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Abstract

Building intelligent systems that are capable of representing or ex-
tracting high-level representations from high-dimensional sensory
data lies at the core of solving many A.I. related tasks. Human ac-
tion recognition is an important topic in computer vision that lies
in high-dimensional space. Its applications include robotics, video
surveillance, human-computer interaction, user interface design,
and multi-media video retrieval amongst others.

A number of approaches have been proposed to extract represen-
tative features from high-dimensional temporal data, most com-
monly hard wired geometric or bio-inspired shape context features.
This thesis first demonstrates some ad-hoc hand-crafted rules for ef-
fectively encoding motion features, and later elicits a more generic
approach for incorporating structured feature learning and reason-
ing, i.e. deep probabilistic graphical models.

The hierarchial dynamic framework first extracts high level fea-
tures and then uses the learned representation for estimating emis-
sion probability to infer action sequences. We show that better
action recognition can be achieved by replacing gaussian mixture
models by Deep Neural Networks that contain many layers of fea-
tures to predict probability distributions over states of Markov Mod-
els. The framework can be easily extended to include an ergodic
state to segment and recognise actions simultaneously.

The first part of the thesis focuses on analysis and applications of
hand-crafted features for human action representation and classifi-
cation. We show that the “hard coded” concept of correlogram can
incorporate correlations between time domain sequences and we



further investigate multi-modal inputs, e.g. depth sensor input and
its unique traits for action recognition.

The second part of this thesis focuses on marrying probabilistic
graphical models with Deep Neural Networks (both Deep Belief
Networks and Deep 3D Convolutional Neural Networks) for struc-
tured sequence prediction. The proposed Deep Dynamic Neural
Network exhibits its general framework for structured 2D data rep-
resentation and classification. This inspires us to further investigate
for applying various graphical models for time-variant video se-
quences.
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Chapter 1

Introduction

In recent years, human action recognition has drawn increasing attention of re-
searchers, primarily due to its growing potential in areas such as video surveil-
lance, robotics, human-computer interaction, user interface design, and multi-
media video retrieval.

Previous works on video-based motion recognition focused on adapting
handcrafted features and low-level hand-designed features have been heav-
ily employed with much success. These methods usually have two stages:
an optional feature detection stage followed by a feature description stage.
Well-known feature detection methods (“interest point detectors”) are Har-
ris3D [1], Cuboids [2] and Hessian3D [3]. For descriptors, popular methods
are Cuboids [4], HOG/HOF [1], HOG3D [5] and Extended SURF [3]. In a re-
cent work of Wang et al. [6], dense trajectories with improved motion-based de-
scriptors epitomized the pinnacle of handcrafted features and achieved state-
of-the-art results on a variety of “in the wild” datasets. Given the current
trends, challenges and interests in action recognition, this list would probably
continue to spread out extensively.

In the evaluation paper of Wang et al. [7], one interesting finding is that
there is no universally best hand-engineered feature for all datasets, suggest-
ing that learning features directly from the dataset itself may be more advan-
tageous. Albeit hand-crafted features are still the dominant approaches for
visual recognition tasks, the approaches that derive from the learning perspec-
tives [8, 9, 10] are gaining more and more momentums.
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With the recent resurgence of neural networks invoked by Hinton and oth-
ers [11], deep neural architectures have been proposed as an effective solu-
tion for extracting high level features from data. Deep artificial neural net-
works (including the family of recurrent neural networks) have won numer-
ous contest in pattern recognition and representation learning. Schmidhu-
ber [12] compiled a historical survey compactly summarising relevant works
with more than 850 entries of credited works. Such models have been suc-
cessfully applied to a plethora of different domains: the GPU-based cuda-
convnet [13] classifies 1.2 million high-resolution images into 1000 different
classes; multi-column Deep Neural Networks [14] achieve near-human perfor-
mance on the handwritten digits and traffic signs recognition benchmarks; 3D
Convolutional Neural Networks [15, 16] recognize human actions in surveil-
lance videos; Deep Belief Networks combining with Hidden Markov Mod-
els [17, 18] for acoustic and skeletal joints modeling outperform the decade-
dominating paradigm of GMM+HMM. In these fields, deep architectures have
shown great capacity to discover and extract higher level relevant features.

However, direct and unconstrained learning of complex problems is dif-
ficult, since (1) the amount of required training data increases steeply with
the complexity of the prediction model and (2) training highly complex mod-
els with very general learning algorithms is extremely difficult. It is therefore
common practice to restrain the complexity of the model and this is gener-
ally done by operating on small patches to reduce the input dimension and
diversity [10], or by training the model in an unsupervised manner [9], or by
forcing the model parameters to be identical for different input locations (as in
convolutional neural networks [13, 14, 15]).

Uncertainty is unavoidable in real-world applications, “as far as the laws of
mathematics refer to reality, they are not certain, as far as they are certain, they
do not refer to reality”(Albert Eistein, 1921). The Probabilistic Graphical Mod-
els, which generally incorporate models from Bayesian Networks(directed graphs)
and Markov Random Fields(undirected graphs), derive the ideas from discrete
data structure from the computer science to effectively encode, decode, trans-
fer uncertainties in high-dimensional variables. Graphical Representation is
both intuitive and compact for a data structure, it induces efficient reasoning
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using general-purpose algorithms. Furthermore, by introducing conditional
reason, sparse parameterisations of the model can be achieved via feasible elic-
itation or learning from data.

In this thesis, Deep Learning is represented by Probabilities Graphical Mod-
els framework as a building block for modeling time series data. This thesis
has two main parts. In the first part, some novel hand crafted features for hu-
man action recognition are described. The second part of the thesis focuses
on data driven analysis of acyclic video sequence labeling problems, i.e. video
sequences are non-repetitive as opposed to longer repetitive activities, e.g. jog-
ging, walking and running. With the immense popularity of Kinect [19], there
has been renewed interest in developing methods for human gesture and ac-
tion recognition from 3D skeletal data and depth images. A number of new
datasets [20, 21, 22, 23] have provided researchers with the opportunity to
design novel representations and algorithms and test them on a much larger
number of sequences. The tasks of action recognition using 3D skeletal joints,
at the first sight, seems trivial. However, due to the high dimensional space
that 3D skeletal joints reside in and the amount of variation in human motion,
the learning for the skeletal model requires latent states to empower the ex-
pressiveness of the model. This thesis also discussed the tasks of continuous
action recognition, which are the real world’s scenario and have been mostly
ignored by researches. This thesis proposed a novel framework by introducing
an ergodic states to achieve continuous action/gesture recognition.

Summary of Remaining Chapters

Chapter 2: Hand-crafted Features. This chapter describes hand crafted fea-
tures for describing human actions in video sequences. A Bag-of-Correlated-
Poses with soft-assignment scheme is proposed to encode the correlation
within an action sequence. Later, the Motion History Images represen-
tation is extended as a holistic descriptor to compensate the semi-local
Bag-of-Correlated-Poses scheme. The one-shot-learning scenario for ges-
ture recognition is also studied. The Multi-view Spectral Embedding is
proposed to fuse the information from RGB and depth images. With
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the appearance-based HOG temporal segmentation and extended-MHI
as feature representation, the proposed system is able to recognize ges-
ture token in an unsegmented video sequence.

Chapter 3: Deep Belief Dynamic Networks. This chapter starts solving the ac-
tion recognition problem from a machine learning perspective. It be-
gins with a brief technical overview of Restricted Boltzmann Machines
(RBMs) from an energy-based model aspect. The Gaussian Bernoulli vis-
ible layer for modeling real valued data is provided as the building block
for Deep Belief Networks. The pre-training procedure for better initial-
ization of the Deep Neural Networks and the learning hyper-parameters
are also discussed. Then, a hierarchical dynamical framework that first
extracts high level skeletal joints features is introduced for estimating the
emission probability for the Hidden Markov Models in the place of Gaus-
sian Mixture Models. The framework can also be easily extended to in-
clude an ergodic state to segment and recognize actions simultaneously.
It’s worth pointing out that the model has been designed with human ac-
tion recognition using skeletal joints as input in mind, but it should also
lend itself well to other high-dimensional time series.

Chapter 4: Deep 3D Convolutional Dynamic Networks. This chapter is built
upon the powerful framework of Deep Convolutional Neural Network
which achieves the state-of-the-art result in large scale image classifica-
tion tasks. A Probabilistic Graphical Model unifies the Deep Neural Nets
and Markov Field in a factor graph representation. A generalized hier-
archical dynamic framework that first extracts high level features from
contextual frames is proposed as the spatio-temporal learning represen-
tation. The 3D Deep Convolutional Neural Network is driven directly by
the objective function, negates the time and energy consuming human ef-
fort in designing problem specific, sometimes suboptimal, hand crafted
features. Experiments across various sensory input, i.e. RGB and depth,
shows the Deep 3D Convolutional Dynamic Networks consistently per-
form on par with a wide variety of handcrafted features and other learn-
ing based methods.
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Chapter 5: Multimodal Deep Dynamic Networks. This chapter unifies multi-
modal dynamic networks from various sensory inputs. Two fusion pipelines,
i.e. early fusion and late fusion scheme are experimented and both exhibit
the evidence that the multi-modal dynamic networks enables share rep-
resentation learning, outperforming individual modalities. The 3D Con-
vNet is also studied in more detail in this section and the visualization of
the 3D ConvNet filters and the convolved spatio-temporal cuboids show
that both shape pattern and motion pattern have been learnt by the 3D
Deep ConvNet, reinforcing the conjecture that problem specific features
could be learnt automatically.

Chapter 6: Conclusion and Future Directions. This chapter briefly summarises
the contributions and discusses possible future research directions.
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Chapter 2

Hand-crafted Features

2.1 Introduction and Related Works

This chapter describes the contributions for improving human action recog-
nition by introducing frame-based correlation and multiview spectral embed-
ding. The special case of one-shot-learning is also discussed.

Recent research has been local-feature focused. In their pioneering work,
Dollar et al.[2] introduced an efficient approach for detecting spatio-temporal
interest points (STIPs) using a temporal Gabor filter and a spatial Gaussian
filter. Later, a number of other STIP detectors and descriptors have been pro-
posed. The mainstream STIP detectors include Harris3D by Laptev et al.[24],
Cuboid by Dollar et al.[2], 3D-Hessian by Willems et al.[25], Dense Sampling by
Fei-Fei and Perona [26], Spatio-Temporal Regularity Based Feature (STRF) by
Goodhart et al.[27]. And the mainstream STIP feature descriptors are HOG/HOF[24],
HOG3D[28], Extended SURF[25] and MoSIFT[29]. The differences of various
feature detectors and descriptors can be found in the survey paper [30]. Spatio-
temporal features [2, 24] have shown success for many recognition tasks when
pre-processing methods such as foreground segmentation and tracking are not
possible, e.g. in the Hollywood dataset [31] or the UCF sports dataset [32].
However, their computational complexity hinders their applicability in real-
time applications. Wang et al. [7] showed that the average time for spatio-
temporal feature extraction varies from 0.9 FPS to 4.6 FPS, which makes the
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spatio-temporal interest points (STIPs) features too time-consuming in compu-
tation. Another major limitation of the local feature based methods is that the
sparse representation such as bag-of-visual-words (BoVW) discards geometric
relationship of the features and hence is less discriminative. Hard-assignment
quantization during the codebook construction for BoVW, which is usually
realized by the k-means clustering algorithm, also makes the sparse represen-
tation less informative.

A human action can be viewed as a set of sequential silhouettes over time.
Each silhouette records a pose of this action at a particular instant. Davis and
Bobick [33] found that a human action can be recognized even when it is pro-
jected onto a single frame by incorporating partial time element. Gorelick et
al. [34] treated human actions via silhouettes as three-dimensional shapes and
the Poisson equation properties is adopted to obtain to space-time key features.
Wang and Leckie [35] fused the global body shapes and local temporal motions
from silhouettes and encoded human actions using the quantized dictionary
from space-time windows. Shao and Chen [36] employed body poses sampled
from silhouettes which are fed into a bag-of-features model. Similarly, Qu et al.
[37] calculated the differences between frames and used them as intermediate
features. Incorporating the local and holistic features, Sun et al. [38] unified the
local 3D-SIFT descriptors and holistic Zernike motion energy image features.

2.2 From Local to Global

This section describes the contributions for improving human action recogni-
tion by introducing frame-based correlation from local to global as follows:

1. Correlogram of human poses in an action sequence is introduced to en-
code temporal structural information. We first extend the bag-of-features
model to treat the silhouette in each frame as a feature. In the original
bag-of-features representation, features are assigned to their closest clus-
ter centers, also called visual words, and an entire video sequence is rep-
resented as an occurrence histogram of visual words. The traditional bag-
of-features representation disregards structural information among the
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visual words. To encode the structural information, Leibe et al. [39] pro-
posed an implicit shape model using general Hough forest as a statistical
method. We propose an explicit model to encode its temporal-structural
information by constructing a correlogram which is a structurally more
informative version of the histogram. The undesirable increase of di-
mension is suppressed by two stages of dimensionality reduction, i.e.,
unsupervised principal component analysis (PCA) and supervised lin-
ear discriminant analysis (LDA).

2. Soft-assignment scheme/kernel codebook is extended for circumventing
the quantization error penalty. Traditional bag-of-features model desig-
nates a feature by the cluster number it belongs to. And this hard as-
signment scheme may incur penalty for its quantization error. Gemert
et al. [40] experimented four types of soft-assignment schemes for visual
words encoding and demonstrated that explicitly modeling visual word
assignment ambiguity improves classification performance compared to
the hard-assignment of the traditional codebook model. Boureau et al.
[41] investigated the relative significance of mid-level features in every
single step of the system pipeline through extensive experimentation and
evaluation of different types of encoding schemes for object and scene
recognition. The adoption of Mahalanobis distance achieved the state-of-
the-art performance for scene classification [42]. We extend their idea in
our approach to maximize the preservation of information after the k-
means clustering by assigning a feature proportionally according to its
Mahalanobis distance to different cluster centers, so that a feature is no
longer a discrete addition to the histogram bin but a continuous voting
to multiple bins.

3. A holistic representation extension is proposed as a complimentary de-
scriptor for local representation. As found by Sun et al. [38], local de-
scriptors and global features emphasize distinctive aspects of actions and
share complimentary properties. Motivated by their finding, we fuse the
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Figure 2.1: Flowchart of the BoCP model. Note the two phases of dimensionality reduction
and their corresponding methods.

above temporally local descriptor with an extension of the holistic de-
scriptor: motion history image (MHI) by adding gait energy informa-
tion (GEI) and inversed recording (INV). These two additional holistic
descriptors serve as the compensation for the loss of information due to
sequentially overlapping frames that is discarded in the original motion
history image (MHI) representation. Then, a unified frame work is pro-
posed to combine two distinct descriptors by early fusion (feature vector
concatenation) and achieve further improvement over the separate meth-
ods.

2.2.1 Bag-of-Correlated-Poses (BoCP)

Fig.2.1 shows the flowchart of the construction process for the bag-of-correlated-
poses (BoCP) representation. An action sequence is a series of pictorial frames.
Most current approaches [2, 24, 28, 34] bundle action frames together as a
monocular 3D volume representation. Unlike traditional 3D volume repre-
sentation, we treat each frame individually as an atomic input. The notion
of body poses in our approach is represented by the silhouettes as in Fig.2.2.
A bounding box, i.e. the smallest rectangle containing the human figure, is
applied to each frame of the silhouette sequence and then is normalized to a
fixed size. The prepossessing steps reduce the original dimension and remove
global scale and translation variations. The interpolation during the normal-
ization process suppresses the noise as the morphological transformations (di-
lation and erosion) can isolate individual elements and join disparate elements
in an image. The rectangular region of interest (ROI) mask serves as image uni-
fication in each action frame, making recognition invariant to body size as well
as scale and translation variations resulting from perspective changes.
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Figure 2.2: Left: Illustration of the “cross arms” action; Right: A normalized silhouette.

2.2.1.1 Codebook Creation

The extracted normalized silhouettes are used as input features for the BoCP
model. The traditional BoVW model [2], [24] in action recognition is based on
the detection and description of STIPs as input whilst our approach is based on
holistic silhouettes. Due to the usage of pose silhouettes, the local feature de-
tection and description steps in a traditional BoVW method are not required.
In the interest point based action recognition method, each feature vector is
a 3D descriptor calculated around a detected interest point in an action se-
quence. In our method, each feature vector is converted from the 2D silhou-
ette mask to a 1D vector by scanning the mask from top-left to bottom-right
pixel by pixel. Therefore, each frame at the time t in an action sequence is rep-
resented as a vector of binary elements Ft, the length of which is L = m× n,
where m and n are dimensions of the normalized pose silhouette. Suppose
the ith action sequence consists of Si frames, then an action sequence can be
represented as a matrix X ∈ Rm×n. Each row of the matrix stands for a single
frame. Therefore, for a training set with n action sequences, the whole training
dataset can be represented as:

X =


X1

X2

. . .
Xn

 (2.1)

The total number of rows, which is also the total frame number in the training
dataset, is S = S1 + S2 + . . . + Sn . Because features are in high-dimensional
space, we first use PCA for dimensionality reduction. Hence, each frame Ft is
projected into a lower dimension F̃t.Then visual vocabulary can be constructed
by clustering feature vectors obtained from all the training samples using the
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k-means algorithm. The center of each cluster is defined as a codeword, and
the size of the visual vocabulary is the number of clusters k.

2.2.1.2 Soft Assignment Scheme

In the traditional BoVW model [2], [24] each feature vector can be assigned
to its closet codeword based on the Euclidean distance. The visual word vo-
cabulary in the code-book framework can be composted in various methods,
e.g. GMM, spectral clustering, etc. One typical way of constructing a code
book is k-means clustering. However, the crucial presumption is that the fea-
ture (from an image, or a video sequence) could be well represented as a dis-
crete visual word. The k-means algorithm minimizes the variance between
the data and the clusters. Hence, the most frequent appearing features will be
assigned as the clusters. Nevertheless, the most frequent features are not nec-
essarily the most discriminative [40] and visual appearance, instead of being
discrete, is naturally continuous and the discretizing the representative visual
word would be problematic. Assigning a feature to its single cluster gives rise
to loss of information due to quantization errors, especially for features resid-
ing on boundaries of neighboring clusters. Thus, in our approach, we model
our visual words by a kernel codebook to integrate the visual word ambigu-
ity. Kernel density estimation is an alternative to the discrete histogramming
which is inherently more robust for estimating a probability density function.
In the case of the soft-assignment scheme, the most common Gaussian kernel
Kσ = exp(−1

2
x2

σ2 ) assumes that normal distribution between a visual feature
and a codeword with a smoothing parameter σ. Therefore, we adopt this sta-
tistically viable kernel function and a visual word Wi,t can be described as:

Wi,t = exp(−

∥∥∥F̃t − Ci

∥∥∥2

2σ2 ) i=1,2,. . . ,k; (2.2)

where F̃t is the projected low dimension frame vector at time t, Ci is the ith

cluster center, k is the number of clusters and the smoothing parameter σ de-
termines the degree of similarity between data samples. Note that this degree
of affinity is dataset dependent with respect to dimensionality of the features,
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and the range of the feature values. The goal is to find the kernel size that dis-
criminates best between classes. This pesky hyper-parameter is generally set
by cross-validation.

2.2.1.3 Correlogram Of Poses

As the current BoVW model discards all geometric information and based on
the 2D picture correlogram[43], we extend the original BoVW model to BoCP
which takes advantage of the temporally local features whilst maintaining the
holistic geometric information. The concept of correlogram was first intro-
duced by Huang et al.[44], where they used colour correlogram for image in-
dexing. A colour correlogram is a three-dimensional matrix where each ele-
ment indicates the co-occurrence of two colours which are at a certain distance
from each other. Therefore a correlogram encodes more structural informa-
tion than a flat histogram. Similarly, for action representation, each element in
BoCP denotes the probabilistic co-occurrence of two body poses taking place
at a certain time difference from each other. Note that we use the word “prob-
abilistic” here because our visual word is not a discrete codebook number but
a probabilistic distribution of multiple poses. Fig. 2.3a illustrates the construc-
tion of a correlogram at a single temporal distance in our BoCP model. Since
the poses are divided into k clusters, the dimensionality of the correlogram
matrix at a fixed time offset ∆t is k× k , where k represents the codeword
number of the constructed codebook. Each entry in the BoCP matrix can be
defined as:

E(i, j; δt) =
ST−δt

∑
t=1

Wi,t ∗Wi,t+δt; (2.3)

where δt specifies the time offset, Wi,t is the frame F̃t’s visual word probability
to cluster i in Eq.(2.2), ST is the number of frames in the action sequence. Note
that the correlogram matrix in Eq.(2.3) can be obtained by assigning a num-
ber of different time offsets δt. Multiple time offsets scheme will accordingly
enhance distinctiveness of correlogram representation but at the cost of the in-
crease of dimensionality of the feature descriptor and the computational time.
In our implementation, four time offsets of 2, 4, 6 and 8 are employed. Fig.2.3b
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(a) Illustration of the correlogram in
the BoCP. W correspond the visual
words defined in Eq.(2.2). Inputs are
a series of silhouettes. For every pair
of two frames with time interval δt,
each entry in the correlogram is the
multiplication of two weights corre-
sponding to these two poses.

(b) Left: Correlogram matrices of different ac-
tions, i.e. “check watch, cross arms, scratch head,
sit down, get up, turn around, walk, wave punch,
kick, pick up”, performed by the same person.
Top Right: two rows of two actions: “walk” and
“cross arms” performed by different people; Bot-
tom Right: correlogram matrices with different
time offsets.

Figure 2.3

depicts examples of correlogram matrices. On the left side are correlogram
matrices of different actions performed by the same subject. It is even visu-
ally possible to distinguish the difference in texture between different actions’
correlograms. On the top right, row 1 and row 2 are correlogram matrices of
2 actions performed by different people. We can observe that the correlogram
matrices of the same action look much more similar than those of different
actions, which makes correlogram a discriminative representation for human
actions.

2.2.1.4 Dimensionality Reduction

Both the original binary silhouette features and the final correlogram represen-
tations are in very high dimensionality. Due to the “curse of dimensionality”,
it is impractical to use the original long feature vectors for classification. There-
fore, the use of a dimensionality reduction method is necessary. There are two
stages where dimensionality reduction is needed in our algorithm. The first
stage is before feeding silhouette feature vectors into the k-means clustering
process and the second stage is for the reduction of the final correlogram rep-
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resentations. We adopt the unsupervised principal component analysis (PCA)
at the first stage and the combination of PCA and supervised linear discrimi-
nant analysis (LDA) at the second stage. PCA seeks projection directions that
maximize the variance of the data and LDA maps the features to make them
more discriminative. Our argument for adopting different dimensionality re-
duction methods is as follows: at the first stage, a certain silhouette pose may
appear in different action classes and the class label information is not very
relevant. Therefore, an unsupervised method, i.e., PCA, is used. At the second
stage, each correlogram matrix is at a high dimension (in a scale of 103D), we
first project the correlogram matrix into a lower dimension of 100D using PCA
and because each individual correlogram matrix belongs to one unique action
class, we further reduce the dimension to the number of action class -1 using
LDA.

2.2.2 Extended-MHI

As found by Sun et al. [38], local features and holistic descriptors emphasize
different facets and share complimentary properties. Motivated by their find-
ing, we fuse the above temporally local descriptor BoCP with an extension of
the holistic descriptor: MHI by adding Gait Energy Information (GEI) and In-
verse Coding (INV). These two additional holistic descriptors serve as the com-
pensation for the loss of information due to sequentially overlapping frames
lost in the original MHI representation. We deduce our approach by first intro-
ducing motion templates:
Motion Templates: motion energy images (MEI) and motion history images
(MHI) proposed by Davis and Bobick [33] are used to represent the motions of
an object in video. All frames in a video sequence are projected onto one image
(MHI/MEI) across the temporal axis. As to where and how motion happens
are recorded in the images, MHI captures the temporal information of the mo-
tion in a sequence. Assume I(x, y, t) is an image sequence and let B(x, y, t) be
a binary image sequence indicating regions of motion, which can be obtained
from image differencing. The binary MEI Eτ(x, y, t) with the temporal extent
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of duration τ is defined as:

Eτ = ∪τ−1
i=1 B(x, y, t− 1) (2.4)

The MHI Hτ(x, y, t) is used to represent how the motion image is moving,
and is obtained with a simple replacement and decay operator:

Hτ(x, y, t) =

{
τ if B(x, y, t) = 1,
max(0, Hτ(x, y, t− 1)− 1) otherwise.

(2.5)

It is stated in [38] that “empirical experimentations demonstrate that the
cycle of a single action in two benchmark datasets: the KTH [45] and the Weiz-
mann [34] datasets can be as short as 5 frames”. Hence, in their experiments
the duration of a single action is set to 5 frames. However, for non-repetitive
actions, such as those in the IXMAS [46] dataset, choosing a τ is impractical.
Notwithstanding, we observe that the larger τ, the more information is en-
coded. Therefore, we set τ as the duration of the whole action T, and generally
it’s up to 100 frames in most action sequences. The re-defined version of MHI
is:

H̃(x, y, t) =

{
T if B(x, y, t) = 1,
H̃(x, y, t− 1)− 1 otherwise.

(2.6)

Note that there is no maximum operator in front of H̃τ cf. Eq. (2.11) because
setting τ as the sequence duration will lead to non-negativity of H̃τ.

We further extend motion templates that include two more elements: GEI
and INV.

GEI is to compensate for the non-moving regions and the multiple-motion-
instants regions of the action. The summation of all binary silhouette images
and normalization of the pixel value define GEI:

G(x, y) =
1
τ

τ

∑
t=1

B(x, y, t) (2.7)

INV is used to recover the loss of initial frames’ action information when
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setting τ as the whole action duration and is defined as follows:

Ĩτ(x, y, t) =

{
τ if B(x, y, t) = 1,
Ĩτ(x, y, t + 1)− 1 otherwise.

(2.8)

Note that its subtle difference to Eq. (2.12) is the time variable becomes
t + 1 instead of t− 1 from which we get the name Inversed Recording.

We reason that MHI is poor at representing repetitive actions from Fig. 2.4a
and Fig. 2.4b: the confusion matrix of the original MHI on the IXMAS dataset
with τ as the whole action duration shows that “wave” and “scratch head” are
the two most difficult actions to be distinguished, because they have similar
motion patterns, i.e., repetition of hand movement at similar spatial locations.
INV provides complementary information by emphasizing (assigning larger
value) at initial motion frames instead of the last motion frames as in MHI. Fig.
2.4b illustrates the similarities and differences between MHI, INV and GEI of
these two action sequences. The first columns are the MHI projections, second
are the INV projections and the last are the GEI projections. The top row corre-
sponds to the “wave” action and the bottom “scratch head”. Again, the projec-
tion graphs show that MHI emphasizes recent motion (ending frames) whilst
INV displays the opposite. Hence the combination of the two is complemen-
tary. Furthermore, GEI encodes the supplementary information in repetitive
actions where both MHI and INV are poor at representing. The experimental
results in Section Roman4 prove the viability of our conjecture.

2.2.3 Experimental Results

Datasets and Experimental Setup

We evaluate our approach on two public action recognition datasets: Weiz-
mann [34] and Inria Xmas Motion Acquisition Sequences (IXMAS) [46]. De-
tails of the two datasets can be found at 6.1.7 and 6.1.8. For the IXMAS dataset,
we only use single camera’s data for training/testing and follow the widely
adopted leave-one-actor-out testing strategy. For the Weizmann dataset, we
adopt the leave-one-sequence-out testing strategy. We choose the following
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(a) Setting τ as the whole action duration in MHI,
the confusion matrix of the IXMAS dataset (Cam-
era 3). Actions “wave” and “scratch head” are diffi-
cult to distinguish because they have similar motion
patterns, i.e. repetition of hand movement at similar
spatial location.

(b) Illustration of the MHI, INV and
GEI– top: “scrath head”; bottom:
“wave”. The projection graphs show
that MHI emphasizes recent motion
(ending frames) whilst INV the op-
posite. GEI encodes the average gait
information and is supplementary in
repetitive actions where both MHI
and INV are poor at representing.

Figure 2.4

parameter settings: the bounding box of silhouettes is 30× 20 pixels; and fea-
ture vectors are reduced to the dimension of 30 using PCA. During visual vo-
cabulary construction, k = 30 is used for the k-means clustering, which results
in 30 codewords. Four different time offsets for δt = 2, 4, 6, 8 frames, are used
for the construction of correlogram; hence the dimensionality of a BoCP repre-
sentation is 30× 30× 4 = 3600D. Each BoCP representation is then reduced
to the dimension of the number of action class-1 using the combination of PCA
(100D) and LDA. Then a unified framework is proposed to combine the two
distinctive descriptors: BoCP and Extended-MHI by early fusion based on a
very intuitive notion: local descriptor (BoCP) and holistic descriptor (Extended-
MHI) are complementary to each other. For final classification, the Gaussian
kernel SVM classifier is adopted.
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Figure 2.5: Parameters sensitivity test of BoCP. The choices of four parameters (from left
to right): cluster number: 10,20,30,40; PCA (stage 1) dimension: 10,20,30,40; PCA (stage 2)
dimension:50,100,200,400; δt (frames): 2,2-4,2-4-6,2-4-6-8. It can be seen that the proposed
model is insensitive to various hyperparameters.

2.2.3.1 Parameter Sensitivity Test

There are a few parameters in the construction process of our BoCP model and
we demonstrate that our BoCP model is insensitive to the choice of parameters
in Fig. 2.5 using the IXMAS dataset. Four main parameters are tested: time off-
set δt in Eq. (2.3); cluster number k during the k-means clustering; the reduced
dimension after applying PCA at the first stage; the reduced dimension after
applying PCA at the second stage. It can be seen that the BoCP model is rather
robust to the choice of different parameters as the overall accuracy varies in the
range of 2%-7%. The most error-prone parameter is the second stage dimen-
sion of PCA: excessively large dimension may lead to worsen performance.

2.2.3.2 Visual Word Ambiguity Effect

Through Fig.2.5 we are also able to examine the effect of the soft assignment
strategy. Note that the cross-validation-optimal number of clusters in our model
is quite small: 30 comparing with the traditional BoVW model [2, 7, 24, 25, 28,
31], which usually surges up to 1000 and more. The graph also shows that a
surprisingly small cluster number, i.e. a cluster number of 10, still achieves
comparable result but a larger cluster number does not improve the overall
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Methods Cam1 Cam2 Cam3 Cam4 Cam5
BoCP+Extended-MHI 83.6 90.3 89.4 89.8 78.8

BoCP 81.4 87.6 84.9 88.5 71.3
Shao and Chen [36] HBP 63.7 70.2 67.2 68.1 66.9

Weinland et al. [47] Local Product 85.8 86.4 88.0 88.2 74.7
Varma et Babu [48] GMKL 76.4 74.5 73.6 71.8 60.4

Wu et al. [49] AFMKL 81.9 80.1 77.1 77.6 73.4
Junejo et al. [50] PMK-NUP 76.4 77.6 73.6 68.8 66.1

Table 2.1: Performance comparison of different methods in five cameras on the IXMAS
dataset.

Figure 2.6: Algorithms for comparison. The first three columns of two datasets correspond
to three values of τ in Eq.(2.11): 5 frames, half duration of the action, and the whole du-
ration of the action. The following three columns correspond to MHI only, MHI+INV and
MHI+INV+GEI. The last two columns evaluate BoCP and the effect of combining two descrip-
tors: BoCP and Extended-MHI (“All” stands for the combination of the two desecriptors).

recognition accuracy. The reason behind the scene is that in our BoCP model,
a visual word is described by a vector whose elements are related to the dis-
tances to the cluster center, i.e. Eq.(2.2), instead of the quantized class mem-
bership. Moreover, we further utilize this probabilistic visual word descrip-
tor for the entries in Eq. (2.3) so that a frame spans over all the columns in
the correlogram matrix. Observe that our BoCP model is a matrix of dimen-
sion k× k where k is the number of clusters. Again, a larger cluster number
increases the computational complexity during k-means clustering O(k) and
BoCP correlogram construction O(k2) exponentially. By adopting the soft as-
signment scheme, we tactically circumvent the situation where k can be easily
up to 1000, making the BoCP dimension up to what is simply impractical com-
putationally and unnecessary for action representation. Thus, we gracefully
achieve an action descriptor with a dimension in the scale of thousands while
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encoding temporal structural information.

Algorithms for Comparison

We first make a quantitative comparison between our correlogram based method
(BoCP) and the histogram based method (HBP) [36] in Table 2.2 and it can be
seen that our proposed method BoCP consistently outperforms the histogram
based method. We then verify our choice of time duration in Eq. (2.12) over
Eq. (2.11) through Fig. 2.6. The first three columns of two datasets correspond
to three values of τ in Eq. (2.11): 5 frames (suggested by [38]), half duration of
the action and the whole duration of the action. Setting τ as the whole action
duration achieves the best results among the three schemes. The following
three columns summarize the efficacy of concatenating different versions of
motion templates described in Section Roman3. The consistent improvement
of accuracy validates that both GEI and INV are complementary to the origi-
nal MHI. Then, by early fusion (direct concatenation) of two descriptors: BoCP
and Extended-MHI, we show in the last two columns that the combination of
temporal-local and holistic descriptors further improve the overall accuracy
by 1% for the Weizmann dataset (because the improvement for the Weizmann
dataset’s accuracy is close to saturation: 97.78%, 88/90) and 3.6% for the IX-
MAS dataset. Again, this explains the complementary characteristics between
the BoCP model and the Extended-MHI representation: BoCP is good at rep-
resenting temporal pose correlations and the Extended-MHI excels at holistic
motion representation. In addition, BoCP compensates for MHI’s ineffective-
ness in representing repetitive movements. Table 2.2 shows the comparison
to the state-of-the-art methods on the IXMAS dataset using a single camera
view. Our algorithm outperforms the state-of-the-art methods on the chal-
lenging free viewpoint IXMAS dataset and this demonstrates that our model
is robust to large variations of viewpoint, position and orientation. The ex-
periments were done on an Intel 2-core 3GHz CPU and 4GB memory PC in a
single thread running MATLAB. The speed of our method is approximately 25
FPS (excluding the silhouette extraction process).
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2.3 RGBD Images and One-Shot-Learning

In this section, the one shot learning scenario is studied with respect to depth
images’ special idiosyncrasies.

With the revolutionizing affordable Kinect sensor and the graceful core al-
gorithm of , a single input depth image can be segmented into a dense prob-
abilistic body part labeling whilst simultaneously achieving two goals: com-
putational efficiency and robustness. One key component of their success lies
in the huge and highly varied training data: both from realistic and synthetic
depth images, a total number of 1 million images were used to train the deep
randomized decision forest classifier in order to avoid overfitting. However,
even the best existing depth image-based systems still exhibit limitations: in
the system of [19], an effective depth sensor distance is required from 1.2m to
3.5m. Outside the effective range, meaningful skeletal joints are unlikely to be
generated. Various applications spawned after the inception of this consumer
priced 3D camera: scene flow estimation using a particle filter was formulated
in [51]; human activity detection from RGBD images based on a hierarchical
MEMM was studied in [52]; CHALEARN Gesture Challenge in [53], etc .

We focus on the CHALEARN Gesture Challenge [53]. There are some
unique distinctions in this dataset from other action/gesture recognition datasets
[45, 54]. We reinstate the major easy/difficult aspects of the dataset and present
our analysis and reasoning to solve/circumvent the problems as follows:
1.Availability of depth camera: depth cameras significantly reduce the huge
colour and texture variability induced by clothing, hair and skin. However,
some imperfection/noise of various sources still exists [55] in current depth
sensors: e.g. reflectance and mismatched patterns. cf to Figure 2.7, strong ex-
istence of “salt and pepper” noise is detected as real motion information. A
spatial filtering and a morphological preprocessing step are required for noise
reduction.
2.Multiple gestures in testing set: temporally unsegmented action sequences
are real-world scenario. However, present action/gesture recognition datasets
almost universally dodge this difficulty by providing training/testing sequences
in a manually segmented manner. In the dataset of [53], however, the number
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Figure 2.7: Noise in depth image.

of gestures contained in a testing video sequence varies from 1 to 5. There-
fore, temporal segmentation is a precondition for gesture recognition. Note
that current action localization methods [56, 57] also provide solutions for ef-
fectively retrieving action sequence from video sequences. We argue, how-
ever, that because of the unique property of this dataset, i.e. hands return to a
resting position between each pair of neighboring gestures, the temporal seg-
mentation as a preprocessing step is more effective than the action localization
approach. Weinland et al. [58] presents a semi-supervised action recognition
system that breaks down action sequences into primitive actions based on a
motion history volume descriptor and automatically discovers the action tax-
onomies. Similarly, as suggested by [53], since the assistants hands return to
a resting position between each pair of neighboring gestures, segmentation
points occur near the peaks of hand motions in the lower part of an image.
In our system, instead of using motion information for action segmentation,
we adopt the appearance-based approach and achieve 5% error in the metrics
of Levenshtein distance for the verification of segmentation. Also note that the
accuracy for our whole gesture recognition system is upper bounded by this
temporal segmentation performance.
3.One-shot-learning: only one training example of each class is considered as
the unique trait of this challenge whilst using more examples per sign typi-
cally improves accuracy (see, e.g. [59, 60]). The standard tools of statistical
machine learning, e.g. classification and regression, have a chance to be equally
matched to modeling purposeful behavior in a poor manner; an agent’s goals
often succinctly, but implicitly, encode a strategy that would require tremen-
dous amounts of data to learn. We discuss our experimental result on two
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classes of machine learning models: generative algorithms, and discrimina-
tive algorithms and conclude that discriminative classifiers are more suitable
for solving this one batch one lexicon one learning token dataset due to lack
of training data. More specifically and surprisingly, the simplest correlation
coefficient discriminating method, which defines the statistical independence,
works best among other popular classifiers, e.g. nearest neighbor, SVM, Ran-
dom Forest, etc .
4.Depth & RGB camera decision fusion: how to effectively utilize multiple
inputs to generate an informed decision is sometimes under-appreciated. Cur-
rently, the most commonly adopted approach when encountering different
types/spectra of features is to concatenate multiple features into a long vec-
tor before the classification stage and feed this long feature vector into a classi-
fier [7, 38, 61]. In [31], a handcrafted weights was adopted for merging the clas-
sification score. Mostly, for the sake of simplification, different view features
are treated independently and have been ignored by their intrinsic relation-
ships [47, 62, 63]. We argue that the interleaving relationship between differ-
ent feature vectors is lost during this brute-concatenation process, and the in-
terdependent relationship between different feature decisions could be better
incorporated in an ensemble system. Moreover, the benefit of multi-spectrum
video fusion always comes with a certain cost and complexity in the analysis
process due to the fact that the involved modalities have different characteris-
tics. On one hand, the more pronounced the independence between difference
modalities, the more complementary information can be gleaned from each of
them. On the other hand, there need to be a sufficient amount of correlations in
order to be able to link features in one modality. We study the Multiview Spec-
tral Embedding (MSE) in [64] and its derivative of spectral clustering. Then
we present our discovery of the intrinsic property during the embedding pro-
cess. With the brief theoretical analysis, we demonstrate the effectiveness of
the proposed approach by embedding information acquired from both depth
and RGB cameras to further improve the recognition rate.
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2.3.1 Experimental Results

In this section we detail our approach towards solving the general four issues
aforementioned and present both quantitative results and qualitative evalua-
tions of our method on the CHALEARN dataset [53]. The details of the dataset
can be found at 6.1.2.
Error Metrics. We quantify our recognition rate by computing the Levenshtein
distance between the list of predicted labels R and the corresponding list of true
labels T, that is the minimum number of edit operations (substitution, inser-
tion or deletion) that one has to perform to go from R to T (or vice versa). This
error metrics measurement is also in accordance with the Leaderboard in [53]
and we refer this error metrics as LD from now on.

2.3.1.1 Preprocessing: Background Separation and Noise Reduction for Depth
Images

We take advantage of the depth sensor unique property from which human
silhouettes can be easily segmented. Firstly we segment human from the back-
ground using Otsu’s method of global image threshold [65] as shown in Fig-
ure 2.8 (top left). The resulting noise pattern in depth images resembles salt
and pepper noise. We then use a spatial filtering and a morphological pro-
cess for noise reduction. A median filter provides excellent “salt and pepper”
noise reduction with considerably less blurring. As in [55], we adopt a 5× 5
aperture median filter. Then, morphological process is used for further noise
reduction. Specifically, we use opening operation which consists of erosion
followed by dilation to smooth the outers, split the narrow region and remove
the thin perimeter. Thus, the opening operation removes randomly generated
noise and smooths the original image. The resulting depth image is shown in
Fig.2.8 (top right). When the noise reduction method is applied to the motion
image generated from the depth sensor, the resulting motion description is less
prone to faulty defects from the depth sensor. These operations are highly ef-
fective for the depth image noise reduction especially if the action descriptor
is motion-based as in our system. Experimental result shows that the noise
reduction method can improve the performance in terms of LD up to 9%.
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Figure 2.8: Top left: background segmentation; top right: depth image after noising; Bot-
tom row: HOG descriptor for temporal segmentation. As it can be seen that the starting
frame(bottom left) and the ending frame(bottom right) are quite similar to each other whereas
in the midst of action (bottom middle), there is a substantially spatial difference.

2.3.1.2 Temporal Segmentation

For temporal segmentation, we adopt the appearance based approach. Because
hands return to a resting position between each pair of neighboring gestures,
we aspire to find the frames that are similar to the beginning and ending frame
in the unsegmented testing video sequence and define them as the interval
frames between two gestures in a video sequence. A simple but effective op-
tion to retrieve similar frames is to divide a single frame into an N × N lattice
and use the histogram of oriented gradients (HOG) [66] as the cell descrip-
tor with B number of bins. Hence, a single frame can be represented as a
feature vector of N × N × B dimension. Then we use the k nearest neighbor
approach to search for frames that are similar to the beginning and ending
frame. Some implementation details worth mentioning: first how many simi-
lar frames should we search in this unsegmented video? Our solution is to first
store the training example’s average frame number L and when there is a test
sequence, we make a rough estimation of gesture number as the quotient Q of
test frame number F and the average training tokens’ frame number L. Then,
the estimated frame number to retrieve is 8×Q. The reason we choose 8 here
is rather arbitrary as it makes little influence to the final performance. After
the similar frames being retrieved, a max pooling approach [67] is used to ag-
gregate interval frames. We then merge minimal segmented sequences if the
total action tokens segmented exceed the number of 5, which is the maximum
gesture number for one test sequence in this dataset. Generally, the more lat-
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tices that one frame picture is divided into, the more accurate it is to segment
action sequence. However, through our experiments, the varying of HOG grid
size has little impact on temporal segmentation performance. Consequently,
taking the computational cost into consideration, there is no significant point
to set the size of the HOG grid into small values. In our experiment, bin num-
ber B is 9 and two lattice types were tested, i.e. 8× 8 and 16× 16. In the case
of 8× 8, LD is 6.764% and for 16× 16 is 5.235%. Note that as we mentioned in
Section 2, accuracy for our whole gesture recognition system is upper bounded
by this temporal segmentation performance.

2.3.1.3 Motion Descriptors and Scheme for Classifier

We experiment extensively on different motion descriptors and classifiers and
via comparison we discuss our methodological insights. Our final adopted ap-
proach is Extended-MHI for action descriptor and Maximum Correlation Coeffi-
cient for classifier. The results are reported on the first 20 development batches
unless otherwise we explicitly state on the validation dataset.
Cons for local method: Spatio-temporal features [2, 24] have shown success
for many recognition tasks where preprocessing methods such as foreground
segmentation and tracking are not possible. However, their computational
complexity hinders their applicability in real-time applications. Wang et al.[7]
showed that the average time for spatio-temporal feature extraction varies
from 0.9 FPS to 4.6 FPS, which makes the STIP features too time-consuming
in computation. Another major limitation of the local feature based methods
is that the sparse representation such as BoVW discards geometric relationship
of the features and hence is less discriminative. We experiment on depth im-
age using Dollar’s method [2] for STIP detection, HOG3D [28] for cuboid de-
scriptor, kernel codebook [40] for encoding and SVM [68] for classifying BoVW
model. The result shows that the LD is merely 0.7232 and is even worse than
the baseline of 0.5998. We argue that the reasons behind local BoVW method’s
ineffectiveness in gesture recognition lie in the following two aspects: 1) low
interclass variation between different gestures make local methods and their
corresponding descriptors less discriminative. cf Figure 2.9, although motion
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Figure 2.9: Spatial temporal interest points in white bounding box of three different gesture
tokens.

interest points have been successfully detected around arms and hands area,
similarity of interest points around bending elbows could hinder the discrim-
inative power of local patch; 2) one-shot-learning renders it difficult to distin-
guish the most informative local patch in a BoVW model, especially temporal
sequence has been discarded through the construction process of histograms.
Insufficient training examples would be very likely to lead to the failure in this
histogram based approach.
Cons for generative methods: Under the one-shot-learning configuration, for
some discriminative models, one-shot-learning also restrains their discrimina-
tive power: e.g. for SVM, a single training example can not effectively define
its hyperplane for discriminating multi-class; for Adaboost, certain quantity of
positive and negative examples are needed to train the weak classifiers; the de-
cision trees methods, e.g. Random Forest [69], require hundreds of thousands
of training samples to avoids overfitting [19]. Comparatively, nonparamet-
ric methods, e.g. nearest neighbor, maximum correlation coefficient, etc work
surprisingly well for one-shot-learning because they are intrinsically template
matching metrics and will not suffer from overfitting problems.

Our approach: Extended-MHI and Maximum Correlation Coefficient
Motion Templates: MEI and MHI proposed by Davis and Bobick [70] are used
to represent the motions of an object in video. All frames in a video sequence
are projected onto one image across the temporal axis. As where and how
motion happens are recorded in the images, MHI captures the temporal infor-
mation of the motion in a sequence. Assume It = (I1, I2, . . . , InFrames) ∈ <3

is a gray scale image sequence and let Bt = (B1, B2, . . . , BnFrames−1) ∈ <3 be
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a binary image sequence indicating regions of motion, which can be obtained
from image differencing and thresholding:

Bt =

{
1 if (It+1 − It) > Threshold,
0 otherwise.

(2.9)

where threshold is defined as:

Threshold =

√√√√nFrames

∑
t

σt/(h× w× nFrames) (2.10)

where σt is the second moment (variance) of a single frame It; h, w, nFrames
are the height, width and frame number of that video sequence.

The MHI H(t; τ) is used to represent how the motion image is moving, and
is obtained with a simple replacement and a decay operator:

H(t; τ) =

{
τ if Bt = 1,
max(0, H((t− 1); τ)− 1) otherwise.

(2.11)

We observe that the larger τ, the more information is encoded. Therefore,
we set τ as the duration of the whole action T to preserve the whole sequence
motion trail. The re-defined version of MHI is:

H̃(t) =

{
T if Bt = 1,
H̃(t− 1)− 1 otherwise.

(2.12)

Note that there is no maximum operator in front of H̃τ cf Eq. (2.11) because
setting τ as the sequence duration will lead to non-negativity of H̃(t; τ).

We further extend motion templates that include two more elements: GEI
and INV:
GEI is to compensate for the non-moving regions and the multiple-motion-
instants regions of the action. The summation of all image pixels and normal-
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Figure 2.10: Illustration of the MHI, INV and GEI in two tokens (top row and bottom row).
The projection images show that MHI emphasizes recent motion, i.e. ending frames whilst
INV the beginning frames. GEI encodes the average gait information and is supplementary in
repetitive actions where both MHI and INV are poor at representing.

ization of the pixel value define GEI:

G =
1
τ

τ

∑
t=1

It (2.13)

INV is used to recover the loss of initial frames’ action information when set-
ting τ as the whole action duration and is defined as follows:

Ĩ(t; τ) =

{
τ if Bt = 1,
Ĩ(t + 1; τ)− 1 otherwise.

(2.14)

Note that its subtle difference to Eq. (2.12) is the time variable becomes t + 1
instead of t− 1 from which we get the name Inversed Recording.

We reason the complementary property of our proposed extended-MHI as
MHI is poor at representing repetitive actions and INV provides complemen-
tary information by emphasizing (assigning larger value) at initial motion frames
instead of the last motion frames. Figure 2.10 illustrates the similarities and dif-
ferences between MHI,GEI and INV of two gesture tokens. The first columns
are the MHI projections, second are the INV projections and the last are the GEI
projections. Again, the projection graphs show that MHI emphasizes recent
motion, i.e. ending frames whilst INV the opposite. Hence the combination of
the two is complementary. Furthermore, GEI encodes the supplementary in-
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Methods GEI MHI INV Extended-MHI
LD 0.2761 0.3010 0.3022 0.2600

Table 2.2: Performance comparison of three elements in Extended-MHI.

formation in repetitive actions where both MHI and INV are poor for the repre-
sentation. Then, we reduce the dimensionality of each projection by dividing
the projection into a 16× 16 lattice using HOG as the feature descriptor and
concatenate three vectors into a long feature vector. Supervised linear discrim-
inant analysis (LDA) is adopted for the final stage of dimensionality reduction.
The experimental results in Table 2.2 prove the viability of our conjecture. Note
that in order to have a fairer comparison between different algorithms, we use
the action boundaries provided by [53] for development batch instead of us-
ing the temporal segmentation results in Section 3.2 and MSE in Section 3.4 is
also used for RGB and depth camera fusion so that irrelevant influences can be
reduced to a minimum.

For the matching metric, nonparametric methods is more advantageous by
avoiding the issue of overfitting. In our experiment, Maximum Correlation
Coefficient works best. The correlation coefficient is defined as:

ρ =
σxy

σxσy
(2.15)

where σxy is the covariance of two feature vectors x and y, and σx, σy are the
respective variances.

2.3.1.4 Multiview Spectral Embedding (MSE) for Data Fusion

To effectively and efficiently learn the complementary nature of different views,
we adopt the spectral methods in [64] to search for a low dimensional repre-
sentation and sufficiently smooth embedding over all views simultaneously.
Luxburg [71] elegantly presents the intuition behind why spectral clustering
works. We briefly state the core algorithm in MSE and further cast light on the
unaddressed dimensionality problem in [64] by Graph Cut point of view. For
notational details, please refer to the paper [64]. Firstly, we construct the graph
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Laplacian Li for each view i. The normalized graph Laplacians we choose for
the system is Lsys as the matrix is symmetric. Then we introduce a weight αi

to encode the significance for each view i. We try to find the low-dimensional
embedding by solving:

argmin︸ ︷︷ ︸
Y,α

m

∑
i=1

αr
i tr(YLiYT) (2.16)

s.t. YYt = I;
m

∑
i

αi = 1, αi ≥ 0. (2.17)

where Y is the multiview fused embedding feature vector in a dimension of
d, exponent r is the coefficient for controlling the interdependency between
different modalities/views and should satisfy r ≥ 1. Pronounced indepen-
dence between difference modalities prefers smaller r while rich complemen-
tary prefers larger r. In our system, the value r has trivial influence over low
dimensional embedding and is set to be 1.5. In our system, we only fuse RGB
and depth camera, hence the number of views m is 2.

Eq. (2.17) is a nonlinearly constrained nonconvex optimization problem
and an expectation-maximization (EM) like iterative algorithm can be used
to obtain a local optimal solution. The alternating optimization iteratively up-
dates Y and α in an alternating fashion. By introducing Lagrange multiplier
λ to take the constraint ∑m

i αi = 1 into consideration, we get the Lagrange
function

L(α, λ) =
m

∑
i=1

αr
i tr(YLiYT)− λ(

m

∑
i

αi − 1) (2.18)

By setting the derivative of L(α, λ) with respect to αi and λ to zero, we have

αi =
(1/tr(YLiYT))1/(r−1)

(∑m
i=1 αitr(YLiYT))1/(r−1)

(2.19)

Here, we cast light on the choice of lower embedding dimension d and the
interpretation of weights αi dispatched to different views where the original
paper [64] fails to accomplish. In the paper of [64], the value of d is acquired
by cross-validation. However, we argue that the low dimension d should be
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fixed to be the number of gesture class-1. According to the Graph Cut theorem,
the multiplicity k1 of the eigenvalue 0 of Graph Laplacian L equals the num-
ber of connected components in the graph. Similarly, MSE finds d smallest
eigenvalues in the spectrum of L which corresponds to the smallest variation
of the cluster. The smallest eigenvalue of L is always 0 [71] and the correspond-
ing eigenvector is the constant one vector 1. Therefore, the veritable number
of d should be the number of cluster/gesture class-1. And the experiments
in [64] are in agreement with our reasoning. Secondly, we explicitly express
the physical meaning of the weights αi as a measurement of the “closeness” of
intra-class distance from each individual view. From Eq. (2.19), we can see that
αi is proportional to the inverse trace of YLiYT, and

tr(YLiYT) = ∑ λi (2.20)

where λi are the eigenvalues of the Graph Laplacian Li. Hence, αi ∝ 1/(∑ λi).
In Spectral clustering [71], small eigenvalues (closer to 0) represent the the
“closeness” of intra-class distance from each individual view. A well clustered
view, i.e. , easier to be classified, is more significant than other views. So a
larger αi assigns larger significance to that view.

We then use the low dimensional multiview fused representation Y as the
feature vector for Correlation Coefficient comparison. Note that this approach
unsupervisedly clusters the test set, however it does not violate the compe-
tition rule that allows using unlabeled examples for training the system. We
compare the performance between our approach against the approach which
directly concatenates the RGB and depth camera feature vector and there is a
consistently 4% improvement in LD.

2.3.1.5 Performance Evaluation

The performance of our system on validation data batch is 0.29685 and among
the top entries on the public leader board in [53] with LD less than 0.3. Fig-
ure 2.11 shows our system’s performance on the first 20 development batches.
It can be observed that our system performs well when there is large amount of

1multiplicities: the number of eigenvectors belonging to λi
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Figure 2.11: Performance on the 20 development data batches.

motion presents in a gesture token, e.g. batch 01, 05, 08, 09 whereas the perfor-
mance suffers if the gestures are rather static, e.g. batch 03, 10. We reason that
our gesture descriptor is motion based so that little motion and subtle appear-
ance differences in gesture tokens will degenerate our system’s discriminative
power.

The experiments were done on a Intel 2-core 3.0GHz, 4GB memory desktop
in a single thread running MATLAB and the average training and testing time
for a single batch is around 220 seconds (approximately 20 fps) which is faster
than real time requirement.

2.4 Discussion

In this chapter, two new representations, namely BoCP and the Extended-MHI
for action recognition were presented. BoCP is a temporally local feature de-
scriptor and the Extended-MHI is a holistic motion descriptor. In the BoCP
model, the unique way of considering temporal-structural correlations between
consecutive human poses encodes more information than the traditional bag-
of-features model. Also a soft-assignment strategy was utilized to preserve the
visual word ambiguity which is usually disregarded during the quantization
process after k-means clustering. The extension of MHI compensates for in-
formation loss in the original approach and later the conjecture that local and
holistic features are complementary to each other was verified.

A one-shot-learning gesture recognition system was proposed to utilize
both RGB and depth information from Kinect sensor. Depth sensor has the
unique property to enable segmenting human silhouettes and a morphologi-
cal was performed to denoise the depth images. Temporal segmentation was
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performed on the appearance-based approach and an extended-MHI represen-
tation was adopted as the motion descriptor. The intrinsic property was ex-
plored between different spectra and made a physically meaningful embed-
ding of multiviews through Multiview Spectral Embedding.

In the current work, the system shows promising performance and pro-
duces better results than any published paper on the IXMAS dataset using
only low-level features and a simple dimensionality reduction method with
the early fusion strategy. With more sophisticated feature descriptors and ad-
vanced dimensionality reduction methods, it’s reckoned better performance
should be achieved. Moreover, the utilization of the state-of-the-art skeleton
tracker [19] could better assist the system to conquer its ineffectiveness in dis-
criminating static gestures by relying on a more advanced appearance-based
descriptor.
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Chapter 3

Deep Belief Dynamic Networks

3.1 Introduction

This chapter presents a hierarchial dynamic framework that first extracts high
level skeletal joints features and then uses the learned representation for esti-
mating emission probability to infer action sequences. Currently gaussian mix-
ture models (GMMs) and hidden Markov models (HMMs) are the typical pair
and GMMs are the standard paradigms for modeling the emission distribution
of HMMs. It can be shown that better action recognition using skeletal features
can be accomplished by substituting GMMs by Deep Belief Networks (DBNs)
that consist of many layers of features to predict probability distributions over
states of hidden Markov models. The framework can be easily extended to
include an ergodic state to segment and recognize actions simultaneously.

This chapter first provides a brief overview of Restricted Boltzmann Ma-
chines (RBMs), generalizations of RBMs to modeling real-valued data, and by
stacking RBMs together as a pre-train procedure for DBNs, the better initial-
ization can be achieved. After introducing the preliminaries, the deep belief
dynamic networks are presented to model the higher level temporal data.

The model has been designed with action/gesture recognition in mind, but
should lend itself well to other high-dimensional time series data.

35



3.2 Boltzmann machines

3.2.1 Energy-Based Model

Energy-based model assigns a scalar energy to corresponding composition of
the variables associated to the model. The task of learning from the perspective
of energy-based model can be explained as adjusting the energy function of the
model so that its configuration has fitting traits. One fitting trait is that proba-
ble compositions to have low energy. Extending to the probabilistic graphical
models, the energy-based model is characterized by a probability distribution
in the form of an energy function:

p(x) =
e−E(x)

Z
(3.1)

where the normalizing factor Z is called the partition function termed by
physical systems as the summation of all possible configurations of the vari-
ables:

Z = ∑
x

e−E(x) (3.2)

Generally, the learning strategy for an energy-based model can be (stochas-
tic) gradient descent with the cost as the observational negative-log-likelihood
of the training instances. The log-likelihood and the corresponding cost (negative-
log-likelihood) with parameter θ and input dimension D are defined as fol-
lows:

L (θ, D) =
1
N ∑

x(i)∈D

log p(x(i)) (3.3)

l(θ, D) = −L (θ, D) (3.4)

3.2.1.1 EBMs with Hidden Units

In order to boost the expressiveness of the model, or in many scenarios, the
variables x are not fully observable, it’s common to introduce a hidden part
h into the energy-based model with the observed variables (still denote x).
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Hence, the energy-based model with hidden units can be written as:

P(x) = ∑
h

P(x, h) = ∑
h

e−E(x)

Z
(3.5)

The introduction of hidden unites h for image classification tasks can be seen
as the higher level feature detectors and for action recognition can be seen as
the higher level spatial temporal feature detectors.

Motivated by the field of physics, to unify aforementioned establishment
analogous to Eq.3.1, the introduction of free energy could be served as the
intermediate step for gradient calculation and is denoted as:

F (x) = − log ∑
h

e−E(x,h) (3.6)

Hence, Eq.3.1 can be similarly defined as:

P =
e−F (x)

Z
(3.7)

with normalization constant as:

Z = ∑
x

e−F (x) (3.8)

Applying gradient descent method, a peculiarly intriguing gradient with
respect to the negative log-likelihood of the data has the pattern:

−∂ logP(x)
∂θ

=
∂F (x)

∂θ
− ∑̃

x
P(x̃)

∂F ˜(x)
∂θ

(3.9)

The interesting property of the right hand side of the equation is explained
as follows: the two terms are denoted as the positive phase and negative
phase. The phrase positive and negative are not invoked by the sign of individ-
ual term, however mirror their outcomes on the configuration of the energy-
based model. The positive phase (the first term) raise the probability of the
observed data (by lowering the reciprocal free energy) whilst the negative
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Figure 3.1: Restricted Boltzmann machines.

phase (the second term) lowers the probability of the instances spawned by
the model.

Because the gradient of the second term can not be computed in a closed
form (Ep[

∂F (x)
∂θ ] has no analytical solution which is the expectation of all pos-

sible configurations of the observable x times their corresponding probability
distribution P), approximation approach is required.

3.3 Restricted Boltzmann machines

Boltzmann Machines (BMs) are a special structure of Markov Random Field
(MRF), i.e. the energy function is linear in term of its corresponding free pa-
rameters. To empower the expressiveness of the model so as to encode com-
plex distributions, the hidden variables are introduced to enhance the mod-
elling capability of the Boltzmann Machines

Restricted Boltzmann Machines (RBMs) is a subtype of BMs in that there
is no connections between visible to visible or hidden to hidden variables.
RBM, as a special type of Markov random field with a two-layer structure,
has the visible binary stochastic units v ∈ {0, 1}D connected to the hidden bi-
nary stochastic units h ∈ {0, 1}F. A graphical depiction of an RBM is show as
in Fig3.1.

The energy of the state {v, h}is:

E(v, h; θ) = −v>Wh− b>v− a>h (3.10)

= −
D

∑
i=1

F

∑
j=1

Wijvihj −
D

∑
i=1

bivi −
F

∑
j=1

ajhj (3.11)

where θ = {W, b, a} are the free parameters: Wi,j serves as the symmetric syn-
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ergy term between visible unit i and hidden unit j; bi is the bias term of the
visible units and aj is the bias term of the hidden units. The joint distribution
over the visible and hidden units is defined by:

P(v, h; θ) =
1

Z(θ)
exp(−E(v, h; θ)); (3.12)

Z(θ) = ∑
v

∑
h

exp(−E(v, h; θ)) (3.13)

The conditional distributions needed for inference and generation are given
by:

P(hj=1|v) = g(∑
i

Wijvi + aj)); (3.14)

P(vi=1|h) = g(∑
j

Wijhj + bi)) (3.15)

where g(x) = 1
1+exp(−x) is the logistic function.

The derivative of the log-likelihood with respect to the model parameter
from Eq. 3.13 is expressed as: EPdata [vh>] − EPmodel [vh>] where E denotes the
expectation. Due to the intractability of the second term, an approximation
is generally required. This approximation is called the “Constrative Diver-
gence”:

∆W = α(EPdata [vhT]− EPT [vhT]). (3.16)

where α is the learning rate and PT is the distribution obtained by running a
Gibbs chain, initialized with the visible units given by the data, for T full steps.

3.3.1 Gaussian Bernoulli Restricted Boltzmann machines

If input features (a.k.a. observation domain X ) are continuous instead of bino-
mial features, we use the Gaussian RBM (GRBM) to model the energy term of
first visible layer:

E(v, h; θ) = −
D

∑
i=1

(vi − bi)
2

2σ2
i
−

D

∑
i=1

F

∑
j=1

Wijhj
vi

σi
−

F

∑
j=1

ajhj (3.17)
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Figure 3.2: Deep Belief Networks.

The conditional distributions needed for inference and generation are given
by:

P(hj=1|v) = g(∑
i

Wijvi + aj)); (3.18)

P(vi=1|h) = N (vi|µi, σ2
i ). (3.19)

where µi = bi + σ2
i ∑j Wijhj and N is normal distribution. In general, we

normalize the data by mean subtraction and standard deviation division in
the preprocessing phase. This type of structure sometimes is called a mean
covariance RBM (mcRBM) in some literature. Hence, in practice, instead of
learning the σ2

i , it’s commonly to adopt a fixed, predetermined unit value 1 for
σ2

i .
The aforementioned graphical model results in the following free energy

representation for RBM and Gaussian RBM:

F (v) = −bTv−∑
i

log ∑
hi

ehi(a+vTW)

F (v) = − (v− b)2

2
−∑

i
log ∑

hi

ehi(a+vTW)
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3.4 Deep Belief Networks

In the seminal paper of [72], Hinton and Salakhutdinov showed that by stack-
ing multiple layers of RBMs and pre-training in a greedy “Constrative Diver-
gence” manner, Deep Belief Networks (DBN) in the form of multi-layer percep-
tron can be better initialized. A graphical depiction of an RBM is shown in Fig
3.2.

The joint probability distribution between observed vector x and the l hid-
den layers hk can be written as:

P(x, h1, . . . , hl) = (
l−2

∏
k=0

P(hk|hk+1))P(hl−1, hl) (3.20)

Justifying Greedy-Layer Wise Pre-Training: Neal and Hinton [73] demon-
strated that the negative log-probability of an observed input vector, v0, in the
multi-layer perceptron framework, is bounded by a variational lower bound.
This lower bound, in the form of free energy, is the summation of two terms:
1) expected energy under the approximating distribution, Q(h0|v0) and 2) the
negative entropy of the corresponding distribution. Using RBMs as the build-
ing block of DBNs, the architecture is a directed graphical model. And the “en-
ergy” of the configuration v0 and h0 is expressed as E(v0, h0) = −[log p(h0) +

log p(v0|h0)]. Hence, the variational lower bound is:

log p(v0) > ∑
h0

Q(h0|v0)[log p(h0) + log p(v0|h0)]

−∑
h0

Q(h0|v0) log Q(h0|v0)

Bengio et al. [74] further demonstrated that deep architectures have the
merits over shallow architectures in terms of model expressiveness and effi-
ciency. This exponential efficiency which is required to represent energy func-
tions stands out as the major contribution of the deep architecture. Moreover,
with the greed layer-wise unsupervised pre-training, the weights of the model
will be better initialized in a region in the vicinity of a good local optimum.
This strategy helps the optimization and generalization, giving rise to energy
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function that are high-level abstractions of the lower layers.
Stochastic Gradient Methods: If the training data mainly comprise of a

large quantity of iid samples, which is mostly true for the large scale image clas-
sification or spatio-temporal features this thesis mainly interested with. Rather
than sweeping through all the training samples to have the gradient update, it
is be more desirable to update the gradient after observing only a few number
of samples. Stochastic Gradient Descent (SGD) is a commonly adopted optimiza-
tion strategy to exploit the large training set with iid samples. The key concept
is that for each iteration, to choose a set of training samples at random, and
move a small stride along the direction indicated by the gradient. In the batch
update setup, SGD is usually a suboptimal optimization strategy, because the
global optimum could be in a very contrasting direction than the direction ob-
tain by the local steepest descent. Hence, SGD is generally associated with
the tradeoff: global methods such as L-BFGS could give rise to better direction
than the individual step, however, the locally generated direction by SGD can
be computed much faster.

The standard backpropagation can be adopted for adjusting the weight W:

W = W − αm
∂

∂W
J(W) (3.21)

where αm > 0 is the annealed learning rate for epoch m that controls how
fast the parameters move to the direction of the gradient and J(W) is the cost
function (cross-entropy) of the last layer perceptron. This step size αm is one
crucial hyper-parameter for DBN: if it is too large, the update of the parameters
will swing violently and may not converge at al, and contrarily, if too small,
the training process will progress in a much slower manner and in the case
of some extreme cases, the numerical values of the gradient may signal the
optimization process has converged whereas the local optimal is far from the
erroneously stopping point.

The main issue in gradient descent is: how should we set the step size αm?
This proves to be a difficult task. If the learning rate is constant and relatively
small, convergence will be very slow, however if it is large, the method might
fail to converge at all. This point is illustrated in Fig 3.3 by the following (con-
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vex) function:
f (θ) = (θ2

1 − θ2)
2 + (θ1 − 1)2, (3.22)

with initial guess(0, 0).
In Fig 3.3, the step size η is fixed. For fixed step η = 0.1, note the path

of the descent moves slowly along the valley. For fixed step size η = 0.3, the
algorithm starts oscillating along the sides of the valley and never converges to
the optimum even though the learning rate difference is smaller than an order
of magnitude.

Figure 3.3: Gradient descent on a simple convex function, starting point is (0, 0), for 20
steps, using a fixed learning rate (step size) η. The global minimum is at (1, 1). (a) η = 0.1 . (b)
η = 0.6.

In general, αm should decrease as epoch m increases. In the hope that the
optimization process will converge to a local optimum. The typical approach is
to select a strategy in the form of αm ∼ 1

m or αm ∼ 1√
m . However, simply taking

αm = 1
m will result in too large step size for the first few update. Alternatively,

a “common trick” is demonstrated as in[75]

αm =
1

σ2(m0 + m)
(3.23)

or
αm =

m0

(1 +
√

m)
(3.24)

where m0 is a a hyper-parameter that is required to be initialised. A typical
proposition for choosing this parameter is to run several epoch update over
a subset of the training examples with different size α. The optimum m0 is
chosen such that α0 = α∗ with the highest resulting likelihood.
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Historically, back-propagation algorithms in multi-layer deep neural net-
works have been associated withSGD. Because the non-convexity of the ob-
jective function in multi-layer deep neural networks, SGD are infamously dif-
ficult to debug. The algorithm may seemingly working in spite of incorrect
gradient. Giving rise to the misbelief of the flawed system. The major draw-
back of SGD is its hyper-parameter tuning, contrary to the off-the-shelf solvers
as L-BFGS or conjugate gradient. It is also worth pointing out that SGD is not
favourable in the setups where training samples are not i.i.d., or on small data
sets. Nevertheless, SGD is still the dominant method for updating gradient for
deep neural networks.

3.5 Deep Belief Dynamic Networks

Inspired by the state-of-the-art performance achieved for speech recognition [17],
the proposed model borrows the idea of a data driven learning system, rely-
ing on a “pure learning method that all the information gain in the model
derives from the data without sophisticated pre-processing or dimensionality
reduction. The proposed framework can be seen as an extension to [76] in
that instead of using the conditional Restricted Boltzmann Machine, a type of
shallow model, to model human motion, we add layers to learn higher level
features justified by a variational bound [11]; for modeling temporal informa-
tion, rather than explicitly binding limited adjacent frames (3 past frames as
in [76], we resort to hidden Markov model which can be well extended to long
term temporal information, spanning hundreds of frames in our system.

We demonstrate that consistently better action recognition performance can
be achieved using skeleton information by “pretraining” a multi-layer neural
network in which the greedy pre-training is done by “contrastive divergence”
method used for RBMs as generative models. This pre-training better initi-
ates the weights of deep neural networks that have multiple layers of hidden
units and exponentially increases the capacity of the model before overfitting.
The generative pre-training generates many layers of feature detectors and fea-
ture descriptors that grow into progressively more abstract and complex. An
ensuing process of discriminative fine-tuning by the standardized backprop-

44



agation to slightly modify the feature detectors and descriptors in each layer
rendering them more effective for the discriminative tasks. The advantage of
pre-training multi-layer deep neural nets is that the limited volume of knowl-
edge from the labels is not devoted to design features detectors and descriptors
from scratch. It is particularly devoted to adjust the weights of the deep neural
nets so slightly that the better class hyperplane could be obtained. The features
detectors and descriptors themselves are designed by the pre-training process
as a generative model.

The Deep Belief Dynamic Networks make three major presumptions about
the innate of the relationship between the input data, which in this chapter
is a set configurations of skeletal joints, and the label information, which are
action class HMM hidden states produced by a forced alignment. The first
assumption is that the discriminative tasks is more relevant to the underlying
relationship of the data rather than to the singular elements of the data itself.
Previous hardwired techniques [77, 78, 79, 80] have shown that multiple joints
relational features, e.g. hands approaching each other, feet moving towards
each other, etc , are more relevant for action recognition rather than a single
joint spatial-temporal position). The second assumption is that the aforemen-
tioned underlying relationship of the data can be presented by modeling its
high-order statistical model. Third, feature-vector produced hidden states are
mostly unique, meaning sequences are non-repetitive actions as opposed to
longer repetitive activities, e.g. walking, running, jogging, etc , spanning min-
utes or hours.

Given the structure of our model, our framework is also suited for detection
of “action points” [79] for accurate temporal localizing of gestures. Action
point could be perceived as spotting a particular pose under the hypothesis
of in what ways the performer fixate into that pose. This evaluation metrics
explicitly lay out the tradeoff between latency and accuracy.

3.5.1 Methodology

3D joint data obtained through the skeletal detection from the depth images are
generally more noisy than the 3D joints generated from the MoCap data. It is
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often the case that the disparity between gestures is subtle, hence the accurate
determination of hidden states from the observation without attentive design
of features is generally challenging. The suboptimal design of the relevant fea-
tures undermines the performance of such generative models and mostly serve
as the bottleneck of the whole system. Furthermore, without sufficient number
of training examples, the learning of a big, complex generative model is prone
to overfitting. As it’s pointed out by [17] the interesting relationship between
the amount of constraint that the data imposes on the discriminative model
and generative model: for the discriminative model, its parameters is equal to
the number of bits mandatory to define the factual labels of the training data;
for the generative model, the constraint is equal to the number of bits manda-
tory to define the input space vector. Therefore, when input space vector has
much more structure information than the information from the labels which
is mostly the case, a generative model is able to have many more parameters
before overfitting occurs. “

Currently the model parameters are predominantly learnt by Gaussian mix-
ture models using expectation maximization [81, 82]. We reason that replacing
Gaussian mixture models by deep belief networks can better predict probabil-
ity distributions over the states of hidden Markov models:

3.5.1.1 Problem formation

The seminal works of [17] concludes that “DBN provide several potential ad-
vantages over GMMs:

• The data distribution is not a precondition for DBN to estimate the pos-
terior probabilities of HMM hidden states.

• DBN renders it possible to incorporate diverse input features types, ei-
ther discrete or continuous variables.

• DBN requires far more amount of training data to adjust each parameter
because the susceptibility of the output for each training instance to a
broad portion of the weights.
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The major advantage of DBN over GMM is in the benefit of each weight in
DBN being learned by a broad portion of training instances. Multi-layer per-
ceptron have traditionally been trained discriminatively, in contrast, GMMs
are generally trained as generative models, albeit later stage of discriminative
training process. Generative models render many more bits of constraints on
the parameters imposed by the data. Therefore, moderately compensating for
the fact that each module of a large-size GMM can only be trained on a very
small portion of the data.

GMMs and HMMs co-evolved for speech recognition for the past decade
when computational resources was a major constraints to machine learning
community to explore larger, more complex architectures. GMMs are straight-
forward to learn with diagonal covariance matrices, and with sufficient com-
ponents, GMMs is able to model any distribution. However, GMMs are sta-
tistically less efficient in modeling high-dimensional data with complex com-
ponential structure [17]. An analytical illustration is stated as follows: for the
input data with N major distinct configurations and in each configuration,
there areMmajor distinct sub-band configurations. Assume that each config-
uration in each sub-band is roughly independent. A GMM demands N ×M
components to represent the configuration since each component should rep-
resent both sub-band configurations. In another case when a model can repre-
sent the data via multiple share structures only requires N +M components
with each sub-band configuration has shared upper level structure. Aforemen-
tioned disadvantage result in the GMMs+HMMs system with a large number
Gaussian components and each component is learnt from a small portion of
the data.

With a number of new datasets [20, 21, 22, 23] and the large supply of unla-
beled skeletal data, the benefit of learning a generative model is notably mag-
nified. Even though no unlabeled data are used in the following experiments,
we believe the use of unlabeled data for better model initialization could only
further improve the results relative to solely discriminative methods.

It is safe to assume that many of the high-level features detected, extracted
from the generative model may be unrelated to the task specific discrimina-
tive jobs. Nevertheless, the pre-training process are critical for interpreting
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Figure 3.4: Per-action model: a forward-linked chain. Inputs (skeletal features) are first
passed through a deep neural nets to extract high level features and output the emission prob-
abilities of the hidden states. The deep neural net is first pre-trained using all skeletal features
and then fine-tuned by the target class acquired by forced alignment for individual action class
(10 hidden states for each action class in all our experiments).

the input data. Moreover, with gradient diminish effect, how to initialize the
network properly is the key contribution and the renaissance of Deep Neural
Network since 2006 [72]. Hence, with the increase variational lower bound
guaranteed (see Sec.3.4), the pre-training process is a procedure worth imple-
menting especially if the computational cost is inexpensive and the extracted
high-level features are favourable for discriminating tasks.

3.5.2 Graphical Models

In order to encode higher level temporal relationships, a continuous-observation
HMM is utilized with with discrete hidden states. The temporal model is con-
structed the same as [79]: for each time step t, there is a random observa-
tion variable variable Xt and an unobserved variable Ht in a finite set H =

(
⋃

a∈AHa),whereHa is a group of sub-states assigned to an individual class of
action a. The proposed model is motivated by the flexibility requirement for
capturing the forward transitions of the chain, so that the variability of each
gesture sequence is satisfied. The probabilistic graphical model is defined as
an HMM:

p(H1:T, X1:T) = p(H1)p(X1|H1)
T

∏
t=2

p(Xt|Ht)p(Ht|Ht−1), (3.25)
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where p(H1) is the prior on the first hidden state and in all our experiments
in this chapter, we defined the prior with a uniform distribution. p(Xt|Ht)

is the observation model, and p(Ht|Ht−1) is the transition dynamics model.
The observation domain X relies on the intrinsic property of the skeleton and
will be specified in the Sec. 3.7. We model the emission distribution of hidden
Markov models by first pre-training a deep belief networks, greedy layer-wise
training as a generative model for a window of action frames. The graphical
representation of a per-action model is shown as Fig. 3.4.

Because our skeleton features (a.k.a.observation domain X ) are continuous
instead of binomial features, we use the GRBM to model the energy term of
first visible layer as in Eq 3.17.

Model reasoning: The intuition using deep belief networks for model-
ing marginal distribution in skeleton joints action recognition is that by con-
structing multi-layer networks, semantically meaningful high level features
for skeleton configuration will be extracted whilst learning the parametric prior
of human pose from mass pool of skeleton joints data. In the recent work
of [83], a non-parametric bayesian network is adopted for human pose prior
estimation, whereas in our framework, the parametric networks are incorpo-
rated.

Using the pair wise joints features as raw input, the data-driven approach
network will be able to extract relational multi-joints features which are rele-
vant to target frame class. E.g., for “toss” action, wrist joints is rotating around
shoulder joints would be extracted from the backpropagation via target frame
as those task specific, ad hoc hard wired sets of joints configurations as in [77,
78, 79, 80].

The outputs of the neural net are the hidden states learned by force align-
ment during the supervised training process. We can infer the action presence
in a new sequence by Viterbi decoding as:

Vt,H = P(Ht|Xt) + log(max
H∈Ha

(Vt−1,H)) (3.26)

where initial state V1,H = log(P(H1|X1)). The inference results are the short-
est path with the highest probability, and the predicted action probability is
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specified as a ∈ A as p(yt = a|x1:t) = VT,H.
The overall algorithm for training and testing are presented in the follow-

ing Algorithm.1 and 2.

Algorithm 1: Deep Belief Dynamic Networks – training pipeline
Data:
X = {xi}i∈[1...t] - raw input feature (skeletal) sequence.
Y = {yi}i∈[1...t] - frame based local label (achieved by semi-supervised

forced-aligment),
where yi ∈ {C ∗ S + 1} with C is the number of class, S is the
number of hidden states for each class, 1 as ergodic state.

1 Preprocessing the data X (with or without time window) as in Eq.5.2.
2 Normalizing(zero mean, unit variance per dimension) the above features

and feed to to Eq.3.17.
3 Pre-training the multi-layer networks using Contrastive Divergence as in

Eq.3.16.
4 Supervised fine-tuning the deep belief networks using Y by standard

mini-batch SGD backpropagation 3.21.
Result:
GDBN - a gaussian bernoulli visible layer deep belief networks to

generate the emission probabilities for hidden markov model.
p(H1) - prior probability for Y.
p(Ht|Ht−1) - transition probability for Y, enforcing the beginning and

ending of a sequence can only start from the first or the last state.

3.5.3 ES-HMM: Simultaneous Segmentation and Recognition

The aforementioned framework can be easily adapted for simultaneous action
segmentation and recognition by adding an ergodic states-ES which resembles
the silence state for speech recognition. Hence, the unobserved variable Ht

takes an extra finite setH = (
⋃

a∈AHa)
⋃ ES , where ES is the ergodic state as

the resting position between actions and we refer the model as ES-HMM.
Since our goal is to capture the variation in speed of performing gestures,

we set the transitions in the following way: when being in a particular node
n in time t, moving to time t + 1 we can either stay in the same node (slower
performance), move to node n + 1 (the same speed of performance), or move
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Algorithm 2: Deep Belief Dynamic Networks – testing pipeline
Data:
X = {xi}i∈[1...t] - raw input feature sequence
GDBN - the trained gaussian bernoulli deep belief networks to

generate the emission probabilities for hidden markov model
p(H1) - prior probability for Y
p(Ht|Ht−1) - transition probability for Y

1 Preprocessing and normalizing the data X as in Eq.5.2
2 Feedforwarding network GDBN to generate the emission probability

p(Xt|Ht) in Eq.3.25
3 Generating the score probability matrix p(H1:T, X1:T) according to

Eq.3.25
4 Finding the best path Vt,H by Viterbi decoding as in Eq.3.26

Result:
Y = {yi}i∈[1...t] - frame based local label

where yi ∈ {C ∗ S + 1} with C is the number of class, S is the
number of hidden states for each class, 1 as ergodic state

C - global label, the anchor point is chosen as the middle state frame

to node n + 2 (faster performance). From the ES we can move to the first
three nodes of any video, and from the last three nodes of every video we can
move to the ES as shown in Fig. 3.5. The ES-HMM framework differs from the
Firing Hidden Markov Model of [79] in that we strictly follow the temporal in-
dependent assumption, forbidding inter-states transverse, preconditioned that
a non-repetitive sequence would maintain its unique states throughout its per-
forming cycle.

The emission probability of the trained model is represented as a matrix
of size NT C × NF where NF is the number of frames in a test sequence and
output target class NT C = NA × NHa + 1 where NA is the number of action
class and NHa is the number of states assigned to an individual action a and
one ES state. Result of the Viterbi algorithm is a path–sequence of nodes which
corresponds to states. From this path we can infer the class of the gesture.

Performance Measure: F-score@∆ The performance of the system is mea-
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Figure 3.5: State diagram of the ES-HMM model for action segmentation and recognition.
An ergodic states (ES) shows the resting position between action sequence. Each node rep-
resents a single frame and each row represents a single action model. The arrows indicate
possible transitions between states.

sured in terms of precision and recall, defined in [21] as:

F− score(∆) = 2
prec(∆) ∗ rec(∆)
prec(∆) + rec(∆)

To achieve a high precision, the training data should only contain move-
ments that users of the deployed system will associate with the gesture. To
achieve a high recall, the training data should contain all movements that the
designer wants to associate with a gesture. We assess the quality of our pre-
dictions using ground truth annotations, defining a performance measure as
following 3 factors: 1) precision - how precise the system predicts the true pos-
itives against all the predictions; 2) recall - how accurate the system retrieves
the performed gestures; and 3) latency - how small is the margin between the
prediction by the system and the true action point. For a fixed margin of tol-
erated latency (∆ms) we measure the precision and recall as shown in Fig. 3.6.
A balanced F-score between 0 and 1 combines precision and recall. In the ex-
periments we will examine the performance measure for a fixed δ = 333ms as
in [21].
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Figure 3.6: Anchor point definition according to [79]: The ground truth action point is
marked as •, a pre-fixed windows of size 2∆ is centred around the ground truth annotation.
There are three predictions, two correct marked in ◦ as the True Positives (TP) and one incor-
rect marked in × as the False Positive (FP). However, there are two correct predictions within
the action point window and in this case, only one correct prediction is valid and the rest
are ignored. The prec(∆) and rec(∆) are determined by the total number of valid correct and
incorrect predictions.

3.6 Related Works

Traditionally, 3D joints data are acquire by MoCap system, and a plethora of
hard wired features have been proposed: by Müller et al. [78] introduced the
relational pose features to index and retrieve motion capture data and served
as the harbinger for exploring 3D joints data. Yao et al. [84] modified a subset
of the relational pose features for action recognition and showed that by using
these robust features, some imperfect poses can also suffice to perform action
recognition. Lv et al. [85] designed feature vectors, such that each joint feature
comprises of a single joint or combination of multiple joints. 7 distinct cate-
gories of hand crafted features were designed according to the analysis of the
best ad-hoc combinatorial joints features distinguish different actions. Various
hand-designed features describe different levels of dynamics of an action and
there are in total 141 hard wired features. During their training stage, 3 sets
of ad hoc segregation of features space required laborious human involvement.
Ofli et al. [80] proposed the Sequence of Most Informative Joints (SMIJ) repre-
sentation, an interpretive feature for human motion representation based on
joint angle time series. Chaudhry et al. [77] introduced a bio-inspired features
incorporating 3D shape context into a spherical coordinate system, they model
a human activity using a hierarchy of 3D skeletal features in motion and learn
the dynamics of these features using Linear Dynamical Systems (LDSs).

Alternative approaches to acquire discriminative features leverage statisti-
cal learning methods: Wang et al. [23] proposed a feature mining approach for
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computing discriminative actionlets from a recursively defined temporal pyra-
mid of joint configurations. Do et al. [86] proposed non-linear Markov model
for structured prediction. Traditional conditional random fields uses shallow
log-linear model for feature extraction. Their proposed framework combines
the power of deep neural networks to extract high level features and leverages
Markov networks for upper level structure prediction, creating a scalable and
powerful probabilistic graphical model for signal labeling tasks.

Nowozin and Shotton [79] explicitly address the latency issue in action
recognition tasks. In their proposed system, a single HMM comprised of mul-
tiple sub-models for each gesture is learnt by a random forest. During test-time
action recognition, online filtering is adopted and the model state is reset by
heuristics after per-recognized gesture.

Inspired by recent findings of [17], the automatic extraction of high level
skeletal joints representation is proposed by using deep forward neural net-
works. This framework serves as a better model for estimation emission prob-
ability of hidden Markov models and achieves improved results for human
action recognition amongst other well established methods. We also demon-
strate that the framework can be easily adapted for simultaneous segmenting
and recognizing gestures, discovering action points [79] which are precise tem-
poral anchor points relative to the action performance. The proposed frame-
work has been designed with action/gesture recognition in mind, but should
lend itself well to other high-dimensional time series prediction tasks.

3.7 Experimental Results

Experimental results on three publicly available skeleton datasets are presented:
the ChaLearn Italian Gesture Recognition, the MSR Action3D and the MSRC12
dataset. We first present the pre-processed skeletal features used in the exper-
iments:

54



Figure 3.7: Point cloud projection of depth image from ChaLearn Italian Gesture dataset and
the 3D positional features.

Features

The 3D coordinates of N joints of current frame c are given as: Xc = {xc
1, xc

2, . . . , xc
N}.

We deploy 3D positional pairwise differences of joints [87] for observation do-
main X . They capture posture features, motion features and offset features by
direction concatenation: X = [ fcc, fcp, fci] as demonstrated in Fig. 3.7.

fcc = {xc
i − xc

j |i, j = 1, 2, . . . , N; i 6= j} (3.27)

fcp = {xc
i − xp

j |x
c
i ∈ Xc; xp

j ∈ Xp} (3.28)

fci = {xc
i − xI

j |xc
i ∈ Xc; xI

j ∈ XI} (3.29)

Resulting in a raw dimension of NX = Njoints × (Njoints − 1)/2 + N2
joints +

N2
joints)× 3 where Njoints is the number of joints used. Note that before extract-

ing any features, all the 3D joint coordinates are transformed from the world
coordinate system to a person centric coordinate system by placing the Hip-
Center (or ShoulderCenter if applied) at the origin. By including temporal dif-
ferences fcp, fci partially overcomes the conditional independence requirement
of HMMs, i.e. continuous frames are independent to previous frames given the
current hidden state.

Admittedly, we do not completely negate human prior knowledge about
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information extraction for relevant static posture, velocity and offset overall
dynamics of motion data. Nevertheless, aforementioned three attributes are
all very crude pairwise features without any tweak into the data set or hand-
pick the most relevant pairwise, triple wise, etc , designed features [77, 78,
79, 80, 84, 85]. Similar data driven approach has been adopted in [21] where
random forest classifiers were adapted to the problem of recognizing gestures
using a bundle of 35 frames. These sets of features extraction processes re-
semble the Mel Frequency Cepstral Coefficients (MFCCs) for speech recognition
community [17].

Experimental setup

For high level skeleton feature extraction, we fix network architecture as
[NX , N2, 1000, 1000, 1000, 1000, NT C ] where NX is the observation domain di-
mension and N2 is the number of hidden nodes in GRBM, depending on the
used joints set and is chosen as 2000 for upper body joints and 4000 for full
body skeletal joints; NT C is the output target class. And in all our experi-
ments number of states associated to the respective action NHa is chosen as
10 for modeling the states of an action class. The feed forward networks are
pre-trained with a fixed learning rate using stochastic gradient decent with
a mini-batch size of 100. Unsupervised layer-wise pre-training can help bet-
ter initialize the relevant higher level feature detectors and we have run 100
epochs for unsupervised pre-training. For Gaussian-binary RBMs, learning
rate is fixed at 0.001 while for binary-binary RBMs as 0.01. For fine-tuning, the
learning rate starts at 0.1 with 0.998 scaling after each epoch. To prevent com-
plex co-adaptations problems where a feature detector is strongly dependent
in the context of several other co-evolved feature detectors, we dropout [88]
half of the feature detectors. Though we believe further carefully fine-tuned
parameters would lead to more competitive results, in order not to “creep-
ing overfitting”, as algorithms over time turn into too dataset-specific, virtu-
ally memorizing all the idiosyncrasies from the dataset, and eventually fail to
generalize [89], we would like to treat the model as the aforementioned more
generic approach.
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XXXXXXXXXXXXMethod
Data Set

ChaLearn Gesture MSR Action3D

EigenJoints+NBNN [87] 0.593 0.720
GMM+HMM [82] 0.408 0.704
NN+DTW [90] 0.599 -
DBN+HMM (this work) 0.628 0.735

Table 3.1: Baseline comparisons: first row (EigenJoints+NBNN) adopts same sets of fea-
tures: showing that our model’s efficacy in temporal incorporation; second row method
(GMM+HMM) has the same graphical representation except that the Deep Belief Network
is used to extract high level skeletal features, proving DBN is more effective for estimating
the emission probability. And our model achieves better recognition rate than the winner of
the challenge [90] that uses variant of nearest neighbour and dynamic time warping in the
ChaLearn Gesture dataset.

Baseline

We perform the sanity check for our algorithm as an effective way of compar-
ing against two baselines: in order to verify that the model is a more power-
ful alternative to GMM for relating HMM states, we compare our approach
against the GMM+HMM paradigm [82] for modeling the observation states
p(Xt|Ht); to verify that the temporal incorporation in our model is a more
effective approach for action recognition against the Bag-of-Visual-Word ap-
proach, we compare against the EigenJoint-Naive Bayes Nearest Neighbour [87]
where the same set of raw features have been used.

3.7.1 ChaLearn Italian Gesture Recognition-Kaggle track

This dataset is on “multiple instance, user independent learning” [20] of ges-
tures. The details of the dataset can be found at 6.1.1.1. We focus on the skeletal
modality.

We use the subset where the label data are provided during our evalua-
tion process. The set contains 393 labeled sequences with a total of 7754 ges-
tures. We used 350 sequences for training and the rest 43 sequences for testing,
each sequence contains 20 unique gestures. For the training set, there are in
total 339,700 frames (20 fps). Note that large number of frames (up to hun-
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Figure 3.8: Top : a “Wind up the music” metaphoric action instance from MSRC12 dataset.
Bottom: global score matrix via accumulating emission probabilities - fluorescent green is the
Viterbi path from back tracking, a zoom in (top left) shows a path from states 41-50 (y-axis)
indicating the gesture number 5 because we assign 10 states for each hidden Markov Model.
Blue circles are the oracle ground truth action points and red circles are the predicted action
points (middle frame of the Viterbi best path).

dred thousands of frames) is advantageous in our model settings over other
nonparametric models for estimating skeletal human poses (e.g. GPLVM [91],
Kernel Methods [92] could not be readily scaled up). Due to the parametric
structure, once the training set is learned, testing time will be trivial compared
with memory based method [87, 93]. Because this is a gesture recognition data
set, only upper body joints are relevant to our discriminative tasks. There-
for, we consider only the upper 9 body for our task (full body joints have
been compared, but as expected, results in inferior results compared to up-
per body 9 joints). The 9 upper body joints used are “ShoulderCenter, Shoul-
derLeft, ElbowLeft, WristLeft, HandLeft, ShoulderRight, ElbowRight, WristRight,
HandRight”. The consistent improvement of recognition accuracy against two
baseline methods under the same experimental settings in Table 3.1 shows the
efficacy of the proposed framework in better estimating observation model
and parsing temporal domain knowledge.

3.7.2 MSR Action3D

MSR Action3D dataset [23] is an action dataset of depth sequences captured by
Kinect. This dataset includes twenty actions, each action was performed by ten
subjects for three times with details at 6.1.3. We compared the methods using
only skeleton joints module in Table 3.1. Though the model still consistently
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Method Classification rate

Sequence of Most Informative Joints [80] 0.29
Recurrent Neural Network [94] 0.425
Dynamic Temporal Warping [95] 0.54
Multiple Instance Learning [96] 0.657
Structured Streaming Skeletons [97] 0.817
Actionlet Ensemble [23] 0.88
DBN+HMM (this work) 0.82

Table 3.2: Recognition accuracy on MSR-Action3D dataset compared to state-of-the-art ap-
proaches.

outperforms two other baselines, the margins become smaller because only
less than 10,000 frames in MSR Action3D dataset so that limited frames would
not bring the advantages of generative pre-training into play.

We compare our model with the state-of-the-art methods on the cross-subject
test setting as in [23] where training and testing sets are split by half of the ac-
tors. Though various idiosyncratic experimental set ups make it hard to have
a fair comparison and generally render our generic 20 classes model at a dis-
advantage, (e.g. [23] with parameters that are empirically selected with data
set dependent further tuning), the performance in Table 5.1 still exhibits the
reasonable effectiveness of our model for this small frame number dataset.

3.7.3 MSRC12 dataset

The MSRC12 dataset [21] (details can be found at 6.1.4) is originally proposed
to investigate what is the most relevant semiotic modality of instructions for
delivering to human performers. We conduct our experiments on sequences
with a compound semiotic modality, (i.e. tagstream with letter “A”, such as
Video + Text or Image + Text) and follow a “leave-persons-out” protocol, us-
ing 14 sequences of each gesture class for training (note that each sequence
contains multiple gesture instances), leaving 4-6 sequences for intra-modality
testing or 29-30 sequence for inter-modality testing.

For training the network, we set the ground truth action point annotation as
the middle state of the target class, encoding a window of 100 frames centered
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Figure 3.9: Latency profile of the MSRC 12 action point spotting task. We plot F-score as
a function of the tolerated latency of the window ∆ for the DBN+ES-HMM. Each frame lasts
33ms. The plateau is largely due to low recall (missing detection).

XXXXXXXXXXXXF-score
Modality

intra-modality inter-modality

Randomized Forest [21] 0.621 0.576
Structured Streaming Skeletons [97] 0.718 -
DBN-ES-HMM (this work) 0.7243 0.7098

Table 3.3: F-score at ∆ = 333ms for intra-modality and inter-modality test of MSRC12
dataset.

around the action point, with the rest of frames encoded as the ES . We assess
the dual-modality generalization performance for all 12 gestures and compare
against the random forest recognition system [79] which has been successfully
integrated into a gaming console that is currently being sold in retail stores
and most recently proposed Structured Streaming Skeletons in the metric of
F-score in Table 3.3. Fig. 3.8 illustrates a “Wind up the music” metaphoric
action instance and the visualization of action point detection. Fig 3.9 plots the
F-score at tolerated latency for the ES-HMM.

3.8 Discussion

In this chapter, feature extraction from skeletal joints data has been made an
implicit approach by utilizing deep belief networks. By encoding dynamic
structure into a HMM-based model, the discriminative trained, hierarchical
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parametric model excelled the GMM paradigm at better estimating emission
probabilities for the directed graphical model. Furthermore, the introduction
of an ergodic states rendered the framework being able to anchor the precise
temporal locations of actions that are voluntarily,momentary performed and
discrete in essence. Experiments have confirmed the efficacy of the framework
at better estimating observation model than the GMM and integration of tem-
poral domain knowledge exceeds the Bag-of-Visual-Word approach.
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Chapter 4

Deep 3D Convolutional Dynamic
Networks

4.1 Introduction

This chapter presents a generalized hierarchical dynamic framework that first
extracts high level features from contextual frames and then deploys the learned
representation for estimating the emission probabilities to infer the label of a
video sequence. It combines the power of deep neural networks, specifically,
3D Convolutional Neural Networks (3DCNN) for extracting high level spatio-
temporal features with the graphical models of both Bayesian and Markov net-
works, yielding a scalable and powerful probabilistic graphical model that ap-
plies to acyclic video sequence labelling problems. The proposed framework
labels a video sequence in a frame-to-frame mechanism, rendering it possible
for online segmentation and recognition for both RGB and depth images.

To tackle the problem of learning thousands categories of objects from more
than one million of images, a model with a tremendous learning capacity is re-
quired. However, colossal intricacy of the object recognition tasks means that
this problem could not simply be solved by a dataset as mammoth as Ima-
geNet. Consequently, the model should incorporate prior knowledge to make
up to the gargantuan data we are not able to obtain. Convolutional neural
networks (CNNs) [13] embody one such type of model. CNNs are flexible
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in varying their depth and breadth, incorporating the strong and mostly ve-
racious assumptions about the innate properties of the images, i.e. locality
constraints of neighbouring pixels and stationarity of statistics. Therefore, in
contrast with the standard fully connected feedforward neural networks with
comparable-size layers, CNNs have much fewer connections. Hence, much
fewer weights need to be trained whilst maintaining a sizable-scalably struc-
ture.

However, direct and unconstrained learning of complex problems is diffi-
cult, since (i) the amount of required training data increases steeply with the
complexity of the prediction model and (ii) training highly complex models
with very general learning algorithms is extremely difficult. It is therefore
common practice to restrain the complexity of the model and this is gener-
ally done by operating on small patches to reduce the input dimension and
diversity [10], or by training the model in an unsupervised manner [9], or by
forcing the model parameters to be identical for different input locations (as
in convolutional neural networks [13, 14, 15]). In this paper, a novel model of
the latter category is proposed, which is adapted to the video sequence. We
focus on data driven analysis of acyclic video sequence labeling problems, i.e.
video sequences are non-repetitive as opposed to longer repetitive activities,
e.g. jogging, walking and running.
Problem formulation: Giving a video sequence X = {x1, x2, . . . , xt}, instead
of finding the global label Y directly, we dissect the problem into finding the
individual {ŷ1, ŷ2, . . . , ŷt} and reasoning with a higher level Markov field to
obtain the most likely label Ŷ.
Framework characteristics:
i) Relying on a pure learning approach, all the information are obtained from
the data without sophisticated pre-processing or dimensionality reduction via
manifold learning methods. An advantage of a fully-automatic learning-based
method is that it incorporates the feature learning and classification proce-
dures in a unified framework by minimizing the energy (i.e. optimizing the
object function). Therefore, the proposed framework is more adaptable to
different object functions or different input sensory modalities (e.g. RGB vs.
depth).
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ii) By unifying the deep learning paradigm with Markov fields via a factor
graph representation, and investigating the learnt filters for the 3DCNN, the
proposed feed forward neural networks offer several potential advantages as
a better estimator for emission probabilities of the Markov field over the tradi-
tional paradigms (e.g. Gaussian mixture models) because its estimation of the
posteriori probabilities does not rely on particular requirement about the data
distribution.
iii) The labeling framework is based on contextual frames by incorporating
prior knowledge of the intrinsic properties of the video sequence: instead of
brutally flattening a sequence of image patches as in [98], we adopt the param-
eter tying scheme by the spatial-temporal constraint. Therefore, by employing
a dynamic time programming scheme, the system is scalable to various time
length sequences and is easily adapted for simultaneously segmenting and
recognizing video sequences, discovering anchor points.

4.2 Probabilistic Graphical Model Unification

In this paper, we unify the deep neural nets and the probabilistic graphical
model in a factor graph representation as in Fig. 4.1. Especially, as we incor-
porate the prior knowledge in modeling video sequences, i.e., spatial-temporal
constraint and state space constraint, by adopting 3D convolutional neural net-
works (ergo, weights sharing), the model can be scaled to real-sized video se-
quences.

4.2.1 3D convolutional neural networks

Convolutional Neural Networks (CNN) are variants of Multi-layer percep-
trons which are inspired by biology. For 2D CNN, the weights W of a layer
can be parametrized as a 4D tensor: source feature map index, source vertical
position index, source horizontal position index and destination feature map
index. Analogously, in the case of 3D CNN,W is parameterized as a 5D tensor
with a source time index.

For action recognition, it is preferable to capture the motion information
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Figure 4.1: Factor graph representation for our 3DCNN Markov Field. Top plate model: the
factor graph of Deep Convolutional Neural Networks is governed by the same set of model
parametersW , Z1, Z2, . . . , Zn are latent variables with n layers in the deep net, X is the input
contextual frame and Y denotes the output emission probabilities of the hidden states. Bottom:
higher level factor graph with pairwise potential ψ and prior X . If the graph is directed, the
top part can be seen as a Hidden Markov Model; if undirected, the top part is the standard
linear-chain Conditional Random Field. Note that we clamp the intermediate factors g during
parameter estimation to extract higher level features via the deep net structure.

encoded in multiple successive frames. Ji et al. [15] are the first to propose
using 3D convolution in the place of 2D convolution for video analysis. How-
ever, in their model, the 3DCNN is treated as a holistic descriptor for action
detection–the whole action sequence needs to be of a fixed length (7 frames
in their surveillance detection), constrained by the convolutional structure. In
our proposed model, however, the 3DCNN is used to extract an intermediate
spatial-temporal descriptor, and the higher level temporal information will be
encoded in a Markov field, rendering it possible for the model to accommodate
various longer sequences.

The 3D convolution is attained by convolving a 3D kernel to the cuboid
structured by stacking multiple successive frames together. We follow the
nomenclature as in [16]. Formally, the value of a unit at position (x, y, z) (z
here corresponds the time-axis) in the jth feature map in the ith layer, denoted
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as vxyz
ij , is given by:

vxyz
ij = 1.7159 ∗ tanh(

2
3
(bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv(x+p)(y+q)(t+r)

(i−1)m )) (4.1)

where tanh(·) is the hyperbolic tangent function, wpqr
ijm is the value at the posi-

tion (p, q, r) of the kernel, bij is the bias for this feature map, m indexes over the
set of feature maps in the (i− 1)th layer connected to the current feature map,
and Pi, Qi, Ri are the height, width and number of contextual frames of the
kernel, respectively. Note that here we differ from [16] by using the scaled hy-
perbolic tangent function, saturating the node output to accelerate the learning
process–a similar “trick” has been adopted for LeNet [99].

The Rectified Linear Units (ReLUs) were adopted in [13], shown in Fig 4.2
where trainings are almost an order faster faster than their equivalents tanh
units. The activation neurons expressed in terms of ReLUs are:

vxyz
ij = max(0, (bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv(x+p)(y+q)(t+r)

(i−1)m )) (4.2)

Note that [13] claim the the nonlinearity function set f (x) = |tanh(x)|
works especially well with their type of contrast normalization followed by
local average pooling. It is also imperative for faster learning since it has a
tremendous impact on the performance of large models trained on large-scale
dataset.

A typical 3D CNN for one of our experiments is demonstrated in Fig. 4.3.

4.2.2 3DCNN Markov Field

For sequential modeling, there are two broad categories: generative models
and discriminative models. In this paper, we foster the marriage between
3DCNN and a continuous-observation Hidden Markov Model with discrete
hidden states. And if the problem is discriminative in nature, a linear-chain
Conditional Random Field is adopted to directly minimize the error rate. For
each time step t, there is one corresponding contextual frame random obser-
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Algorithm 3: Deep 3D Convolutional Dynamic Networks – training
Data:
X = {xi}i∈[1...t] - raw input feature sequence in the form of M1 ×M2 × T,

where M1, M2 are the height and width of the input image and T is
the number of contiguous frames of the spatio-temporal cuboid.
Note that the GPU library cuda-convnet [13] used requires square size images and T is a multiple of 4.

Y = {yi}i∈[1...t] - frame based local label (achieved by semi-supervised
forced-aligment),
where yi ∈ {C ∗ S + 1} with C is the number of class, S is the
number of hidden states for each class, 1 as ergodic state.

1 Preprocessing the data X (normalizing, median filtering the depth data).
2 Feeding the above features to Eq.4.2.
3 Supervised fine-tuning the Deep 3D Convolutional Neural Networks

using standard SGD Backpropagation.
Result:
3DCNN - a 3D Deep Convolutional Neural Networks to generate the

emission probabilities for hidden markov model.
p(H1) - prior probability for Y.
p(Ht|Ht−1) - transition probability for Y, enforcing the beginning and

ending of a sequence can only start from the first or the last state.

Algorithm 4: Deep 3D Convolutional Dynamic Networks – test
Data:
X = {xi}i∈[1...t] - raw input feature sequence in the form of M×M× T.
3DCNN - the trained 3D Deep Convolutional Neural Networks to

generate the emission probabilities for hidden markov model
p(H1) - prior probability for Y
p(Ht|Ht−1) - transition probability for Y

1 Preprocessing the data X (normalizing, median filtering the depth data).
2 Feedforwarding 3DCNN to generate the emission probability p(Xt|Ht)

in Eq.3.25
3 Generating the score probability matrix p(H1:T, X1:T) from Eq.3.25
4 Finding the best path Vt,H by Viterbi decoding as in Eq.3.26

Result:
Y = {yi}i∈[1...t] - frame based local label

where yi ∈ {C ∗ S + 1} with C is the number of class, S is the
number of hidden states for each class, 1 as ergodic state

C - global label, the anchor point is chosen as the middle state frame

67



Figure 4.2: Tanh and ReLUs activation function.

vation variable Xt. Additionally, an unobserved hidden variable Yt belongs
to a finite set Y = (

⋃
a∈A Ya),where Ya is a set of sub-states assigned by the

force-alignment scheme for each action class a. The intuition motivating this
construction is that the absolute duration of each action sequence could vary.
This variance is encapsulated by enabling flexible forward transitions within
the chain.

Assuming each of the conditional distributions is independent of all pre-
vious observations except the most recent, the full probability model can be
defined as HMM as Eq 3.25, where p(Y1) is the prior on the first hidden state
and in all our experiments, we have a uniform prior; p(Ht|Ht−1) is the transi-
tion dynamic model; and p(Xt|Yt) is the observation model and is estimated
by the 3DCNN.

In the case of CRF, traditional practical models rely extensively on param-
eter tying, e.g. in the linear-chain case, and the same weights are often used
for the factor ψt(Yt, Yt−1, Xt) at each time step. In our 3DCNN-CRF frame-
work, parameter tying is the natural approach. The CRF with cliques Ct with
weightsW can be written as:

p(Y|X) =
1

Z(x) ∏
ψ∈Ct

ψt(Xt, Yt;W), (4.3)

with the global normalization factor as:

Z(x) = ∑
Y

∏
ψ∈Ct

ψ(Xt, Yt;W), (4.4)
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Figure 4.3: A typical example of 3D Convolutional Neural Networks for modeling the emis-
sion probability g as in Fig. 4.1. The input is a height × width × f rames contextual sequence
and the output is of number of classes × number of the hidden states dimension under the param-
eter tying scheme. We illustrate the networks by a specific example, displaying the trainable
parameters for each layer. It can be seen that most trainable parameters lie in the last two fully
connected layers. By adopting the weights sharing scheme in the first several convolutional
layers, as opposed to the Deep Belief Network architecture, the incorporation of prior knowl-
edge of the intrinsic spatial-temporal property for a video sequence renders it possible to learn
the filters without the explosion of model parameters.

Commonly, the potential function is chosen from the exponential family
with energy Et and ψt(Xt, Yt;W) = exp{−Et(Xt, Yt;W)}. To make learning
tractable, a common setting is to use linear energy functions Et(Xt, Yt;W) =

− < WYt
t , ψ(X) >. This results in the most often used log-linear model [100].

As we have discussed, a linear energy function is the major bottleneck for CRF,
limiting its capacity to extract higher level features. We propose 3DCNN to
substitute this shallow structure of log-linear model.

In a chain-structure CRF, there are two types of cliques as in Fig. 4.1:

singleton factors ψc(Xt, Yt) at each time t, whose potential functions are ob-
tained by the forward pass of 3DCNN. This corresponds to the emission
probability of an individual contextual video frame to be assigned as one
of the states for a motion sequence.
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pairwise factors ψc(Yt−1, Yt) between two consecutive frames t− 1 and t that
represent the interactions between adjacent pairs of the motion sequence.
Intuitively, consider a task of predicting the trajectories of a gesture writ-
ing letter “Z” in the corpus of “A” to “Z”, a top right to bottom left diag-
onal stroke is more likely to happen at the two corresponding end points
than a curvy stroke of a because we have never seen the latter case dur-
ing our training stage. Hence, this enhances the belief of the model’s
former prediction.

While the 3DCNN-CRF framework is quite generic, for the sake of infer-
ence tractability, we focus on linear-chain CRF based on a first-order Markov
chain. Note that, by incorporating other types of factors, e.g. triplet factors,
similarity factors might further enhance the discriminative power of the model [75].
However, focusing on first-order Markov chain allows examining the actual
effect of 3DCNN-CRF on video sequence labeling tasks. Moreover, exact infer-
ence is achieved for chain structure CRF, enabling efficient belief propagation
by variants of the standard dynamic programming algorithms.

4.2.3 Inference

For inference, there are two steps. First, a feed forward 3DCNN is passed
through to compute the emission probability p(Xt|Yt). In a second step, the
dynamic programming is used to find the output Ŷ with minimum energy.
Specifically, for the hidden Markov model, as a directed tree, the inference can
be solved exactly using the max-sum algorithm. We can infer the action pres-
ence in a new sequence by Viterbi decoding the same as Eq.3.26, where initial
state V1,Y = log(P(Y1|X1)). From the shortest path, we decode the probability
of an action a ∈ A as p(Yt = a|X1:t) = VT,Y .

Similarly, inference in CRFs consists of finding Ŷ that best matches input X
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(i.e. with lowest energy):

Ŷ = argmin︸ ︷︷ ︸
Y

p(Y|X,W) (4.5)

= argmin︸ ︷︷ ︸
Y

∑
c∈C

Ec(X, Yc,W) (4.6)

The linear-chain CRFs inference task can be performed efficiently and exactly.
We construct the factor graph and adopt the belief propagation scheme using
the libDAI [101] library.

4.2.3.1 Inference Library: libDAI

The inference library adopted is libDAI [101]1 which is a free and open source
C++ library. Various implementations of exact and approximate inference meth-
ods for probabilistic graphical models with discrete-value variables are pro-
vided. The libDAI library supports directed graphical models (Bayesian net-
works) as well as undirected graphical models (Markov random fields and
factor graphs).

Due to non-convexity of the objective function, initialization is a vital step
for effective learning in deep neural networks. As it’s mentioned in previous
chapter, we could utilize the unlabeled data for initializing the deep neural
networks (such as Deep Auto-Encoder [102]) and the limited labeled data are
used for the final fine-tuning. It’s also expected with good initialization from
the generative pre-training, the global performance of 3DCNN Markov Field
could be further improved since the bottom feature detector part plays a cru-
cial part in extracting relevant high-level representations. It is a perspective of
our work that we have not yet explored. For the deep architecture, we adopt
the standard stochastic gradient descent for the first half epochs to find a good
initialization, then use conjugate gradient (or other quasi-Newton method, e.g.
BFGS) for the rest of the epochs. For the higher level graphical part, we clamp
the parameters of 3DCNN, and only the transitional (pairwise) potential is
learned.

1https://staff.fnwi.uva.nl/j.m.mooij/libDAI/
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4.3 Related Works

Previous works on video-based motion recognition focused on adapting hand-
crafted features and low-level hand-designed features have been heavily em-
ployed with much success. These methods usually have two stages: an op-
tional feature detection stage followed by a feature description stage. Well-
known feature detection methods (“interest point detectors”) are Harris3D [1],
Cuboids [2] and Hessian3D [3]. For descriptors, popular methods are Cuboids [4],
HOG/HOF [1], HOG3D [5] and Extended SURF [3]. In a recent work of Wang
et al. [6], dense trajectories with improved motion-based descriptors epito-
mized the pinnacle of handcrafted features and achieved state-of-the-art re-
sults on a variety of “in the wild” datasets. Given the current trends, chal-
lenges and interests in action recognition, this list would probably continue to
spread out extensively.

In the evaluation paper of Wang et al. [7], one interesting finding is that
there is no universally best hand-engineered feature for all datasets, suggest-
ing that learning features directly from the dataset itself may be more advanta-
geous. Albeit the predominant techniques for visual recognition from images
and video depends on hand-crafted features, there has been a burgeoning shift
to the techniques that automatically extract low-level and mid-level features,
either in supervised, semi-supervised or unsupervised context [8, 9, 10].

With the recent resurgence of neural networks invoked by Hinton and oth-
ers [11, 99], deep neural architectures have been served as an effective so-
lution for extracting high level features from data. Such models have been
successfully applied to a plethora of different domains: the GPU-based cuda-
convnet [13] classifies 1.2 million high-resolution images into 1000 different
classes; multi-column Deep Neural Networks [14] achieve near-human perfor-
mance on the handwritten digits and traffic signs recognition benchmarks; 3D
Convolutional Neural Networks [15, 16] recognize human actions in surveil-
lance videos; Deep Belief Networks combining with Hidden Markov Mod-
els [17] for acoustic modeling outperform the decade-dominating paradigm of
GMM+HMM. In these fields, deep neural nets have shown great capability to
detect and extract higher level relevant features.
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Figure 4.4: Top Left: example frames of uttering a letter “A”; bottom left: first filtered layers
(normalized for visualization), note how the lip areas have been detected. Right: examples of
learned first layer filters: we only show two maps of filters. Note that the motion has been
detected from the time axis and the spatial pattern within a 7× 7 filter bank.

Method Accuracy

HOG3D [5] 0.488
Multiscale Spatial Analysis [103] 0.446
Local Binary Pattern [104] 0.589
Baseline Preprocessed Video [98] 0.462
RBM Video [98] 0.542
3DCNN+HMM (this work) 0.596
3DCNN+CRF (this work) 0.604

Table 4.1: Recognition accuracies on the AVLetters lipreading dataset compared to state-of-
the-art approaches. Top parts correspond to hand-crafted approaches and in the bottom parts
we compare with the learning-based methods.

4.4 Experimental Results

To demonstrate the proposed 3DCNN Markov Field’s effectiveness in model-
ing spatio-temporal video data, we performed experiments on two video label-
ing problems that have distinct modalities to show the proposed architecture’s
ability to generalize.

4.4.1 Lipreading task

AVLetters [103]. This dataset 6.1.6 pconsists of 10 speakers saying the letters
”A” to ”Z”, three times each. The dataset provides pre-extracted lip regions of
60× 80 gray scale pixels. The evaluation is a visual-only lipreading task which
is an intrinsically challenging task. We report results with the third-test settings

73



Method correct count accuracy
singleton 491/691 letters 71.06%

11/100 words 11%
singleton+ 539/691 letters 78.00%
pairwise 27/100 words 27%

Table 4.2: An individual (“John”) letter recognition rate and word recognition rate. It can
be seen that incorporating pairwise information can help further differentiate the difficult lip
motion pairs. The dataset comprises of 100 words, and each word is in the range of 3-9 letters.

used by [98, 103, 104] for comparison. Some example frames of the sequences
are shown in 4.4.

We specify the 3DCNN architecture as follows: the input contextual frames
are of size 60 × 80 × 5, the first layer contains 10 maps of 7 × 7 × 3 3D ker-
nel followed by max pooling; the second convolutional layers has 20 maps of
6× 6× 2 3D kernel followed by max pooling; the third convolution layer is
composed of 20 maps of 6× 6× 2 3D kernel followed by max pooling; then
we have one fully connected layer of size 500; the output layer is of size 5× 26
(number of hidden states for each class× number of classes). Note that, for
max pooling, we only pool over the spatial axis and never pool along the
temporal axis. We run the first 50 epochs with standard SGD and another
50 epochs with the conjugate gradient method.

We include the results using only video information throughout training
and testing in Table 4.1 for a fair comparison. Note that the results in [98] reach
accuracies of 0.592 and 0.644 by a Bimodal Deep Autoencoder and Video-Only
Deep Autoencoder respectively and both auto-encoders incorporate the audio
information during the auto-encoder reconstruction scheme. Integrating audio
information into our 3DCNN Markov Field framework will be investigated in
our future work.

4.4.1.1 Markov Field at a Higher Level:

We demonstrate our model’s effectiveness in extracting relevant features and
its ability to serve as a convenient plug-in functionality by superimposing an-
other Markov Field on top of the overall structure of Fig. 4.1.
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Figure 4.5: Left: an ergodic states (ES) is included between video sequences. Each node rep-
resents a single frame and each row represents a single dynamic model. The arrows indicate
possible transitions between states. Right: an utterance of “ECCV” sequence. The fluorescent
green is the Viterbi path from backtracking, a zoom in shows a path from states 20-25 (y-axis)
indicating the lipreading class number 5 because we assign 5 states for each hidden Markov
Model (left panel). Red circles are the predicted anchor points (middle frame of the Viterbi
best path).

4.4.1.2 Transfer learning:

we synthesize an experiment that models the 3D sequences from the AVLetters
dataset and use the word level letter pairwise potential from an optical char-
acter recognition (OCR) dataset compiled by Koller and Friedman [75]. On
the higher level we superimpose another CRF, i.e., the nodes of the CRF are
the output probabilities given by a single 3DCNN+HMM. Instead of having
optical characters as input, we take sequences of a single person’s lip motion
as input by incorporating the given pairwise potential of the compiled word
corpus. We can further improve individual letter recognition rate as shown
in Table 4.2 . For example, for the word “torturing”, without pairwise infor-
mation, the singleton model predicts “torturilg” whereas the pairwise model
correctly predicts “torturing”. Indeed, the lip motion of letter “L” and “N” are
hard to differentiate (the only difference may hide in the motion of the unob-
served tongue). Note that, during this experiment, only inference is required
and no parameter learning is happening at this stage.
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Figure 4.6: Left: point cloud projection from depth images of a gesture “J”. Right: 3 pairs of
learned 9× 9× 3 3D filters in the first layer. It can be seen that some 3D kernels focus more
on temporal modeling (top and bottom rows) whereas some focus more on spatial modeling
(middle row). Because depth images are much noisier than the RGB images in the previous
task, the learnt kernels correspondingly exhibit noisier patterns.

4.4.1.3 Anchor point discovery:

We also demonstrate that the framework could be used as a sub-module for si-
multaneously segmenting and recognizing video sequences by introducing an
ergodic state. A toy example is illustrated in Fig. 4.5 as someone enunciates the
letter sequence “ECCV”. The anchor points have been successfully detected
as the middle frame of the predicted video sequence. We believe that such
a lipreading module could be used for CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart) or HIP (Human In-
teractive Proof) for online identification.

4.4.2 Depth sequence gesture recognition

MSRGesture3D [105]: we demonstrate the generality of the proposed method
on a different sensory input: a hand gesture dataset captured by a depth cam-
era. To our knowledge, this is the first time that a pure learning approach
without any hand-crafted features involved is adopted for the dynamic video
sequence labeling task from depth images. This dataset contains a subset of
gestures defined by American Sign Language (ASL). There are 12 gestures in
the dataset and details can be found at 6.1.5. A point cloud projection sequence
of one example gesture and the learnt 3D filter maps are shown in Fig. 4.6.

The 3DCNN architecture is almost the same as in the previous lipreading
task: we resize the input contextual frames to the size of 80× 80× 5; the first
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Method accuracy
SVM on Raw Features 0.44

3DHOG [47] 0.66
HON4D [106] 0.75

3DCNN+HMM (this work) 0.69
3DCNN+CRF (this work) 0.72

Table 4.3: Recognition accuracies on MSGesture3D, training on the 2-10 subjects and testing
on the first subject with 36 testing sequences.

layer has 10 maps of 9× 9× 3 3D kernel followed by max pooling; the second
convolutional layer contains 20 maps of 7× 7× 2 3D kernel followed by max
pooling; the third convolution layer is composed of 20 maps of 6× 6× 2 3D
kernel followed by max pooling; then there is one fully connected layer of size
500; finally, the output layer is of size 10× 12. And we observe that there is a
consistent slight performance gain for CRF over HMM at a higher level.

In Table 4.3, we compare the results with the state-of-the-art [106] where
the first subject is used for testing and subjects 2-10 are for training. Competi-
tive results have been achieved. Note that, in their Histogram of Oriented 4D
Normals (HON4D) model, a very task-specific holistic descriptor is used for
depth images refined by a discriminative density measure. In contrast, our
proposed model is trained from scratch and more adaptive to various sensory
inputs. Notwithstanding, we explicitly model time variance which we con-
sider a merit for the tasks of simultaneously video segmentation and recog-
nition. Furthermore, the number of parameters in our model is drastically
larger than the number of training instances (less than 15,000 frames in this
dataset). Therefore, overfitting is unavoidable in the proposed framework.
Consequently, we reckon that, with more training instances, it is safe to con-
clude that the margin of performance improvement will be more limited for
the ad-hoc features in [106] whereas there would still be a large improvement
for our model.
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Figure 4.7: Left: spatial gradient (yellow) around an image of a fist; middle: optical flow
(blue) of two frames; right: the filtered image convolved with the learned 3D kernels (red).
Note that the learned filtered image exhibits both spatial and temporal activation. Even inside
the seemly more uniform palm area, there are still some strong activation signals passing to
the next convolutional layer.

4.4.3 Looking into the filtered maps

We show the quiver plot of filtered images convolved with learned 3D kernels
in Fig. 4.7 (red). In the work of Ji et al. [16], the first layers are hand-crafted
(e.g., spatial gradient, optical flow, etc.). Their approach incorporates human
prior knowledge of what matters for action classification and helps the net-
works better initialize. We argue that with a proper learning paradigm, the
relevant information should be automatically extracted as well. Another in-
teresting conclusion in [16] is that by juxtaposing an auxiliary hand-tuned fea-
tures (dense BoW SIFT and motion edge history images) at the penultimate
layer would serve as a regularization scheme. Such combination of well stud-
ied and problem specific features might further boost the performance of our
proposed architecture and worth further investigating.

4.4.4 Computational complexity

Though learning the 3D convolutional nets using stochastic gradient descent is
tediously lengthy, once the model finishes training, with a low inference cost,
our framework can perform real-time video sequence labeling. Specifically, a
single feed forward convolutional neural network incurs trivial computational
time (O(T)) and is fast because it requires only matrix products and convolu-
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tion operations. The complexity of Viterbi algorithm is O(T ∗ |S|2) with num-
ber of frames T and state number S. Similarly, the inference for linear-chain
CRF requires O(T ∗ |S|2) in the worst case. At prediction time, the method is
as fast as other hand-engineered features such as 3DHOG.

4.5 Discussion

This chapter presented a framework that utilises 3D Convolutional Neural
Networks for learning contextual frame-level representations and estimates
the emission probabilities for Markov fields. These models extract relevant
features from both temporal and spatial dimensions by performing 3D convo-
lutions for the task of video sequence labelling. The results show that our sin-
gle model, using the same architecture across two sensory inputs, i.e. RGB and
depth, is consistently as good as or better than a wide variety of handcrafted
and other learning based methods. It also suggests that learning features di-
rectly from data is a very important research direction. With more and more
data and flops-free computational power, the learning-based methods are not
only more generalisable to many domains, but also are powerful in combin-
ing with other well-studied probabilistic graphical models for modelling and
reasoning dynamic sequences.
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Chapter 5

Multimodal Deep Dynamic
Networks

5.1 Introduction

This chapter presents a novel multi-modal dynamic network for time series
prediction. Multimodal input is a real-world situation in gesture recognition
applications such as sign language recognition. In the first part, two Deep
Belief Dynamic Networks are deployed to extract high level audio and skele-
tal joints representations. Instead of traditional late fusion, another layer of
perceptron for cross modality learning taking the input from each individ-
ual net’s penultimate layer is deployed as the top of Fig 5.1. In the second
part, two heterogeneous Deep Neural Networks: a Deep Belief Dynamic Net-
works for skeletal module and a Deep 3D Convolutional Dynamic Network
for depth image module are deployed as in the bottom of Fig 5.1. In particu-
lar, we demonstrate that multimodal feature learning will extract semantically
meaningful shared representations, outperforming individual modalities, and
the early fusion scheme’s efficacy against the traditional method of late fusion.

Multimodal learning involves relating information from multiple sources.
For example, images and depth scans are correlated at first-order as depth
discontinuities often manifest as strong edges in images. Conversely, audio
and visual data for gesture recognition have correlations at a “mid-level”, as
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Figure 5.1: Different Pipelines for descriptor fusion.

phonemes and joints motions; it can be difficult to relate joint spatio-temporal
information to audio waveforms or spectrograms. Learning from multimodal
inputs is technically challenging because different modalities have different
statistics and different kinds of representations. For instance, text is discrete
and often represented by very large and sparse vectors, while images are rep-
resented by dense tensors that exhibit strong local correlations. Traditional
multi-agent systems tend to adopt the late fusion scheme by normalizing the
confident values from an individual modality for final prediction, ignoring the
subtle intrinsic properties within different modalities. Fortunately, deep learn-
ing has the promise to learn adaptive representations from the input, poten-
tially bridging the gap between these different modalities.

In this chapter, a novel framework of bimodal/multimodal dynamic net-
works is proposed for continuous gesture recognition given 3D joint posi-
tions, depth image sequence and the audio utterance of the gesture tokens.
We focus on data driven analysis of acyclic skeleton-audio, skeleton-depth se-
quence labeling problems. The model has been designed with bimodal gesture
recognition in mind, but should extend itself well to other multimodal high-
dimensional time series data.
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Figure 5.2: Architecture of the multimodal dynamic networks: each modality (audio or
skeleton input) is first pre-trained by a Deep Belief Network, and their penultimate layers are
fused together to generate a shared representation for dual modalities. The outputs are the
emission probabilities gt for temporal dynamic modeling. In our experiments, we assume
each of the conditional distributions per frame is independent of all previous observations
except the most recent, hence the higher level is specified as a Hidden Markov Model.

5.2 Architecture

Problem formulation: Given a multimodal input sequence Xm = {xm
1 , xm

2 , . . . , xm
t },

where m is the modal index (in our experiment m = 2 because we only use the
audio-skeleton pair or the skeleton-depth pair), instead of finding the global la-
bel Y directly, we dissect the problem into finding the individual {ŷ1, ŷ2, . . . , ŷt}
and reasoning with a higher level Markov field to obtain the most likely label
Ŷ.

The earlier fusion architecture is shown in Figure 5.2. The individual emis-
sion probability estimators are based on the state-of-the-art architectures as
in [17, 18]. Specifically, a Deep Belief Network is deployed for each modality
to estimate the output emission probability. Since both feature modalities Xm

are continuous instead of binomial features, the first visible layer is a Gaussian
Restricted Boltzmann Machine to model the energy term.

The outputs of the neural net are the hidden states learned by force align-
ment during the supervised training process. Once each individual modality
is trained, the penultimate layer is extracted and fused for the shared repre-
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sentation. Then, the standard backpropagation can be adopted for adjusting
the weight Wm for each modality m:

Wm = Wm − α
∂

∂Wm J(W) (5.1)

where α is the annealed learning rate and J(W) is the cost function (cross-
entropy) of the last layer perceptron by feed forwarding the fused penultimate
layers from mutli-modalities. The output of the network is p(Xt|Yt) denoting
the fused emission probability and is denoted by gt in Figure 5.2.

Assuming each of the conditional distributions is independent of all previ-
ous observations except for the most recent, the full probability model is now
established as an HMM the same as in Eq 3.25. We can infer the action presence
in a new sequence by Viterbi decoding the same as Eq 3.26.

5.3 Related Works

Gesture recognition has been a popular research field in recent years due to its
promising application prospects in human-computer interaction. In the early
days of gesture recognition research, most approaches were controller-based,
in which users had to wear or hold certain hardware for motion data capturing.
In vision-based approaches, users motion data are captured by cameras and
numerous computer vision methods have been successfully adopted into this
area for further data analysis and understanding. Over the last few years,
with the immense popularity of the Kinect, there has been renewed interest in
developing methods for human gesture and action recognition from both 3D
skeletal data and audio data captured synchronously by the device.

Deep learning is an emerging field of machine learning focusing on learn-
ing representations of data and has recently found success in a variety of do-
mains, from computer vision to speech recognition, natural language process-
ing, web search ranking, and even online advertising. The ability of deep
learning methods to capture the semantics of data is, however, limited by both
the complexity of the models and the intrinsic richness of the input to the sys-
tem. In particular, current methods only consider a single modality leading to
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an impoverished model of the world. Sensory data are inherently multimodal
instead: images are often associated with text; videos contain both visual and
audio signals; text is often related to social content from public media; etc. It
is expected that the cross-modality structure may yield a big leap forward in
machine understanding of the world. The proposed framework is mostly re-
lated to the works of [98, 107] in that, instead of the traditional late fusion, all
resort to an early fusion scheme. In [98], the input sequences are treated as a
holistic entity, hence, the method is not adaptable to various time length input.
A multimodal Deep Boltzmann Machine is introduced in [107] to learn a gen-
erative model of the joint dimension of text and image inputs for information
retrieval.

In order to model the time series data, the unimodal of our architecture
is built upon the framework of [17, 18] which deploy Deep Belief Networks
in the place of Gaussian Mixture Models to model the emission probabilities
for Hidden Markov Models. However, our proposed framework is the first
work to learn the shared representation for modeling multimodal dynamic
time series inputs.

5.4 Experiments

5.4.1 Skeleton-Audio pair module

ChaLearn Italian Gesture Recognition-Kaggle track: this dataset is on “mul-
tiple instance, user independent learning” [20] of gestures. The details of the
dataset can be found at 6.1.1.1. We focus on the skeletal modality and audio
modality. Note that a large number of frames is advantageous in our model
settings over other nonparametric models for estimating skeletal human poses.

5.4.1.1 Audio Features

The speech was dissected by a 25-ms Hamming window with a 10-ms fixed
frame rate. 12th-order Mel frequency cepstral coefficients (MFCCs) and en-
ergy, along with their first and second temporal derivatives are the used as the
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Figure 5.3: Input modules: left–audio input in the form of MFCC, and in order to conform
to the 20 fps, 5 frames are concatenated together (10-ms fixed frame rate); right–skeleton 3D
positional features.

standard preprocessing step. In order to conform to the 20 fps, 5 frames are
concatenated together (10-ms fixed frame rate). Hence one audio frame will be
of dimensionality 39× 5 = 195. Before feeding into the DBN, the input were
normalized so that each element of the inputs will have zero mean and unit
variance averaged over all the training examples.

5.4.1.2 Skeleton Features

Only upper body joints are relevant to our discriminative gesture recognition
tasks. Therefore, we consider only the 9 upper body joints for our task (full
body joints have been compared, but as expected, led to inferior results com-
pared to upper body 9 joints). The 9 upper body joints used are “Shoulder-
Center, ShoulderLeft, ElbowLeft, WristLeft, HandLeft, ShoulderRight, ElbowRight,
WristRight, HandRight”.

The 3D coordinates of N joints of frame c are given as: Xc = {xc
1, xc

2, . . . , xc
N}.

We deploy 3D positional pairwise differences of joints [87] for observation do-
main X . They capture posture features, motion features and offset features
by direction concatenation: X = [ fcc, fcp, fci] as demonstrated in the same as
Eq 5.2. This results in a raw dimension of NX = Njoints × (Njoints − 1)/2 +

(N2
joints + N2

joints)× 3 where Njoints is the number of joints used. Hence, in our
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Modality and Method Classification rate
Audio Only, DBN+HMM [17] 0.554

Skeleton Only, DBN+HMM [18] 0.586
Audio + Skeleton, Model averaging 0.668

Multimodal DBN+HMM 0.701

Table 5.1: Recognition accuracy compared to the individual modal method and the multi-
modal confident score averaging scheme (late fusion) on ChaLearn Italian multimodal dataset.

experiment, Njoints = 9, NX = 594. Note that before extracting any features,
all the 3D joint coordinates are transformed from the world coordinate system
to a person centric coordinate system by placing the HipCenter (or Shoulder-
Center if applied) at the origin. By including temporal differences fcp, fci partly
moderates the strong conditional independence preconditional of HMMs, i.e.
continuous frames are independent to the previous frames given the current
hidden states.

Admittedly, we do not completely neglect human prior knowledge about
information extraction for relevant static postures, velocity and offset overall
dynamics of motion data. Nevertheless, the aforementioned three attributes
are all very crude pairwise features without any “tweak” into the dataset or
handpicking the most relevant pairwise, triple wise, etc. , designed features [77,
78, 79, 80]. A similar data driven approach has been adopted in [21] where
random forest classifiers were adapted to the problem of recognizing gestures
using a bundle of 35 frames. These sets of feature extraction processes resem-
ble the Mel Frequency Cepstral Coefficients (MFCCs) for the speech recognition
community [17].

5.4.1.3 Dynamic Networks Setup

All DBNs were pre-trained with a fixed learning rate using SGD with a mini-
batch size of 100 training examples. For Gaussian-bernoulli RBMs, a smaller
learning rate is desirable, hence 250 epochs is run with a fixed learning rate
of 0.002 while for binary-binary RBMs we used 75 epochs with a learning rate
of 0.02 and with a mini-batch size of 100 training cases. For fine-tuning, the
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learning rate starts at 0.1 with 0.998 scaling after each epoch.
For high level feature extraction, we fix the network architecture as

[NX , N2, 1000, 1000, 1000, 1000, NT C ] where NX is the observation domain di-
mension and N2 is the number of hidden nodes in GRBM. For audio modality,
NX = 195, N2 = 1000 and for skeletal modality, NX = 594, N2 = 2000 ; NT C is
the output target class. And, in all our experiments, the number of states asso-
ciated with an individual action NHa is chosen as 10 for modeling the states of
an action class. Once each individual modality’s Deep Belief Network finishes
fine tuning, we combine the multi-DBNs and extract their penultimate layers
and further run 200 epochs to slightly adjust the weights for each individual
modal DBN.

5.4.1.4 Results & Computational Complexity Analysis

We compare our model with the state-of-the-art methods using individual in-
put modals and the baseline multimodal method by averaging the individual
modal output confident scores in Table 5.1. It can be seen that both multimodal
recognition rates are considerably higher than a single modal input. And the
proposed framework of early fusion outperforms the confident score averag-
ing scheme. We further plot the classification rate for each gesture class among
different modalities in Fig. 5.4. The bar plot shows the complementary infor-
mation between two modalities: even when one modality achieves low recog-
nition rate, the multimodal fusion achieves on par with another modality, e.g.,
gesture 6; when both modalities generate noisy output, the shared multimodal
scheme could learn the complementary representation and achieve a superior
result, e.g., gesture 15.

With a low inference cost, our framework can perform real-time gesture
recognition. Specifically, a single feed forward neural network incurs trivial
computation time, linearly in O(mT) and the complexity of Viterbi algorithm
is O(T ∗ |S|2) with the number of modalities m, the number of frames T and
the state number S.
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Figure 5.4: Comparison of individual gesture class classification rates among different
modalities.

5.4.2 Skeleton-Depth pair module

ChaLearn Italian Gesture Recognition-ChaLearn LAP track: this dataset has
the same vocabulary as the 5.4.1. The details of the dataset can be found at
6.1.1.1. Only the skeletal modality and the audio modality are considered.
Note that a large number of frames is advantageous for deep neural networks
settings over other nonparametric models for estimating skeletal human poses.

The set contains 940 labeled sequences. First 650 sample sequences are used
for training and the next 50 sample sequences for validation with the rest 240
for testing where each sequence contains around 20 gestures with some noisy
non-meaningful vocabulary tokens.

5.4.2.1 Deep Learning Library: Theano & cuda-convnet

The Deep Belief Network library used in this section is Theano [108] 1 which is
a Python library with efficient handling of multi-dimensional arrays, expres-
sive mathematical manoeuvrer and user-friendly optimization process.

The GPU enabled blazing fast Convolutional Neural Network library used
in this section is cuda-convnet [13] 2 which is a fast C++/CUDA implemen-
tation of convolutional neural networks. The very flexible framework enables
various connectivity configurations and neuron activation functions. The very
efficient juggling between CPU and GPU code structure and GPU program-
ming renders itself one of the fastest CNNs library.

1 http://deeplearning.net/software/theano/
2https://code.google.com/p/cuda-convnet/
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5.4.2.2 Skeleton Module

Only upper body joints are relevant to the discriminative gesture recognition
tasks. Therefore, only the 11 upper body joints are considered as feature input.
The 11 upper body joints used are “ElbowLeft, WristLeft, ShoulderLeft, HandLeft,
ElbowRight, WristRight, ShoulderRight, HandRight, Head, Spine, HipCenter”.

The 3D coordinates of N joints of frame c are given as: Xc = {xc
1, xc

2, . . . , xc
N}.

3D positional pairwise differences of joints [18] are deployed for observation
domain X . They capture posture features, motion features by direction con-
catenation: X = [ fcc, fcp] as demonstrated in the same as Eq 5.2. Note that
offset features fci used in [18] depend on the first frame, if the initialization
fails which is a very common scenario, the feature descriptor will be generally
very noisy. Hence, the offset features fci are discarded and only two robust
features are [ fcc, fcp] kept.

fcc = {xc
i − xc

j |i, j = 1, 2, . . . , N; i 6= j} (5.2)

fcp = {xc
i − xp

j |x
c
i ∈ Xc; xp

j ∈ Xp} (5.3)

This results in a raw dimension of NX = Njoints × (Njoints − 1)/2 + N2
joints)× 3

where Njoints is the number of joints used. Therefore, in the experiment with
Njoints = 11, NX = 528.

Hidden states: Force alignment is used to extract the hidden states, i.e., if a
gesture token is 100 frames, the first 10 frames are assigned as hidden state 1
and the 10-20 frames are assigned as hidden state 2 and so on and so forth.

Ergodic states: neutral frames are extracted as 5 frames before or after a
gesture tokens labelled by ground truth.

Caveat:

• When extracting any features, the 3D joint coordinates have not been
transformed from the world coordinate system to a person centric coor-
dinate system by placing the “HipCenter” at the origin.

• Note also that the normalization scheme by scaling the skeleton position
using length of “HipCenter” and “Spine” didn’t work well in the imple-
mentation.
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• The third point worth noting is that some actors performed gestures us-
ing their left hand as a dominant hand whereas some using their right
hand which will be worth investigating this effect in future research.
However, those tokens are treated indiscriminately. Hence, the feature
fed into GRBM are almost raw, un-preprocessed.

In the training set, there are in total 400, 117 frames. During the training
of DBN, 90% is used for training, 8% for validation (for the purpose of early
stopping ) 2% is used for test evaluation.

For high level skeleton feature extraction, two network architectures, i.e.
a smaller one and a larger one were experimented: [NX , 1000, 1000, 500, NT C ]
and [NX , 2000, 2000, 1000, NT C ], where NX = 528 is the observation domain
dimension; NT C = 201 is the output target class. In all our experiments the
number of states associated to an individual action NHa is chosen as 10 for
modeling the states of an action class. The feed forward networks are pre-
trained with a fixed learning rate using SGD with a mini-batch size of 200
training examples. We have run 100 epochs for unsupervised pre-training. For
Gaussian-binary RBMs, learning rate is fixed at 0.001 while for binary-binary
RBMs as 0.01 (note in general, training GRBM requires smaller learning rate).
For fine-tuning, the learning rate starts at 1 with 0.99999 mini-batch scaling.
Maximum fine-tuning epochs is 500 with early stopping strategy and in the
experiments, early stopping occurs around 440 epoch. Optimization complete
with best validation score (the frame based prediction error rate) of 38.19%,
with test performance 38.11%.

We believe further carefully choosing network architecture would lead to
more competitive results. However, in order not to “creeping overfitting”, we
would like to treat the model as the aforementioned more generic approach.
Since a utterly natal approach will generally have a tough time challenging
against established, delicately fine-tuned approaches at the beginning. More
essentially, new born methodologies should have a chance to mature and de-
velop so as not being forced to battle against the top performance.
Post-Processing:
The predicted token less than 20 frames are discarded as noisy tokens. Note
that there are many noisy gesture tokens predicted by viterbi decoding. One
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way to sift through the noisy tokens is to discard the token path log probability
smaller than certain threshold. However, because the metric of this challenge:
Jaccard index strongly penalizes false negatives, experiments show that it’s bet-
ter to have more false positives than to miss true positives. Effective ways to
detect false positives should be an interesting aspect of future works.

The performance of the skeleton module is shown in Tab 5.2. It can be seen
that larger net (Net2) will generally perform better than smaller net (Net1),
averaging multi-column nets almost will certainly further improve the per-
formance [14]. Hence, in the following experiments, only the multi-column
averaging results are reported.

5.4.2.3 Depth 3D Module

Preprocessing & Normalizing: shifting, scaling and resizing
Working directly with raw input Kinect recorded data frames, which are 480×
640 pixel images, can be computationally demanding. Deepmind technol-
ogy [109] presents the first deep learning model to successfully learn con-
trol policies directly from high-dimensional sensory input using reinforcement
learning. Similarly, the following basic preprocessing steps are adopted aimed
at reducing the input dimensionality from the original 480× 640 pixel to 90×
90 pixels. The square-sized of the final image is required because the used GPU
implementation from [13] expects square inputs and the input channel should
be in the set of [1, 3, 4x]. Finally, a cuboid of 4 frames, hence, size 90× 90× 4,
is extracted as a spatio-temporal unit. There are two normalization schemes
implemented as Algo. 5 and Algo. 6. Note that the Algo. 5 depends heavily on
the provided maximum depth from the recording scene and Algo. 6 depends
on the accurate detection of skeleton joins, and both scheme require the per-
former remains a roughly static position (though the max pooling scheme in
3DCNN to some extend overcome the problem of position shifting). Generally,
Algo. 6 is more robust than Algo. 5 because the provided maximum depth can
sometimes be very noisy, e.g., Sample0671, Sample0692, Sample0699, etc.
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Algorithm 5: Normalization scheme 1: template matching
Data:
T - exemplary template with original scale of size 320× 320,

(Sample0003 is chosen as the exemplary template, shown in 5.5a).
Rdepth - reference depth, fixed to 1941 (acquired from the above

exemplary template T).
T̂ - test image, as shown in 5.5b.
M - user foreground segmented mask.

1 Apply a 5× 5 aperture median filter to test depth frame T̂ as in [110] to
reduce the salt and pepper noise.

2 Multiply test depth frame T̂ with the user segmented mask M:
T̂ = T̂×M.

3 Template matching test image T̂ with T using normalized
cross-correlation [111], the response score R is shown in 5.5c.

4 Shift the image according to the maximum response R to its centre
applying affine transformation [112].

5 Scale the image according to reference depth Rdepth and the median
depth of a bounding box in the centre of the image with 25× 25 size as
shown as the green boundingp box in 5.5d.

6 Resize the image from 320× 320 to 90× 90.
Result:
T̃ - Resize-normalized image shown in the yellow bounding box of 5.5d.

Overall Architecture & Details of Learning
The 3DCNN architecture is specified as Fig. 5.6: the input contextual frames

are of size 90× 90× 4 substracting the mean activations over all training set
from each pixel, the first layer contains 16 maps of 7× 7× 4 3D kernel followed
by local response normalization layer [13] and stride 2 max pooling; the second
convolutional layers has 32 maps of 5× 5 kernel followed by local response
normalization layer and stride 2 max pooling; the third convolution layer is
composed of 32 maps of 6× 6 kernel followed by max pooling; then we have
one fully connected layer of size 1000; the output layer is of size 201 = 10×
20 + 1 (number of hidden states for each class× number of classes plus one
ergodic state).

The training set is roughly of 400,000 frames and is divided into 33 mini-
batches with first 30 batches for training and the rest 3 batches for validation.
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(a) template image (b) test image (c) template response (d) shift-resize image

Figure 5.5: Illustration of normalization scheme 1: template matching.

Algorithm 6: Normalization scheme 2: skeleton normalization
Data:
Sspine - Skeleton Spine joints pixel coordinates.
Sshoulder - Skeleton Shoulder joints pixel coordinates.
T̂ - test image.
M - user foreground segmented mask.
Rlength - reference length of shoulder to spine, fixed to 100 (1 meter).

1 Apply a 5× 5 aperture median filter to test depth frame T̂.
2 Multiply test depth frame T̂ with the user segmented mask M.
3 Shift the image according to the centroid of Spine joint Sspine.
4 Scale the image according to the Rlength/(Sspine − Sshoulder).

Result:
T̃ - Resize the shifted-scaledp image to 90× 90 .

Standard SGD is run for the first 100 epochs with learning rate of 0.1 and the
weight learning rate as 0.001 and weight bias learning rate 0.002 both momen-
tum are fixed as 0.9, weight decay is fixed to 0.0005, the next 100 epochs with
0.1×learning rate. Another network trained by randomly cropping 82 × 82
pixels on the flight as [13] is also implemented to enhance the model’s robust-
ness. During the test time, the centre part and other 4 corner parts are aver-
aged to obtain the final score, c.f. Fig 5.9c. Due to the time constraint, only
150 epochs are trained with the learning rate reduced to one tenth at the 92nd
epoch. The training frame based classification error for the aforementioned
two networks are shown in 5.9a and 5.9b. One interesting observation is that
for the network with uncropped input, reducing the learning rate at 100 epoch,
the frame-based classification rate reduces drastically whereas for the network
with cropped input, reducing the learning rate results in a spike increase of
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Figure 5.6: An illustration of the architecture of the 3DCNN architecture.

frame-based classification error rate. The reason for this discrepancy is worth
further investigation.

Looking into the networks-visualization of filter banks
The weight filters of the first conv1 layer are illustrated in Fig 5.7 and it can

be seen that both shape pattern filters and motion filters are learnt effectively.
Interestingly, the 3DCNN is able to learn the most informative motion part of
the body effectively (highest response parts are the arms/hands areas), albeit
no signal was explicitly given during training instructing which body parts the
gesture recognition tasks should focus on.

5.4.2.4 Score Fusion

To fuse the dual model prediction, the bottom strategy of Fig.5.1 is adopted.
The complementary properties of both modules can be seen in Fig.5.10. Note
that the skeleton module generally performs better than the depth module,
one reason could be that the skeleton joints are learnt from [19] and one key
component of their success lies in the huge and highly varied training data:
both from realistic and synthetic depth images, a total number of 1 million
images were used to train the deep randomized decision forest classifier in
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Figure 5.7: Top left: the conv1 weights of the 3DCNN learnt with uncropped input; top right:
the conv1 weights of the 3DCNN learnt with cropped input. It can be seen that filters/weights
of the cropped input trained networks are smoother. Bottom: visualization of sample frames
after conv1 layer (Sample0654, 264-296 frames, sampled every 8 frames). It can be seen that the
filters of the first convolutional layer are able to learn both shape pattern(red bounding box)
and motion(yellow bounding box). Also note that the high response maps correspond to the
most informative part of the body, even though during the training process, all local patches
are learned indiscriminately regardless of its location.

order to avoid overfitting. Hence skeleton data are more robust.

5.5 Discussion

Hand-engineered, task-specific features are often less adaptive and time-consuming
to design. This difficulty is more pronounced with multimodal data as the fea-
tures have to relate multiple data sources. In this chapter, a framework that uti-
lizes Deep Neural Networks for modeling emission probabilities at frame-level
was proposed, and two schemes for shared representation learning from mul-
timodal sensory inputs were experimented. The framework can be used to ex-
tract a unified representation that fuses various modalities together for model-
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Algorithm 7: Multimodal Deep Dynamic Networks – training
Data:
X1 = {x1

i }i∈[1...t] - raw input(skeletal) feature sequence.
X2 = {x2

i }i∈[1...t] - raw input(depth) feature sequence in the form of
M1 ×M2 × T, where M1, M2 are the height and width of the input
image and T is the number of contiguous frames of the
spatio-temporal cuboid.
Note that the GPU library cuda-convnet [13] used requires square size images and T is a multiple of 4.

Y = {yi}i∈[1...t] - frame based local label (achieved by semi-supervised
forced-aligment),
where yi ∈ {C ∗ S + 1} with C is the number of class, S is the
number of hidden states for each class, 1 as ergodic state.

1 for m← 1 to 2 do
2 if m is 1 then
3 Preprocessing the data X1 as in Eq.5.2.
4 Normalizing(zero mean, unit variance per dimension) the above

features and feed to to Eq.3.17.
5 Pre-training the networks using Contrastive Divergence 3.16.
6 Supervised fine-tuning the Deep Belief Networks using Y by

standard mini-batch SGD backpropagation 3.21.
7 else
8 Preprocessing the data X2 (normalizing, median filtering the

depth data) Algo.5 or Algo.6.
9 Feeding the above features to Eq.4.2.

10 Supervised fine-tuning the Deep 3D Convolutional Neural
Networks using Y by standard mini-batch SGD Backpropagation.

Result:
GDBN - a gaussian bernoulli visible layer Deep Belief Network to

generate the emission probabilities for hidden markov model.
3DCNN - a 3D Deep Convolutional Neural Networks to generate the

emission probabilities for hidden markov model.
p(H1) - prior probability for Y.
p(Ht|Ht−1) - transition probability for Y, enforcing the beginning and

ending of a sequence can only start from the first or the last state.
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Algorithm 8: Multimodal Deep Dynamic Networks – test
Data:
X1 = {x1

i }i∈[1...t] - raw input(skeletal) feature sequence.
X2 = {x2

i }i∈[1...t] - raw input(depth) feature sequence in the form of
M×M× T.

GDBN - a gaussian bernoulli visible layer Deep Belief Network to
generate the emission probabilities for hidden markov model.

3DCNN - the trained 3D Deep Convolutional Neural Networks to
generate the emission probabilities for hidden markov model.

p(H1) - prior probability for Y.
p(Ht|Ht−1) - transition probability for Y.

1 for m← 1 to 2 do
2 if m is 1 then
3 Preprocessing and normalizing the data X1 as in Eq.5.2.
4 Feedforwarding network GDBN to generate the emission

probability p(Xt|Ht) in Eq.3.25.
5 Generating the score probability matrix S1 = p(H1:T, X1:T).
6 else
7 Preprocessing the data X2 (normalizing, median filtering the

depth data) Algo.5 or Algo.6.
8 Feedforwarding 3DCNN to generate the emission probability

S2 = p(Xt|Ht) in Eq.3.25.
9 Generating the score probability matrix S2 = p(H1:T, X1:T).

10 Fusing the score matrix S = S1 + S2.
11 Finding the best path Vt,H using S by Viterbi decoding as in Eq.3.26.

Result:
Y = {yi}i∈[1...t] - frame based local label

where yi ∈ {C ∗ S + 1} with C is the number of class, S is the
number of hidden states for each class, 1 as ergodic state.

C - global label, the anchor point is chosen as the middle state frame.
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Figure 5.8: More illustrations of the middle level features from the activation images after
first convolutional layer. High response arms and hands areas are learnt automatically without
explicit learning signal in term of location information.

(a) Frame based classifica-
tion error with uncropped
input.

(b) Frame based classification
error with cropped input.

(c) Cropped images
to enhance model’s
robustness.

Figure 5.9: Visualization of the first filters and training statistics for 3DCNN.

ing time series data. The experimental results on bi-modal time series data, i.e.,
audio and skeletal joints data, show that the multimodal DBN+HMM frame-
work can learn a good model of the joint space of multiple sensory inputs,
and is consistently as good as/better than the unimodal input. The proposed
model also outperforms the traditional late fusion scheme, opening the door
for exploring the complementary representation among multimodal inputs.
It also suggests that learning features directly from data is a very important
research direction and the learning-based methods are not only more general-
izable to many domains, but also are powerful in combining with other well-
studied probabilistic graphical models for modeling and reasoning dynamic
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Figure 5.10: Viterbi decoding of two modules and their fusion result of sample sequence
704. Top to bottom: skeleton, depth, score fusion with x-axis representing the time and y-axis
representing the hidden states of all the classes with the ergodic state at the bottom. Red lines
are the ground truth label, cyan lines are the viterbi shortest path and yellow lines are the pre-
dicted label. There are some complementary information of the two modules and generally
skeletal module outperforms the depth module. The fusion of the two could exploit the un-
certainty, e.g. light green dashed box indicates that depth module makes the correct prediction
whereas the skeletal module fails, the combined module is still making the correct prediction.

sequences. The heterogeneous inputs from skeleton and depth images require
different feature learning methods and the late fusion scheme is adopted at
the score level. Future works include learning the share representation at the
penultimate layer and backpropagation the gradient in the share space.
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``````````````̀Module
Evaluation Set Validation Test

Skeleton–DBDN Net1 0.7468 -
Skeleton–DBDN Net2 0.8017 -
Skeleton–DBDN MultiNet 0.8236 0.7873
Depth–3DCNN Norm1 5 0.6378 -
Depth–3DCNN Norm2 6 0.6924 0.6371
Score Fusion 0.8045 0.8162

Table 5.2: Comparison of results in terms of Jaccard index between different net-
work structures and various modules. DBDN Net1 corresponds to network structure of
[528, 1000, 1000, 500, 201] and DBDN Net2 [528, 2000, 2000, 1000, 201], DBDN MultiNet is the
average of 3 Nets (2 Net1 and 1 Net2 with different initializations). It can be seen that larger
net has better performance and multi-column net will further improve the classification rate.
Norm1 corresponds to the normalization Algo.5 and Norm2 corresponds to the Algo.6.

Team Modalities Features Fusion Classifier Score

LIRIS S,D,RGB RAW, skeleton joints Early Deep neural network 0.8500
CraSPN S,D,RGB HOG, skeleton (BoW) Early Adaboost 0.8339

JY S,RGB HOG, skeleton (PCA) Late HMM 0.8268
Proposed method S,D Raw, skeleton Late DNN-HMM 0.8162

CUHK-SWJTU RGB Improved dense trajectories - Fisher Vector,VLAD 0.7919
lpigou D,RGB RAW Early CNN 0.7888
ismar S - - RF 0.7466
Quads S Fisher Vector - SVM 0.7454

Telepoints S,D,RGB STIP, Skeleton Late SVM 0.6888
TUM-fortiss S,D,RGB STIP, skeleton Late SVM, RF 0.6490
CSU-SCM S,D,RGB HOG, skeleton Late SVM, HMM 0.5972

iva.mm S,D,RGB HOG, skeleton (BoW) Late SVM, HMM 0.5563
Terrier S - - RF 0.5390

Team Netherlands S,D,RGB MHI, LPP Early SVM, Regression Trees 0.4307

Table 5.3: Performance comparison with various methods using various modules. S stands
for skeletal modality, D stands for depth modality and RGB stands for RGB modality. The
proposed method performs competitively. The first ranked method uses early fusion for multi-
modal data.
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Chapter 6

Conclusion and Future Directions

In this thesis, an introduction to the field of human action recognition using
various input modules is presented.

The first part of the thesis presented various hand-crafted features start-
ing from manifold learning and dimensionality reduction of the silhouettes,
to bag-of-correlated-poses encoding temporal correlation between poses with
soft-assignment scheme. The unique property of depth images were also dis-
cussed under the one-shot-learning scenario. A multi-view spectral embed-
ding technique was adopted to embed different modules, i.e. RGB and depth
images, into a smooth manifold.

In the second parts of this thesis, i.e. chapter 3 to chapter 5, which com-
prise the major contributions of the thesis, the data-driven approach is pursuit.
Chapter 3 introduced basic notion of RBMs and DBNs which constitute the
building blocks for estimating emission probabilities for HMM. This weakly-
supervised scheme outperforms the traditional GMM+HMM paradigm. And
by introducing an ergodic state during training, the proposed framework is
able to segment and recognize action sequence simultaneously. Chapter 4 ex-
tended the aforementioned framework to image domain. 3DCNN was pro-
posed in the place of DBN for estimating the emission probability of Markov
Field. It also demonstrated the flexible framework for structure prediction un-
der the CRF paradigm. Chapter 5 unified multimodal dynamic neural net-
works with various sensory inputs. Both early fusion and later fusion schemes
were conducted and both shown their effectiveness in fusing multimodal in-
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puts. The 3DCNN was also studied in more details, exhibiting some inter-
esting shape and motion pattern learnt automatically by the networks which
helps better interpreting the internal systems of the networks.

Open Questions and Future Directions

This thesis starts with the introduction of hand crafted features for video repre-
sentation, then provides ground work using Deep Neural Networks as a fea-
ture extraction technique for action recognition. There are several potential,
unexplored new frontiers, applications and extensions of the thoughts pre-
sented in this thesis, particularly related to various graphical models to rep-
resent high-dimensional time series models.

Bridging the gap between hand-crafted features and feature learning. For the
past decade, researchers spent tremendous efforts in designing hand crafted
features for video representation and until very recent, using deep learn-
ing technique for video representation is gaining momentum. The very
recent challenge for gesture recognition in Tab.5.3 shows the learning-
based approach has modest gain over traditional task-specific, hand-tuned
features. However, could all those efforts spent in designing hand-crafted
features help better initialize the network and better understand the learnt
networks? What’s the the quantitative fine-line of a big enough dataset
that the notion using hand-crafted feature should be discarded in the
case that learning-based approach is omnipotent in learning better fea-
tures? Ji et al. [16] used multiple sets of hand crafted features for CNN
initialization, the effectiveness of which, is worth further investigation.

Unsupervised learning and transfer feature learning. Even though most re-
cent visual recognition challenges winners are all supervised based dis-
criminative approaches, the vast quantities of real-world digital data are
unlabelled and have been kept untapped. The field of unsupervised
learning and transfer learning where the middle level features are reused
are gaining more attention. Convolutional Auto-Encoder (CAE) [102]
is one approach for unsupervised learning, however, most works were
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done within a relatively small scale. In the recent work of [113], CNN
was utilized to classify 1 million YouTube videos belonging to 487 classes,
and the more generic features on the bottom of the network (such as
edges, local shapes) are fixed and only the top 3 layers (dataset-specific)
are re-trained for the UCF-101 dataset, resulting better recognition than
the networks trained from scratch. One could utilize this powerful net-
work trained on such a large scale dataset and benefit smaller datasets
with limited labels.

Deep Reinforcement Learning. Reinforcement learning (RL) offers a power-
ful set of tools for sequential decision making uncertainty. It lies in the in-
tersection of multidisciplinary studies of machine learning, optimal con-
trol, operational research, etc. The mapping function is required to learn
to make sequences of decision and is evaluated by the long-term quality
of its choices. RL stands out from other machine learning paradigms in
that: there is no supervisor, only a reward signal; feedback is delayed, not
instantaneous; input data are not i.i.d., i.e. time really matters and agent’s
actions affect the subsequent data it receives. RL has been successfully
applied to control helicopters, robotics, playing Atari games [109]. The
convergence of RL and DL could assist new applications in terms of hu-
man action recognition in the relevance feedback system. The matrimony
of both could assist new applications or new insights from both theoreti-
cal analysis and empirical studies perspectives.

Learning the high level temporal correlation as a unified framework. It is worth
noting that the high level temporal encoding in this thesis is fixed dur-
ing the training stage, i.e. transitional probability and prior probability
are kept constant as the statistics collecting from the training data. One
could combine the entire system into a unified Deep Recurrent Neural
Network(RNNs) (Fig. 6.1) and backpropagating the error gradient from
the highest hierarchy. RNNs are compelling because they have a high-
dimensional nonlinear dynamics hidden states that permit the networks
to encode and operate on past information. Long Short-Term Memory
Recurrent Networks (LSTM)[114] has been introduced to ease the ”van-
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Figure 6.1: A Recurrent Neural Network[94] is a very deep feedforward neural network
whose weights are shared across time.

ishing or exploding gradient problems”. There is still provision for pow-
erful enough hardware and fast enough training system because Recur-
rent Neural Networks are notoriously difficult to train[115]. However,
unifying the system could potentially make the Deep Dynamic Networks
more flexible in encoding many time steps.

Videos and other high-dimensional time series data are challenging areas
where learning based techniques are gaining more and more momentums. Still
there are many more broad and open questions. Several potential research
directions have been outlined. Despite the burgeoning successes using deep
neural networks for video sequence analysis, many interesting and important
problems in unsupervised learning, transfer learning, unified learning remain.
It is believe that further efforts to study these problems will make another step
toward true Artificial Intelligent Systems.

104



Bibliography

[1] I. Laptev, “On space-time interest points,” International Journal of Com-
puter Vision, 2005. 1, 72

[2] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recognition
via sparse spatio-temporal features,” in Visual Surveillance and Perfor-
mance Evaluation of Tracking and Surveillance, 2005. 2nd Joint IEEE Inter-
national Workshop on, oct. 2005, pp. 65 – 72. 1, 6, 9, 10, 11, 18, 26, 72

[3] G. Willems, T. Tuytelaars, and L. V. Gool, “An efficient dense and scale-
invariant spatio-temporal interest point detector,” in European Conference
on Computer Vision. Springer, 2008. 1, 72

[4] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor and
its application to action recognition,” in ACM International Conference on
Multimedia, 2007. 1, 72

[5] A. Klaser, M. Marszalek, and C. Schmid, “A Spatio-Temporal Descriptor
Based on 3D-Gradients,” in British Machine Vision Conference, 2008. 1, 72,
73
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Notation

We follow the notation system used in [82] to have a single, consistent notation
to cover the wide variety of data, models and algorithms in a unified notation.

General math notation

Symbol Meaning
f function
F function set
∇ vector of first derivatives
L log-likehood
l loss function
F free energy
Z partition function
E expectation

Table 6.1: Notation
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List of commonly used abbreviations

Symbol Meaning
iid Independently and Identically Distributed
SGD Stochastic Gradient Descent
SVM Support Vector Machine
RF Random Forest
HOG Histogram of Oriented Gradient
SIFT Scale-invariant Feature Transform
MHI Motion History Image
GEI Gait Energy Information
INV Inversed Recording
STIP Spatio-Temporal Interest Points
LPP Locality Preserving Projection
HMM Hidden Markov Model
CRF Conditional Random Field
RBM Restricted Boltzmann Machine
GRBM Gaussian Bernoulli Restricted Boltzmann Machine
DBN Deep Belief Networks
CNN Convolutional Neural Networks

Table 6.2: Notation
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Appendix

6.1 Details of the Dataset

6.1.1 ChaLearn Italian Gesture Recognition

6.1.1.1 Kaggle track

This dataset1 is on “multiple instance, user independent learning” [20] of ges-
tures. There are 20 Italian cultural/anthropological signs, i.e.,vattene, vieniqui,
perfetto, furbo, cheduepalle, chevuoi, daccordo, seipazzo, combinato, freganiente , ok,
cosatifarei, basta, prendere, noncenepiu, fame, tantotempo, buonissimo, messidaccordo,
sonostufo. In this track, there are four modules, i.e., audio, skeleton, RGB,
depth, are provided. However, only the skeletal modality and audio modal-
ity are considered in the experiments. We use the subset where the label data
are provided during our evaluation process. The set contains 393 labeled se-
quences with a total of 7754 gestures. We used 350 sequences for training and
the rest 43 sequences for testing, where each sequence contains 20 unique ges-
tures. In the training set, there are in total 339,700 frames (20 fps). An illus-
tration of the RGB, depth (with user segmentation) and skeletal modalities is
shown in Fig 6.2.

6.1.1.2 ChaLearn Looking At People (LAP) track 3

In this dataset2 more than 14,000 gestures are drawn from a vocabulary of 20
Italian sign gesture categories as the same in 6.1.1.1 and Fig 6.2. This track is

1https://www.kaggle.com/c/multi-modal-gesture-recognition
2http://gesture.chalearn.org/homewebsourcereferrals
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Figure 6.2: ChaLearn Italian Gesture Recognition.

an expansion of the Kaggle track with 650 sample sequences for training and
validation and 240 sample sequences for testing. The focus of this track is on
multi-modal automatic learning performed by different users, with the goal of
achieving user independent continuous gesture segmentation and recognition.
The evaluation criterion for this track is the Jaccard index (overlap) on a frame-
to-frame basis.

J(A, B) =
A
⋂

B
A
⋃

B
(6.1)

In this track, only skeletal modality and the depth modality (with user seg-
mentation) are considered.

6.1.2 ChaLearn Gesture One-shot-learning Recognition

This dataset1 selects “lexicons from nine categories corresponding to various
settings or application domains; they include (1) body language gestures (like
scratching your head, crossing your arms), (2) gesticulations performed to ac-
company speech, (3) illustrators (like Italian gestures), (4) emblems (like Indian
Mudras), (5) signs (from sign languages for the deaf), (6) signals (like referee
signals, diving signals, or mashalling signals to guide machinery or vehicle),
(7) actions (like drinking or writing), (8) pantomimes (gestures made to mimic
actions), and (9) dance postures.” In this track, there are two modules, i.e., RGB,
depth, are provided (not that even though recorded by Kinect, no skeleton data
are provided because the recording distance is not always within effective dis-
tance required by Kinect skeleton detection). Initially 20 development batches
are provided and each batch “includes 100 recorded gestures grouped in se-
quences of 1 to 5 gestures performed by the same user. The gestures are drawn
from a small vocabulary of 8 to 15 unique gestures, which we call a lexicon”.

1http://gesture.chalearn.org/dissemination/cvpr2012
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Figure 6.3: ChaLearn Gesture One-shot-learning Recognition.

In total, there are 50,000 gestures captured with Kinect with RGB and depth
images of size 240× 320 pixels at 10 frames per second. A visual illustration of
a single frame is shown as Fig. 6.3.

The evaluation criterion for this track is the “Levenshtein distance” (or
“edit distance”): a string metric for measuring the difference between two se-
quences with minimum number of insertions, deletions or substitutions.

6.1.3 MSR Action3D

MSR Action3D dataset [23]1 is an action dataset of depth sequences captured
by Kinect. This dataset contains twenty actions:“ high arm wave, horizontal arm
wave,hammer, hand catch, forward punch, high throw, draw x, draw tick, draw circle,
hand clap, two hand wave, side boxing, bend, forward kick, side kick, jogging, ten-
nis swing, tennis serve, golf swing, pick up & throw.” (c.f. Fig.6.4a). Each action
was performed by ten subjects for three times. Only skeleton module is used
throughout the experiments. There are around 10,000 frames in MSR Action3D
dataset which is a comparatively smaller size dataset.

6.1.4 MSRC12

The MSRC12 dataset [21] 2 is originally proposed to “investigate the question
of what is the most appropriate semiotic modality of instructions for convey-
ing to human subjects the movements the system developer needs them to
perform”. Two categories of gesticulation, i.e. , Iconic - those imbue a corre-
spondence between the gesture and the reference and Metaphoric - those that

1 http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/
2 http://research.microsoft.com/en-us/um/cambridge/projects/msrc12/
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(a) MSR Action3D dataset, only
skeleton module is used throughout
the experiments.

(b) MSRC12 dataset, a windup example, only
skeleton module is used throughout the experi-
ments.

Figure 6.4

represent an abstract content, were investigated. Specifically they are: “lift
outstretched arms, Duck, Push right, Goggles, Wind it up, Shoot, Bow, Throw, Had
enough, Change weapon, Beat both, Kick.” The dataset includes 594 sequences
and 719,359 frames, and in total approximately six hours and 40 minutes col-
lected from 30 people performing 12 gestures with 6,244 gesture instances. The
skeletal joints car captured by Kinect with an accuracy about 10 centimeters in
joint positions. A visual demonstration for the gesture instruction is shown in
Fig.6.4b.

6.1.5 MSRGesture3D

This dataset [105]1 contains a subset of gestures defined by American Sign
Language (ASL). There are 12 gestures in the dataset: “bathroom, blue, finish,
green, hungry, milk, past, pig, store, where, j, z”. All of the gestures used in this
experiment are dynamic gestures, where both the shape and the movement
of the hands are important for the semantics of the gestures. There are ten
subjects, each performing two or three times for one gesture class. In total, the
dataset contains 336 depth sequences. The self occlusion is more common in

1http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/
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(a) MSRGesture 3D dataset, an instance of
point cloud projection from depth images of
a gesture “J”.

(b) AVLetter Lipreading dataset, an example
uttering a letter “A”.

Figure 6.5

the gesture dataset. Moreover, missing frames and noises from depth images
make the problem more challenging. A point cloud projection sequence of one
example gesture is shown in Fig. 6.5a.

6.1.6 AVLetter Lipreading

This dataset [103] 1(c.f. Fig.6.5b) consists of 10 speakers saying the letters ”A” to
”Z”, three times each. The dataset provides pre-extracted lip regions of 60× 80
gray scale pixels. Audio information is also provided in the format of Mel
frequency cepstral coefficients (MFCCs).

6.1.7 Weizmann

Weizmann[34]2(c.f. Fig.6.6a) has 90 low-resolution (180 x 144, deinterlaced
50 fps) video sequences showing nine different people, each performing 10
natural actions such as “run, walk, skip, jumping-jack (or shortly jack), jump-
forward-on-two-legs (or jump), jump-in-place-on-two-legs (or pjump), gallopsideways
(or side), wave-two-hands (or wave2), waveone-hand (or wave1), or bend.”

6.1.8 Inria Xmas Motion Acquisition Sequences (IXMAS)

In this dataset[46]3(c.f. Fig.6.6b), each action is performed three times by 10
different subjects and sequences are recorded from different viewpoints with

1 http://www.ee.surrey.ac.uk/Projects/LILiR/datasets/avletters1/index.html
2http://www.wisdom.weizmann.ac.il/ vision/SpaceTimeActions.html
3http://4drepository.inrialpes.fr/public/viewgroup/6
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(a) Weizmann dataset. (b) IMXAS dataset.

Figure 6.6

multiple cameras. These actions include “checking watch, crossing arms, scratch-
ing head, sitting down, getting up, turning around, walking, waving, punching, kick-
ing, and picking up”. One of the challenge of this dataset is that performers can
freely rotate their orientation to the recording camera, moreover, there are also
drastic appearance variations, self-occlusions.
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6.2 Details of the Code

6.2.1 Deep Belief Dynamic Networks

The python project for “Leveraging Hierarchical Parametric Network for Skele-
tal Joints Action Segmentation and Recognition” can be found at:
https://github.com/stevenwudi/CVPR_2014_code

6.2.2 Deep 3D Convolutional Dynamic Networks

The python project, C++/CUDA backend for Deep 3D Convolutional Dynamic
Network can be found at:
https://github.com/stevenwudi/3DCNN_HMM

6.2.3 CBP and Extended-MHI

The Matlab code for generating Correlated Body Poses and Extended Motion
History Images for section 2.2 can be found at:
https://github.com/stevenwudi/CBP-and-Extended-MHI

6.2.4 One-Shot-Learning from RGBD Images

The Matlab code for generating “One Shot Learning Gesture Recognition from
RGBD Images” for section 2.3 can be found at:
https://github.com/stevenwudi/Kaggle_one_shot_learning

6.2.5 Matlab Deep Learning Toolbox

The Matlab Deep Learning Toolbox with pedagogic purposes including Gaus-
sian Bernoulli Deep Belief Network, Maxpooling Convolutional Neural Net-
works and Multimodal Deep Belief Networks can be found at:
https://github.com/stevenwudi/DeepLearningTutorials
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