basic interactions and feedbacks that occur in an
ecosystem-scaled system to be gained, and the work in this thesis highlights the importance
of those interrelationships. This thesis is the necessary first step in the development of E2E
models, and will aid research in the field of ecosystem based management. There are many
avenues of possibilities for future work, starting with the extension of the zooplankton com-
partment into a fully size-structured, dynamic population. This will give a complete and
thorough understanding of the effect that model architecture has upon E2E models that de-
scribe the dynamics of marine ecosystems.

“So long, and thanks for all the fish.”

- Douglas Adams (1984)
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